
IBM IMS High Performance Unload for z/OS
1.2

User's Guide

IBM

SC27-0936-12

Note:

Before using this information and the product it supports, read the information in “Notices” on page
517.

13th Edition (September 2024)

This edition applies to Version 1.2 of IBM IMS High Performance Unload for z/OS (program number 5655-E06) and to all
subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC27-0936-11.
© Copyright International Business Machines Corporation 2000, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this information.. xi

Part 1. IMS High Performance Unload overview..1

Chapter 1. Introduction to IMS High Performance Unload...3
What's new in IMS High Performance Unload... 3
What does IMS High Performance Unload do?..8
IMS High Performance Unload features and benefits...11
IMS High Performance Unload system structure.. 11
Roadmap to IMS High Performance Unload information..13
IMS High Performance Unload terminology.. 14
Service updates and support information... 14
Product documentation and updates.. 15
Accessibility features... 16

Chapter 2. Hardware and software prerequisites...17

Part 2. Unloading IMS databases... 19

Chapter 3. Introduction to the unload utilities... 21
Selecting an unload utility for your use... 21
Restrictions for IMS High Performance Unload...22
Considerations for using the unload utilities...25

Considerations for a logical parent's concatenated key..25
Considerations for an unloaded data set used for reorganization.. 26
Considerations for database sharing... 26
Considerations for HALDB Online Reorganization capable partitions.. 26
Considerations for using a secondary index.. 27
Considerations for unloading an IMS catalog.. 27
Considerations for IMS-managed ACBs environment... 28

Chapter 4. Basic job control language...29
Preparing the basic JCL..29
Basic JCL requirements... 30

Chapter 5. FABHURG1 unload utility...35
Unloading a database with FABHURG1... 35
Unload output format supported by FABHURG1.. 36
FABHURG1 JCL requirements..39
FABHURG1 input.. 41

FABHURG1 SYSIN input data set... 41
FABHURG1 HSSROPT input data set... 45
FABHURG1 HSSRCABP input data set... 46

FABHURG1 output: SYSPRINT output data set...46
FABHURG1 Unload Parameters report.. 46
FABHURG1 Segment Statistics report... 46

FABHURG1 JCL examples..47
IMS HD Reorganization Unload JCL for running FABHURG1.. 48

Chapter 6. FABHFSU unload utility... 51

 iii

Unloading a database with FABHFSU..51
Unload output format supported by FABHFSU... 52
FABHFSU JCL requirements.. 54
FABHFSU input... 55

FABHFSU CARDIN input data set...55
FABHFSU HSSROPT input data set.. 65
FABHFSU HSSRCABP input data set.. 65

FABHFSU output: PRNTOUT output data set.. 66
FABHFSU Control Statements report...66
FABHFSU Control Specifications report...66
FABHFSU Segment Statistics report.. 67

FABHFSU user exit routine...69
Considerations when writing user exit routines...69
Modifying segments in user exits... 71
Initialization and termination processing in the exit routine...72
Information passed to the exit routine.. 72
Contents of registers...75

FABHFSU JCL examples...76

Chapter 7. Application programming interface for using HSSR Engine... 79
IMS High Performance Unload API overview.. 79
HSSR PCB requirements.. 80
HSSR PCB feedback information... 81
DL/I calls and EXEC DLI command for HSSR PCB...84
JCL requirements for your HSSR application.. 86
Considerations for Db2 DL/I Batch interface.. 88
Considerations for checkpoint and restart.. 89
Consideration for database sharing...90
Consideration for HALDB single partition processing... 95

Chapter 8. Methods for processing High Availability Large Databases..97
Functions that support HALDBs...97
Restrictions for processing HALDBs.. 98
Types of processing for unloading a HALDB..98
Unloading a partitioned database with FABHURG1..101
Unloading a partitioned database with FABHFSU...103
Processing HALDBs with your HSSR application program..105
Migration unload and fallback unload... 107

Migration unload...107
Migration unload: Exit routine FABHKEYX for distributing unload records................................ 109
Parallel migration unload... 110
Fallback unload...112

Chapter 9. Utility options for unloading corrupted databases... 115
Rules for unloading corrupted databases... 115
Using the SKERROR option for FABHURG1... 117
Using the pointer bypass option for FABHFSU..118

Chapter 10. Parallel Scan Facility of FABHFSU...121
Overview of Parallel Scan Facility..121
Unloading a database with FABHFSU in PSF mode.. 122
FABHPSFM program...123

FABHPSFM JCL requirements.. 124
FABHPSFM CARDIN input data set.. 124
FABHPSFM PRNTOUT output data set...126

FABHPSFC program... 128
FABHPSFC JCL requirements...128
FABHPSFC CARDIN input data set...129

iv

FABHPSFC PRNTOUT output data set... 138
FABHFSU program (PSF mode)... 140

FABHFSU JCL requirements (PSF mode)...140
FABHFSU CARDIN input data set (PSF mode)...140
FABHFSU PRNTOUT output data set (PSF mode)... 143

FABHPSFS program... 143
FABHPSFS JCL requirements...143
FABHPSFS CARDIN input data set...145
FABHPSFS PRNTOUT output data set..147

JCL examples for FABHFSU PSF mode... 150

Chapter 11. Options for HSSR Engine... 155
Overview of HSSROPT control statements..156
APISET control statement... 159
BLDLPCK control statement.. 160
BUF control statement...161
BUTR control statement.. 161
BYINDEX control statement.. 162
CABBASE control statement..162
CABSTAT control statement...163
CALLSTAT control statement... 164
CO control statement... 164
COMPAUTH control statement.. 165
DATXEXIT control statement... 165
DBDL1 control statement.. 166
DBSTATS control statement...166
DIAGG control statement.. 167
GOTRETRY control statement..168
HPIO control statement...168
HSSRDBD control statement... 169
HSSRPCB control statement..169
KEYCHECK control statement..170
LOUT control statement...171
LSR control statement... 172
NOFIX control statement...172
NOVSAMOPT control statement.. 172
PARTINFO control statement.. 173
PCBLIST control statement... 173
RETRY control statement...174
RTEXIT control statement... 174
SKERROR control statement..175
SKIPAUTH control statement.. 175
SKIPVLC control statement... 176
TRDB control statement.. 176
TRHC control statement.. 177
TRXC control statement...178
ZIIPMODE control statement.. 178

Chapter 12. Reports and output from HSSR Engine...181
HSSRSTAT data set...181

HSSROPT Control Statements report...181
HALDB Partition Definition report.. 182
HALDB Partitions Accessed report...182
DB Call Statistics report... 183
DB Statistics report...184
Randomizing Statistics report.. 184
DB Record Length Distribution report..185
Data Set I/O Statistics report... 185

 v

CAB Statistics report.. 186
HSSRTRAC data set..190

Trace Output report.. 190
Trace Output report with diagnostics information...193

HSSRSNAP data set... 202
HSSRLOUT data set..202
HSSRBUTR data set... 203

Part 3. Tuning and customizing HSSR application jobs.. 205

Chapter 13. Overview of the buffer handlers..207
Chained Anticipatory Buffer handler (CAB)...208
Basic Buffer handler...208
Buffering service for KSDS... 209

Chapter 14. Tuning the Chained Anticipatory Buffer handler.. 211
Considerations before tuning CAB...211

What you need to know before tuning CAB... 211
Control statements that affect performance... 212
Trade-off decisions between elapsed time and buffer space...215
Size of OSAM blocks and ESDS/OSAM LDS control intervals.. 215
SMF EXCP statistics.. 216

Determining the appropriate CAB parameters..216
HSSRCABP control statements..217

CABDD control statement.. 218
INTER control statement..218
NBRDBUF control statement..219
NBRSRAN control statement... 219
OCCURRENCE control statement...220
OVERFLOW control statement... 220
PARTPROC control statement.. 221
RANSIZE control statement... 222
REFT4 control statement... 223

JCL examples for specifying CAB parameters.. 223

Chapter 15. Tuning the Basic Buffer handler..227
Control statements that affect performance.. 227
Determining the appropriate number of BB buffers... 228

Chapter 16. HSSR call test utility (FABHTEST)... 229
FABHTEST restrictions...229
Running FABHTEST to test HSSR calls.. 229
FABHTEST JCL requirements.. 230
FABHTEST input... 230

FABHTEST SYSIN input data set.. 230
FABHTEST HSSROPT input data set.. 234
FABHTEST HSSRCABP input data set.. 234

FABHTEST output: SYSPRINT output data set..235
FABHTEST JCL examples...236

Chapter 17. Buffer handler simulation utility (FABHBSIM)..239
FABHBSIM restrictions.. 239
Running FABHBSIM to simulate the buffer handler..240
FABHBSIM JCL requirements..240
FABHBSIM input.. 240

FABHBSIM HSSROPT input data set..240
FABHBSIM HSSRCABP input data set..241

vi

FABHBSIM output: HSSRSTAT output data set...241
FABHBSIM JCL example.. 241

Chapter 18. System programming interfaces...243
Runtime Environment exit (FABHRTEX).. 243
Buffer Handler Initialization exit (FABHCEX).. 245
Return Code Edit exit (FABHRCEX)..245
User record-formatting routine..246

Logic of FABHURG1.. 247
Interface to user record-formatting and optional user exit routines..248
Call parameters.. 249
Special-purpose SYSIN control statements for user exits.. 253
Get-by-RBA calls.. 257
Considerations for coding and link-editing the routine... 259

Product-sensitive macros.. 259

Chapter 19. Site default options... 261
How the runtime parameters are determined.. 261
Replacing the HSSR option table (FABHOPT)... 262
FABHTOPT macro statements... 263

Part 4. Using Sequential Subset Randomizer.. 267

Chapter 20. Introduction to the Sequential Subset Randomizer...269
Characteristics of the Sequential Subset Randomizer..269
Benefits of the Sequential Subset Randomizer...270
Sequential Subset Randomizer program functions.. 270
Differences between the Sequential Subset Randomizer and other sequential randomizers........ 272
Sequential Subset Randomizer program structure...273
Sequential Subset Randomizer restrictions.. 273

Chapter 21. Planning for the Sequential Subset Randomizer..275
Considerations when defining subset IDs...275
Considerations for application programming..276
Considerations for the relative amount of space to each subset... 276
Considerations for monitoring the database...277

Chapter 22. Sequential Subset Randomizer generation.. 279
Generating the Sequential Subset Randomizer load module...279
FABIRGEN JCL requirements.. 280
FABIRGEN input: SYSIN data set.. 280

FABITAB macro statement...281
FABIDEF macro statement...283
FABIGEN macro statement.. 284
END statement..284

FABIRGEN JCL examples...284

Chapter 23. Splitting the unloaded database data set...287
Splitting the unloaded database data set with FABIUNLS... 287
FABIUNLS JCL requirements... 288
FABIUNLS output... 289

SYSPRINT data set... 290
FABIUNLS JCL example... 292

Chapter 24. Obtaining statistics from each subset with Sequential Subset Statistics......................... 293
Obtaining statistics from each subset .. 293
JCL requirements when SS-STATS routine is applied...294

 vii

HSSROPT input data set when SS-STATS routine is applied.. 294
SSSTATS control statement..295

HSSRSTAT output data set when SS-STATS routine is applied...295
Sequential Subset Statistics report... 295

JCL example to apply the SS-STATS routine... 297

Chapter 25. Converting databases to HDAM databases randomized with the Sequential Subset
Randomizer...299
Converting from a database randomized with DFSHDC40... 299
Converting from a database randomized with other randomizers... 300
Converting from a HISAM or HIDAM... 301

Part 5. Tuning databases by using Database Tuning Statistics reports................. 305

Chapter 26. Obtaining statistics for database tuning...307
Activating the Database Tuning Statistics... 307
JCL requirements for the Database Tuning Statistics...308
Input for Database Tuning Statistics... 309

HSSROPT input data set for Database Tuning Statistics... 309
HSSRLDEF input data set for Database Tuning Statistics... 310

Output from the Database Tuning Statistics... 311
HSSRSTAT output data set for Database Tuning Statistics... 311
HSSRLOUT output data set for Database Tuning Statistics...311

Chapter 27. Printing long database records... 313
Printing long database records with FABHLDBR...313
FABHLDBR JCL requirements..314
FABHLDBR input.. 315

FABHLDBR HSSROPT input data set..315
FABHLDBR SYSIN input data set... 316

FABHLDBR output: HSSRTRAC output data set..318
JCL example for Database Tuning Statistics and FABHLDBR... 318

Chapter 28. Tuning a database with the Database Tuning Statistics...321
Resources for tuning databases.. 322

DB Statistics report...323
Randomizing Statistics report.. 328
DB Record Length Distribution report..330

Tuning the primary data set group of an HDAM database.. 330
Average number of I/O operations per database record...331
Packing density of the root addressable area..332
Number of RAPs per root segment.. 333
CI size and block size... 334
Bytes limit... 334
Free block frequency factor... 335
Free space within each block/CI..335
Examples of other indicators provided by the Database Tuning Statistics.................................336
Summary of suggested changes for the example database... 337
Other factors influencing the performance of access to an HDAM database.............................342

Tuning a HIDAM database... 344
Average number of I/O operations per database record...344
Periodical database reorganization..344
Free space specifications... 345
CI size and block size... 345
Databases with long database records..345

Tuning a HISAM database..345
Average number of I/O operations per database record...345

viii

KSDS record length (HISAM)..346
Periodical database reorganization..346
ESDS CI size..347

How to determine randomizing parameters by using a reasonable first guess method................. 347

Chapter 29. Creating a database extract for tuning experiments..351
Considerations when applying the FABHEXTR exit routine..351
Extracting a subset of database records with FABHEXTR.. 352
HSSREXTR input data set for FABHEXTR.. 352
JCL example for creating a database unload extract..354

Part 6. Compatibility with earlier products... 355

Chapter 30. Compatibility with DBT V2 HSSR.. 357
Default buffer handler for ESDS, OSAM, and OSAM LDS.. 357
Default values of CAB buffering parameters...357
Location of buffer pools and compatibility of exit routines.. 358
HSSROPT control statements: HDSTATS and NOSAMEOPT... 358
Access method used in Unload utilities to write output records..358
Method for specifying an HSSR PCB through KEYLEN.. 358
Support of PROCOPT=R and replace calls.. 359
Support of explicit HSSR calls... 360
FABHFSU control statements: CO and CON.. 361
Date specification in PSC and CTL control statements...363
Format of the scan control data set used in Parallel Scan Facility... 363
Location of control blocks..363
Product-sensitive macros.. 363
DECN control statement and the unloaded data set.. 364

Chapter 31. Compatibility with DBT V1 HSSR.. 365

Chapter 32. Compatibility with PO HSSR..367
Program names.. 367
Compatibility of application programs.. 367
Compatibility of exit routines...368
JCL compatibility..368
Default options... 369
Return codes and abend codes... 369
Compatibility of the functions..369
Mapping macros for control blocks and output records... 371

Chapter 33. Compatibility with FSU II.. 373

Part 7. Troubleshooting..375

Chapter 34. Troubleshooting IMS High Performance Unload problems... 377
HSSR snaps.. 377
Trapping abends issued by application programs.. 377
FABHTEST utility for problem determination..378

Chapter 35. Messages and codes... 379
Abend code U4013.. 379
Return codes.. 379

FABHURG1 return codes.. 379
FABHFSU return codes... 380
FABHPSFS return codes... 380
FABHBSIM and FABHTEST return codes... 381

 ix

Messages..381
FABH messages.. 382
FABI messages... 501

Chapter 36. Gathering diagnostic information... 509

Chapter 37. Diagnostics Aid.. 511
Running the Diagnostics Aid with JCL... 511
Load Module/Macro APAR Status report...512

Load Module APAR Status report... 512
Macro APAR Status report..512

Messages and codes.. 513
Return codes...513
Abend codes... 513
Messages.. 513

Notices..517

Index.. 521

x

About this information

IBM IMS High Performance Unload for z/OS® (also referred to as IMS High Performance Unload or IMS HP
Unload) provides high speed unloading of IMS databases and improves performance of IMS data retrieval
application programs by using the Unload application programming interface (API).

These topics are designed to help system programmers, application programmers, system analysts,
database administrators, and computer operators to do these tasks:

• Understand the functions of IMS High Performance Unload
• Run and use IMS High Performance Unload
• Use DD statements to control how you use IMS High Performance Unload
• Interpret IMS High Performance Unload reports
• Diagnose and recover from IMS High Performance Unload problems

Attention: These topics contain specific settings and target values for tuning databases. See
“IMPORTANT NOTICE” on page 321 before you use these topics.

Always refer to the IMS Tools Product Documentation web page for complete product documentation
resources:

https://www.ibm.com/support/pages/node/712955

The IMS Tools Product Documentation web page includes:

• Links to IBM Documentation for the user guides ("HTML")
• PDF versions of the user guides ("PDF")
• Program Directories for IMS Tools products
• Technical notes from IBM Software Support, referred to as "Tech notes"
• White papers that describe product business scenarios and solutions

© Copyright IBM Corp. 2000, 2024 xi

https://www.ibm.com/support/pages/node/712955
https://www.ibm.com/docs/en

xii IMS High Performance Unload: User's Guide

Part 1. IMS High Performance Unload overview
IBM IMS High Performance Unload for z/OS (also referred to as IMS High Performance Unload or IMS
HP Unload) provides high speed database unloading and capabilities that are not included in the basic
utilities that are provided by IMS.

Topics:

• Chapter 1, “Introduction to IMS High Performance Unload,” on page 3
• Chapter 2, “Hardware and software prerequisites,” on page 17

© Copyright IBM Corp. 2000, 2024 1

2 IMS High Performance Unload: User's Guide

Chapter 1. Introduction to IMS High Performance
Unload

IMS High Performance Unload provides high speed unloading of IMS databases and improves the
performance of IMS data retrieval application programs by using the unload application programming
interface (API).

Topics:

• “What's new in IMS High Performance Unload” on page 3
• “What does IMS High Performance Unload do?” on page 8
• “IMS High Performance Unload features and benefits” on page 11
• “IMS High Performance Unload system structure” on page 11
• “Roadmap to IMS High Performance Unload information” on page 13
• “IMS High Performance Unload terminology” on page 14
• “Service updates and support information” on page 14
• “Product documentation and updates” on page 15
• “Accessibility features” on page 16

What's new in IMS High Performance Unload
This topic summarizes the technical changes for this edition.

New and changed information is indicated by a vertical bar (|) to the left of a change. Editorial changes
that have no technical significance are not noted.

Revision markers follow these general conventions:

• Only technical changes are marked; style and grammatical changes are not marked.
• If part of an element, such as a paragraph, syntax diagram, list item, task step, or figure is changed,

the entire element is marked with revision markers, even though only part of the element might have
changed.

• If a topic is changed by more than 50%, the entire topic is marked with revision markers (so it might
seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the information because deleted
text and graphics cannot be marked with revision markers.

SC27-0936-12 (September 2024)
Description Related APARs

STAGING control statement, which is for obtaining the pending database from the
IMS catalog staging data set, is supported for the SYSIN DD statement of the
FABHURG1 unload utility. The following topics are updated:

• “FABHURG1 SYSIN input data set” on page 41
• “IMS HD Reorganization Unload JCL for running FABHURG1” on page 48

PH62672

© Copyright IBM Corp. 2000, 2024 3

SC27-0936-11 (November 2023)
Description Related APARs

Fix for migration unload issue of a non-HALDB with a virtual logical child segment
to a HALDB. For more information, see the following topics:

• “Restrictions for IMS High Performance Unload” on page 22
• “Migration unload” on page 107
• “Fallback unload” on page 112
• Modified message “FABH0400I” on page 439

PH57574

SC27-0936-10 (October 2022)
Description Related APARs

Modified messages FABH0646E and FABH0856E. N/A

SC27-0936-09 (August 2020)
Description Related APARs

Support for IMS OSAM database enhancement. PH22529

Support encrypted VSAM (ESDS) DBDS even when Media Manager is used. PH00816

Support for the Language Environment® preinitialization service (CEEPIPI). PI91820

A new control statement, ZIIPMODE, which specifies whether HSSR engine
offloads eligible VSAM ESDS I/O workloads to zIIP processors. For more
information, see “ZIIPMODE control statement” on page 178.

PI89050

Enables to use database definitions in the IMS catalog instead of DBD libraries
when IMS-managed ACBs is enabled. For more information, see “Considerations
for IMS-managed ACBs environment” on page 28.

PI83671

A new control statement, CABBASE, which specifies the basic size of I/O buffers
that the CAB buffer handler allocates. For more information, see “CABBASE control
statement” on page 162.

PI77214

Support for IMS 15.1. PI73493

Fix for DBRC database authorization issues of HSSR Engine. PI60116

A new control statement, COMPAUTH, which specifies to call the segment
compression exit in supervisor state. For more information, see “COMPAUTH
control statement” on page 165.

PI51721

Other APAR related doc changes. PI59811

SC27-0936-08 (March 2015)
Description Related APARs

Support for IMS 14.1. PI27636

Support unloading of databases when database versioning is enabled in the IMS
system.

PI10157

4 IMS High Performance Unload: User's Guide

Description Related APARs

You can use the new control statement, SKIPAUTH, for the HSSR Engine. Use
this control statement to bypass IMS DBRC database authorization for HALDB
partitions. For more information, see “SKIPAUTH control statement” on page 175.

PM97558

Support IMS catalogs. Information is added to “Considerations for unloading an
IMS catalog” on page 27.

PM65262

Other APAR related doc changes. PM84374,
PM88606,
PI19021

SC27-0936-07
Description Related APARs

Support for IMS 12.1 PM22119

*CP format (the communication industry partitioned format) has been supported.
This format is useful if the database is a HALDB with partitioned secondary index
(PSINDEX) databases and if *CS format cannot be used due to the presence of the
PSINDEX. For details, see “*CP format” on page 39.

PK90234

Support for IMS 11.1. PK74302

Other APAR related doc changes. PK61726,
PK77437,
PK90234,
PM12285,
PM48532,
PM55775,
PM58705

SC27-0936-06
Description Related APARs

Functional and performance improvements:

• In the unload utilities (FABHURG1 and FABHFSU), the number of buffers that are
automatically set for unload data set are increased. For details, see “FABHURG1
JCL requirements” on page 39 and “FABHFSU JCL requirements” on page 54.

• If the STEPLIB is APF-authorized, HSSR Engine uses the Media Manager to read
VSAM ESDS database data sets. The use of Media Manager saves the use of CPU
time.

N/A

Improvements in the usability and readability of the product information are made
in Chapter 7, “Application programming interface for using HSSR Engine,” on page
79.

N/A

IMS High Performance Unload for z/OS 1.2 does not support IMS that are lower
than 7.1. Therefore, the names of the IMS libraries that are referred to by the
catalog procedure, provided by the product, are changed to those names of IMS 8.1
and later.

N/A

Other APAR related doc changes. PK38688,
PK47931,
PK49836

Chapter 1. Introduction to IMS High Performance Unload 5

SC27-0936-05
Description Related APARs

Support for IMS 10.1:

• To use the parallel RECONs, you must specify the IMSPLEX= and the DBRCGRP=
parameters in the JCL EXEC statement. For more information, see “Preparing the
basic JCL” on page 29.

• The FABHURG1 and FABHFSU unload utilities support the large format data set
for unload data sets.

PK33118

The Get Next call with two SSAs to retrieve the second-level-dependent segment
has been supported in HP Unload API. For more information, see “DL/I calls
supported by each API set” on page 85.

PK32595

The SKIPVLC control statement has been added to HSSR Engine. For more
information, see “SKIPVLC control statement” on page 176.

PK28097

The CHECKREC control statement has been added to the FABHURG1 unload utility.
For more information, “CHECKREC control statement” on page 41.

PK11534

Other APAR related doc changes. PK17804,
PK24577,
PK24974

SC27-0936-04
Description Related APARs

JCL compatibility with IMS HD Reorganization Unload is supported. For more
information, see “IMS HD Reorganization Unload JCL for running FABHURG1” on
page 48.

PK11209

Function to retrieve HDAM or HIDAM root segments in a secondary index sequence
has been supported. For more information, see “Considerations for using a
secondary index” on page 27.

PK07882

Keywords, URG1BUFNO and FSUBUFNO, have been added to the default option
table (FABHOPT). For more information, see “Replacing the HSSR option table
(FABHOPT)” on page 262.

PK06057

Get Next call with a qualified SSA on root segments is supported in HP Unload API.
For more information, see “DL/I calls supported by each API set” on page 85.

PK04911

IBM-provided exit routine FABHKEYX is available for the FABHURG1 unload
utility. For more information, see “Migration unload: Exit routine FABHKEYX for
distributing unload records” on page 109.

PK01994

Other APAR related doc changes. PQ97692,
PQ99842,
PK07881,
PK08900

SC27-0936-03
Description Related APARs

Support for IMSDALIB DD statement. IMS Parallel Reorganization for z/OS 3.1
requires IMS High Performance Unload that has this APAR applied.

PQ93668

Function to set buffer numbers for VSAM KSDS automatically. PQ85786

6 IMS High Performance Unload: User's Guide

Description Related APARs

Support for HALDB partitions that are defined as HALDB Online Reorganization
(OLR) capable. See the considerations described in “Considerations for HALDB
Online Reorganization capable partitions” on page 26.

PQ83387

Support for DFSHALDB DD statement, which is used to select a single partition to
be processed in the API function (DLI or DBB region) of IMS High Performance
Unload. For details, see “Consideration for HALDB single partition processing” on
page 95.

PQ81675

Enables the product to run under IMS 9.1. PQ80191

Other APAR related doc changes. PQ69413,
PQ70680,
PQ70768,
PQ72433,
PQ76387,
PQ77099,
PQ79194

SC27-0936-01 and SC27-0936-02
Description Related APARs

The following functions are added to the HSSR call:

• The application programming interface for IMS High Performance Unload is
extended to support GN and GNP calls with an unqualified SSA for a dependent
segment type of an HD database.

• The application programming interface for IMS High Performance Unload is
extended to support EXEC DLI commands.

PQ67004,
PQ67296,
PQ69199

Complemented explanation of HALDB formats. The description is now as follows:
A HALDB can be unloaded in *HD format by FABHURG1, or in UL format by
FABHFSU. Whichever format the HALDB is in, both the IPR Reload utility of IMS
Parallel Reorganization for z/OS 2.1 and IMS High Performance Load for OS/390®

1.1 regard it internally, and therefore refer to it, as having PHD format.

PQ66914

Support for the Return Code Edit exit. This APAR provides a new exit for the HSSR
Engine of IMS High Performance Unload. This exit, called the Return Code Edit exit
(FABHRCEX), can be used to modify the return codes issued by HSSR application
programs.

PQ62843

Added a description of the conditions in which the header record flag introduced
by APAR PQ22654 for HSSR 2.3 causes an incompatibility. If an unloaded data set
has been created by specifying the DECN control statement for a database that
contains a compressed segment, that data set is not compatible with an unloaded
data set created by the IMS HD Reorganization Unload utility.

PQ59762

Explanations for three messages:

• The explanation for message FABH0431W is expanded to cover all the conditions
in which that message is issued.

• Explanations of messages FABH0092W and FABH0358W, which had been
missing, are added.

PQ59358

Enables IMS High Performance Unload to run under IMS8.1. PQ57581

Chapter 1. Introduction to IMS High Performance Unload 7

Description Related APARs

IMS High Performance Unload is modified so that Segment Edit/Compression
routines are loaded and deleted by the IMS IMODULE service. The APAR also adds
message FABH0853E.

PQ57815

New control statement, PARTEXTR, for the HSSREXTR DD for the FABHEXTR exit
routine of the FABHURG1 unload utility. The PARTEXTR control statement specifies
how many database records are to be extracted from each HALDB partition.

PQ55674

IMS High Performance Unload is modified so that using an uninitialized OSAM
database as input causes an error. IMS High Performance Unload is modified so
that, before getting access to a database, it checks the status of each data set
in that database. If it finds an uninitialized data set, it causes an abend U4013.
For High Availability Large Database (HALDB), the first time IMS High Performance
Unload gets access to a partition, it checks the status of the data sets in that
partition. If it finds an uninitialized data set, it causes an abend U4013.

PQ49420

Added a description that the GOT control statement becomes valid if DBRC is
inactive in the FABHFSU unload utility.

PQ48541

SC27-0936-00
This documentation covers IMS High Performance Unload, which is a follow-on product to the IMS
System Utilities/Data Base Tools (DBT) Version 2 High Speed Sequential Retrieval (DBT V2 HSSR).

Description Related APARs

The compatibility with DBT V2 HSSR and other prior products is summarized in the
following topics:

• Chapter 30, “Compatibility with DBT V2 HSSR,” on page 357
• Chapter 31, “Compatibility with DBT V1 HSSR,” on page 365
• Chapter 32, “Compatibility with PO HSSR,” on page 367
• Chapter 33, “Compatibility with FSU II,” on page 373

N/A

One of the major enhancements to IMS High Performance Unload is the addition of
support for IMS 7.1, specially High Availability Large Database (HALDB), introduced
in IMS 7.1. See Chapter 8, “Methods for processing High Availability Large
Databases,” on page 97.

N/A

What does IMS High Performance Unload do?
IMS High Performance Unload includes two unload utilities, FABHURG1 and FABHFSU, that provide
high speed unloading capability. It also includes an application programming interface (API) for DL/I
application programs that use GN calls.

As processing volumes increase, more work needs to be done in a shorter time due to shrinking batch
windows. IMS High Performance Unload saves you time and money by reducing the CPU and elapsed time
that is required to unload IMS databases and to run IMS data retrieval application programs. Powerful
functions such as the ability to continue processing after a pointer error, a user exit facility, and various
unloaded record formats are provided, all with the goal of improving availability and throughput.

IMS High Performance Unload is designed for use with IMS Database Reorganization Expert for z/OS and
IMS Online Reorganization Facility, as well as with other high performance IMS Tools products to provide
the most efficient and powerful end-to-end solution for IMS database reorganization.

IMS High Performance Unload replaces the functionality of the IMS HD Reorganization Unload utility
(DFSURGU0).

8 IMS High Performance Unload: User's Guide

IMS High Performance Unload is serviced by a high-performance database retrieval engine called
High Speed Sequential Retrieval (HSSR) Engine. IMS High Performance Unload also has an application
programming interface (API) that is compatible with the HSSR call API provided by High Speed Sequential
Retrieval of IMS System Utilities, Data Base Tools (PID: 5685-093).

Subtopics:

• “Two unload utilities” on page 9
• “Application programing interface” on page 10
• “Database organizations supported” on page 10
• “Compatibility with prior products” on page 10

Two unload utilities
IMS High Performance Unload provides two unload utilities; FABHURG1 and FABHFSU. Both utilities offer
the following functions:

Fast segment retrieval from databases
The segment retrieval engine of IMS High Performance Unload, HSSR Engine, provides the facility to
retrieve segments much faster than DL/I. See “IMS High Performance Unload system structure” on
page 11.

Unloading a database without decompressing compressed segments
Both unload utilities can unload a database that uses the Segment Edit/Compression Exit without
decompressing the segments. This method can decrease the CPU time and elapsed time. See the
following topics to activate the decompress option:

• For FABHURG1, see “DEC control statement” on page 42.
• For FABHFSU, see “DEC control statement” on page 59.

Unloading a selected partition or a selected sequence of partitions of a HALDB
Both unload utilities support unloading of a HALDB. For details, see Chapter 8, “Methods for
processing High Availability Large Databases,” on page 97.

Ability to monitor the need for database reorganization by examining statistical reports
The unload utilities can generate statistical reports that can be used for database tuning purposes. For
details, see Chapter 26, “Obtaining statistics for database tuning,” on page 307.

Ability to monitor the quality of HDAM or PHDAM randomizing by examining statistical reports
The unload utilities can generate statistical reports that can be used to measure the quality of HDAM
or PHDAM randomizing. For details, see Chapter 26, “Obtaining statistics for database tuning,” on
page 307.

Ability to continue processing after sequence errors
HSSR Engine optionally performs sequence-key checks for twin chains. You can select the behavior
for a sequence error from the following options:

• HSSR Engine gets to abend.
• HSSR Engine returns a GG status code and unloads neither the segment in error nor its dependents.
• HSSR Engine returns a GX status code and unloads the segment in error.

Reading a corrupted database
Options in IMS High Performance Unload increases the control you have when you unload a database
that contains an incorrect pointer or incorrect HISAM records:

• Incorrect HD pointers can be bypassed.
• The processing of the remainder of the incorrect HISAM record can be skipped.
• The root segments of HIDAM or PHIDAM database can be accessed by use of the primary index,

instead of traversing the root twin chain and the RAP chain.

For details, see Chapter 9, “Utility options for unloading corrupted databases,” on page 115.

Chapter 1. Introduction to IMS High Performance Unload 9

Application programing interface
The application programming interface (API) of IMS High Performance Unload enables an IMS DL/I batch
application program, which reads a database sequentially, to use HSSR Engine without being recompiled
or relink-edited. The API enables DL/I application programs to use HSSR Engine to read a database by
using GN calls. Through this API, the application program can retrieve a large number of segments more
efficiently than the native IMS DL/I and the elapsed time and CPU time can be reduced.

Database organizations supported
IMS High Performance Unload supports the following database organizations:

• HDAM (Hierarchical Direct Access Method)
• HIDAM (Hierarchical Indexed Direct Access Method)
• PHDAM (Partitioned HDAM)
• PHIDAM (Partitioned HIDAM)
• HISAM (Hierarchical Indexed Sequential Access Method)
• SHISAM (Simple HISAM)

You can unload a partition or a sequence of partitions of a PHDAM or PHIDAM database.

Other database organizations are not supported by IMS High Performance Unload.

Notes:

• Secondary index databases are supported, but are processed as independent databases. Processing of
a partitioned secondary index is not supported.

• IMS/ESA® Partition Support Product for MVS/ESA (5697-A06) and IMS/ESA Partition Support Product
for MVS/ESA Version 2 (5697-D85) are not supported.

Compatibility with prior products
IMS High Performance Unload is compatible with the following prior products:

DBT V2 HSSR
IMS System Utilities/Data Base Tools Version 2, High Speed Sequential Retrieval (5685-093)

DBT V1 HSSR
IMS System Utilities/Data Base Tools Version 1, High Speed Sequential Retrieval (5668-856)

PO HSSR
Program Offering High Speed Sequential Retrieval Version 2 (IFP 5787-LAC)

FSU II
IMS/VS Fast Scan Utility II Version 2 (FDP 5798-DFN)

For details about compatibility with these products, see the following topics:

• Chapter 30, “Compatibility with DBT V2 HSSR,” on page 357
• Chapter 31, “Compatibility with DBT V1 HSSR,” on page 365
• Chapter 32, “Compatibility with PO HSSR,” on page 367
• Chapter 33, “Compatibility with FSU II,” on page 373

10 IMS High Performance Unload: User's Guide

IMS High Performance Unload features and benefits
IMS High Performance Unload provides high speed database unloading capabilities, as well as additional
capabilities that are not included in the IMS base utilities.

Fast segment retrieval from databases
The segment retrieval engine of IMS High Performance Unload, HSSR Engine, provides the function to
retrieve segments much faster than DL/I. The unload utilities FABHURG1 and FABHFSU benefit.

Also, batch DL/I application programs that use GN calls to read database can use the facility. Programs
that read large portions of a database sequentially may get significant reductions in elapsed time and CPU
use. You do not have to recompile or relink-edit the application program to use HSSR Engine.

User exit facility to allow additional processing for retrieved segments
Each of the unload utilities provides the user exit facility, which provides more control on unload process
than the IMS HD Reorganization Unload utility.

Ability to continue processing after sequence errors
IMS High Performance Unload optionally does sequence-key checks for twin chains. You can select the
behavior for a sequence error from the following methods:

• IMS High Performance Unload gets to abend (KEYCHECK ABEND)
• IMS High Performance Unload returns a GG status code and does not unload the segment containing

the error, or its dependents (KEYCHECK GG and SKERROR n)
• IMS High Performance Unload returns a GX status code and unloads the segment in error (KEYCHECK

GX)

If the DIAGG control statement is specified, IMS High Performance Unload provides diagnostic
information of each sequence error.

Reading a corrupted database
IMS High Performance Unload options give you greater control when you are unloading a database that
has an incorrect pointer:

• SKERROR option can be used to bypass pointer errors.
• BYINDEX option can be used to force the roots of HIDAM or PHIDAM database to be accessed from the

primary index.

If the DIAGG control statement is specified, IMS High Performance Unload provides diagnostic
information about each pointer error.

IMS High Performance Unload system structure
Any application program that runs the IMS High Performance Unload's runtime environment and is
serviced by HSSR Engine, is called an HSSR application program. Unload utilities FABHURG1 and
FABHFSU are HSSR application programs. You can also write your own HSSR application program.

The following figure provides an overview of the structure of IMS High Performance Unload and its data
flow.

Chapter 1. Introduction to IMS High Performance Unload 11

Utility/Application program

DL/I action modules

INIT call

TERM call

Database 'A'

Database 'B'

Utility/Application
input

Utility/Application
output

For an HSSR PCB

For a DL/I PCB

* HP-Unload: IMS High Performance Unload

IMS region controller
DFSRRC00

DL/I
language
interface
module

Transfer control

Call ASMTDLI HSSR_PCB
Call CBLTDLI HSSR_PCB
Call PLITDLI HSSR_PCB
EXEC DLI USING HSSR_PCB#

Call ASMTDLI DL/I_PCB
Call CBLTDLI DL/I_PCB
Call PLITDLI DL/I_PCB
EXEC DLI USING DLI_PCB#

IMS DD
or

IMS catalog
directory

User exit routine
(for Unload utility)

H
SSR

call
router

HP-Unload program controller

HP-Unload runtime initializer
FABHX034

//HSSROPT //HSSRCABP
Outputs from
HSSR Engine

HSSR Engine

//HSSRSTAT

Figure 1. System structure and data flow

IMS High Performance Unload runs in an IMS batch environment. IMS High Performance Unload runtime
environment initializer (FABHX034) is invoked first. The initializer gives control to the IMS region
controller DFSRRC00, which passes control to the IMS program controller. IMS High Performance Unload
program controller is then invoked by the IMS program controller as an IMS batch application program.

The IMS High Performance Unload program controller calls HSSR Engine. HSSR Engine then reads the
HSSROPT data set to initialize the call analyzer, call handler, and trace and diagnosis facilities, and reads
the HSSRCABP data set to initialize the buffer handler. Call analyzer initializes PCBs that have been
specified to be serviced by HSSR Engine. Such PCBs are called HSSR PCBs (for details about HSSR PCB,
see Chapter 7, “Application programming interface for using HSSR Engine,” on page 79). Call analyzer
also initializes control blocks relating to the HSSR PCBs. Buffer handler allocates a buffer pool for each
data set group for each HSSR PCB.

The IMS High Performance Unload program controller loads the application program. Each DL/I call or
EXEC DLI command to an HSSR PCB is processed by HSSR Engine. This call or command is called an
HSSR call. If the PCB is not an HSSR PCB, HSSR call router passes control to the DL/I program request
handler.

After the application program runs, it returns control to the IMS High Performance Unload program
controller. HSSR Engine terminates the processing and writes statistical reports to the HSSRSTAT data
set. Then the program controller returns control to IMS.

For details about each component of IMS High Performance Unload, see the following topics:

• Chapter 5, “FABHURG1 unload utility,” on page 35
• Chapter 6, “FABHFSU unload utility,” on page 51
• Chapter 7, “Application programming interface for using HSSR Engine,” on page 79

To run these unload utilities or to use HSSR engine with your application program, you must prepare basic
JCL. For information, see Chapter 4, “Basic job control language,” on page 29.

12 IMS High Performance Unload: User's Guide

Roadmap to IMS High Performance Unload information
The IMS High Performance Unload User's Guide provides complete information for using IMS High
Performance Unload.

This information is designed for system programmers, application programmers, system analysts,
database administrators, and computer operators who have a working knowledge of IMS and need to
learn how to set up and use IMS High Performance Unload. Before reading this information, you should
understand basic IMS concepts, the IMS environment, and your installation's IMS system.

If you are not experienced with IMS System Utilities/Data Base Tools, High Speed Sequential
Retrieval (DBT HSSR) or Program Offering High Speed Sequential Retrieval (PO HSSR), read Chapter 1,
“Introduction to IMS High Performance Unload,” on page 3 for a technical overview of this product. This
topic covers the following general information:

• Introduction to the functions of IMS High Performance Unload
• Typical benefits you can get by using IMS High Performance Unload
• System structure of IMS High Performance Unload

See Chapter 3, “Introduction to the unload utilities,” on page 21 for information about the two unload
utilities (FABHURG1 and FABHFSU). This information will help you determine which utility to use.

Then proceed to Chapter 4, “Basic job control language,” on page 29 to learn how to write JCL for IMS
High Performance Unload. This topic covers the following information:

• JCL statements for IMS High Performance Unload
• IBM-supplied cataloged procedures

IMS High Performance Unload provides an application programming interface. If you want to write your
own application program and use HSSR Engine, see Chapter 7, “Application programming interface for
using HSSR Engine,” on page 79.

In addition, the following topics help you to complete your tasks with IMS High Performance Unload:

• To process a HALDB, see Chapter 8, “Methods for processing High Availability Large Databases,” on
page 97.

• To unload a database that has a pointer error, see Chapter 9, “Utility options for unloading corrupted
databases,” on page 115.

• To change the behavior of IMS High Performance Unload by coding control statements, see Chapter 11,
“Options for HSSR Engine,” on page 155.

• To interpret the reports generated by HSSR Engine, see Chapter 12, “Reports and output from HSSR
Engine,” on page 181.

• To tune or customize IMS High Performance Unload jobs, see the following topics:

– Chapter 13, “Overview of the buffer handlers,” on page 207
– Chapter 18, “System programming interfaces,” on page 243
– Chapter 19, “Site default options,” on page 261

• To tune your databases by using the Database Tuning Statistics function, see Chapter 26, “Obtaining
statistics for database tuning,” on page 307.

• If you are migrating from DBT HSSR or PO HSSR, see the following topics:

– Chapter 30, “Compatibility with DBT V2 HSSR,” on page 357
– Chapter 31, “Compatibility with DBT V1 HSSR,” on page 365
– Chapter 32, “Compatibility with PO HSSR,” on page 367
– Chapter 33, “Compatibility with FSU II,” on page 373

Chapter 1. Introduction to IMS High Performance Unload 13

IMS High Performance Unload terminology
IMS High Performance Unload includes several unique terms that you should understand before you
begin to use IMS High Performance Unload.

Short names used in this information
In these topics, all supported versions of IMS are referred to as IMS, except where distinctions among
them need to be made.

In these topics, the following short names for product names are used:

Short name Product name

Db2® Db2 UDB for z/OS (currently supported versions)

IMS IMS Database Manager (currently supported versions)

IMS Database
Reorganization Expert

IBM IMS Database Reorganization Expert for z/OS 4.1 (5655-S35)

Note: IMS Database Reorganization Expert is the successor product of IMS
Parallel Reorganization.

IMS High Performance
Load

IBM IMS High Performance Load for z/OS 2.1 (5655-M26)

IMS High Performance
Unload

IBM IMS High Performance Unload for z/OS 1.2 (this product)

For withdrawn products, the following short names are used:

Short name Product name

DBT HSSR The generic name for the following products:

• IMS System Utilities/Data Base Tools Version 2, High Speed Sequential
Retrieval (5685-093)

• IMS System Utilities/Data Base Tools Version 1, High Speed Sequential
Retrieval (5668-856)

IPR IBM IMS Parallel Reorganization for z/OS 3.2 (5655-M28)

PO HSSR Program Offering High Speed Sequential Retrieval Version 2 (IFP 5787-LAC)

FSU II IMS/VS Fast Scan Utility II Version 2 (FDP 5798-DFN)

Service updates and support information
Service updates and support information for this product, including software fix packs, PTFs, frequently
asked questions (FAQs), technical notes, troubleshooting information, and downloads, are available from
the web.

To find service updates and support information, see the following website:

IBM Support: IMS High Performance Unload for z/OS

14 IMS High Performance Unload: User's Guide

https://www.ibm.com/mysupport/s/topic/0TO0z0000006v0AGAQ/ims-high-performance-unload-for-zos?language=en_US&productId=01t0z000007g6xsAAA

Product documentation and updates
IMS Tools information is available at multiple places on the web. You can receive updates to IMS Tools
information automatically by registering with the IBM My Notifications service.

Information on the web
Always refer to the IMS Tools Product Documentation web page for complete product documentation
resources:

https://www.ibm.com/support/pages/node/712955

The IMS Tools Product Documentation web page includes:

• Links to IBM Documentation for the user guides ("HTML")
• PDF versions of the user guides ("PDF")
• Program Directories for IMS Tools products
• Technical notes from IBM Software Support, referred to as "Tech notes"
• White papers that describe product business scenarios and solutions

IBM Redbooks® publications that cover IMS Tools are available from the following web page:

http://www.redbooks.ibm.com

The IBM Information Management System website shows how IT organizations can maximize their
investment in IMS databases while staying ahead of today's top data management challenges:

https://www.ibm.com/software/data/ims

Receiving documentation updates automatically
To automatically receive emails that notify you when new technote documents are released, when
existing product documentation is updated, and when new product documentation is available, you
can register with the IBM My Notifications service. You can customize the service so that you receive
information about only those IBM products that you specify.

To register with the My Notifications service:

1. Go to https://www.ibm.com/support/mynotifications
2. Enter your IBM ID and password, or create one by clicking register now.
3. When the My Notifications page is displayed, click Subscribe to select those products that you want

to receive information updates about. The IMS Tools option is located under Software > Information
Management.

4. Click Continue to specify the types of updates that you want to receive.
5. Click Submit to save your profile.

How to send your comments
Your feedback is important in helping us provide the most accurate and highest quality information. If you
have any comments about this or any other IMS Tools information, see How to provide feedback in IBM
Documentation.

When you provide feedback, include as much information as you can about the content you are
commenting on, where we can find it, and what your suggestions for improvement might be.

Chapter 1. Introduction to IMS High Performance Unload 15

https://www.ibm.com/support/pages/node/712955
https://www.ibm.com/docs/en
http://www.redbooks.ibm.com
https://www.ibm.com/software/data/ims
https://www.ibm.com/support/mynotifications
https://www.ibm.com/docs/en/ibm_docs/feedback.html
https://www.ibm.com/docs/en
https://www.ibm.com/docs/en

Accessibility features
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features
The major accessibility feature in IMS High Performance Unload is keyboard-only operation for ISPF
editors. It uses the standard TSO/ISPF interface.

Keyboard navigation
You can access IMS ISPF panel functions by using a keyboard or keyboard shortcut keys.

For information about navigating the IMS ISPF panels using TSO/E or ISPF, refer to z/OS TSO/E Primer,
the z/OS TSO/E User’s Guide, and the z/OS ISPF User’s Guide, Volume 1. These guides describe how to
navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

IBM and accessibility
See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more information about the
commitment that IBM has to accessibility.

16 IMS High Performance Unload: User's Guide

http://www.ibm.com/able

Chapter 2. Hardware and software prerequisites
Before you install IMS High Performance Unload, make sure that your environment meets the following
minimum hardware and software requirements.

Hardware requirements
IMS High Performance Unload operates on any hardware configuration that supports the required
versions of IMS.

Software requirements
IMS High Performance Unload requires Database Manager of one of the currently supported versions of
IMS or IMS Database Value Unit Edition.

The operating system requirements of IMS High Performance Unload are the same as those required by
the corresponding IMS release.

To use the Data Conversion exit of IMS, IMS/ESA Year 2000 Exit Tool Version 1 (5697-E04) is required
(this product supports IMS versions up to 7.1).

Note: No user-written Data Conversion exit routine (DFSDBUX1) is supported.

To use the Db2 DL/I Batch support, one of the currently supported versions of Db2 UDB for z/OS is
required.

Restrictions
IMS High Performance Unload is subject to the following restrictions with respect to processing
environment:

• It cannot be run under IMS Utility Control Facility (UCF).
• It does not support the checkpoint and restart capability.

Restrictions that are related with each utility program are described in “Restrictions for IMS High
Performance Unload” on page 22.

© Copyright IBM Corp. 2000, 2024 17

18 IMS High Performance Unload: User's Guide

Part 2. Unloading IMS databases
You can use the FABHURG1 utility or the FABHFSU utility to unload IMS databases, or you can enable
your application program to use the High Speed Sequential Retrieval Engine (HSSR Engine) of IMS High
Performance Unload.

Topics:

• Chapter 3, “Introduction to the unload utilities,” on page 21
• Chapter 4, “Basic job control language,” on page 29
• Chapter 5, “FABHURG1 unload utility,” on page 35
• Chapter 6, “FABHFSU unload utility,” on page 51
• Chapter 7, “Application programming interface for using HSSR Engine,” on page 79
• Chapter 8, “Methods for processing High Availability Large Databases,” on page 97
• Chapter 9, “Utility options for unloading corrupted databases,” on page 115
• Chapter 10, “Parallel Scan Facility of FABHFSU,” on page 121
• Chapter 11, “Options for HSSR Engine,” on page 155
• Chapter 12, “Reports and output from HSSR Engine,” on page 181

© Copyright IBM Corp. 2000, 2024 19

20 IMS High Performance Unload: User's Guide

Chapter 3. Introduction to the unload utilities
IMS High Performance Unload provides two unload utilities, FABHURG1 and FABHFSU, both of which run
as HSSR application programs. The utilities take advantage of the services provided by HSSR Engine.

The unloaded data set produced by these unload utilities can be used as input to the IMS HD
Reorganization Reload utility and to other reload utilities that are compatible with it.

Topics:

• “Selecting an unload utility for your use” on page 21
• “Restrictions for IMS High Performance Unload” on page 22
• “Considerations for using the unload utilities” on page 25

Selecting an unload utility for your use
IMS High Performance Unload provides two unload utilities, FABHURG1 and FABHFSU, both of which run
as HSSR application programs. Before selecting which utility to use, you must understand the functional
differences between each utility.

Procedure
Use the following information to select the unload utility that meets your unloading needs:

The FABHURG1 utility is relatively simple. The FABHFSU utility provides more functions than FABHURG1,
and is compatible with FSU II.

Both unload utilities are usually run in the ULU region. In that ULU region, all database segment types are
unloaded automatically. These utilities can also be run in DLI region, and FABHURG1 can be run in the
DBB region.

Consider using the FABHURG1 unload utility if you want to:
Unload a database into one of the six standard formats.

One of the six standard formats is acceptable as input to IMS HD Reorganization Reload utility or a
compatible utility. For input processing by application programs, the other four standard formats are
more practical. The six standard formats include the communication industry standard format (*CS
format).

Note: The *CS format cannot be selected in FABHFSU jobs.

Do a migration unload to HALDB or a fallback unload from HALDB.
FABHURG1 can unload a database to migrate an HIDAM or HDAM database to a PHIDAM database or
a PHDAM database. FABHURG1 can also unload a database to do fallback from a PHIDAM or PHDAM
database to an HIDAM or HDAM database. The unloaded data set created is compatible with the
unloaded data set created by IMS HD Reorganization Unload utility.

Note: You can also use FABHFSU in PSF mode to do a migration unload. By using FABHFSU in
PSF mode, you can process the partitions in parallel, which results in faster processing. For more
information, see “Parallel migration unload” on page 110. Fallback unload from HALDB is not
supported by FABHFSU.

Create a database extract to perform database tuning experiments.
Using the exit routine FABHEXTR provided by IBM, you can create a small database extract from a
large database, for use in database tuning experiments.

Use a user record-formatting routine to format output records or to edit segment data (for system
programmers).

FABHURG1 accepts a user exit that enables system programmers to write a user record-formatting
routine for formatting output records and an optional exit routine for editing segment data.

© Copyright IBM Corp. 2000, 2024 21

Note: User exit that enables system programmers to write a user record-formatting routine for
formatting output records or optional exit routines for editing segment data are not supported by
FABHFSU.

Consider using the FABHFSU unload utility if you want to:
Create up to three data sets in one single execution.

Different record formats can be specified for each output data set. If FABHFSU runs in the DLI region,
different PCBs that refer to the same DBD can be specified for each output data set.

Note: FABHURG1 does not support generating multiple outputs with different formats.

Use a user exit that is compatible with user exit of IPR Unload utility or DBT HSSR (for application
programmers).

The user exit is compatible with the user exit of FABHFSU in DBT HSSR and with the user exit of IPR
Unload. A different user exit routine can be specified for each output.
If you want to edit segment data or to discard some segments on the basis of criteria you chose, you
should use FABHFSU and write an exit routine for it.

Notes:

• User exits are also provided for FABHURG1, but they are intended to be used mainly by system
programmers who have good knowledge of IMS database and HSSR Engine.

• FABHURG1 does not support user exits that are compatible with user exits of IPR Unload utility.

Unload a specified range or portion of an HISAM, HIDAM, or HDAM database.
You can unload the portion of the database to be read. For HISAM or HIDAM, the limits of the range
are specified as keys. For HDAM, the limits of the range are defined as relative block numbers of the
CIs or blocks in the Root Addressable Area.

Unload a multivolume database by scanning separately or concurrently (PSF mode).
FABHFSU has two different modes: the standard mode and the Parallel Scan Facility (PSF) mode. In
the PSF mode, FABHFSU performs individual scan phases, which can run separately or concurrently to
unload a multivolume database.

Note: In both the standard mode and the PSF mode, FABHFSU runs as an HSSR application program.

Use FSU II JCL.
You can use your FSU II JCL to run FABHFSU by making small modifications to your FSU II JCL.

Note: FABHURG1 is not compatible with FSU II.

What to do next
See also “Restrictions for IMS High Performance Unload” on page 22 and “Considerations for using the
unload utilities” on page 25 to learn the restrictions and considerations that apply to each utility.

When you have determined the unload utility to use, see the following topics for the instructions to use
the utility:

• For FABHURG1 utility, see Chapter 5, “FABHURG1 unload utility,” on page 35.
• For FABHFSU utility in standard mode, see Chapter 6, “FABHFSU unload utility,” on page 51.
• For FABHFSU utility in PSF mode, see Chapter 10, “Parallel Scan Facility of FABHFSU,” on page 121.

Restrictions for IMS High Performance Unload
Certain restrictions apply when using the unload utilities or the API of IMS High Performance Unload.

Subtopics:

• “Restrictions common to all HSSR applications” on page 23
• “Restrictions common to FABHURG1 and FABHFSU” on page 24
• “Restrictions specific to FABHURG1” on page 25

22 IMS High Performance Unload: User's Guide

• “Restrictions specific to FABHFSU” on page 25

Restrictions common to all HSSR applications
The following restrictions apply to all HSSR application programs including the FABHURG1 utility and the
FABHFSU utility:

• Logical DBD is not supported.
• A sensitive virtual logical child (LCHILD) is not supported.
• Field sensitivity for an HSSR PCB is not supported.
• For the restrictions of DBRC authorization for database access, see “Support for database level sharing”

on page 92.
• For the restrictions of secondary index processing, see “Considerations for using a secondary index” on

page 27.
• If IMS database versioning is enabled and any database version other than the current version is
specified, HSSR Engine passes the DL/I calls to the DL/I call handler of IMS. Certain HSSROPT control
statements are ignored. For more information, see the explanation of message “FABH0638W” on page
467. For the FABHURG1 utility and the FABHFSU utility, any database version other than the current
version is not supported.

• The following restrictions apply to HSSR calls:

– For details of call types supported in each API set, see “DL/I calls supported by each API set” on
page 85.

- If APISET 1 or 2 is specified, or if the target is a non-HD database, the following restrictions are
applied:

• An unqualified or qualified SSA is not fully supported.
• Three or more SSAs are supported restrictively.
• Command codes except for NULL('*-') command code are not supported.
• Multiple qualification statements are not supported.

- If APISET 3 is specified for non-HD database and the unsupported call is issued, HSSR Engine ends
abnormally without passing the call to IMS DL/I.

- A get-next call issued after GU calls that returned a GE status might not return the same segment
as DL/I.

– For details about the EXEC DLI command types supported in each API set, see “EXEC DLI
commands supported by each API set” on page 86. For the EXEC DLI commands, the restrictions
corresponding those for the DL/I calls apply.

• The following restrictions apply to Application Interface Block (AIB) interface:

– HSSR calls using AIB interface are not supported.

An HSSR call that uses the interface is passed to IMS's DL/I call handler and is processed as a DL/I
call or an EXEC DLI command for the corresponding DL/I PCB.

– An HSSR application program that uses AIB system service calls might have problems. The use of
AIB system service calls is not recommended.

• In APISET 1 and 2, by default, for a logical child with a logical parent's concatenated key (LPCK) that is
specified as VIRTUAL on the SEGM statement of the DBD, HSSR Engine returns blanks in the I/O area
that would usually hold the LPCK (as if field sensitivity were in effect). For compatibility with FSU II,
FABHFSU returns binary zeros to the I/O area instead of blanks. If you need to have LPCKs built in the
I/O area, you must specify the BLDLPCK control statement in the HSSROPT data sets.

• The data capture exit routine is supported, with the following restrictions:

– A data capture exit routine cannot issue an HSSR call.

Chapter 3. Introduction to the unload utilities 23

– If an application program issues an HSSR call for the PCB that follows, the call is transferred to the
DL/I language interface and the message FABH0671W is issued with RC=USREXIT. The reason that
caused the message is as follows:

- PCB is generated with PROCOPT=R
- The DBD referred to by the PCB is generated with the data capture exit routine.

In this case, therefore, the HSSR application program cannot take advantage of the HSSR Engine.
• No user-written Data Conversion exit routine (DFSDBUX1) is supported.
• Db2 DL/I Batch interface is supported, with restrictions.

See “Considerations for Db2 DL/I Batch interface” on page 88.
• DL/I checkpoint and restart calls are supported, with restrictions.

See “Considerations for checkpoint and restart” on page 89.
• An HSSR application program can run in a database-sharing environment. However, if the application

program reads a database that is concurrently being updated by IMS, HSSR Engine does not guarantee
read integrity.

See “Consideration for database sharing” on page 90.
• An application program that gets information from DL/I control blocks might have problems in the IMS

High Performance Unload environment.

Restrictions common to FABHURG1 and FABHFSU
The following restrictions are common to FABHURG1 and FABHFSU:

• The DBD that specifies the input database must be a physical DBD.
• If IMS database versioning is enabled, only the current version of the database can be used. Any other

versions of the database are not supported.
• FABHURG1 and FABHFSU do not support sensitive, virtually paired segments.

In the ULU region, the virtual logical child segment is ignored. In the DLI and the DBB regions, the
processing depends on the SKIPVLC control statement. For details of the SKIPVLC control statement,
see “SKIPVLC control statement” on page 176.

The restriction applies to the unloading of databases for reorganization because the data set input to
IMS HD Reorganization Reload utility does not contain virtually paired segments.

Note: Virtually paired segments are unloaded when migration unload (to HALDB) is performed.
• If either of the following segment occurrences is skipped or lost during the unload, FABHURG1

and FABHFSU cannot be used in a reorganization to unload a corrupted database that has logical
relationships:

– A logical parent segment that has one or more logical children.
– A logical child segment that is physically paired.

• Make sure that no segments required by the IMS HD Reorganization Reload utility are missing during
reorganization for either of the following reasons:

– Having no segment types defined as data-sensitive by a SENSEG statement (this condition does not
happen when you use a ULU region in unloading.)

– Having a user exit routine set a return code indicating that some segments should be skipped.
• No support is available for multivolume output data sets whose extents reside on volumes of more than

one device type.
• FABHURG1 and FABHFSU do not support IMS Tools Knowledge Base. It is supported by the IPR Unload

utility. For the details, see the IMS Database Reorganization Expert User's Guide.
• For migration unload, the following restrictions apply:

– Migration unload of the secondary index is not supported.

24 IMS High Performance Unload: User's Guide

– Migration unload of the HISAM database is not supported.
– If PTR=H or PTR=HB is defined as the parent segment of virtual logical child, migration unload of the

database is not supported.

Restrictions specific to FABHURG1
The following restrictions apply only to FABHURG1:

• If the BLDLPCK control statement is not specified in the HSSROPT data set, the following restriction
applies:

– When FABHURG1 retrieves a logical child segment for which the logical parent's concatenated key
(LPCK) has been specified as VIRTUAL on the SEGM statement of the DBD, blanks are returned to the
part of the I/O area where the LPCK is to be placed.

Therefore, you must specify a BLDLPCK control statement when unloading such a database if you
specified the database in the DBIL= statement when running the IMS Database Prereorganization utility.
For performance reason, you should not specify a BLDLPCK statement if you specified the database in
the DBR= statement when running the Prereorganization utility.

• Fallback unload of the partitioned secondary index (PSINDEX) is not supported.

Restrictions specific to FABHFSU
The following restrictions apply only to FABHFSU:

• FABHFSU cannot be run in the DBB region; FABHDBB procedure cannot be used for FABHFSU.
• HSSRPCB and HSSRDBD control statements specified in the HSSROPT data set are always ignored. In

FABHFSU, HSSR PCBs are specified by the DBD control statement and the PSB control statement in the
CARDIN data set (see “FABHFSU CARDIN input data set” on page 55).

• By default, for a logical child segment for which a logical parent's concatenated key (LPCK) is specified
as VIRTUAL on the SEGM statement of the DBD, binary zeros are returned to the I/O area when that
segment is retrieved. This is because of the compatibility with FSU II. If you need to have the LPCK built
—for example, when you have specified the DBIL control statement in the Database Prereorganization
utility—you must specify the BLDLPCK control statement in the HSSROPT data set when you run the
FABHFSU job.

• The PROCOPT statement fields on the PCB and SENSEG statements can have any value acceptable to
IMS, although only the PROCOPTs that are listed in “Processing option (PROCOPT) requirements” on
page 80 have meaning to FABHFSU.

Note: In a database-sharing environment, DBRC uses the PROCOPT values to check whether database
access can be granted (see “Handling data set extensions” on page 91).

• Field sensitivity can be specified during PSBGEN, but is ignored by FABHFSU.
• Fallback unload is not supported.

Considerations for using the unload utilities
Certain considerations apply when using the unload utilities of IMS High Performance Unload.

Considerations for a logical parent's concatenated key
By default, for a logical child segment with a logical parent's concatenated key (LPCK) that is specified
as VIRTUAL on the SEGM statement of the DBD, FABHURG1 returns blanks in the I/O area that usually
contains LPCK, and FABHFSU returns binary zeros in the area.

To have HSSR Engine build the LPCK and return it in the I/O area, you must specify BLDLPCK control
statement in the HSSROPT data set. For details, see “BLDLPCK control statement” on page 160.

When you unload an uncorrupted database that has a logical child whose LPCK is defined as virtual, and
if BLDLPCK statement is not specified, you must run the IMS Database Prereorganization utility with the

Chapter 3. Introduction to the unload utilities 25

control statement DBR= to get a successful reload and prefix resolution. The control statement DBIL=
gives incorrect results in this case.

You must specify BLDLPCK statement when you unload a corrupted database that has a logical pointer
error in a logical child whose LPCK is defined as virtual. Since you suspect that logical pointers are
incorrect, you must also run the Database Prereorganization utility, using the DBIL= control statement.
Otherwise, you will get an incorrect reload that would be detected during prefix resolution.

Considerations for an unloaded data set used for reorganization
Unloaded data sets that are created under certain conditions cannot be reloaded with the IMS HD
Reorganization Reload utility (DFSURGL0).

A data set created by FABHURG1 in *HD format or by FABHFSU in UL format can be used as input for
the IMS HD Reorganization Reload utility (DFSURGL0). If you create an unloaded data set by specifying
a DECN control statement for a database that contains a compressed segment, that data set is not
compatible with the unloaded data set created by the IMS HD Reorganization Unload utility. For details,
see the following topics:

• For FABHURG1, see “DEC control statement” on page 42.
• For FABHFSU, see “DEC control statement” on page 59.

You cannot reload such an unloaded data set by using the IMS HD Reorganization Reload utility
(DFSURGL0), but you can reload it by using the IMS High Performance Load (Load utility or PSSR utility) or
the IPR Reload utility.

There are the following differences, which do not affect DFSURGL0:

• IMS adds padding bytes of binary zeros to make the length of the segment even; FABHURG1 and
FABHFSU do not.

• IMS overrides the BLKSIZE specified in the JCL with the computed values. FABHURG1 and FABHFSU is
overridden by the BLKSIZE specified.

Considerations for database sharing
In general, like any other unload utility during reorganization, FABHURG1 and FABHFSU must have
exclusive control of the database while they run. In some cases, however, you might want to read the
database while it is being updated by IMS.

The update might be done either by IMS within the same program or by another IMS subsystem through
concurrent execution. For such cases, see “Database sharing support” on page 90. The considerations in
the topic also apply to FABHURG1 and FABHFSU.

Considerations for HALDB Online Reorganization capable partitions
IMS High Performance Unload supports HALDBs. IMS High Performance Unload supports also the PHDAM
or the PHIDAM partitions that are defined as HALDB Online Reorganization (OLR) capable.

However, if one or more partitions are in the following HALDB OLR status, IMS High Performance Unload
cannot process the HALDB:

• HALDB OLR is currently running.
• HALDB OLR for the partition is suspended and one of the following options is specified for FABHURG1 or

FABHFSU:

– DECN
– User exit routine
– *CS format for PHDAM
– PARTEXTR

When none of these options is specified, IMS High Performance Unload can process the partition.
However, the following options for the HSSR Engine are ignored:

26 IMS High Performance Unload: User's Guide

• BYINDEX
• CO
• DBSTATS
• KEYCHECK
• SKERROR

Because the DBSTATS control statement is ignored, the following reports are not printed:

• DB Statistics report
• Randomizing Statistics report
• DB Record Length Distribution report

The CAB Statistics report for the partition of which HALDB OLR is suspended and partitions that follow
this partition are not printed.

In this case, the performance decreases because the HSSR Engine passes the DL/I calls to the IMS's DL/I
call handler from the partition. Consider running IMS High Performance Unload after the completion of
the HALDB OLR.

Related concepts
Methods for processing High Availability Large Databases
You can use the FABHURG1 unload utility, the FABHFSU unload utility, or your HSSR application program
to process High Availability Large Databases.

Considerations for using a secondary index
A secondary index can be used to retrieve HIDAM or HDAM root segments. The target segment of the
secondary index must be a root segment.

In the ULU region, you can specify the name of the secondary index by using the following control
statement:

• For FABHFSU, “DBD control statement” on page 58.
• For others, “BYINDEX control statement” on page 162.

In the DLI or the DBB region, the index name on these control statements is ignored. HSSR Engine uses
the secondary index, which is coded by the PROCSEQ= parameter in the specified PCB.

When the secondary index is used, the value of the search field of the index segment is set to the key
feedback area of the HSSR PCB, instead of the root key. User exits can specify a next root segment by the
value of the search field.

Restriction
The following secondary indexes are not supported:

• Secondary index whose target is not a root segment
• Secondary index with symbolic pointing
• Secondary index that contains index pointer segments with non-unique keys
• Secondary index for databases other than HIDAM or HDAM

Considerations for unloading an IMS catalog
You can use IMS High Performance Unload to unload data from an IMS catalog.

IMS catalogs are HALDB databases. The unload method differs whether DBRC is used to manage the IMS
catalog. If DBRC is used to manage the IMS catalog, you can unload data from the IMS catalog in the
same manner as you do to unload a HALDB database.

To unload data from an IMS catalog that is not managed by DBRC, use either of the following methods:

Chapter 3. Introduction to the unload utilities 27

• Add the DFSDF=xxx parameter as shown in the following examples. You can use either format.

Example 1:

//UNLOAD EXEC PGM=FABHX034,PARM=(DFSRRC00/ULU,FABHURG1,DFSCD000,
// ,,,,,,,,,,N,N,,N,,,'',,,,,,,'DFSDF=CAT')

Example 2:

//UNLOAD EXEC FABHULU,
// MBR=FABHURG1,DBD=DFSCD000,DBRC=N,
// PARM1='DFSDF=CAT'

Here, CAT is the suffix of the DFSDFxxx member that contains the UNREGCATLG parameter.

Then, specify the PROCLIB DD statement to point the DFSDFxxx member of the IMS.PROCLIB data set.
• Place the IMS Catalog Definition exit routine (DFS3CDX0) in the STEPLIB DD concatenation.

With either method, you must allocate the catalog partition definition data set. To do so, add the
DFSHDBSC DD statement or the DFSMDA member with the TYPE=CATDBDEF statement.

Considerations for IMS-managed ACBs environment
When the IMS management of ACBs is enabled, IMS reads database descriptors (DBDs) from the IMS
catalog instead of from the DBD library that is specified in the IMS DD statement.

Refer to the following JCL examples when you prepare IMS HP Unload JCL to run an unload job in an
IMS-managed ACBs environment. For more information about coding IMS HP Unload JCL, see Chapter 4,
“Basic job control language,” on page 29.

Example 1: Specifying the DFSDF= parameter and DBRC=Y

//UNLOAD EXEC FABHULU,
// MBR=FABHURG1,DBD=USERDBD,DBRC=Y,
// PARM1='DFSDF=CAT'
//G.PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR
//DBSAMP01 DD DSN=DBSAMP01.DATA1,DISP=OLD
//SYSUT2 DD DSN=DBSAMP01.UNLOAD,DISP=(NEW,PASS),
// SPACE=(CYL,(20,10))

DFSDF=CAT parameter is specified on the EXEC statement. This parameter specifies the DFSDFCAT
member that enables IMS-managed ACBs. The name of the IMS.PROCLIB data set in which the
DFSDFCAT member exists is specified on the PROCLIB DD statement.

You must allocate the catalog partition definition data set when unloading a database with DBRC=NO. To
do so, add the DFSHDBSC DD statement or the DFSMDA member with the TYPE=CATDBDEF statement.

Example 2: Using the IMS Catalog Definition exit routine

//UNLOAD EXEC FABHULU,
// MBR=FABHURG1,DBD=USERDBD,DBRC=Y
//G.STEPLIB DD
// DD
// DD DSN=user.DFS3CDX0,DISP=SHR
//DBSAMP01 DD DSN=DBSAMP01.DATA1,DISP=OLD
//SYSUT2 DD DSN=DBSAMP01.UNLOAD,DISP=(NEW,PASS),
// SPACE=(CYL,(20,10))

The DFS3CDX0 exit routine must be bound into IMS.SDFSRESL or a concatenated library.

You must allocate the catalog partition definition data set when unloading a database with DBRC=NO. To
do so, add the DFSHDBSC DD statement or the DFSMDA member with the TYPE=CATDBDEF statement.

28 IMS High Performance Unload: User's Guide

Chapter 4. Basic job control language
An IMS High Performance Unload job can run in a DL/I, DBB, or ULU region by using DL/I JCL. The DL/I
JCL requires minor changes for each region type.

Topics:

• “Preparing the basic JCL” on page 29
• “Basic JCL requirements” on page 30

Preparing the basic JCL
You must select a region type and modify the DL/I JCL to prepare your JCL for an IMS High Performance
Unload job.

Procedure
1. Select a region type for the IMS High Performance Unload job.

An IMS High Performance Unload job can run in a DL/I, DBB, or ULU region:

• The DL/I region is used to run an HSSR application program by using PSB and DBD libraries. The DBB
region is used to run programs by using an ACB library.

• The ULU region is used primarily in running the unload utilities FABHURG1 and FABHFSU. To run an
application program in the ULU region, you must specify the physical DBD, but a PSB is not needed.
This specification ensures that all segments are data-sensitive.

• In a ULU region, IMS assumes that the IMS HD Reorganization Unload utility is running.
Consequently, in a database sharing environment, DBRC grants the database access to an HSSR
application program or utility under the same conditions as for the IMS HD Reorganization Unload
utility. When an application program is called internally, the PCB list is passed to the application
program in accordance with Assembler or COBOL conventions. A PCB for an HSSR application
program that is run in a ULU region is defined as an HSSR PCB.

Note: You can use the HSSROPT DBDL1 control statement to override the HSSR PCB and force DL/I
calls to be made to the database.

If your application program must be protected from the addition of new segment types to the
database, do not select the ULU region.

2. Modify the DL/I JCL for IMS High Performance Unload.

To run an IMS High Performance Unload job, you must modify the normal DL/I JCL procedure.

A cataloged procedure is provided for each region type in the HPS.SHPSSAMP sample library. Use the
appropriate cataloged procedure, or prepare a similar procedure of your own.

Table 1. Cataloged procedures for each region type

Cataloged procedure Description

FABHDLI for DLI region FABHDLI is used to run batch application programs by using DL/I
and HSSR with PSBs and DBDs. It is similar to the DL/I procedure
DLIBATCH.

FABHDBB for DBB region FABHDBB is used in conjunction with ACBs to run batch application
programs. It is similar to the DL/I procedure DBBBATCH.

FABHULU for ULU region FABHULU is used in conjunction with the ULU region types to run
utilities and generalized application programs. You must provide the
name of a physical DBD with DBD=keyword.

© Copyright IBM Corp. 2000, 2024 29

Modify the JCL so that the basic JCL requirements for running IMS High Performance Unload utilities
are met. For descriptions for the EXEC and DD statements, see “Basic JCL requirements” on page 30.

3. If any of the following conditions apply, follow the instructions in these topics:

• “Considerations for a logical parent's concatenated key” on page 25
• “Considerations for an unloaded data set used for reorganization” on page 26
• “Considerations for database sharing” on page 26
• “Considerations for HALDB Online Reorganization capable partitions” on page 26
• “Considerations for using a secondary index” on page 27
• “Considerations for unloading an IMS catalog” on page 27
• “Considerations for IMS-managed ACBs environment” on page 28

Basic JCL requirements
The basic JCL requirements for IMS High Performance Unload are for the IMS High Performance Unload
runtime environment initializer (FABHX034). Many programs of IMS High Performance Unload and user-
written HSSR application programs require that the basic JCL requirements are met.

Subtopics:

• “EXEC and DD statements” on page 30
• “Additional JCL requirements for each utility” on page 33

EXEC and DD statements
The following table summarizes the DD statements for the runtime environment initializer (FABHX034).

Table 2. Runtime environment initializer (FABHX034) DD statements

DDNAME Use Format Need

STEPLIB Input - Required

HSSROPT Input LRECL=80 Optional

HSSRCABP Input LRECL=80 Optional

DFSVSAMP Input LRECL=80 Optional

ddname Input - Optional

HSSRLDEF Input LRECL=80 Optional

RECONx Input - Optional

IMSDALIB Input - Optional

IEFRDER Output - Required

HSSRSTAT Output LRECL=133 Optional

HSSRLOUT Output - Optional

HSSRTRAC Output LRECL=133 Optional

HSSRBUTR Output - Optional

HSSRSNAP Output LRECL=133 Required

IMS Input - Optional

IMSACB Input IMSVS.ACBLIB Optional

PROCLIB Input IMSVS.PROCLIB Required

30 IMS High Performance Unload: User's Guide

Table 2. Runtime environment initializer (FABHX034) DD statements (continued)

DDNAME Use Format Need

IMSMON Output DUMMY Required

DFSRESLB Input IMSVS.SDFSRESL Required

The following list explains the EXEC and DD statements of the JCL to run IMS High Performance Unload:

EXEC
The EXEC statement must be in the following format:

 // EXEC PGM=FABHX034,PARM=('DFSRRC00/DLI',pgmname,psbname,...)

The program invoked by the PGM keyword on the EXEC statement is the IMS High Performance
Unload runtime environment initializer named FABHX034.

The PARM parameters, except the first one, must be specified in the same format as the PARM
parameters for the IMS DLIBATCH or DBBBATCH procedures. The first parameter must contain the
name of the IMS region controller, DFSRRC00, followed by a slash (/) and the name of the IMS region
in which the job is to run. The region name must be one of DBB, DLI, or ULU.

When processing a HALDB, the 14th parameter, which is the DBRC parameter, must be Y.

Tip: For each region type, IMS High Performance Unload provides a cataloged procedure. See
“Preparing the basic JCL” on page 29.

STEPLIB DD
Points to the IMS High Performance Unload library, the IMS RESLIB library, and the user libraries that
contain user programs and DFSMDA members.

Notes:

• You do not need to APF-authorize the STEPLIB libraries. If however, the STEPLIB is not authorized
for example by having unauthorized libraries concatenated, you must specify the DFSRESLB DD
statement.

• If all concatenations of the JOBLIB/STEPLIB are APF-authorized, Media Manager is used for reading
VSAM ESDS database data sets and OSAM LDS database data sets, which saves the use of CPU
time.

• If you do not want to authorize the library that contains the DFSMDA members, specify the
IMSDALIB DD statement.

HSSROPT DD
This optional statement defines an input data set that contains optional control statements for HSSR
Engine. For more information about HSSROPT control statements, see Chapter 11, “Options for HSSR
Engine,” on page 155.

HSSRCABP DD
This optional statement defines an input data set that contains the control statements that change
buffering parameters for the CAB buffer handler provided by HSSR Engine. For more information
about HSSRCABP control statements, see “Chained Anticipatory Buffer handler (CAB)” on page 208.

Note: Chained Anticipatory Buffering (CAB) is the default buffering method provided by HSSR Engine.

DFSVSAMP DD
This DD describes the data set that contains the buffer pool information required by the IMS DL/I
buffer handler. If this data set is not specified, it is dynamically created by IMS High Performance
Unload. For this reason, this data set should not usually be specified.

If you want to provide this data set, you should specify the minimum required number of buffers in
the DFSVSAMP data set because IMS High Performance Unload does not use the buffers taken with
the parameters specified in this data set. Otherwise, a larger region size is required in order to run IMS
High Performance Unload.

Chapter 4. Basic job control language 31

You must however, specify DL/I buffers in DFSVSAMP in the following cases:

• When you specify the BLDLPCK control statement in HSSROPT data set.

In this case, HSSR Engine issues DL/I calls internally to build LPCKs.
• When you do a migration unload of a database in which a logical child is defined.

In this case, HSSR Engine issues DL/I calls internally to get information to be written in the header
of the unload record of the logical child.

• When APISET 3 is specified in the HSSROPT data set or by the site default option table. In this case,
if a call that is not supported in APISET 2 is issued, that call and all succeeding calls are passed to
DL/I and are processed by DL/I action modules.

The usual DFSVSAMP definitions should be used in tuning the processing of these internal DL/I calls.

ddname DD
These DDs define the database data set to be processed. One statement of this type must be present
for each data set that appears in the DBD describing the database. The value of ddname must match
the ddname in the DBD.

For an HIDAM database, DD statements must also exist for the data sets that represent the index.
The DD statements that specify the index must contain ddnames specified in the DBD for the index
database. No DD statements are required for the secondary indexes that are associated with this
database unless the secondary indexes are used.

If the BLDLPCK control statement is specified in the HSSROPT data set, the database in which the
logical parent is defined must be specified.

You must not code DCB=BUFNO=n or AMP='BUFND=n' options to request access method buffers for
database data sets; HSSR Engine allocates its own buffer pool for each data set group.

Note: If you use dynamic allocation, do not use the DD statement for the database data sets.

For HALDBs, no DD statement needs to be specified for any database data set because the data set is
always dynamically allocated.

HSSRLDEF DD
This optional statement defines the input data set that contains control statements for requesting
the DB Record Length Distribution report with your own database record length ranges. For more
information about HSSRLDEF control statements, see “Activating the Database Tuning Statistics” on
page 307.

RECONx DD
This statement provides RECON1, RECON2, and RECON3 DDs under the same conditions as for
standard IMS jobs. If RECON data sets need to be allocated dynamically, do not specify these DDs.

IMSDALIB DD
This optional statement defines the library that contains the DFSMDA members for dynamic
allocation. Allocation of the database data sets and the RECON data sets is attempted in the following
order:

1. The DD statements coded in the JCL stream
2. Dynamic allocation by data set definition that is contained in RECON (only for HALDB data sets)
3. Dynamic allocation members in the IMSDALIB concatenation or in the JOBLIB/STEPLIB

concatenation

If you specify this library on the IMSDALIB DD statement, it is highly recommended that you remove
the library from the STEPLIB concatenation.

IEFRDER DD
This required statement defines the IMS log data set.

HSSRSTAT DD
This optional statement defines the output data set for HSSR Engine to write statistical output after
the termination of the application program. For the details, see “HSSRSTAT data set” on page 181.

32 IMS High Performance Unload: User's Guide

HSSRLOUT DD
This optional statement defines the output sequential data set, in which a small record is written
for each database record when the Database Tuning Statistics function is activated by coding the
DBSTATS control statement in the HSSROPT data set. For details about this data set, see “Activating
the Database Tuning Statistics” on page 307.

Note: The BLKSIZE and LRECL for the HSSRLOUT data set must not be specified in JCL. HSSR Engine
determines them dynamically from the key length of the root segment.

HSSRTRAC DD
This optional statement defines an output data set in which the trace data is written. The DD
statement is required whenever any of the following functions are activated by HSSROPT statements.

• The trace options TRHC and TRDB
• The compare option CO
• The diagnostic option DIAGG

For details about these control statements, see Chapter 11, “Options for HSSR Engine,” on page 155.
For details about this data set, see “HSSRTRAC data set” on page 190.

HSSRBUTR DD
This optional statement defines the output data set on which the buffer handler trace is written. It is
ultimately used as input for a buffer simulation run with the FABHBSIM utility.

 //HSSRBUTR DD DSN=xxx,DISP=(,KEEP),UNIT=tape,...

HSSRSNAP DD
This required statement defines the output data set on which snapshots are written when an error
occurs during initialization of HSSR Engine. For details, see “HSSRSNAP data set” on page 202.

The remaining five DD statements (that is, IMS, IMSACB, PROCLIB, IMSMON, and DFSRESLB) are for IMS.
See IMS Database Utilities.

Additional JCL requirements for each utility
When running one of the following utilities, see also the JCL requirement topic for that utility:

• For the FABHURG1 database unload utility, see “FABHURG1 JCL requirements” on page 39.
• For the FABHFSU database unload utility, see “FABHFSU JCL requirements” on page 54.

When using the Database Tuning Statistics functions, see the following topics:

• To customize the DB Record Length Distribution report (HSSRLDEF data set), see “JCL requirements for
the Database Tuning Statistics” on page 308.

• To record the length of each database record (HSSRLOUT data set), see “JCL requirements for the
Database Tuning Statistics” on page 308.

• To print long database records (FABHLDBR utility), see “FABHLDBR JCL requirements” on page 314.

Chapter 4. Basic job control language 33

34 IMS High Performance Unload: User's Guide

Chapter 5. FABHURG1 unload utility
The FABHURG1 unload utility replaces the functions of the IMS HD Reorganization Unload utility
(DFSURGU0) and the HISAM Reorganization Unload utility (DFSURUL0). By using HSSR Engine,
FABHURG1 provides high speed unloading of databases with more control over the unload process.

FABHURG1 unloads databases faster than the IMS HD Reorganization Unload utility because it runs as an
HSSR application program. The utility accepts user requests through the SYSIN data set. You can specify
options for HSSR Engine by coding control statements in the HSSROPT data set and the HSSRCABP data
set. For the output, in addition to the standard output reports produced by HSSR Engine, a Segment
Statistics report is produced in the SYSPRINT data set.

Tip: To understand the system structure and the data flow in HSSR application jobs, see “IMS High
Performance Unload system structure” on page 11.

You can also use the FABHURG1 utility to unload a corrupted database, perform migration unload, or
fallback unload. For information about these tasks, see the following topics:

• To unload a corrupted database, see Chapter 9, “Utility options for unloading corrupted databases,” on
page 115.

• To perform migration unload or fallback unload, see “Migration unload and fallback unload” on page
107.

For the restrictions that apply to FABHURG1 jobs, see “Restrictions for IMS High Performance Unload” on
page 22.

Topics:

• “Unloading a database with FABHURG1” on page 35
• “Unload output format supported by FABHURG1” on page 36
• “FABHURG1 JCL requirements” on page 39
• “FABHURG1 input” on page 41
• “FABHURG1 output: SYSPRINT output data set” on page 46
• “FABHURG1 JCL examples” on page 47
• “IMS HD Reorganization Unload JCL for running FABHURG1” on page 48

Unloading a database with FABHURG1
To unload a database by using the FABHURG1 utility, you must select the format of the unload output and
modify the basic JCL.

Procedure
To unload a database by using the FABHURG1 utility, complete the following steps:
1. Select a region type from ULU, DLI, or DBB, and prepare the basic JCL.

For instructions for preparing the basic JCL, see “Preparing the basic JCL” on page 29.
2. Code the additional DD statements to meet the JCL requirements of FABHURG1.

For additional JCL requirements, see “FABHURG1 JCL requirements” on page 39.
3. Select a format for the unload output.

You can select from six formats. See “Unload output format supported by FABHURG1” on page 36 to
determine the output format.

4. Code the required SYSIN control statements.

© Copyright IBM Corp. 2000, 2024 35

SYSIN control statements control the behavior of the FABHURG1 utility job. See “FABHURG1 SYSIN
input data set” on page 41 for descriptions of the SYSIN control statements.

5. Optional: Code HSSROPT and HSSRCABP control statements to specify the options for HSSR Engine.

These control statements are optional. For more information, see “FABHURG1 HSSROPT input data
set” on page 45 and “FABHURG1 HSSRCABP input data set” on page 46.

6. Submit the JCL to run the FABHURG1 job.
7. Check the output reports and messages.

In addition to the standard output reports produced by HSSR Engine, a Segment Statistics report is
produced in the SYSPRINT data set. To interpret the report, see “FABHURG1 output: SYSPRINT output
data set” on page 46.

Related reference
FABHURG1 JCL examples
Use the following JCL examples to prepare your FABHURG1 JCL.

Unload output format supported by FABHURG1
FABHURG1 can unload a database in any of six formats, *HD, *F1, *F2, *F3, *CS, and *CP.

These formats are called standard formats of FABHURG1. The *HD format is the default format. The
output generated in this format is acceptable as input to the IMS HD Reorganization Reload utility or to a
compatible utility. The other formats are used for processing by application programs.

Subtopics:

• “*HD format” on page 36
• “*F1 format” on page 36
• “*F2 format” on page 37
• “*F3 format” on page 38
• “*CS format” on page 38
• “*CP format” on page 39

*HD format
If you use *HD format, you can replace the IMS HD Reorganization Unload utility with the faster
FABHURG1 utility when reorganizing a database. The *HD format is the default format.

Considerations:

• If you create an unload data set by specifying the DECN control statement for a database that
contains a compressed segment, the data set is not compatible with an unloaded data set that is
created by the IMS HD Reorganization Unload utility. For details, see “DEC control statement” on
page 42. You cannot reload such an unloaded data set by using the IMS HD Reorganization Reload
utility (DFSURGL0), but you can reload it by using IMS High Performance Load (Load utility or PSSR
utility) or the IPR Reload utility.

• FABHURG1 *HD output records can be compared against the output records created by the IMS HD
Reorganization Unload utility. To do so, add the optional SYSUT1 statement to your JCL to define the
IMS unloaded data set to be used in the comparison. See the description of SYSUT1 DD statement
in “FABHURG1 JCL requirements” on page 39.

*F1 format
This section describes the *F1 format, which is a product-sensitive programming interface. See
“Programming interface information” on page 518 to understand the restrictions associated with this
type of material.

36 IMS High Performance Unload: User's Guide

PSPI

This format is to be used for processing by application programs. When you use the *F1 Format, a
variable-length record is written for each retrieved database segment that contains the following data
fields:

• Segment code
• Segment level
• Segment data as returned by the HSSR call and as seen by HSSR application programs

 FORMAT OF *F1 RECORDS

STATEMENT OFFSET DESCRIPTION
 DEC HEX

REC1 DSECT
REC1LEN DC H’0’ 0 0 RECORD LENGTH FIELD
REC1ZZ DC H’0’ 2 2 ZZ (RESERVED FOR MVS)
REC1SC DC X’00’ 4 4 SEGMENT CODE
REC1LEV DC X’00’ 5 5 SEGMENT LEVEL
REC1DATA EQU * 6 6 SEGMENT DATA AS RETURNED
 BY HSSR

Considerations

• If the database contains segments shorter than 8 bytes, do not send the output to tape. (A block of
less than 18 bytes is not acceptable for a tape.)

• If the database contains segments shorter than 12 bytes, the output cannot be processed by some
Sort/Merge programs. (Some Sort/Merge programs require records with at least 18 bytes.)

PSPI

*F2 format
This section describes the *F2 format, which is a product-sensitive programming interface. See
“Programming interface information” on page 518 to understand the restrictions associated with this
type of material.

PSPI

This format is to be used for processing by application programs. When you use the *F2 format, a
variable-length output record is written for each retrieved segment of the database. It contains the
following data fields:

• Segment code
• Segment level
• Segment name
• Length of segment as returned by the HSSR call
• Offset of sequence field within segment data (zero if the segment has no sequence field)
• Length of sequence field (if the segment has no sequence field, zero is used.)
• A field that contains zeros for compatibility with *F3 format (in this field, the *F3 format contains the

actual length of the concatenated PCB key feedback area.)
• The segment data as returned by the HSSR call and as seen by HSSR application programs

Chapter 5. FABHURG1 unload utility 37

 FORMAT OF *F2 RECORDS

STATEMENT OFFSET DESCRIPTION
 DEC HEX

REC2 DSECT
REC2LEN DC H’0’ 0 0 RECORD LENGTH FIELD
REC2ZZ DC H’0’ 2 2 ZZ (RESERVED FOR MVS)
REC2SC DC X’00’ 4 4 SEGMENT CODE
REC2LEV DC X’00’ 5 5 SEGMENT LEVEL
REC2SYM DC CL8’ ’ 6 6 SYMBOLIC SEGMENT NAME
REC2IOAL DC H’0’ 14 E SEGMENT DATA LENGTH AS
 RETURNED BY HSSR
REC2KOFS DC H’0’ 16 10 KEY OFFSET WITHIN DATA
REC2KEYL DC H’0’ 18 12 KEY LENGTH OF THIS
 SEGMENT
REC2MKL DC H’0’ 20 14 0 FOR COMPATIBILITY
 WITH *F3 FMT
REC2DATA EQU * 22 16 SEGMENT DATA AS RETURNED
 BY HSSR

PSPI

*F3 format
This section describes the *F3 format, which is a product-sensitive programming interface. See
“Programming interface information” on page 518 to understand the restrictions associated with this
type of material.

PSPI

This format is to be used for processing by application programs. The *F3 format has the same format as
the *F2 format, except the *F3 format also contains the concatenated PCB key feedback area after the
segment data.

 FORMAT OF *F3 RECORDS

STATEMENT OFFSET DESCRIPTION
 DEC HEX

REC3 DSECT
REC3LEN DC H’0’ 0 0 RECORD LENGTH FIELD
REC3ZZ DC H’0’ 2 2 ZZ (RESERVED FOR MVS)
REC3SC DC X’00’ 4 4 SEGMENT CODE
REC3LEV DC X’00’ 5 5 SEGMENT LEVEL
REC3SYM DC CL8’ ’ 6 6 SYMBOLIC SEGMENT NAME
REC3IOAL DC H’0’ 14 E SEGMENT DATA LENGTH AS
 RETURNED BY HSSR
REC3KOFS DC H’0’ 16 10 KEY OFFSET WITHIN DATA
REC3KEYL DC H’0’ 18 12 KEY LENGTH OF THIS SEGMENT
REC3MKL DC H’0’ 20 14 PCB KEY-FEED-BACK-LENGTH
REC3DATA EQU * 22 16 SEGMENT DATA AS RETURNED
 BY HSSR
REC3KFD EQU * 22 16 PCB KEY-FEED-BACK-AREA

PSPI

*CS format
The communication industry standard format. This format is usable as input to the IPR Reload utility or
IMS High Performance Load.

Consideration: The unloaded file in this format cannot be used for reorganization under the following
conditions:

• If a logical relationship is defined in the database.
• If the database is a HALDB and a partitioned secondary index (PSINDEX) database is defined.

38 IMS High Performance Unload: User's Guide

*CP format
The communication industry partitioned format. This format can be used as input to the IPR Reload
utility or IMS High Performance Load. This format is useful if the database is a HALDB with partitioned
secondary index (PSINDEX) databases.

Consideration: If a logical relationship is defined in the database and the database is unloaded in *CP
format, you cannot use the unloaded file for reorganization.

FABHURG1 JCL requirements
FABHURG1 runs as an HSSR application program and, therefore, must meet the requirements for the
basic JCL (FABHX034 JCL). In addition, FABHURG1 JCL requires other DD statements.

Prerequisite: See “Basic JCL requirements” on page 30 for the basic (FABHX034) JCL requirements.

The following table summarizes the additional JCL requirements for FABHURG1.

Table 3. FABHURG1 DD statements

DDNAME Use Format Need

SYSIN Input LRECL=80 Optional

SYSPRINT Output LRECL=133 Required

SYSUT1 Input HD Unload Optional

SYSUT2 Output - Required

SYSUT3 Output - Optional

Note: You can also use JCL that is written for IMS HD Reorganization Unload (DFSURGU0) to run
FABHURG1. For details, see “IMS HD Reorganization Unload JCL for running FABHURG1” on page 48.
In this compatibility mode, Media Manager will not become effective for VSAM ESDS and OSAM LDS,
regardless of whether JOBLIB or STEPLIB libraries are APF-authorized.

EXEC
This statement invokes procedures FABHULU, FABHDLI, or FABHDBB (see “Preparing the basic JCL”
on page 29). The EXEC statement must be in one of the following formats:

// EXEC FABHULU,MBR=FABHURG1,DBD=dbdname
// EXEC FABHDLI,MBR=FABHURG1,PSB=psbname
// EXEC FABHDBB,MBR=FABHURG1,PSB=psbname

SYSIN DD
This optional DD statement defines the input data set that contains control statements for
FABHURG1.

For the description of the control statements, see “FABHURG1 SYSIN input data set” on page 41.

SYSPRINT DD
This required statement defines the output data set to which FABHURG1 writes error messages and
segment statistics. The data set can be defined as:

 //SYSPRINT DD SYSOUT=A

SYSUT1 DD
This optional statement defines an input data set created (in a previous step) by the IMS HD
Reorganization Unload utility. Use it only for problem determination. It activates a comparison of
*HD output records with the output records that were created by the IMS HD Reorganization Unload
utility. FABHURG1 does not compare the lengths of the header or trailer records.

If a mismatch is detected, FABHURG1 ends abnormally with an error message.

Chapter 5. FABHURG1 unload utility 39

The record that is created by FABHURG1 is compared with the record in SYSUT1 before any
optional user exit routine is invoked. For records that contain a logical child with a logical parent's
concatenated key that is specified as VIRTUAL on the SEGM statement of the DBD, the comparison is
done as follows:

• If a BLDLPCK control statement is specified, the entire record is compared.
• If no BLDLPCK control statement is specified, the entire record except the LPCK field is compared.

If the utility detects that a segment is not sensitive, or if a user exit routine requests that one or more
segments be skipped, the comparison is halted.

SYSUT2 DD
This required statement defines the primary output data set on which the database is unloaded. The
data set can reside on a tape or a direct-access device. It can also be defined as DUMMY.

You can specify the number of buffers in the URG1BUFNO= option in the default option table
(FABHOPT). For details, see Chapter 19, “Site default options,” on page 261. The buffers are obtained
above the 16-MB line.

If neither the BUFNO subparameter of the DCB parameter on the DD statement nor the URG1BUFNO=
option is given, the number of buffers is determined automatically. The buffers are approximately 1
MB in total size and are above the 16-MB line.

If a block size is not specified on the SYSUT2 DD statement, FABHURG1 uses the following block size:

• For device type 3380, the default block size is 23 K. If the database contains segments larger than
23 K, the maximum block size of 32 K is used.

• For device type 3390, the default block size is 28 K. If the database contains segments larger than
28 K, the maximum block size of 32 K is used.

• For device type 9345, the default block size is 22 K. If the database contains segments larger than
22 K, the maximum block size of 32 K is used.

• For device types other than the preceding, the default is the maximum capacity for the device types.

SYSUT3 DD
This optional statement defines a secondary output data set that contains a second copy of the
SYSUT2 data set. If SYSUT2 is defined as DUMMY, IMS High Performance Unload ignores this
statement. The same rules for BUFNO and BLKSIZE apply as for SYSUT2.

Notes:

The LRECL values for SYSUT2 and SYSUT3 data sets are determined as follows:

• For the unload formats *F1, *F2, and *F3:

– If the LRECL value prepared in the JCL DD statement is used when the value is specified in either of
the following ways:

- Explicitly by the LRECL subparameter of DCB parameter
- Implicitly, for example, by using a model data set or by using the DFSMS/MVS DATACLAS

parameter.
– If the LRECL value is not specified either explicitly or implicitly, the default record size (block size

minus 4) is used.
• For *HD unload format, the LRECL value prepared in the JCL DD statement is always ignored, and the

default record size (block size minus 4) is used.

The large format data set can be specified for SYSUT2 and SYSUT3.

40 IMS High Performance Unload: User's Guide

FABHURG1 input
Input for the FABHURG1 utility includes three data sets: SYSIN data set (control statements for the
FABHURG1 utility), HSSROPT data set (control statements for HSSR Engine), and HSSRCABP data set
(control statements for the buffer handler of HSSR Engine).

FABHURG1 SYSIN input data set
The SYSIN data set for the FABHURG1 utility contains the control statements for the FABHURG1 utility.

Normally, unless a user record-formatting routine or an optional user exit routine is invoked, only
two control statements are required for FABHURG1: the PCB control statement and the FRMT control
statement. If the defaults are taken, neither of these control statements is required.

Other control statements for general use are:

• CHECKREC
• DEC
• FALLBACK
• MIGRATE
• PARTITION
• SEGSTAT

When the IMS management of ACBs is enabled, the FABHURG1 utility retrieves the DBDs from the IMS
catalog directory data sets.

To obtain the pending database from the IMS catalog staging data set before the database is activated,
specify the STAGING control statement in the SYSIN data set. If you specify the STAGING control
statement, you must execute the FABHURG1 utility in a ULU region.

Tip: FABHURG1 provides a user exit interface for system programmers. System programmers can provide
their own record-formatting routine to unload the database into their own format rather than one of the
standard formats. For the SYSIN control statement intended mainly for system programmers to use, see
“User record-formatting routine” on page 246.

Format
This data set contains 80-byte fixed-length records. The control statements can be coded in the input
stream or accessed as members of a partitioned data set.

CHECKREC control statement
This optional control statement specifies whether the particular record is written just behind the header
record in the unload data set.

This record is used by IMS High Performance Load for it to know certain status of the database at
unloading time. This control statement is used only for the *HD unload format.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

CHECKREC ddd

Position
Description

1
Code the CHECKREC keyword to identify this statement as a CHECKREC statement.

10
Use one of the following keywords:

Chapter 5. FABHURG1 unload utility 41

YES
The particular record is written.

NO
The particular record is not written. NO is the default.

Tip: The default of this control statement can be changed by replacing the default option table
(FABHOPT). Specify the URG1CHKRC=YES parameter on the FABHTOPT macro statement. For details,
see Chapter 19, “Site default options,” on page 261.

DEC control statement
The DEC control statement, which activates the decompress option, specifies whether FABHURG1 is to
decompress database segments.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

DECd

Position
Description

1
Code the DEC keyword to activate the decompress option.

4
The 1-character entry d specifies whether compressed segments be decompressed by FABHURG1.
This entry is required.

Use one of the following keywords:

Y
Compressed segments are decompressed. Y is the default.

N
Compressed segments are not decompressed.

Code N only when you want to have compressed segments in the output data sets. If an unloaded
data set is created by specifying this DECN option for a database that contains a compressed
segment, the data set is not compatible with the unloaded data set created by the IMS HD
Reorganization Unload utility. You cannot reload such an unloaded data set by using the IMS
HD Reorganization Reload utility (DFSURGL0), but you can reload it by using the IMS High
Performance Load (Load utility or PSSR utility) or the IPR Reload utility.

Notes:

• If there is a segment type for which a Segment Edit/Compression exit routine is specified and the use of
a Data Conversion exit is designated, the DECN option is ignored and the process continues with DECY.

• If the DECN option is specified and one or more partitions of PHDAM or PHIDAM are in the HALDB OLR
cursor-active status, FABHURG1 ends abnormally.

• Do not code DECN if you want to change the size of the segments.

Tip: The default of this control statement can be changed by replacing the default option table
(FABHOPT). Specify the URG1DEC=NO parameter on the FABHTOPT macro statement. For details, see
Chapter 19, “Site default options,” on page 261.

FALLBACK control statement
This optional control statement is used to initiate the fallback unload of a partitioned database.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FALLBACK

42 IMS High Performance Unload: User's Guide

Position
Description

1
Code the FALLBACK keyword to instruct FABHURG1 to perform the fallback unload of a partitioned
database.

Restrictions:

• This control statement cannot be specified with a control statement of PARTITION or MIGRATE.
• If a FALLBACK control statement is specified, FABHURG1 must be executed in the ULU region.
• The input database must be either a PHIDAM or a PHDAM.

FRMT control statement
This optional control statement specifies the output format of the unloaded database. Use this statement
only when specifying a format other than *HD.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FRMT frmt

Position
Description

1
Code the FRMT keyword to identify the format control statement.

6
Code the output format name, which can be either of the following names:

• The name of one of the standard formats provided by the utility: *HD, *CS, *CP, *F1, *F2, or *F3. The
default is the *HD unload format, for which you do not need this statement.

• The load module name of a user record-formatting routine (see “User record-formatting routine” on
page 246).

Restrictions:

• If you specify a control statement such as MIGRATE or FALLBACK, you cannot specify any format other
than *HD.

• If *CS is specified and one or more partitions of PHDAM are in the HALDB OLR cursor-active status,
FABHURG1 ends abnormally.

MIGRATE control statement
This optional control statement is used to make FABHURG1 perform the migration unload of a
nonpartitioned database.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

MIGRATE

Position
Description

1
Code the MIGRATE keyword to make FABHURG1 perform the migration unload of a nonpartitioned
database.

Restrictions:

• This control statement cannot be specified with a control statement of PARTITION or FALLBACK.
• If MIGRATE control statement is specified, FABHURG1 must be executed in the ULU region.

Chapter 5. FABHURG1 unload utility 43

• The input database must be either a HIDAM or an HDAM database.
• If PTR=H or PTR=HB is defined as the parent segment of virtual logical child, FABHURG1 does not

support the migration unload of the database.
• Migration unload of a secondary index or HISAM database is not supported.

Tip: If a logical child is defined in the input database, and you want better performance, code an
appropriate number of IMS buffer pools in DFSVSAMP DD of your JCL. For details, see “Basic JCL
requirements” on page 30.

PARTITION control statement
When you restrict the partitions to be unloaded, use this optional control statement for a partitioned
database.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

PARTITION partnme nnnn

Position
Description

1
Code the PARTITION keyword to identify this statement as a PARTITION statement.

11
Code the partition name partnme from which you want to start the unloading.

This parameter is a required parameter.

19
This optional parameter nnnn specifies the total number of partitions to be unloaded. The number
nnnn must be left-aligned, and its length must be less than or equal to four.

If this parameter is not specified, the default of 1 is assumed.

Tip: If you want to change the high key of partitions, you can use the IBM provided exit routine FABHKEYX
to distribute the unload records to multiple unload files according to the root key values. For the details,
see “Migration unload: Exit routine FABHKEYX for distributing unload records” on page 109.

Consideration: When you specify the PARTITION control statement, you must pay attention to the
sequence of partitions. If no partition selection exit routine is used, the sequence of partitions is
determined from the sequence of high key values. If a partition selection exit routine is used, the
sequence of partitions depends on the routine.

Restrictions:

• This control statement cannot be specified with a MIGRATE or FALLBACK control statement.
• If you want to unload all partitions, do not specify the PARTITION control statement.

PCB control statement
This optional control statement is used to select an HSSR PCB used for the database call in FABHURG1.

Use this statement only when you run FABHURG1 in a DLI or DBB region and you want to specify an HSSR
PCB other than the first one. If you run FABHURG1 in the ULU region, you do not need to specify the
statement.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

PCB pcbnbr dbdname

Position
Description

44 IMS High Performance Unload: User's Guide

1
Code the PCB keyword to identify this statement as a PCB statement.

5-14
Code an HSSR-PCB number. Specify 1 for the first HSSR PCB in the PSB. The number specified does
not need to contain leading zeros, or it does not need to be aligned.

Note: HSSR-PCB number is the sequence number, within the PSB, that is assigned to each HSSR PCB.
If, for example, the first and the third database PCBs are defined as HSSR PCBs, but not the second
PCB, then the third database PCB has the HSSR-PCB number of 2.

16-23
Code a DBD name.

The HSSR PCB used for the database call in FABHURG1 is determined by the following rule:

• If no PCB control statement is provided, the first HSSR PCB is used.
• If dbdname is blank, the HSSR PCB identified by pcbnbr is used.
• If dbdname is not blank, the first HSSR PCB that refers to the named DBD is used.
• If no HSSR PCB that matches with the specification is defined, FABHURG1 issues an error message.

SEGSTAT control statement
This optional control statement instructs FABHURG1 to produce the segment statistics report for each
partition that is processed.

See “FABHURG1 Segment Statistics report” on page 46 for the segment statistics report produced for a
partition.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

SEGSTAT PART

Position
Description

1
Code the SEGSTAT keyword to identify this statement as a SEGSTAT statement.

9
Code the PART keyword to print the partition-wide segment statistics report for each partition that is
processed and from which at least one segment is retrieved.

Restriction: In any one of the following cases, the partition-wide statistics are not printed:

• The SEGSTAT statement is specified for a nonpartitioned database.
• The PART keyword is not specified.
• A keyword other than PART is specified as the operand of the SEGSTAT statement.

FABHURG1 HSSROPT input data set
The HSSROPT data set for the FABHURG1 utility contains the control statements for HSSR Engine.

The use of this data set is optional. However, you must code this data set when unloading a corrupted
database. The following HSSROPT control statements can help you unload corrupted databases:

• SKERROR causes incorrect HD pointers or HISAM records to be skipped.
• DIAGG generates diagnostic information about the incorrect pointers and records.
• KEYCHECK GG returns a GG status code to FABHURG1 rather than ending abnormally when a sequence

error is detected.

For a complete description of the HSSROPT control statements, see Chapter 11, “Options for HSSR
Engine,” on page 155.

Chapter 5. FABHURG1 unload utility 45

Related concepts
Utility options for unloading corrupted databases
The unload utilities of IMS High Performance Unload provide certain options for unloading corrupted
databases.

FABHURG1 HSSRCABP input data set
The HSSRCABP data set for the FABHURG1 utility contains the control statements for the buffer handler
of HSSR Engine.

For a complete description of the HSSRCABP control statements, see “HSSRCABP control statements” on
page 217. Any of the HSSRCABP options that are appropriate to your task can be used.

FABHURG1 output: SYSPRINT output data set
Output from the FABHURG1 utility includes the FABHURG1 Unload Parameters report and the FABHURG1
Segment Statistics report. These reports are generated in the SYSPRINT data set.

In addition to the reports generated by the FABHURG1 utility, reports and statistics produced by HSSR
Engine are written in HSSRSTAT and HSSRTRAC data sets. For the reports that are generated by HSSR
Engine, see Chapter 12, “Reports and output from HSSR Engine,” on page 181.

Format
This data set contains 133-byte fixed-length records. When the block size is coded in the JCL, the block
size must be a multiple of 133.

FABHURG1 Unload Parameters report
This report contains the parameters that were used by FABHURG1 for this run.

The following figure shows an example of the report.

IMS HIGH PERFORMANCE UNLOAD "FABHURG1 UNLOAD PARAMETERS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 01.01.01 FABHURG1 - V1.R2

SYSIN CONTROL STATEMENTS FOLLOW:
 PARTITION PARTDB1 5
 SEGSTAT PART

UTILITY PARAMETERS USED FOR THIS EXECUTION ARE:
 REGION-TYPE=ULU
 PSBNAME=HDAMPART
 DBDNAME=HDAMPART
 PCB 1
 FRMT *HD
 NO EXIT
 OFFS 0
 ULEN 0
 USEGMAX 0
 DECY
 CHECKREC NO

Figure 2. FABHURG1 Unload Parameters report

FABHURG1 Segment Statistics report
This report contains a printed copy of the segment statistics.

The statistics provided for each segment are segment code, level, the number of segments retrieved for
that segment type, and the number written to the output data set. If there is a difference between the
number retrieved and the number written, that difference is shown. The totals and total errors for the
database are provided. Also a message is printed stating that the database unload is complete.

The following figure shows an example of the report.

46 IMS High Performance Unload: User's Guide

IMS HIGH PERFORMANCE UNLOAD "FABHURG1 SEGMENT STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 13.05.34 FABHURG1 - V1.R2

STATISTICS FOR DB=ORDHDAM
SEGMENT S-C LV RETRIEVED OUTPUT DIFFERENCE

ORDER 1 1 6 6 0
ORDART 2 2 4 4 0
DELIVER 3 3 2 2 0
SCHEDULE 4 3 2 2 0
HISTORY 5 3 2 2 0
--
*TOTAL 16 16 0
*TOTAL ERRORS 0

Figure 3. FABHURG1 Segment Statistics report

The following figure shows another example of the Segment Statistics report. This report shows statistics
from a HALDB partition when the SEGSTAT PART control statement is specified.

IMS HIGH PERFORMANCE UNLOAD "FABHURG1 SEGMENT STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.34.56 FABHURG1 - V1.R2

STATISTICS FOR DB=HDAMMDSG; PARTITION=PARTDB1

SEGMENT S-C LV RETRIEVED OUTPUT DIFFERENCE

ORDER 1 1 5 5 0
ORDART 2 2 5 5 0
DELIVER 3 3 3 3 0
SCHEDULE 4 3 3 3 0
HISTORY 5 3 5 5 0

*TOTAL 21 21 0

Figure 4. FABHURG1 Segment Statistics report for HALDB

FABHURG1 JCL examples
Use the following JCL examples to prepare your FABHURG1 JCL.

Subtopics:

• “Example 1: Running FABHURG1 in ULU region” on page 47
• “Example 2: Running FABHURG1 in DLI region” on page 48

For examples for processing a HALDB with the FABHURG1 utility, see Chapter 8, “Methods for processing
High Availability Large Databases,” on page 97.

Example 1: Running FABHURG1 in ULU region
To create an unloaded data set that can be used as input to the IMS HD Reorganization Reload utility, you
can use the following JCL.

 // EXEC FABHULU,MBR=FABHURG1,DBD=USERDBD
 //HDAM DD DSN=IMSDB.HDAM,DISP=SHR
 //SYSPRINT DD SYSOUT=A
 //SYSUT2 DD DSN=IMSDB.HDUNLD,DISP=(,CATLG),UNIT=TAPE,
 // VOL=SER=xxxxxx

Figure 5. FABHURG1 JCL for unloading an HDAM database

The unloaded data set is specified by the SYSUT2 DD statement. In this example, the HDAM DD statement
specifies the database data set to be unloaded.

In the ULU region, the PCB that is dynamically created by IMS from the specified DBD is always treated as
an HSSR PCB. You do not need to code a PCB control statement in the SYSIN data set.

If you want to unload the database without decompressing the compressed segments, code the SYSIN
DD as follows:

 //SYSIN DD *
 DECN
 /*

Chapter 5. FABHURG1 unload utility 47

An unloaded data set created by this method can be reloaded by IMS High Performance Load (Load utility
or PSSR utility) or the IPR Reload utility.

Example 2: Running FABHURG1 in DLI region
If you run FABHURG1 in the DLI region, you must code a PCB statement in the SYSIN data set, and
you must define the PCB as an HSSR PCB by coding an HSSRPCB or HSSRDBD control statement in the
HSSROPT data set. You can use the JCL shown in the following figure.

 // EXEC FABHDLI,MBR=FABHURG1,PSB=USERPSB,DBRC=Y
 //SYSIN DD *
 PCB USERDBD
 FRMT *F1
 /*
 //HSSROPT DD *
 HSSRDBD *ALL
 /*
 //SYSPRINT DD SYSOUT=A
 //SYSUT2 DD DSN=IMSDB.HDUNLD,DISP=(,CATLG),UNIT=TAPE,
 // VOL=SER=xxxxxx

Figure 6. FABHURG1 JCL specifying SYSIN control statements

In this example, an HSSRDBD statement is used to specify all PCBs that refer to the DBD as HSSR PCBs.
The first database PCB that refers to the DBD is used to read the database, because only the DBD name is
specified on the PCB control statement.

In this example, it is assumed that the RECON data sets and the database to be unloaded are dynamically
allocated.

The unloaded data set is in the specified format because the FRMT control statement is coded to specify
the unload format, which in this case, *F1 format.

IMS HD Reorganization Unload JCL for running FABHURG1
You can use a JCL that is written for IMS HD Reorganization Unload (DFSURGU0) to run FABHURG1, by
adding the IMS High Performance Unload's SHPSLMD0 library ahead of the IMS RESLIB in the STEPLIB
concatenation, and by using the DFSISVI0 exit of IMS.

Subtopics:

• “Preparing the DFSISVI0 exit” on page 48
• “JCL compatibility with IMS HD Reorganization Unload” on page 48
• “Restrictions” on page 49

Preparing the DFSISVI0 exit
To run FABHURG1 by using a JCL that was written for IMS HD Reorganization Unload utility, you must
prepare the DFSISVI0 exit of IMS.

Also, you must create a copy of the load module FABHSVI0 with the name DFSISVI0 in a library that is
concatenated to STEPLIB DD.

Tip: If you already created DFSISVI0 while preparing IMS High Performance Load, you do not need to
copy the FABHSVI0 module again.

JCL compatibility with IMS HD Reorganization Unload
When the DFSISVI0 exit for FABHURG1 is prepared, you can use essentially the same JCL as the one used
for the IMS HD Reorganization Unload utility (DFSURGU0) to run FABHURG1.

EXEC
The parameters ULU and DFSURGU0 must be specified, otherwise the DFSISVI0 exit does not invoke
FABHURG1.

48 IMS High Performance Unload: User's Guide

STEPLIB DD
Add the SHPSLMD0 library of IMS High Performance Unload to this DD statement ahead of the
IMS.SDFSRESL data set. The DFSISVI0 member must be placed in a library.

SYSIN DD
This data set can contain control statements for either DFSURGU0 or FABHURG1, but not both. The
following table lists the control statements for DFSURGU0 that can be specified for SYSIN DD. The
control statement for HSSR Engine can be specified in the HSSROPT data set.

Table 4. Supported control statements for DFSURGU0

Control statement for DFSURGU0 Interpreted control statement for FABHURG1

PARTITION=partname
 ,NUMBER=nnn
 ,STAT=ccc

PARTITION partname nnn
SEGSTAT PART (for STAT=DET)

MIGRATE=YES MIGRATE

FALLBACK=YES FALLBACK

STAGING STAGING

SYSPRINT DD
This data set contains the statistics reports produced by FABHURG1. The LRECL is 121. The statistics
that are produced by HSSR Engine are printed in the HSSRSTAT DD and the HSSRTRAC DD if these
DDs are specified.

DFSURGU1 DD
This required statement defines the primary output data set instead of SYSUT2 DD.

DFSURGU2 DD
This optional statement defines the secondary output data set instead of SYSUT3 DD.

database DD
The DD statements for database data sets are optional. If the DD statements are not present for a
non-partitioned database, dynamic allocation will be done by using the DFSMDA member if one is
present in STEPLIB or IMSDALIB.

Other DD statements are described in IMS Database Utilities.

Restrictions
• The FABHURG1 restrictions that are listed in “Restrictions for IMS High Performance Unload” on page

22 apply to this processing.
• Even if JOBLIB or STEPLIB libraries are APF-authorized or HPIO YES is specified in the HSSROPT DD,

Media Manager is not used to process VSAM ESDSs and OSAM LDSs.
• If any of the following options are specified, IMS HD Reorganization Unload (DFSURGU0) is forced to run

instead of FABHURG1:

– IMS batch region type other than ULU
– DFSUCKPT DD for checkpoint function
– DFSURSRT DD for restart function
– The control statements for DFSURGU0 other than PARTITION, MIGRATE, FALLBACK, and STAGING.
– MIGRATE=YES for HISAM databases
– MIGRATE=YES for secondary indexes
– MIGRATX=YES
– FALLBACK=YES for PSINDEX databases
– Running under IMS Utility Control Facility (DFSUCF00)

• SB (sequential buffering) is not used even if the following specifications are made:

Chapter 5. FABHURG1 unload utility 49

– DFSCTL DD statement
– The PCB SB= statement in the PSBGEN
– DFSSBUX0 (exit routine)

• The following control statements are ignored:

– COMPAUTH YES in the HSSROPT data set
– HPIO YES in the HSSROPT data set

50 IMS High Performance Unload: User's Guide

Chapter 6. FABHFSU unload utility
The FABHFSU unload utility unloads IMS databases and provides compatibility with FSU II. FABHFSU can
produce multiple unloaded output data sets. Each unloaded data set can contain different combinations
of segments in different formats.

FABHFSU has two different modes in which the different types of unload operations are run: the
standard mode and the Parallel Scan Facility (PSF) mode. In both modes, the FABHFSU runs as an HSSR
application program, and makes full use of HSSR Engine.

Tip: To understand the system structure and the data flow in HSSR application jobs, see “IMS High
Performance Unload system structure” on page 11.

FABHFSU accepts user requests through the CARDIN data set. HSSROPT options and HSSRCABP options
can also be specified as input to the FABHFSU program. A Segment Statistics report is produced in
addition to the standard outputs produced by HSSR Engine.

In the following topics, the basic functions of FABHFSU run in the standard mode are explained. For
instructions to run FABHFSU in Parallel Scan Facility mode (PSF mode), see Chapter 10, “Parallel Scan
Facility of FABHFSU,” on page 121.

For information about compatibility with FSU II, see Chapter 33, “Compatibility with FSU II,” on page 373.

You can also use FABHFSU to unload a corrupted database. For more information, see Chapter 9, “Utility
options for unloading corrupted databases,” on page 115.

For the restrictions that apply to FABHFSU jobs, see “Restrictions for IMS High Performance Unload” on
page 22.

Topics:

• “Unloading a database with FABHFSU” on page 51
• “Unload output format supported by FABHFSU” on page 52
• “FABHFSU JCL requirements” on page 54
• “FABHFSU input” on page 55
• “FABHFSU output: PRNTOUT output data set” on page 66
• “FABHFSU user exit routine” on page 69
• “FABHFSU JCL examples” on page 76

Unloading a database with FABHFSU
To unload a database by using the FABHFSU utility in standard mode, you must select the format of the
unload output and modify the basic JCL.

Procedure
To unload a database by using the FABHFSU utility, complete the following steps:
1. Select a region type from ULU and DLI, and prepare the basic JCL.

For instructions for preparing the basic JCL, see “Preparing the basic JCL” on page 29.
2. Code the additional DD statements to meet the JCL requirements of FABHFSU.

For additional JCL requirements, see “FABHFSU JCL requirements” on page 54.
3. Code DBD and PSB control statements in CARDIN data set to specify HSSR PCBs used for the

database call and to specify the segment sensitivity.

© Copyright IBM Corp. 2000, 2024 51

The DD name and record format for each output data set can be specified in a PSB control statement.
See “Unload output format supported by FABHFSU” on page 52 and “FABHFSU CARDIN input data
set” on page 55.

4. Optional: If necessary, specify other control statements in CARDIN data set.

See “FABHFSU CARDIN input data set” on page 55.
5. Optional: Code HSSROPT and HSSRCABP control statements to specify the options for HSSR Engine.

These control statements are optional. For more information, see “FABHFSU HSSROPT input data set”
on page 65 and “FABHFSU HSSRCABP input data set” on page 65.

6. Submit the JCL to run the FABHFSU job.
7. Check the output reports and messages.

In addition to the standard output reports produced by HSSR Engine, several reports are produced in
the PRNTOUT data set. To interpret the reports, see “FABHFSU output: PRNTOUT output data set” on
page 66.

Related reference
FABHFSU JCL examples
Use the following JCL examples to prepare your FABHFSU JCL.

Unload output format supported by FABHFSU
FABHFSU unloads a database into one of four applicable formats: HS, UL, VB, and VN.

For each format, the output data set must be a sequential data set with RECFM=VB.

Subtopics:

• “HS format” on page 52
• “UL format” on page 52
• “VB format” on page 53
• “VN format” on page 54

HS format
When the HS format is selected for the unload format, the output data set must be consistent with HSAM
requirements. BLKSIZE must be specified on the ddname1 DD statement. If the maximum segment
length is even, the minimum BLKSIZE must be equal to the maximum segment length plus 2. If the
maximum segment length is odd, the minimum BLKSIZE must be equal to the maximum segment length
plus 3. (For more information about the HSAM format, see IMS Database Administration.)

UL format
The UL format is the same as the IMS HD Reorganization Unload format. You can use it to replace the
IMS HD Reorganization Unload utility with the faster FABHFSU utility when reorganizing a database.
The UL format is acceptable to IMS HD Reorganization Reload utility or a compatible utility. (For more
information, see IMS Database Utilities.)

Consideration:
If you create an unload data set by specifying the DECN control statement for a database that
contains a compressed segment, the data set is not compatible with the unloaded data set that is
created by the IMS HD Reorganization Unload utility. For details, see “DEC control statement” on page
59. You cannot reload such an unloaded data set by using IMS HD Reorganization Reload utility
(DFSURGL0), but you can reload it by using IMS High Performance Load (Load utility or PSSR utility) or
the IPR Reload utility.

Block size can be specified on the ddname1 DD statement. Minimum BLKSIZE equals the length of the
largest segment plus 43 bytes. Maximum BLKSIZE is determined by the output device.

52 IMS High Performance Unload: User's Guide

If block size is not specified on the ddname1 DD statement, FABHFSU uses one of the following block
sizes:

• For device type 3380, the default block size is 23 K. If the database contains segments larger than 23 K,
the maximum block size, 32 K, is used.

• For device type 3390, the default block size is 28 K. If the database contains segments larger than 28 K,
the maximum block size, 32 K, is used.

• For device type 9345, the default block size is 22 K. If the database contains segments larger than 22 K,
the maximum block size, 32 K, is used.

• For device types other than the preceding, the default is the maximum device capacity.

If some segments have been dropped, make sure that the resulting database is valid.

VB format
This section describes the VB format, which is a product-sensitive programming interface. See
“Programming interface information” on page 518 to understand the restrictions associated with this
type of material.

PSPI

This format is to be used for processing by application programs. When you use the VB Format, a
variable-length record is written for each retrieved database segment that contains the following data
fields:

• Segment code
• Segment level
• Segment data as returned by the HSSR call and as seen by HSSR application programs

 FORMAT OF VB RECORDS

STATEMENT OFFSET DESCRIPTION
 DEC HEX

RVB DSECT
RVBLENN DC H’0’ 0 0 RECORD LENGTH FIELD
RVBZZ DC H’0’ 2 2 RESERVED FOR MVS
RVBSC DC X’00’ 4 4 SEGMENT CODE
RVBLEV DC X’00’ 5 5 SEGMENT LEVEL
RVBDATA EQU * 6 6 SEGMENT DATA AS RETURNED
 BY HSSR

Block size is specified on the ddname1 DD statement. If the maximum segment length is even, the
minimum BLKSIZE must be equal to the maximum segment length plus 10. If the maximum segment
length is odd, the minimum BLKSIZE must be equal to the maximum segment length plus 11. If block size
is not specified on the ddname1 DD statement, FABHFSU uses one of the following block sizes:

• For device type 3380, the default block size is 23 K. If the database contains segments larger than 23 K,
the maximum block size, 32 K, is used.

• For device type 3390, the default block size is 28 K. If the database contains segments larger than 28 K,
the maximum block size, 32 K, is used.

• For device type 9345, the default block size is 22 K. If the database contains segments larger than 22 K,
the maximum block size, 32 K, is used.

• For device types other than the preceding, the default is the maximum device capacity.

If some segments have been dropped, make sure that the resulting database is valid.

PSPI

Chapter 6. FABHFSU unload utility 53

VN format
This section describes the VN format, which is a product-sensitive programming interface. See
“Programming interface information” on page 518 to understand the restrictions associated with this
type of material.

PSPI

This format is to be used for processing by application programs.

The VN format has the same format as the VB format, except the VN format also contains the segment
name in addition to the segment code.

 FORMAT OF VN RECORDS

STATEMENT OFFSET DESCRIPTION
 DEC HEX

RVN DSECT
RVNLEN DC H’0’ 0 0 RECORD LENGTH FIELD
RVNZZ DC H’0’ 2 2 ZZ (RESERVED FOR MVS)
RVNSYM DC CL8’ ’ 4 4 SEGMENT NAME
RVNSC DC X’00’ 12 C SEGMENT CODE
RVNLEV DC X’00’ 13 D SEGMENT LEVEL
RVNDATA EQU * 14 E SEGMENT DATA AS RETURNED
 BY HSSR

DCB requirements are the same as the requirements for the VB. If the maximum segment length is even,
the minimum BLKSIZE must be equal to the maximum segment length plus 18. If the maximum segment
length is odd, the minimum BLKSIZE must be equal to the maximum segment length plus 19.

PSPI

FABHFSU JCL requirements
FABHFSU runs as an HSSR application program and, therefore, must meet the requirements for the basic
JCL (FABHX034 JCL). In addition, FABHFSU JCL requires other DD statements.

Prerequisite: See “Basic JCL requirements” on page 30 for the basic (FABHX034) JCL requirements.

The following table summarizes additional JCL requirements for FABHFSU.

Table 5. FABHFSU DD statements

DDNAME Use Format Need

CARDIN Input LRECL=80 Optional

PRNTOUT Output LRECL=133 Required

ddname1 Output RECFM=VB Required

EXEC
This required statement invokes either the FABHULU or FABHDLI procedure (see “Preparing the basic
JCL” on page 29). Before using either procedure, modify the JCL to include the correct names of the
PSBLIB, DBDLIB. Use one of the following formats:

 // EXEC FABHULU,MBR=FABHFSU,DBD=dbdname
 // EXEC FABHDLI,MBR=FABHFSU,PSB=psbname

Restriction: FABHFSU cannot be run in the DBB region.

CARDIN DD
This required DD statement defines the input data set that contains the control statements for
FABHFSU. For details, see “FABHFSU CARDIN input data set” on page 55.

54 IMS High Performance Unload: User's Guide

PRNTOUT DD
This required statement defines the output data set to which FABHFSU writes error messages and
segment statistics. For details, see “FABHFSU output: PRNTOUT output data set” on page 66. The
data set can be defined as:

 //PRNTOUT DD SYSOUT=A

ddname1 DD
This DD statement specifies the primary output data set that contains the unloaded database. One
DD statement is required for each PSB control statement (in the CARDIN data set) that specifies an
output format other than NO. (ddname1 must be the name specified in the ddname1 field of the PSB
control statement. See “PSB control statement” on page 61.) You can have up to three of those data
sets.

The large format data set can be specified for those data sets.

The data set can reside either on tape or on a direct-access device, or it can be specified as DUMMY.

For an HSAM output data set, specify the BLKSIZE on the DD statement. For the BLKSIZE of other
output formats, see “Unload output format supported by FABHFSU” on page 52 and the description of
the PSB control statement.

You can specify the number of buffers in the FSUBUFNO= option in the default option table
(FABHOPT). For details, see Chapter 19, “Site default options,” on page 261. The buffers are obtained
above the 16-MB line.

If neither the BUFNO subparameter of the DCB parameter on the DD statement nor the FSUBUFNO=
option is given, the number of buffers is determined automatically. The buffers are approximately 1
MB in total size and are above the 16-MB line.

Note: The LRECL values for ddname1 are determined as follows.

For VB and VN formats, the LRECL value prepared in the JCL DD statement is used when the value is
specified either:

• Explicitly by the LRECL subparameter of the DCB parameter
• Implicitly, for example, by using a model data set or the DFSMS/MVS DATACLAS parameter

If the LRECL value is not specified either explicitly or implicitly, the default record size (block size
minus 4) is used.

For UL format, the LRECL value prepared in the JCL DD statement is always ignored, and the default
record size (block size minus 4) is used.

In addition to these DDs, the standard HSSRTRAC DD statement is required whenever HSSROPT
options that produce trace and diagnostic data are specified. It is also required when the pointer
bypass option is specified on a DBD control statement in the CARDIN data set (see “DBD control
statement” on page 58). This specification causes the DIAGG option to be invoked automatically
(see “DIAGG control statement” on page 167).

FABHFSU input
Input for the FABHFSU utility includes three data sets: CARDIN data set (control statements for the
FABHFSU utility), HSSROPT data set (control statements for HSSR Engine), and HSSRCABP data set
(control statements for the buffer handler of HSSR Engine).

FABHFSU CARDIN input data set
The CARDIN data set for the FABHFSU utility contains the control statements for the FABHFSU utility.

Normally, only three control statements are required for FABHFSU: the DBD control statement, the PSB
control statement, and the END control statement.

Other control statements that can be used for FABHFSU in standard mode are:

Chapter 6. FABHFSU unload utility 55

• BLM and ELM
• DEC
• GOT
• PARTITION
• SEGSTAT

The following table provides brief explanation for each control statement.

Table 6. Control statements for FABHFSU CARDIN data set in standard mode

Control statement Function

BLM/ELM Specifies a portion of the database to be read.

DBD Identifies the database to be processed and specifies some processing
options.

DEC Specifies whether to decompress compressed segments or not.

END Specifies the end of CARDIN control statements.

GOT Provides the support for PROCOPT=GOT.

PARTITION Restricts the partitions to be processed.

PSB Specifies the segment sensitivity and characteristics of the output data set to
be created. Up to three PSB statements can be specified.

SEGSTAT Specifies to produce the partition-wide segment statistics report.

Format
This data set contains 80-byte fixed-length records. The control statements can be coded in the input
stream or accessed as a member of a partitioned data set.

BLM/ELM control statements
The optional BLM and ELM limit control statements define the portion of the database to be read.

For HIDAM or HISAM, the limits are specified as keys. For HDAM, the limits are defined as relative block
numbers of the CIs or blocks in the Root Addressable Area.

Restriction: The BLM and ELM control statements cannot be specified for a PHDAM or PHIDAM database.
Use the PARTITION control statement instead.

One BLM or one ELM limit control statement can be used. If no limit control statements are provided, the
entire database is read. These statements must immediately follow the DBD control statement.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

BLMtlimitval
ELMtllkeyval

Position
Description

1
Code the BLM or ELM keyword to identify a limit control statement.

4
Specify the limit value type.

The 1-character entry t identifies the limit value type. It indicates the format of the starting or ending
limit field.

56 IMS High Performance Unload: User's Guide

Specify one of the following keywords:

R
Indicates that the limit field contains the relative block number of the CI or block. This
specification is valid only for HDAM.

C
Indicates that the limit field contains keys in character format. This specification is valid only for
HIDAM and HISAM.

X
Indicates that the limit field contains keys in hexadecimal display format. This specification is only
valid for HIDAM and HISAM.

5-78
Specify the starting limit value or the ending limit value.

This 74-character field is a required field.

For BLM, this field is the beginning limit value. It contains the value at which the scan is to begin.

For ELM, this field is the ending limit value. It contains the value of the last database record to be
included in the scan.

If the limit value type is R:
If you specify R for the limit value type, code the relative block number of the CI or block.
The value is numeric with leading or trailing blanks; it must fall within the limits of the root
addressable area.

• For BLM, the scan begins at the first RAP in the specified CI or block.
• For ELM, the scan ends after the last RAP in the specified CI or block has been processed.

If the limit value type is C:
If you specify C for the limit value type, code the length of the key value in positions 5 and 6
(maximum length is 74). Code the key value starting in position 7. You can specify a generic key by
entering a key value length less than the key length of the root segment. FABHFSU pads the key
value with X'00's up to the key length for the starting limit and with X'FF's up to the key length for
the ending limit.

• For BLM, the scan begins at the first root segment with a key equal to or greater than the
specified key value. If no starting limit value is specified, the scan begins at the logical
beginning-of-data set.

• For ELM, the scan ends before processing the first root segment with a key greater than the
indicated key value. If no ending limit value is specified, the scan proceeds to the logical
end-of-data set.

If the limit value type is X:
If you specify X for the limit value type, code the hexadecimal string starting in position 5. Do
not specify length. The hexadecimal string must contain an even number of characters (0-F) and
be left-aligned in the field. Field length is determined by the first blank encountered in the field.
When generic keys are entered, they are padded as described for character keys.

• For BLM, the scan begins at the first root segment with a key equal to or greater than the
specified key value. If no starting limit value is specified, the scan begins at the logical
beginning-of-data set.

• For ELM, the scan ends before processing the first root segment with a key greater than the
indicated key value. If no ending limit value is specified, the scan proceeds to the logical
end-of-data set.

Notes:

• If you are using a Data Conversion exit for the database and you want to specify a limit value by
specifying a key value (that is, setting a limit value type of C or X) you must specify the key value in the
stored form, not in the application form.

Chapter 6. FABHFSU unload utility 57

• If a secondary index is used to retrieve root segments of HIDAM or HDAM, you can specify the limits by
the value of search field of the index that has a limit value type of C or X.

DBD control statement
The DBD control statement identifies the database to be scanned. Only one DBD control statement can be
used.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

DBDdbname index sednnn b

Position
Description

1
Code the DBD keyword to identify the DBD control statement.

4
Code the DBD name.

Code the name of the DBD that describes the physical database to be scanned. This required
8-character field must be left-aligned with trailing blanks. The DBD must specify ACCESS=HDAM,
HIDAM, PHDAM, PHIDAM, HISAM, or SHISAM.

12
Code the index name.

The 8-character entry is optional and valid only for running in the ULU region. This entry specifies the
name of index DBD that is either the primary index of the HIDAM database or a secondary index of the
HIDAM or HDAM database if you want the root segments to be retrieved in the index sequence. For
details, see “Considerations for using a secondary index” on page 27.

20
Code this field to activate the sequence check option.

This 1-character entry s determines whether to perform sequence check during the unload
processing. Specify one of the following keywords:

Y
Perform sequence checking.

N | blank
Do not perform sequence checking (default).

21
Code this field to activate the sequence error option.

The 1-character entry e determines whether the output routines bypass or process sequence errors.
Specify one of the following keywords:

A | blank
Accept sequence errors (default). A GX status code is returned.

B
Bypass sequence errors. The segment in error, and all of its children, are skipped. A GG status
code is returned.

22
Code this field to activate the sequence error print option.

The 1-character entry d determines whether diagnostic information is printed for sequence errors in
the HSSRTRAC data set. Specify one of the following keywords:

Y | blank
Print diagnostic data on sequence errors (default).

58 IMS High Performance Unload: User's Guide

N
Do not print diagnostic data.

23
Code this field to specify the sequence error threshold.

The 3-digit numeric entry nnn indicates the number of sequence errors to be allowed before ending
the run (the default value is 10). Any number up to 999, with leading or trailing blanks, can be used. If
you use the number 999, sequence errors do not cause the run to end.

28
Code this field to activate the pointer bypass option.

The 1-character entry b is used to activate the pointer bypass option. The pointer bypass option
allows FABHFSU to continue processing a database that contains bad pointers, instead of issuing an
abend. The pointer bypass option automatically activates the DIAGG option.

Specify one of the following keywords:

Blank
The pointer bypass option is inactive.

1
This entry invokes the pointer bypass option.

2
This entry forces FABHFSU to use the index, rather than the root twin forward pointers, to unload
an HIDAM or PHIDAM database.

See Chapter 9, “Utility options for unloading corrupted databases,” on page 115, for instructions and
considerations for using the pointer bypass option.

DEC control statement
The DEC control statement, which activates the decompress option, specifies whether FABHFSU is to
decompress database segments.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

DECd

Position
Description

1
Code the DEC keyword to activate the decompress option.

4
The 1-character entry d specifies whether compressed segments are decompressed by FABHFSU.
This entry is required.

Use one of the following keywords:

Y
Compressed segments are decompressed. Y is the default.

N
Compressed segments are not decompressed.

Code N only when you want to have compressed segments in the output data sets.

If an unloaded data set has been created by specifying this option for a database that contains a
compressed segment, that data set is not compatible with the unloaded data set that is created by
the IMS HD Reorganization Unload utility. You cannot reload such an unloaded data set by using
the IMS HD Reorganization Reload utility (DFSURGL0), but you can reload it by using IMS High
Performance Load (Load utility or PSSR utility) or the IPR Reload utility.

Notes:

Chapter 6. FABHFSU unload utility 59

• If there is a segment type for which a Segment Edit/Compression exit routine is specified and the use of
a Data Conversion exit is designated, the DECN option is ignored and the process continues with DECY.

• If the DECN option is specified and one or more partitions of PHDAM or PHIDAM are in the HALDB OLR
cursor-active status, FABHFSU ends abnormally.

• Do not code DECN if you want to change the size of the segments.

Tip: The default of this control statement can be changed by replacing the default option table
(FABHOPT). Specify the FSUDEC=NO parameter on the FABHTOPT macro statement. For details, see
Chapter 19, “Site default options,” on page 261.

END control statement
The END control statement specifies the end of the CARDIN control statements.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

END

Position
Description

1
Code the END keyword to identify the END statement as the last statement of the CARDIN data set.

GOT control statement
The optional GOT control statement is provided to request that the same function provided by HSSR
Engine for PCBs with PROCOPT=GOT be activated for the PCB even if PROCOPT=GOT is not specified for
the PCB used in the FABHFSU job.

If the GOT control statement is specified, FABHFSU ignores the PROCOPT of the PCB statement in
PSBGEN and forces PROCOPT=GOT to be used.

The GOT control statement is effective only when DBRC is inactive for the FABHFSU job.

Note: For more information about the PROCOPT=GOT support, see “Support for processing options GON
and GOT” on page 91.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

GOT

Position
Description

1
Code the GOT keyword to activate the support for PROCOPT=GOT.

PARTITION control statement
Use this optional control statement for HALDB to restrict the partitions to be processed.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

PARTITION partnme nnnn

Position
Description

1
Code the PARTITION keyword to identify the PARTITION statement.

60 IMS High Performance Unload: User's Guide

11
Code a partition name partnme from which you want to start the unloading.

This parameter is a required parameter.

19
This optional parameter nnnn specifies the total number of partitions to be unloaded. The number
nnnn must be left-aligned, and its length must be less than or equal to four.

If this parameter is not specified, the default of 1 is assumed.

Consideration: If no partition selection exit routine is used, the sequence of partitions is determined from
the sequence of high key values. If a partition selection exit routine is used, the sequence of partitions
depends on the routine.

PSB control statement
The PSB control statement for the standard mode identifies the characteristics of the output data sets to
be created. From one to three PSB statements can be used for each execution of FABHFSU.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

PSBpsbname ddname1 p#ofuserxit mkxsc extlnl

Position
Description

1
Code the PSB keyword to identify the PSB control statement.

4-11
Code the PSB name.

The 8-character field contains either an asterisk (*) or the name of the PSB that is coded on the EXEC
statement of the JCL.

*
An asterisk (*) on this field indicates that all segments that are described in the DBD are to be
processed for this output data set.

When running FABHFSU in ULU region, specify this value.

PSB_name
If the name of the PSB that is coded on the EXEC statement is specified, it indicates that segment
types passed to the output routines are controlled through the segment sensitivity of the PCB
specified in positions 20 - 21. The name of the PSB must match the name that is supplied in the
PARM field of the EXEC statement. The name must be left-aligned with trailing blanks.

Coding the PSB name is valid only for FABHFSU running in the DLI region.

12-19
Code the output DD name.

This 8-character entry specifies the name of the DD statement that defines the data set to be created.
An output DD name is required unless the output format specification in positions 22 – 23 is NO.
ddname1 must be left-aligned with trailing blanks.

20-21
Code the PCB number.

The 2-character entry p# specifies which database PCB within the PSB is to be used. This entry
determines the segments written into the output data set that is identified by the output DD name
field (column 12 - 19). The PCB referred to must specify the dbdname that is specified in positions 4 –
11 of the DBD control statement.

Chapter 6. FABHFSU unload utility 61

If the field is left blank, the first database PCB that refers to the DBD specified by the DBD control
statement is used.

The number p#, if specified, must be the sequence number that starts from the first database PCB in
the PSB; TP PCBs are not counted. Specify 1 for the first database PCB in the PSB.

Note: To assure compatibility with FABHFSU of DBT HSSR, it is processed as if 1 was specified when
one of values '00', ' 0 ', or '0 ' is specified.

22-23
Code the output format.

The 2-character entry of specifies the output format of the data set to be created. Specify one of the
following keywords:

HS
HSAM format

UL
IMS HD Reorganization Unload format

MI
IMS HD Reorganization Unload format for migration unload from an HDAM or HIDAM database to a
PHDAM or PHIDAM database.

Restrictions:

• This format can be specified only in a ULU region.
• If PTR=H or PTR=HB is defined as the parent segment of virtual logical child, the database is not

supported.
• Migration unload of a secondary index or HISAM database is not supported.
• When MI format is selected, two or more PSB control statements cannot be specified.

VB
Variable-length-blocked data set of the selected segments (one segment per logical record)

VN
The format is similar to VB except that the segment name is included in addition to the segment
code.

NO
No output data set is created by FABHFSU. The output function can be handled in an exit routine.

For more information about these output formats, see “Unload output format supported by FABHFSU”
on page 52.

24
Code the exit routine name.

The 8-character entry specifies the name of a user exit routine. The name must be left-aligned with
trailing blanks. The load module must be in a STEPLIB library. For more information, see “FABHFSU
user exit routine” on page 69.

Note: If a user exit routine is specified and one or more partitions are in the HALDB OLR cursor-active
status, FABHFSU ends abnormally.

32
Code this field to activate the segment modification option.

The 1-character entry m indicates whether segments are to be modified by the user exit routine.

Specify one of the following keywords:

Y
Indicates that segments are to be modified by the user exit.

62 IMS High Performance Unload: User's Guide

This option does not support a change of the database segment length. If you change the segment
length with the Y option, the result is unpredictable. For details, see “Modifying segments in user
exits” on page 71.

E
Indicates that segments are to be modified by the user exit.

This option supports a change of the database segment length. The option is valid only for HDAM,
HIDAM, PHDAM, and PHIDAM databases.

An extra 100-byte field is added at the end of the segment data that is passed to the exit routine.
This extra field can be used for segment extension. If the default length of this extra field is
shorter than you require, you can change the length of the extra field by specifying the length in
column 41 of the same PSB statement.

If this option has been selected, any request to activate the compare option used for problem
determination is deactivated.

For details, see “Modifying segments in user exits” on page 71.

N | blank
Indicates that segments are not to be modified by the user exit (default).

33
Code this field to activate the concatenated key option.

The 1-character entry k indicates whether the fully concatenated key of each segment is to be built
and passed to the exit routine.

Specify one of the following keywords:

Y
Build concatenated key.

N | blank
Do not build concatenated key (default).

34
Code this field to activate the exit routine control option.

The 1-character entry x indicates whether the user exit routine is given control before and after
segments are processed (see “FABHFSU user exit routine” on page 69).

Specify one of the following keywords:

Y
Allow exit routine control.

N | blank
Do not allow exit routine control (default).

35
Code this field to activate the DBR skip option.

The 1-character entry s, the Database Record (DBR) skip option, indicates whether return code 12 or
16 is valid for the exit routine specified in columns 24 - 31 of this statement. A return code 12, if valid,
causes FABHFSU to skip the remaining segments associated with the current root segment and begin
processing at the next root segment.

Return code 16 causes a skip to a new root key value specified by the exit routine.

Use this control statement only when a single PSB control statement is defined. The skipping invoked
by one PSB statement affects all others included in the same run.

For more information about return codes from the user exit routines, see “Contents of registers on
exit” on page 75.

Specify one of the following codes:

Chapter 6. FABHFSU unload utility 63

Y
Allow DBR skip option.

N | blank
Do not allow DBR skip option (default).

36
Code this field to activate the data conversion option.

If a Data Conversion exit (DFSDBUX1 exit) is activated, the user exit routine specified by the exit
routine name option in column 24 receives the segment data that has been converted from the stored
form to the application form.

The 1-character entry c indicates whether the inverse conversions, that is, the conversion from the
application form to the stored form, is done before the segment data edited in the exit routine is
written into the output data set.

Specify one of the following keywords:

Y
Perform the conversion.

This option is valid only for UL and HS unload format, and is valid only when the option 'DATXEXIT
YES' is specified in the HSSROPT data set.

N | blank
Do not perform the conversion. This keyword is the default.

37-40
The value specified in this 4-byte field is always ignored.

41-45
Code the extension length.

The 5-digit numeric entry extln specifies how many extra bytes are to be reserved for the segment
extension in the exit routine. The length specified on this field, plus the maximum length of the
segments in the database, will be used as the length of the work area for editing segments in the exit
routine. This field is valid only when the option 'E' is specified in column 32 of the PSB statement. If
the option 'E' is specified and this field is blank, the default value, 100, is used.

You can specify a value in the range of 00000 - 32767.

Notes:

• If the resulting length of the segment editing work area is more than 32,767 bytes long, 32,767 is
used as the length of the work area.

• If option 'E' is not specified in column 32, the value specified on this field is ignored.

46
Language environment option
L

Indicates that the user exit routine runs in the Language Environment (LE) using the CEEPIPI
invocation.
This option is effective when the user exit routine is written with Enterprise COBOL for z/OS. This
option is not effective for user exit routines written in assembler or PL/I language.
This option is mutually exclusive with the RTEXIT control statement. If you specify this option, the
runtime environment exit routine specified for the RTEXIT control statement is not invoked.

Example
The following figure shows an example of the PSB control statement for the FABHFSU program that runs
in the ULU region and invokes the user exit routine:

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

64 IMS High Performance Unload: User's Guide

PSB* OUT1 ULMYCOBEXTY YY L

• 'MYCOBEXT' in columns 24 - 31 is the name of the user exit routine.
• 'Y' in column 32 activates the segment modification option.
• 'Y' in column 34 activates the exit routine control option.
• 'Y' in column 35 activates the DBR skip option.
• 'L' in column 46 activates the language environment option.

SEGSTAT control statement
This optional control statement requests FABHFSU to create a Segment Statistical report for each
partition that is processed.

See “FABHFSU Segment Statistics report” on page 67 for an example of the Segment Statistics report
that is produced for a partition.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

SEGSTAT PART

Position
Description

1
Code the SEGSTAT keyword to identify the statement.

9
Code the PART keyword to print the partition-wide segment statistics report for each partition that is
processed and from which at least one segment is retrieved.

Restriction: In any one of the following cases, the partition-wide statistics are not printed:

• The SEGSTAT statement is specified for a nonpartitioned database.
• The PART keyword is not specified.
• A keyword other than PART is specified as the operand of the SEGSTAT statement.

FABHFSU HSSROPT input data set
The HSSROPT data set for the FABHFSU utility contains the control statements for HSSR Engine.

For a complete description of the HSSROPT control statements, see Chapter 11, “Options for HSSR
Engine,” on page 155.

You can use any HSSROPT options that are appropriate for your task. When FABHFSU has the pointer
bypass option specified on the DBD control statement, do not specify the SKERROR and DIAGG options.
These options are automatically activated by FABHFSU. DIAGG output requires an HSSRTRAC DD
statement.

FABHFSU HSSRCABP input data set
The HSSRCABP data set for the FABHFSU utility contains the control statements for the buffer handler of
HSSR Engine.

For a complete description of the HSSRCABP control statements, see “HSSRCABP control statements” on
page 217. Any of the HSSRCABP options that are appropriate to your task can be used.

Chapter 6. FABHFSU unload utility 65

FABHFSU output: PRNTOUT output data set
Output from the FABHFSU utility includes the FABHFSU Control Statement report, the FABHFSU Control
Specification report, and the FABHFSU Segment Statistics report. These reports are generated in the
PRNTOUT data set.

In addition to the reports generated by the FABHFSU utility, reports and statistics produced by HSSR
Engine are written in HSSRSTAT and HSSRTRAC data sets. For the reports generated by HSSR Engine, see
Chapter 12, “Reports and output from HSSR Engine,” on page 181.

Format
This data set contains 133-byte fixed-length records. When the block size is coded in the JCL, the block
size must be a multiple of 133.

FABHFSU Control Statements report
This report contains the CARDIN control statements that were used as input in the FABHFSU job.

The following figure shows an example of the report.

IMS HIGH PERFORMANCE UNLOAD "FABHFSU CONTROL STATEMENTS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.13.14 FABHB15 - V1.R2

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

DBDHSHDP
PSBHSHDPGB OUT1 UL
PSBHSHDPGB OUT2 UL
END

Figure 7. FABHFSU Control Statements report

FABHFSU Control Specifications report
This report contains information about the parameters that were specified on the CARDIN control
statements. This report is produced for each output data set that is defined by the PSB control statement
in the CARDIN data set.

The following figure shows an example of the report.

66 IMS High Performance Unload: User's Guide

IMS HIGH PERFORMANCE UNLOAD "FABHFSU CONTROL SPECIFICATIONS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.59.59 FABHFSU - V1.R2

**** SCAN CONTROL SPECIFICATIONS **** **** FORMAT CONTROL SPECIFICATIONS ****

PARALLEL SCAN NAME N.A FORMAT (CONTROL PSB) NUMBER 01

BASE DBD NAME HDAMMDSG CONTROL PSB NAME *

INDEX DBD NAME CONTROL PCB NUMBER

SEQUENCE CHECK OPTION N.A OUTPUT DDNAME SYSUT2

SEQUENCE ERROR OPTION N.A OUTPUT FORMAT UL

SEQUENCE ERROR PRINT OPTION N.A EXIT ROUTINE NAME N.A

SEQUENCE ERROR THRESHOLD N.A SEGMENT MODIFICATION OPTION N.A

SEQUENCE ERROR ABEND OPTION N.A CONCATENATED KEY OPTION N.A

BEGINN LIMIT CONTROL N.A EXIT OPEN/CLOSE CONTROL N.A

END LIMIT CONTROL N.A DBR SKIP OPTION N.A

POINTER BYPASS OPTION N.A DATA CONVERSION OPTION N.A

NO. PARALLEL SCAN N.A FSU FILE TO BE COMPARED N.A

DSN CHECK OPTION N.A EXIT LE OPTION N.A

PSC WTO OPTION N.A

 **** PARTITIONED DB OPTIONS ****

CONCATENATE SEGMENT AND PREFIX N.A PARTITION SEGSTAT YES

DECOMPRESS SEGMENTS YES STARTING PARTITION PART1

PROCOPT=GOT SUPPORT N.A NUMBER OF PARTITIONS 0005

Figure 8. FABHFSU Control Specifications report

The content of the report is as follows:

SCAN CONTROL SPECIFICATIONS
Shows specifications or defaults from the DBD, BLM, and ELM control statements.

FORMAT CONTROL SPECIFICATIONS
Shows specifications or defaults from the PSB control statement.

FSU FILE TO BE COMPARED
Shows specification or default from the CO control statement.

See “FABHFSU control statements: CO and CON” on page 361.

CONCATENATE SEGMENT AND PREFIX
Shows specification or default from the CON control statement.

See “FABHFSU control statements: CO and CON” on page 361.

DECOMPRESS SEGMENTS
Shows specification or default from the DEC control statement.

PROCOPT=GOT SUPPORT
Shows specification or default from the GOT control statement.

PARTITIONED DB OPTIONS
Shows specification or default from the SEGSTAT and the PARTITION control statements for HALDB.

FABHFSU Segment Statistics report
This report provides statistics for each sensitive segment in the database. This report is produced for each
output data set defined by the PSB control statement in the CARDIN data set.

The following figure shows an example of the report.

Chapter 6. FABHFSU unload utility 67

IMS HIGH PERFORMANCE UNLOAD "FABHFSU SEGMENT STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 18.32.56 FABHFSU - V1.R2

**** FORMAT 01 OUTPUT STATISTICS FOR DB=DBHD1010 ****
PSB SEGMENT SEGMENT TOTAL TOTAL SEQUENCE MAXIMUM MAXIMUM AVERAGE AVERAGE
NAME NAME LEVEL RETRIEVED OUTPUT ERRORS TWINS CHILDREN TWINS CHILDREN
PDBHD101 ROOTLEV1 1 10 10 0 N.A N.A 1.00 6.10
 DEP1LEV2 2 10 10 0 N.A N.A 1.00 .00
 DEP2LEV2 2 11 11 0 N.A N.A 1.10 .81
 DEP3LEV3 3 9 9 0 N.A N.A .81 .00
 DEP4LEV2 2 11 11 0 N.A N.A 1.10 1.81
 DEP5LEV3 3 9 9 0 N.A N.A .81 .00
 DEP6LEV3 3 11 11 0 N.A N.A 1.00 .00
 TOTAL RETRIEVED 71
 TOTAL OUTPUT 71
 TOTAL SEQUENCE ERRORS 0

Figure 9. FABHFSU Segment Statistics report

If the database is a HALDB, and the SEGSTAT PART control statement is specified in the CARDIN data set,
the partition-wide segment statistics report that is shown in the following figure is also produced for each
partition.

IMS HIGH PERFORMANCE UNLOAD "FABHFSU SEGMENT STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 18.33.14 FABHFSU - V1.R2

**** FORMAT 01 OUTPUT STATISTICS FOR DB=PHDO0300, PARTITION=PHDO03A ****
PSB SEGMENT SEGMENT TOTAL TOTAL SEQUENCE MAXIMUM MAXIMUM AVERAGE AVERAGE
NAME NAME LEVEL RETRIEVED OUTPUT ERRORS TWINS CHILDREN TWINS CHILDREN
PHDO030A ROOTLEV1 1 7 7 0 N.A N.A 1.00 27.00
 DEP1LEV2 2 7 7 0 N.A N.A 1.00 .00
 DEP2LEV2 2 7 7 0 N.A N.A 1.00 6.00
 DEP3LEV3 3 14 14 0 N.A N.A 2.00 2.00
 DEP4LEV4 4 28 28 0 N.A N.A 2.00 .00
 DEP5LEV2 2 7 7 0 N.A N.A 1.00 18.00
 DEP6LEV3 3 14 14 0 N.A N.A 2.00 8.00
 DEP7LEV4 4 28 28 0 N.A N.A 2.00 .00
 DEP8LEV4 4 28 28 0 N.A N.A 2.00 2.00
 DEP9LEV5 5 56 56 0 N.A N.A 2.00 .00
 TOTAL RETRIEVED 196
 TOTAL OUTPUT 196
 TOTAL SEQUENCE ERRORS 0

Figure 10. FABHFSU Segment Statistics report (Partition-wide)

The content of the report is as follows:

PSB NAME
Name of PSB

SEGMENT NAME
Name of segment

SEGMENT LEVEL
Level of segment

TOTAL RETRIEVED
The number of each segment type retrieved. This count does not include segments bypassed due to
sequence errors.

TOTAL OUTPUT
The number of each segment type processed by FABHFSU. If the output format is specified as NO,
the value is zero. Differences between TOTAL RETRIEVED and TOTAL OUTPUT represent the segments
that were bypassed by the user exit routine.

SEQUENCE ERRORS
The number of sequence errors detected for this segment type. If the sequence check option is N, this
field is zero.

MAXIMUM TWINS
The maximum number of this segment type that occurs under any one root segment. This field is
always N.A. (that is, not applicable).

MAXIMUM CHILDREN
The maximum number of dependent children that occurs for this segment type. This field is always
N.A. (that is, not applicable).

AVERAGE TWINS
The TOTAL RETRIEVED of this segment type divided by TOTAL RETRIEVED of this segment's parent.
Average occurrences of this segment per parent occurrence.

68 IMS High Performance Unload: User's Guide

AVERAGE CHILDREN
The sum of all segment occurrences dependent on this segment type divided by the TOTAL
RETRIEVED of this segment type. (This value might be incorrect if sequence errors are bypassed
or if the PCB is not sensitive to all dependents.)

TOTAL RETRIEVED
The total number of segments retrieved.

TOTAL OUTPUT
The total number of segments processed by FABHFSU.

TOTAL SEQUENCE ERRORS
The total number of sequence errors.

FABHFSU user exit routine
The user exit routine enables you to perform additional selectivity or modification of segments before the
segment data is written into the output data set. You can also control FABHFSU using various return codes
from your exit routine.

The following topics includes product-sensitive programming interface information. See “Programming
interface information” on page 518 to understand the restrictions associated with this type of material.

PSPI

Note: The user exit interface is compatible with the user exit interface of FABHFSU in DBT HSSR and IPR
Unload. You can use the exit routine that you wrote for these utilities if that routine does not depend on
the CON option, that is, if the routine does not expect that the segment prefix and the segment data are
concatenated in contiguous virtual storage.

The routine must be link-edited in 31-bit addressing mode (AMODE 31). If the routine does not refer to
the segment prefix area that is pointed to by the first parameter, you can link-edit the routine in 24-bit
addressing mode (AMODE 24).

FABHFSU calls the user exit routine as an Assembler subroutine. The linkage convention follows the MVS
standard. Exit routines must be placed into a load module library to which access is provided with a
STEPLIB JCL statement.

At initialization of FABHFSU, and before any HSSR call is issued to the database to be unloaded, FABHFSU
examines each PSB control statement to determine whether an exit routine has been specified. If one has
been, it is loaded from its resident library.

The exit routine is called for each segment retrieved from the database before the segment record is
written into the output data set.

If your exit routine needs some kind of initialization and termination processing, specify Y for the
exit routine control option on the PSB control statement. For more information, see “Initialization and
termination processing in the exit routine” on page 72.

If you want to modify the content of segments, specify the option Y or E for the segment modification
option of the PSB control statement. For more information, see “Modifying segments in user exits” on
page 71.

For best performance, coding the exit routines in Assembler language is recommended. However, exit
routines in COBOL and PL/I exit routines are also supported for application programmers.

PSPI

Considerations when writing user exit routines
Certain considerations apply when writing user exit routines.

Subtopics:

Chapter 6. FABHFSU unload utility 69

• “Writing a user exit routine in COBOL” on page 70
• “Writing a user exit routine in PL/I” on page 70
• “Sample exit routines” on page 71

PSPI

Writing a user exit routine in COBOL
When you write an exit routine in COBOL, you should know that a COBOL exit is always called as a
subroutine of FABHFSU. Because FABHFSU is not a COBOL program and is not running in the Language
Environment, you must use some methods to get better performance.

Enterprise COBOL, COBOL for OS/390, COBOL for MVS, and COBOL/370
If your exit routine is compiled by Enterprise COBOL, COBOL for OS/390 and VM Version 2, COBOL
for MVS and VM, or COBOL/370, you must use the runtime option module CEEUOPT to optimize the
Language-Environment (LE) options.

Because FABHFSU is not an LE-conforming Assembler program, RTEREUS=(ON) must be specified in
CEEUOPT. TRAP=(OFF) option must also be specified, to avoid the overhead of intercepting abends in
the COBOL user exit.

VS COBOL II
If your exit routine was compiled by VS COBOL II or OS/VS COBOL and run with VS COBOL II runtime
library, use one of the following methods:

• Generate the runtime option module IGZEOPT with RTEREUS=YES and STAE=NO; and link-edit it
with the exit routine if that routine was compiled with VS COBOL II.

If the routine was compiled with OS/VS COBOL, link-edit the IGZEOPT module with a copy of
ILBONTR from the VS COBOL II subroutine compatibility library. At run time, this copy of ILBONTR
must be available.

• Specify the control statement RTEXIT=HPSUCOB2 in the HSSROPT data set. HPSUCOB2 sets
up and terminates the COBOL II runtime environment. This method is useful if RTEREUS=NO is
specified in your current IGZEOPT module that is linked with the exit routine.

Writing a user exit routine in PL/I
If an exit routine is written in PL/I, a special Assembler interface routine must be linked to it. For details of
the interface routine, see the sample HPSUXPA0 in the HPS.SHPSSAMP sample library.

When you use the interface routine, observe the following rules:

• The PL/I routine must be compiled as an external procedure (no OPTIONS on the procedure statement).
• The name on the procedure statement must be FSUEXIT.
• The parameters in the PL/I routine must be declared as pointer variables.
• Based variables must be used to access the data passed by FABHFSU to the exit routine.
• The built-in function PLIRETC must be used to set the return code expected by FABHFSU.
• The interface routine must be link-edited with the exit routine by use of the following link-edit control

statement:

INCLUDE exitlib(FSUEXIT) FSUEXIT - NORMALLY ON SYSLIN
INCLUDE somelib(FSUTOPLI) INTERFACE ROUTINE
ENTRY FSUTOPLI ENTRY POINT IN INTERFACE
NAME whatever ANY NAME YOU CHOOSE

• The module name indicated as 'whatever' in this example is the name specified on the Exit Routine
Name field of the PSB control statement.

70 IMS High Performance Unload: User's Guide

Sample exit routines

The sample exit routines shown in the following table are provided as members in the HPS.SHPSSAMP
sample library:

Table 7. Examples of exit routines

Member name Description

HPSUXAA0 Sample exit routine written in Assembler language

HPSUXCA0 Sample exit routine written in COBOL

HPSUXPA0 Sample exit routine written in PL/I

PSPI

Modifying segments in user exits
If you want to modify the content of segments, activate the segment modification option by making the
specification on the PSB control statement.

Procedure
If you want to modify the content of segments, specify the option Y or E for the segment modification
option of the PSB control statement.

PSPI

Y
If you want to modify database segments in your exit routine, but you do not change the length of a
segment, specify Y in column 32 of the PSB control statement.

If this option is selected, each segment will be moved to a work area so that modifications made by an
exit routine will not affect the same segment when it is being written to another data set, defined by
another PSB control statement. Though any part of the data (except the size field of a variable length
segment) can be changed by the user exit, you are cautioned against modifying the segment prefix or
sequence fields.

The Y option does not allow the exit routine to change the segment length. If you change the segment
length with the Y option, the result is unpredictable. If you want to change the segment length, you
must specify the E option instead of the Y option.

E
The E option notifies FABHFSU that segments will be modified by the user exit. The option is valid
only for HDAM, HIDAM, PHDAM, or PHIDAM databases. If the E option is specified on a PSB control
statement, an extra 100-byte field is added at the end of the segment data field that is passed to
the exit routine. This additional area can be used to extend the segment passed. If you have changed
the length of a fixed-length segment, you must update the SGLEN field in the segment table SGTBL.
When the segment is a logical child and the logical parent's concatenated key (LPCK) is defined as
virtual, the length passed through SGLEN does not include the length of the (virtual) LPCK field. In that
case, the length of the virtual LPCK must not be included when SGLEN is updated. Furthermore, if you
have changed the length of a variable-length segment, you must update the size field of the segment.
However, you do not need to update the SGLEN field for a variable-length segment.

Note: You do not need to regenerate a new DBD before running FABHFSU so that the new segment
lengths are reflected to the DBD.

PSPI

Chapter 6. FABHFSU unload utility 71

Related reference
PSB control statement
The PSB control statement for the standard mode identifies the characteristics of the output data sets to
be created. From one to three PSB statements can be used for each execution of FABHFSU.

Initialization and termination processing in the exit routine
If the exit routine control option is coded Y (on the PSB control statement), the exit routine is called
before the first segment is processed and again after the last segment is processed.

PSPI

The SGLEVEL field in SGTBL is shown in the following table:

Table 8. The SGLEVEL field in SGTBL

Value of SGLEVEL Description

X'00' This is the initialization call. It is issued before any segment processing
begins.

X'FF' This is the termination call. It is issued after the last segment
processing.

X'01'–X'0F' This is the normal segment processing call, and the value in SGLEVEL
shows the segment level of the segment just retrieved.

PSPI

Related reference
PSB control statement
The PSB control statement for the standard mode identifies the characteristics of the output data sets to
be created. From one to three PSB statements can be used for each execution of FABHFSU.

Information passed to the exit routine
FABHFSU invokes the user exit routine for each segment retrieved from the database before the segment
record is written into the output data set.

PSPI

The following parameters are passed to the routine (see “Contents of registers” on page 75):

Parameter
Description

Word 1
Address of the segment prefix for the segment

Word 2
Address of the segment data

Word 3
Address of the segment-table (SGTBL) entry for the retrieved segment

Word 4
Address of the Key Area

You can refer to or edit the segment data by referring to the information in the SGTBL and Key Area. The
address of the segment prefix area is passed to the exit routine for compatibility with the user exits for
FABHFSU of DBT HSSR and IPR Unload.

Subtopics:

72 IMS High Performance Unload: User's Guide

• “Segment prefix area” on page 73
• “Segment table (SGTBL)” on page 73
• “Key area” on page 74

Segment prefix area
The area is always above the 16-MB line; therefore, the address of the segment prefix is set into the
parameter list as a 31-bit address.

The exit routine (link-edited in 31-bit addressing mode) can refer to the segment prefix area, but must not
modify the data in the area.

If the segment code needs to be checked, the routine must refer to SGCDE in the SGTBL entry instead of
referring to the segment prefix.

Segment table (SGTBL)
The segment table (SGTBL) is a control block built by FABHFSU. Each entry of SGTBL contains the
information for the segment just retrieved. Your exit routine can refer to the information, but must
not modify the data in SGTBL unless the length of a fixed-length segment is changed. See “Modifying
segments in user exits” on page 71.

The Assembler mapping macro HPSUSGTB for an SGTBL entry is provided in HPS.SHPSMAC0 macro
library.

The fields of interest in an SGTBL are summarized in the following table. For other fields, see HPSUSGTB
macro.

Table 9. Fields in an SGTBL

Label Offset
(bytes)

Length
(bytes)

Type Description

SGNAME 0 8 Character Segment name

SGCDE 8 1 Hex Segment code

SGPARCDE 9 1 Hex Parent segment code

SGLEVEL 10 1 Hex Segment level

SGPCNUM 11 1 Hex Number of physical children

SGSNSFLG 12 1 Flag byte Sensitivity

SGPACOP 13 1 Flag byte Compaction options

SGFDFLG 14 1 Flag byte Sequence field flag

SGDSG 15 1 Hex Data set group number

SGVLIND 16 1 Flag byte Variable-length segment flag

If the flag bit SGVL=X'04' is on, the
segment has variable length.

SGHIER 17 1 Flag byte Hierarchical pointer flag

SGMINLEN 18 2 Halfword Minimum length of variable-length
segment

SGFDLEN 20 2 Halfword Length of sequence field

SGFDDISP 22 2 Halfword Offset to sequence field

Chapter 6. FABHFSU unload utility 73

Table 9. Fields in an SGTBL (continued)

Label Offset
(bytes)

Length
(bytes)

Type Description

SGLEN 24 2 Halfword Segment length for a fixed-length
segment; maximum length for a
variable-length segment

The length does not include the length
of the LPCK area if it is defined as
VIRTUAL.

SGPFXLEN 26 2 Halfword Prefix length

Key area
The key area is used for the following purposes:

• If Y is specified for the concatenated key option on the PSB control statement, the fully concatenated
key of each segment is built and passed to the exit routine in this area.

If a secondary index is used, the value in the search field of the index segment is considered as the key
of the root segment.

If the DECN option is specified in CARDIN data set, compressed segments are not decompressed. The
concatenated key might not be complete if the segment being processed is key-compressed or has
a parent that is key-compressed; FABHFSU considers those segments unsequenced. If you need a
completely concatenated key for such a database, you must not specify DECN.

Note: If you are using a Data Conversion exit (DFSDBUX1 exit) for the database processed in the
FABHFSU job, the concatenated key is passed in the application form. If you are not using the
DFSDBUX1 exit, the concatenated key is passed in the stored form.

• To skip the scan to a new root key value, the exit routine uses the concatenated key area to pass the
new key back to FABHFSU. A generic key can be specified by returning a key length less than that
required for a root key.

If a secondary index is used, specify the value in the search field of the index segment for the next root.

Set the return code of 16 to force FABHFSU to accept the skip. The DBR skip option is also required to
be Y in the PSB control statement.

The exit routine can skip to any key that is lower than the upper limit for the unload process. A skip to a
key beyond the upper limit simulates end-of-the-database.

Note: If you are using a Data Conversion exit (DFSDBUX1 exit) for the database that is processed in the
FABHFSU job, you must specify the new key in the application form. If you are not using the DFSDBUX1
exit, you must specify the new root key in the stored form.

The format of the key area is shown the following table.

Table 10. Format of the key area

Offset Length (bytes) Type Description

0 2 Halfword Length of key area

2 variable - Key value

PSPI

74 IMS High Performance Unload: User's Guide

Contents of registers
The following information describes how to communicate with the main logic.

PSPI

Subtopics:

• “Contents of registers on entry” on page 75
• “Contents of registers on exit” on page 75

Contents of registers on entry
The following table shows register contents upon entry to the user exit routine:

Table 11. Register contents upon entry to an exit routine

Register Content

1 Pointer to the parameter list

13 Pointer to the register save area

14 Return address

15 Entry-point address of the routine

The following table lists the parameters which are pointed to by register 1 upon entry.

Table 12. Parameter list pointed to by register 1 upon entry

Word Content

1 Address of segment prefix area

2 Address of segment data (see Note)

3 Address of segment table (SGTBL) entry for the segment type

4 Address of key area

Note: The second word (segment-data pointer) points to the beginning of the data portion of the
segment. If the segment is a variable-length segment, the pointer points to the size field. If the segment
is a fixed-length segment, the pointer points to the beginning of the data, and the segment length is
available from the SGLEN field of the SGTBL entry.

Contents of registers on exit
When the control is returned to the caller, the contents of all registers except for Register 15 must be
restored. Register 15 must contain one of the return codes that are summarized in the following table.

Table 13. Return codes

Code Meaning

0 FABHFSU writes this segment in the output data set.

4 FABHFSU does not write this segment in the output data set.

8 FABHFSU bypasses this segment and stops the processing for this output data set.
If the processing for all output data sets is stopped, FABHFSU ends the job step.

Chapter 6. FABHFSU unload utility 75

Table 13. Return codes (continued)

Code Meaning

12 FABHFSU bypasses this segment and skips the unload processing to the next root
segment.

Note: The DBR skip option must be coded as Y on the PSB control statement. See
the description of the DBR skip option in “PSB control statement” on page 61.

16 FABHFSU bypasses this segment and skips the unload processing to the root
segment with the sequence key returned in the Key Area.

If a Data Conversion (DFSDBUX1) exit routine is used for the database, the key of
the next root must be specified in the application form.

Note: The DBR skip option must be coded as Y on the PSB control statement. See
the description of the DBR skip option in “PSB control statement” on page 61.

256+ (any one
of the preceding
codes)

The segment work area contains a decompressed fixed-length segment that is now
in a true fixed format.

The length of the fixed-length segment is in the SGLEN field of the SGTBL. If
this code is returned, FABHFSU gets the length of the decompressed fixed-length
segment from the SGLEN field.

These return codes are allowed only for fixed-length segments.

If a code other than the codes summarized in the preceding table is returned, FABHFSU ends abnormally.

PSPI

FABHFSU JCL examples
Use the following JCL examples to prepare your FABHFSU JCL.

Subtopics:

• “Example 1: Running FABHFSU in ULU region” on page 76
• “Example 2: Running FABHFSU in DLI region” on page 77

For examples of unloading a PHDAM or PHIDAM database, see Chapter 8, “Methods for processing High
Availability Large Databases,” on page 97.

Example 1: Running FABHFSU in ULU region
The FABHULU procedure can be used to run FABHFSU in the ULU region. The DBD name must be
specified on the DBD= EXEC parameter and on the DBD control statement in CARDIN DD. The DBD must
be a physical DBD.

Because the job runs in the ULU region, PSB name '*' is specified for PSB control statements. In this
example, two PSB statements are coded.

The first PSB statement specifies the UL format and the DD name of OUT1 for the output data set. The
output data set produced by the PSB statement can be reloaded by the IMS HD Reorganization Reload
utility or a compatible utility.

The second PSB statement specifies the VN format and the DD name of OUT2 for the output data set. The
output data set is intended to be processed by an application program.

In the following example, SKILHDAM DD specifies the database to be unloaded.

76 IMS High Performance Unload: User's Guide

// EXEC FABHULU,MBR=FABHFSU,DBD=SKILLINV
//CARDIN DD *
DBDSKILLINV
PSB* OUT1 UL
PSB* OUT2 VN
END
/*
//PRNTOUT DD SYSOUT=A
//SKILHDAM DD DSN=IMSDB.SKILLINV.DB,DISP=SHR
//OUT1 DD DSN=IMSDB.UNLOAD1,DISP=(,KEEP),UNIT=TAPE
//OUT2 DD DSN=IMSDB.UNLOAD2,DISP=(,KEEP),UNIT=TAPE

Figure 11. Running FABHFSU in the ULU region

Example 2: Running FABHFSU in DLI region
The FABHDLI procedure can be used to run FABHFSU in the DLI region. The PSB name must be specified
on the PSB= EXEC parameter. The DBD control statement must be coded in CARDIN DD and must specify
the DBD name for the database to be processed. The DBD must be a physical DBD.

The three options, that is, sequence check option (Y), sequence error option (A), and sequence error print
option (Y) which are specified in the DBD statement, mean:

• Y: sequence check is to be done.
• A: sequence errors are to be processed.
• Y: the diagnostic data is to be printed in the HSSRTRAC data set.

Any incorrect pointers are bypassed because the DBD statement also specifies the pointer bypass option
(1).

In this example, two PSB statements are coded.

All segments defined in the DBD are sensitive to the output defined by the OUT1 DD, because '*' is
specified in the PSB name field of the first PSB statement. If no sequence errors or pointer errors are
found, the output data set produced by the PSB statement can be reloaded by the IMS HD Reorganization
Reload utility or a compatible utility, because the unload format UL is specified.

The second PSB statement specifies the VB format and the DD name of OUT2 for the output data set. Only
segments of the types defined in the first DB PCB of the PSB OUT2PSB for the SKILLINV database are
unloaded, because the PSB statement specifies the PSB name and the PCB Number field is left blank. A
user exit routine, OUT2EXIT, is specified on the PSB statement.

The OUT1 and OUT2 DD statements specify the data sets for unloading.

In the following example, it is assumed that the RECON data sets and the database data sets are
dynamically allocated.

// EXEC FABHDLI,MBR=FABHFSU,PSB=OUT2PSB,DBRC=Y
//CARDIN DD *
DBDSKILLINV YAY 1
PSB* OUT1 UL
PSBOUT2PSB OUT2 VBOUT2EXIT
END
/*
//PRNTOUT DD SYSOUT=A
//OUT1 DD DSN=IMSDB.UNLOAD1,DISP=(,KEEP),UNIT=TAPE
//OUT2 DD DSN=IMSDB.UNLOAD2,DISP=(,KEEP),UNIT=TAPE

Figure 12. Running FABHFSU in the DLI region

Chapter 6. FABHFSU unload utility 77

78 IMS High Performance Unload: User's Guide

Chapter 7. Application programming interface for
using HSSR Engine

IMS High Performance Unload provides an application programming interface (API) to run, by using HSSR
Engine, an IMS DL/I batch application program.

Topics:

• “IMS High Performance Unload API overview” on page 79
• “HSSR PCB requirements” on page 80
• “HSSR PCB feedback information” on page 81
• “DL/I calls and EXEC DLI command for HSSR PCB” on page 84
• “JCL requirements for your HSSR application” on page 86
• “Considerations for Db2 DL/I Batch interface” on page 88
• “Considerations for checkpoint and restart” on page 89
• “Consideration for database sharing” on page 90
• “Consideration for HALDB single partition processing” on page 95

IMS High Performance Unload API overview
An application programming interface (API) in IMS High Performance Unload enables an IMS DL/I batch
application program, which reads a database sequentially, to use HSSR Engine without being recompiled
or relink-edited. Through this API, the application program can retrieve a large number of segments more
efficiently than the native IMS DL/I and the elapsed time and CPI time can be reduced.

This API supports IMS DL/I calls and IMS EXEC DLI commands. GN and GNP calls with an unqualified
segment search argument (SSA) are optimized. If the calls other than GU, GN, or GNP are included, do not
run the application program with IMS High Performance Unload.

An overview of the system flow of an application program is shown in “IMS High Performance Unload
system structure” on page 11.

An application program that uses HSSR Engine for processing DL/I database calls is called an HSSR
application program. To run an HSSR application in the DLI or the DBB region, a PSB is needed. In the
PSB, you have to select one or more DBPCBs by specifying them in the HSSRPCB or the HSSRDBD control
statement in the HSSROPT data set. The selected DBPCB is called an HSSR PCB. A DL/I call or an EXEC
DLI command to the HSSR PCB is called an HSSR call. The HSSR calls are processed by HSSR Engine and
the calls to the other DBPCBs are processed by native IMS DL/I.

Requirement: An application program must have been assembled, compiled, and link-edited in the same
way as IMS DL/I batch application programs. For details, see IMS Application Programming.

Notes:

• The specification of HSSR PCBs through the KEYLEN keyword of PCB statement is supported for the
compatibility with DBT HSSR. See “Method for specifying an HSSR PCB through KEYLEN” on page 358.

• If the ULU region is used, you do not need to code the HSSRDBD or the HSSRPCB control statement.
This region type is supported for the compatibility with DBT HSSR.

For the restrictions that apply to HSSR application program jobs, see “Restrictions for IMS High
Performance Unload” on page 22.

© Copyright IBM Corp. 2000, 2024 79

HSSR PCB requirements
Each HSSR PCB that is specified in the HSSRPCB or the HSSRDBD control statement in the HSSROPT data
set must satisfy certain requirements.

The following subtopics describe the requirements that must be satisfied:

• “PCB statement requirements” on page 80
• “Processing option (PROCOPT) requirements” on page 80
• “SENSEG statement requirements” on page 81

PCB statement requirements
The following PCB statement requirements must be satisfied:

• The DBDNAME (or NAME) parameter must specify the name of a physical DBD. The name must not be
the name of a logical DBD.

• LIST=NO option must not be specified.

Processing option (PROCOPT) requirements
The PROCOPT parameter must specify one or certain combinations of the following codes (see IMS
System Utilities for more information):

Code
Description

PROCOPT=G
Get function. If a database is shared at the database level when PROCOPT=G, DBRC grants access
with read integrity. It prevents the concurrent execution of the application program and the updating
by the IMS subsystem.

PROCOPT=O
Read only. (Use this code with G.) If a database is shared at the database level when PROCOPT=GO,
DBRC grants access without read integrity. It enables the application program to run and the IMS
subsystem to update the database concurrently.

PROCOPT=N
Read only. (Use this code with GO.) N allows the application program to avoid abends when referring
to data that is being updated by another program. A GG status code is returned, and the program must
decide whether to end or continue.

PROCOPT=T
Read Only. (Use this code with GO.) T works similarly to N, except that it causes DL/I to retry the
operation automatically before returning the GG status code.

PROCOPT=E
Enables exclusive use of the database or segment. (Use this code with G.) If a database is shared at
the database level when PROCOPT=GE, DBRC grants exclusive use to the database.

If you want to use PROCOPT=GON or GOT, see “Consideration for database sharing” on page 90.

Considerations:

• PROCOPT=R is also accepted for compatibility with DBT HSSR, however, is not recommended. See
“Support of PROCOPT=R and replace calls” on page 359.

• PROCOPT=A is also accepted, however, is not recommended. Even if PROCOPT=A is specified, HSSR
engine treats it as PROCOPT=G. The other functions I, R, and D are ignored.

• PROCOPT=P is also accepted, however, is not recommended. Even if PROCOPT=P is specified, D
command code is not processed by HSSR engine.

80 IMS High Performance Unload: User's Guide

SENSEG statement requirements
The following conditions must be satisfied:

• SENSEG statements must be coded in the same hierarchical sequence as is defined in the DBD.
• Field sensitivity must not be specified.
• Either the PROCOPT field must be omitted in the SENSEG statements; or, if it is coded, the processing

option must be G, GE, or K.

Consideration: PROCOPT=R is also accepted for compatibility with DBT HSSR, but is, however, not
recommended. See “Support of PROCOPT=R and replace calls” on page 359.

HSSR PCB feedback information
After a call is made, the PCB feedback in the HSSR PCB contains the same information as a DL/I PCB with
some exceptions.

This topic describes the general-use programming interface. See “Programming interface information” on
page 518 to understand the restrictions associated with this type of material.

Subtopics:

• “Interpreting PCB feedback” on page 81
• “Status codes” on page 82

Interpreting PCB feedback

GUPI

An application program should never modify any information in the HSSR PCB. The access to PCB entries
by the application program is restricted to read-only. After a call is made, the PCB feedback in the HSSR
PCB contains the same information as a DL/I PCB with some exceptions. For details, see “Status codes”
on page 82.

GUPI

DMTI

Note: If PCBLIST HSSR which is the default, is specified, the PCB list that is passed to the application
program is not the same as the PCB list built by IMS. If PCBLIST HSSR is specified, each list entry for a
PCB that is defined as an HSSR PCB points to the corresponding HSSR PCB that has been built by HSSR
Engine. An HSSR PCB that is passed to the application program is not the original IMS PCB, but the one
rebuilt by IMS High Performance Unload's program controller. HSSR Engine describes the results of the
calls your program issues in the HSSR PCB. The HSSR PCB is referred to in the call in the same way as in
IMS.

DMTI

The following table shows the HSSR PCB mask, which is the same as IMS.

Table 14. HSSR PCB mask

Descriptor Length Note

Database Name 8 bytes

Segment Level Number 2 bytes

Status Code 2 bytes See “Status codes” on page 82.

Chapter 7. Application programming interface for using HSSR Engine 81

Table 14. HSSR PCB mask (continued)

Descriptor Length Note

Processing Options 4 bytes If PCBLIST HSSR (the default) is specified, the first
two bytes are always 'GX' and the last two bytes list
additional processing options, such as 'O ', ' ON', ' OT',
'E ', or 'R '. If the options are defined as 'GONP' or
'GOTP' in the PSB, the last two bytes are 'NP' or 'TP'. If
PCBLIST IMS is specified, the content is the same as for
IMS.

Reserved 4 bytes Do not use this field.

Segment Name 8 bytes

Length of Key Feedback Area 4 bytes

Number of Sensitive Segments 4 bytes

Key Feedback Area Variable
length

For the EXEC DLI command, the DL/I interface block (DIB) is used as the application programming
interface. Every part except the status code is the same as the DIB of IMS. For details about the status
codes, see “Status codes” on page 82.

The following table shows the format of the DIB.

Table 15. Format of the DIB

Descriptor Length

Translator Version (DIBVER) 2 bytes

Status Code (DIBSTAT) 2 bytes

Segment name (DIBSEGM) 8 bytes

Segment Level Number (DIBSEGLV) 2 bytes

Key Feedback Length (DIBKFBL) 4 bytes

Database Description Name (DIBDBDNM) 8 bytes

Database Organization (DIBDBORG) 8 bytes

Status codes
The status codes listed in the following table are returned as the result of an HSSR call.

Table 16. Status codes returned from an HSSR call

Code Meaning I/O area PCB feedback

blank Normal return. No errors
were detected.

Segment data is returned. PCB has a segment name
and a segment level, and the
concatenated key is set in
the key feedback area.

AI Data management OPEN
error

Unpredictable. Unpredictable. You must
not use the PCB feedback
information.

82 IMS High Performance Unload: User's Guide

Table 16. Status codes returned from an HSSR call (continued)

Code Meaning I/O area PCB feedback

FM This status code is returned
when:

• The randomizing routine
returns a return code of 4.

• The database is a HALDB,
and the key supplied on
the call was greater than
the high key value for
the last partition, or the
user partition selection exit
routine returned a return
code of 4 after having been
passed a key value with
which to select a partition.

No segment was returned. Unpredictable. You must
not use the PCB feedback
information.

GB End of database (issued only
for GN and GHN calls or for
GN commands).

No segment was returned. The segment name is
filled with blanks, and the
segment level is set to C'00';
the key feedback area is
nullified, and the length of
the key feedback area is set
to zero. You must not use the
PCB feedback information.

GE This status code is returned
when a segment that
satisfies the segment search
argument described in the
call could not be found.

No segment was returned. For a GU and GHU call or a
GU command, the segment
name is filled with blanks,
and the segment level is set
to C'00'; the key feedback
area is nullified, and the
length of the key feedback
area is set to zero. The
content of the key feedback
area is unpredictable. You
must not use the PCB
feedback information. For a
GN, GHN, GNP, or GHNP
call or for a GN or GNP
command, the content of
the PCB feedback area is
unpredictable. You must not
use it.

GG Pointer error, key sequence
error, or other database
error occurred. This code
can be returned either when
PROCOPT=GON or GOT is
specified in the PCB, or when
'KEYCHECK GG' or SKERROR
option is specified in the
HSSROPT data set.

Unpredictable.

Note: HSSR Engine might
skip retrieving some
segments while processing
the first GN call or GN
command that follows a GG
status code.

Unpredictable. You must
not use the PCB feedback
information.

Chapter 7. Application programming interface for using HSSR Engine 83

Table 16. Status codes returned from an HSSR call (continued)

Code Meaning I/O area PCB feedback

GP The program issued a GNP
or GHNP call or a GNP
command when there was
no parentage established, or
the segment level specified
in the call was not lower than
the level of the established
parent.

No segment was returned. Unpredictable. You must
not use the PCB feedback
information.

GX Key sequence error
occurred. (This code can
be returned only when
'KEYCHECK GX' is specified
in the HSSROPT data set.)

For the EXEC DLI command,
the status 'GX' is not
returned to the application
program, but message
DFS1041 is issued in the
EXEC DLI interface module
(DFSEIPB0), and ends with
an abend code of U1041.

Segment data is returned. PCB has a segment name
and a segment level, and the
concatenated key is set in
the key feedback area.

Notes:

• If there is an error in a call statement or a command statement, the application program receives abend
U4013, instead of status code AC, AD, AJ, or AK.

• If hierarchic levels are changed after a successful GN, GHN, GNP, or GHNP call or a successful GN or
GNP command, a status code of blank is returned instead of GA.

• If segment types are changed after a successful GN, GHN, GNP, or GHNP call or a successful GN or GNP
command, a status code of blank is returned instead of GK.

• When a GN call or a GN command is issued after a GU call or a GU command that returned a GE status
code, HSSR Engine might not return the same segment that DL/I would return.

• The status code BA is not returned even if an INIT call or an ACCEPT command has been issued with the
character string STATUS GROUPA in the I/O area. If a PROCOPT other than GON and GOT is specified for
a PCB, and if HSSR Engine encounters unavailable data regarding the database that is referred to by the
PCB, HSSR Engine issues an abend.

DL/I calls and EXEC DLI command for HSSR PCB
An HSSR call is a DL/I call or an EXEC DLI command that is issued against an HSSR PCB. Each HSSR call is
processed by HSSR Engine.

The HSSR call is issued through the DL/I language interface, but the call is transferred to the HSSR Call
Analyzer. The call is finally processed by either HSSR call handler or native IMS DL/I, depending on the
type of the call or the API set that is specified by the APISET control statement in the HSSROPT data set.

If APISET 1 (default) or 2 is specified and an unsupported call is issued against an HSSR PCB, the
application processing ends abnormally. To avoid program termination, specify APISET 3 or remove the
PCB from the list of HSSR PCBs that is specified by the HSSRPCB or the HSSRDBD control statement.

Subtopics:

• “DL/I calls supported by each API set” on page 85

84 IMS High Performance Unload: User's Guide

• “EXEC DLI commands supported by each API set” on page 86

DL/I calls supported by each API set
APISET 1 is the system default. The following table shows the DL/I call types supported by each API set,
and their effects with and without segment search arguments (SSAs):

Note: For restrictions that are related to API sets, see “Restrictions common to all HSSR applications” on
page 23.

Table 17. DL/I call types supported by each API set

API set Call types supported

APISET 1 The following call types are supported:

• GU and GHU calls without SSA: the first root segment of the database is
retrieved.

• GU and GHU calls with an unqualified SSA that contains only the name of a root
segment type.

• GU and GHU calls with an SSA that is qualified on the root sequence key.

In the SSA, any one of the following relational operators is available:

– equal-to (=b,b=, or EQ. b represents a single blank)
– greater-than-or-equal-to (>=, =>, or GE)

• GN and GHN calls without SSAs.
• GN and GHN calls with an unqualified SSA that contains the name of a root

segment type.
• GN and GHN calls with an SSA that is qualified on the root sequence key.

In the SSA, any one of the following relational operators is available:

– equal-to (=b,b=, or EQ)
– greater-than-or-equal-to (>=,=>, or GE)
– greater-than (>b,b>, or GT)

These calls are not supported for HDAM or PHDAM database.
• GNP and GHNP calls without SSAs.

APISET 2 The following call types are supported for HIDAM, HDAM, PHIDAM, and PHDAM
in addition to the call types supported in APISET 1:

• GN, GHN, GNP, and GHNP calls with an unqualified SSA that contains the name
of a dependent segment type.

• GN, GHN, GNP, and GHNP calls with a qualified SSA that contains the name of a
dependent segment type at the second level.

• GN, GHN, GNP, and GHNP calls with N SSAs to retrieve the segment at the N-th
level (2<=N<=15). The following combinations of SSAs are supported:

– N unqualified SSAs
– N qualified SSAs
– A qualified SSA, N-2 unqualified SSAs, and a unqualified or qualified SSA
– N-1 qualified SSAs, and a unqualified SSA

Here, the first SSA must contain the root segment name and only equal-to
(=b,b=,or EQ) relational operator is allowed for each qualified SSA.

Chapter 7. Application programming interface for using HSSR Engine 85

Table 17. DL/I call types supported by each API set (continued)

API set Call types supported

APISET 3 The fully supported call types are the same as those in APISET 2. Once an
unsupported call is issued for HIDAM, HDAM, PHIDAM, or PHDAM, the call and
all the succeeding calls to the HSSR PCB are passed to the IMS DL/I call handler
to continue the processing instead of ending it abnormally.

In APISET 1 or 2, if a user application issues a call that is not supported by the HSSR call handler, the
call is printed in the Trace Output report in the HSSRTRAC data set even if the TRHC and TRDB control
statements are not specified in the HSSROPT data set. By using this report, you can check which call is
not supported.

EXEC DLI commands supported by each API set
Requirement: If the EXEC DLI command is used in your application, you must specify 'PCBLIST IMS' in
the HSSROPT data set. For details of the PCBLIST IMS specification, see “PCBLIST control statement” on
page 173.

IMS High Performance Unload supports three API sets. APISET 1 is the system default. The following
table shows the EXEC DLI Command types supported by each API set, and their effects with and without
SEGMENT options.

Table 18. EXEC DLI command types supported by each API set

API set Command types supported

APISET 1 The following command types are supported:

• GU command without SEGMENT options
• GU command with a SEGMENT option that contains the name of a root

segment type

APISET 2 The following command types are supported for HIDAM, HDAM, PHIDAM, and
PHDAM in addition to the command types supported in APISET 1:

• GN or GNP command with a SEGMENT option that contains the name of a
dependent segment type

• GN or GNP command with a SEGMENT option and a WHERE option qualified on
the sequence key of a second level dependent segment type

APISET 3 The supported call types are the same as those in APISET 2. Once an
unsupported call is issued for HIDAM, HDAM, PHIDAM, or PHDAM, the call and
all the succeeding calls to the HSSR PCB are passed to the IMS DL/I call handler
to continue the processing instead of ending it abnormally.

An HSSR call gives the same results as a DL/I call or an EXEC DLI command, with some minor differences.
For details, see “HSSR PCB feedback information” on page 81.

For a complete description of the commands, options, and layout of the DIB and qualified commands, see
IMS Application Programming.

JCL requirements for your HSSR application
The JCL stream that is used to run an application program on IMS High Performance Unload is not fully
compatible with the JCL stream used for the native IMS DL/I batch.

For details, see “Basic JCL requirements” on page 30. You can also use the IBM-supplied catalog
procedures. For details, see “Preparing the basic JCL” on page 29.

86 IMS High Performance Unload: User's Guide

To run your application program, the HSSROPT DD statement is needed to specify at least an HSSRPCB
or HSSRDBD control statement. Also, consider specifying the following output DD statements, which are
used to print the HSSR call statistics and the HSSR call traces:

• HSSRSTAT DD statement
• HSSRTRAC DD statement
• HSSRSNAP DD statement

The following figure shows a JCL example to run the application program named as 'YOURAPPL' that
issues IMS DL/I calls.

//APPLGO EXEC PGM=FABHX034,
// PARM=('DFSRRC00/DLI',YOURAPPL,YOURPSB)
//* <--Change EXEC statement
//STEPLIB DD DSN=IMSVS.SDFSRESL,DISP=SHR
// DD DSN=IMSTOOL.SHPSLMD0,DISP=SHR <--Add HP Unload LIB
// DD DSN=YOURPRJ.PGMLIB,DISP=SHR
//DFSRESLB DD DSN=IMSVS.SDFSRESL,DISP=SHR
//IMS DD DSN=IMSVS.PSBLIB,DISP=SHR
// DD DSN=IMSVS.DBDLIB,DISP=SHR
//PROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR
//IEFRDER DD DSN=NULLFILE,
// DISP=(,KEEP),VOL=(,,,99),UNIT=(TAPE,,DEFER),
// DCB=(RECFM=VBS,LRECL=3964,BLKSIZE=3968,DEN=3)
//SYSUDUMP DD SYSOUT=*
//IMSMON DD DUMMY
//HSSRSTAT DD SYSOUT=* <--- Add OUTPUT DD
//HSSRTRAC DD SYSOUT=* <--- Add OUTPUT DD
//HSSRSNAP DD SYSOUT=* <--- Add OUTPUT DD
//DFSSTAT DD SYSOUT=* <--- Add OUTPUT DD
//HSSROPT DD * <--- Add INPUT DD
HSSRPCB *ALL
APISET 3
/*
//ddname DD DSN=your_database_DSN,...

Figure 13. JCL to run an application program using the DL/I calls

In this JCL example, two control statements are specified in the HSSROPT data set:

• 'HSSRPCB *ALL' defines that all DBPCBs in the PSB with the name YOURPSB are HSSR PCBs. If you
want to select one or more DBPCBs but not all, there are two ways to do so:

– Specify the PCB numbers as in 'HSSRPCB 001,003'.
– Specify as 'HSSRDBD dbdname' to select all DBPCBs that refer to a specific DBD with the name

dbdname.
• 'APISET 3' enables all DL/I call types that are supported by this API. And if an unsupported call is issued

once, the succeeding call processing to the HSSR PCB is taken over by native IMS DL/I. The statistics
of the calls processed by HSSR Engine is logged in the HSSRSTAT data set. For details, see “HSSRSTAT
data set” on page 181. And the statistics of the calls processed by native IMS DL/I is logged in the
DFSSTAT data set. To tune the IMS DL/I performance, add the DFSVSAMP DD statement and specify
IMS VSAM and OSAM buffers and options in the data set.

If 'APISET 2' is specified instead of 'APISET 3', in the previous mentioned case of the unsupported call,
the application processing ends abnormally. Check which call is unsupported in the Trace Output report
in the HSSRTRAC data set. For details of the supported calls and restrictions, see “DL/I calls and EXEC
DLI command for HSSR PCB” on page 84.

For other options, see Chapter 11, “Options for HSSR Engine,” on page 155.

Requirement: If your application uses the EXEC DLI commands, you must add the 'PCBLIST IMS' control
statement to the HSSROPT data set.

Chapter 7. Application programming interface for using HSSR Engine 87

Considerations for Db2 DL/I Batch interface
IMS High Performance Unload supports the Db2 DL/I Batch interface, with some restrictions.

For DL/I Batch support of Db2, also read the Db2 Application Programming and SQL Guide.

By using Db2 DL/I Batch interface, an HSSR application program can issue:

• Any HSSR call, with the restrictions stated in “Restrictions common to all HSSR applications” on page
23.

• Any IMS batch call except a ROLS, SETS, or SYNC call, or any IMS batch command except a ROLS, SETS,
or SYNC command. This is the same restriction as for Db2 DL/I Batch support. For further details about
the restrictions on IMS batch calls, see Db2 Application Programming and SQL Guide.

• IMS system service calls or commands with the same restrictions. See “Considerations for checkpoint
and restart” on page 89.

• Any SQL statements except COMMIT and ROLLBACK. The application program must use the IMS CHKP
call or the IMS CHKP command to commit data, and the IMS ROLL or ROLB to roll back changes.

• Any call or command to a standard or conventional access method such as QSAM or VSAM.

Subtopics:

• “Program design considerations” on page 88
• “Restrictions on Db2 DL/I Batch support” on page 88
• “Requirements for using Db2 DL/I Batch support” on page 88

Program design considerations
The program design considerations for ordinary Db2 DL/I Batch support apply to IMS High Performance
Unload. You should be familiar with the program design considerations for the Db2 DL/I Batch support,
especially those related to checkpoint calls and application program synchronization, or to checkpoint
commands and application program synchronization.

Restrictions on Db2 DL/I Batch support
The restrictions described in “Restrictions common to all HSSR applications” on page 23 apply also to
HSSR application programs that use the Db2 DL/I Batch interface. The following restriction also applies:

• Db2 change data capture exit routine (DB2CDCEX) is supported, but a changed data capture exit routine
cannot issue any HSSR call.

Requirements for using Db2 DL/I Batch support
You can use IBM-supplied cataloged procedure FABHDB2, which resides in the HPS.SHPSSAMP sample
library.

The required changes to the application program and the job step JCL are basically the same as for Db2
DL/I Batch support, except that using DSNMTV01 on the MBR= parameter is not supported; the results
obtained when it is used are unpredictable.

You must specify a subsystem member, using the SSM= parameter on the procedure FABHDB2. Also,
specify your HSSR application program name, using the MBR= parameter, and the name of the IMS
High Performance Unload's program controller, FABH000, as the ninth positional parameter PROG in the
DDITV02 data set. For more information about how to specify the EXEC parameters and the DDITV02 DD
on the Db2 DL/I Batch job step JCL, see the Db2 Application Programming and SQL Guide.

In the HSSR application program that uses Db2 DL/I Batch support, the following additional EXEC
parameter must be provided:

88 IMS High Performance Unload: User's Guide

SSM=
This required parameter specifies a 1- to 4-byte character identifier. When building the IMS.PROCLIB
member that contains the information about each Db2 subsystem that IMS communicates with, you
must generate the member name by concatenating this SSM identifier to the IMSID.

Carefully provide the following EXEC parameter:

MBR=
This required parameter specifies the name of the HSSR application program. The Db2 module name
DSNMTV01 must not be specified.

Provide the following DD statement in your JCL:

DDITV02 DD
Specify the program controller name FABH000 as the ninth positional parameter PROG in this data
set.

For example:

//DDITV02 DD *
DSN,SYS1,DSNMIN10,,R,-,BATCH001,DB2PLAN,FABH000
/*

The following DD statement is optional:

DDOTV02 DD
This optional DD statement defines the output data set in which the Db2 output information is written.
If DCB is coded on the JCL, the specification must be RECFM=V or VB, LRECL=4092, and "BLKSIZE
≥ LRECL+4". If the DD statement is missing, message IEC130I is issued and processing continues
without any output.

Considerations for checkpoint and restart
Certain considerations and restrictions apply when your application program uses MVS checkpoints, DL/I
CHKP and XRST calls, or EXEC DLI CHKP and XRST commands.

Subtopics:

• “MVS checkpoints” on page 89
• “DL/I CHKP and XRST calls or EXEC DLI CHKP and XRST commands” on page 89

MVS checkpoints
MVS checkpoints can cause unpredictable results in HSSR application programs. Therefore, HSSR
application programs must not issue:

• MVS checkpoints
• Those basic DL/I CHKP calls or EXEC DLI CHKP commands that request MVS checkpoints (For a

detailed description of DL/I CHKP calls, see MVS Application Programming: Design Guide.)

DL/I CHKP and XRST calls or EXEC DLI CHKP and XRST commands
HSSR application programs can issue PCB DL/I CHKP and XRST calls or XRST commands to the I/O PCB.
However, a DL/I CHKP call or an EXEC DLI CHKP command should not request an MVS checkpoint.

• If PCBLIST HSSR (the default value) is specified, HSSR application programs can issue XRST calls with
APISET 1 (also the default value).

• If HSSR application programs issue XRST calls with PCBLIST IMS specified, you must specify APISET 3.
• If XRST command is to be issued, you must specify APISET 3.

HSSR Engine is not aware of CHKP and XRST calls or XRST commands. For HSSR PCBs, the behavior
of HSSR Engine is not compatible with the behavior of DL/I. Be careful if you are concerned about
compatibility between HSSR and DL/I.

Chapter 7. Application programming interface for using HSSR Engine 89

The differences between HSSR Engine and DL/I are as follows:

• After a CHKP call or a CHKP command, the position of HSSR PCBs is not set to the beginning of the
database. Therefore, the database position established after a CHKP call or a CHKP command is not
compatible with HSSR Engine and DL/I. The HSSR Engine's compare option might become useless in
this environment.

If you are concerned about compatibility, issue GU database calls or GU database commands to the
HSSR PCBs after a DL/I CHKP call or an EXEC DLI command.

• During a CHKP call or a CHKP command, the key feedback area of HSSR PCBs is not written to the IMS
log.

Instead, the IMS log might contain records for internal DL/I PCBs, which are unknown to the application
program.

• During an XRST call or an XRST command, key feedback information is not restored in HSSR PCBs.

Application programs that need to record database positioning information for HSSR PCBs can record
it themselves by providing it in user areas during a CHKP call or a CHKP command. The XRST call or
the XRST command restores this logged information in user areas. For more information about providing
user calls, see IMS Application Programming.

Consideration for database sharing
In general, HSSR application programs, including FABHURG1 and FABHFSU, should be run with exclusive
control of the database as any unload utility does during reorganization. In some cases, however, you
might want to read the database while it is being updated by IMS. The update might be done either by
IMS within the same program or by another IMS subsystem that is running concurrently.

This topic provides hints for such a case.

Subtopics:

• “Database sharing support” on page 90
• “Handling data set extensions” on page 91
• “Support for processing options GON and GOT” on page 91
• “Support for database level sharing” on page 92
• “Considerations for block level sharing” on page 93
• “Avoiding problems caused by the lack of read integrity” on page 93
• “VSAM SHAREOPTIONS” on page 93

Database sharing support
HSSR Engine supports the following database-sharing functions. However, it does not provide read
integrity, if an HSSR application program reads a database that is being updated at the same time by
IMS either within the same program or through concurrent execution of another IMS subsystem.

The capability to cope with data set extensions, which are created by concurrently updating IMS
subsystems

See “Handling data set extensions” on page 91.
Support for processing options GON and GOT

See “Support for processing options GON and GOT” on page 91.
Support for database level sharing through the use of the standard database access authorization
logic of DBRC

In a database-level sharing environment, an HSSR application program can read databases either
with read integrity (with read processing intent; PROCOPT=G) or without read integrity (with read-only
processing intent; PROCOPT=GO).

See “Support for database level sharing” on page 92.

90 IMS High Performance Unload: User's Guide

Ability to an HSSR application program to run in a block-level sharing environment
In this case, HSSR Engine does not provide read integrity.

See “Considerations for block level sharing” on page 93.

Some problems might occur because the HSSR buffer handler does not synchronize the content of its
buffers with the content of the IMS buffer handler. HSSR Engine is not aware of a modification to a block
or CI unless IMS writes the modified block or CI from its buffers to DASD. It is also not aware of a
modification if an HSSR buffer contains an older image of that block or CI. For example, the following
problems that might occur with IMS in a database level sharing environment might also occur with HSSR
Engine:

• The HSSR application program might read uncommitted data or might read data that is no longer
up-to-date.

• The HSSR Engine might issue an abend or a GG status code due to what appears to be incorrect pointers
in the segment prefix.

• Additional problems can occur with VSAM KSDS, if HSSR Engine reads a KSDS that is updated by an IMS
program that might create CI splits or CA splits.

For methods of avoiding these problems, see “Avoiding problems caused by the lack of read integrity” on
page 93.

Handling data set extensions
HSSR buffer handler can access OSAM blocks or VSAM CIs stored and update IMS subsystems in new
extents of the data sets concurrently.

This support is provided in the following environments:

• For OSAM, in all environments, including database level sharing and block level sharing
• For VSAM, only when all the following conditions are met:

– The updating IMS subsystem runs within the same MVS system.
– VSAM SHAREOPTIONS (3,3) are used. (See “VSAM SHAREOPTIONS” on page 93.)

For OSAM, OSAM LDS, and ESDS, this support is provided by default. For KSDS, this support must be
explicitly activated by a RETRY KSDS control statement of the HSSROPT data set (for more details, see
“RETRY control statement” on page 174).

Support for processing options GON and GOT
For the processing options GON, HSSR Engine provides the same support as IMS. Upon encountering a
database error, or what in a database sharing environment appears to be a database error, HSSR Engine
returns a GG status code.

For the processing option GOT, HSSR Engine provides slightly different support from IMS. Upon
encountering a database error situation, or what in a database-sharing environment appears to be a
database error situation, HSSR Engine takes the following actions:

1. Retries many times to access the database, and waits for a specific number of seconds before each
attempt (only for HDAM, HIDAM, PHDAM, and PHIDAM).

The number of attempts and the waiting time can be specified on the GOTRETRY control statement.
2. Returns a GG status code if the attempts to access the database are not successful.
3. Invalidates all PCB-related buffers; database calls issued after a GG status code do not use old buffer

copies but are satisfied with new database accesses. The buffer invalidation can increase the chances
of an application program resuming its processing after a GG status code. The HSSR buffer handler
invalidates buffers only for HDAM, HIDAM, PHDAM, and PHIDAM.

Notice the following additional points concerning processing options GON and GOT:

Chapter 7. Application programming interface for using HSSR Engine 91

• The SKERROR option (see “SKERROR control statement” on page 175) can be considered a logical
extension of the support that HSSR Engine provides for the processing options GON and GOT. When the
SKERROR option has been activated, HSSR Engine does not reset the database position to the beginning
of the database, but keeps the current database position. If the application program issues a GN call or
a GN command after a GG status code, the database error is skipped (for example, the processing of an
incorrect pointer is skipped) and HSSR Engine returns the next segment it can retrieve. Instead of using
abends or retrying the database access by combining WAITs, GU calls or commands, and GN calls or
commands, an application program can use SKERROR to continue the database retrieval by issuing GN
calls or commands. The option can also be used by an application program that can afford to skip the
retrieval of one or more database segments.

• The number of returned GG status code is reported in the HSSRSTAT data set.
• To get detailed diagnosis information about the GG situation, activate the DIAGG option. (See “DIAGG

control statement” on page 167.)
• HSSR Engine does not have an interface to IRLM. Therefore, in a block level sharing environment with

processing option GOT, HSSR Engine does not issue IRLM test enqueues when attempting to re-access
the database during a GG situation. For HDAM, HIDAM, PHDAM, and PHIDAM databases, HSSR Engine
tries to balance this lack of IRLM test enqueues by making many attempts to access the database, and
by waiting before each attempt.

Support for database level sharing
IMS High Performance Unload provides the same support for database level sharing as IMS. This support
requires that DBRC be installed and active, and that the database be registered in the DBRC RECON data
sets.

Application program running in DLI or DBB region

For an HSSR application program running in DLI or DBB region, DBRC authorizes database access to
the job step under the same conditions as a normal IMS batch job step.

Authorization for the database access depends on the following:

• The database processing intent as specified through PROCOPT during PSBGEN
• The database-sharing level defined in the RECON data sets
• The current status indicators of the database, as recorded in the RECON data sets

You have the following options during PSBGEN:

• You can specify a read processing intent (PROCOPT=G) in order to have read integrity. DBRC
then prevents concurrent execution of the HSSR application program with an IMS subsystem that
updates the database.

• You may specify a read-only processing intent (PROCOPT=GO) to be able to run your application
program concurrently to other IMS subsystems that update the database. In this case, no read
integrity is provided.

You can also specify an exclusive processing intent (PROCOPT=GE) in order to have exclusive usage of
the database.

Restriction: If two or more database PCBs (DBPCBs) are defined in the PSB and the IMSDALIB DD
statement specifies the library of DFSMDA members for dynamic allocation of the database data
sets, HSSR Engine does not send the DBRC authorization request for database access. If two or
more DBPCBs are defined in the PSB, you must concatenate the library of DFSMDA members to the
STEPLIB DD statement.

Application program running in a ULU region

In a ULU region, DBRC authorizes database access to an HSSR application program under the same
conditions as to the standard IMS HD Reorganization Unload utility. When an HSSR application
program runs in the ULU region, HSSR Engine lets IMS and DBRC believe that it is the IMS HD
Reorganization Unload utility that is being run.

92 IMS High Performance Unload: User's Guide

Note: Databases that have been registered for block-level sharing are shared by a ULU region at the
database level. This is what IMS does for the IMS HD Reorganization Unload utility.

Considerations for block level sharing
HSSR Engine does not provide any special support for block level sharing, and does not provide an
interface to the IRLM. It is, however, possible to run an HSSR application program in a block level sharing
environment if no replace processing option is specified for HSSR PCBs.

HSSR Engine behaves in the same way as in a database level sharing environment with read-only
processing intent. Read integrity is not provided. When running in a block level sharing environment
with read processing intent, HSSR Engine issues a warning message and runs with read-only processing
intent.

If you need to read, with read integrity, a database that has been registered with SHARELEVL 2 or
SHARELEVL 3 (block level sharing), you can consider specifying IRLM=N on the JCL and specifying a read
processing intent during PSBGEN. In this case, sharing occurs at the database level, and DBRC prevents
concurrent execution with an updating IMS subsystem.

Avoiding problems caused by the lack of read integrity
To avoid the problems that are caused by the lack of read integrity, you might use the following methods.
Apply them with care.

Frequency of SYNC points or checkpoint calls and commands in updating programs
Updating IMS programs should rapidly write the content of modified buffers to DASD. This can be
achieved by a high frequency of calls or commands, whether SYNC points or checkpoints, in the
updating IMS application programs.

Avoiding CI splits and CA splits
With ESDS, OSAM, and OSAM LDS data sets, the exposure of reading inconsistent data is limited to the
reading of database records that are modified by the updating IMS program. With KSDS data sets, the
risk of reading inconsistent data is much higher if CI splits or CA splits occur.

Reading a CI that has been split might create a skip of all the root segments that have been shifted
out of the split CI. Reading a CA that has been split might create a skip of all the roots that have been
shifted out of the split CA. Other incorrect results might also occur.

To avoid these problems, allocate enough free space in the KSDS and re-create it frequently enough to
reduce the number of CI splits and CA splits. For example, a KSDS can be re-created by restoring with
the IMS Database Recovery utility.

Unless the occurrence of CI splits and CA splits can be kept very low while the HSSR application
program is running, do not read an HISAM KSDS with HSSR Engine.

Free space for ESDS, OSAM, and OSAM LDS data sets
By specifying free space within the OSAM blocks, within the OSAM LDS CIs, or within the ESDS CIs,
you can reduce the probability that insert and delete calls will create what may appear to HSSR buffer
handler to be an incorrect pointer situation.

VSAM SHAREOPTIONS
This topic presents information about a product-sensitive programming interface. See “Programming
interface information” on page 518 to understand the restrictions associated with this type of material.

PSPI

The considerations discussed here for the selection of appropriate VSAM SHAREOPTIONS are similar to
the corresponding IMS considerations. You can select the VSAM SHAREOPTIONS (3,3), (2,3) or (1,3).

If the application program does not issue HSSR REPL calls, VSAM SHAREOPTIONS (1,3) can be used.

Note: Specifications of incorrect VSAM SHAREOPTIONS might result in OPEN errors.

Chapter 7. Application programming interface for using HSSR Engine 93

VSAM SHAREOPTIONS

You can select either the VSAM SHAREOPTIONS (1,3), (2,3), or (3,3).

VSAM SHAREOPTIONS (1,3) allows concurrent access to the following:

• Multiple HSSR ACBs-that is, ACB, ACBs to multiple HSSR application programs issuing HSSR calls.
• Multiple-input-only IMS ACBs–that is, ACBs to multiple IMS subsystems that issue DL/I calls or

EXEC DLI commands to the database with a processing intent read or read-only.

If an HSSR PCB has a replace processing option, SHAREOPTIONS (1,3) cannot be used.

VSAM SHAREOPTIONS (2,3) allows concurrent access to multiple HSSR ACBs (to multiple HSSR
application programs issuing HSSR calls), to multiple-input-only IMS ACBs (to multiple IMS
subsystems that issue DL/I calls or EXEC DLI commands to the database with a processing intent
read or read-only), and to one single-output IMS ACB (to one IMS subsystem that issues DL/I calls or
EXEC DLI commands to the database with a processing intent update). VSAM SHAREOPTIONS (2,3)
does not allow HSSR Engine to get access to a control interval that has been stored in a new extent of
the data set by a concurrently updating IMS subsystem.

VSAM SHAREOPTIONS (3,3) allow concurrent access to multiple HSSR ACBs (to multiple HSSR
application programs issuing HSSR calls), and to multiple-input-only and output IMS ACBs (to
multiple IMS subsystems that issue DL/I calls or EXEC DLI commands with read-only, read, and
update processing intents). The VSAM SHAREOPTIONS (3,3) are one of the prerequisites that must
be met in order for HSSR buffer handler to get access to control intervals that have been stored by
concurrently updating IMS subsystems in new extents of the data set.

Technical explanations

The VSAM SHAREOPTIONS are used by the VSAM Open modules in order to control within one single
operating system the concurrent access to a VSAM data set through input-only ACBs and through
output ACBs.

• The SHAREOPTIONS (3,3) allow concurrent access through multiple-output ACBs or through
multiple-input-only ACBs.

• The SHAREOPTIONS (2,3) allow concurrent access through one-single-output ACB and through
multiple-input-only ACBs.

• The SHAREOPTIONS (1,3) allow concurrent access through multiple-input-only ACBs or through
one-single-output ACB.

The following paragraphs explain which kinds of ACBs are used in an IMS environment and in an IMS
High Performance Unload environment.

An IMS subsystem is either one online IMS system with multiple message regions and BMP regions, or
one IMS batch region. Each IMS subsystem uses one ACB for each VSAM data set in order to perform
the I/O resulting from DL/I calls or EXEC DLI commands. IMS opens the ACB either for input only (if
the database processing intent is read or read-only) or for output (if the database processing intent is
update).

In an IMS High Performance Unload job step, HSSR Engine uses its own read-only ACBs to do the I/O
resulting from HSSR calls; ordinarily these are the only ACBs opened by the job step. In any of the
following three conditions, IMS opens and uses one additional IMS:

• The HSSR application program gets access to the same database with both HSSR calls and DL/I
calls, or with both HSSR calls and EXEC DLI commands.

• The compare option has been activated by coding the CO control statement in the HSSROPT data
set, for problem determination. (The compare option internally reissues all HSSR calls to DL/I.)

The LPCK-building option has been activated by coding the BLDLPCK control statement in the
HSSROPT data set. (If the BLDLPCK option has been specified, HSSR Engine issues DL/I calls or
EXEC DLI commands internally to get LPCKs.)

• The application program issues HSSR REPL calls.

94 IMS High Performance Unload: User's Guide

The additional ACB used by IMS is opened by IMS either for input only, or for output (see the
preceding description).

PSPI

Consideration for HALDB single partition processing
By specifying the HALDB control statement on the DFSHALDB DD statement, you can select a single
HALDB partition to be processed. This function is the same as the IMS function with the same name
HALDB Single Partition Processing.

The following figure is an example of the HALDB control statement. Here, '001' is the DB PCB number and
'PHDO01C' is the partition name that is to be processed.

//DFSHALDB DD *
HALDB PCB=(001,PHDO01C)
/*

Figure 14. Example of the HALDB control statement for single partition processing

For details of the DFSHALDB DD statement and the HALDB control statement, see IMS System Definition.

Note: If the application program issues GN calls repeatedly, and reaches the end of the partition, the
status code GB is returned to the application program.

Chapter 7. Application programming interface for using HSSR Engine 95

96 IMS High Performance Unload: User's Guide

Chapter 8. Methods for processing High Availability
Large Databases

You can use the FABHURG1 unload utility, the FABHFSU unload utility, or your HSSR application program
to process High Availability Large Databases.

Topics:

• “Functions that support HALDBs” on page 97
• “Restrictions for processing HALDBs” on page 98
• “Types of processing for unloading a HALDB” on page 98
• “Unloading a partitioned database with FABHURG1” on page 101
• “Unloading a partitioned database with FABHFSU” on page 103
• “Processing HALDBs with your HSSR application program” on page 105
• “Migration unload and fallback unload” on page 107

Functions that support HALDBs
HD databases can be partitioned by use of the HALDB Partition Definition utility (DSPXPDDU) of IMS. HD
databases partitioned in this way are called High Availability Large Databases (HALDBs).

If you partition an HDAM database, it becomes a partitioned hierarchical direct-access method (PHDAM)
database. If you partition a HIDAM database, it becomes a partitioned hierarchical indexed direct-access
method (PHIDAM) database. For details about PHDAM and PHIDAM databases, refer to the IMS Database
Administration.

You can use FABHURG1 and FABHFSU to unload PHIDAM and PHDAM databases. You can also write your
own HSSR application program to access these databases, with some restrictions.

Note: In this topic and in the subsequent topics, any reference to HALDB or a partitioned database means
either a PHDAM or a PHIDAM database unless otherwise specified. The partitioned secondary index
(PSINDEX) is not intended to be included.

Unloading of a PHDAM or PHIDAM database
You can use the following unload utilities to unload all partitions of a PHDAM or a PHIDAM database:

• FABHURG1
• FABHFSU in standard mode

You can also use these utilities to unload a particular partition or a sequence of partitions from a PHDAM
or PHIDAM database.

If a HALDB is unloaded by FABHURG1 with *HD format or by FABHFSU with UL format, you can use the
IMS HD Reorganization Reload utility or a compatible utility to reload it.

If a HALDB has been unloaded by FABHURG1 with *HD format or by FABHFSU with UL format, the IPR
Reload utility and IMS High Performance Load regard it internally, and refer to it, as having PHD format.

Both FABHURG1 and FABHFSU provide a function for unloading a particular partition or a sequence
of partitions from a partitioned database. Unloading partition data sets in parallel, using the multiple
FABHURG1 or FABHFSU jobs, reduces the elapsed time required for unloading a partitioned database.

To process partitions that are defined as HALDB Online Reorganization (OLR) capable, see the
considerations described in “Considerations for HALDB Online Reorganization capable partitions” on page
26.

© Copyright IBM Corp. 2000, 2024 97

In the FABHFSU utility, only the standard mode is supported for unloading a partitioned database, a
partition of it, or a sequence of partitions of it. You cannot run FABHFSU in PSF mode for a partitioned
database.

FABHURG1 also supports migration unload and fallback unload. The control statements that are used for
migration and fallback are explained in “Migration unload and fallback unload” on page 107.

Restrictions for processing HALDBs
The following restrictions apply to the support that IMS High Performance Unload provides for HALDB.

FABHURG1 utility
• FABHURG1 does not support the migration unload of secondary indexes.
• FABHURG1 does not support the migration unload of HISAM databases.
• If PTR=H or PTR=HB is defined as the parent segment of virtual logical child, FABHURG1 does not

support the migration unload of the database.
• FABHURG1 does not support the fallback unload of partitioned secondary indexes.

FABHFSU utility
• FABHFSU cannot HALDB unload in PSF mode.
• FABHFSU does not support the migration unload of secondary indexes.
• FABHFSU does not support the migration unload of HISAM databases.
• If PTR=H or PTR=HB is defined as the parent segment of a virtual logical child, FABHFSU does not

support the migration unload of the database.
• FABHFSU does not support fallback unload.

User HSSR application program
A user HSSR application program cannot process only the selected partitions; HALDB is processed as an
entire database. However, by specifying the HALDB control statement on the DFSHALDB DD statement,
you can select a single HALDB partition to be processed.

Types of processing for unloading a HALDB
By using FABHURG1 or FABHFSU (in standard mode), you can unload an entire database, a selected
partition, or a sequence of partitions of a HALDB.

Subtopics:

• “Unloading the entire database” on page 98
• “Unloading a partition” on page 99
• “Unloading a sequence of partitions” on page 100

Unloading the entire database
You can unload a partitioned database as a whole database with one FABHURG1 job step or with one
FABHFSU job step.

If you unload a partitioned database in *HD format (FABHURG1) or in UL format (FABHFSU), you can use
the IMS HD Reorganization Reload utility or a compatible utility to reload the unloaded database data set.

The following figure shows the data flow for unloading and reloading an entire database.

98 IMS High Performance Unload: User's Guide

HALDB Unloaded data set Reloaded HALDB

Partition 1 Partition 1

Partition 2

FABHURG1 (FRMT *HD)
or FABHFSU (FRMT L)U

Partition 2

IMS HD Reorganization Reload
or a compatible utility

Partition 3 Partition 3

.

.

.

Header record

Trailer record

Segment records
in HD/UL format *

and
in partition
sequence

.

.

.

.

.

.

Figure 15. Unloading an entire HALDB

Unloading a partition
FABHURG1 or FABHFSU (in standard mode) can also be used to unload a single partition from a
partitioned database. The PARTITION control statement in the SYSIN data set is used to specify a
partition for FABHURG1, and the PARTITION control statement in the CARDIN data set is used to specify
a partition for FABHFSU. HSSR Engine allocates the buffers only for a selected partition.

When a single partition is unloaded, the unloaded data set contains a header record, all segment records
in the selected partition, and a trailer record. You can use the IMS HD Reorganization Reload utility or
a compatible utility to reload the *HD-format data set that is unloaded by the FABHURG1 utility or the
UL-format data set that is unloaded by the FABHFSU utility.

The following figure shows the data flow for unloading and reloading each partition.

Chapter 8. Methods for processing High Availability Large Databases 99

:
FABHURG1 (FRMT *HD)
or FABHFSU (FRMT L)U

Header record

Trailer record

Segment records
in partition 1

HALDB Unloaded data set Reloaded HALDB

IMS HD Reorganization Reload
or a compatible utility

:

:
FABHURG1 (FRMT *HD)
or FABHFSU (FRMT L)U

Header record

Trailer record

Segment records
in partition 2

IMS HD Reorganization Reload
or a compatible utility

:

:
FABHURG1 (FRMT *HD)
or FABHFSU (FRMT L)U

Header record

Trailer record

Segment records
in partition 3

IMS HD Reorganization Reload
or a compatible utility

:

Partition 1 Partition 1

Partition 2 Partition 2

Partition 3 Partition 3

Figure 16. Unloading a partition

Unloading a sequence of partitions
FABHURG1 or FABHFSU (in standard mode) can also unload a sequence of partitions that is specified on
a PARTITION control statement. HSSR Engine allocates buffers only for the specified partitions. When a
sequence of partitions is unloaded, the unloaded data set contains the following records in the following
sequence:

1. A header record
2. Segment records of all selected partitions in the partition sequence determined by the IMS partition

selection logic
3. A trailer record

You can use the IMS HD Reorganization Reload utility or a compatible utility to reload the *HD-format data
set that is unloaded by the FABHURG1 utility or the UL-format data set that is unloaded by the FABHFSU
utility.

The following figure shows the data flow for unloading and reloading a sequence of partitions.

100 IMS High Performance Unload: User's Guide

Partition 1

HALDB Unloaded data set

Partition 1

HALDB
(Partitions 1 and 2
are reorganized)

Partition 2

FABHURG1 (FRMT *HD)
or FABHFSU (FRMT L)U

Partition 2

IMS HD Reorganization Reload
or a compatible utility

Partition 3 Partition 3

.

.

.

Header record

Trailer record

Segment records
in HD/UL format *

and
in partition
sequence

.

.

.

.

.

.

Figure 17. Unloading a sequence of partitions

Unloading a partitioned database with FABHURG1
To unload a partitioned database by using FABHURG1, you must modify the FABHURG1 JCL that is used
for a nonpartitioned database.

Procedure
1. Prepare FABHURG1 JCL.

In FABHURG1 JCL that is used for a nonpartitioned database, make the following modifications to
process a HALDB:

• Specify that DBRC will be used.
• Specify the DD statements for RECON data sets or make sure that RECON data sets will be allocated

dynamically.
• Ensure that DD statements for database data sets are not specified.
• If you want to unload a particular partition or a sequence of partitions, code a PARTITION control

statement in the SYSIN data set (explained in the next step).
2. Code the PARTITION control statement in the SYSIN data set.

To process a partition or a sequence of partitions, you must specify the partition by coding
the PARTITION control statement. For details of the control statement, see “PARTITION control
statement” on page 44.

Note: To unload an entire database, you do not need to code a PARTITION control statement in your
FABHURG1 JCL.

3. Optional: If you want to print partition-wide statistics reports, code additional control statements.

The following control statements can be used to print partition-wide statistics reports:

• SEGSTAT control statement in the SYSIN data set
• CALLSTAT control statement in the HSSROPT data set

Chapter 8. Methods for processing High Availability Large Databases 101

• PARTINFO control statement in the HSSROPT data set

Examples
Example 1: Unloading an entire database

Use the following JCL example to unload an entire database.

// EXEC FABHULU,MBR=FABHURG1,DBD=USERDBD,DBRC=Y
//RECON1 DD DSN=IMSVS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSVS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSVS.RECON3,DISP=SHR
//HSSROPT DD *
PARTINFO DEF
/*
//SYSIN DD *
SEGSTAT PART
/*
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=IMSDB.HDUNLD,DISP=(,CATLG),UNIT=TAPE,
// VOL=SER=VOL001

In this example:

• The unloaded data set is defined by the SYSUT2 DD statement.
• The database that is unloaded is specified on the DBD parameter.
• DBRC=Y is specified so that DBRC is used.
• The DD statements for RECON data sets are specified.
• All partition data sets are dynamically allocated by HSSR Engine.
• The 'PARTINFO DEF' statement produces the HALDB Partition Definition report.
• The 'SEGSTAT PART' statement produces the partition-wide Segment Statistics report.

Example 2: Unloading a partition
Use the following JCL example to unload a partition of a partitioned database.

// EXEC FABHULU,MBR=FABHURG1,DBD=USERDBD,DBRC=Y
//SYSIN DD *
PARTITION PART10
/*
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=IMSDB.HDUNLD,DISP=(,CATLG),UNIT=TAPE,
// VOL=SER=VOL001

In this example:

• The unloaded data set is defined by the SYSUT2 DD statement.
• The database that is unloaded is specified on the DBD parameter.
• DBRC=Y is specified so that DBRC is used.
• The partition to be unloaded is specified by the PARTITION control statement in the SYSIN DD

statement. All data sets for the selected partition PART10 are dynamically allocated by HSSR
Engine.

In this example, it is assumed that the RECON data sets are dynamically allocated.

Example 3: Unloading a sequence of partitions
Use the following JCL example to unload a sequence of partitions of a partitioned database.

102 IMS High Performance Unload: User's Guide

// EXEC FABHULU,MBR=FABHURG1,DBD=USERDBD,DBRC=Y
//RECON1 DD DSN=IMSVS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSVS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSVS.RECON3,DISP=SHR
//HSSROPT DD *
PARTINFO DEF,ACC
/*
//SYSIN DD *
SEGSTAT PART
PARTITION PART10 5
/*
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=IMSDB.HDUNLD,DISP=(,CATLG),UNIT=TAPE,
// VOL=SER=VOL001

In this example:

• The unloaded data set is defined by the SYSUT2 DD statement.
• The database that is unloaded is specified on the DBD parameter.
• DBRC=Y is specified so that DBRC is used.
• The DD statements for RECON data sets are specified.
• The partitions to be unloaded are five consecutive partitions. The first is partition PART10, which

is specified on the PARTITION control statement in the SYSIN DD statement. All data sets for the
selected partitions are dynamically allocated by HSSR.

• The 'PARTINFO DEF,ACC' statement produces the HALDB Partition Definition report and the HALDB
Partitions Accessed report.

• The 'SEGSTAT PART' statement produces the partition-wide Segment Statistics report.

Unloading a partitioned database with FABHFSU
To unload a partitioned database by using FABHFSU, you must modify the FABHURG1 JCL that is used for
nonpartitioned database.

Procedure
1. Prepare FABHFSU JCL.

In standard mode FABHFSU JCL that is used for a nonpartitioned database, make the following
modifications to process a HALDB:

• Specify that DBRC will be used.
• Specify the DD statements for RECON data sets or make sure that RECON data sets will be allocated

dynamically.
• Ensure that DD statements for database data sets are not specified.
• If you want to unload a particular partition or a sequence of partitions, code a PARTITION control

statement in the SYSIN data set (explained in the next step).
2. Code the PARTITION control statement in the CARDIN data set.

To process a partition or a sequence of partitions, you must specify the partition by coding
the PARTITION control statement. For details of the control statement, see “PARTITION control
statement” on page 60.

Note: To unload an entire database, you do not need to code a PARTITION control statement in your
FABHFSU JCL.

3. Optional: If you want to print partition-wide statistics reports, code additional control statements.

The following control statements can be used to print partition-wide statistics reports:

• SEGSTAT control statement in the CARDIN data set

Chapter 8. Methods for processing High Availability Large Databases 103

• CALLSTAT control statement in the HSSROPT data set
• PARTINFO control statement in the HSSROPT data set

Examples
Example 1: Unloading an entire database

Use the following JCL example to unload an entire database.

// EXEC FABHULU,MBR=FABHFSU,DBD=SKILLINV,DBRC=Y
//RECON1 DD DSN=IMSVS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSVS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSVS.RECON3,DISP=SHR
//CARDIN DD *
DBDSKILLINV
PSB* OUTPUT UL
END
/*
//HSSROPT DD *
PARTINFO DEF
/*
//PRNTOUT DD SYSOUT=A
//OUTPUT DD DSN=IMSDB.UNLOADDS,DISP=(,KEEP),UNIT=TAPE

In this example:

• The database that is unloaded is specified on the DBD parameter.
• DBRC=Y is specified so that DBRC is used.
• The DD statements for RECON data sets are specified.
• All partition data sets are dynamically allocated by HSSR Engine.
• The DBD statement specifies the DBD name.
• The PSB statement shows that the unloaded data set is specified by the OUTPUT DD statement and

that the output records are written in the UL format.
• The 'PARTINFO DEF' statement produces the HALDB Partition Definition report.

Example 2: Unloading a partition
Use the following JCL example to unload a partition of a partitioned database.

// EXEC FABHULU,MBR=FABHFSU,DBD=SKILLINV,DBRC=Y
//CARDIN DD *
DBDSKILLINV
PSB* OUTPUT UL
PARTITION SKINVP1
SEGSTAT PART
END
/*
//PRNTOUT DD SYSOUT=A
//OUTPUT DD DSN=IMSDB.UNLOADDS,DISP=(,KEEP),UNIT=TAPE

In this example:

• The database that is unloaded is specified on the DBD parameter.
• DBRC=Y is specified so that DBRC is used.
• The DBD statement specifies the DBD name.
• The PSB statement shows that the unloaded data set is specified by the OUTPUT DD statement and

that the output records are written in the UL format.
• The partition to be unloaded is specified by the PARTITION control statement in the CARDIN DD

statement. All data sets for the selected partition SKINVP1 are dynamically allocated by HSSR.
• The 'SEGSTAT PART' statement produces the partition-wide Segment Statistics report.

In this example, it is assumed that the RECON data sets are dynamically allocated.

Example 3: Unloading a sequence of partitions
Use the following JCL example to unload a sequence of partitions from a partitioned database.

104 IMS High Performance Unload: User's Guide

// EXEC FABHULU,MBR=FABHFSU,DBD=SKILLINV,DBRC=Y
//RECON1 DD DSN=IMSVS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSVS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSVS.RECON3,DISP=SHR
//CARDIN DD *
DBDSKILLINV
PSB* OUTPUT UL
PARTITION SKINVP1 3
SEGSTAT PART
END
/*
//HSSROPT DD *
PARTINFO DEF,ACC
/*
//PRNTOUT DD SYSOUT=A
//OUTPUT DD DSN=IMSDB.UNLOADDS,DISP=(,KEEP),UNIT=TAPE

In this example:

• The database that is unloaded is specified on the DBD parameter.
• DBRC=Y is specified so that DBRC is used.
• The DD statements for RECON data sets are specified.
• The DBD statement specifies the DBD name.
• The PSB statement shows that the unloaded data set is specified by the OUTPUT DD statement and

that the output records are written in the UL format.
• The partitions to be unloaded are three consecutive partitions. The first is the partition SKINVP1,

which is specified on the PARTITION control statement in the CARDIN DD statement. All data sets
for the selected partitions are dynamically allocated by HSSR Engine.

• The 'SEGSTAT PART' statement produces the partition-wide Segment Statistics report.
• The 'PARTINFO DEF,ACC' statement in HSSROPT DD produces the HALDB Partition Definition report

and the HALDB Partitions Accessed report.

Processing HALDBs with your HSSR application program
You can use your HSSR application program to process a partitioned database.

Restriction: A user HSSR application program cannot process only the selected partitions; HALDB is
processed as an entire database. However, by specifying the HALDB control statement on the DFSHALDB
DD statement, you can select a single HALDB partition to be processed.

Subtopics:

• “JCL requirements” on page 105
• “Control statements” on page 105
• “Examples” on page 106

JCL requirements
In an HSSR JCL for processing HALDBs, the following requirements must be met:

• DBRC must be used.
• The DD statements for RECON data sets must be specified or dynamically allocated.
• No DD statements for HALDB data sets must be specified.

Control statements
The following control statements, in addition to the standard control statements, can be used when you
are processing a partitioned database:

• PARTINFO control statement in the HSSROPT data set
• CALLSTAT control statement in the HSSROPT data set

Chapter 8. Methods for processing High Availability Large Databases 105

• PARTPROC control statement in the HSSRCABP data set

Examples
Example 1: Coding JCL for your HSSR application program

You can use FABHDLI, FABHDBB, or FABHULU as the cataloged procedure to run your application
program. In the following example, FABHDLI is used.

Here, assume that the application program HSSRAPPL processes a PHDAM database and the second
DB PCB in the PSB PSBAPPL1 is used to access the PHDAM database from the application program
through HSSR calls.

Assume also that the partitions are accessed sequentially.

DBRC=Y is specified so that DBRC is used. Also, the DD statements for RECON data sets are specified.
No DD statement for database data sets for the PHDAM to be processed is specified, because all data
sets are dynamically allocated by HSSR Engine.

Because no HSSRCABP DD statement is coded, the default CAB buffering parameters are used for
the job. Because partitions are accessed sequentially, no PARTPROC control statement needs to be
specified in HSSRCABP DD.

// EXEC FABHDLI,MBR=HSSRAPPL,PSB=PSBAPPL1,DBRC=Y
//RECON1 DD DSN=IMSVS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSVS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSVS.RECON3,DISP=SHR
//HSSROPT DD *
HSSRPCB 002
/*
//OUTPUT DD DSN=TESTDS.HSSRAPPL.OUTPUT,DISP=OLD

Example 2: Coding HSSRCABP for sequential access for HALDB
Assume that the same application program and the same PSB as in Example 1 are used.

Assume also that the data set group A of the partitions PART3 and PART5 of the PHDAM database
are extremely disorganized and you want to allocate more sequential buffers than the default for
these data sets. Then, for example, you would code the CABDD and NBRSRAN control statements in
HSSRCABP DD as follows:

// EXEC FABHDLI,MBR=HSSRAPPL,PSB=PSBAPPL1,DBRC=Y
//RECON1 DD DSN=IMSVS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSVS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSVS.RECON3,DISP=SHR
//HSSROPT DD *
HSSRPCB 002
/*
//OUTPUT DD DSN=TESTDS.HSSRAPPL.OUTPUT,DISP=OLD
//HSSRCABP DD *
CABDD PART3A
NBRSRAN 10
CABDD PART5A
NBRSRAN 20
/*

If you want to change NBRSRAN for all data sets of data set group A, you can code as follows:

// EXEC FABHDLI,MBR=HSSRAPPL,PSB=PSBAPPL1,DBRC=Y
//RECON1 DD DSN=IMSVS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSVS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSVS.RECON3,DISP=SHR
//HSSROPT DD *
HSSRPCB 002
/*
//OUTPUT DD DSN=TESTDS.HSSRAPPL.OUTPUT,DISP=OLD
//HSSRCABP DD *
CABDD ’PART*A’
NBRSRAN 10
/*

106 IMS High Performance Unload: User's Guide

Remember to specify the single quotation marks on both side of the operand of the CABDD statement
so that the operand can be treated as a wildcard specification.

For details of HSSRCABP control statements, see “HSSRCABP control statements” on page 217.

Example 3: Coding HSSRCABP for random access to HALDB
Although not recommended, random access to multiple partitions of an HALDB is supported.

Assume that the same PSB as in Example 1 is used; but assume here that the application HSSRAPPL
accesses the partitions of the PHDAM database PARTDB1 in random. You need to code the PARTPROC
control statement for the database in HSSRCABP DD.

If no more than two partitions are accessed at a time, you should code the PARTPROC statement as
follows:

// EXEC FABHDLI,MBR=HSSRAPPL,PSB=PSBAPPL1,DBRC=Y
//RECON1 DD DSN=IMSVS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSVS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSVS.RECON3,DISP=SHR
//HSSROPT DD *
HSSRPCB 002
/*
//OUTPUT DD DSN=TESTDS.HSSRAPPL.OUTPUT,DISP=OLD
//HSSRCABP DD *
PARTPROC PARTDB1 R
CABDD ’PART%A’
RANSIZE 8
NBRSRAN 4
NBRDBUF 16
REFT4 12
/*

If no more than three partitions are accessed at a time, you must code the third operand of the
PARTPROC statement. See the following example.

// EXEC FABHDLI,MBR=HSSRAPPL,PSB=PSBAPPL1,DBRC=Y
//RECON1 DD DSN=IMSVS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSVS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSVS.RECON3,DISP=SHR
//HSSROPT DD *
HSSRPCB 002
/*
//OUTPUT DD DSN=TESTDS.HSSRAPPL.OUTPUT,DISP=OLD
//HSSRCABP DD *
PARTPROC PARTDB1 R 3
CABDD ’PART%A’
RANSIZE 8
NBRSRAN 4
NBRDBUF 16
REFT4 12
/*

For details of HSSRCABP control statements, see “HSSRCABP control statements” on page 217.

Migration unload and fallback unload
Unloading an HDAM or HIDAM database in order to change the DL/I access method of the database to
PHDAM or PHIDAM is called migration unload. The process of restoring HDAM or HIDAM databases that
were migrated to PHDAM or PHIDAM is known as fallback. Unloading a PHDAM or PHIDAM database for
fallback is called fallback unload.

FABHURG1 can be used for both purpose. FABHFSU can be used only for migration unload.

Migration unload
You can use the FABHURG1 or FABHFSU unload utility to migrate nonpartitioned databases to HALDBs.

The procedure for migrating nonpartitioned databases to HALDBs is described in IMS Database
Administration. The FABHURG1 and the FABHFSU unload utilities can be used to replace the IMS

Chapter 8. Methods for processing High Availability Large Databases 107

HD Reorganization Unload utility (DFSURGU0) in the migration scenario. Note, however, the following
considerations:

• FABHURG1 and FABHFSU can be used for the migration unload of HDAM or HIDAM databases.
• FABHURG1 and FABHFSU do not support the migration unload of secondary indexes. Secondary

indexes must be unloaded by the IMS HD Reorganization Unload utility.
• FABHURG1 and FABHFSU do not support the migration unload of HISAM databases. HISAM database

must be unloaded by the IMS HD Reorganization Unload utility.

If you want to unload a database by several job steps that run in parallel, the FABHFSU Parallel Scan
Facility (PSF) can be used.

Subtopics:

• “Requirements for FABHURG1” on page 108
• “Requirements for FABHFSU” on page 108
• “Restrictions” on page 108
• “Considerations” on page 108
• “JCL example for migration unload” on page 109

Requirements for FABHURG1
To unload an HDAM or HIDAM database for a migration, specify the MIGRATE control statement in SYSIN
DD. For more information about the control statement, see “MIGRATE control statement” on page 43.

FABHURG1 must be run in a ULU region when migration unload is designated.

Requirements for FABHFSU
To unload an HDAM or HIDAM database for a migration, specify the MI option for the PSB control
statement in CARDIN DD. For more information about the control statement, see “PSB control statement”
on page 135.

FABHFSU must be run in a ULU region when migration unload is designated.

Restrictions
• Migration unload of the secondary index is not supported.
• Migration unload of the HISAM database is not supported.
• If PTR=H or PTR=HB is defined as the parent segment of virtual logical child, migration unload of the

database is not supported.

Considerations
DFSVSAMP DD

If you want to get better performance, when a logical child is defined in the input database, code
an appropriate number of IMS buffer pools in DFSVSAMP DD of your JCL. For details, see Chapter 4,
“Basic job control language,” on page 29.

Database Tuning Statistics
Statistics for the segment length and the number of I/Os for virtual logical segment types are not
produced.

Hard-copy trace
For the virtual logical child, the segment prefix reported in a call trace is the segment prefix of the
paired real logical child.

108 IMS High Performance Unload: User's Guide

JCL example for migration unload
The following is a JCL example to create an unloaded data set that can be used in migrating an HDAM or
HIDAM database. The example uses the IBM-supplied FABHULU cataloged procedure.

Assume that the database is an HDAM database and consists of three data set groups.

The database data sets that are to be unloaded are defined by HDAMDD1, HDAMDD2, and HDAMDD3 DD
statements; the unloaded data set is defined by the SYSUT2 DD statement.

The MIGRATE control statement is specified in the SYSIN DD, which indicates that this is a migration
unload.

// EXEC FABHULU,MBR=FABHURG1,DBD=HDAMDBD
//HDAMDD1 DD DSN=TESTDS.HDAMDS1,DISP=SHR
//HDAMDD2 DD DSN=TESTDS.HDAMDS2,DISP=SHR
//HDAMDD3 DD DSN=TESTDS.HDAMDS3,DISP=SHR
//SYSIN DD *
MIGRATE
/*
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=MIGDS1.MIGULDS,DISP=(,CATLG),UNIT=TAPE,
// VOL=SER=MIGDS1

Migration unload: Exit routine FABHKEYX for distributing unload records
In the migration unload, you can use the IBM-provided exit routine FABHKEYX to distribute the unload
records to multiple unload files according to the root key values.

The multiple unload files enable the Reload and the optional PSSR SORT for two or more HALDB partitions
to run in parallel processes, which will reduce the elapsed time for migration.

Note: The exit routine FABHKEYX is used for unloading the HALDB partitions and changing the high key.

To use this exit, you must specify FABHKEYX as an exit routine name on the EXIT control statement in
the SYSIN data set and prepare a list of the DD names and the high key values for the unload files in the
FABHKEYX data set.

In each unload file, the correct header and trailer records are added.

Restriction: If the root key is compressed, the control statement EXIT FABHKEYX cannot be specified
with the DECN control statement.

Subtopics:

• “FABHKEYX data set” on page 109
• “JCL example for migration unload with FABHKEYX exit” on page 110

FABHKEYX data set
The FABHKEYX data set contains 80-byte fixed-length records. The FABHKEYX exit routine reads this data
set that contains a list of the DD names and the high key values to distribute the unload records.

The entries of the list must be in the following format and must be listed in ascending order of the high
key values.

 0........1.........2.........3.........4.........5.........6...
 123456789012345678901234567890123456789012345678901234567890...
 DDname KeyString

Position
Description

1-8
Code the output DD name.

This 8-character entry specifies the name of the DD statement for each unload files. The format of
each data set must be same as the SYSUT2 DD.

Chapter 8. Methods for processing High Availability Large Databases 109

10-
Code the key string.

This variable-length string specifies a high key value. The key values must be enclosed by quotation
marks and preceded by the letter C or X: C indicates the character values, and X indicates the
hexadecimal values. When the key string is long, you can specify it on multiple lines as follows:

DDNAME01 C'AA
C'AAAAAAAAAAAA'

Hexadecimal values must be even-length. If the high key is longer than the root key, the later extra will
be ignored. If the high key is shorter, the high key value is padded with X'FF's up to the defined root key
length.

JCL example for migration unload with FABHKEYX exit
The following is a JCL example to distribute the unload records for migration to HALDB to four unload files
by using the FABHKEYX exit routine.

 // EXEC FABHULU,MBR=FABHURG1,DBD=HDAMDBD
 //HDAMDD1 DD DSN=TESTDS.HDAMDS1,DISP=SHR
 //HDAMDD2 DD DSN=TESTDS.HDAMDS2,DISP=SHR
 //HDAMDD3 DD DSN=TESTDS.HDAMDS3,DISP=SHR
 //SYSIN DD *
 MIGRATE
 EXIT FABHKEYX
 //SYSPRINT DD SYSOUT=A
 //SYSUT2 DD DUMMY
 //FABHKEYX DD *
 ULFPART1 C'2999999'
 ULFPART2 C'5999999'
 ULFPART3 C'9999999'
 ULFPART4 X'FF'
 //ULFPART1 DD DSN=MIGDS1.MIGULDS.ULFPART1, ...
 //ULFPART2 DD DSN=MIGDS2.MIGULDS.ULFPART2, ...
 //ULFPART3 DD DSN=MIGDS3.MIGULDS.ULFPART3, ...
 //ULFPART4 DD DSN=MIGDS3.MIGULDS.ULFPART4, ...

Tips:

• You can define the SYSUT2 DD as DUMMY to reduce the elapsed time for the I/O operations.
• It is recommended that you specify X'FF' for the last DD name in the FABHKEYX data set not to throw

away segments.

Parallel migration unload
The FABHFSU Parallel Scan Facility (PSF) can reduce the elapsed time of migration unload of a large
database that has external logical relationships by scanning the predefined portions of the database
separately. This method is called parallel migration unload.

For more information about the FABHFSU Parallel Scan Facility, see Chapter 10, “Parallel Scan Facility of
FABHFSU,” on page 121.

Subtopics:

• “Example of parallel migration unload of HIDAM” on page 110
• “Example of parallel migration unload of HDAM” on page 112

Example of parallel migration unload of HIDAM
In the following JCL examples, an HIDAM database USRHIDAM is migrated to a PHIDAM database.
The HIDAM database has three partitions with high keys, C'2999999999', C'5999999999', and
C'9999999999'.

Figure 18 on page 111 shows a JCL to run the FABHPSFC program to create a scan control that is named
SCANCNTL. The CARDIN statements specify the control of three phases of the migration unload. MI on

110 IMS High Performance Unload: User's Guide

the PSB control statement specifies to run migration unload. Columns 19 and 20 of the CTL control
statement specify the total number of the unload phases, and the HKY control statements specify the
high keys of the partition as node points of unload phases.

The LRECL for the CNTLDD data set must be greater than (834 * the number of phases) + 432

Figure 19 on page 111 shows a JCL for phase 1 of the unload step. For phases 2 and 3, modify the phase
number 01 to 02 or 03. Each FABHFSU job produces a unload data set that is specified by the OUT1 DD
statement. Each unload data set contains a header record, and the unload data set can be used as an
input for IMS High Performance Load.

Notes:

• If a logical child is defined in the input database, and you want better performance of unload, code
an appropriate number of IMS buffer pools in DFSVSAMP DD of the JCL. For details, see “Basic JCL
requirements” on page 30.

• The FABHFSU job steps, except for the last phase, return the code of 08 when the processes end
successfully.

• The load utility of IMS High Performance Load returns the code of 04 because a trailer record is not
contained.

//*---
//* FABHPSFC - CREATE SCAN CONTROL DATA SET
//* --
//PSFCTL EXEC PGM=FABHPSFC
//STEPLIB DD DISP=SHR,DSN=HPS.SHPSLMD0
// DD DISP=SHR,DSN=IMSVS.SDFSRESL
//IMS DD DISP=SHR,DSN=USER.DBDLIB
//CNTLDD DD DSN=TEMPDS.FSCNTL,
// DISP=(NEW,CATLG,DELETE),
// UNIT=SYSDA,SPACE=(TRK,(4,1)),VOL=SER=TSTVOL,
// DCB=(BLKSIZE=4096,LRECL=4092,RECFM=VB)
//PRNTOUT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CARDIN DD *
*........1.........2.........3.........4.........5.........6.........7.........8
*2345678901234567890123456789012345678901234567890123456789012345678901234567890
DBDUSRHIDAM
PSB* OUT1 MI
CTLSCANCNTL209936503Y
HKYC'29999999'
HKYC'59999999'
HKYC'99999999'
END
/*

Figure 18. FABHPSFC JCL for parallel migration unload of HIDAM

//*---
//* FABHFSU - UNLOAD DATABASE (PHASE 1 OF 3)
//* --
//HPULFSU EXEC FABHULU,MBR=FABHFSU,DBD=USRHIDAM,DBRC=N,
// COND=EVEN,
// DBTLMD=HPS.SHPSLMD0,
// IMSDSN=IMSVS.SDFSRESL,
//G.IMS DD DISP=SHR,DSN=USER.DBDLIB
//DFSVSAMP DD DISP=SHR,DSN=USER.DFSVSAMP
//DFSSTAT DD SYSOUT=*
//PRNTOUT DD SYSOUT=*
//CNTLDD DD DISP=SHR,DSN=TEMPDS.FSCNTL,
//OUT1 DD DSN=TEMPDS.USRHIDAM.DFSURGU0.PHASE01, <---specify phase
// DISP=(NEW,CATLG),UNIT=SYSDA,
// SPACE=(CYL,(100,25)),VOL=SER=TSTVOL
//CARDIN DD *
*........1.........2.........3.........4.........5.........6.........7.........8
*2345678901234567890123456789012345678901234567890123456789012345678901234567890
PSCSCANCNTLUSRHIDAM0301 <---specify phase
END
/*

Figure 19. FABHFSU JCL for parallel migration unload of HIDAM

Chapter 8. Methods for processing High Availability Large Databases 111

Example of parallel migration unload of HDAM
In the following JCL example, an HDAM database USRHDAM is migrated to a PHDAM database. The HDAM
database has three partitions with high keys, X'2FFFFFFF', X'5FFFFFFF', and X'FFFFFFFF'.

The secondary index USRSIX01, whose search field is the root key of USRHDAM, is used to unload the
database in the ascending order of the root key.

The following figure shows JCL to run the FABHPSFC program. The secondary index name is specified in
the DBD control statement. If a secondary index is not defined, the relative block number of the CI or
block can be specified as a node point in the NPT control statement.

For the JCL of each phase in the unload step, see Figure 19 on page 111.

//*---
//* FABHPSFC - CREATE SCAN CONTROL DATA SET
//* --
//PSFCTL EXEC PGM=FABHPSFC
:
//CARDIN DD *
*........1.........2.........3.........4.........5.........6.........7.........8
*2345678901234567890123456789012345678901234567890123456789012345678901234567890
DBDUSRHDAM USRSIX01
PSB* OUT1 MI
CTLSCANCNTL209936503Y
HKYX'2FFFFFFF'
HKYX'5FFFFFFF'
HKYX'FFFFFFFF'
END
/*

Figure 20. FABHPSFC JCL for parallel migration unload of HDAM

Step 1 and step 4 that are described in “Unloading a database with FABHFSU in PSF mode” on page 122
are optional. For information about each control statement, see “FABHPSFC CARDIN input data set” on
page 129.

Fallback unload
You can use the FABHURG1 unload utility to restore HDAM or HIDAM databases that were migrated to
PHDAM or PHIDAM.

The procedure for the fallback unload of HALDBs is described in IMS Database Administration. The
FABHURG1 unload utility can be used as a replacement of the IMS HD Reorganization Unload utility
(DFSURGU0) in the fallback scenario. Note, however, the following considerations:

• FABHURG1 can be used for the fallback unload of PHDAM or PHIDAM databases.
• FABHURG1 does not support the fallback unload of partitioned secondary indexes (PSINDEXs).

PSINDEXs must be unloaded by the IMS HD Reorganization Unload utility.
• FABHFSU does not support the fallback unload.

Subtopics:

• “Requirements” on page 112
• “JCL example for fallback unload” on page 113

Requirements
Specify the FALLBACK control statement in SYSIN DD to unload a PHDAM or PHIDAM database for a
fallback. For more information about the control statement, see “FALLBACK control statement” on page
42.

When fallback unload is designated, FABHURG1 must be executed in the ULU region.

112 IMS High Performance Unload: User's Guide

JCL example for fallback unload
To create an unloaded data set that can be used for a fallback of a PHDAM or PHIDAM database, you
can use the JCL shown in the following figure. The example uses the IBM-supplied FABHULU cataloged
procedure.

Assume that the database is a PHDAM database and consists of three data set groups.

The DBRC=Y option must be specified on the EXEC statement. The unloaded data set is defined by the
SYSUT2 DD statement. You do not need to code any DD statements for database data sets, because all
data sets are dynamically allocated by HSSR Engine.

The FALLBACK control statement is specified in the SYSIN DD, which indicates that this is a fallback
unload.

// EXEC FABHULU,MBR=FABHURG1,DBD=PHDAMDBD,DBRC=Y
//RECON1 DD DSN=IMSVS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSVS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSVS.RECON3,DISP=SHR
//SYSIN DD *
FALLBACK
/*
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=FBKDS1.FBKULDS,DISP=(,CATLG),UNIT=TAPE,
// VOL=SER=FBKDS1

Chapter 8. Methods for processing High Availability Large Databases 113

114 IMS High Performance Unload: User's Guide

Chapter 9. Utility options for unloading corrupted
databases

The unload utilities of IMS High Performance Unload provide certain options for unloading corrupted
databases.

The following topics discuss the problems you might encounter with corrupted databases, and the
options available for repairing the databases.

Topics:

• “Rules for unloading corrupted databases” on page 115
• “Using the SKERROR option for FABHURG1” on page 117
• “Using the pointer bypass option for FABHFSU” on page 118

Rules for unloading corrupted databases
To unload corrupted databases, you can use the SKERROR option of FABHURG1 or the pointer bypass
option of FABHFSU.

Before unloading corrupted databases, learn the differences between the two methods to determine
which method to use.

Subtopics:

• “DIAGG option for FABHFSU and FABHURG1” on page 115
• “Sequence check option and sequence error option for FABHFSU” on page 116
• “KEYCHECK GG option for FABHURG1” on page 116
• “Before using the new database” on page 116
• “What you must do after a "crash"” on page 116
• “Databases involved in logical relationships” on page 116

DIAGG option for FABHFSU and FABHURG1
The DIAGG option is automatically invoked by FABHFSU when the pointer bypass option is specified. For
FABHURG1, DIAGG is specified on a control statement in the HSSROPT data set.

The DIAGG option provides the following diagnosis information (in addition to technical information
addressing highly skilled database specialists):

• Information about the last segment that was successfully unloaded before encountering the database
error:

– The segment name
– The concatenated PCB key feedback area

• Information about the first segment that was successfully unloaded after the database error:

– The segment name
– The concatenated PCB key feedback area
– The segment data

• The name of those segment types, for which some segment occurrences might be missing on the
unloaded data set.

The preceding information can be used to locate the error and to see which segment types might be
missing from a segment. Using this information, you can then determine which lost database segments
should be inserted after a successful reload into the database.

© Copyright IBM Corp. 2000, 2024 115

For each incorrect pointer, the DIAGG option might write more than 4000 print lines on the HSSRTRAC
data set. To avoid S722 or SB37 system abends, allocate the HSSRTRAC data set on a tape or allow the
job to produce a large number of printed lines. (One example would be through the use of a OUTLIM JCL
parameter.)

Sequence check option and sequence error option for FABHFSU
For FABHFSU, it is recommended that you specify (on the DBD control statement) the sequence check
option as Y and the sequence error option as B. With these options, HSSR Engine performs more
extensive error-checking while unloading a corrupted database.

When the default sequence error option of A is used, the unloaded database data set might contain
segments that are not in sequence. This can prevent a successful reload.

KEYCHECK GG option for FABHURG1
For FABHURG1, the SKERROR option requires that you consider activating the KEYCHECK GG option.
The KEYCHECK GG option lets HSSR Engine perform more error-checking while unloading a corrupted
database. However, do not use the KEYCHECK GG option if you are going to reload the unloaded database
and if you do not want to lose any segments in the original database.

Note: When SKERROR option is used without KEYCHECK GG option, the unloaded database might contain
segments that are not in key sequence.

Before using the new database
Before using the new database created through the unload and reload process, determine how many
segments were skipped or lost during the unloading process.

This can be achieved by:

1. Reloading the database without destroying the original corrupted database.
2. Running HD Pointer Checker utility of IBM IMS High Performance Pointer Checker for z/OS (5655-K53)

on the original corrupted database.
3. Comparing the number of occurrences of each segment type in the original corrupted database (shown

by HD Pointer Checker utility) to the segment statistics (provided in HSSRSTAT and in PRNTOUT).
PRNTOUT shows how many segments have been successfully unloaded.

By combining information about the number of skipped or lost segments with the DIAGG key feedback
information, you can decide whether the new database is acceptable. Be sure that you run the HD Pointer
Checker utility on the new database to confirm that the new database is free of IMS technical errors.

What you must do after a "crash"
After a "crash," the corrupted databases should be recovered with standard IMS recovery procedures
such as Emergency Restart, Database Backout, and Database Recovery utility. An IMS High Performance
Unload's unload utility with the SKERROR or pointer bypass option should be run only after these recovery
procedures are completed.

Neither the SKERROR nor pointer bypass option copes with DASD I/O errors. The use of either option
requires a prior recovery from DASD I/O errors through standard recovery procedures.

Databases involved in logical relationships
The following concerns apply to databases involved in logical relationships:

• Unloading and reloading of huge databases that are heavily involved in logical relationships might
require many hours for the scanning, unloading, reloading, prefix resolution, prefix update, and image
copy.

116 IMS High Performance Unload: User's Guide

For such databases, consider using the Database Repair Facility of IMS High Performance Pointer
Checker as an alternative to the unload and reload approach.

• If you suspect that logical pointers (logical parent pointers, logical child pointers, logical twin pointers,
or counter fields) are incorrect, run the Prereorganization utility, using the DBIL= control statement.
Unload and reload all related databases. (Refer to the description of the HD Reorganization Unload
utility DFSURGU0 in IMS Database Utilities.)

When you unload a corrupted database with a logical pointer error in a logical child segment with the
virtual LPCK defined, you must specify the BLDLPCK control statement in the HSSROPT data set.

• If the corrupted database is involved in a logical relationship, FABHFSU cannot be used (without
postprocessing of its output by user programs) for a successful unload/reload/prefix resolution and
prefix update process if one of the following types of segment occurrence is skipped or lost during the
unload:

– A logical parent segment that has one or more logical children
– A logical child segment that is physically paired

For such cases, investigate the use of the Database Repair Facility of IMS High Performance Pointer
Checker.

Using the SKERROR option for FABHURG1
You can use the SKERROR option of the FABHURG1 utility to unload databases even if the database
contains incorrect physical pointers or incorrect HISAM records.

If a database contains incorrect physical HD pointers or HISAM records that you cannot correct by
standard IMS recovery procedures such as database backout or database recovery, you can correct the
errors with the Database Repair Facility of IMS High Performance Pointer Checker or AMASPZAP. The
procedure requires a database specialist who understands how ZAPs can repair the database.

As an alternative, IMS High Performance Unload's HSSR Engine offers the SKERROR option. SKERROR
allows FABHURG1 to unload HIDAM, HDAM, PHIDAM, PHDAM, or HISAM databases, even if they contain
incorrect physical pointers or incorrect HISAM records. SKERROR skips the processing of incorrect
pointers or records, which omits some occurrences of segments on the unloaded database data set.
You can then use the unloaded database as input to the standard IMS HD Reorganization Reload utility
or a compatible utility to reconstruct a new database. Unless the corrupted database involves logical
relationships, your new database is now error-free from a technical IMS standpoint.

Example: Using FABHURG1 to unload a corrupted database
To unload a corrupted database, you can use the following JCL. The unloaded data set is defined by the
SYSUT2 DD statement; the database that is unloaded is defined by the HDAM DD statement. HSSROPT
options SKERROR, KEYCHECK GG, and DIAGG are specified. OUTLIM is specified on the HSSRTRAC DD
statement.

 // EXEC FABHULU,MBR=FABHURG1,DBD=USERDBD
 //HSSROPT DD *
 SKERROR 10
 KEYCHECK GG
 DIAGG
 /*
 //HDAM DD DSN=TESTDS.HDAM,DISP=SHR
 //SYSPRINT DD SYSOUT=A
 //SYSUT2 DD DSN=TESTDS.HDUNLD,DISP=(,CATLG),UNIT=TAPE,
 // VOL=SER=xxxxxx
 //HSSRTRAC DD SYSOUT=A,OUTLIM=10000000

Figure 21. FABHURG1 JCL to unload a corrupted database

Chapter 9. Utility options for unloading corrupted databases 117

Using the pointer bypass option for FABHFSU
You can use the pointer bypass option, instead of SKERROR, for FABHFSU to unload a corrupted
database.

You can select either one of two available options for pointer bypass option. Both options enable
FABHFSU to continue processing a database that contains bad pointers. Because most of the data is good
(and if it is possible to obtain an unload of the database), its reconstruction can be aided by reorganizing
the database.

The logic invoked by this option treats an incorrect pointer as X'00000000' (end of chain), and FABHFSU
proceeds with the next logical pointer path. This means that one or more segments are bypassed and are
not contained in any output data set.

If the database contains logical relationships, prefix resolution might fail on a subsequent reload because
a logical parent segment has been bypassed. This can be corrected by locating the logical child records
that refer to the logical parent and eliminating them from the unloaded data set. After reload, the
relationships can then be reestablished with maintenance programs.

Option 1
Option 1 (indicated by a 1 in column 28 of the DBD control statement) invokes the pointer bypass option
using normal retrieval techniques. The usual retrieval methods are as follows:

HIDAM and PHIDAM with twin backward on root segment
The primary index is used to find the first root segment. The root twin forward pointer is then
followed. If a pointer error is encountered in the root twin forward pointer, HSSR Engine attempts to
locate the next root via the primary index.

HDAM and PHDAM
Retrieval begins at the first RAP and follows the root twin forward until a "0" pointer or pointer error is
encountered. The retrieval then continues at the next RAP.

Option 2
Option 2 (indicated by a 2 in column 28 of the DBD control statement) is applicable only to HIDAM and
PHIDAM. It forces FABHFSU to use the index (rather than the root twin forward pointers) to unload the
database.

Note: Specifying a FABHFSU pointer bypass option automatically activates both the SKERROR option and
the DIAGG option for HSSR Engine.

Example: Using FABHFSU to unload a corrupted database
To unload a corrupted database by using FABHFSU in the standard mode, you can use the JCL shown in
the following figure. The FABHDLI procedure used specifies the PSB named OUT2PSB.

The OUT1 and OUT2 DD statements define two unloaded data sets. The database that is unloaded is
defined by the SKILHDAM DD statement.

The CARDIN DBD statement specifies the IMS database to FABHFSU. It specifies that sequence checking
is to be done, sequence errors are to be processed, and diagnostic data is to be printed. The pointer
bypass option is to be activated. Incorrect segments are not unloaded.

The CARDIN PSB statements specify the two output data sets to FABHFSU. OUT1 specifies a data set
unloaded in the IMS HD Reorganization Unload format. Asterisk (*) indicates that all segments defined in
the DBD are unloaded. OUT2 specifies the VB-format output data set. Only segment types defined in the
first DB PCB of the PSB OUT2PSB for the SKILLINV database are unloaded. A user exit routine, OUT2EXIT,
is specified.

118 IMS High Performance Unload: User's Guide

 // EXEC FABHDLI,MBR=FABHFSU,PSB=OUT2PSB
 //CARDIN DD *
 DBDSKILLINV YAY 1
 PSB* OUT1 UL
 PSBOUT2PSB OUT2 VBOUT2EXIT
 END
 /*
 //SKILHDAM DD DSN=SKIL.INV.DB,DISP=SHR
 //PRNTOUT DD SYSOUT=A
 //OUT1 DD DSN=TESTDS.UNLOAD1,DISP=(,KEEP),UNIT=TAPE
 //OUT2 DD DSN=TESTDS.UNLOAD2,DISP=(,KEEP),UNIT=TAPE

Figure 22. FABHFSU JCL to unload a corrupted database

Chapter 9. Utility options for unloading corrupted databases 119

120 IMS High Performance Unload: User's Guide

Chapter 10. Parallel Scan Facility of FABHFSU
By using the FABHFSU Parallel Scan Facility (PSF), you can significantly reduce the amount of elapsed
time that is required to scan multivolume databases.

FABHFSU provides this facility for the compatibility with JCL written for FSU II.

The following topics describe how to use the Parallel Scan Facility of FABHFSU.

Topics:

• “Overview of Parallel Scan Facility” on page 121
• “Unloading a database with FABHFSU in PSF mode” on page 122
• “FABHPSFM program” on page 123
• “FABHPSFC program” on page 128
• “FABHFSU program (PSF mode)” on page 140
• “FABHPSFS program” on page 143
• “JCL examples for FABHFSU PSF mode” on page 150

Overview of Parallel Scan Facility
The FABHFSU Parallel Scan Facility (PSF) makes possible a significant reduction in the amount of elapsed
time required to scan multivolume databases. It does so by scanning separate, predefined portions of the
database simultaneously.

A PSF run results in multiple output data sets that must be combined to represent the output of a
complete scan. PSF supports only HDAM and HIDAM databases; PHDAM and PHIDAM databases are not
supported.

Note: For the explanation of how to unload partitions of a PHDAM or PHIDAM database in parallel, see
Chapter 8, “Methods for processing High Availability Large Databases,” on page 97.

The FABHFSU utility in PSF mode consists of the following four programs:

FABHPSFM
Provides assistance to the user in determining how to divide the database into portions to be scanned
by PSF phases.

FABHPSFC
Processes the control statements that define the scan and builds a scan control data set that is used
by the remaining functions to obtain and record information about the scan.

FABHFSU
In the PSF mode, FABHFSU performs individual scan phases, which can run separately or concurrently
to unload a multivolume database. In the PSF mode, the information is obtained from the scan control
data set created by FABHPSFC.

FABHPSFS
Creates summarized statistics and data set concatenation sequences. For an unload format, prepares
the header and trailer records required. This is the last program to be run.

Because all facilities provided for a typical FABHFSU run are available for individual PSF scan phases, PSF
can benefit as follows:

• Earlier detection of severe errors that must not be bypassed. This is especially advantageous when the
error is toward the end of the database or if there are multiple errors.

• Reduced recovery time from database errors. This is possible because only the affected scan phases
need to be rerun. Therefore, other scan phases (even those in which the beginning node is located
beyond the point of error in the database) can continue to run while the errors are being analyzed or
corrected.

© Copyright IBM Corp. 2000, 2024 121

• Reduced recovery time from a permanent write error at unload time or a permanent read error at reload
time. This is possible because only affected scan phases need to be rerun. If dual outputs are being
created, this would not be relevant unless both formats encountered permanent errors or damages.

Restrictions
The restrictions that apply to FABHFSU in standard mode also apply to FABHFSU in PSF mode. For those
restrictions, see “Restrictions for IMS High Performance Unload” on page 22.

Additionally, the following restrictions apply to PSF mode:

• FABHFSU does not support the unloading of an HISAM database under PSF mode.
• PSF mode does not support IMS-managed ACBs.

Unloading a database with FABHFSU in PSF mode
To unload a database with FABHFSU in PSF mode, you must run four programs.

Procedure
1. Optional: Run the FABHPSFM program as an MVS batch job to obtain information about the database

extents.

This step is optional. The FABHPSFM program is provided as an aid in determining phase limit
definitions.

2. Run the FABHPSFC program as an MVS batch job to define the scan parameters and the phase data in
the scan control data set.

3. Run the specified number of FABHFSU jobs or job steps in any sequence or, preferably, in parallel.

Specify the number of FABHFSU jobs to run as an input for FABHFSU.
4. Run the FABHPSFS program as an MVS batch job to obtain the summarized statistics, output data set

concatenation sequences, and header and trailer data set (if applicable).

Example

The following figure illustrates the steps that are necessary to run a 3-phase PSF run.

122 IMS High Performance Unload: User's Guide

FABHPSFM

Extent
information

Database

1

FABHPSFC
2

FABHFSU
Phase 1

3A

Phase 1
statistics

UL output

FABHFSU
Phase 2

3B

Phase 2
statistics

UL output

FABHFSU
Phase 3

3C

Phase 3
statistics

UL output

FABHPSFS
4

Summary
statistics

UL trailer

UL header

Parallel processing

Scan control
data set

Figure 23. Execution of a 3-phase PSF job

The statistics generated by each phase in step 3 apply only to the portion of the data set processed by
that phase. The summarized statistics generated in step 4 apply to the entire database. Step 4 usually
does not run until all of the step 3 phases have completed, but it does provide a status report indicating
where the individual phases stand. Step 4 can be appended to each step 3 phase as a conditional job step
such that it runs only when the last phase completes.

FABHPSFM program
The FABHPSFM program provides information to assist you in determining how to divide the database into
portions to be scanned by PSF phases. This information is useful as input for FABHPSFC.

FABHPSFM supplies the following extent information for the primary data set group of an HDAM or HIDAM
database:

• Volume serial number of each extent
• Starting relative block for each extent
• Number of relative blocks for each extent
• High allocated block
• First overflow block (HDAM only)
• High used CI (VSAM only)

Chapter 10. Parallel Scan Facility of FABHFSU 123

FABHPSFM JCL requirements
The FABHPSFM program is an MVS batch program. The execution of this program is optional. A
FABHPSFM JCL job must satisfy the JCL requirements for the FABHPSFM program.

The following table summarizes the DD statements for FABHPSFM.

Table 19. FABHPSFM DD statements

DDNAME Use Format Need

IMS Input Partitioned data set (DSORG=PO) Required

CARDIN Input LRECL=80 Required

ddname3 Input - Required

ddname4 Input - Optional

PRNTOUT Output LRECL=133 Required

SYSUDUMP Output - Optional

EXEC
The EXEC statement must be in the following format:

 // EXEC PGM=FABHPSFM

IMS DD
This required DD statement defines the library that contains the DBD that describes the database to
be scanned.

CARDIN DD
This required DD statement defines the input data set that contains control statements for FABHPSFM
(see “FABHPSFM CARDIN input data set” on page 124).

ddname3 DD
This required DD statement defines the primary data set of the DBD that is specified in the CARDIN
DD statement.

ddname4 DD
If the database is an HIDAM database, this DD statement is required to define the index data set of
the DBD that is specified in the CARDIN DD statement.

PRNTOUT DD
This required statement defines the output data set to which FABHPSFM writes error messages and
segment statistics (see “FABHPSFM PRNTOUT output data set” on page 126). The data set can be
defined as:

 //PRNTOUT DD SYSOUT=A

SYSUDUMP DD
This optional DD statement defines the dump data set for this program. The data set can reside on a
printer, tape, or direct-access device, or be routed through the output stream.

Related reference
JCL examples for FABHFSU PSF mode
To unload a multivolume IMS database in PSF mode, you can use the JCL jobs shown in the following
figures.

FABHPSFM CARDIN input data set
The FABHPSFM CARDIN input data set contains the control statements for FABHPSFM.

You can specify the following control statements for the FABHPSFM CARDIN data set.

124 IMS High Performance Unload: User's Guide

Table 20. FABHPSFM control statements

Control statements Function Mode

MAP Directs the FABHPSFM program. PSF

END Specifies the end of FABHPSFM CARDIN control
statements.

PSF

Format
This data set contains 80-byte fixed-length records. The control statements can be coded in the input
stream or accessed as a member of a partitioned data set.

MAP control statement
FABHPSFM is directed by the MAP control statement for the PSF.

Only one MAP control statement can be used.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

MAPdbdname dlidbd k oxxxxxxxxyy

Position
Description

1
Code the MAP keyword to identify the MAP control statement.

4
Code the database name that describes the physical database to be scanned. This required 8-
character field is left-aligned with trailing blanks. The DBD must specify ACCESS=HDAM or HIDAM.

12
This 8-character entry dlidbd specifies the database name that describes the primary index of the
HIDAM database. This entry is required for HIDAM databases.

A secondary index which points to the HIDAM or the HDAM root segments can be specified instead of
the primary index. In this case, the values of the search field of the index are shown in the FABHFSU
PSF Extent Mapping report.

20
This 1-character entry k indicates the key type when the printed report is necessary. Keys longer than
80 bytes print in hex format regardless of the type specified. Specify one of the following keywords:
C

For character keys (default)
X

For all types other than character keys
23

The 1-character entry o selects the key option. Specify one of the following keywords:
Y

All keys within the search delta of the specified relative block are listed.
A

All keys are listed.
N

The select key option is not used.
D

All keys within the search delta of the first block in the first extent on each volume beyond the first
volume are listed. (This option scans the entire index once for each volume of the database.)

Chapter 10. Parallel Scan Facility of FABHFSU 125

E
Up to 10 keys that fall within the first 10 blocks of each extent are listed.

V
Up to 20 keys that fall within the first 10 blocks of the first extent of each volume beyond the first
volume are listed (default).

24
The 8-digit numeric entry xxxxxxxx indicates the relative block for which all keys of that block plus
any keys in the blocks within the specified search delta are listed. This value can be in the range of
00000001 - 99999999. This entry is required if position 23 is specified with Y.

32
The 2-digit numeric entry yy specifies the number of blocks on either side of the base relative block
for which keys are listed. This value can be in the range of 00 - 99. This entry is required if the position
23 is specified with Y or D. For key option Y, the base relative block is indicated by the number in
columns 24 - 31; for key option D, each base relative block is the first block of the first extent of each
volume beyond the first volume.

END control statement
The END control statement specifies the end of the CARDIN control statements.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

END

Position
Description

1
Code the END keyword to identify the END statement as the last statement of the CARDIN data set.

FABHPSFM PRNTOUT output data set
The FABHPSFM program produces the FABHFSU PSF Control Statement report and the FABHFSU PSF
Extent Mapping report for the primary data set group of HIDAM or HDAM database.

Format
The format is 133-byte fixed-length records. When the block size is coded in the JCL, the block size must
be a multiple of 133.

FABHFSU PSF Control Statements report
This report contains the CARDIN control statements that were used as input to FABHPSFM.

The following figure shows an example of this report.

IMS HIGH PERFORMANCE UNLOAD "FABHFSU PSF CONTROL STATEMENTS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.21.37 FABHPSFM - V1.R2

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

MAPMSHDP
END

Figure 24. FABHFSU PSF Control Statements report

126 IMS High Performance Unload: User's Guide

FABHFSU PSF Extent Mapping report
This report helps you in specifying the node point value in the NPT control statement as input for the
FABHPSFC program. This report is produced for each output data set that is defined in the CARDIN data
set.

The following figure shows an example of the report for an HDAM database.

IMS HIGH PERFORMANCE UNLOAD "FABHFSU PSF EXTENT MAPPING" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.21.37 FABHPSFM - V1.R2

DDNAME = MSHDP

 VOL START NO START NO TRK/ BLK/ HIGH VSAM HI HDAM FST
 SER EXTENT CYL CYLS REL CI CIS CYL TRK ALLOC CI USED CI OFLO CI BLK/CI

IMS22C 0 1089 003 0 810 15 18 1

IMSDBT 1 159 003 810 810 15 18 1

IMSDBT 2 153 003 1,620 810 15 18 1

IMSDBT 3 1661 003 2,430 810 15 18 1

IMSDBT 4 1664 003 3,240 810 15 18 1

IMSDBT 5 1677 003 4,050 810 15 18 1

IMSDBT 6 1680 003 4,860 810 15 18 5,669 4,993 5,000 1

Figure 25. FABHFSU PSF Extent Mapping report (HDAM database)

The following figure shows another example of the report. This report is for a HIDAM database.

IMS HIGH PERFORMANCE UNLOAD "FABHFSU PSF EXTENT MAPPING" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 14.48.06 FABHPSFM - V1.R2

DDNAME = ESDSDATA

 VOL START NO START NO TRK/ BLK/ HIGH VSAM HI HDAM FST
 SER EXTENT CYL CYLS REL CI CIS CYL TRK ALLOC CI USED CI OFLO CI BLK/CI

IMS31B 0 1609 002 0 540 15 18 539 4 1

IMS HIGH PERFORMANCE UNLOAD "FABHFSU PSF EXTENT MAPPING" PAGE: 2
5655-E06 DATE: 06/01/2021 TIME: 14.48.06 FABHPSFM - V1.R2

 VOL
 SER EXTENT REL CI NODE POINT KEY CANDIDATES

IMS31B 0 0 KEY1004000
IMS31B 0 0 KEY106C000
IMS31B 0 0 KEY1084000
IMS31B 0 0 KEY113C000
IMS31B 0 0 KEY1174000
IMS31B 0 0 KEY120C000
IMS31B 0 0 KEY1274000
IMS31B 0 0 KEY129C000
IMS31B 0 0 KEY1344000
IMS31B 0 0 KEY138C000
IMS31B 0 0 KEY1414000
IMS31B 0 0 KEY147C000
IMS31B 0 0 KEY1484000

Figure 26. FABHFSU PSF Extent Mapping report (HIDAM database)

The content of the report is as follows:

VOL SER
Volume serial number of each extent

EXTENT
Sequential number of extent

START CYL
Starting cylinder for each extent

NO CYLS
Number of cylinders

START REL BLOCK or START REL CI
Starting relative block number or CIs

NO BLOCKS or NO CIS
Number of blocks or CIs

Chapter 10. Parallel Scan Facility of FABHFSU 127

TRK/CYL
Number of tracks per cylinder

BLK/TRK
Number of blocks per track

HIGH ALLOC BLK or HIGH ALLOC CI
High-allocated block or CI

VSAM HI USED CI
High-used CI (VSAM only)

HDAM FST OFLO BLK or HDAM FST OFLO CI
First overflow block or CI (HDAM only)

BLK/CI
Number of blocks per CI (VSAM only)

REL BLOCK or REL CI
Relative block number or CI number (HIDAM only)

NODE POINT KEY CANDIDATES
Key candidates for the node point (HIDAM only)

For an HDAM database without a secondary index, you should pick the relative block numbers as node
point values from the preceding information. Normally the relative block numbers of the lowest extent
of each new volume (beyond the first volume and up to the volume that contains the beginning of the
overflow area) should be specified as node points.

For a HIDAM database, you can specify the key value from NODE POINT KEY CANDIDATES as a node
point value. The number of key candidates listed here depends on how you specify the options of the
positions 23, 24 - 31, and 32 - 33 in the MAP control statement.

FABHPSFC program
The Control Data Set Creation program, FABHPSFC, must be run before any scan phase in the PSF mode.
FABHPSFC processes all the FABHFSU control statements that define the scan. FABHPSFC also creates a
scan control data set to contain information about the scan and control the execution of the multiple scan
phases that follow.

The scan is defined in the following terms:

• The database to be scanned (DBD control statement)
• The PSF specifications (CTL control statement)
• The subareas to be scanned in parallel (NPT control statement)
• The output formats to be produced (PSB control statement)

FABHPSFC analyzes the input, creates the necessary information in the scan control data set, and reports
the scan specifications and the limits of the indicated phases.

FABHPSFC JCL requirements
The FABHPSFC program is an MVS batch program. A FABHPSFC JCL job must satisfy the JCL
requirements for the FABHPSFC program.

The following table summarizes the DD statements for FABHPSFC.

Table 21. FABHPSFC DD statements

DDNAME Use Format Need

IMS Input Partitioned data set (DSORG=PO) Required

CARDIN Input LRECL=80 Required

128 IMS High Performance Unload: User's Guide

Table 21. FABHPSFC DD statements (continued)

DDNAME Use Format Need

CNTLDD Output When the NPT control statement is specified:
LRECL >= (484 * the number of phases) + 432
When the HKY control statement is specified:
LRECL >= (834 * the number of phases) + 432
BLKSIZE=LRECL+4
RECFM=VB

Required

PRNTOUT Output LRECL=133 Required

SYSUDUMP Output - Optional

EXEC
The EXEC statement must be in the following format:

 // EXEC PGM=FABHPSFC

IMS DD
This required DD statement defines the library that contains the DBD that describe the database to be
scanned.

CARDIN DD
This required DD statement defines the input data set contains control statements for FABHPSFC (see
“FABHPSFC CARDIN input data set” on page 129).

CNTLDD DD
This required DD statement defines the output scan control data set, which has the following format:

 //CNTLDD DD DSN=fsuscancntl,...

DSN is the user data set name assigned when the scan control data set is created by FABHPSFC.

PRNTOUT DD
This required DD statement defines the output data set to which FABHPSFC writes error messages
and segment statistics (see “FABHPSFC PRNTOUT output data set” on page 138). The data set can be
defined as:

 //PRNTOUT DD SYSOUT=A

SYSUDUMP DD
This optional DD statement defines the dump data set for this program. The data set can reside on a
printer, tape, or direct-access device, or be routed through the output stream.

Related reference
JCL examples for FABHFSU PSF mode
To unload a multivolume IMS database in PSF mode, you can use the JCL jobs shown in the following
figures.

FABHPSFC CARDIN input data set
The FABHPSFC CARDIN input data set contains the control statements for FABHPSFC.

The following table lists the FABHPSFC control statements.

Table 22. FABHPSFC control statements

Control statements Function Mode

CTL Directs the FABHPSFC program. PSF

DBD Identifies database to be scanned. PSF

Chapter 10. Parallel Scan Facility of FABHFSU 129

Table 22. FABHPSFC control statements (continued)

Control statements Function Mode

END Specifies end of FABHPSFC CARDIN control statements. PSF

HKY Specifies the high key value of each unload data set. PSF

NPT Defines area of database to be scanned by the PSF. PSF

PSB Identifies characteristics of output data sets to be created. PSF

Format
This data set contains 80-byte fixed-length records. The control statements can be coded in the input
stream or accessed as a member of a partitioned data set.

CTL control statement
The CTL control statement directs the FABHPSFC program.

The CTL control statement is required to run FABHPSFC for the PSF. Only one CTL control statement is
used.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

CTLpsname yyyydddxxwcnnh

Position
Description

1
Code the CTL keyword to identify the CTL control statement.

4
Code a 1- to 8-character name of the scan control data set for the parallel scan operation. This
name is defined in the CNTLDD DD statement, and is used in the entire PSF mode. All scan phases
must specify this name in order to gain access to the scan control data set. This 8-character entry is
left-aligned with trailing blanks.

12
This required 7-digit numeric entry yyyyddd allows the Julian date to be overridden. yyyy is the year
and ddd is the day of the year. This entry specifies the last date that FABHFSU scan phases will
be allowed access to the scan control data set unless the date is specifically overridden in the PSC
control statement.

19
This required 2-digit numeric entry xx indicates the total number of scan phases participating in this
parallel scan operation. This value must equal the number of NPT control statements plus 1. The
maximum value is shown in the following table.

Table 23. Maximum value for the total number of scan phases

Device type Value when NPT control
statement is specified

Value when HKY control
statement is specified

Limiting factor

3380 66 38 Max BLKSIZE (32760)

3390 66 38 Max BLKSIZE (32760)

9345 66 38 Max BLKSIZE (32760)

130 IMS High Performance Unload: User's Guide

21
The 1-character entry w determines whether messages are written to the operator console when all
scan phases have been started or all scan phases have been completed. Use one of the following
keywords:
Y

Messages are written.
N

No operator messages are written (default).
22

The 1-character entry c determines whether FABHFSU will verify the data set name of the DD
statement, which is specified in the PSB control statement for the output data set. The data set
name should match the following FABHFSU standard naming convention:
FABHFSU

DSN= nnnnnnnn.scanname.wwxx. PHASEyy
FABHPSFS

DSN= nnnnnnnn.scanname.ULxx.HEADER
DSN= nnnnnnnn.scanname.ULxx.TRAILER

where:

nnnnnnnn.
Optional high-level qualifiers supplied by the user. If the length of the qualifiers is N, N+1 must be
specified in position 21.

scanname
Name assigned for the parallel scan operation in positions 4 - 11.

ww
The output format as specified in the respective PSB control statement (HS, UL, VB, VN).

vxx
Relative occurrence number of the PSB control statement (01, 02, or 03) that defines this output.

yy
Number of the phase being run.

Use one of the following keywords:

Y
The data set names used must conform to the naming standard. If not, the execution ends.

N
No checking is performed on data set names (default).

23
This 2-digit numeric entry nn specifies the position (relative to 1) where the parallel scan name begins
in the data set name of the DD statement. This value can be in the range of 01 - 31. No checking is
done before this position. This entry is required if the position 22 is specified with Y.

25
The 1-character entry h determines whether the UL header record is to be written to a separate
output data set by the FABHPSFS program. Use one of the following keywords:
Y

The UL header record is written.
N

No UL header record is written (default).

Chapter 10. Parallel Scan Facility of FABHFSU 131

DBD control statement
The DBD control statement identifies the database to be scanned. Only one DBD control statement can be
used.

The DBD control statement specified in FABHPSFC CARDIN data set applies to all phases of FABHFSU.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

DBDdbname index sednnn b

Position
Description

1
Code the DBD keyword to identify the DBD control statement.

4
Code the DBD name.

Code the name of the DBD that describes the physical database to be scanned. This required
8-character field must be left-aligned with trailing blanks. The DBD must specify ACCESS=HDAM,
HIDAM, PHDAM, PHIDAM, HISAM, or SHISAM.

12
Code the index name.

The 8-character entry is optional and valid only for running in the ULU region. This entry specifies the
name of index DBD that is either the primary index of the HIDAM database or a secondary index of the
HIDAM or HDAM database if you want the root segments to be retrieved in the index sequence. For
details, see “Considerations for using a secondary index” on page 27.

20
Code this field to activate the sequence check option.

This 1-character entry s determines whether to perform sequence check during the unload
processing. Specify one of the following keywords:

Y
Perform sequence checking.

N | blank
Do not perform sequence checking (default).

21
Code this field to activate the sequence error option.

The 1-character entry e determines whether the output routines bypass or process sequence errors.
Specify one of the following keywords:

A | blank
Accept sequence errors (default). A GX status code is returned.

B
Bypass sequence errors. The segment in error, and all of its children, are skipped. A GG status
code is returned.

22
Code this field to activate the sequence error print option.

The 1-character entry d determines whether diagnostic information is printed for sequence errors in
the HSSRTRAC data set. Specify one of the following keywords:

Y | blank
Print diagnostic data on sequence errors (default).

N
Do not print diagnostic data.

132 IMS High Performance Unload: User's Guide

23
Code this field to specify the sequence error threshold.

The 3-digit numeric entry nnn indicates the number of sequence errors to be allowed before ending
the run (the default value is 10). Any number up to 999, with leading or trailing blanks, can be used. If
you use the number 999, sequence errors do not cause the run to end.

28
Code this field to activate the pointer bypass option.

The 1-character entry b is used to activate the pointer bypass option. The pointer bypass option
allows FABHFSU to continue processing a database that contains bad pointers, instead of issuing an
abend. The pointer bypass option automatically activates the DIAGG option.

Specify one of the following keywords:

Blank
The pointer bypass option is inactive.

1
This entry invokes the pointer bypass option.

2
This entry forces FABHFSU to use the index, rather than the root twin forward pointers, to unload
an HIDAM or PHIDAM database.

See Chapter 9, “Utility options for unloading corrupted databases,” on page 115, for instructions and
considerations for using the pointer bypass option.

END control statement
The END control statement specifies the end of the CARDIN control statements.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

END

Position
Description

1
Code the END keyword to identify the END statement as the last statement of the CARDIN data set.

HKY control statement
The HKY control statement specifies the high key value of each unload data set that is to be produced in
each scan phase. This control statement is used in the parallel migration unload.

For information about parallel migration unload, see “Parallel migration unload” on page 110.

Note: The key value in the n-th NPT control statement specifies the low key of (n+1)-th unload phase.
For parallel migration unload, specify the high key value of each HALDB partition in the HKY control
statement.

The HKY control statement must immediately follow the CTL control statement. If no HKY or NPT control
statements are provided, the entire database will be scanned in a single phase.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

HKYt'keyvalue'
HKYt'keyvalue.......................................
...'

Position
Description

Chapter 10. Parallel Scan Facility of FABHFSU 133

1
Code the HKY keyword to identify the HKY control statement.

4
This required 1-character entry t identifies the value type. It indicates the format of the node point
value field. Use one of the following keywords:
C

Indicates that the high key value field contains keys in character format.
X

Indicates that the high key value field contains keys in hexadecimal display format.
5 - 80

This high key value field is a required field.

• Specify a character value up to 256 characters or a hexadecimal value up to 512 characters on one
or more lines.

• The high key value must be enclosed by single quotation marks.
• The hexadecimal string must contain an even number of characters (0-F) and be left-aligned in the
field.

• FABHFSU pads the key value with X'FF's up to the key length of the root segment.

Note: If you are using a Data Conversion exit for the database and you want to specify a node point
value by using a key value (that is, setting a node point value type of 'C' or 'X'), you must specify the
key value in the stored form, not in the application form.

NPT control statement
The NPT node point control statement defines the portion of the database to be scanned for the PSF.

For an indexed database, the node points are specified as keys. For an HDAM database with no secondary
index, the node points are defined as relative block numbers of the CIs or blocks in the root addressable
area.

The NPT control statement must immediately follow the CTL control statement. If no NPT control
statements are provided, the entire database will be scanned in a single phase. One or more NPT control
statements can optionally be used.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

NPTtnodepointvalue
NPTtllkeyvalue

Position
Description

1
Code the NPT keyword to identify the NPT control statement.

4
This required 1-character entry t identifies the node point value type. It indicates the format of the
node point value field. Use one of the following keywords:
R

Indicates that the node point value field contains the relative block number of the CI or block.
C

Indicates that the node point value field contains keys in character format.
X

Indicates that the node point value field contains keys in hexadecimal display format.

Note: C and X are valid for the HIDAM database or the HDAM database that is associated with an
index. If the secondary index is used to retrieve the root segments, specify the value in the search
field of the secondary index instead of the root key.

134 IMS High Performance Unload: User's Guide

5–80
This node point value field (76-character field) is required.

• If type R is specified, code the relative block number of the CI or block. The value is up to 8-digit
numeric with leading or trailing blanks; it must fall within the limits of the root addressable area.

• If type C is specified, code the length of the key value in positions 5 and 6 (maximum length is
74). Code the key value starting in position 7. You can specify a generic key by entering a key value
length less than the key length of the root segment. FABHFSU pads the key value with X'00's up to
the key length.

• If type X is specified, code the hexadecimal string starting in position 5. Do not specify length.
The hexadecimal string must contain an even number of characters (0-F) and be left-aligned in the
field. Field length is determined by the first blank encountered in the field. When generic keys are
entered, they are padded as described for character keys.

Note: If you are using a Data Conversion exit for the database and you want to specify a node point value
by using a key value—that is, setting a node point value type of 'C' or 'X'—you must specify the key value in
the stored form, not in the application form.

PSB control statement
The PSB control statement for the standard mode identifies the characteristics of the output data sets to
be created. From one to three PSB statements can be used for each execution of FABHFSU.

The PSB control statement applies to all phases of FABHFSU.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

PSBpsbname ddname1 p#ofuserxit mkxsc extln

Position
Description

1
Code the PSB keyword to identify the PSB control statement.

4-11
Code the PSB name.

The 8-character field contains either an asterisk (*) or the name of the PSB that is coded on the EXEC
statement of the JCL.

*
An asterisk (*) on this field indicates that all segments that are described in the DBD are to be
processed for this output data set.

When running FABHFSU in ULU region, specify this value.

PSB_name
If the name of the PSB that is coded on the EXEC statement is specified, it indicates that segment
types passed to the output routines are controlled through the segment sensitivity of the PCB
specified in positions 20 - 21. The name of the PSB must match the name that is supplied in the
PARM field of the EXEC statement. The name must be left-aligned with trailing blanks.

Coding the PSB name is valid only for FABHFSU running in the DLI region.

12-19
Code the output DD name.

This 8-character entry specifies the name of the DD statement that defines the data set to be created.
An output DD name is required unless the output format specification in positions 22 – 23 is NO.
ddname1 must be left-aligned with trailing blanks.

20-21
Code the PCB number.

Chapter 10. Parallel Scan Facility of FABHFSU 135

The 2-character entry p# specifies which database PCB within the PSB is to be used. This entry
determines the segments written into the output data set that is identified by the output DD name
field (column 12 - 19). The PCB referred to must specify the dbdname that is specified in positions 4 –
11 of the DBD control statement.

If the field is left blank, the first database PCB that refers to the DBD specified by the DBD control
statement is used.

The number p#, if specified, must be the sequence number that starts from the first database PCB in
the PSB; TP PCBs are not counted. Specify 1 for the first database PCB in the PSB.

Note: To assure compatibility with FABHFSU of DBT HSSR, it is processed as if 1 was specified when
one of values '00', ' 0 ', or '0 ' is specified.

22-23
Code the output format.

The 2-character entry of specifies the output format of the data set to be created. Specify one of the
following keywords:

HS
HSAM format

UL
IMS HD Reorganization Unload format

MI
IMS HD Reorganization Unload format for migration unload from an HDAM or HIDAM database to a
PHDAM or PHIDAM database.

Restrictions:

• This format can be specified only in a ULU region.
• If PTR=H or PTR=HB is defined as the parent segment of virtual logical child, the database is not

supported.
• Migration unload of a secondary index or HISAM database is not supported.
• When MI format is selected, two or more PSB control statements cannot be specified.

VB
Variable-length-blocked data set of the selected segments (one segment per logical record)

VN
The format is similar to VB except that the segment name is included in addition to the segment
code.

NO
No output data set is created by FABHFSU. The output function can be handled in an exit routine.

For more information about these output formats, see “Unload output format supported by FABHFSU”
on page 52.

24
Code the exit routine name.

The 8-character entry specifies the name of a user exit routine. The name must be left-aligned with
trailing blanks. The load module must be in a STEPLIB library. For more information, see “FABHFSU
user exit routine” on page 69.

Note: If a user exit routine is specified and one or more partitions are in the HALDB OLR cursor-active
status, FABHFSU ends abnormally.

32
Code this field to activate the segment modification option.

The 1-character entry m indicates whether segments are to be modified by the user exit routine.

Specify one of the following keywords:

136 IMS High Performance Unload: User's Guide

Y
Indicates that segments are to be modified by the user exit.

This option does not support a change of the database segment length. If you change the segment
length with the Y option, the result is unpredictable. For details, see “Modifying segments in user
exits” on page 71.

E
Indicates that segments are to be modified by the user exit.

This option supports a change of the database segment length. The option is valid only for HDAM,
HIDAM, PHDAM, and PHIDAM databases.

An extra 100-byte field is added at the end of the segment data that is passed to the exit routine.
This extra field can be used for segment extension. If the default length of this extra field is
shorter than you require, you can change the length of the extra field by specifying the length in
column 41 of the same PSB statement.

If this option has been selected, any request to activate the compare option used for problem
determination is deactivated.

For details, see “Modifying segments in user exits” on page 71.

N | blank
Indicates that segments are not to be modified by the user exit (default).

33
Code this field to activate the concatenated key option.

The 1-character entry k indicates whether the fully concatenated key of each segment is to be built
and passed to the exit routine.

Specify one of the following keywords:

Y
Build concatenated key.

N | blank
Do not build concatenated key (default).

34
Code this field to activate the exit routine control option.

The 1-character entry x indicates whether the user exit routine is given control before and after
segments are processed (see “FABHFSU user exit routine” on page 69).

Specify one of the following keywords:

Y
Allow exit routine control.

N | blank
Do not allow exit routine control (default).

35
Code this field to activate the DBR skip option.

The 1-character entry s, the Database Record (DBR) skip option, indicates whether return code 12 or
16 is valid for the exit routine specified in columns 24 - 31 of this statement. A return code 12, if valid,
causes FABHFSU to skip the remaining segments associated with the current root segment and begin
processing at the next root segment.

Return code 16 causes a skip to a new root key value specified by the exit routine.

Use this control statement only when a single PSB control statement is defined. The skipping invoked
by one PSB statement affects all others included in the same run.

For more information about return codes from the user exit routines, see “Contents of registers on
exit” on page 75.

Chapter 10. Parallel Scan Facility of FABHFSU 137

Specify one of the following codes:

Y
Allow DBR skip option.

N | blank
Do not allow DBR skip option (default).

36
Code this field to activate the data conversion option.

If a Data Conversion exit (DFSDBUX1 exit) is activated, the user exit routine specified by the exit
routine name option in column 24 receives the segment data that has been converted from the stored
form to the application form.

The 1-character entry c indicates whether the inverse conversions, that is, the conversion from the
application form to the stored form, is done before the segment data edited in the exit routine is
written into the output data set.

Specify one of the following keywords:

Y
Perform the conversion.

This option is valid only for UL and HS unload format, and is valid only when the option 'DATXEXIT
YES' is specified in the HSSROPT data set.

N | blank
Do not perform the conversion. This keyword is the default.

37-40
The value specified in this 4-byte field is always ignored.

41-45
Code the extension length.

The 5-digit numeric entry extln specifies how many extra bytes are to be reserved for the segment
extension in the exit routine. The length specified on this field, plus the maximum length of the
segments in the database, will be used as the length of the work area for editing segments in the exit
routine. This field is valid only when the option 'E' is specified in column 32 of the PSB statement. If
the option 'E' is specified and this field is blank, the default value, 100, is used.

You can specify a value in the range of 00000 - 32767.

Notes:

• If the resulting length of the segment editing work area is more than 32,767 bytes long, 32,767 is
used as the length of the work area.

• If option 'E' is not specified in column 32, the value specified on this field is ignored.

FABHPSFC PRNTOUT output data set
The FABHPSFC program produces the FABHFSU PSF Control Statement report and the FABHFSU PSF
Scan Control Data Set report.

Format
The format is 133-byte fixed-length records. When the block size is coded in the JCL, the block size must
be a multiple of 133.

FABHFSU PSF Control Statements report
This report contains the CARDIN control statements that were input to FABHPSFC.

The following figure shows an example of this report.

138 IMS High Performance Unload: User's Guide

IMS HIGH PERFORMANCE UNLOAD "FABHFSU PSF CONTROL STATEMENTS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.52.06 FABHPSFC - V1.R2

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

DBDMSHDP NB 999 2
CTLSCANCNTL8936505NN
NPTR810
NPTR1620
NPTR3240
NPTR4860
PSB* OUT1 UL NNNN
END

Figure 27. FABHFSU PSF Control Statements report

FABHFSU PSF Scan Control Data Set report
This report contains information about the parameters specified on the CARDIN control statements that
were input to the scan control data set. This report is produced for each output data set defined by the
PSB control statement in the CARDIN data set.

The following figure shows an example of this report.

IMS HIGH PERFORMANCE UNLOAD "FABHFSU PSF SCAN CONTROL DATA SET REPORT" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.52.06 FABHPSFC - V1.R2

 *** SCAN CONTROL SPECIFICATIONS *** *** FORMAT CONTROL SPECIFICATIONS ***

 PARALLEL SCAN NAME SCANCNTL FORMAT (CONTROL PSB) NUMBER 01

 BASE DBD NAME MSHDP CONTROL PSB NAME *

 INDEX DBD NAME CONTROL PCB NUMBER

 SEQUENCE CHECK OPTION NO OUTPUT DDNAME OUT1

 SEQUENCE ERROR OPTION N.A OUTPUT FORMAT UL

 SEQUENCE ERROR PRINT OPTION N.A EXIT ROUTINE NAME N.A

 SEQUENCE ERROR THRESHOLD N.A SEGMENT MODIFICATION OPTION N.A

 SEQUENCE ERROR ABEND OPTION N.A CONCATENATED KEY OPTION N.A

 EXIT OPEN/CLOSE CONTROL N.A

 LIMIT CONTROL YES DBR SKIP OPTION N.A

 POINTER BYPASS OPTION NO EXIT LE OPTION N.A

 NO. PARALLEL SCANS 05

 DSN CHECK OPTION NO

 PSC WTO OPTION NO

 SEP HEADER OPTION NO

IMS HIGH PERFORMANCE UNLOAD "FABHFSU PSF SCAN CONTROL DATA SET REPORT" PAGE: 2
5655-E06 DATE: 06/01/2021 TIME: 12.52.06 FABHPSFC - V1.R2

**** PHASE CONTROL SPECIFICATIONS ****

PHASE 01 STARTING BLOCK BEGINNING OF FILE

 ENDING BLOCK 809

PHASE 02 STARTING BLOCK 810

 ENDING BLOCK 1,619

PHASE 03 STARTING BLOCK 1,620

 ENDING BLOCK 3,239

PHASE 04 STARTING BLOCK 3,240

 ENDING BLOCK 4,859

PHASE 05 STARTING BLOCK 4,860

 ENDING BLOCK END OF FILE

Figure 28. FABHFSU PSF Scan Control Data Set report

SCAN CONTROL SPECIFICATIONS
Shows specifications or defaults from CTL and DBD control statements.

Chapter 10. Parallel Scan Facility of FABHFSU 139

FORMAT CONTROL SPECIFICATIONS
Shows specifications or defaults from PSB control statement.

PHASE CONTROL SPECIFICATIONS
Shows starting and ending block values of each scan phase based on specifications from NPT control
statement.

FABHFSU program (PSF mode)
In the PSF mode, FABHFSU performs individual scan phases, which can run separately or concurrently to
unload a multivolume database. In the PSF mode, the information is obtained from the scan control data
set that is created by FABHPSFC.

FABHFSU JCL requirements (PSF mode)
FABHFSU in PSF mode runs as an HSSR application program and, therefore, must meet the requirements
for the basic JCL (FABHX034 JCL). In addition, FABHFSU JCL for PSF mode requires other DD statements.

Prerequisite: See “Basic JCL requirements” on page 30 for the basic (FABHX034) JCL requirements.

The following table summarizes additional JCL requirements for FABHFSU. In PSF mode, CNTLDD DD
statement is also required.

Table 24. FABHFSU DD statements for PSF mode

DDNAME Use Format Need

CARDIN Input LRECL=80 Optional

PRNTOUT Output LRECL=133 Required

ddname1 Output RECFM=VB Required

CNTLDD Input and Output LRECL=80 Required for PSF

The functions of CARDIN DD, PRNTOUT DD, and ddname1 DD are the same in the FABHFSU standard
mode and in the PSF mode. See “FABHFSU JCL requirements” on page 54 for details.

CNTLDD DD
This DD statement defines the input and output scan control data set, which has the following format:

 //CNTLDD DD DSN=fsuscancntl,DISP=SHR

DSN is the user data set name assigned when scan control data set is created by FABHPSFC.

Related reference
JCL examples for FABHFSU PSF mode
To unload a multivolume IMS database in PSF mode, you can use the JCL jobs shown in the following
figures.

FABHFSU CARDIN input data set (PSF mode)
The FABHFSU CARDIN input data set contains the control statements for FABHFSU.

When running in the PSF mode, the CARDIN data set contains the PSC and the END control statements.
The DEC and GOT control statements can optionally be used in the PSF mode, but the DBD, PSB, BLM,
ELM, PARTITION, and SEGSTAT control statements are not allowed as input to PSF.

The following table lists the FABHFSU control statements used in the PSF mode.

Table 25. FABHFSU control statements for PSF mode

Control statements Function

DEC Decompresses any compressed segments.

140 IMS High Performance Unload: User's Guide

Table 25. FABHFSU control statements for PSF mode (continued)

Control statements Function

END Specifies the end of CARDIN control statements.

GOT Provides support for PROCOPT GOT.

PSC Identifies the scan control data set that directs the phases of the scan.

DEC control statement
The DEC control statement, which activates the decompress option, specifies whether FABHFSU is to
decompress database segments.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

DECd

Position
Description

1
Code the DEC keyword to activate the decompress option.

4
The 1-character entry d specifies whether compressed segments are decompressed by FABHFSU.
This entry is required.

Use one of the following keywords:

Y
Compressed segments are decompressed. Y is the default.

N
Compressed segments are not decompressed.

Code N only when you want to have compressed segments in the output data sets.

If an unloaded data set has been created by specifying this option for a database that contains a
compressed segment, that data set is not compatible with the unloaded data set that is created by
the IMS HD Reorganization Unload utility. You cannot reload such an unloaded data set by using
the IMS HD Reorganization Reload utility (DFSURGL0), but you can reload it by using IMS High
Performance Load (Load utility or PSSR utility) or the IPR Reload utility.

Notes:

• If there is a segment type for which a Segment Edit/Compression exit routine is specified and the use of
a Data Conversion exit is designated, the DECN option is ignored and the process continues with DECY.

• If the DECN option is specified and one or more partitions of PHDAM or PHIDAM are in the HALDB OLR
cursor-active status, FABHFSU ends abnormally.

• Do not code DECN if you want to change the size of the segments.

Tip: The default of this control statement can be changed by replacing the default option table
(FABHOPT). Specify the FSUDEC=NO parameter on the FABHTOPT macro statement. For details, see
Chapter 19, “Site default options,” on page 261.

END control statement
The END control statement specifies the end of the CARDIN control statements.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

END

Chapter 10. Parallel Scan Facility of FABHFSU 141

Position
Description

1
Code the END keyword to identify the END statement as the last statement of the CARDIN data set.

GOT control statement
The optional GOT control statement is provided to request that the same function provided by HSSR
Engine for PCBs with PROCOPT=GOT be activated for the PCB even if PROCOPT=GOT is not specified for
the PCB used in the FABHFSU job.

If the GOT control statement is specified, FABHFSU ignores the PROCOPT of the PCB statement in
PSBGEN and forces PROCOPT=GOT to be used.

The GOT control statement is effective only when DBRC is inactive for the FABHFSU job.

Note: For more information about the PROCOPT=GOT support, see “Support for processing options GON
and GOT” on page 91.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

GOT

Position
Description

1
Code the GOT keyword to activate the support for PROCOPT=GOT.

PSC control statement
The PSC control statement activates the PSF mode.

PSF mode differs from standard mode in that the data required by FABHFSU is obtained from the scan
control data set instead of the CARDIN data set. Make sure that you have a CNTLDD DD statement and
refer to the PSF operating instructions.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

PSCpsname dbdname xxnnbryyyyddd

Position
Description

1
Code the PSC keyword to activate the PSF mode to unload large databases using multiple scans.

4
Code the name of the scan control data set as specified in the CTL control statement as input
for FABHPSFC, which creates the scan control data set. This name is defined in the CNTLDD DD
statement, and is used in the entire PSF mode. This 8-character entry is left-aligned with trailing
blanks.

12
Code the database name as specified in the DBD control statement as input for FABHPSFC, which
creates the scan control data set. This required 8-character entry is left-aligned with trailing blanks.

20
The required 2-digit entry xx specifies the expected number of scan phases in the PSF job. This value
is the same as the value specified in the CTL control statement as input for FABHPSFC, which creates
the scan control data set.

142 IMS High Performance Unload: User's Guide

22
The required 2-digit entry nn specifies the phase number for this particular scan phase. This value can
range from 01 to the expected number of scan phases specified in positions 20–21 of this statement.

24
The 1-character entry b allows overriding of the pointer bypass option specified in the DBD control
statement as input for FABHPSFC, which creates the scan control data set. This can be specified for a
particular scan phase or all scan phases.

Use one of the following keywords:

Blank
This entry accepts the pointer bypass option specified in the scan control data set.

1
The entry invokes the pointer bypass option.

2
The entry forces FABHFSU to use the index, rather than the root twin forward pointers, to unload
an HIDAM database.

25
The 1-character entry r allows a particular scan phase to be rerun regardless of prior completion
status. Use one of the following keywords:
Y

Rerun the scan phase.
N|blank

Do not rerun the scan phase (default).
26

The 7-digit entry yyyyddd allows the Julian date to be overridden. yyyy is the year and ddd is the
day of the year. This value overrides the value specified in the CTL control statement as input for
FABHPSFC, which creates the scan control data set.

FABHFSU PRNTOUT output data set (PSF mode)
Output from the FABHFSU utility includes the FABHFSU Control Statement report, the FABHFSU Control
Specification report, and the FABHFSU Segment Statistics report. These reports are generated in the
PRNTOUT data set.

The reports that are generated in the FABHFSU PSF mode are the same as the reports that are generated
in the FABHFSU standard mode. See “FABHFSU output: PRNTOUT output data set” on page 66 for more
information about these reports.

FABHPSFS program
The FABHPSFS program generates summarized statistics, output data set concatenation sequences, and
header and trailer data set (if applicable). FABHPSFS is the last program to be run in PSF mode.

FABHPSFS JCL requirements
The FABHPSFS program is an MVS batch program. A FABHPSFS JCL job must satisfy the JCL
requirements for the FABHPSFS program.

The following table summarizes the DD statements for FABHPSFS.

Table 26. FABHPSFS DD statements

DDNAME Use Format Need

IMS Input Partitioned data set (DSORG=PO) Required

CARDIN Input LRECL=80 Required

Chapter 10. Parallel Scan Facility of FABHFSU 143

Table 26. FABHPSFS DD statements (continued)

DDNAME Use Format Need

CNTLDD I/O Created by FABHPSFC Required

ddname5 Output - Required

ddname6 Output - Optional

PRNTOUT Output LRECL=133 Required

SYSUDUMP Output - Optional

EXEC
The EXEC statement must be in the following format:

 // EXEC PGM=FABHPSFS

IMS DD
This required DD statement defines the library that contains the DBD that describe the database to be
scanned.

CARDIN DD
This required DD statement defines the input data set that contains control statements for FABHPSFS
(see “FABHPSFS CARDIN input data set” on page 145).

CNTLDD DD
This required DD statement defines the input and output scan control data set, which has the
following format:

 //CNTLDD DD DSN=fsuscancntl,...

DSN is the user data set name assigned when the scan control data set is created by FABHPSFS.

ddname5 DD
This DD statement defines the data set that contains the trailer record of the unloaded database. One
DD statement is required for each PSB control statement in the CARDIN DD statement defined by
FABHPSFS. (The name of ddname5 must be the same as the one specified in the ddname1 field of the
PSB control statement.)

ddname6 DD
This DD statement defines the data set that contains the header record of the unloaded database.
When the separate header record option is specified on the CTL control statement of CARDIN DD
statement defined by FABHPSFS, this DD statement is required. One DD statement is required for
each PSB control statement in the CARDIN DD statement defined by FABHPSFS. (The name of
ddname6 must be the same as the one of ddname5, except the first two characters must be 'XH'.)

PRNTOUT DD
This required DD statement defines the output data set to which FABHPSFS writes error messages
and segment statistics (see “FABHPSFS PRNTOUT output data set” on page 147). The data set can be
defined as:

 //PRNTOUT DD SYSOUT=A

SYSUDUMP DD
This optional DD statement defines the dump data set for this program. The data set can reside on a
printer, tape, or direct-access device, or be routed through the output stream.

Related reference
JCL examples for FABHFSU PSF mode

144 IMS High Performance Unload: User's Guide

To unload a multivolume IMS database in PSF mode, you can use the JCL jobs shown in the following
figures.

FABHPSFS CARDIN input data set
The control statements for the FABHPSFS program are specified in the CARDIN data set.

The FABHPSFS program provides the following two basic functions:

• Report the status of an in-progress parallel scan
• Wrap up a "completed" parallel scan.

These two purposes are performed by the specification of blank/STATUS/ RERUN/FORCE option in the
position 20 of the SUM control statement.

The STATUS option, which can be run anytime after the FABHPSFC program has run, reports the current
status of the scan from the scan control data set.

The "wrap-up" function has three options, normal (the default), RERUN, and FORCE.

Normal wrap-up must be run after all phases have completed (if they have not, it defaults to a STATUS
run). It can be run only once and ends abnormally if run multiple times. It produces the summarized
statistics for the entire scan. It also produces for each output format a concatenation sequence of
the output data sets created by each phase. If any of the output formats is called for an Unload (UL)
output, FABHPSFS creates one additional output data set that contains the "Trailer Label" required by
HD Reorganization Reload and optionally another data set containing a separate "Header Label." All these
data sets must be concatenated in the proper sequence by JCL for the input of any following job (that is,
IMS HD Reorganization Reload).

The RERUN option can be used to re-create the output of the normal wrap-up function after a normal
wrap-up has been run.

The FORCE option can be used to force normal wrap-up when one or more phases are not intended to be
run. The following table lists the FABHPSFS control statements.

Table 27. FABHPSFS control statements

Control statements Function Mode

SUM Directs the FABHPSFS program. PSF

END Specifies end of FABHPSFS CARDIN control statements. PSF

Format
This data set contains 80-byte fixed-length records. The control statements can be coded in the input
stream or accessed as a member of a partitioned data set.

SUM control statement
FABHPSFS is directed by the SUM control statement for the PSF.

Only one SUM control statement can be used.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

SUMpsname dbdname opt1 123

Position
Description

1
Code the SUM keyword to identify the SUM control statement.

Chapter 10. Parallel Scan Facility of FABHFSU 145

4
Code a 1- to 8-character name for the parallel scan operation as specified in the CTL control
statement as input for FABHPSFC.

12
This required 8-character entry dbdname indicates the database name as specified in the DBD control
statement as input for FABHPSFC.

20
This 6-character entry opt1 determines the following optional keywords:
blank

Normal wrap-up function runs and the full summary report is provided (default). This option must
be run after all phases have been completed.

STATUS
Only the current status of the scan is reported. This option can be run at anytime after the
FABHPSFC program has run.

RERUN
The full summary report is re-created. The unloaded trailer data set can also be re-created as
specified in position 26, 27, or 28.

FORCE
This option allows only some of the PSF phases are to be run.

Note: When this option is selected, and when the first phase is not to be run, the "Separate
Header" option is required to be used for reload. (Without specifying the "Separate Header"
option, the header is not created when the first phase is not run.)

26
The 1-character entry 1 is applicable only if the RERUN option is specified in position 20. This option
allows for the re-creation of the header or trailer data set defined by the first PSB control statement.
Use one of the following optional keywords:
Y

Both header and trailer are re-created.
N

Neither header nor trailer is re-created (default).
H

Only header is re-created.
T

Only trailer is re-created.
27

This is the same option as the option of position 26, except that it applies to the output data set
defined by the second PSB control statement.

28
This is the same option as the option of position 26, except that it applies to the output data set
defined by the third PSB control statement.

END control statement
The END control statement specifies the end of the CARDIN control statements.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

END

Position
Description

146 IMS High Performance Unload: User's Guide

1
Code the END keyword to identify the END statement as the last statement of the CARDIN data set.

FABHPSFS PRNTOUT output data set
FABHPSFS generates the FABHFSU PSF Control Statements report and the FABHFSU PSF Summary
report in the PRNTOUT data set.

Format
The format is 133-byte fixed-length records. When the block size is coded in the JCL, the block size must
be a multiple of 133.

FABHFSU PSF Control Statements report
This report contains the CARDIN control statements that were used as input to FABHPSFS.

The following figure shows an example of this report.

IMS HIGH PERFORMANCE UNLOAD "FABHFSU PSF CONTROL STATEMENTS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 13.09.36 FABHPSFS - V1.R2

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

SUMSCANCNTLMSHDP
END

Figure 29. FABHFSU PSF Control Statement report

FABHFSU PSF Summary report
This report provides the summarized statistics for the entire scan. This report is produced for each output
data set that is defined by the PSB control statement in the CARDIN data set.

The following figures show an example of the report.

Chapter 10. Parallel Scan Facility of FABHFSU 147

IMS HIGH PERFORMANCE UNLOAD "FABHFSU PSF SUMMARY REPORT" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 13.09.36 FABHPSFS - V1.R2

 *** SCAN CONTROL SPECIFICATIONS *** *** FORMAT CONTROL SPECIFICATIONS ***

 PARALLEL SCAN NAME SCANCNTL FORMAT (CONTROL PSB) NUMBER 01

 BASE DBD NAME MSHDP CONTROL PSB NAME *

 INDEX DBD NAME CONTROL PCB NUMBER

 SEQUENCE CHECK OPTION NO OUTPUT DDNAME OUT1

 SEQUENCE ERROR OPTION N.A OUTPUT FORMAT UL

 SEQUENCE ERROR PRINT OPTION N.A EXIT ROUTINE NAME N.A

 SEQUENCE ERROR THRESHOLD N.A SEGMENT MODIFICATION OPTION N.A

 SEQUENCE ERROR ABEND OPTION N.A CONCATENATED KEY OPTION N.A

 EXIT OPEN/CLOSE CONTROL N.A

 LIMIT CONTROL YES DBR SKIP OPTION N.A

 POINTER BYPASS OPTION NO EXIT LE OPTION N.A

 NO. PARALLEL SCANS 05

 DSN CHECK OPTION NO

 PSC WTO OPTION NO

 SEP HEADER OPTION NO

IMS HIGH PERFORMANCE UNLOAD "FABHFSU PSF SUMMARY REPORT" PAGE: 2
5655-E06 DATE: 06/01/2021 TIME: 13.09.36 FABHPSFS - V1.R2

**** FORMAT 01 OUTPUT STATISTICS ****

 PSB SEGMENT SEGMENT TOTAL TOTAL SEQUENCE MAXIMUM MAXIMUM AVERAGE AVERAGE
 NAME NAME LEVEL RETRIEVED OUTPUT ERRORS TWINS CHILDREN TWINS CHILDLEN

* HSHDPRT 1 2,000 2,000 0 1 21 1.00 21.00

 HSHDPDR 2 2,000 2,000 0 1 0 1.00 .00

 HSHDPSR 2 4,000 4,000 0 2 0 2.00 .00

 HSHDPMC 2 6,000 6,000 0 3 0 3.00 .00

 HSHDPIR 2 2,000 2,000 0 1 0 1.00 .00

 HSHDPMG 2 4,000 4,000 0 2 0 2.00 .00

 HSHDPSF 2 6,000 6,000 0 3 0 3.00 .00

 HSHDPCB 2 2,000 2,000 0 1 0 1.00 .00

 HSHDPSD 2 4,000 4,000 0 2 0 2.00 .00

 HSHDPAX 2 6,000 6,000 0 3 0 3.00 .00

 HSHDPSA 2 2,000 2,000 0 1 0 1.00 .00

 HSHDPCR 2 4,000 4,000 0 2 0 2.00 .00
 TOTAL RETRIEVED 44,000

 TOTAL OUTPUT 44,000

 TOTAL SEQUENCE ERRORS 0

Figure 30. FABHFSU PSF Summary report (Part 1 of 2)

148 IMS High Performance Unload: User's Guide

IMS HIGH PERFORMANCE UNLOAD "FABHFSU PSF SUMMARY REPORT" PAGE: 3
5655-E06 DATE: 06/01/2021 TIME: 13.09.36 FABHPSFS - V1.R2

**** FORMAT 01 DSN CONCATENATION SEQUENCE ****

 1. IMS31B.SCANCNTL.UL01.PHASE01

 2. IMS31B.SCANCNTL.UL01.PHASE02

 3. IMS31B.SCANCNTL.UL01.PHASE03

 4. IMS31B.SCANCNTL.UL01.PHASE04

 5. IMS31B.SCANCNTL.UL01.PHASE05

 6. IMS31B.SCANCNTL.UL01.TRAILER

IMS HIGH PERFORMANCE UNLOAD "FABHFSU PSF SUMMARY REPORT" PAGE: 4
5655-E06 DATE: 06/01/2021 TIME: 13.09.36 FABHPSFS - V1.R2

**** FORMAT 01 OF 01 PHASE STATUS ****

OPER H E A D E R L A S T T R A I L E R L A S T TOTAL PHASE P H A S E L A S T PHASE SEQ PNTRS SYNAD
TYPE STATUS DATE TIME STATUS DATE TIME PHASES NUMBER DATE TIME STATUS RERUNS ERRORS BYPSD ERROR

 UL COMPL 892 13:09:37 5 1 00252 13:02:53 COMPLETE 0 0 NO

 2 00252 12:56:59 COMPLETE 0 0 NO

 3 00252 12:58:59 COMPLETE 0 0 NO

 4 00252 12:58:58 COMPLETE 0 0 NO

 5 00252 12:56:31 COMPLETE 0 0 NO

Figure 31. FABHFSU PSF Summary report (Part 2 of 2)

Page 1 of this report contains the summary information about the parameters that were specified on the
CARDIN control statements.

SCAN CONTROL SPECIFICATIONS
Shows specifications or defaults from CTL and DBD control statements

FORMAT CONTROL SPECIFICATIONS
Shows specifications or defaults from PSB control statement

Page 2 of this report provides statistics for each sensitive segment in the database.

PSB NAME
Name of PSB

SEGMENT NAME
Name of segment

SEGMENT LEVEL
Level of segment

TOTAL RETRIEVED
This count shows the number of each segment type retrieved. This count does not include segments
bypassed due to sequence errors.

TOTAL OUTPUT
This shows the number of each segment type processed by FABHFSU. If the output format is specified
as NO, the value is zero. Differences between TOTAL RETRIEVED and TOTAL OUTPUT represent
segments bypassed by the user exit routine.

SEQUENCE ERRORS
This value represents the number of sequence errors detected for this segment type. If the sequence
check option is N, this field is zero.

MAXIMUM TWINS
This is the maximum number of this segment type that occurs under any one root segment.

MAXIMUM CHILDREN
This is the maximum number of dependent children that occurs for this segment type.

Chapter 10. Parallel Scan Facility of FABHFSU 149

AVERAGE TWINS
This is the TOTAL RETRIEVED of this segment type divided by TOTAL RETRIEVED of this segment's
parent. Average occurrences of this segment per parent occurrence.

AVERAGE CHILDLEN
This value is the sum of all segment occurrences dependent on this segment type divided by the
TOTAL RETRIEVED of this segment type. (This value might be incorrect if sequence errors are
bypassed or if the PCB is not sensitive to all dependents.)

TOTAL RETRIEVED
This is the total number of the segments retrieved.

TOTAL OUTPUT
This is the total number of the segments processed by FABHFSU.

TOTAL SEQUENCE ERRORS
This is the total number of sequenced errors.

Page 3 of this report contains information on the DFSUINPT DD statements when you reload the unloaded
database data sets. It shows the sequence of the concatenation of the header data set, unloaded data
sets, and trailer data set.

Page 4 of this sample report contains the following information:

ORDER TYPE
Operation type. This field shows the output format type.

HEADER LAST
The following three fields all pertain to the latest header label: Status, Date, and Time.

TRAILER LAST
The following three fields all pertain to the latest trailer label: Status, Date, and Time.

TOTAL PHASES
The total number of scan phases in the PSF job.

PHASE NUMBER
The phase number of a particular scan phase.

PHASE LAST
The following three fields all pertain to the latest scan phase: Date, Time, and Status.

PHASE RERUNS
The total number of the FABHPSFS jobs rerun by the rerun option of the SUM control statement.

SEQ ERRORS
The number of sequence errors.

PNTRS BYPSD
This shows whether the pointer bypass option was specified or not.

SYNAD ERROR
This shows whether a synad error was detected or not.

JCL examples for FABHFSU PSF mode
To unload a multivolume IMS database in PSF mode, you can use the JCL jobs shown in the following
figures.

In this example, three individual parallel scan phases are utilized to unload an HDAM database. In each
phase, FABHFSU scans and unloads only a predefined portion of the database controlled by a scan control
data set.

Step 1 gets a primary data set extent information of the database. Based on the information, step 2
creates a scan control data set to define scan parameters and the number of parallel scan phases. Step 4
generates a set of summarized statistics and concatenation sequence of the output data sets unloaded by
each parallel scan phase. Step 4 creates two data sets that contain "Header record" and "Trailer record"
required by the IMS HD Reorganization Reload utility.

150 IMS High Performance Unload: User's Guide

Subtopics:

• “Step 1: Example of FABHPSFM” on page 151
• “Step 2: Example of FABHPSFC” on page 151
• “Steps 3A, 3B, 3C: Example of FABHFSU” on page 152
• “Step 4: Example of FABHPSFS” on page 152

Step 1: Example of FABHPSFM
The TESTDB DD statement identifies the primary data set of the DBD specified by the MAP control
statement in the CARDIN DD statement. The extent information of the primary data set is reported to
SYSOUT class A defined by the PRNTOUT DD statement. This information helps to determine the phase
limit definition in step 2.

//*---
//* PSF STEP 1 - GET DATABASE EXTENTS INFORMATION
//*---
//FSUMAP EXEC PGM=FABHPSFM
//IMS DD DSN=IMSVS.DBDLIB,DISP=SHR
//TESTDB DD DSN=TESTDS.HDAM.VSAM,DISP=OLD
//PRNTOUT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//CARDIN DD *
MAPTESTDB
END
/*

Figure 32. FABHPSFM JCL for PSF mode

Step 2: Example of FABHPSFC
The CNTLDD DD statement identifies the scan control data set created by this job step.

The CARDIN DBD control statement specifies the DBD name of the database.

The CARDIN CTL control statement defines a parallel scan name (SCANCNTL) for use in getting access
to the scan control data set; defines the Julian date as the last day of 2000; and sets the number of
parallel scan phases to 03. Y in column 22 specifies that the data set names match the naming standard.
The beginning position of the parallel scan name in the data set is 08 in columns 23–24. Y in column 25
specifies that the header record is written to the separate output data set in step 4.

Two CARDIN NPT control statements define the scan limit of each parallel scan phases. The first phase
scans the database from the beginning of the database to the relative CI number 1000. The second phase
scans the database from the relative CI number 1001 to the number 4000, and the third phase scans it
from the number 4001 to the end of the database.

The CARDIN PSB control statement specifies the name of the DD statement (OUTDATA) that defines the
data set to be created.

Chapter 10. Parallel Scan Facility of FABHFSU 151

//*---
//* PSF STEP 2 - CREATE SCAN CONTROL DATA SET
//* --
//FSUCTRL EXEC PGM=FABHPSFC
//IMS DD DSN=IMSVS.DBDLIB,DISP=SHR
//CNTLDD DD DSN=TESTDS.CONTROL,DISP=(NEW,CATLG),
// UNIT=SYSDA,VOL=SER=TESTVOL,SPACE=(TRK,(4,1)),
// DCB=(BLKSIZE=4096,LRECL=4092,RECFM=VB)
//PRNTOUT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//CARDIN DD *
DBDTESTDB
CTLSCANCNTL200036603NY08Y
NPTR1001
NPTR4001
PSB* OUTDATA 00UL
END
/*

Figure 33. FABHPSFC JCL for PSF mode

Steps 3A, 3B, 3C: Example of FABHFSU
The CNTLDD DD statement identifies the scan control data set created by FABHPSFC in a previous job
step.

The CARDIN PSC control statement specifies that there are three expected scan phases. A portion of the
database with the dbdname TESTDB is unloaded in this scan phase. The scan control data set created by
FABHPSFC is named SCANCNTL.

The OUTDATA DD statement specifies a data set on which this portion of the IMS database is unloaded.

Two other job steps in PSF mode would be required to complete the unloading of this database. The
JCL for the job steps is the same, except for modifying the PSC control statement and the ddname DD
(OUTDATA) statement to specify parameters required for phase 2 and phase 3.

//*---
//* PSF STEP 3A - UNLOAD DATABASE (FABHFSU) - PHASE 1 OF 3
//* --
//UNLOAD1 EXEC FABHULU,MBR=FABHFSU,DBD=TESTDB,DBRC=N,IRLM=N
//CNTLDD DD DSN=TESTDS.CONTROL,DISP=SHR
//TESTDB DD DSN=TESTDS.HDAM.VSAM,DISP=SHR
//OUTDATA DD DSNAME=UNLOAD.SCANCNTL.UL01.PHASE01,
// DISP=(NEW,KEEP),UNIT=SYSDA,
// SPACE=(CYL,(100,25),RLSE)
//PRNTOUT DD SYSOUT=A
//CARDIN DD *
PSCSCANCNTLTESTDB 0301
END
/*

Figure 34. FABHFSU JCL for PSF mode

Step 4: Example of FABHPSFS
The XHTDATA DD statement defines a data set that contains the header record of the unloaded data sets.
The name of this DD statement must begin with 'XH'.

The OUTDATA DD statement defines a data set that contains the trailer record of the unloaded data sets.
The name of this DD statement (OUTDATA) must be equal to ddname1 of CARDIN PSB control statement
in step 2.

The CNTLDD DD statement identifies the scan control data set. The CARDIN SUM control statement
specifies the parallel scan name (SCANCNTL) to access the scan control data set.

152 IMS High Performance Unload: User's Guide

//*---
//* PSF STEP 4 - SUMMARIZE STATISTICS AND DATA SETS SEQUENCE
//* --

//FSUSUMM EXEC PGM=FABHPSFS
//IMS DD DSN=IMSVS.DBDLIB.DISP=SHR
//CNTLDD DD DSN=TESTDS.CONTROL,DISP=OLD
//XHTDATA DD DSNAME=UNLOAD.SCANCNTL.UL01.HEADER,DISP=(NEW,KEEP)
// UNIT=SYSDA,SPACE=(TRK,(4,1)),
// DCB=(BLKSIZE=4096,LRECL=4092,RECFM=VB)
//OUTDATA DD DSNAME=UNLOAD.SCANCNTL.UL01.TRAILER,DISP=(NEW,KEEP)
// UNIT=SYSDA,SPACE=(TRK,(4,1)),
// DCB=(BLKSIZE=4096,LRECL=4092,RECFM=VB)
//PRNTOUT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//CARDIN DD *
SUMSCANCNTLTESTDB
END
/*

Figure 35. FABHPSFS JCL for PSF mode

When you reload the unloaded database data sets with the IMS HD Reorganization Reload utility or an
equivalent program, you must specify the concatenation of the header data set, unloaded data sets, and
trailer data set on the DFSUINPT DD statement. The sequence of the concatenation is reported in the
PRNTOUT data set of step 4. The following is an example to specify DD statements:

 //DFSUINPT DD DSN=UNLOAD.SCANCNTL.UL01.HEADER,DISP=OLD
 DD DSN=UNLOAD.SCANCNTL.UL01.PHASE01,DISP=OLD
 DD DSN=UNLOAD.SCANCNTL.UL01.PHASE02,DISP=OLD
 DD DSN=UNLOAD.SCANCNTL.UL01.PHASE03,DISP=OLD
 DD DSN=UNLOAD.SCANCNTL.UL01.TRAILER,DISP=OLD

Chapter 10. Parallel Scan Facility of FABHFSU 153

154 IMS High Performance Unload: User's Guide

Chapter 11. Options for HSSR Engine
You can specify options for HSSR Engine by coding control statements in the HSSROPT data set.

Topics:

• “Overview of HSSROPT control statements” on page 156
• “APISET control statement” on page 159
• “BLDLPCK control statement” on page 160
• “BUF control statement” on page 161
• “BUTR control statement” on page 161
• “BYINDEX control statement” on page 162
• “CABBASE control statement” on page 162
• “CABSTAT control statement” on page 163
• “CALLSTAT control statement” on page 164
• “CO control statement” on page 164
• “COMPAUTH control statement” on page 165
• “DATXEXIT control statement” on page 165
• “DBDL1 control statement” on page 166
• “DBSTATS control statement” on page 166
• “DIAGG control statement” on page 167
• “GOTRETRY control statement” on page 168
• “HPIO control statement” on page 168
• “HSSRDBD control statement” on page 169
• “HSSRPCB control statement” on page 169
• “KEYCHECK control statement” on page 170
• “LOUT control statement” on page 171
• “LSR control statement” on page 172
• “NOFIX control statement” on page 172
• “NOVSAMOPT control statement” on page 172
• “PARTINFO control statement” on page 173
• “PCBLIST control statement” on page 173
• “RETRY control statement” on page 174
• “RTEXIT control statement” on page 174
• “SKERROR control statement” on page 175
• “SKIPAUTH control statement” on page 175
• “SKIPVLC control statement” on page 176
• “TRDB control statement” on page 176
• “TRHC control statement” on page 177
• “TRXC control statement” on page 178
• “ZIIPMODE control statement” on page 178

© Copyright IBM Corp. 2000, 2024 155

Overview of HSSROPT control statements
Control statements for HSSR Engine (HSSROPT control statements) are specified in the HSSROPT data
set.

The options that can be specified for the HSSROPT data set include:

• Options for call analyzer and call handler components of HSSR Engine
• Options for buffer handler component of HSSR Engine
• Options for reports and outputs produced by HSSR Engine
• Options for trace function provided by HSSR Engine
• Options for problem determination

You can tune HSSR Engine's Chained Anticipatory Buffering (CAB) buffer handler by coding control
statements in the HSSRCABP data set. For the details, see “Chained Anticipatory Buffer handler (CAB)” on
page 208.

You can specify HSSRLDEF DD to change the range of lengths of database records in Database Tuning
Statistics. For the details, see “HSSRLDEF input data set for Database Tuning Statistics” on page 310.

Subtopics:

• “Summary of HSSROPT control statements” on page 156
• “Syntax for HSSROPT control statements” on page 159

Summary of HSSROPT control statements
The control statements shown in the following table are provided to help you specify options for HSSR
Engine. Control statements for options that control report output are also specified in the HSSROPT data
set.

156 IMS High Performance Unload: User's Guide

Table 28. List of HSSROPT control statements for HSSR Engine

Used for Keyword Function Description

Call analyzer and
call handler

APISET Specifies a set of call types that can be
processed.

See “APISET control
statement” on page
159.

BLDLPCK Whether to retrieve logical parent's
concatenated keys (LPCKs) or not.

See “BLDLPCK control
statement” on page
160.

BYINDEX Unloads HIDAM root segments through the
HIDAM index.

See “BYINDEX control
statement” on page
162.

DATXEXIT Specifies whether the data conversion exit is to
be activated.

See “DATXEXIT
control statement” on
page 165.

HSSRDBD Specifies HSSR PCBs by using DBD names. See “HSSRDBD control
statement” on page
169.

HSSRPCB Specifies HSSR PCBs by using PCB numbers. See “HSSRPCB control
statement” on page
169.

KEYCHECK Specifies the action for key sequence errors. See “KEYCHECK
control statement” on
page 170.

SKERROR Sets error skip count. See “SKERROR control
statement” on page
175.

SKIPAUTH Specifies whether to bypass IMS DBRC
database authorization for HALDB partitions.

See “SKIPAUTH
control statement” on
page 175.

SKIPVLC Specifies to ignore a sensitive virtual logical
child segment in the DLI or the DBB region.

See “SKIPVLC control
statement” on page
176.

Chapter 11. Options for HSSR Engine 157

Table 28. List of HSSROPT control statements for HSSR Engine (continued)

Used for Keyword Function Description

Buffer handler BUF Specifies the database for which the BB buffer
handler is to be used and the number of buffers
to allocate for a buffer pool.

See “BUF control
statement” on page
161.

GOTRETRY Change the default retry parameters for
PROCOPT=GOT.

See “GOTRETRY
control statement” on
page 168.

LSR Specifies whether to share the LSR pool with
DL/I.

See “LSR control
statement” on page
172.

NOFIX Specifies not to page-fix CAB buffer pools. See “NOFIX control
statement” on page
172.

NOVSAMOPT Prevents the override of the read-ahead
threshold values used by VSAM.

See “NOVSAMOPT
control statement” on
page 172.

PCBLIST Specifies a type of PCB list to be passed to the
application program.

See “PCBLIST control
statement” on page
173.

RETRY Specifies that a failing KSDS I/O operation is to
be retried.

See “RETRY control
statement” on page
174.

Reports and
outputs

CABSTAT Controls the amount of CAB Statistics report. See “CABSTAT control
statement” on page
163.

CALLSTAT Specifies that partition-wide database call
statistics are to be produced for each partition
of HALDB.

See “CALLSTAT control
statement” on page
164.

DBSTATS Provides a Database Tuning Statistics report. See “DBSTATS control
statement” on page
166.

DIAGG Generates diagnosis information for status GG. See “DIAGG control
statement” on page
167.

LOUT Specifies the record-selection criteria for
HSSRLOUT data set.

See “LOUT control
statement” on page
171.

PARTINFO Produces Partition Definition reports and
Partitions Accessed report.

See “PARTINFO
control statement” on
page 173.

158 IMS High Performance Unload: User's Guide

Table 28. List of HSSROPT control statements for HSSR Engine (continued)

Used for Keyword Function Description

Trace function BUTR Activates the buffer trace function. See “BUTR control
statement” on page
161

TRDB Specifies the databases to be traced. See “TRDB control
statement” on page
176.

TRHC Specifies the information to be reported by the
trace function.

See “TRHC control
statement” on page
177.

TRXC Specifies the number of trace entries for wrap-
around core trace.

See “TRXC control
statement” on page
178.

Problem
determination

CO Specifies that the result of an HSSR call is to be
compared with that of a DL/I call.

See “CO control
statement” on page
164.

DBDL1 Specifies that HSSR calls are to fall back to
DL/I calls.

See “DBDL1 control
statement” on page
166.

Others HPIO Specifies whether Media Manager is used for
reading VSAM ESDS data sets or OSAM LDS
data sets.

See “HPIO control
statement” on page
168.

RTEXIT Specifies the name of the runtime exit routine. See “RTEXIT control
statement” on page
174.

ZIIPMODE Specifies whether to offload eligible workloads
to zIIP processors.

See “ZIIPMODE
control statement” on
page 178.

Syntax for HSSROPT control statements
To code HSSROPT control statements, follow these format rules:

• A control statement keyword must always begin in column 1.
• A control statement keyword must be followed by a blank.
• Additional control information is coded after the blank.
• Continuation control statements are not allowed.

APISET control statement
The APISET control statement specifies a set of HSSR call types that can be used in your HSSR
application program.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

APISET 1
 2
 3

Chapter 11. Options for HSSR Engine 159

Position
Description

1
Code the APISET keyword to specify a set of HSSR call types.

8
Code 1, 2, or 3. For details about what each APISET supports, see “DL/I calls supported by each API
set” on page 85.

APISET 1 is the default. Consider specifying APISET 2 or 3 only if your application program issues a call
that APISET 1 does not support.

Notes:

• If you specify APISET 3, you cannot specify any of the following control statements: BYINDEX,
DBSTATS, KEYCHECK, or SKERROR.

• If you specify APISET 3, the BLDLPCK control statement is always activated.
• If you specify APISET 3, the disposition of the database data sets must be DISP=SHR.

Tip: The default of this control statement can be changed by replacing the default option table
(FABHOPT). For details, see Chapter 19, “Site default options,” on page 261.

BLDLPCK control statement
The BLDLPCK control statement specifies whether to retrieve logical parent's concatenated keys (LPCKs).

By default, for a logical child segment with a logical parent's concatenated key (LPCK) that is specified as
virtual on the SEGM statement of the DBD, HSSR call handler returns blanks in the I/O area that would
usually hold the LPCK. For compatibility with FSU II, FABHFSU returns binary zeros to the I/O area instead
of blanks. You can use the BLDLPCK control statement to have HSSR call handler build the LPCK and
return it in the I/O area.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

BLDLPCK

Position
Description

1
Code the BLDLPCK keyword to activate the BLDLPCK option.

Notes:

• If the LPCK is defined as physical (that is, if the LPCK is physically stored as a part of the logical child
segment in the database), HSSR call handler ignores this option.

• If the BLDLPCK statement is specified and there are a large number of virtual LPCKs in the database,
the performance of IMS High Performance Unload could be degraded. The BLDLPCK statement is
necessary, however, if the control statement for the Pre-reorganization utility specifies that the DBIL for
the logical child database is to be unloaded by FABHURG1 or FABHFSU. If the DBIL is specified for the
database, symbolic keys in the unloaded database are used to match up logical children and parents.

• If the BLDLPCK statement is specified for a database that has a logical child whose LPCK is defined as
virtual, the database data sets for all logical parent databases of such logical children must be specified
on the JCL. If the DD statement for one of logical parent databases is not specified, HSSR call handler
returns the status code of AI to the application program when the logical child segment is processed,
and the part of the I/O area that should contain the LPCK is filled with blanks. FABHURG1 and FABHFSU
issue the message FABH0560E, and the programs end processing.

• The BLDLPCK statement is not supported for HISAM databases.
• The BLDLPCK statement is ignored for a PHDAM or PHIDAM database.

160 IMS High Performance Unload: User's Guide

• The BLDLPCK statement is ignored if either MIGRATE or FALLBACK control statement is specified in the
SYSIN data set for a FABHURG1 job.

• If APISET 3 is specified, the BLDLPCK statement is ignored.

BUF control statement
The optional BUF control statement specifies a database for which the BB buffer handler is to be used,
and to override the default number of buffers for BB.

The BB buffer handler allocates a separate buffer pool for each data set group of the database. It also
allocates a certain number of buffers to each of these buffer pools—either the default or a specified
number.

The default number of buffers depends on how the PCB is defined as an HSSR PCB. If an HSSR PCB is
defined by use of either an HSSRPCB or an HSSRDBD control statement, and the value to the KEYLEN
keyword for the PCB is less than 200, BB allocates six basic buffers for each data set as the default. If the
KEYLEN value for the PCB is greater than 200, the number of basic buffers to be allocated is determined
as explained in “Number of Basic Buffers for an HSSR PCB” on page 359.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

BUF dbdname ,nbrbuffers

Position
Description

1
Code the BUF keyword to specify a database for which the BB buffer handler is to be used and to
override the default number of buffers for BB.

5
Code the 8-byte dbdname to specify the database for which the default number of buffers will be
overridden (if the database name is not 8 bytes long, include trailing blanks).

13
Add a comma (,) to separate the database name from the number of buffers.

14
nbrbuffers is the number of buffers that you want BB to allocate for a buffer pool.

BUTR control statement
The BUTR control statement directs HSSR Engine to create a file containing a machine-readable trace of
internal calls to the buffer handler.

This trace, which is written to the HSSRBUTR data set, can be used as input to FABHBSIM, the HSSR
Buffer Handler Simulation utility.

Note: For instructions for using the buffer handler simulation utility, see Chapter 17, “Buffer handler
simulation utility (FABHBSIM),” on page 239.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

BUTR

Position
Description

1
Code the BUTR keyword to instruct HSSR Engine to create a file that contains a machine-readable
trace of internal calls to the buffer handler.

Restriction: No buffer trace is taken for HALDBs.

Chapter 11. Options for HSSR Engine 161

BYINDEX control statement
The BYINDEX control statement instructs HSSR Engine to retrieve HIDAM or PHIDAM root segments
sequentially via the HIDAM or PHIDAM index instead of via the root-twin chain.

If the root segments have no twin backward or hierarchical backward pointer, the BYINDEX control
statement has no effect.

A secondary index can also be used for HIDAM or HDAM root segments.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

BYINDEX
BYINDEX index

Position
Description

1
Code the BYINDEX keyword to activate the BYINDEX option.

9
Specifies a secondary index of the HIDAM or HDAM database if you want the root segments to be
retrieved in the secondary index sequence. The target segment of the index must be the root segment.
For details, see “Considerations for using a secondary index” on page 27.

Restrictions:

• If APISET 3 is specified, this statement cannot be specified.
• If one or more partitions of PHDAM or PHIDAM are in the HALDB OLR cursor-active status,

BYINDEX=YES is ignored.
• FABHFSU ignores this control statement. Specify the index name in the DBD control statement in the

CARDIN data set.

CABBASE control statement
This optional control statement specifies, in number of tracks, the basic size of I/O buffers that the CAB
buffer handler allocates.

The RANSIZE and NBRDBUF values are determined from the CABBASE control statement value and
the CI/block size of the database data set. If the RANSIZE control statement or the NBRDBUF control
statement is specified in the HSSRCABP data set, the RANSIZE control statement value or the NBRDBUF
control statement value has precedence over the CABBASE control statement value.

0........1.........2.........3.........4.........5..
1234567890123456789012345678901234567890123456789012
CABBASE trk dbam typ

Position
Description

1
Code the CABBASE keyword.

9
Code a numeric value for trk. The value must be a left-aligned decimal number in the range of 1 - 255.

For VSAM sequential buffering, the value must be in the range of 1 - 15.

13
ALL

Indicates that this statement applies to all ESDS, OSAM, or OSAM LDS data sets.

ALL is the default.

162 IMS High Performance Unload: User's Guide

VSAM
Indicates that this statement applies to all ESDS data sets or OSAM LDS data sets.

OSAM
Indicates that this statement applies to all OSAM data sets.

18
ALL

Indicates that this statement applies to both sequential buffering and direct buffering.

ALL is the default.

SEQ
Indicates that this statement applies to sequential buffering.

DIR
Indicates that this statement applies to direct buffering.

The default value is determined based on the access method as follows:

• For OSAM sequential buffering: 1 track (CABBASE 001 OSAM SEQ)
• For OSAM direct buffering: 2 tracks (CABBASE 002 OSAM DIR)
• For VSAM sequential buffering: 8 tracks (CABBASE 008 VSAM SEQ)
• For VSAM direct buffering: 15 tracks (CABBASE 015 VSAM DIR)

If the VSAM CI size is smaller than 2 KB, the CAB buffer handler applies the following values:

• For sequential buffering: 4 tracks (CABBASE 004 VSAM SEQ)
• For direct buffering: 8 tracks (CABBASE 008 VSAM DIR)

Tips:

• The following statement is recommended to improve the performance of CAB sequential I/O buffering
for OSAM data sets. This statement changes the basic size of OSAM sequential buffers from one track to
eight tracks: CABBASE 008 OSAM SEQ

• The default of this control statement can be changed by replacing the default option table (FABHOPT).
For details, see Chapter 19, “Site default options,” on page 261.

CABSTAT control statement
Use this control statement to control the amount of CAB statistics that HSSR Engine prints on the
HSSRSTAT data set.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

CABSTAT NO
 YES

Position
Description

1
Code the CABSTAT keyword to control the printing of the CAB statistics.

9
Specify one of the following keywords:
NO

Requests to limit CAB statistics to the main summary report. NO is the default.
YES

Requests the printing of the detailed CAB statistics report on the HSSRSTAT data set.

Tip: This default can be changed by replacing the default option table (FABHOPT). See Chapter 19, “Site
default options,” on page 261.

Chapter 11. Options for HSSR Engine 163

CALLSTAT control statement
Use this control statement to produce the partition-wide database call statistics for each partition.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

CALLSTAT PART

Position
Description

1
Code the CALLSTAT keyword.

10
Code the PART keyword to print the partition-wide database call statistics reports for each partition
that was processed and from which at least one segment was retrieved.

Restrictions: In any one of the following cases, the partition-wide statistics are not printed:

• If the CALLSTAT statement is specified for a nonpartitioned database.
• If the PART keyword is not specified.
• If a keyword other than PART is specified.

CO control statement
The CO control statement specifies that the result of an HSSR call is to be compared with the result of a
DL/I call.

The compare (CO) control statement causes each HSSR call issued by the application program to be
preceded by a DL/I call issued with the same SSA as the HSSR call. The resultant I/O areas and PCBs of
both calls are compared internally. If a mismatch occurs, the I/O areas and the PCBs are printed on the
HSSRTRAC data set. HSSR Engine either abends or returns to the application program.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

CO
CO N

Position
Description

1
Code the CO keyword to activate the compare option.

4
Specify the action of HSSR Engine when a difference is found in HSSR and DL/I calls.
Blank

HSSR Engine abends with a dump.

This option should normally be used when a mismatch is detected between HSSR and DL/I calls.

N
HSSR Engine returns control to the application program when a mismatch is detected between
HSSR and DL/I calls.

Notes:

• To use the CO control statement, the database data sets must be allocated with DISP=SHR.
• If the database is being updated concurrently, the results of DL/I calls and HSSR calls might differ. In

such a case, do not use the CO control statement.
• If APISET 3 is specified, the comparison is not done for the calls that are finally processed by DL/I.

164 IMS High Performance Unload: User's Guide

• If one or more partitions of PHDAM or PHIDAM are in the HALDB OLR cursor-active status, the blank
keyword is ignored.

COMPAUTH control statement
The COMPAUTH control statement specifies whether to call the segment compression exit in supervisor
state.

If you also specify the DECN control statement, this control statement is ignored because HSSR Engine
does not call the segment compression exit.

If you use an encryption exit of InfoSphere® Guardium® Data Encryption for Db2 and IMS Databases as the
segment compression exit, specifying COMPAUTH YES reduces performance degradation.

0........1.........2.........3.........4.........5..
1234567890123456789012345678901234567890123456789012
COMPAUTH YES
 NO

Position
Description

1
Code the COMPAUTH keyword.

10
Specify one of the following keywords:
YES

Specifies to call the segment compression exit in supervisor state.
To enable COMPAUTH YES, the following conditions must be met:

• All of the STEPLIB libraries are APF-authorized.
• The first load module is link-edited with an authorization code of AC=1. This is the same as how

FABHX034 load module is link-edited.

NO
Specifies to call the segment compression exit in problem state. NO is the default.

Tip: The default of this control statement can be changed by replacing the default option table
(FABHOPT). Specify the COMPAUTH=YES parameter on the FABHTOPT macro statement. For details,
see Chapter 19, “Site default options,” on page 261.

DATXEXIT control statement
The DATXEXIT control statement specifies whether the Data Conversion exit is to be activated for HSSR
calls and DL/I calls.

Restriction: HSSR Engine support of Data Conversion exit routines is restricted to the Data Conversion
exit routine provided by Year 2000 Exit Tool. No other Data Conversion exit routine is supported.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

DATXEXIT YES
 NO

Position
Description

1
Code the DATXEXIT keyword to specify the treatment of the Data Conversion exit routine DFSDBUX1.

10
Enter one of the following keywords:

Chapter 11. Options for HSSR Engine 165

NO
Requests HSSR Engine not to call DFSDBUX1 even if it is in a library concatenated to STEPLIB DD.
The option DATXEXIT NO has the same effect; the module DFSDBUX1 is removed from STEPLIB
libraries. NO is the default.

YES
Requests that HSSR Engine treat DFSDBUX1 in the same way that IMS does through IMS's Data
Conversion exit. If DATXEXIT YES is specified, the module DFSDBUX1 exists in a STEPLIB library,
and the use of the Data Conversion exit is designated for a database, then DFSDBUX1 is called
each time a DL/I call or an HSSR call is issued against the database.

DBDL1 control statement
The DBDL1 control statement specifies that HSSR calls are to fall back to DL/I calls.

Specifically, the DBDL1 control statement has the following functions:

• Forces IMS High Performance Unload program controller to define PCBs as DL/I PCBs.
• Enables users to temporarily bypass software errors in HSSR Engine.
• Enables users to make performance comparisons between HSSR and DL/I calls.
• Enables an application using a particular PSB to run on one occasion with HSSR Engine, and on another

occasion with DL/I.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

DBDL1 dbdname1,dbdname2,dbdname3,dbdname4
 *ALL

Position
Description

1
Code the DBDL1 keyword to force HSSR PCBs to be read as DL/I PCBs.

7
Enter in this 8-character field either multiple dbdnames or the keyword *ALL. If dbdnames are
specified, only the PCBs referring to those names are considered DL/I PCBs. If the keyword *ALL is
specified, all PCBs are considered DL/I PCBs.

Code dbdnames left-aligned, followed by trailing blanks, if necessary, and separated by commas. A
maximum of eight dbdnames can be coded.

Note: If multiple DBDL1 statements are provided, only the last is used.

DBSTATS control statement
The DBSTATS control statement activates the Database Tuning Statistics function.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

DBSTATS nnnnn

Position
Description

1
Code the DBSTATS keyword to instruct HSSR Engine to provide the Database Tuning Statistics report.

9
Specify the number of buffers to be simulated with this entry. Enter any number up to five digits in the
range of 1 - 32767, left-aligned, and followed by a blank. If this entry is left blank, the default value of
4 is used.

166 IMS High Performance Unload: User's Guide

HSSR Engine simulates the LRU algorithms of the IMS OSAM buffer pool and the IMS VSAM buffer
pool to provide statistics of the number of I/O operations. If the application program uses multiple
HSSR PCBs, HSSR Engine assumes that each PCB has its own dedicated buffer pool containing the
user-specified or default number of buffers.

Restrictions:

• If APISET 3 is specified, this statement cannot be specified.
• If one or more partitions of PHDAM or PHIDAM are in the HALDB OLR cursor-active status, this

statement is ignored.

For a complete description of the Database Tuning Statistics function, see Chapter 26, “Obtaining
statistics for database tuning,” on page 307.

DIAGG control statement
The DIAGG control statement specifies to generate diagnosis information for status GG.

The DIAGG control statement is used to request HSSR Engine to write diagnostic information to the
HSSRTRAC data set whenever a GG or a GX status code is returned. This option is most important
when you are unloading a database with the SKERROR option. The diagnosis information documents the
location of the database errors and indicates which segment types might be missing in the unloaded
database data set.

Important: When you activate the SKERROR control statement to unload a corrupted database, be sure
to activate the DIAGG control statement, too.

For the details of diagnosis information, see “Trace Output report with diagnostics information” on page
193; especially, see Type of GG error for a discussion of types of error cases.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

DIAGG
DIAGG DIAGONLY
DIAGG [CB|BUF|CB,BUF|BUF,CB]
DIAGG NOINT

Position
Description

1
Code the DIAGG keyword to request that HSSR Engine write diagnosis information to the HSSRTRAC
data set whenever a GG or a GX status code is returned.

7
Enter one of the following keywords. You can specify both CB and BUF in a single statement,
separated from each other with a comma.
Blank

Interpreted as DIAGONLY.

Tip: You can change this interpretation by replacing the default option table (FABHOPT). See
Chapter 19, “Site default options,” on page 261.

DIAGONLY
Writes diagnosis information only. You cannot use this keyword with other keywords.

CB
Writes HSSR control blocks in addition to the diagnosis information.

BUF
Writes buffer handler information in addition to the diagnosis information.

NOINT
Writes buffer handler information in addition to the diagnosis information. You cannot use this
keyword with other keywords.

Chapter 11. Options for HSSR Engine 167

Notes:

• The trace of control blocks of HSSR Engine, produced by specifying CB or BUF option for DIAGG control
statement, is not intended to be reviewed by users, but might be needed by IBM Software Support to
analyze a problem.

• The DIAGG control statement can write more than 4000 print lines to the HSSRTRAC data set for each
GG status code returned. For example, if a segment prefix contains 10 bad pointers, this could yield
more than 40,000 print lines for the single bad segment prefix. Therefore, when the DIAGG option
is active, the HSSRTRAC data set should be allocated in a way to avoid S722 or SB37 abends. For
example, you can specify through the OUTLIM parameter a large number of SYSOUT print lines or you
can allocate HSSRTRAC on tape.

GOTRETRY control statement
The GOTRETRY control statement changes the default retry parameters for PROCOPT=GOT.

The GOTRETRY control statement is used to retry database accesses for PROCOPT=GOT. When
encountering an incorrect pointer with HIDAM, HDAM, PHIDAM, and PHDAM databases, HSSR Engine,
by default, attempts to access the database access four times, with 5-second intervals between attempts.
GOTRETRY can be used to change the default value for both the number of access attempts and the
number of seconds to wait between these access attempts.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

GOTRETRY NBR=nnn,WAIT=sss

Position
Description

1
Code the GOTRETRY keyword to instruct HSSR Engine to override the default number of re-accesses
and the default number of seconds to wait before each re-access attempt.

10
This entry can contain one or both of the following keywords in any order:
NBR=nnn

This entry denotes the number of times that HSSR Engine attempts to re-access a database. nnn
is a left-aligned number in the range of 1 - 999.

WAIT=sss
This entry denotes the number of seconds that HSSR Engine waits before it attempts to re-access
a database. sss is any left-aligned number in the range of 0 - 999.

HPIO control statement
The HPIO control statement specifies whether Media Manager is used for reading VSAM ESDS data sets or
OSAM LDS data sets. The use of Media Manager can improve performance, especially the CPU time.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

HPIO YES
 NO

Position
Description

1
Code the HPIO keyword.

6
Specify YES or NO to activate Media Manager or not.

168 IMS High Performance Unload: User's Guide

YES
Media Manager is used for reading VSAM ESDS or OSAM LDS. All concatenations of the JOBLIB or
the STEPLIB must be APF-authorized.

NO
Media Manager is not used.

When this control statement is not coded and all concatenations of the JOBLIB or the STEPLIB are
APF-authorized, Media Manager is used.

Restriction: When IMS High Performance Unload is started by the JCL that is written for IMS HD
Reorganization Unload (DFSURGU0), Media Manager is not used to process VSAM ESDSs or OSAM LDSs. If
HPIO YES is specified in the HSSROPT DD, the specification is ignored.

HSSRDBD control statement
The HSSRDBD control statement specifies the HSSR PCBs by using DBD names.

The HSSRDBD control statement has the following functions:

• Defines all PCBs that refer to the specified DBDs as HSSR PCBs.
• Enables an application issuing DL/I calls to run on one occasion with HSSR Engine, and on another

occasion with DL/I.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

HSSRDBD dbdname1,dbdname2,dbdname3,dbdname4,...
 *ALL

Position
Description

1
Code the HSSRDBD keyword to force all PCBs that refer to the specified DBDs to be treated as HSSR
PCBs.

9
Enter in this 8-character field either multiple dbdnames delimited by a comma or the keyword *ALL.
If the length of a dbdname is less than 8 bytes, it must be left-aligned and padded with blanks. If
dbdnames are specified, those PCBs that refer to specified DBD are considered to be HSSR PCBs. If
the keyword *ALL is specified, all PCBs that refer to the DBD are considered to be HSSR PCBs.

Notes:

• A maximum of 500 DBD names can be coded.
• HSSRDBD control statement cannot be specified with an HSSRPCB control statement.
• If the list of DBD names cannot fit into one line, the DBD names must be specified as multiple HSSRDBD

statements, each of which must fit into a line.
• If both an HSSRDBD statement that has the *ALL operand and an HSSRDBD statement that has the DBD

list operand are specified, the *ALL specification has priority over all others.
• If a DBD name is specified on an HSSRDBD statement and is also specified on a DBDL1 control

statement, the specification by the DBDL1 statement has priority and all PCBs that refer to the DBD are
treated as DL/I PCBs.

HSSRPCB control statement
The HSSRPCB control statement specifies the HSSR PCBs by using PCB numbers.

The HSSRPCB control statement has the following functions:

• Defines the specified DL/I PCBs as HSSR PCBs.

Chapter 11. Options for HSSR Engine 169

• Enables an application issuing DL/I calls to run on one occasion with HSSR Engine, and on another
occasion with DL/I.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

HSSRPCB pcbnum1, pcbnum2, pcbnum3, pcbnum4,...
 *ALL

Position
Description

1
Code the HSSRPCB keyword to force the specified PCBs to be treated as HSSR PCBs.

9
Enter in this 3-digit field either multiple database PCB numbers delimited by a comma or the keyword
*ALL. The PCB number for the first database PCB is 001. If the PCB numbers are specified, those
PCBs are treated as HSSR PCBs. If the keyword *ALL is specified on this field, all database PCBs are
considered to be HSSR PCBs.

Notes:

• A maximum of 500 PCBs can be coded.
• The HSSRPCB control statement cannot be specified with the HSSRDBD statement.
• If the list of PCB numbers cannot fit into one line, the PCB numbers must be specified as multiple

HSSRPCB statements, each of which must fit into a line.
• If both an HSSRPCB statement that has *ALL operand and an HSSRPCB statement that has PCB number

operands are specified, the *ALL specification has priority over all others.
• If a PCB specified on an HSSRPCB statement refers to a DBD that is specified on a DBDL1 control

statement, the specification by DBDL1 statement has priority and the PCB is treated as a DL/I PCB.

KEYCHECK control statement
The KEYCHECK optional control statement activates the key sequence check option to ensure that the
segment key fields are in ascending sequence.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

KEYCHECK ABEND
 GX
 GG

Position
Description

1
Code the KEYCHECK keyword to activate the option that checks the key sequence. It must be used
with one of the following three code options. (Separate the words with a space.)

10
Code one of the following optional keywords:
ABEND

Performs key checking and ends abnormally if a sequence error is detected.
GX

Performs key checking and returns a warning GX status code if a sequence error is detected. The
segment with the incorrect key is returned normally to the calling application program or utility.

For the EXEC DLI command, the status GX is not returned to the application program. Instead,
message DFS1041 is issued in the EXEC DLI interface module (DFSEIPB0). It ends with a code of
U1041.

170 IMS High Performance Unload: User's Guide

GG
Performs a key check and returns a GG status code if a sequence error is detected. No segment
will be returned to the calling application program or utility.

This option requires PROCOPT=GON, GOT, or an active SKERROR; if none of these conditions is
specified, HSSR Engine abends instead of returning a GG status code. If the SKERROR control
statement is active, HSSR Engine does not retrieve the incorrect segment or other related
segments during the processing of the next GN call. If the SKERROR control statement is inactive,
HSSR Engine resets the current position to the beginning of the database.

Restrictions:

• If APISET 3 is specified, this statement cannot be specified.
• If one or more partitions of PHDAM or PHIDAM are in the HALDB OLR cursor-active status,

KEYCHECK=ABEND/GX/GG is ignored.

LOUT control statement
The LOUT control statement requests that, when the DBSTATS control statement activates the Database
Tuning Statistics function, the HSSRLOUT data set contains only the records that satisfy certain
conditions.

The records that satisfy one or both of the following conditions are written in the HSSRLOUT data set:

• Database records that are longer than the specified limit.
• Database records that require more than the specified number of database I/Os.

This option is ignored if the DBSTATS control statement is not specified at the same time.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

LOUT LENGTH=llllllll
LOUT IO=nn

Position
Description

1
Code the LOUT keyword to request an optional record selection for the HSSRLOUT data set.

6
Code one of the following optional keywords for each LOUT statement:
LENGTH=llllllll

Requests that only the records for database records whose length is greater than llllllll bytes are
written in the HSSRLOUT data set.

IO=nn
Requests that only the records for database records that require more than nn database I/Os for
retrieval are written in the HSSRLOUT data set.

You can specify both LENGTH= and IO= parameters, either on a single LOUT control statement or
separately (on multiple LOUT statements). If you specify both parameters on a single LOUT statement,
separate them with a comma, as follows:

LOUT LENGTH=100,IO=15

If you specify both LENGTH= and IO= parameters, both conditions are effective (that is, database records
that satisfy both conditions are written in the HSSRLOUT data set.)

If an incorrect parameter keyword or an incorrect parameter value is detected on an LOUT statement,
the rest of the parameter specification on that statement is ignored. For example, the IO= parameter
specification on the following statement is ignored because the LENGTH= parameter value is incorrect:

Chapter 11. Options for HSSR Engine 171

LOUT LENGTH=1A,IO=10

For a complete description of the Database Tuning Statistics function, see Chapter 26, “Obtaining
statistics for database tuning,” on page 307.

LSR control statement
The optional LSR control statement is used to request that HSSR Engine share the local shared resource
(LSR) pool with DL/I while processing primary index of HIDAM or PHIDAM databases.

For the details of this option and how to code DFSVSAMP DD when LSR YES is specified, see “VSAM LSR
option for primary index databases” on page 210.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

LSR NO
LSR YES

Position
Description

1
Code the LSR keyword to specify the LSR option.

5
Enter one of the following keywords:
NO

Requests that primary indexes of HIDAM and PHIDAM databases be processed with the NSR
option. NO is the default.

Tip: This default can be changed by replacing the default option table (FABHOPT). See Chapter
19, “Site default options,” on page 261.

YES
Requests that primary indexes of HIDAM and PHIDAM databases be processed with the LSR
option, to improve the performance (through better look-aside buffering) of programs that issue
numerous GU calls to HIDAM or PHIDAM databases.

NOFIX control statement
By default, buffer pools are page-fixed. To avoid page-fixing, you can use a NOFIX control statement.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

NOFIX

Position
Description

1
Code the NOFIX keyword to activate the NOFIX option.

NOVSAMOPT control statement
The NOVSAMOPT control statement prevents the override of the read-ahead threshold value used by
VSAM.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

NOVSAMOPT

172 IMS High Performance Unload: User's Guide

Position
Description

1
Code the NOVSAMOPT keyword to activate the NOVSAMOPT option.

PARTINFO control statement
This optional control statement specifies whether any optional information is to be reported when a
HALDB is processed.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

PARTINFO DEF,ACC

Position
Description

1
Code the PARTINFO keyword to initiate HSSR Engine to produce the partition information report.

10
Specify which report to produce.

These parameters are not positional and can be specified in any order. If two or more parameters
are specified, put a comma between parameters. Information specified on this statement affects the
number of lines written in HSSRSTAT data set.

At least one parameter must be specified.

DEF
Initiate HSSR Engine to produce the HALDB Partition Definition report.

ACC
Initiate HSSR Engine to produce the HALDB Partitions Accessed report.

PCBLIST control statement
The PCBLIST control statement specifies the type of PCB list that is to be passed to the application
program.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

PCBLIST HSSR
 IMS

Position
Description

1
Code the PCBLIST keyword to specify a type of PCB list.

9
Code one of the following keywords:
HSSR

The PCB list that is built by HSSR Engine and that can contain an entry that points to HSSR PCB is
passed to the application program.

IMS
The PCB list that is built by IMS is passed to the application program.

PCBLIST HSSR is the default.

Notes:

Chapter 11. Options for HSSR Engine 173

• If your application program issues a DL/I system call that gets access to the IMS PCB list, it is
recommended that you specify PCBLIST IMS. One such call is the INQY call with the FIND subfunction,
which returns the PCB address of the requested PCB name.

• If your application program issues an HSSR call as an EXEC DLI command, you must specify PCBLIST
IMS.

Tip: The default of this control statement can be changed by replacing the default option table
(FABHOPT). For details, see Chapter 19, “Site default options,” on page 261.

RETRY control statement
The RETRY control statement specifies to retry a failing KSDS I/O operation.

In a database-sharing environment, HSSR Engine might encounter VSAM logical errors if it reads a KSDS
data set that is being concurrently updated and is also subject to CI splits. By default, HSSR Engine
abends in such a situation. You can use the optional RETRY control statement. However, to instruct HSSR
Engine to refresh its buffers and retry the failing KSDS I/O operation, HSSR Engine accesses data that has
been inserted, during a control area split, into a new control area at the end of the KSDS.

Note: When HSSR Engine reads a KSDS data set that is subject to CI splits, any KSDS records that shifted
out of the CI being split might be skipped. CI splits might also cause some records to be read twice.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

RETRY KSDS

Position
Description

1
Code the RETRY keyword.

7
Code the KSDS keyword to activate the retry operation of HSSR Engine.

RTEXIT control statement
The RTEXIT control statement is used to specify the name of a runtime environment exit routine that
can initialize and terminate processing required by the user's environment, such as a COBOL II runtime
environment.

The FABHRTEX module is provided as the default runtime environment exit routine, which is a dummy exit
routine that returns to HSSR Engine without any processing. If any initialization or termination processing
is required by your environment, you can modify this routine or write your own exit routine.

Note: IBM Enterprise COBOL Version 5 or later does not support the IGZERRE interface for the runtime
environment setup. If the interface is used in your runtime environment exit routine, remove the RTEXIT
control statement. Instead, specify a language environment option to invoke CEEPIPI provided by
Language Environment not only for initialization and termination calls but also for each segment call
of your user exit routine for unload utilities. For more information, see “EXIT control statement” on page
253 for FABHURG1 or “PSB control statement” on page 61 for FABHFSU.

The runtime environment exit routine is called before and after an HSSR application program is invoked.
If no RTEXIT control statement is specified, the IBM-supplied FABHRTEX module or the user-written
FABHRTEX module is called as the runtime environment exit routine. For more information about
FABHRTEX, see “Runtime Environment exit (FABHRTEX)” on page 243.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

RTEXIT xxxxxxxx

174 IMS High Performance Unload: User's Guide

Position
Description

1
Code the RTEXIT keywords.

8
The left-aligned load module name of the runtime environment exit routine.

SKERROR control statement
The SKERROR control statement allows database errors to be bypassed. This option enables retrieval
from a database even if the database contains incorrect HD pointers or incorrect HISAM records.

This bypass is achieved by skipping the processing either of the incorrect pointer or of the remainder of
the incorrect HISAM record. A GG status code is returned. Thus, HSSR Engine cannot process segments
with segment codes in error.

SKERROR is used when a corrupted HIDAM, HDAM, PHIDAM, PHDAM, or HISAM database is unloaded
with FABHURG1. You can then reload this database through the IMS HD Reorganization Reload utility
or a compatible utility, to create a new version of the database. Although the new version meets the
technical requirements for a valid IMS database, some segments might be omitted. For more details, see
the following topics:

• Chapter 9, “Utility options for unloading corrupted databases,” on page 115, for procedures to follow
when recovering a corrupted database.

• “Trace Output report with diagnostics information” on page 193, for a discussion of the types of error
cases encountered and printed on the Trace Output report.

Notes:

• If you specify APISET 3, you cannot specify this statement.
• If one or more partitions of PHDAM or PHIDAM are in the HALDB OLR cursor-active status,

SKERROR=nnnnnnnnn is ignored.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

SKERROR nnnnnnnnn

Position
Description

1
Code the SKERROR keyword to activate the error-skipping option.

9
Specify the maximum number of incorrect records to be skipped. Enter up to 9 digits, left-aligned and
followed by a blank. If the field is left blank, HSSR Engine skips up to 9999 incorrect records. If more
than this number of GG status codes are returned, HSSR Engine issues an abend.

When you include the SKERROR control statement to unload a corrupted database, be sure to include a
DIAGG control statement.

Note: The SKERROR control statement can be used for HSSR PCBs that do not have an update PROCOPT
specified. For example, it can be used for HSSR PCBs that have PROCOPT equal to G, GE, GO, GON, or
GOT; but it is ignored for all HSSR PCBs that have PROCOPT=R.

SKIPAUTH control statement
The SKIPAUTH control statement specifies whether to bypass IMS DBRC database authorization to avoid
DBRC authorization failure (DFS047A) for HALDB partitions.

SKIPAUTH YES is effective only when the HALDB is processed in the ULU region. Otherwise, it is ignored.

Chapter 11. Options for HSSR Engine 175

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

SKIPAUTH YES
 NO

Position
Description

1
Code the SKIPAUTH keyword to bypass IMS DBRC database authorization.

10
Specify one of the following keywords:
YES

Requests HSSR Engine to bypass IMS DBRC database authorization.
NO

Requests HSSR Engine not to bypass IMS DBRC database authorization. NO is the default value.

SKIPVLC control statement
The SKIPVLC control statement requests HSSR Engine to ignore a sensitive virtual logical child segment in
the DLI or the DBB region.

In the ULU region, the virtual logical child segment type is always ignored, therefore this control
statement is not used.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

SKIPVLC YES
 NO

Position
Description

1
Code the SKIPVLC keyword to ignore a sensitive virtual logical child segment in the HSSR PCB.

9
Specify one of the following keywords:
YES

Requests HSSR Engine to ignore a sensitive virtual logical child segment in the HSSR PCB.
NO

Requests HSSR Engine not to ignore the sensitive virtual logical child. The HSSR Engine does not
treat the PCB, in which the logical child segment is sensitive, as an HSSR PCB. NO is the default.

• IMS High Performance Unload utilities such as FABHURG1, FABHFSU, and FABHTEST issue a
user abend because the PCB is not an HSSR PCB.

• In a user application program that uses the IMS High Performance Unload API, all HSSR calls to
the PCB fall back to DL/I calls.

TRDB control statement
The TRDB control statement activates the trace of HSSR Engine. Specify this control statement to obtain
the snap-like print of database segments.

The TRDB control statement must be used with the TRHC control statement. After the TRHC indicates the
type of trace to be run, the TRDB control statement then identifies the specific databases on which these
traces are run.

176 IMS High Performance Unload: User's Guide

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

TRDB *ALL
 dbdname1,dbdname2,dbdname3,dbdname4

Position
Description

1
Code the TRDB keyword to activate the hardcopy tracing for specified database.

6
Enter either dbdnames separated by commas or the keyword *ALL.

Each dbdname must meet the following requirements:

• It must occupy eight bytes and be left-aligned.
• If the name is less than eight characters, trailing blanks must be specified.
• The last dbdname must be followed by a blank.

If multiple TRDB statements are provided, only the last statement is used.

TRHC control statement
The TRHC control statement activates the hardcopy trace option of HSSR Engine. Use this control
statement to obtain the snap-like print of database segments.

This control statement is always used in combination with the TRDB control statement. When you activate
this option, HSSR Engine traces calls that are issued against the databases named in the TRDB control
statement. It writes data about these calls on the HSSRTRAC data set.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

TRHC CALL,CB,CBX,BUF,BUFCB,START=n,NPF

Position
Description

1
Code the TRHC keyword to activate the hardcopy tracing option.

6
Enter one or more of the following keywords, separated by commas, specified in any order. The last
keyword must be followed by a blank.
CALL

Traces call information such as call function, PCB, IOAREA, SSA, and segment prefix.

Does a trace for the EXEC DLI command, just the same as for the DL/I call. This is because the
command is converted to the format of a DL/I call and made to the HSSR call handler.

CB or CBX
Traces the control blocks of HSSR Engine. If CBX is specified, traces are also done for the
extended control blocks of HSSR Engine.

If both CB and CBX are specified, CBX is taken.

BUF
Traces buffer handler information.

BUFCB
Traces the CAB buffer handler control blocks.

START=n
Specifies the call number n. Trace begins at the n-th HSSR call issued by the application program.
Enter any number up to nine digits, left-aligned, and followed by a blank.

Chapter 11. Options for HSSR Engine 177

NPF
Excludes the segment prefix information from the trace.

Only HSSR calls issued against the databases that are specified on the TRDB control statement are
traced.

Note: The trace of the control blocks of HSSR Engine, which is called for by specifying the CB, CBX, BUF,
or BUFCB option for the TRHC control statement, is not intended to be reviewed by users, but might be
needed by the IBM Software Support to analyze a problem.

TRXC control statement
The TRXC control statement activates the wrap-around core tracing option. HSSR Engine traces all HSSR
calls issued by the application program and stores the information in a table maintained in storage.

In the user subpools portion of the dump, table entries show the following information about the last n
calls for each PCB:

• Eye-catcher 'TRAC'
• Last byte of application program call function
• Last byte of PCB status code
• Segment name
• PCB key feedback area
• Address within the buffers of the returned segment
• Internal information about HSSR Engine

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

TRXC nnnnnnnnn

Position
Description

1
Code TRXC to activate the wrap-around core trace of HSSR calls.

6
Enter a number to designate the number of entries allocated for each HSSR PCB for wrap-around
tracing.

Enter up to 9 digits, left-aligned and followed by a blank. If this position is left blank, the default value
of 10 is used.

ZIIPMODE control statement
The ZIIPMODE control statement specifies whether HSSR engine offloads eligible VSAM ESDS I/O or
OSAM LDS I/O workloads to zIIP processors.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ZIIPMODE NEVER
 COND

Position
Description

1
Code the ZIIPMODE keyword.

10
Specify one of the following keywords:

178 IMS High Performance Unload: User's Guide

NEVER
Does not offload any workload to zIIP processors. NEVER is the default to avoid unexpected
performance degradation.

COND
Offloads VSAM ESDS I/O or OSAM LDS I/O workloads to zIIP processors when all of the following
conditions are met:

• zIIP processors are available.
• The SGLXLOAD library of IMS Tools Base is specified to the STEPLIB or JOBLIB.
• VSAM ESDS is to be read using Media Manager. For details, see “HPIO control statement” on

page 168.

If any of these conditions is not satisfied, the job runs using the main CPs.

Chapter 11. Options for HSSR Engine 179

180 IMS High Performance Unload: User's Guide

Chapter 12. Reports and output from HSSR Engine
HSSR Engine generates statistical reports in the HSSRSTAT data set. It also generates other information in
certain data sets according to the options that were used in the job.

The following reports are generated:

• The HSSRSTAT data set contains printed statistical reports.
• The HSSRTRAC data set contains printed trace reports.
• The HSSRSNAP data set contains, when an initialization error occurs, a snapshot of control blocks.
• The HSSRLOUT data set contains, for each database record, a record that can be used for tuning

database.
• The HSSRBUTR data set contains buffer handler trace data that can be used for input to the FABHBSIM

utility.

Topics:

• “HSSRSTAT data set” on page 181
• “HSSRTRAC data set” on page 190
• “HSSRSNAP data set” on page 202
• “HSSRLOUT data set” on page 202
• “HSSRBUTR data set” on page 203

HSSRSTAT data set
This output data set contains statistical reports that are generated by HSSR Engine.

In accordance with the control statements that were specified for the job, this data set contains one or
more of the following reports:

• HSSROPT Control Statements report
• HALDB Partition Definition report
• HALDB Partitions Accessed report
• DB Call Statistics report
• DB Statistics report
• Randomizing Statistics report
• DB Record Length Distribution report
• Data Set I/O Statistics report
• CAB Statistics report

When you use the Sequential Subset Statistics (SS-STATS) function of the Sequential Subset Randomizer,
the HSSRSTAT data set also contains the reports of the SS-STATS routine. For information about these
reports, see “HSSRSTAT output data set when SS-STATS routine is applied” on page 295.

Format
This data set contains 133-byte fixed-length records. When the block size is coded in the JCL, the block
size must be a multiple of 133.

HSSROPT Control Statements report
This report contains the parameters used by HSSR Engine for this job execution.

The following figure shows an example of the report.

© Copyright IBM Corp. 2000, 2024 181

IMS HIGH PERFORMANCE UNLOAD "HSSROPT CONTROL STATEMENTS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 10.14.01 FABH015A - V1.R2

 HSSROPT CONTROL STATEMENTS FOLLOWS:

 0........1.........2.........3.........4.........5.........6.........7.........8
 12345678901234567890123456789012345678901234567890123456789012345678901234567890

 HSSRDBD DBDNAME1,DBX
 HSSRDBD DBDNAME2,DBDNAME3
 DBSTATS
 RTEXIT FABHRRRR
 X DIAGG AAA
 SKERROR 500
 NOFIX

 NOTE: "X" ON THE LEFT SIDE OF A CONTROL STATEMENT INDICATES THAT THE STATEMENT HAS AN ERROR AND IS IGNORED.

 HSSR-ENGINE PARAMETERS USED FOR THIS EXECUTION:

 KEYWORD VALUES
 ---------------- ---
 APISET 1
 CABBASE 1,OSAM,SEQ
 CABBASE 2,OSAM,DIR
 CABBASE 8,VSAM,SEQ
 CABBASE 15,VSAM,DIR
 CABSTAT NO
 COMPAUTH NO
 * DBSTATS 4
 * DIAGG DIAGONLY
 GOTRETRY NBR=4,WAIT=5
 * HSSRDBD DBDNAME1,DBDX ,DBDNAME2,DBDNAME3
 LSR NO
 * NOFIX
 PCBLIST HSSR
 * RTEXIT FABHRRRR
 * SKERROR 500
 SKIPVLC NO
 SKIPAUTH NO
 DATXEXIT NO
 ZIIPMODE NEVER

 NOTE: '*' INDICATES THAT THE PARAMETER IS SPECIFIED IN THE HSSROPT.

Figure 36. HSSROPT Control Statements report

HALDB Partition Definition report
This report contains definition information about the HALDB partitions.

If PARTINFO DEF is specified in the HSSROPT data set, this report is generated.

The following figure shows an example of this report.

IMS HIGH PERFORMANCE UNLOAD "HALDB PARTITION DEFINITION" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.34.56 FABHP00 - V1.R2

*** DBDNAME: PARTDB ***

 DATABASE ORGANIZATION............ PHDAM
 ACCESS METHOD.................... VSAM
 NUMBER OF PARTITIONS DEFINED..... 5
 PARTITION SELECTION EXIT......... (N/A)

*** PARTITIONS LISTED IN ORDER OF PARTITION HIGH KEY ***

 SEQ NAME ID HIGH KEY

 0001 PART1 1 C’19999999’
 0002 PART2 2 C’29999999’
 0003 PART3 3 C’39999999’
 0004 PART4 4 C’49999999’
 0005 PART5 5 C’59999999’

Figure 37. HALDB Partition Definition report

HALDB Partitions Accessed report
This report summarizes information about HALDB partitions that were accessed.

If PARTINFO ACC is specified in the HSSROPT data set, this report is generated.

The following figure shows an example of this report.

182 IMS High Performance Unload: User's Guide

IMS HIGH PERFORMANCE UNLOAD "HALDB PARTITIONS ACCESSED" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.34.56 FABHP00 - V1.R2

*** DATABASE REFERENCED BY THE PCB #0001 ***

 DBDNAME........................... PARTDB
 NUMBER OF PARTITIONS DEFINED...... 5
 NUMBER OF PARTITIONS PROCESSED.... 3

*** LIST OF PARTITIONS ACCESSED ***
 PART1 , PART2 , PART3

Figure 38. HALDB Partitions Accessed report

DB Call Statistics report
This report contains statistics about the number of HSSR calls.

Subtopics:

• “Example report: DB Call Statistics report” on page 183
• “Example report: DB Call Statistics report for HALDB” on page 183
• “Report field descriptions” on page 184

Example report: DB Call Statistics report
The following figure shows an example of this report.

IMS HIGH PERFORMANCE UNLOAD "DB CALL STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 16.40.07 FABH070 - V1.R2

JOBNAME=OEFH2005 STEPNAME=G .HPUL PGMNAME=FABHURG1 PSBNAME=PHDV0100

DBDNAME SEGNAME CALLS WITH BLANK/GX STATUS CODES OTHER STATUS CODES
 --- ---
 GN/GHN GU/GHU REPL GB GE GG VX NI/NE

PHDV0100 ROOTLEV1 10
 DEP1LEV2 10
 DEP2LEV2 10
 DEP3LEV3 20
 DEP4LEV4 40
 DEP5LEV2 10
 DEP6LEV3 20
 DEP7LEV4 40
 DEP8LEV4 40
 DEP9LEV5 80
 PCB-TOTALS 280 1

TOTAL HSSR CALLS 280 1
 ===

Figure 39. DB Call Statistics report

Example report: DB Call Statistics report for HALDB
If CALLSTAT PART is specified in the HSSROPT data set, the partition-wide DB Call Statistics report is
printed for each HALDB partition that is processed, and from which at least one segment was retrieved.
This report is printed in addition to the database-wide DB Call Statistics report. The PARTITION=xxxxxxx
shows the partition name.

The following figure shows an example of this report.

IMS HIGH PERFORMANCE UNLOAD "DB CALL STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 16.40.07 FABH070 - V1.R2

JOBNAME=OEFH2005 STEPNAME=G .HPUL PGMNAME=FABHURG1 PSBNAME=PHDV0100 PARTITION=PHDV01A

DDNAME SEGNAME CALLS WITH BLANK/GX STATUS CODES OTHER STATUS CODES
 --- ---
 GN/GHN GU/GHU REPL GB GE GG VX NI/NE

PHDV01AA ROOTLEV1 2
 DEP1LEV2 2
 DEP2LEV2 2
 DEP3LEV3 4
 DEP4LEV4 8
 DEP5LEV2 2
 DEP6LEV3 4
 DEP7LEV4 8
 DEP8LEV4 8
 DEP9LEV5 16
 PART-TOTALS 56

Figure 40. DB Call Statistics report for HALDB

Chapter 12. Reports and output from HSSR Engine 183

Report field descriptions
The following information is provided in the report:

JOBNAME
Name of the job.

STEPNAME
Name of the step for which DB Call Statistics are logged. If you use a cataloged procedure (that is,
FABHDBB, FABHDLI, or FABHULU), this STEPNAME is shown as G. xxxxxxxx (where xxxxxxxx is the
name specified for your EXEC statement).

PGMNAME
Name of application program.

PSBNAME
Name of PSB containing the PCBs that are used.

DBDNAME
Dbdname of the database referred to by the HSSR PCB.

SEGNAME
All segment names that are accessed.

CALL WITH BLANK/GX STATUS CODES
Number of HSSR GN or GHN, GU or GHU, and REPL calls for each segment type.

Note: GNP and GHNP calls are listed under "GN/GHN."

OTHER STATUS CODES
Number of GB, GE, GG, VX, NI, and NE status codes returned for each segment type. NI and NE status
codes together are listed under "NI/NE".

PCB TOTALS
Total number of calls and status codes for a single PCB.

TOTAL HSSR CALLS
Total number of calls and status codes.

The following fields are reported only when the status code FM is received.

STATUS:FM
Number of FM status codes for a single PCB.

TOTAL STATUS:FM
Total number of FM status codes.

The following fields are reported only when the status code GP is received:

STATUS:GP
Number of GP status codes for a single PCB.

TOTAL STATUS:GP
Total number of GP status codes.

DB Statistics report
This report contains information about the average number of I/Os that are required to randomly read all
database segments of one database record, and the length of database records.

You can use this report to tune your databases. For a complete description of this report, see “DB
Statistics report” on page 323.

Randomizing Statistics report
This report contains the statistics with key indicators that represent the quality of randomizing.

You can use this report to tune your databases. For a complete description of this report, see
“Randomizing Statistics report” on page 328.

184 IMS High Performance Unload: User's Guide

DB Record Length Distribution report
This report contains information about the distribution of database record lengths.

You can use this report to tune your databases. For a complete description of this report, see “DB Record
Length Distribution report” on page 330.

Data Set I/O Statistics report
This report contains statistics about I/O and buffer handler activities.

Subtopics:

• “Example report: Data Set I/O Statistics report” on page 185
• “Report field descriptions” on page 185

Example report: Data Set I/O Statistics report
The following figure shows an example of this report.

IMS HIGH PERFORMANCE UNLOAD "DATA SET I/O STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 16.16.15 FABH070 - V1.R2

JOBNAME=THFH0601 STEPNAME=G .URG1HD PGMNAME=FABHURG1 PSBNAME=PHDV030H

DDNAME SIZE OF NUM OF IO IO RBA PCT PCT
 A BUF BUFFERS DIRECT SEQU REQUESTS IO/REQ IO/BLK
-------- ------- ---------- ---------- ---------- ---------- ------- -------
PHDV03AA 512 143 0 8 106 7.54 5.44
 OVFLW 512 143 0 1 9 11.11 .68
PHDV03AB 4,096 66 0 1 5 20.00 8.33
PHDV03AC 2,048 66 0 2 10 20.00 9.52
PHDV03BA 512 143 0 8 102 7.84 5.44
 OVFLW 512 143 0 1 7 14.28 .68
PHDV03BB 4,096 66 0 1 4 25.00 8.33
PHDV03BC 2,048 66 0 2 9 22.22 9.52
PHDV03CA 512 143 0 8 107 7.47 5.44
 OVFLW 512 143 0 1 9 11.11 .68
PHDV03CB 4,096 66 0 1 4 25.00 8.33
PHDV03CC 2,048 66 0 2 9 22.22 9.52
PHDV03DA 512 143 0 8 103 7.76 5.44
 OVFLW 512 143 0 1 7 14.28 .68
PHDV03DB 4,096 66 0 1 3 33.33 8.33
PHDV03DC 2,048 66 0 2 9 22.22 9.52
PHDV03EA 512 143 0 8 111 7.20 5.44
 OVFLW 512 143 0 2 18 11.11 1.36
PHDV03EB 4,096 66 0 1 12 8.33 8.33
PHDV03EC 2,048 66 0 3 25 12.00 14.28
-------- ------- ---------- ---------- ---------- ---------- ------- -------
TOTAL 0 62 669 9.26

TOTAL NUMBER OF BYTES IN BUFFER POOL: 551,936

Figure 41. Data Set I/O Statistics report

Report field descriptions
JOBNAME

Name of the job.
STEPNAME

Name of the step for which Data Set I/O Statistics are logged. If you use a cataloged procedure (that
is, FABHDBB, FABHDLI, or FABHULU), this STEPNAME is shown as G. xxxxxxxx (where xxxxxxxx is
the name specified for your EXEC statement). In this example report, the cataloged procedure is used,
and the name of the EXEC statement is URG1HD.

PGMNAME
Name of application program.

PSBNAME
Name of PSB containing the PCBs that are used.

For each PCB data set combination, the following information is printed:

DDNAME
ddname as coded on the DD1=keyword in the DBD that is referred to by the HSSR PCB.

SIZE OF A BUF
Buffer size.

Chapter 12. Reports and output from HSSR Engine 185

NUM OF BUFFERS
Total number of buffers.

IO DIRECT
Number of issued direct I/O requests.

IO SEQU
Number of chained sequential I/O requests.

RBA REQUESTS
Number of buffer handler requests.

PCT IO/REQ
Percentage of issued I/O operations per buffer handler request.

PCT IO/BLK
Percentage of issued I/O operations per number of blocks or CIs contained in the data set.

The TOTAL line appears once on the report:

TOTAL
This line contains totals of the above fields.

TOTAL NUMBER OF BYTES IN BUFFER POOL
The total number of bytes of the storage allocated for the buffer pool.

Note: If one or more partitions of PHDAM or PHIDAM are in the HALDB OLR cursor-active status, each
count number is 0 for each data set of the partitions.

CAB Statistics report
This report contains detailed CAB information for the data set that is referred to by each PCB.

The following statistics are produced for each PCB for which CAB is used:

• HALDB buffering statistics (only for HALDBs)
• CAB environment (statistics)
• I/O summary (statistics)
• Timing Statistics

If the CABSTAT YES control statement is specified in the HSSROPT input data set, the following statistics
are also produced:

• Event statistics
• Distribution of look-aside at nth position
• Distribution of HRAN steal/delete per reference count value
• Distribution of reference-count-difference
• Distribution of distance from current Seq HRAN

These statistics contain detailed technical information beyond what is usually required for CAB users. To
use them, you need to have a good knowledge of CAB logic.

For a database of multiple data set groups, these statistics, except the HALDB buffering statistics, are
produced for each data set.

For a HALDB, the statistics are produced for each partition that has been processed; also, if the database
consists of multiple data set groups, the statistics are produced for each data set group for each partition.

For an HDAM or PHDAM database, the statistics are produced for the root addressable area and for the
overflow area.

The DDNAME or the pair of partition name and DSGROUP name is printed on each page of the report. For
a nonpartitioned database, the ddname as coded on the DD1= keyword in the DBD that is referred to by
the HSSR PCB is printed. For a HALDB, the partition name and the character that identifies the data set
group are printed.

186 IMS High Performance Unload: User's Guide

Subtopics:

• “Example report: HALDB Buffering Statistics report for PHDAM” on page 187
• “Example report: CAB Statistics report for a nonpartitioned database” on page 187
• “Report field descriptions: CAB Statistics report” on page 188

Example report: HALDB Buffering Statistics report for PHDAM
The following report shows a sample of HALDB buffering statistics report. These statistics are produced
only for HALDB. The CAB parameters used for each data set are reported. The total storage size for CAB
buffers for each data set group is also reported. Column 'A' of the table, titled "CAB PARAMETERS FOR
EACH PARTITION", indicates whether the data set was accessed ('Y') or not ('N').

IMS HIGH PERFORMANCE UNLOAD "CAB STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 22.15.13 FABHAP0 - V1.R2

 HALDB BUFFERING STATISTICS

DB=PHDV0300 PCB#= 1

*** CAB PARTITION PROCESSING INTENT

 PARTPROC PHDV0300 S

*** BUFFERING SUMMARY

 THE NUMBER OF PARTITIONS DEFINED.............. 5
 THE NUMBER OF PARTITIONS ACCESSED............. 5
 MAX NUMBER OF PARTITIONS ACCESSED AT A TIME... 1

 DSGROUP=A

 CAB PARAMETERS FOR THIS DSGROUP
 OVERFLOW CAB

 CAB PARAMETERS FOR EACH PARTITION (RAA)
 PARTITION A CI SIZE CI’S/CA RANSIZE NBRSRAN NBRDBUF REFT4 INTER
 --------- - --------- --------- ------- ------- ------- ----- -----
 PHDV03A Y 512 49 13 8 26 13 NO
 PHDV03B Y 512 49 13 8 26 13 NO
 PHDV03C Y 512 49 13 8 26 13 NO
 PHDV03D Y 512 49 13 8 26 13 NO
 PHDV03E Y 512 49 13 8 26 13 NO

 THE SIZE OF CAB BUFFER FOR THIS DSGROUP (RAA)
 NUMBER OF BYTES IN SEQUENTIAL BUFFER... 66,560
 NUMBER OF BYTES IN DIRECT BUFFER....... 13,312

 CAB PARAMETERS FOR EACH PARTITION (OVERFLOW)
 PARTITION A CI SIZE CI’S/CA RANSIZE NBRSRAN NBRDBUF REFT4 INTER
 --------- - --------- --------- ------- ------- ------- ----- -----
 PHDV03A Y 512 49 13 8 26 13 NO
 PHDV03B Y 512 49 13 8 26 13 NO
 PHDV03C Y 512 49 13 8 26 13 NO
 PHDV03D Y 512 49 13 8 26 13 NO
 PHDV03E Y 512 49 13 8 26 13 NO

 THE SIZE OF CAB BUFFER FOR THIS DSGROUP (OVERFLOW)
 NUMBER OF BYTES IN SEQUENTIAL BUFFER... 66,560
 NUMBER OF BYTES IN DIRECT BUFFER....... 13,312

Figure 42. HALDB Buffering Statistics report for PHDAM

Example report: CAB Statistics report for a nonpartitioned database
The following figure shows an example of CAB statistics report for a non-partitioned database.

Chapter 12. Reports and output from HSSR Engine 187

IMS HIGH PERFORMANCE UNLOAD "CAB STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.14.27 FABHA90 - V1.R2

DDNAME=HSHDP
--

*** CAB ENVIRONMENT
 OPERATING SYSTEM z/OS 01.07.00 HBB7720
 ACCESS METHOD BSAM
 BUFFER FIXING YES
 RANSIZE 2
 NBRSRAN 4
 NBRDRAN 4
 NBRDBUF 3
 OVERLAP YES
 REFT1 0
 REFT2 0
 REFT3 0
 REFT4 3
 NBHSIZE 3
 INTER NO
 ANYNEXT NO

*** I/O SUMMARY:
 NBR OF BLOCKS WITHIN DATASET... 2,441
 NBR OF CALLS TO BUFFERHANDLER.. 4,165 100.00 PCT OF CALLS 170.62 PCT OF BLOCKS

 LOOKASIDE TOTAL................ 1,240 29.77 PCT OF CALLS 50.79 PCT OF BLOCKS
 INTRA-PCB: SEQ BUF.......... 1,199 28.78 PCT OF CALLS 49.11 PCT OF BLOCKS
 INTRA-PCB: DIRECT BUF....... 41 .98 PCT OF CALLS 1.67 PCT OF BLOCKS
 INTER-PCB................... 0 0 PCT OF CALLS 0 PCT OF BLOCKS

 NBR OF I/O
 TOTAL...................... 3,200 76.83 PCT OF CALLS 131.09 PCT OF BLOCKS
 SEQUENTIAL TOTAL........... 982 23.57 PCT OF CALLS 40.22 PCT OF BLOCKS
 SEQU IMMEDIATE.......... 707 16.97 PCT OF CALLS 28.96 PCT OF BLOCKS
 SEQU OVERLAPPED......... 275 6.60 PCT OF CALLS 11.26 PCT OF BLOCKS
 DIRECT..................... 2,218 53.25 PCT OF CALLS 90.86 PCT OF BLOCKS

 NBR OF BLOCKS READ
 TOTAL...................... 4,182 100.40 PCT OF CALLS 171.32 PCT OF BLOCKS
 SEQUENTIAL TOTAL........... 1,964 47.15 PCT OF CALLS 80.45 PCT OF BLOCKS
 SEQU IMMEDIATE.......... 1,414 33.94 PCT OF CALLS 57.92 PCT OF BLOCKS
 SEQU OVERLAPPED......... 550 13.20 PCT OF CALLS 22.53 PCT OF BLOCKS
 DIRECT..................... 2,218 53.25 PCT OF CALLS 90.86 PCT OF BLOCKS

*** NBR OF UNREFERENCED SEQ BUFFERS 490 24.94 PCT SEQ BUFFERS

*** TIMING STATISTICS MEAN WAIT TIME TOTAL WAIT TIME
 (MILLIS) (SECONDS)
 IMMEDIATE SEQ I/O.......... 24 17
 OVERLAPPED SEQ I/O......... 6 1
 IMMEDIATE DIRECT I/O....... 20 45
 *TOTAL..................... 64

Figure 43. CAB Statistics report for a nonpartitioned database

Report field descriptions: CAB Statistics report
The following information is provided in the CAB Statistics report:

CAB ENVIRONMENT
Description of the environment and CAB parameter values specified in the HSSRCABP data set.

I/O SUMMARY
Summary of CAB I/O.
NBR OF BLOCKS WITHIN DATASET

Number of OSAM blocks, OSAM LDS CIs, or ESDS CIs in the data set. This value is calculated by
(high-used RBA)/(CI size).

NBR OF CALLS TO BUFFER HANDLER
Number of buffer handler requests.

If basic buffering is used for the overflow area specified by the OVERFLOW control statement, the
number of calls to the buffer handler for the overflow area is not included in this value.

Buffer handler is called when the requested RBA is not in the current buffer.

LOOKASIDE TOTAL
Number of buffer handler requests satisfied through look-aside buffering.
INTRA-PCB: SEQ BUF

The number of requested RBAs found in the sequence buffer of the intra-PCB (my PCB).
INTRA-PCB: DIRECT BUF

The number of requested RBAs found in the direct buffer of the intra-PCB (my PCB).

188 IMS High Performance Unload: User's Guide

INTER-PCB:
The number of requested RBAs found in the buffers of the inter-PCB (PCB other than my PCB).
The buffers for the inter-PCB are referred to only when the requested RBA was not found in
the intra-PCB.

NBR OF I/O
Summary of number of I/O requests. For VSAM ESDS or OSAM LDS, one GET macro is used by one
I/O request. For OSAM, the READ macro is used and the number of READ macros is:

• 1 when direct I/O
• The value of RANSIZE when chained sequential I/O

TOTAL
Total number of I/O requests.

SEQUENTIAL TOTAL
Total number of chained sequential I/O requests.
SEQU IMMEDIATE

Number of immediate chained sequential I/O requests. This I/O request is made when
the requested RBA is higher than the highest RBA in the current sequential buffer and the
requested RBA is not found in both of the sequential buffers and the direct buffers.

SEQU OVERLAPPED
Number of overlapped chained sequential I/O requests. This I/O request is made when the
requested RBA is found in the sequential buffers and the next block or CI is not yet read in
the next sequential buffer.

DIRECT
Number of immediate direct I/O requests. This I/O request is made when:

• The requested RBA is less than the highest RBA in the current sequential buffer, and is not
found in both of the sequential buffers and the direct buffers.

• Chained sequential I/O request is made and the sequential buffers cannot be filled with
blocks or CIs because the number of blocks or CIs that remain in the data set is less than the
RANSIZE value.

NBR OF BLOCKS READ
Summary of number of blocks or CIs read.
TOTAL

Total number of blocks or CIs read.
SEQUENTIAL TOTAL

Total number of blocks or CIs with chained sequential I/O.
SEQU IMMEDIATE

Number of blocks or CIs with immediate chained sequential I/O. This value is calculated
by: (Number OF I/O requests for SEQU IMMEDIATE) multiplied by (RANSIZE)

SEQU OVERLAPPED
Number of blocks or CIs with overlapped chained sequential I/O. This value is calculated
by: (Number of I/O requests for SEQU OVERLAPPED) multiplied by (RANSIZE)

DIRECT
Number of blocks or CIs with immediate direct I/O.

NBR OF UNREFERENCED SEQ BUFFERS
Number of blocks or CIs that were deleted from sequential buffers although they were never referred
to. With this number, whether the CAB decisions to perform chained sequential I/O is reasonable or
not can be measured.

TIMING STATISTICS
Wait time for immediate chained sequential I/O, overlapped chained sequential I/O, and immediate
direct I/O.

Chapter 12. Reports and output from HSSR Engine 189

MEAN WAIT TIME
Average wait time for I/O request, reported by type of I/O.

TOTAL WAIT TIME
Total wait time for I/O request, reported by type of I/O.

The rest of the statistics is obtained when the CABSTAT YES control statement is specified in the
HSSROPT data set. These statistics contain detailed technical information beyond what is usually
required for users of IMS High Performance Unload. The statistics are:

Event Statistics
Detailed data on CAB I/O.

Distribution of look-aside at n th Position
Detailed data on look-aside buffering.

Distribution of HRAN Steal/Delete per Reference Count Value
Detailed data on CAB I/O in ranges.

Distribution of Reference-Count-Difference
Detailed data on reference threshold parameters.

Distribution of Distance from Current Seq HRAN
Detailed statistics on HRAN distribution.

HSSRTRAC data set
This output data set contains trace reports that are generated by HSSR Engine.

The HSSROPT control statements, TRHC, TRDB, and DIAGG, cause trace information to be produced in
the Trace Output report.

Note: The trace data of control blocks of HSSR Engine, which is produced by specifying CB or BUFCB
option for TRHC control statement, is not intended to be reviewed by users, but might be needed by IBM
Software Support to analyze a problem.

Format
This data set contains 133-byte fixed-length records. When the block size is coded in the JCL, the block
size must be a multiple of 133.

Trace Output report
This hardcopy trace shows trace call data, control blocks data, buffer handler data, and CAB data. The
content of this report depends on the trace options that you specified for the job.

Subtopics:

• “Example report: Trace Output report when 1 SSA is specified” on page 190
• “Example report: Trace Output report when 15 SSAs and APISET 3 are specified” on page 191
• “Report field descriptions” on page 191

Example report: Trace Output report when 1 SSA is specified
The following figure shows an example of the Trace Output report when 1 SSA is specified.

190 IMS High Performance Unload: User's Guide

IMS HIGH PERFORMANCE UNLOAD "TRACE OUTPUT" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.34.16 FABH310 - V1.R2

*** DB CALL *** FUNC=GN DBD=DBHD0070 LEV=01 STAT= PROC=GX SEGN=SG001LV1 PCB#=0001

 KEYFEEDB 000E5C84 F0F1F0F0 F0F0F0F0 F0F1 *0100000001 *

 IO-AREA 000E9968 F0F1F0F0 F0F0F0F0 F0F14040 40404040 40404040 40404040 40404040 40404040 *0100000001 *
 000E9988 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 000E99A8 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 000E99C8 40404040 * *

 SSA-1 000E9D59 E2C7F0F0 F1D3E5F1 40 *SG001LV1 *

 SEG-PREF 0734C818 01000000 0B1E0000 088E0000 08F80001 9804 * 8 *

Figure 44. Trace Output report when 1 SSA is specified

Example report: Trace Output report when 15 SSAs and APISET 3 are specified
The following figure shows an example of the Trace Output report when 15 SSAs and APISET 3 are
specified.

IMS HIGH PERFORMANCE UNLOAD "TRACE OUTPUT" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.33.27 FABH310 - V1.R2

*** DB CALL *** FUNC=GN DBD=DBHD0070 LEV=15 STAT= PROC=GX SEGN=SG016LVF PCB#=0001

 KEYFEEDB 000E5C84 F0F1F0F0 F0F0F0F0 F0F1F0F1 F0F2F0F0 F0F0F0F1 F0F1F0F3 F0F0F0F0 F0F1F0F1 *01000000010102000001010300000101*
 000E5CA4 F0F4F0F0 F0F0F0F1 F0F1F0F5 F0F0F0F0 F0F1F0F1 F0F6F0F0 F0F0F0F1 F0F1F0F7 *04000001010500000101060000010107*
 000E5CC4 F0F0F0F0 F0F1F0F1 F0F8F0F0 F0F0F0F1 F0F1F0F9 F0F0F0F0 F0F1F0F1 F0F0F0F0 *00000101080000010109000001010000*
 000E5CE4 F0F0F0F1 F0F1F0F1 F0F0F0F0 F0F1F0F1 F0F2F0F0 F0F0F0F1 F0F1F0F3 F0F0F0F0 *00010101000001010200000101030000*
 000E5D04 F0F1F0F1 F0F4F0F0 F0F0F0F1 F0F1F0F5 F0F0F0F0 F0F1 *0101040000010105000001 *

 IO-AREA 000E9968 F0F1F0F5 F0F0F0F0 F0F14040 40404040 40404040 40404040 40404040 40404040 *0105000001 *
 000E9988 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 000E99A8 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 000E99C8 40404040 * *

 SSA-1 000E9D59 E2C7F0F0 F1D3E5F1 40 *SG001LV1 *

 SSA-2 000E9D62 E2C7F0F0 F3D3E5F2 40 *SG003LV2 *

 SSA-3 000E9D6B E2C7F0F0 F4D3E5F3 40 *SG004LV3 *

 SSA-4 000E9D74 E2C7F0F0 F5D3E5F4 40 *SG005LV4 *

 SSA-5 000E9D7D E2C7F0F0 F6D3E5F5 40 *SG006LV5 *

 SSA-6 000E9D86 E2C7F0F0 F7D3E5F6 40 *SG007LV6 *

 SSA-7 000E9D8F E2C7F0F0 F8D3E5F7 40 *SG008LV7 *

 SSA-8 000E9D98 E2C7F0F0 F9D3E5F8 40 *SG009LV8 *

 SSA-9 000E9DA1 E2C7F0F1 F0D3E5F9 40 *SG010LV9 *

 SSA-10 000E9DAA E2C7F0F1 F1D3E5C1 40 *SG011LVA *

 SSA-11 000E9DB3 E2C7F0F1 F2D3E5C2 40 *SG012LVB *

 SSA-12 000E9DBC E2C7F0F1 F3D3E5C3 40 *SG013LVC *

 SSA-13 000E9DC5 E2C7F0F1 F4D3E5C4 40 *SG014LVD *

 SSA-14 000E9DCE E2C7F0F1 F5D3E5C5 40 *SG015LVE *

 SSA-15 000E9DD7 E2C7F0F1 F6D3E5C6 40 *SG016LVF *

 SEG-PREF 071D0374 10000000 0000 * *

Figure 45. Trace Output report when 15 SSAs and APISET 3 are specified

Report field descriptions
If the CALL option is specified for the TRHC control statement, the report contains a section that
describes the following fields and data areas for database calls:

FUNC
The type of call requested for HSSR Engine.

DBD
The dbdname of the database referred to by the HSSR PCB.

LEV
Segment level.

STAT
Status code returned in the PCB.

Chapter 12. Reports and output from HSSR Engine 191

PROC
Processing option coded in the PROCOPT field of the DBD.

SEGN
The name of the segment that is accessed.

PCB
The PCB number. The number for the first PCB is 0001.

PARTITION
Partition name (only for HALDB).

KEYFEEDB
Data returned in the key feedback area. This field provides the virtual storage addresses of the data
traced on the right. There might be multiple lines, each showing up to 32 bytes of data in hexadecimal
and EBCDIC format.

IO-AREA
Data returned in the I/O area. This field provides the virtual storage addresses of the data traced on
the right. There might be multiple lines, each showing 32 bytes of data in hexadecimal and EBCDIC
format.

SSA or SSA-n
Shows the Segment Search Argument. This field provides the virtual storage address of the SSA traced
on the right. There might be multiple lines, each showing 32 bytes of the SSA in hexadecimal and
EBCDIC format.

If APISET 1 or 2 is specified, the trace log shows the field name 'SSA'. If APISET 3 is specified, the
trace log shows up to of 15 SSA fields, showing their names as 'SSA-1', 'SSA-2', 'SSA-3', and so on.

SEG-PREF
Shows the prefix of the returned segment. Gives the virtual storage address of the segment prefix
traced on the right. There might be multiple lines, each showing 32 bytes of the prefix in hexadecimal
and EBCDIC format.

If NPF option is specified for the TRHC control statement, the SEG-PREF information is not printed.

Notes:

• If a Data Conversion exit routine (DFSDBUX1) is used for the segment accessed, the data shown in the
KEYFEEDB, IO-AREA, and SSA fields is presented in the application form, not in the stored form

• If a user application that is run by APISET 1 or 2 issues a DL/I call that is not supported by the HSSR call
handler, the call data is printed in this report even if the TRHC and the TRDB control statements are not
specified. Ignore LEV, STAT, SEGN and IO-AREA fields in the data.

DMTI

If the BUF option is specified for the TRHC control statement, the report contains a section of information
that describes the following control blocks and areas showing buffer handler trace data:

DBDNAME
Name of the DBD referred to by the HSSR PCB.

DSG
Data set group number.

PARTITION
Partition name (only for HALDB).

CALL-TYPE
Type of buffer handler call.

RC
Return code returned by the buffer handler.

HDMB
Snap dump of "Communication area" of HDMB control block of HSSR Engine.

192 IMS High Performance Unload: User's Guide

DATA
Data returned by buffer handler. This field provides the virtual storage addresses of the data traced
on the right. There might be multiple lines, each showing up to 32 bytes of data in hexadecimal and
EBCDIC format. This data can be:

• A KSDS record
• An OSAM block
• An ESDS control interval

If the BUFCB option is specified for the TRHC control statement, and CAB buffering is used, the trace of
the following control blocks of HSSR buffer handler is also printed:

HDMB
HDMC
SEQ HRAN
DIR HRAN

If CB option is specified for the TRHC control statement, the traces of the following control blocks
immediately before completion of an HSSR call are printed:

HJCB
HDMB
HSDB'S
HPTR'S

DMTI

Trace Output report with diagnostics information
The following diagnostic information appears on the report whenever you use the DIAGG option in
conjunction with the SKERROR option when unloading a corrupted database and a GG or a GX status code
is returned.

The diagnostic information that is printed on the Trace Output report varies with the database
organization and the type of error detected by HSSR Engine.

Subtopics:

• “Example report: Trace Output report with diagnostics information (CASE 1-A, CASE 1-B, and CASE 2)”
on page 193

• “Example report: Trace Output report with diagnostics information (CASE 19-A)” on page 196
• “Example report: Trace Output report with diagnostics information (CASE 19-B)” on page 197
• “Example report: Trace Output report with diagnostics information (CASE 20)” on page 198
• “Report field descriptions” on page 198

Example report: Trace Output report with diagnostics information (CASE 1-A, CASE
1-B, and CASE 2)
The following figures show an example of this report with diagnostics information when the error cases
are CASE 1-A, CASE 1-B, and CASE 2.

Chapter 12. Reports and output from HSSR Engine 193

IMS HIGH PERFORMANCE UNLOAD "TRACE OUTPUT" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 18.57.16 FABH310 - V1.R2

********************* BEGINNING OF GG DIAGNOSIS *******************************

********************* BEGINNING OF GG DIAGNOSIS *******************************

********************* BEGINNING OF GG DIAGNOSIS *******************************

GG STATUS CODE FOR PCB HDAM0010

THE NAME OF THE PREVIOUSLY RETRIEVED SEGMENT IS:ORDER

 THE SNAP OF ITS CONCATENATED KEY FOLLOWS:

 KEY 0006FB64 F0F0F0F0 F0F0F0F9 F0F0 *0000000900 *

------------------ TYPE OF GG ERROR ---

CASE 1-A: CHILD-POINTER POINTS OUTSIDE OF DATASET

 THE BAD POINTER IS AT THE DECIMAL OFFSET 0006 WITHIN THE PREFIX OF

 THE SEGMENT=ORDER AND SHOULD POINT TO THE SEGMENT=ORDART

RETRIEVAL OF FOLLOWING SEGMENTS MAY BE SKIPPED:

 ONE ORDART ,ANY TWIN ON TWIN- OR HIERARCHICAL- CHAIN,

 AND ALL OF THEIR DEPENDENTS

------------------ "HD-FROM INFO" FOLLOWS -------------------------------------

RBA OF SEGMENT-PREFIX CONTAINING THE BAD POINTER AND LOW+HIGH RBA OF ITS CI:

 RBA'S 0000BEDC 00001C10 00001C00 00001FFF * *

THE SEGMENT-PREFIX CONTAINING THE BAD POINTER

 PREFIX 071DF810 0100011C 00470FA3 0000 * *

------------------ "HD-TO INFO" FOLLOWS ---------------------------------------

RBA OF POINTER-TARGET FOLLOWS:

 RBA'S 0000BEDC 0FA30000 * *

THE BAD POINTER POINTS OUTSIDE OF THE DATASET

************************ END OF GG DIAGNOSIS **********************************

************************ END OF GG DIAGNOSIS **********************************

************************ END OF GG DIAGNOSIS **********************************

*** DB CALL *** FUNC=GN DBD=HDAM0010 LEV=01 STAT=GG PROC=GX SEGN=ORDER

 KEYFEEDB 0006FB64 F0F0F0F0 F0F0F0F9 F0F0 *0000000900 *

 IO-AREA

Figure 46. Trace Output report with diagnostics information (CASE 1-A, CASE 1-B, and CASE 2) (Part 1 of 3)

194 IMS High Performance Unload: User's Guide

********************* BEGINNING OF GG DIAGNOSIS *******************************

********************* BEGINNING OF GG DIAGNOSIS *******************************

********************* BEGINNING OF GG DIAGNOSIS *******************************

GG STATUS CODE FOR PCB HDAM0010

PREVIOUS CALL WAS NOT SUCCESSFUL (OR NO PREVIOUS CALL)

------------------ TYPE OF GG ERROR ---

CASE 1-B: TWIN-POINTER POINTS OUTSIDE OF DATASET

 THE BAD POINTER IS AT THE DECIMAL OFFSET 0002 WITHIN THE PREFIX OF

 THE SEGMENT=ORDER AND SHOULD POINT TO THE SEGMENT=ORDER

RETRIEVAL OF FOLLOWING SEGMENTS MAY BE SKIPPED:

 ONE ROOT, ANY OTHER ROOT ON SAME RAP CHAIN, AND ALL OF THEIR DEPENDENTS

------------------ "HD-FROM INFO" FOLLOWS -------------------------------------

RBA OF SEGMENT-PREFIX CONTAINING THE BAD POINTER AND LOW+HIGH RBA OF ITS CI:

 RBA'S 0000BEDC 00001C10 00001C00 00001FFF * *

THE SEGMENT-PREFIX CONTAINING THE BAD POINTER
 PREFIX 071DF810 0100011C 00470FA3 0000 * *

------------------ "HD-TO INFO" FOLLOWS ---------------------------------------

RBA OF POINTER-TARGET FOLLOWS:

 RBA'S 0000BEDC 011C0047 * *

THE BAD POINTER POINTS OUTSIDE OF THE DATASET

************************ END OF GG DIAGNOSIS **********************************

************************ END OF GG DIAGNOSIS **********************************

************************ END OF GG DIAGNOSIS **********************************

*** DB CALL *** FUNC=GN DBD=HDAM0010 LEV=01 STAT=GG PROC=GX SEGN=ORDER

 KEYFEEDB 0006FB64 F0F0F0F0 F0F0F0F9 F0F0 *0000000900 *

 IO-AREA

*** DB CALL *** FUNC=GN DBD=HDAM0010 LEV=01 STAT= PROC=GX SEGN=ORDER

 KEYFEEDB 0006FB64 F0F0F0F0 F0F0F1F6 F0F0 *0000001600 *

 IO-AREA 00105EFF F0F0F0F0 F0F0F1F6 F0F0D6D9 C4C5D940 C4C5E2C3 D9C9D7E3 C9D6D540 D7D7D7D7 *0000001600ORDER DESCRIPTION PPPP*
 00105F1F D7D7D7D7 D7D7D740 F9F6F1F2 F3F14040 40404040 40404040 40404040 40404040 *PPPPPPP 961231 *
 00105F3F 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00105F5F 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00105F7F 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00105F9F 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00105FBF 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00105FDF 40404040 40404040 40404040 40404040 40404040 40404040 4040 * *

 SEG-PREF 07267978 01000000 00000000 2E7C * *

Figure 47. Trace Output report with diagnostics information (CASE 1-A, CASE 1-B, and CASE 2) (Part 2 of 3)

Chapter 12. Reports and output from HSSR Engine 195

********************* BEGINNING OF GG DIAGNOSIS *******************************

********************* BEGINNING OF GG DIAGNOSIS *******************************

********************* BEGINNING OF GG DIAGNOSIS *******************************

GG STATUS CODE FOR PCB HDAM0010

THE NAME OF THE PREVIOUSLY RETRIEVED SEGMENT IS: ORDART

 THE SNAP OF ITS CONCATENATED KEY FOLLOWS:

 KEY 0006FB64 F0F0F0F0 F0F0F1F8 F0F0E3F0 F1F8F0F2 40F0 *0000001800T01802 0 *

------------------ TYPE OF GG ERROR ---

CASE 2: HDAM ROOT-ANCHOR-POINT DOES NOT POINT TO ROOT

RETRIEVAL OF FOLLOWING SEGMENTS MAY BE SKIPPED:

ONE ROOT, ANY OTHER ROOT ON SAME RAP CHAIN, AND ALL OF THEIR DEPENDENTS

------------------ "HD-FROM INFO" FOLLOWS -------------------------------------

RBA OF RAP CONTAINING THE BAD POINTER AND LOW+HIGH RBA OF ITS CI:

 RBA'S 0000BEDC 00002008 00002000 000023FF * *

THE BAD RAP

 RAP 071E0008 00002010 * *

------------------ "HD-TO INFO" FOLLOWS ---------------------------------------

RBA OF POINTER-TARGET AND LOW+HIGH RBA OF ITS CI:

 RBA'S 0000BEDC 00002010 00002000 000023FF * *

THE TARGET OF THE BAD POINTER FOLLOWS

 TARGET 071E0010 0200 * *

THE "TO" BUFFER IS THE SAME AS THE "FROM" BUFFER

************************ END OF GG DIAGNOSIS **********************************

************************ END OF GG DIAGNOSIS **********************************

************************ END OF GG DIAGNOSIS **********************************

*** DB CALL *** FUNC=GN DBD=HDAM0010 LEV=02 STAT=GG PROC=GX SEGN=ORDART

 KEYFEEDB 0006FB64 F0F0F0F0 F0F0F1F8 F0F0E3F0 F1F8F0F2 40F0 *0000001800T01802 0 *

 IO-AREA

*** DB CALL *** FUNC=GN DBD=HDAM0010 LEV=01 STAT= PROC=GX SEGN=ORDER

 KEYFEEDB 0006FB64 F0F0F0F0 F0F0F0F8 F0F0 *0000000800 *

 IO-AREA 001063B9 F0F0F0F0 F0F0F0F8 F0F0D6D9 C4C5D940 C4C5E2C3 D9C9D7E3 C9D6D540 C8C8C8C8 *0000000800ORDER DESCRIPTION HHHH*
 001063D9 C8C8C8C8 C8C8C840 F9F6F1F2 F3F14040 40404040 40404040 40404040 40404040 *HHHHHHH 961231 *
 001063F9 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00106419 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00106439 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00106459 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00106479 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00106499 40404040 40404040 40404040 40404040 40404040 40404040 4040 * *

 SEG-PREF 071DF184 01000000 00000000 1688 * *

Figure 48. Trace Output report with diagnostics information (CASE 1-A, CASE 1-B, and CASE 2) (Part 3 of 3)

Example report: Trace Output report with diagnostics information (CASE 19-A)
The following figure shows an example of this report with diagnostics information when the error case is
CASE 19-A.

196 IMS High Performance Unload: User's Guide

IMS HIGH PERFORMANCE UNLOAD "TRACE OUTPUT" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.00.09 FABH310 - V1.R2

********************* BEGINNING OF GG DIAGNOSIS *******************************

********************* BEGINNING OF GG DIAGNOSIS *******************************

********************* BEGINNING OF GG DIAGNOSIS *******************************

GG STATUS CODE FOR PCB DBHD0010

THE NAME OF THE PREVIOUSLY RETRIEVED SEGMENT IS:SG001LV1

 THE SNAP OF ITS CONCATENATED KEY FOLLOWS:

 KEY 001131E4 F0F2F0F0 F0F0F0F0 F0F1 *0200000001 *

------------------ TYPE OF GG ERROR ---

CASE 19-A: THE DATABASE POSITION IS UNAVAILABLE

 INFORMATION OF INTERNAL RBA CALL

 STATUS CODE: GG

 THE SNAP OF SSA FOLLOWS:

 SSA-1 0000A238 E2C7F0F0 F1D3E5F1 5CE34D00 0138185D *SG001LV1*T() *

************************ END OF GG DIAGNOSIS **********************************

************************ END OF GG DIAGNOSIS **********************************

************************ END OF GG DIAGNOSIS **********************************

*** DB CALL *** FUNC=GN DBD=DBHD0010 LEV=00 STAT=GG PROC=GXOT SEGN=

 KEYFEEDB

 IO-AREA

 SSA-1 07164AEE E2C7F0F0 F1D3E5F1 40 *SG001LV1 *

 SSA-2 07164AF7 E2C7F0F0 F4D3E5F2 40 *SG004LV2 *

Figure 49. Trace Output report with diagnostics information (CASE 19-A)

Example report: Trace Output report with diagnostics information (CASE 19-B)
The following figure shows an example of this report with diagnostics information when the error case is
CASE 19-B.

IMS HIGH PERFORMANCE UNLOAD "TRACE OUTPUT" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.07.42 FABH310 - V1.R2

********************* BEGINNING OF GG DIAGNOSIS *******************************

********************* BEGINNING OF GG DIAGNOSIS *******************************

********************* BEGINNING OF GG DIAGNOSIS *******************************

GG STATUS CODE FOR PCB DBHI0010

THE NAME OF THE PREVIOUSLY RETRIEVED SEGMENT IS:SG001LV1

 THE SNAP OF ITS CONCATENATED KEY FOLLOWS:

 KEY 0008B244 F1F0F0F0 F0F0F0F0 F0F1 *1000000001 *

------------------ TYPE OF GG ERROR ---

CASE 19-B: THE DATABASE POSITION IS UNAVAILABLE

 INFORMATION OF DL/I BUFFER HANDLER REQUEST

 PSTRTCDE: 18; PSTFNCTN: F2; DDNAME: DDHX0010

 THE SNAP OF REQUESTED KEY FOLLOWS:

 KEY 00022569 F1F0F0F0 F0F0F0F0 F0F1 *1000000001 *

************************ END OF GG DIAGNOSIS **********************************

************************ END OF GG DIAGNOSIS **********************************

************************ END OF GG DIAGNOSIS **********************************

*** DB CALL *** FUNC=GN DBD=DBHI0010 LEV=00 STAT=GG PROC=GXOT SEGN=

 KEYFEEDB

 IO-AREA

 SSA-1 07125CAE E2C7F0F0 F1D3E5F1 40 *SG001LV1 *

 SSA-2 07125CB7 E2C7F0F0 F4D3E5F2 40 *SG004LV2 *

Figure 50. Trace Output report with diagnostics information (CASE 19-B)

Chapter 12. Reports and output from HSSR Engine 197

Example report: Trace Output report with diagnostics information (CASE 20)
The following figure shows an example of this report with diagnostics information when the error case is
CASE 20.

IMS HIGH PERFORMANCE UNLOAD "TRACE OUTPUT" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 12.11.14 FABH310 - V1.R2

********************* BEGINNING OF GG DIAGNOSIS *******************************

********************* BEGINNING OF GG DIAGNOSIS *******************************

********************* BEGINNING OF GG DIAGNOSIS *******************************

GG STATUS CODE FOR PCB DBHD0160

THE NAME OF THE PREVIOUSLY RETRIEVED SEGMENT IS:SG005LV3

 THE SNAP OF ITS CONCATENATED KEY FOLLOWS:

 KEY 000721E4 F0F4F0F0 F0F0F0F0 F0F1F0F4 F0F3F0F0 F0F0F0F1 F0F4F0F4 F0F0F0F0 F0F1 *040000000104030000010404000001 *

------------------ TYPE OF GG ERROR ---

CASE 20: STATUS CODE=GG RETURNED ON THE INTERNAL DL/I CALL

************************ END OF GG DIAGNOSIS **********************************

************************ END OF GG DIAGNOSIS **********************************

************************ END OF GG DIAGNOSIS **********************************

*** DB CALL *** FUNC=GN DBD=DBHD0160 LEV=00 STAT=GG PROC=GXOT SEGN=

 KEYFEEDB

 IO-AREA

 SSA-1 071A7848 E2C7F0F0 F1D3E5F1 40 *SG001LV1 *

 SSA-2 071A7851 E2C7F0F0 F4D3E5F2 40 *SG004LV2 *

 SSA-3 071A785A E2C7F0F0 F5D3E5F3 40 *SG005LV3 *

Figure 51. Trace Output report with diagnostics information (CASE 20)

Report field descriptions
The following information is provided in the report:

************ BEGINNING OF GG DIAGNOSIS ************
Eye-catcher identifying the beginning of the DIAGG diagnosis. The line is printed three times.

GG STATUS CODE FOR PCB psbname
psbname of PSB containing PCB used; if run in the ULU region, this is the dbdname as specified on the
EXEC statement.

THE NAME OF THE PREVIOUSLY RETRIEVED SEGMENT IS: segname
Segment name returned by the previous successful HSSR call.

THE SNAP OF ITS CONCATENATED KEY FOLLOWS:
Concatenated key of the segment. There might be one or more lines each showing up to 32 bytes of
data in hexadecimal and EBCDIC format.

The report contains a section that starts with the following line:

--------------- TYPE OF GG ERROR -----------------
The section contains information describing the type of GG error that was detected. The next line,
"CASE nn:", identifies a type of GG error.

Pointer or Key Sequence Errors
For a pointer error or a key sequence error, the report tells which kind of pointer or key is incorrect and
which type of segments may be skipped by the SKERROR option.

The following is a description of each error case:

CASE 1-A: Incorrect segment prefix pointer other than root twin pointer.
HSSR Engine handles the incorrect pointer as if it contained zero, and continues processing
with the next appropriate pointer. In this case, HSSR Engine skips the retrieval of one or more
dependent segments of the current database record.

If the incorrect pointer is a physical child first pointer, the following segments are skipped:

198 IMS High Performance Unload: User's Guide

• Child segment
• All twins on the physical twin chain or on the hierarchical chain of the above child
• All dependents of the above segments

If the incorrect pointer is a physical twin forward pointer, the following segments are skipped:

• Twin segment
• All further twins on the incorrect physical twin forward chain
• All dependents of the above segments

If the incorrect pointer is a hierarchical forward pointer, the following segments are skipped:

• All further segments on the incorrect hierarchical twin forward chain
• All dependents of the above segments

CASE 1-B: Incorrect HDAM root twin pointer.
HSSR Engine handles the incorrect pointer as if it contained zero, and continues processing by
skipping to the next HDAM root anchor point (RAP).

In this case, HSSR Engine skips the retrieval of the following database segments:

• All further roots on the incorrect twin chain (incorrect RAP synonym chain)
• All dependents of the above roots

CASE 1-C: Incorrect HIDAM root twin pointer.
HSSR Engine attempts to access the HIDAM root segment via the HIDAM index.

If the pointer in the index record is correct, HSSR Engine does not skip the retrieval of any
database segments. If the pointer in the index record is also incorrect, HSSR Engine skips to the
next record, with the result that one root and all of its dependents are not retrieved.

CASE 2: Incorrect HDAM root anchor pointer.
HSSR Engine handles the incorrect RAP as if it contained zero, and continues processing by
skipping to the next RAP.

In this case, HSSR Engine skips the retrieval of:

• All roots on the incorrect RAP synonym chain
• All dependents of the above roots

CASE 3: Incorrect HIDAM root index pointer.
HSSR Engine continues processing by accessing the next Index record.

In this case, HSSR Engine skips the retrieval of one root segment and all its dependents.

CASE 4: Incorrect pointer to split data portion of a segment.
HSSR Engine skips the retrieval of the following segments of the current database record:

• Segment with the incorrect data pointer
• All further segments on the remainder of a hierarchical forward pointer chain, if the segment is

on such a chain
• All dependents of the above segments

CASE 5: KEYCHECK option detected sequence error.
HSSR Engine uses the same logic as in case 4.

This case includes the sequence error in the sequence key for a virtual logical child when a
migration unload is being done. In that case, HSSR Engine skips the retrieval of the following
occurrences of the logical child:

• The occurrence at which the sequence error is detected
• All further occurrences of the logical child on the remainder of a logical child forward pointer

chain

Chapter 12. Reports and output from HSSR Engine 199

CASE 9: Incorrect value for segment length field.
HSSR Engine skips the retrieval of the following segments of the current database record:

• Segment with the incorrect segment length field
• All dependents of the above segments

CASE 10: HISAM segment code is not 01 at beginning of root record.
If error is due to an incorrect pointer used to chain ESDS records of a secondary index database,
HSSR Engine resumes its retrieval with the logical next KSDS record; hence the retrieval of one or
more database records is skipped.

For other errors, HSSR Engine resumes its retrieval with the next root segment, skipping the
retrieval of the remaining segments of the current database record.

CASE 11: HISAM record has incorrect segment code or delete byte.
HSSR Engine uses the same logic as in case 10.

CASE 12: HISAM pointer to overflow record points outside of data set.
HSSR Engine uses the same logic as in case 10.

CASE 13: Key sequence error detected for a segment in an HISAM or secondary index database.
HSSR Engine uses the same logic as in case 10.

For HDAM and HIDAM databases, the report contains a section of information describing the incorrect
pointer:

-------------"HD-FROM INFO" FOLLOWS --------------
An eye-catcher identifying the beginning of the "HD-FROM" information:

RBA OF SEGMENT PREFIX CONTAINING THE BAD POINTER AND LOW+HIGH RBA OF ITS CI:
Snap of one area containing three RBAs:

• RBA of segment prefix (or RBA of the RAP) that contains the incorrect pointer.
• Beginning RBA and ending RBA of the block or CI that contains the incorrect pointer.

THE SEGMENT PREFIX CONTAINING THE BAD POINTER
Snap of segment prefix that contains the incorrect pointer. This field provides the virtual storage
addresses of the data traced on the right. There might be multiple lines, each showing up to 32 bytes
of data in hexadecimal and EBCDIC format.

THE SEGMENT BUFFER
Snap of the block, CI, or index record that contains the incorrect pointer. This field provides the virtual
storage addresses of the data traced on the right. There might be multiple lines, each showing up to
32 bytes of data in hexadecimal and EBCDIC format.

For HDAM and HIDAM databases, the report contains a section of information describing the portion of
the database "pointed to" by the incorrect pointer.

-------------- "HD-TO INFO" FOLLOWS --------------
An eye-catcher identifying the beginning of the "HD-TO" information:

RBA OF POINTER TARGET AND LOW+HIGH RBA OF ITS CI:
Snap of one area containing three RBAs:

• RBA contained in the incorrect pointer (RBA "pointed to" by the incorrect pointer).
• Beginning RBA and ending RBA of the block or CI that is "pointed to."

THE TARGET OF THE BAD POINTER FOLLOWS
Snap of the first 2 bytes "pointed to" by the incorrect pointer. If the incorrect pointer does not point
outside of the data set, this area is snapped.

THE TARGET BUFFER
Snap of the block or CI "pointed to" by the incorrect pointer. This field provides the virtual storage
addresses of the data traced on the right. There might be multiple lines, each showing up to 32 bytes
of data in hexadecimal and EBCDIC format.

200 IMS High Performance Unload: User's Guide

This snap is only provided if the "TO-" block or CI snapped in the "HD-TO" is not the same as the
"FROM-" block or CI snapped in the "HD-FROM INFO". Otherwise, the message THE "TO" BUFFER
IS THE SAME AS THE "FROM" BUFFER appears in this area.

For HISAM and secondary index databases, the report contains data on the last KSDS record accessed by
HSSR Engine.

---------- "HS ISAM/KSDS RECORD" FOLLOWS -----------
An eye-catcher identifying the beginning of the "HS ISAM/KSDS RECORD". A snap of the last KSDS
record accessed by HSSR Engine. This field provides the virtual storage addresses of the data traced
on the right. There might be multiple lines, each showing up to 32 bytes of data in hexadecimal and
EBCDIC format.

For HISAM and secondary index databases, the report contains information about the current ESDS/KSDS
record.

------------ "HS CURRENT RECORD" FOLLOWS -----------
An eye-catcher identifying the beginning of the "HS CURRENT RECORD".

VSAM RBA OF BAD RECORD AND LOW+HIGH RBA.S OF ITS CI FOLLOWS ON SNAPS:
Snap of one area containing three ESDS RBAs or three OSAM RRNs.

• RBA of the ESDS record
• Beginning RBA and ending RBA of the CI that contains the record.

SNAP OF BAD SEGMENT CODE/DELETE BYTE AND OF BAD RECORD FOLLOWS:
Snap of the first 2 bytes of the segment prefix and of the current ESDS/KSDS record. This field
provides the virtual storage addresses of the data traced on the right. There might be multiple lines,
each showing up to 32 bytes of data in hexadecimal and EBCDIC format.

IMS call handler or IMS buffer handler errors
If APISET 3 is specified, and a call to IMS causes an error, one of the following reports is issued. CASE
15 to CASE 18 are deleted.
CASE 19-A: The current database position is not valid.

This might happen if there is something that updates the database concurrently. The error causes
the current position to be reset to the beginning. If status code GG or GE is returned in response to
the INTERNAL RBA call, the following:

• status code
• the SNAP DUMP of SSA specified at the time of RBA call

A sample of this report is provided in Figure 49 on page 197.
CASE 19-B: The current database position is not valid.

This might happen if there is a something that updates the database concurrently. If an error
occurs when a DLI buffer handler is called for a DBDS, the following information is written in the
report:

• DDNAME of DSG
• the return code from the buffer handler (PSTRTCDE)
• the function code (PSTFNCTN) sent to the buffer handler
• the key value (for key request) sent to the buffer handler

A sample of this report is provided in Figure 50 on page 197.
CASE 20: Status 'GG' is returned when a call is made from an application to IMS.

An error occurred in IMS after a call was made to IMS. The error resets the position of the
database to the beginning. HSSR Engine does not generate any error report, because it cannot
identify the reason for the error. The PCB information at the call time is reported in the CALL
TRACE report that is generated after the DIAGG report. A sample of this report is provided in
Figure 51 on page 198.

The following line indicates the end of a DIAGG output:

Chapter 12. Reports and output from HSSR Engine 201

*************** END OF GG DIAGNOSIS ***************
The line is printed three times.

After printing a DIAGG output information, the DIAGG option forces a temporary activation of the
hardcopy trace option, TRHC. The TRHC option remains in effect until the next database call is completed.
The TRHC option enables you to determine whether the next call has been completed successfully, and
to see the next retrieved segment. If the TRHC option is active, the Trace Output report contains the
following information:

• Trace of the HSSR call that ended with a GG or a GX status code.
• Trace of the first successful HSSR call after a GG or a GX status code was returned. This contains

the name of the returned segment, a snap of the PCB key feedback area, and a snap of the returned
segment.

• Snaps of the buffer handler calls, if the keyword BUF is specified in the DIAGG statement.
• Snaps of the control blocks of HSSR Engine, if the keyword CB is specified in the DIAGG statement.

HSSRSNAP data set
This data set provides a snapshot of control blocks of HSSR Engine whenever HSSR Engine detects
abnormalities while the control blocks are being initialized.

An error message is also issued. The initialization ends, and HSSR Engine falls back to DL/I. All HSSR
PCBs are considered DL/I PCBs, and the application program runs using DL/I action modules instead of
HSSR Engine.

If the HSSRSNAP DD statement is omitted, HSSR Engine abends instead of falling back to DL/I. If you
want HSSR Engine to fall back to DL/I without a snap, code this data set as DUMMY.

Format
This data set contains 133-byte fixed-length records. When the block size is coded in the JCL, the block
size must be a multiple of 133.

HSSR SNAPs
When a snap is taken, the control blocks of HSSR Engine are provided. The snap gives the virtual storage
addresses of the data traced on the right. There might be multiple lines, each showing up to 32 bytes of
data in hexadecimal and EBCDIC format.

HSSRLOUT data set
This output data set contains, for each database record, a record that can be used for tuning databases.

Each record consists of:

• Length of the database record (fullword)
• The number of database I/Os required to read all database segments of the database record (fullword)
• Key of the database root segment

You can use this report to tune your databases. For a description about this data set, see “HSSRLOUT
output data set for Database Tuning Statistics” on page 311.

202 IMS High Performance Unload: User's Guide

HSSRBUTR data set
This data set provides buffer handler trace information that is generated by an unload utility or application
program, and that is used as the input for the HSSR Buffer Handler Simulation utility, FABHBSIM.

Format
This data set contains variable-length records that are read by FABHBSIM.

Chapter 12. Reports and output from HSSR Engine 203

204 IMS High Performance Unload: User's Guide

Part 3. Tuning and customizing HSSR application jobs
You can diagnose, tune, and customize your IMS High Performance Unload jobs to meet your
requirements.

Topics:

• Chapter 13, “Overview of the buffer handlers,” on page 207
• Chapter 14, “Tuning the Chained Anticipatory Buffer handler,” on page 211
• Chapter 15, “Tuning the Basic Buffer handler,” on page 227
• Chapter 16, “HSSR call test utility (FABHTEST),” on page 229
• Chapter 17, “Buffer handler simulation utility (FABHBSIM),” on page 239
• Chapter 18, “System programming interfaces,” on page 243
• Chapter 19, “Site default options,” on page 261

© Copyright IBM Corp. 2000, 2024 205

206 IMS High Performance Unload: User's Guide

Chapter 13. Overview of the buffer handlers
HSSR Engine provides two buffer handlers, called HSSR buffer handlers, that provide buffering services
for ESDS, OSAM database, and OSAM LDS: Chained Anticipatory Buffer handler (CAB) and Basic Buffer
handler (BB).

CAB provides better buffer handling than BB for well-organized HIDAM, HDAM, PHIDAM, and PHDAM
databases, and well-organized HISAM overflow area. CAB uses more buffer space than BB; however, CAB
uses virtual and real storage for a shorter elapsed time. The performance of both buffer handlers depends
on how well the databases are organized.

Either CAB or BB can replace the DL/I buffer handler. A major advantage of the two HSSR buffer handlers
over the DL/I buffer handler is that HSSR buffer handlers reduce the path length of database calls. Both
HSSR buffer handlers provide one buffer pool for each PCB. Within a PCB, a buffer pool is provided for
each data set group. By contrast, the DL/I buffer handler provides common buffer pools, which are shared
by multiple PCBs and multiple data sets.

Note: For HALDBs, a buffer pool is provided for each data set group and each buffer pool is shared by all
partitions.

The following table summarizes the buffering functions available to HSSR application programs.

Table 29. Overview of buffering services

Chained
Sequential I/O

Anticipatory
Overlapped I/O

Look-aside
Buffering

Reference Pattern
Analysis

ESDS (CAB) Y Y Y Y

OSAM (CAB) Y Y Y Y

OSAM LDS (CAB) Y Y Y Y

ESDS (BB) - - Y -

OSAM (BB) - - Y -

OSAM LDS (BB) - - Y -

KSDS (see Note) Y Y Y -

Note: KSDS is buffered by VSAM, not by HSSR buffer handlers. VSAM provides the following buffering
functions:

• Direct I/O
• Immediate-chained sequential I/O
• Anticipatory overlapped chained sequential I/O
• Look-aside buffering

Topics:

• “Chained Anticipatory Buffer handler (CAB)” on page 208
• “Basic Buffer handler” on page 208
• “Buffering service for KSDS” on page 209

© Copyright IBM Corp. 2000, 2024 207

Chained Anticipatory Buffer handler (CAB)
The Chained Anticipatory Buffer handler (CAB) is a highly efficient HSSR buffer handler for ESDSs, OSAM
databases, and OSAM LDSs. It is designed to reduce the I/O time, I/O wait time, and elapsed time for
HSSR application programs.

CAB is the more advanced of the two HSSR buffer handlers. CAB uses the following buffering methods to
improve buffering performance:

Direct I/O
Enables direct access to a single ESDS CI, OSAM LDS CI, or OSAM block.

Immediate (non-overlapped) chained sequential I/O
Enables reading of multiple consecutive ESDS CIs, OSAM LDS CIs, or OSAM blocks (called ranges)
through Channel Command Word (CCW) chaining.

Anticipatory (overlapped) chained sequential I/O
Allows CAB to perform overlapped "look-ahead" I/O. This involves the overlapping of CAB I/O with
processing and other I/O of the same job step. (Overlapped I/O is also performed with CCW chaining.)
CAB decides dynamically when to start overlapped I/O, based on the reference pattern analysis.

Reference pattern analysis
Forecasts and decides whether chained sequential I/O of multiple blocks or CIs or direct I/O of one
single block or CI is preferable.

The forecast is based on statistics about reference patterns within the most recently referred-to
relative byte address (RBA) ranges of the data set. For example, assume that a segment was inserted
after the last database load or reload, and that this segment was stored in an OSAM block, OSAM
LDS CI, or ESDS CI far away from the blocks or CIs containing the other segments of either the same
or neighboring database records. In such a case, CAB might forecast that direct I/O is superior to
chained sequential I/O for reading the block or CI containing the inserted segment.

Look-aside buffering
Is an efficient buffering method also used by BB and DL/I buffer handlers.

Inter-PCB look-aside buffering (optional)
Inter-PCB look-aside is a method that enables CAB to attempt to find a requested RBA in buffers
of other HSSR PCBs. If HSSR PCB 1 and HSSR PCB 2 refer to the same database, and if look-aside
buffering for HSSR PCB 1 is unsuccessful, HSSR buffer handler tries to find the requested data in the
CAB buffers of HSSR PCB 2. If the data is found, the buffer of HSSR PCB 2 is copied into a buffer of
HSSR PCB 1.

Restrictions when using CAB for ESDS data sets and OSAM LDS data sets
When CAB is used for ESDS data sets or OSAM LDS data sets:

• The number of VSAM buffers for the ESDS data set or OSAM LDS data set is chosen by CAB. This
number must not be overridden by means of JCL specifications or IDCAMS specifications. Do not code
the BUFND, BUFSP, and STRNO operands in the AMP parameter of the DD statements. Avoid coding the
BUFFERSPACE parameter on a DEFINE or ALTER command.

• If multiple HSSR PCBs defined in the PSB refer to the same ESDS database or OSAM LDS database, CAB
can be used to buffer only one of these PCBs. Use the BB to buffer the other PCBs referring to this ESDS
database or OSAM LDS database. Inter-PCB look-aside buffering option can be activated between CAB
buffer and BB buffer for the same ESDS database or OSAM LDS database.

Basic Buffer handler
The Basic Buffer handler (BB) provides ESDS, OSAM data sets, and OSAM LDS with look-aside buffering
services similar to those services provided by the DL/I buffer handler.

BB might yield better performance than the DL/I buffer handler, because HSSR Engine reduces the path
length for database calls and uses direct I/O and look-aside buffering methods. However, BB does not

208 IMS High Performance Unload: User's Guide

provide the immediate-chained sequential I/O or the anticipatory overlapped chained sequential I/O,
which are provided by CAB.

BB is used for ESDS, OSAM data sets, and OSAM LDS if a BUF control statement is specified, in the
HSSROPT data set, for the database.

To reduce the path length of an HSSR call, each HSSR PCB and each data set group within each PCB has
its own buffers for OSAM, OSAM LDS, and ESDS, which is the same as CAB. If HSSR PCB 1 and HSSR PCB
2 refer to the same database, and look-aside buffering for HSSR PCB 1 is unsuccessful, the buffer handler
tries to find the requested data in the BB buffers of HSSR PCB 2. If it finds the data, the buffer of HSSR
PCB 2 is copied into a buffer of HSSR PCB 1. Buffers are maintained on a last-referred-to basis.

An output statistical report is provided to the user on the HSSRSTAT data set.

Buffering service for KSDS
By default, HSSR Engine uses "native" VSAM (VSAM with the No Shared Resource Pool Option) to read a
KSDS.

Native VSAM provides both immediate chained sequential I/O and anticipatory overlapped chained
sequential I/O. In batch processing, DL/I uses the Local Shared Resource (LSR) Pool option. This does not
provide immediate chained sequential I/O, but provides more efficient look-aside capabilities for random
database processing.

To improve the performance (through better look-aside buffering) of programs that issue a large number
of GU calls to HIDAM or PHIDAM databases, HSSR Engine makes it possible, as an option, to process the
primary index of an HIDAM and PHIDAM database to be processed with the LSR option.

For an HSSR application program, VSAM provides the following buffering services:

• Immediate chained sequential I/O
• Anticipatory overlapped chained sequential I/O
• Direct I/O
• Look-aside buffering

Subtopics:

• “"Native" VSAM” on page 209
• “VSAM LSR option for primary index databases” on page 210

"Native" VSAM
HSSR Engine does not provide statistics about VSAM KSDS buffering. Your installation might be able to
provide SMF statistics that can be used to determine the optimum number of buffers.

The number of buffers for the processing of the index and data components of the KSDS cluster can be
specified separately on the JCL DD statement.

The DD statement must be coded as follows:

 //KSDS DD DSN=IMSVS.VSAM,DISP=SHR,
 // AMP=(’BUFND=8,BUFNI=4’)

BUFND is used to specify the buffer number for the data component and BUFNI for the index component
of the KSDS cluster.

If the AMP parameter is not coded, the HSSR Engine sets the number of the two buffers for NSR as
follows:

• BUFNI = Number of levels
• BUFND = One-fifth of the number of CIs per CA

Chapter 13. Overview of the buffer handlers 209

VSAM LSR option for primary index databases
If primary index databases are to be processed with VSAM LSR, specify the LSR option in the HSSROPT
data set. For details of the LSR control statement, see “LSR control statement” on page 172.

Usually, you do not need to take any other step to use LSR YES option. However, if a VSAM logical
error occurs because all VSAM place holders are used in the DLI or DBB region, specify the appropriate
STRINGNM parameter on the POOLID control statement or the STRINGMX parameter on the OPTIONS
statement in the DFSVSAMP data set. The appropriate number is shown by the following formula:

 2 x (the number of KSDS data sets that are to be accessed
 from your application program) + 2

Note: This option has no effect if the root segment of an HIDAM or PHIDAM database has no physical
twin backward or hierarchical backward pointers. If the PSB has at least one DB PCB that has a PROCOPT
allowing database update (PROCOPT=A, R, I, L, or D), this option is canceled internally.

If you specify the DFSSTAT data set, IMS prints statistics about LSR buffering in it at the end of the job
step. HSSR Engine does not print any statistics report on its own.

To specify the number of buffers for the Local Shared Resource Pools, define it in the DL/I DFSVSAMP
data set.

210 IMS High Performance Unload: User's Guide

Chapter 14. Tuning the Chained Anticipatory Buffer
handler

CAB buffering parameters and options are determined automatically based on the characteristics of the
database data sets. Generally, you do not need to tune CAB. For severely fragmented databases, however,
allocating more buffers than the default might improve the performance of your job.

Topics:

• “Considerations before tuning CAB” on page 211
• “Determining the appropriate CAB parameters” on page 216
• “HSSRCABP control statements” on page 217
• “JCL examples for specifying CAB parameters” on page 223

Considerations before tuning CAB
Before tuning CAB, learn about the factors that influence the performance of CAB.

What you need to know before tuning CAB
The most crucial CAB performance factor is that a database should be well organized. Such databases
allow more chained sequential I/O and result in improved performance for HSSR application programs.

Avoid performance degradation due to inserts
CAB performs best with recently loaded or reorganized databases. The performance degrades when
the database becomes older, because segments that have been inserted cannot be stored in the same
OSAM block, OSAM LDS CI, or ESDS CI. This is especially true if the inserted segments of a given
database key range (HIDAM and PHIDAM) or RAP range (HDAM and PHDAM) are scattered in multiple
blocks or CIs. The performance degradation is encountered not only with CAB, but also with different
kinds of processing, including online, and more specifically with almost any kind of sequential database
processing.

To reduce performance degradation, two solutions can be investigated:

• Reorganize the database more frequently.
• Specify free space within the database in such a way that the database is better protected from

performance degradations. This solution might require more DASD space for the database; however,
most jobs including online jobs benefit from the free space specifications.

The impact of free space specifications on performance occurs when initially loading or reloading the
database. If database load or reload occurs infrequently, you should plan for free space specifications
before initially loading the database.

Here is an example of a free space implementation for a database:

• Try to store inserted segments into the same block or CI as the hierarchical neighbor segments by
means of standard DBDGEN specifications, which reserve free space within each block or CI.

• Segments that cannot be inserted in the same block as the hierarchical neighbors should not be
scattered into numerous blocks, but should be grouped by database key range or RAP range into a few
blocks. The user achieves this by means of standard DBDGEN specifications that reserve entirely free
blocks and by taking care of the IMS HD bit map blocks.

Without such a grouping, segments of a given database key range or RAP range that are inserted after
database reorganization could be scattered in a number of different blocks. Retrieval of each of these
segments could require up to one I/O per segment.

© Copyright IBM Corp. 2000, 2024 211

To implement these free space specifications, consider the following actions that can be taken:

• The FRSPC fspf operand on the DATASET statement of a DBD can be used to specify free space within
each block. This free space improves the performance of most programs, including online programs,
that access the database.

• The FRSPC fbff operand on the DATASET statement of a DBD can be used to leave each nth block
entirely free for future segment insertion.

Note: For HALDBs, use the HALDB Partition Definition Utility to specify FRSPC parameters.
• A dummy segment can be defined in the DBD. This dummy segment must be long enough to achieve the

following goal: the IMS bit map blocks should indicate that only entirely free blocks contain enough free
space to contain the longest database segment.

• The DBDGEN must be performed, and the database must be reloaded.

To decide where to store segments inserted after a database reload, the HD space search algorithm used
by IMS uses the following criteria:

1. Same block
2. On the same track: any blocks that were originally left entirely free
3. On the same cylinder, then within n cylinders: any blocks that were originally left entirely free
4. Any block at the end of data set, based on the bit map
5. Any blocks that were originally left entirely empty.

First, search criterion 1 tries to insert the segment in the same block as its neighbors. If this fails, search
criteria 2 and 3 try to group segments of a key range or RAP range into a few blocks of the same track,
the same cylinder, or neighbor cylinders. Only if search criteria 1, 2, and 3 fail, scattering can occur during
segment insertion.

Note: The list of search criteria has been simplified for the sake of demonstration. In reality, the search
criteria used by IMS also consider CIs or blocks actually in the IMS buffer pools to reduce the amount of
grouping.

For a more detailed description of the HD space search algorithm, see IMS Database Administration.

Control statements that affect performance
Use the HSSRCABP control statements to allocate more buffers to tune the performance of your job.
Some control statements that are specified in the HSSROPT data set can also affect the performance of
CAB.

Subtopics:

• “HSSRCABP control statements” on page 212
• “CAB buffer sharing for HALDB” on page 214
• “HSSROPT control statements” on page 214

HSSRCABP control statements
HSSRCABP data set contains the CAB control statements that are used to change CAB buffering
parameters and options for a specified data set or for a specified group of data sets. The statements make
it possible to override the default values of the CAB parameters. The following table lists the HSSRCABP
control statements.

For an instruction for tuning buffers, see “Determining the appropriate CAB parameters” on page 216. For
a detailed description of each control statement, see “HSSRCABP control statements” on page 217.

212 IMS High Performance Unload: User's Guide

Table 30. HSSRCABP control statements

Control statement Description

CABDD This control statement defines a data set or a group of data sets to which the
succeeding CAB control statements apply.

OCCURRENCE This optional control statement specifies the HSSR PCB to which the
specifications of the control statement set apply. It is used when multiple HSSR
PCBs refer to the same database.

RANSIZE This optional control statement specifies the size of a range, which is the fixed
number of ESDS CIs, OSAM LDS CIs, or OSAM blocks read together in one
chained sequential I/O operation.

The default value for RANSIZE is determined from the characteristics of each
database data set; the default value is determined as follows:

• For OSAM, the value is equal to the number of blocks per track
• For ESDS and OSAM LDS, the value is equal to:

– Half of the number of CIs per CA if the CI size is greater than 2,048 bytes
– One-fourth of the number of CIs per CA if the CI size is less than or equal to

2,048 bytes

This default is efficient for relatively well organized databases.

A RANSIZE value smaller than the default can be specified to reduce the buffer
space. (In this case, the REFT4 parameter value, if it is coded, must also be
reduced.)

NBRSRAN This optional control statement specifies the number of whole ranges to be
buffer-resident for look-aside buffering.

The NBRSRAN parameter affects the number of successful look-aside
operations, as well as buffer space.

With well-organized databases, NBRSRAN can be reduced to the minimum
value of 3 (because look-aside operations are less important with well
organized databases) to reduce the buffer space.

With disorganized databases, increasing NBRSRAN can sometimes increase
the number of successful look-aside operations. This decreases the number of
direct and chained sequential I/Os.

NBRDBUF This optional control statement specifies the number of single blocks or CIs
read with direct I/O to be buffer-resident for look-aside buffering.

OVERFLOW This optional control statement affects the buffering of the prime data set group
of an HDAM or PHDAM database and describes how the overflow area should be
buffered.

The OVERFLOW parameter affects the buffering of HDAM and PHDAM
databases. If a large number of I/O operations are performed in the overflow
area, either the OVERFLOW CAB option (default) or the OVERFLOW SHR option
is recommended, because either of them allows chained sequential I/O in the
overflow area. Note that the OVERFLOW CAB option requires more buffer space
than OVERFLOW SHR.

The OVERFLOW BB is reasonable if only a few I/O operations are performed
in the overflow area. However, it does not allow chained sequential I/O in the
overflow area.

Chapter 14. Tuning the Chained Anticipatory Buffer handler 213

Table 30. HSSRCABP control statements (continued)

Control statement Description

REFT4 This optional control statement is used as a reference threshold value to help
determine whether chained sequential I/O or direct I/O should be performed.

The default value of REFT4 equals to that of RANSIZE. This value can
be decreased or increased, to regulate the number of direct and chained
sequential I/O operations.

This parameter does not affect the number of buffers to be allocated by CAB.

INTER This optional control statement activates the CAB inter-PCB look-aside, which
enables CAB to attempt to find a requested RBA within buffers of other HSSR
PCBs that refer to the same database.

PARTPROC This optional control statement, valid only for HALDB, specifies the access
intent for the database or the databases specified on the statement.

For a HALDB, CAB buffers are shared among data sets that belong to the same
data set group. If only one partition is accessed at a time, as in the unload
utilities such as FABHURG1 or FABHFSU utility, you do not need to use this
control statement. If more than one partition is accessed randomly, you must
specify the number of partitions that are accessed at a time.

For the detailed description of PARTPROC statement and the buffer sharing for
HALDB, refer to “CAB buffer sharing for HALDB” on page 214.

CAB buffer sharing for HALDB
For HALDBs, CAB buffers are shared among data sets that belong to the same data set group.

If only one partition is accessed at a time, as in the unload utilities such as FABHURG1 or FABHFSU utility,
do not code the PARTPROC control statement. In this case, the CAB buffer for each data set group is used
exclusively for the partition that HSSR buffer handler accesses at that time.

If more than one partition is accessed randomly at a time from your HSSR application program, you must
specify a PARTPROC control statement for the HALDB, with R as the second operand and the number
of partitions that are accessed at a time as the third operand. CAB buffer handler then calculates the
required number of buffers based on the CAB parameters specified for each data sets. It allocates enough
buffer space so that CAB buffering requirements specified by the CAB control statement are met for
each data set as long as partitions more than the number specified in the PARTPROC statement are not
accessed.

The total amount of storage used for the CAB buffer space for the HALDB is reported in the HALDB
Buffering Statistics report (see HALDB Buffering Statistics).

HSSROPT control statements
This input data set provides control statements that affect CAB buffering. The following table shows a
brief review of the HSSROPT control statements that you might want to consider using with CAB. For a
detailed description of these control statements, see Chapter 11, “Options for HSSR Engine,” on page
155.

214 IMS High Performance Unload: User's Guide

Table 31. HSSROPT control statements for CAB

Control statements Description

BUTR This optional control statement activates a trace of CAB buffering activities. The
trace is written to the data set defined by the HSSRBUTR DD statement. This
data set is used as input to FABHBSIM to simulate CAB buffering in order to
tune CAB buffers.

The buffer trace is not taken for HALDBs.

NOFIX This optional control statement prevents page-fixing. Since a noticeable
amount of paging might occur when CAB buffers are not page-fixed, this
statement is usually omitted.

NOVSAMOPT This optional control statement prevents CAB from using the default read-
ahead threshold value used by VSAM.

Trade-off decisions between elapsed time and buffer space
In some cases, you must make trade-off decisions between elapsed time and buffer space.

The RANSIZE parameter has the greatest effect on both elapsed time and buffer space. The number of
buffers allocated by CAB to each PCB/data set combination, except for the prime data set group of HDAM,
is given by:

 (RANSIZE x (NBRSRAN + 1)) + NBRDBUF

Additional CAB buffers of the same number are allocated for the overflow area of the prime data set group
of HDAM and PHDAM if 'OVERFLOW CAB', which is the default, is specified.

CAB default parameters are:

 RANSIZE=(the value determined from data set characteristics)
 NBRSRAN=8
 NBRDBUF=RANSIZE x 2
 OVERFLOW=CAB
 REFT4=RANSIZE

The use of these default parameter values should greatly reduce elapsed time. The default values result
in the allocation of buffers of RANSIZE x 11 (and additional CAB buffers for the overflow area of the prime
data set group of HDAM or PHDAM).

Although CAB uses a fair amount of storage for buffer space, it normally uses virtual and real storage for
less time than BB. By default, the CAB buffers are page-fixed for better performance, but the page-fixing
can be disabled by coding the NOFIX control statement in the HSSROPT DD.

In cases where CAB performance is not superior to BB performance (for example, with disorganized
databases), use BB rather than CAB. This saves both virtual and real storage.

Size of OSAM blocks and ESDS/OSAM LDS control intervals
The optimal size of OSAM blocks and ESDS/OSAM LDS control intervals depends on the type of
processing.

Smaller blocks or CIs are often beneficial to random processing (including online processing). When,
during random processing, segments of a database record are accessed, it seldom makes sense to
perform I/O for huge blocks or CIs containing much data belonging to many other database records. If,
during direct processing, the blocks or CIs are smaller, the data transfer time often decreases. Therefore,
the use of DASD string controllers, DASD control units, and channels can drop. The buffer space might
also decrease.

Larger blocks or CIs are often beneficial to sequential processing since, with conventional buffer handlers,
one full DASD rotational delay is lost between each I/O for two consecutive blocks or CIs. Increasing

Chapter 14. Tuning the Chained Anticipatory Buffer handler 215

the block size or CI size decreases the number of blocks or CIs and, consequently, the number of lost
rotational delays and the elapsed time.

Therefore, you must sometimes make trade-off decisions in favor of random processing or sequential
processing.

With CAB, this problem can sometimes be solved by using small block sizes or CI sizes for random
processing. Sequential processing with CAB does not suffer, since CAB may chain CCWs in order to read
many of these smaller blocks together as if they were parts of one single larger block.

SMF EXCP statistics
Statistics from the System Management Facilities (SMF) about the Execute Channel Program (EXCP) can
sometimes be confusing.

The SMF EXCP statistics for data sets used by HSSR Engine should be used for reference only. "CAB
Statistics" does not report the EXCP counts, but does report the number of I/O requests. For VSAM ESDS
or OSAM LDS, one GET macro is used by one I/O request. For OSAM, the READ macro is used and the
number of READ macros is:

• 1 for direct I/O
• The value of RANSIZE for chained sequential I/O

Determining the appropriate CAB parameters
Determine the appropriate CAB parameters to improve the CAB performance.

About this task
The CAB performance can be considered satisfactory when the following conditions are met:

• The number of OSAM blocks, OSAM LDS CIs, or ESDS CIs read in chained sequential mode is much
greater than the number of blocks or CIs read in direct mode.

• The percentage of unreferred-to sequential buffers is below 15 or 20%.
• Elapsed time is substantially smaller with CAB than with BB.
• The amount of buffer space that is used is acceptable.

If you did not get satisfactory results by running your IMS High Performance Unload job with the default
CAB parameters, you can attempt tuning.

Procedure
The following steps describe a possible approach to tuning CAB's reference pattern analysis logic:
1. Run your application program or the FABHTEST utility on a dedicated system with CAB and with the

default values for the CAB parameters.

Activate the machine-readable buffer handler trace for future FABHBSIM runs. (This increases the
processor time slightly; bear this fact in mind when you compare processor times.)

Note: Performance tests with databases that contain fewer than 300,000 segments are not
reasonable because CAB buffer handler has a high initialization overhead.

If you code 'CABSTAT YES' in the HSSROPT data set, extensive buffer handler statistics are printed at
the end of the job step on the HSSRSTAT data set. See “CAB Statistics report” on page 186 and “Data
Set I/O Statistics report” on page 185.

Tip: After you have tuned the buffer handler, you can remove the CABSTAT control statement to reduce
the content of the report. If no CABSTAT control statement is coded, or 'CABSTAT NO' is specified in
the HSSROPT data set, only the summary page of the CAB Statistics is printed for each buffer pool.

2. Run the same program with BB on a dedicated system by coding the BUF control statement in the
HSSROPT DD.

216 IMS High Performance Unload: User's Guide

3. Check the results of both runs. First compare the elapsed time.

Note the number of sequential buffers not referred to, and the number of blocks read in chained
sequential mode and direct mode.

If your database is well organized, CAB should show excellent elapsed time figures. Unless you want to
reduce the buffer space, no further tuning is needed.

If your database is poorly organized, CAB might show moderate or disappointing results.

If the improvements are moderate—that is, the elapsed time of the CAB run is between 65% and 80%
of the BB run—you should investigate whether the database reorganization interval is appropriate and
whether the free space specifications are appropriate.

You can also investigate the increase of the NBRSRAN parameter and the tuning of the REFT4
parameter to decrease a little more the elapsed time.

If the results are disappointing—that is, if the elapsed time of the CAB run is not below 80% of
the first run—the best thing, probably, is to reorganize the database more frequently to improve the
specification of free space.

4. If you decide to rerun with modified CAB parameters, you can use the FABHBSIM utility to compare
the HSSRSTAT statistics of the original run with those of the new run.

The FABHBSIM utility enables you to observe the effect that changes to parameters on HSSRCABP
control statements have on buffer handler performance. FABHBSIM can be used for simulations of
both CAB and BB.

The statistics to be compared are the number of direct I/Os, the number of chained sequential I/Os,
the number of sequential buffers note referred to, and the timing statistics.

Restriction: FABHBSIM cannot be used for HALDBs.

HSSRCABP control statements
The HSSRCABP data set contains the CAB control statements that are used to change CAB buffering
parameters and options for a specified data set or for a specified group of data sets.

HSSRCABP control statements can be included in the input stream or stored in a partitioned data set
(PDS). To centralize all CAB buffering specifications, consider storing HSSRCABP control statements in a
PDS. Each member of the PDS must contain a set of HSSRCABP control statements for one given data set.

The HSSRCABP DD statement of the IMS High Performance Unload jobs can then refer to the members of
this PDS. Multiple members can be referred to through concatenated DD statements.

Syntax rules for HSSRCABP control statements
Before you code CAB control statements, you should be familiar with the following general coding rules:

• CAB control statements other than the PARTPROC control statement must be provided in groups in the
HSSRCABP data set. There must be one group of control statements for each set of data sets to be
buffered by CAB.

• Each group of CAB control statements must begin with a CABDD statement that identifies (by ddname)
a set of data sets to be buffered by CAB. The group ends when the next CABDD statement or the
end-of-file is encountered.

• A group can contain additional control statements after the CABDD statement.
• The first control statement entry must be a keyword that identifies the type of control statement being
defined. It is often the name of a CAB parameter.

• The keyword must always be followed by a single blank.
• The blank is followed by variable data. This variable data is often the value to be assigned to a CAB

parameter.

Chapter 14. Tuning the Chained Anticipatory Buffer handler 217

CABDD control statement
This required control statement defines the data sets to be buffered by CAB.

This statement must be the first statement in a group of statements.

The CABDD control statement can have one of the following formats:

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

CABDD ddname
 ‘pattern’
 *ALL
 *HD
 *HS
 *PHD

Position
Description

1
Code the CABDD keyword to change the CAB buffering parameters for the set of data sets determined
from the value specified in the operand of the statement.

7
This required entry identifies a set of data sets to which the succeeding CAB control statements apply.
Code one of the following keywords:
ddname

Indicates that the succeeding CAB control statements apply to the data set whose DD name is
ddname.

'pattern'
Indicates that the succeeding CAB control statements apply to the data sets whose DD names
match the wildcard string pattern.

The pattern is a string of alphanumeric characters, including wildcard characters. You can use two
kinds of wildcard character: an asterisk (*) and a percent (%) symbol. An asterisk is treated as a
sequence of 0 to 8 characters; and, a percent symbol is treated as a single character. If two or
more asterisks are specified sequentially, only the first asterisk is recognized. You cannot specify
asterisks and percent symbols simultaneously.

The pattern string must be enclosed by single quotation marks.

*ALL
Indicates that the succeeding CAB control statements apply to all ESDSs, OSAM data sets, or
OSAM LDSs.

*HD
Indicates that the succeeding CAB control statements apply to all ESDSs, OSAM data sets, or
OSAM LDSs of all HD databases, including PHDAM and PHIDAM databases.

*HS
Indicates that the succeeding CAB control statements apply to all ESDS data sets of all HISAM
databases.

*PHD
Indicates that the succeeding CAB control statements apply to all ESDS, OSAM data sets, or OSAM
LDSs of all PHIDAM and PHDAM databases.

INTER control statement
This optional control statement activates the CAB Inter-PCB Look-Aside. Inter-PCB Look-Aside is a
method that enables CAB (or BB) to attempt to find a requested RBA within buffers of other HSSR PCBs.

The INTER control statement must be used to activate this feature. By default, no Inter-PCB Look-Aside is
done in CAB. This option has a meaning only when multiple HSSR PCBs refer to the same database.

218 IMS High Performance Unload: User's Guide

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

INTER YES

Position
Description

1
Code the INTER keyword to change the INTER option.

7
Code YES to activate the CAB inter-PCB look-Aside.

NBRDBUF control statement
This optional control statement specifies the number of direct buffers—that is, the number of single
blocks or CIs read in direct mode—that should be resident in the buffer for look-aside purposes.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

NBRDBUF n

Position
Description

1
Code the NBRDBUF keyword to change the number of direct buffers.

9
Code the numeric value n from 3 through 255 to be left-aligned. The default value assigned to
NBRDBUF is twice the number assigned to RANSIZE, which is the number of single blocks or CIs
resident in a buffer for look-aside purposes.

NBRSRAN control statement
This optional control statement specifies the number of whole ranges to be resident in each buffer for
look-aside purposes. NBRSRAN affects both the buffer space and the number of successful look-aside
operations. It also affects the number of I/Os if a database is not well organized.

For each data set of each PCB for which CAB is used (except for the prime data set group of HDAM
and PHDAM, as described in “OVERFLOW control statement” on page 220), CAB allocates the following
number of buffers:

 RANSIZE x (NBRSRAN + 1)

If the database is well organized, you do not need to change the default value; if the database is
disorganized, increasing the NBRSRAN value could increase the benefits achieved through look-aside
buffering.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

NBRSRAN n

Position
Description

1
Code the NBRSRAN keyword to change the NBRSRAN value.

9
Code the numeric value n to be left-aligned with a numeric value from 3 through 9999. It is the
number of ranges resident in a buffer for look-aside purposes.

Chapter 14. Tuning the Chained Anticipatory Buffer handler 219

The default value assigned to NBRSRAN is 8.

OCCURRENCE control statement
This optional control statement specifies which HSSR PCBs, in the PSB, are to be buffered by CAB. It is
used only when multiple HSSR PCBs refer to the same database. It identifies the HSSR PCB to which the
specifications of the control statement group apply.

For a database that uses the OSAM for its database data sets, if no OCCURRENCE control statement is
entered, HSSR assumes that the set of control statements applies to all HSSR PCBs referring to the data
set or data sets identified by the CABDD statement.

For a database that uses the VSAM ESDS or OSAM LDS for its database data sets, CAB buffering can
be used for only one PCB, which, by default, is the first PCB referring to the database. BB buffering is
used when HSSR buffer handler accesses the database through the rest of the PCBs. This default can be
changed by the OCCURRENCE control statement.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

OCCURRENCE n

Position
Description

1
Code the OCCURRENCE keyword to activate the OCCURRENCE option.

12
This entry specifies that the group of control statements applies to the nth HSSR PCB referring to the
data set identified by the CABDD statement.

OVERFLOW control statement
This optional control statement specifies how the overflow area of the prime data set group of an HDAM
database or the overflow area of the prime data set group of each partition of a PHDAM database, should
be buffered.

The OVERFLOW control statement affects the buffering efficiency for the prime data set group of an
HDAM database, or of the prime data set groups of a PHDAM database; especially, it affects both the size
of the buffer space and the elapsed time.

The same OVERFLOW statement must be specified for each prime data set group of partitions of a PHDAM
database.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

OVERFLOW CAB
 SHR
 BB

Position
Description

1
Code the OVERFLOW keyword to change the OVERFLOW option.

10
Code one of the following three keywords:
CAB

CAB is the default.

CAB specifies that separate CAB buffers are allocated for the root addressable area and the
overflow area, respectively. Chained sequential I/O is possible in both areas.

220 IMS High Performance Unload: User's Guide

The total number of buffers allocated for the first data set group of HDAM is given by:

 2 x (RANSIZE x (NBRSRAN + 1) + NBRDBUF)

The total number of buffers allocated for the first data set group of a PHDAM database depends on
the PARTPROC statement specified for the database.

SHR
SHR instructs CAB to use the same buffer for both the root addressable area and the overflow
area.

Chained sequential I/O is possible in both areas.

The number of (shared) buffers allocated for the first data set group of HDAM is:

 RANSIZE x (NBRSRAN + 1) + NBRDBUF

The total number of buffers allocated for the first data set group of a PHDAM database depends on
the PARTPROC statement specified for the database.

BB
BB does not allow chained sequential I/O in the HDAM or PHDAM overflow area. If only a small
number of I/Os are performed in the overflow area, the OVERFLOW BB option is reasonable.

The OVERFLOW BB option specifies that CAB buffers the root addressable area and that BB
buffers the overflow area. No chained sequential I/O takes place in the overflow area.

The OVERFLOW BB option uses less buffer space than the OVERFLOW CAB option. For HDAM, the
total number of buffers allocated is the sum of the following:

• For the root addressable area,

 RANSIZE x (NBRSRAN + 1) + NBRDBUF

• For the overflow area,

 NBRDBUF

The total number of buffers allocated for the root addressable areas and overflow areas of the first
data set group of a PHDAM database depends on the PARTPROC control statement specified for
the database.

PARTPROC control statement
This optional control statement, valid only for HALDB, specifies the access intent for the database or the
databases specified on the statement.

For a HALDB, CAB buffers are shared among the data sets in a data set group. As in the unload utilities
such as the FABHURG1 or FABHFSU utility, if only one partition is accessed at a time, you do not need to
use this control statement.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

PARTPROC dbd_name
PARTPROC dbd_name S
PARTPROC dbd_name R nnnn

Position
Description

1
Code the PARTPROC keyword to change the PARTPROC option for a HALDB or for all HALDB.

Chapter 14. Tuning the Chained Anticipatory Buffer handler 221

10
This required entry identifies the HALDB or HALDBs to which the PARTPROC option applies. The string
must be left-aligned.
dbd_name

Indicates that the PARTPROC option applies to the HALDB identified by the DBD dbd_name.
*PHD

Indicates that the PARTPROC option applies to all HALDBs.
19

Code one of the following keywords:
S | blank

The keyword S stands for sequential access and tells CAB to prepare a buffer space that can buffer
only one partition for each HALDB specified on the column 10.

If this option is specified, the CAB parameters RANSIZE, NBRSRAN, NBRDBUF, OVERFLOW,
REFT4, and INTER that are specified for a partition are reset when the processing of the partition
starts.

This is the default for all HALDBs.

R
The keyword R stands for random access and instructs CAB to prepare the buffer space that can
buffer nnnn partitions of the HALDB specified on the column 10. If the number nnnn on column 21
is omitted, nnnn = 2 is assumed.

If this keyword is specified, the CAB buffers each data set on the basis of CAB parameters
RANSIZE, NBRSRAN, NBRDBUF, OVERFLOW, REFT4, and INTER that are specified for the
partition, as long as no more than nnnn partitions are accessed at a time.

21
Specify the maximum number of partitions to be accessed at a time. The default value is 2 when the
keyword R is specified in column 19.

This parameter can be specified only when the keyword R is specified in column 19.

The number nnnn must be 1- to 4-characters long and must be left-aligned.

Note: If multiple PARTPROC statements are specified for the same HALDB, the last statement is treated
as a valid statement for the HALDB.

RANSIZE control statement
This optional control statement denotes the size of a range, which is the number of OSAM blocks, OSAM
LDS CIs, or ESDS CIs that are read together in chained mode. RANSIZE affects both the elapsed time and
the buffer space.

The number of sequential buffers allocated by CAB for each data set of each PCB to which CAB is used is:

 RANSIZE x (NBRSRAN + 1)

The default RANSIZE value for each database data set is determined by HSSR buffer handler from the
characteristics of the data set, such as the block size or the CI size.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

RANSIZE n

Position
Description

1
Code the RANSIZE keyword to change the RANSIZE value.

222 IMS High Performance Unload: User's Guide

9
Code the numeric value n left-aligned with a numeric value from 2 through 255.

Notes:

• Performance is questionable when CAB buffers OSAM data sets with a RANSIZE smaller than 4.
• A limited number of CIs can be read by the access method within one single-chained I/O operation. The

limit depends on the CI size. When HSSR buffer handler detects that the RANSIZE value causes the use
of more than a limited number of CIs for an ESDS or OSAM LDS database, the buffer handler changes
the value of RANSIZE to the allowable maximum.

• When the RANSIZE default value is overridden, the REFT4 parameter, if it is coded, must be adjusted.
(See “REFT4 control statement” on page 223.)

REFT4 control statement
This optional control statement is used as a reference threshold value. The REFT4 threshold value helps
determine whether chained sequential I/O or direct I/O should be performed.

When the number of referred-to OSAM blocks, OSAM LDS Control Intervals, or ESDS Control Intervals
(CIs) is below REFT4, CAB usually performs direct I/O. When the number of referred-to OSAM blocks,
OSAM LDS CIs, or ESDS CIs has reached REFT4, CAB usually performs chained sequential I/O.

The REFT4 setting helps determine how often direct I/O and chained sequential I/O are performed. If the
REFT4 setting is too low, CAB may perform chained sequential I/O in cases where direct I/O is superior.
Some of the OSAM blocks, OSAM LDS CIs, or ESDS CIs read in chained sequential mode are not referred
to at this time. If the REFT4 setting is too high, CAB may perform direct I/O in cases where chained
sequential I/O is superior. CAB reads consecutive OSAM blocks, OSAM LDS CIs, or ESDS CIs individually in
direct mode, instead of reading them together in chained sequential mode.

Usually, you do not need to code the REFT4 control statement. Consider coding the control statement
only when the default value is not satisfactory. The recommended range of values for REFT4 is between
100% and 200% of RANSIZE. For example, when RANSIZE=8, the recommended range of values for
REFT4 is from 8 to 16 inclusive.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

REFT4 n

Position
Description

1
Code the REFT4 keyword to change the REFT4 threshold.

7
Code the numeric value n to be left-aligned.

The default value is equal to the RANSIZE value.

JCL examples for specifying CAB parameters
Use the following examples to specify CAB parameters.

Subtopics:

• “Example 1: CAB control statements for FABHULU jobs” on page 224
• “Example 2: OCCURRENCE control statements for a VSAM ESDS database” on page 224
• “Example 3: Specifying multiple CABDD groups” on page 225

These examples are for nonpartitioned databases. For examples of how to specify CAB control
statements for PHDAM or PHIDAM databases, see Chapter 8, “Methods for processing High Availability
Large Databases,” on page 97.

Chapter 14. Tuning the Chained Anticipatory Buffer handler 223

These examples are not examples of a real production job. They merely demonstrate how HSSRCABP
control statements, as well as HSSROPT control statements, can be specified.

Example 1: CAB control statements for FABHULU jobs
The following is an example of how to specify CAB control statements for an HSSR application program
running in the ULU region by using the FABHULU cataloged procedure. The FABHURG1 unload utility is
used in this example, but the same explanation applies to any other HSSR application program running in
the ULU region.

In the following JCL, 'CABDD *ALL' is coded in HSSRCABP DD, which means that the CAB parameter
values are overridden by the value specified in the succeeding control statements.

Assume that the database processed is well organized and not fragmented, and that the set of
parameters is selected to reduce the amount of buffer space used by CAB from the default specification
and to allocate 19 CAB buffers.

 // EXEC FABHULU,MBR=FABHURG1,DBD=HIDOSAM
 //HSSRCABP DD *
 CABDD *ALL
 RANSIZE 4
 NBRSRAN 3
 NBRDBUF 3
 OVERFLOW SHR
 REFT4 6
 /*
 //HIDOSAMD DD DSN=TESTDS.HIDOSAMD,DISP=SHR
 //HIDOSAMX DD DSN=TESTDS.HIDOSAMX,DISP=SHR
 //SYSPRINT DD SYSOUT=A

Example 2: OCCURRENCE control statements for a VSAM ESDS database
In the following FABHDLI job, 'CABDD *ALL' is coded in HSSRCABP DD. This means that, for all databases
that are read by HSSR Engine using CAB buffering, the CAB parameter values to be overridden by the
value specified in the succeeding control statements.

For a database that uses the VSAM ESDS for its database data sets, CAB buffering can be used for only
one PCB, which, by default, is the first PCB, in the PSB, that refers to the database; and BB buffering is
used when HSSR Engine accesses the database through the rest of the PCBs. This default can be changed
by use of the OCCURRENCE control statement.

The OCCURRENCE statement in this example specifies that the second PCB in the PSB is to be buffered
with CAB. The succeeding statements allocate 23 CAB buffers for the database when it is accessed
through the second PCB.

The HSSROPT data set contains control statements that affect CAB buffering. The 'HSSRPCB *ALL'
statement specifies that all DB PCBs in the PSB HRDHDAMG are HSSR PCBs. The BUTR control statement
activates a trace of CAB buffer handler activities; the HSSRBUTR DD statement defines the output data
set. The NOVSAMOPT prevents CAB from using the default read-ahead threshold value used by VSAM.

The SYSIN data set provides the input to the FABHTEST utility.

224 IMS High Performance Unload: User's Guide

// EXEC FABHDLI,MBR=FABHTEST,PSB=HRDHDAMG
//SYSIN DD *
PCB 2
GN GB
/*
//HSSROPT DD *
HSSRPCB *ALL
BUTR
NOVSAMOPT
/*
//HSSRCABP DD *
CABDD *ALL
OCCURRENCE 2
RANSIZE 4
NBRSRAN 4
NBRDBUF 3
OVERFLOW SHR
REFT4 6
/*
//ESDSDATA DD DSN=TESTDS.ESDSHDAM,DISP=SHR
//SYSPRINT DD SYSOUT=A
//HSSRBUTR DD DSN=HPU.HSSRBUTR,UNIT=TAPE,DISP=(,KEEP)

Example 3: Specifying multiple CABDD groups
In this example, assume that the user application program USERAPPL accesses two databases DB1VSAM
and DB2OSAM; the HDAM database DB1VSAM over VSAM ESDS has data set groups DB1DSG1 and
DB1DSG2; and the HIDAM database DB2OSAM over OSAM has data set groups DB2ROOT, DB2DEP01,
and DB2DEP02.

In the following JCL, two CABDD groups, 'DB1DSG%' and 'DB2*', are specified in HSSRCABP DD. The use
of the wild cards in DD names 'DB1DSG%' and 'DB2*' causes all data sets for DB1VSAM and for DB2OSAM
to be selected.

The CAB control statements succeeding each CABDD statement specify the CAB parameters for the
specified CABDD group.

// EXEC FABHDLI,MBR=USERAPPL,PSB=PSBAPPL1
//HSSROPT DD *
HSSRPCB *ALL
DBSTATS
/*
//HSSRCABP DD *
CABDD ’DB1DSG%’
RANSIZE 4
NBRSRAN 10
NBRDBUF 10
REFT4 6
OVERFLOW SHR
CABDD ’DB2*’
RANSIZE 4
NBRSRAN 20
REFT4 6
/*
//DB1DSG1 DD DSN=TESTDS.DB1.DSG1,DISP=SHR
//DB1DSG2 DD DSN=TESTDS.DB1.DSG2,DISP=SHR
//DB2ROOT DD DSN=TESTDS.DB2.DSROOT,DISP=SHR
//DB2DEP01 DD DSN=TESTDS.DB2.DSDEP01,DISP=SHR
//DB2DEP02 DD DSN=TESTDS.DB2.DSDEP02,DISP=SHR
//DB2INDEX DD DSN=TESTDS.DB2.DSINDEX,DISP=SHR
//applout DD SYSOUT=A

Chapter 14. Tuning the Chained Anticipatory Buffer handler 225

226 IMS High Performance Unload: User's Guide

Chapter 15. Tuning the Basic Buffer handler
The performance of the Basic Buffer handler depends on how well the databases are organized. You
can use HSSROPT control statements to specify the number of buffers. Allocating more buffers than the
default might improve the performance of your job.

Topics:

• “Control statements that affect performance” on page 227
• “Determining the appropriate number of BB buffers” on page 228

Control statements that affect performance
BUF and BUTR are the HSSROPT control statements that affect the performance of the Basic Buffer
handler.

The following table shows a brief description of the HSSROPT control statements that you might want to
consider using with BB.

Table 32. HSSROPT control statements for Basic Buffer handler

Control statements Description

BUF If you want to use BB for ESDSs, OSAM data sets, or OSAM LDSs, you must
code this statement for the DBD, and specify the number of BB buffers.

This statement is optional. The default number of buffers depends on how the
PCB is defined as an HSSR PCB.

BUTR This optional control statement activates a trace of BB buffering activities.
The trace is written to the data set defined by the HSSRBUTR DD statement.
This data set is used as input to FABHBSIM to simulate BB buffering in order
to tune BB buffers.

You cannot use this control statement for PHDAM or PHIDAM databases.

BUF control statement
The optional BUF control statement specifies a database for which the BB buffer handler is to be used,
and to override the default number of buffers for BB.

The BB buffer handler allocates a separate buffer pool for each data set group of the database. It also
allocates a certain number of buffers to each of these buffer pools—either the default or a specified
number.

The default number of buffers depends on how the PCB is defined as an HSSR PCB. If an HSSR PCB is
defined by use of either an HSSRPCB or an HSSRDBD control statement, and the value to the KEYLEN
keyword for the PCB is less than 200, BB allocates six basic buffers for each data set as the default. If the
KEYLEN value for the PCB is greater than 200, the number of basic buffers to be allocated is determined
as explained in “Number of Basic Buffers for an HSSR PCB” on page 359.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

BUF dbdname ,nbrbuffers

Position
Description

© Copyright IBM Corp. 2000, 2024 227

1
Code the BUF keyword to specify a database for which the BB buffer handler is to be used and to
override the default number of buffers for BB.

5
Code the 8-byte dbdname to specify the database for which the default number of buffers will be
overridden (if the database name is not 8 bytes long, include trailing blanks).

13
Add a comma (,) to separate the database name from the number of buffers.

14
nbrbuffers is the number of buffers that you want BB to allocate for a buffer pool.

BUTR control statement
The BUTR control statement directs HSSR Engine to create a file containing a machine-readable trace of
internal calls to the buffer handler.

This trace, which is written to the HSSRBUTR data set, can be used as input to FABHBSIM, the HSSR
Buffer Handler Simulation utility.

Note: For instructions for using the buffer handler simulation utility, see Chapter 17, “Buffer handler
simulation utility (FABHBSIM),” on page 239.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

BUTR

Position
Description

1
Code the BUTR keyword to instruct HSSR Engine to create a file that contains a machine-readable
trace of internal calls to the buffer handler.

Restriction: No buffer trace is taken for HALDBs.

Determining the appropriate number of BB buffers
Determine the appropriate number of BB buffers to improve the BB performance.

Procedure
You can use the following aids, provided by HSSR Engine, for tuning the BB buffer handler:

• BB I/O and buffer handler statistics are provided in the HSSRSTAT data set (see “Data Set I/O Statistics
report” on page 185).

• The FABHBSIM utility enables you to observe the effect of changes to BUF control statements in the
HSSROPT data set.

No formula is provided for calculating the optimum number of ESDS, OSAM, or OSAM LDS buffers because
each database or application has its own characteristics. However, take the following into account:

• For sequential processing of a recently loaded database, two ESDS, OSAM, or OSAM LDS buffers should
be sufficient.

• For sequential processing of an older, not well-organized database, additional ESDS, OSAM, or OSAM
LDS buffers might improve performance.

• When a database is processed at random, allocation of more than two buffers might be beneficial.
The nth random I/O operation might find its data in a buffer already filled during an earlier random
operation.

228 IMS High Performance Unload: User's Guide

Chapter 16. HSSR call test utility (FABHTEST)
FABHTEST is the HSSR Engine test utility that runs a sequence of HSSR or DL/I calls against an IMS
database.

FABHTEST is useful for performance testing and for problem determination of HSSR Engine. It can be
used to compare the performance of an application program making HSSR calls with the performance of
the same program making DL/I database calls against the same database.

FABHTEST, which runs as an HSSR application program, issues database calls against IMS databases
in the sequence that is specified by control statements. It issues HSSR calls or DL/I calls through the
appropriate language interface. HSSR calls are made unless the HSSR option DBDL1 forces DL/I calls to
be issued. The HSSR or DL/I calls that are acceptable to FABHTEST are a subset of DL/I database calls.

You can use the FABHTEST utility to do the following tasks:

• Run a sequence of database calls against a database
• Help in problem determination
• Compare performance of HSSR calls versus DL/I calls
• Test performance using CAB

Topics:

• “FABHTEST restrictions” on page 229
• “Running FABHTEST to test HSSR calls” on page 229
• “FABHTEST JCL requirements” on page 230
• “FABHTEST input” on page 230
• “FABHTEST output: SYSPRINT output data set” on page 235
• “FABHTEST JCL examples” on page 236

FABHTEST restrictions
Certain restrictions apply when using the FABHTEST utility.

FABHTEST has the following restrictions:

• No printout of calls issued against a DL/I database PCB can be obtained.
• FABHTEST cannot be run with a DLIBATCH procedure, because it depends on information in the control

blocks of HSSR Engine.
• The FABHTEST utility cannot process a HALDB by partition. It processes the HALDB as an entire

database.
• For REPL calls, use PROCOPT=R.

Notes:

– REPL call is supported for the compatibility with DBT HSSR and PO HSSR.
– REPL calls are not allowed for PHDAM or PHIDAM databases.

Running FABHTEST to test HSSR calls
You can test HSSR calls by running the FABHTEST utility.

Procedure
Complete the following steps to run the FABHTEST utility.
1. Use one of the FABHDLI, FABHDBB, or FABHULU procedure.

© Copyright IBM Corp. 2000, 2024 229

2. Code the SYSIN, HSSROPT, and HSSRCABP control statements.
3. Run FABHTEST as an HSSR application program.
4. Review and analyze output reports.

FABHTEST JCL requirements
FABHTEST runs as an HSSR application program and, therefore, must meet the requirements for the basic
JCL (FABHX034 JCL). In addition, FABHTEST JCL requires other DD statements.

Prerequisite: See “Basic JCL requirements” on page 30 for the basic (FABHX034) JCL requirements.

The following table summarizes additional JCL requirements for FABHTEST.

Table 33. FABHTEST DD statements

DDNAME Use Format Need

SYSIN Input LRECL=80 Required

SYSPRINT Output LRECL=133 Required

EXEC
This statement invokes the procedure FABHDLI, FABHDBB, or FABHULU. The format is as follows:

 // EXEC FABHDLI,MBR=FABHTEST,PSB=psbname

 // EXEC FABHDBB,MBR=FABHTEST,PSB=psbname

 // EXEC FABHULU,MBR=FABHTEST,DBD=dbdname

The PCB referred to by psbname must be declared as an HSSR PCB.

See “HSSR PCB requirements” on page 80.

SYSIN DD
This required data set contains the control statements for FABHTEST.
See “FABHTEST SYSIN input data set” on page 230 for details about the control statements.

SYSPRINT DD
The required output data set contains output created by FABHTEST. The DD statement must be coded
as follows:

 //SYSPRINT DD SYSOUT=A

FABHTEST input
The FABHTEST utility uses three data sets as input: the SYSIN data set, the HSSROPT data set, and the
HSSRCABP data set.

FABHTEST SYSIN input data set
FABHTEST depends upon the SYSIN data set to provide control statements that specify the sequence of
HSSR calls.

FABHTEST processes eight types of control statements. Any syntax error within an FABHTEST control
statement leads to an error message and an abend with dump.

Format
This data set contains 80-byte fixed-length records. The control statements can be coded in the input
stream or accessed as a member of a partitioned data set.

230 IMS High Performance Unload: User's Guide

GN and GHN control statement
These statements instruct FABHTEST to issue a specified number of get-next (GN) or get-hold-next (GHN)
calls.

If no segment name is specified, GN or GHN calls without SSA are issued. If a segment name is specified,
GN or GHN calls with an unqualified SSA are issued.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

GN GB seg_name
GHN GB seg_name
 n seg_name

Position
Description

1
Code the GN or the GHN keyword to identify this as a get-next control statement or a get-hold-next
control statement.

5
Code one of the following optional keywords:
GB

FABHTEST issues GN or GHN calls until the end of the database is reached.
n

The number of GN or GHN calls that FABHTEST issues. Code a number containing up to 10 digits,
left-aligned. Leading zeros are not necessary.

Blank
FABHTEST issues 1 GN or GHN call.

16
Code one of the following optional keywords:
seg_name

Code the name of a segment. FABHTEST issues GN or GHN calls with an unqualified SSA.
Blank

FABHTEST issues GN or GHN calls without an SSA.

GNP and GHNP control statement
These statements make FABHTEST issue a specified number of get-next-within-parent (GNP) or get-hold-
next-within-parent (GHNP) calls.

If no segment name is specified, GNP or GHNP calls without SSA are issued. If a segment name is
specified, GNP or GHNP calls with an unqualified SSA are issued.

Prerequisite: Before specifying the GNP or the GHNP statement, you must establish a valid parentage by
specifying a GN, GHN, GNR, GHNR, GU, or GHU statement.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

GNP GE seg_name
GHNPGE seg_name
 n seg_name

Position
Description

1
Code the GNP or the GHNP keyword to identify this as a get-next-in-parent control statement or a
get-hold-next-in-parent control statement.

Chapter 16. HSSR call test utility (FABHTEST) 231

5
Code one of the following optional keywords:
GE

FABHTEST issues GNP or GHNP calls until the end of the segment occurrence under the current
parent.

n
The number of GNP or GHNP calls that FABHTEST issues. Code a number containing up to 10
digits, left-aligned. Leading zeros are not necessary.

Blank
FABHTEST issues 1 GNP or GHNP call.

16
Code one of the following optional keywords:
seg_name

Code the name of a segment. FABHTEST issues GN or GHN calls with an unqualified SSA.
Blank

FABHTEST issues GN or GHN calls without an SSA.

GNR and GHNR control statement
These statements instruct FABHTEST to issue a specified number of GN or GHN root calls with unqualified
SSAs.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

GNR GB
GHNRGB
 n

Position
Description

1
Code the GNR or the GHNR keyword to identify the get-next-root call control statement or the
get-hold-next-root call control statement.

5
Code one of the following optional keywords:
GB

FABHTEST issues GNR or GHNR root calls until the end of the database is reached.
n

The number of GNR or GHNR calls that FABHTEST issues. Code a number containing up to 10
digits, left-aligned. Leading zeros are not necessary.

Blank
FABHTEST issues 1 GNR or GHNR call.

GU and GHU control statement
The Get Unique statement instructs FABHTEST to issue GU or GHU calls.

The statement can specify:

• Whether the GU or GHU should be issued with or without an SSA
• The relational operator to be used in the SSA
• The key value to be used in the SSA

232 IMS High Performance Unload: User's Guide

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

GU nbr = keyvalue..c
GHU nbr = keyvalue..c

Position
Description

1
Code the GU or the GHU keyword to identify the get-unique control statement or the get-hold-unique
control statement.

5
This entry lists the number of times the call is to be repeated. Code a number containing up to 10
digits. This value neither requires leading zeros nor has to be aligned. If only one GU or GHU is to be
issued, omit this step.

16
Code either a blank or a valid relational operator. SSA relational operators are restricted to =b, b=, EQ,
=>, >=, GE (where b represents a single blank).

If this field is blank, FABHTEST issues GU or GHU calls without SSA. Otherwise, it issues GU or GHU
calls with SSA qualified on the key field of the root segment and uses the relational operator provided.

18
Code the root key value. If the key value does not fit in this statement, place a continuation character
(c in this example) in column 72. Then complete the key value in the continuation statement.

If you continue your key value to the next line, leave columns 1 - 4 blank and begin the continuation at
column 16. You can continue the statement again if you enter a continuation character in column 72.

72
Enter any nonblank character if a continuation is required.

Leave this space blank if the key value is completed.

PCB control statement
Use this optional statement to select the database PCB for the database call.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

PCB pcbnumber dbdname

Position
Description

1
Code the PCB keyword to identify this statement as a PCB statement.

5
Code the PCB number left-aligned. The first PCB is number 1.

If no PCB control statement is provided, FABHTEST uses the first database PCB.

16
Code the dbdname of PCB.

If no dbdname is specified on the PCB control statement, FABHTEST uses the PCB number field. If a
dbdname is specified, the first database PCB referring to that DBD is used.

Chapter 16. HSSR call test utility (FABHTEST) 233

REPL control statement
The REPL statement instructs FABHTEST to issue a REPL call without SSA. (FABHTEST does not change
the content of the segment during a REPL call.)

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

REPL

Position
Description

1
Code the REPL keyword to identify the replace control statement.

Notes:

• REPL call is supported for compatibility with DBT HSSR and PO HSSR (see Chapter 30, “Compatibility
with DBT V2 HSSR,” on page 357 and Chapter 32, “Compatibility with PO HSSR,” on page 367).

• REPL calls are not allowed for PHDAM or PHIDAM databases.

FABHTEST HSSROPT input data set
The HSSROPT data set for the FABHTEST utility contains the control statements for HSSR Engine.

Any of the HSSROPT options that are appropriate to your task can be used. The CO, TRHC, and TRDB
control statements must always be included, unless a performance test is being conducted. Some
HSSROPT control statements that might be useful when used with FABHTEST are as follows:

Table 34. HSSROPT control statements for FABHTEST

HSSROPT control
statement Description

CO The compare option reissues HSSR calls as DB/I calls.

Always include the HSSR CO (compare) control statement and the hardcopy
trace control statement in this data set, unless you conduct a performance
test.

TRHC The hardcopy tracing option provides call data, HSSR control block data,
buffer handler data, and CAB control block data. To obtain a printout of all
database calls issued against an HSSR PCB, include the control statement.

TRDB Specifies the DBDs against which calls are to be traced.

Note: For a complete description of the HSSROPT control statements, see Chapter 11, “Options for
HSSR Engine,” on page 155.

FABHTEST HSSRCABP input data set
The HSSRCABP data set for the FABHTEST utility contains the control statements for the buffer handler of
HSSR Engine.

Any of the HSSRCABP options that are appropriate to your task can be used. Some HSSRCABP control
statements that might be useful when used with FABHTEST are summarized in the following table.

Table 35. HSSRCABP control statements for FABHTEST

HSSRCABP control
statement Description

CABDD Specifies data sets to which the succeeding CAB control statements apply.

234 IMS High Performance Unload: User's Guide

Table 35. HSSRCABP control statements for FABHTEST (continued)

HSSRCABP control
statement Description

NBRDBUF Specifies the number of single blocks or CIs read in direct mode that are to
reside in the buffer for look-aside buffering.

NBRSRAN Specifies the number of ranges to be buffer-resident.

OVERFLOW Enables chained sequential I/O in the HDAM overflow area or in the overflow
area of each partition of PHDAM database.

PARTPROC Specifies the processing intent. This statement is valid only for a PHDAM or
PHIDAM database.

RANSIZE Specifies the number of blocks or CIs to be read together in chained mode.

REFT4 Specifies a threshold value used to determine when chained sequential I/O
or direct I/O is to be performed.

Note: For a complete description of the HSSRCABP control statements, see “HSSRCABP control
statements” on page 212.

FABHTEST output: SYSPRINT output data set
Output from the FABHTEST utility is the FABHTEST Control Statements report that is generated in the
SYSPRINT data set.

In addition to the report generated by the FABHTEST utility, reports and statistics produced by HSSR
Engine are written in HSSRSTAT and HSSRTRAC data sets. For the reports generated by HSSR Engine, see
Chapter 12, “Reports and output from HSSR Engine,” on page 181.

Format
The data set contains 133-byte fixed-length records. When the block size is coded in the JCL, the block
size must be a multiple of 133.

FABHTEST Control Statements report
This printed report contains a printed copy of the input control statements read by FABHTEST from the
SYSIN data set.

The following figure shows an example of this report

IMS HIGH PERFORMANCE UNLOAD "FABHTEST CONTROL STATEMENTS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 8.45.00 FABHB15 - V1.R2

.........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

GHU GE0000000500
GHNR
GHN
GU
GN 5
GU EQ0000001500
GNR 4
GHU
REPL
GHN
REPL
GN GB

Figure 52. FABHTEST Control Statements report

Chapter 16. HSSR call test utility (FABHTEST) 235

FABHTEST JCL examples
Use the following JCL examples to prepare your FABHTEST JCL.

Subtopics:

• “Example 1: Using FABHTEST for problem determination” on page 236
• “Example 2: Using FABHTEST to test performance” on page 236

Example 1: Using FABHTEST for problem determination
To do problem determination with FABHTEST, you can use the JCL shown in the following figure.

//TEST EXEC FABHDLI,MBR=FABHTEST,PSB=USERPSB
//SYSIN DD *
GU EQ1045699
PCB 2
GN GB
/*
//HSSROPT DD *
HSSRPCB *ALL
CO
TRHC CB,CALL,BUF,BUFCB
TRDB *ALL
/*
//TESTHDAM DD DSN=TESTDB.HDAM,DISP=SHR
//TESTHIIX DD DSN=TESTDB.INDEX,DISP=SHR
//TESTHIDA DD DSN=TESTDB.HIDAM,DISP=SHR
//SYSPRINT DD SYSOUT=A

Figure 53. FABHTEST JCL for problem determination

SYSIN control statements request that FABHTEST:

• Issue a GU call. The first database PCB is used with the relational operator EQ and the key value
provided.

• Sequentially read the database referred to by the second PCB, until the end of the database is reached.

HSSROPT control statements identify the options to be activated:

• A CO control statement activates the compare option.
• A TRHC and a TRDB control statement request HSSR Engine to trace control blocks, call information,

and buffer pool information for calls issued against all HSSR PCBs.

IMS databases are identified by the TESTHDAM, TESTHIIX, and TESTHIDA DD statements. A SYSPRINT
DD defines the FABHTEST output data set.

Example 2: Using FABHTEST to test performance
To test performance with FABHTEST, you can use the JCL shown in the following figure.

//TEST EXEC FABHULU,MBR=FABHTEST,DBD=USERDBD
//HSSROPT DD *
CABSTAT YES
/*
//SYSIN DD *
GN GB
/*
//TESTDB DD DSN=TESTDB.HIDAM.OSAM,DISP=SHR
//TESTIDX DD DSN=TESTDB.HIDAM.INDEX,DISP=SHR
//SYSPRINT DD SYSOUT=A

Figure 54. FABHTEST JCL for performance testing

The SYSIN control statement requests FABHTEST to sequentially retrieve the entire database. 'CABSTAT
YES' is specified in HSSROPT DD to produce the detailed CAB Statistics report. The TESTDB and TESTIDX
DD statements identify an HIDAM database.

236 IMS High Performance Unload: User's Guide

Code HSSRCABP DD statement to tune CAB buffering parameters. Statistical reports can be analyzed to
validate performance.

Chapter 16. HSSR call test utility (FABHTEST) 237

238 IMS High Performance Unload: User's Guide

Chapter 17. Buffer handler simulation utility
(FABHBSIM)

FABHBSIM is the buffer handler simulation utility that is used as an aid in tuning the BB and CAB buffer
handlers.

This utility enables you to observe the effect of the changes to parameters of the buffer handlers, without
actually performing database I/O operations and segment processing. FABHBSIM might help realize
significant productivity gains by determining the optimum numbers and sizes of buffers.

With FABHBSIM, you can simulate a previous run of an IMS High Performance Unload job and obtain
standard reports produced by HSSR Engine. You can use the FABHBSIM utility to do the following tasks:

• Analyze buffer handler performance
• Tune buffer handler parameters
• Assist in improving performance of your IMS application programs
• Aid in improving productivity of your IMS database

The following features are provided by FABHBSIM:

• FABHBSIM simulates database I/O and buffer handling. It produces statistical reports that show the
results of the simulation.

• FABHBSIM reads the HSSRBUTR buffer handler trace data set that is created during the previous run of
an IMS High Performance Unload job. This trace contains a record of all HSSR calls that were issued to
an IMS database during the execution of your application program.

• FABHBSIM allows you to use an HSSR buffer handler other than the one used in the original run.
• FABHBSIM reissues all of the database calls. CAB or BB processes the HSSR calls, but no actual

database I/O is performed. FABHBSIM produces the statistical reports that are normally generated by
HSSR Engine. From these reports, you can analyze the effect of parameter changes on buffer handler
performance.

FABHBSIM runs as an HSSR application program. The utility accepts the HSSRBUTR data set as the input
and produces output reports. Any of the three cataloged procedures can be used to run FABHBSIM.

Topics:

• “FABHBSIM restrictions” on page 239
• “Running FABHBSIM to simulate the buffer handler” on page 240
• “FABHBSIM JCL requirements” on page 240
• “FABHBSIM input” on page 240
• “FABHBSIM output: HSSRSTAT output data set” on page 241
• “FABHBSIM JCL example” on page 241

FABHBSIM restrictions
Certain restrictions apply when using the FABHBSIM utility.

FABHBSIM has the following restrictions:

• The PSB and DBDs used must be identical with those used in the original run that was traced. Do not
modify the PSB or the DBD between the traced run and the execution of FABHBSIM. The database itself
can be modified with ISRT, DLET, or REPL, and reorganization activities.

• The timing estimates of CAB I/O provided on the CAB Statistics report are not accurate when
FABHBSIM is run.

• FABHBSIM does not support the tuning of buffer handlers for a PHDAM or a PHIDAM database.

© Copyright IBM Corp. 2000, 2024 239

Running FABHBSIM to simulate the buffer handler
You can simulate the performance of the buffer handler by running the FABHBSIM utility.

Procedure
Complete the following steps to run the FABHBSIM utility.
1. Use one of the FABHDLI, FABHDBB, or FABHULU procedure.
2. Code the HSSROPT and HSSRCABP control statements.
3. Run FABHBSIM as an HSSR application program.
4. Review and analyze output reports to tune buffer handler parameters.
5. Repeat steps “2” on page 240 through “4” on page 240 if further tuning is necessary.

FABHBSIM JCL requirements
FABHBSIM runs as an HSSR application program and, therefore, must meet the requirements for the
basic JCL (FABHX034 JCL). In addition, FABHBSIM JCL requires other DD statements.

Prerequisite: See “Basic JCL requirements” on page 30 for the basic (FABHX034) JCL requirements.

The following table summarizes additional JCL requirements for FABHBSIM.

Table 36. FABHBSIM DD statements

DDNAME Use Format Need

SYSUT1 Input HSSRBUTR data set Required

EXEC
This statement invokes the procedure FABHDLI, FABHDBB, or FABHULU. The EXEC statement must
be in one of the following formats:

// EXEC FABHDLI,MBR=FABHBSIM,PSB=psbname

// EXEC FABHDBB,MBR=FABHBSIM,PSB=psbname

// EXEC FABHULU,MBR=FABHBSIM,DBD=dbdname

SYSUT1 DD
This required input data set defines the data set for buffer handler trace. You must create the buffer
handler trace data set in an earlier run of your IMS High Performance Unload job. It is the data set that
was defined by the HSSRBUTR DD statement in the earlier run. Here is an example of the format for
this data set:

 //SYSUT1 DD DSN=HSSRBUTR,DISP=OLD,UNIT=tape,VOL=SER=xxxxxx

FABHBSIM input
FABHBSIM uses data sets of control statements and buffer handler trace information as input. Input for
the FABHBSIM utility consists of two data sets: the HSSROPT data set and the HSSRCABP data set.

FABHBSIM HSSROPT input data set
The HSSROPT data set for the FABHBSIM utility contains the control statements for HSSR Engine.

The pertinent HSSROPT option to be used with FABHBSIM is the BUF control statement. It modifies the
number of BB buffers.

Any of the other HSSROPT options that are appropriate to your task can be used. But the DBDL1 control
statement with the *ALL keyword must not be used.

240 IMS High Performance Unload: User's Guide

For a complete description of the HSSROPT control statements, see Chapter 11, “Options for HSSR
Engine,” on page 155.

FABHBSIM HSSRCABP input data set
The HSSRCABP data set for the FABHBSIM utility contains the control statements for the buffer handler of
HSSR Engine.

Restriction: The PARTPROC control statement is not supported, because FABHBSIM does not support
PHDAM and PHIDAM databases.

For a complete description of the HSSRCABP control statements, see “HSSRCABP control statements” on
page 212.

FABHBSIM output: HSSRSTAT output data set
FABHBSIM produces the standard HSSRSTAT data set.

The reports produced in the HSSRSTAT data set are the primary output from FABHBSIM. These reports
are produced by the HSSR Engine. For details about these reports, see Chapter 12, “Reports and output
from HSSR Engine,” on page 181.

FABHBSIM JCL example
Use the following JCL examples to prepare your FABHBSIM JCL.

To use FABHBSIM in simulating buffer handlers and tuning buffers, use the JCL shown in the following
figure.

//BSIM EXEC FABHULU,MBR=FABHBSIM,DBD=USERDBD
//HSSROPT DD *
CABSTAT YES
/*
//HSSRCABP DD *
CABDD *HD
NBRSRAN 30
/*
//SYSUT1 DD DSN=TESTDS.HSSRBUTR.DATASET,DISP=OLD,UNIT=tape,VOL=SER=yyyyyy
//HDAM DD DSN=TESTDS.HDAM,DISP=SHR

Figure 55. FABHBSIM JCL for simulating a buffer handler

The CABDD control statement specifies that the succeeding CAB control statements apply to all HD
databases. The NBRSRAN control statement specifies that 30 ranges should reside in the buffer for
look-aside buffering purposes. (Other HSSRCABP control statements can be inserted as appropriate.)
'CABSTAT YES' in HSSROPT DD requests that HSSR Engine produce detailed CAB Statistics report.

The SYSUT1 DD statement defines an input data set, which is the HSSRBUTR data set produced by an
earlier run of an IMS High Performance Unload job.

The HDAM DD statement defines an IMS database.

Statistical reports can be analyzed to tune the CAB buffering parameters.

Chapter 17. Buffer handler simulation utility (FABHBSIM) 241

242 IMS High Performance Unload: User's Guide

Chapter 18. System programming interfaces
IMS High Performance Unload provides system programming interfaces for customization or for
compatibility with earlier products.

This topic presents product-sensitive programming interface information. See “Programming interface
information” on page 518 to understand the restrictions associated with this type of material.

PSPI

The following system programming interfaces are provided:

• Runtime environment exit (FABHRTEX)
• Buffer-handler initialization exit (FABHCEX)
• Return code edit exit (FABHRCEX)
• Record-formatting exit for FABHURG1

PSPI

Topics:

• “Runtime Environment exit (FABHRTEX)” on page 243
• “Buffer Handler Initialization exit (FABHCEX)” on page 245
• “Return Code Edit exit (FABHRCEX)” on page 245
• “User record-formatting routine” on page 246
• “Product-sensitive macros” on page 259

Runtime Environment exit (FABHRTEX)
With IMS High Performance Unload, you can develop a runtime environment exit routine, named
FABHRTEX, which enables you to do your own initialization and termination processing for your
application programs or your exit routines for unload utilities.

PSPI

The runtime environment exit routine is called during the initialization of the IMS High Performance
Unload program controller before the application program is called; the routine is called once more after,
control is returned from the application program to the program controller.

Notes:

• For details of system structure, see “IMS High Performance Unload system structure” on page 11.
• The runtime environment exit is not invoked when the language environment option is specified on the

EXIT control statement of the FABHURG1 unload utility or the PSB control statement of the FABHFSU
unload utility.

You can use an exit routine that has a different name, by specifying the RTEXIT control card in the
HSSROPT data set. Use this control statement if you need to set up a special runtime environment for a
special application or for an exit routine for FABHURG1 or FABHFSU.

The following information message is issued only if you provide your own runtime environment exit
routine:

 FABH0826I: RUN TIME ENVIRONMENT EXIT ROUTINE IS
 BEING INVOKED, MODULE=xxxxxxxx

© Copyright IBM Corp. 2000, 2024 243

If the specified exit is not found, abend U4013 occurs and the following message is issued:

 FABH0850E LOAD FAILED FOR RTEXIT (xxxxxxxx), CC=yyyy, RC=zz

PSPI

The following Product-Sensitive Programming Interface explains the interface to runtime environment
exit routine.

PSPI

The following table shows what the registers contain on entry to the routine.

Table 37. Register contents upon entry to a user exit

Register Contents

1 Address of call parameter list

14 Return address to the caller

15 Entry point address of the runtime exit routine

The address of the parameter list is set in register 1; the following table shows the parameters passed to
the routine.

Table 38. Parameters passed to the routine

Word Content

1 Pointer to a 4-byte character field that contains 'INIT' (for initialization call) or
'TERM' (for termination call)

2 Pointer to an 8-byte character field that contains the application program name

When control is returned to the caller, the contents of all registers except register 15 must be restored.
Register 15 must contain a return code. The meanings of the return codes are provided in the following
table.

Table 39. FABHRTEX return codes

Value Description

0 Initialization or termination was successful.

Not 0 An error occurred in the runtime environment exit.

Error message FABH0827E is issued, and abend U4013 occurs.

Tip: A dummy runtime environment exit routine (FABHRTEX) that returns the return code of 0 at both
initialization and termination calls is provided. You can code your own FABHRTEX to meet your particular
requirements.

PSPI

244 IMS High Performance Unload: User's Guide

Buffer Handler Initialization exit (FABHCEX)
Some users need to reduce the amount of batch processing during peak online periods. You can develop
an exit routine named FABHCEX, which can disperse the amount of system resources needed by IMS High
Performance Unload jobs over a longer elapsed time.

PSPI

FABHCEX is invoked when the HSSR buffer handler is initialized. It can dynamically allow or disallow the
use of CAB. If it detects that the IMS High Performance Unload job step is running during a peak online
period, it disallows the use of CAB and enforces the use of BB (regardless of specifications in HSSRCABP
data set).

The return codes that FABHCEX can set in Register 15 are listed in the following table.

Table 40. FABHCEX return codes

Code Description

0 Choose the buffer handler according to specifications of the CAB control
statements in HSSRCABP.

Not 0 Use BB.

For example, FABHCEX can be used to check the time of day and whether the IMS online system is
running. After making these determinations, FABHCEX issues a return code and selects a buffer handler.

The conventions for linkage between HSSR Engine and FABHCEX are the standard MVS linkage
conventions. No parameters are passed to FABHCEX. The FABHCEX routine must be a load module
named FABHCEX, and must be in a program library accessible to HSSR Engine.

The program control is transferred to the routine in the addressing mode of the routine.

Tip: IMS High Performance Unload provides a dummy routine (FABHCEX), which always returns a return
code of 0. You can code your own FABHCEX exit routine to meet your particular requirements.

PSPI

Return Code Edit exit (FABHRCEX)
You can write a Return Code Edit exit routine (FABHRCEX) to change the return codes of HSSR application
programs, including the FABHURG1 and FABHFSU unload utilities.

FABHRCEX is called before control is returned from the IMS High Performance Unload program controller
(FABH000) to the IMS region controller (DFSRRC00).

Note: For details of system structure, see “IMS High Performance Unload system structure” on page 11.

If you want to use the exit, you must write an exit routine in Assembler, and then assemble and link-edit
it as load module FABHRCEX. The library that contains FABHRCEX must be specified in the STEPLIB DD
concatenation of your IMS High Performance Unload job.

The addressing mode of a Return Code Edit exit routine can be either 24 or 31. The residency mode can
be either 24 or ANY. The reusability attribute can be either REUS or RENT.

The following informational message is issued only if the IMS High Performance Unload program
controller can find FABHRCEX in the libraries specified in the STEPLIB DD statement, and load it:

FABH0881I applname ENDED WITH RC=xx, WHICH MIGHT BE CHANGED BY FABHRCEX EXIT

Chapter 18. System programming interfaces 245

If the IMS High Performance Unload program controller fails to load FABHRCEX, abend U4013 occurs and
the following error message is issued:

FABH0854E LOAD FAILED FOR FABHRCEX EXIT, CC=xxxx, RC=yy

Subtopics:

• “Interface to Return Code Edit exit routine” on page 246
• “FABHRCEG sample JCL” on page 246

Interface to Return Code Edit exit routine
The following table shows what the registers contain on entry to the routine.

Table 41. Register contents upon entry to FABHRCEX

Register Contents

1 Address of call parameter list

14 Return address to the caller

15 Entry point address of the Return Code Edit exit routine

The address of the parameter list is set in register 1; the following table shows the parameters passed to
the routine.

Table 42. FABHRCEX parameters

Word Content

1 Pointer to an 8-byte character field that contains the application program name

2 Pointer to a 4-byte field that contains the return code to be edited

When control is returned to the caller, the contents of all registers except register 15 must be restored.

FABHRCEG sample JCL
FABHRCEG is a sample JCL stream for use in creating a Return Code Edit exit routine. It is provided as a
member of the HPS.SHPSSAMP library. FABHRCEG assembles and link-edits the FABHRCEX exit routine in
the HPS.SHPSLMD0 load module library.

User record-formatting routine
If you want to perform special processing or editing during the database unload, or if you want to use the
database unload format of your own, you can write a user record-formatting routine.

PSPI

The FABHURG1 unload utility ordinarily runs without any user routines. It unloads a database into one of
six different formats by invoking one of six standard record-formatting routines.

Some installations might want to perform additional processing or editing during the database unload, or
might want to create a database unload format of their own. To do this, they can provide their own user
record-formatting routine or optional user exit routine.

These exit routines can be coded in Assembler or COBOL language.

PSPI

246 IMS High Performance Unload: User's Guide

Logic of FABHURG1
The database unload processing is performed by the common logic, a user-selectable record-formatting
routine, and an optional user exit routine. The user-selectable record-formatting routine can be any one of
six standard record-formatting routines or a user record-formatting routine.

Subtopics:

• “Common logic” on page 247
• “Record-formatting routine” on page 247
• “Optional user exit routine” on page 247

PSPI

Common logic
The common logic performs the following processes:

1. Provides initialization and termination processing.
2. Controls an optional SYSUT2 output data set that contains the database unload output (OPEN, CLOSE,

and WRITEs are issued by the common logic).
3. Issues HSSR calls against the PCB you select.
4. Edits a call parameter list for record-formatting routines and optional user exit routines.
5. Calls the selected record-formatting routine. If the record-formatting routine sets a return code other

than zero, the next HSSR call is issued.
6. Calls the optional user exit routine. If the routine sets a return code other than zero, the next HSSR call

is issued.
7. If a non-DUMMY SYSUT2 DD statement has been provided, issues a PUT to write the record edited by

the record-formatting routine and the optional user exit routine.
8. If a non-DUMMY SYSUT3 DD statement has been provided, issues a WRITE macro to write the block

edited by the record-formatting routine and optional user exit routine.
9. Issues the next HSSR call.

Record-formatting routine
The record-formatting routine is invoked each time a database segment has been retrieved by the
common logic. It is the responsibility of the record-formatting routine to edit output records from
the retrieved database segments. FABHURG1 provides six standard record-formatting routines. System
programmers can provide their own user record-formatting routines if they want to create a database
unload format of their own.

After having reached the database end, the common logic invokes the record-formatting routine one last
time so that it can do its own termination processing and cleanup processing. You must check whether
the call is the last call by checking the status code in the PCB feedback area of the HSSR PCB (see
“Parameter 4: HSSR PCB” on page 251).

Optional user exit routine
The optional user exit routine is invoked (after record-formatting processing) each time a database
segment that the record-formatting routine does not skip is retrieved.

The optional user exit routine can modify or edit the record composed by the record-formatting
routine. One possible use of user exit routines by system programmers is to build the logical parent's
concatenated key.

Both record-formatting routines and user exit routines can optionally perform the following actions:

• Create their own output data sets (in addition to or instead of SYSUT2).

Chapter 18. System programming interfaces 247

• Issue DL/I calls or HSSR calls against PCBs other than the PCB that is used by the common logic of
FABHURG1.

• Indicate that the current database segment or database record should not be processed further and
that the skipped database segments should not be written to SYSUT2. They can also indicate that the
common logic should resume its retrieval at a root with a specifiable key.

After having reached the database end, the common logic invokes the optional user exit routine one last
time so that it can do its own termination processing and cleanup processing. For example, all opened
files can be closed when the last call is issued. You must check whether the call is the last call by
checking the status code in the PCB feedback area of the HSSR PCB (see “Parameter 4: HSSR PCB” on
page 251).

PSPI

Interface to user record-formatting and optional user exit routines
These routines are called, in accordance with standard Assembler and COBOL conventions.

PSPI

On entry, the routines should save the registers; on return, they should restore all registers except
Register 15. On entering to the routines, the following registers contain the information provided in the
following table.

Table 43. Register contents at entry to routines

Register Contents

1 Address of call parameter list

13 Address of caller's save area

14 Return address to database unload utility

15 Entry point address into user routine

Upon returning to the common logic, Register 15 must contain a binary return code 0 - 4. The codes are
explained in the following table.

Table 44. Exit routine return codes

Code Description

0 Processes this database segment.

1 Stops processing of this database segment and does not write it to SYSUT2. Retrieves the next
data-sensitive segment.

2 Stops processing of this database segment and does not write it to SYSUT2. Retrieves the next
database root segment. (All remaining segments of the current database record are skipped.)

3 Stops processing of this database segment, and does not write it to SYSUT2. Continues
database retrieval with the root whose key is greater than or equal to the key value specified by
the user exit routine in call parameter 9 (the key of the next root).

If a Data Conversion exit routine is used for the database, the key of the next root must be
specified in the application form.

4 Stops the processing of this database segment, and does not write it to SYSUT2. Does not
retrieve any further database segments, and stops processing.

248 IMS High Performance Unload: User's Guide

If a routine sets a return code 1, the dependents of the current database segment are not skipped by the
common logic. Skipping of these dependent segments is the responsibility of the routine.

PSPI

Call parameters
This reference topic explains the call parameters for user record-formatting routines or optional user exit
routines.

Subtopics:

• “Parameter 1: OUTPUT-AREA” on page 249
• “Parameter 2: Database segment (Segment data)” on page 250
• “Parameter 3: Segment prefix” on page 250
• “Parameter 4: HSSR PCB” on page 251
• “Parameter 5: HSDB” on page 251
• “Parameter 6: Reserved for system use” on page 251
• “Parameter 7: RBA of segment prefix” on page 251
• “Parameter 8: Length of segment data” on page 252
• “Parameter 9: Key of next root” on page 252
• “Parameters 10–13” on page 252
• “Parameters 14–n” on page 252

PSPI

Parameter 1: OUTPUT-AREA
The following list describes the OUTPUT-AREA for the user record-formatting routine and optional user
exit routines.

OUTPUT-AREA for user record-formatting routine
OUTPUT-AREA contains (at the offset specified by the OFFS utility control statement) the segment
data as returned by the HSSR call.

• If a SYSUT2 DD statement has been provided and is not a dummy, OUTPUT-AREA is in the SYSUT2
output buffers. SYSUT2 is a variable-blocked sequential data set. Unless the user record-formatting
routine sets a return code that is not zero, the routine should build a variable-length SYSUT2 record
in the OUTPUT-AREA, storing the binary record length in the first 2 bytes and binary zeros in the 2
bytes that follow. The SYSUT2 record is written by the common logic.

• If no SYSUT2 DD statement (real or dummy) has been provided, all output operations, including
open and close, are done by the routine. The routine can use OUTPUT-AREA to build its output
records, or it can use its own area to build its output record. In the former case, the overhead of data
movement within virtual storage is reduced. In the latter case, it is the responsibility of the routine
to develop a method to pass the address of the output record to the optional user exit routine.

OUTPUT-AREA for optional user exit routine

OUTPUT-AREA contains the output record as it is built by the record-formatting routine. Some user-
developed record-formatting routines can build the output record into areas other than the OUTPUT-
AREA.

Warning: The header field of the *HD unload format record for HALDB is longer than the one for
non-HALDB. The offset of the segment data is different between non-HALDB and HALDB. To refer to
the segment data, it is recommended that you use “Parameter 2: Database segment (Segment data)”
on page 250 than to use “Parameter 1: OUTPUT-AREA” on page 249.

Chapter 18. System programming interfaces 249

The header field contains the segment name, but it is not recommended that you use it. Instead, refer
to the segment name contained in the HSSR PCB, which is pointed to by “Parameter 4: HSSR PCB” on
page 251.

The following figure provides an example of a part of an exit routine that is coded in COBOL.

ENVIRONMENT DIVISION.
 :
DATA DIVISION.
 :
WORKING-STORAGE SECTION.
 :
LINKAGE SECTION.
 01 OUTPUT-AREA PIC X(XXX).
 01 SEGMENT-DATA PIC X(XX).
 01 SEGMENT-PREFIX PIC X(XX).
 01 HSSR-PCB.
 02 HPCB-DBDNAME PIC X(08).
 02 HPCB-SEGLEV PIC X(02).
 02 HPCB-STATUS PIC X(02).
 02 HPCB-PROCOPT PIC X(04).
 02 FILLER PIC X(04).
 02 HPCB-SEGNAME PIC X(08).
 02 HPCB-LENKFB PIC X(04).
 02 HPCB-NUSENS PIC X(04).
 02 HPCB-KEYFB PIC X(XX).

PROCEDURE DIVISION USING OUTPUT-AREA,SEGMENT-DATA,SEGMENT-PREFIX,HSSR-PCB
 :

Figure 56. A user exit routine for FABHURG1 in COBOL

Parameter 2: Database segment (Segment data)
This parameter contains the pointer to the database segment as returned by the HSSR call. If a standard
record-formatting routine is used, the segment data is after the header field that is pointed to by
parameter 1. If a user-developed record-formatting routine that can be specified in the FRMT control
statement is used, the segment data is within the OUTPUT-AREA at the offset specified by the OFFS
control statement. The user-developed record-formatting routines might modify the database segment.
In such a case, the optional user exit routine, if it is used, sees this modified data instead of the database
segment as returned by the HSSR call. You need to be careful when you modify the database segment
because there are other segments in the OUTPUT-AREA.

If the USEGMAX control statement is specified, the work area for segment editing is reserved after the
segment data. The total length of the segment data area plus the work area is the length specified by the
USEGMAX statement. If the ULEN or OFFS control statement is specified, the work area that is pointed to
by Parameter 1 and whose length is equal to the length specified by the OFFS statement is reserved to be
used as your record header. The work area whose length is equal to ULEN minus OFFS is reserved after
the segment data.

You can use these work areas in editing or expanding the segment data, but if you change the length
of the segment data, you must also update the fields in the OUTPUT-AREA that are affected by that
change of length. For example, the first two bytes of the OUTPUT-AREA pointed to by Parameter 1 must
be updated with the new record length, if the record is written to the SYSUT2 data set. If your segment
record header has a segment length field, it must be updated. If the segment itself has fields for segment
length or field lengths, they must be updated, too. The exit routine is responsible for updating these fields.

If FABHURG1 is run with the DECN option, the segment data for which a Segment Edit/Compression
routine is specified is passed to your exit routine in the compressed format. If you want the segment data
to be passed to your exit routine in the decompressed format, run FABHURG1 with the DECY option.

Parameter 3: Segment prefix
This parameter contains the segment prefix as it is stored in the database. The user routine must not
modify this parameter.

Note: During a migration unload, this parameter contains the binary zero for a virtual logical child.

250 IMS High Performance Unload: User's Guide

Parameter 4: HSSR PCB
This parameter contains the HSSR PCB used by the main logic of FABHURG1 to sequentially retrieve
the database. The HSSR PCB contains the segment name, the segment level, the key feedback area, the
length of the key feedback area, and the status code.

Note: For information about HSSR PCB, see “HSSR PCB feedback information” on page 81.

The user routine must always test the status code. If the status code is GB, the end of the database has
been reached and the user routines should perform their termination processing and cleanup processing,
including closing all files opened by the routine.

The user routines must not modify the HSSR PCB.

Parameter 5: HSDB
This parameter contains the HSSR segment descriptor block that describes the currently retrieved
segment type.

The user routine must never modify the HSDB. It can, however, use the 4-byte field HSDBUSER.

Parameter 6: Reserved for system use
The user routine must never refer to or modify this parameter.

Parameter 7: RBA of segment prefix
This 4-byte field contains the relative byte address of the segment prefix. The content of this field has a
meaning only for HD databases. The user routine must never modify this field.

If your IMS environment supports an OSAM database larger than 4 gigabytes, be careful with the RBA.
You must check the flag byte SPRBAFLG when you treat an RBA. The flag SPRBAX4G in this flag byte is on
if and only if all of the following conditions are satisfied:

• Your IMS environment supports relative byte addressability for up to 8 gigabytes of data in an OSAM,
HDAM, HIDAM, PHDAM, or PHIDAM database data set.

• Your database is an OSAM database.
• Your database has an even block size.
• The RBA of the segment prefix is larger than or equal to 4 gigabytes.

Thus, if your IMS environment satisfies the first condition, you must check whether the flag SPRBAX4G
is on or off. If the flag is on, the value in SPRBA is not the real RBA. In this case, you must move bit 1 of
SPRBA to bit position 33 to get the real 33-bit RBA. See the sample code provided in the following figure.

Chapter 18. System programming interfaces 251

 LR R5,R1 GET PARAMETER LIST ADDRESS
 USING PRMPRML,R5
 USING SPRBAD,R7
 L R7,PRMARBA
 L R9,SPRBA GET RBA OF SEGMENT PREFIX
 SR R8,R8
 IF (TM,SPRBAFLG,SPRBAX4G,O)
 LA R8,1
 XR R9,R8
 ENDIF
 DROP R7
 STM R8,R9,WKREAL GET REAL 33-BIT RBA
 :
 *
 WKREAL DC 2F’0’ REAL RBA OF SEGMENT PREFIX
 *
 PRMPRML DSECT
 PRMAREC DC A(0) A(START OF OUTPUT RECORD)
 PRMASGD DC A(0) A(SEGMENT-DATA)
 PRMASGP DC A(0) A(SEGMENT-PREFIX)
 PRMAPCB DC A(0) A(HPCB)
 PRMAHSD DC A(0) A(HSDB)
 PRMATCB DC A(0) A(HTCB)
 PRMARBA DC A(0) A(RBA OF SEGMENT PREFIX)
 PRMALEN DC A(0) A(SEGMENT DATA LENGTH)
 PRMANXK DC A(0) A(KEY OF NEXT ROOT)
 DC 4A(0)
 *
 SPRBAD DSECT
 SPRBA DS F RBA OF SEGMENT PREFIX
 SPRBAFLG DS XL1 FLAG BYTE
 SPRBAX4G EQU X’80’ RBA >= 4GB
 SPHALDB EQU X’10’ HALDB
 SPMACTV EQU X’08’ ODD RBA(SGRBA) ON M-V SIDE

Figure 57. RBA of segment prefix

If your IMS environment supports the HALDB Online Reorganization (OLR), you must check whether the
SPHALDB flag and the SPMACTV flag, which are shown in the preceding figure, are on. If both of them are
on, the value in SPRBA is not the real RBA and the odd RBA indicates that the segment is on the M-V,Y set
of the data sets. In this case, you must move bit 1 of SPRBA.

Note: During a migration unload, this parameter contains the binary zero for a virtual logical child.

Parameter 8: Length of segment data
This 2-byte binary field contains the length of the segment data that is returned by the HSSR call. The
user routine must never modify this field.

Parameter 9: Key of next root
On entering the user routine, the content of this field is unpredictable. If the user routine sets a return
code of 3, the routine must store the key value in this field. The key value is used to retrieve the next root
segment. If the secondary index is used to retrieve the root segments, specify the value of the search field
of the index segment as the key value. With this key value, the common logic then issues a GU call with
the "greater than or equal to" operator.

Note: If you are using a Data Conversion exit (DFSDBUX1) for the database in your FABHURG1 job, you
must specify the next root key in the application form. On the other hand, if you are not using DFSDBUX1
in your FABHURG1 job, you must specify the next root key in the stored form.

Parameters 10–13
These parameters are reserved.

Parameters 14–n
PCBs in the same sequence as specified during PSBGEN.

252 IMS High Performance Unload: User's Guide

With the exception of the PCB used by the common logic, these PCBs can be used by user routines to
issue HSSR and DL/I calls.

PSPI

Special-purpose SYSIN control statements for user exits
You can specify the user record-formatting routine and the optional user exit routine by coding the control
statements in the SYSIN data set.

PSPI

The name of a user record-formatting routine is specified by the FRMT control statement. The name of
an optional user exit routine is specified by the EXIT control statement. For these user exit routines, the
following special-purpose SYSIN control statements are provided:

• OFFS
• ULEN
• USEGMAX

The OFFS and ULEN control statements have meaning only if a user record-formatting routine (specified
on the FRMT control statement) is active. These statements specify that the additional space is to be
reserved within the area used by FABHURG1 to issue HSSR calls. This additional space can be used by the
record-formatting routine to build additional header data in its output records in this area.

The USEGMAX control statement has meaning only if one of the standard record formats, *HD, *CS, *F1,
or *F2, is used, and if an optional user exit routine (specified on the EXIT control statement) is active. This
statement specifies that the additional space is to be reserved within the I/O area used by FABHURG1 to
issue HSSR calls. This additional space can then be used by the user exit routine to edit the segment data.
See “Parameter 2: Database segment (Segment data)” on page 250.

PSPI

EXIT control statement
This optional control statement specifies the name of the optional user exit routine.

PSPI

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

EXIT exitname c l

Position
Description

1
Code the EXIT keyword to identify the exit routine.

6
The left-aligned load module name of the user exit routine. If no EXIT control statement is provided,
no user exit routine is invoked.

15
If a Data Conversion exit routine is used, the user exit routine receives the segment data that has been
converted from the stored form to the application form.

The 1-character entry c indicates whether the inverse conversion (the conversion from the application
form to the stored form) is to be done before the segment data edited in the exit routine is written into
the output data set.

Chapter 18. System programming interfaces 253

Use one of the following codes:

Y
Do the conversion.

The option Y is valid only for *HD unload format.

This option is valid only when the option DATXEXIT YES is specified in the HSSROPT data set.

N | blank
Do not do the conversion. N is the default.

17
Language environment option
L

Indicates that the user exit routine runs in the Language Environment (LE) using the CEEPIPI
invocation.
This option is effective when the user exit routine is written with Enterprise COBOL for z/OS. This
option is not effective for user exit routines written in assembler language.
This option is mutually exclusive with the RTEXIT control statement. If you specify this option, the
runtime environment exit routine specified for the RTEXIT control statement is not invoked.

Restriction: If the EXIT control statement is specified and one or more partitions of PHDAM or PHIDAM
are in the HALDB OLR cursor-active status, FABHURG1 ends abnormally.

PSPI

FRMT control statement
This optional control statement specifies the output format of the unloaded database. Use this statement
only when specifying a format other than *HD.

PSPI

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FRMT frmt

Position
Description

1
Code the FRMT keyword to identify the format control statement.

6
Code the output format name, which can be either of the following names:

• The name of one of the standard formats provided by the utility: *HD, *CS, *CP, *F1, *F2, or *F3. The
default is the *HD unload format, for which you do not need this statement.

• The load module name of a user record-formatting routine (see “User record-formatting routine” on
page 246).

Restrictions:

• If you specify a control statement such as MIGRATE or FALLBACK, you cannot specify any format other
than *HD.

• If *CS is specified and one or more partitions of PHDAM are in the HALDB OLR cursor-active status,
FABHURG1 ends abnormally.

PSPI

254 IMS High Performance Unload: User's Guide

OFFS control statement
This optional control statement specifies the offset of the database segment within an area used to
retrieve segments with HSSR calls.

PSPI

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

OFFS offs

Position
Description

1
Code the OFFS keyword to identify this statement as an OFFS statement.

6
Offset of the database segment within an area used to retrieve segments with HSSR calls. The bytes
in front of the database segment within this area are reserved for use by the user record-formatting
routine.

The length specified does not need to contain leading zeros, or it does not need to be aligned.

Notes:

• If a standard record-formatting routine is used, OFFS statements are ignored.
• The value specified on the OFFS statement must not be greater than the value specified in the ULEN

statement.
• If a SYSUT2 DD statement is provided, OFFS must be at least 4. These 4 bytes are reserved for the OS

record descriptor word.
• If no OFFS control statement is provided, the default is zero.
• If you specify a control statement such as MIGRATE or FALLBACK, this statement is ignored.

PSPI

ULEN control statement
This optional control statement specifies the maximum number of bytes that are reserved for the user
data within the HSSR call I/O area. These bytes can be used by the user record-formatting routine.

PSPI

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ULEN ulen

Position
Description

1
Code the ULEN keyword to identify this statement as a ULEN statement.

6
Specify the maximum number of bytes reserved for the user data, within the HSSR call I/O area, that
can be used by the user record-formatting routine. The length of the HSSR call I/O area is the sum of
the length of the longest database segment and the length specified on this control statement. The
length specified does not need to contain leading zeros, or it does not need to be aligned.

Notes:

Chapter 18. System programming interfaces 255

• If a standard record-formatting routine (for the *HD, *CS, *F1, *F2, or *F3 format) is used, this
statement is ignored.

• If the SYSUT2 DD statement is present, its block size must be large enough to contain the segment data
and the user data:

BLKSIZE ≥ 4 + max_segment_length + ulen

• If ULEN is larger than necessary, the blocking of SYSUT2 is not optimal.
• If the SYSUT2 DD statement is provided, ULEN must be at least 4. These 4 bytes are reserved for the OS

record descriptor word, which contains the binary record length followed by binary zeros.
• If no ULEN control statement is provided, the default is zero.
• If you specify a control statement such as MIGRATE or FALLBACK, this statement is ignored.

PSPI

USEGMAX control statement
This optional control statement specifies the number of bytes to be reserved for the segment data field
within the HSSR call I/O area.

PSPI

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

USEGMAX usegmax

Position
Description

1
Code the USEGMAX keyword to identify this statement as a USEGMAX statement.

9
Specify the number of bytes to be reserved for the segment data field within the HSSR call I/O area.
This reserved space is used by a record-formatting routine for the unload format *HD, *CS, *F1, or *F2.
This length must be larger than or equal to the length of the longest database segment. The length of
the HSSR call I/O area, which is called the OUTPUT-AREA, is the sum of the length specified by this
statement and the length of the record header determined by each format. The length specified does
not need to contain leading zeros, or it does not need to be aligned.

Notes:

• If you specified a value less than the length of the longest database segment, the usegmax value is
adjusted to the length of the longest segment. The message FABH0276I is issued.

• If a user record-formatting routine or the standard record format *F3 is specified, the USEGMAX control
statement is ignored. The message FABH0276I is issued.

• If no optional user exit routine is specified, this control statement is ignored. The message FABH0276I
is issued.

• If the SYSUT2 DD statement is present, its block size must be large enough to contain the record header
and the segment data field expanded by the USEGMAX statement:

BLKSIZE ≥ 4 + record_header_length + usegmax

• If no USEGMAX is specified or if the USEGMAX statement is ignored because of the reason previously
stated, the default length (that is, the length of the longest segment in the database) is used as the
length of the user data field.

• If you specify a control statement such as MIGRATE or FALLBACK, you cannot specify this statement.

256 IMS High Performance Unload: User's Guide

PSPI

Get-by-RBA calls
The Get-by-RBA calls can be used by system programmers to cross logical relationships or secondary
index relationships implemented with direct pointers. These calls can also be used to build the logical
parent's concatenated key defined as virtual in the SEGM statement of the DBD.

PSPI

Get-by-RBA call is supported for compatibility with DBT HSSR and PO HSSR. The use of this call in IMS
High Performance Unload is not recommended.

Restriction: Get-by-RBA call for HALDB is not supported.

Subtopics:

• “Structure” on page 257
• “Finding the RBA required by the Get-by-RBA call” on page 258

Structure
Get-by-RBA calls allow retrieval of segments of HIDAM and HDAM databases by their relative byte
address.

The format of this call is:

 CALL ASMHSSR,(GU,PCB,IOAREA,SSA),VL Assembler language
 CALL ’CBLHSSR’ USING GU,PCB,IOAREA,SSA. COBOL
 CALL PLIHSSR (FOUR,GU,PCB,IOAREA,SSA); PL/I

The SSA contains the 8-byte segment name, followed by *T, the left parenthesis, the 4-byte RBA, and the
right parenthesis, as follows:

 aaaaaaaa*T(nnnn)
 | | |
 | | |
 | | Four-byte relative byte address
 | | of segment prefix
 | |
 | Command code
 |
 Name of segment

If the database does not contain a segment prefix of the specified segment type at the specified RBA,
HSSR Engine abends.

After completion of the call, HSSR call handler edits the requested segment in the IOAREA exactly as it
does for the other types of calls (GN, GU, GHN, GHU, REPL).

The PCB is also edited normally. However, the part of the key feedback area that ordinarily contains the
concatenated key of the physical parent now contains binary zeros.

GN calls should be issued with care after a Get-by-RBA call. Starting from the segment retrieval by the
RBA call, HSSR Engine proceeds sequentially as far as possible. When it cannot proceed further, it returns
a GB status code:

• If the segment retrieved by the RBA call is an HIDAM root segment, HSSR Engine proceeds sequentially
to the end of the database.

• If the segment retrieved by the RBA call is an HDAM root segment, HSSR Engine proceeds sequentially
to the last database record chained to the same RAP as the root retrieved by the RBA call.

Chapter 18. System programming interfaces 257

• If the segment retrieved by the RBA call is not a root, the sequential processing stops at a position that
depends on pointer options. It is either the last dependent of the last twin (twin pointers) or the last
dependent of the last segment on the same hierarchical pointer chain (hierarchical pointers).

Finding the RBA required by the Get-by-RBA call
This information will be more readily useful if you have on hand an assembly listing of the IMS control
blocks SDB and PSDB. To get such a listing, use the IMS macro:

IDLI SDBBASE=0,DMBBASE=0

After the successful completion of an HSSR call, three control blocks (HJCB, HSDB, and the HDMB) of
HSSR Engine contain the following information:

HJCB (Job Control Block of HSSR Engine)

The HJCB is an internal expansion of the HSSR PCB. It has functions similar to the DL/I JCB. It also
contains the virtual storage address of the prefix of the segment just retrieved. This address is stored
at the label HJCBPFXA.

Note: For variable-length split segments, the segment data is not stored after the prefix.

HSDB (Segment Descriptor Block of HSSR Engine)

The HSDB describes the segment type just retrieved and points to the following IMS control blocks:

• Segment descriptor block (SDB)
• Physical segment descriptor block (PSDB)

Using the HSDB, SDB, and PSDB, you can get an exact and complete description of the segment type
just retrieved. This description includes an exact description of the segment prefix, which allows the
displacement within the segment prefix of any pointers of interest to be computed.

HDMB (Data Management Block of HSSR Engine)

The HDMB describes the data set group of the segment just retrieved. The HJCB, HSDB, and HDMB
can be found as follows:

• The field HPCBJCB of the HSSR PCB points to the HJCB.
• The field HJCBSDBC of the HJCB points to the HSDB of the segment just retrieved.
• The field HSDBHDMB of the HSDB points to the HDMB.

Because the layout of these control blocks can change with IMS High Performance Unload releases,
the control blocks should be referred to symbolically by using the macros FABHPCB, FABHJCB,
FABHSDB, and FABHDMB. The macros generate DSECTs that describe the control blocks.

The control blocks must never be modified by user routines (except the field HJCBUSER of the HJCB
and the field HSDBUSER of the HSDB, which can be freely used).

Note: If you plan to use the Get-by-RBA call in an IMS environment that supports an OSAM database
larger than 4 GB, pay attention to the RBA that you get from HSSR Engine. You must check the flag
byte HDMBAMDA in the HDMB for the database data set that you are processing when you treat
an RBA. The flag HDMBOS8G in this flag byte is on if and only if all of the following conditions are
satisfied:

• Your IMS environment supports relative byte addressability for up to 8 GB of data in an OSAM HDAM
or HIDAM database data set.

• Your database is an OSAM database.
• Your database has an even block size.

If HDMBOS8G is on, the lowest bit of the internal RBA represents the highest bit of the real
33-bit RBA. For example, the internal RBA X'00000001' represents the real RBA X'100000000'. If
HDMBOS8G is off, the internal RBA is equal to the real RBA. The RBA specified on the operand of a
Get-by-RBA call must be in the internal format.

258 IMS High Performance Unload: User's Guide

PSPI

Considerations for coding and link-editing the routine
Certain considerations apply when you code and link-edit the routine.

PSPI

You must consider the following items when you link-edit the routine:

• The routine must be link-edited with the REUSE option.
• The routine must be link-edited in 31-bit addressing mode (AMODE 31).

The reason is that database buffer pools are allocated above the 16-MB line and the address of the
segment prefix is set into a parameter list as a 31-bit address. The HDMB and HRAN control blocks are
also above the 16-MB line.

Note: If the routine does not refer to the address of any segment prefix, HDMBs, or HRANs, it can be
link-edited as AMODE 24. But the 31-bit addressing mode is recommended, to avoid the addressing
mode problems.

If the routine is link-edited in 31-bit addressing mode, but performs functions requiring AMODE 24,
you must code the residency mode (RMODE) as needed. Before running the function, you must use the
capping method to dynamically change the addressing mode to AMODE=24; after the function has run
you must return to AMODE 31. The following figure shows a sample code for such capping:

* Change the addressing mode to AMODE 24
 DS 0H
 L 14,VCT001
 BSM 0,14
 CNOP 0,4
VCT001 DC AL4(*+4)
EXT001 DS 0H
*
 This is the functional part that requires
 24-bit addressing mode.
*
* Change the addressing mode to AMODE 31
 DS 0H
 L 14,VCT002
 BSM 0,14
 CNOP 0,4
VCT002 DC AL4(*+4+X’80000000’)
EXT002 DS 0H

Figure 58. Sample code for capping

PSPI

Product-sensitive macros
IMS High Performance Unload provides product-sensitive macros.

PSPI

The macros described here are provided for use by system programmers in writing programs that use the
services of HSSR Engine. Only the macros identified in this topic should be used to request or receive the
services of HSSR Engine.

The product-sensitive macros listed in the following table are provided in HPS.SHPSMAC0 macro library.

Chapter 18. System programming interfaces 259

Table 45. Product-sensitive macros for system program interfaces

Macro name Description

FABHDMB Mapping for HSSR Engine Data Management Block (HDMB)

FABHJCB Mapping for HSSR Engine Job Control Block (HJCB)

FABHPCB Mapping for HSSR PCB (HPCB)

FABHPTR Mapping for HSSR Engine Pointer Block (HPTR)

FABHRAN Mapping for HSSR Engine CAB RBA-range description table (HRAN)

FABHSDB Mapping for HSSR Engine Segment Descriptor Block (HSDB)

FABHURGR Mapping for the format *F1, *F2, or *F3 record that can be produced by the
FABHURG1 unload utility

FABHFSUR Mapping for the format HS, VB, or VN record that can be produced by the FABHFSU
unload utility

For compatibility with earlier products, see the following topics:

• Chapter 30, “Compatibility with DBT V2 HSSR,” on page 357
• Chapter 31, “Compatibility with DBT V1 HSSR,” on page 365
• Chapter 32, “Compatibility with PO HSSR,” on page 367
• Chapter 33, “Compatibility with FSU II,” on page 373

PSPI

260 IMS High Performance Unload: User's Guide

Chapter 19. Site default options
Differences between the default option values of IMS High Performance Unload and those of earlier
products might interrupt smooth JCL migration. As a solution, the capability to change the default value
for some options is provided. You can do this by replacing the IMS High Performance Unload's default
option table (FABHOPT).

The following topics includes product-sensitive programming interface information. See “Programming
interface information” on page 518 to understand the restrictions associated with this type of material.

Topics:

• “How the runtime parameters are determined” on page 261
• “Replacing the HSSR option table (FABHOPT)” on page 262
• “FABHTOPT macro statements” on page 263

How the runtime parameters are determined
IMS High Performance Unload uses the parameter values that are specified in the HSSROPT, HSSRCABP,
SYSIN, and CARDIN data sets. If parameter values are not found in these data sets but in the FABHOPT
option table, values in the FABHOPT option table are used. If parameter values are not found in the data
sets nor in the FABHOPT option table, the system default values are used.

PSPI

The following figure illustrates how the runtime parameters are determined. The sources that determine
the runtime parameters are placed in the order of priority; that is, an option in a higher position in the
figure overrides one in a lower position.

Runtime parameter values

Parameter values specified in
HSSROPT, HSSRCABP, SYSIN, or
CARDIN data set

Parameter values specified in option
table FABHOPT()

System defaults of IMS High Performance Unload

Figure 59. How the runtime parameters are determined

Runtime parameters that can be replaced
Defaults for options listed in the following table can be specified by replacing the default option table.

© Copyright IBM Corp. 2000, 2024 261

Table 46. Options for which default values can be specified

Function Keyword Description Related data
set

FABHURG1
utility

URG1DEC DEC option for FABHURG1 (unload utility) SYSIN (for
FABHURG1)

URG1CHKRC CHECKREC option for FABHURG1 (unload utility) SYSIN (for
FABHURG1)

URG1BUFNO The default number of buffers to be assigned to the
DCBs for the output data sets to store the unloaded
records.

N/A

FABHFSU
utility

FSUDEC DEC option for FABHFSU (unload utility) CARDIN (for
FABHFSU)

FSUBUFNO The number of buffers to be assigned to the DCBs
for the output data sets to store the unloaded
records other than the HS format records.

N/A

HSSR
Engine
options

CABBASE_OS CABBASE option for OSAM sequential buffering HSSROPT

CABBASE_OD CABBASE option for OSAM direct buffering HSSROPT

CABBASE_VS CABBASE option for ESDS or OSAM LDS sequential
buffering

HSSROPT

CABBASE_VD CABBASE option for ESDS or OSAM LDS direct
buffering

HSSROPT

CABSTAT CAB statistics report option HSSROPT

COMPAUTH State option for segment compression exit call HSSROPT

LSR LSR option HSSROPT

APISET Level of API set HSSROPT

DIAGG Diagnosis information for status GG HSSROPT

PCBLIST Type of PCB list HSSROPT

ZIIPMODE Specifies whether to offload eligible workloads to
zIIP processors.

HSSROPT

Buffer
handlers

BUFDEFAULT Specifies how the default buffer handler is
determined

HSSRCABP

CABDEFAULT Specifies how the default CAB parameters are
determined

HSSRCABP

PSPI

Replacing the HSSR option table (FABHOPT)
You can replace the IBM-supplied default option table (FABHOPT) in HPS.SHPSLMD0 load module library
with your own table containing options applicable to your site.

Procedure

PSPI

262 IMS High Performance Unload: User's Guide

Complete the following steps to replace the table:
1. Copy the sample JCL FABHOPTG from the sample library.

FABHOPTG JCL is a sample JCL for use in creating a user-defined default option table. FABHOPTG
JCL is provided as a member of the HPS.SHPSSAMP library. FABHOPTG assembles the user-specified
FABHTOPT macro statement and replaces the FABHOPT option table module in the HPS.SHPSLMD0
load module library.

2. Code the FABHTOPT macro in the copied JCL.

For a list of the keywords that can be used in the FABHTOPT macro statements, see “FABHTOPT
macro statements” on page 263.

Use the following examples to code a FABHTOPT macro statement.
Example 1

The following FABHTOPT macro statement is used to create a user table that contains the defaults
that are compatible with DBT V2 HSSR:

 FABHTOPT COMPAT=DBT

Example 2
The following FABHTOPT macro statement is used to create a user table that contains the defaults
that are compatible with PO HSSR:

 FABHTOPT COMPAT=5787LAC

Example 3
The following FABHTOPT macro statement is used to create a user table that contains the defaults
that are compatible with PO HSSR, except that CAB is used as the default buffer handler for ESDS
and OSAM data sets, and that the default CAB buffering parameters are determined from the
characteristics of database data sets:

 FABHTOPT COMPAT=5787LAC,BUFDEFAULT=CAB,CABDEFAULT=HPU

3. Submit the JCL to replace the IBM-supplied default option table.

PSPI

FABHTOPT macro statements
The rules for coding the FABHTOPT macro are the same as those for coding macro statements in
Assembler language.

PSPI

FABHTOPT must be preceded and followed by at least one blank space, and parameters must be
separated by commas.

Chapter 19. Site default options 263

(label) FABHTOPT COMPAT=[HPU|DBT|5787LAC]
 [,APISET=1|2|3]
 [,DIAGG=([CB][,BUF])|NOINT|DIAGONLY]
 [,CABSTAT=YES|NO]
 [,LSR=YES|NO]
 [,URG1DEC=YES|NO]
 [,URG1BUFNO=nnn]
 [,URG1CHKRC=YES|NO]
 [,FSUDEC=YES|NO]
 [,FSUBUFNO=nnn]
 [,BUFDEFAULT=CAB|BB]
 [,CABDEFAULT=HPU|DBT]
 [,PCBLIST=HSSR|IMS]
 [,COMPAUTH=YES|NO]
 [,CABBASE_OS=nnn]
 [,CABBASE_OD=nnn]
 [,CABBASE_VS=nnn]
 [,CABBASE_VD=nnn]
 [,ZIIPMODE=NEVER|COND]

COMPAT=
This optional keyword specifies the basic setting of FABHTOPT. IMS High Performance Unload
provides three basic settings: HPU, DBT, and 5787LAC. The default basic setting is HPU. The following
table shows the options to be set by the three basic settings:

Table 47. Basic settings of FABHTOPT options

Keyword COMPAT=HPU COMPAT=DBT COMPAT=5787LAC

APISET= 1 1 1

DIAGG= DIAGONLY DIAGONLY (CB,BUF)

CABBASE_OS= 1 1 1

CABBASE_OD= 2 2 2

CABBASE_VS= defnum (see Note 1) defnum (see Note 1) defnum (see Note 1)

CABBASE_VD= defnum (see Note 1) defnum (see Note 1) defnum (see Note 1)

CABSTAT= NO YES NO

COMPAUTH= NO NO NO

LSR= NO NO NO

URG1DEC= YES YES YES

URG1BUFNO= defnum (see Note 2) defnum (see Note 2) defnum (see Note 2)

URG1CHKRC= NO NO NO

FSUDEC= YES YES YES

FSUBUFNO= defnum (see Note 2) defnum (see Note 2) defnum (see Note 2)

BUFDEFAULT= CAB BB BB

CABDEFAULT= HPU DBT DBT

PCBLIST= HSSR HSSR HSSR

ZIIPMODE= NEVER NEVER NEVER

Notes:

1. The number is determined from the CI size of the database data set.
2. The number is determined from the block size of the output data set by each unload utility.

You can use the following keywords to override the values set by the basic settings:

264 IMS High Performance Unload: User's Guide

APISET=
This optional keyword specifies the default for the APISET option in HSSROPT.

DIAGG=
This optional keyword specifies the default interpretation for the DIAGG statement with its operand
left blank, as follows:

//HSSROPT DD *
DIAGG
/*

CABBASE_OS=
This optional keyword specifies the default for the 'CABBASE nnn OSAM SEQ' option in HSSROPT.

CABBASE_OD=
This optional keyword specifies the default for the 'CABBASE nnn OSAM DIR' option in HSSROPT.

CABBASE_VS=
This optional keyword specifies the default for the 'CABBASE nnn VSAM SEQ' option in HSSROPT.

CABBASE_VD=
This optional keyword specifies the default for the 'CABBASE nnn VSAM DIR' option in HSSROPT.

CABSTAT=
This optional keyword specifies the default for the CABSTAT option in HSSROPT.

COMPAUTH=
This optional keyword specifies the default for the COMPAUTH option in HSSROPT.

LSR=
This optional keyword specifies the default for the LSR option in HSSROPT.

URG1DEC=
This optional keyword specifies the default for the DEC option in SYSIN for the FABHURG1 utility jobs.

URG1BUFNO=
This optional keyword specifies the default number of buffers to be assigned to the DCBs for the
output data sets to store the unloaded records. Specifies a left-aligned decimal number in the range
of 1 - 255. If this option is not specified, the default number is determined from the block size. The
BUFNO= specification in the JCL DD statement is prior to this default number.

URG1CHKRC=
This optional keyword specifies the default for the CHECKREC option in SYSIN for the FABHURG1
utility jobs.

FSUDEC=
This optional keyword specifies the default for the DEC option in CARDIN for the FABHFSU utility jobs.

FSUBUFNO=
This optional keyword specifies the default number of buffers to be assigned to the DCBs for the
output data set to store the unloaded records other than the HS format records. Specifies a left-
aligned decimal number in the range of 1 - 255. If this option is not specified, the default number is
determined from the block size. The BUFNO= specification in the JCL DD statement is prior to this
default number.

BUFDEFAULT=
This optional keyword specifies how the default buffer handler is determined.

If BUFDEFAULT=CAB is specified, CAB is used as the default buffer handler for ESDS, OSAM, and
OSAM LDS data sets.

If BUFDEFAULT=BB is specified, BB is used as the default buffer handler for all ESDS, OSAM, and
OSAM LDS data sets except data sets of PHDAM and PHIDAM.

For PHDAM and PHIDAM, the default buffer handler for ESDS, OSAM, and OSAM LDS data sets is
always CAB.

Chapter 19. Site default options 265

CABDEFAULT=
This optional keyword specifies how the default CAB buffering parameters that can be specified in
HSSRCABP data set are to be determined.

If CABDEFAULT=HPU is specified, the default CAB parameters are determined automatically from the
characteristics of the database data sets.

If CABDEFAULT=DBT is specified, the fixed default CAB parameters that are compatible with DBT V2
HSSR are used for ESDS, OSAM, and OSAM LDS data sets.

For PHDAM and PHIDAM, the default CAB parameters are always determined from the characteristics
of the database data sets.

PCBLIST=
This optional keyword specifies the type of PCB list that is passed to the application program.

ZIIPMODE=
This optional keyword specifies the default for the ZIIPMODE option in HSSROPT.

PSPI

266 IMS High Performance Unload: User's Guide

Part 4. Using Sequential Subset Randomizer
You can use the Sequential Subset Randomizer to group subsets of database records close together.

Topics:

• Chapter 20, “Introduction to the Sequential Subset Randomizer,” on page 269
• Chapter 21, “Planning for the Sequential Subset Randomizer,” on page 275
• Chapter 22, “Sequential Subset Randomizer generation,” on page 279
• Chapter 23, “Splitting the unloaded database data set,” on page 287
• Chapter 24, “Obtaining statistics from each subset with Sequential Subset Statistics,” on page 293
• Chapter 25, “Converting databases to HDAM databases randomized with the Sequential Subset

Randomizer,” on page 299

© Copyright IBM Corp. 2000, 2024 267

268 IMS High Performance Unload: User's Guide

Chapter 20. Introduction to the Sequential Subset
Randomizer

You can use the Sequential Subset Randomizer to create a randomizing module which enables fast
sequential processing of database records belonging to a subset.

The Sequential Subset Randomizer utility is used to implement databases that combine:

• Fast random online access provided by HDAM
• Fast sequential processing of all database records belonging to one or multiple subsets of database

records

The Sequential Subset Randomizer supports fast sequential processing of database records belonging to
a subset by:

• Storing all database records of a subset close together in the HDAM root addressable area
• Allowing the retrieval of the first database record of a subset

With the Sequential Subset Randomizer, all database records of subset n are stored before the database
records of subset n+1. During sequential database processing, all database records of subset n are
retrieved before database records of subset n+1. However, the database records of a subset are neither
stored nor retrieved in their logical key sequence.

If a database consists of 20 subsets, the sequential retrieval of all root segments with the Sequential
Subset Randomizer will require one 20th, on the average, of the elapsed time which is required with the
standard IMS DFSHDC40 randomizer (hereafter, called DFSHDC40).

Topics:

• “Characteristics of the Sequential Subset Randomizer” on page 269
• “Benefits of the Sequential Subset Randomizer” on page 270
• “Sequential Subset Randomizer program functions” on page 270
• “Differences between the Sequential Subset Randomizer and other sequential randomizers” on page

272
• “Sequential Subset Randomizer program structure” on page 273
• “Sequential Subset Randomizer restrictions” on page 273

Characteristics of the Sequential Subset Randomizer
The randomizing techniques used by the Sequential Subset Randomizer are an extension of the
randomizing techniques used by the standard IMS DFSHDC40 randomizer module.

The Sequential Subset Randomizer maintains (as DFSHDC40 does) the physical RAP sequence of
database records through a database reorganization in the following cases:

• The number of CIs/blocks within the Root Addressable Area (RAA) is changed.
• The CI size or block size is changed.
• The number of RAPs per CI/block is changed.
• The relative amount of space within the RAA allocated to each subset is changed.

A change of these characteristics requires a database reorganization.

With the Sequential Subset Randomizer, as with DFSHDC40, if two different databases have database
roots with identical keys, the physical RAP sequence of the database roots will be the same in the two
databases.

© Copyright IBM Corp. 2000, 2024 269

As DFSHDC40, the Sequential Subset Randomizer supports the formatting of the whole root addressable
area through the insertion of a root whose key begins with an X'FF'.

Benefits of the Sequential Subset Randomizer
By using the Sequential Subset Randomizer, you can group subsets of database records close together
and achieve fast sequential processing of database records that belong to the subsets.

The Sequential Subset Randomizer is designed for the following types of databases:

Customer databases of companies with multiple branch offices.
The key of the customer databases usually consists of a branch office ID and a customer number. In
this case, each subset consists of the database records of all customers belonging to the same branch
office. With the Sequential Subset Randomizer, a program that has to process all database records of
a branch office does not need to scan the whole database. The database scan can be limited to the
part of the HDAM database that contains all database records of that branch office.

Databases of corporations that do business in different geographical areas.
For the key of a root segment that contains an ID identifying a geographical area such as county and
state, it is possible to define a subset of database records as the group of database records belonging
to the same geographical area, county, or state.

Databases of companies that have multiple divisions.
For the key of a root segment that contains the division ID, it is possible to define a subset of database
records as the group of database records belonging to the same division.

The Sequential Subset Randomizer performs and benefits the following tasks:

• The Sequential Subset Randomizer is useful for the implementation of new HDAM databases if
applications require fast sequential processing of subsets of database records (but do not require
retrieval of the database records of a subset in their logical key sequence).

• The Sequential Subset Randomizer is useful when converting the following types of existing databases:

– HDAM databases randomized with DFSHDC40 (or with other nonsequential randomizers) if
applications require fast sequential processing of subsets of database records.

– HISAM databases, HIDAM databases, and HDAM databases randomized with a sequential
randomizer, if the retrieval in the logical key sequence is not required within subsets of database
records.

Sequential Subset Randomizer program functions
The Sequential Subset Randomizer can be used to group subsets of database records close together.
Therefore, it can speed up the execution of all of the Batch/BMP/MPP/IFP IMS programs and the IMS High
Performance Unload utility programs that sequentially scan large HDAM databases in order to process
only the database records of subsets.

Subtopics:

• “Physical clustering of all database records” on page 270
• “Database retrievals” on page 271
• “Generation of a Sequential Subset Randomizer and database” on page 272
• “Splitting the unloaded data set” on page 272
• “Providing statistical information” on page 272

Physical clustering of all database records
The Sequential Subset Randomizer allows physical clustering of all database records belonging to the
same subset (if the subsets can be defined as groups of database records having root keys within a
common key range). With the Sequential Subset Randomizer, the sequential scanning that processes
database records of the same subset does not require the scanning of the whole HDAM database. Only

270 IMS High Performance Unload: User's Guide

the portion of the HDAM database that contains the database records of the subset to be processed
needs to be scanned.

With the Sequential Subset Randomizer, the root addressable area of an HDAM database is conceptually
divided into multiple portions. The first portion is used for the database records of the first subset, the
second portion is used for the database records of the second subset, and so on.

To use the Sequential Subset Randomizer, all database records belonging to the same subset must have
root keys within one common key range. The common key range must be identified by n bytes of the root
key (where n is a number smaller than or equal to the number of bytes within the root key) starting at the
fixed position within the root key. These n bytes are called the subset ID.

The following figure shows how a root addressable area is divided by the subset IDs. In this example, the
branch IDs are the subset IDs.

A 321B

A 841B
A 001B

Root key : bb ccc

Customer number

Branch ID = Subset ID

ZZ477
ZZ988

Root SEG.
ZZ040

ZZ639

SEG. SEG.

A 711A

Root SEG.
AA123

A 056A

SEG. SEG.

ZZ

AB

AA

(Subset ID)

Figure 60. Physical clustering with the Sequential Subset Randomizer

Database retrievals
The Sequential Subset Randomizer allows retrievals through a qualified GU call (with special root key
values in the SSA) of the first database root segment belonging to each subset. Application programs
which process all database records of a subset can:

• Retrieve the first database record of the subset by using this GU call.
• Retrieve the further database records of the subset by using GN calls.

Chapter 20. Introduction to the Sequential Subset Randomizer 271

• Check if it has finished processing all database records of the subset by testing in the PCB key feedback
area (or in the segment I/O area) for a root key value which no longer belongs to the key range of the
subset.

Generation of a Sequential Subset Randomizer and database
Ordinarily, one Sequential Subset Randomizer is generated for each database to be randomized. However,
if multiple databases have the same characteristics (if they have the same subsets, the same relative
amount of space to be reserved for each subset, the same offset within the root key of the subset IDs, and
so on), one common Sequential Subset Randomizer can be used for these multiple databases.

Splitting the unloaded data set
The database reorganization can be accelerated by splitting an unloaded database data set into multiple
data sets with the FABIUNLS utility. The purpose of this splitting is to provide input to the IMS HD
Reorganization Reload utility. The split data sets are then sorted in the sequence that allows reloading of
large databases in a reasonable amount of time.

Providing statistical information
The SS-STATS (Sequential Subset Statistics) routine (FABISTAT) is an exit routine of the IMS High
Performance Unload’s database unload utilities FABHURG1 and FABHFSU. It provides database
administrators with statistical information that is useful in determining how much relative space in the
root addressable area needs to be allocated to each subset.

Differences between the Sequential Subset Randomizer and other
sequential randomizers

The Sequential Subset Randomizer provides advantages over other randomizers. However, other
randomizers also provide advantages over the Sequential Subset Randomizer. Before using the Sequential
Subset Randomizer, learn the differences to determine the use of Sequential Subset Randomizer.

Note: In these topics, the term sequential randomizer means a randomizer which randomizes database
root segments in the logical sequence of the key value. A sequential randomizer can be one of the IMS HD
sequential randomizers or the user’s unique randomizer.

Subtopics:

• “Advantages of the Sequential Subset Randomizer over other sequential randomizers” on page 272
• “Advantages of sequential randomizers over the Sequential Subset Randomizer” on page 273
• “Advantages of the Sequential Subset Randomizer over DFSHDC40” on page 273
• “Advantages of DFSHDC40 over the Sequential Subset Randomizer” on page 273

Advantages of the Sequential Subset Randomizer over other sequential
randomizers
For databases that do not need to be processed in the logical sequence of the root key values, the
Sequential Subset Randomizer provides the following advantages over sequential randomizers:

• The performance of the Sequential Subset Randomizer is less affected by a high volume of insertion
and deletion activities than that of sequential randomizers. With a sequential randomizer, the user must
often regenerate the sequential randomizer and reorganize the databases after inserting a large number
of roots. This is often a long process. The database is unavailable to the applications during this time.

With the Sequential Subset Randomizer, a regeneration and reorganization are not necessary if the
insert activities are evenly distributed across the different subsets, and if the HDAM database has been
defined with enough free space to absorb the insert activities.

272 IMS High Performance Unload: User's Guide

• The tables of the Sequential Subset Randomizer are smaller than those of the sequential randomizers.
With huge HDAM databases, the tables of a sequential randomizer are often huge, and can often create
substantial paging activity, which defeats the advantage of HDAM over HIDAM.

Advantages of sequential randomizers over the Sequential Subset Randomizer
Sequential randomizers support storing and retrieving of database root segments in the logical sequence
of the root key values. The Sequential Subset Randomizer does not provide such support.

Advantages of the Sequential Subset Randomizer over DFSHDC40
The Sequential Subset Randomizer can be used to group all database records of a subset physically close
together, thereby improving the processing time for programs that only process the database records of
one or a few subsets. DFSHDC40 does not provide such support.

Advantages of DFSHDC40 over the Sequential Subset Randomizer
With databases for which there is no need to physically group database records into subsets, DFSHDC40
has the following advantages over the Sequential Subset Randomizer:

• DFSHDC40 does not use subsets. Therefore the database administrator does not need to specify the
relative amount of space to be reserved for each subset.

• With DFSHDC40, there is no need to periodically monitor (and sometimes adapt) the relative amount
of space effectively occupied by each subset. Adapting the relative amount of space allocated to
each subset requires a reorganization of the database. Reorganization is often a long process and the
database is unavailable during the reorganization.

Sequential Subset Randomizer program structure
The Sequential Subset Randomizer and its tables are generated by means of the SSRGEN process using
three macro statements (those are, FABITAB, FABIDEF, and FABIGEN). During this process, the database
designer (or the database administrator) identifies the subsets, their key ranges, and the space which
must be reserved for each subset in the HDAM root addressable area.

The Sequential Subset Randomizer includes the following components:

• A utility program (FABIUNLS), which is used to speed up the database reorganization while converting
from databases randomized with DFSHDC40 to databases randomized with the Sequential Subset
Randomizer.

• An exit routine (FABISTAT) of IMS High Performance Unload’s database unload utilities (that is,
FABHURG1 and FABHFSU), which provides statistics about the number of roots and the total length
of database records in each subset. These statistics are called SS-STATS. The SS-STATS can be used to
specify the relative amount of space to be reserved within the root addressable area for each subset
when you generate a Sequential Subset Randomizer next time.

The Sequential Subset Randomizer complies to the usual IMS conventions for HDAM randomizing
routines. Therefore, the Sequential Subset Randomizer can be used with the IMS High Performance
Unload database unload utilities and with Batch/BMP/MPP/IFP IMS programs. However, the FABIUNLS
utility and the SS-STATS exit routine run exclusively in IMS High Performance Unload jobs.

The Sequential Subset Randomizer can run with multiple IMS versions and releases without re-installing
the product as far as the version/release is supported by IMS High Performance Unload. Refer to
“Software requirements” on page 17 for information about supported IMS versions and releases.

Sequential Subset Randomizer restrictions
The following restrictions apply to the Sequential Subset Randomizer.

• The Sequential Subset Randomizer supports a maximum of 1000 subsets.

Chapter 20. Introduction to the Sequential Subset Randomizer 273

• If the length of a subset ID is not smaller than the length of the root key, the Sequential Subset
Randomizer does not provide any special support for retrieval of the first root segment of the subset.

• If a subset ID does not start in the first position of the key of the root segment, the root addressable
area must contain at least as many RAPs as the number of subsets.

274 IMS High Performance Unload: User's Guide

Chapter 21. Planning for the Sequential Subset
Randomizer

Before applying the Sequential Subset Randomizer, you must plan for the use of Sequential Subset
Randomizer.

The following topics describe the Sequential Subset Randomizer from the viewpoint of the user tasks. The
user tasks include:

• Database design, especially when defining the subset IDs
• Application programming
• Database administration

– Determining the relative amount of space to each subset
– Monitoring the database

Topics:

• “Considerations when defining subset IDs” on page 275
• “Considerations for application programming” on page 276
• “Considerations for the relative amount of space to each subset” on page 276
• “Considerations for monitoring the database” on page 277

Considerations when defining subset IDs
Database designers need to define the subsets and the subset IDs.

This is often trivial work in the following case:

• The subsets are defined as the database records belonging to a branch office.
• The branch office ID is contained at a fixed location of the database root key.

In this case, the subset ID is defined as the branch office ID. A subset is the group of database records
belonging to the same branch office.

The following points should be observed:

• The subset ID must be completely embedded within the root key and must start at a fixed location
within the root key. The length of the subset ID is fixed and must be smaller than or equal to the length
of the root key.

• The number of bytes within the subset ID should be smaller than the number of bytes within the root
key if the application needs the support of the Sequential Subset Randomizer in order to retrieve the
first database record of a subset.

• For each subset, the user must define a value for the subset ID during the generation of the
Sequential Subset Randomizer. The Sequential Subset Randomizer supports the following two different
interpretations of the subset ID values:
VALTYPE=E (Value type=Exact)

The Sequential Subset Randomizer assumes that all database records belonging to a subset will
have the exact value specified during the generation of Sequential Subset Randomizer as a subset
ID.

VALTYPE=H (Value type=High)
The Sequential Subset Randomizer assumes that the value specified during the generation of the
Sequential Subset Randomizer is a high value. The database records belonging to a subset have
subset IDs in the range between two specified subset ID values (between the high value of the
preceding subset and the high value of this subset).

© Copyright IBM Corp. 2000, 2024 275

• The implementation of the Sequential Subset Randomizer does not support more than 1000 subsets.

Considerations for application programming
The following considerations about the use of the physical clustering of database records apply when
using the Sequential Subset Randomizer.

This section describes application programming available to system programmers. It is a product-
sensitive programming interface. See “Programming interface information” on page 518 to understand
the restrictions associated with this type of material.

PSPI

The Sequential Subset Randomizer is ineffective for application programs that do not use the physical
grouping of database records by subsets. These programs are not affected by a conversion from
DFSHDC40 randomizing to sequential subset randomizing (if they are not sensitive to the sequence in
which the database records are retrieved during sequential database processing).

When an application programmer wants to use the physical clustering of database records, the following
should be considered:

Retrieval of the first database record of a subset
The first root segment of a subset can be retrieved by a qualified GU call using the following SSA:

ROOTNAME(KEY-NAME=>...SID......)

SID
Subset ID. It must reside at the same position as the subset ID in the root key. When VALTYPE=H was
specified during the generation of the Sequential Subset Randomizer, the minimum value within the
required subset ID must be used for the GU call.

.....
Binary zeros.

Note: When orphan root segments exist in the database, they may also be retrieved by the GU call. In
such a case, the succeeding root segments must be processed sequentially until the required subset ID
value is encountered.

End of the database records of a subset
An application program which sequentially processes a database can detect that it has processed the
last database record of a subset. It can be done by detecting a greater subset ID value than the required
subset ID value within the root key field (either in the PCB key feedback area or in the I/O area).

PSPI

Considerations for the relative amount of space to each subset
Database administrators must define how much space should be allocated to each subset.

The amount of space to be allocated to each subset is specified as a relative amount of space. It can be
expressed as follows:

• The number of database roots within the subset
• The total length of all database records within the subset
• One of the above two values expressed as the percentage of the database totals

Database administrators can determine the relative amount of space to be allocated to each subset
by activating the SS-STATS routine during sequential processing, or unloading of the whole database.
The SS-STATS will show for each subset how much space is occupied by all the database segments of

276 IMS High Performance Unload: User's Guide

the subset that are stored in the first data set group of the HDAM database. These space statistics are
expressed both as the number of bytes and as the percentage of the database totals.

It is recommended that database administrators use the percentage for the length of database records
(provided by the SS-STATS routine) for the allocation of space to each subset. The usage of percentage
makes it easy to follow how and whether the database growth impacts the relative space allocation for
each subset.

Considerations for monitoring the database
After the Sequential Subset Randomizer has been applied to your database, monitor the database like any
other HDAM database. This topic provides tips for monitoring the database that has the Sequential Subset
Randomizer applied.

An HDAM database randomized with the Sequential Subset Randomizer needs to be monitored like any
other HDAM database. Database Tuning Statistics should be used to monitor periodically the quality of
the randomizing and the need to reorganize a database. For example, if the Database Tuning Statistics
for April show that the random retrieval of a database record requires as an average 1.23 I/Os and the
Database Tuning Statistics from June of the same year show that this figure has increased to 1.89 I/Os, it
would be time to reorganize.

As a part of this usual database monitoring, database administrators should observe how the space is
occupied by the database records of each subset. This is done by activating the SS-STATS routine during
the sequential processing or unloading of the whole database. If the Database Tuning Statistics show a
need to reorganize a database, and a database administrator decides to do so, the SS-STATS statistics
should be considered in deciding whether also to change the relative amount of space allocated to each
subset and regenerate the Sequential Subset Randomizer.

Chapter 21. Planning for the Sequential Subset Randomizer 277

278 IMS High Performance Unload: User's Guide

Chapter 22. Sequential Subset Randomizer
generation

Sequential Subset Randomizer and its tables are generated by means of the process called SSRGEN. A
Sequential Subset Randomizer load module is produced by an assembly and link-edit.

Topics:

• “Generating the Sequential Subset Randomizer load module” on page 279
• “FABIRGEN JCL requirements” on page 280
• “FABIRGEN input: SYSIN data set” on page 280
• “FABIRGEN JCL examples” on page 284

Generating the Sequential Subset Randomizer load module
To generate a Sequential Subset Randomizer load module, you can use the IBM-supplied cataloged
procedure.

About this task
The general data flow for the generation of a Sequential Subset Randomizer module is shown in the
following figure.

Assemble
Link-edit

Sequential
Subset

Randomizer

Randomizer
table

Macro
Statements

Figure 61. Data flow of the generation of the Sequential Subset Randomizer module (SSRGEN)

Procedure
1. Prepare a JCL job for FABIRGEN.

To generate a Sequential Subset Randomizer, use the IBM-supplied cataloged procedure FABIRGEN
that is located in the HPS.SHPSSAMP sample library.

Code the EXEC and DD statements for the process. For the JCL requirements, see “FABIRGEN JCL
requirements” on page 280. See also Figure 66 on page 284 for a JCL example for generating the
Sequential Subset Randomizer. This example assumes that the IBM-supplied cataloged procedure is
used.

2. Code the macro statements in the SYSIN data set.

Database designer, administrators, or both must provide the following information through macro
statements:

• The length of the subset IDs (the default is 1)
• The relative start position of the subset ID within the root key (the default is 1)
• Whether the values for the subset IDs are provided as hexadecimal values or as EBCDIC values (the

default is EBCDIC)
• Whether the values for the subset IDs are exact values or high-values (the default is exact value)
• For each subset:

© Copyright IBM Corp. 2000, 2024 279

– The subset ID value
– The relative amount of space to be reserved in the root addressable area

For descriptions of the macro statements, see “FABIRGEN input: SYSIN data set” on page 280.
3. Assemble and link-edit the macro statements to generate the Sequential Subset Randomizer load

module and its tables.

The assembly requires the following macro libraries:

• SYS1.MACLIB
• HPS.SHPSMAC0
• IMSVS.SDFSMAC

FABIRGEN JCL requirements
To generate the Sequential Subset Randomizer, supply an EXEC statement and the appropriate DD
statements.

The following table summarizes the DD statements.

Table 48. FABIRGEN DD statements

DDNAME Use Format Need

SYSLIB Input LRECL=80 Required

SYSIN Input LRECL=80 Required

SYSLMOD Output - Required

EXEC
The EXEC statement must be in the following format:

// EXEC FABIRGEN,MBR=randname

SYSLIB DD
This statement defines the input macro library data set.

SYSIN DD
This statement defines the input data set that contains your control statement.

SYSLMOD DD
This statement defines the output partitioned data set that contains the load module of the generated
Sequential Subset Randomizer.

FABIRGEN input: SYSIN data set
All input you must specify to generate the Sequential Subset Randomizer is only a SYSIN data set.

The SYSIN data set contains the following statements:

• FABITAB macro statement
• FABIDEF macro statement
• FABIGEN macro statement
• END statement

Note: Macro statements FKDTAB, FKD, and FKDGEN can be used instead of FABITAB, FABIDEF, and
FABIGEN, respectively. These macro statements are provided only for compatibility. The use of macros
prefixed by FABI is recommended.

280 IMS High Performance Unload: User's Guide

Format
This data set usually resides in the input stream. However, it can be defined either as a sequential data
set, or as a member of a partitioned data set. It must contain 80-byte fixed-length records. BLKSIZE, if
coded, must be a multiple of 80.

General rules for macro statements
The coding conventions for the macro statements are the same as Assembler coding conventions.
The following information pertains to the coding conventions that you must follow in writing macro
statements:

• The entries must be written in the following order: label, operation, operand, and remarks.
• The entries must be contained in the begin column (1) through the end column (71) of the first line and,

if needed, can continue in column 16 through column 71 of any continuation lines.
• When a macro statement is not completed in the first line, column 72 must be coded with any character.
• The entries must be separated from each other by one or more blanks.
• If used, a label entry must start in the begin column.
• The label and operation entries, each followed by at least one blank, must be contained in the first line

of a macro statement.
• The operation entry must begin at least one column to the right of the begin column.

The name, operation, operand, and remark entries are as follows:

Label entry
It is a symbol created by you to identify a macro statement. This entry is optional.

Operation entry
It is the symbolic operation code specifying the macro operation desired. This entry is mandatory.

Operand entries
These entries contain one or more operands that identify and describe data to be acted upon by the
macro instruction.

Remarks entries
Remarks are used to describe the current macro instruction.

FABITAB macro statement
The FABITAB macro statement defines the information about subset IDs.

The FABITAB macro statement must be the first statement. The format of the FABITAB macro statement
is as follows:

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

Label FABITAB TABNAME=tabname, C
 START=n, C
 BYTES=m, C
 IDTYPE=y, (C/X) C
 VALTYPE=z (E/H)MIGRATE

Figure 62. FABITAB macro statement

Note: C in column 72 is a continuation character.

Label
Coding of the label is optional.

TABNAME=
This keyword parameter is optional. The value tabname of the keyword parameter is a table name;
it is used only for documentation purposes. The table name consists of 1- to 8-alphanumeric
characters.

Chapter 22. Sequential Subset Randomizer generation 281

START=
This keyword parameter specifies where the subset ID starts within the key field of the database root
segment. The start position for the first byte of the root key is 1.

The default is 1.

BYTES=
This keyword parameter specifies the length of the subset ID. The subset ID must be completely
located within the key field of the database root segment.

Note: The available values of START=n and BYTES=m parameters are shown in the following
algorithm:

n + m ≤ key length

The default is 1.

IDTYPE=
This keyword parameter specifies whether the values for the subset IDs on the FABIDEF macro
statements are EBCDIC values (C) or hexadecimal values (X).

The default is C.

VALTYPE=
This keyword parameter specifies whether the values of the subset IDs should be interpreted as exact
values (E) or high values (H).

The default is E.

E
When E is specified and a database root segment is inserted with a subset ID which has not been
defined with an FABIDEF macro statement, the Sequential Subset Randomizer interprets this as
an error.

Example:

• FABIDEF macro statements are used to define subsets with subset ID values A, C, and D.
• No FABIDEF macro statement is used to define a subset with a subset ID value B.
• Database root segments are inserted with a subset ID value B.
• Database root segments are inserted with a subset ID value E.

In this example, the Sequential Subset Randomizer considers the insertion of database root
segments with subset ID values B and E as an error.

As a result, all database root segments with a subset ID value B will be randomized to the first
RAP of the subset with the subset ID value C (the higher and closest subset ID value). If a lot
of database root segments are inserted with a subset ID value B, this will create a long HDAM
synonym chain in the first RAP of the subset with the subset ID value C.

All database root segments with a subset ID value E will be randomized to the last RAP of the
subset with the subset ID value D.

H
When H is specified and a database root segment is inserted with a subset ID which has not been
defined with an FABIDEF macro statement, the Sequential Subset Randomizer interprets this as a
normal situation.

Example:

• Two consecutive FABIDEF macro statements are used to define subsets with subset ID values of
1000 and 2000.

• No FABIDEF macro statement is used to define a subset with a subset ID value 1500.
• Database root segments are inserted with a subset ID value 1500.
• Database root segments are inserted with a subset ID value 2500.

282 IMS High Performance Unload: User's Guide

In this example, the Sequential Subset Randomizer considers the database root segments with a
subset ID value 1500 as being normal database roots belonging to that subset which has a high
value subset ID 2000. This subset consists of all database records whose subset ID is between
1000 and 2000 (1000 is excluded).

Because the Sequential Subset Randomizer does not store the root segments according to their
key sequence within a subset, sequential database processing may retrieve a database root with a
subset ID 1500 before a database root with subset ID 1400.

The Sequential Subset Randomizer considers the insertion of database root segments with a
subset ID value 2500 as an error. Those segments which have higher subset ID values than the
maximum subset ID value (2000) are randomized to the last RAP of the subset with the subset ID
value 2000.

FABIDEF macro statement
The FABIDEF macro statement defines the subset ID value and the amount of space to be reserved in the
HDAM root addressable area.

One FABIDEF macro statement must be provided for each subset. The FABIDEF macro statements must
be provided in the ascending sequence of the subset ID values.

A maximum of 1000 FABIDEF macro statements can be provided.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

Label FABIDEF ID=aaaaa,UNITS=nnnn

Figure 63. FABIDEF macro statement

Label
Coding of the Label is optional.

ID=
This keyword parameter specifies the subset ID value.

• If IDTYPE=C has been specified on the FABITAB macro statement, the subset ID value must be
specified as an alphanumeric value of length n which has been defined on the BYTES= keyword of
the FABITAB macro statement.

• If IDTYPE=X has been specified on the FABITAB macro statement, the subset ID value must be
specified as a hexadecimal value of length 2n (where n has been defined on the BYTES= keyword of
the FABITAB macro statement).

Example for coding a hexadecimal subset ID value (BYTES=3 on FABITAB):

ID=F0F403

UNITS=
This keyword parameter specifies the relative amount of space to be reserved in the HDAM root
addressable area for the database records of the subset to be defined by this FABIDEF macro
statement.

The unit can be one of the following numbers:

• The number of roots per subset
• The number of data bytes within all database segments of a subset
• The number of RAPs to be reserved for the database records of a subset.

The keyword parameter value must be an integer number (without decimal points and commas). Valid
values are in the range between 0 and 2 GIGA minus 1.

Chapter 22. Sequential Subset Randomizer generation 283

FABIGEN macro statement
The FABIGEN macro statement specifies to generate the Sequential Subset Randomizer module and its
tables.

The FABIGEN macro statement must be the last macro statement of the FABIRGEN (SSRGEN) source
statements preceding the END statement.

The FABIGEN macro statement must be coded as follows:

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 FABIGEN

Figure 64. FABIGEN macro statement

END statement
This END statement specifies the end of the SYSIN data set.

The END statement must be coded as follows:

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 END

Figure 65. END statement

FABIRGEN JCL examples
Use the following JCL examples to generate the Sequential Subset Randomizer module and its tables.

Example 1: Generating the Sequential Subset Randomizer, case 1
The following figure presents typical example for generating the Sequential Subset Randomizer.

// EXEC FABIRGEN,MBR=SSRRAND
//C.SYSIN DD *
 FABITAB START=1,BYTES=1,VALTYPE=E
 FABIDEF ID=A,UNITS=450 BASEL
 FABIDEF ID=B,UNITS=150 BELLINZONA
 FABIDEF ID=C,UNITS=230 BERN
 FABIDEF ID=D,UNITS=170 BIEL
 FABIDEF ID=E,UNITS=110 CHUR

 FABIDEF ID=Q,UNITS=800 ZURICH
 FABIGEN
 END
/*
//L.SYSLMOD DD DSN=RANDOMIZ.LIB(&MBR),DISP=SHR

Figure 66. Example 1: Generating the Sequential Subset Randomizer, case 1

In this example, the FABITAB macro statement specifies that:

• The subset ID starts at the first position of the root key (START=1).
• The length of the subset ID is 1 byte (BYTES=1).
• The values for the subset IDs are exact values (VALTYPE=E).

Each FABIDEF macro statement defines a single subset with the following keywords:

• ID= keyword defines the value of the subset ID.
• UNITS= keyword defines how much relative space should be allocated to the subset.

Note: The FABIDEF macro statements must be provided in ascending sequence of the subset ID values.

284 IMS High Performance Unload: User's Guide

Example 2: Generating the Sequential Subset Randomizer, case 2
The following figure presents another typical example for generating the Sequential Subset Randomizer.

// EXEC FABIRGEN,MBR=SSRRAND
//C.SYSIN DD *
 FABITAB START=3,BYTES=2,VALTYPE=H,IDTYPE=X
 FABIDEF ID=0020,UNITS=47 San Francisco
 FABIDEF ID=0030,UNITS=24 San Jose
 FABIDEF ID=005A,UNITS=62 Los Angeles
 FABIDEF ID=0088,UNITS=31 San Diego
 FABIDEF ID=0094,UNITS=3 Los Gatos

 FABIDEF ID=01FF,UNITS=6 Bakersville
 FABIGEN
 END
/*
//L.SYSLMOD DD DSN=RANDOMIZ.LIB(&MBR),DISP=SHR

Figure 67. Example 2: Generating the Sequential Subset Randomizer, case 2

In this example, the FABITAB macro statement specifies that:

• The subset ID starts at the third position of the Root-Key (START=3).
• The length of the subset ID is 2 bytes (BYTES=2).
• The values for the subset IDs are high values (VALTYPE=H).
• The values for the subset ID values are provided as hexadecimal values (IDTYPE=X).

Each FABIDEF macro statement defines a single subset with the following keywords:

• ID= keyword defines the (hexadecimal) values of the subset ID.
• UNITS= keyword defines how much relative space should be allocated to the subset.

The FABIDEF macro statements must be provided in ascending sequence of the hexadecimal subset ID
values.

The first FABIDEF macro statement specifies that database roots with subset ID values equal to or lower
than X'0020' belong to the first subset. The second FABIDEF macro statement specifies that database
roots with subset ID values between X'0020' and X'0030' (X'0020' being excluded) belong to the second
subset. The rest of the FABIDEF macro statements define subsets of database roots in the same manner.

Chapter 22. Sequential Subset Randomizer generation 285

286 IMS High Performance Unload: User's Guide

Chapter 23. Splitting the unloaded database data set
The FABIUNLS utility is used to speed up the database reorganization while converting databases
randomized with DFSHDC40 into databases randomized with the Sequential Subset Randomizer.

FABIUNLS splits an unloaded database data set into multiple data sets as input to the IMS HD
Reorganization Reload utility. The split data sets are sorted in the ascending order of subset ID so that a
large databases can be reloaded in a reasonable amount of time.

Topics:

• “Splitting the unloaded database data set with FABIUNLS” on page 287
• “FABIUNLS JCL requirements” on page 288
• “FABIUNLS output” on page 289
• “FABIUNLS JCL example” on page 292

Splitting the unloaded database data set with FABIUNLS
FABIUNLS takes an unloaded database data set in the HD unload format as input, and creates as output
multiple data sets for use as concatenated input to the IMS HD Reorganization Reload utility program.

About this task
The general data flow for the FABIUNLS utility program is shown in the following figure.

FABIUNLS Report

Split
unloaded
database
data sets

Unloaded
database
data sets

Sequential
Subset

Randomizer

Randomizer
table

Figure 68. Data flow for FABIUNLS

Procedure
1. Ensure that you have completed the following activities before running FABIUNLS.

• The database is unloaded in the HD unload format.
• The Sequential Subset Randomizer is generated for the database.
• The DBD source statement is changed to specify the name of the generated Sequential Subset

Randomizer, and a DBDGEN is performed.
2. Code the EXEC and DD statements for FABIUNLS.

FABIUNLS must be executed in a ULU region with the FABHULU JCL procedure (or with equivalent
JCL).

For the JCL requirements for FABIUNLS, see “FABIUNLS JCL requirements” on page 288.
3. Run the job.

© Copyright IBM Corp. 2000, 2024 287

Related reference
FABIUNLS JCL example
This topic provides a JCL example for generating a database with the FABIUNLS utility program.

FABIUNLS JCL requirements
To execute FABIUNLS, supply an EXEC statement and the appropriate DD statements.

The following table summarizes the DD statements.

Table 49. FABIUNLS DD statements

DDNAME Use Format Need

STEPLIB Input - Required

DFSVSAMP Input LRECL=80 Required

SYSPRINT Output LRECL=133 Required

SYSUT1 Input - Required

HDR Output - Required

FKDn Output - Required

TRL Output same as HDR Required

EXEC
This statement invokes the JCL procedure FABHULU and has the following format:

// EXEC FABHULU,MBR=FABIUNLS,DBD=dbdname

The name of the DBD must be provided in place of dbdname.

STEPLIB DD
The STEPLIB must provide access to the load library which contains the Sequential Subset
Randomizer and IMS load modules.

DFSVSAMP DD
This statement is mandatory and must meet to the usual IMS requirements.

SYSPRINT DD
This DD statement is mandatory and defines a print data set which will contain statistics. The data set
can be defined as:

//SYSPRINT DD SYSOUT=A

SYSUT1 DD
This DD statement is mandatory and defines the input data set which contains the unloaded database
in the HD unload format. The data set can be defined as:

//SYSUT1 DD DSN=unloaded.db,DISP=OLD

HDR DD
This DD statement is mandatory and defines an output data set which will contain:

• The header record of the HD unload format
• The unloaded database records which do not belong to any subset defined during the generation of

the Sequential Subset Randomizer

288 IMS High Performance Unload: User's Guide

The data set can be defined as:

//HDR DD DSN=unls.hdr,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(1,1)),
// DCB=(LRECL=nnnn,BLKSIZE=mmmm,RECFM=VB)

Recommended values for the BLKSIZE and LRECL are the same as the BLKSIZE and LRECL of
the input data set described by the SYSUT1 DD statement. If it is not possible to meet these
recommendations, the following minimum should be observed:

• The minimum LRECL must be the larger of these two items:

– Largest database segment +39 bytes
– Length of the HD unload header record.

• The minimum BLKSIZE must be LRECL+4.

FKDn DD
There should be one such DD statement for each subset defined during the generation of the
Sequential Subset Randomizer. The DD names of these data sets should be: FKD1, FKD2, FKD3,,
FKD9, FKD10, FKD11, and so on.

These DD statements are mandatory and define output data sets that will contain the unloaded
database segments of the subsets. The FKD1 output data set will contain all unloaded database
segments of the first subset, the FKD2 output data set will contain the unloaded database segments
of the second subset, and so on.

The data sets can be defined as:

//FKDn DD DSN=unls.fkdn,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(m1,m2)),
// DCB=*.HDR

Enough DASD space must be allocated in order to contain all unloaded database records of the
subset. If the Sequential Subset Statistics report has been produced in the previous FABISTAT run,
the statistics can help in determining the amount of DASD space required for each FKDn output data
set.

For a complete description of the Sequential Subset Statistics report and FABISTAT, see “FABIUNLS
output” on page 289.

TRL DD
This DD statement is mandatory and defines an output data set that will contain the trailer record of
the HD unload format.

The data set can be defined as:

//TRL DD DSN=unls.trl,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(1,1)),
// DCB=*.HDR

FABIUNLS output
FABIUNLS produces the following four types of output data sets.

SYSPRINT data set
This data set contains statistical reports.

HDR data set
This data set contains the following information:

• A header record of the HD unload format
• Unloaded database records which do not belong to any subset defined during the generation of the

Sequential Subset Randomizer

Chapter 23. Splitting the unloaded database data set 289

FKDn data set
The FKDn data set contains the unloaded database segments of the subsets. Where n is the order
of the generation of the output data sets. That is, the FKD1 data set contains all unloaded database
segments of the first subset, the FKD2 data set contains the segments of the second subset, and so
on.

TRL data set
This data set contains the trailer record of the HD unload format.

SYSPRINT data set
FABIUNLS SYSPRINT data set contains the Split Unloaded Data Set Statistics report.

Format
The format is 133-byte fixed-length records. When the block size is coded in the JCL, the block size must
be a multiple of 133. Code your DD statement as follows:

 //SYSPRINT DD SYSOUT=A

Split Unloaded Data Set Statistics report
The Split Unloaded Data Set Statistics report contains statistics about each split unloaded data set.

The following two figures show examples of Split Unloaded Data Set Statistics reports.

IMS HIGH PERFORMANCE UNLOAD - SSR "SPLIT UNLOADED DATA SET STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 11.34.06 FABIUNLS - V1.R2

DDNAME NBR OF ROOTS NBR OF BYTES SUBSET-ID
------ ------------ ------------ ---------
FKD1 1,354 2,274 A100
FKD2 1,561 2,349 A200
FKD3 2,094 3,225 A300
FKD4 808 1,250 A400
FKD5 2,340 3,553 A500
FKD6 564 957 A600
FKD7 1,515 2,355 A700
FKD8 962 1,658 A800
FKD9 1,250 1,459 A900
FKD10 1,735 2,750 B000

NBR OF ORPHANS= 131

DBDNAME =SSRHDBD1
RANDOMIZER=SSRANDC1

Figure 69. Split Unloaded Data Set Statistics report (IDTYPE=C)

IMS HIGH PERFORMANCE UNLOAD - SSR "SPLIT UNLOADED DATA SET STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 11.42.10 FABIUNLS - V1.R2

DDNAME NBR OF ROOTS NBR OF BYTES SUBSET-ID
------ ------------ ------------ ---------
FKD1 341 5,147 EED100
 22D000
FKD2 380 6,247 EED200
 22D000
FKD3 493 7,371 EED300
 22D000
FKD4 307 4,993 EED400
 22D000
FKD5 440 6,428 EED500
 22D000
FKD6 648 9,756 EED600
 22D000

NBR OF ORPHANS= 0

DBDNAME =SSRHDBD2
RANDOMIZER=SSRANDX1

Figure 70. Split Unloaded Data Set Statistics report (IDTYPE=X)

290 IMS High Performance Unload: User's Guide

Note: When IDTYPE=X is specified on the FABITAB macro statement as input for the generation of the
Sequential Subset Randomizer, the values in the subset ID fields are described as hexadecimal values
using two lines. For example, the subset-ID values for FKD1 are described as follows:

 EED....
 22D.... .

These values are X' E2', X'E2', and X'DD'.

On the SYSPRINT data set, FABIUNLS prints a table containing one entry for each subset with the
following information:

• The DD name of the output data set that contains the unloaded database records of the subset (for
example, FKD1).

• The number of database roots in the subset.
• The total number of data bytes in all database segments that belong to the subset.

Notes:

– This number includes database segments of all data set groups.
– If segments are compressed, this number reflects the data length of the decompressed segments.
– The length of segment-prefixes is not included in this figure.

• The first 83 bytes of the subset ID value printed in EBCDIC or in hexadecimal according to the value of
IDTYPE= keyword on the FABITAB macro statement.

FABIUNLS also prints how many database roots are orphans (that is, a root segment which does not
belong to any subset). If VALTYPE=E is specified on the FABITAB macro statement, a root segment of
which subset ID is not equal to any value of ID= keyword on the FABIDEF macro statement becomes an
orphan. If VALTYPE=H is specified on the FABITAB macro statement, a root segment of which subset ID
is higher than the maximum value of ID= keyword on the FABIDEF macro statement becomes an orphan.
The number of orphans should be zero if the SSRGEN specifications (as input for the generation of the
Sequential Subset Randomizer) have been done correctly.

Chapter 23. Splitting the unloaded database data set 291

FABIUNLS JCL example
This topic provides a JCL example for generating a database with the FABIUNLS utility program.

//***
//* SPLIT THE UNLOADED-DB INTO MULTIPLE DATA SETS *
//***
//*
//SPLITUNL EXEC FABHULU,MBR=FABIUNLS,DBD=DPHIN02
//STEPLIB DD DSN=HPS.SHPSLMD0,DISP=SHR
// DD DSN=IMSVS.SDFSRESL,DISP=SHR
// DD DSN=RANDOMIZ.LIB,DISP=SHR
//DFSRESLB DD DSN=IMSVS.SDFSRESL,DISP=SHR
//DFSVSAMP DD *
4096,8
/*
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=UNLOADED.DB,DISP=OLD
//HDR DD DSN=DPHIN02E.HDR,DISP=(,CATLG),
// VOL=SER=WRK34B,UNIT=SYSDA,SPACE=(TRK,1),
// DCB=(RECFM=VB,LRECL=4092,BLKSIZE=4096)
//FKD1 DD DSN=DPHIN02E.FKD1,DISP=(,CATLG),
// VOL=SER=WRK34B,UNIT=SYSDA,SPACE=(CYL,(40,10)),
// DCB=*.HDR
//FKD2 DD DSN=DPHIN02E.FKD2,DISP=(,CATLG),
// VOL=SER=WRK34C,UNIT=SYSDA,SPACE=(CYL,(40,10)),
// DCB=*.HDR

//FKD17 DD DSN=DPHIN02E.FKD17,DISP=(,CATLG),
// VOL=SER=WRK35A,UNIT=SYSDA,SPACE=(TRK,(1,10)),
// DCB=*.HDR
//TRL DD DSN=DPHIN02E.TRL,DISP=(,CATLG),
// VOL=SER=WRK35B,UNIT=SYSDA,SPACE=(TRK,1),
// DCB=*.HDR
//*
//***
//* DEFINE THE CLUSTER FOR THE DATABASE *
//***
//*
//ALLOCDB EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER (NAME(USER.DB)
/*
//*
//***
//* RELOAD THE DATABASE WITH THE SEQUENTIAL SUBSET RANDOMIZER *
//***
//*
//RELOAD EXEC PGM=DFSRRC00,PARM=’ULU,DFSURGL0,DPHIN02’
//STEPLIB DD DSN=IMSVS.SDFSRESL,DISP=SHR
// DD DSN=RANDOMIZ.LIB,DISP=SHR
//DFSRESLB DD DSN=IMSVS.SDFSRESL,DISP=SHR
//IMS DD DSN=IMSVS.DBDLIB,DISP=SHR
//IEFRDER DD DUMMY
//DFSVSAMP DD DSN=IMSVS.PROCLIB(DFSVSAMP),DISP=SHR
//SYSPRINT DD SYSOUT=A
//DFSUINPT DD DSN=DPHIN02E.HDR,DISP=OLD
// DD DSN=DPHIN02E.FKD1,DISP=OLD
// DD DSN=DPHIN02E.FKD2,DISP=OLD
// DD
// DD
// DD DSN=DPHIN02E.FKD17,DISP=OLD
// DD DSN=DPHIN02E.TRL,DISP=OLD
//DB DD DSN=USER.DB,DISP=OLD
//SYSUDUMP DD SYSOUT=A

Figure 71. Example of database generation

Note: If the database is involved in logical relations or secondary indexing, additional DD statements are
required by IMS for the reload job step.

292 IMS High Performance Unload: User's Guide

Chapter 24. Obtaining statistics from each subset
with Sequential Subset Statistics

The Sequential Subset Statistics (SS-STATS) routine (FABISTAT) provides database administrators with
statistical information, which is useful in determining how much relative space in the root addressable
area needs to be allocated to each subset.

For each subset, SS-STATS provides statistics about the number of database roots and about the total
length of database segments within the subset.

The SS-STATS is provided as an exit routine of the IMS High Performance Unload database unload utilities
(that is, FABHURG1 and FABHFSU).

Topics:

• “Obtaining statistics from each subset ” on page 293
• “JCL requirements when SS-STATS routine is applied” on page 294
• “HSSROPT input data set when SS-STATS routine is applied” on page 294
• “HSSRSTAT output data set when SS-STATS routine is applied” on page 295
• “JCL example to apply the SS-STATS routine” on page 297

Obtaining statistics from each subset
By activating the SS-STATS routine (FABISTAT) in a FABHURG1 job or in a FABHFSU job, you can obtain
statistics from each subset.

About this task
The general data flow for the SS-STATS routine (FABISTAT) is shown in the following figure.

FABHURG1
or

FABHFSU

Report

Unloaded
database
data set

Database
data set

Sequential
Subset

Randomizer

Randomizer
table

SS-STATS
routine

(FABISTAT)

Exit

Figure 72. Data flow for the SS-STATS routine

© Copyright IBM Corp. 2000, 2024 293

Procedure
1. Generate the Sequential Subset Randomizer.
2. Prepare a FABHURG1 or FABHFSU JCL job and modify the JCL to meet the JCL requirements for using

FABISTAT.

For the FABISTAT JCL requirements, see “JCL requirements when SS-STATS routine is applied” on
page 294.

3. In the HSSROPT data set, code the SSSTATS control statement to activate the SS-STATS routine.

For the format of SSSTATS control statement, see “HSSROPT input data set when SS-STATS routine is
applied” on page 294.

4. Run the FABHURG1 or FABHFSU job.

Related reference
JCL example to apply the SS-STATS routine
This topic provides a JCL example for database unload with SS-STATS.

JCL requirements when SS-STATS routine is applied
The SS-STATS routine is used within a FABHURG1 job or a FABHFSU job. Therefore, you must prepare
a JCL for either of these unload utilities and modify the JCL to meet the JCL requirements for using the
SS-STATS routine.

For the JCL requirements of FABHURG1 and FABHFSU utilities, see Chapter 4, “Basic job control
language,” on page 29.

The additional DD statements required to use the SS-STATS routine are described in the following table.

Table 50. Additional DD statements for SS-STATS routine

DDNAME Use Format Need

HSSROPT Input LRECL=80 Required

HSSRSTAT Output LRECL=133 Required

HSSROPT DD
This required input data set contains optional control statements such as the SSSTATS control
statement.

Usually, when the SS-STATS routine is activated, the database should already be an HDAM database
using the Sequential Subset Randomizer. However, the SS-STATS routine can be activated even if the
database is not randomized with the Sequential Subset Randomizer, or if it is not an HDAM database.
In this case, the user needs to provide the name of a Sequential Subset Randomizer (which has
been generated with an accurate description of the subsets and subset IDs) on the SSSTATS control
statement.

HSSRSTAT DD
This required output data set is used for IMS High Performance Unload to write statistical reports. The
reports of the SS-STATS routine are also written to the HSSRSTAT data set.

HSSROPT input data set when SS-STATS routine is applied
The SS-STATS routine is activated by the HSSROPT data set.

The HSSROPT data set contains optional control statements of IMS High Performance Unload. However,
in this topic and in related topics, only the SSSTATS control statement that activates the SS-STATS routine
is described. For the other IMS High Performance Unload input data sets, see the following topics:

• “FABHURG1 input” on page 41
• “FABHFSU input” on page 55

294 IMS High Performance Unload: User's Guide

Format
This data set contains 80-byte fixed-length records. The control statements can be coded in the input
stream or accessed as a member of a partitioned data set.

SSSTATS control statement
The SS-STATS routine is activated by specifying an SSSTATS control statement in the HSSROPT data set.

The format of the SSSTATS control statement is shown in the following figure.

 //HSSROPT DD *
 SSSTATS randname
 /*

Figure 73. Activating the SS-STATS routine

The control statement in the HSSROPT data set must be coded as follows:

• Columns 1 - 7 must contain SSSTATS.
• Column 8 must be blank.
• Columns 9 - 16 must contain one of the following parameters:

– Blank (if the database is an HDAM database using a Sequential Subset Randomizer).
– If the database is not an HDAM database using a Sequential Subset Randomizer, the field must

contain the load module name of a Sequential Subset Randomizer which has been generated with
an accurate description of the subsets and subset IDs. The load module library that contains the
Sequential Subset Randomizer must be accessible (for example, through a STEPLIB DD statement).

HSSRSTAT output data set when SS-STATS routine is applied
When the SS-STATS routine has been activated, IMS High Performance Unload produces an HSSRSTAT
data set that contains printed statistical reports.

This data set contains the Sequential Subset Statistics report when the SS-STATS exit routine has been
activated. For information about the other reports that this data set contains, see “HSSRSTAT data set” on
page 181.

Format
This data set contains 133-byte fixed-length records. When the block size is coded in the JCL, the block
size must be a multiple of 133. Code your DD statement as follows to obtain the statistics output of the
SS-STATS routine:

 //HSSRSTAT DD SYSOUT=A

Sequential Subset Statistics report
The Sequential Subset Statistics report contains statistics that are useful in determining how much
relative space in the root addressable area needs to be allocated to each subset.

The following two figures show examples of Sequential Subset Statistics reports.

Chapter 24. Obtaining statistics from each subset with Sequential Subset Statistics 295

IMS HIGH PERFORMANCE UNLOAD - SSR "SEQUENTIAL SUBSET STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 11.26.15 FABISTAT - V1.R2

SUBSET NBR NBR OF ROOTS NBR OF BYTES SUBSET-ID
---------- ------------ ------------ ---------
1 2,026 3,500 10000
2 1,030 4,280 12000
3 0 0 14000
4 0 0 16000
5 0 0 18000
6 1,003 1,400 20000
7 0 0 22000
8 0 0 24000
9 2,005 620 26000
10 1,018 310 30000

IMS HIGH PERFORMANCE UNLOAD - SSR "SEQUENTIAL SUBSET STATISTICS" PAGE: 2
5655-E06 DATE: 06/01/2021 TIME: 11.26.15 FABISTAT - V1.R2

SUBSET NBR % OF ROOTS % OF BYTES SUBSET-ID
---------- ---------- ---------- ---------
1 28.58 34.61 10000
2 14.30 42.33 12000
3 0.00 0.00 14000
4 0.00 0.00 16000
5 0.00 0.00 18000
6 14.26 13.84 20000
7 0.00 0.00 22000
8 0.00 0.00 24000
9 28.56 6.13 26000
10 14.28 3.06 30000

NBR OF ORPHANS= 121

DBDNAME =SSRHDBD3
RANDOMIZER=SSRANDC2

Figure 74. Sequential Subset Statistics report (IDTYPE=C)

IMS HIGH PERFORMANCE UNLOAD - SSR "SEQUENTIAL SUBSET STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 10.06.31 FABISTAT - V1.R2

SUBSET NBR NBR OF ROOTS NBR OF BYTES SUBSET-ID
---------- ------------ ------------ ---------
1 30 15,645 EED00000FFFF
 22D010000001
2 121 62,990 EED00000FFFF
 22D020000002
3 19 15,642 EED00000FFFF
 22D030000003
4 345 179,760 EED00000FFFF
 22D040000004
5 83 43,226 EED00000FFFF
 22D050000005

IMS HIGH PERFORMANCE UNLOAD - SSR "SEQUENTIAL SUBSET STATISTICS" PAGE: 2
5655-E06 DATE: 06/01/2021 TIME: 10.06.31 FABISTAT - V1.R2

SUBSET NBR % OF ROOTS % OF BYTES SUBSET-ID
---------- ---------- ---------- ---------
1 5.02 4.93 EED00000FFFF
 22D010000001
2 20.23 19.85 EED00000FFFF
 22D020000002
3 3.18 4.93 EED00000FFFF
 22D030000003
4 57.69 56.66 EED00000FFFF
 22D040000004
5 13.88 13.62 EED00000FFFF
 22D050000005

NBR OF ORPHANS= 154

DBDNAME =SSRHDBD4
RANDOMIZER=SSRANDX2

Figure 75. Sequential Subset Statistics report (IDTYPE=X)

Note: When IDTYPE=X is specified on the FABITAB macro statement as input for the generation of the
Sequential Subset Randomizer, the values in the subset ID fields are described as hexadecimal values
using two lines. For example, the subset-ID values for FKD1 are described as follows:

 EED....
 22D.... .

These values are X' E2', X'E2', and X'DD'.

The SS-STATS routine prints a table containing one table entry for each subset with the following
information on the HSSRSTAT data set:

• The relative subset number.
• The number of database roots in the subset.

296 IMS High Performance Unload: User's Guide

• The total number of data bytes and prefix bytes in all database segments that belong to the subset.

Notes:

– This number includes only database segments of the first data set group.
– If segments are compressed, this number reflects the data length of the compressed segments

(when stored on DASD).
– The length of segment prefixes is included in this figure.

• The first 83 bytes of the subset ID value printed in EBCDIC or in hexadecimal according to the value of
IDTYPE= keyword on the FABITAB macro statement.

The SS-STATS routine prints a second table where the number of root segments and the number of data
bytes are expressed as the percentage of all databases.

The SS-STATS routine also prints how many database roots are orphans. An orphan is a root segment
which does not belong to any subset. The number of orphans should be zero, if the SSRGEN specifications
(as input for the generation of the Sequential Subset Randomizer) have been done correctly.

JCL example to apply the SS-STATS routine
This topic provides a JCL example for database unload with SS-STATS.

//UNLOAD EXEC FABHULU,MBR=FABHURG1,DBD=DPANL0
//STEPLIB DD DSN=HPS.SHPSLMD0,DISP=SHR
// DD DSN=IMSVS.SDFSRESL,DISP=SHR
// DD DSN=RANDOMIZ.LIB,DISP=SHR
//DFSVSAMP DD DSN=IMSVS.PROCLIB(DFSVSAMP),DISP=SHR
//HSSRCABP DD *
CABDD *HD
/*
//HSSROPT DD *
SSSTATS randname
/*
//HSSRSTAT DD SYSOUT=A
//HDAM DD DSN=HDAM.DB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=UNLOAD.HDAM.DB,DISP=(,CATLG),
// UNIT=TAPE

Figure 76. Example of JCL for database unload with SS-STATS

In this example:

• The STEPLIB DD statement provides access to the load library containing the Sequential Subset
Randomizer.

• The SSSTATS control statement in the HSSROPT data set requests the activation of the SS-STATS
routine, which prints statistics on the HSSRSTAT data set for each subset.

• A randomizer load module name is specified on the SSSTATS control statement because the database
to be unloaded is not yet randomized with the Sequential Subset Randomizer. The specified Sequential
Subset Randomizer must have been generated with an exact description of all subsets and subset ID
values.

Chapter 24. Obtaining statistics from each subset with Sequential Subset Statistics 297

298 IMS High Performance Unload: User's Guide

Chapter 25. Converting databases to HDAM
databases randomized with the Sequential Subset
Randomizer

Converting existing databases into the databases randomized with the Sequential Subset Randomizer
requires a special database reorganization.

Note: If the database is involved in logical relationships or secondary relationships, IMS might require
the execution of additional reorganization utilities (such as the IMS Database Prereorganization utility,
the IMS Database Scan utility, the IMS Database Prefix Resolution utility, and so on) during the database
reorganization. The execution of these utilities is not mentioned in this guide, since their execution is a
standard IMS activity.

Topics:

• “Converting from a database randomized with DFSHDC40” on page 299
• “Converting from a database randomized with other randomizers” on page 300
• “Converting from a HISAM or HIDAM” on page 301

Converting from a database randomized with DFSHDC40
You can convert from a database that is randomized with DFSHDC40 into an HDAM database randomized
with the Sequential Subset Randomizer.

Procedure
Converting an existing DFSHDC40-HDAM database into an HDAM database randomized with the
Sequential Subset Randomizer requires the following steps:
1. Generate a temporary Sequential Subset Randomizer.

For this temporary Sequential Subset Randomizer, the database administrator does not need to define
accurately how much space should be allocated to each subset. However, all other specifications need
to be accurate. Note that at this time the DBDGEN should not be changed.

This temporary Sequential Subset Randomizer is required so that the SS-STATS routine produces
statistics for each subset. The SS-STATS routine finds the description of all subsets (including the
values of the subset IDs) in the tables of the temporary Sequential Subset Randomizer to make
statistics.

2. Unload the database using FABHURG1 or FABHFSU with the SSSTATS control statement specified (see
Figure 76 on page 297 for an example).

The database unload will produce the following:

• An unloaded database which will be used as input for the reload.
• Statistics that describe how much space should be allocated to each subset. These statistics should

be used for a second, definitive SSRGEN which will be used during the reload process.

It is recommended that you activate the Database Tuning Statistics during this database unload. (See
Chapter 26, “Obtaining statistics for database tuning,” on page 307.) The Database Tuning Statistics
will show whether the database is well organized and whether the current randomizing is efficient. If
the current randomizing is inefficient, the database administrator can take corrective actions before
reloading the database. For example, if the root addressable area is too crowded, the database
administrator can increase the size of the root addressable area. The Database Tuning Statistics can
also be compared with the Database Tuning Statistics created at a later time, when the database is
randomized with the Sequential Subset Randomizer. This can be used to see whether the Sequential
Subset randomizing is as efficient as DFSHDC40 randomizing.

© Copyright IBM Corp. 2000, 2024 299

3. Generate the final version of the Sequential Subset Randomizer.

For this second Sequential Subset Randomizer, the database administrator should provide accurate
specifications about the relative amount of space to be allocated to each subset. The relative amount
of space to be allocated to each subset can be found in the SS-STATS statistics in the previous
database unload.

If the database administrator knows in advance that some subsets will eventually incur an
overproportional increase in data volume, the data administrator can use this knowledge in order
to increase the relative amount of space allocated to that subset. This may avoid a later adjustment of
Sequential Subset Randomizer tables and an associated database reorganization.

4. Change the DBD source statements in order to specify the name of the generated Sequential Subset
Randomizer as the randomizer.

This is a good time to review the current randomizing parameters and make adjustments with existing
Database Tuning Statistics or other statistics if necessary. You can review the number of CIs/blocks in
the root addressable area, the number of RAPs per CI/block, the CI/block size, the bytes limit, the scan
parameter, and the free space specifications.

Then the DBDGEN must be performed and the ACBGEN should be performed if necessary.
5. Create sorted input for the database reload.

For small databases with less than 10,000 roots, this step is not necessary.

For large databases, the input to the reload should be provided in the correct RAP sequence of the
new database in order to complete the reload in a reasonable amount of time. For conversions from
DFSHDC40 to Sequential Subset Randomizer, the correct sequence for the reload can be created
without lengthy sort by executing the FABIUNLS utility (see Figure 71 on page 292 for an example).
The FABIUNLS utility splits the unloaded data set into multiple data sets so that one subset becomes
one data set.

Therefore, the input to the reload will consist of a concatenation of the multiple output data sets of
FABIUNLS.

6. Reload the database with the new or modified DBD using the Sequential Subset Randomizer.
7. Obtain Database Tuning Statistics to check whether the quality of the randomizing is appropriate.

This can be done by unloading a database, activating the Database Tuning Statistics for this unload,
and setting the output of the unload to dummy.

Converting from a database randomized with other randomizers
You can convert from a database that is randomized with other randomizer into an HDAM database
randomized with the Sequential Subset Randomizer.

Procedure
Converting an existing HDAM database that is randomized with other randomizer into an HDAM database
randomized with the Sequential Subset Randomizer requires the following steps:
1. Generate a temporary Sequential Subset Randomizer.

For this temporary Sequential Subset Randomizer, the database administrator does not need to define
accurately how much space should be allocated to each subset. However, all other specifications need
to be accurate. Note that at this time the DBDGEN should not be changed.

This temporary Sequential Subset Randomizer is required so that the SS-STATS routine produces
statistics for each subset. The SS-STATS routine finds the description of all subsets (including the
values of the subset IDs) in the tables of the temporary Sequential Subset Randomizer to make
statistics.

2. Unload the database using FABHURG1 or FABHFSU with the SSSTATS control statement specified (see
Figure 76 on page 297 for an example).

300 IMS High Performance Unload: User's Guide

The database unload will produce the following:

• An unloaded database which will be used as input for the reload.
• Statistics that describe how much space should be allocated to each subset. These statistics should

be used for a second, definitive SSRGEN which will be used during the reload process.

It is recommended that you activate the Database Tuning Statistics during this database unload. (See
Chapter 26, “Obtaining statistics for database tuning,” on page 307.) The Database Tuning Statistics
will show whether the database is well organized and whether the current randomizing is efficient. If
the current randomizing is inefficient, the database administrator can take corrective actions before
reloading the database. For example, if the root addressable area is too crowded, the database
administrator can increase the size of the root addressable area. The Database Tuning Statistics can
also be compared with the Database Tuning Statistics created at a later time, when the database is
randomized with the Sequential Subset Randomizer. This can be used to see whether the Sequential
Subset randomizing is as efficient as DFSHDC40 randomizing.

3. Generate the final version of the Sequential Subset Randomizer.

For this second Sequential Subset Randomizer, the database administrator should provide accurate
specifications about the relative amount of space to be allocated to each subset. The relative amount
of space to be allocated to each subset can be found in the SS-STATS statistics in the previous
database unload.

If the database administrator knows in advance that some subsets will eventually incur an
overproportional increase in data volume, the data administrator can use this knowledge in order
to increase the relative amount of space allocated to that subset. This may avoid a later adjustment of
Sequential Subset Randomizer tables and an associated database reorganization.

4. Change the DBD source statements in order to specify the name of the generated Sequential Subset
Randomizer as the randomizer.

This is a good time to review the current randomizing parameters and make adjustments with existing
Database Tuning Statistics or other statistics if necessary. You can review the number of CIs/blocks in
the root addressable area, the number of RAPs per CI/block, the CI/block size, the bytes limit, the scan
parameter, and the free space specifications.

Then the DBDGEN must be performed and the ACBGEN should be performed if necessary.
5. Create sorted input for the database reload.

The input to the reload should be provided in the correct RAP sequence of the new database in order
to complete the reload in a reasonable amount of time.

Conversion from other randomizer to Sequential Subset Randomizer must be done with the Physical
Sequence Sort for Reload (PSSR) utility of IMS High Performance Load or by an equivalent program.
The DBD created during the DBDGEN of the prior step must be used for PSSR. For details, see the IMS
High Performance Load User's Guide.

Remember that sorting a large number of database records can be time-consuming.
6. Reload the database with the new or modified DBD using the Sequential Subset Randomizer.
7. Obtain Database Tuning Statistics to check whether the quality of the randomizing is appropriate.

This can be done by unloading a database, activating the Database Tuning Statistics for this unload,
and setting the output of the unload to dummy.

Converting from a HISAM or HIDAM
You can convert from a HISAM or HIDAM database into an HDAM database randomized with the
Sequential Subset Randomizer.

Before you begin
After conversion from an HISAM or HIDAM, the database records can no longer be retrieved any more
in the logical sequence of the root key unless the database administrator defines a secondary index for

Chapter 25. Converting databases to HDAM databases randomized with the Sequential Subset Randomizer 301

this purpose. The sequential retrieval of a large number of database records through a secondary index is
usually not efficient.

Procedure
Converting an existing HISAM or HIDAM database into an HDAM database randomized with the
Sequential Subset Randomizer requires the following steps:
1. Generate a temporary Sequential Subset Randomizer.

For this temporary Sequential Subset Randomizer, the database administrator does not need to define
accurately how much space should be allocated to each subset. However, all other specifications need
to be accurate. Note that at this time the DBDGEN should not be changed.

This temporary Sequential Subset Randomizer is required so that the SS-STATS routine produces
statistics for each subset. The SS-STATS routine finds the description of all subsets (including the
values of the subset IDs) in the tables of the temporary Sequential Subset Randomizer to make
statistics.

2. Unload the database using FABHURG1 or FABHFSU with the SSSTATS control statement specified (see
Figure 76 on page 297 for an example).

The database unload will produce the following:

• An unloaded database which will be used as input for the reload.
• Statistics that describe how much space should be allocated to each subset. These statistics should

be used for a second, definitive SSRGEN which will be used during the reload process.

It is recommended that you activate the Database Tuning Statistics during this database unload. (See
Chapter 26, “Obtaining statistics for database tuning,” on page 307.) The Database Tuning Statistics
will show whether the database is well organized and whether the current randomizing is efficient. If
the current randomizing is inefficient, the database administrator can take corrective actions before
reloading the database. For example, if the root addressable area is too crowded, the database
administrator can increase the size of the root addressable area. The Database Tuning Statistics can
also be compared with the Database Tuning Statistics created at a later time, when the database is
randomized with the Sequential Subset Randomizer. This can be used to see whether the Sequential
Subset randomizing is as efficient as DFSHDC40 randomizing.

3. Generate the final version of the Sequential Subset Randomizer.

For this second Sequential Subset Randomizer, the database administrator should provide accurate
specifications about the relative amount of space to be allocated to each subset. The relative amount
of space to be allocated to each subset can be found in the SS-STATS statistics in the previous
database unload.

If the database administrator knows in advance that some subsets will eventually incur an
overproportional increase in data volume, the data administrator can use this knowledge in order
to increase the relative amount of space allocated to that subset. This may avoid a later adjustment of
Sequential Subset Randomizer tables and an associated database reorganization.

4. Change the DBD source statements in order to specify the name of the generated Sequential Subset
Randomizer as the randomizer.

This is a good time to review the current randomizing parameters and make adjustments with existing
Database Tuning Statistics or other statistics if necessary. You can review the number of CIs/blocks in
the root addressable area, the number of RAPs per CI/block, the CI/block size, the bytes limit, the scan
parameter, and the free space specifications.

Then the DBDGEN must be performed and the ACBGEN should be performed if necessary.
5. Create sorted input for the database reload.

The input to the reload should be provided in the correct RAP sequence of the new database in order
to complete the reload in a reasonable amount of time.

302 IMS High Performance Unload: User's Guide

Conversion from a HISAM or HIDAM database into an HDAM must be done with the Physical Sequence
Sort for Reload (PSSR) utility of IMS High Performance Load or by an equivalent program. The DBD
created during the DBDGEN of the prior step must be used for PSSR. For details, see the IMS High
Performance Load User's Guide.

Remember that sorting a large number of database records can be time-consuming.
6. Reload the database with the new or modified DBD using the Sequential Subset Randomizer.
7. Obtain Database Tuning Statistics to check whether the quality of the randomizing is appropriate.

This can be done by unloading a database, activating the Database Tuning Statistics for this unload,
and setting the output of the unload to dummy.

Chapter 25. Converting databases to HDAM databases randomized with the Sequential Subset Randomizer 303

304 IMS High Performance Unload: User's Guide

Part 5. Tuning databases by using Database Tuning
Statistics reports

HSSR Engine can generate database statistics reports which help you tune your databases.

Notes:

• Descriptions in the following topics for an HDAM database also applies to each partition of a PHDAM
database.

• Descriptions in the following topics for a HIDAM database also applies to each partition of a PHIDAM
database.

Topics:

• Chapter 26, “Obtaining statistics for database tuning,” on page 307
• Chapter 27, “Printing long database records,” on page 313
• Chapter 28, “Tuning a database with the Database Tuning Statistics,” on page 321
• Chapter 29, “Creating a database extract for tuning experiments,” on page 351

© Copyright IBM Corp. 2000, 2024 305

306 IMS High Performance Unload: User's Guide

Chapter 26. Obtaining statistics for database tuning
You can request HSSR Engine to create optional Database Tuning Statistics reports during the sequential
processing or unloading of a database. This functionality is provided as the Database Tuning Statistics
function.

By activating the Database Tuning Statistics function, you can generate the following statistics reports:

• DB Statistics report
• Randomizing Statistics report

You can use these reports for the following purposes:

• Periodically monitor the need for reorganization of HDAM, HIDAM, and HISAM databases.
• Monitor the effectiveness of HDAM randomizing parameters (such as the size of the root addressable

area, the number of RAPs, the block/CI size, or the bytes limit).

The Database Tuning Statistics function provides the following additional capabilities to aid your database
tuning:

• Creating the optional DB Record Length Distribution report with your own definition of the database
record length ranges.

• Creating the HSSRLOUT data set to record the length of each database record.
• Using the FABHLDBR utility to print long database records with the HSSRLOUT data set as an input.

Tip: You can use the FABHEXTR exit routine of the FABHURG1 utility to create a small database extract
that can be used to perform database tuning experiments. Creation of a smaller extract database can
be useful when the database administrator intends to tune the randomizing parameters of a large HDAM
database through an iterative try-and-see process. For information about the FABHEXTR exit routine, see
Chapter 29, “Creating a database extract for tuning experiments,” on page 351.

Topics:

• “Activating the Database Tuning Statistics” on page 307
• “JCL requirements for the Database Tuning Statistics” on page 308
• “Input for Database Tuning Statistics” on page 309
• “Output from the Database Tuning Statistics” on page 311

Activating the Database Tuning Statistics
You can activate the Database Tuning Statistics function by adding the DBSTATS control statement in the
HSSROPT data set. The Database Tuning Statistics function is provided by HSSR Engine.

Procedure
1. Prepare the basic JCL for HSSR Engine.

For instructions, see “Preparing the basic JCL” on page 29.
2. Specify the additional DD statements that are required for the Database Tuning Statistics function.

For a list of the additional DD statements that are required for Database Tuning Statistics, see “JCL
requirements for the Database Tuning Statistics” on page 308.

3. Specify the DBSTATS control statement in the HSSROPT data set to activate the Database Tuning
Statistics function.

For the format and the parameter of the DBSTATS control statement, see “DBSTATS control
statement” on page 309.

© Copyright IBM Corp. 2000, 2024 307

4. Optional: If you want to select the records to be written in the HSSRLOUT data set by the length of the
database record or by the number of database I/Os that are required to read all database segments of
the database record, specify the LOUT control statement in the HSSROPT data set.

For the format and the parameter of the LOUT control statement, see “LOUT control statement” on
page 309.

5. Optional: If you want to change the unit of measure for describing the ranges of database record
lengths in the report, specify the HSSRLDEF data set.

For information about the HSSRLDEF data set, see “HSSRLDEF input data set for Database Tuning
Statistics” on page 310.

6. Run the job.

When the job completes, statistics reports are written in the HSSRSTAT data set and information about
each database record is written in the HSSRLOUT data set.

The HSSRLOUT data set can be used as input for the FABHLDBR utility to obtain information about long
database records. For more information about using the FABHLDBR utility, see Chapter 27, “Printing
long database records,” on page 313.

These statistics reports can be used for tuning your databases. For a guideline for tuning your
databases with these reports, see Chapter 28, “Tuning a database with the Database Tuning
Statistics,” on page 321.

Example

See “JCL example for Database Tuning Statistics and FABHLDBR” on page 318 for a JCL example to
activate the Database Tuning Statistics function and print long database records.

JCL requirements for the Database Tuning Statistics
The Database Tuning Statistics function is provided by HSSR Engine. Therefore, it must meet the
requirements for the basic JCL (FABHX034 JCL). In addition, Database Tuning Statistics JCL requires
other DD statements.

Prerequisite: See “Basic JCL requirements” on page 30 for the basic (FABHX034) JCL requirements.

The following table summarizes additional JCL requirements for running the Database Tuning Statistics
function.

Table 51. DD statements for Database Tuning Statistics

DDNAME Use Format Need

HSSROPT Input LRECL=80 Required

HSSRLDEF Input LRECL=80 Optional

HSSRSTAT Output LRECL=133 Optional

HSSRLOUT Output - Optional

HSSROPT DD
This statement defines the input data set that contains the DBSTATS control statement, which
activates the Database Tuning Statistics. The data set also contains the optional LOUT statement,
which is used for HSSRLOUT records selection.

HSSRLDEF DD
This optional statement defines the input data set that contains control statements for requesting the
DB Record Length Distribution report with your own database record length ranges.

HSSRSTAT DD
This optional statement defines the output data set for the statistical output.

308 IMS High Performance Unload: User's Guide

HSSRLOUT DD
This optional statement defines the output sequential data set, in which a small record for each
database record is written. Each record of the data set consists of:

• Length of the database record (fullword)
• The number of database I/Os required to read all database segments of the database record

(fullword)
• Key of the database root segment

Note: Do not specify the BLKSIZE and LRECL for the HSSRLOUT data set on JCL. These values are
determined dynamically by HSSR Engine based on the key length of the root segment. The LRECL is 8
bytes plus the length of the key of the database root segment.

Input for Database Tuning Statistics
The input for the Database Tuning Statistics function consists of the HSSROPT data set and the HSSRLDEF
data set.

HSSROPT input data set for Database Tuning Statistics
Database Tuning Statistics uses the control statements in the HSSROPT data set as input.

DBSTATS control statement
The DBSTATS control statement activates the Database Tuning Statistics function.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

DBSTATS nnnnn

Position
Description

1
Code the DBSTATS keyword to instruct HSSR Engine to provide the Database Tuning Statistics report.

9
Specify the number of buffers to be simulated with this entry. Enter any number up to five digits in the
range of 1 - 32767, left-aligned, and followed by a blank. If this entry is left blank, the default value of
4 is used.

HSSR Engine simulates the LRU algorithms of the IMS OSAM buffer pool and the IMS VSAM buffer
pool to provide statistics of the number of I/O operations. If the application program uses multiple
HSSR PCBs, HSSR Engine assumes that each PCB has its own dedicated buffer pool containing the
user-specified or default number of buffers.

Restrictions:

• If APISET 3 is specified, this statement cannot be specified.
• If one or more partitions of PHDAM or PHIDAM are in the HALDB OLR cursor-active status, this

statement is ignored.

LOUT control statement
The LOUT control statement requests that, when the DBSTATS control statement activates the Database
Tuning Statistics function, the HSSRLOUT data set contains only the records that satisfy certain
conditions.

The records that satisfy one or both of the following conditions are written in the HSSRLOUT data set:

• Database records that are longer than the specified limit.
• Database records that require more than the specified number of database I/Os.

Chapter 26. Obtaining statistics for database tuning 309

This option is ignored if the DBSTATS control statement is not specified at the same time.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

LOUT LENGTH=llllllll
LOUT IO=nn

Position
Description

1
Code the LOUT keyword to request an optional record selection for the HSSRLOUT data set.

6
Code one of the following optional keywords for each LOUT statement:
LENGTH=llllllll

Requests that only the records for database records whose length is greater than llllllll bytes are
written in the HSSRLOUT data set.

IO=nn
Requests that only the records for database records that require more than nn database I/Os for
retrieval are written in the HSSRLOUT data set.

You can specify both LENGTH= and IO= parameters, either on a single LOUT control statement or
separately (on multiple LOUT statements). If you specify both parameters on a single LOUT statement,
separate them with a comma, as follows:

LOUT LENGTH=100,IO=15

If you specify both LENGTH= and IO= parameters, both conditions are effective (that is, database records
that satisfy both conditions are written in the HSSRLOUT data set.)

If an incorrect parameter keyword or an incorrect parameter value is detected on an LOUT statement,
the rest of the parameter specification on that statement is ignored. For example, the IO= parameter
specification on the following statement is ignored because the LENGTH= parameter value is incorrect:

LOUT LENGTH=1A,IO=10

HSSRLDEF input data set for Database Tuning Statistics
The HSSRLDEF input data set requests to generate the DB Record Length Distribution report with your
own database record length ranges.

Database Tuning Statistics provides, by default, a report of the distribution of database record lengths. In
this default report, the ranges of database record lengths are denoted as 1/16th, 2/16th, 3/16th, and so
on, of the CI/block size. However, these default ranges are not always appropriate for your use.

If you want a report with a different unit of measure for describing ranges of database record lengths, you
must:

1. Provide an HSSRLDEF DD statement in your JCL.
2. Provide control statements in the HSSRLDEF data set.

You must provide one control statement for each range of database record length that should appear
in the statistics report. Each control statement contains the highest value of the range.

Each value must start in column 1 of the control statement. The values must be provided in ascending
sequence.

For example, if you want to have the DB Record Length Distribution report for the ranges 0 - 50 bytes, 51
- 100 bytes, 101 - 200 bytes, 201 - 300 bytes, 301 - 1000 bytes, and 1001 - 10000 bytes, the following
control statements are required:

310 IMS High Performance Unload: User's Guide

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

//HSSRLDEF DD *
50
100
200
300
1000
10000

Output from the Database Tuning Statistics
The outputs from the Database Tuning Statistics function are generated in the HSSRSTAT data set and the
HSSRLOUT data set.

HSSRSTAT output data set for Database Tuning Statistics
The Database Tuning Statistics function generates statistical reports in the HSSRSTAT data set.

The reports include:

• DB Statistics report
• Randomizing Statistics report
• DB Record Length Distribution report (optional)

You can use these reports to tune your database. For a complete description for the reports, see Chapter
28, “Tuning a database with the Database Tuning Statistics,” on page 321.

HSSRLOUT output data set for Database Tuning Statistics
The HSSRLOUT data set is a sequential data set in which a small record for each database record is
written.

Each record consists of:

• Length of the database record (fullword)
• The number of database I/Os required to read all database segments of the database record (fullword)
• Key of the database root segment

The HSSRLOUT data set can be:

• Printed as is (for example, with a PRINT command of IDCAMS).
• Printed (for example, with the PRINT command of IDCAMS) after a sort. The records are sorted in

descending sequence of the first 4 bytes of each record. This generates a list of records ordered in
decreasing sequence of their database record lengths.

• Processed by the FABHLDBR utility (to obtain a printed output of only the longest database records
or database records that require the largest number of database I/Os). See Chapter 27, “Printing long
database records,” on page 313 for details.

As an option, you can request that the HSSRLOUT data set only contain a record for:

• Database records that are longer than the specified limit
• Database records that require more than the specified number of database I/Os

You can achieve this by providing the LOUT control statement in the HSSROPT data set. See “LOUT control
statement” on page 309 for details.

Tip: Because the records of the HSSRLOUT data set do not contain database names, you might find
difficulties in interpreting and processing the content of the HSSRLOUT data set that was created during
the execution of a program that accesses multiple databases. For this reason, it is recommended that
you create the HSSRLOUT data set only during the execution of programs or utilities that access a single
database.

Chapter 26. Obtaining statistics for database tuning 311

312 IMS High Performance Unload: User's Guide

Chapter 27. Printing long database records
You can use the FABHLDBR utility to print the longest database records of a database or the database
records that require a large number of I/Os for their retrieval.

Prerequisite: The input for the FABHLDBR utility is the HSSRLOUT data set, which is created by the
Database Tuning Statistics function during an execution of HSSR Engine. To generate the HSSRLOUT data
set, see the following topics:

• For information about the HSSRLOUT data set, see “JCL requirements for the Database Tuning
Statistics” on page 308.

• For information about the LOUT control statement to select the records in HSSRLOUT data set, see
“LOUT control statement” on page 309.

The HSSRLOUT data set contains one record for each database record with the following data:

• Length of the database record (fullword)
• The number of database I/Os required to read all database segments of the database record (fullword)
• Key of the database root segment

For each record in the HSSRLOUT data set, the FABHLDBR utility issues:

• A GU call in order to retrieve the database root segment
• GN calls to retrieve dependent segments of the database record (optional)

Each retrieved database segment is printed in a snap-like fashion (the printing of the database segments
is not done directly by the FABHLDBR utility, but by the hardcopy trace option). The FABHLDBR utility also
provides, in the printed output, the length of each database record (the length includes the length of the
segment prefixes) and the number of I/Os required to read all database segments of the database record.

Optionally, you can request on the SYSIN data set that FABHLDBR:

• Stops processing after retrieving or printing nnnnn database records.
• Processes only the HSSRLOUT records for the database records that are longer than or equal to

mmmmmmm bytes.
• Processes only the HSSRLOUT records for the database records that require nn or more I/Os.
• Retrieves or prints only the database root segments.

Topics:

• “Printing long database records with FABHLDBR” on page 313
• “FABHLDBR JCL requirements” on page 314
• “FABHLDBR input” on page 315
• “FABHLDBR output: HSSRTRAC output data set” on page 318
• “JCL example for Database Tuning Statistics and FABHLDBR” on page 318

Printing long database records with FABHLDBR
You can print long database records by using the FABHLDBR utility. The FABHLDBR utility runs as an HSSR
application.

Procedure
1. Prepare the basic JCL for HSSR Engine.

For instructions, see “Preparing the basic JCL” on page 29.
2. Specify the additional DD statements that are required for the FABHLDBR utility.

© Copyright IBM Corp. 2000, 2024 313

For a list of the additional DD statements that are required for FABHLDBR, see “FABHLDBR JCL
requirements” on page 314.

3. Specify the TRDB and the TRHC control statements in the HSSROPT data set to activate the hardcopy
trace option.

For the formats and the parameters of the control statements, see “FABHLDBR HSSROPT input data
set” on page 315.

4. Run the job.

When the job completes, statistics reports are written in the HSSRSTAT data set.

Example

See “JCL example for Database Tuning Statistics and FABHLDBR” on page 318 for a JCL example to run
the FABHLDBR utility.

FABHLDBR JCL requirements
The FABHLDBR utility uses HSSR Engine. Therefore, it must meet the requirements for the basic JCL
(FABHX034 JCL). In addition, FABHLDBR JCL requires other DD statements.

Prerequisite: See “Basic JCL requirements” on page 30 for the basic (FABHX034) JCL requirements.

The following table summarizes additional JCL requirements for FABHLDBR.

Table 52. FABHLDBR DD statements

DDNAME Use Format Need

HSSROPT Input LRECL=80 Required

SYSIN Input LRECL=80 Optional

SYSUT1 Input - Required

ddname Input - Required

HSSRTRAC Output LRECL=133 Required

EXEC
This statement invokes the procedure FABHDLI, FABHDBB, or FABHULU. The EXEC statement must
be in one of the following formats:

 // EXEC FABHDLI,MBR=FABHLDBR,PSB=psbname

 // EXEC FABHDBB,MBR=FABHLDBR,PSB=psbname

 // EXEC FABHULU,MBR=FABHLDBR,DBD=dbdname

HSSROPT DD
This statement is required to define the input data set that contains the TRDB and TRHC control
statements, which activate the hardcopy trace option.

SYSIN DD
This optional statement defines the input data set that contains the control statements for controlling
the FABHLDBR process.

SYSUT1 DD
This required statement defines the input HSSRLOUT data set.

ddname DD
This required statement defines the input IMS database data set.

HSSRTRAC DD
This required statement defines the output data set in which the snap-like print of long database
records is written.

314 IMS High Performance Unload: User's Guide

FABHLDBR input
The control statements for the FABHLDBR utility must be specified in the HSSROPT data set and the
SYSIN data set.

FABHLDBR HSSROPT input data set
The FABHLDBR utility uses the hardcopy trace option to print database segments. You must specify the
TRDB and TRHC control statements in the HSSROPT data set to activate the hardcopy trace option.

TRDB control statement
The TRDB control statement activates the trace of HSSR Engine. Specify this control statement to obtain
the snap-like print of database segments.

The TRDB control statement must be used with the TRHC control statement. After the TRHC indicates the
type of trace to be run, the TRDB control statement then identifies the specific databases on which these
traces are run.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

TRDB *ALL
 dbdname1,dbdname2,dbdname3,dbdname4

Position
Description

1
Code the TRDB keyword to activate the hardcopy tracing for specified database.

6
Enter either dbdnames separated by commas or the keyword *ALL.

Each dbdname must meet the following requirements:

• It must occupy eight bytes and be left-aligned.
• If the name is less than eight characters, trailing blanks must be specified.
• The last dbdname must be followed by a blank.

If multiple TRDB statements are provided, only the last statement is used.

TRHC control statement
The TRHC control statement activates the hardcopy trace option of HSSR Engine. Use this control
statement to obtain the snap-like print of database segments.

This control statement is always used in combination with the TRDB control statement. When you activate
this option, HSSR Engine traces calls that are issued against the databases named in the TRDB control
statement. It writes data about these calls on the HSSRTRAC data set.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

TRHC CALL,CB,CBX,BUF,BUFCB,START=n,NPF

Position
Description

1
Code the TRHC keyword to activate the hardcopy tracing option.

6
Enter one or more of the following keywords, separated by commas, specified in any order. The last
keyword must be followed by a blank.

Chapter 27. Printing long database records 315

CALL
Traces call information such as call function, PCB, IOAREA, SSA, and segment prefix.

Does a trace for the EXEC DLI command, just the same as for the DL/I call. This is because the
command is converted to the format of a DL/I call and made to the HSSR call handler.

CB or CBX
Traces the control blocks of HSSR Engine. If CBX is specified, traces are also done for the
extended control blocks of HSSR Engine.

If both CB and CBX are specified, CBX is taken.

BUF
Traces buffer handler information.

BUFCB
Traces the CAB buffer handler control blocks.

START=n
Specifies the call number n. Trace begins at the n-th HSSR call issued by the application program.
Enter any number up to nine digits, left-aligned, and followed by a blank.

NPF
Excludes the segment prefix information from the trace.

Only HSSR calls issued against the databases that are specified on the TRDB control statement are
traced.

Note: The trace of the control blocks of HSSR Engine, which is called for by specifying the CB, CBX, BUF,
or BUFCB option for the TRHC control statement, is not intended to be reviewed by users, but might be
needed by the IBM Software Support to analyze a problem.

FABHLDBR SYSIN input data set
The SYSIN data set for FABHLDBR controls the behavior of the FABHLDBR program.

This data set is an optional data set. By specifying control statements in the SYSIN data set, you can
request FABHLDBR to take the following specific actions:

• Stop processing after retrieving or printing nnnnn database records.
• Process only the HSSRLOUT records for those database records that are longer than or equal to

mmmmmmm bytes.
• Process only the HSSRLOUT records for those database records that require nn or more I/Os.
• Retrieve or print only the database root segments.

NBR control statement
The NBR control statement requests FABHLDBR to stop processing after retrieving or printing the
specified number of database records.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

NBR nnnnn

Position
Description

1
Code the NBR keyword to activate the NBR option.

5
Specify the number of database records to be processed by FABHLDBR. After the specified number
of database records are retrieved or printed, FABHLDBR stops processing. Enter any number up to 5
digits, left-aligned, and followed by a blank.

316 IMS High Performance Unload: User's Guide

LENGTH control statement
The LENGTH control statement requests FABHLDBR to process only HSSRLOUT records for those
database records that are longer than or equal to the specified length.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

LENGTH mmmmmmm

Position
Description

1
Code the LENGTH keyword to activate the LENGTH option.

8
Specify the length of a database record. FABHLDBR processes only the HSSRLOUT records that
correspond to the database records that are longer than or equal to the specified length. Enter any
number up to 7 digits, left-aligned, and followed by a blank.

IO control statement
The IO control statement requests FABHLDBR to process only HSSRLOUT records that correspond to the
database records that require nn or more I/Os.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

IO nn

Position
Description

1
Code the IO keyword to activate the IO option.

4
Specify the number of I/Os. FABHLDBR processes only HSSRLOUT records for those database records
that require more than or equal to the specified number of I/Os. Enter any number up to 2 digits,
left-aligned, and followed by a blank.

For an HIDAM database, the number of I/Os required to read the index database is not included in this
value. For a HISAM database, HSSR Engine assumes that access to the KSDS requires only one I/O.

ROOT-ONLY control statement
The ROOT-ONLY control statement requests FABHLDBR to retrieve or print only the database root
segments.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ROOT-ONLY

Position
Description

1
Code the ROOT-ONLY keyword to activate the ROOT-ONLY option. FABHLDBR retrieves or prints only
the database root segments.

Chapter 27. Printing long database records 317

FABHLDBR output: HSSRTRAC output data set
This data set contains the snap-like print of long database records.

The snap-like print of long database records are generated by HSSR Engine. The format of the print is the
same as the Trace Output reports that are generated by HSSR Engine. For a complete description of the
HSSRTRAC data set, see “HSSRTRAC data set” on page 190.

JCL example for Database Tuning Statistics and FABHLDBR
Use the following JCL example to prepare your JCL for the Database Tuning Statistics function and the
FABHLDBR utility.

The following JCL example activates the Database Tuning Statistics and runs the FABHLDBR utility.

 //STEP1 EXEC FABHULU,MBR=FABHURG1,DBD=dbdname
 //hdamdb DD DSN=user.hdam,DISP=SHR
 //HSSRLOUT DD DSN=&&LOUT,UNIT=SYSDA,SPACE=(TRK,(3,3)),
 // DISP=(,PASS)
 //SYSUT2 DD DUMMY
 //DFSVSAMP DD DSN=IMSVS.PROCLIB(DFSVSAMP),DISP=SHR
 //HSSROPT DD *
 DBSTATS
 LOUT LENGTH=8000
 //*
 //*
 //*
 //SORT EXEC PGM=SORT,REGION=4096K
 //SORTIN DD DSN=&&LOUT,DISP=(OLD,PASS)
 //SORTOUT DD DSN=&&LOUT2,UNIT=SYSDA,SPACE=(TRK,(3,3)),
 // DISP=(,PASS)
 //SYSOUT DD SYSOUT=*
 //SORTWK01 DD UNIT=SYSDA,SPACE=(TRK,20)
 //SORTWK02 DD UNIT=SYSDA,SPACE=(TRK,20)
 //SORTWK03 DD UNIT=SYSDA,SPACE=(TRK,20)
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD *
 SORT FIELDS=(1,4,CH,D)
 END
 //*
 //*
 //*
 //PRINT EXEC FABHULU,MBR=FABHLDBR,DBD=dbdname
 //HSSRTRAC DD SYSOUT=*
 //hdamdb DD DSN=user.hdam,DISP=SHR
 //SYSUT1 DD DSN=&&LOUT2,DISP=(OLD,PASS)
 //SYSIN DD *
 NBR 100
 //DFSVSAMP DD DSN=IMSVS.PROCLIB(DFSVSAMP),DISP=SHR
 //HSSROPT DD *
 TRDB *ALL
 TRHC CALL,NPF

Figure 77. JCL example for the FABHLDBR utility

This example consists of three job steps:

1. The first job step creates the HSSRLOUT data set, while the database is scanned by HSSR Engine. The
scan can be done, for example, by using the FABHURG1 database unload utility with the FABHULU
JCL procedure (instead of FABHURG1, any other HSSR application program that processes the whole
database sequentially would also do the job).

In the first job step:

• The HSSRLOUT DD statement is required for creating the HSSRLOUT data set.
• The SYSUT2 data set of FABHURG1 can be set to DUMMY, if you do not need to obtain an unloaded

data set.
• The DBSTATS control statement in the HSSROPT data set is required for creating the HSSRLOUT data

set.

318 IMS High Performance Unload: User's Guide

• The LOUT control statement in the HSSROPT is optional. In this example, the control statement
specifies that the HSSRLOUT data set contain only records for those database records whose lengths
are equal to or over 8000 bytes. This reduces the size of the HSSRLOUT data set.

2. The second job step sorts the HSSRLOUT data set in descending sequence of the bytes 1 - 4 of the
records (that is, in descending sequence of the database record length).

3. The third job step invokes the FABHLDBR utility with the FABHULU JCL procedure.

In the third job step:

• The HSSRTRAC is the output data set that will contain the snap-like print of long database records.
In the example, the HSSRTRAC output is written to SYSOUT.

• The SYSUT1 DD statement defines the HSSRLOUT data set, which has been sorted in the previous
job step.

• The NBR control statement in the SYSIN data set requests that the utility stops after retrieving or
printing 100 longest database records.

• The TRDB control statement in the HSSROPT data set requests that the trace of HSSR Engine
be activated. This control statement is required for obtaining the snap-like print of the database
segments.

• The TRHC control statement in the HSSROPT data set requests that the hardcopy trace option be
activated. This control statement is required for obtaining the snap-like print of database segments.

• The CALL parameter of the TRHC control statement requests a trace of the database segments and
of their concatenated keys.

• The NPF parameter of the TRHC control statement requests that the database segment prefix is not
traced.

Chapter 27. Printing long database records 319

320 IMS High Performance Unload: User's Guide

Chapter 28. Tuning a database with the Database
Tuning Statistics

You can use the database statistics that are generated by the Database Tuning Statistics function to help
you tune your database.

Activation of the optional Database Tuning Statistics during the sequential processing of a database or
during a database unload provides statistics that make easy for you to:

• Evaluate and monitor the effectiveness of HDAM randomizing parameters (such as the size of the root
addressable area, the number of RAPs, the block or CI size, or the bytes limit)

• Periodically monitor the need for reorganizing HDAM, HIDAM, or HISAM databases.

How is it possible to determine whether the HDAM randomizing parameters are efficient and whether a
database needs to be reorganized? The Database Tuning Statistics provide an important indicator to use
in answering this question. This key indicator is the average number of I/Os required to read at random all
database segments of one database record. By looking at this number in the Database Tuning Statistics
reports, the database administrator can quickly determine whether a database is well organized and well
randomized.

Ideally, this number would be 1.00. If the number is larger than 1.30, then the database might be
disorganized or inefficiently randomized.

Other key indicators in the Database Tuning Statistics can be used to determine the cause of the problem,
for example, to determine:

• Whether the HDAM root addressable area is overcrowded and whether its size should be increased.
The Database Tuning Statistics answer this question by printing the packing density of the HDAM
root addressable area (this is the percentage of DASD space occupied by database segments in the
HDAM root addressable area). Experience shows that, with efficient randomizer modules (for example,
DFSHDC40, Sequential Subset Randomizer), a reasonable goal for the packing density is often in the
range of 70% to 80%.

• Whether the number of HDAM RAPs is appropriate. The Database Tuning Statistics show the ratio
between the number of RAPs and the number of roots. Experience shows that, with efficient randomizer
modules (for example, DFSHDC40, Sequential Subset Randomizer), a reasonable ratio is around 1.5.

• Whether the block or CI size is appropriate for the average database record length and for the
distribution of the database record length.

• Whether the HDAM bytes limit is appropriate for the average database record length and the distribution
of the database record length.

The following topics contain an example of the Database Tuning Statistics output for an existing HDAM
database, together with a short description of the counters in the output. Then, in further topics, you will
see how you can use some general rules of thumb and the most important key indicators of the Database
Tuning Statistics for the tuning of an HDAM, HIDAM, or HISAM database.

Restriction : The general rules of thumb described in the following topics are not directly applicable to
partitioned databases.

IMPORTANT NOTICE
The settings and target values for some key indicators that are suggested throughout this IMS High
Performance Unload User's Guide are based on experiments on simulated databases and applications in a
controlled laboratory environment. The experiments were run in non-production, test environments.

Any suggested target values are provided as guidance for database administrators who do not have
practical experience with tuning of their databases. Database performance may be affected by numerous
factors, including, but not limited to, the specific applications run against the database, how the database

© Copyright IBM Corp. 2000, 2024 321

is maintained, and factors beyond those described in this guide that may exist. After gaining experience
with the tuning of the real-life databases of their installation, database administrators should review and
adapt the proposed target values to their specific databases and operational environments. Therefore,
the provided target values must be regarded as general rules of thumb that provide a reasonable starting
point when concrete tuning experience with the real-life databases of the installation is lacking.

Topics:

• “Resources for tuning databases” on page 322
• “Tuning the primary data set group of an HDAM database” on page 330
• “Tuning a HIDAM database” on page 344
• “Tuning a HISAM database” on page 345
• “How to determine randomizing parameters by using a reasonable first guess method” on page 347

Resources for tuning databases
If you activate the Database Tuning Statistics by providing a DBSTATS control statement in the HSSROPT
data set, HSSR Engine writes one or more pages of statistics information in the HSSRSTAT data set.

The statistics information written in the HSSRSTAT data set includes:

• Statistics about:

– The number of I/Os required to read at random the database segments of one database record
– The length of database records

This information is provided on multiple pages:

– Two pages for the database as a whole (for an example, see Figure 78 on page 324)
– Two pages for the root addressable area of an HDAM database (for an example, see Figure 79 on

page 326)
– Two pages for the overflow area of an HDAM database (for an example, see Figure 80 on page 327)
– Two pages for each secondary data set group

• (Printed only for HDAM databases) Statistics with key indicators that represent the quality of
randomizing (for an example, see Figure 81 on page 328).

• (If you provide control statements in the HSSRLDEF data set) An additional report containing the
distribution of database record lengths (see “HSSRLDEF input data set for Database Tuning Statistics”
on page 310 for details).

If you provide an HSSRLOUT DD statement, then you also obtain a sequential data set in which the length
of each (or of the longest) database record is written.

Figure 78 on page 324 shows an example of the pages with statistical information printed by the
Database Tuning Statistics on the HSSRSTAT data set.

Notes:

• For HALDB, the DB Statistics report is produced for each data set of each partition.
• For PHDAM, the Randomizing Statistics report is produced for each partition.

Related concepts
Obtaining statistics for database tuning

322 IMS High Performance Unload: User's Guide

You can request HSSR Engine to create optional Database Tuning Statistics reports during the sequential
processing or unloading of a database. This functionality is provided as the Database Tuning Statistics
function.

DB Statistics report
DB Statistics reports that are generated by the Database Tuning Statistics function provide statistics
about the database.

Subtopics:

• “DB Statistics for the entire database” on page 323
• “DB Statistics for the HDAM root addressable area” on page 326
• “DB Statistics for the HDAM overflow area” on page 327

DB Statistics for the entire database
The following figure provides an example of the DB Statistics report for the entire database.

Chapter 28. Tuning a database with the Database Tuning Statistics 323

IMS HIGH PERFORMANCE UNLOAD "DB STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 19.36.20 FABHC00 - V1.R2

STATISTICS FOR DB=HDAM0010 TOTAL FOR WHOLE DB

 *** DBDGEN SPECIFICATIONS:
 DB-ORG HDAM
 DDNAME DSHDAM01
 BLOCK/CI-SIZE 4,096
 FREE SPACE
 - FREE BLOCK FREQUENCY FACTOR(FBFF) 0
 - FREE SPACE PERCENTAGE FACTOR(FSPF) 15

 *** KEY INDICATORS FOR QUALITY OF PHYSICAL ORGANIZATION:

 AVG NBR I/O IN THIS DB
 - PER DB-R IN THIS DB 1.86
 AVG DB-R LENGTH IN THIS DB
 - PER DB-R IN THIS DB 682
 ACTUAL PCT FREE SPACE 17.02 ACTUAL PCT FREE SPACE = (ALLOC’ED DASD - TOTAL DB-R)/ALLOC’ED DASD * 100
 DEFINED PCT FREE SPACE N/A

 *** I/O SUMMARY:

 NBR I/O IN THIS DB 8,353
 NBR DB-RECORDS
 - WITH I/O IN THIS DB 4,472

 *** DB-RECORD LENGTH SUMMARY:

 TOTAL DB-R LENGTH IN THIS DB
 - LENGTH (BYTES) 3,052,423
 NBR DB-RECORDS
 - IN THIS DB 4,472

IMS HIGH PERFORMANCE UNLOAD "DB STATISTICS" PAGE: 2
5655-E06 DATE: 06/01/2021 TIME: 19.36.20 FABHC00 - V1.R2

STATISTICS FOR DB=HDAM0010 TOTAL FOR WHOLE DB

 NBR I/O TO READ ***AT RANDOM*** THE RETRIEVED DB RECORD LENGTH (INCL PREFIXES OF SEGMENTS)
 SEGMENTS OF ONE DB RECORD WITH 4 PCB-BUFFERS EXPRESSED IN BLOCKSIZE/CI-SIZE UNITS
 (ONE BLKSIZE/CI-SIZE = 4,096 BYTES)

 NBR IO NBR DB-R PCT CUM PCT LENGTH NBR DB-R PCT CUM PCT
 -- --

 <= 1/16 25 .55 .55
 <= 2/16 339 7.58 8.13
 <= 3/16 3,237 72.38 80.52
 <= 4/16 714 15.96 96.48
 <= 5/16 94 2.10 98.59
 <= 6/16 18 .40 98.99
 <= 7/16 5 .11 99.10
 <= 8/16 11 .24 99.35
 <= 9/16 3 .06 99.41
 <=10/16 5 .11 99.53
 <=11/16 3 .06 99.59
 <=12/16 3 .06 99.66
 <=13/16 1 .02 99.68
 <=14/16 2 .04 99.73
 <=15/16 2 .04 99.77

 <= 1 2,048 45.79 45.79 <= 1 2 .04 99.82
 <= 2 1,522 34.03 79.83 <= 2 8 .17 100.00
 <= 3 559 12.50 92.33
 <= 4 213 4.76 97.09
 <= 5 85 1.90 98.09

 <= 6 31 .69 99.68
 <= 7 6 .13 99.82
 <= 8 4 .08 99.91
 <= 9 3 .06 99.97
 <= 10 0 .00 99.97

 <= 20 1 .02 100.00
 -- --

Figure 78. DB Statistics for the entire database

• At the top of the left side of the figure (page 1), you can find a description of the following DBDGEN/
IDCAMS specifications:

– DBD name
– DD name
– KSDS and ESDS record length (for HISAM)
– Actual OSAM block size, OSAM LDS CI size, or ESDS CI size
– Percentage of free space left empty in each block or CI during database load and database reload
– Free block frequency factor

• Further below on the left side of the figure, there are key indicators, which are used to see whether the
database is well organized:

324 IMS High Performance Unload: User's Guide

– The average number of I/Os required to read all database segments of a database record (see Notes
“1” on page 325 and “2” on page 325).

– The average database record length. The reported average database record length includes the size
of the segment prefixes and the size of the segment data as stored on DASD (see Note “1” on page
325).

– The actual free space percentage. This field shows the percentage of the DASD space that is neither
occupied by the prefix portion nor by the data portion of database segments. (This definition is not
very accurate, since DASD space occupied by RAPs, by free space elements, by free space anchor
points, and by BIT maps are not included in this percentage. However, in most cases, this inaccuracy
is not large and does not really matter.)

When computing the actual free space percentage, HSSR Engine does not take into account blocks or
CIs beyond the current high-used RBA (see Note “1” on page 325).

– The defined free space percentage. This figure is computed by combining both free space parameters
defined during DBDGEN (that is, the free block frequency factor and the free space within each block
or CI).

• Then HSSR Engine prints the following totals:

– The total number of I/Os to read all database segments
– The total length of all database records in the database (see Note “1” on page 325)
– The number of database records (see Note “1” on page 325)

• On the left-hand side of the figure (page 2), there is a table showing the distribution of the number of
I/Os required to read at random all the database segments of one database record (see Notes “1” on
page 325 and “2” on page 325). The table contains the number, the percentage, and the accumulated
percentage of database records that can be read with one or more I/O operations.

• On the right-hand part of the figure (page 2), there is a table describing the distribution of the database
record length. The reported database record length includes the size of the segment prefix and the
size of the segment data as stored on DASD (for compressible segments, the size of the segment after
compression). See also Note “1” on page 325. The table contains the number, the percentage, and
the accumulated percentage, of database records that are in the following ranges of database record
length:

– Less than or equal to the 1/16th of the block or CI size
– 1/16th - 2/16th of the block or CI size
– 2/16th - 3/16th of the block or CI size
– And so on

The tables showing the distribution of the I/O numbers and the tables showing the distribution of the
database record length are printed side by side. This layout makes it easier to recognize whether large
numbers of I/Os per database record are due to large database record sizes.

The DB Statistics report also provides, optionally, a table showing the distribution of the database record
length with user-provided definitions for the database record length intervals. The use definitions for the
database record length intervals are provided on control cards in the HSSRLDEF data set. For example,
you can request a table showing the distribution of the database record lengths for following database
record length intervals: 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000,
1500, and so on.

Notes:

1. While computing database record lengths and the number of I/Os, HSSR Engine takes into account
only the database segments that have been retrieved by the application program or utility. The statistic
modules of HSSR Engine are not aware of any database records of database segments that have not
been retrieved.

2. While computing the number of I/Os, HSSR Engine assumes that the root segment is retrieved through
a GU call. HSSR Engine also assumes that at the time that the GU call is issued, the buffer pools do not

Chapter 28. Tuning a database with the Database Tuning Statistics 325

contain any block or CI containing a portion of the RAP chain or containing a database segment of the
database record.

For an HDAM database, HSSR Engine includes the number of I/Os required to chase the RAP synonym
chain.

For a HIDAM database, HSSR Engine does not include in these figures the number of I/Os required to
access the primary index of the HIDAM database.

For a HISAM database, HSSR Engine assumes that the access to the KSDS record requires one I/O
operation (additional I/Os to access the index component of the KSDS cluster are not included in these
figures).

While computing the number of I/Os, HSSR Engine attempts to simulate the behavior of the IMS buffer
pools. If, for example, the retrieval of the database segments of a database record requires access to
blocks n1, n2, and n3, or n2 and n1, then HSSR Engine will report that (with a buffer pool of three
buffers) the number of I/Os is three (not five).

DB Statistics for the HDAM root addressable area
The following figure provides an example of the DB Statistics report for the HDAM root addressable area.

IMS HIGH PERFORMANCE UNLOAD "DB STATISTICS" PAGE: 3
5655-E06 DATE: 06/01/2021 TIME: 19.36.20 FABHC00 - V1.R2

STATISTICS FOR DB=HDAM0010 (ROOT ADDRESSABLE AREA)

 *** DBDGEN SPECIFICATIONS:

 DB-ORG HDAM
 DDNAME DSHDAM01 (RAA)
 BLOCK/CI-SIZE 4,096
 FREE SPACE
 - FREE BLOCK FREQUENCY FACTOR(FBFF) 0
 - FREE SPACE PERCENTAGE FACTOR(FSPF) 15

 *** KEY INDICATORS FOR QUALITY OF PHYSICAL ORGANIZATION:

 AVG NBR I/O IN RAA
 - PER DB-R IN RAA 1.46
 - PER DB-R IN THIS DB 1.46
 AVG DB-R LENGTH IN RAA
 - PER DB-R IN RAA 606
 - PER DB-R IN THIS DB 570
 ACTUAL PCT FREE SPACE 17.14 ACTUAL PCT FREE SPACE = (ALLOC’ED DASD - TOTAL DB-R)/ALLOC’ED DASD * 100
 DEFINED PCT FREE SPACE 15.00 DEFINED PCT FREE SPACE = FSPF + 100/FBFF - FSPF/FBFF

 *** I/O SUMMARY:

 NBR I/O IN RAA 6,543
 NBR DB-RECORDS
 - WITH I/O IN RAA 4,472
 - IN THIS DB 4,472

 *** DB-RECORD LENGTH SUMMARY:

 TOTAL DB-R LENGTH IN RAA
 - LENGTH (BYTES) 2,549,078
 NBR DB-RECORDS
 - IN RAA 4,203
 - IN THIS DB 4,472

IMS HIGH PERFORMANCE UNLOAD "DB STATISTICS" PAGE: 4
5655-E06 DATE: 06/01/2021 TIME: 19.36.20 FABHC00 - V1.R2

STATISTICS FOR DB=HDAM0010 (ROOT ADDRESSABLE AREA)

 NBR I/O TO READ ***AT RANDOM*** THE RETRIEVED DB RECORD LENGTH (INCL PREFIXES OF SEGMENTS)
 SEGMENTS OF ONE DB RECORD WITH 4 PCB-BUFFERS EXPRESSED IN BLOCKSIZE/CI-SIZE UNITS
 (ONE BLKSIZE/CI-SIZE = 4,096 BYTES)

 NBR IO NBR DB-R PCT CUM PCT LENGTH NBR DB-R PCT CUM PCT
 -- --

 <= 1/16 24 .57 .57
 <= 2/16 311 7.39 7.97
 <= 3/16 3,868 92.02 100.00
 <= 1 3,166 70.79 70.79
 <= 2 822 18.38 89.17
 <= 3 294 6.57 95.75
 <= 4 128 2.86 98.61
 <= 5 45 1.00 99.61

 <= 6 9 .20 99.82
 <= 7 5 .11 99.93
 <= 8 2 .04 99.97
 <= 9 1 .02 100.00
 -- --

Figure 79. DB Statistics for the HDAM root addressable area

326 IMS High Performance Unload: User's Guide

The layout of DB Statistics reports for the HDAM root addressable area is similar to the layout of DB
Statistics reports for the entire database. The statistics, however, do not reflect the number of I/Os in the
whole database and the total database record size; instead, they reflect the number of I/Os in the root
addressable area and the database record size in the root addressable area.

DB Statistics for the HDAM overflow area
The following figure provides an example of the DB Statistics report for the HDAM overflow area.

IMS HIGH PERFORMANCE UNLOAD "DB STATISTICS" PAGE: 5
5655-E06 DATE: 06/01/2021 TIME: 19.36.20 FABHC00 - V1.R2

STATISTICS FOR DB=HDAM0010 (OVERFLOW AREA)

 *** DBDGEN SPECIFICATIONS:

 DB-ORG HDAM
 DDNAME DSHDAM01 (OVFLW AREA)
 BLOCK/CI-SIZE 4,096
 FREE SPACE
 - FREE BLOCK FREQUENCY FACTOR(FBFF) 0
 - FREE SPACE PERCENTAGE FACTOR(FSPF) 15

 *** KEY INDICATORS FOR QUALITY OF PHYSICAL ORGANIZATION:

 AVG NBR I/O IN OVFLW AREA
 - PER DB-R IN OVFLW AREA 1.09
 - PER DB-R IN THIS DB .40
 AVG DB-R LENGTH IN OVFLW AREA
 - PER DB-R IN OVFLW AREA 304
 - PER DB-R IN THIS DB 112
 ACTUAL PCT FREE SPACE 16.41 ACTUAL PCT FREE SPACE = (ALLOC’ED DASD - TOTAL DB-R)/ALLOC’ED DASD * 100
 DEFINED PCT FREE SPACE 15.00 DEFINED PCT FREE SPACE = FSPF + 100/FBFF - FSPF/FBFF

 *** I/O SUMMARY:

 NBR I/O IN OVFLW AREA 1,811
 NBR DB-RECORDS
 - WITH I/O IN OVFLW AREA 1,655
 - IN THIS DB 4,472

 *** DB-RECORD LENGTH SUMMARY:

 TOTAL DB-R LENGTH IN OVFLW AREA
 - LENGTH (BYTES) 503,345
 NBR DB-RECORDS
 - IN OVFLW AREA 1,655
 - IN THIS DB 4,472

IMS HIGH PERFORMANCE UNLOAD "DB STATISTICS" PAGE: 6
5655-E06 DATE: 06/01/2021 TIME: 19.36.20 FABHC00 - V1.R2

STATISTICS FOR DB=HDAM0010 (OVERFLOW AREA)

 NBR I/O TO READ ***AT RANDOM*** THE RETRIEVED DB RECORD LENGTH (INCL PREFIXES OF SEGMENTS)
 SEGMENTS OF ONE DB RECORD WITH 4 PCB-BUFFERS EXPRESSED IN BLOCKSIZE/CI-SIZE UNITS
 (ONE BLKSIZE/CI-SIZE = 4,096 BYTES)

 NBR IO NBR DB-R PCT CUM PCT LENGTH NBR DB-R PCT CUM PCT
 -- --

 <= 1/16 1,143 69.06 69.06
 <= 2/16 201 12.14 81.20
 <= 3/16 183 11.05 92.26
 <= 4/16 70 4.22 96.49
 <= 5/16 21 1.26 97.76
 <= 6/16 10 .60 98.36
 <= 7/16 3 .18 98.54
 <= 8/16 6 .36 98.91
 <= 9/16 2 .12 99.03
 <=10/16 1 .06 99.09
 <=11/16 1 .06 99.15
 <=12/16 4 .24 99.39
 <=13/16 2 .12 99.51
 <=14/16 0 .00 99.51
 <=15/16 1 .06 99.57

 <= 1 1,541 93.11 93.11 <= 1 1 .06 99.63
 <= 2 99 5.98 99.09 <= 2 6 .36 100.00
 <= 3 9 .54 99.63
 <= 4 3 .18 99.81
 <= 5 1 .06 99.87

 <= 6 0 .00 99.87
 <= 7 0 .00 99.87
 <= 8 1 .06 99.93
 <= 9 0 .00 99.93
 <= 10 0 .00 99.93

 <= 20 1 .06 100.00
 -- --

Figure 80. DB Statistics for the HDAM overflow area

The layout of DB Statistics reports for the HDAM overflow area is similar to the layout of DB Statistics
reports for the entire database. The statistics, however, do not reflect the number of I/Os in the whole

Chapter 28. Tuning a database with the Database Tuning Statistics 327

database and the total database record size; instead, they reflect the number of I/Os in the HDAM
overflow area and the database record size in the HDAM overflow area.

Randomizing Statistics report
The Randomizing Statistics report that is generated by the Database Tuning Statistics function provides
information that can be used to evaluate and monitor the quality of the HDAM randomizing parameters.

The following figure provides an example of the Randomizing Statistics report.

IMS HIGH PERFORMANCE UNLOAD "RANDOMIZING STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 19.36.20 FABHC00 - V1.R2

STATISTICS FOR RETRIEVED ROOTS OF DB=HDAM0010 WITH RANDOMIZER=DFSHDC10

 *** DBDGEN SPECIFICATIONS:

 NBR RAPS PER BLOCK/CI 4
 HIGHEST BLOCK/CI IN RAA 750
 BYTES-LIMIT 700
 BLOCK/CI-SIZE 4,096
 FREE SPACE:
 - FREE BLOCK FREQUENCY FACTOR(FBFF) 0
 - FREE SPACE PERCENTAGE FACTOR(FSPF) 15

 *** KEY INDICATORS FOR QUALITY OF RANDOMIZING:

 AVG NBR I/O
 - PER DB-R 1.86
 - ON RAP CHAIN PER ROOT 1.34
 - ON RAP CHAIN PER RAP CHAIN 1.53
 - IN RAA PER DB-R 1.46
 - IN OVERFLOW AREA PER DB-R .40

 NBR OF ACCESSED RAPS WHICH ARE USED
 - NBR 2,327
 - PCT OF ACCESSED RAPS 77.56

 NBR OF ACCESSED ROOTS IN OVERFLOW AREA
 - NBR 269
 - PCT OF ACCESSED ROOTS 6.01

 PACKING DENSITY OF RAA 82.86
 NBR OF RAPS PER ROOT .66
 AVG POSITION OF ROOT SEGMENTS ON
 RAP SYNONYM CHAINS 1.73
 AVG NUMBER OF SYNONYMS ON
 RAP SYNONYM CHAINS 1.92

 AVG DB-R LENGTH 682

IMS HIGH PERFORMANCE UNLOAD "RANDOMIZING STATISTICS" PAGE: 2
5655-E06 DATE: 06/01/2021 TIME: 19.36.20 FABHC00 - V1.R2

STATISTICS FOR RETRIEVED ROOTS OF DB=HDAM0010 WITH RANDOMIZER=DFSHDC10

 NBR I/O ON RAP CHAIN TO READ ***AT RANDOM***
 THE ROOT SEGMENTS WITH 4 PCB-BUFFERS

 NBR IO NBR ROOTS PCT CUM PCT
 --

 <= 1 3,157 70.59 70.59
 <= 2 1,125 25.15 95.75
 <= 3 170 3.80 99.55
 <= 4 16 .35 99.91
 <= 5 3 .06 99.97
 <= 6 1 .02 100.00

 POSITION OF ROOT SEGMENTS ON RAP CHAINS

 POSITION NBR ROOTS PCT CUM PCT
 --

 <= 1 2,327 52.03 52.03
 <= 2 1,344 30.05 82.08
 <= 3 544 12.16 94.25
 <= 4 177 3.95 98.21
 <= 5 64 1.43 99.64
 <= 6 14 .31 99.95
 <= 7 2 .04 100.00

Figure 81. Randomizing Statistics

• At the top of the figure, you can find a description of the following DBDGEN/IDCAMS specifications:

– DBD name
– Name of the randomizing module
– Number of RAPs per block or CI
– Highest block number or CI number in the root addressable area

328 IMS High Performance Unload: User's Guide

– Bytes limit
– Actual block size or CI size
– Percentage of free space left empty in each block or CI during database load and database reload
– Free block frequency factor

• Further below there are some key indicators, which describe the quality of the randomizing. These
important indicators can also be used to understand how poor randomizing parameters can be changed
to enhance the quality of the randomizing. These key indicators are:

– The average number of I/Os required to read all database segments of one database record (see
Notes “1” on page 329 and “2” on page 329).

– The average number of I/Os required to read a root segment at random while following the RAP chain
(see Notes “1” on page 329 and “2” on page 329).

– The average number of I/Os in the root addressable area required to read at random all database
segments of one database record. This number includes I/Os in the root addressable area that are
required to read the root and the dependent database segments and the I/Os in the root addressable
area that are required to follow the RAP chain (see Notes “1” on page 329 and “2” on page 329).

– The average number of I/Os in the overflow area required to read at random all database segments of
one database record. This number includes the I/Os in the overflow area that are required to read the
root and the dependent database segments and I/Os in the overflow area that are required to follow
the RAP chain (see Notes “1” on page 329 and “2” on page 329).

– The percentage of used RAPs. This number is computed by dividing the total number of RAPs in the
root addressable area by the number of accessed RAPs that are nonzero (that is, RAPs that are used).

– The percentage of the retrieved roots that are located in the overflow area.
– The packing density of the root addressable area. This is the percentage of the DASD space in the

root addressable area space that is occupied by the prefix portion and data portion of database
segments (see Note “1” on page 329).

– The number of RAPs per root. This is a ratio computed by dividing the number of RAPs in the root
addressable area by the number of roots that have been read through HSSR GN calls.

– The average position of the (retrieved) roots on the RAP chains.
– The average database record length (see Note “1” on page 329).

• The following tables are near the bottom of the report:

– A table containing the number, percentage and accumulated percentage of database roots that
require, during random GU processing 1, 2, 3, 4, and so on, I/O operations while following the RAP
synonym chain (see Notes “1” on page 329 and “2” on page 329).

– A table describing the number, percentage and accumulated percentage of database root segments
that are on the first, second, third, and so on, position of a RAP synonym chain (see Note “1” on page
329).

Notes:

1. When computing database record lengths and the number of I/Os, HSSR Engine takes into account
only those database segments that have been retrieved by the application program or utility. The
statistic modules of HSSR Engine are not aware of any database records or database segments that
have not been retrieved.

2. When computing the number of I/Os, HSSR Engine assumes that the root segment is retrieved through
a GU call. HSSR Engine also assumes that at the time the GU call is issued, the buffer pools do not
contain any block or CI containing a portion of the RAP chain or containing a database segment of the
database record.

When computing the number of I/Os, HSSR Engine attempts to simulate the LRU algorithm of the IMS
buffer pools. If, for example, the retrieval of the database segments of one database record requires
access to blocks n1, n2, and n3, or n2 and n1, then HSSR Engine will report that (for a buffer pool of
three buffers) the number of I/Os is three (not five).

Chapter 28. Tuning a database with the Database Tuning Statistics 329

DB Record Length Distribution report
The DB Record Length Distribution report that is generated by the Database Tuning Statistics function
provides information about the distribution of database record length.

The following figure provides an example of the DB record length distribution report.

IMS HIGH PERFORMANCE UNLOAD "DB RECORD LENGTH DISTRIBUTION" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 20.09.01 FABHC00 - V1.R2

 DATABASE RECORD LENGTH DISTRIBUTION FOR DB=HDAM0010

 LENGTH NBR DB-R PCT CUM PCT

 <= 500 349 7.80 7.80
 <= 550 740 16.54 24.35
 <= 600 264 5.90 30.25
 <= 650 1,355 30.29 60.55
 <= 700 260 5.81 66.36
 <= 750 551 12.32 78.68
 <= 800 176 3.93 82.62
 <= 850 329 7.35 89.98
 <= 900 113 2.52 92.50
 <= 950 82 1.83 94.34
 <= 1000 81 1.81 96.15
 <= 1050 34 .76 96.91
 <= 1100 32 .71 97.62
 <= 1150 12 .26 97.89
 <= 1200 18 .40 98.30
 <= 1250 9 .20 98.50
 <= 1300 7 .15 98.65
 <= 1350 4 .08 98.74
 <= 1400 5 .11 98.85
 <= 1450 3 .06 98.92
 <= 1500 3 .06 98.99
 <= 1600 1 .02 99.01
 <= 1700 1 .02 99.03
 <= 1800 3 .06 99.10
 <= 1900 4 .08 99.19
 <= 2000 6 .13 99.32
 <= 2500 7 .15 99.48
 <= 3000 7 .15 99.64
 <= 3500 3 .06 99.70
 <= 4000 5 .11 99.82
 <= 5000 2 .04 99.86
 <= 6000 2 .04 99.91
 <= 7000 2 .04 99.95
 <= 8000 2 .04 100.00

Figure 82. DB Record Length Distribution

The statistics in the report are printed only if you request the generation of a DB Record Length
Distribution report with your own definition of the database record length ranges. You can make this
request by providing control cards in the HSSRLDEF data set (for more information, see “HSSRLDEF input
data set for Database Tuning Statistics” on page 310).

The reported database record length includes the size of the segment prefixes and the size of the
segment data as stored on DASD (for compressible segment, the size of the segment data reflects the
size of the compressed segment). The table contains the number, the percentage, and the accumulated
percentage of database records that are in the user-defined ranges of database record length.

When computing database record lengths, HSSR Engine takes into account only the database segments
that have been retrieved by the application program or utility. The statistics modules of HSSR Engine are
not aware of any database records or database segments that have not been retrieved.

Tuning the primary data set group of an HDAM database
Lean from these topics the most important indicators in the Database Tuning Statistics output and how
these indicators can be used to tune an HDAM database.

Tuning an HDAM database is an iterative process. When changing randomizing parameters, database
administrators with little tuning experience should change only one randomizing parameter at a time, and
then observe the impact of this change. This can be done by the following sequence of activities:

1. Unloading the database
2. Changing a randomizing parameter and DBDGEN
3. Reloading the database with the modified randomizing parameter
4. Executing FABHURG1 or FABHFSU unload utility to obtain new Database Tuning Statistics and to

observe the impact of the modified randomizing parameter

330 IMS High Performance Unload: User's Guide

5. Depending on the results of the observations in step “4” on page 330, attempting other changes of the
randomizing parameters (step “2” on page 330)

If the database is very large, it is often not practical to do multiple consecutive reloads or unloads in
order to observe the effect of multiple consecutive changes. In this case, the database administrator can
use the FABHEXTR exit routine in order to create a small database extract consisting of a subset of the
real-life database records (see Chapter 29, “Creating a database extract for tuning experiments,” on page
351). The database administrators can then perform their tuning experiments with this smaller database
extract.

Average number of I/O operations per database record
Obviously, HDAM randomizing can be considered to be efficient if the average number of I/O operations
required to read at random all database segments of one database record is low. The average number
of I/Os required to read at random all database segments of one database record is one of the most
important indicators of the quality of the randomizing.

This average number of I/Os is printed by the Database Tuning Statistics as shown in Figure 81 on page
328, to the right of the phrase "AVG NBR I/O: - PER DB-R".

By looking at this average number in the Database Tuning Statistics, the database administrator can very
rapidly see whether a database is efficiently randomized.

For an ideal database consisting of one single data set group, this average number would be 1.0.

In real life, this ideal value of 1.0 can seldom be achieved and the average number of database I/Os per
database record will be higher. Note, that due to the "law of the large numbers" it is easier to achieve a
good randomizing value when the block size, divided by average database record length, is large.

As a general rule of thumb, the database can be considered as fairly well randomized if the average
number of I/Os per database record is below:

• 1.20 (for databases with an average database record length below one tenth of the block or CI size)
• 1.30 (for databases with larger average database record lengths)

For numbers above 1.20/1.30, the database can often be considered to be poorly randomized (unless the
database record length is large). In this case, the database administrator can use other numbers provided
by the Database Tuning Statistics in order to determine the reason for the poor randomizing. These other
numbers in the Database Tuning Statistics can be used to give an answer to the questions in the following
checklist and to find, in most cases, the reason for poor randomizing:

1. Is the size of the root addressable area appropriate? (See “Packing density of the root addressable
area” on page 332 for details.)

2. Is the number of RAPs appropriate? (See “Number of RAPs per root segment” on page 333 for details.)
3. Is the HDAM bytes limit appropriate for the database record lengths in this database? (See “Bytes

limit” on page 334 for details.)
4. Is the block size or CI size appropriate for the database record lengths of this database? (See “CI size

and block size” on page 334 for details.)
5. Is the database record length excessive? (See “Databases with long database records” on page 342

for details.)
6. Is the amount of Free Space specified during DBDGEN equal to zero? (See “Free block frequency

factor” on page 335 for details.)
7. Is a database reorganization overdue in order to reduce database segment scattering in the overflow

area? (See “Periodical database reorganization” on page 342 for details.)
8. For a Sequential Subset Randomizer: Is the relative amount of DASD space allocated to each subset

of database records appropriate? (See “Inefficient space suballocation for the Sequential Subset
Randomizer” on page 343 for details.)

Notes:

Chapter 28. Tuning a database with the Database Tuning Statistics 331

1. Any reference to the Sequential Subset Randomizer in these topics is not intended to state or imply
that this product should be used instead of the standard DFSHDC40 randomizing module.

2. HSSR Engine does not know which database record occurrences are the most frequently accessed.
For some databases, it is sometimes the longest database records requiring the largest number of
I/Os that are the most often accessed database records. In this case, the average number of I/Os per
database record reported by HSSR Engine is different from the average number of I/Os per accessed
database record.

3. HSSR Engine does not know which segment types are the most frequently accessed. With some
databases, it is sometimes only one or two segment types that are often accessed. In this case, the
job step used to produce the Database Tuning Statistics can be run with a PSB, which is sensitive
only to these two segment types. The Database Tuning Statistics of such a job will probably be more
representative than the Database Tuning Statistics of a job that was sensitive to all segment types.

For detailed statistics about the "probability of I/O" for each segment type, see the Segment and
Pointer Statistics report of IMS High Performance Pointer Checker.

Discussion of the example
In the example of Figure 81 on page 328, the average number of I/Os per database record is 1.86. This
number is substantially higher than the target values of 1.20 and 1.30.

A quick glance at the average database record length shows that the average database record length is
not large (1/6th of the CI size); therefore the reason for the poor average number of I/Os per database
record is not large database record lengths. Hence it seems probable that the high average number of
I/Os per database record is due to poor randomizing parameters and that the average number of I/Os
can be substantially reduced. The next topics show how the Database Tuning Statistics can be used
to understand why this database is currently inefficiently randomized, and how the randomizing can be
improved.

Note that both the average number of I/Os per database record in the root addressable area and in the
overflow area are far from their ideal values. They are 1.46 for the root addressable area (RAA) and
0.40 for the overflow area (the ideal values being 1.00 and 0.00). A high value in the RAA is often an
indication that the packing density of the root addressable area is too high (see “Packing density of the
root addressable area” on page 332). A high value of I/Os in the overflow area is often an indication that
the bytes limit is too low (see “Bytes limit” on page 334 for details).

Packing density of the root addressable area
The packing density of the HDAM root addressable area can be found in the Randomizing Statistics report.

Specifically, you can find the packing density of the HDAM root addressable area in Figure 81 on page 328
to the right of the phrase "PACKING DENSITY OF RAA".

With the standard DFSHDC40 randomizer and with the Sequential Subset Randomizer, a reasonable rule
of thumb is a packing density of approximately 75% (for databases with an average database record
length smaller than one tenth of the CI/block size) or 70% (for databases with a larger average database
record length).

Notes:

1. Aiming for higher packing densities saves DASD space, but often decreases the performance of HDAM
database accesses. Each installation will have probably its own idea of what is the ideal trade-off
between DASD space and performance and regarding the ideal packing density. For example, some
installations may want packing densities of 75% and 80% (instead of the target values of 70% and
75%).

2. For small or medium-sized HDAM databases (when saving DASD space is not important), it is often
reasonable to aim for a packing density below 70%.

3. If the total size of all database records will eventually grow, it is then reasonable to oversize the root
addressable area at database reload time, in order to provide enough space for the future data growth.

332 IMS High Performance Unload: User's Guide

You can change the packing density of the root addressable area by varying the number of blocks or CIs in
the root addressable area and by varying the size of a block or CI. Increasing the number of blocks or CIs
or increasing the block or CI size will increase the size of the root addressable area and lower its packing
density; this will usually increase the performance of random accesses to the database.

Varying the bytes limit may also change the packing density of the root addressable area (reducing the
bytes limit will tend to store more information in the overflow area and less information in the root
addressable area; this will hence tend to reduce the packing density in the root addressable area).

As a rule of thumb, you should increase the size of the root addressable area, if the Database Tuning
Statistics shows that:

• The packing density is higher than the recommended target values of 70% and 75%
• The average number of I/Os in the root addressable area per database record is higher than 1.15.

Discussion of the example
In the example of Figure 81 on page 328, the packing density of the root addressable area is 82.86%.
This is higher than the recommended value of 70% for databases with this type of average database
record length. This high packing density provides a probable and partial explanation for the following
numbers, which look poor:

• The average number of I/O on RAP chain per root, which is 1.34 (usually this number should not be
much higher than 1.10).

• The average number of I/O in RAA per database record, which is 1.46 (usually this number should not
be much higher than 1.15).

• The percentage of accessed roots in the overflow area, which is 6.01 (usually this number should not be
much higher than 1.0).

In this case, you could decrease the packing density of the root addressable area. “Bytes limit” on page
334 shows that the bytes limit is already too low, so a decrease of the packing density should not be
attempted through a decrease of the bytes limit. Instead, a decrease of the packing density should be
achieved by increasing the number of blocks or CIs in the root addressable area (or by an increase of the
block or CI size).

Number of RAPs per root segment
The number of RAPs per root segment can be found in the Randomizing Statistics report.

Specifically, this ratio is found in Figure 81 on page 328, to the right of the phrase "NBR OF RAPS PER
ROOT".

Generally, the number of RAPs should be approximately 1.5 times the number of database records. In
case of doubt, it is better to specify too many than too few RAPs (since a RAP is only 4 bytes and hence
inexpensive in terms of DASD space).

Note: An exception to this recommendation is an Intersystem block-level sharing environment with
sequential database processing. In such an environment, the number of RAPs should not be too large,
since access to each RAP may create intersystem block-level sharing delays.

Discussion of the example
In the example in Figure 81 on page 328, the number of RAPs per root is 0.66. This is much too low. This
low number probably contributes to the high average number of I/Os per root on the RAP chains (which is
1.34).

You could increase the number of RAPs per CI/Block to increase this ratio to 1.5.

Chapter 28. Tuning a database with the Database Tuning Statistics 333

CI size and block size
The CI size or the block size can be found in the Randomizing Statistics report.

The current CI size/block size is shown in the top portion of Figure 81 on page 328.

A general rule of thumb is a 4 KB CI/block size for HDAM.

However, if the average database record length is higher than 800 bytes (that is, larger than 1/5th of
the block or CI size), then an increase of the block or CI size from 4 KB to 8 KB might improve the
performance of HDAM database accesses (especially if the database administrator wants a high packing
density (more than 70%) of the root addressable area). In this case, an increase of the CI size/block size
from 4 KB to 8 KB can often reduce the number of I/O operations (but will increase slightly the time of an
I/O operation).

CI/block sizes larger than 8 KB should be an exception (for example, for very large average database
record sizes).

Discussion of the example
In the example in Figure 81 on page 328, the average database record size is 682. This is approximately
1/6th of the block or CI size. 1/6th of the block or CI size is not very large and seems acceptable.
However, it could be reasonable to experiment with an 8 KB block or CI size.

A decision to increase the block or CI size from 4 KB to 8 KB for this database is probably a matter of the
personal taste of the database administrator.

Bytes limit
The bytes limit is the maximum number of bytes of a database record that can be stored into the root
addressable area in a series of insert calls unbroken by a call to another database record.

The current bytes limit is shown in the top portion of Figure 81 on page 328.

The database administrator needs to perform a trade-off when specifying a bytes limit. Specifying a
bytes limit that is too small will result in the storing of too many database segments into the overflow
area. Access to these many database segments in the overflow area will usually trigger additional I/Os
(since these database segments are not stored in the same block or CI as the root segment in the root
addressable area); these additional I/Os will adversely affect the performance of access to the HDAM
database.

Specifying a bytes limit that is too high (for example, 10 times the average database record length) may
create a situation where one individual database record occupies too much space in the root addressable
area. Other database records of the same block or CI or of neighboring blocks or CIs will then have an
insufficient amount of DASD space available for the storing of their own database segments in the same
block or CI as the RAP (See Note). Access to the database segments of these other database records will
require additional I/Os. This will adversely affect the performance of access to the HDAM database.

Note: Specification of a bytes limit that is too high often creates a "cascade" effect. If, for example, one
database record randomizing to block n is allowed to store as many as five block sizes worth of data in the
root addressable area, then the database records that are randomized to neighboring blocks (for example,
block n, n+1, n+2, n+3, and n+4) cannot be stored in the same block as their RAPs. The segments of
these database records will spill into blocks n+5, n+6, and so forth, and will create problems for the
database records that are randomized in block n+5, n+6, and so on. Note that the PSSR utility of IMS High
Performance Load assists in preventing such cascading effects.

The Database Tuning Statistics provide the following information, which is useful when evaluating
whether the current bytes limit is appropriate:

• The table containing the distribution of the database record length (see Figure 78 on page 324)
• The average number of I/Os per database record in the overflow area (see Figure 81 on page 328).

334 IMS High Performance Unload: User's Guide

Discussion of the example
The table printed by the Database Tuning Statistics (shown in the top-right-hand portion of page 2 in
Figure 78 on page 324) is useful for a reasonable determination of the bytes limit. This sample report
shows that:

• 80.52 percent of the database records have a database record length smaller than 3/16th of a block or
CI.

• 96.48 percent of the database records have a database record length smaller than 4/16th of a block or
CI.

• 98.59 percent of the database records have a database record length smaller than 5/16th of a block or
CI.

Based on this information, the current bytes limit (which is 700 according to Figure 81 on page 328)
seems too low. With a bytes limit of 700, at least 19.48% (=100%-80.52%) of the database records will
have, after a database reload, some dependent segments in the overflow area. This low bytes limit is one
of the major reasons for the high average number (0.40) of I/Os per database record in the overflow area.

You could increase the current bytes limit from 700 bytes to 5/16th of the block or CI size; which is 1280
bytes.

1280 bytes is not excessive, when compared with the average database record length of 862. With a
bytes limit of 1280, approximately 98.59% of the database records will have all their database segments
in the root addressable area. This will hopefully reduce the average number of I/Os per database record in
the overflow area, which is currently 0.40.

Free block frequency factor
This topic discusses about the free block frequency factor.

As explained in IMS Database Administration, specifying a free block frequency factor on the DATASET
macro of DBDGEN for the first data set group of HDAM is self-defeating.

For data set groups other than the first HDAM data set group, a free block frequency specification is often
useful.

Free space within each block/CI
Specification on the DATASET macro of DBDGEN of free space within each block or CI has both
advantages and disadvantages.

Free space within each block or CI is often advantageous, if the database will have a large number of
insert activities after database load/reload in the overflow area. In this case, free space specifications
often reduce the scattering of database segments of the same database record into a large number of
different blocks or CIs during subsequent insert activities.

The percentage of specified free space should be taken into account when determining the size of the
RAA. For example, when specifying 10% of free space, some database administrators increase the size of
the root addressable area by 10%, since the free space is not available at database load time or database
reload time.

Free space within each block or CI is disadvantageous if few database segments are inserted after
database load/reload or if nearly all database segments can be stored in the root addressable area.

Discussion of the example
For the example described in the previous figures, one should experiment without free space
specifications. Why? Because after the recommended increase of the packing density of the root
addressable area, enough free space will be available in the RAA; and because after the recommended
increase of the bytes limit, only few database segments will be stored in the overflow area.

Chapter 28. Tuning a database with the Database Tuning Statistics 335

Examples of other indicators provided by the Database Tuning Statistics
The reports that are generated by the Database Tuning Statistics function provide other indicators that
can help you understand more about the database status.

Subtopics:

• “Percent of roots in the overflow area” on page 336
• “Number of I/Os on the RAP chain” on page 336
• “Number of I/Os in the root addressable area” on page 336
• “Number of I/Os in the overflow area” on page 337

Percent of roots in the overflow area
This number can be found in Figure 81 on page 328, to the right of the phrase "NBR OF ACCESSED ROOTS
IN OVERFLOW AREA: - PCT OF ACCESSED ROOTS".

Normally this percent should be very small (below 1 percent). Higher values will increase the average
number of I/Os required to access a root segment and will decrease the performance. The reason for a
high value is often an overcrowded root addressable area.

Discussion of the example:

In the example of Figure 81 on page 328, the percentage of roots in the overflow area is too high: 6.01.
You could increase the root addressable area (see “Packing density of the root addressable area” on page
332) to take care of this problem.

Number of I/Os on the RAP chain
This number can be found in Figure 81 on page 328 to the right of the phrase "AVG NBR I/O: - ON RAP
CHAIN PER ROOT".

Normally, this number should not be substantially larger than 1.10. The reason for a high value is often an
overcrowded root addressable area, too few RAPs, a block or CI size that is too small, or a bytes limit that
is too high.

Discussion of the example:

In the example of Figure 81 on page 328, the average number of I/Os on the RAP chain is too high: 1.34.
The recommended increase of the root addressable area (see “Packing density of the root addressable
area” on page 332) and an increase of the number of RAPs (see “Number of RAPs per root segment” on
page 333) should take care of this problem.

Number of I/Os in the root addressable area
This number can be found in Figure 81 on page 328 to the right of the phrase "AVG NBR I/O: - IN RAA PER
DB-R".

Normally, this number should not be substantially larger than 1.20. The reason of a higher value is often
an overcrowded root addressable area, too few RAPs, a block or CI size that is too small, or a bytes limit
that is too high.

Discussion of the example:

In the example of Figure 81 on page 328, the average number of I/Os in the RAA is too high: 1.46. The
recommended increase of the root addressable area (see “Packing density of the root addressable area”
on page 332) and an increase of the number of RAPs (see “Number of RAPs per root segment” on page
333) should take care of this problem.

336 IMS High Performance Unload: User's Guide

Number of I/Os in the overflow area
This number can be found in Figure 81 on page 328 to the right of the phrase "AVG NBR I/O: - IN
OVERFLOW AREA PER DB-R".

Normally, this number should not be substantially larger than 0.20. The reason of a higher value is often
a bytes limit which is too low, a block or CI size which is too small for the database record length of the
database, database records that are very long, or a database that needs to be reorganized in order to
reduce the fragmentation of database segments of the same database record into multiple blocks or CIs.

Discussion of the example:

In the example of Figure 81 on page 328, the average number of I/Os in the overflow area is too high:
0.40. The recommended increase of the bytes limit (see “Bytes limit” on page 334) should take care of
this problem.

Summary of suggested changes for the example database
After applying the suggested changes that were explained in the preceding topics, rerunning the Database
Tuning Statistics function to obtain the latest database statistics is an effective approach to confirm
improvement in database status.

In the previous discussion of the example of Database Tuning Statistics, the following changes were
suggested:

• Increase the size of the root addressable area in order to decrease its packing density (the target
packing density being approximately 70%).

• Increase the number of RAPs (the target ratio of RAPs per root being 1.5).
• Increase the bytes limit (to approximately 1280 bytes).
• Get rid of free space specifications.

The following figures show the Database Tuning Statistics of the database after the suggested changes
have been made. Notice the considerable improvements of the different indicators. For example, the
average number of I/Os per database record has improved from 1.86 to 1.16.

Chapter 28. Tuning a database with the Database Tuning Statistics 337

IMS HIGH PERFORMANCE UNLOAD "DB STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 20.09.01 FABHC00 - V1.R2

STATISTICS FOR DB=HDAM0010 TOTAL FOR WHOLE DB

 *** DBDGEN SPECIFICATIONS:

 DB-ORG HDAM
 DDNAME DSHDAM01
 BLOCK/CI-SIZE 4,096
 FREE SPACE
 - FREE BLOCK FREQUENCY FACTOR(FBFF) 0
 - FREE SPACE PERCENTAGE FACTOR(FSPF) 0

 *** KEY INDICATORS FOR QUALITY OF PHYSICAL ORGANIZATION:

 AVG NBR I/O IN THIS DB
 - PER DB-R IN THIS DB 1.16
 AVG DB-R LENGTH IN THIS DB
 - PER DB-R IN THIS DB 682
 ACTUAL PCT FREE SPACE 27.16 ACTUAL PCT FREE SPACE = (ALLOC'ED DASD - TOTAL DB-R)/ALLOC'ED DASD * 100
 DEFINED PCT FREE SPACE N/A

 *** I/O SUMMARY:

 NBR I/O IN THIS DB 5,197
 NBR DB-RECORDS
 - WITH I/O IN THIS DB 4,472

 *** DB-RECORD LENGTH SUMMARY:

 TOTAL DB-R LENGTH IN THIS DB
 - LENGTH (BYTES) 3,052,423
 NBR DB-RECORDS
 - IN THIS DB 4,472

IMS HIGH PERFORMANCE UNLOAD "DB STATISTICS" PAGE: 2
5655-E06 DATE: 06/01/2021 TIME: 20.09.01 FABHC00 - V1.R2

STATISTICS FOR DB=HDAM0010 TOTAL FOR WHOLE DB

 NBR I/O TO READ ***AT RANDOM*** THE RETRIEVED DB RECORD LENGTH (INCL PREFIXES OF SEGMENTS)
 SEGMENTS OF ONE DB RECORD WITH 4 PCB-BUFFERS EXPRESSED IN BLOCKSIZE/CI-SIZE UNITS
 (ONE BLKSIZE/CI-SIZE = 4,096 BYTES)

 NBR IO NBR DB-R PCT CUM PCT LENGTH NBR DB-R PCT CUM PCT
 -- --

 <= 1/16 25 .55 .55
 <= 2/16 339 7.58 8.13
 <= 3/16 3,237 72.38 80.52
 <= 4/16 714 15.96 96.48
 <= 5/16 94 2.10 98.59
 <= 6/16 18 .40 98.99
 <= 7/16 5 .11 99.10
 <= 8/16 11 .24 99.35
 <= 9/16 3 .06 99.41
 <=10/16 5 .11 99.53
 <=11/16 3 .06 99.59
 <=12/16 3 .06 99.66
 <=13/16 1 .02 99.68
 <=14/16 2 .04 99.73
 <=15/16 2 .04 99.77

 <= 1 3,925 87.76 87.76 <= 1 2 .04 99.82
 <= 2 413 9.23 97.00 <= 2 8 .17 100.00
 <= 3 100 2.23 99.23
 <= 4 26 .58 99.82
 <= 5 6 .13 99.95

 <= 6 2 .04 100.00

-- --

Figure 83. DB Statistics after tuning (Part 1 of 5)

338 IMS High Performance Unload: User's Guide

IMS HIGH PERFORMANCE UNLOAD "DB STATISTICS" PAGE: 3
5655-E06 DATE: 06/01/2021 TIME: 20.09.01 FABHC00 - V1.R2

STATISTICS FOR DB=HDAM0010 (ROOT ADDRESSABLE AREA)

 *** DBDGEN SPECIFICATIONS:

 DB-ORG HDAM
 DDNAME DSHDAM01 (RAA)
 BLOCK/CI-SIZE 4,096
 FREE SPACE
 - FREE BLOCK FREQUENCY FACTOR(FBFF) 0
 - FREE SPACE PERCENTAGE FACTOR(FSPF) 0

 *** KEY INDICATORS FOR QUALITY OF PHYSICAL ORGANIZATION:

 AVG NBR I/O IN RAA
 - PER DB-R IN RAA 1.14
 - PER DB-R IN THIS DB 1.14
 AVG DB-R LENGTH IN RAA
 - PER DB-R IN RAA 663
 - PER DB-R IN THIS DB 663
 ACTUAL PCT FREE SPACE 27.65 ACTUAL PCT FREE SPACE = (ALLOC'ED DASD - TOTAL DB-R)/ALLOC'ED DASD * 100
 DEFINED PCT FREE SPACE .00 DEFINED PCT FREE SPACE = FSPF + 100/FBFF - FSPF/FBFF

 *** I/O SUMMARY:

 NBR I/O IN RAA 5,113
 NBR DB-RECORDS
 - WITH I/O IN RAA 4,472
 - IN THIS DB 4,472

 *** DB-RECORD LENGTH SUMMARY:

 TOTAL DB-R LENGTH IN RAA
 - LENGTH (BYTES) 2,966,533
 NBR DB-RECORDS
 - IN RAA 4,472
 - IN THIS DB 4,472

IMS HIGH PERFORMANCE UNLOAD "DB STATISTICS" PAGE: 4
5655-E06 DATE: 06/01/2021 TIME: 20.09.01 FABHC00 - V1.R2

STATISTICS FOR DB=HDAM0010 (ROOT ADDRESSABLE AREA)

 NBR I/O TO READ ***AT RANDOM*** THE RETRIEVED DB RECORD LENGTH (INCL PREFIXES OF SEGMENTS)
 SEGMENTS OF ONE DB RECORD WITH 4 PCB-BUFFERS EXPRESSED IN BLOCKSIZE/CI-SIZE UNITS
 (ONE BLKSIZE/CI-SIZE = 4,096 BYTES)

 NBR IO NBR DB-R PCT CUM PCT LENGTH NBR DB-R PCT CUM PCT
 -- --

 <= 1/16 25 .55 .55
 <= 2/16 339 7.58 8.13
 <= 3/16 3,237 72.38 80.52
 <= 4/16 714 15.96 96.48
 <= 5/16 157 3.51 100.00

 <= 1 3,978 88.95 88.95
 <= 2 384 8.58 97.54
 <= 3 81 1.81 99.35
 <= 4 23 .51 99.86
 <= 5 4 .08 99.95

 <= 6 2 .04 100.00
-- --

Figure 84. DB Statistics after tuning (Part 2 of 5)

Chapter 28. Tuning a database with the Database Tuning Statistics 339

IMS HIGH PERFORMANCE UNLOAD "DB STATISTICS" PAGE: 5
5655-E06 DATE: 06/01/2021 TIME: 20.09.01 FABHC00 - V1.R2

STATISTICS FOR DB=HDAM0010 (OVERFLOW AREA)

 *** DBDGEN SPECIFICATIONS:

 DB-ORG HDAM
 DDNAME DSHDAM01 (OVFLW AREA)
 BLOCK/CI-SIZE 4,096
 FREE SPACE
 - FREE BLOCK FREQUENCY FACTOR(FBFF) 0
 - FREE SPACE PERCENTAGE FACTOR(FSPF) 0

 *** KEY INDICATORS FOR QUALITY OF PHYSICAL ORGANIZATION:

 AVG NBR I/O IN OVFLW AREA
 - PER DB-R IN OVFLW AREA 1.33
 - PER DB-R IN THIS DB .01
 AVG DB-R LENGTH IN OVFLW AREA
 - PER DB-R IN OVFLW AREA 1,363
 - PER DB-R IN THIS DB 19
 ACTUAL PCT FREE SPACE 4.69 ACTUAL PCT FREE SPACE = (ALLOC'ED DASD - TOTAL DB-R)/ALLOC'ED DASD * 100
 DEFINED PCT FREE SPACE .00 DEFINED PCT FREE SPACE = FSPF + 100/FBFF - FSPF/FBFF

 *** I/O SUMMARY:

 NBR I/O IN OVFLW AREA 84
 NBR DB-RECORDS
 - WITH I/O IN OVFLW AREA 63
 - IN THIS DB 4,472

 *** DB-RECORD LENGTH SUMMARY:

 TOTAL DB-R LENGTH IN OVFLW AREA
 - LENGTH (BYTES) 85,890
 NBR DB-RECORDS
 - IN OVFLW AREA 63
 - IN THIS DB 4,472

IMS HIGH PERFORMANCE UNLOAD "DB STATISTICS" PAGE: 6
5655-E06 DATE: 06/01/2021 TIME: 20.09.01 FABHC00 - V1.R2

STATISTICS FOR DB=HDAM0010 (OVERFLOW AREA)

 NBR I/O TO READ ***AT RANDOM*** THE RETRIEVED DB RECORD LENGTH (INCL PREFIXES OF SEGMENTS)
 SEGMENTS OF ONE DB RECORD WITH 4 PCB-BUFFERS EXPRESSED IN BLOCKSIZE/CI-SIZE UNITS
 (ONE BLKSIZE/CI-SIZE = 4,096 BYTES)

 NBR IO NBR DB-R PCT CUM PCT LENGTH NBR DB-R PCT CUM PCT
-- --

 <= 1/16 18 28.57 28.57
 <= 2/16 4 6.34 34.92
 <= 3/16 11 17.46 52.38
 <= 4/16 4 6.34 58.73
 <= 5/16 5 7.93 66.66
 <= 6/16 3 4.76 71.42
 <= 7/16 3 4.76 76.19
 <= 8/16 1 1.58 77.77
 <= 9/16 2 3.17 80.95
 <=10/16 2 3.17 84.12
 <=11/16 2 3.17 87.30
 <=12/16 0 .00 87.30
 <=13/16 1 1.58 88.88
 <=14/16 1 1.58 90.47
 <=15/16 0 .00 90.47

 <= 1 44 69.84 69.84 <= 1 0 .00 90.47
 <= 2 17 26.98 96.82 <= 2 6 9.52 100.00
 <= 3 2 3.17 100.00
 -- --

Figure 85. DB Statistics after tuning (Part 3 of 5)

340 IMS High Performance Unload: User's Guide

IMS HIGH PERFORMANCE UNLOAD "RANDOMIZING STATISTICS" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 20.09.01 FABHC00 - V1.R2

STATISTICS FOR RETRIEVED ROOTS OF DB=HDAM0010 WITH RANDOMIZER=DFSHDC10

 *** DBDGEN SPECIFICATIONS:

 NBR RAPS PER BLOCK/CI 7
 HIGHEST BLOCK/CI IN RAA 1,000
 BYTES-LIMIT 1,280
 BLOCK/CI-SIZE 4,096
 FREE SPACE:
 - FREE BLOCK FREQUENCY FACTOR(FBFF) 0
 - FREE SPACE PERCENTAGE FACTOR(FSPF) 0

 *** KEY INDICATORS FOR QUALITY OF RANDOMIZING:

 AVG NBR I/O
 - PER DB-R 1.16
 - ON RAP CHAIN PER ROOT 1.06
 - ON RAP CHAIN PER RAP CHAIN 1.07
 - IN RAA PER DB-R 1.14
 - IN OVERFLOW AREA PER DB-R .01

 NBR OF ACCESSED RAPS WHICH ARE USED
 - NBR 3,347
 - PCT OF ACCESSED RAPS 47.81

 NBR OF ACCESSED ROOTS IN OVERFLOW AREA
 - NBR 0
 - PCT OF ACCESSED ROOTS .00

 PACKING DENSITY OF RAA 72.35
 NBR OF RAPS PER ROOT 1.56
 AVG POSITION OF ROOT SEGMENTS ON
 RAP SYNONYM CHAINS 1.30
 AVG NUMBER OF SYNONYMS ON
 RAP SYNONYM CHAINS 1.33

 AVG DB-R LENGTH 682

IMS HIGH PERFORMANCE UNLOAD "RANDOMIZING STATISTICS" PAGE: 2
5655-E06 DATE: 06/01/2021 TIME: 20.09.01 FABHC00 - V1.R2

STATISTICS FOR RETRIEVED ROOTS OF DB=HDAM0010 WITH RANDOMIZER=DFSHDC10

 NBR I/O ON RAP CHAIN TO READ ***AT RANDOM***
 THE ROOT SEGMENTS WITH 4 PCB-BUFFERS

 NBR IO NBR ROOTS PCT CUM PCT
 --

 <= 1 4,188 93.64 93.64
 <= 2 271 6.04 99.70
 <= 3 12 .26 99.97
 <= 4 1 .02 100.00

 POSITION OF ROOT SEGMENTS ON RAP CHAINS

 POSITION NBR ROOTS PCT CUM PCT
 --

 <= 1 3.347 74.84 74.84
 <= 2 917 20.50 95.34
 <= 3 175 3.91 99.26
 <= 4 27 .60 99.86
 <= 5 5 .11 99.97
 <= 6 1 .02 100.00

Figure 86. DB Statistics after tuning (Part 4 of 5)

Chapter 28. Tuning a database with the Database Tuning Statistics 341

IMS HIGH PERFORMANCE UNLOAD "DB RECORD LENGTH DISTRIBUTION" PAGE: 1
5655-E06 DATE: 06/01/2021 TIME: 20.09.01 FABHC00 - V1.R2

 DATABASE RECORD LENGTH DISTRIBUTION FOR DB=HDAM0010

 LENGTH NBR DB-R PCT CUM PCT

 <= 500 349 7.80 7.80
 <= 550 740 16.54 24.35
 <= 600 264 5.90 30.25
 <= 650 1,355 30.29 60.55
 <= 700 260 5.81 66.36
 <= 750 551 12.32 78.68
 <= 800 176 3.93 82.62
 <= 850 329 7.35 89.98
 <= 900 113 2.52 92.50
 <= 950 82 1.83 94.34
 <= 1000 81 1.81 96.15
 <= 1050 34 .76 96.91
 <= 1100 32 .71 97.62
 <= 1150 12 .26 97.89
 <= 1200 18 .40 98.30
 <= 1250 9 .20 98.50
 <= 1300 7 .15 98.65
 <= 1350 4 .08 98.74
 <= 1400 5 .11 98.85
 <= 1450 3 .06 98.92
 <= 1500 3 .06 98.99
 <= 1600 1 .02 99.01
 <= 1700 1 .02 99.03
 <= 1800 3 .06 99.10
 <= 1900 4 .08 99.19
 <= 2000 6 .13 99.32
 <= 2500 7 .15 99.48
 <= 3000 7 .15 99.64
 <= 3500 3 .06 99.70
 <= 4000 5 .11 99.82
 <= 5000 2 .04 99.86
 <= 6000 2 .04 99.91
 <= 7000 2 .04 99.95
 <= 8000 2 .04 100.00

Figure 87. DB Statistics after tuning (Part 5 of 5)

Other factors influencing the performance of access to an HDAM database
The following information pertains to other factors that influence the performance in the access to an
HDAM database.

Subtopics:

• “Periodical database reorganization” on page 342
• “Databases with long database records” on page 342
• “Compressed segments” on page 343
• “Inefficient space suballocation for the Sequential Subset Randomizer” on page 343

Periodical database reorganization
The overflow area of an HDAM database tends to become physically disorganized, if a large amount of
database segments are inserted into the overflow area after a database load or reload.

You can detect the need for reorganization of an HDAM database by observing how the average number
of I/Os per database record evolves over time. A substantial increase of the number of I/Os indicates a
probable need for database reorganization.

You can also detect the need for reorganization by looking at the Data Set I/O Statistics after a sequential
processing of the database by FABHURG1, FABHFSU, or an HSSR application program. After such a
processing, look in the Data Set I/O Statistics for the counters that describe the number of DIRECT IO
and SEQ IO in the overflow area. (You will find this information only if the CAB buffer handler has been
used and if an OVERFLOW CAB has been activated.) Large overflow areas may benefit from a database
reorganization if the number of direct I/Os in the overflow area is much higher than the number of
sequential I/Os in the overflow area.

Databases with long database records
For HDAM databases with a high percentage of very long database records (for example, 8 KB or more), it
is difficult to achieve a low value for the average number of I/O per database record.

342 IMS High Performance Unload: User's Guide

Whether the database record length is high can be determined by looking at the Database Tuning
Statistics; they provide the average database record length and a table with the distribution of the
database record length.

Some of the actions that can be taken, in order to limit the performance problems of long database
records, are:

• Define the bytes limit in such a way that:

– The root segment and a reasonable amount of dependent segments can be stored in the same block
of the root addressable area as the root segment.

– The remaining dependent segments are stored in the overflow area.

A practice sometimes used is to load the most often referred-to database segments in the root
addressable area at database initial load or reload time; the less frequently referred-to database
segments are then inserted after the initial load/reload. Sometimes less frequently accessed segment
types can be stored in a separate data set group.

Bytes limits larger than the block or CI size should not be used if the database administrator intends to
store database roots in the majority of the blocks or CIs of the root addressable area.

• Use a large block or CI size (for example, 12 KB).
• Evaluate usage of database segment compression in order to reduce the average size of database

records.
• Evaluate changes to the database design in order to reduce the average size of database records.
• Evaluate usage of multiple data set groups.

Compressed segments
Using a compression exit routine in order to store the segments on DASD in a compressed format can be
useful, especially if the compression can significantly reduce the average database record size in such a
way that the average number of database I/Os required to read at random all database segments of a
database record can be lowered.

When using compression routines, beware of segment splits created by replace calls that extend the
compressed size of a database segment. Some protection against such replace calls can be achieved
by avoiding high packing densities in the root addressable area and by defining enough free space for
nonprimary data set groups.

Inefficient space suballocation for the Sequential Subset Randomizer
The quality of the randomizing with the Sequential Subset Randomizer depends on a reasonable
suballocation of space to each subset of database records.

The output of the FABIGEN and of the SS-STATS statistics of HSSR Engine can be used to compare:

• The relative amount of space that has been allocated during FABIGEN to each subset (see per mill
figures in the compilation output of the FABIGEN).

• The relative amount of DASD space occupied by all database segments of one subset (see per mill
figures of the SS-STATS).

In case of large discrepancies, the database might need to be reloaded after a change of the space
suballocations for the FABIGEN.

Chapter 28. Tuning a database with the Database Tuning Statistics 343

Tuning a HIDAM database
The following topics explain how to tune a HIDAM database.

Average number of I/O operations per database record
Obviously, a database can be considered to be efficiently organized, if the average number of I/O
operations required to read at random all database segments of one database record is low. The average
number of I/Os required to read at random all database segments of one database record is one of the
most important indicators for the quality of the physical organization of the database.

This average number of I/O is printed by the Database Tuning Statistics in Figure 78 on page 324, to the
right of the phrase "AVG NBR I/O IN THIS DB" (note that HSSR Engine ignores I/Os required to access the
index of the HIDAM database record).

By looking at this average number in the Database Tuning Statistics, the database administrator can very
rapidly see whether a database is efficiently organized.

For an ideal database consisting of one single data set group, this average number would be 1.0.

In real life, this ideal value of 1.0 can seldom be achieved and the average number of database I/Os per
database record will be higher.

As a general rule of thumb, the database can be considered to be fairly well organized if the average
number of I/Os per database record is below:

• 1.10 (for databases with an average database record length below one 10th of the block or CI size)
• 1.20 (for databases with larger database record lengths)

For numbers above 1.10 or 1.20, the database can often be considered to be poorly organized. In this
case, the following questions should be asked in order to find the reason for a poor organization:

1. Is a database reorganization overdue in order to reduce database segment scattering? (See “Periodical
database reorganization” on page 344 for details.)

2. Is the amount of free space specified during DBDGEN sufficient? (See “Free space specifications” on
page 345 for details.)

3. Is the block size or CI size appropriate for the database record lengths of this database? (See “CI size
and block size” on page 345 for details.)

4. Is the database record length excessive? (See “Databases with long database records” on page 345
for details.)

Periodical database reorganization
An HIDAM database tends to become physically disorganized if a high amount of database segments are
inserted after a database load or reload.

You can detect the need for a reorganization of an HIDAM database by observing how the average number
of I/Os per database record evolves over time. A substantial increase of the number of I/Os indicates a
probable need for database reorganization.

You can also detect the need for a reorganization of the database by looking at the Data Set I/O Statistics
after a sequential processing or unloading of the database. After such a processing, look in the Data Set
I/O Statistics for those counters that describe the number of DIRECT IO and SEQ IO (you will find this
information only if the CAB buffer handler has been used).

Databases might benefit from a database reorganization if the number of direct I/Os is higher than the
number of sequential I/Os.

344 IMS High Performance Unload: User's Guide

Free space specifications
Specification of enough free space (both in form of free space in each block or CI and in the form
of a free block frequency factor) allows the support of more database inserts between two database
reorganizations.

The Database Tuning Statistics shows (for an example, see the top portion of Figure 78 on page 324):

• How much free space has been specified in each block or CI
• Whether every nth block or CI has been left entirely free.

The Database Tuning Statistics allows also for the comparison of the actual percentage of free space
(ACTUAL PCT FREE SPACE) and the defined percentage of free space (DEFINED PCT FREE SPACE). You
might wish to observe how the actual percentage of free space is reduced as the database becomes older
and older.

CI size and block size
The CI size or the block size can be found in the DB Statistics report.

The current CI size/block size is shown in the top portion of Figure 78 on page 324.

As a general rule of thumb, use a 4 KB CI/block size for the data portion of HIDAM.

However, if the average database record length is more than 1000 bytes (that is, larger than 1/4th of
the block or CI size), then an increase of the block or CI size from 4 KB to 8 KB might improve the
performance of HIDAM database accesses.

In these cases an increase of the CI size/block size from 4 KB to 8 KB can often reduce the number of I/O
operations (but will increase slightly the time of an I/O operation).

CI/block sizes larger than 8 KB should be an exception (for example, for very large average database
record sizes).

Databases with long database records
For HIDAM databases with a high percentage of very long database records (for example, 32 KB or more),
it is difficult to achieve a low value for the average number of I/O per database record.

Some of the actions that can be taken to limit the performance problems of long database records are:

• Use a large block or CI size (for example, 12 KB)
• Evaluate usage of database segment compression in order to reduce the average size of database

records
• Evaluate storage of the most often referred-to database segments in the same block or CI as the root.

The less frequently referred-to database segments can be inserted after the initial load/reload or can be
stored in another data set group.

• Evaluate changes to the database design in order to reduce the average size of database records.

Tuning a HISAM database
The following topics explain how to tune a HISAM database.

Average number of I/O operations per database record
Obviously, an HISAM database can be considered to be efficiently organized if the average number of I/O
operations required to read, at random, all database segments of one database record is low. The average
number of I/Os required to read at random all database segments of one database record is one of the
most important indicators for the quality of the physical organization of the database.

This average number of I/O is printed by the Database Tuning Statistics, as shown in Figure 78 on page
324, right of the phrase "AVG NBR I/O IN THIS DB".

Chapter 28. Tuning a database with the Database Tuning Statistics 345

(HSSR Engine counts the reading of a KDSD record as a single I/O and ignores I/Os required to access the
VSAM index CIs.)

By looking at this average number in the Database Tuning Statistics, the database administrator can very
rapidly see whether a database is efficiently organized.

For an ideal HISAM database, this average number would be 1.0.

In real life, this ideal value of 1.0 can seldom be achieved and the average number of database I/Os per
database record will be higher.

For numbers above 1.30, the HISAM database can often be considered as poorly organized. In this case,
the following questions should be asked in order to find the reason for a poor organization:

1. Is the KSDS record length appropriate? (See “KSDS record length (HISAM)” on page 346 for details.)
2. Is a database reorganization overdue in order to reduce database segment scattering? (See “Periodical

database reorganization” on page 346 for details.)
3. Is the ESDS CI size appropriate for the database record lengths of this DB? (See “ESDS CI size” on

page 347 for details.)

KSDS record length (HISAM)
The database administrator needs to perform trade-offs when determining the KSDS record length for a
HISAM database.

Selecting a large KSDS LRECL allows reduction of the number of database records that cannot be stored
entirely in the KSDS record. This will reduce the average number of I/Os per database record. On the
other hand, selection of a KSDS LRECL that is too large may represent a waste of DASD space, if a high
percentage of database record do not fill reasonably the KDSD record.

The table containing the distribution of the database record length (see Figure 82 on page 330) provides
assistance in determining a reasonable KSDS LRECL.

Note: By default, HSSR Engine prints only a table with following ranges of database record length: 1/16,
2/16, 3/16, and so on of the ESDS CI size. These default ranges of database record lengths are seldom
sufficient to determine a good KSDS LRECL. To get a table with more appropriate ranges of database
record length, provide in the HSSRLDEF data set control statements defining database record length
ranges of your choice (for example, database record length ranges of 50 or 100 bytes).

Periodical database reorganization
The ESDS portion of an HISAM database tends to become physically disorganized if a large amount of
database segments are inserted after a database load or reload.

The need for a reorganization of the ESDS portion of an HISAM database can be detected by observing
how the average number of I/Os per database record evolves over time. A substantial increase of the
number of I/Os indicates a probable need for database reorganization.

The need to reorganize the ESDS part of a HISAM database can also be detected by looking at the Data
Set I/O Statistics after a sequential processing or unloading of the database. After such a processing, look
in the Data Set I/O Statistics for the counters that describe the number of DIRECT IO and SEQ IO. (You
will find this information only if the CAB buffer handler has been used.)

Databases might benefit from a database reorganization if the number of direct I/Os is higher than the
number of sequential I/Os.

Note that the need for a reorganization of the KSDS portion of an HISAM database can be determined
by looking at the number of CI splits and CA splits of the KSDS (these numbers can be found in LISTCAT
listings of IDCAMS).

346 IMS High Performance Unload: User's Guide

ESDS CI size
This topic discusses the ESDS CI size.

The current ESDS CI size is shown in the top portion of Figure 78 on page 324.

As a general rule of thumb, use a 4 KB CI size for the ESDS portion of HISAM database.

However, for long database records, an increase of the ESDS CI size from 4 KB to 8 KB might improve the
performance of HISAM database accesses.

How to determine randomizing parameters by using a reasonable
first guess method

This topic is provided to assist database administrators who do not have experience with the
specifications of efficient HDAM randomizing parameters. This topic contains general rules of thumb for
using a first guess method to determine the values of the following parameters, which have an impact on
the randomizing performance of an HDAM database.

• The block or CI size (See “Determining the block or CI size” on page 347.)
• The bytes limit (See “Determining the bytes limit” on page 347.)
• The number of blocks or CIs in the root addressable area (See “Determining the number of blocks or CIs

in the root addressable area” on page 348.)
• The number of RAPs per block or CI (See “Determining the number of RAPs per block/CI” on page 348.)

The following discussion assumes that the values of these parameters are determined in the sequence
listed here.

After loading or reloading the database with the randomizing parameters determined by the first-guess
method, the database administrator can obtain Database Tuning Statistics in order to verify the efficiency
of the first-guess randomizing parameters. Then, if necessary, the randomizing parameters could be
adjusted with an iterative, experimental try and see process (that is, change the value of a randomizing
parameter, reload the database, and observe in the Database Tuning Statistics the effect of the changed
parameter).

Determining the block or CI size
A recommended general rule of thumb is a 4 KB block or CI size.

However, if the average database record length reported in the Database Tuning Statistics is larger than
800 bytes, then a larger block or CI size could be tried.

• If the average database record length is in the range of 800–1600 bytes, an 8 KB block or CI size is
often a better bet.

• If the average database record length is in the range of 1600–2400 bytes, a 12 KB block or CI size
should be investigated.

• For average database record lengths substantially longer than 2400 bytes, the first-guess method
described in this topic often does not apply.

Block or CI sizes larger than 12 KB should be an exception.

Block or CI sizes smaller than 4 KB are seldom reasonable.

Determining the bytes limit
As explained in “Bytes limit” on page 334, the database administrator needs to perform trade-offs when
specifying a bytes limit.

To define a reasonable bytes limit, the database administrator should check the distribution of the
database record lengths in the Database Tuning Statistics. The table with the distribution of the database

Chapter 28. Tuning a database with the Database Tuning Statistics 347

length records should be used in order to determine the bytes limit in accordance with the following rules
of thumb:

• The bytes limit is large enough, in order to allow for a high percentage of database records to have all
their database segments stored in the root addressable area.

• The bytes limit is small enough in order to prevent the cascading effect described in “Bytes limit” on
page 334.

If the average database record length is around 1/5th of the block or CI size, then (as a first guess,
which could be revised by experiments by the database administrator) the bytes limit should not be
larger than twice the database record length.

For smaller average database record lengths, the ratio between bytes limit and average database record
length can be larger than 2. For larger average database record lengths, the ratio between bytes limit
and average database record length should be smaller than 2.

• The bytes limit should not be larger than the block or CI size.

Determining the number of blocks or CIs in the root addressable area
In order to determine the number of blocks or CIs in the root addressable area, the database
administrator must have previously determined the block or CI size and the bytes limit (as described
in “Determining the block or CI size” on page 347 and “Determining the bytes limit” on page 347).

Then the database administrator should:

1. Select a target packing density for the root addressable area.

As described in “Packing density of the root addressable area” on page 332, a good bet would be a
packing density of 75% (for databases with an average database record length smaller than one tenth
of the block or CI size) or of 70% (for databases with a larger average database record length).

2. Estimate the total lengths (expressed in bytes) of all the database segments that should be stored in
the root addressable area. This estimate can be done by using:

a. The total lengths of all database segments (expressed in bytes) reported by the Database Tuning
Statistics

b. The selected bytes limit
c. The distribution of the database record lengths reported by the Database Tuning Statistics

Example:

a. In Figure 78 on page 324, the reported total length of all database segments is 3,052,423.
b. As suggested at the end of “Bytes limit” on page 334, a bytes limit of 1208 bytes can be selected.
c. As shown in Figure 78 on page 324, 98.59% of database records have a database record length

smaller than or equal to 1280 bytes (5/16 bytes of the CI size).

Based on the figures shown in this example, you can estimate the total length of all database
segments that should be stored in the root addressable areas; approximately 98.6% of 3,052,423
bytes.

3. Divide the total length of database segments to be stored in the root addressable area by the target
packing density in order to obtain the size (in bytes) of the root addressable area.

4. Divide the size in bytes of the root addressable area by the block or CI size in order to obtain the
number of blocks or CIs in the root addressable area.

Determining the number of RAPs per block/CI
As a general rule of thumb, the total number of RAPs should be around 1.5 times the number of database
records. In case of doubt, it is better to specify too many than too few RAPs.

Since the number of database records is printed by the Database Tuning Statistics, the database
administrator can multiply this number by 1.5 in order to obtain the desired total number of RAPs.

348 IMS High Performance Unload: User's Guide

Then, in order to obtain the number of RAP per block or CI, the total number of RAPs should be divided by
the number of blocks or CIs in the root addressable area (and rounded up to the next integer).

Chapter 28. Tuning a database with the Database Tuning Statistics 349

350 IMS High Performance Unload: User's Guide

Chapter 29. Creating a database extract for tuning
experiments

FABHEXTR allows the creation of a small database extract from a large database. The database extract
can be used to perform database tuning experiments. Creation of a smaller extract database can be
useful when the database administrator intends to tune the randomizing parameters of a large HDAM
database through an interactive try-and-see process.

FABHEXTR is a user exit routine of the FABHURG1 database unload utility. Based on control statements,
FABHEXTR directs the FABHURG1 utility to include, in its database unload output file, only a subset of the
real-life database records. The unloaded database extract is then used as input to the standard IMS HD
Reload utility, which will create an extract database.

Assume, for example, you have a large HDAM database with 1 million database records, which takes
20 hours to reorganize. An iterative try-and-see tuning process for such a huge database is not realistic
because of the large amount of time required for the database reorganization of each interaction step.
However, if the database administrator creates a small database extract consisting of 5000 database
records, then the database reorganization for this database extract no longer takes 20 hours, but only 6
minutes. The database administrator can then perform a lot of different experiments with different values
for the randomizing parameters with this small database.

The user of FABHEXTR can define, in an EXTR control statement, the number (n) of consecutive database
records that should be included in the extract database. Usually these will be the first n database records
of the original database. However, you can specify, in an optional SKIP control statement, that the
FABHURG1 utility should skip m database records before extracting n consecutive database records.

For a HALDB, an alternative way to extract database records from a HALDB partition is provided. The user
can define, in a PARTEXTR control statement, the number (n) of consecutive database records that should
be extracted from each HALDB partition. The first n database records of each partition are extracted and
put in the same unloaded data set.

Topics:

• “Considerations when applying the FABHEXTR exit routine” on page 351
• “Extracting a subset of database records with FABHEXTR” on page 352
• “HSSREXTR input data set for FABHEXTR” on page 352
• “JCL example for creating a database unload extract” on page 354

Considerations when applying the FABHEXTR exit routine
The following considerations apply to using the FABHEXTR exit routine to create a database extract.

• If the extracted database is being used for experimenting with the tuning of HDAM randomizing
parameters, the database administrator will need to use a test version of the DBD that is smaller
than the root addressable size of the original database. For example, if the original database contains
200,000 blocks in the root addressable area, and if the extract database will contain only one
hundredth of the original database records, then the size of the root addressable area of the extract
database should be reduced by the same proportion of one hundred and should be set to 2000 blocks.

• If the database is involved in a logical relationship, you must run (as for any other IMS database
reorganization) the Database Pre-Reorganization utility (DFSURPR0) before reloading the database
extract. The other IMS utilities (Database Scan, Database Prefix Resolution, Database Prefix Update)
used to support logical relationships during a database reorganization should not be run.

• Duplicate control statements are not allowed. PARTEXTR control statement must not be specified with
either EXTR or SKIP control statement.

• For HALDB, the order of the partitions to be processed is determined by the main logic of FABHURG1. If
the partitions to be processed are restricted by the PARTITION control statement specified in SYSIN of

© Copyright IBM Corp. 2000, 2024 351

FABHURG1, database records are unloaded from only the selected partitions. If you want to process all
of the partitions, you should not specify the PARTITION control statement.

• If the CO control statement is specified in HSSROPT DD and the PARTEXTR control statement is
specified in HSSREXTR DD, the message FABH0205W is issued and the CO control statement is ignored.

• If the PARTEXTR control statement is specified and one or more partitions of PHDAM or PHIDAM are in
a HALDB OLR cursor-active status, FABHURG1 ends abnormally.

Extracting a subset of database records with FABHEXTR
You can create a small database extract from a large database by applying the FABHEXTR user exit
routine in the FABHURG1 job.

Procedure
1. Prepare FABHURG1 utility JCL.

For instructions, see “Unloading a database with FABHURG1” on page 35.
2. Activate the FABHEXTR exit routine. In the FABHURG1 SYSIN data set, specify an EXIT control

statement and the name of the FABHEXTR exit routine as follows:

 //SYSIN DD *
 EXIT FABHEXTR

This control statement must have the following format:

• Columns 1 - 4 must contain EXIT.
• Column 5 must contain a blank.
• Columns 6 - 13 must contain FABHEXTR.

3. Code an HSSREXTR DD statement for the data set of FABHEXTR control statements.

In this data set, specify either an EXTR control statement that describes the number of database
records to be extracted from the entire database, or a PARTEXTR control statement that describes the
number of database records to be extracted from each HALDB partition. If an EXTR control statement
is specified, this data set can also contain a SKIP control statement.

For the formats and the parameters of these control statements, see “HSSREXTR input data set for
FABHEXTR” on page 352.

4. Run the job.

Example

See “JCL example for creating a database unload extract” on page 354 for a JCL example to create a
database unload extract by using the FABHEXTR exit routine.

HSSREXTR input data set for FABHEXTR
An HSSREXTR DD statement is required by the FABHEXTR exit routine.

This DD statement must point to a sequential data set or to a member of PDS, which contains control
statements.

The data set must contain either an EXTR control statement or a PARTEXTR control statement. If it
contains an EXTR control statement, it can also contain a SKIP control statement. A PARTEXTR control
statement can be specified only for HALDB.

352 IMS High Performance Unload: User's Guide

 //HSSREXTR DD *
 EXTR nnnnnnnn
 SKIP mmmmmmmm
or
 //HSSREXTR DD *
 PARTEXTR nnnnnnnnn

Figure 88. HSSREXTR control statements

Subtopics:

• “EXTR control statement” on page 353
• “SKIP control statement” on page 353
• “PARTEXTR control statement” on page 353

EXTR control statement
The EXTR control statement specifies the number of consecutive database records to be extracted.

The EXTR control statement must have the following format:

• Columns 1 - 4 must contain EXTR.
• Column 5 must contain a blank.
• The number of consecutive database records to be extracted must be coded from column 6 onward.

The number must be less than or equal to 999999999.

SKIP control statement
The SKIP control statement specifies the number of database records to be skipped.

The optional SKIP control statement that can be specified with the EXTR control statement must have the
following format:

• Columns 1 - 4 must contain SKIP.
• Column 5 must contain a blank.
• The number of database records to be skipped at the beginning of the database must be coded from

column 6 onward. The number must be less than or equal to 999999999.

PARTEXTR control statement
The PARTEXTR control statement specifies the number of consecutive database records to be extracted
from each HALDB partition.

The PARTEXTR control statement must have the following format:

• Columns 1 - 8 must contain PARTEXTR.
• Column 9 must contain a blank.
• The number of consecutive database records to be extracted from each HALDB partition must be coded

from column 10 onward. The number must be less than or equal to 999999999. No leading zeros need
to be specified, but the number must be left-aligned. This control statement is valid only for HALDB. If
the number of database records in a partition is less than the number specified in the PARTEXTR control
statement, all records in the partition are unloaded.

• You cannot specify more than one PARTEXTR control statement.
• If the PARTEXTR control statement is specified, you cannot specify both the EXTR and SKIP control

statement concurrently.

Chapter 29. Creating a database extract for tuning experiments 353

JCL example for creating a database unload extract
Use the following JCL example to prepare your JCL for creating a database unload extract.

The following figure shows a JCL example for creating an extract database.

//UNLOAD EXEC FABHULU,MBR=FABHURG1,DBD=dbdname
//SYSUT2 DD DISP=(,PASS),DSN=&&UNLOAD,UNIT=SYSDA,SPACE=(CYL,(3,3))
//SYSIN DD *
EXIT FABHEXTR
//HSSREXTR DD *
EXTR 10000
//DBDD DD DISP=SHR,DSN=user.db
//*
//*
//*
//RELOAD EXEC PGM=DFSRRC00,PARM=’ULU,DFSURGL0,dbdname’
//STEPLIB DD ...
//DFSRESLB DD ..
//IMS DD DISP=SHR,DSN=IMSVS.TEST.DBDLIB
//DFSUINPT DD DISP=(OLD,DELETE),DSN=&&UNLOAD
//DBDD DD DISP=(,CATLG),DSN=extract.db,.......
//... (other DD statements required by Reload Utility)

Figure 89. JCL example for creating an extract database

In the first job step, in addition to the usual JCL required to do an unload with the FABHURG1 Unload
utility, the following specifications are made:

• A SYSIN data set with an EXIT control statement, which requests the activation of FABHEXTR.
• An HSSREXTR data set with an EXTR control statement, which requests that the (first) 10000 database

records be included in the database unload extract.

The second job step is a standard database reload performed with the standard IMS HD Reload utility
DFSURGL0. Notice, however, that the IMS DD statement will point to a DBDLIB containing the test version
of the DBD, which is used for the tuning experiments.

354 IMS High Performance Unload: User's Guide

Part 6. Compatibility with earlier products
IMS High Performance Unload provides compatibility with earlier products.

Topics:

• Chapter 30, “Compatibility with DBT V2 HSSR,” on page 357
• Chapter 31, “Compatibility with DBT V1 HSSR,” on page 365
• Chapter 32, “Compatibility with PO HSSR,” on page 367
• Chapter 33, “Compatibility with FSU II,” on page 373

© Copyright IBM Corp. 2000, 2024 355

356 IMS High Performance Unload: User's Guide

Chapter 30. Compatibility with DBT V2 HSSR
IMS High Performance Unload is compatible with IMS System Utilities/Data Base Tools Version 2, High
Speed Sequential Retrieval (program number 5685-093, also referred to as DBT V2 HSSR), with certain
exceptions.

The following topics provide information about issues that you must consider when migrating from DBT
V2 HSSR.

Topics:

• “Default buffer handler for ESDS, OSAM, and OSAM LDS” on page 357
• “Default values of CAB buffering parameters” on page 357
• “Location of buffer pools and compatibility of exit routines” on page 358
• “HSSROPT control statements: HDSTATS and NOSAMEOPT” on page 358
• “Access method used in Unload utilities to write output records” on page 358
• “Method for specifying an HSSR PCB through KEYLEN” on page 358
• “Support of PROCOPT=R and replace calls” on page 359
• “Support of explicit HSSR calls” on page 360
• “FABHFSU control statements: CO and CON” on page 361
• “Date specification in PSC and CTL control statements” on page 363
• “Format of the scan control data set used in Parallel Scan Facility” on page 363
• “Location of control blocks” on page 363
• “Product-sensitive macros” on page 363
• “DECN control statement and the unloaded data set” on page 364

Default buffer handler for ESDS, OSAM, and OSAM LDS
In IMS High Performance Unload, the default buffer handler for ESDS, OSAM, and OSAM LDS is CAB,
whereas in DBT V2 HSSR the default is BB.

If your JCL for DBT V2 HSSR does not specify HSSRCABP control statements to use CAB, running the job
on IMS High Performance Unload will require more storage.

To avoid the storage problem, the function to change the default buffer handler is provided. For details,
see Chapter 19, “Site default options,” on page 261.

Default values of CAB buffering parameters
The default values for CAB buffering parameters RANSIZE, NBRSRAN, NBRDBUF, and OVERFLOW in IMS
High Performance Unload are different from the default values used in DBT V2 HSSR.

The following table lists the differences of the default values of CAB buffering parameters.

Table 53. Differences of default values of CAB buffering parameters

CAB parameter Default value in IMS High Performance Unload Default value in DBT
V2 HSSR

RANSIZE Automatically determined from the characteristics of
database data set

8

NBRSRAN 8 4

NBRDBUF Twice the number assigned to RANSIZE 4

© Copyright IBM Corp. 2000, 2024 357

Table 53. Differences of default values of CAB buffering parameters (continued)

CAB parameter Default value in IMS High Performance Unload Default value in DBT
V2 HSSR

REFT4 Equals to RANSIZE 12

OVERFLOW CAB BB

If your JCL for DBT V2 HSSR uses the default values for CAB buffering parameters, running the job on IMS
High Performance Unload might require more storage.

To avoid this storage problem, the function to fallback the default values to the ones that are compatible
with DBT V2 HSSR is provided. For details, see Chapter 19, “Site default options,” on page 261.

Location of buffer pools and compatibility of exit routines
IMS High Performance Unload always allocates buffer pools above the 16-MB line.

In DBT 2.2 HSSR, buffer pools are allocated above the 16-MB line only for VSAM data sets. In DBT 2.3
HSSR buffer pools are allocated above the 16-MB line for OSAM data sets also only when DFSMS 1.1 or
later is used.

Because of these differences, you might need to link-edit your FABHURG1 exit routine or FABHFSU exit
routine with the 31-bit addressing mode. For details, see the following topics:

• “User record-formatting routine” on page 246
• Chapter 18, “System programming interfaces,” on page 243 for the requirements for FABHURG1 exit

routines
• “FABHFSU user exit routine” on page 69 for the requirements for FABHFSU exit routines

HSSROPT control statements: HDSTATS and NOSAMEOPT
The HDSTATS control statement in DBT V2 HSSR is accepted in IMS High Performance Unload, and is
treated as an alias for the DBSTATS control statement. In IMS High Performance Unload, HDSTATS is
effective for HISAM databases as well as HD databases.

The NOSAMEOPT control statement in DBT V2 HSSR is accepted in IMS High Performance Unload, but
has no effect.

Access method used in Unload utilities to write output records
In FABHURG1 and FABHFSU of IMS High Performance Unload, the access method used to write output
records is always QSAM and the default buffer size is determined by the block size of the output data set.
In DBT V2 HSSR, both BSAM and QSAM are supported; performance is better with QSAM than with BSAM.

The affected DDs are SYSUT2 and SYSUT3 of FABHURG1, and the output DD specified by a PSB control
statement of FABHFSU. In DBT V2 HSSR, the access method used for writing output records to the
unloaded data set is specified in the FRMT statement for FABHURG1 or PSB statement for FABHFSU.
These parameters are ignored in IMS High Performance Unload; QSAM is always used.

Method for specifying an HSSR PCB through KEYLEN
To maintain compatibility, IMS High Performance Unload supports a method for specifying an HSSR PCB
through the KEYLEN keyword.

The following method for specifying an HSSR PCB is supported:

1. Code a PCB that satisfies all requirements stated in “HSSR PCB requirements” on page 80.
2. Assign a value of 200 or greater to the KEYLEN keyword parameter for the PCB. HSSR will then

recognizes the PCB as an HSSR PCB.

358 IMS High Performance Unload: User's Guide

For a PCB defined this way, the value specified on the KEYLEN keyword parameter is just the indicator
of an HSSR PCB and is not related to key length. That value can also be used (if the basic buffer handler
(BB) is used to access the database data sets) to change the default number of basic buffers that HSSR
allocates for each database data set of the database referenced by the PCB. The default number of BB
buffers, when it is used, is determined as follows:

• If the KEYLEN value is 200 or 201, two basic buffers are allocated for each ESDS, OSAM, or OSAM LDS
data set of the database referenced by the PCB.

• If the KEYLEN value is greater than or equal to 202, the number of basic buffers is equal to the value
minus 200.

Number of Basic Buffers for an HSSR PCB
If an HSSR PCB is defined by the use of either an HSSRPCB or an HSSRDBD control statement, and the
value to the KEYLEN keyword for the PCB is less than 200, BB allocates six basic buffers for each data
set as a default. If the KEYLEN value for the PCB is greater than or equal to 200, the number of basic
buffers to be allocated is the same as that in the preceding description. If some other number of buffers is
preferable, use the BUF control statement to allocate that number of buffers.

Support of PROCOPT=R and replace calls
PROCOPT=R is supported for compatibility. If a database is shared at the database level when
PROCOPT=GR, DBRC grants access with integrity for updating the IMS subsystem.

Subtopics:

• “Status code in PCB feedback” on page 359
• “DFSVSAMP DD” on page 359
• “Restrictions” on page 359
• “Support and restriction for replace operations” on page 360

Status code in PCB feedback
The following DL/I status codes, in addition to the blank status code, are returned after a REPL call for an
HSSR PCB:

Status code
Meaning

NE
Unable to find the segment.

NI
There is a duplicate segment in the unique secondary index.

VX
VX is used during a REPL call to signal that the application program has not respected the restrictions
for HSSR Engine. When VX is displayed, the replace was not performed. Database positioning
information is maintained normally.

DFSVSAMP DD
HSSR Engine handles replace calls by issuing IMS DL/I GH and REPL calls internally. IMS uses its own
OSAM or VSAM buffer pools to process these DL/I calls.

If your application program issues REPL calls, the usual DFSVSAMP control statements must be coded to
tune the processing of these internal DL/I calls.

Restrictions
The following restrictions apply to PROCOPT=R and replace calls:

Chapter 30. Compatibility with DBT V2 HSSR 359

• PROCOPT=R cannot be specified for HISAM, SHISAM, or secondary index databases.
• PROCOPT=R cannot be specified for PHDAM or PHIDAM databases.
• PROCOPT=R cannot be specified for logical child segments that have the following attributes:

– Physically paired
– Logical parent's concatenated key defined as VIRTUAL if the BLDLPCK control statement is not

specified in the HSSROPT data set
• PROCOPT=R cannot be specified for secondary index source segments other than root segments.
• The REPL call for PHDAM and PHIDAM databases is not supported.
• The segment length of a variable or compressed segment must not be modified by a replace call.

Support and restriction for replace operations
HSSR Engine provides limited support of replace calls for application programs that replace a small or
moderate number of retrieved database segments and modify a small or moderate number of accessed
database blocks or CIs. This support includes standard IMS logging of database changes, standard IMS
sync point processing, and a standard DBRC interface as provided by the host IMS batch subsystem.

Support of explicit HSSR calls
Explicit HSSR calls (ASMHSSR, CBLHSSR, and PLIHSSR) are supported in IMS High Performance Unload
for compatibility with DBT HSSR and PO HSSR.

An explicit HSSR call consists of a name, a count parameter, a call function, a PCB, an I/O area, and an
SSA (if any). PL/I application programs must include a count parameter. The explicit HSSR call names are
ASMHSSR for Assembler application programs, CBLHSSR for COBOL application programs, and PLIHSSR
for PL/I application programs.

Note: For a complete description of the call functions, parameters, and layout of the PCB and SSA, see
IMS Application Programming.

The following examples show the format of the call statement for each type of application program:

Assembler application programs

• Retrieval calls without SSA and REPL calls:

CALL ASMHSSR,(function,pcb,ioarea),VL
CALL ASMHSSR,(three,function,pcb,ioarea),VL

• Retrieval calls with SSA:

CALL ASMHSSR,(function,pcb,ioarea,ssa),VL
CALL ASMHSSR,(four,function,pcb,ioarea,ssa),VL

COBOL application programs

• Retrieval calls without SSA and REPL calls:

CALL ’CBLHSSR’ USING FUNCTION,PCB,IOAREA.
CALL ’CBLHSSR’ USING THREE,FUNCTION,PCB,IOAREA

• Retrieval calls with SSA:

CALL ’CBLHSSR’ USING FUNCTION,PCB,IOAREA,SSA.
CALL ’CBLHSSR’ USING FOUR,FUNCTION,PCB,IOAREA,SSA

PL/I application programs

• Retrieval calls without SSA and REPL calls:

CALL PLIHSSR (three,function,pcb,ioarea);

360 IMS High Performance Unload: User's Guide

• Retrieval calls with SSA:

CALL PLIHSSR (four,function,pcb,ioarea,ssa);

Considerations for explicit HSSR calls
• HSSR call parameters (count parameter, call function, PCB address, and number of parameters) are

validated by HSSR Engine. If you specify HSSR PCB as a DL/I PCB, HSSR Engine does not validate HSSR
call parameters, but instead transfers the call to DL/I.

• An application program that uses explicit HSSR calls should be linked with the language interface
module (ASMHSSR, CBLHSSR, or PLIHSSR) in the same way that a DL/I program is linked with the DL/I
language interface.

• The language interface modules ASMHSSR, CBLHSSR, and PLIHSSR are not reentrant. Therefore, the
application program cannot be reentrant after link-editing.

• For the LANG=PLI option on PSBGEN, PLICALLA entry point, and the compatibility with Language
Environment for your application program written in PL/I, refer to IMS Application Programming; the
same restrictions apply to the HSSR application program.

• The module attributes (AMODE, RMODE, and so forth) of the language interface modules (ASMHSSR,
CBLHSSR, and PLIHSSR) must not be changed even if the language interface module is dynamically
invoked by the application program.

• The language interface modules provided by DBT 2.2 HSSR might cause the system abend 0C1. You can
check whether the cause of the problem is in the old language interface module by doing:

1. Browse or dump the HSSR application program.
2. Look for the string 'FABHHSSR' followed by the IBM copyright statement.
3. Check the string 'APAR(xxxxxxx)' that follows the copyright statement. The substring 'xxxxxxx'

indicates the maintenance level of the language interface module. If 'xxxxxxx' is either 'KHK0013' or
'PN61005,' it is definite that the cause of the problem is in the language interface module.

The solution for the problem is to re-link-edit the application program with the language interface
module provided by IMS High Performance Unload.

FABHFSU control statements: CO and CON
The CO and the CON control statements are accepted by FABHFSU for compatibility.

Subtopics:

• “CO control statement” on page 361
• “CON control statement” on page 362

CO control statement
The CO control statement activates the compare option, which instructs FABHFSU to compare the content
of one of its output data sets with the content of an FSU II output data set. (This option should be used
only for problem determination.)

Up to three CO control statements can be provided in the CARDIN data set after the PSB control
statement.

Restriction: The CO control statement cannot be specified for a PHDAM or PHIDAM database.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

COn ddname2

Position
Description

Chapter 30. Compatibility with DBT V2 HSSR 361

1
Code the CO keyword to activate the compare option.

3
The required 1-digit entry n is used to specify the FABHFSU output data set to be compared. Code
values of 1, 2, or 3. n specifies that output data set defined by the nth PSB control statement is to be
compared with an FSU II data set.

12
The required 8-character entry defines the name of the DD statement that defines the FSU II output
data set to be compared. ddname2 is left-aligned with trailing blanks. This output data set must have
been created in a prior job or job step. Also, in your FABHFSU JCL, you must code a ddname2 DD
statement that specifies the data set to be compared.

If the data sets are HSAM output data sets, the FSU II and the FABHFSU output data sets must have
the same block size.

Notes:

• FABHFSU ends abnormally when it detects a relevant mismatch between itself and the FSU II output
data sets. It also issues an error message.

• Do not use IEBCOMPR to compare FABHFSU to FSU II output data sets, since they are not always
identical.

• The CO control statement cannot be used when NO is specified for the output format of the unloaded
data set.

• When the BLDLPCK statement is specified, the CO control statement for HS-format output records is
ignored.

CON control statement
The CON control statement in CARDIN data set for FABHFSU, which activates the concatenate option,
allows you to run some FSU II user exit routines under FABHFSU. The exit routines expect to find the
segment prefix and the segment data concatenated in contiguous virtual storage.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

CON

Position
Description

1
Code the CON keyword to activate the concatenate option.

When you invoke a user exit routine, both FABHFSU and FSU II pass the address of the segment prefix
and the segment data to the user exit routine. For FSU II, the segment prefix and the segment data
are contiguous in virtual storage. With FABHFSU, the segment prefix and the segment data are not
contiguous in virtual storage.

The CON control statement instructs FABHFSU to concatenate the segment prefix and the segment
data in contiguous virtual storage, before invoking the user exit routine.

Since concatenation requires additional CPU cycles, use the CON control statement only for user exit
routines that access both the segment prefix and the segment data and assume both are contiguous
in virtual storage.

362 IMS High Performance Unload: User's Guide

Date specification in PSC and CTL control statements
The following information pertains to specifying dates through PSC and CTL control statements.

In IMS High Performance Unload, the year in the expiration date for a scan control data set is specified
in four digits for the PSC control statement of FABHFSU and for the CTL control statement for FABHPSFC.
This format is the same for DBT 2.3 HSSR.

In DBT 2.2 HSSR, the year is specified in two digits. It is recommended that the year in these two control
statements in your new JCLs be coded in four digits, although the two-digit specification is also accepted.

Format of the scan control data set used in Parallel Scan Facility
The format of the scan control data set created in Parallel Scan Facility of FABHFSU is the same as the
format used in DBT 2.3 HSSR, but is different from the one for DBT 2.2 HSSR. Therefore, the scan control
data sets must be created again if you are migrating from DBT 2.2 HSSR.

Location of control blocks
In IMS High Performance Unload, HDMB and HRAN control blocks are above the 16-MB line.

PSPI

The following table shows where each product-sensitive control block of HSSR Engine is. The minus sign
(-) indicates that the block is in private storage; the plus sign (+) indicates that the block is in extended
private storage.

Table 54. Location of control blocks (DBT V2)

Control block Location in IMS High Performance Unload Location in DBT V2

HDMB + -

HJCB - -

HPCB - -

HPTR - -

HRAN + -

HSDB - -

User exit routines that refer to HDMB or HRAN control block and that have been link-edited with 24-bit
addressing mode must be modified so that they can refer to the control blocks above the 16-MB line.

PSPI

Product-sensitive macros
For compatibility with DBT 2.1 HSSR and DBT V1 HSSR, aliases are provided for the mapping macros of
control blocks of HSSR Engine.

PSPI

The following table summarizes the aliases for the mapping macros. These macros are in the
HPS.SHPSMAC0 macro library.

Chapter 30. Compatibility with DBT V2 HSSR 363

Table 55. Aliases of mapping macros for HSSR Engine

Control block Mapping macro Alias

HDMB FABHDMB HDMB

HJCB FABHJCB HJCB

HPCB FABHPCB HPCB

HPTR FABHPTR HPTR

HRAN FABHRAN HRAN

HSDB FABHSDB HSDB

For the users who have difficulty in changing the name of mapping macros, an alias is provided for each of
these macros to support compatibility. These aliases, however, might not be provided in future releases of
this product, so you should be careful in deciding to use the aliases.

PSPI

DECN control statement and the unloaded data set
The format of the unloaded data set created by DBT V2 HSSR when the DECN control statement is
specified for the FABHURG1 or FABHFSU unload utility was changed by APAR PQ22654. The new format
is not compatible with any format that predates that APAR. For details, see the APAR.

The unloaded data set created by IMS High Performance Unload is the same as that created by DBT 2.3
HSSR with APAR PQ22654 applied. If you are migrating from DBT 2.3 HSSR, and APAR PQ22654 has not
been applied, you might have a problem with any existing reload job for which the input is an unload data
set created by DBT V2 HSSR.

364 IMS High Performance Unload: User's Guide

Chapter 31. Compatibility with DBT V1 HSSR
IMS High Performance Unload is compatible with IMS System Utilities/Data Base Tools Version 1, High
Speed Sequential Retrieval (program number 5668-856, also referred to as DBT V1 HSSR), with certain
exceptions.

IMS High Performance Unload supports compatibility with DBT V1 HSSR in the following ways:

• JCL can be used without modification.
• Input control statements can be used without modification except that the following input control

statements might need minor modifications if the same results of the DBT V1 HSSR are required:

– DIAGG control statement in the HSSROPT data set
– Position 22 of the DBD control statement in the FABHFSU CARDIN data set

Note: For complete explanations on these specifications, see the following topics:

- “DIAGG control statement” on page 167
- “DBD control statement” on page 58

• An application program that uses a DBT V1 HSSR call can be used without reassembling or re-link-
editing.

• A user exit routine of DBT V1 HSSR needs the following modification to be run under IMS High
Performance Unload:

– A user exit routine must be reassembled or re-link-edited or both in the same IMS system
environment under which the routine is used, if the IMS macros that depend on the IMS release
levels are used in the routine.

– A user exit routine that refers to the HDMBOKEY field of the HDMB control block must be modified
from a 3-byte-long field to a 4-byte-long field.

– A user exit routine can be run either in AMODE=24 or AMODE=31, but a user exit must be link-edited
with AMODE=31. See the following topics for the requirements for exit routines:

- “User record-formatting routine” on page 246 for the requirements for FABHURG1 exit routines
- “FABHFSU user exit routine” on page 69 for the requirements for FABHFSU exit routines

Other differences are the same as those for DBT V2 HSSR. See Chapter 30, “Compatibility with DBT V2
HSSR,” on page 357.

© Copyright IBM Corp. 2000, 2024 365

366 IMS High Performance Unload: User's Guide

Chapter 32. Compatibility with PO HSSR
IMS High Performance Unload supports compatibility with Program Offering High Speed Sequential
Retrieval Version 2 (IFP 5787-LAC, also referred to as PO HSSR).

The following topics are intended for users who are migrating from PO HSSR to IMS High Performance
Unload.

Topics:

• “Program names” on page 367
• “Compatibility of application programs” on page 367
• “Compatibility of exit routines” on page 368
• “JCL compatibility” on page 368
• “Default options” on page 369
• “Return codes and abend codes” on page 369
• “Compatibility of the functions” on page 369
• “Mapping macros for control blocks and output records” on page 371

Compatibility with Branch Office Randomizer, one of the functions provided by PO HSSR, is supported by
Sequential Subset Randomizer. See Chapter 20, “Introduction to the Sequential Subset Randomizer,” on
page 269.

Program names
To maintain JCL compatibility, IMS High Performance Unload supports aliases for load modules.

The following table summarizes the aliases for load modules.

Module name Alias

FABHX034 X034000

FABHBSIM HSSRBSIM

FABHFSU HSSRFSU

FABHTEST HSSRTEST

FABHURG1 HSSRURG1

FABHLDBR HSSRLDBR

FABHEXTR HSSREXTR

No aliases are provided for the cataloged procedures. If you want to use the names of PO HSSR cataloged
procedures, copy the corresponding cataloged procedures of IMS High Performance Unload by the names
of those for PO HSSR. See “JCL compatibility” on page 368.

Compatibility of application programs
The following information pertains to the compatibility of application programs.

Reassembling
Reassembling your application program by use of the product-sensitive macros is required only for
programs or user exit routines that refer to either the HTCB or the HDMB control block.

© Copyright IBM Corp. 2000, 2024 367

Relink
Basically, no relink is required for running the application programs written for PO HSSR on IMS High
Performance Unload.

Relinking with the language interface module (ASMHSSR, CBLHSSR, or PLIHSSR) is required only
if you want to run an application under the IMS DL/I batch region controller (DFSRRC00). This is
not recommended, but PO HSSR supports it. Include the corresponding language interface module
(ASMHSSR, CBLHSSR, or PLIHSSR) from IMS High Performance Unload's HPS.SHPSLMD0 library, and
link-edit it with the application program; otherwise an unexpected result, such as a system abend, might
occur.

Compatibility of exit routines
In IMS High Performance Unload, HDMB and HRAN control blocks are above the 16-MB line.

PSPI

The following table shows where each product-sensitive control block of HSSR Engine is. The minus sign
(-) indicates that the block is in private storage; the plus sign (+) indicates that the block is in extended
private storage.

Table 56. Location of control blocks (PO HSSR)

Control block Location in IMS High Performance Unload Location in PO HSSR

HDMB + -

HJCB - -

HPCB - -

HPTR - -

HRAN + -

HSDB - -

User exit routines that refer to HDMB or HRAN control block and that have been link-edited with 24-bit
addressing mode must be modified so that they can refer to the control blocks above the 16-MB line.

See also “Mapping macros for control blocks and output records” on page 371.

PSPI

JCL compatibility
The following information pertains to JCL compatibility.

Procedures
As was explained in “Program names” on page 367, the names of IBM-supplied cataloged procedures for
IMS High Performance Unload are different from those for PO HSSR. If you want to continue using the
names in PO HSSR, copy the corresponding cataloged procedures by the names in PO HSSR.

The following table lists the cataloged procedures.

Table 57. Changes of procedure names

Region type Name in IMS High Performance Unload Name in PO HSSR

DLI Region FABHDLI DLIHSSR

368 IMS High Performance Unload: User's Guide

Table 57. Changes of procedure names (continued)

Region type Name in IMS High Performance Unload Name in PO HSSR

DBB Region FABHDBB DBBHSSR

ULU Region FABHULU ULUHSSR

Control statements
In IMS High Performance Unload, the year is stated in four digits in each of the following control
statements:

• PSC control statement of FABHFSU
• CTL control statement for FABHPSFC

Although the two-digit format is still accepted, consider coding the control statements for your new JCLs
in this new format.

Default options
Certain differences between the default option values of PO HSSR and those of IMS High Performance
Unload might interfere with smooth JCL migration. As a solution, IMS High Performance Unload provides
the capability to change the default values to those of PO HSSR by replacing the default option table
(FABHOPT).

This capability also covers the PO HSSR's HSSRGEN function, in which default options are specified.

For details, see Chapter 19, “Site default options,” on page 261.

Return codes and abend codes
The following information pertains to compatibility of return codes and abend codes.

Return codes
• The return codes from FABHURG1, FABHFSU, FABHBSIM, and FABHTEST are the same as those from

the corresponding PO HSSR utilities HSSRURG1, HSSRFSU, HSSRBSIM, and HSSRTEST, respectively,
except that RC01 is returned for empty databases.

• FABHPSFS returns RC01 if no segment was retrieved in all PSF phases. This return code is different
from that returned from the FSUSUMM utility of FSU-II.

Abend codes
IMS High Performance Unload uses only one abend code, U4013. You cannot change the code.

Compatibility of the functions
IMS High Performance Unload provides the functions that were provided in PO HSSR.

Subtopics:

• “Database Tuning Statistics” on page 370
• “Parallel Scan Facility” on page 370
• “Db2 DL/I Batch support” on page 370
• “FABHLDBR utility” on page 371

Chapter 32. Compatibility with PO HSSR 369

Database Tuning Statistics
Database tuning statistics are also provided by IMS High Performance Unload. The layout of the tuning
statistics report is slightly different from that provided by PO HSSR, but the contents are the same.

You can use the same database tuning method you used with the PO HSSR Database Tuning Statistics
reports. See Chapter 26, “Obtaining statistics for database tuning,” on page 307.

Parallel Scan Facility
IMS High Performance Unload supports compatibility with FSU II. IMS High Performance Unload supports
aliases to keep the JCL compatibility with FSU II. The only change you must make is to specify the name
of the IMS High Performance Unload load module library in the STEPLIB DD.

The following table shows the names and aliases of the HSSR modules.

Table 58. Names and aliases of HSSR modules

Name in IMS High Performance Unload Alias

FABHPSFC FSUCTRL

FABHPSFS FSUSUMM

FABHPSFM FSUMAP

However, the following options specified in the DBD or PSB control statements of the FSUCTRL data set
are ignored by IMS High Performance Unload:

• For the DBD control statement:

– Print line count (position 26)
– Checkpoint option (position 30)
– Checkpoint frequency (position 31)
– Optional scan mode (position 40)
– FSU service aids area (position 48)

• For the PSB control statement:

– Format SYNAD option (position 36)

The format of the scan control data set CNTLDD created by FSU II FSUCTRL is different from the one
created by IMS High Performance Unload. You cannot use the scan control data set created by FSU II
FSUCTRL as an input of FABHFSU or FABHPSFS of IMS High Performance Unload. You must rerun a series
of JCLs for a parallel scan by using IMS High Performance Unload.

Db2 DL/I Batch support
The method of running a PO HSSR application program that issues SQL calls is supported by IMS High
Performance Unload for maintaining the compatibility with JCL that is written for PO HSSR. However, the
method that is used in the IBM-supplied cataloged procedure FABHDB2 is recommended.

Note: For the method of running a PO HSSR application program that issues SQL calls, see the topic
"Job Control to Run in An HSSR/IMS-Batch/Db2 Mixed-Mode Environment" in the PO HSSR Program
Descriptions and Operations Manual.

In the FABHDB2 procedure, you must specify the following parameters:

• In the EXEC statement, specify your HSSR application program name with the MBR= keyword
parameter.

• In the EXEC statement, specify the Db2 subsystem ID (ssid) with the SSM= keyword parameter.
• In the DDITV02 data set, specify the name FABH000, which is the IMS High Performance Unload's

program controller, with the ninth positional parameter.

370 IMS High Performance Unload: User's Guide

For more information about the FABHDB2 procedure, see “Considerations for Db2 DL/I Batch interface”
on page 88.

FABHLDBR utility
The FABHLDBR utility provides the same function as the HSSRLDBR utility of PO HSSR.

The name HSSRLDBR is available as an alias of FABHLDBR, so you can use this utility without changing
your JCL. For a description of the FABHLDBR utility, see Chapter 27, “Printing long database records,” on
page 313.

Mapping macros for control blocks and output records
Users who are using, in their exit routine or application programs, the mapping macros provided by PO
HSSR must change the name of those macros when they reassemble those programs in the IMS High
Performance Unload environment.

PSPI

The relationship between the names of the mapping macros in PO HSSR and those in IMS High
Performance Unload is described in the following table.

Table 59. Changes of mapping macro names for HSSR Engine

Macro name in IMS High Performance Unload Macro name in PO HSSR

FABHDMB HDMB

FABHJCB HJCB

FABHPCB HPCB

FABHPTR HPTR

FABHRAN HRAN

FABHSDB HSDB

FABHURGR HURGUREC

FABHFSUR FSUREC

For users who have difficulty in changing the name of mapping macros, an alias is provided for each of
these macros to support compatibility. These aliases, however, might not be provided in future releases of
this product, so you should be careful in deciding to use the aliases.

PSPI

Chapter 32. Compatibility with PO HSSR 371

372 IMS High Performance Unload: User's Guide

Chapter 33. Compatibility with FSU II
IMS High Performance Unload supports compatibility with IMS/VS Fast Scan Utility II Version 2 (FDP
5798-DFN, also referred to as FSU II).

FABHFSU provides the following compatibility with FSU II:

• FABHFSU output data sets are compatible with FSU II output data sets.
• Under FABHFSU, FSU II user exit routines can run without changes and without recompilation. The user

exit routine must not access or modify internal, undocumented FSU II control block information.
• FABHFSU can often use the same PSBs as FSU II (see “PSBGEN compatibility” on page 373 for details

some minor modifications might be required).
• FSU II control statements can usually be used without changes for FABHFSU. They might require minor

changes if the different PCBs used to control the content of the output data sets are not contained in the
same PSB.

• IMS High Performance Unload provides the aliases shown in the following table for the FSU II modules.
These aliases allow the FSU II JCL to run the FABHFSU PSF.

Table 60. Aliases for FSU II modules

Name in IMS High Performance Unload Name in FSU II

FABHPSFM FSUMAP

FABHPSFC FSUCTRL

FABHPSFS FSUSUMM

PSBGEN compatibility
To ease conversions from FSU II to FABHFSU, some PSBGEN restrictions do not apply to FABHFSU.

For example:

• The PROCOPT statement fields on the PCB and SENSEG statements can have any value acceptable to
IMS.

• Field sensitivity can be specified during PSBGEN, but is ignored by FABHFSU.

CON control statement
The CON control statement in CARDIN data set for FABHFSU, which activates the concatenate option,
allows you to run some FSU II user exit routines under FABHFSU. The exit routines expect to find the
segment prefix and the segment data concatenated in contiguous virtual storage.

0........1.........2.........3.........4.........5.........6.........7.........8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

CON

Position
Description

1
Code the CON keyword to activate the concatenate option.

When you invoke a user exit routine, both FABHFSU and FSU II pass the address of the segment prefix
and the segment data to the user exit routine. For FSU II, the segment prefix and the segment data
are contiguous in virtual storage. With FABHFSU, the segment prefix and the segment data are not
contiguous in virtual storage.

© Copyright IBM Corp. 2000, 2024 373

The CON control statement instructs FABHFSU to concatenate the segment prefix and the segment
data in contiguous virtual storage, before invoking the user exit routine.

Since concatenation requires additional CPU cycles, use the CON control statement only for user exit
routines that access both the segment prefix and the segment data and assume both are contiguous
in virtual storage.

374 IMS High Performance Unload: User's Guide

Part 7. Troubleshooting
Use these topics to diagnose and correct problems that you experience with IMS High Performance
Unload.

Topics:

• Chapter 34, “Troubleshooting IMS High Performance Unload problems,” on page 377
• Chapter 35, “Messages and codes,” on page 379
• Chapter 36, “Gathering diagnostic information,” on page 509
• Chapter 37, “Diagnostics Aid,” on page 511

© Copyright IBM Corp. 2000, 2024 375

376 IMS High Performance Unload: User's Guide

Chapter 34. Troubleshooting IMS High Performance
Unload problems

The information in the following topics can be used to help you troubleshoot IMS High Performance
Unload problems.

Topics:

• “HSSR snaps” on page 377
• “Trapping abends issued by application programs” on page 377
• “FABHTEST utility for problem determination” on page 378

HSSR snaps
When you experience an error during initialization of HSSR Engine, you can use the snapshot that is
written in the HSSRSNAP data set.

If an unexpected condition is detected while the HSSR PCBs are being initialized, the following actions are
taken:

• An error message is issued.
• A snap to the HSSRSNAP data set is written.
• The initialization process is ended and falls back to DL/I. (The application program works with DL/I

PCBs, and all calls are processed by DL/I modules.)

If the HSSRSNAP DD statement is not specified, IMS High Performance Unload ends abnormally instead
of falling back to DL/I. If you do not need the snap but need the fallback processing, supply the following
DD statement:

 //HSSRSNAP DD DUMMY

Trapping abends issued by application programs
If your HSSR application program is written in COBOL or PL/I language, you can request that most abends
that can happen during the processing of your application program be "trapped" (in other words, you
can request that abends be intercepted and hurdled by the high-level language software, and that your
application program get back control after an abend).

Abends are usually trapped in one of the following ways:

• By using the runtime option STAE (for OS PL/I V2 programs)
• By using the runtime option TRAP(ON) (for COBOL or PL/I programs running under Language

Environment)

If you trap abends for your application programs, you might perhaps want to exclude abends issued by
HSSR Engine. The reason is because the purpose of the ABEND macros that HSSR Engine issues is to
result in abends; that is, not to return to the application program (in this respect, HSSR Engine is similar to
IMS).

OS PL/I V2 programs
If you want to exclude abends in HSSR Engine from trapping for OS PL/I V2 programs, update the
IBMBXITA Assembler user exit to include the user abend code of IMS High Performance Unload in the list
of user-abend codes that should be percolated. For detailed descriptions of IBMBXITA, see OS PL/I V2
Programming Guide.

© Copyright IBM Corp. 2000, 2024 377

COBOL or PL/I programs running under Language Environment
If you want to exclude abends in HSSR Engine from the trapping for COBOL or PL/I programs running
under Language Environment (LE), update the LE's CEEDOPT Assembler module that establishes
installation defaults. With the ABPERC= keyword, include the user abend code of IMS High Performance
Unload in the list of abend codes that should be percolated. For detailed descriptions of CEEDOPT and
of the ABPERC runtime option, see z/OS Language Environment Programming Guide. As the Programming
Guide explains, you can also request percolation of the abend code of HSSR Engine in:

• The CEEUOPT Assembler module
• The Assembler user exit CEEBXITA

FABHTEST utility for problem determination
You can use the FABHTEST utility to diagnose software errors in HSSR Engine. The FABHTEST utility is the
HSSR Engine test utility that runs a sequence of HSSR or DL/I calls against an IMS database.

Activate the compare and hardcopy trace options, and run the failing call sequence with the FABHTEST
utility.

• Running the failing call sequence with FABHTEST (instead of the application program) eliminates the
possibility that the application program will destroy code or control blocks of IMS High Performance
Unload.

• The compare option will check whether HSSR Engine returns the same PCB feedback and I/O area as
DL/I would have returned.

• The hardcopy trace option provides a trace of HSSR Engine activities and control blocks. This trace can
be used by the system programmer to find out why HSSR Engine made the error.

• The trace option should be activated by issuing the START keyword at a point before the error occurred.
• The TRHC control statement requests that call information, buffer handler information, control blocks

(CB), and buffer control blocks (BUFCB) be traced. A TRDB control statement must be included.

Related concepts
HSSR call test utility (FABHTEST)
FABHTEST is the HSSR Engine test utility that runs a sequence of HSSR or DL/I calls against an IMS
database.

378 IMS High Performance Unload: User's Guide

Chapter 35. Messages and codes
This reference section provides detailed information about the abend codes, return codes, and messages
that might be issued during the execution of IMS High Performance Unload.

Topics:

• “Abend code U4013” on page 379
• “Return codes” on page 379
• “Messages” on page 381

Abend code U4013
IMS High Performance Unload uses only one abend code, U4013. A message identifying the problem is
always written before this abend code is issued.

Return codes
The following topics explain the return codes that are issued by FABHURG1, FABHFSU, FABHPSFS,
FABHBSIM, and FABHTEST.

Tip: You can change the return codes, except for FABHPSFS, by using FABHRCEX, the Return Code Edit
exit routine. For details, see “Return Code Edit exit (FABHRCEX)” on page 245.

FABHURG1 return codes
This reference topic explains the return codes of the FABHURG1 utility.

The FABHURG1 utility issues a return code that is the logical sum of the following return codes:

Code
Meaning

00
Successful completion.

01
One or both of the following conditions were detected:

• Some segment types are insensitive.
• No segment was retrieved from the database.

02
Some segments have been skipped in accordance with the logic of a user's exit routine.

04
A sensitive logical child segment type has a logical parent's concatenated key defined as VIRTUAL,
but the BLDLPCK control statement is not specified.

08
A database error was detected, and the SKERROR option might have skipped the unloading of one or
more database segments.

FABHURG1 return codes when IMS HD Reorganization Unload JCL is used

If FABHURG1 is run by using IMS HD Reorganization Unload JCL (DFSURGU0 JCL), the FABHURG1 utility
issues one of the following return codes:

Code
Meaning

© Copyright IBM Corp. 2000, 2024 379

00
Successful completion.

04
Any of the following conditions were detected:
0001

No segment was retrieved from the database.
0002

Some segments have been skipped in accordance with the logic of a user's exit routine.
0004

A sensitive logical child segment type has a logical parent's concatenated key defined as
VIRTUAL, but the BLDLPCK control statement is not specified.

0008
A database error was detected, and the SKERROR option might have skipped the unloading of one
or more database segments.

HSSR Engine ends abnormally with the user completion code of 4013 for errors to which IMS HD
Reorganization Unload utility would return the return code of 8.

Related concepts
IMS HD Reorganization Unload JCL for running FABHURG1
You can use a JCL that is written for IMS HD Reorganization Unload (DFSURGU0) to run FABHURG1, by
adding the IMS High Performance Unload's SHPSLMD0 library ahead of the IMS RESLIB in the STEPLIB
concatenation, and by using the DFSISVI0 exit of IMS.

FABHFSU return codes
This reference topic explains the return codes of FABHFSU.

FABHFSU issues a return code that is the logical sum of the following return codes:

Code
Meaning

00
Successful completion.

01
No segment was retrieved from the database. When you are running in the PSF mode, no segment was
retrieved in the current PSF phase.

04
A sequence error was detected in the standard mode.

In the PSF mode, this return code means that all the PSF phases were completed, but one or more
sequence errors were detected.

08
In the PSF mode, the current PSF phase was completed normally, but other phases are incomplete.

FABHPSFS return codes
This reference topic explains the return codes of FABHPSFS.

FABHPSFS issues a return code that is the logical sum of the following return codes:

Code
Meaning

00
Successful completion. No errors were detected except the STATUS option.

01
No segment was retrieved in all PSF phases.

380 IMS High Performance Unload: User's Guide

04
Successful completion of a STATUS option run.

08
Any of the following conditions were detected:
a

One or more scan phases were not completed.
b

Preceding FABHPSFS has been completed successfully, but the RERUN option was not specified.
c

The FORCE option was specified, but no complete phases were found.
d

Inconsistent DEC options were specified in the scan phases.

FABHBSIM and FABHTEST return codes
This reference topic explains the return codes of FABHBSIM and FABHTEST utilities.

FABHBSIM and FABHTEST issue the following code:

Code
Meaning

00
Successful completion.

Messages
Use the information in these messages to help you diagnose and solve IMS High Performance Unload
problems.

Message format
IMS High Performance Unload messages adhere to the following format:

FABHnnnnx
FABInnnnx

Where:

FABH
Indicates that the message was issued by IMS High Performance Unload.

FABI
Indicates that the message was issued by the Sequential Subset Randomizer utility of IMS High
Performance Unload.

nnnn
Indicates the message identification number.

x
Indicates the severity of the message:
E

Indicates that an error occurred, which might or might not require operator intervention.
I

Indicates that the message is informational only.
W

Indicates that the message is a warning to alert you to a possible error condition.

Each message also includes the following information:

Chapter 35. Messages and codes 381

Explanation:
The Explanation section explains what the message text means, why it occurred, and what its
variables represent.

System action:
The System action section explains what the system will do in response to the event that triggered
this message.

User response:
The User response section describes whether a response is necessary, what the appropriate response
is, and how the response will affect the system or program.

Message variables
In the message text, you will see lowercase variable names (such as xxx...). The variable names take on
values when the message appears and represent such things as:

• The name of a data set
• A DD name
• A DBD name
• A status code
• A command keyword
• A name or value provided by the user
• Text generated by HSSR Engine when an I/O error has occurred

The keyword HSSR in message texts and in the explanation, system action, and user response represents
the HSSR Engine unless otherwise stated.

FABH messages
Use the information in these messages to help you diagnose and solve IMS High Performance Unload
problems.

FABH0001E INVALID CARD TYPE

Explanation
A CAB control statement with an incorrect statement
type was detected in the HSSRCABP data set.

System action
HSSR Engine ends abnormally.

User response
Ensure that the CAB control statements begin in
column 1 with a keyword defining the statement type.

FABH0002E INVALID NUMERIC FIELD

Explanation
A CAB control statement contains a non-numeric byte
in a field that should be numeric.

System action
HSSR Engine ends abnormally.

User response
Correct the control statement.

FABH0003E CARD TYPE NOT FOLLOWED BY
VALUE

Explanation
The statement type on a CAB control statement is
not immediately followed by a single blank and the
required parameter value.

System action
HSSR Engine ends abnormally.

User response
Correct the incorrect control statement.

FABH0004E PARAMETER IS TOO LONG

Explanation
A CAB control statement contains a parameter field
that is too long.

382 IMS High Performance Unload: User's Guide

System action
HSSR Engine ends abnormally.

User response
Correct the control statement.

FABH0005E FIRST CARD SHOULD BE A
"CABDD" CARD

Explanation
The first statement in the HSSRCABP data set is not a
CABDD control statement.

System action
HSSR Engine ends abnormally.

User response
Set the statements of the HSSRCABP data set
into the correct sequence. (Each group of CAB
control statements must begin with a CABDD control
statement.)

FABH0011E RANSIZE IS TOO LOW; MINIMUM
IS 2 CABDD=xxxxxxxx

Explanation
The value of a RANSIZE control statement is lower
than the acceptable minimum. xxxxxxxx represents
the keyword that was specified on the CABDD control
statement (that is, *ALL, *HD, *HS, or ddname).

System action
HSSR Engine ends abnormally.

User response
Correct the control statement.

FABH0012E RANSIZE IS TOO HIGH; MAXIMUM
IS 255 CABDD=xxxxxxxx

Explanation
The value of a RANSIZE control statement is higher
than the acceptable maximum. xxxxxxxx represents
the keyword that was specified on the CABDD control
statement (that is, *ALL, *HD, *HS, or ddname).

System action
HSSR Engine ends abnormally.

User response
Correct the control statement.

FABH0013E NBRSRAN IS TOO LOW; MINIMUM
IS 3 CABDD=xxxxxxxx

Explanation
The value of an NBRSRAN control statement is lower
than the acceptable minimum. xxxxxxxx represents
the keyword that was specified on the CABDD control
statement (that is, *ALL, *HD, *HS, or ddname).

System action
HSSR Engine ends abnormally.

User response
Correct the control statement.

FABH0015E NBRDRAN IS TOO LOW; MINIMUM
IS 2 CABDD=xxxxxxxx

Explanation
The value of an NBRDRAN control statement is lower
than the acceptable minimum. xxxxxxxx represents
the keyword that was specified on the CABDD control
statement (that is, *ALL, *HD, *HS, or ddname).

System action
HSSR Engine ends abnormally.

User response
Correct the control statement.

FABH0016E NBRDBUF IS TOO LOW; MINIMUM
IS 2 CABDD=xxxxxxxx

Explanation
The value of an NBRDBUF control statement is lower
than the acceptable minimum. xxxxxxxx represents
the keyword that was specified on the CABDD control
statement (that is, *ALL, *HD, *HS, or ddname).

System action
HSSR Engine ends abnormally.

User response
Correct the control statement.

FABH0017W DDNAME NOT FOUND
CABDD=ddname

Chapter 35. Messages and codes 383

Explanation
The ddname specified on a CABDD statement was not
found within any DBD referred to by HSSR PCBs.

System action
HSSR Engine ignores the CAB control statements that
begin with this CABDD statement.

User response
Correct the CABDD statement.

FABH0018E SPECIFY EITHER "YES" OR "NO"

Explanation
HSSR Engine detected an incorrect CAB control
statement. The CAB control statement does not allow
a specification other than YES or NO.

System action
HSSR Engine ends abnormally.

User response
Correct the CAB control statement.

FABH0019E INVALID OVERFLOW
SPECIFICATION

Explanation
HSSR Engine detected an incorrect OVERFLOW CAB
control statement.

System action
HSSR Engine ends abnormally.

User response
Correct the CAB control statement.

FABH0020E OPEN OF HSSRCABP HAS FAILED

Explanation
HSSR Engine could not open the HSSRCABP data set.

System action
HSSR Engine ends abnormally.

User response
Check whether MVS issued an additional message
describing the type of error with more details. Correct
the error.

FABH0021E NOGO SET BECAUSE OF ERRORS
ON CAB CONTROL STATEMENTS

Explanation
CAB control statements in the HSSRCABP data set
contain errors. The errors are described in detail in
other error messages issued by HSSR Engine.

System action
HSSR Engine ends abnormally.

User response
Correct the errors.

FABH0022E NBRSRAN IS TOO HIGH;
MAXIMUM IS 9999
CABDD=xxxxxxxx

Explanation
The value of an NBRSRAN control statement exceeds
the acceptable maximum. xxxxxxxx represents the
keyword that was specified on the CABDD control
statement (that is, *ALL, *HD, *HS, or ddname).

System action
HSSR Engine ends abnormally.

User response
Correct the control statement.

FABH0023E NBRDBUF IS TOO HIGH;
MAXIMUM IS 255
CABDD=xxxxxxxx

Explanation
The value of an NBRDBUF control statement exceeds
the acceptable maximum. xxxxxxxx represents the
keyword that was specified on the CABDD control
statement (that is, *ALL, *HD, *HS, or ddname).

System action
HSSR Engine ends abnormally.

User response
Correct the control statement.

384 IMS High Performance Unload: User's Guide

FABH0024E REQUESTED BUFFER TOO LARGE;
DDNAME=ddname

Explanation
The requested size of the buffer for BB or CAB
sequential I/O exceeds the acceptable maximum
of X'7FFFFFFF' (2,147,483,647) bytes. ddname
represents the DD name of the data set for which the
storage for buffer was requested at the time of error.

System action
HSSR Engine ends abnormally.

User response
For CAB, check the RANSIZE and NBRSRAN control
statements in the HSSRCABP data set; for BB, check
the BUF control statement in the HSSROPT data set.
Correct these control statements so that the total
amount of buffers requested does not exceed the
maximum value of X'7FFFFFFF'. Note that HSSR buffer
handler requests the system to acquire the following
size of bytes as the read buffer for ddname:

Buffering
type

Storage size to be requested

BB (Block size of ddname) / (CI size) x
(RANSIZE x (NBRSRAN + 1))

CAB (Block size of ddname) / (CI size) x BUF

FABH0025E THE SECOND OPERAND OF THE
PARTPROC STATEMENT MUST BE
EITHER 'S' OR 'R' (DBD: dbdname)

Explanation
The second operand of a PARTPROC statement must
be either 'S' or 'R'. The string dbdname shows the first
operand of the PARTPROC statement in error.

System action
HSSR Engine ends abnormally.

User response
Correct the control statement.

FABH0026E THE LENGTH OF THE THIRD
OPERAND OF THE PARTPROC
STATEMENT MUST BE LESS THAN
FIVE (DBD: dbdname)

Explanation
The length of the third operand of the PARTPROC
control statement in HSSRCABP DD is five bytes or
more. The length must be less than five bytes.

System action
HSSR Engine ends abnormally.

User response
Correct the error and rerun the job.

FABH0027W THE DBD SPECIFIED ON THE
PARTPROC STATEMENT IS NOT
FOUND OR IS NOT FOR HALDB
(DBD: dbdname)

Explanation
The DBD dbdname specified in a PARTPROC control
statement is neither a DBD that is referred to from an
HSSR PCB, nor a DBD for a HALDB.

System action
The PARTPROC statement is ignored, and the
processing continues.

User response
Ensure that the correct DBD name is specified. If
necessary, specify the correct DBD name or remove
the statement.

FABH0028E INCONSISTENT BUFFER
HANDLERS ARE SPECIFIED FOR
DSGROUP n OF HALDB dbdname

Explanation
Different buffer handlers are specified for partition
data sets that belong to the same data set group n.

System action
HSSR Engine ends abnormally.

User response
Correct the CABDD control statements so that either
CAB or BB can be used for all data sets that belong to
the same data set group.

FABH0029E SYNTAX ERROR IN A PARTPROC
STATEMENT: reason

Chapter 35. Messages and codes 385

Explanation
A syntax error is found in a PARTPROC statement that
is specified in the HSSRCABP data set. reason shows
the reason for the error.

System action
HSSR Engine ends abnormally.

User response
Correct the control statement.

FABH0030E THE THIRD OPERAND OF A
PARTPROC STATEMENT IS NOT A
NUMERIC (DBD: dbdname)

Explanation
The value specified as the third operand for a
PARTPROC control statement is not a numeric.
dbdname shows the first operand of the PARTPROC
statement in error.

System action
HSSR Engine ends abnormally.

User response
Correct the control statement.

FABH0031E DDNAME=ddname; DATA REQUEST
OUTSIDE OF DATA SET LIMITS

Explanation
The CAB buffer handler has received a data request
for an OSAM block number or ESDS CI number that
is not within the extents of the data set (indicated by
ddname).

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Activate the compare and hardcopy trace options,
and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for problem
determination” on page 378).

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

• If an OSAM block above the 4 GB boundary is
requested by an odd RBA in the HALDB, ensure that
the HALDB is defined as OSAM8G in the RECON data
sets.

FABH0032E BUFFER HANDLER LOGIC ERROR

Explanation
The CAB buffer handler detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0033E BUFFER HANDLER LOGIC ERROR

Explanation
The CAB buffer handler detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0034E REQUESTED STORAGE FOR
DBD=dbdname NOT AVAILABLE
WITHIN THE REGION

Explanation
The total size of the requested buffers exceeds the
acceptable maximum that can be acquired in the
region. dbdname indicates the name of the DBD of the
database for which the buffer was requested at the
time of error.

System action
HSSR Engine ends abnormally.

386 IMS High Performance Unload: User's Guide

User response
Check the BUF control statement in the HSSROPT
data set and the RANSIZE, NBRSRAN, and NBRDBUF
control statements in the HSSRCABP data set that
are specified for the DBD dbdname. Correct these
control statements so that the total storage size for
the buffers requested for dbdname does not exceed
the allowable maximum that can be acquired in the
region. Otherwise, change the REGION parameter in
the JCL for the job so that the requested storage for
the buffer can be acquired. The total size of the buffers
for dbdname is calculated by summing up the required
size for each DD that refers to dbdname, using the
following formula:

Buffering
type
used for
the DBD

Storage size to be requested

BB (Block or CI size of the DD) x BUF

CAB (Block or CI size of the DD) x (RANSIZE x
(NBRSRAN + 1) + NBRDBUF)

FABH0035E UNSUPPORTED LEVEL OF IMS IS
BEING USED: xxx IMS LEVEL OF
THIS RUN

Explanation
You are running an IMS batch region controller
(DFSRRC00) that is not supported by IMS High
Performance Unload. xxx represents the IMS level.

System action
HSSR Engine ends abnormally.

User response
Run the job with the correct version of IMS.

FABH0036E THIRD OPERAND FOR PARTPROC
STATEMENT IS NOT ALLOWED IF
THE SECOND OPERAND IS 'S'
(DBD: dbdname)

Explanation
The third operand of a PARTPROC control statement
for the database dbdname is specified although the
second operand is 'S'.

System action
HSSR Engine ends abnormally.

User response
Remove the third operand.

FABH0037E INCONSISTENT OVERFLOW
BUFFERING OPTIONS FOR PHDAM
dbdname

Explanation
Inconsistent overflow buffering options are specified
for the overflow area of each partition of the PHDAM
database dbdname.

System action
HSSR Engine ends abnormally.

User response
Correct the OVERFLOW control statements so that the
same overflow buffering options (CAB, SHR, or BB) can
be used for all overflow areas.

FABH0038E INCONSISTENT PAGEFIX
OPTIONS FOR DATA SETS OF
DSGROUP n OF HALDB dbdname

Explanation
Different pagefix options are specified for partition
data sets that belong to the same data set group n.

System action
HSSR Engine ends abnormally.

User response
Specify the same keyword, either YES or NO, for the
pagefix option of BUFFERS control statement so that
the same pagefix options can be specified for all
partitions.

FABH0039I UNSUPPORTED LEVEL OF IMS IS
BEING USED: xxx

Explanation
You are running an IMS batch region controller
(DFSRRC00) that is not supported by IMS High
Performance Unload. xxx represents the IMS level.

System action
IMS continues the processing and DFSURGU0 will be
invoked.

Chapter 35. Messages and codes 387

User response
None. This message is informational.

FABH0041E VSAM POINT ERROR DURING
SEQUENTIAL ESDS I/O

Explanation
VSAM returned an unexpected code to the CAB buffer
handler during the execution of a POINT macro.

System action
HSSR Engine ends abnormally.

User response
Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred. If the cause is not clear, collect the dump
and contact IBM Software Support.

FABH0042E VSAM GET ERROR DURING
SEQUENTIAL ESDS I/O

Explanation
VSAM returned an unexpected code to the CAB buffer
handler during the execution of a GET macro.

System action
HSSR Engine ends abnormally.

User response
Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred. If the cause is not clear, collect the dump
and contact IBM Software Support.

FABH0044W WARNING: NUMBER OF VSAM
BUFFERS NOT O.K.

Explanation
Normally, the CAB buffer handler specifies how many
buffers should be used by VSAM. However, CAB
detected that its specifications could not be honored
by VSAM.

System action
HSSR Engine continues processing. However, the
performance will suffer.

User response
Possible reasons are specifications of VSAM buffering
options on JCL (BUFND, BUFSP, STRNO) or through
IDCAMS (buffer space).

Remove any BUFND, BUFSP, or STRNO specifications
from the JCL. Remove through IDCAMS BUFFERSPACE
specifications for the ESDS from the catalog.

FABH0045E VSAM LOGICAL ERROR AFTER
POINT MACRO

Explanation
VSAM returned an unexpected logical error code to the
CAB buffer handler during the execution of a POINT
macro.

System action
HSSR Engine ends abnormally.

User response
Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred. If the cause is not clear, collect the dump
and contact IBM Software Support.

FABH0046E VSAM PHYSICAL ERROR

Explanation
VSAM returned an unexpected physical error code to
the CAB buffer handler.

System action
HSSR Engine ends abnormally.

User response
Locate I/O error messages that were issued by VSAM
and resolve the physical I/O error.

FABH0047E SHOULD NOT OCCUR ERROR
AFTER VSAM CHECK MACRO

Explanation
VSAM returned an unexpected error code to the CAB
buffer handler during the execution of a CHECK macro.

System action
HSSR Engine ends abnormally.

388 IMS High Performance Unload: User's Guide

User response
Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred. If the cause is not clear, collect the dump
and contact IBM Software Support.

FABH0048E SHOULD NOT OCCUR ERROR
AFTER VSAM CHECK MACRO

Explanation
VSAM returned an unexpected error code to the CAB
buffer handler during the execution of a CHECK macro.

System action
HSSR Engine ends abnormally.

User response
Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred. If the cause is not clear, collect the dump
and contact IBM Software Support.

FABH0049E VSAM MACRO GENCB BLOCK=RPL
FAILED

Explanation
VSAM returned an unexpected code to the CAB buffer
handler during the execution of a GENCB BLOCK=RPL
macro.

System action
HSSR Engine ends abnormally.

User response
Ensure that enough virtual storage is available within
the region (MVS).

As a temporary bypass, the Basic Buffer handler can
be used instead of CAB.

FABH0050E VSAM MACRO MODCB RPL=...
FAILED

Explanation
VSAM returned an unexpected code to the CAB buffer
handler during the execution of a MODCB RPL macro.

System action
HSSR Engine ends abnormally.

User response
Ensure that enough virtual storage is available within
the region (MVS).

As a temporary bypass, the Basic Buffer handler can
be used instead of CAB.

FABH0053E RANSIZE SHOULD BE THE SAME
FOR ALL PCB'S REFERENCING
THE SAME ESDS

Explanation
Multiple HSSR PCBs that refer to the same database
were specified to be buffered by CAB. This situation is
not supported by CAB.

System action
HSSR Engine ends abnormally.

User response
Use the OCCURRENCE control statement to make sure
that no more than one HSSR PCB per database is
buffered by CAB.

FABH0054E NUMBER OF VSAM BUFFERS NOT
OK., PLHBFRNO=xxx

Explanation
The indicated number of CIs to be read in one
sequential read could not be followed by VSAM.
The number was specified by the RANSIZE control
statement.

System action
HSSR Engine ends abnormally.

User response
Remove any BUFND, BUFSP, or STRNO specifications
from the DD statement for the database. If
BUFFERSPACE is specified in the definition of the data
set, remove it for the ESDS. Disable the use of VSAM
optimization tool if any is used for the job.

If the VSAM ESDS attributes cannot be changed,
specify the value xxx, shown in the message text,
for the RANSIZE statement. However, you might not
obtain the maximum buffering performance if the
recommended value from PLHBFRNO is much greater
or much lower than the user's calculated optimum
value, if HSSR buffer handler assumes that BUFND,
BUFSP, and STRNO are not specified in the JCL, or
if BUFFERSPACE is not used when the data set is
defined.

Chapter 35. Messages and codes 389

FABH0055W SPECIFIED NUMBER OF
BUFFERS IN A SEQ_BUF FOR
DDNAME=ddname NOT OPTIMAL
FOR ESDS

Explanation
The number of CIs to be read by one sequential read
for the data set that is identified by ddname is too
large. This message is accompanied by a FABH0056W
message.

System action
See the system action section of FABH0056W
message.

User response
See the user response section of FABH0056W
message.

FABH0056W NUMBER OF BUFFERS IN A
SEQ_BUF xxx CHANGE TO yyy

Explanation
The number (xxx) of CIs to be read by one sequential
read for the data set identified by ddname is too
large. The number xxx is the one that was specified
by the RANSIZE control statement or the CABBASE
control statement. The ESDS cannot chain CCWs for
that number of CIs in a single start I/O. The maximum
number of CIs (yyy) that can be read depends on the
CI size and is displayed in the message.

System action
The processing continues with the maximum number
(yyy) of CIs.

User response
Specify the value yyy indicated in the message for
RANSIZE.

FABH0057W NUMBER OF VSAM BUFFERS IS
OVERRIDDEN: PLHBFRNO=xxx

Explanation
Normally, the CAB buffer handler specifies the number
of VSAM buffers, however, CAB detected that its
specifications could not be used by VSAM.

System action
HSSR Engine continues processing. However, the
performance will decrease.

User response
If you want to use the CAB buffering optimization,
remove any BUFND, BUFSP, or STRNO specifications
from the JCL, and remove the IDCAMS BUFFERSPACE
specifications for the ESDS from the catalog. If the
system-managed buffering is activated in the SMS
definition, deactivate it.

FABH0060E DEVTYPE MACRO FAILED ON
DDNAME: ddname RC=rc

Explanation
An error was returned by the DEVTYPE macro to get
information about the device associated with the DD
name ddname. The value rc shows the return code.

System action
HSSR Engine issues a user abend.

User response
Ensure that the DD statement for the specified DD
name points to the correct data set. Correct the error,
and rerun the job.

FABH0061E OPEN FAILED FOR DDNAME:
ddname

Explanation
An attempt to open the data set identified by ddname
failed.

System action
HSSR Engine issues a user abend.

User response
Ensure that the DD statement associated with ddname
is the correct data set. Correct the error, and rerun the
job.

FABH0062E BLDL MACRO FAILED FOR
MEMBER mbrname IN LIBRARY
ddname (RC=rc,RSN=rsn)

Explanation
The BLDL macro failed for member mbrname in the
library that has the DD name ddname. The return code
from the macro call was rc, and the reason code was
rsn.

390 IMS High Performance Unload: User's Guide

System action
HSSR Engine issues a user abend.

User response
This error is likely an internal system error. Contact
IBM Software Support.

FABH0063E BSAM CLOSE HAS FAILED

Explanation
The CLOSE macro issued by the CAB buffer handler
failed.

System action
HSSR Engine ends abnormally.

User response
Ensure that enough virtual storage is available in the
address space. If the cause is not clear, collect the
dump and contact IBM Software Support.

FABH0064E HDCB NOT FOUND

Explanation
HSSR Engine detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
This error is likely an internal system error. Collect the
dump and contact IBM Software Support.

FABH0065E DDNAME SPECIFIED IN DBD
(dbdname) DOES NOT HAVE A
CORRESPONDING MATCH WITH A
DD STATEMENT

Explanation
During the allocation of a database data set, neither an
MDA member corresponding to the specified DBD nor
a DD statement for the DD name specified in the DBD
could be found.

System action
HSSR Engine issues a user abend.

User response
Either add a DD statement for the database data set or
specify (on the IMSDALIB or STEPLIB/JOBLIB) a PDS
data set that contains an MDA member for the DBD.

FABH0066E INCORRECT DFSMDA MEMBER:
xxxxxxxx

Explanation
The module xxxxxxxx was loaded as a DFSMDA
member, but it does not have a correct DFSMDA
format. The eye-catcher MDA is not found in the
module.

System action
HSSR Engine issues a user abend.

User response
This problem can occur if a library that contains a
member with the name xxxxxxxx is specified in the
higher order of the STEPLIB or JOBLIB concatenation.

Ensure that the correct DFSMDA members exist
in the IMSDALIB concatenation or STEPLIB/JOBLIB
concatenation. Correct the error, and rerun the job.

FABH0067E DD: ddname INFORMATION OF
DB: dbdname IS NOT FOUND IN
DFSMDA MEMBER

Explanation
The DD information associated with the DD ddname
is not found in the DFSMDA member. HSSR Engine
cannot perform the dynamic allocation for the ddname
of the indicated database (dbdname).

System action
HSSR Engine issues a user abend.

User response
Ensure that the DFSMDA member dbdname contains
the appropriate information about the database
dbdname. Correct the error, and rerun the job.

FABH0068E DYNAMIC ALLOCATION FAILURE
OCCURRED FOR DB: dbdname DD:
ddname RC=xx RSN=yyyy

Explanation
An attempt at dynamic allocation for ddname of
dbdname failed. xx is the return code in register 15

Chapter 35. Messages and codes 391

and yyyy is the associated hexadecimal reason code
from the SVC99 routine.

System action
HSSR Engine issues a user abend.

User response
See the MVS Programming: Authorized Assembler
Services Guide for the return code and reason code
from the SVC99 routine. Correct the error, and rerun
the job.

FABH0070E UNEXPECTED DEB LAYOUT

Explanation
The MVS DEB control block used by OSAM has an
unexpected layout.

System action
HSSR Engine ends abnormally.

User response
This error is likely an internal system error. Collect the
dump and contact IBM Software Support.

FABH0071E UNEXPECTED DEB LAYOUT

Explanation
The MVS DEB control block used by OSAM has an
unexpected layout.

System action
HSSR Engine ends abnormally.

User response
This error is likely an internal system error. Collect the
dump and contact IBM Software Support.

FABH0072E UNEXPECTED DEB LAYOUT

Explanation
The MVS DEB control block used by OSAM has an
unexpected layout.

System action
HSSR Engine ends abnormally.

User response
This error is likely an internal system error. Collect the
dump and contact IBM Software Support.

FABH0073E UNSUCCESSFUL BSAM OPEN BY
CAB BUFFER HANDLER

Explanation
The CAB buffer handler could not OPEN an OSAM data
set with BSAM.

System action
HSSR Engine ends abnormally.

User response
Check for an error message issued by MVS or by
access method service.

If you have specified DBALLABOVE in DFSVSAMP and
if message IEC133I is written in the job log, remove
the specification of DBALLABOVE from DFSVSAMP and
rerun the job.

If the cause is not clear, collect the dump and contact
IBM Software Support.

FABH0074E INVALID ENTRY INTO BSAM EOV
EXIT ROUTINE

Explanation
The CAB buffer handler detected an unexpected entry
in its own EOV exit routine, used in processing an
OSAM data set with BSAM. The most likely cause is
that a multivolume OSAM data set has been reused
without scratching and reallocating the space before
reloading to the database. In that case, an invalid end-
of-file mark can be left and an embedded EOF mark
might be caused somewhere in the middle of the data
set.

System action
HSSR Engine ends abnormally.

User response
Check whether the multivolume OSAM data set was
scratched and reallocated correctly as described in
IMS Database Administration. If the cause is not clear,
collect the dump and contact IBM Software Support.

FABH0075E INVALID ENTRY INTO BSAM
EODAD ROUTINE

392 IMS High Performance Unload: User's Guide

Explanation
The CAB buffer handler detected an unexpected entry
into its own EODAD exit routine, used in processing
an OSAM data set with BSAM. The most likely cause
is that a multivolume OSAM data set has been reused
without scratching and reallocating the space before
reloading to the database. In that case, an invalid end-
of-file mark can be left and an embedded EOF mark
might be caused somewhere in the middle of the data
set.

System action
HSSR Engine ends abnormally.

User response
Check whether the multivolume OSAM data set was
scratched and reallocated correctly as described in
IMS Database Administration. If the cause is not clear,
collect the dump and contact IBM Software Support.

FABH0076E text

Explanation
HSSR buffer handler encountered an I/O problem
when using BSAM to read an OSAM data set. This
message text contains bytes 51-127 of the SYNADAF
message.

System action
HSSR Engine ends abnormally.

User response
See DFSMS/MVS Macro Instructions for Data Sets, and
identify the cause of the error. Complete one or more
of the following tasks depending on the cause of the
error:

• Activate the compare and hardcopy trace options,
and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for problem
determination” on page 378).

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0081I I/O WILL BE PERFORMED

Explanation
A FABHBSIM control statement requested that the
buffer handler should not bypass database I/O
operations.

System action
The buffer handlers perform database I/O operations.

User response
None. This message is informational.

FABH0082I BSIM NORMAL END OF
PROCESSING

Explanation
Program FABHBSIM reached normal end of
processing.

System action
The processing continues.

User response
None. This message is informational.

FABH0083E HSSR ENVIRONMENT IS NOT
ESTABLISHED

Explanation
The HSSR environment has not been properly
established. The reason is probably that program
FABHBSIM was not invoked by FABHDLI, FABHDBB,
or FABHULU procedures (or by equivalent JCL).

System action
FABHBSIM ends abnormally.

User response
Use the FABHDLI, FABHDBB, or FABHULU procedures,
or correct the JCL.

FABH0084E SYSUT1 COULD NOT BE OPENED

Explanation
The SYSUT1 data set that contains the buffer handler
trace could not be opened.

System action
Program FABHBSIM ends abnormally.

Chapter 35. Messages and codes 393

User response
Correct the JCL.

FABH0085E INVALID RECORD TYPE IN SYSUT1

Explanation
Program FABHBSIM found an incorrect record type in
the buffer handler trace data set.

System action
FABHBSIM ends abnormally.

User response
Ensure that the correct data set is defined on the
SYSUT1 DD statement.

FABH0086E PCB-NBR STORED IN SYSUT1
RECORD DOES NOT EXIST IN PSB

Explanation
Each record of the SYSUT1 data set contains the
number of the PCB that was being used during the
traced buffer handler call. The recorded PCB-NBR
does not exist in the PSB used for the FABHBSIM run.

System action
Program FABHBSIM ends abnormally.

User response
Ensure that the same PSB was used for the traced run
and for the FABHBSIM run. Ensure that the PSB has
not changed.

FABH0087E PCB-NBR STORED IN SYSUT1
RECORD IS NOT THE NUMBER OF
A HSSR PCB

Explanation
Each record of the SYSUT1 data set contains the
number of the PCB that was being used during the
traced buffer handler call. The recorded PCB-NBR is
not the number of an HSSR PCB.

System action
Program FABHBSIM ends abnormally.

User response
Ensure that the same PSB was used for the traced run
and for the FABHBSIM run. Ensure that the PSB has
not changed.

FABH0088E BUFFER HANDLER CALL TYPE
STORED IN SYSUT1 RECORD IS
INVALID

Explanation
Program FABHBSIM found an incorrect buffer handler
call type in the buffer handler trace data set.

System action
FABHBSIM ends abnormally.

User response
Ensure that the correct data set is defined on the
SYSUT1 DD statement.

FABH0089E NOT NUMERIC FIELD ON SYSIN
CARD

Explanation
A FABHBSIM control statement on the SYSIN data set
does not contain a numeric value.

System action
Program FABHBSIM ends abnormally.

User response
Correct the control statement.

FABH0090E INVALID HSSRPCB OR HSSRDBD
STATEMENT IS SPECIFIED :
reason

Explanation
The specified HSSRPCB or HSSRDBD control
statement is not correct. The text reason indicates the
cause of the error:

reason
Description

NOT NUMERIC
A non-numeric character was specified for the
operand of an HSSRPCB statement.

TOO MANY PARAMETERS
More than 500 pcbnum or dbdname were
specified.

TOO LARGE PCBNUM
pcbnum larger than 500 was specified.

MIXED SPECIFICATION
Both HSSRPCB and HSSRDBD statements were
specified.

394 IMS High Performance Unload: User's Guide

System action
HSSR Engine ends abnormally.

User response
Correct the error in the HSSRPCB or HSSRDBD control
statement and rerun the job.

FABH0091W UNABLE TO PROCESS THE
FOLLOWING PCB AS AN HSSR PCB
(REASON: rrrrrrrr)

Explanation
This message is issued with another FABH0091W
message. See the explanation in “FABH0091W” on
page 395.

System action
See the system action section of the other
FABH0091W message.

User response
See the user response section of the other
FABH0091W message.

FABH0091W DBD=xxxxxxxx, PCB#=yyyy,
PCBNAME=zzzzzzzz

Explanation
The PCB that is specified as an HSSR PCB cannot
be processed as an HSSR PCB. The string xxxxxxxx
shows the name of the DBD that the PCB refers to; the
number yyyy shows the PCB number in the PSB; and
the string zzzzzzzz shows the label, if there is one, of
the PCB assigned at PSBGEN. The string rrrrrrrr shows
the reason for the error as follows:

Reason (rrrrrrrr)
Description

IOPCB
The specified PCB is an I/O PCB.

TPPCB
The specified PCB is an alternative PCB.

GSAMPCB
The specified PCB is a GSAM PCB.

PROCOPT
The PROCOPT parameter on the PCB statement
specifies an incorrect code or combination of
codes. The codes you can use are G, O, N, T, R,
A, P, and E.

DBDL1
The specified PCB refers to the DBD that is
specified on a DBDL1 control statement.

USREXIT
The specified PSB is generated with PROCOPT=R,
and the DBD referred by the PCB is generated with
the data capture exit routine.

NOTFOUND
The specified PCB does not exist.

OTHER
The specified PCB cannot be processed, for
some reason other than the preceding. See the
accompanying FABHxxxxx messages issued by
HSSR Engine.

System action
The processing continues. If the PCB can be processed
as a DL/I PCB, it is treated as a DL/I PCB, and all
HSSR calls to the PCB are transferred to the DL/I call
interface modules.

User response
If the database calls need to be processed by HSSR
Engine, ensure that the specified PCB is correct (check
the HSSRPCB and HSSRDBD control statements or
the KEYLEN value for the PCB). Otherwise, ignore this
message and continue processing by using the DL/I
module.

FABH0092W PROCOPT=R IS SPECIFIED ON
THE FOLLOWING HSSR PCB:

Explanation
This message is issued with another FABH0092W
message. See the explanation in “FABH0092W” on
page 395.

System action
See the system action section of the other
FABH0092W message.

User response
See the user response section of the other
FABH0092W message.

FABH0092W DBD=xxxxxxxx, PCB#=yyyy,
PCBNAME=zzzzzzzz

Explanation
PROCOPT=R is specified on the PCB specified by
the PCB control statement or the PCBNAME control
statement in the HPSIN data set of IPR Unload utility.
The string xxxxxxxx shows the name of the DBD that
the PCB refers to; the number yyyy shows the PCB

Chapter 35. Messages and codes 395

number in the PSB; and the string zzzzzzzz shows the
label, if there is one, of the PCB assigned at PSBGEN.

System action
HSSR Engine continues processing. If an HSSR
REPL call is issued for the PCB, HSSR Engine ends
abnormally.

User response
You can ignore the message if you do not issue any
HSSR REPL call, but it is recommended that you
change the PROCOPT.

FABH0101E //CARDIN FILE CONTAINS
AN INVALID FSU CONTROL
STATEMENT

Explanation
Program FABHFSU detected a control statement with
an incorrect control statement ID.

System action
FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0102E OPEN-ERROR FOR //CARDIN OR //
PRNTOUT

Explanation
Program FABHFSU cannot open the CARDIN or
PRNTOUT data set.

System action
FABHFSU ends abnormally.

User response
Check for additional error messages issued by the
access method. Correct the error.

FABH0103E 'DBD' OR 'PSC' CONTROL CARD
MISSING IN //CARDIN

Explanation
The CARDIN data set must contain either a DBD or a
PSC control statement.

System action
Program FABHFSU ends abnormally.

User response
Provide the required control statement.

FABH0104E INVALID NBR OF 'PSB' CONTROL-
STATEMENTS IN //CARDIN

Explanation
The CARDIN data set must contain one, two, or three
PSB control statements.

System action
Program FABHFSU ends abnormally.

User response
Provide a correct number of PSB control statements.

FABH0105E NOGO-SWITCH SET BECAUSE OF
PREVIOUS ERROR IN //CARDIN
CONTROL STATEMENTS

Explanation
Program FABHFSU detected an error, which is
described in a previous error message.

System action
FABHFSU ends abnormally.

User response
Correct the error.

FABH0106E INVALID 'SEQUENCE CHECK
OPTION' ON 'DBD' CARD IN //
CARDIN

Explanation
A DBD control statement contains an error. The error is
described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

396 IMS High Performance Unload: User's Guide

FABH0107E INVALID 'SEQUENCE ERROR
OPTION' ON 'DBD' CARD IN //
CARDIN

Explanation
A DBD control statement contains an error. The error is
described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0108E INVALID 'SEQUENCE ERROR
PRINT OPTION' ON 'DBD' CARD
IN //CARDIN

Explanation
A DBD control statement contains an error. The error is
described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0109E 'SEQUENCE ERROR THRESHOLD'
FIELD ON 'DBD' CARD IS NOT
NUMERIC

Explanation
A DBD control statement contains an error. The error is
described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0110E MULTIPLE 'DBD' CONTROL
STATEMENTS NOT ALLOWED IN //
CARDIN

Explanation
More than one DBD control statement was detected.
Only one DBD control statement is allowed in the
CARDIN data set.

System action
Program FABHFSU ends abnormally.

User response
Ensure that the CARDIN data set contains a single DBD
control statement.

FABH0111E INVALID 'POINTER BYPASS
OPTION' ON 'DBD' CARD

Explanation
A DBD control statement contains an error. The error is
described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0112E FABHFSU CANNOT RUN WITH
ACB'S

Explanation
Program FABHFSU can run either in a DL/I or in a ULU
region, but cannot in a DBB region.

System action
FABHFSU ends abnormally.

User response
Modify the JCL in order to run FABHFSU in a DL/I
region with PSBs and DBDs (instead of running
FABHFSU in a DBB region with ACBs).

FABH0113E MULTIPLE 'BLM' CONTROL CARDS
ARE NOT SUPPORTED

Explanation
More than one BLM control statement was specified.
Program FABHFSU supports only one BLM control
statement.

Chapter 35. Messages and codes 397

System action
FABHFSU ends abnormally.

User response
Ensure that the CARDIN data set contains only one
BLM control statement.

FABH0114E MULTIPLE 'ELM' CONTROL CARDS
ARE NOT SUPPORTED

Explanation
More than one ELM control statement was specified.
Program FABHFSU supports only one ELM control
statement.

System action
FABHFSU ends abnormally.

User response
Ensure that the CARDIN data set contains only one
ELM control statement.

FABH0115E INVALID 'LIMIT VALUE TYPE' ON
'BLM' OR 'ELM' CONTROL CARD

Explanation
Either a BLM or an ELM control statement contains an
error. The error is described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0116E 'RBN LIMIT VALUE' NOT NUMERIC
OR ZERO ON 'BLM' OR 'ELM'
CONTROL CARD

Explanation
Either a BLM or an ELM control statement contains an
error. The error is described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0117E 'LL' FIELD NOT NUMERIC OR ZERO
ON 'BLM' OR 'ELM' CONTROL CARD

Explanation
Either a BLM or an ELM control statement contains an
error. The error is described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0118E 'LL' FIELD GREATER THAN 74 ON
'BLM' OR 'ELM' CONTROL CARD

Explanation
Either a BLM or an ELM control statement contains an
error. The error is described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0119E HEXADECIMAL STRING FOR LIMIT
VALUE DOES NOT CONTAIN EVEN
NUMBER OF HEXA-CHARACTERS

Explanation
Either a BLM or an ELM control statement contains an
error. The error is described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0120E 'PCB NR' FIELD ON THE 'PSB'
CONTROL CARD IS NOT NUMERIC

Explanation
A PSB control statement contains an error. The error is
described in the error message.

398 IMS High Performance Unload: User's Guide

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0121E INVALID FORMAT-NAME ON THE
'PSB' CONTROL CARD

Explanation
A PSB control statement contains an error. The error is
described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0122E INVALID 'SEGMENT
MODIFICATION OPTION' ON PSB
CARD

Explanation
A PSB control statement contains an error. The error is
described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0123E INVALID 'CONCATENATED KEY
OPTION' ON PSB CARD

Explanation
A PSB control statement contains an error. The error is
described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0124E INVALID 'EXIT CONTROL OPTION'
ON PSB CARD

Explanation
A PSB control statement contains an error. The error is
described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0125E INVALID 'DBR SKIP OPTION' ON
PSB CARD

Explanation
A PSB control statement contains an error. The error is
described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0126E INVALID 'DATA CONVERSION'
OPTION ON PSB CARD

Explanation
A PSB control statement contains an error. The error is
described in the error message.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0127E 'PSB NAME' FIELD MUST BE
SPECIFIED AS '*' WHEN RUNNING
IN ULU REGION TYPE

Explanation
When running in ULU Region, the name of a PSB must
not be specified in the 'PSB NAME' field. When running
in ULU region, specify an asterisk (*) in the 'PSB NAME'
field of the PSB control statement.

System action
Program FABHFSU ends abnormally.

Chapter 35. Messages and codes 399

User response
Either specify an asterisk (*) in the 'PSB NAME' field
of the PSB control statement or run FABHFSU in DL/I
region.

FABH0128E 'PSB NAME' FIELD MUST SPECIFY
THE PSBNAME OF THE //EXEC
PARM-FIELD

Explanation
Program FABHFSU requires that the name of the
PSB coded in the 'PSB NAME' field of the PSB
control statement is the same as the name of the
PSB specified in the PARM field of the //EXEC JCL
statement.

System action
FABHFSU ends abnormally.

User response
Either specify the PSB name in the 'PSB NAME' field
of the PSB control statement or run FABHFSU with the
'PSB*' control statement. See the description of the
PSB control statement in “PSB control statement” on
page 61.

FABH0129E PSB HAS NO DB-PCB WITH THE
REQUESTED DBDNAME AND/OR
REQUESTED RELATIVE NUMBER

Explanation
The PSB specified on the PSB control statement in the
CARDIN data set has no database PCBs.

System action
Program FABHFSU ends abnormally.

User response
Correct the PSB control statement.

FABH0130E PCB WITH SPECIFIED 'RELATIVE
PCB NUMBER' DOES NOT REFER
TO DBD NAMED ON DBD CARD

Explanation
The specified PCB on the PSB control statement refers
to a dbdname that does not match the dbdname on
the DBD control statement in the CARDIN data set.

System action
Program FABHFSU ends abnormally.

User response
Correct the PSB control statement.

FABH0131E INVALID 'DEC' OPTION

Explanation
A DEC control statement contains an incorrect option.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0132E THERE IS NO JCL DD-STATEMENT
FOR THE SPECIFIED 'DDNAME' ON
THE 'PSB' CONTROL CARD

Explanation
Program FABHFSU detected an incorrect ddname on
the PSB control statement in the CARDIN data set or
on the JCL DD statement.

System action
FABHFSU ends abnormally.

User response
Specify correct ddname either on the PSB control
statement or on the JCL DD statements.

FABH0133E 'COn' CONTROL CARD INVALID:
NO MATCHING OUTPUT FORMAT

Explanation
You have provided a COn (CO1, CO2, or CO3)
control statement in the CARDIN data set. Program
FABHFSU tried to match these control statements with
the first, second, or third PSB control statements.
This matching was unsuccessful because the PSB
statement was not provided in the CARDIN data set
(before the CO control statement).

System action
FABHFSU ends abnormally.

400 IMS High Performance Unload: User's Guide

User response
Correct the CARDIN control statement.

FABH0134E THERE IS NO JCL DD-STATEMENT
FOR THE SPECIFIED 'DDNAME' ON
THE CONTROL CARD

Explanation
Program FABHFSU detected an incorrect ddname on
the CO control statement of the CARDIN data set or a
missing JCL DD statement.

System action
FABHFSU ends abnormally.

User response
Correct the CO control statement or the JCL DD
statement.

FABH0135E MULTIPLE 'PSC' CONTROL
STATEMENTS NOT ALLOWED

Explanation
More than one PSC control statement was specified.
Program FABHFSU supports only one PSC control
statement.

System action
FABHFSU ends abnormally.

User response
Ensure that the CARDIN data set contains only one
PSC control statement.

FABH0136E INVALID //CARDIN CONTROL
STATEMENT FOR A PSC
OPERATION

Explanation
A control statement that is not supported for PSF was
provided in the CARDIN data set.

System action
Program FABHFSU ends abnormally.

User response
Remove the unsupported control statement.

FABH0137E 'PSC' AND 'DBD' CONTROL
STATEMENTS ARE MUTUALLY
EXCLUSIVE

Explanation
The PSC and DBD control statements must not be
specified in the same FABHFSU run.

System action
Program FABHFSU ends abnormally.

User response
Run FABHFSU in correct mode.

FABH0138E OPEN ERROR FOR //CNTLDD

Explanation
Program FABHFSU could not open the CNTLDD data
set.

System action
FABHFSU ends abnormally.

User response
See the additional error messages that were issued by
the access method. Correct the error.

FABH0139E INCORRECT 'PARALLEL SCAN
NAME'

Explanation
The parallel scan name that is specified on the PSC
control statement is different from the parallel scan
name that is specified on the CTL statement that was
used to create the scan control data set.

System action
Program FABHFSU ends abnormally.

User response
Correct the PSC control statement.

FABH0140E INCORRECT 'DBD NAME'

Explanation
The DBD name that is specified on the PSC control
statement is different from the DBD name that is
specified on the DBD control statement that was used
to create the scan control data set.

Chapter 35. Messages and codes 401

System action
Program FABHFSU ends abnormally.

User response
Correct the PSC control statement.

FABH0141E 'EXPECTED NUMBER OF SCANS'
ON 'PSC' CONTROL CARD IS
INVALID

Explanation
Program FABHFSU detected an incorrect number of
scans specified on a PSC control statement.

System action
FABHFSU ends abnormally.

User response
Correct the PSC control statement.

FABH0142E 'PHASE NUMBER' ON 'PSC'
CONTROL CARD INVALID

Explanation
Program FABHFSU detected an incorrect phase
number specified on a PSC control statement

System action
FABHFSU ends abnormally.

User response
Correct the PSC control statement.

FABH0143E 'POINTER BYPASS OVERRIDE'
INVALID

Explanation
Program FABHFSU detected an incorrect pointer
bypass override specified on a PSC control statement.

System action
FABHFSU ends abnormally.

User response
Correct the PSC control statement.

FABH0144E 'RERUN INDICATOR' INVALID

Explanation
Program FABHFSU detected an incorrect rerun
indicator specified on a PSC control statement.

System action
FABHFSU ends abnormally.

User response
Correct the PSC control statement.

FABH0145E 'EXPIRATION DATE OVERRIDE'
NOT NUMERIC

Explanation
Program FABHFSU detected an incorrect expiration
date override specified on a PSC control statement.

System action
FABHFSU ends abnormally.

User response
Correct the PSC control statement.

FABH0146E 'PHASE NUMBER' HIGHER THAN
'EXPECTED NUMBER OF SCANS'

Explanation
Program FABHFSU detected an incorrect phase
number specified on a PSC control statement.

System action
FABHFSU ends abnormally.

User response
Correct the PSC control statement.

FABH0147E UNEXPECTED LAYOUT OF //
CNTLDD CONTROL RECORD

Explanation
Program FABHFSU detected an unexpected layout of
the CNTLDD data set of the Parallel Scan Facility. The
reason can be:

• A FABHFSU error or a FABHPSFC error
• An incompatibility between IMS High Performance

Unload and FSU II
• A user error

402 IMS High Performance Unload: User's Guide

System action
FABHFSU ends abnormally.

User response
Ensure that the control statements are correct.

FABH0148E UNEXPECTED LAYOUT OF //
CNTLDD CONTROL RECORD

Explanation
Program FABHFSU detected an unexpected layout of
the CNTLDD data set of the Parallel Scan Facility. The
reason can be:

• A FABHFSU error or a FABHPSFC error
• An incompatibility between IMS High Performance

Unload and FSU II
• A user error

System action
FABHFSU ends abnormally.

User response
Ensure that the control statements are correct.

FABH0149E UNEXPECTED LAYOUT OF //
CNTLDD CONTROL RECORD

Explanation
Program FABHFSU detected an unexpected layout of
the CNTLDD data set of the Parallel Scan Facility. The
reason can be:

• A FABHFSU error or a FABHPSFC error
• An incompatibility between IMS High Performance

Unload and FSU II
• A user error

System action
FABHFSU ends abnormally.

User response
Ensure that the control statements are correct.

FABH0150E INCORRECT 'EXPECTED NUMBER
OF SCANS'

Explanation
The expected number of scans specified on the PSC
control statement is different from the number of

parallel scans specified on the CTL control statement
for FABHPSFC, which was used to create the scan
control data set.

System action
Program FABHFSU ends abnormally.

User response
Correct the PSC control statement or the CTL control
statement.

FABH0151E COMPARE OPTION IS NOT
ALLOWED

Explanation
Program FABHFSU detected one of the following
errors:

• "NO" was specified for the output format of the
unloaded data set in the PSB control statement
for which the CO (compare) control statement was
specified.

• A CO control statement is specified for HALDB.

System action
FABHFSU ends abnormally.

User response
Remove the CO control statement or modify the PSB
control statement.

FABH0152I COMPARE OPTION DEACTIVATED
BY SEGMENT EXTENSION OPTION

Explanation
Both of the following requests were made:

• The use of the segment extension option of
FABHFSU (by coding "E" in column 32 of the PSB
control statement in the CARDIN data set).

• The use of the compare option (by providing a CO
control statement in the HSSROPT data set).

These two options are mutually exclusive.

System action
Program FABHFSU ignores the requested CO option
and continues processing.

User response
None. This message is informational.

Chapter 35. Messages and codes 403

FABH0153E SEGMENT EXTENSION OPTION
ONLY VALID WITH HDAM OR
HIDAM

Explanation
You requested the use of the segment extension
option of FABHFSU by coding "E" in column 32 of
the PSB control statement of the FABHFSU unload
utility. This option is valid only for an HDAM or HIDAM
database, including PHDAM and PHIDAM.

System action
Program FABHFSU ends abnormally.

User response
Remove the E option because you cannot expand
segments in your database with an exit routine.

FABH0154E 'LENGTH OF EXTENDED AREA'
FIELD ON 'PSB' CARD IS NOT
NUMERIC

Explanation
The value specified in column 41 of the PSB control
statement is not numeric.

System action
Program FABHFSU ends abnormally.

User response
Specify a correct numeric value.

FABH0155E 'LENGTH OF EXTENDED AREA'
FIELD ON 'PSB' CARD IS TOO
HIGH: MAXIMUM IS 32767

Explanation
The value specified in column 41 of the PSB control
statement exceeds the acceptable maximum.

System action
Program FABHFSU ends abnormally.

User response
Specify the smallest length that can hold each of the
extended segments.

FABH0156E 'DATA CONVERSION' OPTION FOR
PSB CONTROL STATEMENT IS NOT
ALLOWED

Explanation
The 'data conversion' option 'Y' is specified in column
36 of a PSB control statement. However, the Data
Conversion exit routine is not called for the database,
for one of the following reasons:

• 'DATXEXIT NO' option is specified in HSSROPT data
set.

• DATXEXIT=NO is specified for the database at
DBDGEN, and the module DFSDBUX1 was not found
in any STEPLIB library.

• DATXEXIT=NO is specified for the database at
DBDGEN, and the Data Conversion exit set
SRCHFLAG to X'FF'.

System action
Program FABHFSU ends abnormally.

User response
If you need to call the Data Conversion exit routine,
you must prepare it in a STEPLIB library and then
specify DATXEXIT YES in HSSROPT data set.

FABH0157W COMPRESSED SEGMENTS MUST
BE DECOMPRESSED BEFORE
CONVERSION; DECN IS IGNORED

Explanation
You specified the DECN option in the SYSIN data set
for your FABHURG1 job. But there is a compressed
segment that also needs to be converted by use of the
Data Conversion exit routine (DFSDBUX1). You cannot
use the DECN option for a database that contains such
a segment.

System action
HSSR Engine continues its processing with the DECY
option.

User response
You need to be careful when you use the output data
set for reloading because the output data set contains
decompressed segments.

FABH0158I COMPARE OPTION DEACTIVATED
BY BLDLPCK CONTROL
STATEMENT

Explanation
The CO control statement (specified in the CARDIN
data set) for HS-format output records is ignored when
the BLDLPCK statement is specified.

404 IMS High Performance Unload: User's Guide

System action
Program FABHFSU ignores the requested CO option
and continues processing.

User response
Remove the CO control statement or the BLDLPCK
control statement from the CARDIN data set.

FABH0159W DECY FORCED SINCE KEY
COMPRESSION OPTION IS
SPECIFIED FOR THE ROOT
SEGMENT OF HIDAM DB

Explanation
DECN was specified, although the key compression
option is specified for the root segment of the HIDAM
database to be unloaded in CS format. DECY is
assumed.

System action
Program FABHURG1 continues processing.

User response
If you want to unload an HIDAM database without
decompressing segments, use an output record format
other than the CS format. Otherwise, you can ignore
the message.

FABH0161E FABHFSU DOES NOT SUPPORT
SECONDARY INDEX PROCESSING

Explanation
The name of an index that is not the name of the
HIDAM primary index was specified on a DBD control
statement.

System action
Program FABHFSU ends abnormally.

User response
Ensure that the correct DBDs, PSBs, and ACBs were
being used. Correct the DBD control statement.

FABH0162E 'LIMIT VALUE TYPE' ON BLM/ELM
CONTROL STATEMENT INVALID
FOR TYPE OF DB-ORG

Explanation
A value type that is not valid for the database
organization was specified on a BLM/ELM control
statement (or on an NPT control statement).

System action
Program FABHFSU ends abnormally.

User response
Ensure that the correct DBDs, PSBs, and ACBs were
being used. Also ensure that the limit value type
is specified correctly on the BLM or ELM control
statement.

FABH0164E HIGH-KEY IS SPECIFIED ON
BLM/ELM CONTROL STATEMENT

Explanation
A HIGHKEY value for the partitioned HIDAM database
is specified on the BLM or ELM control statement. The
HIGHKEY values cannot be specified as the limit value
for the BLM or ELM control statement.

System action
Program FABHFSU ends abnormally.

User response
Modify the BLM or ELM control statement not to use
the HIGHKEY value, and rerun the job.

FABH0165E BLM OR ELM CONTROL
STATEMENT IS SPECIFIED FOR A
HALDB

Explanation
A BLM or ELM control statement is specified for
a PHDAM or PHIDAM database. BLM and ELM
statements are not allowed for HALDB.

System action
Program FABHFSU ends abnormally.

User response
Remove the BLM and ELM statements.

FABH0170E HSSR ENGINE IS NOT
INITIALIZED

Chapter 35. Messages and codes 405

Explanation
Program FABHFSU was not run in the correct
environment. It must be run with the FABHDLI or
FABHULU procedure (or with equivalent JCL).

System action
FABHFSU ends abnormally.

User response
Run FABHFSU using FABHDLI or FABHULU procedure.

FABH0171E FABHFSU ENVIRONMENT NOT
PROPERLY INITIALIZED

Explanation
Program FABHFSU was not run in the correct
environment. FABHFSU was renamed, but HSSR
Engine does not allow FABHFSU to be renamed.

System action
HSSR Engine ends abnormally.

User response
Run FABHFSU using FABHDLI or FABHULU procedure.

FABH0172E 'LIMIT VALUE TYPE' = 'R' IS ONLY
VALID FOR HDAM

Explanation
A Limit Value Type or Node Point Value Type 'R' was
specified on a BLM control statement or on a NPT
control statement. A Value Type 'R' is only supported
for HDAM.

System action
Program FABHFSU ends abnormally.

User response
Correct the control statement.

FABH0175E UNEXPECTED PCB STATUSCODE

Explanation
An HSSR call that was issued internally by program
FABHFSU returned an unexpected status code.

System action
FABHFSU ends abnormally.

User response
As a temporary bypass, specify DBDL1 control
statement in the HSSROPT data set to force DL/I calls
to be made by your program.

FABH0176E DDN=ddname BLKSIZE OR LRECL
IS TOO SMALL

Explanation
The block size or record size for the output ddname
data set is too small.

System action
Program FABHFSU ends abnormally.

User response
Specify a block size or record size (LRECL) that is large
enough. Record size can be specified only for VB and
VN format. If the record size (LRECL) is coded on the
JCL statement, it must be less than or equal to the
block size minus 4.

FABH0177E DDN=ddname OPEN HAS FAILED

Explanation
Program FABHFSU could not open the output ddname
data set.

System action
FABHFSU ends abnormally.

User response
Check for further error messages issued by the access
method and correct the error.

FABH0178E MIGRATION UNLOAD IS NOT
SUPPORTED FOR THIS DATABASE
TYPE

Explanation
The MI (migration unload format) option on the PSB
control statement cannot be used for this database.
For more information about the control statement, see
“Unload output format supported by FABHFSU” on
page 52.

System action
Program FABHFSU ends abnormally.

406 IMS High Performance Unload: User's Guide

User response
Ensure that the correct DBD is specified.

FABH0179E TWO OR MORE PSB CANNOT BE
SPECIFIED WITH THE MI OPTION

Explanation
When the MI option is specified on the PSB control
statement, two or more PSB control statements
cannot be specified.

System action
Program FABHFSU ends abnormally.

User response
Specify only one PSB control statement and rerun the
job.

FABH0180E INVALID SEGMENT LENGTH
RETURNED FROM USER EXIT
ROUTINE

Explanation
A FABHFSU user exit routine changed the length of a
database segment. The modified length is larger than
the allowed maximum segment length.

System action
Program FABHFSU ends abnormally.

User response
Complete the following tasks to resolve the error:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Check the segment length that is returned by the
user exit routine, and if necessary, correct the user
exit routine.

FABH0181E USER PROGRAMMING ERROR:
LENGTH OF CURRENT OUTPUT
RECORD IS TOO BIG

Explanation
A FABHFSU user exit routine changed the length of
the current output record. The modified length is larger
than the allowed maximum record length.

System action
Program FABHFSU ends abnormally.

User response
Correct the user exit routine.

FABH0182E INVALID RETURN CODE FROM
USER ROUTINE

Explanation
A FABHFSU user exit routine has returned an incorrect
return code.

System action
Program FABHFSU ends abnormally.

User response
Correct the user exit routine or specify the DBR skip
option on the PSB control statement.

FABH0183E DDN=ddname: OPEN HAS FAILED

Explanation
Program FABHFSU could not open the input ddname
data set. A ddname data set created by FSU II was
specified, whereas it should be compared with the
FABHFSU output data set.

System action
FABHFSU ends abnormally.

User response
Check for further error messages issued by the access
method, and correct the error.

FABH0184E DDN=ddname OUTPUT AND INPUT
STATISTIC RECORDS ARE NOT
EQUAL

Explanation
A FABHFSU output data set was compared with an
input ddname data set created by FSU II. FABHFSU
detected that the statistic records contained in both
data sets are not equal.

System action
Program FABHFSU ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

Chapter 35. Messages and codes 407

• Ensure that FABHFSU has been provided with the
correct FSU II output data set.

• Ensure that FABHFSU and FSU II have been
run under identical conditions (same segment
sensitivity, same user exit routines, no database
updates between the FSU II execution and the
FABHFSU execution).

• Determine whether it is an error of FABHFSU or an
error of FSU II.

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

FABH0185E DDN=ddname OUTPUT AND INPUT
RECORDS NOT EQUAL

Explanation
A FABHFSU output data set was compared with an
input ddname data set created by FSU II. FABHFSU
detected at least one record that is not identical in
both data sets.

System action
Program FABHFSU ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that FABHFSU has been provided with the
correct FSU II output data set.

• Ensure that FABHFSU and FSU II have been
executed under identical conditions (same segment
sensitivity, same user exit routines, no database
updates between the FSU II execution and the
FABHFSU execution).

• Determine whether it is an error of FABHFSU or an
error of FSU II.

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

FABH0186E DDN=ddname CONTAINS TOO
MANY RECORDS

Explanation
A FABHFSU output data set was compared with an
output ddname data set created by FSU II. Program
FABHFSU detected that the FSU II output ddname
data set does not contain the same number of records
as the FABHFSU output data set.

System action
FABHFSU ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that FABHFSU has been provided with the
correct FSU II output data set.

• Ensure that FABHFSU and FSU II have been
executed under identical conditions (same segment
sensitivity, same user exit routines, no database
updates between the FSU II execution and the
FABHFSU execution).

• Determine whether it is an error of FABHFSU or an
error of FSU II.

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

FABH0187E DDN=ddname CONTAINS TOO FEW
RECORDS

Explanation
A FABHFSU output data set was compared with an
output ddname data set created by FSU II. Program
FABHFSU detected that the FSU II output ddname
data set does not contain the same number of records
as the FABHFSU output data set.

System action
FABHFSU ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that FABHFSU has been provided with the
correct FSU II output data set.

• Ensure that FABHFSU and FSU II have been
executed under identical conditions (same segment
sensitivity, same user exit routines, no database
updates between the FSU II execution and the
FABHFSU execution).

• Determine whether it is an error of FABHFSU or an
error of FSU II.

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

FABH0190E DDN=ddname LENGTH OF INPUT
AND OUTPUT RECORDS DIFFER

Explanation
A FABHFSU output data set was compared with an
input ddname data set created by FSU II. FABHFSU
detected at least one record that is not identical in
both data sets.

408 IMS High Performance Unload: User's Guide

System action
Program FABHFSU ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that FABHFSU has been provided with the
correct FSU II output data set.

• Ensure that FABHFSU and FSU II have been
executed under identical conditions (same segment
sensitivity, same user exit routines, no database
updates between the FSU II execution and the
FABHFSU execution).

• Determine whether it is an error of FABHFSU or an
error of FSU II.

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

FABH0191E DB ERROR ENCOUNTERED AND
"POINTER BYPASS OPTION" NOT
ACTIVATED

Explanation
HSSR Engine encountered a database error. By default,
FABHFSU issues this message and ends abnormally.
However, the pointer bypass option can be activated to
bypass the abend.

System action
HSSR Engine ends abnormally.

User response
Check why the database error was encountered. If
appropriate, activate the pointer bypass option on the
DBD or PSC control statement.

If the problem persists, complete the following tasks
to identify the cause of the error:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0192E SEQUENCE ERROR THRESHOLD
EXHAUSTED

Explanation
Program FABHFSU performed sequence-checking of
the segment key fields, and detected more sequence

errors than specified (or defaulted) on the DBD control
statement.

System action
HSSR Engine ends abnormally.

User response
Check why the database has so many sequence errors.
If appropriate, increase the sequence error threshold
value on the DBD control statement.

If the problem persists, complete the following tasks
to identify the cause of the error:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0193E ROOT-SEGMENT IS NOT
SEQUENCED

Explanation
Program FABHFSU was requested to retrieve a root
segment by key (either on a BLM or NPT control
statement or through a return code from a user exit
routine). However, the root segment of the database
has no defined sequence field.

System action
HSSR Engine ends abnormally.

User response
Correct the error. If the problem persists, ensure that
the correct DBDs, PSBs, and ACBs were being used.

FABH0194E DDN=ddname: DSNAME IS NOT
VALID

Explanation
The data set name used for the FABHFSU output
ddname data set was requested to be checked on a
CTL control statement. The data set name that was
used did not follow the FABHFSU standard naming
convention.

System action
Program FABHFSU ends abnormally.

Chapter 35. Messages and codes 409

User response
Correct the data set name of the output data set DD
statement.

FABH0195E RETURN CODE 4 FROM HDAM
RANDOMIZER, RMOD=xxxxxxxx

Explanation
Program FABHFSU received a status code FM
because of the return code 4 from the HDAM
randomizing module. xxxxxxxx is the name of the
HDAM randomizing module. Register 9 contains the
address of the key used by the HSSR call.

System action
FABHFSU ends abnormally.

User response
The randomizer is different from the one for the real
database. Use the correct randomizer and rerun the
job, if necessary.

FABH0201E OPEN ERROR FOR //IMS DD

Explanation
Program FABHFSU could not open the IMS DD data set
to read the IMS DBD control blocks.

System action
FABHFSU ends abnormally.

User response
Provide correct DD statements. Check for additional
error messages issued by the access method.

FABH0202E FABHFSU ENCOUNTERED AN
UNEXPECTED ERROR

Explanation
Program FABHFSU detected an unexpected error. A
possible reason could be a change of IMS DBD control
blocks.

System action
FABHFSU ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the FABHFSUI module corresponds to
the correct IMS version.

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

FABH0203W WARNING: SOME SEGMENTS
WILL NOT BE DECOMPRESSED

Explanation
You requested, by specifying the DECN option on
the DEC control statement, that program FABHURG1
or FABHFSU does not decompress compressed
segments. The output data sets of FABHURG1 or
FABHFSU will contain segments in the compressed
format, unless other decompression program (for
example, a FABHURG1 or FABHFSU user exit routine)
is activated.

System action
HSSR Engine continues processing.

User response
If you really do not want to decompress the
compressed segments, ignore this message.

FABH0204W COMPARE OPTION CANNOT BE
USED FOR THIS FABHFSU
EXECUTION

Explanation
HSSR Engine encountered a condition that precludes
use of the compare option.

System action
HSSR Engine deactivates the compare option.

User response
None.

FABH0205W COMPARE OPTION CANNOT BE
USED FOR THIS FABHURG1
EXECUTION

Explanation
HSSR Engine encountered a condition that precludes
use of the compare option.

System action
HSSR Engine deactivates the compare option.

410 IMS High Performance Unload: User's Guide

User response
None.

FABH0206I SOME SEGMENTS WILL NOT BE
DECOMPRESSED

Explanation
A segment compression exit routine is defined in
the database. HSSR Engine sets the compressed
segment data in the I/O area without decompressing
it because the DECN control statement is specified in
the HSSROPT data set. If a key field is compressed,
the key data is not set in the PCB key feedback area.

System action
HSSR Engine continues processing.

User response
None. This message is informational.

FABH0211E ENQ CONFLICT: OTHER JOB
CURRENTLY ACTIVE FOR THE
SAME PSC PHASE

Explanation
The concurrent multiple jobs were started for the
same phase of a parallel scan.

System action
Program FABHFSU ends abnormally.

User response
Correct the error.

FABH0212E DATE FOR PSC RUN HAS ALREADY
EXPIRED

Explanation
Program FABHFSU was started after the expiration
date specified on the CTL or on a PSC control
statement.

System action
FABHFSU ends abnormally.

User response
Correct the CTL or PSC control statement.

FABH0213E PSC PHASE HAS ALREADY BEEN
STARTED

Explanation
Program FABHFSU was started multiple times for the
same phase.

System action
FABHFSU ends abnormally.

User response
If appropriate, specify a Rerun Indicator on the PSC
control statement.

FABH0214E DDN=ddname: BLOCKSIZE
SHOULD NOT CHANGE

Explanation
Program FABHFSU was run multiple times with
different block sizes for the output data set. The block
sizes must be the same.

System action
FABHFSU ends abnormally.

User response
Specify identical block sizes for all executions.

FABH0215I ALL SCAN PHASES STARTED

Explanation
All the FABHFSU parallel scan phases were in starting
condition.

System action
Program FABHFSU continues processing.

User response
None. This message is informational.

FABH0216E PARTITION DB IS NOT
SUPPORTED IN PSF MODE

Explanation
The partition database cannot be unloaded in PSF
mode.

System action
Program FABHFSU ends abnormally.

Chapter 35. Messages and codes 411

User response
If you want to unload the partitioned database, run
FABHFSU in standard mode or use the FABHURG1
unload utility.

FABH0221E UNEXPECTED LAYOUT OF PSC
CONTROL-FILE RECORDS

Explanation
Program FABHFSU read from the PSC control data set
a record with an unexpected record format.

System action
FABHFSU ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the PSC control data set has been
created correctly by FABHPSFC, and that it has been
created with the correct DBD version.

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

FABH0222E UNEXPECTED CONDITION ON PSC
CONTROL FILE: PHASE ALREADY
COMPLETED

Explanation
At job-step termination, program FABHFSU detected
that its phase is already marked as "completed" in the
PSC control data set. Such an incorrect situation can
occur in an uncontrolled multi-system environment.

System action
FABHFSU ends abnormally.

User response
Do not run the PSF option of FABHFSU in an
uncontrolled multi-system environment. Consider
using Global Resource Serialization.

If the problem persists, ensure that the correct DBDs,
PSBs, and ACBs were being used.

FABH0223I ALL SCAN PHASES COMPLETED

Explanation
All the FABHFSU parallel scan phases were
completed.

System action
Program FABHFSU continues processing.

User response
None. This message is informational.

FABH0224W NO SEGMENT WAS RETRIEVED

Explanation
Program FABHFSU attempted to unload the database,
but no segment was retrieved from the database. The
database might be empty.

System action
FABHFSU normally ends with a return code of 01.

User response
Determine whether it is acceptable that the input
database has no valid segments. If a wrong database
data set, or wrong DBD or PSB was specified, specify
the appropriate ones, and rerun the job.

FABH0225W NO SEGMENT WAS RETRIEVED IN
THE CURRENT PSF PHASE

Explanation
Program FABHFSU attempted to unload a portion of
a database in this PSF phase, but no segment was
retrieved in the phase.

System action
FABHFSU normally ends with a return code of 01.

User response
Determine whether it is acceptable that the portion
has no valid segments. If a wrong database data
set, or wrong DBD or PSB was specified, specify the
appropriate ones, and rerun the job.

FABH0231E PCB'S CANNOT BE FOUND

Explanation
On entry, FABHTEST could not find the PCBs. This was
probably caused by FABHTEST not being invoked by
the FABHDLI or FABHDBB procedure (or by equivalent
JCLs).

System action
Program FABHTEST ends abnormally.

412 IMS High Performance Unload: User's Guide

User response
Use the FABHDLI or FABHDBB procedure.

FABH0232E PSB HAS NO DB-PCB'S

Explanation
The provided PSB has no database PCBs. Therefore,
the run of FABHTEST is meaningless.

System action
Program FABHTEST ends abnormally.

User response
Provide a PSB that refers to a database.

FABH0233E SYSIN CANNOT BE OPENED

Explanation
The SYSIN data set containing the FABHTEST control
statements could not be opened.

System action
Program FABHTEST ends abnormally. System
messages are issued to describe the problem in more
detail.

User response
Add a SYSIN DD statement to the appropriate control
statements.

FABH0234E INVALID TYPE OF CONTROL
STATEMENT

Explanation
The last control statement read has an incorrect
statement type in columns 1–4. Only the following
control statement types can be specified: PCB, GU,
GN, or GNR.

System action
Program FABHTEST ends abnormally.

User response
If the abend is unintentional, correct the control
statement.

FABH0235E SPECIFIED PCB IS NEITHER A
HSSR-PCB NOR A DL/I-DB-PCB

Explanation
The PCB specified on the PCB control statement is
neither an HSSR PCB nor a DL/I database PCB.

System action
Program FABHTEST ends abnormally.

User response
Correct the PCB control statement or modify the PSB.

FABH0236E SPECIFIED PCB-NUMBER NOT
WITHIN PSB

Explanation
The PCB number specified on the PCB control
statement does not exist within the provided PSB.

System action
Program FABHTEST ends abnormally.

User response
Correct the PCB control statement or modify the PSB.

FABH0237E GU WITH SSA NOT POSSIBLE
BECAUSE ROOT HAS NO KEY-
FIELD

Explanation
The last printed GU control statement contains a
relational operator in columns 16–17. This means that
program FABHTEST should issue GU calls with an
SSA qualified on the key field of the root segment.
However, the root segment has no key fields.

System action
FABHTEST ends abnormally.

User response
Remove the GU control statement.

FABH0238E THE 'NUMBER FIELD' IS NOT
NUMERIC

Explanation
Positions 5–14 of the last printed control statement
contains a character that is neither numeric nor blank.

System action
Program FABHTEST ends abnormally.

Chapter 35. Messages and codes 413

User response
Correct the control statement.

FABH0239E REPL STATEMENT IS NOT
SUPPORTED FOR PARTITION DB

Explanation
A REPL statement is specified in the SYSIN data set for
the FABHTEST utility. REPL statement is not allowed
for the FABHTEST utility.

System action
Program FABHTEST ends abnormally.

User response
Modify the SYSIN statement not to use a REPL
statement.

FABH0240E UNEXPECTED CONTINUATION
STATEMENT

Explanation
The last printed statement is a continuation control
statement that is not preceded by a control statement
containing the continuation indicator in column 72.

System action
Program FABHTEST ends abnormally.

User response
Remove the offending continuation control statement,
or insert a continuation indicator in the preceding
control statement.

FABH0241E ILLEGAL CONTINUATION; KEY
FIELD SHOULD END ON THIS
CONTROL STATEMENT

Explanation
The last printed control statement contains a
continuation indicator in column 72, but the FIELD
statement of DBDGEN indicates that the key field of
the root is short enough to end on the last printed
control statement.

System action
Program FABHTEST ends abnormally.

User response
Check for the length of the key field of the
root segment, and correct the FABHTEST control
statements.

FABH0242E CONTINUATION CARD IS MISSING

Explanation
Program FABHTEST expected a continuation control
statement, but received the last printed control
statement.

System action
FABHTEST ends abnormally.

User response
Insert the missing continuation control statement.

FABH0243E SYSPRINT CANNOT BE OPENED

Explanation
The SYSPRINT data set containing a listing of the
FABHTEST control statements could not be opened.

System action
Program FABHTEST ends abnormally. System
messages will be issued to describe the problem in
more detail.

User response
Correct the SYSPRINT DD statement.

FABH0248W INCORRECT ROOT KEY IN GU-
CALL (STATUS CODE FM)

Explanation
Program FABHTEST received a status code FM from
HSSR call handler because of a return code 4 from the
HDAM randomizing module.

System action
FABHTEST program continues processing.

User response
Determine whether the preceding is acceptable.

FABH0249E PCB WITH SPECIFIED DBDNAME
NOT FOUND

414 IMS High Performance Unload: User's Guide

Explanation
The last printed PCB control statement contains a
DBDNAME that is not referred to by any PCB of the
PSB.

System action
Program FABHTEST ends abnormally.

User response
Correct the PCB control statement or provide another
PSB.

FABH0250E FABH001 HAS NOT BEEN
PROPERLY INITIALIZED

Explanation
The HSSR control block HTCB located within the load
module FABH001 was not properly initialized by HSSR
Engine.

System action
HSSR Engine ends abnormally.

User response
Possible reason for this error is that FABHURG1
was not run with JCL equivalent to the procedures
FABHDLI, FABHDBB, or FABHULU but with JCL similar
to the procedures DLIBATCH or DBBBATCH.

Execute FABHURG1 with correct JCL.

FABH0251E SYSPRINT COULD NOT BE OPENED

Explanation
Program FABHURG1 could not open the SYSPRINT
data set.

System action
FABHURG1 ends abnormally.

User response
Provide or correct a SYSPRINT DD statement.

FABH0252E INVALID STATEMENT WAS
DETECTED

Explanation
An incorrect control statement type was specified in
the FABHURG1 SYSIN data set.

System action
Program FABHURG1 ends abnormally.

User response
Correct the utility control statement.

FABH0253E PCB NUMBER IS NOT POSITIVE

Explanation
A FABHURG1 SYSIN data set PCB control statement
specified a PCB number that was not positive.

System action
Program FABHURG1 ends abnormally.

User response
Correct the PCB control statement.

FABH0254E SPECIFIED HSSR PCB IS NOT
FOUND

Explanation
A FABHURG1 SYSIN data set PCB control statement
specified an HSSR PCB that could not be found. Note
that the PCB control statement should refer to HSSR
PCBs, never to DL/I PCBs.

System action
Program FABHURG1 ends abnormally.

User response
Correct the utility control statement or the PSB.

FABH0255E NUMERIC FIELD IS NOT NUMERIC

Explanation
A FABHURG1 SYSIN data set control statement, in
a field defined as numeric, contains non-numeric
information.

System action
Program FABHURG1 ends abnormally.

User response
Correct the control statement.

FABH0256E BLKSIZE OR LRECL OF ddname IS
TOO SMALL

Chapter 35. Messages and codes 415

Explanation
The block size or record size of the ddname data set is
too small. For *HD output, the block size is always the
maximum device capacity. For other output, the block
size or record size is the maximum device capacity
unless a block size or record size is coded on the JCL
statement.

System action
Program FABHURG1 ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• If a user record-formatting routine is used, check
whether ULEN can be reduced.

• If the utility uses the maximum device capacity,
check whether ddname can be allocated on a device
with more track capacity.

• If the utility uses the block size or record size
specified on the JCL statement, check whether the
block size or record size can be increased or use the
default maximum device capacity.

• Record size can be specified only for *F1, *F2 and
*F3 format. If the record size (LRECL) is coded on the
JCL statement, it must be less than or equal to the
(block size) minus 4.

• If an optional exit routine is used for the FABHURG1
utility, check whether the length specified on the
USEGMAX control statement can be reduced.

FABH0257E OPEN OF ddname HAS FAILED

Explanation
Program FABHURG1 could not open ddname.

System action
FABHURG1 ends abnormally.

User response
Correct the ddname DD statement.

FABH0258E THERE ARE NO HSSR PCBS

Explanation
The PSB does not contain an HSSR PCB.

System action
Program FABHURG1 ends abnormally.

User response
Correct the PSB or remove the HSSROPT DBDL1
control statement.

FABH0259E USER PROGRAMMING ERROR:
LENGTH OF CURRENT ddname
RECORD IS TOO LARGE

Explanation
A user record-formatting routine or a user exit routine
created a ddname record that is larger than allowed.

System action
Program FABHURG1 ends abnormally.

User response
Correct the user routine.

FABH0260E INVALID RETURN CODE FROM
USER ROUTINE

Explanation
A user routine set an incorrect return code. Only the
following return codes are valid: 0, 1, 2, 3.

System action
Program FABHURG1 ends abnormally.

User response
Correct the user routine.

FABH0261E OPEN OF SYSUT1 HAS FAILED

Explanation
Program FABHURG1 could not open SYSUT1.

System action
FABHURG1 ends abnormally.

User response
Correct the SYSUT1 DD statement.

FABH0262E RECORDS OF ddname ARE NOT
EQUAL

Explanation
Program FABHURG1 compared its ddname output
with the output from the IMS HD Reorganization
Unload utility (which was defined by the SYSUT1 DD

416 IMS High Performance Unload: User's Guide

statement). FABHURG1 detected that these data sets
contain records that are not equal.

System action
FABHURG1 ends abnormally. In the dump, Register 7
will point to the SYSUT1 record and Register 8 to the
ddname record.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

• Ensure that the database and DBD have not
been updated between the execution of IMS
HD Reorganization Unload and the execution of
FABHURG1.

• Ensure that SYSUT1 is created with the IMS HD
Reorganization Unload utility without any user exit
routine.

• Check whether the execution of the IMS HD
Reorganization Unload utility is successful.

If the problem persists, run FABHURG1 with the
HSSROPT compare option and the HSSROPT hardcopy
trace option. If necessary, contact IBM Software
Support.

FABH0263E SYSUT1 CONTAINS MORE DATA
RECORDS THAN ddname

Explanation
Program FABHURG1 compared its ddname output with
the output of the IMS HD Reorganization Unload utility
(which was defined by the SYSUT1 DD statement).
FABHURG1 detected that these data sets did not
contain the same number of database segments.

System action
FABHURG1 ends abnormally.

User response
See message FABH0262E, and take an appropriate
action.

FABH0264E SYSUT1 CONTAINS LESS DATA
RECORDS THAN ddname

Explanation
Program FABHURG1 compared its ddname output with
the output of the IMS HD Reorganization Unload utility

(which was defined by the SYSUT1 DD statement).
FABHURG1 detected that these data sets did not
contain the same number of database segments.

System action
FABHURG1 ends abnormally.

User response
See message FABH0262E, and take an appropriate
action.

FABH0265W SIZE OF STATISTIC TABLES ARE
NOT THE SAME IN SYSUT1 AND
ddname

Explanation
Program FABHURG1 compared its ddname output with
the output of the IMS HD Reorganization Unload utility
(which was defined by the SYSUT1 DD statement).
FABHURG1 detected that the statistic tables stored in
the first and last record do not have the same length.

System action
FABHURG1 ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the database and DBD have not
been updated between the execution of IMS
HD Reorganization Unload and the execution of
FABHURG1.

• Ensure that SYSUT1 is created with the IMS HD
Reorganization Unload utility without any user exit
routine.

• Check whether the execution of the IMS HD
Reorganization Unload utility is successful.

If the problem persists, run FABHURG1 with the
HSSROPT compare option and the HSSROPT hardcopy
trace option. If necessary, contact IBM Software
Support.

FABH0266W COMPARE OF SYSUT1 AND
ddname STOPPED

Explanation
Program FABHURG1 compared its ddname output
with the output of the IMS HD Reorganization Unload
utility. FABHURG1 stopped the compare for one of the
following reasons:

Chapter 35. Messages and codes 417

• Some segments are not sensitive.
• A user routine returned a nonzero return code.

System action
Because the comparison is no longer possible,
FABHURG1 continues its processing without
performing the comparison of SYSUT1 and ddname.

User response
None.

FABH0267E GG STATUS CODE ENCOUNTERED
AND SKERROR OPTION WAS NOT
ACTIVATED

Explanation
HSSR Engine detected a database error and returned
a GG status code to program FABHURG1. FABHURG1
can handle this status code only if the SKERROR
option has been activated.

System action
FABHURG1 ends abnormally.

User response
If you want to unload a corrupted database, activate
the SKERROR option. In other cases, complete the
following tasks to identify the cause, and take
appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0268W WARNING: NOT ALL SEGMENTS
WERE SENSITIVE

Explanation
Program FABHURG1 detected that some database
segment types were not sensitive.

System action
FABHURG1 continues processing.

User response
Check whether FABHURG1 uses a PSB with some
segment types not defined as sensitive.

FABH0269W WARNING: SOME SEGMENTS
HAVE BEEN SKIPPED BY USER
ROUTINES

Explanation
Program FABHURG1 detected that a user routine
has set a nonzero return code, indicating that some
segment occurrences should be skipped and should
not be written to any unload data set.

System action
FABHURG1 continues processing.

User response
Check whether the user routines should really set a
nonzero return code.

FABH0270W WARNING: SOME SEGMENTS
HAVE A VIRTUAL LOGICAL
PARENT KEY

Explanation
Program FABHURG1 detected that a logical child
segment has a virtual logical-parent-concatenated-key
(LPCK), but the BLDLPCK control statement is not
specified. Hence the output will contain blanks instead
of the LPCK (unless user routines have performed
additional processing).

System action
FABHURG1 continues processing.

User response
Check whether this condition is acceptable. If it is not,
specify the BLDLPCK control statement.

FABH0271W WARNING: SEGMENTS MAY BE
MISSING ON UNLOADED OUTPUT
BECAUSE OF GG STATUS CODE

Explanation
Program FABHURG1 is running with the SKERROR
option in order to unload a database that contained
database errors. Some segments might be missing on
the unloaded output.

System action
FABHURG1 continues processing.

418 IMS High Performance Unload: User's Guide

User response
Determine whether the unloaded database version
is acceptable to the applications. If not, complete
the following tasks to identify the cause, and take
appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0272I DB UNLOAD COMPLETE

Explanation
Program FABHURG1 reached the end of the database
and has finished its processing.

System action
FABHURG1 continues processing.

User response
None. This message is informational.

FABH0273I nnn,nnn,nnn DB RECORDS
RETRIEVED - DBD=dbdname
PART=ddname

Explanation
nnn,nnn,nnn database records have been retrieved
from database dbdname. PART=ddname is displayed
only for partitioned databases, and in that case, the
database records are counted per partition.

System action
Program FABHURG1 continues processing.

User response
None. This message is informational.

FABH0274E RETURN CODE 4 FROM HDAM
RANDOMIZER, RMOD=xxxxxxxx

Explanation
Program FABHURG1 received a status code FM
because of the return code 4 from HDAM randomizing
module. xxxxxxxx is the name of HDAM randomizing
module. Register 9 contains the address of key used
by the HSSR call.

System action
FABHURG1 ends abnormally.

User response
The randomizer is different from the one for the real
database. Use the correct randomizer and rerun the
job, if necessary.

FABH0275W WARNING: NO SEGMENT WAS
RETRIEVED

Explanation
Program FABHURG1 attempted to unload a database,
but no segment was retrieved from the database. The
database might be empty.

System action
FABHURG1 normally ends with a return code of 01.

User response
Check whether it is acceptable that the input database
has no valid segments. If a wrong database data
set, or wrong DBD or PSB was specified, specify the
appropriate ones, and rerun the job.

FABH0276I USEGMAX STATEMENT IS
IGNORED

Explanation
This message is issued in one of the following cases:

1. The length specified on the USEGMAX control
statement is less than the length of the longest
database segment.

2. No user exit routine is specified.
3. The USEGMAX statement is specified for the *F3

format or for the user record-formatting routine.

System action
For each case, the following system action is taken:

1. The length specified on the USEGMAX statement is
adjusted to the length of the longest segment.

2. The USEGMAX statement is ignored.
3. The USEGMAX statement is ignored.

In any of these cases, program FABHURG1 continues
its processing and ends with a return code of 0.

Chapter 35. Messages and codes 419

User response
If the system action is acceptable, remove the
USEGMAX statement or modify the value for the
USEGMAX control statement for the next run. If
the action is not acceptable, check your control
statements or the DBD that you specified. Then correct
the error, and rerun the job.

FABH0278I NOT ALL PARTITIONS ARE
PROCESSED

Explanation
This message is for information only. This message
notifies the user that all partitions are not processed
by the job. Only the selected partitions are processed.

System action
HSSR Engine continues processing.

User response
None. This message is informational.

FABH0279E 'DATA CONVERSION' OPTION FOR
EXIT CONTROL STATEMENT IS
NOT ALLOWED

Explanation
The data conversion option Y is specified in column
15 of an EXIT control statement although the Data
Conversion exit routine is not called for the database
for one of the following reasons:

• DATXEXIT NO option is specified in the HSSROPT
data set.

• DATXEXIT=NO is specified for the database at
DBDGEN, and the module DFSDBUX1 was not found
in any STEPLIB library.

• DATXEXIT=NO is specified for the database at
DBDGEN, and the Data Conversion exit set
SRCHFLAG to X'FF'.

System action
Program FABHURG1 ends abnormally.

User response
If you want to call a Data Conversion exit routine,
you must prepare it in a STEPLIB library and specify
'DATXEXIT YES' in the HSSROPT data set.

FABH0280E INVALID 'DATA CONVERSION'
OPTION ON EXIT CONTROL
STATEMENT

Explanation
Program FABHURG1 detected an error in the 'data
conversion' option field of the EXIT control statement.

System action
FABHURG1 ends abnormally.

User response
Correct the error.

FABH0281E OUTPUT FORMAT *CS IS NOT
SUPPORTED FOR THIS DATABASE:
DBD=dbdname

Explanation
This message is issued if the *CS format is specified
for a SHISAM database or for a secondary index.

System action
Program FABHURG1 ends abnormally.

User response
Use an unload format other than *CS.

FABH0282E [MIGRATION|FALLBACK] UNLOAD
IS NOT SUPPORTED IN THIS
REGION TYPE

Explanation
The migration unload and the fallback unload are not
supported in the DLI or the DBB region. You must run
these jobs in the ULU region.

System action
Program FABHURG1 or FABHFSU ends abnormally.

User response
Run the job in the ULU region.

FABH0283E INVALID PART STATEMENT IS
SPECIFIED: reason

Explanation
An incorrect PART statement is specified in the SYSIN
data set. reason indicates the reason of the error, as
follows:

reason
Description

420 IMS High Performance Unload: User's Guide

NON-PARTITIONED DB
The PART control statement is specified for a
nonpartitioned database.

TOO MANY PARAMETERS
More than 32 partitions are specified on the PART
control statements.

DUPLICATION (ddname)
The partition DD name ddname is specified more
than once.

NOT FOUND (ddname)
The partition DD name ddname specified on a
PART statement was not found in the DBD.

System action
Program FABHURG1 ends abnormally.

User response
Correct the error and rerun the job.

FABH0284E INCORRECT CHECKREC OPTION

Explanation
An incorrect CHECKREC option is specified in the
SYSIN data set. It must be either YES or NO.

System action
Program FABHURG1 ends abnormally.

User response
Correct the error.

FABH0285E OUTPUT FORMAT *CP IS NOT
SUPPORTED FOR THIS DATABASE:
DBD=dbdname

Explanation
This message is issued if the *CP format is specified
for a database that is not a HALDB.

System action
Program FABHURG1 ends abnormally.

User response
Use an unload format other than *CP.

FABH0286E SPECIFIED DBVER IS NOT
SUPPORTED

Explanation
IMS database versioning is enabled, but the specified
database is not the current version of the database.
When IMS database versioning is enabled, only the
current version of the database can be used.

System action
FABHURG1 or FABHFSU ends abnormally.

User response
Specify the current version of the database.

FABH0287E LOAD FAILED FOR MODULE:
module

Explanation
Load failed for the indicated module.

System action
Program FABHURG1 or FABHFSU ends abnormally.

User response
Check the contents of the load module library. Correct
the error and rerun the job.

FABH0288E SINGLE PARTITION PROCESSING
IS NOT SUPPORTED

Explanation
When the entire database processing is requested
with no PARTITION control statement of program
FABHURG1 or FABHFSU, the DFSHALDB data set for
HALDB Single Partition Processing cannot be used.

System action
FABHURG1 or FABHFSU ends abnormally.

User response
Remove the HALDB control statement on the
DFSHALDB DD statement. If you want to unload a
partition, specify the PARTITION control statement in
the SYSIN data set of FABHURG1 or in the CARDIN
data set of FABHFSU.

FABH0289E CEEPIPI ERROR OCCURRED.
FUNC=function, RC=return_code

Chapter 35. Messages and codes 421

Explanation
IMS HP Unload invoked the Language Environment
CEEPIPI service, but the CEEPIPI service returned a
non-zero return code.

System action
IMS HP Unload ends abnormally.

User response
When function shows INIT, the function of CEEPIPI
is init_sub or identify_entry. When function shows
CALLSUB, the function of CEEPIPI is call_sub.
For the return codes, see the topic about
preinitialization services in the z/OS Language
Environment Programming Guide.

Correct the error and rerun the job.

FABH0290E MUTUALLY EXCLUSIVE CONTROL
STATEMENTS ARE SPECIFIED:
xxxxxxxx AND yyyyyyyy

Explanation
The control statements xxxxxxxx and yyyyyyyy are
mutually exclusive.

System action
Program FABHURG1 ends abnormally.

User response
Select only one of these statements, and remove the
rest.

FABH0291E AN ERROR IS FOUND IN
A 'PARTITION' CONTROL
STATEMENT: reason

Explanation
A PARTITION statement is coded incorrectly. The
string reason indicates the reason for the error:

reason
Description

NON-HALDB
The PARTITION statement is specified for a
database that is not a HALDB.

NAME TOO LONG
The value specified as the first operand of the
PARTITION statement has more than seven bytes.

NUMBER TOO LONG
The numeric value specified as the second
operand of the PARTITION statement has more
than five digits.

NUMBER TOO LARGE
The numeric value specified as the second
operand of the PARTITION statement is greater
than 1001.

NUMBER IS ZERO
The numeric value specified as the second
operand of the PARTITION statement is 0.

System action
Program FABHURG1 ends abnormally.

User response
Correct the error in the PARTITION statement.

FABH0292E MIGRATE CONTROL STATEMENT
IS SPECIFIED FOR AN
UNSUPPORTED DB TYPE

Explanation
The MIGRATE control statement cannot be used for
this database. For details about the control statement,
see “MIGRATE control statement” on page 43.

System action
Program FABHURG1 ends abnormally.

User response
Ensure that the correct DBD is specified.

FABH0293E FALLBACK CONTROL STATEMENT
IS SPECIFIED FOR NON-HALDB

Explanation
The FALLBACK control statement is specified for a
database that is not a HALDB.

System action
Program FABHURG1 ends abnormally.

User response
Ensure that the correct DBD is specified.

FABH0294E INVALID UNLOAD FORMAT IS
SPECIFIED FOR [MIGRATION|
FALLBACK] UNLOAD

422 IMS High Performance Unload: User's Guide

Explanation
A format other than *HD is specified on the FRMT
control statement for the FABHURG1 job, although the
migration or fallback unload is designated.

System action
Program FABHURG1 ends abnormally.

User response
Specify the *HD format, and rerun the job.

FABH0295E USEGMAX CONTROL STATEMENT
IS SPECIFIED FOR [MIGRATION|
FALLBACK] UNLOAD

Explanation
The USEGMAX control statement is specified for the
FABHURG1 job, although the migration or fallback
unload is designated. The USEGMAX control statement
is not allowed in migration and fallback unload.

System action
Program FABHURG1 ends abnormally.

User response
Remove the USEGMAX control statement, and rerun
the job.

FABH0296E LE OPTION IS NOT ALLOWED
WHEN THE RUN TIME
ENVIRONMENT EXIT ROUTINE IS
BEING INVOKED

Explanation
If the RTEXIT control statement is specified for a
user runtime environment exit routine, the language
environment option cannot be specified to activate the
Language Environment.

System action
IMS HP Unload ends abnormally.

User response
Remove the RTEXIT control statement and rerun the
job.

FABH0299I UNLOAD FUNCTION ENDED,
HIGHEST RETURN CODE IS xxx
(REASON CODE: yyyy)

Explanation
Program FABHURG1 that had been invoked by using
a JCL that is compatible with IMS HD Reorganization
Unload utility ended with the decimal return code xxx.
For the meaning of hexadecimal reason code yyyy for
the return code of 4, see “FABHURG1 return codes
when IMS HD Reorganization Unload JCL is used” on
page 379.

System action
Program FABHURG1 ends its processing.

User response
Check the return code. If the return code is 4,
check also the reason code. Check the accompanying
FABHxxxxx messages.

FABH0300E ERROR IN OPENING SYSIN

Explanation
The runtime initializer of IMS High Performance
Unload called from the DFSISVI0 exit failed in opening
the SYSIN data set.

System action
IMS High Performance Unload's runtime initializer
ends abnormally.

User response
Find the cause of the open error.

FABH0301E //EXEC PARM-FIELD SHOULD
BEGIN WITH NAME OF REGION
CONTROLLER FOLLOWED BY '/'

Explanation
The PARM field of the EXEC statement does not begin
with the name of the region controller followed by a
slash.

System action
The runtime initializer ends abnormally.

User response
Correct the EXEC statement.

FABH0302E NAME OF REGION CONTROLLER
IN //EXEC PARM-FIELD IS LONGER
THAN 8 BYTES

Chapter 35. Messages and codes 423

Explanation
The PARM field of the EXEC statement does not begin
with the name of the region controller followed by
a slash. Either the slash is omitted, or the region
controller name is more than 8 bytes long.

System action
The runtime initializer ends abnormally.

User response
Correct the EXEC statement.

FABH0303E PGM-NAME HAS NOT BEEN
PROVIDED ON //EXEC PARM-
FIELD

Explanation
The PARM field of the EXEC statement does not
contain the name of the application program.

System action
The runtime initializer ends abnormally.

User response
Correct the EXEC statement.

FABH0304E PGM-NAME IN //EXEC PARM-
FIELD IS LONGER THAN 8 BYTES

Explanation
The PARM field of the EXEC statement contains an
application program name that is longer than 8 bytes.

System action
The runtime initializer ends abnormally.

User response
Correct the EXEC statement.

FABH0305E DFSURGU0 ALREADY IN VIRTUAL
STORAGE

Explanation
In a ULU region type, the runtime initializer identifies
the entry point DFSURGU0 as the entry into FABH000.
This requires that the module DFSURGU0 is not
already in virtual storage at initialization time. This
condition was not met during this execution.

System action
The runtime initializer ends abnormally.

User response
Contact IBM Software Support.

FABH0306E UNEXPECTED RETURN CODE
FROM IDENTIFY

Explanation
In a ULU region type, the runtime initializer issues an
IDENTIFY macro. The IDENTIFY failed. This should not
occur.

System action
The runtime initializer ends abnormally.

User response
Contact IBM Software Support.

FABH0307E LOAD MODULE FABH000 IS NOT
REENTRANT

Explanation
FABH000 must be link-edited with the link-editor
attribute RENT. This was not the case.

System action
The runtime initializer ends abnormally.

User response
Contact IBM Software Support.

FABH0308E MEMBER NAME DFSURGU0 IS
INVALID FOR A JOB RUNNING IN
ULU REGION

Explanation
The IMS utility DFSURGU0 cannot be executed in a
ULU region.

System action
The runtime initializer ends abnormally.

User response
Instead of executing DFSURGU0 in the ULU region,
execute it with normal IMS job control statements.

FABH0309E FABH001 IS NOT REUSABLE

424 IMS High Performance Unload: User's Guide

Explanation
The load module FABH001 must have the link-editor
attribute REUS. This was not the case.

System action
The runtime initializer ends abnormally.

User response
Find out why FABH001 is not reusable (it might be
a submodule which is not reusable). If necessary,
contact IBM Software Support.

FABH0310E MODULE FABH001 IS NOT
REUSABLE; PLEASE INFORM
YOUR IMS–SPECIALISTS

Explanation
IMS High Performance Unload's program controller
detected an error. One likely cause of the error is that
the load module FABH001 does not have the linkage-
editor attribute REUS.

System action
The job ends abnormally with a dump.

User response
Check in the dump if FABH001 is serially reusable. If
necessary, relink FABH001 as serially reusable.

FABH0311E DYNAMIC ALLOCATION FAILED
FOR DD xxxxxxxx: RC=xx RSN=yyyy

Explanation
The dynamic allocation for the DD xxxxxxxx failed. The
values xx and yyyy are the return code and reason
code that are returned from the SVC99 routine.

System action
HSSR Engine ends abnormally.

User response
If the DD name xxxxxxxx is DFSVSAMP, this might be
an internal system error. If so, collect the dump and
contact IBM Software Support.

FABH0312E DFSVSAMP OPEN FAILURE
OCCURRED

Explanation
The runtime initializer failed to open the DFSVSAMP
data set that the initializer dynamically allocated.

System action
The runtime initializer ends abnormally.

User response
This error is likely an internal system error. Collect the
dump and contact IBM Software Support.

FABH0313E SYNTAX ERROR IN SYSIN
CONTROL STATEMENTS

Explanation
Both a control statement for IMS HD Reorganization
Unload utility (DFSURGU0) and a control statement for
program FABHURG1 are specified in the SYSIN data
set. You must specify control statements for one, but
not both, of these utilities.

System action
IMS High Performance Unload's runtime initializer
ends abnormally.

User response
Correct the SYSIN control statements.

FABH0314E HSSR INITIALIZATION FAILED

Explanation
HSSR engine detected an error, which is described in
the previous error message.

System action
HSSR Engine ends abnormally.

User response
Remove the cause of the error by referring to the
message issued before this message. If the cause is
not clear, collect the dump and contact IBM Software
Support.

FABH0315E [GU/GHU/GN/GHN/GNP/GHNP]
CALL SSA-n IS UNSUPPORTED:
reason

Chapter 35. Messages and codes 425

Explanation
The application program issued a call with one or more
SSAs. The n-th SSA is not supported by the HSSR call
handler. The reason is one of:

SEGMENT NAME
The segment name is not defined in the HSSR PCB.

SEGMENT LEVEL
The SSA for the segment level is not supported.

COMMAND CODE
The command code is not supported.

NON-SEQ FIELD
The field is not a sequence key.

NON-UNIQUE KEY
The key field is not unique.

RELATIONAL OPERATOR
The relational operator is not supported.

MULTI QUALIFICATION STATEMENTS
The multi-qualification statement is not supported.

QUALIFIED SSA
The qualified SSA for root segment is not
supported because the database is HDAM or
PHDAM.

CALL FUNCTION
The call type is not supported.

UNKNOWN
Unknown reason.

The unsupported call is printed in the Trace Output
report in the HSSRTRAC data set.

System action
If APISET is 2, HSSR Engine ends abnormally. If
APISET is 3, the call and all the succeeding calls
to the HSSR PCB are passed to the IMS DL/I call
handler to continue the processing instead of ending
it abnormally.

User response
If APISET is 2, specify 'APISET 3'. If APISET is 3,
ignore this message. For details about the call types
and command types supported by the HSSR call
handler, see “DL/I calls and EXEC DLI command for
HSSR PCB” on page 84.

FABH0316E ERROR RETURN FROM IGWASYS
(RC=xx, RSN=yy)

Explanation
HSSR Engine called IGWASYS, but an error return code
was returned from IGWASYS. Here, xx is the return
code and yy is the reason code.

System action
HSSR Engine ends abnormally.

User response
See DFSMSdfp Advanced Services for the meaning of
the return code and reason code.

FABH0319E GN WITH QUALIFIED SSA CALL
IS ISSUED TO THE COMPRESSED
ROOT KEY

Explanation
The GN call with an SSA qualified on the root key field
is issued, however, HSSR Engine cannot compare the
compressed key with the provided value.

System action
HSSR Engine ends abnormally.

User response
For HIDAM or PHIDAM database, specify the BYINDEX
control statement in HSSROPT, then the root key
stored in the index database is used. Otherwise,
check whether the correct APISET control statement
is specified. For details about the call types and
command types that APISET supports, see “DL/I calls
and EXEC DLI command for HSSR PCB” on page 84.

FABH0320E GB ON PCF OR TWIN-NOT-ROOT

Explanation
In HD organizations, HSSR call handler follows the HD
chains to find out which is the next segment to be
processed. During this process, HSSR call handler "lost
itself."

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378).

FABH0321E RBA OUT OF DB-RANGE

Explanation
In an HD organization, HSSR call handler found a
pointer that points beyond the data set end.

426 IMS High Performance Unload: User's Guide

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Activate the compare and hardcopy trace options,
and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for problem
determination” on page 378).

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0322E S-C DOES NOT MATCH

Explanation
In an HD organization, HSSR call handler checks
the segment code of a retrieved segment against
the expected segment code. This check was not
successful.

System action
HSSR Engine ends abnormally.

User response
See message FABH0321E, and take an appropriate
action.

FABH0324E BAD RETURN-CODE FROM BUFFER
HANDLER

Explanation
HSSR buffer handler encountered an I/O problem.
More information can be found in the accompanying
SYNADAF message buffer.

System action
HSSR Engine ends abnormally.

User response
See message FABH0321E, and take an appropriate
action.

FABH0325E INVALID SEGMENT-CODE IN
HISAM

Explanation
HSSR call handler checked the segment code of an
HISAM database. The segment code is not within the
range of defined segment codes.

System action
HSSR Engine ends abnormally.

User response
See message FABH0321E, and take an appropriate
action.

FABH0326E BAD RETURN-CODE FROM
BUFFER-HANDLER (KSDS)

Explanation
While reading a KSDS record, HSSR buffer handler
encountered an I/O problem. More information will be
found in the accompanying SYNADAF message buffer.

System action
HSSR Engine ends abnormally.

User response
See message FABH0321E, and take an appropriate
action.

FABH0327E BAD RETURN-CODE FROM
BUFFER-HANDLER (ESDS/OSAM)

Explanation
While reading an OSAM block or ESDS CI, HSSR
buffer handler encountered an I/O problem. More
information will be found in the accompanying
SYNADAF message buffer.

System action
HSSR Engine ends abnormally.

User response
See message FABH0321E, and take an appropriate
action.

FABH0329E REPLACE CALL WITHOUT
PREVIOUS SUCCESSFUL GH CALL

Explanation
The application program issued an HSSR Replace call,
but it had not previously issued a successful Get Hold
call.

Chapter 35. Messages and codes 427

System action
HSSR Engine ends abnormally.

User response
Correct the program error.

FABH0330E INVALID CALL-FUNCTION

Explanation
The application program issued an HSSR call with a
call function that was neither GU, GN, GNP, GHU, GHN,
GHNP, REPL, or RBA.

System action
HSSR Engine ends abnormally.

User response
Correct the error.

FABH0331E INVALID PARM-NUMBER IN GN-
CALL

Explanation
The application program issued an HSSR GN call with
an incorrect number of parameters (too few or too
many).

System action
HSSR Engine ends abnormally.

User response
Ensure that your application program issues HSSR GN
calls with the correct number of parameters.

Assembler and COBOL programs should issue GN calls
with the following parameters:

• Function
• PCB
• IOAREA
• SSA (optional)

PL/I programs should issue GN calls with the following
parameters:

• Parameter Count
• Function
• PCB
• IOAREA
• SSA (optional)

FABH0332E SEGMENT-NAME IN SSA IS NOT
ROOT-NAME

Explanation
The application program issued an HSSR GN call with
an SSA; the segment name in the SSA is not the name
of the root segment.

System action
HSSR Engine ends abnormally.

User response
Specify 'APISET 2' or 'APISET 3'. For details about the
call types and command types that APISET supports,
see “DL/I calls and EXEC DLI command for HSSR PCB”
on page 84.

FABH0333E SEGMENT-NAME IN SSA NOT
FOLLOWED BY A BLANK

Explanation
The application program issued an HSSR GN call with
an SSA; the 8-byte segment name in the SSA is not
followed by a blank.

System action
HSSR Engine ends abnormally.

User response
Specify 'APISET 2' or 'APISET 3' in the control
statement. For details about the call types and
command types that APISET supports, see “DL/I calls
and EXEC DLI command for HSSR PCB” on page 84.

FABH0334E ROOT-SEGMENT IS NOT (DATA-)
SENSITIVE

Explanation
The application program issued an HSSR GN call to
retrieve the next database root segment; however, in
the PSBGEN, the root segment is not defined as data-
sensitive.

System action
HSSR Engine ends abnormally.

User response
Modify the PSB or modify the program.

428 IMS High Performance Unload: User's Guide

FABH0335E INTERNAL ERROR OCCURRED IN
HSSR CALL HANDLER

Explanation
HSSR call handler detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0336E NO ERROR TEXT AVAILABLE

Explanation
HSSR Engine detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0337E ADDRESS-LIST OF HSSR CALL-
PARAMETERS IS INVALID

Explanation
The format of the call-parameter address list used in
the HSSR call is incorrect.

System action
HSSR Engine ends abnormally.

User response
This problem can happen in the following cases:

• An Assembler application program provides an
incorrect parameter address.

• The member of the call parameters is incorrect.

Ensure that Register 6 points to the address list of
the call parameters. Correct the application program
to provide appropriate parameter addresses.

FABH0338E INCORRECT SEGMENT NAME IN
SSA

Explanation
The application program issued an HSSR GN call with
an incorrect segment name in the SSA. The segment
name must be the name of a sensitive segment.

System action
HSSR Engine ends abnormally.

User response
Correct the program error.

FABH0339E A DEPENDENT SEGMENT IS NOT
(DATA-) SENSITIVE

Explanation
The application program issued an HSSR GN call to
retrieve the next dependent segment; in the PSBGEN,
however, the dependent segment is not defined as
data-sensitive.

System action
HSSR Engine ends abnormally.

User response
Modify the PSB or modify the program.

FABH0340E EXECUTION IN AN ONLINE
REGION IS NOT SUPPORTED

Explanation
An attempt was made to run IMS High Performance
Unload in an online region. This is not supported.

System action
All HSSR calls fall back to DL/I calls. All HSSR PCBs fall
back to DL/I PCBs and all calls issued against these
PCBs are processed by DL/I action modules.

Chapter 35. Messages and codes 429

User response
Correct the region type in the PARM field of the EXEC
statement.

FABH0341E PST LAYOUT HAS CHANGED

Explanation
During the initialization of HSSR Engine, an incorrect
DL/I PST layout was detected.

System action
All HSSR calls fall back to DL/I calls. All HSSR PCBs fall
back to DL/I PCBs, and all calls issued against these
PCBs are processed by DL/I action modules.

User response
Check whether IMS High Performance Unload
supports the active IMS release.

FABH0342E LANGUAGE OF PSB IS NOT
SUPPORTED

Explanation
During the initialization of HSSR Engine, a PSB
language flag defining a language other than
Assembler, COBOL, or PL/I was detected.

System action
All HSSR calls fall back to DL/I calls. All HSSR PCBs
and all calls are processed by DL/I action modules.

User response
Correct the PSB language statement and rerun the job,
if necessary.

FABH0343E HSSR INITIALIZATION HAS
INTERCEPTED A PGM CHECK

Explanation
During the initialization of HSSR Engine, an ESPIE EXIT
routine intercepted a program check; the possible
cause is an incorrect DL/I control block layout.

System action
All HSSR calls fall back to DL/I calls. All HSSR PCBs fall
back to DL/I PCBs, and all calls issued against these
PCBs are processed by DL/I action modules.

User response
If necessary, contact IBM Software Support.

FABH0344E LAYOUT OF PCPARMS AND/OR
RCPARMS HAS CHANGED

Explanation
During the initialization of HSSR Engine, HSSR
detected an unexpected layout of DL/I PCPARMS or
RCPARMS control blocks.

System action
All HSSR calls fall back to DL/I calls. All HSSR PCBs fall
back to DL/I PCBs, and all calls issued against these
PCBs are processed by DL/I action modules.

User response
Check whether IMS High Performance Unload
supports the active IMS release.

FABH0346E DB-ACCESS NOT AUTHORIZED BY
DBRC

Explanation
This message is issued when IMS High Performance
Unload is running in ULU region type and when DBRC
does not authorize access to the database. Notice that
in ULU region types, the requested authorization is for
database level sharing with read-integrity.

System action
HSSR Engine ends abnormally.

User response
Resubmit the job at a time when DBRC can authorize
access to the database. If the function of the job step
is not an HD unload of the database, make sure that
the program owner really wants to have the program
executed in a ULU Region type.

FABH0347E INVALID PSB OR DBD CONTROL-
BLOCKS FOR FABHFSU

Explanation
FABH010 detected a problem with a PSB or DBD
control block during initialization.

System action
HSSR Engine ends abnormally.

User response
Ensure that the correct PSBs and DBDs are used.

430 IMS High Performance Unload: User's Guide

FABH0348E INTERNAL ERROR OCCURRED IN
HSSR CALL ANALYZER

Explanation
HSSR call analyzer detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0349E PSB HAS NO PCB'S

Explanation
The PSB provided has no PCBs. Therefore, the use of
HSSR Engine is meaningless.

System action
HSSR Engine ends abnormally.

User response
Correct the utility control statement or the PSB.

FABH0350W HSSR CALLS FALL BACK TO
DL/I FOR [NAMED DBD|ALL
DBD'S] BECAUSE OF FOLLOWING
PROBLEM IN DBD=dbdname

Explanation
During the building of control blocks for the dbdname,
HSSR Engine detected an abnormal situation. This
situation is described by the next message.

System action
All HSSR calls fall back to DL/I calls, either for the
named DBD or for all DBDs. The corresponding PCBs
fall back to DL/I PCBs. All calls issued against these
PCBs are processed by DL/I action modules.

User response
If the fallback is done for all DBDs, the problem could
be an unexpected layout of DL/I control blocks. See
the accompanying messages issued by HSSR Engine.

FABH0351W SYSTEM PERFORMANCE WILL
SLOW DOWN, PLEASE INFORM
YOUR IMS SPECIALISTS

Explanation
This message is a warning message to the operator.
Because of an abnormal situation described in a
preceding message, HSSR calls fall back to DL/I. Calls
issued by application programs are processed by DL/I
action modules instead of HSSR Engine. This might
lead to degraded system performance.

System action
The processing continues.

User response
Inform the IMS specialists.

FABH0352E THE FALL BACK IS ABORTED
BECAUSE HSSRSNAP DD IS NOT
SPECIFIED

Explanation
HSSR Engine detected an abnormal situation
described in preceding messages, and attempted to
issue a SNAP. However, the HSSRSNAP data set could
not be opened, and the abnormal situation could not
be documented with a SNAP.

System action
Instead of issuing a SNAP, HSSR Engine ends
abnormally with dump.

User response
To prevent an abend and allow the fallback to DL/I, the
HSSRSNAP DD statement must be included in the JCL.
If the SNAP output is not required, this data set can be
defined as dummy.

FABH0353E GET-BY-RBA CALL IS NOT
SUPPORTED FOR THE
PARTITIONED DB: DBD=xxxxxxxx

Chapter 35. Messages and codes 431

Explanation
A Get-by-RBA call is issued for a partitioned database.
The Get-by-RBA call is not supported for the
partitioned database.

System action
HSSR Engine ends abnormally.

User response
Modify your application program not to use the Get-by-
RBA call, and rerun the job. See “Get-by-RBA calls” on
page 257.

FABH0354E REPL CALL IS NOT SUPPORTED
FOR THE PARTITIONED DB:
DBD=xxxxxxxx

Explanation
An HSSR REPL call is issued for a partitioned
database. The HSSR REPL call is not supported for the
partitioned database.

System action
HSSR Engine ends abnormally.

User response
Modify your application program not to use the HSSR
REPL call, or replace the HSSR REPL calls with the DL/I
REPL calls.

FABH0355E DBRC REQUIRED FOR THIS
EXECUTION

Explanation
DBRC=N is specified for the job that runs in the ULU
region and processes a HALDB.

System action
HSSR Engine ends abnormally.

User response
Specify DBRC=Y and rerun the job. If you want to
process an IMS catalog database without using DBRC,
see “Considerations for unloading an IMS catalog” on
page 27.

FABH0356E COMMAND CODE IS NOT
SUPPORTED FOR HALDB DB:
DBD=dbdname

Explanation
A command code was specified in a get call for the
HALDB database dbdname. Command codes cannot
be used in a get call for HALDB databases.

System action
HSSR Engine ends abnormally.

User response
Modify your application program so that no HSSR get
call with a command code is to be used.

FABH0358E REPL CALL IS ISSUED FOR THE
FOLLOWING HSSR PCB:

Explanation
This message is issued with another FABH0358E
message. See the explanation in “FABH0358E” on
page 432.

System action
See the system action section of the other FABH0358E
message.

User response
See the user response section of the other
FABH0358E message.

FABH0358E [DBD=xxxxxxxx |
DBD=xxxxxxxx(PARTITIONED)],
PCB#=yyyy, PCBNAME=zzzzzzzz

Explanation
The application program issues an HSSR REPL call
for the HSSR PCB shown in the message. The HSSR
REPL call is not supported in the IPR Unload's API
function. The string xxxxxxxx shows the name of the
DBD that the PCB refers to; the number yyyy shows
the PCB number in the PSB; and the string zzzzzzzz
shows the label, if there is one, of the PCB assigned
at PSBGEN. If the database is partitioned, the string
(PARTITIONED) is printed after the DBD name.

System action
HSSR Engine ends abnormally.

User response
If the database is a partitioned database, you cannot
issue any HSSR REPL calls for it. If it is not a
partitioned database and you want to issue HSSR REPL

432 IMS High Performance Unload: User's Guide

calls for it, consider running the application program
by using the API of IMS High Performance Unload.

FABH0360E INVALID STATEMENT IN HSSROPT
DD HAS BEEN IGNORED

Explanation
An HSSROPT control statement with an incorrect
statement type was found. (HSSROPT control
statements must begin in column 1 with a keyword
defining the control statement.)

System action
The incorrect control statement is ignored.

User response
Correct the control statement.

FABH0361E INVALID KEYWORD ON TRHC
STATEMENT WAS DETECTED

Explanation
An undefined keyword is specified in the HSSROPT
'TRHC' control statement. Only the following keywords
are allowed: CALL, CB, CBX, BUF, BUFCB, and
START=nnn.

System action
The incorrect keyword and the rest of the control
statement are ignored.

User response
Correct the TRHC control statement.

FABH0362E START KEYWORD ON TRHC
STATEMENT SHOULD BE
FOLLOWED BY A COMMA OR
BLANK

Explanation
An incorrect TRHC control statement is specified in the
HSSROPT data set. The START=nnn keyword must be
followed by either a comma or a blank.

System action
The START=nnn keyword and the rest of the control
statement are ignored.

User response
Correct the TRHC control statement.

FABH0363E INVALID START KEYWORD ON
TRHC STATEMENT WAS DETECTED

Explanation
An incorrect TRHC control statement is specified in
the HSSROPT data set. The counter in the keyword
START=nnn was either longer than 16 bytes or shorter
than 1 byte.

System action
The START=nnn keyword and the rest of the control
statement are ignored.

User response
Correct the TRHC control statement.

FABH0364E INVALID TRXC STATEMENT HAS
BEEN IGNORED

Explanation
An incorrect TRXC control statement is specified in the
HSSROPT data set. The following errors are possible:

• The number of core trace entries is not followed by a
blank.

• The length of the field containing the number of
entries is longer than 16 bytes.

System action
The TRXC control statement is ignored.

User response
Correct the TRXC control statement.

FABH0365E INVALID BUF STATEMENT HAS
BEEN IGNORED

Explanation
An incorrect BUF control statement is specified in the
HSSROPT data set. The following errors are possible:

• The 8-byte DBD name was not followed by a blank or
a comma.

• The number of buffers was not followed by a blank.
• The length of the field containing the buffer number

was either longer than 16 bytes or shorter than 1
byte.

System action
The BUF control statement is ignored.

Chapter 35. Messages and codes 433

User response
Correct the BUF control statement.

FABH0366E INVALID DBSTATS STATEMENT
HAS BEEN IGNORED

Explanation
An incorrect DBSTATS control statement is specified in
the HSSROPT data set.

System action
The incorrect DBSTATS control statement is ignored.

User response
Correct the DBSTATS control statement.

FABH0368E INVALID RETRY STATEMENT HAS
BEEN IGNORED

Explanation
An incorrect RETRY control statement is specified
in the HSSROPT data set. Bytes 7–10 must contain
KSDS.

System action
The incorrect RETRY control statement is ignored.

User response
Correct the RETRY control statement.

FABH0369E INVALID KEYWORD ON GOTRETRY
STATEMENT WAS DETECTED

Explanation
An undefined keyword in the GOTRETRY control
statement is specified in the HSSROPT data set. Only
the following keywords are permitted:

• NBR=
• WAIT=

System action
The incorrect keyword and the rest of the control
statement are ignored.

User response
Correct the GOTRETRY control statement.

FABH0370E RETRY NUMBER EXCEEDS
MAXIMUM VALUE

Explanation
An incorrect GOTRETRY control statement is specified
in the HSSROPT data set. The number of times that
HSSR Engine re-accesses the database is too high; it
must not exceed 999.

System action
The incorrect NBR= keyword and the rest of the
control statement are ignored.

User response
Correct the GOTRETRY control statement.

FABH0371E WAIT TIME EXCEEDS MAXIMUM
VALUE

Explanation
An incorrect GOTRETRY control statement is specified
in the HSSROPT data set. The number of seconds
that HSSR Engine should wait before re-accessing the
database is too high; it must not exceed 999 seconds.

System action
The incorrect WAIT= keyword and the rest of the
control statement are ignored.

User response
Correct the GOTRETRY control statement.

FABH0372E NUMERIC FIELD SHOULD BE
FOLLOWED BY A COMMA OR
BLANK

Explanation
An incorrect control statement is specified in the
HSSROPT data set.

System action
The incorrect numeric field and the rest of the control
statement are ignored.

User response
Correct the control statement in the HSSROPT data
set.

FABH0373E NUMERIC FIELD IS TOO LONG

Explanation
An incorrect control statement is specified in the
HSSROPT data set.

434 IMS High Performance Unload: User's Guide

System action
The incorrect numeric field and the rest of the control
statement are ignored.

User response
Correct the control statement in the HSSROPT data
set.

FABH0374E INVALID SKERROR STATEMENT
HAS BEEN IGNORED

Explanation
An incorrect SKERROR control statement is specified
in the HSSROPT data set.

System action
The incorrect statement is ignored.

User response
Correct the SKERROR statement.

FABH0375E INVALID KEYCHECK STATEMENT
HAS BEEN IGNORED

Explanation
An incorrect KEYCHECK control statement is specified
in the HSSROPT data set.

System action
The incorrect statement is ignored.

User response
Correct the KEYCHECK statement.

FABH0376E INVALID KEYWORD ON DIAGG
STATEMENT WAS DETECTED

Explanation
An undefined keyword on the DIAGG control
statement is specified in the HSSROPT data set.

System action
The incorrect keyword and the rest of the control
statement are ignored.

User response
Correct the DIAGG statement.

FABH0377E INVALID CABSTAT CONTROL
STATEMENT IS SPECIFIED

Explanation
An incorrect operand on the CABSTAT control
statement is specified in the HSSROPT data set. The
operand must be either YES or NO.

System action
The incorrect statement is ignored.

User response
Correct the CABSTAT statement.

FABH0378W DATXEXIT YES IS IGNORED
BECAUSE OF IMS LEVEL

Explanation
DATXEXIT YES is specified in the HSSROPT data set,
but HSSR Engine is running in an IMS environment,
where the Data Conversion exit is not supported.

System action
The DATXEXIT YES option is ignored, and processing
continues with DATXEXIT NO.

User response
Ensure that an appropriate IMS load module library
is specified for your job. If you do not need to use
a Data Conversion exit routine, remove the DATXEXIT
YES statement.

FABH0379E AN INVALID OPERAND IS
SPECIFIED FOR THE PARTINFO
CONTROL STATEMENT

Explanation
Either an invalid parameter is specified or no
parameter is specified for the PARTINFO statement
in HSSROPT DD. For details of the PARTINFO control
statement, refer to “PARTINFO control statement” on
page 173.

System action
The statement is ignored and the processing
continues.

User response
Correct the error and, if necessary, rerun the job.

Chapter 35. Messages and codes 435

FABH0380W BUFFER TRACE WILL NOT BE
TAKEN FOR HALDB: dbdname

Explanation
The buffer trace for the HALDB whose DBD name is
indicated in the message will not be taken.

System action
HSSR Engine continues processing.

User response
If you want to suppress the message, remove the
BUTR control statement from the HSSROPT data set.

FABH0381E DBD IS NOT A PHYSICAL DBD

Explanation
Because of PSBGEN specifications, HSSR Engine tried
to build an HSSR PCB referring to a logical DBD. Logical
databases are not supported by HSSR Engine.

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

User response
Change the PCB as follows: specify the name of the
physical DBD, or do not specify the PCB as an HSSR
PCB.

FABH0382E SEGMENT CODE IN SDB'S ARE
NOT ASCENDING

Explanation
One of the following two problems occurred:

1. During PSBGEN, the SENSEG statements were not
coded in the same hierarchical sequence as in the
DBD.

2. HSSR Engine detected an incorrect or unexpected
DL/I control block layout.

System action
HSSR Engine issues a SNAP and falls back to DL/I for
all PCBs. All PCBs are defined as DL/I PCBs and all
calls are processed by DL/I action modules.

User response
Verify that the sequence of the SENSEG statements in
the PSBGEN is the same as in the DBD; if not, correct
the sequence of the SENSEG statements and perform
the PSBGEN again.

FABH0383E SEGMENTS ARE NOT ALL IN SAME
DATABASE

Explanation
Because of PSBGEN specifications, HSSR Engine
tried to build an HSSR PCB. However, the sensitive
segments are not all in the same physical database.
HSSR Engine does not support sensitive segments in
multiple databases.

System action
HSSR Engine issues a SNAP and falls back to DL/I for
all PCBs. All PCBs are defined as DL/I PCBs and all
calls are processed by DL/I action modules.

User response
Change PSBGEN as follows: remove the problematic
SENSEG statements causing the problem, or do not
specify the PCB as an HSSR PCB.

FABH0384I PROCSEQ=indexdbd IS SPECIFIED
IN PCB#=nnn

Explanation
The secondary index indexdbd is specified by the
PROCSEQ= parameter in the PCB. nnn shows the PCB
number. HSSR Engine uses the secondary index to
retrieve the root segments.

System action
HSSR Engine continues the processing.

User response
None. This message is informational.

FABH0386E MORE THAN 10 DATA SET GROUPS
NOT SUPPORTED

Explanation
Neither IMS nor HSSR Engine supports HD databases
with more than 10 data set groups.

436 IMS High Performance Unload: User's Guide

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

User response
Change the PCB as follows: specify the name of the
physical DBD, or do not specify the PCB as an HSSR
PCB.

FABH0387E DMB POINTERS TO PSDB'S OR
AMP NOT OK

Explanation
One of the following two problems occurred:

1. During PSBGEN, the SENSEG statements were not
coded in the same hierarchical sequence as in the
DBD.

2. HSSR Engine detected an incorrect or unexpected
DL/I control block layout.

System action
HSSR Engine issues a SNAP and falls back to DL/I for
all PCBs. All PCBs are defined as DL/I PCBs and all
calls are processed by DL/I action modules.

User response
Verify that the sequence of the SENSEG statements in
the PSBGEN is the same as in the DBD; if not, correct
the sequence of the SENSEG statements and perform
the PSBGEN again.

FABH0388E UNSUPPORTED DBD: IMS/ESA
PARTITION SUPPORT PRODUCT

Explanation
Because of PSBGEN specifications, an HSSR PCB
was tried to be built. However, the IMS/ESA Partition
Support Product is not supported by HSSR Engine.

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

User response
Modify the database organization, or do not specify the
PCB as an HSSR PCB.

FABH0389E MORE SDB'S THAN PSDB'S

Explanation
One of the following two problems occurred:

1. During PSBGEN, the SENSEG statements were not
coded in the same hierarchical sequence as in the
DBD.

2. HSSR Engine detected an incorrect or unexpected
DL/I control block layout.

System action
HSSR Engine issues a SNAP and falls back to DL/I for
all PCBs. All PCBs are defined as DL/I PCBs and all
calls are processed by DL/I action modules.

User response
Verify that the sequence of the SENSEG statements in
the PSBGEN is the same as in the DBD; if not, correct
the sequence of the SENSEG statements and perform
the PSBGEN again.

FABH0390E LENGTH OF PSDB'S NOT OK

Explanation
One of the following two problems occurred:

1. During PSBGEN, the SENSEG statements were not
coded in the same hierarchical sequence as in the
DBD.

2. HSSR Engine detected an incorrect or unexpected
DL/I control block layout.

System action
HSSR Engine issues a SNAP and falls back to DL/I for
all PCBs. All PCBs are defined as DL/I PCBs and all
calls are processed by DL/I action modules.

User response
Verify that the sequence of the SENSEG statements in
the PSBGEN is the same as in the DBD; if not, correct
the sequence of the SENSEG statements and perform
the PSBGEN again.

FABH0391E SEGMENT CODE OF PSDB'S NOT
ASCENDING

Explanation
One of the following two problems occurred:

Chapter 35. Messages and codes 437

1. During PSBGEN, the SENSEG statements were not
coded in the same hierarchical sequence as in the
DBD.

2. HSSR Engine detected an incorrect or unexpected
DL/I control block layout.

System action
HSSR Engine issues a SNAP and falls back to DL/I for
all PCBs. All PCBs are defined as DL/I PCBs and all
calls are processed by DL/I action modules.

User response
Verify that the sequence of the SENSEG statements in
the PSBGEN is the same as in the DBD; if not, correct
the sequence of the SENSEG statements, and perform
the PSBGEN again.

FABH0393E SDBPSDB DOES NOT POINT TO
PSDB

Explanation
One of the following two problems occurred:

1. During PSBGEN, the SENSEG statements were not
coded in the same hierarchical sequence as in the
DBD.

2. HSSR Engine detected an incorrect or unexpected
DL/I control block layout.

System action
HSSR Engine issues a SNAP and falls back to DL/I for
all PCBs. All PCBs are defined as DL/I PCBs and all
calls are processed by DL/I action modules.

User response
Verify that the sequence of the SENSEG statements in
the PSBGEN is the same as in the DBD; if not, correct
the sequence of the SENSEG statements, and perform
the PSBGEN again.

FABH0394E NUMBER OF DSG'S CALCULATED
FROM MASTER DMB IS UNEQUAL
TO THE NUMBER CALCULATED
FROM DMB FOR PARTITION
ppppppp

Explanation
The number of DSGROUPs calculated from the master
DMB of the HALDB for which the partition ppppppp
is defined is not equal to the number of DGGROUPs
calculated from the partition DMB of the partition.

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

User response
To identify the cause, ensure that the database
processed by HSSR Engine was not being updated at
the time when the error occurred.

FABH0395E PREFIX SIZE IN PSDB NOT OK

Explanation
One of the following two problems occurred:

1. During PSBGEN, the SENSEG statements were not
coded in the same hierarchical sequence as in the
DBD.

2. HSSR Engine detected an incorrect or unexpected
DL/I control block layout.

System action
HSSR Engine issues a SNAP and falls back to DL/I for
all PCBs. All PCBs are defined as DL/I PCBs and all
calls are processed by DL/I action modules.

User response
Verify that the sequence of the SENSEG statements in
the PSBGEN is the same as in the DBD; if not, correct
the sequence of the SENSEG statements, and perform
the PSBGEN again.

FABH0396E SENSITIVE VIRTUAL LOGICAL
CHILD (segmname) IS FOUND IN
PCB#=nnnn

Explanation
A sensitive virtual logical child segment segmname is
found in the HSSR PCB. nnnn shows the PCB number.
HSSR Engine does not support sensitive virtual logical
child segment.

System action
HSSR Engine issues a SNAP and falls back to DL/I for
all PCBs. All PCBs are defined as DL/I PCBs and all
calls are processed by DL/I action modules.

438 IMS High Performance Unload: User's Guide

User response
If you do not need to retrieve the virtual logical
child segment, specify the SKIPVLC YES option in the
HSSROPT data set.

FABH0397E UNSUPPORTED DATABASE ORG

Explanation
Because of PSBGEN specifications, an HSSR PCB was
tried to be built. However, the organization of the
referred-to DBD is not supported by HSSR Engine.

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

User response
Modify the database organization, or do not specify the
PCB as an HSSR PCB.

FABH0398E INDEX DMB NOT FOUND

Explanation
Because of PSBGEN specifications, an HSSR PCB
referring to a logical DBD was tried to be built. Logical
databases are not supported by HSSR Engine.

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

User response
Change the PCB as follows: specify the name of the
physical DBD, or do not specify the PCB as an HSSR
PCB.

FABH0399I HALDB dbdname IS DEFINED AS
OSAM8G

Explanation
The indicated HALDB is defined as OSAM8G in the
RECON data set and the maximum capacity of OSAM
data sets is 8 GB of data.

System action
HSSR Engine continues processing.

User response
None. This message is informational.

FABH0400I DB HAS VIRTUAL LOGICAL CHILD
SEGMENT (segmname)

Explanation
HSSR Engine ignores the virtual logical child segment
segmname that is specified in the HSSR PCB. In the
DLI or the DBB region, the 'SKIPVLC YES' option is
used. In the ULU region, it is always ignored.

However, in the case of the migration unload to HALDB
it is not applicable. The virtual logical child segment
will be retrieved.

System action
HSSR Engine continues the processing.

User response
If you need the virtual logical child to be retrieved in
a user application program, specify the SKIPVLC NO
control statement. The PCB will be passed to IMS DL/I
and the virtual logical child segment will be retrieved.

FABH0403E SEC LIST FOR INDEXED-SEGM
NOT FOUND

Explanation
One of the following two problems occurred:

1. During PSBGEN, the SENSEG statements were not
coded in the same hierarchical sequence as in the
DBD.

2. HSSR Engine detected an incorrect or unexpected
DL/I control block layout.

System action
HSSR Engine issues a SNAP and falls back to DL/I for
all PCBs. All PCBs are defined as DL/I PCBs and all
calls are processed by DL/I action modules.

User response
Verify that the sequence of the SENSEG statements in
the PSBGEN is the same as in the DBD; if not, correct
the sequence of the SENSEG statements and perform
the PSBGEN again.

FABH0404E PCB WITH FIELD SENSITIVITY
NOT SUPPORTED

Chapter 35. Messages and codes 439

Explanation
Because of PSBGEN specifications, an HSSR PCB for
which field sensitivity has been specified was tried to
be built. Field sensitivity is not supported by HSSR
Engine.

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

User response
Either remove field sensitivity specifications for this
PCB, or do not specify the PCB as an HSSR PCB.

FABH0405E INDEX DMB dbdname IS NOT
FOUND

Explanation
The DMB for the primary or secondary index DBD
dbdname cannot be found in the DMB directories.

System action
HSSR Engine ends abnormally.

User response
Check whether the specified index DBD has the index
relationships with the database to be unloaded.

FABH0406E INDEX DBD dbdname IS NOT
SUPPORTED

Explanation
The specified secondary index dbdname is not
supported due to one of the following reasons:

• The DB organization is not INDEX.
• The target DB organization is not HIDAM or HDAM.
• The target segment is not the root segment.
• The key field is not defined as unique.
• The secondary index uses symbolic pointing.

System action
HSSR Engine ends abnormally.

User response
Change or remove the index DBD name.

FABH0407E DMB dbdname IS NOT CORRECT

Explanation
HSSR Engine detected an incorrect or unexpected DL/I
control block layout in the dbdname DMB.

System action
HSSR Engine ends abnormally.

User response
Contact IBM Software Support.

FABH0411E SEGMENT CODE IN SDB AND
HSDB DISAGREE

Explanation
One of the following two problems occurred:

1. During PSBGEN, the SENSEG statements were not
coded in the same hierarchical sequence as in the
DBD.

2. HSSR Engine detected an incorrect or unexpected
DL/I control block layout.

System action
HSSR Engine issues a SNAP and falls back to DL/I for
all PCBs. All PCBs are defined as DL/I PCBs and all
calls are processed by DL/I action modules.

User response
Verify that the sequence of the SENSEG statements in
the PSBGEN is in the same as the DBD; if not, correct
the sequence of the SENSEG statements, and perform
the PSBGEN again.

FABH0412E VIRTUAL PAIRED SEGMENTS NOT
SUPPORTED

Explanation
Because of PSBGEN specifications, an HSSR PCB
containing a sensitive logical child that is virtually
paired. Virtually paired segments are not supported by
HSSR Engine.

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

440 IMS High Performance Unload: User's Guide

User response
Modify the virtually paired segment to, for example,
a physically paired segment, or remove the SENSEG
statement of the virtually paired segment from the
PCB, or do not specify the PCB as an HSSR PCB.

FABH0413E INVALID SEGMENT SENSITIVITY
FOR AN HSSR PCB

Explanation
Because of PSBGEN specifications, an HSSR PCB
was tried to be built. This PCB contains a SENSEG
statement whose PROCOPT is neither G nor K.

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

User response
Modify the PROCOPT field of the SENSEG statement,
or do not specify the PCB as an HSSR PCB.

FABH0415E SOMETHING WRONG WITH
NUMBER OF HPTRS

Explanation
HSSR Engine has problems with its own control blocks.

System action
HSSR Engine issues a SNAP and falls back to DL/I for
all PCBs. All PCBs are defined as DL/I PCBs and all
calls are processed by DL/I action modules.

User response
Verify that the sequence of the SENSEG statements in
the PSBGEN is the same as in the DBD; if not, correct
the sequence of the SENSEG statements, and perform
the PSBGEN again.

FABH0416E SOMETHING WRONG WITH
NUMBER OR LENGTH OF HSDB

Explanation
HSSR Engine has problems with its own control blocks.

System action
HSSR Engine issues a SNAP and falls back to DL/I for
all PCBs. All PCBs are defined as DL/I PCBs and all
calls are processed by DL/I action modules.

User response
Verify that the sequence of the SENSEG statements in
the PSBGEN is the same as in the DBD; if not, correct
the sequence of the SENSEG statements and perform
the PSBGEN again.

FABH0420W WARNING: SEGMENT segname
HAS A VIRTUAL LOGICAL PARENT
KEY

Explanation
The logical parent's concatenated key (LPCK) of
the segment segname is defined as virtual, but the
BLDLPCK control statement is not specified.

Note: During retrieval operations, the part of the I/O
area that should contain the logical parent key will
contain blanks.

System action
HSSR Engine continues processing.

User response
If the control statements for the pre-reorganization
utility specified DBIL for the logical child database,
and the database is unloaded by FABHURG1 or
FABHFSU, you must specify the BLDLPCK control
statement. In other cases, you do not need to specify
BLDLPCK. If you need LPCKs to be built, specify the
BLDLPCK control statement and rerun the job.

FABH0421E REPLACE PROCOPT NOT
SUPPORTED FOR DB-
ORGANIZATION OF DB=dbdname

Explanation
HSSR Engine supports the replace processing option
only for HIDAM and HDAM databases. The database
(named dbdname) has another organization.

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

Chapter 35. Messages and codes 441

User response
Modify the PSB and do not define the PCB as an HSSR
PCB.

FABH0422E REPLACE PROCOPT NOT
SUPPORTED FOR BLOCK-LEVEL
SHARED DB=dbdname

Explanation
HSSR Engine does not support the replace processing
option for databases (named dbdname) that are
shared at the block level.

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

User response
Investigate to specify IRLM=N on the JCL procedure in
order to run in a database-level sharing environment
instead of a block-level sharing environment.
Otherwise, modify the PSB, and do not define the PCB
as an HSSR PCB.

FABH0423E REPLACE PROCOPT NOT
SUPPORTED FOR PHYSICAL
PAIRED SEGMENT=segname

Explanation
HSSR Engine does not support the replace processing
option for segment types (named segname) that are
physically paired logical children.

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

User response
Modify the PSB. Either specify PROCOPT=G on the
SENSEG of the named segment type or do not define
the PCB as an HSSR PCB.

FABH0424E REPLACE PROCOPT NOT
SUPPORTED FOR INDEX-SOURCE
SEGMENT-TYPE=segname

Explanation
HSSR Engine does not support the replace processing
option for segment types (named segname) that are
index-source segments and not root segments.

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

User response
Verify that the sequence of the SENSEG statements in
the PSBGEN is the same as in the DBD; if not, correct
the sequence of the SENSEG statements and perform
the PSBGEN again.

FABH0425E REPLACE PROCOPT NOT
SUPPORTED WITH VIRTUAL LP-
KEY, SEGMENT-TYPE=segname

Explanation
Because the BLDLPCK control statement is not
specified, HSSR Engine cannot perform the replace
processing for the segment segname, which is a logical
child whose logical parent's concatenated key (LPCK)
is defined as virtual.

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

User response
If you need REPLACE processing for the segment type,
specify the BLDLPCK control statement. If you do not
need REPLACE processing, modify the PSB; either
specify PROCOPT=G on the SENSEG of the named
segment type, or do not define the PCB as an HSSR
PCB.

FABH0426E OTHER PCB'S MAY NOT HAVE AN
UPDATE PROCESSING OPTION,
SEGMENT-TYPE=segname

Explanation
The segment type (named segname) has a replace
processing option in an HSSR PCB. This allows update
processing options in another HSSR PCB or DL/I PCB
of the PSB.

442 IMS High Performance Unload: User's Guide

System action
HSSR Engine issues a SNAP for this PCB and falls back
to DL/I. The PCB is defined as a DL/I PCB, and all
calls issued against it are processed by DL/I action
modules.

User response
Modify the PSB in order to observe the restrictions.

FABH0430W DB WILL BE READ BY HSSR
WITHOUT READ-INTEGRITY

Explanation
The application program is reading a database that
is shared at the block level. The PSBGEN processing
option specifies an access intent (read or update
access intent) requesting full read-integrity. However,
HSSR Engine does not have an interface to the IRLM to
provide full read-integrity.

System action
HSSR Engine continues processing and reads
the database without read-integrity. The database
is processed with read-only processing intent.
Unpredictable results might occur.

User response
If the application program requires read-integrity,
the database must be shared at the database
level (instead of the block level). This will prevent
concurrent execution with an updating IMS subsystem.

FABH0433W RBN VALUE IS LARGER THAN THE
SIZE OF THE PARTITION DATA SET
(DDNAME: ddname)

Explanation
HSSR Engine detected that the RBN value defined in
the DBD for the partition data set was larger than the
real data set size. ddname indicates the DD name of
the partition data set.

System action
HSSR Engine continues processing.

User response
Ensure that the correct DBD is specified. Specify the
correct DBD, and rerun the job.

FABH0441E STATISTIC PRINTER GOT INVALID
CALL

Explanation
HSSR Engine detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0451E SKIP-COUNT EXHAUSTED

Explanation
HSSR Engine detected more GG status code situations
than the number that was specified on the HSSROPT
SKERROR control statement.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0452W HSSR CALL HANDLER RETURNS
FIRST GG STATUS CODE

Explanation
HSSR call handler returned a GG status code to the
calling application program or utility program. This is a
warning.

System action
The processing continues.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

Chapter 35. Messages and codes 443

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0453E UNEXPECTED ENTRY INTO
FABH080

Explanation
HSSR Engine detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0457E HSSR DETECTED AN UNEXPECTED
ERROR SITUATION

Explanation
HSSR Engine detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0461E COMPARE OPTION HAS DETECTED
AN INEQUALITY BETWEEN HSSR
AND DL1

Explanation
This message is issued when the CO control statement
is specified in the HSSROPT data set, and the results

of an HSSR call and the corresponding DL/I call are not
the same.

System action
HSSR Engine ends abnormally.

User response
If PROCOPT=R is specified for a VSAM database,
ensure that VSAM SHAREOPTIONS are defined (2,3)
or (3,3).

Complete the following tasks to identify the cause, and
take appropriate actions:

• Activate the compare and hardcopy trace options,
and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for problem
determination” on page 378).

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

FABH0462E THE PARTITIONS SELECTED BY
HSSR AND DL/I ARE UNEQUAL;
HSSR-PID=xxxx (NAME: xxxxxxx),
DL/I-PID=xxxx (NAME: xxxxxxx)

Explanation
This message is issued when the CO control statement
is specified in the HSSROPT data set, and HSSR call
handler detected a difference between the partition
IDs selected by HSSR call handler and DL/I (IMS) in an
HSSR call.

System action
HSSR Engine ends abnormally.

User response
Check the HSSR Engine trace report to see the
difference; and contact IBM Software Support.

FABH0463E HSSR REACHED THE END OF
THE PARTITION ppppppp EARLIER
THAN DL/I

Explanation
This message is issued when the CO control statement
is specified in the HSSROPT data set, and HSSR call
handler reaches the end of the partition ppppppp
earlier than DL/I detects it.

System action
HSSR Engine ends abnormally.

444 IMS High Performance Unload: User's Guide

User response
Contact IBM Software Support.

FABH0465E AN UNSUPPORTED HSSR CALL
WAS ISSUED FOR NON-HD
DATABASE xxxxxxxx

Explanation
An unsupported HSSR call was issued for the non-
HD database xxxxxxxx. Only the call types defined
by APISET 1 are supported for non-HD databases.
Any API set other than APISET 1 can be specified in
HSSROPT or in the site default option table, but it is
ignored for non-HD databases.

System action
HSSR Engine ends abnormally.

User response
If you want to use a call that is not supported by
HSSR Engine, modify the application program, or use
the DBDL1 control statement.

FABH0471E OPEN OF DDNAME=HSSRBUTR
HAS FAILED

Explanation
An HSSROPT BUTR control statement instructed HSSR
Engine to activate the machine-readable trace of
buffer handler activities. This trace is written on the
HSSRBUTR data set. HSSR Engine cannot open this
file.

System action
HSSR Engine ends abnormally.

User response
Check whether MVS or SAM issued other error
messages. Correct the problem.

FABH0473E INTERNAL ERROR OCCURRED IN
HSSR CALL HANDLER

Explanation
HSSR call handler detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause of
the database error:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0475E INTERNAL ERROR OCCURRED IN
HSSR CALL HANDLER

Explanation
HSSR call handler detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause of
the database error:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0477E INTERNAL ERROR OCCURRED IN
HSSR CALL HANDLER

Explanation
HSSR call handler detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause of
the database error:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

Chapter 35. Messages and codes 445

FABH0479E INTERNAL ERROR OCCURRED IN
HSSR BUFFER HANDLER

Explanation
HSSR buffer handler detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause of
the database error:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0480E INVALID DATABASE
ORGANIZATION

Explanation
HSSR Engine detected a request for a GU call for
a database whose organization is not supported by
HSSR.

System action
HSSR Engine ends abnormally.

User response
See “Database organizations supported” on page 10
for a list of supported database organizations. Correct
the application program and DBD.

FABH0481E INVALID PARAMETER NUMBER IN
CALL

Explanation
The application program issued an HSSR call with an
incorrect number of parameters (too few or too many).
The HSSR call handler does not support three or more
SSAs. The unsupported call is printed in the Trace
Output report in the HSSRTRAC data set.

System action
If APISET is 2, HSSR Engine ends abnormally. If
APISET is 3, the call and all the succeeding calls
to the HSSR PCB are passed to the IMS DL/I call

handler to continue the processing instead of ending
it abnormally.

User response
If APISET is 2, specify 'APISET 3' in the control
statement. If APISET is 3, ignore this message.

The following parameters are required for Assembler
and COBOL programs:

• Call function
• PCB
• I/O AREA
• SSA (optional)

The following parameters are required for PL/I
programs:

• PARM count
• Call function
• PCB
• I/O AREA
• SSA (optional)

FABH0482E INCORRECT CALL FUNCTION

Explanation
The application program issued an HSSR call with an
incorrect call function. Only GU and GN are supported.

System action
HSSR Engine ends abnormally.

User response
Correct the program error.

FABH0483E INCORRECT SEGMENT NAME IN
SSA

Explanation
The application program issued an HSSR GU call with
an incorrect segment name in the SSA. The segment
name must be the name of the root segment. (For
RBA calls, the segment name must be the name of a
sensitive segment.)

System action
HSSR Engine ends abnormally.

446 IMS High Performance Unload: User's Guide

User response
Correct the program error. If there is no error, check
whether the correct APISET statement is specified.
For details about the call types and command types
that APISET supports, see “DL/I calls and EXEC DLI
command for HSSR PCB” on page 84.

FABH0484E INCORRECT FIELD NAME IN SSA

Explanation
The application program issued an HSSR GU call with
an incorrect field name in the SSA. The field name
must be the name of the key field of the root.

System action
HSSR Engine ends abnormally.

User response
Correct the program error. If there is no error, check
whether the correct APISET statement is specified.
For details about the call types and command types
that APISET supports, see “DL/I calls and EXEC DLI
command for HSSR PCB” on page 84.

FABH0485E LEFT PARENTHESIS IN SSA
IS MISSING OR AT WRONG
POSITION

Explanation
The application program issued an HSSR GU call with
an incorrect SSA. The 8-byte segment name must
be immediately followed by a (or by *T). GUs with
unqualified SSAs are not supported by HSSR call
handler; the only supported command code is T.

System action
HSSR Engine ends abnormally.

User response
Correct the program error. If there is no error, check
whether the correct APISET statement is specified.
For details about the call types and command types
that APISET supports, see “DL/I calls and EXEC DLI
command for HSSR PCB” on page 84.

FABH0486E RELATIONAL OPERATOR IN SSA
IS INCORRECT

Explanation
The application program issued an HSSR GU call with
an incorrect relational operator in the SSA. Only the
following relational operators are supported:

• b=
• =b
• EQ
• =>
• >=
• GE

where b represents a required blank.

System action
HSSR Engine ends abnormally.

User response
Correct the program error. If there is no error, check
whether the correct APISET statement is specified.
For details about the call types and command types
that APISET supports, see “DL/I calls and EXEC DLI
command for HSSR PCB” on page 84.

FABH0487E RIGHT PARENTHESIS IN SSA
IS MISSING OR AT WRONG
POSITION

Explanation
The application program issued an HSSR GU call
with an incorrect SSA. The key value field or the
RBA must be immediately followed by the right
parenthesis. (Boolean operators are not supported by
HSSR Engine.)

System action
HSSR Engine ends abnormally.

User response
Correct the error. If there is no error, check whether
the correct APISET statement is specified. For details
about the call types and command types that APISET
supports, see “DL/I calls and EXEC DLI command for
HSSR PCB” on page 84.

FABH0488E DB ORG IS NOT HIDAM OR HDAM

Explanation
The application program issued an RBA call to a
database that is neither HIDAM nor HDAM. RBA calls
can be issued only against HIDAM or HDAM databases.

Chapter 35. Messages and codes 447

System action
HSSR Engine ends abnormally.

User response
Correct the program error.

FABH0489E UNSUPPORTED COMMAND CODE

Explanation
The application program issued a call with a command
code that is not supported by HSSR call handler.
HSSR call handler supports only the "T" and "NULL"
command codes.

System action
HSSR Engine ends abnormally.

User response
Specify 'APISET 3'. For details about the call types and
command types that APISET supports, see “DL/I calls
and EXEC DLI command for HSSR PCB” on page 84.

FABH0490E SEGMENT CODE OF RETRIEVED
RBA IS NOT THE SEGMENT CODE
OF REQUESTED SEGMENT

Explanation
The application program issued an RBA call. The SSA
specified a segment name and an RBA. The database
does not contain a segment of the specified segment
type at the specified RBA.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause (this
error might be a program error), and take appropriate
actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

• Activate the compare and hardcopy trace options,
and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for problem
determination” on page 378).

FABH0491E REQUESTED RBA NOT IN DATA
SET

Explanation
The application program issued an RBA call. The SSA
specified an RBA. However, the specified RBA is not
within the extents of the data set.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause (this
error might be a program error), and take appropriate
actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

• Activate the compare and hardcopy trace options,
and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for problem
determination” on page 378).

FABH0492E ROOT HAS NO SEQUENCE FIELD

Explanation
The application program issued an HSSR GU call
with a qualified SSA for the root segment. HSSR call
handler supports only qualification on the sequence
field and assumes that the SSA is qualified on the Root
Sequence Field. However, during DBDGEN, the root is
defined without sequence field.

System action
HSSR Engine ends abnormally.

User response
Either remove the GU call from the program, or have
the database administrator define a sequence field for
the root segment. If there is no error, check whether
the correct APISET statement is specified. For details
about the call types and command types that APISET
supports, see “DL/I calls and EXEC DLI command for
HSSR PCB” on page 84.

FABH0499E INTERNAL ERROR OCCURRED IN
HSSR CALL HANDLER

448 IMS High Performance Unload: User's Guide

Explanation
HSSR call handler detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0501E DATA SET GROUP NUMBER NOT
POSITIVE

Explanation
The buffer handler was invoked with an incorrect data
set group number. The data set group number must
have been positive.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, ensure that the correct DBDs,
PSBs, and ACBs were being used. If necessary, contact
IBM Software Support.

FABH0502E DATA SET GROUP NUMBER DOES
NOT EXIST

Explanation
The buffer handler was invoked with an incorrect
data set group number. The specified data set group
number does not exist.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, ensure that the correct DBDs,
PSBs, and ACBs were being used. If necessary, contact
IBM Software Support.

FABH0503E PCB IS NOT SENSITIVE TO ANY
SEGMENT OF SPECIFIED DATA
SET GROUP

Explanation
The buffer handler is invoked with an incorrect data
set group number. No segment of the specified data
set group is sensitive.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, ensure that the correct DBDs,
PSBs, and ACBs were being used. If necessary, contact
IBM Software Support.

FABH0504E NO OSAM/ESDS IN DATABASE

Explanation
The buffer handler was invoked to handle a data set
that was not OSAM or ESDS.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, ensure that the correct DBDs,
PSBs, and ACBs were being used. If necessary, contact
IBM Software Support.

FABH0505E RBA NOT WITHIN SPECIFIED
DATA SET

Explanation
The buffer handler was invoked with an incorrect RBA.
The RBA is not within the extents of the data set.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause of
the database error:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

Chapter 35. Messages and codes 449

If necessary, contact IBM Software Support.

FABH0506E BUFFER HANDLER IO-ERROR

Explanation
The buffer handler has encountered an I/O error. Other
error messages will describe the problem in detail.

System action
HSSR Engine ends abnormally.

User response
See the system error messages.

FABH0507E INVALID SUBTYPE OF *Z
COMMAND CODE

Explanation
The internal HSSR call with the *Z command code
has an incorrect format. HSSR Engine generates this
undocumented call to start retrieval from an HDAM
database at a specific relative block number. For
example, the FABHFSU BLM control statement might
specify retrieval by RBN causing HSSR Engine to
generate this command.

System action
HSSR Engine ends abnormally.

User response
Contact IBM Software Support.

FABH0511E POINTER IN INDEX TO ROOT-
SEGMENT IS ZERO

Explanation
During a call against an HIDAM database, HSSR Engine
must retrieve a primary index record in order to locate
the root segment. The index pointer record contained
zero instead of a root pointer.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0512E INVALID RETURN-CODE FROM
BUFFER-HDLR

Explanation
HSSR Engine encountered an I/O problem. For more
information, see the accompanying SYNADAF message
buffer.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0513E SEGMENT-CODE NOT 01

Explanation
HSSR call handler retrieved a root segment whose
segment code was not 01.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0515E CANNOT POSITION THE FIRST
SEGMENT IN THE DB

Explanation
During unloading an HIDAM or PHIDAM DB, HSSR
Engine retrieved a primary index record in order to
locate the first database position. In this process,
HSSR Engine detected an incorrect situation where
the delete byte in the index record was not X' 5A'
nor X'EA' nor X'F2' although the delete byte in the
corresponding database record was X'5A', X'EA', or X'
F2'.

System action
HSSR Engine ends abnormally.

450 IMS High Performance Unload: User's Guide

User response
Check the delete byte of the first root segment and
correct it.

FABH0516E LAST SEGM IN PRIMARY INDEX
DOES NOT POINT TO SEGMENT
WITH A KEY OF ALL X'FF'S

Explanation
The last pointer segment in the primary index for
HIDAM or PHIDAM points to a root segment with a key
that is not all X'FF's. The database can be corrupted.

System action
HSSR Engine ends abnormally.

User response
Check whether the database is corrupted. If it is not,
check whether the correct pair of primary index data
set and the primary data set was used.

FABH0517E HSSR CALL HANDLER DETECTED
UNEXPECTED ERROR SITUATION

Explanation
HSSR call handler detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0521E POINTER DESCRIBED BY HSDB1-
HPTR1 IS NOT A ROOT-TWIN-
POINTER

Explanation
HSSR control blocks contain incorrect information.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0523E SEGMENT-CODE OF LOCATED
SEGMENT NOT 01

Explanation
HSSR call handler retrieved a root segment whose
segment code is not 01.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0524E BLM BLOCK-NUMBER NOT WITHIN
RAA

Explanation
An HDAM segment beyond the root addressable area
was tried to be retrieved.

System action
HSSR Engine ends abnormally.

User response
Correct BLM control statement on the FABHFSU
CARDIN data set.

FABH0525E RETURN CODE 8 FROM HDAM
RANDOMIZER, RMOD=xxxxxxxx

Explanation
HSSR Engine received a return code 8 from HDAM
randomizing module. xxxxxxxx is the name of HDAM
randomizing module.

System action
HSSR Engine ends abnormally.

Chapter 35. Messages and codes 451

User response
Correct the application program or HDAM randomizing
module, and rerun the job, if necessary.

FABH0526E RETURN CODE 8 FROM
RANDOMIZER: DBFxxxxx

Explanation
HSSR Engine received the return code of 8 from
the randomizing module DBFxxxxx. DBFxxxxx is a
randomizing module that has the DEDB randomizer
interface.

System action
HSSR Engine ends abnormally.

User response
Correct the application program or the randomizing
module, and rerun the job.

FABH0527E INVALID PARTITION NUMBER
'xxxxxxxx' RETURNED FROM THE
RANDOMIZER: DBFyyyyy

Explanation
HSSR Engine received an incorrect partition number
'xxxxxxxx' from the randomizing module DBFyyyyy.
'xxxxxxxx' indicates the value contained in Register
1 in hexadecimal format. DBFyyyyy is a randomizing
module that has the DEDB randomizer interface.

System action
HSSR Engine ends abnormally.

User response
Correct the application program or the randomizing
module, and rerun the job.

FABH0528E INVALID RELATIVE RAP NUMBER
'xxxxxxxx' FOR PART#:nnn
RETURNED FROM RANDOMIZER:
DBFyyyyy

Explanation
HSSR Engine received an incorrect relative RAP
number 'xxxxxxxx' from the randomizing module
DBFyyyyy. 'xxxxxxxx' indicates the value contained
in Register 0 in hexadecimal format. DBFyyyyy is a
randomizing module that has the DEDB randomizer
interface.

System action
HSSR Engine ends abnormally.

User response
Correct the application program or the randomizing
module, and rerun the job.

FABH0541E SEGMENT CODE OF ROOT NOT 01

Explanation
HSSR Engine retrieved a root segment whose segment
code was not 01.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0547E INVALID RETURN CODE FROM
BUFFER HANDLER

Explanation
HSSR Engine encountered an I/O problem. For more
information, see the accompanying SYNADAF message
buffer.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0551E INVALID S-C OR D-F IN SPLIT
DATA SEGM

Explanation
During the processing of a variable length split
segment, HSSR Engine encountered an incorrect
segment code, or an incorrect delete flag.

452 IMS High Performance Unload: User's Guide

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0552E INVALID RC FROM BUF HDLR

Explanation
HSSR Engine encountered an I/O problem in getting
the split up segment data.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0553E USER COMPRESSION ROUTINE
HAS RETURNED A TOO LONG
SEGMENT

Explanation
A user segment compression/decompression exit
routine has edited a segment longer than the
maximum length defined during DBDGEN for that
segment type.

System action
HSSR Engine ends abnormally.

User response
Correct either the DBD or the user compression/
decompression exit routine.

FABH0554E SEGMENT ssssssss IN DATA BASE
dddddddd HAS INVALID VALUE
FOR THE LENGTH FIELD

Explanation
During the processing of a segment, HSSR Engine
encountered a segment for which the length field
contained a value that was incorrect.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0555E KEYCHECK OPTION HAS
DETECTED A SEQUENCE ERROR;
ABEND FOLLOWS

Explanation
HSSR Engine detected a sequence error in the
segment key fields and issued an abend as specified
by the KEYCHECK option.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0556E AN OCCURRENCE OF SEGMENT
segmname IN DBD dddddddd
OVER THE BLOCK BOUNDARY

Explanation
HSSR Engine detects an incorrect occurrence of the
segment segmname, which is stored over the block
boundary. If it is a fixed-length segment, the segment
length which is defined in the DBD dddddddd can be
inconsistent with the actual segment.

System action
HSSR Engine ends abnormally.

Chapter 35. Messages and codes 453

User response
Ensure that the specified DBD is same as the one used
for inserting the segment. Determine the segment
length from the content of the following registers:

• Register 6 contains the address of the segment data.
• Register 5 contains the segment length which is
defined in DBD.

• Register 7 contains the address of the block
boundary.

FABH0557W HSSR CALL HANDLER RETURNS
FIRST GX STATUS CODE

Explanation
HSSR call handler returned a GX status code to the
calling application program or utility program because
a sequence error was detected. The KEYCHECK option
is active. The segment with the incorrect key was
returned to the calling programs.

System action
The processing continues.

User response
None.

FABH0559E INTERNAL ERROR OCCURRED IN
HSSR CALL HANDLER

Explanation
HSSR call handler detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0560E STATUSCODE=xx ENCOUNTERED
DURING INTERNAL ASMTDLI CALL

Explanation
In order to build a logical parent's concatenated key
(LPCK) that is defined as virtual, HSSR internally
issued an IMS GU call. But the unexpected status code
of xx was returned. This is probably due to either an
HSSR Engine or an IMS software error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0561E REPL CALL WITHOUT REPLACE
PROCESSING OPTION

Explanation
The application program issued an HSSR REPL call.
However, during PSBGEN, the PCB or SENSEG was not
defined with a PROCOPT=R.

System action
HSSR Engine ends abnormally.

User response
Correct either the program or the PSBGEN.

FABH0562E REPL CALL WITHOUT IOAREA

Explanation
The application program issued an HSSR REPL call
without providing an IOAREA as a call parameter.

System action
HSSR Engine ends abnormally.

User response
Correct the program.

FABH0563E REPL CALL WITH SSA

454 IMS High Performance Unload: User's Guide

Explanation
This message is issued when either of the following
occurs:

• The application program issued an HSSR REPL call
with an SSA as call parameter. HSSR Engine supports
only REPL calls without an SSA.

• The application program issued an HSSR REPL call
as an EXEC DLI command. HSSR Engine does not
support the REPL command.

System action
HSSR Engine ends abnormally.

User response
Correct the program. If there is no error, check
whether the correct APISET statement is specified.
For details about the call types and command types
that APISET supports, see “DL/I calls and EXEC DLI
command for HSSR PCB” on page 84

FABH0564E STATUSCODE=xx ENCOUNTERED
DURING INTERNAL GHU ASMTDLI
CALL

Explanation
During the processing of a GHU call, HSSR Engine
issues internally an IMS GHU call; this internal IMS
GHU call has returned an unexpected xx status code
that is displayed in the message.

System action
HSSR Engine ends abnormally.

User response
If the status code is AI, check for an IMS error
message that describes the problem in more detail. If
PROCOPT=R for a VSAM database, ensure that VSAM
SHAREOPTIONS are defined (2,3) or (3,3). If the status
code is not AI, the problem might be either an HSSR or
IMS software error.

Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0565E STATUSCODE=xx ENCOUNTERED
DURING INTERNAL REPL
ASMTDLI CALL

Explanation
During the processing of a replace call, HSSR Engine
issues internally an IMS REPL call; this internal IMS
REPL call has returned an unexpected xx status code,
which is displayed in the message. This is probably
either an HSSR Engine or IMS software error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0566E INTERNAL HSSR OR DL1 ERROR
DURING PROCESSING OF REPL
CALL

Explanation
HSSR Engine detected an unexpected error.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0567E PCB-FEEDBACK:
DBDNAME=dbdname SEGNAME =
segname

Explanation
This message lists the dbdname and the segment
name contained in the PCB feedback area at the
moment of an error, which is described by another
FABHxxxxx message.

Chapter 35. Messages and codes 455

System action
HSSR Engine ends abnormally with dump.

User response
See other FABHxxxxx messages.

FABH0568I FIRST REPL CALL IS BEING
ISSUED FOR PCB=xxxxxxxx

Explanation
This message informs you that the database
(PCB=xxxxxxxx) is being modified by an HSSR REPL
call.

System action
The processing continues.

User response
None. This message is informational.

FABH0569E REPL CALL WITHOUT PCB

Explanation
The application program issued an HSSR REPL call
without providing a PCB name as a call parameter.

System action
HSSR Engine ends abnormally.

User response
Correct the program.

FABH0570E text

Explanation
HSSR Engine encountered an I/O problem on a VSAM
KSDS. This message text contains bytes 27 - 127
of the MSGAREA of RPL as described in DFSMS/MVS
Macro Instructions for Data Sets.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Activate the compare and hardcopy trace options,
and execute the failing call sequence with the

FABHTEST utility (see “FABHTEST utility for problem
determination” on page 378).

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0572E INTERNAL ERROR --- MODCB FOR
KSDS NOT SUCCESSFUL

Explanation
During KSDS processing, HSSR buffer handler
unsuccessfully issued a VSAM MODCB macro.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0573E INTERNAL ERROR --- RPL FOR
KSDS NOT INACTIVE

Explanation
During KSDS processing, HSSR buffer handler tried to
use an RPL that was active for another VSAM request.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0574E VSAM LOGICAL ERROR --- RPL-
FDBK-CODE IS IN R3

Explanation
VSAM signaled to HSSR buffer handler an unexpected
logical error after a KSDS GET macro. Use the RPL
feedback code in Register 3 to analyze the error in
details.

456 IMS High Performance Unload: User's Guide

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0575E INTERNAL ERROR --- ENDREQ
FAILED

Explanation
During KSDS processing, HSSR buffer handler issued
an ENDREQ macro, which failed.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0576E DDNAME=ddname; DATA REQUEST
OUTSIDE OF THE DATASET LIMITS

Explanation
The HSSR buffer handler received a request for a block
or CI that is outside the currently known extents of
the data set (ddname). This problem might occur if the
database is physically damaged or if an updating IMS
program is concurrently updating the database.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Activate the compare and hardcopy trace options,
and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for problem
determination” on page 378).

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the real data set name on the DD
statement for ddname was specified.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0577E RETRY OF KSDS I/O OPERATIONS
NOT ENABLED

Explanation
The HSSR buffer handler detected an error during
the reading of a VSAM KSDS. This error might result
either from a physically damaged KSDS or from the
concurrent execution of an updating IMS program.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Activate the compare and hardcopy trace options,
and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for problem
determination” on page 378).

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If the problem results from concurrent execution of
an updating IMS program, try to resolve the problem
by adding a RETRY KSDS control statement to the
HSSROPT data set.

FABH0578E UNEXPECTED RETURN CODE
FROM ATTACH

Explanation
FABH350 attempted to ATTACH module FABH351.
The attempt was not successful, and the return code
was not zero.

System action
HSSR Engine ends abnormally.

Chapter 35. Messages and codes 457

User response
Examine the dump to determine the contents of
Register 4. Register 4 contains the return code from
ATTACH that was returned in Register 15.

FABH0579E UNEXPECTED RETURN CODE
FROM DETACH

Explanation
FABH350 attempted to DETACH module FABH351.
The attempt was not successful, and the return code
was not zero.

System action
HSSR Engine ends abnormally.

User response
Examine the dump to determine the contents of
Register 4. Register 4 contains the return code from
DETACH that was returned in Register 15.

FABH0581E OPEN OF DBD=dbdname
DDN=ddname --- "yyyy" "text"

Explanation
The database named dbdname type yyyy (KSDS,
ESDS, OSAM, or KEYD) could not be opened. ddname
indicates the DD name of the failing data set. The
possible combinations of yyyy and text, and their
explanations, are described in detail in the user
response section.

System action
HSSR Engine ends abnormally.

User response
The following list provides the subtext (yyyy and text),
explanation, and the user response for each subtext:

"ESDS" "GENCB BLOCK=RPL FAILED"
A GENCB for an RPL failed. A possible reason is
that insufficient virtual storage is available in the
address space.

See the general steps for troubleshooting the
FABH0581E error, and take appropriate actions.

"KEYD" "KEYL IN DATASET AND DBD DIFFERS"
The key length of the data set differs from the
key length of the DBD, for example, KSDS. This
condition might be caused by a user error such as
DD statements referring to the wrong data set, or
using the wrong version of a DBD.

Correct the DBD or the DD statement. If the
problem persists, run the FABHTEST utility by
referring to the general steps for troubleshooting
the FABH0581E error, and take appropriate
actions. For KSDS, print a LISTCAT of the cluster
and its components.

"KEYD" "KEY-POSITION IN DATA SET AND DBD
DIFFERS"

The key position of the data set differs from the
key position of the DBD. This condition might be
caused by a user error such as DD statements
referring to the wrong data set, or using the wrong
version of a DBD.

Correct the DBD or the DD statement. If the
problem persists, run the FABHTEST utility by
referring to the general steps for troubleshooting
the FABH0581E error, and take appropriate
actions. For KSDS, print a LISTCAT of the cluster
and its components.

"KSDS" "OPEN FAILED"
The OPEN macro issued against a KSDS is not
successful, perhaps for the following reasons:

• The KSDS has the wrong VSAM SHAREOPTIONS,
or the data set is allocated by this region with
DISP=OLD in the JCL statements.

• There might not be enough virtual storage in the
address space.

Ensure that the KSDS definition is correct. If the
problem persists, run the FABHTEST utility by
referring to the general steps for troubleshooting
the FABH0581E error, and take appropriate
actions. The error message that is issued by VSAM
contains additional information. Refer to the VSAM
message for additional assistance.

"KSDS" "SHOWCB FIELD=DDNAME FAILED"
VSAM was asked to retrieve the DD name of a
KSDS, but was unsuccessful.

See the general steps for troubleshooting the
FABH0581E error, and take appropriate actions.

"KSDS" "SHOWCB FIELD=ERROR FAILED"
VSAM was asked to retrieve the ACB error field
after an OPEN, but was unsuccessful.

The error message issued by VSAM contains
additional information. Refer to the VSAM
message. To identify the cause, see the general
steps for troubleshooting the FABH0581E error,
and take appropriate actions.

"KSDS" "SHOWCB FIELD=(CINV,...) FAILED"
VSAM was asked to retrieve the length of the
control interval, record, and key, and the relative
key position of the KSDS.

458 IMS High Performance Unload: User's Guide

See the general steps for troubleshooting the
FABH0581E error, and take appropriate actions.

"KSDS" "GENCB BLOCK=ACB FAILED"
VSAM was unable to generate an ACB. This was
probably caused by insufficient virtual storage in
the address space.

See the general steps for troubleshooting the
FABH0581E error, and take appropriate actions.

"KSDS" "GENCB BLOCK=RPL FAILED"
VSAM was not able to generate an RPL. This was
probably caused by insufficient virtual storage in
the address space.

See the general steps for troubleshooting the
FABH0581E error, and take appropriate actions.

"KSDS" "MODCB RPL, OPTCD=CNV FAILED"
VSAM was asked to modify an RPL to allow control
interval processing in order to allow a VERIFY, but
was unsuccessful.

The error message issued by VSAM contains
additional information. Refer to the VSAM
message. To identify the cause, see the general
steps for troubleshooting the FABH0581E error,
and take appropriate actions.

"KSDS" "VERIFY FAILED"
HSSR buffer handler issued a VERIFY macro to the
KSDS indicated by the message, but it failed.

The error message issued by VSAM contains
additional information. Refer to the VSAM
message. To identify the cause, run the FABHTEST
utility by referring to the general steps for
troubleshooting the FABH0581E error, and take
appropriate actions.

"KSDS" "ENDREQ FAILED"
HSSR buffer handler issued an unsuccessful
ENDREQ macro.

Register 2 at the time of the abend contains the
address of the RPL. Inspect the feedback field of
the RPL to find out what exactly happened. To
identify the cause, run the FABHTEST utility by
referring to the general steps for troubleshooting
the FABH0581E error, and take appropriate
actions.

"KSDS" "MODCB RPL, OPTCD=(KEY, ...) FAILED"
HSSR buffer handler issued an unsuccessful
MODCB macro to switch back from CI processing
to key processing. If the utility uses the maximum
device capacity, check whether ddname can be
allocated on a device with more track capacity.
If the utility uses the block size specified on the
JCL statement, check whether the block size or
the record size can be increased or use the default
maximum device capacity.

See the general steps for troubleshooting the
FABH0581E error, and take appropriate actions.

"KSDS" "MODCB RPL, RECLEN...... FAILED"
HSSR buffer handler issued an unsuccessful
MODCB macro to attempt to change the size of the
input area.

See the general steps for troubleshooting the
FABH0581E error, and take appropriate actions.

"KSDS" "EXTENDED ADDRESSABILITY IS NOT
SUPPORTED"

The KSDS is an SMS data set with the extended
addressability attribute. IMS does not support
such a data set.

"OSAM" "OPEN FAILED"
A (BSAM) OPEN macro issued against an OSAM
data set is not successful.

Check other error messages, and make sure
that the OSAM data set does not have more
than 16 extents. To identify the cause, run the
FABHTEST utility by referring to the general steps
for troubleshooting the FABH0581E error, and take
appropriate actions.

"OSAM" "BLOCKSIZE IN DCB NOT EQ BLOCKSIZE IN
DBD"

The block size of the data set differs from the
block size of the DBD. This condition was probably
caused by a user error, such as DD statements
referring to the wrong data set, or the wrong
version of a DBD has been used.

Correct the DBD or the DD statement. If the
problem persists, run the FABHTEST utility by
referring to the general steps for troubleshooting
the FABH0581E error, and take appropriate
actions. A LISTVTOC of the data set should also
be produced.

"OSAM" "BLOCKSIZE IS NOT A MULTIPLE OF
LRECL"

The block size of the data set is not a multiple of
the record length.

Correct the block size. To identify the cause, run
the FABHTEST utility by referring to the general
steps for troubleshooting the FABH0581E error,
and take appropriate actions. A LISTVTOC of the
data set should also be produced.

"OSAM" "IMS OPEN PROBLEM"
HSSR Engine issued an internal DL/I call in order to
force IMS to open the database. This DL/I call was
not successful.

Refer to additional error messages issued by IMS
or the access method.

Chapter 35. Messages and codes 459

To identify the cause, take either or both of
the following general steps for troubleshooting the
FABH0581E error.

1. At the time of the problem, register 0 contained
a VSAM reason code, which is described in
DFSMS/MVS Macro Instructions for Data Sets. The
contents of register 0 are found in the dump, within
the module FABH001, in the diagnosis area. This
area has the following layout:

• A 16-byte section header: 'DIAGNOSIS AREA'
• A double word PSW
• 16 full words, showing the content of Registers 0

- 15.
2. Activate the compare and hardcopy trace options,

and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for
problem determination” on page 378).

If necessary, contact IBM Software Support.

FABH0591E OPEN OF DBD=dbdname ----
"yyyy" "text"

Explanation
The database named dbdname type yyyy (ESDS, KSDS,
or OSAM) could not be opened. text describes the
problem in detail. The possible combinations of yyyy
and text, and their explanations are described in detail
in the user response section.

System action
HSSR Engine ends abnormally.

User response
"ESDS2" "LOGICAL RECORD LENGTH IN ACB IS
ZERO"

After OPEN, VSAM finds that the logical record
length is zero.

Correct the logical record length. If the problem
persists, run the FABHTEST utility by referring
to the general steps for troubleshooting the
FABH0591E error, and take appropriate actions. A
LISTCAT of the ESDS should also be produced.

"ESDS" "CONTROL INTERVAL SIZE IN ACB IS ZERO"
After OPEN, VSAM finds that the control interval
size is zero.

Correct the control interval size. To identify the
cause, run the FABHTEST utility by referring to the
general steps for troubleshooting the FABH0591E
error, and take appropriate actions. A LISTCAT of
the ESDS should also be produced.

"ESDS" "GENCB BLOCK=ACB FAILED"
VSAM could not generate an ACB. This condition
was probably caused by insufficient virtual storage
in the address space.

Ensure that sufficient virtual storage is available.
To identify the cause, see the general steps for
troubleshooting the FABH0591E error, and take
appropriate actions.

"ESDS" "GENCB BLOCK=RPL FAILED"
VSAM could not generate an RPL. This condition
was probably caused by insufficient virtual storage
in the address space.

Ensure that sufficient virtual storage is available.
To identify the cause, see the general steps for
troubleshooting the FABH0591E error, and take
appropriate actions.

"ESDS" "GENCB BLOCK=EXLST FAILED"
VSAM could not generate an exit list. This condition
was probably caused by insufficient virtual storage
in the address space.

Ensure that sufficient virtual storage is available.
To identify the cause, see the general steps for
troubleshooting the FABH0591E error, and take
appropriate actions.

"ESDS" "OPEN FAILED"
The OPEN macro issued against a KSDS was not
successful. This condition was probably caused by:

• The ESDS had the wrong VSAM SHAREOPTIONS,
or the data set was allocated by this region with
DISP=OLD on the JCL statements.

• There is not enough virtual storage in the
address space.

Ensure that the ESDS is correctly defined. The
error message issued by VSAM contains additional
information. Refer to the VSAM message. To
identify the cause, run the FABHTEST utility by
referring to the general steps for troubleshooting
the FABH0591E error, and take appropriate
actions.

"ESDS" "VERIFY FAILED"
HSSR buffer handler issued a VERIFY macro to the
KSDS indicated by the message, but it failed.

Ensure that the ESDS is correctly defined. The
error message issued by VSAM contains additional
information. Refer to the VSAM message. To
identify the cause, run the FABHTEST utility by
referring to the general steps for troubleshooting
the FABH0591E error, and take appropriate
actions.

"ESDS" "ENDREQ FAILED"
HSSR buffer handler issued an unsuccessful
ENDREQ macro.

460 IMS High Performance Unload: User's Guide

Register 2 at the time of abend contains the
address of the RPL. Inspect the feedback field of
the RPL to find out what exactly happened. To
identify the cause, run the FABHTEST utility by
referring to the general steps for troubleshooting
the FABH0591E error, and take appropriate
actions.

"ESDS" "SHOWCB FIELD=CINV FAILED"
VSAM could not retrieve the control interval size of
the ESDS.

See the general steps for troubleshooting the
FABH05891E error, and take appropriate actions.

"ESDS" "SHOWCB FIELD=ERROR FAILED"
VSAM could not retrieve the error code.

See the general steps for troubleshooting the
FABH05891E error, and take appropriate actions.

"ESDS" "HSSR-CAB CANNOT READ THE SAME
ESDS-DB THROUGH MULTIPLE PCBs"

HSSR buffer handler detected that multiple HSSR
PCBs that are referring to the same database
should be buffered by CAB. This situation is not
supported by CAB.

Modify the CAB control statements in such a
way that no more than one HSSR PCB per
database is buffered by CAB. The OCCURRENCE
CAB control statement can be used to achieve this
modification.

"ESDS" "ENDRBA NOT FOUND"
This error might occur if the VSAM control blocks
are changing.

Rerun the program.

To identify the cause, take either or both of
the following general steps for troubleshooting the
FABH0591E error.

1. At the time of the problem, register 0 contained
a VSAM reason code, which is described in
DFSMS/MVS Macro Instructions for Data Sets. The
contents of register 0 are found in the dump, within
the module FABH001, in the diagnosis area. This
area has the following layout:

• A 16-byte section header: 'DIAGNOSIS AREA'
• A double word PSW
• 16 full words, showing the content of Registers 0

- 15.
2. Activate the compare and hardcopy trace options,

and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for
problem determination” on page 378).

If necessary, contact IBM Software Support.

FABH0592E UNACCEPTABLE VSAM
LOGICAL ERROR (RPLREQ=xx,
RPLFDBWD=xxxxxxxx)

Explanation
HSSR buffer handler has encountered an unexpected
VSAM logical error while it was processing VSAM
ESDS data sets. RPLREQ shows the VSAM macro
function that was invoked, and RPLFDBWD shows
VSAM feedback information related to VSAM failure.
These values are shown in hexadecimal.

System action
HSSR Engine ends abnormally.

User response
This error is likely an internal system error. Contact
IBM Software Support.

FABH0595E STATUSCODE=XX ENCOUNTERED
DURING INTERNAL ASMTDLI CALL
(segmname)

Explanation
Program FABHURG1, run with the MIGRATE control
statement specified, issued a DL/I GU call internally
for the virtual logical child segment segmname, but the
status code of the call was not blank.

System action
HSSR Engine ends abnormally.

User response
Check the status code and detect the cause of the
error. If the status code is AI, the most likely cause
is the absence of the DD statement for the logically
related database. If the cause is not clear, collect the
dump and contact IBM Software Support.

FABH0596E STATUSCODE=XX ENCOUNTERED
DURING INTERNAL ASMTDLI CALL
(segmname)

Explanation
Program FABHURG1, run with the MIGRATE control
statement specified, issued a DL/I GU call internally
for an occurrence of the physically paired logical child
segment segmname, but the status code of the call
was not blank.

Chapter 35. Messages and codes 461

System action
FABHURG1 ends abnormally.

User response
Check the status code and detect the cause of the
error. If the status code is AI, the most likely cause
is the absence of the DD statement for the logically
related database. If the cause is not clear, collect the
dump and contact IBM Software Support.

FABH0597E STATUSCODE=XX ENCOUNTERED
DURING INTERNAL ASMTDLI CALL
(segmname)

Explanation
Program FABHURG1, run with the MIGRATE control
statement specified, issued a DL/I GU call internally
for an occurrence of the physically paired logical child
segment segmname, but the status code of the call
was not blank.

System action
FABHURG1 ends abnormally.

User response
Check the status code and detect the cause of the
error. If the cause is not clear, collect the dump and
contact IBM Software Support.

FABH0598E STATUSCODE=XX ENCOUNTERED
DURING INTERNAL ASMTDLI CALL
(segmname)

Explanation
Program FABHURG1, run with the MIGRATE control
statement specified, issued a DL/I GU call internally
for an occurrence of the unidirectional logical child
segment segmname, but the status code of the call
was not blank.

System action
FABHURG1 ends abnormally.

User response
Check the status code and identify the cause of the
error. If the status code is AI, the most likely cause
is the absence of the DD statement for the logically
related database. If the cause is not clear, collect the
dump and contact IBM Software Support.

FABH0602E BAD RETURN CODE FROM OSAM
MACRO ... PLEASE REFER TO
PRECEDING DFS730I MESSAGE

Explanation
HSSR buffer handler tried to open an OSAM database
data set with the OSAM open functions. The open was
not successful.

System action
HSSR Engine ends abnormally.

User response
Refer to the message DFS730I and read its
explanation in IMS Messages and Codes.

FABH0603E ddname DD-STATEMENT IS
MISSING; UNABLE TO OPEN DATA
SET

Explanation
HSSR buffer handler tried to open the OSAM database
data set with the named ddname. The DD statement is
missing or misspelled.

System action
HSSR Engine ends abnormally.

User response
Correct the DD statement.

FABH0604E DATA SET IS NOT INITIALIZED
AND IS EMPTY: DB=dbdname,
DD=ddname

Explanation
The OSAM data set that is specified in the ddname DD
statement and that is being used as input for IMS High
Performance Unload has not been initialized as a DL/I
database and contains no data block. Only the header
record is written in output unloaded data sets.

System action
HSSR Engine ends abnormally.

User response
Ensure that the data set specified in the DD statement
is correct.

462 IMS High Performance Unload: User's Guide

FABH0605E RDJFCB MACRO FAILED ON
DDNAME: ddname (RC=xx)

Explanation
The RDJFCB macro failed with a return code xx for the
data set that was specified for the DDNAME ddname.

System action
HSSR Engine ends abnormally.

User response
Check the job log messages and other printed output
for an indication that some system service has failed.

If you specified DBALLABOVE in DFSVSAMP, make the
following change and rerun the job:

• For z/OS 1.12 or later, specify
NON_VSAM_XTIOT=YES in the DEVSUPxx PARMLIB
member.

• For z/OS 1.11 or earlier, remove the specification of
DBALLABOVE from DFSVSAMP.

If none can be found, it is likely that IMS High
Performance Unload has had an internal logic error.
Contact IBM Software Support.

FABH0606E OBTAIN MACRO FAILED ON
DDNAME: ddname (RC=xx)

Explanation
The OBTAIN macro failed with a return code xx for the
data set that was specified for the DDNAME ddname.

System action
HSSR Engine ends abnormally.

User response
Check the job log messages and other printed output
for an indication that some system service has failed.
If none can be found, it is likely that IMS High
Performance Unload has had an internal logic error.
Contact IBM Software Support.

FABH0607I DD=dd_name BLOCK SIZE IS NOT
SIZE DEFINED IN RECON

Explanation
The actual block size of the indicated OSAM data set
is not the same as the block size that is defined in the
RECON data sets.

System action
The processing continues.

User response
It is recommended that you correct the block size in
the RECON data sets.

FABH0608E RANSIZE IS TOO LOW: MINIMUM
IS nnn

Explanation
The value of a RANSIZE control statement is less than
the allowable minimum value.

System action
HSSR Engine ends abnormally.

User response
Increase the value of the RANSIZE control statement
and rerun the job.

FABH0611E OPEN OF DBD=dbdname
DDN=ddname --- ESDS GEN
BLOCK= RPL FAILED

Explanation
The ESDS database named dbdname could not be
opened. A GENCB for an RPL failed. A possible reason
is that insufficient virtual storage is available in the
address space. ddname indicates the DD name of the
failing data set.

System action
HSSR Engine ends abnormally.

User response
See message FABH0591E, and take an appropriate
action. If necessary, contact IBM Software Support.

FABH0621E PAGE-FIXING HAS FAILED

Explanation
HSSR buffer handler tried to fix its own OSAM or ESDS
buffers by issuing the IMSAUTH FUNC=PGFIX macro.
The IMSAUTH macro set a return code indicating that
it could not perform page-fixing.

System action
HSSR Engine ends abnormally.

Chapter 35. Messages and codes 463

User response
Examine the contents of register 4 and take an
appropriate action. Register 4 contains the error code
returned by IMSAUTH in register 15. If necessary,
contact IBM Software Support.

FABH0622E HSSR FAILED IN PARTITION
SELECTION; REQUEST=xxxxxx,
RC=yy, RSN=zzzzz

Explanation
An error occurred in a partition selection request
when the IMS's DFSPSEL macro was used. The string
xxxxxxx indicates the type of the request; FIRST, NEXT,
SELECT, PSET, or PRSET. The value yy shows the return
code, and the value zzzzz shows the reason code from
the DFSPSEL service.

RSN=4020 means a DB authorization error occurred,
because the partition has been authorized to another
IMS subsystem or a data set name that is specified
in the JCL for the partition is inconsistent with the
registration in RECON. For other reason codes, see the
explanation of message DFS0832I in IMS Messages
and Codes Volume 2.

System action
HSSR Engine ends abnormally.

User response
If RSN=4020, issue the /DBD or the /DBR command to
the partition before the IMS High Performance Unload
job step, or remove the DD statements for the partition
from the JCL.

FABH0623E SELECTED PARTITION ppppppp
OF DATABASE dddddddd IS NOT
AVAILABLE

Explanation
The partition ppppppp selected by an HSSR call that
was issued for the HALDB dddddddd had not been
specified as a partition to be processed. This message
is issued when a user exit routine for FABHURG1 or
FABHFSU returns a root sequence key of the segment
to be processed next, but the segment is in an
inaccessible partition.

System action
HSSR Engine ends abnormally.

User response
Check whether the partition ppppppp belongs to the
set of partitions that are specified by a PARTITION
control statement in the SYSIN data set of FABHURG1
or in the CARDIN data set of FABHFSU. If not,
correct the PARTITION control statement so that the
partition ppppppp can be included. If a HALDB control
statement in the DFSHALDB DD statement is defined,
remove it.

FABH0624E TARGET PARTITION ppppppp IS
NOT FOUND

Explanation
IMS DFSPSEL macro returned return code 8 and
reason code X'8010' for a PSET request. The string
ppppppp shows the name of the partition that is not
found.

System action
HSSR Engine ends abnormally.

User response
Check whether the partition ppppppp belongs to the
set of partitions that are specified by a PARTITION
control statement in the SYSIN data set of FABHURG1
or in the CARDIN data set of FABHFSU; if not, correct
the PARTITION control statement so that the partition
ppppppp can be included.

FABH0625E USER PARTITION SELECTION
FAILED (SELECTION
TYPE=aaaaaa)

Explanation
The partition selection exit got the return code 4
from the routine written for the exit, and the IMS
DFSPSEL macro returned return code 8 and reason
code X'8051'. The string aaaaaa shows the type of the
partition selection request (the value specified for the
PART parameter of DFSPSEL) that was issued at the
time of the error.

System action
HSSR Engine ends abnormally.

User response
Determine the reason why the partition selection exit
routine returned return code 4.

FABH0626E PARTITION SELECTION EXIT
ROUTINE REQUESTED A

464 IMS High Performance Unload: User's Guide

PSEUDO ABEND (SELECTION
TYPE=aaaaaa, RC=xx)

Explanation
The user partition selection exit routine returned the
return code xx and the IMS DFSPSEL macro returned
return code 16 and the reason code X'10001'. The
string aaaaaa shows the type of the partition selection
request (the v specified for the PART parameter of
DFSPSEL) that was in effect at the time of the error.

System action
HSSR Engine ends abnormally.

User response
For the explanation of the IMS user abend code of
3499, see IMS Messages and Codes. The programmer
response described in IMS Messages and Codes
applies also to HSSR Engine.

FABH0627E EXIT ROUTINE xxxxxxxx
RETURNED RC=03 ALTHOUGH
PARTITION AND CO STATEMENTS
ARE SPECIFIED

Explanation
The user exit routine xxxxxxxx for FABHURG1 returned
return code 3 when both the PARTITION and CO
control statements are specified. Exit routines are not
allowed to return a return code of 3 when both of
these statements are specified.

System action
HSSR Engine ends abnormally.

User response
Remove the CO or PARTITION statement from the
HSSROPT data set.

FABH0628E EXIT ROUTINE xxxxxxxx
RETURNED RC=16 ALTHOUGH
PARTITION AND CO STATEMENTS
ARE SPECIFIED

Explanation
The user exit routine xxxxxxxx for FABHFSU returned
return code 16 when both the PARTITION and CO
control statements are specified. Exit routines are not
allowed to return return code 16 when both of these
statements are specified.

System action
HSSR Engine ends abnormally.

User response
Remove the CO or PARTITION statement from the
HSSROPT data set.

FABH0629W PARTITION ppppppp IS SKIPPED
BECAUSE OF AN ERROR IN
PARTITION SELECTION

Explanation
The processing of the HALDB partition ppppppp was
skipped because an error occurred when a partition
selection request was processed.

System action
HSSR Engine continues processing.

User response
See the Trace Output report with Diagnostics for the
reason of the error.

FABH0630E CANNOT PROCESS THE
PARTITION NEXT TO ppppppp
BECAUSE OF STATUS CODE 'GG'
FROM THE PRIOR DL/I CALL

Explanation
This message is issued if a CO statement is specified
in the HSSROPT data set and the status code 'GG'
was returned at the DL/I call issued earlier for the
comparison with an HSSR call. The string ppppppp
shows the name of the partition that had been
processed before the DL/I call in question was issued.
HSSR Engine cannot continue the processing of the
database in this case even if PROCOPT=GON or GOT is
specified for the PCB.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, remove the CO statement and
specify a DIAGG statement in HSSROPT data set; then
rerun the job to see the diagnostics information for
the status code 'GG'. If you are running a FABHURG1
or FABHFSU job, it is recommended that you specify
the PARTITION statement with ppppppp as the first
operand and 2 as the second operand.

Chapter 35. Messages and codes 465

FABH0631E PROBLEMS WITH DL/I-STAT CALL

Explanation
HSSR buffer handler tried to retrieve the VSAM Shared
Resource Pool Statistics by issuing an internal DL/I
STAT call. DL/I returned an unexpected status code.

System action
HSSR Engine ends abnormally.

User response
To identify the cause, activate the compare and
hardcopy trace options, and execute the failing call
sequence with the FABHTEST utility (see “FABHTEST
utility for problem determination” on page 378). If
necessary, contact IBM Software Support.

FABH0632E CLOSE FAILED

Explanation
After program termination, HSSR Engine is asked to
close the DCB/ACB of the databases. The CLOSE
macro is unsuccessful.

System action
HSSR Engine ends abnormally.

User response
The access method error message contains additional
information. Refer to the message. To identify the
cause, activate the compare and hardcopy trace
options, and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for problem
determination” on page 378). If necessary, contact
IBM Software Support.

FABH0633E TARGET PARTITION IS NOT
FOUND FOR THE SPECIFIED KEY

Explanation
IMS DFSPSEL macro returned return code 8 and the
reason code X'8010' for a SELECT request, but no
partition corresponding to the key specified in the
request was found.

System action
HSSR Engine ends abnormally.

User response
Check whether the root key specified in the SSA is
correct.

DMTI

The key specified in the SSA is at offset X'8AC' from
the address pointed to by general register 10.

DMTI

FABH0634E ONLINE REORG RUNNING
FOR PARTITION=pppppppp
(DBD=dddddddd)

Explanation
HALDB Online Reorganization (OLR) is currently
processing partition pppppppp. HSSR Engine cannot
process the partition.

System action
HSSR Engine ends abnormally.

User response
Rerun after OLR for all partitions are completed.

FABH0635W ONLINE REORG ACTIVE
FOR PARTITION=pppppppp
(DBD=dddddddd)

Explanation
HALDB Online Reorganization (OLR) processing for
partition pppppppp was stopped prior to the
completion of the partition, and the OLR cursor is still
active. HSSR Engine will process the partition which is
comprised of both the A-J and X data sets as well as
the M-V and Y data sets.

System action
HSSR Engine continues processing. If one of the
following options is specified, it is ignored:

• BYINDEX, CO, DBSTATS, KEYCHECK, or SKERROR.

User response
Refer to the additional messages.

FABH0636E UNSUPPORTED OPTION FOR OLR
ACTIVE PARTITIONS: option

466 IMS High Performance Unload: User's Guide

Explanation
The option (option) is specified, but this is one of
the following options with which HSSR Engine cannot
process the HALDB OLR active partition:

• DECN
• PARTEXTR
• User exit routine
• *CS format for PHDAM

System action
FABHURG1 or FABHFSU ends abnormally.

User response
Remove this option or rerun after OLR for all partitions
are completed.

FABH0637W HSSR CALLS FALL BACK TO
DL/I FROM PARTITION=pppppppp
(DBD=dddddddd)

Explanation
HSSR Engine will pass all of the following DL/I calls
to IMS's DL/I call handler from partition pppppppp,
because HALDB online reorganization (OLR) is active
for this partition.

System action
HSSR Engine continues processing. The performance,
however, decreases.

User response
If you want to use the ignored option, rerun after
HALDB OLR for all partitions are completed.

FABH0638W SPECIFIED DBVER IS NOT
SUPPORTED. HSSR CALLS FALL
BACK TO DL/I

Explanation
IMS database versioning is enabled, but the specified
database is not the current version of the database.
HSSR Engine supports only the current version of the
database when IMS database versioning is enabled.
HSSR Engine passes subsequent DL/I calls to the DL/I
call handler of IMS.

System action
HSSR Engine ignores BYINDEX, CO, DBSTATS,
KEYCHECK, and SKERROR control statements

specified in the HSSROPT data set, and activates the
BLDLPCK option. HSSR Engine continues processing,
however, the performance decreases.

User response
Specify the current version of the database.

FABH0639E IMS TOOLS CATALOG INTERFACE
ERROR: FUNCTION=func RC=rc
RSN=rsn

Explanation
HSSR Engine received an error return code from IMS
Tools Catalog Interface.

System action
HSSR Engine ends abnormally.

User response
Contact IBM Software Support.

FABH0640E DBD=dbdname IS NOT FOUND IN
THE IMS DIRECTORY DATA SETS

Explanation
HSSR Engine could not find the indicated DBD in the
IMS directory data sets.

System action
HSSR Engine ends abnormally.

User response
Ensure that the correct DBD name is specified on the
EXEC statement and rerun the job.

FABH0641E VSAM PHYSICAL I/O ERROR

Explanation
HSSR buffer handler encountered an I/O problem
on an ESDS. The return code and reason code are
described in DFSMS/MVS Macro Instructions for Data
Sets.

System action
HSSR Engine ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

Chapter 35. Messages and codes 467

• Activate the compare and hardcopy trace options,
and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for problem
determination” on page 378).

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0642E VSAM LOGICAL ERROR; RPL-
FDBK-CODE IS IN R3

Explanation
VSAM signaled an unexpected logical error to HSSR
buffer handler after an ESDS GET macro.

System action
HSSR Engine ends abnormally.

User response
At the time of the dump, register 3 contains the RPL
feedback code. Identify and resolve the cause of the
error from the RPL feedback code.

If the problem persists, complete the following tasks
to identify the cause, and take appropriate actions:

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

• Activate the compare and hardcopy trace options,
and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for problem
determination” on page 378).

If necessary, contact IBM Software Support.

FABH0643E SHOWCB OF RPL-FDBK-CODE
FAILED

Explanation
The VSAM SHOWCB macro issued by HSSR buffer
handler failed.

System action
HSSR Engine ends abnormally.

User response
If necessary, contact IBM Software Support.

FABH0645I ZIIP TIME (HH:MM:SS.THMIJU)
WAS: hh:mm:ss.thmiju

Explanation
This informational message shows the CPU time
consumed by zIIP processors for the IMS HP Unload
job.

System action
Processing continues.

User response
None. This message is informational.

FABH0646E ERROR RETURNED FROM
GEXAPI00: FUNC=xxxxxxx,
SERVICE CODE=xxxx, RC=xxxx,
RSN=xxxx

Explanation
HSSR Engine called the GEXAPI00 module, but an
error return code was returned from GEXAPI00.

System action
If ZIIPMODE=FORCE is specified, HSSR Engine ends
abnormally. If ZIIPMODE=COND is specified and
the error occurred during initialization (FUNC=INIT),
processing continues.

User response
If the return code is 04 and the reason code is 04,
ensure that your environment is correctly set up:

• You are using one of the currently supported
versions of z/OS and the PTF for using zIIP has been
applied.

• The zIIP processor is correctly set up.

If the problem persists, contact IBM Software Support.

FABH0653E OSAM I/O ERROR,
DDNAME=ddname DECB-
STATUS=xxx...20

Explanation
HSSR buffer handler encountered an I/O problem
when using BSAM to read an OSAM block. ddname
is the ddname. xxx...20 is the field DECBSTAT from
the DECB used in the I/O operation followed by a
description of the error.

468 IMS High Performance Unload: User's Guide

System action
HSSR Engine ends abnormally.

User response
See the description of message DFS0451I in IMS
Messages and Codes.

Complete the following tasks to identify the cause, and
take appropriate actions:

• Activate the compare and hardcopy trace options,
and execute the failing call sequence with the
FABHTEST utility (see “FABHTEST utility for problem
determination” on page 378).

• Ensure that the correct DBDs, PSBs, and ACBs were
being used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0654E MEDIA MANAGER function ERROR,
RC=rc

Explanation
When HSSR Engine issued MMGRSRV to process
function (CONNECT, DISCONNECT, or CATREAD) to the
data set, an unexpected Media Manager MMGRSRV
error occurred. The rc is the return code of
Media Manager. For details, see DFSMSdfp Diagnosis
Reference.

System action
HSSR Engine ends abnormally.

User response
Collect the dump and contact IBM Software Support.

FABH0655E MEDIA MANAGER I/O ERROR,
RC=rc

Explanation
When HSSR Engine issued MMGRCALL to get access
to the data set, an unexpected Media Manager
MMGRCALL error occurred. The rc is the return code
of Media Manager.

System action
HSSR Engine ends abnormally.

User response
Collect the dump and contact IBM Software Support.

FABH0656I MEDIA MANAGER IS USED TO
ACCESS DB: dbdname

Explanation
Media Manager is used to read VSAM data sets of
database dbdname because all concatenations of the
JOBLIB/STEPLIB are APF-authorized.

System action
HSSR Engine continues processing.

User response
None. This message is informational.

FABH0657E STEPLIB IS NOT APF-
AUTHORIZED

Explanation
APF-authorization is required for this type of run of the
HSSR Engine.

System action
HSSR Engine ends abnormally.

User response
APF-authorize all libraries in STEPLIB DD
concatenation, and rerun the job.

FABH0658W "HPIO YES" IS IGNORED DUE TO
IMS HD UNLOAD COMPATIBILITY
MODE

Explanation
HPIO YES is specified in the HSSROPT DD statement.
However, the HPIO YES specification is ignored
because HPIO statements are not supported for IMS
High Performance Unload jobs that are started by IMS
HD Reorganization Unload (DFSURGU0) JCL.

System action
HSSR Engine continues processing.

User response
If you want to use Media Manager to process VSAM
ESDSs, change the JCL to FABHURG1 JCL. Otherwise,
remove HPIO YES from the HSSROPT DD statement.

Chapter 35. Messages and codes 469

FABH0659E SPECIFIED DBVER IS NOT
SUPPORTED

Explanation
IMS database versioning is enabled in the ULU region,
but the specified database is not the current version
of the database. When IMS database versioning is
enabled, only the current version of the database can
be used.

System action
HSSR Engine ends abnormally.

User response
Check whether DBVERSION=(YES,DBLEVEL=BASE)
statement is coded in the DFSDFxxx member of the
IMS.PROCLIB data set. If the statement exists, remove
it or change the DBLEVEL value so that the current
version of the database is used.

FABH0660W COMPAUTH YES IS IGNORED IN
UNAUTHORIZED PROGRAM

Explanation
Although one or more segments are compressed, the
COMPAUTH YES option in the HSSROPT data set is
ignored because of one of the following reasons:

• One or more STEPLIB libraries are not APF-
authorized.

• Authorization code 1 (AC=1) is not assigned to
the first module. This condition occurs when, for
example, EXEC PGM=DFSRRC00 is specified in the
JCL.

System action
HSSR Engine ignores the COMPAUTH YES option and
continues processing with the COMPAUTH NO option.

User response
To apply the COMPAUTH YES option, APF-authorize all
the STEPLIB libraries and specify the program name
of FABHX034 on the PGM parameter of the EXEC
statement.

FABH0661E RBA REQUEST BEYOND
ORIGINAL DATA SET LIMITS
DDNAME=ddname

Explanation
The HSSR buffer handler received a request to read
a block or CI that is beyond the extents of the data

set (ddname). The reason might be that concurrent
database updates have extended the data set.

System action
HSSR buffer handler tries to get new up-to-date
information about the data set extents. If the
requested block/CI is no longer beyond the known
data set limits, HSSR buffer handler proceeds
normally; otherwise HSSR Engine ends abnormally.

User response
None.

FABH0662E OPEN OF DBD=dbdname
DDN=ddname --- ESDS "text"

Explanation
HSSR buffer handler tried to access a CI that is
beyond the currently known extents of the data set
(dbdname). To get up-to-date extent information,
HSSR buffer handler is issuing a new VSAM OPEN. The
VSAM OPEN is unsuccessful. ddname indicates the DD
name of the failing data set.

System action
HSSR Engine ends abnormally.

User response
See message FABH0591E, and take an appropriate
action.

FABH0663E RETRYING KSDS I/O OPERATIONS

Explanation
The HSSR buffer handler detected an unexpected
VSAM logical error code. This might be explained by
concurrent database updates.

System action
HSSR buffer handler refreshes the KSDS buffers and
retries the I/O operation. If the retry is not successful,
an abend is issued. If the retry is successful, HSSR
Engine proceeds normally. Note that in this case,
some database records might have been skipped or
retrieved twice.

User response
None.

FABH0664E OPEN OF DBD=dbdname
DDN=ddname --- KSDS "text"

470 IMS High Performance Unload: User's Guide

Explanation
HSSR buffer handler has encountered an unexpected
VSAM logical error and decided to re-OPEN the VSAM
KSDS (dbdname) and to retry the I/O operation.
However, the re-OPEN is not successful. ddname
indicates the DD name of the failing data set.

System action
HSSR Engine ends abnormally.

User response
See message FABH0581E, and take an appropriate
action.

FABH0670W DB-ACCESS NOT AUTHORIZED BY
DBRC: DB=dbdname

Explanation
The DBRC authorization request for database access
was not sent. When two or more database PCBs
(DBPCBs) are defined in the PSB and the library
of DFSMDA members for dynamic allocation of the
database data sets is specified on the IMSDALIB DD
statement, HSSR Engine does not send the DBRC
authorization request.

System action
HSSR Engine continues processing without obtaining
DBRC authorization.

User response
Specify the library of DFSMDA members on the
STEPLIB DD statement.

FABH0671W DB (xxxxxxxx) PCB IS NOT A VALID
HSSR PCB, RC=yyyyyyy

Explanation
When the first HSSR call is issued to the database,
the database (xxxxxxxx) PCB is incorrect as HSSR PCB.
If no database PCBs are in the PSB, then xxxxxxxx is
blank. The reason code (RC=yyyyyyy) shows an error
in the PCG. The program control is transferred to DL/I
modules instead of HSSR Engine. It means that the
database does not take advantage of HSSR Engine.

RC
Meaning

PROCOPT
The PROCOPT parameter on the PCB statement
specifies the incorrect code or combination of

codes. The codes you can use are G, O, N, T, R,
A, P, and E.

KEYLEN
A value of the KEYLEN parameter on the PCB
statement is less than 200. This reason code is
returned also when the specified PCB refers to the
DBD that is listed on the DBDL1 control statement.

USREXIT
An application program issued an HSSR call for the
following PCB:

• PCB is generated with PROCOPT=R.
• And DBD referred to by the PCB is generated

with the data capture exit routine.

The following table summarizes the reason codes of
FABH0671W for the combination of errors.

Key
length
error

PROCOPT
error

User exit
error

Reason code of
FABH0671W

Yes Yes Yes RC=PROCOPT

Yes Yes No RC=PROCOPT

Yes No No RC=KEYLEN

Yes No Yes RC=USREXIT

No No Yes RC=USREXIT

No No No N/A

No Yes Yes RC=PROCOPT

No Yes No RC=PROCOPT

System action
HSSR Engine continues processing.

User response
If you want to process the database with HSSR
Engine, check and correct the PCB that defines
the database. Otherwise, ignore this message and
continue processing by using DL/I modules.

To identify the cause, check the PROCOPT or KEYLEN
parameter in the PCB. If the reason code is "KEYLEN"
and the specified PCB does not refer to any DBDs that
are listed on the DBDL1 control statement, the PCB
can be specified as an HSSR PCB using the HSSRPCB
control statement or through the HSSRDBD control
statement.

FABH0672E INVALID NUMBER OF
PARAMETERS FOR PLIHSSR CALL

Chapter 35. Messages and codes 471

Explanation
The HSSR PL/I language interface detected an
incorrect number of parameters for PLIHSSR call.

System action
HSSR Engine ends abnormally with dump.

User response
Check and correct the PLIHSSR call statement in your
PL/I application program and rerun. If there is no
error, check whether the correct APISET statement
is specified. For details about the call types and
command types that APISET supports, see “DL/I calls
and EXEC DLI command for HSSR PCB” on page 84.

FABH0673E INCORRECT PCB ADDRESS
WAS PASSED BY APPLICATION
PROGRAM

Explanation
HSSR Engine detected an incorrect PCB address
internally. This message was issued because of the
incorrect PCB address passed by application program
or an internal error in HSSR Engine.

System action
HSSR Engine ends abnormally.

User response
Check the PCB parameter or other parameters. If
there is no error in DL/I call statement, contact IBM
Software Support.

FABH0674E ERROR FOUND IN HSSR CALL
STATEMENT, INVALID xxxxxx

Explanation
The HSSR language interface detected an error in
the HSSR call statement described in xxxxxx. xxxxxx
shows one of the following texts:

PARAMETER COUNT

• If APISET is 1, the parameter count must be 3 or
4.

• If APISET is 2, the count must be from 3 to 5.
• If APISET is 3, the count must be from 3 to 18,

inclusive.

PCB ADDRESS
PCB address is incorrect.

NUMBER OF PARAMETERS

• If APISET is 1, the number of parameters must
be 3 or 4.

• If APISET is 2, the number must be from 3 to 5.
• If APISET is 3, the number must be from 3 to 18,

inclusive.

System action
HSSR Engine ends abnormally.

User response
Specify 'APISET 2' or 'APISET 3' in the control
statement.

FABH0675E ROOT SEGMENT POSITION IS NOT
ESTABLISHED

Explanation
Two or more SSAs are specified and the first is a
qualified SSA, but the root segment position has
not been established yet by the preceding call. This
call is not supported by the HSSR call handler. The
unsupported call is printed in the Trace Output report
in the HSSRTRAC data set.

System action
If APISET is 2, HSSR Engine ends abnormally. If
APISET is 3, the call and all the succeeding calls
to the HSSR PCB are passed to the IMS DL/I call
handler to continue the processing instead of ending
it abnormally.

User response
If APISET is 2, specify 'APISET 3' in the control
statement. If APISET is 3, ignore this message.

FABH0676E INCORRECT COMPAUTH CONTROL
STATEMENT IS SPECIFIED

Explanation
In the HSSROPT data set, an incorrect operand is
specified for the COMPAUTH control statement. The
operand must be YES or NO.

System action
HSSR Engine ignores the COMPAUTH control
statement and continues processing.

User response
Correct the COMPAUTH control statement.

472 IMS High Performance Unload: User's Guide

FABH0677E INVALID SKIPAUTH CONTROL
STATEMENT IS SPECIFIED

Explanation
An incorrect operand is specified on the SKIPAUTH
control statement in the HSSROPT data set. The
operand must be either YES or NO.

System action
The incorrect statement is ignored.

User response
Correct the SKIPAUTH statement and then rerun the
job.

FABH0678E INCORRECT HPIO CONTROL
STATEMENT IS SPECIFIED

Explanation
An incorrect operand on the HPIO control statement is
specified in the HSSROPT data set. The operand must
be either YES or NO.

System action
The incorrect statement is ignored.

User response
Correct the HPIO statement.

FABH0679E INCORRECT SKIPVLC CONTROL
STATEMENT IS SPECIFIED

Explanation
An incorrect operand on the SKIPVLC control
statement is specified in the HSSROPT data set. The
operand must be either YES or NO.

System action
The incorrect statement is ignored.

User response
Correct the SKIPVLC statement.

FABH0680E FABHKEYX CANNOT PROCESS THE
COMPRESSED ROOT KEY

Explanation
The FABHKEYX exit routine cannot process the
compressed root key. It must be decompressed.

System action
Program FABHURG1 ends abnormally.

User response
If you want to use the FABHKEYX exit for this
database, specify the DECY control statement.

FABH0681E INCORRECT APISET CONTROL
STATEMENT IS SPECIFIED

Explanation
An incorrect operand or no operand is specified for the
APISET control statement in the HSSROPT data set.
The operand must be 1, 2, or 3.

System action
The statement is ignored and the system or site
default is used.

User response
Correct the APISET control statement.

FABH0682E xxxxxxxx CANNOT BE SPECIFIED
WHEN APISET 3 IS SELECTED

Explanation
The control statement xxxxxxxx is not supported for
APISET 3.

System action
HSSR Engine ends abnormally.

User response
Remove the control statement xxxxxxxx or specify
APISET 1 or 2.

FABH0683E INCORRECT PCBLIST CONTROL
STATEMENT IS SPECIFIED

Explanation
An incorrect operand or no operand is specified for the
PCBLIST control statement in the HSSROPT data set.
The operand must be HSSR or IMS.

System action
The statement is ignored and the system or site
default is used.

Chapter 35. Messages and codes 473

User response
Correct the PCBLIST control statement.

FABH0684I DD=ddname01
HIGHKEY=KeyString
SEGMENT=segname1
n,nnn,nnn,nnn OCCURRENCES
*TOTAL n,nnn,nnn,nnn
OCCURRENCES

Explanation
The FABHKEYX exit routine used the specified DD
name ddname01 and the high key value KeyString. The
indicated number of segment records were written to
this unload file.

System action
Program FABHURG1 continues processing.

User response
None. This message is informational.

FABH0685E INCORRECT STATEMENT IS
FOUND IN FABHKEYX DATA SET

Explanation
The FABHKEYX exit routine detected an incorrect
statement that is specified in the FABHKEYX data set.

System action
Program FABHURG1 ends abnormally.

User response
Correct the statement.

FABH0686E HIGH KEY VALUES ARE NOT
SPECIFIED IN ASCENDING ORDER

Explanation
The FABHKEYX exit routine detected the high key
values that are specified in the FABHKEYX data set are
not in ascending order.

System action
Program FABHURG1 ends abnormally.

User response
Correct the statements.

FABH0687E OPEN FAILED FOR DDNAME:
ddname

Explanation
An attempt to open the data set that is identified by
ddname failed.

System action
Program FABHURG1 ends abnormally.

User response
Ensure that the DD statement associated with ddname
is the correct data set.

FABH0688E BLKSIZE OR LRECL OF ddname IS
TOO SMALL

Explanation
The block size or record size of the ddname data set
is too small. The block size is always the maximum
device capacity.

System action
Program FABHURG1 ends abnormally.

User response
If the utility uses the maximum device capacity, check
whether ddname can be allocated on a device with
more track capacity. If the utility uses the block size
specified on the JCL statement, check whether the
block size or the record size can be increased or use
the default maximum device capacity.

Record size cannot be specified.

FABH0689E MIGRATE CONTROL STATEMENT
IS NOT SPECIFIED

Explanation
For a non-HALDB, the FABHKEYX exit routine requires
to specify the MIGRATE control statement together.

System action
Program FABHURG1 ends abnormally.

User response
Add the MIGRATE control statement.

FABH0690E ROOT SEGMENT HAS NO
SEQUENCE-FIELD

474 IMS High Performance Unload: User's Guide

Explanation
The FABHKEYX exit routine cannot process this HDAM
database because no sequence field is defined in the
root segment of the HDAM database.

System action
Program FABHURG1 ends abnormally.

User response
Remove the FABHKEYX exit routine from the EXIT
control statement.

FABH0691E STATUS CODE=xx RETURNED ON
AN INTERNAL DL/I CALL

Explanation
If APISET 3 is specified in HSSROPT data set, HSSR
Engine can issue a DL/I GU call internally. This
message indicates that the status code xx is returned
for one such DL/I call.

System action
HSSR Engine ends abnormally.

User response
Check the status code and detect the cause of the
error. If the cause is not clear, collect the dump and
contact IBM Software Support.

FABH0692E ERROR RETURN CODE xx IN
RESPONSE TO A DL/I REQUEST
ON DDNAME ddname FOR
FUNCTION yy

Explanation
HSSR Engine issued an internal DL/I call to read
database data set (ddname). Code yy is the content of
PSTFNCTN, and code xx is the content of PSTRTCDE;
both values are in hexadecimal.

System action
HSSR Engine ends abnormally.

User response
Check the return code and detect the cause of the
error. If the cause is not clear, collect the dump and
contact IBM Software Support.

FABH0693E STATUS CODE=xx RETURNED ON
AN INTERNAL DL/I CALL

Explanation
If APISET 3 is specified in HSSROPT data set, HSSR
Engine can issue a DL/I call internally. This message
indicates that the status code xx is returned for one
such DL/I call.

System action
HSSR Engine ends abnormally.

User response
Check the status code and detect the cause of the
error. If the cause is not clear, collect the dump and
contact IBM Software Support.

FABH0695I DL/I CALLS TO HSSR PCB
(PCB#=nnnn) ARE PASSED TO IMS
DL/I

Explanation
HSSR application program issued a DL/I call that is
not fully supported by HSSR Engine. This call and the
succeeding calls to the HSSR PCB are passed to the
IMS DL/I call handler, because APISET 3 is specified.

System action
The processing continues. The performance, however,
decreases.

User response
If you want the database calls to be fully processed by
HSSR Engine, use call type supported by APISET 2.

FABH0696I "SKIPAUTH YES" IS APPLICABLE
ONLY TO HALDB

Explanation
SKIPAUTH YES is specified in the HSSROPT data set.
This control statement is applicable only to HALDBs.

System action
HSSR continues processing. If the database is a
HALDB, IMS DBRC database authorization request is
bypassed.

User response
If you want to avoid DBRC authorization failure
(DFS047A) for non-HALDBs, specify DBRC=N and then
rerun the job.

Chapter 35. Messages and codes 475

FABH0697E INCORRECT CABBASE CONTROL
STATEMENT IS SPECIFIED

Explanation
An incorrect operand on the CABBASE control
statement is specified in the HSSROPT data set.

System action
The incorrect statement is ignored.

User response
Correct the CABBASE statement.

FABH0698E INCORRECT ZIIPMODE CONTROL
STATEMENT IS SPECIFIED

Explanation
An incorrect operand on the ZIIPMODE control
statement is specified in the HSSROPT data set.

System action
The incorrect statement is ignored.

User response
Correct the ZIIPMODE statement.

FABH0700E FIRST CONTROL STATEMENT ID IS
NOT MAP

Explanation
In the FABHPSFM step, the first control statement ID
is not MAP.

System action
Program FABHPSFM ends abnormally.

User response
Correct the control statement.

FABH0701E DBDNAME IS MISSING OR HAS
IMBEDDED BLANKS

Explanation
A DBD name was not specified or it contains blank
characters in the MAP control statement.

System action
Program FABHPSFM ends abnormally.

User response
Correct the control statement.

FABH0702E INDEX DBDNAME HAS IMBEDDED
BLANKS

Explanation
An Index DBD name contains blank characters in the
MAP control statement.

System action
Program FABHPSFM ends abnormally.

User response
Correct the control statement.

FABH0703E THIS SEGMENT ENTRY IS NOT
ROOT SEGMENT

Explanation
Program FABHPSFM checked the segment code of the
database and found that the segment code of the first
segment type is not for root segment.

System action
FABHPSFM ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct version of DBD was being
used.

• Ensure that the database processed by HSSR Engine
was not being updated at the time when the error
occurred.

FABH0704E NO FIELD IS PRESENT IN DBD

Explanation
The number of segment fields is zero in the DBD being
used.

System action
Program FABHPSFM ends abnormally.

User response
See message FABH0703E, and take an appropriate
action.

476 IMS High Performance Unload: User's Guide

FABH0705E KEY FIELD IS NOT FOUND IN DBD

Explanation
There is not any sequence field in the DBD member
being used.

System action
Program FABHPSFM ends abnormally.

User response
See message FABH0703E, and take an appropriate
action.

FABH0708E KEY TYPE IS NOT C, X, OR BLANK

Explanation
The specified key type in the MAP control statement is
not valid.

System action
Program FABHPSFM ends abnormally.

User response
Correct the control statement.

FABH0709E SELECT KEY OPTION IS NOT A, D,
E, N, V, Y, OR BLANK

Explanation
The specified select key option in the MAP control
statement is not correct.

System action
Program FABHPSFM ends abnormally.

User response
Correct the control statement.

FABH0710E RELATIVE BLOCK IS MISSING OR
HAS IMBEDDED BLANKS

Explanation
A relative block was not specified or it contains blank
characters in the MAP control statement.

System action
Program FABHPSFM ends abnormally.

User response
Correct the control statement.

FABH0711E DELTA IS MISSING OR HAS
IMBEDDED BLANKS

Explanation
A search delta was not specified or it contains blank
characters in the MAP control statement.

System action
Program FABHPSFM ends abnormally.

User response
Correct the control statement.

FABH0712E INVALID INDEX DBD NAME

Explanation
An index DBD name was specified in the MAP control
statement, but this DBD is not an index DBD.

System action
Program FABHPSFM ends abnormally.

User response
Correct the control statement.

FABH0713E END CONTROL STATEMENT IS
MISSING OR OUT OF PLACE

Explanation
The END control statement is missing or out of place.

System action
Program FABHPSFM ends abnormally.

User response
Add or replace the END control statement.

FABH0714E INDEX TARGET SEGMENT IS NOT
A ROOT SEGMENT

Explanation
The target segment of the index database is not a root
segment.

Chapter 35. Messages and codes 477

System action
Program FABHPSFM ends abnormally.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBD was being used.
• Ensure that the DBDGEN statements of this DBD are

correct.

FABH0715E NO HIDAM INDEX DBD NAME IS
SPECIFIED

Explanation
The DBD name of the HIDAM database was specified,
but an index DBD name was not specified.

System action
Program FABHPSFM ends abnormally.

User response
Specify the index DBD name in the MAP control
statement.

FABH0716E INDEX FIELD NAME IS NOT
FOUND IN BASE DBD FIELD TABLE

Explanation
An index field name in the index DBD was not found in
the base DBD field table.

System action
Program FABHPSFM ends abnormally with dump.

User response
See message FABH0714E, and take an appropriate
action.

FABH0717E INDEX FIELD IS NOT AN XFLD IN
BASE DBD

Explanation
An index field for an index DBD was not defined as
XFLD in the base DBD.

System action
Program FABHPSFM ends abnormally with dump.

User response
See message FABH0714E, and take an appropriate
action.

FABH0719E FIRST VSAM INDEX RECORD
POINTER IS ZERO

Explanation
A VSAM index record is retrieved by GET macro, and
the RBA of this record is zero.

System action
Program FABHPSFM ends abnormally with dump.

User response
Check the VSAM KSDS data set. Check if the versions
of both IMS and z/OS are supported by IMS High
Performance Unload.

FABH0720E DBD IS NOT HIDAM OR HDAM

Explanation
Parallel Scan Facility supports only HIDAM and HDAM
databases.

System action
Program FABHPSFM ends abnormally.

User response
Specify the DBD name of HIDAM or HDAM.

FABH0721E VSAM INDEX FAILURE ON OPEN,
SHOWCB OR MODCB

Explanation
Return code was not zero when OPEN, SHOWCB, or
MODCB macro was issued for VSAM KSDS.

System action
Program FABHPSFM ends abnormally with dump.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the VSAM KSDS is correctly defined.
• Ensure that the VSAM DD statement is correct.
• Ensure that the versions of both IMS and z/OS are

supported by IMS High Performance Unload.

478 IMS High Performance Unload: User's Guide

FABH0722E FIND FAILED FOR MEMBER
xxxxxxxx IN DBDLIB - R15:yy -
R0:zz

Explanation
A FIND macro failed for the DBD member xxxxxxxx
in the DBD library (IMS DD in the JCL). yy is a return
code and zz is a reason code from the FIND macro.
If the return code is 4 and the reason code is 0, this
message shows that DBD xxxxxxxx was not found in
the DBD library on your IMS DD statement. Refer to
the description of FIND macro for other cases.

System action
Program FABHPSFM ends abnormally.

User response
Correct the error and rerun the Job.

FABH0723I INDEX DBD LRECL IS NOT ACTUAL
LRECL

Explanation
The logical record length of the index DBD differs from
the logical record length of the actual data set.

System action
Program FABHPSFM continues processing.

User response
Correct the DBD or the DD statement.

FABH0724E VSAM DATABASE I/O FAILURE

Explanation
The return code was not zero when OPEN or SHOWCB
macro was issued for VSAM ESDS.

System action
Program FABHPSFM ends abnormally with dump.

User response
Ensure that VSAM ESDS is correctly defined. To
identify the cause, see message FABH0721E.

FABH0725E VSAM INDEX I/O FAILURE

Explanation
The return code was not zero when GET macro was
issued for VSAM KSDS.

System action
Program FABHPSFM ends abnormally with dump.

User response
See message FABH0721E, and take an appropriate
action.

FABH0727I DBD BLOCK SIZE IS NOT ACTUAL
BLOCK SIZE

Explanation
This message is issued when either one of the
following occurs:

• The block size specified in the DBD is not equal to
the one that is specified on the DD statement in your
JCL.

• The block size specified in the DBD is not equal to
the one that is held in the VTOC.

System action
Program FABHPSFM continues processing, using the
block size specified in the VTOC, or block size specified
in your JCL if the BLKSIZE parameter is coded in the
DCB parameter.

User response
Correct the DBD or the DD statement.

FABH0729E FABHPSFM INTERNAL ERROR

Explanation
Program FABHPSFM detected an unexpected error.

System action
FABHPSFM ends abnormally with dump.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct version of DBD was being
used.

• Ensure that the versions of both IMS and z/OS are
supported by IMS High Performance Unload.

Chapter 35. Messages and codes 479

FABH0730I NO MULTIPLE EXTENTS - USE
SELECT KEY OPTION

Explanation
The primary data set group has no extent.

System action
Program FABHPSFM closes the data set and ends the
job step.

User response
Correct the select key option in the MAP control
statement.

FABH0734I INDEX RECORD POINTER IS ZERO

Explanation
Program FABHPSFM retrieved the index records and
found that the record pointer is zero.

System action
FABHPSFM continues processing.

User response
None. This message is informational.

FABH0735I NO MULTIPLE VOLUMES - USE
OTHER SELECT KEY OPTIONS

Explanation
The primary data set group was allocated within one
volume.

System action
Program FABHPSFM closes the data set and ends the
job step.

User response
Correct the select key option in the MAP control
statement.

FABH0736E GETMAIN FAILURE

Explanation
This error was caused by insufficient virtual storage in
the address space.

System action
HSSR Engine ends abnormally with dump.

User response
Ensure that sufficient virtual storage is available.

FABH0737E OBTAIN MACRO FAILED FOR
DDNAME ddname (RC=xx)

Explanation
The OBTAIN macro failed with a return code xx for the
data set that is specified for the DDNAME ddname.

System action
Program FABHPSFM ends abnormally.

User response
Check the job log messages and other printed output
for an indication that some system service has failed.
If none can be found, it is likely that IMS High
Performance Unload has had an internal logic error.
Contact IBM Software Support.

FABH0738E RDJFCB MACRO FAILED FOR
DDNAME ddname (RC=xx)

Explanation
The RDJFCB macro failed with a return code xx for the
data set that is specified for the DDNAME ddname.

System action
Program FABHPSFM ends abnormally.

User response
Check the job log messages and other printed output
for an indication that some system service has failed.
If none can be found, it is likely that IMS High
Performance Unload has had an internal logic error.
Contact IBM Software Support.

FABH0740E FIRST CONTROL STATEMENT ID IS
NOT DBD

Explanation
In the FABHPSFC step, the first control statement ID is
not DBD.

System action
Program FABHPSFC ends abnormally.

480 IMS High Performance Unload: User's Guide

User response
Correct the control statement.

FABH0741E DBDNAME IS MISSING OR HAS
IMBEDDED BLANKS

Explanation
A DBD name was not specified, or it contains blank
characters in the DBD control statement.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0742E INDEX DBDNAME HAS IMBEDDED
BLANKS

Explanation
An index DBD name contains blank characters in the
DBD control statement.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0743E SEQUENCE CHECK OPTION IS NOT
Y, N, OR BLANK

Explanation
The sequence check option in the DBD control
statement is not Y, N, or blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0744E SEQUENCE ERROR PRINT OPTION
IS NOT Y, N, OR BLANK

Explanation
The sequence error print option in the DBD control
statement is not Y, N, or blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0745E SEQUENCE ERROR OPTION IS NOT
A, B, OR BLANK

Explanation
The sequence error option in the DBD control
statement is not A, B, or blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0746E SEQUENCE ERROR THRESHOLD IS
NOT NUMERIC

Explanation
The value of the sequence error threshold in the DBD
control statement is not numeric.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statements.

FABH0747E INVALID OPTION FIELD IS USED

Explanation
Columns 26 and 27 in the DBD control statement are
not blank. Any entry is not allowed in columns 26 and
27 of the DBD control statement. This field must be
blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0748E PSB NAME IS MISSING OR HAS
IMBEDDED BLANKS

Chapter 35. Messages and codes 481

Explanation
A PSB name was not specified correctly in the PSB
control statement.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0749E PCB NUMBER IS NOT NUMERIC

Explanation
The relative PCB number in the PSB control statement
is not numeric.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0750E OUTPUT FORMAT IS NOT
SPECIFIED

Explanation
The format of output data set to be created was not
specified in the PSB control statement.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0751E DDNAME IS MISSING OR HAS
IMBEDDED BLANKS

Explanation
A DD name was not specified, or it contains blank
characters in the PSB control statement.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0752E EXIT ROUTING NAME HAS
IMBEDDED BLANKS

Explanation
The name of the exit routine contains blank characters
in the PSB control statement.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0753E SEGMENT MODIFICATION OPTION
IS NOT Y, N, OR BLANK

Explanation
The segment modification option in the PSB control
statement is not Y, N, or blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0754E CONCATENATED KEY OPTION IS
NOT Y, N, OR BLANK

Explanation
The concatenated key option in the PSB control
statement is not Y, N, or blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0755E EXIT ROUTINE CONTROL OPTION
IS NOT Y, N, OR BLANK

Explanation
The exit routine control option in the PSB control
statement is not Y, N, or blank.

System action
Program FABHPSFC ends abnormally.

482 IMS High Performance Unload: User's Guide

User response
Correct the control statement.

FABH0756E DBR SKIP OPTION IS NOT Y, N, OR
BLANK

Explanation
The DBR skip option in the PSB control statement is
not Y, N, or blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0758E END CONTROL STATEMENT IS
MISSING OR OUT OF PLACE

Explanation
The END control statement is missing or it is out of
place.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0759E NO PSB CONTROL STATEMENT IS
PRESENT

Explanation
The PSB control statement is not specified.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0760E SCAN CONTROL DATA SET RECFM
IS NOT VB

Explanation
The record format of the scan control data set is not
VB.

System action
Program FABHPSFC ends abnormally.

User response
Correct the record format of the scan control data set.

FABH0761E FIND FAILED FOR MEMBER
xxxxxxxx IN DBDLIB - R15:yy -
R0:zz

Explanation
A FIND macro failed for the DBD member xxxxxxxx
in the DBD library (IMS DD in the JCL). yy is a return
code and zz is a reason code from FIND macro. If
the return code is 4 and the reason code is 0, this
message shows that DBD xxxxxxxx was not found in
the DBD library on your IMS DD statement. Refer to
the description of FIND macro for other cases.

System action
Program FABHPSFC ends abnormally.

User response
Correct the error and rerun the Job.

FABH0765E INVALID OPTION FIELD IS USED

Explanation
Column 30 in the DBD control statement is not blank.
Any entry is not allowed in column 30 of the DBD
control statement. This field must be blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0766E INCORRECT CONTROL
STATEMENT PLACEMENT

Explanation
The sequence of control statements is not valid. The
CTL control statement does not follow the DBD control
statement.

System action
Program FABHPSFC ends abnormally.

Chapter 35. Messages and codes 483

User response
Correct the control statement.

FABH0767E PARALLEL SCAN NAME IS
INVALID

Explanation
The parallel scan name was not specified correctly in
the CTL control statement.

System action
Program FABHPSFC ends abnormally.

User response
Correct the parallel scan name.

FABH0768E SCAN CONTROL DATA SET
EXPIRATION DATE IS NOT VALID

Explanation
The expiration date of the scan control data set was
not specified correctly in the CTL control statement.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0769E NUMBER OF PARALLEL SCANS IS
NOT VALID

Explanation
The total number of parallel scan phases was not
specified correctly in the CTL control statement.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0770E DSN SEQUENCE OFFSET IN NOT
VALID

Explanation
The DSN sequence offset option was not specified
correctly in the CTL control statement.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0771E FABHPSFC INTERNAL ERROR

Explanation
Program FABHPSFC detected an unexpected error.

System action
FABHPSFC ends abnormally with dump.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs and PSBs were being
used.

• Ensure that the versions of both IMS and z/OS are
supported by IMS High Performance Unload.

If necessary, contact IBM Software Support.

FABH0772E FABHPSFC INTERNAL ERROR

Explanation
Program FABHPSFC detected an unexpected error.

System action
FABHPSFC ends abnormally with dump.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the correct DBDs and PSBs were being
used.

• Ensure that the database processed by FABHPSFC
was not being updated at the time when the error
occurred.

If necessary, contact IBM Software Support.

FABH0773E PHASE COUNT AND NODE POINT
OR HIGH KEY ARE MISMATCH

Explanation
Program FABHPSFC detected an unexpected error.

484 IMS High Performance Unload: User's Guide

System action
FABHPSFC ends abnormally.

User response
See message FABH0772E, and take an appropriate
action.

FABH0774E LIMIT FIELD IS NOT NUMERIC

Explanation
The specified node point value in the NPT control
statement or the high key value in the HKY control
statement is not numeric.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0775E SPECIFIED KEY IS TOO LONG OR
ZERO LENGTH

Explanation
The key value specified with the node point value in
the NPT control statement or with the high key value in
the HKY control statement is too long or zero length.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0776E NODE POINT VALUE TYPE IS NOT
R, C, OR X

Explanation
The node point value type in the NPT control
statement is not R, C, or X.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0777E INVALID OPTION FIELD IS USED

Explanation
Columns 31 - 38 in the DBD control statement are not
blank. Any entry is not allowed in columns 31 - 38 of
the DBD control statement. This field must be blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0778E POINTER BYPASS OPTION IS NOT
1, 2, OR BLANK

Explanation
The specified pointer bypass option in the DBD control
statement is not 1, 2, or blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0779E INCORRECT CONTROL
STATEMENT PLACEMENT

Explanation
The specified sequence of control statements is not
valid. The NPT control statement does not follow the
CTL control statement.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0780E FABHPSFC INTERNAL ERROR

Explanation
Program FABHPSFC detected an unexpected error.

System action
FABHPSFC ends abnormally with dump.

User response
See message FABH0771E.

Chapter 35. Messages and codes 485

FABH0781E DBD IS NOT HIDAM OR HDAM

Explanation
Parallel Scan Facility supports only HIDAM and HDAM
databases.

System action
Program FABHPSFC ends abnormally.

User response
Specify the DBD name of HIDAM or HDAM.

FABH0782E SEGMENT TABLE BUILD ERROR

Explanation
Program FABHPSFC built the segment table and the
segment table extension, and detected an internal
error.

System action
FABHPSFC ends abnormally with dump.

User response
See message FABH0772E, and take an appropriate
action.

FABH0783E INVALID OPTION FIELD IS USED

Explanation
Column 36 in the PSB control statement is not blank.
Any entry is not allowed in column 36 of the PSB
control statement. This field must be blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0784E NUMBER OF PARALLEL SCANS IS
NOT EQUAL NUMBER OF NPT PLUS
ONE

Explanation
The total number of scan phases specified with the
CTL control statement is not equal to the number of
the NPT control statements plus one.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0785E DSN CHECK OPTION IS NOT Y, N,
OR BLANK

Explanation
The specified DSN check option in the CTL control
statement is not Y, N, or blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0786E WTO OPTION IS NOT Y, N, OR
BLANK

Explanation
The specified WTO option in the CTL control statement
is not Y, N, or blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0787E INCONSISTENT TYPES OF NODE
POINT OR HIGH KEY VALUE

Explanation
Program FABHPSFC detected an unexpected error.

System action
FABHPSFC ends abnormally.

User response
See message FABH0772E, and take an appropriate
action. If necessary, contact IBM Software Support.

FABH0788E HDAM RELATIVE BLOCK NUMBER
IS SPECIFIED BEYOND RAA

486 IMS High Performance Unload: User's Guide

Explanation
The HDAM relative block number is specified out-of-
read addressable area.

System action
Program FABHPSFC ends abnormally.

User response
Correct the node point value in the NPT control
statement.

FABH0789E HDAM RELATIVE BLOCK NUMBER
IS NOT IN ASCENDING SEQUENCE

Explanation
The HDAM relative block number is not in ascending
order.

System action
Program FABHPSFC ends abnormally.

User response
Correct the node point value in the NPT control
statement.

FABH0790E HDAM RELATIVE BLOCK NUMBER
IS ZERO OR NEGATIVE

Explanation
The HDAM relative block number is zero or a negative
value.

System action
Program FABHPSFC ends abnormally.

User response
Correct the node point value in the NPT control
statement.

FABH0791E VALUE TYPE C OR X IS NOT VALID
FOR HDAM WITHOUT INDEX

Explanation
The specified node point value type in the NPT control
statement or the high key value type in the HKY control
statement is not valid for an HDAM database that has
no secondary index.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0792E NODE POINT KEY OR HIGH KEY IS
NOT IN ASCENDING SEQUENCE

Explanation
The node point key or the high key that is specified
with the value type C or X is not in ascending order.

System action
Program FABHPSFC ends abnormally.

User response
Correct the node point value in the NPT control
statement or the high key value in the HKY control
statement.

FABH0793E BLOCK SIZE IS TOO SMALL FOR
CONTROL SCAN PHASES

Explanation
The block size of the scan control data set is too small
to build control records for all scan phases.

System action
Program FABHPSFC ends abnormally.

User response
Create a new scan control data set.

FABH0794E SEPARATE HEADER OPTION IS
NOT Y, N, OR BLANK

Explanation
The specified separate header option in the CTL
control statement is not Y, N, or blank.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0795E GETMAIN FAILURE

Chapter 35. Messages and codes 487

Explanation
Virtual storage in the address space was insufficient.

System action
Program FABHPSFC ends abnormally with dump.

User response
Ensure that sufficient virtual storage is available.

FABH0796E NUMBER OF PARALLEL SCANS IS
NOT EQUAL TO THE NUMBER OF
HKY

Explanation
The total number of scan phases that was specified in
columns 19 and 20 of the CTL control statement is not
equal to the number of the HKY control statements.
These numbers must be equal.

System action
Program FABHPSFC ends abnormally.

User response
Make the number of scan phases that is specified on
the CTL control statement the same as the number of
the HKY control statements and rerun the job.

FABH0797E A HIGH KEY CANNOT BE
SPECIFIED FOR THIS UNLOAD
FORMAT

Explanation
A high key (HKY) is specified for an unload format that
is not supported. A high key can only be specified
when the MI option is specified for the PSB control
statement.

System action
Program FABHPSFC ends abnormally.

User response
Correct the control statement.

FABH0800E FIRST CONTROL STATEMENT ID IS
NOT SUM

Explanation
In FABHPSFS step, the first control statement ID is not
SUM.

System action
Program FABHPSFS ends abnormally.

User response
Correct the control statement.

FABH0801E DBDNAME IS NOT VALID

Explanation
A DBD name was not specified correctly in the SUM
control statement.

System action
Program FABHPSFS ends abnormally.

User response
Correct the control statement.

FABH0802E SCAN NAME IS NOT VALID

Explanation
The specified parallel scan name in the SUM control
statement is not valid.

System action
Program FABHPSFS ends abnormally.

User response
Correct the control statement.

FABH0803E SUM OPTION IS NOT STATUS,
RERUN, OR FORCE

Explanation
The acceptable option keyword RERUN, STATUS, or
FORCE is not specified in the SUM control statement.

System action
Program FABHPSFS ends abnormally.

User response
Correct the control statement.

FABH0804E HEADER/TRAILER RE-CREATE
OPTION IS NOT Y, N, H, T, OR
BLANK

488 IMS High Performance Unload: User's Guide

Explanation
The specified header/trailer re-create option is not Y,
N, H, T, or blank in the SUM control statement.

System action
Program FABHPSFS ends abnormally.

User response
Correct the control statement.

FABH0806E END CONTROL STATEMENT IS
MISSING OR OUT OF PLACE

Explanation
The END control statement is missing or is out of
place.

System action
Program FABHPSFS ends abnormally.

User response
Correct the control statement.

FABH0807E DBD IS NOT HIDAM OR HDAM

Explanation
Parallel Scan Facility supports only HIDAM and HDAM
databases.

System action
Program FABHPSFS ends abnormally.

User response
Specify the DBD name of HIDAM or HDAM.

FABH0808E INVALID SEGMENT WAS FOUND

Explanation
Program FABHPSFS detected an unexpected segment.

System action
FABHPSFS ends abnormally with dump.

User response
See message FABH0772E, and take an appropriate
action.

FABH0810E HEADER/TRAILER DATA SET
RECFM IS NOT VB

Explanation
The record format of the header or trailer data set is
not VB.

System action
Program FABHPSFS ends abnormally.

User response
Correct the record format of the header or trailer data
set.

FABH0811E TRAILER DATA SET RECFM IS NOT
VB

Explanation
The record format of the trailer data set is not VB.

System action
Program FABHPSFS ends abnormally.

User response
Correct the record format of the trailer data set.

FABH0812E FIND FAILED FOR MEMBER
xxxxxxxx IN DBDLIB - R15:yy -
R0:zz

Explanation
A FIND macro failed for the DBD member xxxxxxxx
in the DBD library (IMS DD in the JCL). yy is a return
code and zz is a reason code from FIND macro. If
the return code is 4 and the reason code is 0, this
message shows that DBD xxxxxxxx was not found in
the DBD library on your IMS DD statement. Refer to
the description of FIND macro for other cases.

System action
Program FABHPSFS ends abnormally.

User response
Correct the error and rerun the Job.

FABH0813E END CONTROL STATEMENT IN
SCAN CONTROL DATA SET IS NOT
FOUND

Chapter 35. Messages and codes 489

Explanation
The END control statement in the scan control data set
cannot be found, or it is incorrect.

System action
Program FABHPSFS ends abnormally with dump.

User response
Check the result of the previous FABHPSFC step and
the FABHFSU parallel scan steps.

FABH0814E SEGMENT NAME IS MISMATCH

Explanation
Program FABHPSFS built segment tables and updated
them from statistics records, but detected that the
segment name was not a match.

System action
FABHPSFS ends abnormally with dump.

User response
See message FABH0772E, and take an appropriate
action.

FABH0815E READ JFCB FAILURE

Explanation
Program FABHPSFS issued RDJFCB command but did
not complete successfully.

System action
FABHPSFS ends abnormally with dump.

User response
See message FABH0772E, and take an appropriate
action.

FABH0816E HEADER/TRAILER DSN IS NOT
VALID

Explanation
DSN of the header or trailer data set is not valid.

System action
Program FABHPSFS ends abnormally with dump.

User response
Correct the control statement.

FABH0817I TRAILER PREVIOUSLY CREATED -
NO RERUN OPTION SPECIFIED

Explanation
The trailer data set was already created but the
RERUN option was not specified in the SUM control
statement.

System action
Program FABHPSFS continues processing.

User response
None. This message is informational.

FABH0818E FABHPSFS INTERNAL ERROR

Explanation
Program FABHPSFS detected an unexpected error.

System action
FABHPSFS ends abnormally with dump.

User response
See message FABH0772E, and take an appropriate
action.

FABH0819E SCAN NAME IS MISMATCH ON
SCAN CONTROL DATA SET

Explanation
The specified parallel scan name in the SUM control
statement is not equal to the scan name in the scan
control data set.

System action
Program FABHPSFS ends abnormally.

User response
Ensure that the scan control data set is correct.
Correct the DD statement of the scan control data set
or correct the control statement.

FABH0820E DBD NAME IS MISMATCH ON
SCAN CONTROL DATA SET

490 IMS High Performance Unload: User's Guide

Explanation
The specified DBD name in the SUM control statement
is not equal to the DBD name in the scan control data
set.

System action
Program FABHPSFS ends abnormally.

User response
See message FABH0819E, and take an appropriate
action.

FABH0821E SCAN CONTROL DATA SET OPEN
FAILURE

Explanation
The scan control data set open failure occurred.

System action
Program FABHPSFS ends abnormally with dump.

User response
Complete the following tasks to identify the cause, and
take appropriate actions:

• Ensure that the DD statement is correct.
• Ensure that the versions of both IMS and z/OS are

supported by IMS High Performance Unload.

FABH0822E HEADER DATA SET OPEN FAILURE

Explanation
The header data set open failure occurred.

System action
Program FABHPSFS ends abnormally with dump.

User response
See message FABH0821E.

FABH0823E TRAILER DATA SET OPEN FAILURE

Explanation
The trailer data set open failure occurred.

System action
Program FABHPSFS ends abnormally with dump.

User response
See message FABH0821E, and take an appropriate
action.

FABH0824E GETMAIN FAILURE

Explanation
This error was caused by insufficient virtual storage in
the address space.

System action
Program FABHPSFS ends abnormally with dump.

User response
Ensure that sufficient virtual storage is available.

FABH0825I FORCE OPTION REJECTED - A
STARTED PHASE INCOMPLETE

Explanation
The FORCE option was specified in the SUM control
statement, but the phase process specified by the DD
statement was not completed.

System action
Program FABHPSFS continues processing.

User response
None. This message is informational.

FABH0826I RUN TIME ENVIRONMENT EXIT
ROUTINE IS BEING INVOKED,
MODULE=xxxxxxxx

Explanation
The runtime exit routine whose name is xxxxxxxx is
invoked.

System action
HSSR Engine continues processing.

User response
None. This message is informational.

FABH0827E ERROR OCCURRED IN RTEXIT,
MODULE=xxxxxxxx, FUNC=yyyy,
RC=zz

Chapter 35. Messages and codes 491

Explanation
HSSR Engine detected a nonzero return code zz from
the runtime environment exit routine xxxxxxxx.

System action
HSSR Engine ends abnormally.

User response
Determine the reason for the nonzero return code
from the runtime exit routine. Run the job again after
correcting the problem, if necessary.

FABH0828W NO SEGMENT WAS RETRIEVED

Explanation
No segment was retrieved in all PSF phases.

System action
Program FABHPSFS normally ends with a return code
of 01.

User response
Check whether it is acceptable that the input database
has no valid segments. If a wrong database data set
or a wrong DBD or PSB was specified, specify the
appropriate ones, and rerun the job.

FABH0829W INCONSISTENT DEC OPTIONS
WERE SPECIFIED IN SCAN
PHASES

Explanation
The segment decompression option "DEC" specified in
the CARDIN data set of FABHFSU in each scan phase
was not consistent.

System action
Program FABHPSFS continues processing.

User response
The unloaded data sets created by these scan phases
cannot be used to load the database. The DEC option
specified in each scan phase must be consistent if you
want to use the created data sets for reloading.

FABH0830E FIRST PCB IS NOT A VALID HSSR
PCB

Explanation
Program FABHLDBR detected that the first PCB in the
PSB was not a valid HSSR PCB.

System action
FABHLDBR ends abnormally.

User response
See “HSSR PCB requirements” on page 80, and correct
the error.

FABH0831E AN INVALID STATEMENT IS
FOUND IN SYSIN DATA SET

Explanation
An incorrect control statement type was detected in
the FABHLDBR SYSIN data set.

System action
Program FABHLDBR ends abnormally.

User response
Correct the control statement.

FABH0832E NON-POSITIVE NUMBER IS
SPECIFIED FOR xxxxxxxx
CONTROL STATEMENT

Explanation
A non-positive numeric value is specified for the
operand of the xxxxxxxx control statement in the
SYSIN data set of the FABHLDBR utility.

System action
Program FABHLDBR ends abnormally.

User response
Correct the control statement.

FABH0833E THE OPERAND OF xxxxxxxx
CONTROL STATEMENT IS NOT
NUMERIC

Explanation
A non-numeric value is specified for the operand of the
xxxxxxxx control statement in the SYSIN data set of
the FABHLDBR utility.

492 IMS High Performance Unload: User's Guide

System action
Program FABHLDBR ends abnormally.

User response
Correct the control statement.

FABH0834E OPEN OF SYSUT1 HAS FAILED

Explanation
Program FABHLDBR could not open SYSUT1.

System action
FABHLDBR ends abnormally.

User response
Correct the SYSUT1 DD statement.

FABH0835E INVALID PARAMETER IS FOUND
IN AN LOUT CONTROL STATEMENT

Explanation
An undefined parameter was detected in the LOUT
control statement. Or, the value specified by the
LENGTH= or IO= parameter of the LOUT control
statement was incorrect.

System action
The incorrect LOUT parameter and any parameters
that follow it on the same control statement, are
ignored.

User response
Correct the LOUT control statement.

FABH0836E A NON-NUMERIC VALUE IS
SPECIFIED IN HSSRLDEF DATA
SET

Explanation
A record that contains a non-numeric value is found in
the HSSRLDEF data set.

System action
The incorrect record is ignored.

User response
Correct the incorrect record.

FABH0837E A NUMERIC FIELD IS TOO LONG IN
HSSRLDEF DATA SET

Explanation
A numeric value that is too long is specified in the
HSSRLDEF data set.

System action
The record that has the incorrect numeric field is
ignored.

User response
Correct the statement that contains the incorrect field.

FABH0838E LENGTH-DEFINITIONS IN
HSSRLDEF ARE NOT IN
ASCENDING SEQUENCE

Explanation
The numeric values in the HSSRLDEF data set were not
in ascending sequence.

System action
The incorrect numeric field is ignored.

User response
Correct the statement that contains the incorrect field,
so that the values will be in ascending sequence.

FABH0839I work_area EXCEEDS 4GB
(yyyyyyyyyyyyyyyyyy)

Explanation
The value of the indicated internal work area exceeds
the maximum limit. As a result, the database record
length that is shown in some reports might be shorter
than the actual length.

System action
HSSR Engine continues processing.

User response
None. This message is informational.

FABH0840E FABHEXTR FAILED TO OPEN
HSSREXTR DATA SET

Explanation
FABHEXTR could not open the HSSREXTR data set.

Chapter 35. Messages and codes 493

System action
Program FABHURG1 ends abnormally.

User response
Correct the HSSREXTR DD statement.

FABH0841E INVALID STATEMENT IS FOUND IN
HSSREXTR DATA SET

Explanation
An incorrect control statement was specified in the
HSSREXTR data set.

System action
Program FABHURG1 ends abnormally.

User response
Remove or correct the control statement.

FABH0842E NUMERIC FIELD IS NOT NUMERIC

Explanation
A non-numeric value was specified for a numeric field
in a control statement in the HSSREXTR data set.

System action
Program FABHURG1 ends abnormally.

User response
Correct the control statement.

FABH0843E NUMBER OF DB RECORDS TO BE
EXTRACTED IS [NOT POSITIVE|
TOO LARGE]

Explanation
The EXTR or PARTEXTR control statement specified a
numeric value that was not positive or was too large.

System action
Program FABHURG1 ends abnormally.

User response
Correct the control statement.

FABH0844E NEITHER EXTR NOR PARTEXTR IS
SPECIFIED

Explanation
Neither the EXTR control statement nor the PARTEXTR
control statement is specified in the HSSREXTR data
set. One or the other must be specified.

System action
Program FABHURG1 ends abnormally.

User response
Specify either EXTR or PARTEXTR.

FABH0845E DATABASE IS EMPTY

Explanation
Program FABHEXTR detected that FABHURG1 reached
the end of a database, but no segment was retrieved.
The database might be empty.

System action
FABHURG1 ends abnormally.

User response
Check whether the correct DBD and database data set
are specified.

FABH0846E TOO MANY DB RECORDS ARE
SKIPPED

Explanation
Program FABHEXTR skipped too many database
records and reached the end of the database without
retrieving any segments. The unloaded data set will be
empty.

System action
Program FABHURG1 ends abnormally.

User response
Check whether a correct DBD and database data set
are specified. If the database specification is correct,
check whether the value specified on the SKIP control
statement in the HSSREXTR data set is less than the
total number of database records in the database.

FABH0847E xxxxxxxx IS SPECIFIED FOR NON-
HALDB

Explanation
xxxxxxxx control statement is specified for a database
that is not a HALDB.

494 IMS High Performance Unload: User's Guide

System action
Program FABHURG1 ends abnormally.

User response
Check whether the correct DBD was specified.

FABH0848E DUPLICATE STATEMENTS:
xxxxxxxx

Explanation
The control statement xxxxxxxx is specified more than
once.

System action
Program FABHURG1 ends abnormally.

User response
Remove unnecessary statements, and rerun the job.

FABH0849E MUTUALLY EXCLUSIVE CONTROL
STATEMENTS ARE SPECIFIED:
xxxxxxxx AND yyyyyyyy

Explanation
The control statements xxxxxxxx and yyyyyyyy are
mutually exclusive.

System action
Program FABHURG1 ends abnormally.

User response
Select only one of these statements, and remove the
other.

FABH0850E LOAD FAILED FOR RTEXIT
(xxxxxxxx), CC=yyyy, RC=zz

Explanation
A LOAD error occurred when HSSR Engine tried to
load the runtime exit routine xxxxxxxx. As a result,
the ERRET routine received the control. yyyy indicates
the system completion code at time of error, and zz
indicates the error reason code for the LOAD request.

System action
HSSR Engine ends abnormally.

User response
Check the system completion code and the error
reason code. If you find the reason for the error,
correct it and rerun the job.

FABH0851E LOAD FAILED FOR APPL PGM
(xxxxxxxx), CC=yyyy, RC=zz

Explanation
A LOAD error occurred when HSSR Engine tried to
load the application program xxxxxxxx. As a result,
the ERRET routine received the control. yyyy indicates
the system completion code at time of error, and zz
indicates the error reason code for the LOAD request.

System action
HSSR Engine ends abnormally.

User response
Check the system completion code and the error
reason code. If you find the reason for the error,
correct it and rerun the job.

FABH0852E LOAD FAILED FOR MODULE
DFSDBUX1

Explanation
The user specified DATXEXIT=YES at DBDGEN time,
but DFSDBUX1 is not found in any STEPLIB library.
At execution time, while processing a DBD requiring
the exit, HSSR determined that the exit could not be
loaded, and issued the message.

System action
HSSR Engine ends abnormally.

User response
If the user exit (DFSDBUX1) is required for the
job, make sure that DFSDBUX1 is placed into a
STEPLIB library, and rerun the job. If you do not
need DFSDBUX1 for this job, but need it for another
application, specify 'DATXEXIT NO' in the HSSROPT
data set for the job. If you do not need DFSDBUX1 at
all for the database you are processing, remove the
DATXEXIT=YES from DBDGEN.

FABH0853E IMODULE ERROR (rc) function
COMPRESSION EXIT (xxxxxxxx)

Chapter 35. Messages and codes 495

Explanation
An IMODULE function (LOADING or DELETING) error
occurred when HSSR Engine tried to load or delete the
segment edit/compression routine xxxxxxxx. rc is the
error return code from IMODULE. For the meanings of
the return codes, read about IMODULE return codes in
IMS Messages and Codes.

System action
HSSR Engine ends abnormally.

User response
Check the error return code. If you find the reason for
the error, correct it and rerun the job.

FABH0854E LOAD FAILED FOR FABHRCEX
EXIT, CC=xxxx, RC=yy

Explanation
A LOAD error occurred when HSSR Engine tried to load
the Return Code Edit exit routine (FABHRCEX). As a
result, the ERRET routine received control. xxxx is the
system completion code at time of error, and yy is the
error reason code for the LOAD request.

System action
HSSR Engine ends abnormally.

User response
Check the system completion code and the error
reason code. If you find the reason for the error,
correct it and rerun the job.

FABH0855E COMPRESSION EXIT ROUTINE
nnnnnnnn INITIALIZATION
ERROR - Uaaaa REASON rrrrrrrr

Explanation
An initialization error was detected by a Segment Edit/
Compression exit routine. In the message text:
nnnnnnnn

Name of the exit routine.
Uaaaa

The IMS user abend code generated by the exit
routine.

rrrrrrrr
The unique label at which the error was detected.
This label corresponds to the error reason code.
Find the meaning of the reason code in the
user's guide of the Segment Edit/Compression exit

routine or contact the supplier of the Segment
Edit/Compression exit routine.

System action
HSSR Engine ends abnormally.

User response
Determine the cause of the error and correct the
problem.

FABH0856E LOAD FAILED FOR GEXAPI00

Explanation
A LOAD error occurred when HSSR Engine tried to load
the GEXAPI00 module.

System action
If ZIIPMODE=FORCE is specified, HSSR Engine
ends abnormally. If ZIIPMODE=COND is specified,
processing continues.

User response
Ensure that the SGLXLOAD library of IMS Tools Base is
specified to the STEPLIB or JOBLIB.

If the SGLXLOAD library is specified, ensure that the
GEXAPI00 module exists and is available. If it is not
available, make it available and rerun the job.

FABH0860E X'FF' IS SET IN SRCHFLAG BY
DFSDBUX1

Explanation
The user specified DATXEXIT=YES at DBDGEN time,
but the Data Conversion exit set SRCHFLAG to X'FF'.

System action
HSSR Engine ends abnormally.

User response
If you do not need DFSDBUX1 for this HSSR job, but
need it for another application, specify 'DATXEXIT NO'
in the HSSROPT data set for the HSSR job. If you need
DFSDBUX1 for the database you are processing, define
table entries for the database in the translation table
of the Data Conversion exit routine.

FABH0861I DBDGEN REQUIRED FOR
DATABASE xxxxxxxx TO SET
DATXEXIT INDICATOR

496 IMS High Performance Unload: User's Guide

Explanation
While HSSR Engine was processing the first HSSR
call for a database whose DATXEXIT=YES flag is not
on, the Data Conversion exit routine (DFSDBUX1)
was called and the routine returned to HSSR Engine
without SRCHFLAG set to X'FF'. This indicates that
the Data Conversion exit routine was required for
this database. HSSR Engine dynamically sets the
DATXEXIT=YES flag on and continues processing for
this database, but issues this message to warn the
user that a DBDGEN with DATXEXIT=YES needs to be
done for this database.

System action
HSSR Engine continues processing.

User response
The database administrator needs to be notified that a
DBDGEN is required for this database.

FABH0862E NON-ZERO RC (xx) RETURNED
FROM CONV EXIT

Explanation
Non-zero return code xx is returned from the Data
Conversion exit routine (DFSDBUX1).

System action
HSSR Engine ends abnormally.

User response
Check whether the correct Data Conversion exit
routine is used. If a conditional exit routine is specified
for the database you are processing, check also
whether the correct one is used. If you cannot
determine the cause of the problem, record the
message and contact IBM Software Support.

FABH0870E LOAD FAILED FOR IDCAMS

Explanation
A LOAD error occurred when HSSR Engine tried to load
the IDCAMS module.

System action
HSSR Engine ends abnormally.

User response
Ensure that the IDCAMS module is available on your
JOB, and also that it exists in the LPA list, LINK list, or
STEPLIB or JOBLIB path.

FABH0871E LISTCAT FAILED FOR DATA SET
dsname (dbdname, partname,
ddname), RC=rc

Explanation
An error occurred when the LISTCAT command of the
program IDCAMS was run for data set dsname. Value
rc shows the return code from program IDCAMS.

System action
HSSR Engine ends abnormally.

User response
See DFSMS Access Method Services for Catalogs for
the meaning of the return code. Correct the error, and
rerun the job. If the cause is not clear, collect the
dump and contact IBM Software Support.

FABH0872I DATA SET dsname IS NOT
CATALOGED (DDN=ddname)

Explanation
The data set specified is not cataloged. The string
ddname shows the DD name with which the data set is
associated by the partition definition.

System action
HSSR Engine continues processing.

User response
See the explanation and the programmer response of
message FABH0873I.

FABH0873I PARTITION partname OF HALDB
dbdname WILL NOT BE
PROCESSED

Explanation
This message is preceded by one or more FABH0872I
messages. HSSR will not process the partition
partname of HALDB dbdname because one or more
data sets that are defined for partition partname are
not cataloged.

Chapter 35. Messages and codes 497

System action
HSSR Engine continues processing.

User response
If the partition needs to be processed, you must
catalog all data sets for partition partname.

FABH0881I applname ENDED WITH RC=xx,
WHICH MIGHT BE CHANGED BY
FABHRCEX EXIT

Explanation
The HSSR application program applname ended with
a return code of xx, but the return code has been
processed and might be edited by the user specified
Return Code Edit exit routine (FABHRCEX). If the
return code is changed by the routine, you will see
a code other than xx at the completion of IMS High
Performance Unload job step.

System action
HSSR Engine continues processing.

User response
If the original return code xx is not zero, check the
meaning of the return code by referring to “Return
codes” on page 379.

FABH1000I DFSISVI0 EXIT IS CALLED BUT
FABHURG1 CANNOT BE INVOKED

Explanation
This message notifies the user that the IMS exit
DFSISVI0 is called but FABHURG1 unload utility
cannot be invoked because of the error indicated in
the prior message.

System action
IMS continues the processing and DFSURGU0 will be
invoked.

User response
None. This message is informational.

FABH1001I DFSISVI0 EXIT IS CALLED AND
FABHURG1 IS BEING INVOKED

Explanation
This message notifies the user that the IMS exit
DFSISVI0 is called, and FABHURG1 unload utility will

be invoked by IMS batch region controller as the
unload program.

System action
IMS continues processing. Unload function is provided
by the FABHURG1 unload utility.

User response
None. This message is informational.

FABH2001E INVALID COMPAT= PARAMETER IS
SPECIFIED

Explanation
The value of the COMPAT= keyword parameter is
incorrect. It must be one of HPU, DBT, and 5787LAC.

System action
The assembly of the option table ends with a return
code of 8. The option table is not replaced.

User response
Correct the error.

FABH2002E INVALID DIAGG= PARAMETER IS
SPECIFIED

Explanation
The value of the DIAGG= keyword parameter is
incorrect. It must be DIAGONLY, CB, BUF, or NOINT.

System action
The assembly of the option table ends with a return
code of 8. The option table is not replaced.

User response
Correct the error.

FABH2003E INVALID CABSTAT= PARAMETER
IS SPECIFIED

Explanation
The value of the CABSTAT= keyword parameter is
incorrect. It must be either YES or NO.

System action
The assembly of the option table ends with a return
code of 8. The option table is not replaced.

498 IMS High Performance Unload: User's Guide

User response
Correct the error.

FABH2004E INVALID LSR= PARAMETER IS
SPECIFIED

Explanation
The value of the LSR= keyword parameter is incorrect.
It must be either YES or NO.

System action
The assembly of the option table ends with a return
code of 8. The option table is not replaced.

User response
Correct the error.

FABH2005E INVALID URG1DEC= PARAMETER
IS SPECIFIED

Explanation
The value of the URG1DEC= keyword parameter is
incorrect. It must be either YES or NO.

System action
The assembly of the option table ends with a return
code of 8. The option table is not replaced.

User response
Correct the error.

FABH2006E INVALID FSUDEC= PARAMETER
SPECIFIED

Explanation
The value of the FSUDEC= keyword parameter is
incorrect. It must be either YES or NO.

System action
The assembly of the option table ends with a return
code of 8. The option table is not replaced.

User response
Correct the error.

FABH2007E DUPLICATED FABHTOPT
STATEMENTS ARE FOUND

Explanation
The FABHTOPT statement was specified more than
once. Only one FABHTOPT statement is allowed.

System action
The assembly of the option table ends with a return
code of 12. The option table is not replaced.

User response
Correct the error.

FABH2008E INVALID BUFDEFAULT=
PARAMETER IS SPECIFIED

Explanation
The value of the BUFDEFAULT= keyword parameter is
incorrect. It must be either CAB or BB.

System action
The assembly of the option table ends with return
code 8. The option table is not replaced.

User response
Correct the error.

FABH2009E INVALID CABDEFAULT=
PARAMETER IS SPECIFIED

Explanation
The value of the CABDEFAULT= keyword parameter is
incorrect. It must be either HPU or DBT.

System action
The assembly of the option table ends with return
code 8. The option table is not replaced.

User response
Correct the error.

FABH2010E INCORRECT APISET= PARAMETER
IS SPECIFIED

Explanation
The value of the APISET= keyword parameter is
incorrect. It must be 1, 2, or 3.

System action
The assembly of the option table ends with return
code 8. The option table is not replaced.

Chapter 35. Messages and codes 499

User response
Correct the error.

FABH2011E INCORRECT PCBLIST=
PARAMETER IS SPECIFIED

Explanation
The value specified for the PCBLIST= keyword
parameter is incorrect. It must be HSSR or IMS.

System action
The assembly of the option table ends with return
code 8. The option table is not replaced.

User response
Correct the error.

FABH2012E INCORRECT URG1BUFNO=
PARAMETER IS SPECIFIED

Explanation
The value specified for the URG1BUFNO= keyword
parameter is incorrect. It must be in the range of 1
- 255.

System action
The assembly of the option table ends with return
code 8. The option table is not replaced.

User response
Correct the error.

FABH2013E INCORRECT FSUBUFNO=
PARAMETER IS SPECIFIED

Explanation
The value specified for the FSUBUFNO= keyword
parameter is incorrect. It must be in the range of 1
- 255.

System action
The assembly of the option table ends with return
code 8. The option table is not replaced.

User response
Correct the error.

FABH2014E INCORRECT URG1CHKRC=
PARAMETER IS SPECIFIED

Explanation
The value specified for the URG1CHKRC= keyword
parameter is incorrect. It must be either YES or NO.

System action
The assembly of the option table ends with return
code 8. The option table is not replaced.

User response
Correct the error.

FABH2015E INCORRECT COMPAUTH=
PARAMETER IS SPECIFIED

Explanation
The value specified for the COMPAUTH keyword is
incorrect. It must be YES or NO.

System action
The assembly of the option table ends with return
code 8. The option table is not replaced.

User response
Correct the value of the COMPAUTH keyword.

FABH2016E INCORRECT CABBASE_xx=
PARAMETER IS SPECIFIED

Explanation
The value specified for the CABBASE_xx= keyword
parameter is incorrect. It must be in the range of 1
- 255.

System action
The assembly of the option table ends with return
code 8. The option table is not replaced.

User response
Correct the error.

FABH2017E INCORRECT ZIIPMODE=
PARAMETER IS SPECIFIED

Explanation
The value specified for the ZIIPMODE keyword
parameter is incorrect.

500 IMS High Performance Unload: User's Guide

System action
The assembly of the option table ends with return
code 8. The option table is not replaced.

User response
See “ZIIPMODE control statement” on page 178 and
correct the value on the ZIIPMODE keyword.

FABI messages
Use the information in these messages to help you diagnose and solve Sequential Subset Randomizer
utility problems.

FABI0001E IDTYPE= PARAMETER IS NEITHER
C NOR X

Explanation
The value of the IDTYPE= keyword parameter must be
either C or X.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
Correct the error.

FABI0002E VALTYPE= PARAMETER IS
NEITHER E NOR H

Explanation
The value of the VALTYPE= keyword parameter must
be either E or H.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
Correct the error.

FABI0003E BYTES= PARAMETER IS NOT
NUMERIC

Explanation
The value of the BYTES= keyword parameter must be
numeric.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
Correct the error.

FABI0004E START= PARAMETER IS NOT
NUMERIC

Explanation
The value of the START= keyword parameter must be
numeric.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
Correct the error.

FABI0005E START= PARAMETER CANNOT BE
ZERO

Explanation
The value of the START= keyword parameter must be a
number greater than zero.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
Correct the error.

FABI0006E DBNBYTES= PARAMETER IS NOT
NUMERIC

Explanation
The value of the DBNBYTES= keyword parameter must
be numeric.

System action
The generation of the randomizer will not be
successful. The return code is 12.

Chapter 35. Messages and codes 501

User response
This parameter is not supported by the IMS High
Performance Unload Sequential Subset Randomizer
utility.

FABI0007E DBNBYTES= PARAMETER IS TOO
LONG

Explanation
The value of the DBNBYTES= keyword parameter
cannot be greater than 8.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
This parameter is not supported by the IMS High
Performance Unload Sequential Subset Randomizer
utility.

FABI0008E DBNBYTES= PARAMETER CANNOT
BE ZERO

Explanation
The value of the DBNBYTES= keyword parameter
cannot be 0.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
This parameter is not supported by the IMS High
Performance Unload Sequential Subset Randomizer
utility.

FABI0009E DBNSTART= PARAMETER IS NOT
NUMERIC

Explanation
The value of the DBNSTART= keyword parameter must
be a number.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
This parameter is not supported by the IMS High
Performance Unload Sequential Subset Randomizer
utility.

FABI0010E DBNSTART= PARAMETER CANNOT
BE ZERO

Explanation
The value of the DBNSTART= keyword parameter
cannot be zero.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
This parameter is not supported by the IMS High
Performance Unload Sequential Subset Randomizer
utility.

FABI0011E DBNSTART= PARAMETER IS TOO
LONG

Explanation
The value of the DBNSTART= keyword parameter
cannot be greater than 8.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
This parameter is not supported by the IMS High
Performance Unload Sequential Subset Randomizer
utility.

FABI0021E DBNAME= KEYWORD MISSING ON
FABIDBN MACRO

Explanation
The DBNAME= macro is missing on the FABIDBN
macro.

System action
The generation of the randomizer will not be
successful. The return code is 12.

502 IMS High Performance Unload: User's Guide

User response
This parameter is not supported by the IMS High
Performance Unload Sequential Subset Randomizer
utility.

FABI0022E DBNAME= LONGER THAN
DBNBYTES OF FABITAB MACRO

Explanation
The length of DBNAME= parameter value must not
exceed the length specified on the DBNBYTES=
parameter of the FABITAB macro.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
This parameter is not supported by the IMS High
Performance Unload Sequential Subset Randomizer
utility.

FABI0023E SPLIT= KEYWORD MISSING ON
FABIDBN MACRO

Explanation
The SPLIT= keyword parameter is missing on the
FABIDBN macro.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
This parameter is not supported by the IMS High
Performance Unload Sequential Subset Randomizer
utility.

FABI0024E SPLIT= KEYWORD NOT NUMERIC

Explanation
The value of the SPLIT= keyword parameter must be
numeric.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
This parameter is not supported by the IMS High
Performance Unload Sequential Subset Randomizer
utility.

FABI0025E SPLIT= KEYWORD CANNOT BE
ZERO

Explanation
The value of the SPLIT= keyword parameter must not
be zero.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
This parameter is not supported by the IMS High
Performance Unload Sequential Subset Randomizer
utility.

FABI0031E ID= KEYWORD MISSING ON
FABIDEF MACRO

Explanation
The mandatory ID= keyword parameter is missing on
the FABIDEF macro.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
Correct the error.

FABI0032E LENGTH OF ID= PARAMETER NOT
EQUAL TO THE BYTES= VALUE ON
THE FABITAB MACRO

Explanation
The length of the ID= parameter value on the FABIDEF
macro is not equal to the value specified on the
BYTES= parameter of the FABITAB macro.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
Correct the error.

Chapter 35. Messages and codes 503

FABI0033E FABIDEF MACROS NOT IN
ASCENDING ID-SEQUENCE

Explanation
The FABIDEF macros must be provided in the
ascending sequence of the ID= parameter values.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
Correct the error.

FABI0034E ID= PARAMETER NOT A VALID
HEXADECIMAL VALUE

Explanation
The value of the ID= parameter is not a valid
hexadecimal value.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
Correct the error.

FABI0035E FABIDEF MACROS NOT IN
ASCENDING HEX ID-SEQUENCE

Explanation
The FABIDEF macros must be provided in the
ascending sequence of the hexadecimal values of the
ID= parameters.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
Correct the error.

FABI0036E UNITS= KEYWORD MISSING ON
FABIDEF MACRO

Explanation
The mandatory UNITS= keyword was not specified on
the FABIDEF macro.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
Correct the error.

FABI0037E VALUE OF UNITS= PARAMETER
NOT NUMERIC

Explanation
The UNITS= parameter must specify a numeric value.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
Correct the error.

FABI0041E NO CORRECT FABIDEF MACRO

Explanation
Any correct FABIDEF macro was not provided by the
user before the FABIGEN macro.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
Correct the error.

FABI0042E NO CORRECT FABISPL MACRO

Explanation
The FABISPL macro is not for the use of users.

System action
The generation of the randomizer will not be
successful. The return code is 8.

User response
This parameter is not supported by the IMS High
Performance Unload Sequential Subset Randomizer
utility.

FABI0043E NUMBER OF FABIDEF MACROS IS
EXCESSIVE

504 IMS High Performance Unload: User's Guide

Explanation
More FABIDEF macros than currently supported were
specified.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
See “FABIDEF macro statement” on page 283 and
ensure that the number of FABIDEF macro statements
does not exceed the allowable maximum.

FABI0044E SPLIT-NUMBER FOR DB
xxxxxxxx(n) IS HIGHER THAN THE
NUMBER OF DB-SPLITS DEFINED
BY FABISPL MACRO

Explanation
The FABISPL macro is not for the use of users.

System action
The generation of the randomizer will not be
successful. The return code is 12.

User response
This parameter is not supported by the IMS High
Performance Unload Sequential Subset Randomizer
utility.

FABI0051E NO SUCCESSFUL FABIDEF MACRO

Explanation
Any correct FABIDEF macro was not specified by the
user.

System action
The generation of the randomizer will not be
successful. The return code is 8.

User response
Correct the error.

FABI0101E DATABASE IS NOT AN HDAM
DATABASE WITH THE SS-
RANDOMIZER

Explanation
The FABIUNLS utility can be used only to split an
unloaded database, if the database is an HDAM
database using a Sequential Subset Randomizer.

System action
The FABIUNLS utility will issue an abend.

User response
Correct the error.

FABI0102E PROBLEMS WITH TABLE OF SS-
RANDOMIZER

Explanation
The FABIUNLS utility detected an unexpected
situation while trying to analyze the control blocks of
Sequential Subset Randomizer.

System action
The FABIUNLS utility will issue an abend.

User response
Save the dump, the JES log, the DBDGEN output, and
the output of the randomizer generation. Then contact
IBM Software Support.

FABI0103E xxxxxxxxx COULD NOT BE OPENED

Explanation
The FABIUNLS utility could not open the indicated
xxxxxxxxx data set (such as the HDR, TRL, FKDx,
SYSPRINT, or SYSUT1 data set).

System action
The FABIUNLS utility will issue an abend.

User response
Check for other error messages that describe reasons
for the problems with opening the data sets.

FABI0104E SYSUT1 DOES NOT BEGIN WITH A
HEADER RECORD

Explanation
The FABIUNLS utility detected that the SYSUT1 data
set does not start with a header record.

Chapter 35. Messages and codes 505

System action
The FABIUNLS utility will issue an abend.

User response
Provide an appropriate SYSUT1 data set. The SYSUT1
data set must contain a database unloaded in the
format of the IMS HD Unload Utility.

FABI0105E SYSUT1 DOES NOT END WITH A
TRAILER RECORD

Explanation
The FABIUNLS utility detected that the SYSUT1 data
set does not end with a trailer record.

System action
The FABIUNLS utility will issue an abend.

User response
Provide an appropriate SYSUT1 data set. The SYSUT1
data set must contain a database unloaded in the
format of the IMS HD Unload Utility.

FABI0106E HEADER OR TRAILER RECORD
MISSING ON SYSUT1

Explanation
The FABIUNLS utility detected that a header record or
trailer record was missing in the SYSUT1 data set.

System action
The FABIUNLS utility will issue an abend.

User response
Provide an appropriate SYSUT1 data set. The SYSUT1
data set must contain a database unloaded in the
format of the IMS HD Unload Utility.

FABI0107E ROOT SEGMENT HAS NO
SEQUENCE-FIELD

Explanation
The FABIUNLS utility detected that the root segment
of the unloaded database has no sequence field. Root
segments without a sequence field are not supported
by Sequential Subset Randomizer.

System action
The FABIUNLS utility will issue an abend.

User response
If the root segment has no sequence-field, then a
randomizer other than Sequential Subset Randomizer
must be used.

FABI0111E BINARY SEARCH IMPLEMENTED
IN SEQUENTIAL SUBSET
RANDOMIZER FAILED

Explanation
The binary search implemented in Sequential Subset
Randomizer failed.

System action
Sequential Subset Randomizer will request either
an abend (batch region) or a pseudo-abend (online
region).

User response
Save the dump, the JES log, the DBDGEN output, and
the output of the randomizer generation. Contact IBM
Software Support.

FABI0112E THE NUMBER OF RAPS DEFINED
DURING DBDGEN IS TOO SMALL

Explanation
The number of RAPs defined during the DBDGEN is
too small. If the subset ID does not start at the first
position of the root key, the number of RAPs must be
at least equal to the number of subsets defined during
the generation of Sequential Subset Randomizer.

System action
Sequential Subset Randomizer will request either
an abend (batch region) or a pseudo-abend (online
region).

User response
Increase, in the DBDGEN specifications, either the
number of RAPs per block/CI or the number of
blocks/CIs located in the root addressable area.

FABI0113E THERE IS AN INCONSISTENCY
BETWEEN DBDGEN AND
SEQUENTIAL SUBSET
RANDOMIZER GENERATION

Explanation
There is an inconsistency between:

506 IMS High Performance Unload: User's Guide

• The length of the root key field (as defined during
DBDGEN)

• The length and start position of the subset ID (as
defined during the generation of Sequential Subset
Randomizer) within the root key field.

Notice that the subset ID must be completely within
the root key field.

System action
Sequential Subset Randomizer will request either
an abend (batch region) or a pseudo abend (online
region).

User response
Resolve the inconsistency between DBDGEN and
Sequential Subset Randomizer generation.

FABI0121E FABISTAT INTERNAL ERROR

Explanation
The binary search implemented in the FABISTAT
failed. A root segment that is required by application
program was not found in the range of this segment's
subset.

System action
The FABISTAT will issue an abend.

User response
Contact IBM Software Support.

FABI0122I SEQUENTIAL SUBSET STATISTICS
WAS NOT CREATED

Explanation
The FABISTAT exit routine did not create a Sequential
Subset Statistics, because there is no statistics record.

System action
None.

User response
Confirm that the correct name of randomizer was
specified on the HSSROPT SSSTATS control statement
or the DBDGEN source statement.

Chapter 35. Messages and codes 507

508 IMS High Performance Unload: User's Guide

Chapter 36. Gathering diagnostic information
Before you report a problem with IMS High Performance Unload to IBM Software Support, you need to
gather the appropriate diagnostic information.

Procedure
Provide the following information for all IMS High Performance Unload problems:

• A clear description of the problem and the steps that are required to re-create the problem
• The version of IMS that you are using and the version of the operating system that you are using
• A complete log of the job
• A Load Module/Macro APAR Status report

For information about creating a Load Module/Macro APAR Status report, see Chapter 37, “Diagnostics
Aid,” on page 511.

© Copyright IBM Corp. 2000, 2024 509

510 IMS High Performance Unload: User's Guide

Chapter 37. Diagnostics Aid
If you have a problem that you think is not a user error, you should run the Diagnostics Aid program
(FABHDIAG), obtain the Load Module/Macro APAR Status report, attach it to the other diagnostic
documents (such as job dump list or I/O of the utility), and report the error to IBM.

The Diagnostics Aid generates a Load Module/Macro APAR Status report. This report shows the latest
APAR fixes applied to each module and macro.

The Diagnostics Aid is not applicable for any other versions or releases.

Topics:

• “Running the Diagnostics Aid with JCL” on page 511
• “Load Module/Macro APAR Status report” on page 512
• “Messages and codes” on page 513

Running the Diagnostics Aid with JCL
To run the Diagnostics Aid program (FABHDIAG), supply an EXEC statement and DD statements that
define the input and the output data sets.

Procedure
1. Specify the EXEC statement. It must be in the following form:

 //stepname EXEC PGM=FABHDIAG

2. Specify the DD statements.

DD statement Description

STEPLIB DD This statement defines the library containing the load modules (usually
HPS.SHPSLMD0).

SHPSLMD DD This statement defines the library containing the load modules (usually
HPS.SHPSLMD0) for which you have a problem.

If this DD statement is not provided or if DD DUMMY is specified, the Load
Module APAR Status report is not generated.

It is always recommended that you specify this DD statement.

SHPSMAC DD This statement defines the library containing the provided macros (usually
HPS.SHPSMAC0) for which you have a problem.

If this DD statement is not provided or if DD DUMMY is specified, the
Macro APAR Status report is not generated.

SYSPRINT DD This output data set contains the Load Module/Macro APAR Status report.
The data set contains 133-byte, fixed-length records. It can reside on
a tape, direct-access device, or printer; or it can be routed through the
output stream. If BLKSIZE is coded in the DD statement, it must be a
multiple of 133. However, it is recommended that you use:

 //SYSPRINT DD SYSOUT=A

3. Run the job.

© Copyright IBM Corp. 2000, 2024 511

Load Module/Macro APAR Status report
The Diagnostics Aid generates two reports for maintenance by IBM.

The generated reports are:

• Load Module APAR Status report
• Macro APAR Status report

Load Module APAR Status report
The Load Module APAR Status report contains information about the modules and their applied APARs.

This report contains the following information:

MODULE LIBRARY
This field includes the data set names specified in the SHPSLMD DD statement. If more than 30 data
sets are concatenated, only the first 30 data sets are listed.

MODULE NAME
This field shows the name of the load module member or the alias.

ALIAS-OF
This field shows the name of the original member of the alias. If the module name is not an alias, this
field is left blank.

CSECT NAME
This field shows the name of the included CSECT in the module. The CSECT names are reported in the
included order in the module.

APAR NUMBER
This field shows the latest APAR number applied to the module represented by the CSECT name. If no
APAR is applied, NONE is shown.

APAR FIX-DATE
This field shows the date when the modification was prepared for the module represented by the
CSECT name. If no APAR is applied, N/A is shown.

Notes:

1. If the CSECT name does not start with FAB, HPS, or the program structure of the CSECT does not
conform to the IMS High Performance Unload module standard to identify the APAR number and the
APAR fixed date, the fields APAR NUMBER and APAR FIX-DATE are filled with asterisks (*).

2. If the load module is a member of the PDSE library, the following statement is shown on the report line
and the job completes with a return code of 4.

 ** IT CAN NOT BE ANALYZED DUE TO PDSE LIBRARY MEMBER **

3. If the load macro fails for a utility member, the following statement is shown on the report line and the
job completes with a return code of 8.

 ** IT CAN NOT BE ANALYZED DUE TO LOAD FAILED MEMBER **

Macro APAR Status report
The Macro APAR Status report contains information about macros and their applied APARs.

This report contains the following information:

MACRO LIBRARY
This field includes the data set names specified in the SHPSMAC DD statement. If more than 30 data
sets are concatenated, only the first 30 data sets are listed.

MACRO NAME
This field shows the name of the macro member or the alias.

512 IMS High Performance Unload: User's Guide

ALIAS-OF
This field shows the name of the original member of the alias. If the macro name is not an alias, this
field is left blank.

APAR NUMBER
This field shows the latest APAR number applied to the macro. If no APAR is applied, NONE is shown.

APAR FIX-DATE
This field shows the date when the modification was prepared for the macro. If no APAR is applied,
N/A is shown.

Note: If the macro source statement structure does not conform to the IMS High Performance Unload
macro standard to identify the APAR number and the APAR fixed date, the fields APAR NUMBER and APAR
FIX-DATE are filled with asterisks (*).

Messages and codes
The following topics describe the return codes, abend codes, and messages issued by the Diagnostics Aid
(FABHDIAG).

Return codes
FABHDIAG ends with one of the following return codes:

0
Successful completion of the program.

4
Warning messages were issued, but the requested operation was completed.

8
Error messages were issued, but the request operation was completed.

Abend codes
All 36xx abend codes are accompanied by a FABU36xx message. Refer to the appropriate message for
problem determination.

Messages
Use the information in these messages to help you diagnose and solve FABHDIAG problems.

FABU1001I DIAG ENDED NORMALLY

Explanation
This message is generated when Diagnostic Aid has
been completed successfully.

System action
Diagnostic Aid completes the job successfully with a
return code of 0.

User response
None. This message is informational.

FABU1002W DIAG ENDED WITH WARNINGS

Explanation
This message is generated when trivial error
conditions are encountered by Diagnostic Aid.

System action
Diagnostic Aid ends with a return code of 4.

User response
Refer to other messages generated by Diagnostic Aid
to determine the nature and the cause of the detected
errors. Correct the problem and rerun the job.

FABU1003E DIAG ENDED WITH ERRORS

Explanation
This message is generated when severe error
conditions are encountered by Diagnostic Aid.

Chapter 37. Diagnostics Aid 513

System action
Diagnostic Aid ends with a return code of 8.

User response
Refer to other messages generated by Diagnostic Aid
to determine the nature and the cause of the detected
errors. Correct the problem and rerun the job.

FABU1005W [SHPSLMD | SHPSMAC] DD
STATEMENT NOT FOUND

Explanation
Diagnostic Aid could not find the SHPSLMD/SHPSMAC
DD statement.

System action
Diagnostic Aid sets an end-of-job return code of 4
and continues processing. Diagnostic Aid does not
generate a report for the load module or the macro.

User response
If you intended to specify the indicated DD statement,
correct the error and rerun the job.

FABU1006W DUPLICATE member name IN
LIBRARY DDNAME ddname

Explanation
Diagnostic Aid found a duplicated member in the
concatenated libraries.

System action
Diagnostic Aid uses the member which is first found
in the concatenated libraries. Diagnostic Aid sets an
end-of-job return code of 4 and continues processing.

User response
Ensure which libraries have correct module/macro
libraries. Correct the error and rerun the job if
necessary.

FABU1007W DUMMY SPECIFIED FOR
[SHPSLMD | SHPSMAC] DD
STATEMENT

Explanation
DUMMY was specified for the SHPSLMD/SHPSMAC DD
statement.

System action
Diagnostic Aid sets an end-of-job return code of 4
and continues processing. Diagnostic Aid does not
generate a report for the load module or the macro.

User response
If you did not intend to specify the dummy DD
statement, correct the error and rerun the job.

FABU1008W NO [MODULE | MACRO] MEMBERS
FOUND IN DDNAME [SHPSLMD |
SHPSMAC]

Explanation
Diagnostic Aid could not find any utility modules or
macros members from the DD ddname data set.

System action
Diagnostic Aid sets an end-of-job return code of 4 and
continues processing.

User response
Ensure that the libraries have correct utility module or
macro libraries. Correct the error and rerun the job.

FABU2001E LOAD FAILED FOR DDNAME
ddname MODULE member

Explanation
Diagnostic Aid could not load a member name from
ddname.

System action
Diagnostic Aid sets an end-of-job return code of 8 and
continues processing.

User response
Ensure that the member indicated exists in the data
set specified for the indicated ddname. Correct the
error and rerun the job.

FABU3600E OPEN FAILED FOR DDNAME
ddname

Explanation
The named DCB could not be opened.

System action
Diagnostic Aid ends with an abend code of U3600.

514 IMS High Performance Unload: User's Guide

User response
Ensure that a ddname DD statement exists, and that it
specifies the correct DD parameter. Correct any errors
and rerun the job.

FABU3601E GET FAILED FOR DDNAME ddname

Explanation
The GET failed for a directory from the DD ddname
data set.

System action
Diagnostic Aid ends with an abend code of U3601.

User response
Refer to the MVS system message and its programmer
response. Correct the error and rerun Diagnostic Aid. If
the error persists, contact IBM Software Support.

FABU3602E READ FAILED FOR DDNAME
ddname MEMBER member

Explanation
The READ failed for a member from the DD ddname
data set.

System action
Diagnostic Aid ends with an abend code of U3602.

User response
Refer to the MVS system message and its programmer
response. Correct the error and rerun Diagnostic Aid. If
the error persists, contact IBM Software Support.

FABU3603E BLDL FAILED FOR DDNAME
ddname MEMBER member

Explanation
The member was not found when the BLDL macro
searched the PDS directory for the ddname.

System action
Diagnostic Aid ends with an abend code of U3603.

User response
Ensure that the member indicated exists in the data
set specified for the indicated ddname. Correct the
error and rerun the job. If the error persists, contact
IBM Software Support.

FABU3604E LOAD FAILED FOR DDNAME
ddname MODULE member

Explanation
Diagnostic Aid could not load the member name from
the ddname.

System action
Diagnostic Aid ends with an abend code of U3604.

User response
Refer to the MVS system message and its programmer
response. Correct the error and rerun Diagnostic Aid. If
the error persists, contact IBM Software Support.

FABU3605E DELETE FAILED FOR MODULE
member

Explanation
Diagnostic Aid could not delete a member name.

System action
Diagnostic Aid ends with an abend code of U3605.

User response
Contact IBM Software Support.

FABU3606E PUT FAILED FOR SYSPRINT

Explanation
Diagnostic Aid could not put report data in SYSPRINT.

System action
Diagnostic Aid ends with an abend code of U3606.

User response
Refer to the MVS system message and its programmer
response. Correct the error and rerun Diagnostic Aid. If
the error persists, contact IBM Software Support.

FABU3607E OPEN FAILED FOR SYSPRINT

Explanation
SYSPRINT DCB could not be opened.

System action
Diagnostic Aid ends with an abend code of U3607.

Chapter 37. Diagnostics Aid 515

User response
Ensure that a ddname SYSPRINT DD statement exists,
and that it specifies the correct DD parameter. Correct
any errors and rerun the job.

FABU3608E FIND FAILED FOR DDNAME
ddname MEMBER member

Explanation
The FIND failed for a member from DDNAME ddname
data set.

System action
Diagnostic Aid ends with an abend code of U3608.

User response
Ensure that the member indicated exists in the data
set specified for the indicated ddname. Correct the
error and rerun the job. If the error persists, contact
IBM Software Support.

FABU3609E DEVTYPE FAILED FOR DDNAME
ddname

Explanation
The DEVTYPE failed for a DDNAME ddname data set.

System action
Diagnostic Aid ends with an abend code of U3609.

User response
Contact IBM Software Support.

FABU3610E RDJFCB FAILED FOR DDNAME
ddname

Explanation
The READJFCB failed for a DDNAME ddname data set.

System action
Diagnostic Aid ends with an abend code of U3610.

User response
Contact IBM Software Support.

FABU3611E GETMAIN FAILED. INSUFFICIENT
STORAGE TO RUN THE JOB

Explanation
Work space for Diagnostic Aid could not be obtained.

System action
Diagnostic Aid ends with an abend code of U3611.

User response
Increase the region size and rerun the job.

FABU3612E TOO MANY [MODULE | MACRO]
MEMBERS DETECTED IN DDNAME
[SFABMOD | SHPSMAC]

Explanation
There are too many utility members in the SFABMOD/
SHPSMAC DD data set.

System action
Diagnostic Aid ends with an abend code of U3612.

User response
Specify the correct data set for the indicated DD
statement and rerun the job.

516 IMS High Performance Unload: User's Guide

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2000, 2024 517

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
This publication primarily documents information that is NOT intended to be used as Programming
Interfaces of IMS High Performance Unload.

This publication also documents intended general-use programming interface and associated guidance
information, product-sensitive programming interface and associated guidance information, and
diagnosis, modification, or tuning information for IMS High Performance Unload.

General-use programming interface enables the customer to write programs that obtain the services of
IMS High Performance Unload. This information is identified where it occurs, either by an introductory
statement to a topic or by the following marking:

GUPI

General-use programming interface and associated guidance information...

GUPI

Product-sensitive programming interfaces are provided to allow the customer installation to perform
tasks such as tailoring, monitoring, modification, or diagnosis of this IBM product. Use of such interfaces
creates dependencies on the detailed design or implementation of the IBM product. Product-sensitive
interfaces should be used only for these specialized purposes. Because of their dependencies on detailed
design and implementation, it is to be expected that programs written to such interfaces might need to be
changed in order to run with new product releases or versions, or as a result of service. This information is
identified where it occurs, either by an introductory statement to a topic or by the following marking:

PSPI

Product-sensitive programming interface and associated guidance information...

518 Notices

PSPI

Diagnosis, modification, or tuning information is provided to help the customer diagnose, modify, or tune
IMS High Performance Unload. This information is identified where it occurs, either by an introductory
statement to a topic or by the following marking:

DMTI

Diagnosis, modification, or tuning information...

DMTI

Attention: Do not use this diagnosis, modification, or tuning information as a programming
interface.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions:

Applicability: These terms and conditions are in addition to any terms of use for the IBM website.

Personal use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you

Notices 519

http://www.ibm.com/legal/copytrade.shtml

to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at
www.ibm.com/privacy/details the section entitled "Cookies, Web Beacons and Other Technologies"
and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/
software/info/product-privacy.

520 IMS High Performance Unload: User's Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy

Index

Special Characters
*CP format 36
*CS format 36
*F1 format 36
*F2 format 36
*F3 format 36
*HD 218
*HD format 36
*PHD 218

A
accessibility 16
APISET control statement 159
application programming

HSSR Engine 79
Sequential Subset Randomizer 276

ASMHSSR 360

B
Basic Buffer handler (BB) 208
BB 208
BLDLPCK control statement 22, 23, 25, 32, 40, 94, 117, 160,
359, 379
BLM control statement 56
BUF control statement 161, 227
BUFDEFAULT

=BB 265
=CAB 265

buffer handler
buffering services 207
CAB 30, 208
initialization exit 245
tuning 207

BUTR control statement 161, 227
BYINDEX control statement 162

C
CAB

CABSTAT 158
considerations 211
default values of buffering parameters 357
how to tune 216
HSSRCABP DD 30
inter-PCB look-aside 218
JCL examples 223
statistics 163, 216
statistics report 186

CAB buffering 212
CAB control statements

for FABHULU jobs 223
CABBASE control statement 162
CABDD

CABDD (continued)
*ALL 223
groups 223
multiple 223
specifying multiple 223
statement 217

CABDD control statement 218
CABDEFAULT

=DBT 266
=HPU 266

CABSTAT
NO 216
YES 186, 190, 216

CABSTAT control statement 163
calls

DL/I 229
formats

Assembler applications 360
COBOL applications 360
PL/I applications 360

Get-by-RBA 257
GN or GHN 231
GNR or GHNR 232
GU or GHU 232
HSSR 229
REPL 234

CALLSTAT control statement 164
CARDIN

data set
default option table 261
FABHFSU 55
FABHFSU (parallel scan facility) 140
FABHPSFC 129
FABHPSFM 124
FABHPSFS 145

DD
FABHFSU 54
FABHFSU (parallel scan facility) 140
FABHPSFC 128
FABHPSFM 124
FABHPSFS 143

CARDIN (FABHFSU in PSF mode)
DEC 141
END 141
GOT 142
PSC 142

CARDIN (FABHFSU)
BLM 56
CO (compatibility) 361
CON 362, 373
CON (compatibility) 361
DBD 58, 118
DEC

DECN 52, 60, 141, 364
DECY 60, 141

ELM 56
END 60

Index 521

CARDIN (FABHFSU) (continued)
GOT 60
PARTITION

HALDB 103
PSB 61
SEGSTAT

HALDB 103
CARDIN (FABHPSFC)

CTL 130
DBD 132
END 133
HKY 133
NPT 134
PSB 135

CARDIN (FABHPSFM)
END 126
MAP 125

CARDIN (FABHPSFS)
END 146
SUM 145

cataloged procedures
DL/I region, DBB region, ULU region 29

CBLHSSR 360
Chained Anticipatory Buffer handler (CAB)

simulate 239
CHECKREC control statement 41
CNTLDD

DD
FABHFSU (parallel scan facility) 140
FABHPSFC 128
FABHPSFS 143

CO control statement 164
compatibility

DBT V1 HSSR 365
DBT V2 HSSR 357
FSU II 373
HSSR V2 Branch Office Randomizer 295
PO HSSR 367

COMPAUTH control statement 165
considerations

unload 25
control statements

Database Tuning Statistics 309
Database Tuning Statistics (HSSROPT) 309
FABHBSIM 240
FABHBSIM (HSSRCABP) 241
FABHBSIM (HSSROPT)

BUF 240
FABHFSU

CO (compatibility) 361
CON 362, 373

FABHFSU (CARDIN)
BLM 56
DBD 58
DEC 59
ELM 56
END 60
GOT 60
PARTITION 60, 103
PSB 61
SEGSTAT 65, 103

FABHFSU (HSSRCABP) 65
FABHFSU in PSF mode (CARDIN)

DEC 141

control statements (continued)
FABHFSU in PSF mode (CARDIN) (continued)

END 141
GOT 142
PSC 142

FABHLDBR 315
FABHLDBR (HSSROPT)

TRDB 315
TRHC 315

FABHLDBR (SYSIN)
IO 317
LENGTH 317
NBR 316
ROOT-ONLY 317

FABHPSFC (CARDIN)
CTL 130
DBD 132
END 133
HKY 133
NPT 134
PSB 135

FABHPSFM (CARDIN)
END 126
MAP 125

FABHPSFS (CARDIN)
END 146
SUM 145

FABHTEST 230
FABHTEST (HSSRCABP) 234
FABHTEST (HSSROPT) 234
FABHTEST (SYSIN)

GHN 231
GHNP 231
GHNR 232
GHU 232
GN 231
GNP 231
GNR 232
GU 232
PCB 233
REPL 234

FABHURG1 41
FABHURG1 (HSSRCABP) 46
FABHURG1 (HSSROPT) 45
FABHURG1 (SYSIN)

CHECKREC 41
DEC 42
FALLBACK 42, 112
FRMT 43
MIGRATE 43
PARTITION 44, 101
PCB 44
SEGSTAT 45, 101

HSSRCABP
CABDD 218
INTER 218
NBRDBUF 219
NBRSRAN 219
OCCURRENCE 220
OVERFLOW 220
PARTPROC 221
RANSIZE 222
REFT4 223

HSSREXTR 352

522 IMS High Performance Unload: User's Guide

control statements (continued)
HSSROPT

APISET 159
BLDLPCK 160
BUF 161, 227
BUTR 161, 227
BYINDEX 162
CABBASE 162
CABSTAT 163
CALLSTAT 164
CO 164
COMPAUTH 165
DATXEXIT 165
DBDL1 166
DBSTATS 166
DIAGG 167
GOTRETRY 168
HPIO 168
HSSRDBD 169
HSSRPCB 169
KEYCHECK 170
LOUT 171
LSR 172
NOFIX 172
NOVSAMOPT 172
PARTINFO 173
PCBLIST 173
RETRY 174
RTEXIT 174
SKERROR 175
SKIPAUTH 175
SKIPVLC 176
TRDB 176
TRHC 177
TRXC 178
ZIIPMODE 178

HSSROPT (FABHFSU) 65
HSSROPT (FABHLDBR) 315
HSSROPT Database Tuning Statistics

DBSTATS 309
LOUT 309

SYSIN (FABHURG1, user exits)
EXIT 253
FRMT 254
OFFS 255
ULEN 255
USEGMAX 256

cookie policy 517
CTL control statement 130

D
Data Conversion exit

DFSDBUX1 165
routine 165

data flow
FABIUNLS 287
generation of Sequential Subset Randomizer (SSRGEN)
279
SS-STATS (FABISTAT) 293

data sets
CARDIN

default option table 261
CARDIN (FABHFSU in PSF mode) 140

data sets (continued)
CARDIN (FABHFSU) 55
CARDIN (FABHPSFC) 129
CARDIN (FABHPSFM) 124
CARDIN (FABHPSFS) 145
CNTLDD (FABHFSU) 140
DDITV02 88
DDOTV02 88
DFSSTAT 209
DFSVSAMP 209
extensions 90
HSSRBUTR 203
HSSRCABP

default option table 261
HSSRCABP (FABHBSIM) 241
HSSRCABP (FABHFSU) 65
HSSRCABP (FABHTEST) 234
HSSRCABP (FABHURG1) 46
HSSREXTR (FABHEXTR) 352
HSSRLDEF (Database Tuning Statistics) 310
HSSRLOUT 202
HSSRLOUT (Database Tuning Statistics) 311
HSSROPT

default option table 261
HSSROPT (Database Tuning Statistics) 309
HSSROPT (FABHBSIM) 240
HSSROPT (FABHFSU) 65
HSSROPT (FABHLDBR) 315
HSSROPT (FABHTEST) 234
HSSROPT (FABHURG1) 45
HSSROPT (FABISTAT) 294
HSSRSNAP 202
HSSRSTAT

SS-STATS 295
SS-STATS (FABISTAT)
294

HSSRSTAT (Database Tuning Statistics) 311
HSSRSTAT (FABHBSIM) 241
HSSRTRAC 190
HSSRTRAC (FABHLDBR) 318
new extents of 90
PRNTOUT (FABHFSU in PSF mode) 143
PRNTOUT (FABHFSU) 66
PRNTOUT (FABHPSFC) 138
PRNTOUT (FABHPSFM) 126
PRNTOUT (FABHPSFS) 147
SYSIN

default option table 261
SYSIN (FABHLDBR) 316
SYSIN (FABHTEST) 230
SYSIN (FABHURG1) 41
SYSPRINT (FABHTEST) 235
SYSPRINT (FABHURG1) 46

database
administration

Sequential Subset Randomizer 275
converting 270, 299
design

subset ID 275
monitoring 277
physical clustering 270
retrievals 270

Database Tuning Statistics
control statements 309

Index 523

Database Tuning Statistics (continued)
input 309
JCL 308
reports 311

DATXEXIT control statement 165
Db2

restrictions 24
DBD control statement 58
DBD control statement (FABHPSFC) 132
DBDL1 control statement 166
DBSTATS control statement 166, 309
DD statements

CARDIN
FABHFSU (parallel scan facility) 140
FABHPSFC 128
FABHPSFM 124
FABHPSFS 143

CNTLDD
FABHFSU (parallel scan facility) 140
FABHPSFC 128
FABHPSFS 143

data set
Db2 DL/I Batch support 88

Database Tuning Statistics
HSSRLDEF 308
HSSRLOUT 308
HSSROPT 308
HSSRSTAT 308

DDITV02 88
DDOTV02 88
DFSHALDB 95
DFSVSAMP

MIGRATE control statement 43
FABHBSIM 240
FABHFSU

CARDIN 54
PRNTOUT 54

FABHFSU (parallel scan facility) 140
FABHLDBR

HSSROPT 314
HSSRTRAC 314
SYSIN 314
SYSUT1 314

FABHPSFC 128
FABHPSFM 124
FABHPSFS 143
FABHTEST 230
FABHURG1 39
HSSR 30
HSSRBUTR 30
HSSRCABP 30
HSSRLDEF 30
HSSRLOUT 30
HSSROPT

SS-STATS (FABISTAT)
294

HSSRSNAP 30
HSSRSTAT

SS-STATS (FABISTAT)
294

HSSRTRAC 30
IEFRDER 30
IMSDALIB 30
PRNTOUT

DD statements (continued)
PRNTOUT (continued)

FABHFSU 54
FABHFSU (parallel scan facility) 140
FABHPSFC 128
FABHPSFM 124
FABHPSFS 143

RECONx 30
SYSIN (FABHTEST) 230
SYSIN (FABHURG1) 39
SYSPRINT (FABHTEST) 230
SYSPRINT (FABHURG1) 39
SYSUDUMP

FABHPSFC 128
FABHPSFM 124
FABHPSFS 143

SYSUT1 (FABHURG1) 39
SYSUT2 (FABHURG1) 39
SYSUT3 (FABHURG1) 39

DDITV02 88
DDOTV02 88
DEC control statement (FABHFSU in PSF mode) 141
DEC control statement (FABHFSU) 59
DEC control statement (FABHURG1) 42
DFSHALDB

HALDB control statement 95
DFSHDC40 269, 272, 287, 299
DFSISVI0 exit 48
DFSSTAT data set 209
DFSURGU0

control statement 48
JCL compatibility

DFSISVI0 exit 48
DFSURGU1 data set 48
DFSURGU2 data set 48
return codes 379
STEPLIB data set 48
SYSIN data set 48
SYSPRINT data set 48

DFSURGU1 data set 48
DFSURGU2 data set 48
DFSVSAMP

data set 209
DD

MIGRATE control statement 43
DIAGG control statement 167
diagnostic information

gathering 509
diagnostics aid 511
disability 16
DL/I call

using the Application Interface Block (AIB) interface 23
documentation

accessing 15
sending feedback 15

documentation changes 3
DSNMTV01 88

E
ELM control statement 56
END control statement (FABHFSU in PSF mode) 141
END control statement (FABHFSU) 60
END control statement (FABHPSFC) 133

524 IMS High Performance Unload: User's Guide

END control statement (FABHPSFM) 126
END control statement (FABHPSFS) 146
END control statement (FABIRGEN) 284
examples

CAB parameters 223
FABHBSIM JCL 241
FABHEXTR 354
FABHFSU JCL 76
FABHLDBR JCL 318
FABHTEST JCL 236
FABHURG1 JCL 47
FABIUNLS 292
generating Sequential Subset Randomizer (SSRGEN)
284
JCL for creating a database unload extract 354
JCL for Database Tuning Statistics 318
Parallel Scan Facility (PSF) 150
SS-STATS (FABISTAT) 297

EXEC DLI command
DL/I interface block (DIB) 82

EXIT control statement 253
exit routine

FABHKEYX 109

F
FABH000 88
FABHBSIM

control statements 240
examples 241
execution steps 240
input 240
JCL 240
reports 241

FABHCEX 245
FABHDB2 88, 369
FABHEXTR

examples 354
input 352
JCL 352

FABHFSU
control statements 55
examples 76
input 55
JCL 54
output formats

HALDB PHD format 97
HALDB UL format 97
UL 26

parallel scan facility 121, 140
pointer bypass option 115, 118
reports 66
sequence check option 115
SS-STATS (FABISTAT) 293, 294
unloading a corrupted database 115
user exit routine 69
using the pointer bypass option 118

FABHFSU (parallel scan facility)
JCL 140
reports 143

FABHKEYX
data set 109
exit routine 109

FABHLDBR

FABHLDBR (continued)
control statements 315
examples 318
input 315
JCL 314
printing long database records with 313
reports 318

FABHOPT macro
FSUBUFNO= 262
URG1BUFNO= 262

FABHOPT option table 262
FABHOPTG sample JCL 262
FABHPSFC

JCL 128
reports 138

FABHPSFM
JCL 124
reports 126

FABHPSFS
JCL 143
reports 147

FABHRCEX 245
FABHRTEX 243
FABHTEST

control statements 230
examples 236
execution steps 229
input 230
JCL 230
performance testing 236
problem determination 236
reports 235
restrictions 229

FABHTOPT macro
APISET= 263
BUFDEFAULT= 263
CABBASE= 263
CABDEFAULT= 263
CABSTAT= 263
COMPAT= 263
COMPAUTH= 263
DIAGG= 263
FSUDEC= 263
LSR= 263
PCBLIST= 263
URGIDEC= 263
ZIIPMODE= 263

FABHURG1
control statements 41
examples 47
FABHKEYX exit routine 109
fallback unload 97, 107
input 41
JCL 39
logic 247
migration unload 97, 107
output formats

*HD Format 26
HALDB *HD Format 97
HALDB *PHD Format 97

reports 46
SKERROR option 115, 117
SS-STATS (FABISTAT) 293, 294
unloading a corrupted database 115

Index 525

FABHURG1 (continued)
user exit routine (FABHEXTR) 351

FABIDEF macro statement 283
FABIGEN macro statement 284
FABISTAT 293
FABITAB macro statement 281
FABIUNLS

data flow 287
examples 292
JCL 288
job steps 287
output 289

FALLBACK
OFFS control statement 255
ULEN control statement 255
USEGMAX control statement 256

FALLBACK control statement 42
fallback unload

example of 112
FABHFSU 98, 107
from HALDB 21
partitioned secondary indexes 22

FKDn data set 289
FRMT control statement 43, 254
FSU II 373

G
generation of Sequential Subset Randomizer

data flow 279
example 284
input 280
JCL 280
job steps 279
macro statements 280

Get-by-RBA calls 257
GHN control statement 231
GHNP control statement 231
GHU control statement 232
GN control statement 231
GNHR control statement 232
GNP control statement 231
GNR control statement 232
GOT control statement 60
GOT control statement (FABHFSU in PSF mode) 142
GOTRETRY control statement 168
GU control statement 232

H
HALDB

buffering statistics 186
CAB buffer sharing for 212
DD statements 30
EXEC statement 30
FABHFSU 103
FABHURG1 101
Get-by-RBA call 257
Online Reorganization (OLR) 26
PARTINFO ACC 173
PARTINFO DEF 173
partition

FABHURG1 Segment Statistics report 46

HALDB (continued)
PARTITION control statement (FABHFSU) 60
Partition Definition report

FABHFSU 103
FABHURG1 101

Partition Definition utility 97, 212
Partitions Accessed report

FABHFSU 103
FABHURG1 101

random access to 105
restrictions 98
sequential access for 105
unload in PSF mode 98

HALDB control statement 95
HALDB Partition Definition report

PARTINFO DEF 173
HALDB Partitions Accessed report

PARTINFO ACC 173
HALDB Single Partition Processing

DFSHALDB DD 95
HALDB control statement 95

hardware requirements 17
HDAM

CAB 211
GOTRETRY control statement 168
lack of IRLM 92
modifying segments in user exits 71
partitioned 8
processing options GON and GOT 90
secondary index 27, 58, 162
SKERROR control statement 175
SKERROR option 117
SKIPVLC control statement 176

HDMB 257
HDMBOS8G 258
HDR data set 288, 289
HIDAM

a large number of GU calls to 209
BYINDEX control statement 162
GOTRETRY control statement 168
lack of IRLM 92
LSR control statement 172
modifying segments in user exits 71
NOFIX 172
NOVSAMOPT 172
PARTINFO 173
partitioned 8
processing options GON and GOT 90
RETRY 174
RTEXIT 174
secondary index 27, 58, 162
SKERROR 175
SKERROR option 117
SKIPVLC control statement 176
TRDB 176
TRHC 177
TRXC 178

High Availability Large Database 97
High Speed Sequential Retrieval (HSSR) 8
HISAM

overflow area 207
SKERROR control statement 175
SKIPVLC control statement 176

HJCB 257

526 IMS High Performance Unload: User's Guide

HKY control statement 133
HPIO control statement 168
HS format 52
HSDB 257
HSSR application programs

buffering functions available to 207
CAB 208
coding JCL for your

HALDB 105
Db2 DL/I Batch interface 88
DL/I CHKP and XRST 89
FABHFSU 51
FABHURG1 35
HALDB 105
improved performance for 211
JCL 29, 86
run in a block-level sharing environment 90
written in COBOL or PL/I language 377

HSSR buffer handler
control blocks of 193
direct 208
FABHBSIM 239
FABHCEX 245
invalidates buffers 91
simulation utility 161, 203

HSSR call
API 8
CO 159
data capture exit routine 23
DB Call Statistics report 183
DBDL1 159
explicit 360
functions 11
router 11
status codes 81
test utility 229
trace 239
using 229
using the Application Interface Block (AIB) interface 23

HSSR call handler
BLDLPCK 160

HSSR Engine
abends issued by 377
buffer handler 207
buffer handler component of 156
call analyzer and call handler components of 156
CHKP and XRST calls 89
control statements 155
Data Conversion exit 165
database level sharing 90
Database Tuning Statistics report 307
database-sharing 90
DIAGG option 118
diagnostic information 167
GOTRETRY control statement 168
hardcopy tracing option of 177
HSSR buffer handler 90
HSSR Engine

considerations for block level sharing 90
HSSRLOUT data set 313
KEYCHECK GG option 115
lack of IRLM 92
list of HSSROPT control statements for 156
LRU algorithms 309

HSSR Engine (continued)
mapping macros of control blocks 363
processing options GON and GOT 90
product-sensitive control block 363
reports and output produced by 156, 181
RETRY control statement 174
RTEXIT control statement 174
SKERROR option 117, 118
snapshot of control blocks of 202
specifying options for 155
SS-STATS statistics of 343
test utility 229
trace function provided by 156
VSAM SHAREOPTIONS

(1,3) 90
(2,3) 90
(3,3) 90

HSSR PCB
AIB interface 23
control statement 44
DL/I calls for 84
FABHPCB 259
FABHURG1 44
field sensitivity for 22
HSSRDBD 157, 169
HSSRPCB 157
KEYLEN 358
number of basic buffers for 358
parameter 4: HSSR PCB 249
SKERROR control statement 175
SKIPVLC control statement 176
specifying through KEYLEN 358
XRST call 90

HSSR V2 Branch Office Randomizer compatibility 367
HSSRBUTR

data set 203
DD 30

HSSRCABP
CABDD 218
Chained Anticipatory Buffering 30
control statements 212, 217
data set

default option table 261
FABHBSIM 241
FABHFSU 65
FABHTEST 234
FABHURG1 46

DD 30
INTER 218
NBRDBUF 219
NBRSCAN 219
OCCURRENCE 220
OVERFLOW 220
PARTPROC 105, 221
RANSIZE 222
REFT4 223

HSSRDBD control statement 169
HSSREXTR (FABHEXTR exit routine)

EXTR 352
PARTEXTR 352
SKIP 352

HSSREXTR control statement 352
HSSRLDEF

data set

Index 527

HSSRLDEF (continued)
data set (continued)

Database Tuning Statistics 310
DD

Database Tuning Statistics 308
HSSRLOUT

data set
Database Tuning Statistics 311

DD
Database Tuning Statistics 308

HSSROPT
APISET

APISET 1 84, 85, 159, 192
APISET 2 32, 85, 159, 192
APISET 3 32, 86, 159, 160, 164, 166, 175, 192,
201

BB 227
BLDLPCK 160
BUF 161, 227
BUTR 161, 227
BYINDEX 162
CAB Statistics report 186
CABBASE 162
CABSTAT 163
CALLSTAT 105, 164
CO 164
COMPAUTH 165
control statements

HDSTATS and NOSAMEOPT 358
Control Statements report 181
data set

Database Tuning Statistics 309
DBSTATS 307
default option table 261
FABHBSIM 240
FABHFSU 65
FABHLDBR 315
FABHTEST 234
FABHURG1 45
SS-STATS (FABISTAT) 294

Data Set I/O Statistics report 185
DATXEXIT 165
DB Call Statistics report 183
DB Record Length Distribution report 185
DB Statistics report 184
DBDL1 166
DBSTATS 166
DD

Database Tuning Statistics 308
SS-STATS (FABISTAT) 294

DD (FABHLDBR) 314
DIAGG 167
GOTRETRY 168
HALDB Partition Definition report 182
HALDB Partitions Accessed report 182
HDSTATS 358
HPIO 168
HSSRDBD 169
HSSRPCB 169
KEYCHECK 170
LOUT 171
LSR 172, 209
NOFIX 172
NOVSAMOPT 172

HSSROPT (continued)
overview of 156
PARTINFO 105, 173
PCBLIST

HSSR 81, 173
IMS 173

Randomizing Statistics report 184
RETRY 174
RTEXIT 174
SKERROR 175
SKIPAUTH 175
SKIPVLC 176
SS-STATS (FABISTAT) 294
syntax of 156
TRDB 176
TRHC 177
TRXC 178
ZIIPMODE 178

HSSROPT (BB)
BUF 227
BUTR 227

HSSROPT (CAB)
BUTR 212
NOFIX 212
NOVSAMOPT 212

HSSROPT (Database Tuning Statistics)
DBSTATS 309
LOUT 309

HSSROPT (FABHLDBR)
TRDB 315
TRHC 315

HSSROPT data set
SS-STATS (FABISTAT)
294

HSSRPCB
*ALL 223

HSSRPCB control statement 169
HSSRSNAP

data set 202
DD 30

HSSRSTAT
data set

Database Tuning Statistics 311
FABHBSIM 241
SS-STATS 295

DD
Database Tuning Statistics 308
SS-STATS (FABISTAT) 294

SS-STATS (FABISTAT) 294
HSSRTRAC

data set
FABHLDBR 318

DD 30
DD (FABHLDBR) 314
Trace Output report 190
Trace Output report with diagnosis 193

I
I/O

Anticipatory (overlapped) chained sequential 208
Immediate (non-overlapped) chained sequential 208

IEFRDER
DD 30

528 IMS High Performance Unload: User's Guide

IMS
DD

FABHPSFS 143
IMS catalog 27
IMS HD Reorganization Unload (DFSURGU0)

JCL 48
IMS-managed ACBs 28
IMSDALIB

DD 30
input

generation of Sequential Subset Randomizer 280
SS-STATS (FABISTAT) 294

INTER 214
INTER control statement 218
Inter-PCB look-aside buffering

between CAB buffer and BB buffer 208
introduction

Sequential Subset Randomizer 269
IO control statement (FABHLDBR) 317

J
JCL requirements

basic 29
Database Tuning Statistics 308
FABHBSIM 240
FABHEXTR 352
FABHFSU 54
FABHFSU (parallel scan facility) 140
FABHLDBR 314
FABHOPTG 262
FABHPSFC 128
FABHPSFM 124
FABHPSFS 143
FABHTEST 230
FABHURG1 39
FABHX034 30
FABIUNLS 288
HSSR applications 86
SS-STATS (FABISTAT) 294

job control language 8
job steps

FABIUNLS 287
generation of Sequential Subset Randomizer (SSRGEN)
279
SS-STATS (FABISTAT) 293

K
keyboard shortcuts 16
KEYCHECK control statement 170

L
legal notices

cookie policy 517
notices 517
programming interface information 517
trademarks 517

LENGTH control statement (FABHLDBR) 317
logical parent's concatenated key

LPCK 25
virtual 359

logical relationship 299
Look-aside buffering 208
LOUT control statement 171, 309
LPCK

area 74
building 94
defined as virtual 25
physical 160
virtual 71, 117, 160

LSR control statement 172

M
MAP control statement 125
MBR= 88
messages

FABH 382
FABI 501
overview 381
variables 381

MIGRATE
OFFS control statement 255
ULEN control statement 255
USEGMAX control statement 256

MIGRATE control statement 43
migration unload

control statement 43
DFSVSAMP

consideration on 107
examples

migration unload 107
FABHFSU 98, 107
fallback unload

partitioned secondary indexes 107
HDAM or HIDAM databases 107
HISAM databases 22, 107
migration unload

example of 107
HISAM databases 107
secondary indexes 107

parallel migration unload 110
parameter 3: segment prefix 249
parameter 7: RBA of segment prefix 249
samples

performing the migration unload using FABHURG1
107

secondary indexes 22, 107
sequence error 199
SYSIN (FABHURG1)

MIGRATE 107
to HALDB

exit routine FABHKEYX 109
monitoring the database 277

N
NBR control statement (FABHLDBR) 316
NBRDBUF 213
NBRDBUF control statement 219
NBRSCAN 213
NBRSCAN control statement 219
NOFIX control statement 172
nonsequential randomizer 270

Index 529

notices 517
NOVSAMOPT control statement 172
NPT control statement 134

O
OCCURRENCE 213
OCCURRENCE control statement 220
OFFS control statement 255
orphans 276, 290, 295
output

Database Tuning Statistics 311
FABHBSIM 241
FABHFSU 66
FABHFSU (parallel scan facility) 143
FABHLDBR 318
FABHPSFC 138
FABHPSFM 126
FABHPSFS 147
FABHTEST 235
FABHURG1 46
FABIUNLS 289
HSSR 181
SS-STATS 295

OUTPUT-AREA 249
OVERFLOW

PHDAM 213
OVERFLOW control statement 220

P
parallel migration unload 110
Parallel Scan Facility (PSF)

examples 150
execution steps 122

PARTINFO
ACC 182
DEF 101, 103, 182
DEF,ACC 101, 103
Partition Definition report 158
Partitions Accessed report 158

PARTINFO control statement 173
PARTITION control statement (FABHFSU) 60
PARTITION control statement (FABHURG1) 44
partitioned secondary index 97
PARTPROC

random access 222
sequential access 222

PARTPROC control statement 221
PCB 272
PCB control statement 44
PCB control statement (FABHTEST) 233
PCB feedback

interpreting 81
status code in 359

PCBLIST control statement 173
PHDAM

BLM/ELM control statements 56
CAB 211
CO control statement

compatibility 361
database 105
FABHBSIM 239

PHDAM (continued)
GOTRETRY control statement 168
HALDB Buffering Statistics report for 186
lack of IRLM 92
modifying segments in user exits 71
OVERFLOW 234
overflow area of each partition of 234
partitioned hierarchical direct access method 97
PARTPROC 234
processing options GON and GOT 90
PROCOPT=R 359
Randomizing Statistics report 322
REPL call 229, 359
SKERROR control statement 175
SKERROR option 117
SKIPVLC control statement 176
Using Database Tuning Statistics 307

PHIDAM
a large number of GU calls to 209
BLM/ELM control statements 56
BYINDEX control statement 162
CAB 211
CO control statement

compatibility 361
DBD control statement 58
FABHBSIM 239
GOTRETRY control statement 168
lack of IRLM 92
LSR control statement 172
modifying segments in user exits 71
partitioned hierarchical indexed direct access method
97
PARTPROC 234
processing options GON and GOT 90
PROCOPT=R 359
REPL call 229, 359
SKERROR control statement 175
SKERROR option 117
SKIPVLC control statement 176
Using Database Tuning Statistics 307

PLIHSSR 360
PN82671 258
PRNTOUT

data set
FABHFSU 66
FABHFSU (parallel scan facility) 143
FABHPSFC 138
FABHPSFM 126
FABHPSFS 147

DD
FABHFSU (parallel scan facility) 140
FABHPSFC 128
FABHPSFM 124
FABHPSFS 143

problem determination 378
problems

diagnostic information about 509
PROG 88
program functions

Sequential Subset Randomizer 270
program structure

Sequential Subset Randomizer 273
programming interface information 517
PSB control statement 61

530 IMS High Performance Unload: User's Guide

PSB control statement (FABHPSFC) 135
PSC control statement 142
PSINDEX 97

R
randomizing

HDAM or PHDAM 307
RANSIZE 213
RANSIZE control statement 222
reader comment form 15
RECONx

DD 30
record formatting routine 247
reference pattern analysis 208
REFT 214
REFT4 control statement 223
REPL control statement 234
reports

CAB Statistics 186
Data Set I/O Statistics 185
Database Tuning Statistics 311
DB Call Statistics 183
DB Record Length Distribution 185
DB Statistics 184
FABHBSIM 241
FABHFSU 66
FABHFSU (parallel scan facility) 143
FABHFSU Control Specifications 66
FABHFSU Control Statements 66
FABHFSU PSF Control Statements 126, 138, 147
FABHFSU PSF Extent Mapping 127
FABHFSU PSF Scan Control Data Set 139
FABHFSU PSF Summary 147
FABHFSU Segment Statistics 67
FABHLDBR 318
FABHPSFC 138
FABHPSFM 126
FABHPSFS 147
FABHTEST 235
FABHTEST Control Statements 235
FABHURG1 46
FABHURG1 Segment Statistics 46
FABHURG1 Unload Parameters 46
HALDB Partition Definition 182
HALDB Partitions Accessed 182
HSSROPT Control Statements 181
Randomizing Statistics 184
Sequential Subset Statistics 295
Split Unloaded Data Set Statistics 290
Trace Output 190
Trace Output for Diagnostics 193

restrictions
Sequential Subset Randomizer 273

RETRY control statement 174
Return Code Edit exit routine 245
return codes

FABHBSIM utility 381
FABHFSU utility 380
FABHPSFS utility 380
FABHTEST utility 381
FABHURG1 utility 379

ROOT-ONLY control statement (FABHLDBR) 317
RTEXIT 243

RTEXIT control statement 174
runtime environment exit routine 243

S
samples

exit routines 71
FABHOPTG 262
FABHRCEG 245
HPS.SHPSSAMP 29, 71, 245
HPSUXAA0 71
HPSUXCA0 71
HPSUXPA0 71
JCL for creating a database unload extract 354
performing the fallback unload using FABHURG1 112

scan control data set 129
screen readers and magnifiers 16
secondary index

DLI and DBB region
PCB PROCSEQ= parameter 27

ULU region
BYINDEX control statement of HSSROPT 162
DBD control statement of FABHFSU 58

SEGSTAT control statement (FABHFSU) 65
SEGSTAT control statement (FABHURG1) 45
sequential randomizer 270, 272
Sequential Subset Statistics report 295
service information 14
site default options 261
SKERROR control statement 175
SKIPAUTH control statement 175
SKIPVLC control statement 176
snaps 377
software requirements 17
Split Unloaded Data Set Statistics report 290
splitting the unloaded data set 270, 287
SPRBA 251
SPRBAFLG 249
SPRBAX4G 249
SS-STATS

activation 295
data flow 293
example 297
input 294
JCL 294
output 295
routine 293

SSM= 88
SSRGEN 273, 279
SSSTATS control statement 295
subset ID

Sequential Subset Randomizer 273
SUM control statement 145
summary of changes 3
support

required information 509
support information 14
SYSIN

data set
default option table 261
FABHLDBR 316
FABHTEST 230
FABHURG1 41

DD 39

Index 531

SYSIN (continued)
DD (FABHLDBR) 314
DD (FABHTEST) 230

SYSIN (FABHLDBR)
IO 317
LENGTH 317
NBR 316
ROOT-ONLY 317

SYSIN (FABHTEST)
GHN 231
GHNP 231
GHNR 232
GHU 232
GN 231
GNP 231
GNR 232
GU 232
PCB 233
REPL 234

SYSIN (FABHURG1, user exits)
EXIT 253
FRMT 254
OFFS 255
ULEN 255
USEGMAX 256

SYSIN (FABHURG1)
CHECKREC 41
DEC

DECN 26, 36, 42, 47, 364
DECY 42

FALLBACK 42, 112
FRMT 43
MIGRATE 43
PARTITION

HALDB 101
PCB 44
SEGSTAT

HALDB 101
SYSPRINT

data set
FABHTEST 235
FABHURG1 46

DD 39
DD (FABHTEST) 230

system structure 11
SYSUDUMP

DD
FABHPSFC 128
FABHPSFM 124
FABHPSFS 143

SYSUT1
DD 39
DD (FABHBSIM) 240
DD (FABHLDBR) 314

SYSUT1 data set (FABHURG1) 39
SYSUT2

DD 39
SYSUT2 data set (FABHURG1) 39
SYSUT3

DD 39
SYSUT3 data set (FABHURG1) 39

T
technotes 15
terminology 14
trademarks 517
TRDB control statement 176
TRDB control statement (FABHLDBR) 315
TRHC control statement 177
TRHC control statement (FABHLDBR) 315
TRL data set 288, 289
troubleshooting

tips 377
TRXC control statement 178
typical uses and benefits

Sequential Subset Randomizer 270

U
UL format 52
ULEN control statement 255
unload

fallback 107
IMS catalog 27
migration 107

USEGMAX control statement 256
user tasks

Sequential Subset Randomizer 275

V
VB format 52
VN format 52

W
what's new 3
wildcard 107, 223

Z
ZIIPMODE control statement 178

532 IMS High Performance Unload: User's Guide

IBM®

Product Number: 5655-E06

SC27-0936-12

	Contents
	About this information
	Part 1. IMS High Performance Unload overview
	Chapter 1. Introduction to IMS High Performance Unload
	What's new in IMS High Performance Unload
	What does IMS High Performance Unload do?
	IMS High Performance Unload features and benefits
	IMS High Performance Unload system structure
	Roadmap to IMS High Performance Unload information
	IMS High Performance Unload terminology
	Service updates and support information
	Product documentation and updates
	Accessibility features

	Chapter 2. Hardware and software prerequisites

	Part 2. Unloading IMS databases
	Chapter 3. Introduction to the unload utilities
	Selecting an unload utility for your use
	Restrictions for IMS High Performance Unload
	Considerations for using the unload utilities
	Considerations for a logical parent's concatenated key
	Considerations for an unloaded data set used for reorganization
	Considerations for database sharing
	Considerations for HALDB Online Reorganization capable partitions
	Considerations for using a secondary index
	Considerations for unloading an IMS catalog
	Considerations for IMS-managed ACBs environment

	Chapter 4. Basic job control language
	Preparing the basic JCL
	Basic JCL requirements

	Chapter 5. FABHURG1 unload utility
	Unloading a database with FABHURG1
	Unload output format supported by FABHURG1
	FABHURG1 JCL requirements
	FABHURG1 input
	FABHURG1 SYSIN input data set
	CHECKREC control statement
	DEC control statement
	FALLBACK control statement
	FRMT control statement
	MIGRATE control statement
	PARTITION control statement
	PCB control statement
	SEGSTAT control statement

	FABHURG1 HSSROPT input data set
	FABHURG1 HSSRCABP input data set

	FABHURG1 output: SYSPRINT output data set
	FABHURG1 Unload Parameters report
	FABHURG1 Segment Statistics report

	FABHURG1 JCL examples
	IMS HD Reorganization Unload JCL for running FABHURG1

	Chapter 6. FABHFSU unload utility
	Unloading a database with FABHFSU
	Unload output format supported by FABHFSU
	FABHFSU JCL requirements
	FABHFSU input
	FABHFSU CARDIN input data set
	BLM/ELM control statements
	DBD control statement
	DEC control statement
	END control statement
	GOT control statement
	PARTITION control statement
	PSB control statement
	SEGSTAT control statement

	FABHFSU HSSROPT input data set
	FABHFSU HSSRCABP input data set

	FABHFSU output: PRNTOUT output data set
	FABHFSU Control Statements report
	FABHFSU Control Specifications report
	FABHFSU Segment Statistics report

	FABHFSU user exit routine
	Considerations when writing user exit routines
	Modifying segments in user exits
	Initialization and termination processing in the exit routine
	Information passed to the exit routine
	Contents of registers

	FABHFSU JCL examples

	Chapter 7. Application programming interface for using HSSR Engine
	IMS High Performance Unload API overview
	HSSR PCB requirements
	HSSR PCB feedback information
	DL/I calls and EXEC DLI command for HSSR PCB
	JCL requirements for your HSSR application
	Considerations for Db2 DL/I Batch interface
	Considerations for checkpoint and restart
	Consideration for database sharing
	Consideration for HALDB single partition processing

	Chapter 8. Methods for processing High Availability Large Databases
	Functions that support HALDBs
	Restrictions for processing HALDBs
	Types of processing for unloading a HALDB
	Unloading a partitioned database with FABHURG1
	Unloading a partitioned database with FABHFSU
	Processing HALDBs with your HSSR application program
	Migration unload and fallback unload
	Migration unload
	Migration unload: Exit routine FABHKEYX for distributing unload records
	Parallel migration unload
	Fallback unload

	Chapter 9. Utility options for unloading corrupted databases
	Rules for unloading corrupted databases
	Using the SKERROR option for FABHURG1
	Using the pointer bypass option for FABHFSU

	Chapter 10. Parallel Scan Facility of FABHFSU
	Overview of Parallel Scan Facility
	Unloading a database with FABHFSU in PSF mode
	FABHPSFM program
	FABHPSFM JCL requirements
	FABHPSFM CARDIN input data set
	MAP control statement
	END control statement

	FABHPSFM PRNTOUT output data set
	FABHFSU PSF Control Statements report
	FABHFSU PSF Extent Mapping report

	FABHPSFC program
	FABHPSFC JCL requirements
	FABHPSFC CARDIN input data set
	CTL control statement
	DBD control statement
	END control statement
	HKY control statement
	NPT control statement
	PSB control statement

	FABHPSFC PRNTOUT output data set
	FABHFSU PSF Control Statements report
	FABHFSU PSF Scan Control Data Set report

	FABHFSU program (PSF mode)
	FABHFSU JCL requirements (PSF mode)
	FABHFSU CARDIN input data set (PSF mode)
	DEC control statement
	END control statement
	GOT control statement
	PSC control statement

	FABHFSU PRNTOUT output data set (PSF mode)

	FABHPSFS program
	FABHPSFS JCL requirements
	FABHPSFS CARDIN input data set
	SUM control statement
	END control statement

	FABHPSFS PRNTOUT output data set
	FABHFSU PSF Control Statements report
	FABHFSU PSF Summary report

	JCL examples for FABHFSU PSF mode

	Chapter 11. Options for HSSR Engine
	Overview of HSSROPT control statements
	APISET control statement
	BLDLPCK control statement
	BUF control statement
	BUTR control statement
	BYINDEX control statement
	CABBASE control statement
	CABSTAT control statement
	CALLSTAT control statement
	CO control statement
	COMPAUTH control statement
	DATXEXIT control statement
	DBDL1 control statement
	DBSTATS control statement
	DIAGG control statement
	GOTRETRY control statement
	HPIO control statement
	HSSRDBD control statement
	HSSRPCB control statement
	KEYCHECK control statement
	LOUT control statement
	LSR control statement
	NOFIX control statement
	NOVSAMOPT control statement
	PARTINFO control statement
	PCBLIST control statement
	RETRY control statement
	RTEXIT control statement
	SKERROR control statement
	SKIPAUTH control statement
	SKIPVLC control statement
	TRDB control statement
	TRHC control statement
	TRXC control statement
	ZIIPMODE control statement

	Chapter 12. Reports and output from HSSR Engine
	HSSRSTAT data set
	HSSROPT Control Statements report
	HALDB Partition Definition report
	HALDB Partitions Accessed report
	DB Call Statistics report
	DB Statistics report
	Randomizing Statistics report
	DB Record Length Distribution report
	Data Set I/O Statistics report
	CAB Statistics report

	HSSRTRAC data set
	Trace Output report
	Trace Output report with diagnostics information

	HSSRSNAP data set
	HSSRLOUT data set
	HSSRBUTR data set

	Part 3. Tuning and customizing HSSR application jobs
	Chapter 13. Overview of the buffer handlers
	Chained Anticipatory Buffer handler (CAB)
	Basic Buffer handler
	Buffering service for KSDS

	Chapter 14. Tuning the Chained Anticipatory Buffer handler
	Considerations before tuning CAB
	What you need to know before tuning CAB
	Control statements that affect performance
	Trade-off decisions between elapsed time and buffer space
	Size of OSAM blocks and ESDS/OSAM LDS control intervals
	SMF EXCP statistics

	Determining the appropriate CAB parameters
	HSSRCABP control statements
	CABDD control statement
	INTER control statement
	NBRDBUF control statement
	NBRSRAN control statement
	OCCURRENCE control statement
	OVERFLOW control statement
	PARTPROC control statement
	RANSIZE control statement
	REFT4 control statement

	JCL examples for specifying CAB parameters

	Chapter 15. Tuning the Basic Buffer handler
	Control statements that affect performance
	Determining the appropriate number of BB buffers

	Chapter 16. HSSR call test utility (FABHTEST)
	FABHTEST restrictions
	Running FABHTEST to test HSSR calls
	FABHTEST JCL requirements
	FABHTEST input
	FABHTEST SYSIN input data set
	GN and GHN control statement
	GNP and GHNP control statement
	GNR and GHNR control statement
	GU and GHU control statement
	PCB control statement
	REPL control statement

	FABHTEST HSSROPT input data set
	FABHTEST HSSRCABP input data set

	FABHTEST output: SYSPRINT output data set
	FABHTEST JCL examples

	Chapter 17. Buffer handler simulation utility (FABHBSIM)
	FABHBSIM restrictions
	Running FABHBSIM to simulate the buffer handler
	FABHBSIM JCL requirements
	FABHBSIM input
	FABHBSIM HSSROPT input data set
	FABHBSIM HSSRCABP input data set

	FABHBSIM output: HSSRSTAT output data set
	FABHBSIM JCL example

	Chapter 18. System programming interfaces
	Runtime Environment exit (FABHRTEX)
	Buffer Handler Initialization exit (FABHCEX)
	Return Code Edit exit (FABHRCEX)
	User record-formatting routine
	Logic of FABHURG1
	Interface to user record-formatting and optional user exit routines
	Call parameters
	Special-purpose SYSIN control statements for user exits
	EXIT control statement
	FRMT control statement
	OFFS control statement
	ULEN control statement
	USEGMAX control statement

	Get-by-RBA calls
	Considerations for coding and link-editing the routine

	Product-sensitive macros

	Chapter 19. Site default options
	How the runtime parameters are determined
	Replacing the HSSR option table (FABHOPT)
	FABHTOPT macro statements

	Part 4. Using Sequential Subset Randomizer
	Chapter 20. Introduction to the Sequential Subset Randomizer
	Characteristics of the Sequential Subset Randomizer
	Benefits of the Sequential Subset Randomizer
	Sequential Subset Randomizer program functions
	Differences between the Sequential Subset Randomizer and other sequential randomizers
	Sequential Subset Randomizer program structure
	Sequential Subset Randomizer restrictions

	Chapter 21. Planning for the Sequential Subset Randomizer
	Considerations when defining subset IDs
	Considerations for application programming
	Considerations for the relative amount of space to each subset
	Considerations for monitoring the database

	Chapter 22. Sequential Subset Randomizer generation
	Generating the Sequential Subset Randomizer load module
	FABIRGEN JCL requirements
	FABIRGEN input: SYSIN data set
	FABITAB macro statement
	FABIDEF macro statement
	FABIGEN macro statement
	END statement

	FABIRGEN JCL examples

	Chapter 23. Splitting the unloaded database data set
	Splitting the unloaded database data set with FABIUNLS
	FABIUNLS JCL requirements
	FABIUNLS output
	SYSPRINT data set

	FABIUNLS JCL example

	Chapter 24. Obtaining statistics from each subset with Sequential Subset Statistics
	Obtaining statistics from each subset
	JCL requirements when SS-STATS routine is applied
	HSSROPT input data set when SS-STATS routine is applied
	SSSTATS control statement

	HSSRSTAT output data set when SS-STATS routine is applied
	Sequential Subset Statistics report

	JCL example to apply the SS-STATS routine

	Chapter 25. Converting databases to HDAM databases randomized with the Sequential Subset Randomizer
	Converting from a database randomized with DFSHDC40
	Converting from a database randomized with other randomizers
	Converting from a HISAM or HIDAM

	Part 5. Tuning databases by using Database Tuning Statistics reports
	Chapter 26. Obtaining statistics for database tuning
	Activating the Database Tuning Statistics
	JCL requirements for the Database Tuning Statistics
	Input for Database Tuning Statistics
	HSSROPT input data set for Database Tuning Statistics
	DBSTATS control statement
	LOUT control statement

	HSSRLDEF input data set for Database Tuning Statistics

	Output from the Database Tuning Statistics
	HSSRSTAT output data set for Database Tuning Statistics
	HSSRLOUT output data set for Database Tuning Statistics

	Chapter 27. Printing long database records
	Printing long database records with FABHLDBR
	FABHLDBR JCL requirements
	FABHLDBR input
	FABHLDBR HSSROPT input data set
	TRDB control statement
	TRHC control statement

	FABHLDBR SYSIN input data set
	NBR control statement
	LENGTH control statement
	IO control statement
	ROOT-ONLY control statement

	FABHLDBR output: HSSRTRAC output data set
	JCL example for Database Tuning Statistics and FABHLDBR

	Chapter 28. Tuning a database with the Database Tuning Statistics
	Resources for tuning databases
	DB Statistics report
	Randomizing Statistics report
	DB Record Length Distribution report

	Tuning the primary data set group of an HDAM database
	Average number of I/O operations per database record
	Packing density of the root addressable area
	Number of RAPs per root segment
	CI size and block size
	Bytes limit
	Free block frequency factor
	Free space within each block/CI
	Examples of other indicators provided by the Database Tuning Statistics
	Summary of suggested changes for the example database
	Other factors influencing the performance of access to an HDAM database

	Tuning a HIDAM database
	Average number of I/O operations per database record
	Periodical database reorganization
	Free space specifications
	CI size and block size
	Databases with long database records

	Tuning a HISAM database
	Average number of I/O operations per database record
	KSDS record length (HISAM)
	Periodical database reorganization
	ESDS CI size

	How to determine randomizing parameters by using a reasonable first guess method

	Chapter 29. Creating a database extract for tuning experiments
	Considerations when applying the FABHEXTR exit routine
	Extracting a subset of database records with FABHEXTR
	HSSREXTR input data set for FABHEXTR
	JCL example for creating a database unload extract

	Part 6. Compatibility with earlier products
	Chapter 30. Compatibility with DBT V2 HSSR
	Default buffer handler for ESDS, OSAM, and OSAM LDS
	Default values of CAB buffering parameters
	Location of buffer pools and compatibility of exit routines
	HSSROPT control statements: HDSTATS and NOSAMEOPT
	Access method used in Unload utilities to write output records
	Method for specifying an HSSR PCB through KEYLEN
	Support of PROCOPT=R and replace calls
	Support of explicit HSSR calls
	FABHFSU control statements: CO and CON
	Date specification in PSC and CTL control statements
	Format of the scan control data set used in Parallel Scan Facility
	Location of control blocks
	Product-sensitive macros
	DECN control statement and the unloaded data set

	Chapter 31. Compatibility with DBT V1 HSSR
	Chapter 32. Compatibility with PO HSSR
	Program names
	Compatibility of application programs
	Compatibility of exit routines
	JCL compatibility
	Default options
	Return codes and abend codes
	Compatibility of the functions
	Mapping macros for control blocks and output records

	Chapter 33. Compatibility with FSU II

	Part 7. Troubleshooting
	Chapter 34. Troubleshooting IMS High Performance Unload problems
	HSSR snaps
	Trapping abends issued by application programs
	FABHTEST utility for problem determination

	Chapter 35. Messages and codes
	Abend code U4013
	Return codes
	FABHURG1 return codes
	FABHFSU return codes
	FABHPSFS return codes
	FABHBSIM and FABHTEST return codes

	Messages
	FABH messages
	FABI messages

	Chapter 36. Gathering diagnostic information
	Chapter 37. Diagnostics Aid
	Running the Diagnostics Aid with JCL
	Load Module/Macro APAR Status report
	Load Module APAR Status report
	Macro APAR Status report

	Messages and codes
	Return codes
	Abend codes
	Messages

	Notices
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

