Query Management Facility
Version 12 Release 2

Developing QMF applications

‘.II!=




Note

Before using this information and the product it supports, be sure to read the general information under
"Notices" at the end of this information.

August 2, 2021 edition

This edition applies to Version 12 Release 2 of IBM Query Management Facility (QMF) Enterprise Edition Advanced,
which is a feature of IBM Db2 12 for z/0S (5650-DB2), Version 12.1. It also applies to Version 12 Release 2 of IBM QMF
for z/0S (5697-QM2), which is a stand-alone IBM Db2 for z/OS tool. This information applies to all subsequent releases
and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1982, 2021.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

© Rocket Software, Inc. 2013, 2021.



Contents

About this INformation.......ccccieiieiiiiiiiiiiiiicinrrccc st s e csesseesaneas vii
What you should Know before YoU DEZIN......ccc.uii ittt et e st e e te e e aaae s vii
Service updates and SUPPOIt INFOrMAION......ccciii i e e are e e ba e e viii
Highlighting CONVENTIONS. ... ..iiiiiiee ettt e tee e e te e e e rtee e s tee e s sbee e enbee e sabaeeenbaeesnsaeesnseeennses viii
HOW 10 read SYNtaX did@ramS. ...ccccuiieecieecitieeeiie e et e ectte e e ctte e e te e e staeeesteeessaeeesaeessaeesssseessseesnsseessseessseenn viii
HOW 10 SENA YOU COMMIEBNES....iiiiciiiecciiecitee et e ecteeeeteeeeteeeetteeesatee e steeesteeeaseesasseesasseesnsseesnsseeensseesnnseennn [

Chapter 1. QMF application development overvieW.......cccccceecieiieiieiiniienieiececanceeens 1
What is application development in QME ... ..o et e re e bre e e srae e e ree e s rae e eaneas 1
How can USers USe YOUr @PPLICAtiONT...ccciii ettt et e e ete e e te e e ree e e rte e e aae e snaeesneeesneeeenneas 1

Interacting primarily with the appliCatioN.......cocciiieiieeeee e e 1
Starting the application from a QMF SESSION......ciiciiiiiiiiectieectee e e e et e e re e e beeesabeeesnsaaeas 2
What QMF application development tools are available?........cccueeeieeiiiiiccieecee e 3
(017 T o feTol=Yo [0 YT TR 3
Application programming interfaces t0 QMF........coc e et ba e e ree e 3
Conventions for National Language Feature information..........cceeccveeeiieeccieeecieeccee e 4

Chapter 2. Procedures as applications.......cccccieiieiiniiniiiiiinienieiieiieiiecececncsecnens 7
T IR E Ll o] oot =Te (] £ SRR 7
QMF CONNECT Within @ PrOCEAUIE......uiiiciieccee ettt ettt e e e te e e e te e e s ba e e sbae e sbaeeebaeesbasesnsaeenns 8
Substitution variables iN PrOCEAUIES.....cccii it e e e e bre e e te e e s e e e e bee e e rae e enreeeenes 9

Specifying values on the RUN COMMAN........ciiiuiiieiiieeiieeecieeece ettt erae e e sre e e ve e e s ae e e snbaeeeaveas 9
Specifying values on the RUN command prompt Pan€l.......cceeecueeeeiiieeciieecieeecee e e 9
REXX variables in procedures With LOZIC.......uiicuii ittt et 10
Passing arguments to a procedure With LOZIC......uuicciiiiciiiicciee ettt evr e e vae e e rae e 11
REXX error-handling statements in procedures With lOZIC.......ceeeeieiiciiiicciii e 11
Branching to error-handling SUBIrOULINES........ccuuiiiiee i e 11
Messages with the REXX EXIT Stat@mMent.......cccuiiicieiiciieccieecte ettt et et 12
Calling REXX programs from a procedure With LOZIC......cueieiiieriiiiiiiiecceeecee e 13
Calling REXX programs without substitution variables.........cccccueeeeieiciieccieeccee e 13
Calling REXX programs that contain substitution variables.........ccccecveeeciiecciiecciiecceeeeeeee e, 13

Chapter 3. The callable interface and QMF applications.........ccccceceieniiniincinnieciannans 15
What is the Callable INTEIrfACE . ..ui ittt e be e b e e be e sabesbeesaaesneas 15
Considerations for using the QMF callable iNterface.......ccccecueeeciiieciiecceecce e 15
The interface communications area (DSQCOMM).....coiiiiiiiiiiiiiiiieeeeee et ee e e e e e e s e s ssssarae e e eeeeessesnans 16
RETUIN COUBS...eiuiiiiiiiiieeie ettt ettt et st e e st e s te s te e st e e beesabeesbeesaeesabeesseessse e baesaseensaesssesnseesseesnseensnenns 18
Commands for using the callable INtEIrfaCe......ui i 18
Starting QMF from an @apPliCatioN........eicciee e eete e et e e eeate e st e e e erae e e ree e s raeeeans 19
Running your callable interface appliCation..........ccueiiciee i e e 19
The callable INTEITACE IN OMF .. ... et r e e e e e e e s s s s bbb e e e e eeeeeeesessssssssaaeeeresees 19
T o o F=Ya Ve 1T o = SRRt 19
Running callable interface programs UNder CICS..........oociieeiiieeiiie et ecte e ecre e e sve e e sae e e sareesaeeesaeee s 20

Chapter 4. Issuing QMF commands from an ISPF dialog........cccceceienieninncnncianiannanns 21
Writing a program that uses the command interface: an example.......ccecveeecieecciiecciieeccee e 21
Invoking the commMand INTEIACE.......ccciiieee et e e be e e be e e aes 22
The END COMMANT...iiiiiiiiiiiieiieeiteeiesseeste st e seesteesteesteessaesabeesseesaseenbaessseenseesssesnseesssesnseesssessseesseessen 22
Variables in the cOmMMaNd INTEIACE. ......civiiiciiiieeeeece e sea e st e e saeesaes 22
Command iNterface rEtUIMN COUES.....iiiiiiiiriiirierterte ettt sttt et esaeeebeesae e sbeesbaesaseensaesaseenseas 22



Chapter 5. ADDRESS QRW and the QMF command environment.........ccccccceueencrannnns 25

Chapter 6. Writing QMF applications that use ISPF services.......cccccocvvruinncnncnennnne 27
Starting and running QMF from an ISPF appliCation......coucieiiiieiiiieiiiiesceeesee st 27
Running queries that contain VariableS. ... 28
Starting a program that uses ISPF services from wWithin QMF.........cooiviiiiiiiiniieiiecee e 28
ISPF services in @ proCedure With LOZIC.....ccuuiiriiiiiieiiiee ittt see s ee e s iee s s aee s saee s sbeeesaneas 28
The EDIT command WIith ISPF ...ttt ettt st e s te e s sate e s ate e s seeessataessntaessssaesnnes 29
ISPF and debugging appliCatioNS. .. ccccuieieciiiriiiieiteeeiie ettt srte st e s re e s tae e s sbae e sbeeesssaeessaeesaseaesaseeenn 30

Chapter 7. Writing bilingual applications.......cccccieiieiiniiniiniinciieciniirenienieniniecnene 31
Comparing the English and NLF @nVIrONMENTS.......ciiciiiiiiiieiiiieriieeecieessie e st e sseeesseeessaeeesssseessseeesnnsees 31
Creating objects for use in bilingual appliCatiONS.....cccciiiiiiiriiirere e 32
The command [aNGUAEE VANADLE........ciiiiiiiiiiiieecee ettt e e s ete e s saee e ssaeeessneeessneaesane 33
Initial procedures in bilingual apPliCAtiONS......uiiiciiieieeeeeete e e s sare e s e saee s 33
ENGLISh-0NlY COMMANGS...ciiiiiiiiiiie ettt e s te e s s te e s s abe e ssabeessabaesnateessaseesnnes 34
MULLILINGUAL ENVIFONMIENTS. ..ttt ettt re e s re e s be e s s abe e esabeesssbeessabeessaseesssseessnses 34
Creating translatable apPliCatiONS. ...ttt e s see e s ste e s ree e ssaeeessnteessneeesanee 34

Chapter 8. QMF commands in applications.......cccccieeiieiinieienieieiieniceciececteceecancannes 37
Commands designed for apPLICALIONS.....ccccviiiiiiiiiiiereeeree sttt e s e s s bee s sbee e sbeessbeessaneas 37

L0111 11 3 SRS 37
] PSS 38
) S 38
GET GLOBAL (EXtENAEA SYNTAX).ccutiiieiieiiiieeciieeeteeeeteeeeteeeeteeeeteeeesseeessseeesseeeessesssssesasssesasssesasnseeans 38
INTERACT .. it teeete ettt et e stte e e et e e e te e bt e s ste e beeasee s seesseeesseeaseesnse e seesase e seessseesseessseanseesnseenseesssesnsennsennn 39
MESSAGE.......iiiieectteeieecteete et eete s st e s ee st eesee s teesseesate e see s se e seesnse e seesase e seeasae e teeanae e seenaeeeteenreeeteann 41
SET GLOBAL (EXENAEA SYNTAX)...utiiiiiieeciieeeiieeeciteeectteeectteeeetteeectteeeetteeseseeesseeessaeesseaessasesassaesaseeasans 44
72 3 RS SPRSRP 45
TRACE. ...ttt ettt ettt e e e et e et e et e st e e te e se e e te e be e e te e b e e e te e b e e s ee e beearee e bt eareeateeareeenteereenraeeteann 52
Commands you can use in @ RUN QUERY report MiniSESSION.....cccccuieeieeciieeeeecieee e eeteee e eevre e e e e eneneeeea 56
(07T aaTaaF=TaTe I3V aTe] 0 1Y 3 o =TSSR 58

Chapter 9. Exporting and importing objects......ccccccevieiiiiiiiicieniniinciniincinccncnee 59
What you can do with an exported UNIX file, TSO data set, or CICS data qUeUE.......ccccvveeeeecvreeeeecnnennn. 59
EXPOrting VErSUS SAVING QAta....iiieiieieiiieieiiieeeiteesiteeesite sttt e s site s steeestaeesbaeesbaeesseeessseesssseesssnesssaesnsseenn 60
Exporting data objects and database tables........oii i 60

Exporting data or tables in QMF fOrMat......cciiiriiiiieiiec et s s s 60
Exporting data or tables in IXF fOrmMat. ... ittt sttt s e e s sae e s saa e 66
Exporting data or tables in XML fOrmMat.......cocuiiiiiiiiiieiiienee sttt e s e s e s ea e 81
Exporting data or tables in CSV fOrMat......ccciiieiiiiniieineeete ettt ssee e s 83
Rules and information for exporting and importing data objects and tables.......c.ccccceeveeirieinnnennnne. 83
Exporting forms, reports, and prompted QUETIES.....cucuiiviiieiiiieriteerieeesee st st essveessreessaeessbaessaveas 84
General format of the eXPOrted fil...uui i e e e e e e e e ra e s 85
e qoTo] muTaY == I (o] 4 1 VOO OO PSPRSR 93
Considerations for QMF form objects in appliCationS......c.uueeeicciiiie e 102
EXPOrting @ StANAard FEPOM.....uiei ettt te e s ee s st e s s be e s s e e e s bee s sbeeesabeessaseessans 103
Exporting a report in HTML fOrM@t...cciciiiiiiiiiiieceieeciec sttt ettt e ssee e ssaee e ssaeaesenee 106
Exporting a report without control iNformation.........ceeeiieiiiiiiiiieeeee e 107
EXPOrting an aCroSS-StYLE MEPOI....ciiiiiiiiiieieiieeeitee ettt ae e e s bee e sbee e s bee e ssneeesnneas 108
EXPOrting @ PromMpPed QUEY.....iiiiiiiiiieeieesite s ite st e st e s sreessbe e s s bee s s bt e s sbeeesabeeessseessnseessssenssnsens 109
Ensuring that the exported prompted query has a valid format........cccceevieiniieeinieiniieeeeeeeeeeen 116
Importing forms and PromMped QUETIES......cuciiiriiiieriteeriteere et e sttt e s sreessbee s sbeessbeessaseessans 117
Procedures and SOL QUEIIES.....uuiiiieciiieeeeeitee e eectteeeeeettre e e e s tteeeseessbeeeesenbeaeeseanseaaesesssanesssassensessnssenenn 118
Exported form-based charts and QBE QUEIIES.....ccccuuiiieieiiiieececitiee e eecitee e e ectrre e e eere e e e seeraeeeseensraeeeeennes 118
Size specifications for externalized ObJECES......uuii i e e 119



R (o] =Tt ol A [ Te L= =\ o] =T PR 121
(08 O3S e F= ¢ W o LU= U = TSR 121
IS0 Ko -1 = 1= £ S PTRTR 121

Chapter 10. Debugging your QMF applications.......ccccccvccrncreiiecreninnincinccncnecnecnens 123

Debugging your callable interface appliCationS.......ccciiiiiirieinieee e 123
THe L OPtiON fOr trACING . ..ueiieiiiieieeiciee sttt sttt e s ete e s sate e s saee e seateesbteesseeesseaesseeesaseaesaneassans 123
THhe A OPTION TOF TrACING . ii ittt s st e s st e s st e s s bee e s beessbeeessbeeessseeesnsens 123
TUINING the TraCiNg Off...ce it bee st e e s bae e s bae e s seeessaeaesneas 124
Allocating the QMF trace data OULPUL.....cccuiiiriiiiiieceecee et re e s ee e s s 124
The QMF MESSAGE command fOr traCing........cceeveiieriieiiiieeicieescieeseireessieeesereeessseeeseseeessseesssneeesane 124

Errors on the START or other QMF COMMANGAS.....uuuiiiiiiiieiiiiiiiciiirieeee e e e eeeecarrrrrereeeeeeeeesessasssreaeeeseeas 125

Chapter 11. Programming language specifications for using the callable

111 (=1 1= 1o - TSRS L

Assembler [aNGUABE INTEITACE......ociii ittt te e st e e s eate e ssateessseeeseseeesnee 127
Interface communications area mapping for Assembler (DSQCOMMA).......cooveeveerieeieesveeesieenenens 127
Function calls for ASsembler laNGUAZE. ......c.uiiiiiiiiiieiiece et ee e s seeesenee 128
Assembler programming EXAMPLE.....cucuiiiiiie ittt e srre e sere e seeeessreeesseeesesteeseseeesaneeesan 129
DSOCOMM fOr ASSEMBLET...uvveiiiiiiii ittt eeeecccrrrre e e et e e e e eessbbaareeeeeeeeeeeeesssssrssseeeeesesssennannes 135
Running your Assembler programs iN CICS........cccciiiiiiiniieiniieeneeeste st siee e seee e sree e sree s sveessaeeas 136
Running your Assembler programs iN TSO....cuiiiiiiiiiiieriitesritessiee st e st e ssieessbeessreessreessseessaneas 137

O o= (VY= ol (=Y o - Vo T OSSPSR 138
Interface communications area mapping for C language (DSQCOMMO)......ceeceereercreeneesiveenreesnnens 138
Function calls for the C LaNBUAEE. ......ccuuiirciiieieecte ettt be e s sae e s be e s saeeas 140
C language programming EXaMPLE.....ciuciii ittt et essre e s sreessaeessaeeessaseessseeesssseesasseesas 141
DSQCOMM FOF Cuneerteeteeteeete ettt sttt ettt et s e bt e st e e bt e sae e e beesaee e bt e smeesabeesneesaseenneesaneenneesn 143
Running your C programs iN CICS........uiiiiiiiiieiiteesiee st ssee st e st e s s bee s s e e s sbeessbeesssbeesssseeesanens 145
RUNNIing your C programs iN TSO.....uuiiiiiiieriiieeitesiieesseeesseeeessieeessseeessaseesssseesssseesssseessseessssnesssees 145

COBOL langUage INTEITACE. ...iicciii ittt ettt sete e see e s ste e s sate e s ssee e ssaee e s steessseeessneeesseesssenssnsens 147
Interface communications area mapping for COBOL (DSQCOMMB).....cccceveerrierseesieenreeseeeeeenenens 147
FUNCLION CallS TOr COBOL... ittt ettt sttt et sttt e st et e st e e b e st e s ne e meesanes 148
The ISPF LIBDEF service With COBOL......coitiiiiiiierieienieesee ettt st s 149
COBOL programming €XaMPLe......ccuieieieeiriieinieeieieessieesssteessteessteessseesssesssssesssssesssssesssssesssssasssnee 150
DSQCOMM fOFr COBOL...uuiiiiiiiieiiteiteste ettt ettt et s et st et e s et e bt e sae e sbeesmeesareesneeenseesneesnrenn 151
Considerations for running your COBOL callable interface program.......cccceeveieernieesniieeniiieesnneen. 152
Running your COBOL programs in CICS.......coeciiiriieiniiieinieesnieeeseeesseeesseeesseeessseeesssenessnensssneessnes 153
Running your COBOL programs iN TSO...c.cuiiiiiiiriiieniieesiieessieesseesssieesssieesssseeessseeesssseesssssesssenesnnes 153

FOrtran language INTEITACE. . ..ottt see e s see e s saee e s bee e s bt e e ssae e e sbeeesabeeesnnens 156
Interface communications area mapping for Fortran (DSQCOMMP)......cccccevviieveenieeieereeeee e 156
(U aTorqTo] ol ot 11 K3 (o] gl oo { = 3 FO PSPPSR P 157
Fortran programming EXamMPLE. ... i e i riee st st e ssree s st e s st e s s e e s sbeesssbeessbeeessseessseeesseessnsens 158
DSQOCOMM fOr FOMTIaN....ciiiieiciiitiiieeeeee e eeeccctrtrree e e et e e eeeeeessbbberaeereeeeeesesesssssssassseeresaesssessssnsssrsrsnnees 161
RUNNING YOUE FOMtIran PrOSIamS. . .ciccuieieiieieiieieieeesiieesssieesseeessseeesseessseesssseessssesssssaessssesssssessssseesnns 162

e AR LU T L o] (=Y o - Tl T TSP RR P 164
Interface communications area mapping for PL/I (DSQCOMML)...cccveeiieieerieeieereeeieesee e 164
(S8 aYox T aier=1 1 E3h (oY ol =d 1Y A R RSRTUN 165
PL/I Programming ©XamIPLe......ciccueieiiieriiieniieeertee st esseeessieeessieeessseeesssseesssseesssseesnssaesnsseessssnessnsens 167
DSQCOMM FOF PL Tttt ettt ettt sttt sttt st e be e st e e b e sae e s bt e sme e e b e e sneesnseesneesnsean 169
Running your programs UNAEr CICS........ciiiciiiiiieiniieeeitee sttt sitesesiee s sveeessveessseessveesssaessnsaessseeenns 170
Running your programs UNAEr TSO....ciccuiiiiiiiiiiieiiieeieieessieessreessreesseeesseeessseeessseeessssesssseessssessnnes 171

REXX [@NZUAEE INTEITACE. ...ttt iiiiieitieeiieee ettt ettt st s e e st e e s saee e ssee e sseeessasaesssseessseesnnes 173
Interface communications variables for REXX........oociiiiriiieiee e 173
FUNCTION Call FOr REXX ittt sttt ettt sae e e st e b e sme e s b e e smeesaneesneean 174
REXX Programming €XaMPLe....i cueeiiiieiiieeriieeeiieessieessieessieeessseeessseeesssseesssseesssseesssseesssseesssseesssees 175
RUNNING YOUR REXX PrOZIamMS. . .viiiiiieiiiieiiiteieiieeesiteeesteesseeessseesssseesssseesssssessssesssssesssssesssssesssssassnnes 176
A REXX example of using an INTERACT LOOP...uutiiiiiiiiiieiieinteeeitessiee s sieessree s sieeesiee s sreessveessans 177



Appendix A. Product interface mMacroS.....cccceveieieiieienieceiieniecentenscentecastecsecassaans 179

Appendix B. QMF global variables........cccccciiuiiuiiniiniiniiiiiiinienienieiine, 181
Naming convention for QMF global variables.........ciiiiiiiiiiieiececce e s 181
Setting and displaying values for global variables.........ouiiiiiiiiieiicecee e 182
Global variables for state information not related to the profile......ccccceeieccceeeiccee e, 182
Global variables for profile-related state iNfOrmMation.........ceoeecvieeiceciii e 188
Global variables associated With CICS..........coiciiiiiiiiniieeriecete et sre e sbe e e sbae s sbae s sraeesaee 190
Global variables related to a message produced by the most recent command........cccccevveveiriiennnnen. 190
Global variables associated with the Table EditOr. ... 191
Global variables that control various diSPlayS.....ccuueeecccieeee ettt ecrree e e eevree e e e aree e e e e eanees 193
Global variables that control how commands and procedures are executed.........ccccveeeeeecrveeeeeecnveeennn. 199
Global variables that store results of CONVERT QUERY .....cciiiiiiiiiiiiitiieeeeee e ceeeirrrreeeee e eeeeeeeeennnnnnnens 215
Global variables that show RUN QUERY error message information.......cccceevvieeriieeriieeinieessieesneeenn 216
Global variables that store panel iNPUL VALUES.......ccccviiieicecieee et eerree e e e e saaee e 216

N 0 4o - N 227
Programming interface iNfOrmMation. ... e s e 228
TrAAEMAIKS ..ttt etteeecie ettt ettt ettt e et e e s bt e e sbt e e s bt e e sbeeesabeeesabeeesaseeesasaeessaessasaesssaeessaeesaseeesseeesnn 228
Terms and conditions for product doCUMENTAtION........uiiii i e e e 228
e EAVZ (oY oY) o3Vt ] o 11T =T =X {1 229

GlOSSANY . cuiuuiuiiuienieietaneetentenetessecastossssasssssssassssessssssssssssasssssssassssassassssassassssassasas 231



About this information

IBM® Db2° Query Management Facility for TSO and CICS® is a tightly integrated, powerful, and reliable
tool that offers query and reporting functions that help you access and present data from any of the
following relational databases:

- Db2 for z/OS®

« Db2 for Linux®, UNIX, and Windows
« DB2° for iSeries

- DB2 Server for VSE and VM

This information is written for application programmers responsible for developing applications that make
use of QMF functions. These topics help you to:

- Make application programming design decisions

« Choose between different programming techniques

« Understand how to use the QMF command and callable interfaces
« Write bilingual applications

Specific programming examples are provided for Assembler, C, FORTRAN, COBOL, PL/I, and REXX.

What you should know before you begin

You should be familiar with the components that make up your specific environment, as well as some
concepts and terms, before you begin application programming for QMF.

Products

To develop applications for QMF, you may need to be familiar with some or all of the following products,
depending on your environment and your business needs:

« The z/OS operating system.

« Db2, the database manager for QMF.

« Time Sharing Option(TS0), which is an environment that supports Db2 QMF and its related products.
« Interactive System Productivity Facility (ISPF), a dialog manager for Db2 QMF.

« Customer Information Control System(CICS), a general-purpose data communication and online
transaction processing system. CICS provides the interface between Db2 QMF and z/0S.

« The base Graphical Data Display Manager (GDDM) product, which is required to display panels and
create charts. You can also use GDDM to provide printing services from QMF.

« Assembler, C, COBOL, FORTRAN, PL/I or REXX, which you might use to create callable interface
applications for QMF.

Concepts

QMF applications let you work with QMF objects and perform QMF functions from within an application
program written in one of the languages QMF supports. This information assumes you already know how
to write queries and procedures, format reports, and modify the database.

Related information
IBM Publications Center: Search for publications that explain the products.

© Copyright IBM Corp. 1982, 2021 vii


http://www.ibm.com/shop/publications/order

Service updates and support information

To find service updates and support information, including software fix packs, PTFs, Frequently Asked
Questions (FAQs), technical notes, troubleshooting information, and downloads, refer to the following
Web page:

IBM Software Support website

Highlighting conventions

This information uses the following highlighting conventions:

- Boldface type indicates commands or user interface controls such as names of fields, folders, icons, or
menu choices.

« Monospace type indicates examples of text that you enter exactly as shown.

- Italic indicates the titles of other publications or emphasis on significant terms. It is also used to
indicate variables that you should replace with a value.

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:

» Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following conventions are used:

— The >>--- symbol indicates the beginning of a syntax diagram.
— The ---> symbol indicates that the syntax diagram is continued on the next line.
— The >--- symbol indicates that a syntax diagram is continued from the previous line.
— The --->< symbol indicates the end of a syntax diagram.
« Required items appear on the horizontal line (the main path).

»— required_item —»<

« Optional items appear below the main path.
»— required_item >4
L optional_item J

If an optional item appears above the main path, that item has no effect on the execution of the syntax
element and is used only for readability.

f_ optional_item T
»— required_item >«

« If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.
»— required_item T required_choicel j—N

required_choice2
If choosing one of the items is optional, the entire stack appears below the main path.

»— required_item
t optional_choicel j
optional_choice2

viii About this information

I


http://www.ibm.com/software/data/qmf/support.html

If one of the items is the default, it appears above the main path, and the remaining choices are shown
below.

f_ default_choice T
»— required_item >4

optional_choice

optional_choice

- An arrow returning to the left, above the main line, indicates an item that can be repeated.

»— required_item L repeatable_item ln

If the repeat arrow contains a comma, you must separate repeated items with a comma.

<

»— required_item L repeatable_item ln

A repeat arrow above a stack indicates that you can repeat the items in the stack.

« Keywords, and their minimum abbreviations if applicable, appear in upper case. They must be spelled
exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

« Separate keywords and parameters by at least one space if no intervening punctuation is shown in the
diagram.

« Enter punctuation marks, parentheses, arithmetic operators, and other symbols exactly as shown in the
diagram.

« Footnotes are shown by a number in parentheses; for example, (1).

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality information. If you
have any comments about this book or any other documentation, use either of the following options:

« Use the online reader comment form, which is located at:

http://www.ibm.com/software/data/rcf

« Send your comments by e-mail to comments@us.ibm.com. Be sure to include the name of the book, the
part number of the book, the version of your product, and, if applicable, the specific location of the text
you are commenting on (for example, a page number or table number).

About this information ix


http://www.ibm.com/software/data/rcf

x Query Management Facility Version 12 Release 2: Developing QMF applications



Chapter 1. QMF application development overview

Application development refers to the process of creating a procedure or application in QMF.

You can use many of the functions of QMF in your own applications. For example, you can write
applications that:

« Run queries or procedures

« Export or import QMF objects and tables

« Display or print reports or charts

« Enable the user to enter or change data in the database

- Enable the user to make global changes to several objects at once

You can also write applications that provide helpful functions to your users in QMF. For example, write a
command that prints QMF reports at a remote location, or a function key that generates a chart of weekly
sales results.

What is application development in QMF?

The word application can have many meanings. In QMF, an application is a procedure or program that
issues QMF commands and uses QMF services to accomplish a specific business task.

Application development includes:

« Understanding the problem that your procedure or application needs to solve
- Designing the procedure or application
« Writing the code, associated messages, and help panels

How can users use your application?

There are two major types of QMF applications: applications in which the users interact with the
application, and applications in which the application can be started from within QMF.

Interacting primarily with the application

If your application is intended for users who are unfamiliar with QMF, you probably want them to interact
primarily with your application.

You might not want your users to know that QMF is active. In this case, your application uses QMF
services, but runs outside of QMF. Your program issues QMF commands only as needed.

Suppose that you write an application that uses QMF services. This application provides the user with a
menu-driven interface. In the following example, your application controls QMF. Your user interacts only
with your user interface and is not aware that QMF is active.

If the user selects option 1, the application executes a QMF procedure that runs a query and prints the
resulting report.

© Copyright IBM Corp. 1982, 2021 1



J & H Supply Company
Information System
Please select one of the following:
1. Print the monthly sales report
2 Create a new report
3. Modify information in the database
4

End the application

====> 1

Figure 1. An example of an application-defined panel

Related concepts

Starting the application from a QMF session

If your users are familiar with QMF, you might want your users to see your application as an extension or
customization of QMF. In this case, you need to set up your application to run within QMF.

Starting the application from a QMF session

If your users are familiar with QMF, you might want your users to see your application as an extension or
customization of QMF. In this case, you need to set up your application to run within QMF.

Suppose that you write an application called SEND_TO that sends a QMF report from one user to another.

You expect your users to run your application from within the QMF environment. The users can use the
command line to issue a QMF command synonym called SEND_TO (which you create). Alternatively, you
can assign the application to a function key that automatically runs your application.

After generating a report, the user can send the report to Smith by entering the customized QMF
command SEND_TO SMITH on the QMF command line.

REPORT LINE 1 POS 1 79
NAME DEPT JOB SALARY COMM
DANIELS 10 MGR 19260.25 =
JONES 10 MGR 21234.00 =
LU 10 MGR 20010.00 =
MOLINARE 10 MGR 22959.20 =
HANES 15 MGR 20659.80 =
KERMISCH 15 CLERK 12258.50 110.10
NGAN 15 CLERK 12508.20 206.60
ROTHMAN 15 SALES 16502.83 1152.00
JAMES 20 CLERK 13504.60 128.20
PERNAL 20 SALES 18171.25 612.45
SANDERS 20 MGR 18357.50 =
SNEIDER 20 CLERK 14252.75 126.50
ABRAHAMS 38 CLERK 12009.75 236.50
MARENGHI 38 MGR 17506.75 =
1=Help 2= 3=End 4=Print 5=Chart 6=Query
7=Backward 8=Forward 9=Fozrm 10=Left 11=Right 12=

OK, here is your report.
COMMAND ===> SEND_TO SMITH

Figure 2. An example of a user entering a customized QMF command

Related concepts
Interacting primarily with the application

2 Query Management Facility Version 12 Release 2: Developing QMF applications



If your application is intended for users who are unfamiliar with QMF, you probably want them to interact
primarily with your application.

What QMF application development tools are available?

You can write applications that use QMF procedures and application programming interfaces to QMF.

You can create command synonyms to invoke your procedures and applications. A command synonym
is a command that runs a QMF, TSO, or CICS command. You create a command synonym by entering
the command and its definition into a command synonyms table. During initialization, QMF loads the
command synonyms table that is specified in the QMF profile of the user who started QMF.

QMF procedures

QMF procedures are QMF objects that run within QMF and issue QMF commands. QMF procedures can be
run interactively or non-interactively. You can run a procedure non-interactively by starting QMF in batch
mode. If you are using QMF for TSO, you can also start QMF as a Db2 for z/OS stored procedure.

QMF procedures can execute any QMF commands available at your site. QMF provides two types of
procedures: linear procedures and procedures with logic.

« Linear procedures contain only QMF commands and comments. You can use linear procedures in all
environments supported in QMF.

« Procedures with logic combine QMF commands with REXX logic that helps you to create more powerful
programs. You can use procedures with logic in all environments supported in QMF except CICS.
Procedures with logic can contain QMF commands and any statement that is valid in a REXX program,
including system commands.

QMF provides a system initialization procedure and other methods that enable you to run commands and
set global variables before the user sees the QMF home panel.

Related concepts

Application programming interfaces to QMF
There are two application programming interfaces to QMF: Callable interface and command interface.

Procedures as applications

You can write applications entirely as procedures. If you are using QMF in the CICS environment, you
can write linear procedures, which are procedures that include only QMF commands or synonyms that
issue QMF commands. If you are using QMF in the TSO environment, you can write procedures with logic
in addition to linear procedures. Procedures with logic can include REXX statements and functions in
addition to QMF commands and command synonyms.

Related reference
Global variables that control how commands and procedures are executed

Application programming interfaces to QMF

There are two application programming interfaces to QMF: Callable interface and command interface.

Callable interface

You can use the QMF callable interface to create an application that is invoked outside of QMF. That
application then starts a QMF session and sends commands to QMF for execution.

The callable interface is a programming interface that provides access to QMF services. The callable
interface is available for the programming languages and environments shown in the following table.

Table 1. Callable interface support

CICS TSO Native z/0S batch

Assembler x x x

Chapter 1. QMF application development overview 3



Table 1. Callable interface support (continued)
CICs TSO Native z/0S batch
C x x x
COBOL x x x
Fortran x x
PL/I x x x
REXX x x

QMF supports all versions of these programming languages that are supported by Db2 for z/0S.

Command interface (TSO only)

You can create applications that submit commands to QMF from an ISPF dialog by using the QMF
command interface. QMF communicates with the ISPF dialog through the ISPF variable pool through this
command interface. QMF must be started before the ISPF application is started.

The command interface is available only where ISPF is available; it is not available in CICS. You can write
a command interface application in any programming language that is supported by ISPF.

Related concepts

QMF procedures

QMF procedures are QMF objects that run within QMF and issue QMF commands. QMF procedures can be
run interactively or non-interactively. You can run a procedure non-interactively by starting QMF in batch
mode. If you are using QMF for TSO, you can also start QMF as a Db2 for z/OS stored procedure.

The callable interface and QMF applications
Programming languages can use the QMF callable interface to run QMF commands.

Issuing QMF commands from an ISPF dialog
You can issue QMF commands from an ISPF dialog that is running under QMF by using the QMF command
interface.

Conventions for National Language Feature information

Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

Use NLFs to allow users to enter QMF commands, view help, and complete QMF tasks in languages other
than English. NLFs are installed as separate features of Db2 QMF.

All tasks described in this information can be completed for the base QMF product (English language)
and for any NLF. The procedures for both the base and NLF sessions are the same; however, any special
considerations for NLF users are identified.

Some names of programs or data sets shown in this information have the variable n in them, indicating
that this character of the name can vary. Replace the variable n with the one-character national language
identifier (NLID) in the following table that matches the language feature that you are using. The table
also shows the names by which QMF recognizes each language.

Table 2. QMF NLFs and their identifying information

Name that QMF
National Language Feature Identifier (NLID) uses for this NLF
English E ENGLISH
Uppercase English u UPPERCASE

4 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 2. QMF NLFs and their identifying information (continued)

Name that QMF
National Language Feature Identifier (NLID) uses for this NLF
Canadian French C FRANCAIS CANADIEN
Danish Q DANSK
French F FRANCAIS
German D DEUTSCH
Italian I ITALIANO
Japanese Kaniji K NIHONGO
Korean Hangeul H HANGEUL
Brazil Portuguese P PORTUGUES
Spanish S ESPANOL
Swedish v SVENSKA
Swiss French Y FRANCAIS (SUISSE)
Swiss German Z DEUTSCH (SCHWEIZ)

The Uppercase English feature uses the English language, but converts all text to uppercase characters.
The uppercase characters allow users who work with Katakana display devices to use the product and get
English online help and messages.

Chapter 1. QMF application development overview 5



6 Query Management Facility Version 12 Release 2: Developing QMF applications



Chapter 2. Procedures as applications

You can write applications entirely as procedures. If you are using QMF in the CICS environment, you
can write linear procedures, which are procedures that include only QMF commands or synonyms that
issue QMF commands. If you are using QMF in the TSO environment, you can write procedures with logic
in addition to linear procedures. Procedures with logic can include REXX statements and functions in
addition to QMF commands and command synonyms.

If you are writing an application that operates on a procedure in QMF temporary storage, you cannot write
your application as a procedure. When you run a procedure, it becomes the current procedure in QMF
temporary storage.

Related concepts

ISPF services in a procedure with logic
You must transfer from the QMF program dialog to an ISPF command dialog to run ISPF commands from
a QMF procedure with logic that is running under ISPF.

Initial procedures

An initial procedure is a procedure that runs immediately after your QMF session starts. Use the
DSQSRUN parameter to specify the name of this procedure and understand how initial procedures behave
in specific situations.

You can use the DSQSRUN parameter:

« With the DSQQMFn command when QMF is started interactively (where n is a one-character national
language identifier that matches the language feature that you are using).

« With the QMF START command when QMF is started through the callable interface.

In TSO, ISPF, and nativez/OS batch, applications can also set program parameters by using a REXX
program. The program is specified by the DSQSCMD parameter of the QMF START command. Because
QMF for CICS does not support REXX, you must specify all program parameters on the START command
by using DSQSMODE-=I. This value for DSQSMODE specifies interactive operation, in CICS. The default
mode from the callable interface is B (for batch operation).

Considerations for writing initial procedures
Consider the following points when you write and use an initial procedure:

« By default, QMF reruns the initial procedure whenever the user issues the END command in an
interactive session of QMF started by DSQQMFn. (The variable n is a one-character national language
identifier that matches the language feature that you are using). The DSQEC_RERUN_IPROC global
variable specifies whether the initial procedure is rerun. The default value of this variable is 1 to rerun
the procedure; a setting of O prevents the initial procedure from being rerun.

In callable interface programs, the initial procedure is never rerun, so this global variable does not affect
your callable interface programs.

« When you write initial procedures to use in an interactive QMF session, avoid using the home panel as
the current panel at the end of the procedure. QMF does not interactively display a panel at the end
of the procedure in this case. If no severe errors occurred and DSQEC_RERUN_IPROC is set to 1, QMF
reruns the initial procedure without interacting with the user. This results in an uninterruptible loop that
can appear as though QMF is not starting.

To avoid creating an uninterruptible loop, consider one of these options:

— Make sure that the current panel at the end of the procedure is not the home panel.
— Make sure that the procedure contains either a QMF EXIT or an INTERACT command.
— Set DSQEC_RERUN_IPROC to zero (0).

© Copyright IBM Corp. 1982, 2021 7



« The number of ampersands (&) you must use before the name of the substitution variables in initial
procedures can vary depending on your environment. For example, you can specify DSQSRUN as:

DSQSRUN=INITPROC (&VAR1 = value)

The number of ampersands that you need to specify with VARL depends on whether QMF is running
under CICS, TSO, or native z/OS batch. The number varies if ISPF is present and if the program that
starts QMF is written in REXX.

Initial procedures and remote unit of work
The initial procedure must be stored at the system on which you start QMF (the local system).

When you use the QMF CONNECT command in initial procedures, you must disconnect from the remote
location. In other words, code the application to reconnect to your original location before you can code
an END command to invoke your initial procedure again. If you are still connected to the remote location,
you receive an error. Disconnecting is also required with QMF CONNECT issued from the command line
during an interactive session that is set up by an initial procedure.

Related reference

Conventions for National Language Feature information
Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

START command keywords
You can specify keywords on the START command.

QMF CONNECT within a procedure

To connect to another user ID or to a remote Db2 database to use remote-unit-of-work support, issue the
QMF CONNECT command. You can use this command within a linear procedure or a procedure with logic.

When you write procedures that use the QMF CONNECT command to access remote databases, be aware
of the following circumstances:

« If you are connected to a remote database and issue a RUN PROC command, that procedure and all the
objects used in that procedure must be stored at the remote database.

« AllQMF commands in the procedure are run in QMF temporary storage at the system where QMF
is running (the local system). However, all objects used by these QMF commands (such as queries,
procedures, or forms) must be defined in the database at the current location (the remote system).

« Commands that affect the database (SQL statements, QMF queries, or EDIT TABLE updates) run at the
current location.

« If the procedure contains system-specific commands (CICS or TSO), these commands run at the system
where QMF is running (the local system). If your procedures contain system-specific commands that do
not run on the system where QMF is running, your procedure cannot run successfully.

« Any data sets or data queues used in a system-specific command must exist on the system where QMF
is running (the local system).

« If your site uses TSO and takes advantage of RACF® support for mixed-case passwords, ensure that
the CASE option of your QMF profile is set to MIXED. Otherwise, QMF converts all input to uppercase,
causing the CONNECT command to fail. When CASE=MIXED, ensure that you tell QMF application users
to enter all input in uppercase, because QMF recognizes commands only in uppercase.

- If the procedure is passed as a parameter on a CALL statement that starts QMF for TSO by using
the stored procedure interface, the procedure cannot access remote databases. Any commands in the
procedure that attempt to access a remote database must be removed or commented out before the
procedure is run with this interface.

8 Query Management Facility Version 12 Release 2: Developing QMF applications



Substitution variables in procedures

You can use QMF substitution variables in linear procedures and procedures with logic.

A substitution variable is any variable that you can use in a QMF command. A substitution variable is
always preceded by an ampersand (&). You can assign a value to a substitution variable in these ways:
- Setting global variables with the SET GLOBAL command

« Specifying values on the RUN command

« Specifying values on the RUN command prompt panel.

Related reference

SET GLOBAL (extended syntax)

To create your own global variables and use them in QMF commands as substitution variables, issue the
SET GLOBAL command. You can also use the SET GLOBAL command to set values for QMF predefined
global variables, which start with "DSQ."

Specifying values on the RUN command
You can assign a value to a substitution variable by using the RUN command.

If the procedure is a linear procedure, assign the variable value on the RUN PROC command as follows:

RUN PROC SCHEDULE (&&TYPE='VACATION'

If the procedure is a procedure with logic, assign the variable value on the RUN PROC command as
follows:

"RUN PROC SCHEDULE (&&TYPE='VACATION'"

The value of &TYPE is available only to the procedure called SCHEDULE.
In this example:

« The variable value VACATION is surrounded by single quotation marks because the value is a character
string.
« TYPE is preceded by double ampersands (&&) to indicate that the value is being set on the RUN

statement to be passed to the procedure named SCHEDULE. If the RUN statement specifies &TYPE, the
procedure that contains this statement prompts the user for the value.

This value for the substitution variable is active only within the procedure that defines it. The value is not
active in any procedure or module called from the defining procedure.

Related concepts

Specifying values on the RUN command prompt panel

When you run a query or procedure with a substitution variable, you can assign a value on the RUN
command or through a global variable. However, if the variable in the query or procedure does not have
a value, QMF presents a RUN command prompt panel. You can then specify the value for the variable on
this panel.

Specifying values on the RUN command prompt panel

When you run a query or procedure with a substitution variable, you can assign a value on the RUN
command or through a global variable. However, if the variable in the query or procedure does not have
a value, QMF presents a RUN command prompt panel. You can then specify the value for the variable on
this panel.

This value for the substitution variable is active only within the procedure that defines it. The value is not
active in any procedure or module called from the defining procedure.

Chapter 2. Procedures as applications 9



Prompting for variables in linear procedures

In a linear procedure, QMF scans the procedure for substitution variables and resolves them before it
processes any commands. The user is prompted for all variables before the procedure runs.

Prompting for variables in procedures with logic

In a procedure with logic, the user is not prompted for variables until REXX encounters the statement that
contains the variables. To prompt the user one time, you can run a separate procedure that prompts for
variables.

For example, you want to be prompted once for the substitution variables LASTNAME and DEPT_NUM.
These variables occur on two different lines in your procedure with logic:

/* This procedure runs two queries, displaying the report after each x/
/* query has run. */
"RUN QUERY REG_QUERY (&&LASTNAME=&LASTNAME";

"INTERACT"
"RUN QUERY REG2_QUERY (&&DEPT_NUM=&DEPT_NUM";

Figure 3. Prompting for variable values in a procedure with logic
Add this line to the beginning of your procedure with logic, immediately following the comment lines:
"RUN PROC PROMPT_ME (&LASTNAME, &DEPT_NUM";

Important: All procedures with logic must begin with at least one comment line.

In this command, PROMPT_ME is a procedure with logic like the following, which contains a comment line
and no instructions:

/* This procedure is a dummy procedure that provides prompting x/

The complete procedure includes the RUN PROC command for the PROMPT_ME procedure that prompts
for variables:

/* This procedure runs two queries, displaying the report after each x/
/* query has run */

"RUN PROC PROMPT_ME (&LASTNAME, &DEPT_NUM";
"RUN QUERY REG_QUERY (&&LASTNAME=&LASTNAME";
"INTERACT"

"RUN QUERY REG2_QUERY (&&DEPT_NUM=&DEPT_NUM";

Figure 4. Procedure with logic that prompts for variables

Alternatively, you can use the SET GLOBAL command to prompt for all the values in your procedure at the
same time, as in the following example:

"SET GLOBAL (LASTNAME=&LASTNAME,DEPTNUM=&DEPT_NUM";

Related concepts

Specifying values on the RUN command
You can assign a value to a substitution variable by using the RUN command.

REXX variables in procedures with logic

You can use REXX variables in a procedure with logic. The values for these variables are known only within
the procedure in which you defined them.

You can use REXX variables in a procedure with logic in these ways:

« Copy a REXX variable to a QMF variable with the SET GLOBAL command

10 Query Management Facility Version 12 Release 2: Developing QMF applications



- Copy a global variable to a REXX variable with the GET GLOBAL command
« Use REXX variables in your REXX statements

Passing arguments to a procedure with logic

For procedures with logic, QMF provides an ARG option on the RUN PROC command. Use this option to
pass arguments, or values, to a procedure with logic.

Use the ARG option when you are running a procedure that contains a REXX PARSE ARG or ARG
statement, as in the example shown here:

PROC WILDE.SHOW_ARGS MODIFIED LINE 1
[ ek ek eok ok ok e sk ke kok ok ok e ok kok ok ok ke ok ok ok ok ok ke ok keok ok ok e ke ok ok ok ok e ke ok ok ok ok ke ok ok ok ok ok ok ok kok ok ok ok ok ok kok ok ok /
/* This procedure shows you how to use the 'ARG=' option on the RUN */
/* PROC command. */

[ ko ke ke ke ok ok e sk ok keok ok ok e ok kok ok ok ok ko ok ok ok ok ke ok keok ok ok o ke ok ok ok ok e sk ok ok ok ok ok ke ok ok ok ok ok ok kok ok ok ok ok ok kok ok ok /
parse upper arg query_name form_name
"RUN QUERY" query_name " (FORM="form_name

Figure 5. Passing variable values using the ARG option of the RUN PROC command
The RUN command for this procedure is as follows:
RUN PROC SHOW_ARGS (ARG=(query_name form_name)

In this command, query_name and form_name are REXX variable names that describe the parameters
that are passed to the procedure with logic. Use these variables, which contain the object names for a
query and a form, to reference the parameters that were passed to the procedure with logic.

REXX error-handling statements in procedures with logic

You can use REXX error handling techniques, such as the REXX SIGNAL instruction, in a procedure with
logic. You can also use QMF commands and variables with the REXX EXIT instruction to help clarify
nonzero return codes.

Branching to error-handling subroutines

The REXX SIGNAL ON ERROR instruction tells REXX to leave the current line and branch to a label marked
error when a nonzero return code is encountered.

This statement requires two parts:

- SIGNAL ON ERROR instruction
After every command, REXX puts the return code of the command in a variable called rc.
If a command has a nonzero return code, REXX branches to the error label.

SIGNAL ON ERROR returns errors from the QMF REXX procedure (ADDRESS QRW) command
environment, but not the REXX callable interface.

« Error label

The SIGNAL ON ERROR instruction requires that you provide a label that the procedure can branch to if
it encounters a nonzero return code. The label precedes your error handling code. The return code is in
the variable rc. You can use this variable to branch to another subroutine, or you can use it in your EXIT
instruction, as in the following example:

/* error handling code for a procedure with logic */
error:
exit rc

Chapter 2. Procedures as applications 11



Messages with the REXX EXIT statement

You can use the REXX EXIT instruction to exit a procedure with logic. QMF always issues a message when
it finishes running a procedure with logic.

If you use the EXIT instruction, the message you see depends on these factors:

« If the last QMF command encountered an error
« If the return code was zero

This table shows which message you see, based on the conditions.

Table 3. Messages returned from QMF

Return code from the Examples of messages at the completion of the
last QMF command Procedure return code procedure
0 0 OK, your procedure was run

The return code from your procedure
0 Nonzero was 8
Nonzero 0 The error message provided by QMF
Nonzero Nonzero The error message provided by QMF

A QMF error message takes precedence over the return code message if you have an incorrect QMF
command and a nonzero return code.

If you want to show the error message from the last command and exit with a QMF return code, use the
MESSAGE command and the EXIT DSQ_RETURN_CODE instruction. For example:

hMESSAGE (TEXT="'"dsq_message_text"""
exit dsq_return_code

The variables dsq_message_text and dsq_return_code are REXX variables provided by QMF. You
can use the MESSAGE command and the dsq_message_text variable to store and display a message
later, as shown in this example:

/* Monthly report */
signal on error

"DISPLAY TABLE JUNE_INFO"

"PRINT REPORT"
exit(0);
error: original_msg = dsq_message_text
/* Saves error message. */

"RUN PROC GENERAL_RECOVERY"

/* This proc generates =/

/* new dsq_message_text. x/
"MESSAGE (TEXT='" original_msg "'"
/* Display original error msg. x*/
exit dsq_return_code;

Related reference

Interface communications variables for REXX

The interface communications variables consist of several REXX variables. They are set after the
completion of every call and must not be altered by the calling program.

MESSAGE
When you create applications, you often want to send specific messages to your users about the
information displayed for them or their next action. You can write your own messages and display them

12 Query Management Facility Version 12 Release 2: Developing QMF applications



on QMF panels through the MESSAGE command. In ISPF, you can also choose to have QMF display the
message help for an ISPF error message.

Calling REXX programs from a procedure with logic

You use different methods to invoke your REXX program when you use substitution variables and when
you do not.

Calling REXX programs without substitution variables

If your REXX program does not contain an embedded RUN command that includes substitution variables,
invoke your program by using the ADDRESS or CALL instruction. You can also call the program as a
function.

Use one of these commands to invoke your program:
- The ADDRESS instruction

This instruction establishes a command environment. For example, if your program is named PANDA,
and you want to call it from within the TSO environment, the command is:

ADDRESS TSO "PANDA"

« The CALL instruction

This instruction invokes a program. For example, for the program named PANDA, the command is:
CALL PANDA

« A function

You also can call the program PANDA as a function:

answer = PANDA()

You might consider removing the substitution variables from the RUN command if you want to call your
programs with one of the REXX invocation calls. In that case, QMF prompts the user for the variables.

Related concepts

ADDRESS QRW and the QMF command environment

When QMF is started in TSO, ISPF, or native z/OS, QMF creates a REXX command environment called
QRW. When you are executing a REXX program, you can set the default command environment to QRW
by issuing the REXX ADDRESS command ADDRESS QRW. With ADDRESS QRW, QMF remains the default
command environment until you issue another ADDRESS command.

Calling REXX programs that contain substitution variables

If your REXX application contains a QMF RUN command with a substitution variable, you must invoke it
using the TSO program_name command.

Whether you are running a procedure with logic or a callable interface program invoked by a procedure
with logic, commands come into QMF the same way. In this context, the callable interface program
becomes a logical extension of the procedure itself.

For example, consider the following command:
RUN QUERY WEEKLY_Q (&DEPT=58

In a procedure with logic, use two ampersands on the substitution variable to pass the variable to the
query:

"RUN QUERY WEEKLY_Q (&&DEPT=58"

Chapter 2. Procedures as applications 13



If a substitution variable has only one ampersand, QMF resolves the variable for the procedure itself and
cannot pass the variable to the query.

If you call your REXX callable interface application from a procedure with logic and that application
contains the command RUN QUERY WEEKLY_Q (&DEPT=58, QMF resolves the variable just as it would
for the calling procedure. Because only one ampersand is used, the variable is not passed to the query.

To pass variables to QMF from a REXX callable interface application called by a procedure with logic, you
have three choices:

« Use the TSO command to call the application.

When you call the application, QMF does not process any substitution variables it encounters. In the
preceding RUN QUERY command, &DEPT=58 is passed to the query, where the substitution variable is
resolved.

- Treat all substitution variables in your application as though you were using them in a procedure with
logic.
Add an ampersand to every substitution variable so the procedure with logic does not resolve it.

« Use global variables.

You can define global variables at the start of your application and use them throughout your QMF
session. You can also set the DSQEC_USERGLV_SAV global variable to save global variable values from
one session to another.

Related reference
Global variables that control how commands and procedures are executed

14 Query Management Facility Version 12 Release 2: Developing QMF applications



Chapter 3. The callable interface and QMF
applications

Programming languages can use the QMF callable interface to run QMF commands.

Related reference

Programming language specifications for using the callable interface

The QMF application programming interface is available for several programming languages.

What is the callable interface?

The QMF callable interface provides standard interfaces for different programming languages, and
provides common storage and access to program variables.

When an application program needs to run a QMF command, it must start communication between the
program and QMF. This communication is made by issuing a call to a QMF interface routine. QMF supplies
a routine for each supported language.

The application program can issue one or more QMF commands after the initial START call. The
application program calls the routine to issue each QMF command.

After the QMF command finishes processing, QMF supplies a return code that indicates the status of
QMF. The callable interface gathers other information about the processing of the command and stores
this information in variables accessible to both QMF and the application program. These variables are
contained in either a variable pool or in an interface communications area. When the callable interface
returns control to the calling application program, the application can refer to these variables but not alter
them.

When the application program no longer needs to use QMF, the program issues a call to terminate
communication between the program and QMF. This call is made to the QMF routine.

Considerations for using the QMF callable interface

The flow of control between your application and QMF using the callable interface is subject to certain
rules.

Keep in mind the following points as you write application programs to be used with the QMF callable
interface:

« Acall to QMF returns control to the calling application program only after QMF finishes processing the
OMF command.

« QMF is in an inactive state when not processing a call.

« The application program and QMF communicate with return codes and variable data stored in the
variable pool or in the interface communications area.

- All QMF commands must be coded in uppercase English letters.

If you are using a QMF national language feature (NLF), your QMF commands must be written in the
presiding NLF language. Your commands must also be written in uppercase or converted to uppercase
by QMF. Commands are converted to uppercase by QMF if the CASE option in your QMF profile is set

to UPPER. You set the presiding language when you start QMF, by providing a value for the DSQALANG
parameter on the START command. This value is recorded in the DSQEC_NLFCMD_LANG global variable.

« The maximum length of the passed commands is 2,048 bytes for REXX programs and 32,768 bytes for
all other languages.

This diagram shows how the application passes commands through the callable interface to QMF.

© Copyright IBM Corp. 1982, 2021 15



Application Callable

session interface QMF
1. Establish START » | QMF session
communication starts
with QMF DSQ_RETURN_CODE=0 +——
2. lssue a QMF QMF Command p | QMF runs the
command command

DSQ_RETURN_CODE=0 <+

3. Get status GET GLOBAL »  QMF retrieves

information status information
DSQ_RETURN_CODE=0 +—

Global variables are

stored in Application

storage
4. Terminate EXIT » | QMF session
communication
with QMF DSQ_RETURN_CODE=0 +——

Figure 6. How an application uses the QMF callable interface to communicate with QMF

Related reference

START command keywords
You can specify keywords on the START command.

The interface communications area (DSQCOMM)

QMF provides an interface communications area for each supported programming language. This area
contains definitions of return and reason codes and definitions of the function calls to QMF

The interface communications area defines storage for the interface communications variables. The
variables stored in this area are accessible to both QMF and the callable interface application. However,
allow only QMF to alter the values. Ensure that the application program treats these variables as read-
only.

The REXX callable interface uses interface communications variables provided by QMF rather than using a
communications area.

The QMF callable interface communications area is required for all callable interface calls. Storage for the
callable interface communications area is allocated by the program that is using QMF.

The START command establishes a unique instance or occurrence of a QMF session. The START command
can establish only one QMF session:

« Ina TSO address space
« From a single CICS transaction

When running the START command, QMF updates the variables within the interface communications area.

These variables must never be altered by the application program, with the following exceptions:

16 Query Management Facility Version 12 Release 2: Developing QMF applications



DSQ_COMM_LEVEL

Set DSQ_COMM_LEVEL to the value of DSQ_CURRENT_COMM_LEVEL to identify the level of
DSQCOMM. This exception does not apply to REXX.

DSQ_INSTANCE_ID

If you call a callable interface program from within QMF, you need to set the DSQ_INSTANCE_ID to
zero (0) on the first call. With this setting, QMF resets the variable to the value set by the initial START

command.

All calls that follow the START command must pass the address of the interface communications area
that corresponds to the QMF instance. The application program is responsible for pointing to the correct
interface communications area.

Each supported programming language has a unique interface communications area. Application
programs must reference variables by variable name rather than value if they are to be portable, because
the values can be different on other systems.

The variables within the interface communications area contain the information shown in this table:

Table 4. DSQCOMM fields that must not be altered

Information
provided by the
variable

Description

Return code

Indicates the status of QMF processing after QMF processes a command

Instance identifier

Identifies the instance of QMF that was started by the START command

Completion
message ID

Contains the message ID of the message that QMF displays

This field is set at the completion of every QMF command. It contains the message
QMF displays at the end of a command.

Query message ID

Contains the message ID of the message that is displayed on the query panel upon
completion of a RUN QUERY command

This field is set when an error occurs while a query is running. It contains the
message that QMF displays within the query object at the end of a command.

START command
parameter in error

Contains the name of the parameter in error when the START command fails
because of a parameter error

Cancel indicator

Indicates whether the user canceled processing while QMF was running the
command

Completion
message

Contains the completion message that QMF displays

Query message

Contains the query message text of the message that is displayed on the query
panel upon completion of a RUN QUERY command

For example, if you run a query object with an error, QMF displays a message that
describes the error that prevented the query from running. The query message
field then contains this error message text.

Related reference

Programming language specifications for using the callable interface

Chapter 3. The callable interface and QMF applications 17



The QMF application programming interface is available for several programming languages.

Return codes

Return codes are returned after each call to the QMF callable interface. Return code values are described
by the interface communications area provided with QMF.

The values of return codes can be different on other systems. If you want your applications to be portable
across systems, the applications must reference the values of these codes by the variable names. The
names of the return-code variables within the interface communications area are documented with the
programming language specification.

This table shows the possible return codes for callable interface conditions.

Table 5. Callable interface return codes
Value Explanation
0 Successful execution
4 QMF session marked for termination by an EXIT or END command
8 Execution failed, but the error did not mark the session for termination
16 Severe error: session marked for termination

Related reference

Programming language specifications for using the callable interface
The QMF application programming interface is available for several programming languages.

Commands for using the callable interface

You can use the callable interface to issue any QMF command that you would use in a procedure.
However, some commands have special syntax for the callable interface: START, GET GLOBAL, SET
GLOBAL, and TRACE.

The START and TRACE commands work only in the callable interface. To use the GET GLOBAL and SET
GLOBAL commands in a callable interface application written in a language other than REXX, use the
extended syntax for these commands.

For examples of the START and SET GLOBAL commands in a programming language, see the specification
for that language.

Related concepts

QMF commands in applications

Certain commands are designed to be used in applications, and you can create your own command
synonyms.

Related reference

GET GLOBAL (extended syntax)

You can use the GET GLOBAL command to access QMF global variables in your application. For languages
other than REXX, QMF provides an extended syntax for the GET GLOBAL command.

SET GLOBAL (extended syntax)

To create your own global variables and use them in QMF commands as substitution variables, issue the
SET GLOBAL command. You can also use the SET GLOBAL command to set values for QMF predefined
global variables, which start with "DSQ."

Programming language specifications for using the callable interface

18 Query Management Facility Version 12 Release 2: Developing QMF applications



The QMF application programming interface is available for several programming languages.

Starting QMF from an application

Before you can run any other command from an application, you must start QMF. When using the callable
interface, you start QMF by issuing the START command in your application. You can have only one QMF
session at a time.

Your application can issue a START command to test whether QMF is started. If QMF is not started, it
starts. If QMF is started, the return code is nonzero, and you receive the following message number and
message:

DSQ50720 QMF already active; secondary session not permitted.

If your START command results in a non-severe error (a return code of 4 or 8), QMF starts, and a session
is established. In this case, you must issue a QMF EXIT command to stop QMF. Inspect the contents of
the interface communications area or the QMF trace data output for the cause of the error.

To pass parameters to QMF, specify the wanted command keywords on the START command.

Related reference

START
When you start QMF through the callable interface, you need to use the START command.

Running your callable interface application

When you run your callable interface application, you must set up your environment as though you were
going to run QMF interactively.

For information about setting up your environment and compiling and running your callable interface
application, see the coding sample in the appropriate language specification.

Related reference

Programming language specifications for using the callable interface
The QMF application programming interface is available for several programming languages.

The callable interface in QMF

If you need to modify a QMF object from a user program, you can use the callable interface from within
QMF. For example, you can export or import objects through the callable interface during an interactive
QMF session. You can use the callable interface from within QMF by using the TSO command to call the
application. You can run any valid QMF command from the application.

Restriction: You cannot use the callable interface from within QMF while in the CICS environment.

You must set the DSQCOMM instance identifier (DSQ_INSTANCE_ID) to zero (0) before your first call to
QMF. QMF determines the current instance and updates DSQ_INSTANCE_ID for use in subsequent QMF
calls.

Error handling

At the completion of every QMF command, the DSQCOMM communications area contains message text in
the dsq_message_text variable and a return code in the dsq_return_code variable.

The return code is assigned one of the following values:

dsq_success
Successful completion of the command

dsq_warning
Normal completion with warnings

Chapter 3. The callable interface and QMF applications 19



dsq_failure
Command did not run correctly

dsq_severe
Severe error; QMF session terminated

The variables and fields in each DSQCOMM area are documented with the programming language
specifications.
Related reference

Programming language specifications for using the callable interface
The QMF application programming interface is available for several programming languages.

Running callable interface programs under CICS

To run programs that use the QMF callable interface, install them on CICS with your normal method of
installing CICS programs.

In addition to the normal CICS requirements, the following considerations apply to all QMF callable
interface programs that run on CICS:

Environment
When your program calls the QMF product, your program takes on the same characteristics as the
interactive QMF product; it becomes a large conversational program.

QMF is an assembler-language program that contains CICS commands. It can be link-edited

with other assembler-language programs or with programs supported by the callable application
programming interface. When you call QMF using a high-level language, the program must be link-
edited first. In addition, the resource definition online (RDO) program definition must specify that
high-level language. Each high-level program has specific CICS considerations and restrictions.

In CICS, if you want to override any of the default QMF program parameters, you must specify the
override values as parameters on the START command. For example, the default mode of operation
from the callable interface is batch mode. To run an interactive QMF session you must issue the START
command with DSQSMODE=I.

CICS region considerations
The user program that contains the QMF interface communications module and the main QMF module
must run in the same region or partition. QMF resources, as described during QMF installation, must
also be allocated to the CICS region or partition that runs QMF.

Database
The CICS transaction that invokes your program must be described to Db2.
Related concepts

Application programming interfaces to QMF
There are two application programming interfaces to QMF: Callable interface and command interface.

20 Query Management Facility Version 12 Release 2: Developing QMF applications



Chapter 4. Issuing QMF commands from an ISPF
dialog

You can issue QMF commands from an ISPF dialog that is running under QMF by using the QMF command
interface.

Restriction: The QMF command interface requires ISPF to run, but ISPF does not run in the CICS

environment. Therefore, you need to use the QMF callable interface for application development under
CICS.

Using the QMF command interface, QMF communicates with the dialog through the ISPF variable pool, as
shown in this diagram.

ISPF
ISFF
Variabile
Pool
Application
Program QMF

Figure 7. QMF command interface application interacting with QMF

To use the command interface effectively, you also need to understand ISPF services and variable pools.

Writing a program that uses the command interface: an example

In this example you write a program to display an ISPF panel that prompts the user to specify a query
name, runs the specified query, and displays a report.

Procedure

1. Write your command interface REXX program:

a) Display the ISPF panel with the DISPLAY services:
In this example, the panel name is QRYNAME

ADDRESS ISPEXEC "DISPLAY PANEL (QRYNAME)"

b) Run a QMF query based on user input from the previous DISPLAY service.
The ISPF variable QNAME contains the name of the QMF query

ADDRESS ISPEXEC "SELECT PGM(DSQCCI) PARM(RUN QUERY" QNAME ")"
c) Display the result of the query:
ADDRESS ISPEXEC "SELECT PGM(DSQCCI) PARM(INTERACT)"

2. Call your program with the TSO command from the QMF command line.
For example, if your program is named GETINFO, use this command:

TSO GETINFO

© Copyright IBM Corp. 1982, 2021 21



Invoking the command interface

The command interface is a program named DSQCCI. You can invoke it from a program through the ISPF
SELECT service.

To start the command interface, first start ISPF. Then start QMF using the ISPF SELECT service to call the
QMF command interface (DSQCCI). You can pass QMF commands by using the PARM option of the ISPF
SELECT PGM command.

After you start the command interface, you can pass QMF commands you want to run by using the PARM
parameter of the ISPF SELECT PGM command:

SELECT PGM(DSQCCI) PARM(gmf_command)

All QMF commands specified as parameters to the command interface must be in uppercase, regardless
of the QMF profile setting. ISPF does not convert the commands from lowercase to uppercase. If you
specify your QMF commands in lowercase, QMF does not recognize them.

If you want to use QMF command prompts from your ISPF application, you can issue the INTERACT
command. Follow the INTERACT command with the QMF command for which you need a prompt to open
and end the statement with a question mark. For example, to display the RUN QUERY prompt panel, issue
the following command:

SELECT PGM(DSQCCI) PARM(INTERACT RUN QUERY ?)
The SELECT service requires you to use double ampersands on a RUN QUERY command. Using double
ampersands prevents ISPF from interpreting the variable as one of its own.

On the invocation, do not specify the NEWPOOL or NEWAPPL option. Omitting the NEWPOOL or NEWAPPL
options ensures that the command interface can access the variables of your application. The command
interface uses the shared pool to communicate between QMF and your application.

The END command

The END command terminates the DSQCCI program and returns control to the calling application when
issued while the command interface is running. The QMF session remains active.

QMF sets the global variable DSQCSESC to mark the session for termination if it encounters an EXIT
command or a severe error during a command interface invocation. When the program that called DSQCCI
ends and returns control to QMF, the QMF session terminates.

Variables in the command interface

The STATE command provides the current value for each variable provided by QMF. The STATE command
can be used only in the command interface. You can place the QMF variables in the ISPF variable pool
through the VPUT command.

Related reference

QMF global variables

Command interface return codes

Return codes for the command interface can be positive or zero. A value of zero indicates successful
execution. A positive value indicates that the execution failed or was abnormal in some way. Return codes
are the same regardless of the language of your application.

Return codes are displayed in a variable in the user's exec or CLIST. If you run a REXX exec, the return
code is in the REXX variable called RC; if you run a CLIST, the return code is in the CLIST variable
&LASTCC.

22 Query Management Facility Version 12 Release 2: Developing QMF applications



The following example shows an exec that examines a return code. The example shows how to run a
query and test for an error with the REXX variable RC:

ADDRESS ISPEXEC SELECT PGM(DSQCCI) PARM(RUN QUERYA (FORM=FORMA))
Select
When (RC = Q@) Then nop
When (RC = 64) Then
Say "You must run QMF with ISPF to use command interface."
When (RC = 100) Then
Say "You need to start QMF before you begin your application"
Otherwise
Say "Unexpected error ("RC") from QMF command interface."
End

You can place code for handling errors in program modules and in execs or CLISTs.

Return codes 0 through 16

Return codes 0 through 16 describe the QMF processing of the command passed with the command
interface. Along with the code, the command interface returns the values of the QMF command message
variables in the ISPF shared pool of the application.

Table 6. Return codes O through 16

Value Explanation
0 Successful execution
4 QMF session marked for termination by an EXIT or END command
8 Execution failed, but the error did not cause the session to be marked for termination
16 Severe error: session marked for termination

A return code of 4 occurs only on the command that caused the session to be marked for termination.
If the application then attempts to run another command, QMF returns another return code value to the
application.

Return codes of 20 or higher

These codes usually reflect some failure in the command interface (DSQCCI). The failure prevents the
interface from copying a variable into the application shared pool. As a result, the QMF variables might be
invalid or they might not be set. The same result might be true of the STATE variables if your program uses
the STATE command. (A variable is set if it is copied into the application shared pool.)

These return codes usually indicate more serious errors than return codes in the 0 through 16 range.
Some return codes might require the services of IBM Software Support.

In this table, shared variables refers to the QMF variables (and the STATE variables, if the current
command is the STATE command). Some codes indicate that the command was run but the shared
variables were not set. QMF ran the STATE command properly, but the command interface failed to set
the updated shared QMF and STATE variables. The reason for the failure is described in the explanation of
the error code.

Table 7. Return codes of 20 or more

Value Explanation
20 A user exit routine called the command interface; these calls are always invalid. The
command passed to the command interface was not run. The shared variables were
not set.
24 An error occurred in an ISPF VCOPY command. The command passed to the
command interface was run. The shared variables were not set.

Chapter 4. Issuing QMF commands from an ISPF dialog 23



Table 7. Return codes of 20 or more (continued)

Value Explanation

32 An error occurred in an ISPF VREPLACE command. The command passed to the
command interface was run. The shared variables were not set.

36 An error occurred in an ISPF VPUT command. The command passed to the command
interface was run. The shared variables were not set.

40 An error occurred in an ISPF VREPLACE command. This code applies only to the
execution of the STATE command. The command passed to the command interface
was run, but the shared variables were not set.

44 An error occurred in an ISPF VPUT command. This code applies only to the execution
of the STATE command. The QMF variables were set, but the STATE variables were
not.

60 An invalid call was made to the command interface. The command passed to the
command interface was not run. The shared variables were not set.

64 This error is issued when DSQCCI is run and ISPF is not active. For example, the user
called DSQCCI without using an ISPF SELECT PGM command.

100 This error occurs when an application tries to issue a QMF command when QMF is
not active. Start QMF before you begin your application. The command passed to the
command interface was not run. The shared variables were not set.

104 The anchor was not located. The command passed to the command interface was not

run. The shared variables were set but are not valid.

24 Query Management Facility Version 12 Release 2: Developing QMF applications




Chapter 5. ADDRESS QRW and the QMF command
environment

When QMF is started in TSO, ISPF, or native z/0OS, QMF creates a REXX command environment called
QRW. When you are executing a REXX program, you can set the default command environment to QRW
by issuing the REXX ADDRESS command ADDRESS QRW. With ADDRESS QRW, QMF remains the default
command environment until you issue another ADDRESS command.

Restriction: ADDRESS QRW is not supported in the CICS environment.

You can also direct a single command to be executed by the QRW environment by issuing the REXX
ADDRESS command followed by the QMF command:

ADDRESS QRW gmf_command

In this situation, QMF is the command environment only for the command that follows the ADDRESS QRW
statement.

When you are using a QMF procedure with logic, QRW is the default command environment.

The following example shows how to use the QMF command environment:

Eall dsqcix "START (DSQSMODE=INTERACTIVE"
if dsq_return_code=dsq_severe | dsq_return_code=dsq_failure
then exit dsq_return_code

ADDRESS QRW

"RUN PROC MONDAY_P"

if dsq_return_code=dsq_severe | dsq_return_code=dsq_failure
then exit dsq_return_code

"EXIT"

if dsq_return_code=dsq_severe | dsq_return_code=dsq_failure
_ then exit dsq_return_code

© Copyright IBM Corp. 1982, 2021 25



26 Query Management Facility Version 12 Release 2: Developing QMF applications



Chapter 6. Writing QMF applications that use ISPF
services

You can bypass the QMF panels by writing applications that have their own user interfaces. You can use
either the callable interface or the command interface to write applications that use ISPF.

Restriction: ISPF does not run in the CICS environment, so ISPF services are not available under CICS.

Related concepts

The callable interface and QMF applications
Programming languages can use the QMF callable interface to run QMF commands.

Issuing QMF commands from an ISPF dialog
You can issue QMF commands from an ISPF dialog that is running under QMF by using the QMF command
interface.

Starting and running QMF from an ISPF application

When you start and run QMF using the callable interface from an ISPF application, you must follow certain
rules.

When you write a callable interface application that uses ISPF, you need to ensure that you follow these
requirements:

« The callable interface application must match the language of your ISPF dialog.

For example, if your ISPF dialog is a PL/I program, you must use the QMF callable interface for PL/I to
write your application.

« You must use the correct national language identifier.

You must start your ISPF application with an ID of DSQn, where n is a National Language Feature (NLF)
identifier. This application ID prevents QMF from overriding your ISPF environment, such as the function
key settings and labels. The ID also ensures that the ISPF environment remains intact even after QMF is
started. For example, this statement begins a PL/I program MYPROG that starts QMF using the callable
interface START command:

SELECT PGM(MYPROG) NEWAPPL (DSQn)

« Use the GET GLOBAL or SET GLOBAL commands in your application instead of the STATE command to
set and retrieve variable values.

The STATE command works only for variables that contain state information. The GET GLOBAL and SET
GLOBAL commands work for all the QMF global variables. However, you cannot set global variables that
are read-only.

Related reference

Conventions for National Language Feature information
Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

START command keywords
You can specify keywords on the START command.

Global variables for state information not related to the profile
Global variables for profile-related state information

© Copyright IBM Corp. 1982, 2021 27



Running queries that contain variables

Applications that use ISPF services can run queries that contain variables.

You can run these queries from an application that uses ISPF services in one of three ways:
 Use ISPF file-tailoring services.

With this technique, you represent the query by an ISPF file-tailoring skeleton. In that skeleton, the
portions of the query that can change are displayed as ISPF dialog variables. After giving these variables
the appropriate values, your program starts certain ISPF file-tailoring services. The result is a sequential
file that contains the query.

The program can then import the query into QMF temporary storage and have QMF run it. The required
IMPORT and RUN commands can be run through the callable interface or command interface.

To use this technique, you must know how to define ISPF dialog variables in your program that uses the
ISPF dialog service.

« Use the Program Development Facility (PDF) editor to create QMF objects

You can use the PDF editor with PDF edit macros to design and control data entry to queries,
procedures, forms, and profiles. You can use REXX to write PDF macros.

« Create a query that uses an ISPF dialog.

Your program can use ISPF display services to display a screen and create a file based on input from the
user. This file, which then contains an SQL query, is then imported into QMF and run.

Starting a program that uses ISPF services from within QMF

If you want to start your ISPF program from within QMF, you must call the program from a linear
procedure or a procedure with logic.

To call your program, use the ISPF SELECT PGM service by including the following command in your
procedure:

ADDRESS ISPEXEC "SELECT PGM(programname)"

Use the CMD keyword to indicate to ISPF that you are running your program as an ISPF dialog function.
The syntax for this command is:

ADDRESS ISPEXEC "SELECT CMD(cmdname)"
or
ADDRESS ISPEXEC "SELECT CMD(cmdname parameters)"

In this statement, cmdname is the name of your callable interface command.

ISPF services in a procedure with logic

You must transfer from the QMF program dialog to an ISPF command dialog to run ISPF commands from
a QMF procedure with logic that is running under ISPF.

To set the correct ISPF environment and run a program that contains your ISPF commands, use the
following ISPF SELECT CMD statement with the CMD keyword:

ADDRESS ISPEXEC "SELECT CMD(userprogram)"

In this statement, userprogram is the program that contains your ISPF commands.

For example, if the program that contains your ISPF commands is called DIALOG, include the following
command in your procedure with logic:

28 Query Management Facility Version 12 Release 2: Developing QMF applications



ADDRESS ISPEXEC "SELECT CMD(DIALOG)"

You can also use a QMF TSO command to run your program that contains ISPF commands (for example,
TSO DIALOG). In this case, QMF issues the ISPF SELECT CMD statement for you.

When running QMF under ISPF, a procedure with logic that starts a program that requires ISPF services
must use the ISPF SELECT CMD environment. For example, suppose that you are running QMF under
ISPF and your procedure with logic issues the Db2 command DSN. Because the DSN command uses ISPF
services, use one of the following commands to issue the DSN command:

ADDRESS ISPEXEC "SELECT CMD(DSN)"

or

ADDRESS ISPEXEC "SELECT CMD(DSNEXEC)"

In the second statement, DSNEXEC is a program that contains the ADDRESS TSO DSN statement.

The EDIT command with ISPF

When you run your QMF application under ISPF, you can edit your QMF SQL query or procedure by using
the EDIT QUERY command or the EDIT PROC command.

If you issue the QMF EDIT command from a PROC panel or QUERY panel, you do not need to specify the
PROC or QUERY object types. EDIT assumes these values when you invoke it from the respective panels.
By default, the QMF EDIT command places your procedure or query in a PDF editor session. QMF starts
the PDF editor by using the QMF application ID DSQn, where n is the NLF identifier. QMF also sets the
function keys and the location of the command line to match your QMF application.

To override the default editor, use the EDIT QUERY and EDIT PROC commands as follows:

EDIT QUERY (E=name
EDIT PROC (E=name

In these statements, name can be either of the following values:

« An editor available to you
« The name of a REXX program that specifies an application ID other than the default. The default
application ID is DSQn, where n is the national language identifier for the NLF you are using)

Use an application ID different from the QMF default application ID if you want to have function keys
different from the keys that QMF provides.

If you are using PDF EDIT options that require PDF PROFILE data set members, you must create those
members. For example, the PDF EDIT RECOVERY option requires a DSQnEDRT PROFILE data set member
(where n is the appropriate NLF character). The NLF must be installed before you issue the command.
Related reference

Conventions for National Language Feature information

Chapter 6. Writing QMF applications that use ISPF services 29



Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

ISPF and debugging applications

The QMF trace facility can help you trace QMF activity at various levels of detail. To help you more
effectively debug applications that use ISPF you can also use the ISPF log service and PDF dialog test
service. These services complement the QMF trace facility.

The ISPF log service

You can use the ISPF log service to write a message to the ISPF log file. For example, in REXX, the ISPF
command to write a message to the ISPF log is:

ADDRESS ISPEXEC LOG MSG (message-id)

In this statement, message-id is the identification code for the message that is to be retrieved from the
message library and written to the log.

The PDF dialog test service

If your site has PDF, you can use the PDF dialog test service to log ISPF application service calls to the
ISPF log file. Additionally, you can use the log option of the PDF dialog test service to browse the contents
of the log file or data set. You can also print the log file or data set when you exit ISPF.

The dialog test service has many other useful options for debugging your application. For example, you
can debug interactively. You can run all or portions of your application, examine the results, change your
application, and rerun it. You can also use dialog test services to accomplish these goals:

Start selection panels, command procedures, and programs
 Display panels

Add variables and modify variable values

Run ISPF dialog services

Add, modify, and delete breakpoint definitions

Add, modify, and delete function and variable trace definitions

To create, change, and delete trace definitions, use the trace (TRACES) option of the dialog test service.
Also use this option to monitor dialog service calls and dialog variable usage. During processing, if any of
the trace definitions are satisfied, trace output is written to the ISPF log. You can use the LOG option of
the dialog test services to browse the ISPF log, or examine the printed output when you exit ISPF.

Related concepts

Debugging your QMF applications
In addition to error handling, QMF provides debugging facilities for your callable interface applications.

30 Query Management Facility Version 12 Release 2: Developing QMF applications



Chapter 7. Writing bilingual applications

Many business applications need to run in several different national languages. You can write one English
application and run it in any national language that QMF supports.

Each national language that QMF supports is called a National Language Feature (NLF). An NLF provides a
user with a QMF session that is tailored to a specific national language.

QMF provides bilingual support for commands and forms. You can run English QMF commands and
display English forms in any NLF.

Related reference

Conventions for National Language Feature information

Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

Comparing the English and NLF environments

Although aspects of the QMF session environment are the same no matter which National Language
Features (NLF) is in use, there are some differences. When no NLFs are installed, the only available QMF
session environment is the English-language environment.

Environmental similarities

These similarities are the most important ones in the QMF session environments no matter which NLF is
in use:

Capabilities
In general, you can do anything in an NLF session that you can do in an English-language session. You
can create objects in temporary storage and save them in the database, format and print reports, and
issue SQL commands. You can also run Prompted Query, SQL, and QBE queries, and QMF procedures.
The difference between environments lies not in what you can do, but in how you need to enter your
input and what languages are displayed

SQL and QBE
The verbs, operators, and keywords of the SQL and QBE languages are not translated.

Usage codes for forms
The codes are identical; they are not translated.

System commands
TSO and CICS commands can still be issued from QMF through the TSO or CICS command. These
commands are unaffected by translation: enterTSO or CICS followed by the command to be run, and
enter the command exactly as you would if you were running it outside of QMF.

Environmental differences
Some of the differences between the NLF environment and the English-language environment are:

The QMF command language
Every NLF has a complete set of translated QMF verbs and keywords. These translated verbs and
keywords must appear in your QMF commands when you are operating in the language environment
of an NLF. For a particular NLF, these words might be translated. For example, suppose that in the
German NLF the verb DISPLAY and the keyword PROC are translated into ANZEIGEN and PROZEDUR.
During a German NLF session, you can issue the command ANZEIGEN PROZEDUR but you cannot
issue the command DISPLAY PROC.

Some elements of the QMF language are command synonyms and can be translated. As a result, each
NLF has its own uniquely named command synonym table. When the NLF is installed, its command

© Copyright IBM Corp. 1982, 2021 31



synonym table is created, and the profile for the NLF indicates the command synonym table name for
that NLF.

QMF panels and messages
Every NLF has a complete set of translated QMF messages and panels. Like the verbs and keywords
for QMF commands, these messages and panels might or might not be translated. In most cases,
they are translated. Within the panels and messages, the fixed portions of text can be translated.
Information that can vary within each panel or message, such as query names, is not translated.

Allowable panel input
Many QMF panels that require user input restrict the range of some entries to a small set of keywords,
which are translated. Examples of these panels include prompt panels and form panels. YES and NO
responses in English, for example, are JA and NEIN in German.

Profile parameter values
In a multilingual environment, users have a separate profile for each available NLF they can use for a
QMF session. For each of these profiles, the parameters are the same and have the same meanings,
but the parameter names are translated. Certain parameter values are also translated.

For example, in an English profile, the CASE parameter can have the value UPPER, STRING, or MIXED.
In a German profile, the CASE parameter is the SCHRIFT parameter, and the valid values are GROSS,
KETTE, and GEMISCHT.

Exported and saved form objects
Use the SAVE, EXPORT, and IMPORT commands to specify the language in which you want form
objects to be saved. You can save them in English or in the presiding language of your current session.

Sample tables and queries

IBM supplies translated versions of the English sample tables and queries, except for the Swedish and
Uppercase features. Sample tables are not provided for these features.

Creating objects for use in bilingual applications

The objects in a bilingual application are like any other QMF object. The key is that you either create or
save them in English.

How you create or save bilingual applications in English depends on the specific object:

Queries
You can create prompted and QBE queries in any language supported by the QMF NLFs or you can
create SQL queries in English.

Forms
Always create forms in the presiding language. Save them by either using the default language on the
SAVE command (ENGLISH) or use the presiding language.

The global variable DSQEC_FORM_LANG controls the language in which a form is saved, imported, or
exported. The default value is 1 for English. A value of zero specifies that the forms are to be saved,
imported, and exported in the presiding session language.

Procedures
You can create procedures in either English or the presiding language.

Analytics
You can create analytics objects in either English or the presiding language.

You can translate to English a form that you create and save in an NLF by issuing a SAVE command. For
example, the French command to save a form called SEMAINE_F in English as WEEKLY_F is:

SAUVER FORMAT SEMAINE_F EN WEEKLY_F (LANGUE=ANGLAIS

This command converts your NLF form to an English form that you can use in your bilingual application.

Related reference
Conventions for National Language Feature information

32 Query Management Facility Version 12 Release 2: Developing QMF applications



Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

The command language variable

To use English commands in an NLF session, set the presiding language variable, DSQEC_NLFCMD_LANG,
to English. Use this variable to switch between English and the presiding language of the NLF session.

For example, suppose that your application is a procedure named WEEKLY_P. The commands shown here
demonstrate how to switch between English and the presiding NLF language.

"GET GLOBAL (CURR_LANG=DSQEC_NLFCMD_LANG"
"SET GLOBAL (DSQEC_NLFCMD_LANG='1"'"
"RUN PROC WEEKLY_P"
"SET GLOBAL (DSQEC_NLFCMD_LANG=CURR_LANG"

These commands can be part of any valid QMF application, from an initial procedure to a high-level
language program, but they must be in this order:

This line of the procedure saves the presiding language value in a variable.

The GET GLOBAL command saves the value for the presiding language in a variable called
CURR_LANG.

This line of the procedure sets the presiding language to the language for which the application was
written.

The WEEKLY_P application in this example was written with English commands. For this reason, the
SET GLOBAL command sets the presiding language to English by setting the DSQEC_NLFCMD_LANG
variable to 1.

This line of the procedure runs the application.

After the QMF session is set to English, the application in the example can be run. User commands
must be in English. However, if a user presses a function key, the underlying command is assumed to
be in the presiding language.

QMF assumes that prompt panels are in the user's presiding language. For the EXPORT and IMPORT
command prompt panels, the default data set type, data queue type, or path name is also in the
presiding language.

The QMF profile in effect for the session is the user's profile under the NLF that was set when the
application started. The QMF profile of the presiding language is not the profile in effect. For example,
a user who runs QMF in both English and German has both English and German QMF profiles. If the
user starts a QMF session under the German NLF, the options in the German QMF profile are in effect.
Then the user sets the DSQEC_NLFCMD_LANG variable to English to run a procedure written with
English commands. In this case, the options in the German QMF profile remain in effect throughout
the session.

This line of the procedure returns to the presiding language.

After the application ends, reset the command language variable to its original value as shown in the
example.

Initial procedures in bilingual applications

If your application starts QMF and runs an initial procedure, QMF runs that procedure every time the user
issues the END command. QMF terminates if this procedure encounters an error.

For example, a user who runs QMF in English issues an END command in the presiding language. QMF
interprets the command as an error and terminates.

Chapter 7. Writing bilingual applications 33



You can avoid this situation in one of two ways:
« Change the initial procedure to handle bilingual applications.

A bilingual initial procedure includes the commands shown here:

"GET GLOBAL (CURR_LANG=DSQEC_NLFCMD_LANG"
"SET GLOBAL (DSQEC_NLFCMD_LANG=0"

k* QMF commands in the presiding language */
hSET GLOBAL (DSQEC_NLFCMD_LANG=CURR_LANG"
« Avoid running the initial procedure after the END command.

You can set the variable DSQEC_RERUN_IPROC to 0 so that QMF does not run the initial procedure
when the user issues the END command.

English-only commands

For most QMF commands, you must change the presiding language variable before you can run the
command in English. However, some commands must be issued in English even when the presiding
language variable is not set to English.

For example, you have an interactive application that you want to write in English and run in an NLF.
You must use the MESSAGE command to send the user customized messages. In addition, you need
the INTERACT command to display the message, as in this example (which can be run in a French NLF

session):
proceed_text = 'Continue...’
"RUN WEEKLY_Q" /* Use the English RUN command */
"SET GLOBAL (DSQEC_NLFCMD_LANG=0" /* switch back to French */
"MESSAGE (TEXT='"proceed_text"'" /x message in French */
"INTERACT" /* show the report with message */

Figure 8. Using the MESSAGE and INTERACT commands to display messages

The following English commands work in any NLF:
« GET GLOBAL

INTERACT

MESSAGE

SET GLOBAL

« START

« TRACE

Multilingual environments

When one or more NLFs are installed, a multilingual environment is created. With the appropriate
authorization, you can choose a presiding language for each QMF session.

For example, you can choose English for one session and German for another, provided the German

NLF is installed. Although you cannot switch languages during a QMF session, you can switch the
command language variable. End the current session and start another to obtain the appropriate language
environment.

Creating translatable applications

You can save time in adapting an application to new languages by using variables for as many language-
sensitive objects as you can. Use variables to run the same program in several NLFs.

These variables can include:

34 Query Management Facility Version 12 Release 2: Developing QMF applications



« The verbs, object names, and options of a QMF command
« User-defined panel names

If you create your own ISPF panels for your application, you need a set of translated panels for each
language in which the application is run. Give these panels unique names and make them available to
the application users. The application can then use variables for the panel names.

« User-defined message identifiers

If you create your own ISPF panels, you also create messages to be issued by ISPF. These messages
panels have unique IDs and you can use variables to refer to them. Translate the message text into the
appropriate NLF languages. The application can use variables for the message names.

Chapter 7. Writing bilingual applications 35



36 Query Management Facility Version 12 Release 2: Developing QMF applications



Chapter 8. QMF commands in applications

Certain commands are designed to be used in applications, and you can create your own command
synonyms.

Commands designed for applications

Any command that is valid on the QMF command line in a particular environment is valid in an application.
However, certain commands are specially designed to be used in applications.

Commands that are designed for applications can be used in both callable and command interface
applications, with two exceptions. You can use the START and TRACE commands only with the callable
interface.

CONNECT

Use the QMF CONNECT command to access data and objects on a remote server. When you connect to
the remote system, this system becomes the current location.

When you write applications, you can issue the CONNECT command from:

« The callable interface
« The command interface
« Within a procedure (linear or with logic)

However you cannot issue the CONNECT command if the procedure is a parameter on the CALL
statement that starts QMF for TSO as a Db2 for z/OS stored procedure. Connectivity with remote servers
is not supported when QMF is started as a stored procedure.

Certain aspects of your applications can be affected when you use the QMF CONNECT command to
access a remote server. Be aware of the following considerations:

« When your application connects to a new location, the QMF profile, command synonyms, and function
keys are reinitialized to the values at the new (current) location.

- When QMF starts, the program can issue a QMF CONNECT command to connect to a remote server.
Any subsequent QMF commands or SQL statements that affect database objects are run at the remote
server.

« Different types of commands behave differently with remote unit of work. When your applications use
remote unit of work, all system-specific and most QMF commands run at the system where QMF is
running (the local system). However, when a QMF command does either of the following, the commands
affect the database at the remote server:

— Sends SQL commands to the database
— Uses or alters QMF objects and data stored in the database

« If your site uses TSO and takes advantage of RACF support for mixed-case passwords, ensure
that the CASE option of your QMF profile is set to MIXED. Otherwise, QMF converts all input to
uppercase, causing the CONNECT command to fail because the case of the password is incorrect. When
CASE=MIXED, ensure that you tell QMF application users to enter all input in uppercase, because QMF
recognizes commands only in uppercase.

The following example statements show how a REXX callable interface program can use the QMF
CONNECT command. The program connects to a remote server, performs a predefined task, and exits
QMF:

1. The following statement starts a QMF session:

CALL DSQCIX "START"

© Copyright IBM Corp. 1982, 2021 37



2. The following statement connects to the remote Db2 database (DALLAS):
CALL DSQCIX "CONNECT TO DALLAS"

3. This statement runs a procedure with logic (EARNINGS) that queries the remote server for data,
formats the data, and prints the report:

CALL DSQCIX "RUN PROC EARNINGS"

The procedure EARNINGS contains the following logic:

"RUN QUERY EARNQ (FORM=EARNF"
"PRINT REPORT"

4. This statement ends the QMF session:

CALL DSQCIX "EXIT"

END

You can use the END command to set the QMF home panel as the current panel.

For example, a QMF report is the current QMF panel. Issuing the END command from a callable interface
or command interface program sets the QMF home panel as the current screen. When the QMF home
panel is the current screen, issuing the END command has no effect on the QMF session.

EXIT

The EXIT command works the same regardless of how the QMF session was started: it marks all the
user's sessions for termination.

When the EXIT command is entered on the command line, the session in which it is entered is terminated
immediately. Each session begun by the INTERACT command terminates as the application that started
it completes. When the EXIT command is issued in an application, the session ends when the original
QMF session ends. All interactive sessions begun by the INTERACT command must end before QMF
terminates.

In a callable interface program, it is important to include the QMF EXIT command when the application no
longer needs QMF. If you forget to include this command, your QMF session remains active until you log
off, or until your batch job completes.

When the user or an application issues the EXIT command, QMF sets DSQAO_TERMINATE to 1 (marked
for termination). Only an application that runs within QMF can test and use this global variable. If
DSQAQO_TERMINATE is set to 1 when QMF returns to the main QMF session, QMF immediately terminates
and releases resources.

Related reference
Global variables for state information not related to the profile

GET GLOBAL (extended syntax)

You can use the GET GLOBAL command to access QMF global variables in your application. For languages
other than REXX, QMF provides an extended syntax for the GET GLOBAL command.

»— GET Global — (—| Variable definitions |—><

Variable definitions

»— number of varnames — ,— varname lengths = — ,— varnames — ,— value lengths — ,—»

»— values — ,— valuetype -»«

38 Query Management Facility Version 12 Release 2: Developing QMF applications



You can use the GET GLOBAL command to copy the value of a QMF global variable into an application-
defined variable for use by the application. The parameters you specify on the GET GLOBAL command
define the application variable.

number of varnames
The number of variables requested.

varname lengths
A list of lengths for each variable name specified.

The length of the variable name. An 18-character area padded with trailing blanks is allowed.

varnames
A list of names of the QMF variables.

Do not specify trailing blanks in global variable names; QMF deletes trailing blanks.

value lengths
A list of the lengths of the values of the variables.

The following rules apply to the variable value:

« If the value length you supply is less than the value stored in QMF, QMF truncates on the right and
returns a truncated value.

- If the value length you supply is greater than the value stored in QMF, QMF returns a value padded
with trailing blanks.

values
A list of variable values.

value type
The data type of the storage area that contains the values; it must be either character or integer.

INTERACT

You can use the INTERACT command to display the current QMF panel and allow users to interact
with QMF at different points in your application. The INTERACT command has two forms: session and
command.

When the user issues the END command from a QMF panel, QMF returns control to the application. When
the user issues the EXIT command from a QMF panel, the QMF session is marked for termination and
QMEF returns control to the application.

The session form of INTERACT

When you issue the INTERACT command, QMF places the user on the current panel and allows the user
to issue QMF commands interactively. The INTERACT command provides another QMF session within
your current session.

The INTERACT command can place the user in either an interactive QMF session or an interactive GDDM
ICU session.

« For an interactive QMF session:

Issue the INTERACT command after a QMF command that would normally display a QMF panel. In this
session, the user can enter any commands that are valid for interactive QMF.

« For an interactive GDDM ICU session:

Issue the INTERACT command after a command that normally makes QMF start GDDM ICU and display
the ICU panel. In this session, the user can enter any commands that are valid for the ICU.

A scenario

This example shows a procedure that requires only one step to produce a report.

Chapter 8. QMF commands in applications 39



/* This procedure prints the weekly sales report. x/
"RUN QUERY WEEKLY_SALES_Q (FORM=WEEKLY_SALES_F"
"PRINT REPORT"

Figure 9. A simple procedure without the INTERACT command

QMF displays the REPORT panel that contains your formatted data with a message that says, "0K, your
procedure was run."

You write a procedure that involves several steps and you want to see the intermediate results of the
procedure. For example, you want to see the intermediate results of a procedure that runs more than one
query. Use the INTERACT command at the points in the procedure where you want to see the results

of a command. In this case, insert an INTERACT command immediately following the first RUN QUERY
command in the following procedure:

/* This procedure generates a report showing annual sales. */
"RUN QUERY WEEKLY_SALES_Q (FORM=WEEKLY_SALES_F"

"INTERACT"

"RUN QUERY YEAR_TOTAL_Q (FORM=YEAR_TOTAL_F"

Figure 10. Using INTERACT in a procedure

When you run this procedure from the home panel, QMF displays the REPORT panel that contains your
formatted data. Next, enter the END command from the REPORT panel. The procedure runs the second
query and displays the final report. If you omit the INTERACT command, QMF displays only the final
report without showing the result of the first query.

Suppressing the display of reports

If you run a query in a QMF callable interface application, QMF displays the resulting report. However, you
can tell QMF not to automatically display the report by setting the DSQDC_DISPLAY_RPT global variable
to zero (0). You can also set this global variable on the START command by specifying DSQADPAN=0.

This global variable is valid only when the RUN QUERY command is issued from an application. It does not
affect the display of reports when the RUN QUERY command is issued from the QMF command line.

Ending a session started by the INTERACT command

When the user issues the END command, control returns to the process that issued the INTERACT
command; however, the two sessions are not independent. Anything done during the INTERACT session
remains in effect when the old session resumes. For example, the user modifies the current form object
in the new interactive session. In this case, the current form object in the old session contains these
modifications when the new session ends.

You can make your application display the QMF home panel after the user issues an END command from a
QMF object panel. Add the logic of an INTERACT loop.

Related concepts

The command form of INTERACT

The command interface (DSQCCI) runs QMF commands interactively only when the command interface
application uses the command form of INTERACT and QMF is running an interactive session
(DSQSMODE=I).

Related reference
A REXX example of using an INTERACT loop

40 Query Management Facility Version 12 Release 2: Developing QMF applications



You can make the END command in an interactive session behave similarly to the way END behaves in
interactive QMF.

The command form of INTERACT

The command interface (DSQCCI) runs QMF commands interactively only when the command interface
application uses the command form of INTERACT and QMF is running an interactive session
(DSQSMODE=I).

The command form of INTERACT has no effect on a command issued through the callable interface.
In the callable interface, the only way to control whether commands are run interactively is to set
DSQSMODE=I on the START command.

Use the following command syntax to request interactive execution of a designated command:

INTERACT command

In this statement, command is the command that you want to run interactively. Various QMF prompt and
status panels can appear in this dialog.

For example, the following command displays the command prompt panel for RUN QUERY command
options:

INTERACT RUN QUERY ABC ?

If interactive execution is not allowed, the command form of INTERACT has no effect on the command it
precedes. An interactive session is not allowed in a QMF batch session or when QMF for TSO is started as
a Db2 for z/OS stored procedure.

You can check whether interactive execution is allowed in the current session by examining a global
variable named DSQAO_INTERACT. A value of 1 for the DSQAO_INTERACT global variable means that
INTERACT is allowed.

Related concepts

The session form of INTERACT

When you issue the INTERACT command, QMF places the user on the current panel and allows the user
to issue QMF commands interactively. The INTERACT command provides another QMF session within
your current session.

Related reference

START command keywords
You can specify keywords on the START command.

Global variables for state information not related to the profile

MESSAGE

When you create applications, you often want to send specific messages to your users about the
information displayed for them or their next action. You can write your own messages and display them
on QMF panels through the MESSAGE command. In ISPF, you can also choose to have QMF display the
message help for an ISPF error message.

Syntax

The MESSAGE command syntax is as follows:

Chapter 8. QMF commands in applications 41



»d

»— Message >«
L number J L ( J

Help= helppanel/

Stopproc=Yes|NO

Text= value

number (with ISPF only)
number is only valid under ISPF. This parameter is the identification number of a message definition in
an ISPF message library.

HELP
Use this parameter to specify a help panel other than the one defined with the message normally
displayed in this situation. Replace helppanel with the appropriate panel ID.

You cannot modify a QMF panel to be displayed if its definition is in DSQPNLE.

In ISPF, if you want to create and display your own panel, the definition of the panel must be in an
ISPF panel library. This library must be concatenated to your ISPPLIB data set. The panel must be a
help panel, not a menu or a data-entry panel.

In ISPF, if you specified number, helppanel defaults to the help-panel indicator for the message
definition specified by number.

In ISPF, if the message definition specified by number does not reference a help-panel indicator, then
the MESSAGE command does not provide message help. Instead, the QMF help for the object panel is
displayed on the user's screen when the user requests help.

STOPPROC
Use Stopproc to suppress the execution of linear procedures by setting the procedure termination
switch. The following command sets the procedure termination switch:

Message (Stopproc=Yes

When Stopproc=Yes, the procedure termination switch is on. The default value is No (off). This switch
affects only linear procedures.

While this switch is on, any QMF procedure that receives control ends its execution immediately.
While the switch is off, procedures run normally.

When the switch is off, only a MESSAGE command can turn it back on. When the switch is on, it stays
on until one of the following happens:

« Another QMF command is issued. This command can be any QMF command except a MESSAGE
command with the option to turn on the switch.

« Control returns to the user when the application ends. A user can always issue online commands
that run QMF procedures.

You can check to see whether the procedure termination switch is on by examining the
DSQCM_MESSAGE variable. If the termination option is in effect, this variable contains the message
for the MESSAGE command that turned on the termination switch.

TEXT
Use the TEXT option to define a message or to override the text in an ISPF message definition.
Replace value with the character string to be used for the message. A value that contains blank
characters must be surrounded with delimiters. Valid delimiters for a message value are single
quotation marks, parentheses, and double quotation marks. When the delimiters are double quotation
marks, the quotation marks are displayed as part of the message. The maximum length for a message
value is 360 single-byte characters. How much of the message can be displayed is determined by the
width of the display device you are using. A value longer than 78 characters is truncated to contain
only the first 78 characters. QMF does not fold the text to uppercase; however, ISPF might fold the
text to uppercase if MESSAGE is issued through the command interface.

42 Query Management Facility Version 12 Release 2: Developing QMF applications



If your message contains quotation marks, you need to double the quotation marks in the TEXT=
specification.

In ISPF, the default is the long message text of the ISPF message specified by number, which
becomes the generated message. The text is left as it is; no folding takes place, regardless of the
value of the CASE setting in the user's QMF profile.

Suppose that you want to write an application by using a procedure that runs two queries and displays
two reports. When QMF displays the first report, you want to tell users how to view the second report. You
can write a linear procedure like the one shown here, which includes on the REPORT panel a message
defined by the MESSAGE command. To have your message be displayed on the REPORT panel, place the
MESSAGE command immediately before the INTERACT command, as shown here:

RUN QUERY WEEKLY_SALES_Q (FORM=WEEKLY_SALES_F

MESSAGE (TEXT='0OK, press END when you are finished viewing this report.'
INTERACT

RUN QUERY YEAR_TOTAL_Q (FORM=YEAR_TOTAL_F

Figure 11. Example of using the MESSAGE command

If you are using a procedure with logic, you can use a REXX variable in place of the text string you
specify for the MESSAGE command, as shown here. When you use REXX variables, you must use double
guotation marks around the variable name in the message text string.

oktext = 'OK, press END when you are finished viewing this report.'
"RUN QUERY WEEKLY_SALES_Q (FORM=WEEKLY_SALES_F"

"MESSAGE (TEXT='"oktext""'"

"INTERACT"

"RUN QUERY YEAR_TOTAL_Q (FORM=YEAR_TOTAL_F"

Figure 12. Using REXX variables with the MESSAGE command in a procedure
This message spans multiple lines with REXX continuation characters.

/* QMF REXX PROCEDURE =*/

MSGTEXT="You entered a data value incompatible with "
"the column data type; check the data type of the !
"column and try again."

"MESSAGE (TEXT=("MSGTEXT"))"

EXIT

Il
I,

Examples
Here are some examples of how to issue the MESSAGE command under various conditions.
« Example of issuing the MESSAGE command from a QMF linear procedure:

This message spans multiple lines by using continuation characters for linear procedures:

MESSAGE (TEXT='You entered a data value incompatible with
+the column data type; check the data type of the
+column and try again.')

« Examples of using MESSAGE commands with ISPF:

The following are examples of how you can use the MESSAGE command if you are building an
application that uses ISPF:

— MESSAGE MSGO11X
- The message text is the long message in MSG011X.
- The message help panelis the panel identified (if any) in MSGO11X.

- Whether the procedure termination switch is set after QMF processes the command is determined
by the procedure termination switch in MSGO11X.

Chapter 8. QMF commands in applications 43



— MESSAGE MSGO11X (HELP=PANELX STOPPROC=YES
- The message text is the long message in MSG011X.
- The message help panel is a panel named PANELX.

- The procedure termination switch is turned on, which suppresses the execution of QMF linear
procedures in the application.

SET GLOBAL (extended syntax)

To create your own global variables and use them in QMF commands as substitution variables, issue the
SET GLOBAL command. You can also use the SET GLOBAL command to set values for QMF predefined
global variables, which start with "DSQ."

Restriction: You cannot use the SET GLOBAL command to set global variables that are defined as
read-only.

Syntax of SET GLOBAL (extended syntax)

You can use the extended syntax of the SET GLOBAL command to change the values of variables in
callable interface languages other than REXX. Examples of other languages include Assembler, C, COBOL,
Fortran, and PL/I.

The variable name can be up to 18 characters long for variables used with callable interface applications.
If the variable is to be used as a substitution variable, the name can be up to 17 characters long. The
maximum length of the command, including the command syntax, is 2,000 bytes.

The syntax of the command is as follows:

»— SET GLOBAL — (—| Variable definitions |—><

Variable definitions

»— number of varnames — ,— varname lengths = — ,— varnames — ,— value lengths — ,—»
»— values — ,— valuetype -»«

number of varnames
The number of variables requested.

varname lengths
A list of lengths for each variable name specified.

Ensure that the length of the global variable name is equal to the actual length of the global name in
your program. An 18-character area padded with trailing blanks is allowed.

varnames
A list of names of the QMF variables.

value lengths
A list of lengths of the values of the variables. If the value length you supply is less than the length of
the value stored in your storage area, the value is truncated on the right when it is stored in QMF.

QMF uses the value from your program, starting at the address you assign for the length you assign. If
the length is too long, QMF might abend.

values
A list of variable values.

value type
The data type of the storage area that contains the values. It must be either character or integer.

Examples of how to use the extended syntax of the SET GLOBAL command are documented with the
programming language specifications.

44 Query Management Facility Version 12 Release 2: Developing QMF applications



Related reference

Programming language specifications for using the callable interface
The QMF application programming interface is available for several programming languages.

Guidelines for defining and using global variables
Global variable names are subject to certain rules.
When you are defining and using global variable names, keep the following rules in mind:

« On the SET GLOBAL command, variable names are not preceded with an ampersand as they are on the
RUN and CONVERT commands.

« If you create a global variable with the same name as a form variable or aggregation variable, QMF does
not use the global variable in the form. QMF uses the form variable (or aggregation variable) value in the
form rather than the global variable value.

- The QMF form does not recognize global variables with question marks in the names.

« Global variable names are limited to 18 characters unless the variable is to be used as a substitution
variable. Substitution variable names are limited to 17 characters.

« A global variable name can contain numeric characters, but the first character of a global variable name
cannot be numeric.

 Global variable names cannot begin with DSQ because QMF reserves these letters for QMF predefined
global variables.

« The first character of a global variable name must be an alphabetic character (A through Z) or one of
these special characters:
¢!$~{}?@# %)\
A global variable name cannot contain blanks or any of the following characters:
*O-+=5" <>/, =&
« QMF strips the trailing blanks from global variable names.

« By default, a global variable value is retained until you reset it or end the QMF session. However, you
can set the DSQEC_USERGLV_SAV global variable to save global variable values from one session to
another.

Related reference
Global variables that control how commands and procedures are executed
QMF global variables

START
When you start QMF through the callable interface, you need to use the START command.

General syntax

The syntax of the START command depends on which programming language you are using for your
callable interface application

Only one QMF session can be active at a time. When you start QMF from an application, issue a START
command to test whether QMF is started.

Examples of the syntax for each programming language are documented with the programming language
specifications.

The following is the general syntax for the START command:

»— START — (—| Keyword definitions |—><

Keyword definitions

Chapter 8. QMF commands in applications 45



»— number of keywords — ,— keyword lengths ~ — ,— keywords — ,— value lengths — ,—»
»— values — ,— valuetype -»«

Assembler, C, COBOL, Fortran, and PL/I use the following specifications for the START command:

number of keywords
The number of START command keywords you are using in your START command.

keyword lengths
The length of each START command keyword specified.
keywords
Names of the START command keywords.
value lengths
A list that contains the lengths of the values for each START command keyword.
values
A list of values for the START command keywords specified in this command.

value type
The data type of the value. The data type must be character for the START command.

Related concepts

Starting QMF from an application

Before you can run any other command from an application, you must start QMF. When using the callable
interface, you start QMF by issuing the START command in your application. You can have only one QMF
session at a time.

Related reference

Programming language specifications for using the callable interface
The QMF application programming interface is available for several programming languages.

START command keywords
You can specify keywords on the START command.

START command keywords

You can specify keywords on the START command.
These keywords are available on the START command:
« DSQADPAN

« DSQALANG

« DSQSBSTG

« DSQSCMD (TSO only)

« DSQSDBCS

« DSQSDBNM

« DSQSDBQN (CICS only)

« DSQSDBQT (CICS only)

- DSQSDBUG

« DSQSIROW

« DSQSMODE

« DSQSMRFI

« DSQSPILL

« DSQSPLAN (TSO only)

« DSQSPRID (TSO only)

46 Query Management Facility Version 12 Release 2: Developing QMF applications



DSQSPTYP (TSO only)
DSQSRSTG (TSO only)
DSQSRUN

DSQSSPQN (CICS only)
« DSQSSUBS (TSO only)

These keywords are described in the following table.

You can specify START command keywords with the following conventions:

« You can specify any keyword on the START command. In TSO, you can also specify any keyword in the
REXX program named by the DSQSCMD keyword. Because QMF for CICS does not support REXX, you
must specify all keywords on the START command.

« If your application or the initial procedure (specified by the DSQSRUN keyword) specifies keywords that
are not supported in a particular environment, those keywords are ignored. With this convention, you
can compile a single program to run in multiple QMF environments without changing the environment-
specific keywords.

« If you do not specify any keywords, QMF uses the values of the START command keywords as they

appear in the program specified by the DSQSCMD keyword. If you do not use this program, QMF uses
the default values of each keyword shown in this table.

Table 8. START command keywords, descriptions, and default values

START Description Default value
command

keywords

DSQADPAN Meant for use only with the callable interface, this START 1 (display report)

command parameter sets the DSQDC_DISPLAY_RPT global
variable. This variable controls whether QMF displays the report
when a query is run from within an application program. A value of
1 displays the report when a query is run. Set the value to 0 to not
display the report.

DSQALANG Determines the presiding national language for the session you E (English)
are starting. You can specify this parameter in your applications
so that users can enter or specify QMF commands in a national
language. The value for this parameter is a one-character national
language identifier, shown here. If you want to enter English
commands when the presiding language is a language other than
English, you can use QMF bilingual support. The national language
feature for the language you specify must be installed.

C - Canadian French
D - German

E - English

F - French

H - Korean (Hangeul)
I - Ttalian

K - Japanese (Kaniji)

P - Brazilian Portuguese
Q - Danish

S - Spanish

U - Uppercase English
V - Swedish

Y - Swiss French

Z - Swiss German

Chapter 8. QMF commands in applications 47



Table 8. START command keywords, descriptions, and default values (continued)

to be used to generate QMF reports. Valid values are:

0-2147483647
Specifies storage in bytes.

OKB - 2097152KB
Specifies storage in KB.

OMB - 2048MB
Specifies storage in MB.

0GB - 2GB
Specifies storage in GB.

1% - 100%
Specifies a percent of available storage. Percentages are valid
in TSO only.

If you are using CICS, you can specify a fixed amount of storage in
bytes, KB, MB, or GB.

If you are using TSO, by default QMF determines the maximum
amount of storage that is to be used for generating QMF reports.
If you set the DSQSBSTG parameter to a valid non-zero value,

the amount of storage that you specify for the parameter is used
instead. If you are using TSO, you can specify the value for
DSQSBSTG as a fixed amount of storage or as a percentage of

the available virtual storage. If you set the DSQSBSTG parameter
to 0 and set the DSQSRSTG parameter to a non-zero value, the
DSQSRSTG parameter is used to determine the maximum amount
of storage for reports. If you specify valid non-zero values for both
DSQSBSTG and DSQSRSTG, the value of DSQSBSTG is used.

If you set the DSQSBSTG value to less than the minimum amount
of storage that is required to produce a report, QMF automatically
allocates the minimum amount of storage required. In TSO, the
minimum amount of storage is 15,000 bytes.

Storage availability is reassessed throughout the QMF session.
Restrictions:

 Percent values must include the percent sign (%) and contain no
spaces.

 Values in GB, MB, or KB format cannot contain spaces (for
example, you cannot enter 2 GB).

« Values in GB, MB, or KB format cannot contain characters after
the units (for example, you cannot enter 2GBxyz).

- GB, MB, or KB entered with no preceding number is handled as
a value of 0.

START Description Default value
command

keywords

DSQSBSTG Specifies the maximum amount of virtual storage per user thatis | In CICS: 500000

InTSO: 0

48 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 8. START command keywords, descriptions, and default values (continued)

START Description Default value
command

keywords

DSQSCMD This keyword specifies the REXX program that sets the QMF DSQSCMDE
(TSO program parameters in QMF for TSO.

only) When QMF receives the START command from a callable

interface application, TSO calls the REXX program specified by
this keyword. This REXX program provides values for the QMF
program parameters unless you specified their values directly on
the START command. The default program provided with TSO is
DSQSCMDE, which provides default English program parameter
values for all keywords shown in this table. A value of NULL for a
particular parameter indicates that TSO uses the default value for
that parameter.

If you are using an NLF, you can change the default program name
to DSQSCMDn. The n variable is the national language identifier
(NLID) for the language you are using.

Though not shown in this table, the DSQSDBLG parameter is also
set by default in the DSQSCMDE program provided with TSO. This
parameter is set when you start QMF for TSO as a Db2 for z/0S
stored procedure. It cannot be externally set outside the context
of the stored procedure interface.

DSQSDBCS Determines whether QMF allows double-byte characters when NO
the display device does not support the double-byte character set
(DBCS). Values are YES or NO.

Set the value to YES when you intend to print DBCS data from a
non-DBCS display device or run a QMF batch job that prints DBCS
data. Otherwise, set the value to NO.

DSQSDBNM Specifies the remote server to connect to when starting a QMF NULL
session. A null value means that QMF connects to the default
database (the database it normally connects to without remote
unit of work).

Specifies the name of the CICS storage queue to be used for QMF | DSQD

DSQSDBQN e
(CI(()ZS ongl) trace data. The name must conform to CICS name specifications

for the type of CICS queue specified by DSQSDBQT.
DSQSDBOT Specifies the type of CICS storage to be used for QMF trace data. |TD
(CICS only) The values are:

D

Uses a CICS transient data queue.
TS

Use a CICS auxiliary temporary storage queue. Use caution
when specifying temporary storage, because QMF can
generate a large amount of trace data.

Chapter 8. QMF commands in applications 49



Table 8. START command keywords, descriptions, and default values (continued)

START
command
keywords

Description

Default value

DSQSDBUG

Specifies whether product activity is traced during QMF
initialization. The values are:

ALL
Specifies the most detailed QMF tracing.

NONE
Specifies no QMF tracing.

When you start QMF in batch mode, all messages and commands
are traced (equivalent to an L2 level of tracing) regardless of how
you set DSQSDBUG.

NONE

DSQSIROW

Indicates the number of rows QMF fetches before displaying the
first screen of data for a RUN QUERY, IMPORT DATA, or DISPLAY
command.

100

DSQSMODE

Specifies the mode in which to start QMF.
I

Specifies interactive mode.
B

Specifies batch mode.

When the value of DSQSMODE is B, panel display is inhibited so
that QMF can run as a background job.

B (batch)

DSQSMRFI

Specifies whether the QMF session that you are starting uses Db2
multirow fetch and insert. Db2 multirow fetch and insert increases
performance for many QMF commands (such as DISPLAY TABLE,
EXPORT DATA or EXPORT TABLE, IMPORT TABLE, PRINT REPORT
or PRINT TABLE, RUN QUERY or RUN PROC) when these
commands retrieve data. Db2 multirow fetch and insert also
increases performance for commands such as SAVE DATA, DPRE,
and BOTTOM or FORWARD during report navigation.

This parameter sets the DSQAO_DSQSMRFI global variable.

YES
Specifies that QMF uses Db2 multirow fetch and insert.

When MR is set to YES and you use a QMF command that
includes a three-part name, the servers must run Db2 for
z/0S. Both the requester where the command is initiated and
the server to which the command is directed must run at this
version level. Commands with three-part names cannot be
directed to DB2 for VSE and VM servers.

NO
Specifies that QMF will not use Db2 multirow fetch and insert
capabilities.

When retrieving XML or LOB data, QMF uses single-row fetch,
regardless of the DSQSMRFI parameter setting.

NO

50 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 8. START command keywords, descriptions, and default values (continued)

START Description Default value
command
keywords
DSQSPILL Specifies whether QMF uses spill storage when extra storage for | For CICS: NO
reports is needed. Possible values are YES or NO. For TSO: YES
If you specify a value of YES for DSQSPILL and are using
QMF for TSO, ensure that the DSQSPTYP parameter is set to
accommodate the type of spill storage you use.
If you are using CICS, see the explanation of the DSQSSPQN
keyword for how to name the temporary storage queue that holds
spill data.
DSQSPLAN Specifies the Db2 application plan ID assigned to QMF. OMF1210
(TSO
only)
DSQSPRID Specifies whether to use the TSO logon ID or the primary PRIMEID
(TSO database authorization ID to select the appropriate row from
only) Q.PROFILES and to qualify Q.ERROR_LOG entries. Allowable
values are PRIMEID or TSOID.
DSQSPTYP When the DSQSPILL parameter is set to YES, specifies the type FILE
(TSO of storage to use for spill data. A value of FILE specifies a file;
only) a value of 64BIT specifies extended storage. When extended
storage is specified, QMF acquires storage on each call to
the extended storage manager in the amount specified in the
DSQEC_EXTND_STG global variable.
DSQSRSTG Dynamically allocates virtual storage available for reports. 0
(TSO You can alternatively use the DSQSBSTG keyword to set the
only) maximum amount of storage as a fixed amount or a percentage
of the available storage. If DSQSBSTG is set to a non-zero value,
QMF ignores the DSQSRSTG value.
DSQSRUN Specifies the name of the QMF initial procedure to run after QMF | NULL
is started. The initial procedure runs only once with the callable
interface.
In this procedure, you can include commands to set global
variables and profile values to customize the user's session.
DSQSSPON Specifies the name of the CICS temporary storage queue thatis | DSQSvid, where id is the
(CICS used for QMF spill data. When the program parameter DSQSPILL | CICS terminal ID
only) has a value of YES, this spill area is used to contain report data.
DSQSSUBS Specifies the ID of the Db2 database in which QMF is started. The | DSN
(TSO database ID you specify on this keyword must be configured as an
only) application requester.

Related concepts
Writing bilingual applications

Chapter 8. QMF commands in applications 51




Many business applications need to run in several different national languages. You can write one English
application and run it in any national language that QMF supports.
Related reference

Conventions for National Language Feature information
Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

Global variables that control how commands and procedures are executed

TRACE

You can use the TRACE command to add trace information from callable interface applications to the QMF
trace data output. This command can be used in Assembler, C, COBOL, Fortran, and PL/I applications. It
cannot be issued from the QMF command line.

The TRACE command syntax is as follows:

»— TRACE — (—| Trace area definitions |—><

Trace area definitions

»— number of trace areas — ,— trace title lengths = — , — trace title addresses —,—>
»— trace area lengths — ,— trace area addresses — ,— valuetype -»<«

number of trace areas
The number of trace area definitions that you are using in your TRACE command. This number must
be in the range of 1 through 10.

trace title lengths
A list of lengths for each trace title that is specified.

trace title addresses
A list of addresses that point to the trace titles that are to be used for each trace area. A trace title
can be up to 40-characters long. Trailing blanks are removed. When the first trace title is SNAPREGS,
all other trace titles and trace area addresses are ignored, and QMF register values are written to the
QMF trace.

trace area lengths
A list that contains the number of bytes of storage that are to be displayed starting at the
corresponding trace area address. Trace area lengths must be contained in FIXED(31) integer values.

trace area addresses
A list of addresses that are to be displayed in the trace output. The number of bytes of storage that
are displayed at each trace area address is determined by the trace area length. When the first trace
title is "SNAPREGS," all trace area addresses and trace area lengths are ignored. When the trace area
address is 0, the trace area length is also considered to be 0.

value type
Must be value "FINT." "FINT" is a constant value that is provided in the interface communications
area (DSQCOMM) for each programming language. The constant is a name that is similar to
DSQ_VARIABLE_FINT. Check the interface communications area for your programming language to
confirm the variable value.

The TRACE command writes trace area definitions to the QMF trace data output, regardless of QMF
trace settings. If you want to write trace output only if QMF trace settings are active, use the
DSQAQO_APPL_TRACE or DSQAP_TRACE QMF global variables.

52 Query Management Facility Version 12 Release 2: Developing QMF applications



PL/I coding example for TRACE

You can use the TRACE command in a PL/I application to write trace information for the application to the
QMF trace output.

The following coding example first verifies that the user is tracing QMF application activity by checking
that the global variable DSQAO_APPL_TRACE is not set to '0". If the application trace is on, then the
TRACE command is issued. The TRACE command specifies three trace area definitions to write to the
QMF trace output.

This example is not included in the DSQABFP file that is distributed with QMF.

DSQABFP: PROCEDURE OPTIONS(MAIN REENTRANT) REORDER;
J R e S S Ty

/* Sample Program: DSQABFP */
/* PL/I Version of the QMF Callable Interface */
[ Fkkkedok ok ek sk ko ok ek ok ko ok ok ko ok ek ok ko ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ook ok ko ok ok ok ok ok ok

"""""""""""""""" R T T R T T I T T O AT
/* Include and declare query interface communications area */

J R R R Rk ok o e e e
9%INCLUDE SYSLIB(DSQCOMML);

/********************************************************************/
/* Builtin function */
/********************************************************************/
DCL LENGTH BUILTIN;

[ Fkokk ek ke kok ok ok e ko kok ok ok e ok kok ok ok ok ok ok ok ok ok ek okok ok ok ok ke ok kok ok ok ok ok ok ok ok ok ek ok kok ok ok ok k ok ok ok ke ok /
/* Query interface command length and commands */

DCL COMMAND_LENGTH FIXED BIN(31);

DCL START_QUERY_INTERFACE CHAR(5) INIT('START');

DCL SET_GLOBAL_VARIABLES CHAR(10) INIT('SET GLOBAL');
DCL GET_GLOBAL_VARIABLES CHAR(10) INIT('GET GLOBAL');

DCL RUN_QUERY CHAR(12) INIT('RUN QUERY Q1');
DCL PRINT_REPORT CHAR(22) INIT('PRINT REPORT (FORM=F1)');
DCL TRACE_COMMAND CHAR(5) INIT('TRACE');

DCL END_QUERY_INTERFACE CHAR(4) INIT('EXIT');

/********************************************************************/

/* Query command extension, number of parameters and lengths */

DCL NUMBER_OF_PARAMETERS FIXED BIN(31);/* number of variables */

DCL KEYWORD_LENGTHS (10) FIXED BIN(31);/* lengths of keyword namesx/

DCL DATA_LENGTHS(10) FIXED BIN(31);/* lengths of variable datax/

/********************************************************************/

/* Trace command parameters */

[ Fkkk ek ek ok ok e ke ke kok ok ok e ok ok ok ok ok ek ok ok ok ok ok ek ook ok ok ok ke ok kok ok ok ok ok kok ok ok ek ok kok ok ok ok ke k ok ok ok ke ok /

DCL AREA_DESCRIPTION(10) CHAR(40) ;

DCL AREA_DESCRIPTION_LENGTH(10) FIXED BIN(31);

DCL AREA_PTR(10) PTR;

DCL AREA_LENGTH(10) FIXED BIN(31); /* Length of area at */
/* AREA_PTR to be */
/* displayed. */

.................................................................... /
/* Keyword parameter and value for START command */

[ Fhkk kK Kk khkkkhhhhkkkhhhhkkkhhhhhkkkkhhhkkkkkhhkkkkkhkrkkkkkhkkkkkkkkkxk Kk %/
DCL 1 START_KEYWORDS,

3 START_KEYWORDS_1 CHAR(8) INIT('DSQSMODE'),

3 START_KEYWORDS_2 CHAR(8) INIT('DSQSDBUG'),

3 START_KEYWORDS_3 CHAR(8) INIT('DSQSSUBS'),

3 START_KEYWORDS_4 CHAR(8) INIT('DSQSPLAN');
DCL 1 START_KEYWORD_VALUES,

3 START_KEYWORD_VALUES_1 CHAR(11) INIT('BATCH'),

3 START_KEYWORD_VALUES_2 CHAR(3) INIT('ALL'),

3 START_KEYWORD_VALUES_3 CHAR(4) INIT('DSNA'),

3 START_KEYWORD_VALUES_4 CHAR(6) INIT('QMFDEV');

/********************************************************************/
/* Keyword parameter and value for SET command */
[ Fkkkekok ko ek ok ok ek ok ko ok ok ko ok ok ok ko ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ook ok ke ok ok ok ok ok ok ok
DCL 1 SET_KEYWORDS,

3 SET_KEYWORDS_1 CHAR(7) INIT('MYVARO1'),

3 SET_KEYWORDS_2 CHAR(5) INIT('SHORT'),

3 SET_KEYWORDS_3 CHAR(7) INIT('MYVARG3');

Chapter 8. QMF commands in applications 53



DCL 1 SET_VALUES,

3 SET_VALUES_1 FIXED BIN(31),

3 SET_VALUES_2 FIXED BIN(31),

3 SET_VALUES_3 FIXED BIN(31);
.................................................................... /
/> Keyword parameter and value for GET command */

F R ok ok ok ok ok ok ok ok o o o R R R R R
DCL 1 GET_TRACE_KEYWORDS,
3 GET_TRACE_KEYWORDS_1 CHAR(16) INIT('DSQAO_APPL_TRACE');

DCL 1 GET_TRACE_VALUE,
3 GET_TRACE_VALUE_1 CHAR(1);

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /
/* Main program */
/********************************************************************/
DSQCOMM = '';
DSQ_COMM_LEVEL = DSQ_CURRENT_COMM_LEVEL;
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /
/* Start a query interface session */

[ Fhkk kK Kk hhkkkhhhhkkkhhhhkkkhhhhkkkhhhhkkkkhhhkkkkhhkhkkkkkhkkkkkkkkkx kK k% /
NUMBER_OF_PARAMETERS = 4;

COMMAND_LENGTH = LENGTH(START_QUERY_INTERFACE);
KEYWORD_LENGTHS(1) = LENGTH(START_KEYWORDS_1);
KEYWORD_LENGTHS(2) = LENGTH(START_KEYWORDS_2) ;
KEYWORD_LENGTHS(3) = LENGTH(START_KEYWORDS_3);
KEYWORD_LENGTHS(4) = LENGTH(START_KEYWORDS_4);
DATA_LENGTHS (1) LENGTH (START_KEYWORD_VALUES_1) ;
DATA_LENGTHS(2) LENGTH (START_KEYWORD_VALUES_2) ;
DATA_LENGTHS(3) LENGTH (START_KEYWORD_VALUES_3) ;
DATA_LENGTHS (4) LENGTH (START_KEYWORD_VALUES_4) ;

CALL DSQCIPX(DSQCOMM,
COMMAND_LENGTH,
START_QUERY_INTERFACE,
NUMBER_OF _PARAMETERS,
KEYWORD_LENGTHS,
START_KEYWORDS,
DATA_LENGTHS,
START_KEYWORD_VALUES,
DSQ_VARIABLE_CHAR) ;

/* Find out current trace setting */
/********************************************************************/
NUMBER_OF_PARAMETERS = 1;

COMMAND_LENGTH = LENGTH(GET_GLOBAL_VARIABLES);

KEYWORD_LENGTHS (1) = LENGTH(GET_TRACE_KEYWORDS_1);

DATA_LENGTHS (1) = LENGTH(GET_TRACE_VALUE_1);

CALL DSQCIPX(DSQCOMM,
COMMAND_LENGTH,
GET_GLOBAL_VARIABLES,
NUMBER_OF _PARAMETERS,
KEYWORD_LENGTHS,
GET_TRACE_KEYWORDS,
DATA_LENGTHS,
GET_TRACE_VALUE,
DSQ_VARIABLE_CHAR) ;

/* Set numeric values into query using SET command */
/********************************************************************/
NUMBER_OF _PARAMETERS = 3;

COMMAND_LENGTH = LENGTH(SET_GLOBAL_VARIABLES);

KEYWORD_LENGTHS (1) = LENGTH(SET_KEYWORDS_1);

KEYWORD_LENGTHS (2) = LENGTH(SET_KEYWORDS_2) ;

KEYWORD_LENGTHS (3) = LENGTH(SET_KEYWORDS_3);

DATA_LENGTHS(1) = 4
DATA_LENGTHS(2) = 4
DATA_LENGTHS(3) = 4

’
r

’

SET_VALUES_1 = 20;
SET_VALUES_2 = 40;
SET_VALUES_3 = 4;

CALL DSQCIPX(DSQCOMM,
COMMAND_LENGTH,
SET_GLOBAL_VARIABLES,
NUMBER_OF _PARAMETERS,

54 Query Management Facility Version 12 Release 2: Developing QMF applications



KEYWORD_LENGTHS,
SET_KEYWORDS,
DATA_LENGTHS,
SET_VALUES,
DSQ_VARIABLE_FINT);

/* Run a Query */
/********************************************************************/
COMMAND_LENGTH = LENGTH(RUN_QUERY) ;

CALL DSQCIPL (DSQCOMM,
COMMAND_LENGTH,
RUN_QUERY) ;

/* Trace command */
/********************************************************************/
IF GET_TRACE_VALUE_1 ~= 'O' THEN DO;

NUMBER_OF_PARAMETERS = 3;

COMMAND_LENGTH = LENGTH(TRACE_COMMAND) ;

AREA_DESCRIPTION(1) = 'DSQAO_APPL_TRACE:';

AREA_DESCRIPTION_LENGTH(1) = LENGTH(AREA_DESCRIPTION(1));

AREA_PTR(1) = ADDR(GET_TRACE_VALUE_1);

AREA_LENGTH(1) = LENGTH(GET_TRACE_VALUE_1);

AREA_DESCRIPTION(2) = 'DSQ_COMM_LEVEL:"';

AREA_DESCRIPTION_LENGTH(2) = LENGTH(AREA_DESCRIPTION(2));

AREA_PTR(2) = ADDR(DSQ_COMM_LEVEL) ;

AREA_LENGTH(2) = LENGTH(DSQ_COMM_LEVEL);

AREA_DESCRIPTION(3) = 'DSQ_CURRENT_COMM_LEVEL:"';

AREA_DESCRIPTION_LENGTH(3) = LENGTH(AREA_DESCRIPTION(3));

AREA_PTR(3) = ADDR(DSQ_CURRENT_COMM_LEVEL) ;

AREA_LENGTH(3) = LENGTH(DSQ_CURRENT_COMM_LEVEL);

CALL DSQCIPX(DSQCOMM,
COMMAND_LENGTH,
TRACE_COMMAND,
NUMBER_OF _PARAMETERS,
AREA_DESCRIPTION_LENGTH,
AREA_DESCRIPTION,
AREA_LENGTH,
AREA_PTR,
DSQ_VARIABLE_FINT);

/* Print the results of the query */
/********************************************************************/

COMMAND_LENGTH = LENGTH(PRINT_REPORT) ;

CALL DSQCIPL (DSQCOMM,
COMMAND_LENGTH,
PRINT_REPORT) ;

/* End the query interface session */
/********************************************************************/
COMMAND_LENGTH = LENGTH(END_QUERY_INTERFACE);

CALL DSQCIPL (DSQCOMM,
COMMAND_LENGTH,
END_QUERY_INTERFACE) ;

END DSQABFP;

When the program detects that the user has tracing set on, the following trace output is written to the
QMF trace output:

DSQDTRC :TRACE COMMAND OUTPUT (14534)
TRACE_AREA_NUMBER

341033B8: 00000001 o000 *
TRACE_AREA_TITLE

341036A4: C4E2D8C1 D66DC1D7 D7D36DE3 D9C1C3C5 *DSQAO_APPL_TRACE=*

341036B4: 7A *: *
TRACE_AREA_CONTENTS

340D0A14: F2 *2 *
DSQDTRC :TRACE COMMAND OUTPUT (14535)

TRACE_AREA_NUMBER

Chapter 8. QMF commands in applications 55



341033B8: 000060602 *.... *
TRACE_AREA_TITLE

341036A4: CA4AE2D86D C3D6D4D4 6DD3C5E5 C5D37A *DSQ_COMM_LEVEL: =*
TRACE_AREA_CONTENTS

340D0500: C4E2D8D3 6EFOFOF1 FOFOF24C *DSQL>001002< *
DSQDTRC :TRACE COMMAND OUTPUT (14536)
TRACE_AREA_NUMBER

341033B8: (0000003 o000 *

TRACE_AREA_TITLE
341036A4: C4E2D86D C3E4D9D9 C5D5E36D C3D6D4D4 *DSQ_CURRENT_COMM=*

341036B4: 6DD3C5E5 C5D37A *_LEVEL: *
TRACE_AREA_CONTENTS
33FO0C50: C4E2D8D3 6EFOFOF1 FOFOF24C *DSQL>001002< *

Commands you can use in a RUN QUERY report minisession

Some commands you use in QMF applications force the display of a report while the application is
running. This environment is called a report minisession. You can limit users' access to QMF by using
report minisessions. In a report minisession, QMF limits the commands that a user can issue while
viewing a report.

A report minisession behaves as a nested session (a session within a session). In minisessions, your
initial QMF session remains intact, but becomes temporarily unavailable while you are viewing a report.
The minisession becomes your current, active session until you issue the END command (or press the
End function key). When you end a minisession, you either return to the initial QMF session or to the
calling application, depending on how you write the application. The application cannot continue to issue
subsequent commands until the report minisession ends.

The QMF global variable DSQDC_DISPLAY_RPT determines whether QMF starts a report minisession. This
situation is because DSQDC_DISPLAY_RPT determines whether QMF displays a report after running a
query. Set this variable to 1 to display the report and 0 to suppress display.

When you start QMF using the callable interface:

« The default value for global variable DSQDC_DISPLAY_RPT is 1. When QMF is started with DSQQMFn
(either interactively or in batch mode) the default value of this global variable is 0. The variable n here
represents the national language identifier.

« If you run a procedure or an application that runs a query, QMF starts a report minisession. QMF
displays the report that results from the query in this minisession.

« If your procedure or application does not run a query, or if you run a query from the SQL Query panel,
QMF does not start a report minisession.

If you do not want QMF to start a report minisession, take one of the following actions:

« Change the value of DSQDC_DISPLAY_RPT to O.
« Set the DSQADPAN parameter to 0 when you start QMF from the callable interface.

From a report minisession, you can issue the following commands and synonyms for those commands.
Restrictions are shown in parentheses.

« BACKWARD

- BOTTOM

« CANCEL (when pop-up window is active)
- CICS

« DISPLAY REPORT

e DISPLAY CHART

« END

« FORWARD

« GET GLOBAL

56 Query Management Facility Version 12 Release 2: Developing QMF applications



HELP
INTERACT
ISPF

LEFT
MESSAGE
PRINT REPORT
PRINT CHART
QMF
RETRIEVE
RIGHT

SAVE DATA
SET PROFILE
SET GLOBAL
SHOW REPORT
SHOW CHART

SWITCH (when online help is active)

TOP
TSO

The following are commands that are not valid in a minisession:

ADD
CANCEL
CHANGE
CHECK
CLEAR
CONNECT
CONVERT
DELETE
DESCRIBE

DISPLAY (QUERY, PROC, PROFILE, FORM, ANALYTICS)

DRAW
EDIT
ENLARGE
ERASE
EXIT
EXPORT
EXTRACT
GETQMF
IMPORT
INSERT
INTERACT
LIST
NEXT
PREVIOUS

Chapter 8. QMF commands in applications 57



« PRINT (QUERY, PROC, PROFILE, FORM)
« REDUCE

« REFRESH

« RESET GLOBAL

« RESET (Query, Proc, Form)
« RUN

« SAVE

« SEARCH

- SHOW

« SORT

« SPECIFY

« START

« SWITCH

« TRACE

QMF returns an error message when you run a CLIST or a procedure that issues a restricted command.

Related reference

Conventions for National Language Feature information

Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

SET GLOBAL (extended syntax)

To create your own global variables and use them in QMF commands as substitution variables, issue the
SET GLOBAL command. You can also use the SET GLOBAL command to set values for QMF predefined
global variables, which start with "DSQ."

Command synonyms

You can create command synonyms, which are commands that resemble QMF commands and can
perform a variety of functions.

Command synonyms give you flexibility and they are useful for users. For example, command synonyms
can perform the function of a command or start an application.

58 Query Management Facility Version 12 Release 2: Developing QMF applications



Chapter 9. Exporting and importing objects

You can write applications that issue QMF EXPORT and IMPORT commands to place objects outside of the
OMF environment.

Your applications can export tables and the following QMF objects:

DATA
QUERY
PROC
FORM
REPORT
CHART

When you export objects except reports or objects that are in CSV format, QMF converts the object to an
externalized format. QMF stores the externalized format of the object in a UNIX file (in the case of data or
tables only), a TSO data set, or a CICS data queue. The externalized format of QMF objects is a powerful
element of QMF application development.

The IMPORT command reads the externalized format and places the object either in QMF temporary
storage or in the database. The location depends on how you issue the command.

What you can do with an exported UNIX file, TSO data set, or CICS
data queue

The QMF EXPORT and IMPORT commands on data objects are useful in several situations.

For example, you can use the IMPORT and EXPORT commands to accomplish these goals:

Provide query results to your application

Use the QMF EXPORT command to get data out of the database and into your application.
Create objects within your application and use them in QMF

You can create an object outside of the QMF environment by using the appropriate format for the object.
For example, in the case of data or tables, when you import the UNIX file into QMF, a new QMF object is
created. A new object is also created when you import a TSO data set or CICS data queue that contains
the object.

You cannot import reports, charts, or CSV files into QMF. For reports and charts, you can instead import
the data and the forms that were used to create them.

Make QMF objects available to other environments or products.

Attention: Use caution when transferring exported objects between systems with different
CCSIDs or character sets, such as between EBCDIC and ASCII systems, or between different
NLF environments. Transferring the objects between systems in this way might render them
unusable.

If you need to import a prompted or QBE query into a program other than QMF, you must first use the
CONVERT QUERY command. The CONVERT QUERY command converts the query to an SQL query that
you can export and use in other products.

You can transfer QMF objects between QMF under TSO, ISPF, or native z/OS batch. You can also transfer
QMF objects under CICS by using CICS extrapartition transient data queues.

Save objects and data outside of the database

For example, in the middle of a program, you can export your data so that an external program can
manipulate it.

© Copyright IBM Corp. 1982, 2021 59



« Create bilingual applications

You can create a QMF form in your presiding language and translate it to English by using the
LANGUAGE option on the EXPORT command. You can also use the LANGUAGE option on the IMPORT
and EXPORT commands to translate an English form to your presiding language.

Exporting versus saving data

The difference between the EXPORT DATA and SAVE DATA commands is in where and how the object is
stored.

This difference in how objects are stored affects what you can do with the results:

- Exporting a data object produces a UNIX file, TSO data set, or CICS data queue. You can read, modify, or
print each item sequentially through QMF application programs or other external applications.

« The SAVE DATA command produces a database table. Actions that use saved data must be taken
through the database.

Exporting data objects and database tables

You can export data and table objects in the QMF, Integrated Exchange Format (IXF), XML, or comma-
separated value (CSV) format. The QMF format is the default.

When you run a query, QMF displays the result in a report. The raw data for the report is stored in a
temporary storage area as a data object. Relational tables and views that are stored in the database are
referred to as table objects.

You can export data and table objects to storage areas external to QMF. The exported formats of a table
in temporary storage (DATA) and a table stored in the database (TABLE) are identical. An object that is
exported as data can be imported as a table, and vice versa, unless the data is in CSV format.

You can create your own tables outside of QMF. Use the QMF, IXF, or XML format and import the contents
of the UNIX file, TSO data set, or CICS data queue that contains the table. Include the required fields and
add your own data as appropriate. Then import the UNIX file, TSO data set, or CICS data queue into QMF

as a table object.

Related concepts

Rules and information for exporting and importing data objects and tables
QMF exports data and table objects to temporary storage and has rules for how it allocates that storage.
QMF also has specific ways for handling import errors.

Exporting data or tables in QMF format

The data file that you export by using the EXPORT command with the DATAFORMAT=QMF clause consists
of two parts: header records, which describe the data in the records, and the data records, which contain
the data.

Header records
Header records describe the exported data in the data file.

The record length of an external data file is the length of a row of the data, as described in the data record.
The header records that precede the data records are the same length as the data records. If the header
information exceeds the length of the data record, multiple header records are written.

Two formats are used for header records. One is used for short column names, and the other is used for
long column names. The following tables show the information that is contained in each format of the
header records.

60 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 9. Header record information for short column names

Byte position

Information and type

1-8

QMF object format level (8 characters of data)

These byte positions say REL 1.0 when all the column names are short names
and the DSQDC_SHORT_EXPT global variable is set to 1.

9-10

Number of header records (halfword signed integer)

11-12

Number of data columns (halfword signed integer)

13-30

Column name

The maximum column width is 18 bytes.

31-32

Data type (halfword signed integer)

Data type codes are shown in Table 11 on page 62. This field stores the
hexadecimal equivalent of the decimal codes shown in the table for each data

type.

33-34

Column width (halfword signed integer); for most data types this width is the width
of the column in bytes, with the following exceptions:

» In DECIMAL columns, the first byte of the halfword represents the precision, and
the second byte represents the scale.

« In GRAPHIC and VARGRAPHIC columns, this value reflects the width of double-
byte characters.

 In FLOAT columns, this value is either 4, indicating single-precision floating point,
or 8, indicating double-precision floating point.

« In DECFLOAT columns, this value is 8 for long-format values and 16 for
extended-format values.

35

Nulls allowed: Y if nulls are allowed; N if they are not allowed (1 character of data)

36

Unused byte

The block that is described by bytes 13-36 repeats for as many columns as there are in the data.

Table 10. Header record information for long column names

Byte position

Information and type

1-8

QMF object format level (8 characters of data)

These byte positions say REL 3.0 when the DSQDC_SHORT_EXPT global variable
is set to 0.

9-10 Number of header records (halfword signed integer)
11-12 Number of data columns (halfword signed integer)
13-42 Column name

The default maximum name length is 30 bytes. However, you can use the
DSQDC_SHORT_EXPT global variable to set a maximum column width of 18 bytes
before you export the data. In that case, the header record format for short column
names is used.

Chapter 9. Exporting and importing objects 61



Table 10. Header record information for long column names (continued)
Byte position Information and type
43-44 Data type (halfword signed integer)
Data type codes are shown in Table 11 on page 62. This field stores the
hexadecimal equivalent of the decimal codes shown in the table for each data
type.
45-46 Column width (halfword signed integer); for most data types this width is the width
of the column in bytes, with the following exceptions:
« In DECIMAL columns, the first byte of the halfword represents the precision, and
the second byte represents the scale.
« In GRAPHIC and VARGRAPHIC columns, this value reflects the width of double-
byte characters.
« In FLOAT columns, this value is either 4, indicating single-precision floating point,
or 8, indicating double-precision floating point.
« In DECFLOAT columns, this value is 8 for long-format values and 16 for
extended-format values.
The default maximum column width is 30 bytes. However, you can use the
DSQDC_SHORT_EXPT global variable to set a maximum column width of 18 bytes
before you export the data. In that case, the header record format for short column
names is used.
47 Nulls allowed: Y if nulls are allowed; N if they are not allowed (1 character of data)
48 Unused byte

The block that is described by bytes 13-48 repeats for as many columns as there are in the data.

The data type codes are shown in this table. The hexadecimal codes shown in the first column are used to
indicate each data type shown in the third column.

Table 11. Data type codes

Code in hexadecimal Code in decimal Data type Meaning
X'180' 384 DATE Date
X'184' 388 TIME Time
X'188' 392 TIMESTAMP Timestamp
X'1C0' 448 VARCHAR Varying-length

character

X'1C4' 452 CHAR Fixed-length character
X'1D0' 464 VARGRAPHIC Varying-length graphic
X'1D4' 468 GRAPHIC Fixed-length graphic
X'1EQ! 480 FLOAT Floating point
X'1E4' 484 DECIMAL Decimal
X'1EC' 492 BIGINT Big integer
X'1FOQ' 496 INTEGER Integer
X'1F4' 500 SMALLINT Small integer

62 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 11. Data type codes (continued)

Code in hexadecimal Code in decimal Data type Meaning
X'38C' 908 VARBINARY Varying-length binary
X'390' 912 BINARY Fixed-length binary
X'3E4' 996 DECFLOAT(16) and Long-format decimal
DECFLOAT(34) floating point
and extended-format
decimal floating point
X'990' 2448 TIMESTAMP WITH TIME [ Timestamp with time
ZONE zone

Columns containing DATE, TIME, TIMESTAMP, or TIMESTAMP WITH TIME ZONE data types are always

exported in ISO format.

Data records

Data records are in fixed block (FB) format and contain the data to be exported.

The maximum allowable length of a data record is 7,000 bytes. The length of a data record is the sum of
the widths of the data types that are included in the record. Use the following table to calculate the widths

of each data type.

bytes in each column.

Table 12. Widths of data records. Calculate the width of a particular data record by adding the number of

Null
Data type indicator Length field S0/SI Data
Character
8 for long-format values; 16
for extended-format values 2 Length in header (LIH)
Date
8 for long-format values; 16
for extended-format values 2 LIH
Floating point
8 for long-format values; 16
for extended-format values 2 )
8 for long-format values; 16
Decimal floating point 2 for extended-format values
Big integer
8 for long-format values; 16
for extended-format values 2 LIH
Integer
8 for long-format values; 16
for extended-format values 2 LIH

Chapter 9. Exporting and importing objects 63



Table 12. Widths of data records. Calculate the width of a particular data record by adding the number of
bytes in each column. (continued)
Null
Data type indicator Length field S0/S1 Data
Small integer
8 for long-format values; 16
for extended-format values 2 LIH
Time
8 for long-format values; 16
for extended-format values 2 LIH
Timestamp
8 for long-format values; 16
for extended-format values 2 LIH
Timestamp with time zone 2 2 LIH
Decimal 2 (Precision+2) // 2
Graphic 2 2 (LIH x 2)
Variable character 2 2 LIH
Variable graphic 2 2 2 (2 x LIH)
Binary 2 LIH
Variable binary 2 2 LIH

Important: The LIH is the width given in the header record for that column.

Every data record has 2 bytes of indicator information, which can have the values and meanings shown in

this table:

Table 13. Hex values that show the validity of data records

Value Meaning

X'0000' The column contains valid data.

X'FFFF' or The column contains a null value; any data in the column is meaningless.
X'FFFE'

Interpreting a data object in QMF format
You can calculate the length of the header record when you have the length of the data records.

For example, suppose that you export the following data from the Q.STAFF table:

ID NAME COMM
10 SANDERS =
20 PERNAL 612.45

In this example, each data record is 23 bytes long. Table 10 on page 61 shows that the first 12 bytes
contain level and number information.

Calculate the widths of each column as shown in this table:

64 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 14. Calculating column widths
Column name Data type Column width (length in Width of column
header)
ID SMALLINT 2 2+2=4
NAME VARCHAR 9 2+2+9=13
COMM DECIMAL (7,2) 7 7+1)/2+2=6
Length of data record: 23

There are 24 bytes for each column of data, and there are three columns. Thus, for this three-column data
object, the header is 84 bytes:

(12 + (24 x3)=84)

Each header record is the same length as the data records: 23 bytes. The 84 bytes are spread across four
23-byte header records; the last record is padded with blanks.

This sample header shows the header from the report and its hexadecimal representation. 40 is the
hexadecimal code for a blank character. The reversed-type numbers are associated with notes that follow
the sample.

R E L 3 .0 I D
[ 1]
1 D9 C5 D3 40 F1 4B FO 40 0004 0003 C9 C4 40 40 40 40 40 40 40 40 40
E E I
N N AM E

2 40 40 40 40 40 40 40 01F4 0002 D5 00 D5 C1 D4 C5 40 40 40 40 40 40

EH B

Y C 0 M M
3 40 40 40 40 40 40 40 40 01CO 0009 E8 00 C3 D6 D4 D4 40 40 40 40 40
Y

4 40 40 40 40 40 40 40 40 40 O1E4 07 02 E8 00 40 40 40 40 40 40 40

Figure 13. Sample header records for an exported data object in QMF format

The next sample shows the data from the report and the hexadecimal representation of that data. For
information about what the byte positions mean, see Table 10 on page 61.

10 S ANDETRS
1 00 00 00 OA 00 00 00 07 E2 C1 D5 C4 C5 D9 E2 00 00 FF FF 00 00 00 40 40

[ 8 |

20 PERNAL

2 00 00 00 14 00 00 00 06 D7 C5 D9 D5 C1 D3 00 0O 00 OO0 0O 00 61 24 5C

Figure 14. Sample data records for an exported data object in QMF format

REL 3.0
Object format level: 3.0

The object format level tells QMF which version of the object format this object is using. Every time
a QMF object format is changed, the level number is changed; object formats are not changed with
every new release.

H x'0004'
Number of header records: 4

E] X'0003'
Number of data columns: 3

Chapter 9. Exporting and importing objects 65



3 x'c9 c4'
Column name: ID

H X'1F4'

Data type: SMALLINT
@ x'0002'

Column width: 2
X'D5'

Nulls allowed: N signifies no
E] X'0A'

Value for the first column of the first data record: 10
El x'o7

Length of the name in the second column of the first data record: 7
X'FFFF'

Indicator information: column contains a null value

Exporting data or tables in IXF format

When you use the EXPORT command to export a data object or table with the DATAFORMAT=IXF option,
the data is exported in the Integrated Exchange Format (IXF). QMF supports a subset of IXF.

The TSO data set or CICS data queue that contains the exported data or table consists of the following
records:

« Header record (H)
« Table record (T)
« Column records (C)

« Data records (D)

The exported data set or CICS data queue consists of one H record, followed by one T record. The T
record contains a count of how many C records follow the T record. There is a C record for each column in
the table. D records follow C records. There is a D record for each row in the table. The arrangement of the

records is displayed in the following graphic:
D o D
record record

H T C o C
record record | record record
‘4 One per column —» «— One per row —h‘

Figure 15. Arrangement of records in an exported data set or CICS data queue (IXF format)

Header record (H)
A header record (which is mandatory) in IXF format is the first record in the data set or CICS data queue.

The header record is a 42-byte record that contains character data. The format of the H record is shown in
this table:

Table 15. Parts of a header record in an IXF data set or data queue that contain an exported data object
or database table

Byte Information and type

position

01 Header record indicator (H)

02-04 TSO data set or CICS data queue identifier

66 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 15. Parts of a header record in an IXF data set or data queue that contain an exported data object
or database table (continued)

Byte Information and type
position
05-08 IXF version; the version can be one of the following types:
» 0000, which supports data or tables that contain short column names (18 or fewer
characters) and no TIMESTAMP WITH TIME ZONE columns
» 0001, which supports data or tables that contain at least one long column name (19
characters or more) and no TIMESTAMP WITH TIME ZONE columns
» 0002, which supports data or tables that contain short column names (18 or fewer
characters) and at least one TIMESTAMP WITH TIME ZONE column
» 0003, which supports data or tables that contain at least one long column name (19
characters or more) and at least one TIMESTAMP WITH TIME ZONE column
09-14 Originating product name (QMF)
15-20 Originating product release level (VBR2MO)
21-28 Date that the data set or CICS data queue was created, in the form YYYYMMDD
29-34 Time that the data set or CICS data queue was created, in the form HHMMSS
35-39 The number of records that precede the first D (data) record in the data set or CICS
data queue; this value is a five-digit numeric value expressed in character form
40 DBCS indicator that tells whether DBCS data is a possibility; Y or N
41-42 Blanks
Table record (T)

A table record in IXF format follows the header record. Each data set or data queue that contains an
object in IXF format must have a T record. A table record contains table and data information about the
object that was exported with the EXPORT TABLE or EXPORT DATA command.

Names of tables that are exported in IXF format are truncated at 18 characters and owner hames are
truncated at 8 characters. If you run a query and export the resulting DATA object, the table record
contains a blank owner and name.

The format of a T record is shown in this table:

database table

Table 16. Parts of a table record in an IXF data set or data queue that contain an exported data object or

Information and type

Byte

position

01 Table record indicator (T)

02-03 Data name length (18)

04-21 Name of the table from which data is retrieved; left-aligned, padded with blanks to the

right

The entire 18-byte field is blank if the table does not have a name.

Chapter 9. Exporting and importing objects 67



Table 16. Parts of a table record in an IXF data set or data queue that contain an exported data object or

database table (continued)

Byte Information and type

position

22-29 Data name qualifier; name of the owner of the database table from which the data is
retrieved
The 8-byte field is blank if the table does not have an owner.

30-41 Data source (database)

42 Convention used to describe data: C for columnar data

43 Data format: C for character (OUTPUTMODE=CHARACTER); M for machine
(OUTPUTMODE=BINARY)

44 Data location: I for internal

45-49 Count of column (C) records: a numeric value in character form that specifies the
number of C records before the first data (D) record

50-51 Reserved

52-81 Blanks

Column records (C)

A column record in IXF format describes the data characteristics of the column. There is a column record
for each column in the table.

When a column name longer than 18 characters exists, the column name field in the column record
must be increased from 18 to 30 characters. The IXF version number that is used in the header record
depends not only on whether there is a column name longer than 18 characters, but also whether the
data contains a TIMESTAMP WITH TIME ZONE column. Table 15 on page 66 shows the IXF version
numbers used in each case.

The following table shows the format of a column record for data or tables that contain no TIMESTAMP
WITH TIME ZONE columns (IXF version numbers 0000 or 0001). For information about data or tables that
contain one or more TIMESTAMP WITH TIME ZONE columns (IXF version numbers 0002 or 0003), see
Table 18 on page 69.

Table 17. IXF format with no TIMESTAMP WITH TIME ZONE columns (IXF version numbers 0000 or 0001)

Byte Information and type

position

01 Column record indicator (C)

02-03 Column name length

04-21 Column name, as obtained from the database or generated by QMF (in the case
where the column did not originally have a name)
The name is left-aligned, and padded with blanks to the right if necessary.

22 or 34 Indicator that tells if nulls are allowed; Y or N

23 or 35 Column-selected indicator (Y)

24 or 36 Key column indicator (Y)

25o0r 37 Data class (R)

68 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 17. IXF format with no TIMESTAMP WITH TIME ZONE columns (IXF version numbers 0000 or 0001)

(continued)

Byte
position

Information and type

26-28 or 38-40

Data type (For data type codes, see Table 20 on page 71)

29-33 or 41-45

Code page

34-38 or 46-50

Reserved

39-43 or 51-55

Column data length; a decimal value in character form

If the data type is DECIMAL, the first 3 bytes represent data precision and
the next 2 bytes represent the scale. If the data type is BIGINT, INTEGER, or
SMALLINT, this field is blank because the length is inherent in the data type.

44-49 or 56-61

Starting position of column data; a decimal value in character form

This value reflects the offset of the data for a column from the start of the data
record.

If the column allows nulls, this field points to the null indicator. If the column does
not allow nulls, it points to the data itself. Whether the column allows nulls, space
for the null indicator is always present in the record. The starting position is based
from the first byte that contains data. Therefore, the first five bytes of the data

(D) record are not included in any consideration for starting position of the actual
data. (The first data position is position 1, not position 0.)

50-79 or 62-91

Column label information, if available (if not available, these byte positions
contain blanks)

80-81 or 92-93

Two bytes of zeros in character form (00)

If the data or table contains one or more TIMESTAMP WITH TIME ZONE columns, the format of the
column record is as follows:

Table 18. IXF format with one or more TIMESTAMP WITH TIME ZONE columns (IXF version numbers 0002

or 0003)

Byte Information and type

position

01 Column record indicator (C)

02-03 Column name length

04-21 Column name, as obtained from the database or generated by QMF (in the case
where the column did not originally have a name)
The name is left-aligned, and padded with blanks to the right if necessary.

22 0r34 Indicator that tells if nulls are allowed; Y or N

230r35 Column-selected indicator (Y)

24 or 36 Key column indicator (Y)

25 or 37 Data class (R)

26-29 or 38-41

Data type (see Table 20 on page 71 for data type codes)

30-34 or42-46

Code page

Chapter 9. Exporting and importing objects 69



Table 18. IXF format with one or more TIMESTAMP WITH TIME ZONE columns (IXF version numbers 0002
or 0003) (continued)

Byte
position

Information and type

34-38 or 47-50

Reserved

39-43 or 51-55

Column data length; a decimal value in character form

If the data type is DECIMAL, the first 3 bytes represent data precision and
the next 2 bytes represent the scale. If the data type is BIGINT, INTEGER, or
SMALLINT, this field is blank because the length is inherent in the data type.

44-49 or 56-61

Starting position of column data; a decimal value in character form

This value reflects the offset of the data for a column from the start of the data
record.

If the column allows nulls, this field points to the null indicator. If the column does
not allow nulls, it points to the data itself. Whether the column allows nulls, space
for the null indicator is always present in the record. The starting position is based
from the first byte that contains data. Therefore, the first five bytes of the data

(D) record are not included in any consideration for starting position of the actual
data. (The first data position is position 1, not position 0.)

50-79 or 62-91

Column label information, if available (if not available, these byte positions
contain blanks)

80-81 or 92-93

Two bytes of zeros in character form (00)

Data records (D)

Data records in IXF format are in variable block (VB) format. There is a data record for each row in the

table.

This table shows the format of a data record:

Table 19. Format of a data record in an IXF data set or data queue that contains an exported data object

or table

Byte Information and type

position

01 Data record indicator (D)

02-04 Reserved

05 Blank

06-end of Row data in binary or character form, depending on whether byte 43 of the table
record record is M (machine) or C (character)

Byte 6 represents the start (position 1) of row data for the first column.

Column data format

Data in D records for n columns is placed side by side, as shown in this figure.

70 Query Management Facility Version 12 Release 2: Developing QMF applications




column
2

column
1

... column
n

Figure 16. Format of column data in D records

For each column, the data consists of a null indicator followed by the data itself. If nulls are allowed (byte
22 or 34 of the C record has a value of Y), then bytes 44-49 or 56-61 of each C record point to the null
indicator that precedes the data for that column. If nulls are not allowed (byte 22 or 34 of the C record
has a value of N), then bytes 44-49 or 56-61 point to the data itself. However, in the latter case, space for
the null indicator is left in the data record. The first position in bytes 44-49 or 56-61 is represented by a
value of 1, which points to byte 6 of a D record (bytes 1 through 5 are ignored).

The representation of the null indicator depends on what is specified for OUTPUTMODE: character or
binary. OUTPUTMODE is reflected in byte 43 of the T record: C for character or M for machine (binary).
When the data format is character, 1 byte is used for the null indicator:

« Adash (-) indicates that the data is null
« A blank indicates that the data is not null

When the data format is binary, 2 bytes are used for the null indicator:

« X'FFFF' indicates that the data is null
« X'0000' indicates that the data is not null

For more information about the null indicator, see the examples that help you interpret an object in IXF
format, below.

Format of column data by data type
The length and format of IXF column data in D records can differ depending on the OUTPUTMODE.

This table shows the length and format of column data in D records for each data type for both character
and binary export formats. In the table, IXFCLENG refers to the contents of bytes 39-43 or 51-55ofa C
record (length of column data).

Table 20. Format of IXF column data by data type

Data Data type Data length information (when OUTPUTMODE = Data length
type CHARACTER) information (when
code OUTPUTMODE =
BINARY)
384 DATE The value in IXFCLENG is not significant for this data type. [Same as character
The length (10 bytes) is inherent in the data type. format

The format is:

yyyy-mm-dd

where yyyy represents the year, mm the month, and dd
the day. yyyy, mm, and dd must be numeric characters.
Leading zeros cannot be omitted. The allowable range
for yyyy is 0001-9999; for mm it is 01-12. The dd range
depends on the month. For example, the following value
specifies a date of February 28, 2002:

2002-02-28

Chapter 9. Exporting and importing objects 71



Table 20. Format of IXF column data by data type (continued)

Data

type
code

Data type

Data length information (when OUTPUTMODE =
CHARACTER)

Data length
information (when
OUTPUTMODE =
BINARY)

388

TIME

The value in IXFCLENG is not significant for this data type.
The length (8 bytes) is inherent in the data type.

The format is:
hh.mm.ss

where hh represents the hour in 24-hour format, mm

is minutes, and ss is seconds. hh, mm, and ss must all

be numeric characters. Leading zeros cannot be omitted.
Allowable ranges are:

« 00 - 23 for hh
« 00 - 59 formm
« 00-59forss

The special value 24.00.00 for midnight is valid. Examples:

10.37.42is10:37:42 AM
08.00.00 is 8 AM exactly
23.30.00is11:30 PM

Same as character
format

392

TIMESTAMP

The length of TIMESTAMP(0) is 19; the length of
TIMESTAMP(n) is 20+n, where n is a number from 1 to

12. For example, a column defined as TIMESTAMP(12) has
alength of 32.

The format is:
yyyy-mm-dd-hh.mm.ss.nnnnnnnnnnnn

where yyyy is the year, mm is the month, dd is the day, hh
is hour in 24-hour format, mm is minutes, ss is seconds,
and nnnnnnnnnnnn is fractional seconds. Valid ranges for
year, month, day, hour, minutes, and seconds are the same
as the DATE and TIME data types.

Examples:

2010-12-31-23.59.59.999999999999
(the last fractional second in 2010)

2010-01-01-00.00.00.000000000001
(the first fractional second in 2010)

24.00.00.000000000000 is valid for the time portion of a
timestamp.

Same as character
format

72 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 20. Format of IXF column data by data type (continued)

Data

type
code

Data type

Data length information (when OUTPUTMODE =
CHARACTER)

Data length
information (when
OUTPUTMODE =
BINARY)

448

VARCHAR
LONG VARCHAR

IXFCLENG is the maximum length of the character string.
Data length consists of n bytes indicated by IXFCLENG
preceded by a 5-byte character count field. (The allowable
range for nis 0-32704 and for the count field it is

0-n.) The number of characters indicated by the count
field are valid; the rest are meaningless. For example, if
IXFCLENG=00010, the data takes this format:

OOOO5IJONESXXXXX

In this format, each x is a blank character (X'40").

IXFCLENG is the
maximum length
of the character
string. The data
length consists of
n bytes indicated
by IXFCLENG
preceded by a
2-byte binary
count field. (The
allowable range for
nis1-32704 and
for the count field it
is 0-n.) The number
of characters
indicated by the
count field are
valid; the rest

are meaningless.
For example, if
IXFCLENG=00010,
the data format is
as follows:

NNJONESXXXxxX

In this format,
nn=X'0005"'and
each x is a blank
character (X'40").

452

CHAR

IXFCLENG is the length of the character string. Data length
is indicated by n bytes of IXFCLENG. (The allowable range

for nis 1-254). For example, if IXSFCLENG=00005, the data
takes this format:

JONES

In this format, JONES is the 5-byte character string
pointed to by bytes 44-49 or 56-61 of the C record.

Same as character
format

Chapter 9. Exporting and importing objects 73




Table 20. Format of IXF column data by data type (continued)

Data Data type Data length information (when OUTPUTMODE = Data length
type CHARACTER) information (when
code OUTPUTMODE =
BINARY)
464 VARGRAPHIC  |IXFCLENG is the maximum number of double-byte Data length
LONG characters (2xn bytes). Data length consists of a 5-byte consists of a 2-
VARGRAPHIC | character count field, plus twice the number of bytes byte binary count
indicated by IXFCLENG, plus 2 (for shift characters). The | field followed by
number of 2-byte characters in the count field are valid twice the number
plus a shift-out (X'0E') immediately preceding the data, of bytes indicated
and a shift-in (X'OF') immediately following the data. The [ bY IXFCLENG. The
rest can be meaningless. (The allowable range for n is allowable range
1-16352 and for the count field the allowable range is for IXFCLENG is
0-n.) For example, if IXFCLENG = 00006, the data takes | 116352, and for
this format: the count field
it is 0O-IXFCLENG.
000030ZZYYXXixrraxy The number of
2-byte characters
In this format, the letter o is shift-out, i is shift-in, and each | in the count field
x is a blank character (X'40"). are valid. There
are no surrounding
shift-out and shift-
in characters.
The rest can
be meaningless.
For example,
if IXFCLENG =
00008, the data
takes this format:
NNZZYYXXWWXXXXXX
XX
In this format,
nn=X'0004"and
each x is a blank
character (X'40").
468 GRAPHIC IXFCLENG is the number of double-byte characters Same as character

(2*n bytes). Data length is 2*n bytes plus a shift out
(X'OE") immediately preceding the data, and a shift-in
(X'OF") immediately following the data. For example, if
IXFCLENG=00005, the data takes this format:

0ZZYYXXWWVVL

In this format, the letter o is shift-out and i is shift-in.

format except that
there are no
surrounding shift-
in and shift-out
characters in the
data string

For example, if
IXFCLENG=00005,
the data format is
as follows:

ZZYYXXWWVV

74 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 20

. Format of IXF column data by data type (continued)

Data Data type Data length information (when OUTPUTMODE = Data length

type CHARACTER) information (when

code OUTPUTMODE =
BINARY)

480 FLOAT The value in IXFCLENG is 4 for single-precision values and | The value in

8 for double-precision values. The length and format of the
data is determined by the precision of the value.

Single-precision values consist of up to 14 characters in
the following format:

sn.nnnnnnnEsee

In this format:

 sis an optional sign (a plus, a minus, or, in the case of the
first position, a blank if the number is positive).

 n represents the digits of the significand, which can be
up to 8 digits. A decimal point must be in the second
position of the significand.

 E signifies the beginning of the exponent.

- erepresents the digits of the exponent, which can be one
or two digits.

The value must be in the range +/-5.4E-79 to +/-7.2E+75.

Examples:

-1.2345679E+07
6.2345679E-01
0.0000000E+00

Double-precision values consist of up to 23 characters in
the following format:

sn.nnnnnnnnnnnnnnnnEsee

In this format:

« sis an optional sign (a plus, a minus, or, in the case of the
first position, a blank if the number is positive).

- nrepresents the digits of the significand, which can be
up to 18 digits. A decimal point must be in the second
position of the significand.

- E signifies the beginning of the exponent.

- e represents the digits of the exponent, which can be 1
or 2 digits.

The value must be in the range +/-5.4E-79 to +/-7.2E+75.

Examples:

-1.2345678901234568E+14
6.23456789012345678E-01
0.000000000000000OE+0O

IXFCLENG is 4

for single-precision
values and 8 for
double-precision
values. The data
consists of a 4-
byte floating-point
value for single
precision and an 8-
byte floating-point
value for double
precision.

Chapter 9. Exporting and importing objects 75




Table 20. Format of IXF column data by data type (continued)

Data Data type Data length information (when OUTPUTMODE = Data length
type CHARACTER) information (when
code OUTPUTMODE =
BINARY)
484 DECIMAL Bytes 39-43 or 51-55 of the C record represent the Bytes 39-43 or
precision, or P (first 3 bytes), and scale, or S (next 2 bytes), | 51-55 of the C
of the number. The allowable range for P is 0-15. S can be |[record represent
any value less than or equal to P. the precision, or
Data is formatted as a P+2-byte character value (or P+1 P (grst 3[ byte;),
bytes if S=0), right-aligned, with the first byte reserved for andsca e, or
. : ) L SRR (next 2 bytes), of
a sign, and a decimal point (the position of which is implied
PR . the number. The
by S) present only if S is not equal to zero. For example, if allowable range for
P=005 and S=00, the data takes the following format: .
Pis 0-15. S can be
12345 any value less than
or equal to P.
If P=006 and S=02, the data takes the following format: .
The data consists
+2345.10 of a (P+2)/2'byte
decimal value in
If P=004 and S=03, the data takes the following format: packed decimal
format. The last
-8.515 byte indicates the
sign of the value.
For example, if
P=005 and S=00,
the data format is
as follows:
X'12345C"
If P=006 and S=02,
the data format is
as follows:
X'0234516D"
492 BIGINT The value in IXFCLENG is not significant for this data The value in

type. The length and format of the data is inherent in the
data type. The data consists of a 20-byte character value,
right-aligned, with the first character reserved for a sign.
Examples:

0000000000000000033
+9223372036854775807
-9223372036854775808

IXFCLENG is not
significant. The
length and format
of the data is
inherent in the
data type. The data
consists of an 8-
byte binary value.

76 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 20. Format of IXF column data by data type (continued)

Data Data type Data length information (when OUTPUTMODE = Data length
type CHARACTER) information (when
code OUTPUTMODE =
BINARY)
496 INTEGER The value in IXFCLENG is not significant for this data type. [The valuein
The length and format of the data is inherent in the data IXFCLENG is not
type. significant. The
] ) length and format
The data consists of an 11-byte character value, right- of the data is
aligned, with the first character reserved for a sign. inherent in the data
Examples: type.
(i)(i)g(g(ggggel)g The data consists
+ )
. 5033588727 of a 4-byte binary
value.
500 SMALLINT The value in IXFCLENG is not significant for this data type. | The value i'_“
The length and format of the data is inherent in the data IXFCLENG is not
type. significant. The
) ) length and format
The data consists of a 6-byte character value, right- of the data is
aligned, with the first character reserved for a sign. inherent in the data
Examples: type.
00023 The data consists
oo7e3 of a 2-byte binary
value.
908 VARBINARY Not applicable Same as VARCHAR,
except that:
« IXFCLENG is the
maximum length
(number of bytes)
of the binary
string.
« The allowable
range for nis
0-32704.
912 BINARY Not applicable Same as CHAR,

except that:

« IXFCLENG is the
length (humber
of bytes) of
the binary string
sequence.

« The allowable
range for n is
1-255.

Chapter 9. Exporting and importing objects 77




Table 20

. Format of IXF column data by data type (continued)

for extended-format values. The length and format of the
data is determined by the precision of the value.

Long-format values consist of up to 23 characters in the
following format:

sn.nnnnnnnnnnnnnnEseee

In this format:

 sis an optional sign (a plus, a minus, or, in the case of the
first position, a blank if the number is positive).

 n represents the digits of the significand, which can be
up to 16 digits. A decimal point must be in the second
position of the significand.

 E signifies the beginning of the exponent.

« erepresents the digits of the exponent, which can be up
to 3 digits.

The value must be in the range +/-1.0E-398 to
+/-1.0E+384.

Examples:

-1.234567890123456E+003
1.234567890123456E-015
0.00000000000000E+OO0

Extended-format values consist of up to 42 characters in
the following format:

sn.nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnEseeee

In this format:

« sis an optional sign (a plus, a minus, or, in the case of the
first position, a blank if the number is positive).

- nrepresents the digits of the significand, which can be
up to 34 digits. A decimal point must be in the second
position of the significand.

- E signifies the beginning of the exponent.

- e represents the digits of the exponent, which can be up
to 4 digits.

The value must be in the range +/-1.0E-6176 to
+/-1.0E+6144.

Examples:

-1.234567890123456789012345678901234E+0033
4.321098765432109876543210987654321E-0001

Data Data type Data length information (when OUTPUTMODE = Data length

type CHARACTER) information (when

code OUTPUTMODE =
BINARY)

996 DECFLOAT The value in IXFCLENG is 16 for long-format values and 34 | The value in

IXFCLENG is 8
for long-format
values and 16 for
extended-format
values. The data
consists of an
8-byte decimal
floating-point value
for long format
and a 16-byte
decimal floating-
point value for
extended format.

78 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 20. Format of IXF column data by data type (continued)

Data Data type Data length information (when OUTPUTMODE = Data length
type CHARACTER) information (when
code OUTPUTMODE =
BINARY)
2448 TIMESTAMP The length is 147 for TIMESTAMP(0) WITH TIME ZONE and | Same as character
WITH TIME 148 + n for TIMESTAMP(n) WITH TIME ZONE, where n= | format
ZONE 1-12.

The format is:
yyyy-mo-dd-hh-mm-ss-nnnnnnnnnnnnzth:tm

where yyyy-mo-dd-hh-mm-ss specifies the timestamp in
the same way as for TIMESTAMP data and:

- nnnnnnnnnnnn specifies a 0-12 digit number that
represents the number of fractional seconds.

» zis a plus (+) or minus (-) sign that indicates the time
zone offset relative to Coordinated Universal Time UTC),
formerly known as Greenwich Mean Time (GMT).

- this a two-digit value that represents the time zone
hours.

- tmis a two-digit value that represents the time zone
minutes.

The valid range for the time zone portion of the format

is from -24:00 to +24:00. To specify UTC, you can either
specify a time zone of -0:00 or +0:00 or replace the time
zone offset and its sign with an uppercase Z.

For example,
2010-09-30-13.08.36.123456654321-08:00 indicates
atime of 1:08 P.M. and 36.123456654321

seconds on September 30, 2010, in San Jose,

California, in the United States. The timestamp
2010-09-30-13.08.36.123456654321Z indicates a time
of 1:08 P.M. and 36.123456654321 seconds wherever
UTC is in effect.

Interpreting an object exported in IXF format
The following example helps you interpret data that is exported in IXF format.

Assume that the table shown in the example of a data object in QMF format is now exported with the IXF
format (with OUTPUTMODE=CHARACTER). The table to be exported is as follows:

ID NAME COMM
10 SANDERS =
20 PERNAL 612.45

The exported data set or CICS data queue consists of a total of seven records; an H record, a T record,
three C records, and two D records as shown here:

HIXFOOOOQMF  VARIMO2010120409560000005N

T18 database CCIN0003

CO2ID NYNR50000000 000002 00
COANAME YYNR44800000 00009000008 00
CO4COMM YYNR48400000 00702000023 00

Chapter 9. Exporting and importing objects 79



D 00010 OOOO7SANDERSxx -
D 00020 OOOO6PERNALxxx 00612.45

Unprintable binary characters are shown as x characters. This figure gives more detailed information
about these records.

Reoard Indicator Date and Time & Aeoards preceding first (D record

|

Header —p] HIKFOOOOQHE 00005}
Aecard
{H} Diala format is charactar Count af column
J’ records
Table —p] T12 +
ﬂ_'-:f‘:"d o table name-e
Prirters o calumn
Mulls not alkowed data in D reconds
- NYHREOD0ODOC [ (101 2 e——
SMALLINT i
Thres Wigth
Columni P —
Aecards
€} '.I'.I'LFIEI A
Mulls alkowed
L §C0HH : H D200R0IZ3—y
t ____I !
DECIMAL 7.2 COMM cal.
data
MAME col.
| e
L
1D ool
l + | data
Twa T i () indicates
Data Posn. 1 af Charaches data is nudl
Aecards calumn data caur Meaningless
o T 2

Figure 17. Format of sample IXF records (OUTPUTMODE=CHARACTER)

Now suppose that the same table is exported with the IXF format, but with OUTPUTMODE=BINARY. The
exported data set or CICS data queue consists of seven records which are shown in the table:

HIXFOOOOQMF  VARIMO2010120409565000005N

T18 database CMIEE0063

CO2ID NYNR50000000 000003 00
CO4ANAME YYNR44800000 00009000005 00
CO4COMM YYNR48400000 00702000018 00
D XXXXXXXXSANDERSXXXXXXXX

D XXXXXXXXPERNALXXXXXXXXX

Except for bytes 44-49 or 56-61 (starting position of column data), the information in the H, T, and C
records is essentially the same. The data in the D records, however, differs significantly. The following
figure contains more information about the records of the exported data set or CICS data queue.

80 Query Management Facility Version 12 Release 2: Developing QMF applications



*7 Diata farmat is binary

Painber 1o start af
data far |0 column

*7 Painber 1o start af
data for NAME column

Painber 1o start af
; data far COMM column

The two data (D) records are shown belaw in hexadecmal nobalion with e vanous
fialds awplaired:

Position 1 of Characier
calumn data count field ndicates daka is rull
o 4 '
10 column HAME calumn COMM column
dats dats Meaningless data
{postian 3} {pasitian 5) [positicn 18)
T 0 — F E R H AI “+
Positian 1 of

colurmn data Indicates data is nal null

Figure 18. Format of sample IXF records (OUTPUTMODE=BINARY)

Exporting data or tables in XML format

If your data or table contains an XML column or LOB data, you must use the DATAFORMAT=XML clause on
the EXPORT DATA or EXPORT TABLE command. This format can also be used when the data or table to be
exported does not contain an XML column or LOB data.

Restriction: QMF supports operations with XML data only when you are connected to a database release
that supports the XML data type.

When you export data or tables in XML format, the data is exported to the UNIX file, TSO data set, or CICS
data queue that you specify in the command. QMF uses the XML 1.0 specification (fourth edition) when
importing and exporting data.

QMF uses z/0OS XML parse services and z/OS Unicode conversion services when processing XML data for
export or import, so these services must be configured and active.

All tags shown in the XML examples must be present before you import the XML column data. The tags
must be present in the contents of the file, data set, or CICS data queue because QMF uses these tags to
parse the file. When QMF encounters the <extensions> tag at the end of the file, the cursor is closed and
the import is finished. Modifying or deleting this tag results in an infinite read of the data.

The data is exported as an XML document in Unicode UTF-8 format with a CCSID of 1208. The exported
XML data set or CICS data queue consists of header records, records that define the result set, metadata
records for each column in the data or table, and data records for each row in the exported data or table.

Header records

The header records in the exported XML file contain the version of XML that is used, the encoding scheme,
and the style sheet that is used to format the exported XML document.

Chapter 9. Exporting and importing objects 81



The following example shows the type of information that is included in the header records of an exported
file:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- ?xml-stylesheet type="text/xsl" href="gmf.xslt" ? -->

QMF provides a style sheet that you can use to format your exported XML data. The default style sheet
(with the default name gmf. xs1t) is supplied as member DSQ1STSH of the QMF samples data set,
QMF1210.SDSQSAPn (where n is a national language identifier). Copy this default style sheet to the
location of the exported file, then open the XML document to have it formatted to these specifications. If
you use a different name for the style sheet, change the header in the exported file to refer to the new
style sheet name.

Records that define the result set

The result set definition contains a namespace definition and a schema definition for the QMF schema file
that is used with the XML file.

This example shows the records for the result set definition in a sample exported XML file that contains
seven columns:

<DataSet xmlns="http://www.ibm.com/QMF" xmlns:xsi="http://wmww.w3.0xrg/2001/XMLSchema-instance" >
<ResultSet>

<Metadata>

<SourceDescription />

<ColumnsAmount>7</ColumnsAmount>

..... Definitions for each column go here.

</Metadata>
<Data>

..... Data for each row goes here.

</Data>
</ResultSet>
<Extensions />
</DataSet>

Metadata records

The column metadata in the exported XML file consists of the number of columns, column names, column
labels (if applicable), data types, data lengths, whether the data is null, and the format.

An example of the metadata for a column called "ID" is shown here. The exported XML file contains one
column-description block for each column.

<ColumnDescription id="1">
<Name>ID</Name>
<Label>ID</Label>
<Type>smallint</Type>
<Width>2</Width>
<Nullable>false</Nullable>
<Format>plain</Format>

</ColumnDescription>

Data records

The exported XML file contains one row-definition block for each row of exported data. Data records are in
variable block spanned (VBS) format.

A <cell> tag identifies each column in the row by number, as shown here for the first row of the Q.STAFF
sample table:

<Row id="0">
<Cell id="1">10</Cell>
<Cell id="2">SANDERS</Cell>
<Cell id="3">20</Cell>

82 Query Management Facility Version 12 Release 2: Developing QMF applications



<Cell id="4">MGR</Cell>

<Cell id="5">7</Cell>

<Cell id="6">99999.99</Cell>

<Cell id="7" null="1" />
</Row>

When you use the DATAFORMAT=XML clause on the EXPORT DATA or EXPORT TABLE command and the
data contains a column defined with the XML data type, QMF wraps the XML data in CDATA tags. The
CDATA tags prevent the parser from trying to process the XML data. Here is an example of how XML data
appears in an exported file.

<Data>

<Row id="0">

<Cell id="1">Murphy</Cell>

<Cell id="2">1234</Cell>

<Cell id="3"[CDATA[xml version="1.0" encoding="utf-8"?]]Cell>
</Row>

</Data>

How QMF validates the XML

An XML schema document describes the structure of an XML document and defines parameters for the
validity of elements and attributes within the XML document.

A default schema file is provided with QMF as member DSQ1SCEM of the QMF samples data set, which is
QMF1210.SDSQSAPn (where n is a national language identifier). Copy this member to the directory where
the file that contains the XML document is stored. Name the schema document gmf_data. xsd, which

is the name for the default schema document under QMF for Workstation and QMF for WebSphere®. You
can modify the default schema file according to your business needs for formatting XML data. If you use a
name other than gmf_data.xsd or use a different schema file, change the name in any files that reference
the schema document.

Exporting data or tables in CSV format

You can export data or tables in CSV (comma-separated value) format. You can then download the
exported data to your workstation where the data in CSV format can be used with applications such as
Microsoft Excel.

When you export data or tables in CSV format, you can use the HEADER option to specify whether to
export column headings along with the data. The default is to include the column headings. If you export
column headings, the value of the DSQDC_COL_LABELS global variable controls whether column labels or
column names are exported. The default of DSQDC_COL_LABELS is 1, which means that column labels
are exported.

Exported data is formatted as rows of column values that are separated by the column separator. If
HEADER=YES is specified, one row of column names separated by a column separator precedes the rows
of column values. The column separator value is determined by the user's Q.PROFILES.DECIMAL value.

Data that is exported in CSV format is encoded in the local Db2 for z/OS SBCS encoding scheme.

Rules and information for exporting and importing data objects and tables

QMF exports data and table objects to temporary storage and has rules for how it allocates that storage.
QMF also has specific ways for handling import errors.

Allocation of UNIX files, TSO data sets, or CICS data queues

The QMF IMPORT DATA command appears to store the data in the QMF temporary storage area and
display the report on the screen. Actually, only a portion of the data is stored and displayed. The UNIX file,
TSO data set, or CICS data queue remains open and allocated to QMF. QMF reads records when the user
scrolls through the data.

This connection is maintained until the data object is replaced or reset, or QMF reads all the records. Then
the UNIX file, TSO data set, or CICS data queue is closed and is no longer considered allocated to QMF. An

Chapter 9. Exporting and importing objects 83



application should not attempt to delete or alter a UNIX file, TSO data set, or CICS data queue allocated
to QMF with an IMPORT DATA command. The application needs either to use another data source or
empty the QMF temporary storage area for the data object (by using a RESET DATA command). Then the
application can try to alter or delete the file, data set, or data queue it is reading.

During the execution of the IMPORT command, QMF does not lock the UNIX file, TSO data set or CICS
data queue while it is being read. It does not take steps to prevent the file, data set, or queue from
being altered while it is being read. If the file, data set, or queue is erased or altered before QMF finishes
reading it, the results are unpredictable and can cause a system error.

An incomplete data prompt can occur when there is not enough temporary storage to retrieve the entire
object to be exported. If you need extra storage, you can use the DSQSPILL parameter to specify the use
of spill storage. If you are using QMF under TSO, you can specify the DSQSPTYP parameter in addition to
the DSQSPILL parameter to use extended storage for spilling data.

Export errors

After QMF imports data from a UNIX file, TSO data set, or CICS data queue, QMF displays the REPORT
panel and a confirmation message.

If the file, data set, or data queue contains format errors, QMF does not display the REPORT panel. If
there are format errors, QMF displays an error message on the object panel that was current before QMF
processed the IMPORT command. However, if the current object panel was the REPORT panel, and QMF
finds errors in the imported data, QMF displays the home panel and an error message.

Exporting forms, reports, and prompted queries

The form and prompted query objects are exported and imported in an encoded format that represents
the object in a tabular structure. Reports are also exported in an encoded format; however, they cannot be
imported.

The encoded format helps you manipulate individual parts of an object more easily. The following
conditions apply when you export an object with the encoded format:

 All table and field numbers are written out as four-digit numbers.

« The table columns are written out in the order in which they normally appear in the object, except that
the column with the maximum length is moved to the right end of the table record and associated row
records.

» Numeric lengths are three digits long (including leading zeros, if necessary).
- A blank character is used as a delimiter in all records.

« The delimiter is not written following the last character of each record.

- Blanks are written in all reserved fields.

« An E record is the last record written to the output file.

Related reference
Size specifications for externalized objects

84 Query Management Facility Version 12 Release 2: Developing QMF applications



External tables and objects have both record size and record format specifications that vary by the type of
object.

General format of the exported file

The encoded format of a form, report, or prompted query consists of fixed-format header records and
variable-format records that the object is comprised of.

Header records

Most records of exported forms, reports, or prompted queries have a variable format. However, header
records have a fixed format, even though the data set or data queue that contains the records can be of
variable format.

These records are used to identify the contents of the exported form, report, or prompted query. A header
record is the first record of the exported data set or data queue. It describes the characteristics of the
object.

A header record contains the information described in this table. An asterisk indicates that the field is
required for import.

Table 21. Header record information

Byte position Information and type

01* Header record indicator (H)

02 Blank

03-05* Product identifier (QMF)

06 Blank

07-08 QMF release level in which the form, report, or prompted query was exported; this
number is 19 for QMF Version 12 Release 1

09 Blank

10* Type of object:
« F for form

» R for report
» T for prompted query

11 Blank
12-13* QMF object level:

« 01 for report

» 04 for form

» 01 for prompted queries that do not contain a time period specification

» 02 for prompted queries in which at least one of the tables in the query has a time
period specification

The object level denotes a change in the format of an object. Each time the format is
changed in a QMF release, its object level is also changed. The object level increases
only when the change in the format might create an error in your application.

14 Blank

15* Data format of the object ("E" for encoded format used to export form, report, and
prompted query objects)

16 Blank

Chapter 9. Exporting and importing objects 85



Table 21. Header record information (continued)

Byte position Information and type

17 Status of the object: E - Contains errors (for form only); W - Contains warning; V - Valid
18 Blank

19 Whole or partial object indicator (W for whole object)

20 Blank

21 National language in use when the object was exported (E for English)

22 Blank

23* You can create a form, report, or prompted query outside of QMF in the appropriate

format and import it into QMF. Code an R in this byte position if you want QMF to
replace the object in temporary storage with the object you are importing.

24 Blank

25-26 Length of control area at the beginning of each record:
» 01 for form

« 02 for report

» 01 for prompted query

27 Blank

28-29 Length of integer length fields specified in V and T records (03)
30 Blank

31-38 Date stamp in the format yy/mm/dd

39 Blank

40-44 Timestamp in the format hh:mmmm

45 Blank

51 Blank

Related reference

Exporting a form

The form object contains all the information specified in all the QMF form panels. When you export a form,
QMF converts to the encoded format any form panels whose values deviate from the default values.

Exporting a prompted query
An exported prompted query object contains the information displayed in the echo area of the Prompted
Query primary panel.

Exporting a standard report

When QMF displays a report, you see the result of interaction between the form and the data object in
temporary storage. A report object does not exist in temporary storage. When you export a report, QMF is
really exporting the interaction of a form and a data object.

Conventions for National Language Feature information

86 Query Management Facility Version 12 Release 2: Developing QMF applications



Db2 QMF is available in several different languages, each of which is provided by a National Language

Feature (NLF).

Records of the exported object

Except for header records, which are fixed-format records, all records of exported forms, reports, and
prompted queries are variable-format records. Variable-format records are accepted on input.

Variable-format records have the general form shown in this figure:

Control area Record data area

Figure 19. General form of variable-format records

The contents of the control area are shown here:

Table 22. General form of variable-format records

Byte position

Description

01

Record identifier (H, V, T, R, E, *, L, C)

02

Blank (sometimes omitted; see specific type of
variable-format record)

The record data area is a variable-length area that contains information about that specific record. Fields
in this area are separated by a delimiter (a blank character is used in these examples).

Data value records (V)

Value records of exported forms, reports, or prompted queries are used to provide a value for a single field
in an object, such as blank lines before the heading in the form.

V records contain:

« A field number unique to the object
« The length of the field
 The value of the field

The control area for V records is shown in this table:

Table 23. Control area for V records

Byte position

Description

01

Value record identifier (V)

02

Blank (used only for reports; omitted for forms and
prompted queries)

The record data area for V records is shown in this table:

Table 24. Record data area for V records

Byte position

Description

01 Blank
02-05 Field number (1001-9999)
06 Blank

Chapter 9. Exporting and importing objects 87



Table 24. Record data area for V records (continued)

Byte position Description

07-09 Length of the data value (000-999)

Can also be an asterisk (*) followed by two
blanks. An asterisk indicates that the data value is
delimited by the end of the record.

10 Blank

11-end Data

In the record data area for V records:

- Record data area byte positions are offset from the end of the control area, the length of which is
indicated in the header record.

« An omitted data value (an end-of-record or only blanks following the length field) indicates that the field
contains a null value.

- If the length field is zero, the default value for the field is applied and a warning message is issued.

- If the specified length is different from the actual data that follows, QMF issues a warning.

Data table description records (T)

In the encoded format, most data in an object appears in tables. These tables are not relational tables in
the database, but rather a means of grouping information within the encoded format. Each T record
defines one table, and each table corresponds to a particular part of an object, such as summary
calculations in the form. Thus, one exported file can contain many of these encoded tables.

A T record is always followed by R records. The T record describes the R records that follow it. If there are
no R records following a T record, the table is omitted.

Be sure that your application program refers to the contents of tables of an exported form, report, or
prompted query by using the encoding in the T record to correctly locate the values in the R records. Your
application program should not use fixed offsets to locate information in R records.

The control area for T records is shown in this table:

Table 25. Control area for T records

Byte position Description

01 Table record identifier (T)

02 Blank (used only for reports; omitted for forms and
prompted queries)

The record data area for T records is shown in this table. The byte positions in the table are offsets that
follow the end of the control area, the length of which is indicated in the header record.

Table 26. Record data area for T records

Byte position Description

01 Blank

02-05 Table number (1001-9999)
06 Blank

88 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 26. Record data area for T records (continued)

Byte position Description

07-09 The number of rows (R records) in this table
An asterisk (*) used instead of a numeric value
means that the table consists of all the R records
that follow.

10 Blank

11-13 The number of columns in the record (000-999)

14 Blank

15-18, 24-27, ... The field number for this column (repeating field)

19, 28, ... Blank (repeating field)

20-22,29-31, ... The length of the data values in this column
(repeating field)

Bytes 11-13 (number of columns) indicate how many field number/data value length pairs follow. So, the
information from byte 15 on is repeated for each column.

Keep the following information about T records in mind as you export and import objects:

When a form or prompted query is imported, the number of R records must match the row count
specified in bytes 07-09 of the record data area of the T record. Otherwise, QMF issues a warning.

When a form or prompted query is imported, the number of columns indicated in bytes 11-13 must
agree with the field number/length pairs in the bytes that follow. If not, QMF issues a warning.

The number of field number/length pairs is limited to the number of columns in the table, and their
order is arbitrary.

Columns with a length of zero are set to their default values when the object in the temporary storage
area is updated and a warning is issued. Columns not included in this table are also handled in this way.
However, with prompted queries, a default is supplied when possible. Otherwise, an error occurs.

To set a column field to blank, the column must have a positive length in the T record and a blank value
in the R record.

Table row records (R)

R records of exported forms, reports, or prompted queries provide a set of values for a single row in

an encoded table. R records contain a list of values arranged in an order described by the associated T
record. An R record matches the description of the positions and lengths of the data values specified in

t

he T record.

The control area for R records is shown in this table:

Table 27. Control area for R records

Byte position Description

01 Row record identifier (R)

02 Blank (used only for reports; omitted for forms and
prompted queries)

Following the control area, the data area for R records consists of a series of values separated by a
delimiter (blank character). The format is as follows:

_value.._value..._value..

Chapter 9. Exporting and importing objects 89




In this format, value. . . represents the data value for this row and column and _ is the delimiter.
Keep in mind the following information as you work with R records:

« An R record must immediately follow another R record or a T record.
« The number of data values must match the description in the associated T record.

- A data value length of zero in the associated T record indicates that no value is to be applied to this row
and column of the object. In other words, the row and column is set to its default value. However, the
presence of the field in the T record requires that the R record contain an extra blank for this field. A
zero-length value results in one blank followed by another in the R record.

End-of-object record (E)

The E record of an exported form, report, or prompted query specifies the end of an exported object. It
is the last record of an exported file, appearing as the character E. For an exported report, an E record is
followed by a blank character to complete its control area. For a form, the blank is omitted.

Any records that follow the E record are ignored. If an E record is not included with the file that is
imported, QMF assumes that an end-of-file implies the end of the object.

Application data record (*)

Application data records of exported forms, reports, or prompted queries allow application programs to
associate their own data with an object in the external file. Application programs frequently use these
records as comment records to further describe the object in the file.

The information that follows the asterisk is ignored and has no effect on the input process.

Application data records can appear anywhere in the external file except before the header (H) record.
QMF does not write out application data records upon export. However, you can use these records in the
data set or CICS data queue you create. The contents of an application data record are shown in this
table:

Table 28. Contents of an application data record

Byte position Description
01 Application data record identifier (*)
02-end of record Data

Here is an example of an application data record that appears in an exported form:

*This is the form that groups by DEPT.

Report line records (L)
Each formatted line in a report is described by an L record. There is one L record for each line in the
report.

Like other variable-format records (V, T, and R), L records consist of a control area followed by a record
data area. The format of the control area is similar to the other records. The record data area is composed
of a fixed area that precedes the formatted report line itself. The fixed area provides information about the
report line that follows it. The format of an L record is shown in the following figure.

—— Record data area —

Control Area Fixed Area Report Line

Figure 20. Format of an L record

The control area for an L record is shown in this table:

90 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 29. Control area for an L record

Byte position

Description

01

Value record identifier (L)

02

Continuation indicator

Indicates whether the current record is continued
to a data continuation record:

« C for continued

A C record immediately follows an L record
marked with a continuation character in byte 2
of the control area.

« D for continued with DBCS delimiters SO and ST
inserted at the end of the current record and the
beginning of the data portion of the next record

When D is specified for the continuation indicator
in the control area, the current record is too long
to fit into a single physical record. In the process
of splitting up the record, SO (shift out) and ST
(shift in) characters were added to the current
and next records to preserve the integrity of any
DBCS data that is continued.

« Blank if not continued

The record data area for an L record is shown in this table. Bytes 6-13 are line type attributes. Byte 06
is always 1. Each byte in bytes 7 through 13 indicates the presence or absence of the corresponding line
type attribute in the formatted report line (1 = attribute present, 0 = attribute absent).

Table 30. Record data area for an L record

Byte position

Description

01

Blank

02-04

Report part indicator:

110 = Page heading
120 = Page footing
13n = Break heading

(nis the break number, 1-6)
15n = Break footing

(nis the break number, 1-6)
170 = Column heading
171 = Detail heading
180 = Detail line
181 = Group summary line
190 = Final footing

05

Blank

06

1

07

Data

08

Text

09

Separator

Chapter 9. Exporting and importing objects 91



Table 30. Record data area for an L record (continued)

Byte position Description

10 Column wrap

Attributes for column wrap (byte 10) and line wrap
(byte 11) are used to indicate the continuation of a
single logical report line to multiple physical report
lines. The presence of either attribute in a L format
record means that the column data or wrapped line
is continued on a following L format record.

11 Line wrap

Attributes for column wrap (byte 10) and line wrap
(byte 11) are used to indicate the continuation of a
single logical report line to multiple physical report
lines. The presence of either attribute in a L format
record means that the column data or wrapped line
is continued on a following L format record.

12 Second data line (across reports only)

Across reports that contain percent or cumulative
sum columns can contain two data lines for

each group (also break and final) summary. The
first summary data line contains the cumulative
percent or cumulative sum values of the column as
computed across each unique "across" value. The
second summary data line contains the cumulative
percent or cumulative sum values of the column as
computed down each group (in the report or within
a control break). The second data line (byte 12)
line type identifies the second data line in exported
reports of this nature.

13 Reserved
14 Blank

The following example shows an L record for a break footing line in a report that contains text and data:

L 151 11100000 DEPARTMENT TOTALS 93,659.45

Data continuation records (C)

A Crecord in an exported form, report, or prompted query is used to continue a value or set of values
across more than one record. It immediately follows the record that is continued. The format ofa C

record corresponds to the format of the original record that is continued.QMF uses C records to continue L
records only.

The control area for a C record is shown in this table:

Table 31. Control area for a C record

Byte position Description

01 Value record identifier (C)

92 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 31. Control area for a C record (continued)

Byte position

Description

02

Continuation indicator. Indicates whether the

current record is continued to another C record:
« C for continued

A C record immediately follows an L record
marked with a continuation character in byte 2
of the control area.

« D for continued with DBCS delimiters SO and SI
inserted at the end of the current record and the
beginning of the data portion of the next record

When D is specified for the continuation indicator
in the control area, the current record is too long
to fit into a single physical record. In the process
of splitting up the record, SO (shift out) and ST
(shift in) characters were added to the current
and next records to preserve the integrity of any
DBCS that is continued.

« Blank if not continued

The record data area for a C record is shown in this table. The byte positions shown are offset from the
end of the control area, the length of which is indicated in the header record.

Table 32. Record data area for a C record

Byte position Description
01 Blank

02-end

Value or set of values that are continued

Exporting a form

The form object contains all the information specified in all the QMF form panels. When you export a form,
QMF converts to the encoded format any form panels whose values deviate from the default values.

The following panels are in the encoded format only if you modified the panel:
« FORM.BREAKn, where n=1-6

FORM.CALC

FORM.CONDITIONS

All variation panels greater than 1 for FORM.DETAIL

Eliminating unused panels from the externalized format helps you save space on your system.

Creating a default form to see example export results

You can create a default form by running any query that creates an empty report, such as the query shown
here:

SELECT JOB
FROM Q.STAFF
WHERE NAME='NO_NAME'

When QMF displays the report, enter EXPORT FORM TO DEFAULT (including the QUEUETYPE=xx
parameter in CICS).

Chapter 9. Exporting and importing objects 93




How the exported form looks

Your data set or CICS data queue named DEFAULT contains the information shown in this sample format
of an exported form:

HQMF 19 F 04 EV W E R 01 03 13/01/15 16:20

T 1110 001 011 1112 007 1113 040 1114 007 1115 006 1116 005 1117 005 1118 003 1119 008 1120 008
1122 006 1121 050

CHAR JOB 2 5 © 1 DEFAULT
DEFAULT NO

1201 001 O

1202 001 2

1210 001 003 1212 004 1213 006 1214 055
1 CENTER

1301 001 2

1302 001 O

1310 001 003 1312 004 1313 006 1314 055
1 CENTER

1401 002 NO

1402 001 1

1403 001 ©

1410 001 003 1412 004 1413 006 1414 055
1 RIGHT

1501 001 1

1502 003 YES

1503 003 YES

1504 003 YES

1505 003 YES

1506 003 YES

1507 003 YES

1508 003 YES

1509 003 YES

1510 003 YES

1511 004 NONE

1512 002 NO

1513 007 DEFAULT

1514 002 NO

1515 004 NONE

2790 001 1

2791 003 YES

2805 003 YES

2810 001 003 2812 004 2813 006 2814 055
1 LEFT

2901 002 NO

2902 001 1

2904 001 0O

2906 002 NO

2907 002 NO

2910 001 003 2912 004 2913 006 2914 055
1 LEFT

3080 001 1

3101 002 NO

3102 002 NO

3103 001 O

3104 001 O

3110 001 003 3112 004 3113 006 3114 055
1 LEFT

3201 002 NO

3202 001 1

3203 001 O

3204 001 1T 3210 001 003 3212 004 3213 006 3214 055
1 RIGHT

3080 001 2

3101 002 NO

3102 002 NO

3103 001 ©

3104 001 O

3110 001 003 3112 004 3113 006 3114 055
1 LEFT

3201 002 NO

3202 001 1

3203 001 O

3204 001 1

3210 001 003 3212 004 3213 006 3214 055
1 RIGHT

el

MOA<<<<TAI<<<<< << << T AI<<<<<TTAI<<<<<TA<< << << << << << << << << TA<<<TA<<TDA<

94 Query Management Facility Version 12 Release 2: Developing QMF applications



You can import your default data set or CICS data queue every time you log on by issuing the
command IMPORT FORM FROM DEFAULT (including the QUEUETYPE=xx parameter in CICS) in your
initial procedure.

Interpreting the header record in the exported data set or queue

The following example shows a header record for a QMF form:

HQMF 19 F 84 EV W E R 01 03 13/01/15 16:20

This table explains the example.

Table 33. Example of a form header record

Value from Description
example

H QMF 19 F This record is a QMF form header record for Version 12.1.

04 The structure of the form is at object level 4.

E The format is encoded (the format used for exported forms, reports, and prompted
queries).

The exported form does not contain any errors or warnings.

The national language in use when the object was exported is English.

v
W The file contains the entire form.
E
R

When importing, the object in temporary storage is replaced.

01 The length of the control area is 1 byte.

03 The length of integer length fields is 3 bytes.

13/01/15 The date stamp specifies January 15, 2013.

16:20 The timestamp specifies a time of 4:20 PM.

When you export a form from a non-English session, you can either export the form in the current session
language or in English. So, the national language identifier in the H record might not reflect the language
of the session from which you exported the form.

Interpreting the records of the exported form

“How the exported form looks” on page 94 shows an example of an exported form. The exported form
contains V, T, and R records whose associated codes have special meanings to help you interpret the
exported result. This table explains each field and code in the exported form.

Field 3080, a V record, acts as a "trigger" for the break panels that follow it. This record appears once for
every break panel in your form. The value of the field reflects the number of the break panel that the fields
that follow field 3080 describe.

Table 34. Table and field numbers for an exported FORM object

Table or field Record type |Description Form panel
number
1110 T Column headings table FORM.COLUMNS

Chapter 9. Exporting and importing objects 95



Table 34. Table and field numbers for an exported FORM object (continued)
Table or field Record type |Description Form panel
number
1112 R Column data type FORM.COLUMNS
The column data type is not displayed
on the form panels but is associated
with the form in its external format.
The column data type is not required
when a form is imported. If it is
missing during import, CICS provides
default data type information from the
edit codes. (For more information, see
“Importing a form object” on page 99.)
During export, the column data type
QMF provides is based on the specified
edit code. For edit codes U, V, M, or
invalid edit codes, QMF specifies the
data type keyword UNKNOWN. Table
35 on page 99 shows the data type
keywords that QMF uses.
1113 R Column heading FORM.COLUMNS
1114 R Column usage code FORM.COLUMNS
1115 R Column indentation FORM.COLUMNS
1116 R Column width FORM.COLUMNS
1117 R Column edit code FORM.COLUMNS
1118 R Column sequence FORM.COLUMNS
1119 R Column heading alignment FORM.COLUMNS
1120 R Column data alignment FORM.COLUMNS
1121 R Column definition FORM.COLUMNS
1122 R Pass nulls on column definition FORM.COLUMNS
1180 T Summary calculations table FORM.CALC
1182 R Calculation identification number FORM.CALC
1183 R Summary calculation expression FORM.CALC
1184 R Summary calculation width FORM.CALC
1185 R Summary calculation edit code FORM.CALC
1186 R Pass nulls on calculation FORM.CALC
1201 v Blank lines before heading FORM.PAGE
1202 v Blank lines after heading FORM.PAGE
1210 T Page heading table FORM.PAGE
1212 R Page heading line number FORM.PAGE
1213 R Page heading alignment FORM.PAGE

96 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 34. Table and field numbers for an exported FORM object (continued)

Table or field Record type |Description Form panel
number
1214 R Page heading text FORM.PAGE
1301 v Blank lines before footing FORM.PAGE
1302 V Blank lines after footing FORM.PAGE
1310 T Page footing table FORM.PAGE
1312 R Page footing line number FORM.PAGE
1313 R Page footing alignment FORM.PAGE
1314 R Page footing text FORM.PAGE
1401 v New page for final text FORM.FINAL
1402 \ Final summary line number FORM.FINAL
1403 v Blank lines before final text FORM.FINAL
1410 T Final text table FORM.FINAL
1412 R Final text line number FORM.FINAL
1413 R Final text alignment FORM.FINAL
1414 R Final text FORM.FINAL
1501 v Detail line spacing FORM.OPTIONS
1502 v Outlining for break columns FORM.OPTIONS
1503 v Default break text FORM.OPTIONS
1504 Vv Function name in column heading for FORM.OPTIONS
grouping

1505 Vv Column-wrapped lines kept on a page FORM.OPTIONS
1506 Vv Across-summary column FORM.OPTIONS
1507 v Separators for column heading FORM.OPTIONS
1508 \ Separators for break summary FORM.OPTIONS
1509 v Separators for across heading FORM.OPTIONS
1510 Vv Separators for final summary FORM.OPTIONS
1511 Vv Width of wrapped report lines FORM.OPTIONS
1512 v Page renumbering at breaks FORM.OPTIONS
1513 v Width of break or final text FORM.OPTIONS
1514 v Column reordering FORM.OPTION
1515 v Fixed columns FORM.OPTIONS
2790 Vv Detail variation number FORM.DETAIL
2791 v Detail variation selection FORM.DETAIL
2805 v Include column heading FORM.DETAIL
2810 T Detail heading table FORM.DETAIL

Chapter 9. Exporting and importing objects 97




Table 34. Table and field numbers for an exported FORM object (continued)

Table or field Record type |Description Form panel
number
2812 R Detail heading text line FORM.DETAIL
2813 R Detail heading alignment FORM.DETAIL
2814 R Detail heading text FORM.DETAIL
2901 Vv New page for detail text FORM.DETAIL
2902 v Line number of column data FORM.DETAIL
2904 Vv Number of lines to skip after detail text | FORM.DETAIL
2906 \ Repeat detail heading FORM.DETAIL
2907 \ Number of detail text lines to keep FORM.DETAIL
together
2910 T Detail text table FORM.DETAIL
2912 R Detail text line number FORM.DETAIL
2913 R Detail text alignment FORM.DETAIL
2914 R Detail text FORM.DETAIL
3080 Vv Break panel number FORM.BREAKnN
3101 v New page for break heading FORM.BREAKnN
3102 v Repeat break heading FORM.BREAKnN
3103 v Number of lines to skip before break FORM.BREAKnN
heading
3104 v Number of lines to skip after break FORM.BREAKnN
heading
3110 T Break heading text table FORM.BREAKnN
3112 R Break heading line number FORM.BREAKnN
3113 R Break heading alignment FORM.BREAKnN
3114 R Break heading text FORM.BREAKnN
3201 Vv New page for break text FORM.BREAKnN
3202 v Break text summary line FORM.BREAKnN
3203 v Number of lines to skip before break FORM.BREAKnN
text
3204 \ Number of lines to skip after break text | FORM.BREAKn
3210 T Break text table FORM.BREAKnN
3212 R Break text line FORM.BREAKnN
3213 R Break text alignment FORM.BREAKnN
3214 R Break text FORM.BREAKnN
3310 T Conditions table FORM.CONDITIONS
3312 R Condition identification number FORM.CONDITIONS

98 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 34. Table and field numbers for an exported FORM object (continued)

Table or field Record type |Description Form panel
number
3313 R Conditional expression FORM.CONDITIONS
3314 R Pass nulls on conditions panel FORM.CONDITIONS

The following table shows the data-type keywords QMF generates for the edit codes specified on the
form. In this table, x represents the number of decimal places to be displayed, where x is an integer from

0to 99.

Table 35. Data type keywords generated for edit codes specified on the QMF form panels

Edit code specified Data type keyword
C, CW, CT, CDx CHAR

B, BW, X, XW BINARY

G, GW GRAPHIC
E,D,L,3J,KL,PEZDZ12Z 32, KZ, LZ, PZ, DZC, Dx, ILx, Ix, Kx, Lx, Px | NUMERIC
Any edit code that starts with the characters TD DATE

Any edit code that starts with the characters TT TIME

TSI TIMEST
TSZ TSTMPTZ
M UNKNOWN
uv UNKNOWN
Invalid edit codes entered UNKNOWN

When you export a form, QMF exports only those variation panels with values that were changed from the
default. Therefore, the total number of variations in the external form can be fewer than what is shown

in the variation count indicator on the panel. QMF can alter the individual variation numbers to put the
variations back into a continuous sequence.

Importing a form object

When you import a form, these fields must be in uppercase:
« Record identifier for all records

« The following fields in the header record:

Product identifier (QMF)

Type of object (F)

Format of object (E)

Action against object (R)

« Data type values (numeric, character, graphic, or unknown data types) in the R records for the COLUMNS
table

If your site supports date/time data types, data type values DATE, TIME, TIMEST, and TSTMPTZ must
also be in uppercase.

« All the form keywords and substitution variables used in the form panels

Chapter 9. Exporting and importing objects 99



When a form is imported, all the input in the form is left intact. If a form keyword is in lowercase, the
error indicator in the form panel is turned on. To correct the error, the field must be typed over. If the
data-type value is not in uppercase, an error occurs, and the IMPORT ends.

The T record of the COLUMNS table (field number 1110) must immediately follow the header record. The
T record must also include a numeric count of the number of rows in the encoded format (an * row count
is not allowed).

If the entire COLUMNS table is read in, unspecified fields are set to their default values, and the form is
displayed.

« Variation panels

The variation number field (field number 2790) determines which variation panel is updated by all the
variation panel information that follows the field. This V record should precede all other V, T, and R
records for a variation panel.

If a value for a particular variation appears more than once in the encoded format, the later values
replace the original values. The number of variations in the form are equal to the highest variation
number in the form. There is no required order for variation numbers when importing.

« Translated forms
When you import an English-language form into a non-English session and the national language
identifier in the H record is an E, QMF translates the reserved words. QMF translates the reserved words

into your current session's language. Examples of reserved words are values in the USAGE column in
FORM.COLUMNS

- Omitting data type, edit code, and width in an imported form

In the COLUMNS table, data type (field number 1112), edit code (field number 1117), and width (field
number 1116) can optionally be omitted when the following rules are observed:

— Edit code must be included if data type and width are omitted. Based on the specified edit code, QMF
inserts appropriate defaults for data type and width.

— Data type must be included if edit code and width are omitted. QMF provides default values for edit
code and width.

— Width must be accompanied by either data type or edit code.
This table contains information about values for the field that contains the data type of the column. In

addition to the data type values shown here, there is an UNKNOWN data type keyword that QMF uses in
response toa U, V, orinvalid edit code.

Table 36. Values for the field that contains the data type of the column

Data type as it appears in | code in decimal |Data type Meaning
externalized form
DATE 384 DATE Date
TIME 388 TIME Time
TIMEST 392 TIMESTAMP Timestamp
NUMERIC 496 INTEGER Integer
500 SMALLINT Small integer
492 BIGINT Big integer
484 DECIMAL Decimal
480 FLOAT Floating point
996 DECFLOAT Decimal floating point

100 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 36. Values for the field that contains the data type of the column (continued)
Data type as it appears in | code in decimal |Data type Meaning
externalized form
CHAR 448 VARCHAR Varying-length character
452 CHAR Fixed-length character
456 LONG VARCHAR Long varying-length character
904 ROWID Row identifier
GRAPHIC 464 VARGRAPHIC Varying-length graphic
468 GRAPHIC Fixed-length graphic
472 LONG VARGRAPHIC Long varying-length graphic
BINARY 908 VARBINARY Varying-length binary
912 BINARY Fixed-length binary
TSTMPTZ 2448 TIMESTAMP WITH TIME | Timestamp with time zone
ZONE

- Detecting errors during import

If QMF detects an error in the format of the form file during import, the import function ends. QMF
issues a message describing the error and its location in the file.

If an error is encountered in the header record and a form exists in the temporary storage area, the
existing form is displayed. If the form is successfully imported, QMF displays the form panel.

If an error is encountered after the header record is read, any existing form in the temporary storage
area is discarded, and the home panel is displayed. However, if the data object exists, QMF generates a
default form for the data but does not display it.

Certain minor errors detected by QMF do not terminate the import. In such cases, QMF issues a warning
message and, where appropriate, applies defaults. Some examples are:

— Vrecords

- Zero-length fields
- The specified length field does not match the length of the data supplied.

— Trecords

- Zero column length
- The number of columns specified does not match the following field number/length pairs.

You can respond to errors and warnings as follows:

— Fix one problem at a time.

— Set the TRACE option of the profile to L2 (by using the command SET PROFILE (TRACE=L2) and
run the IMPORT FORM command. The L2 tracing option traces messages and commands at the
highest level of detail. This option allows you to see all the message text related to the IMPORT

command.

The following command displays the message text associated with a particular message code:

HELP DSQnnnnn

where nnnnn is a 5-character, unique message code.

Related reference

Conventions for National Language Feature information

Chapter 9. Exporting and importing objects 101



Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

Considerations for QMF form objects in applications
Some tips might help you create and use a QMF form in an application.
When using a QMF form in an application, keep in mind the following points:

Creating a form data set or CICS data queue outside of QMF
If you create a form outside of QMF (not with EXPORT FORM), it is not necessary to have a complete
form object to import it successfully into QMF. You need only the header (H) record followed by the
T and R records of the COLUMNS table. Default values are applied for the rest of the form when it is
imported.

When you create your own form data set or CICS data queue, it does not have to be exactly like the
data set or queue you get if you use EXPORT FORM. For example, when QMF exports a form, all data
values in a value (V) record are preceded by a length. However, you can use an asterisk (*) signifying
that the data value is delimited by the end of the record when you import a form.

QMF keeps the excess lines if an R record count in an imported form is less than the number of default
lines it allocated for the associated area in the default form.

Checking the object level in the header record
The object level in the header record of a data set or queue that contains a form indicates the level of
the format structure at the time the form was generated. (Object level is indicated in bytes 12 and 13
of the header record.) Make sure that your application properly interprets the contents of the data set
or data queue that contains the form. Check that the object level represents the format upon which
your application is based.

Using application data records
The application data records can be useful in your application program. Use application data records
to include your own comments within a data set or CICS data queue for a form object. You can place
the records anywhere in the data set or CICS data queue following the header record. When QMF
reads such a record, it ignores all data in the record that follows the * character. The record, therefore,
has no effect on the import process.

Restrictions for using forms in CICS
REXX is not available under QMF for CICS. The areas on the QMF form that rely on REXX do not
work if you try to run the form in the CICS environment. These areas include anything entered on
the FORM.CALC panels, the FORM.CONDITIONS panels, and the Specify Definition window. REXX
calculations, conditional row formatting, and column definitions are not available to QMF for CICS
users.

Related concepts

Importing forms and prompted queries
Be aware of the rules for importing a form or prompted query.

Related reference

Exporting a form

The form object contains all the information specified in all the QMF form panels. When you export a form,
QMF converts to the encoded format any form panels whose values deviate from the default values.

Application data record (*)

Application data records of exported forms, reports, or prompted queries allow application programs to
associate their own data with an object in the external file. Application programs frequently use these
records as comment records to further describe the object in the file.

Header records

102 Query Management Facility Version 12 Release 2: Developing QMF applications



Most records of exported forms, reports, or prompted queries have a variable format. However, header
records have a fixed format, even though the data set or data queue that contains the records can be of
variable format.

Exporting a standard report

When QMF displays a report, you see the result of interaction between the form and the data object in
temporary storage. A report object does not exist in temporary storage. When you export a report, QMF is
really exporting the interaction of a form and a data object.

A report cannot be saved in the database, and an exported report cannot be imported back to QMF.
However, you can use exported reports to:

« Extract data from the report and use it in an application
- Modify the appearance of the report for printing or redisplay by the application

A sample report (before export)
This sample shows a tabular report with a level 1 break.

For a list of the field numbers, see “Interpreting the report header record in the exported data set or
queue” on page 104.

REPORT LINE 1 POS 1 79

J & H SUPPLY COMPANY
AVERAGE SALARIES (DEPTS 10, 15, 20)

REPORT 17
AVERAGE
DEPT JOB SALARY
10 MGR 20865.86

15 CLERK  12383.35
SALES  16502.83

20 CLERK 13878.68
MGR 18357.50
SALES 18171.25

COMPANY NAME
REPORT 17

Figure 21. A tabular QMF report before exporting

How the exported report looks

Here is the format of the exported report from the sample tabular report.

HQMF 19 R 81 E V W E R 02 03 13/01/15 16:20

V 1001 006 PERIOD

V 1002 003 016

T 1010 003 006 1013 005 1014 006 1015 006 1016 006 1017 006 1012 008
R L 000001 0O00OO3 OCOOOO8 OOOOO1 BREAKL

Chapter 9. Exporting and importing objects 103



© 000009 000011 000015 0OOOEL GROUP
L2 000016 000018 000027 OOOOO1 AVERAGE

151 10000000

190 10010000 ==========

190 11000000 17473.24

120 10000000

120 10000000

120 10100000 COMPANY NAME
120 10100000 REPORT 17

R

R

L 110 101600000 J & H SUPPLY COMPANY
L 110 10100000 AVERAGE SALARIES (DEPTS 10, 15, 20)
L 110 10100000 REPORT 17
L 110 10000000

L 110 10000000

L 170 10000000 AVERAGE
L 170 10000000 DEPT JOB SALARY
L 170 10010000  ------ ----- ----------
L 181 11000000 10 MGR 20865.86
L 151 100106000 o mmm-------
L 151 11100000 * 20865.86
L 151 10000000

L 181 11000000 15 CLERK 12383.35
L 181 11000000 MGR 20659.80
L 181 11000000 SALES 16502.83
L 151 100106000 mm--------
L 151 11100000 * 15482.33
L 151 10000000

L 181 11000000 20 CLERK 13878.67
L 181 11000000 MGR 18357.50
L 181 11000000 SALES 18171.25
L 151 100106000 m-m-------
L 151 11100000 * 16071.52
L

L

L

L

L

L

L

E

When exporting a report, QMF writes the full text of the formatted report with additional information to
interpret the contents of the report.

The header record is the first record of the exported file. It is followed by the appropriate V, T, and R
records. If the report is an across-style report, it has another group of V, T, and R records that follows the
first group.

In additionto H, V, T, R, and E records, exported reports also require two additional types of records:

» Report ling, or L, records
« Data continuation, or C, records

These two records follow the last group of V, T, and R records.

If you want to use only the formatted data of the report in your application, you can have QMF send print
output to a data set or CICS data queue. This data set or CICS data queue contains only the formatted
data without any layout information.

Interpreting the report header record in the exported data set or queue

The following example shows a header record for a QMF report:

HQMF 19 R 01 E VW E R 02 03 13/01/15 16:20

This table explains this example.

Table 37. Example of a header record for a report

Value from Description
example

H QMF 19 R This record is a QMF report header record for Version 12.1.

01 The structure of the report is at object level 1.

E The format is encoded (the format used for exported forms, reports, and prompted
queries).

104 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 37. Example of a header record for a report (continued)

Value from
example

Description

The exported report does not contain any errors or warnings.

The file contains the entire report.

English was the national language in use when the object was exported.

v
W
E
R

This indicator is ignored.

02

The length of the control area is 2 bytes.

03

The length of integer length fields is 3 bytes.

13/01/15

The date stamp specifies January 15, 2013.

16:20

The timestamp specifies a time of 4:20 PM.

Interpreting the records of the exported report

This table shows the table numbers for T records and field numbers for V records of the exported report
shown in “How the exported report looks” on page 103.

Table 38. Table and field numbers for an exported report

Table or field | Record type |Description
number

1001 \ Profile DECIMAL option

1002 Length of L record control area + fixed area

1010 T Formatted report table
For each formatted data column in the report:

1012 T For all usage codes except OMIT

1013 T Edit code by which data is formatted

1014 T Starting position for field that contains formatted data (including indent
area)

1015 T Starting position for field that contains formatted data (excluding indent
area)

1016 T Ending position for field that contains formatted data

1017 T Number of relative physical report line within logical report line in which
formatted column value appears

When working with table and field numbers in an exported report, note the following points:

« Position 1 of the report line immediately follows the L-record fixed area.

« Rrecords for text lines in each report heading (PAGE or BREAK) or footing (PAGE, BREAK, or FINAL) are
only written up to and including the last line that contains modifications to the form defaults.

At least one R record is written for each heading or footing even when the fields for a given heading or
footing all have their original values.

- Continuation records are written for the report object when the maximum record length would
otherwise be exceeded.

Chapter 9. Exporting and importing objects 105



Related reference

Exporting an across-style report
Exported across-style reports include fields not found in standard exported reports

Data continuation records (C)

A Crecord in an exported form, report, or prompted query is used to continue a value or set of values
across more than one record. It immediately follows the record that is continued. The format ofa C

record corresponds to the format of the original record that is continued.QMF uses C records to continue L
records only.

Report line records (L)
Each formatted line in a report is described by an L record. There is one L record for each line in the
report.

Exporting a report in HTML format

When you export a report in HTML format, QMF places the necessary HTML tags before and after the body
of your report. You can then place the report on a web server and display it in an HTML-compliant web
browser.

This sample illustrates the HTML coding that QMF places around the report. Each of these tag sets
consists of a start tag and an end tag. The end tags begin with a forward slash (/), and all tags are
enclosed in angle brackets.

For a full description of these tags, see your HTML documentation.

<HTML>
<HEAD>
<TITLE>
Report
</TITLE>
</HEAD>
<BODY>
<PRE>
J & H SUPPLY COMPANY
AVERAGE SALARY (DEPTS 10, 15, 20)
REPORT 17
AVERAGE
DEPT JOB SALARY
10 MGR 20865.86
* 20865.86
15 CLERK 12383.53
MGR 20659.80
SALES 16052.83
*  15482.33
20 CLERK 13878.67
MGR 18357.50
SALES 18171.25
* 16071.52
17473.52
COMPANY NAME
REPORT 17
</PRE>
</B0ODY>
</HTML>

This table briefly explains this HTML coding:

106 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 39. HTML tags used in exported HTML reports

Tag set Description

<HTML></HTML> These tags define the file as an HTML document.

<HEAD></HEAD> These tags mark the boundaries of the document header.
<TITLE></TITLE> QMF inserts the word "Report" between these tags. Content between these

tags is included in the HTML document title. Placement of the title is browser-
and platform-dependent. These tags are placed within the header.

<BODY></BODY> These tags follow the header and contain the body of the document. Report
output is placed in the body of the document.

<PRE></PRE> The content between these tags is displayed as-is. No HTML formatting is
performed between them. QMF places report output between these tags in
the body of the HTML document.

Exporting a report without control information
When you export a report, QMF places control information around the report by default.

For example an exported report might have the following format:

HQMF 17 R 61 E VW E R 02 03 14/03/05 11:07

V 1001 006 PERIOD

V 1002 003 016

T 1010 005 006 1013 005 1014 006 1015 006 1016 006 1017 006 1012 008

R L 000001 000003 000010 000001

R C 000011 000013 000026 00001

R L 000027 000029 000035 GOO0OOL

R C 000036 000038 000047 000001

R C 000048 00050 00062 0OOOOL

L 110 10000000

L 110 10000000

L 170 10000000 DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

L 170 I00IEEEE ~=-=ooco= oocoososoooosss  oooosoo  SoSo0o00SSS  0OSSOS0000SSOO
L 180 11000000 10 HEAD OFFICE 160 CORPORATE NEW YORK

L 180 11000000 15 NEW ENGLAND 50 EASTERN BOSTON

L 180 11000000 20 MID ATLANTIC 10 EASTERN WASHINGTON
L 180 11000000 38 SOUTH ATLANTIC 30 EASTERN ATLANTA

L 180 11000000 42 GREAT LAKES 100 MIDWEST CHICAGO

L 180 11000000 51 PLAINS 140 MIDWEST DALLAS

L 180 11000000 66 PACIFIC 270 WESTERN SAN FRANCISCO
L 180 11000000 84 MOUNTAIN 290 WESTERN DENVER

L 120 10000000

L 120 10000000

E

Figure 22. Sample exported report with control information.

If you specify the DATAFORMAT=TEXT option on your EXPORT REPORT command, you can export reports
without the control information, as in the following example.

DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION
10 HEAD OFFICE 160 CORPORATE NEW YORK
15 NEW ENGLAND 50 EASTERN BOSTON
20 MID ATLANTIC 10 EASTERN WASHINGTON
38 SOUTH ATLANTIC 30 EASTERN ATLANTA
42 GREAT LAKES 100 MIDWEST CHICAGO
51 PLAINS 140 MIDWEST DALLAS
66 PACIFIC 270 WESTERN SAN FRANCISCO
84 MOUNTAIN 290 WESTERN DENVER

Figure 23. Sample report exported without control information

Chapter 9. Exporting and importing objects 107



Exporting an across-style report
Exported across-style reports include fields not found in standard exported reports

This sample shows an exported across-style report.

REPORT LINE 1 POS 1 79

J & H SUPPLY COMPANY
DEPT AVERAGE SALARIES
REPORT 18 (ACROSS REPORT)

Cemmmmmmmmmeeeo- JOB ----------------- >
<- CLERK --> <-- MGR ---> <- SALES --> <- TOTAL -->
AVERAGE AVERAGE AVERAGE AVERAGE
DEPT SALARY SALARY SALARY SALARY
10 20865.86 20865.86
15 12383.35 20659.80 16502.83 15482.33
20 13878.68 18357.50 18171.25 16071.53
38 12482.25 17506.75 17407 .15 15457.11
12914.76 19998.21 17372.10 16880.26

COMPANY NAME
REPORT 18
PAGE 1

The following encoded format is the result of exporting the sample across-style report.

S

QMF 19 R @1 E V W E R 02 03 13/01/15 16:20

1001 006 PERIOD
1002 003 016
1010 002 006 1013 005 1014 006 1015 006 1016 006 1017 006 1012 008

L 000001 0003 OOOOE8 001 GROUP
L2 000003 00005 000014 000001 AVERAGE
2001 005 C

2002 003 001

2003 003 YES

2010 004 003 2012 006 2013 006 2014 006
000014 000018 0009

000029 000031 000023

000042 000046 000037

000056 00060 000051

110 10100000 J & H SUPPLY COMPANY

110 10100000 DEPT AVERAGE SALARIES

110 10100000 REPORT 18 (ACROSS REPORT)

110 10000000

110 10000000

170 10000000 Qemmmmmmmmmmma - JOB ----------------- >

170 11000000 <- CLERK --> <-- MGR ---> <- SALES --> <- TOTAL -->

170 10000000 AVERAGE AVERAGE AVERAGE AVERAGE

170 10000000 DEPT SALARY SALARY SALARY SALARY

170 10010000  ------ = —--------- mmmmmmm--- mmmmmmmm-- mmmmm-----

181 11000000 10 20865.86 20865.86

181 11000000 15 12383.35 20659.80 16502.83 15482.33

181 11000000 20 13878.68 18357.50 18171.25 16071.53

181 11000000 38 12482 .25 17506.75 17407 .15 15457.11

190 10010000

190 11000000 12914.76 19998.21 17372.10 16880.26
dL 120 10000000

120 10000000

120 10100000 COMPANY NAME

120 10100000 REPORT 18

120 101600000 PAGE 1

Mmoo A< <o A<<

Table 38 on page 105 explains field numbers that are common to both standard reports and across-style
reports. The following table shows the additional fields that you see in the exported across-style reports.

108 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 40. Field numbers for exported across-style report

Field number | Record type | Description

2001 \ Edit code by which across value is formatted

2002 \ Number of data lines per across group

2003 \ Indicates whether the across summary column exists
2010 T Across report table

For each across value:

2012 T Starting position for formatted across value (the across value appears in
the column heading lines)

2013 T Ending position for formatted across value

2014 T Starting position for the set of report columns associated with this

across value, including preceding indent area

For aggregated columns in an across report, fields 1014, 1015, and 1016 describe the relative starting
and ending positions of the field within the set of aggregated columns of an across value. (See field 2014
in the table.)

Exporting a prompted query

An exported prompted query object contains the information displayed in the echo area of the Prompted
Query primary panel.

A sample query (before export)

A data set or data queue that contains an exported prompted query can be imported into the QMF in
two ways. The data set or data queue can either be imported into the QMF temporary storage area or
directly into the database. When you import a prompted query, QMF checks whether the incoming query
is consistent with the data in the database. For example, if the prompted query that is imported has
columns A, B, and C in table XYZ, QMF verifies that table XYZ with columns A, B, and C exists in the
database.

This example shows sample echo text that appears on the Prompted Query primary panel before
exporting.

Chapter 9. Exporting and importing objects 109



Tables:
Q.STAFF(A)
Q.0RG(B)
Q.STAFF(C)

Join Tables:
A.DEPT And B.DEPTNUMB
And A.ID And C.ID

Columns:
A.ID
A.DEPT
A.JOB
A.SALARY
DEPTNUMB
C.SALARY
C.SALARY+A.COMM

Row Conditions:
If A.SALARY Is Greater Than 10000
And A.DEPT Is Equal To 84 or 96

Sort:
Descending by C.SALARY+A.COMM

Duplicate Rows:
Keep duplicate rows

How the exported query looks

This example shows the format of the exported prompted query.

QMF 19 T 01 E V W E R 01 03 13/01/15 16:20
1110 003 002 1112 001 1113 050
A Q.STAFF

B Q.0RG

C Q.STAFF

1150 002 002 1152 020 1153 020
A.DEPT B.DEPTNUMB
A.ID c.ID

1210 007 002 1212 001 1213 255
.ID
.DEPT
.JoB
.SALARY
.DEPTNUMB
.SALARY
_SALARY+A . COMM
310 009 003 1312 001 1313 008 1314 255
C A.SALARY

IS GT

10000

OOwWXX>>rr

© A.DEPT
IS EQ

84

96

PWOWWONRPPRWONRPRPOOOOOOO

1410 001 002 1412 001 1413 255
D C.SALARY+A.COMM
1501 001 K

M< V1V VVOVOVOVOOVNHVDODOODOVODNDHODO{0VODOTHT

Interpreting the header record in the exported data set or queue

This following table shows the meaning of this header record in the exported prompted query shown in
“How the exported query looks” on page 110.

HQMF 19 T 01 E V W E R 01 03 13/01/15 16:20

110 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 41. Example of a prompted query header record

Value from Description
example

H QMF 19 T Thjs prompted query header record specifies QMF Version 12.1.

01 The structure of the prompted query is at object level 1. If the exported query object
contains a period specification, object level 2 is specified instead.

E The format is encoded (the format used for exported forms, reports, and prompted
queries).

The exported prompted query does not contain any errors or warnings.

The file contains the entire prompted query.

English was the national language in use when the object was exported.

aIm =<

When importing, the object in the temporary storage area is replaced.

01 The length of the control area is 1 byte.

03 The length of integer length fields is 3 bytes.

13/01/15 The date stamp specifies January 15, 2013.

16:20 The timestamp specifies a time of 4:20 PM.

See “How the exported query looks” on page 110 for a complete example of the Prompted Query
encoded format.

Interpreting the records of the exported prompted query

Table definitions (field number 1110) are always exported. Join conditions (field number 1510) are
always exported if more than one table is selected.

To import a prompted query file, the file must have an H record followed by the T record of the encoded
table. If no tables are specified, an empty query is imported. Join conditions are not required unless more
than one table is selected.

Chapter 9. Exporting and importing objects 111



Table 42. Table and field numbers for an exported prompted query object

Record type

Table number

Field number

Field description

T

1110

Table definitions table

The T record in this section of the exported prompted
query in “How the exported query looks” on page 110
identifies this section as the portion that contains the
table names involved in the query:

T 1110 003 002 1112 001 1113 050

'003' refers to 3 tables, while '002' refers to 2 field
numbers (1112 and 1113). If the exported query
object contains a period specification, a value of '003'
is used to indicate 3 field numbers (1112, 1113, and
1114) instead.

Each T record is followed by R records and, in this
example, the R records identify the tables involved in
the prompted query join:

This portion of the exported file corresponds to the
following part of the prompted query shown in “A
sample query (before export)” on page 109:

Tables:

Q.STAFF(A)
Q.0RG(B)
Q.STAFF(C)
1112 Table ID (valid table IDs are A-Z, and #,$,@)
1113 Table name (maximum of 280 characters)
1114 Period specification (maximum of 560 characters).

This field number is included only if the exported query
object contains a period specification.

112 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 42. Table and field numbers for an exported prompted query object (continued)

Record type | Table number | Field number |Field description
T 1150 - Join conditions table

The T record in this section of the exported prompted
query in “How the exported query looks” on page 110
identifies this section as the portion that contains the
join conditions involved in the query. Each T record is
followed by R records that identify which tables will be
joined:

T 1150 002 002 1152 020 1153 020

R A.DEPT B.DEPTNUMB

R A.ID C.ID
This portion of the sample exported query corresponds
to the following part of the sample prompted query
shown in “A sample query (before export)” on page
109:

Join Tables:

A.DEPT And B.DEPTNUMB
And A.ID And C.ID
1152 Column 1 name: Short length (22) Expanded length
(34)
1153 Column 2 name: Short length (22) Expanded length
(34)
T 1210 - Columns table

The T record in this section of the exported prompted
query in “How the exported query looks” on page 110
identifies this section as the portion that contains the
column names involved in the query. Each T record is
followed by R records that identify the column names.
The section appears as follows in the exported query:

210 007 002 1212 001 1213 255
.ID

.DEPT

.JOB

.SALARY

.DEPTNUMB

.SALARY

.SALARY+A.COMM

0000000

1
C
C
C
C
C
C
C

OOW>>>r >

This section of the exported query corresponds to the
following section of the sample query shown in “A
sample query (before export)” on page 109:

Columns:
A.ID
A.DEPT
A.JOB
A.SALARY
DEPTNUMB
C.SALARY
C.SALARY+A.COMM

Chapter 9. Exporting and importing objects 113



Table 42. Table and field numbers for an exported prompted query object (continued)

Record type

Table number

Field number

Field description

1212

Column type:

« C=column

« E=expression

» S=summary function with expression

» F=summary function with only a column

1213

Column name, expression, or summary function: Short
length (255) Expanded length (560)

1310

Row selection conditions

The T record in this section of the exported prompted
query in “How the exported query looks” on page
110 identifies this section of the exported query as
the portion that contains the query conditions. Each
T record is followed by R records that characterize
each condition. The section appears as follows in the
exported prompted query:

1310 009 003 1312 001 1313 008 1314 255
C A.SALARY

IS GT

10000

A.DEPT
IS EQ
84
96

DOV OVOVODOVDOODO—
PwwNERPPPWNE
(@]

This section of the exported query corresponds to the
following section of the query shown in “A sample
query (before export)” on page 109:

Row Conditions:
If A.SALARY Is Greater Than 10000
And A.DEPT Is Equal To 84 or 96

1312

Entry type:

1 - left of operator

2 - operator

3 - right of operator
» 4 - connector

1313

For entry type '1, identifies column type:

« C=column

» E=expression

« S=summary function

« F=summary function (column name only specified)

For entry type '2', identifies the verb:

« IS for'is' (default)
« ISN for'is not'

114 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 42. Table and field numbers for an exported prompted query object (continued)

Record type

Table number

Field number

Field description

For entry type '3' (not used)

For entry type '4', identifies a connector:

« O for 'or'
« Afor'and' (default)

1314

For entry type '1' this field is a column name,
expression, or summary function: Short length (255)
Expanded length (560)

For entry type '2', identifies the operator:
» EQ for 'equal to'

« LT for 'less than'

» LE for 'less than or equal to'

« GT for 'greater than'

« GE for 'greater than or equal to'
- BT for 'between'

« SWfor 'starting with'

« EW for 'ending with'

» CT for 'containing'

« NL for NULL

For entry type '3/, identifies a value

For entry type '4' (not used)

1410

Sort conditions table

The T record in this section of the exported prompted
query in “How the exported query looks” on page 110
identifies this section as the portion that contains the
sort conditions for the query. Each T record is followed
by R records that characterize each sort condition. This
section appears as follows in the exported prompted

query:

T 1410 001 002 1412 001 1413 255
R D C.SALARY+A.COMM

This section of the exported query corresponds to the
following section of the sample query in “A sample
query (before export)” on page 109:

Sort:
Descending by C.SALARY+A.COMM

1412

Sort direction:

« Afor 'ascending'
« D for 'descending'

1413

Column: Short length (255) Expanded length (560)

Chapter 9. Exporting and importing objects 115



Table 42. Table and field numbers for an exported prompted query object (continued)

Record type | Table number | Field number |Field description

\ 1501 Treatment of duplicate rows:

» K for 'keep'
« D for 'discard'

For example, the following line in the sample exported
prompted query in “How the exported query looks” on
page 110 shows that the record length of the value K is
1 ("001"). The line also shows that the user who built
the query specified to keep duplicate rows ("K"):

V 1501 001 K

This section of the exported query corresponds to the
following section of the sample query shown in “A
sample query (before export)” on page 109:

Duplicate Rows:
Keep duplicate rows

The meaning of values for fields 1313 and 1314 depends on the sequence number indicated in field
number 1312 in table number 1310.

Related reference

Header records

Most records of exported forms, reports, or prompted queries have a variable format. However, header
records have a fixed format, even though the data set or data queue that contains the records can be of
variable format.

Table row records (R)

R records of exported forms, reports, or prompted queries provide a set of values for a single row in

an encoded table. R records contain a list of values arranged in an order described by the associated T
record. An R record matches the description of the positions and lengths of the data values specified in
the T record.

Ensuring that the exported prompted query has a valid format
Importing a prompted query object that your application modified is subject to certain rules.

If you want to import a prompted query object that your application modified, be aware of the following
conditions:

« When a prompted query file is imported, the incoming records must be in this specific order after the
header (H) record:

1. T records for table definitions
2. R records for table names

3. T records for column definitions
4. R records for columns

5. Row condition records (table number 1310) must be in order within each condition according to the
entry type sequence number (field number 1312). In other words, the records must be in the same
order in which row data appears in the Prompted Query echo area.

The remaining records can be in any order.
« The Table definitions table (T record 1110) must appear before any other tables or V records.

116 Query Management Facility Version 12 Release 2: Developing QMF applications



The value of row count in the Tables T record must be * or an integer from 0 through 15. A zero value
in the row count causes everything in the query to be ignored, which means that an empty query is
imported.

QMF does not issue warnings for prompted query imports.

If a second Tables table (table 1110) is specified, QMF issues an error, and the contents of the table are
ignored. Prompted Query does not supply default values on import.

If there is a Sort table, there must be a Columns table that precedes it.
QMF accepts duplicate records in the import file. The most recent value for the record is used.
All column names must be qualified by the table identifier during import.

When a prompted query is exported to a pre-allocated data set, the minimum logical record length
(LRECL) allowed is 259 bytes.

The exported format of a prompted query is the same regardless of the national language used; the
format is language-independent. The language byte in the header record is ignored during import. The
codes used when exporting a prompted query are described in the list of table and field numbers for an
exported prompted query object.

Summary functions and expressions are not translated; thus, summary functions COUNT, AVG, SUM,
MIN, and MAX remain unchanged.

Importing forms and prompted queries

Be aware of the rules for importing a form or prompted query.

When you import a form or prompted query:

The file can consist of variable-length or fixed-length records.
The record identifier (H, V, T, R, E, *, L, or C) must be in the first position of every record.
The first two bytes are reserved for control information (the control area).

Every data field (including field numbers, lengths, and values) must be preceded and followed by one
delimiter, with the following exception: the last data field in a record does not need to be followed by
a delimiter because the end-of-record acts like a delimiter. (The examples in this information use the
blank character as the delimiter.)

If QMF encounters a duplicate data value or table while importing, it replaces the previous value or
table. However, duplicates are not allowed where they would violate the rules for a particular object. For
example, the number of columns provided for a form cannot be changed after the first COLUMNS table
is processed.

Table numbers, field numbers, and numeric lengths can contain leading zeros or leading blanks.
However, trailing blanks (except for the blank delimiter) are not allowed; fields must be right-aligned.

When * is used instead of a length or count, it must be left-aligned and padded with trailing blanks.

If the value supplied for a data entry field is shorter than the field, it is padded with trailing blanks. If the
value supplied is longer than the field, it is truncated.

If the record is shorter than its fixed-format length, those fields left unspecified are assumed to be
blank.

Related reference
Exporting a form

The form object contains all the information specified in all the QMF form panels. When you export a form,
QMEF converts to the encoded format any form panels whose values deviate from the default values.

Size specifications for externalized objects

Chapter 9. Exporting and importing objects 117



External tables and objects have both record size and record format specifications that vary by the type of
object.

Procedures and SQL queries

The format of the TSO data set or CICS data queue that represents these objects is the simplest of all the
formats. Each record in the data set or data queue is essentially an image of a line as it is displayed on the
screen (a fixed-length record of 79 bytes).

Although each line of these objects is 79 bytes, the logical record length (LRECL) for new and existing data
sets can be 79 - 32,760 bytes. If you export to a new data set, the LRECL is the value that is specified

by global variable DSQEC_DSLRECL1. If the LRECL is greater than 79, QMF pads each object record with
blanks during export.

Here is an example of a simple SQL query:

SQL query

SELECT *
FROM Q.STAFF

Figure 24. A simple SQL query
This example shows the query in its externalized format:

SELECT *
FROM Q.STAFF

Because of the simplicity of the record format, creating or editing an SQL query or procedure outside of
QMF is straightforward. An SQL query or procedure consists of fixed-length data in columns 1 - 79. Any
datain columns 80 - 32,760 is ignored during import. When you import the resulting data set or data
gueue, your query or procedure is in the QMF temporary storage area, ready to be run.

Exported form-based charts and QBE queries

You can export form-based charts and Query-by-Example (QBE) query objects for processing outside of
the QMF environment.

Exported form-based charts

A form-based chart cannot be saved as a QMF object in the database or retrieved from the database. You
cannot import form-based charts into QMF.

When you export a chart in QMF, it converts the data from the report to Graphics Data Format (GDF). GDF,
a GDDM format, is an existing standard for data interchange. You can print the exported chart data by
using GDDM utilities, or include it in documents.

You can use an exported chart object just as you would any GDF-formatted data set. For example, through
the Document Composition Facility (DCF), an application can combine a QMF report (that uses a printed
or exported report) with a QMF chart (that uses an exported chart) and send the formatted information to
a printer.

Exported QBE queries

QBE query objects are exported by using a format internal to QMF. This format cannot be altered in any
way.

118 Query Management Facility Version 12 Release 2: Developing QMF applications



Size specifications for externalized objects

External tables and objects have both record size and record format specifications that vary by the type of
object.

The following table contains specifications for both TSO and CICS import and export files. For CICS,
record sizes are not enforced. For example, you can import an SQL query from a temporary storage queue
with a record size of 32 KB and QMF truncates it to 79 bytes.

Record format is not a factor for CICS temporary storage or transient data queues. A temporary storage
queue holds records without regard to their format. A transient data queue is defined to a destination
control table (DCT) and ignores the record format.

You must specify a name for your data set or CICS data queue on the EXPORT or IMPORT command.
Queue names have no default prefix or suffix. CICS temporary storage queue names are 8 bytes; transient
data queue names are 4 bytes.

The following abbreviations are used for record formats in the table:
 FB - fixed block format

VB - variable block format

« VBS - variable block spanned format

Table 43. File and data set attributes

Object Record size Record format
Data or table | Maximum size: 7,000 bytes Fixed length (FB)
(OMF format)

Data or table | Maximum size: 32,756 Variable length (VB)
(IXF format)

The minimum LRECL for an exported form
that includes defined columns is 161 bytes.

The minimum LRECL that QMF accepts for an
IXF data set or CICS data queue during import
is 49 bytes.

Record size is normally the length of a row
of data in the table that is being exported
(including space for null indicators and DBCS
delimiters) plus the length of the IXF D-type
record count field (5 bytes).

Data or table | Maximum size: 2 GB Variable length (VBS)
(XML format)

Chapter 9. Exporting and importing objects 119



Table 43. File and data set attributes (continued)
Object Record size Record format
Data or table [ The maximum LRECL for exporting to new Variable length (VB)
(CSV format) |data sets is calculated based on whether YES
or NO is specified for the HEADER option of
the EXPORT command.
« If HEADER=YES is specified, the following
formula is used:
max (Column_Names_Total_Length,
Column_Data_Value_Total_Length)
+ (number of columns * 3 - 1) + 4
« If HEADER=NO is specified, the following
formula is used:
(length of column data values)
+ (number of columns - 1)
+ (number of columns * 2) + 4
For exporting to existing data sets, the LRECL
of the existing data set is the maximum LRECL
that can be exported.
Prompted Maximum: 7,290 bytes Variable length (VB) on EXPORT
uer -
query Minimum: 266 bytes on EXPORT; 41 bytes on | Either fixed length (FB) or variable
IMPORT length (VB) on IMPORT
SQL query Must be 79 - 32,760 bytes on EXPORT to new | Either fixed length (FB) or variable
and existing data sets; can be any size on length (VB) on EXPORT to existing data
IMPORT, but is truncated to 79 bytes sets; fixed length (FB) on EXPORT to
new data sets
Either fixed length (FB) or variable
length (VB) on IMPORT
QBE query Must be 1,024 bytes Variable length (VB)
An empty QBE query is 828 bytes.
Form Maximum: 7,290 bytes Fixed length (FB) on EXPORT
Minimum: 161 bytes on EXPORT; 23 bytes on | Either fixed length (FB) or variable
IMPORT length (VB) on IMPORT
Proc Must be 79 - 32,760 bytes on EXPORT to new | Either fixed length (FB) or variable
and existing data sets; can be any size on length (VB) on EXPORT to existing data
IMPORT, but is truncated to 79 bytes sets; fixed length (FB) on EXPORT to
new data sets
Either fixed length (FB) or variable
length (VB) on IMPORT
Report Maximum: 7,290 bytes Variable length (VB)
Minimum: 65 bytes
HTML report Maximum: 32,000 bytes Variable length (VB)

120 Query Management Facility Version 12 Release 2: Developing QMF applications




Storage considerations

When you import and export objects to CICS data queues and TSO data sets, be aware of how QMF
handles storage.

CICS data queues
For objects exported to a CICS data queue, understand how QMF handles the queues.
When you export an object to a CICS data queue, keep in mind the following conditions:

« In CICS, both the IMPORT and EXPORT commands require that you specify the QUEUETYPE option.
There is no default.

« When importing an object from a transient data (TD) queue in CICS, you must specify the correct object
type. The queue is emptied after QMF retrieves its contents. For example, if you specify "Form" when
the object type in the transient data queue is a procedure, QMF issues an error message. However, you
cannot successfully issue the IMPORT command again (even with the correct object type) by using the
same queue, because that queue is now empty.

« In CICS, the transient data or temporary storage (TS) queue must contain a single, completed QMF
object before you issue the IMPORT command.

« If you export to a transient data queue, the queue must be open, enabled, and empty before you issue
the EXPORT command.

QMF handles CICS transient data queues differently than temporary storage queues.
« Transient data queues

QMF imports the entire transient data queue before displaying the object on the screen. This means
that the contents of the entire queue must fit into your storage or spill area. You can use the DSQSPILL
parameter to specify use of spill storage. There might be a delay before the object is displayed if the
object is large and you are using a file for spill data.

A CICS intrapartition transient data queue can hold up to 32 KB rows of data. An extrapartition transient
data queue can be as large as it needs to be to hold the object.

« Temporary storage queues

By default, QMF reads approximately 100 rows of temporary storage before displaying them to the user.
A temporary storage queue can hold up to 32 KB rows of data.

QMF uses the SUSPEND parameter on the IMPORT and EXPORT commands to allow CICS to regulate
when the command is run.

The SUSPEND parameter on the IMPORT and EXPORT commands determines the action to be taken if a
queue is busy. When the SUSPEND parameter is set to YES, QMF issues a CICS ENQ (enqueue) for the
CICS data queue name. This setting tells CICS to wait until the queue is available before writing the QMF
object to the queue. The wait ensures that the QMF transaction does not interfere with any other jobs that
are being handled by the queue.

When the SUSPEND parameter is set to NO, the EXPORT command is canceled and a message is returned.
The default value of SUSPEND is NO.

TSO data sets

For objects exported to a TSO data set, be sure that you configure your storage management system
appropriately.

If you are using standard DASD devices, be sure that your storage management software is configured to
handle dynamic allocation of extended data sets. When configuring these data sets, specify the default
storage classes. When your storage management system is configured in this manner and you export an
object, QMF dynamically allocates a data set. QMF uses the name specified on the EXPORT command if
the data set does not exist. If you are exporting data in XML format, you could receive dynamic allocation
errors if you have not properly configured your data sets. For more information about how to configure

Chapter 9. Exporting and importing objects 121



dynamic allocation of extended data sets, see the information provided with your storage management
software.

If you are not using standard DASD devices, you must pre-allocate your data sets before using the
EXPORT command. You can use global variables to specify the type and size of new data sets that will
contain exported objects:

 Use global variable DSQEC_PO to specify the type of partitioned data set to create when you export an
object to a member of a new data set. The type can be the default type for your site, a PDS data set, or a
PDSE data set.

« Use global variable DSQEC_DSALLOC_DIR to specify the number of directory blocks when you export a
member of a new PDS data set. The default is 20.

« Use global variable DSQEC_DSALLOC_PRI to specify the primary space allocation in tracks. The default
is 15 tracks.

 Use global variable DSQEC_DSALLOC_SEC to specify the secondary space allocation in tracks. The
default is 105 tracks.

Related reference
Global variables that control how commands and procedures are executed

122 Query Management Facility Version 12 Release 2: Developing QMF applications



Chapter 10. Debugging your QMF applications

In addition to error handling, QMF provides debugging facilities for your callable interface applications.
You can use the REXX trace facility through the REXX TRACE statement.

Related concepts

Writing QMF applications that use ISPF services

You can bypass the QMF panels by writing applications that have their own user interfaces. You can use
either the callable interface or the command interface to write applications that use ISPF.

Debugging your callable interface applications

QMF provides two trace options, L and A, and various levels of trace detail for debugging your
applications.

The L option for tracing
The L option writes messages and commands to an external TSO data set or CICS data queue.

There are two L options you can choose:

L1
Every QMF message is written to the QMF trace data output.

L2
Every QMF message and command is written to QMF trace data output.

You can set the L option in one of two ways:

« Issue the DISPLAY PROFILE command, and when the PROFILE is displayed, change the TRACE option
to either L1 or L2.

« Issue the command:
SET PROFILE (TRACE=x

In this statement, x is either L1 or L2.

Related concepts

Allocating the QMF trace data output
You must allocate the QMF trace data output before you start QMF if tracing is to be used.

The A option for tracing
You can use the A option to specify a level of tracing for QMF application support services.

The A option can be A0, A1, or A2. AO is the default and provides no A-tracing at all. A1 and A2 provide
increasingly detailed results. This pattern is also used for the other QMF trace options.

You specify the A option in the same way you specify the L option: through a QMF SET PROFILE command,
or by entering it on the screen after you issue the DISPLAY PROFILE command. For example, you can
enter the following statement immediately before you call the application you are debugging:

SET PROFILE (TRACE=L2A1)

When you begin your application, both L2 and A1l tracing are in effect.

To determine the current A option setting, look at the variable DSQAO_APPL_TRACE. Its value is 0, 1, or
2 for the settings A0, A1, or A2. You can use the value of DSQAO_APPL_TRACE to select the tracing you
want in your application, as in the REXX application shown here:

© Copyright IBM Corp. 1982, 2021 123



/* REXX program to set tracing */
call dsqcix "GET GLOBAL (A_TRACE=DSQAO_APPL_TRACE"
if a_trace > 0 then
do
/* trace code for both Al and A2 %/

if a_trace = 2 then
do
/* trace code for just A2  */

end
end

Figure 25. Structure of a sample REXX program that you can use to set tracing for application support
services

Turning the tracing off
To turn tracing off, use the SET PROFILE command.

If you need to turn the tracing off for any reason, issue the following command: SET PROFILE
(TRACE=NONE

This command discontinues tracing for the rest of the QMF session, but does not affect the permanent
QMF profile.

Allocating the QMF trace data output
You must allocate the QMF trace data output before you start QMF if tracing is to be used.

You might want to reallocate the data set or data queue if the original allocation does not meet your
needs.

For examples of how to allocate QMF trace data output for TSO, see the programming language
specification for the language you are using.

The commands in the examples allocate a sequential trace data set or data queue that you can examine
after your QMF session is over. The output consists of fixed-length, 80-character records.

For CICS, you can use program parameters DSQSDBQT and DSQSDBQN to specify where QMF puts your
trace data. Use caution when using CICS temporary storage, because QMF can produce a large amount
of trace data. Because trace data that exceeds the size of the queue is discarded, use CICS temporary
storage only for trace data from messages or small applications.

Related reference

Programming language specifications for using the callable interface
The QMF application programming interface is available for several programming languages.

START command keywords
You can specify keywords on the START command.

The QMF MESSAGE command for tracing

You can use the QMF MESSAGE command to do more than display a message when an application ends.
You can also use it to record messages in the QMF trace data output.

To record messages, run the application with the L tracing option set to L1 or L2. Every message
processed through the MESSAGE command is recorded, along with other QMF messages in the QMF
trace data output. If the L tracing option is set to L2, commands are also recorded.

By placing MESSAGE commands at strategic points in your program, you can log useful information in the
QMF trace file. You can examine the information either on a display device or in printed output.

The following lines show an example of how to turn on tracing and issue meaningful messages that are
displayed in the trace output:

124 Query Management Facility Version 12 Release 2: Developing QMF applications



call dsqcix "SET PROFILE (TRACE=L2"
:call dsqcix "MESSAGE (TEXT='QUERYA COMPLETED SUCCESSFULLY""
:call dsqcix "MESSAGE (TEXT='EXECB ENTERED WITH VALUE OF 7'"

In this example, records containing the messages "QUERYA COMPLETED SUCCESSFULLY"and "EXECB
ENTERED WITH A VALUE OF 7" are written to the QMF trace data output.

Because QMF messages might change from one release to the next, do not use the QMF trace data output
as input to an application.

Related concepts

Allocating the QMF trace data output
You must allocate the QMF trace data output before you start QMF if tracing is to be used.

The L option for tracing
The L option writes messages and commands to an external TSO data set or CICS data queue.

Errors on the START or other QMF commands

Depending on its level, the DSQCOMM might contain message text. If the START command (or any QMF
command) fails, you can use this message text to troubleshoot problems.

Chapter 10. Debugging your QMF applications 125



126 Query Management Facility Version 12 Release 2: Developing QMF applications



Chapter 11. Programming language specifications for

using the callable interface

The QMF application programming interface is available for several programming languages.

IBM provides information about how to assemble (or compile) and link-edit the programs and how to run
them using the callable interface. IBM does not provide the REXX execs, JCL, or CLISTs in the examples,
but you can copy them and alter them to suit your needs.

Assembler language interface

You can use the Assembler language with the callable interface in QMF.

Interface communications area mapping for Assembler (DSQCOMMA)
DSQCOMMA provides DSQCOMM mapping for the Assembler language; it is provided with the product.

This table shows the values for DSQCOMMA.

Table 44. Contents of the DSQCOMMA interface communications area

Structure name Data type

Description

DSQ_RETURN_CODE DSF

Indicates the status of a QMF command after it
runs

Its values are:

DSQ_SUCCESS
Successful execution of the request

DSQ_WARNING
Normal completion with warnings

DSQ_FAILURE
Command did not execute correctly

DSQ_SEVERE
Severe error; QMF session terminated

DSQ_INSTANCE_ID DSF

Identifier established by QMF during execution of
the START command

DSQ_COMM_LEVEL DS CL12

Identifies the level of the DSQCOMM

In your application, include instructions that
initialize this variable to the value of
DSQ_CURRENT_COMM_LEVEL before issuing the
QMF START command

DSQ_PRODUCT DS CL2

Identifies the IBM query product in use

Variables that begin with DSQ_QMF specify QMF for
TSO and QMF for CICS versions.

DSQ_PRODUCT_RELEASE DS CL2

Release level of QMF in use

Variable DSQ_QMF_V11R1 specifies QMF Version
12 Release 1.

DSQ_RESERVE1 DS XL28

Reserved for future use

© Copyright IBM Corp. 1982, 2021

127



Table 44. Contents of the DSQCOMMA interface communications area (continued)

Structure name Data type Description

DSQ_MESSAGE_ID DS CL8 Completion message ID

DSQ_Q_MESSAGE_ID DS CL8 Query message ID

DSQ_START_PARM_ ERROR DS CL8 Name of the parameter in error when the START

command failed due to a parameter error

DSQ_CANCEL_IND DSC Contains one of two values, depending on whether
the user canceled the QMF session while a QMF
command was running:

. DSQ_CANCEL_YES
« DSQ_CANCEL_NO

DSQ_RESERVE2 DS XL23 Reserved for future use
DSQ_RESERVE3 DS XL156 Reserved for future use
DSQ_MESSAGE_TEXT DS CL128 Completion message text
DSQ_Q_MESSAGE_TEXT DS CL128 Query message text

Function calls for Assembler language

QMF provides one function call, DSQCIA, for Assembler-language programs. The function call has two
formats: regular syntax and extended syntax.

DSQCIA, regular syntax

This call is for QMF commands that do not require access to application program variables. Use this call
for most QMF commands.

CALL DSQCIA, (DSQCOMM,CMDLTH,CMDSTR),VL

The parameters have the following values:

DSQCOMM
The interface communications area

CMDLTH
Length of the command string (CMDSTR); a FULLWORD parameter

CMDSTR
The QMF command issued on the function call; an uppercase character string of the length specified
by CMDLTH

VL is the Assembler VARIABLE LIST statement.

DSQCIA, extended syntax

This extended-syntax format of the DSQCIA function call is for the QMF commands that require access
to application program variables: START, TRACE, and the extended formats of GET GLOBAL and SET
GLOBAL.

CALL DSQCIA, (DSQCOMM,CMDLTH,CMDSTR,
PNUM, KLTH, KWORD, VLTH, VALUE, VTYPE) , VL

The parameters have the following values:

DSQCOMM
The interface communications area.

128 Query Management Facility Version 12 Release 2: Developing QMF applications



CMDLTH
The length of the command string (CMDSTR); a FULLWORD parameter.

CMDSTR
The QMF command to execute; an uppercase character string of the length specified by CMDLTH.

PNUM
The number of command keywords or trace areas; a FULLWORD parameter.

KLTH
The length of each specified keyword or trace title; a FULLWORD parameter or array of FULLWORD
parameters.

KWORD
QMF keyword, keywords, or address of trace titles; a character, array of characters, or array of
addresses to trace titles whose lengths are specified by KLTH.

VLTH
The length of each value that is associated with the keyword or trace title; a FULLWORD parameter or
array of FULLWORD parameters.

VALUE
The value that is associated with each keyword or the address of a value that is associated with a
trace title.

Its type is specified in the VTYPE parameter and can be a character, array of characters, FULLWORD
parameter, or array of FULLWORD parameters. For trace data, VTYPE must be FINT.

VTYPE
Data type of the contents of the VALUE parameter.

This parameter has one of two values, which are provided in the interface communications area,
DSQCOMMA:

« DSQ_VARIABLE_CHAR for character values

If VTYPE is DSQ_VARIABLE_CHAR, then VALUE is not validated.
« DSQ_VARIABLE_FINT for integer values

If VTYPE is DSQ_VARIABLE_FINT, then VALUE is validated, and VALUE must be an integer.
All values that are specified in the VALUE field must have the data type that is specified in VTYPE.
VL is the Assembler VARIABLE LIST statement.

Assembler programming example

IBM provides a sample Assembler program for CICS and TSO. This sample program is a member of the
library QMF1210.SDSQSAPn (where n is a national language identifier).

Sample Assembler program for CICS
IBM provides a sample Assembler program for CICS named DSQABFAC

This sample Assembler program for CICS is in the QMF1210.SDSQSAPn library (where n is a national
language identifier).

This sample program for the Assembler callable interface performs the following functions:

Starts QMF
Sets three global variables

« Runs a query called Q1

Prints the resulting report by using form F1
Ends the QMF session

Chapter 11. Programming language specifications for using the callable interface 129



QMF does not supply query Q1 or form F1, but the sample program uses these objects.

TITLE 'Sample HLASM Query Callable Interface'

* *
* Sample Program: DSQABFAC *
* Assembler Version of the QMF Callable Interface for CICS *
* *

DSQABFAC DFHEIENT CODEREG=(12),DATAREG=(13),EIBREG=(11)
DSQABFAC AMODE 31
DSQABFAC RMODE ANY

SPACE 1
*kkkkkkhkkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkhhkhkkhkhhkkhkkhhhkkhhhkhkkhhhkhhhhkkhkhhkkhkkhhhkkhhhkkhkkhhhkkhkhhkhkkhhhkkhkhhhkkhhik
* Start a query interface session *

LA R4,CICOMM ESTABLISH ACCESS TO DSQCOMM

USING DSQCOMM,R4

SPACE 1

MVC  DSQ_COMM_LEVEL,DSQ_CURRENT_COMM_LEVEL

ST R4, QMFP1 Address of DSQCOMMA

LA R1,STARTQIL Address of START command length

ST R1,QMFP2

LA R1,STARTQI Address of START command

ST R1,QMFP3

LA R1,1 One Start command parameter

ST R1, NUMPARMS

LA R1, NUMPARMS Address of number of parameters

ST R1,QMFP4

LA R1,STARTKYL Address of keyword lengths

ST R1,QMFP5

LA R1, STARTKY Address of keywords

ST R1,QMFP6

LA R1,STARTVL Address of value lengths

ST R1,QMFP7

LA R1,STARTV Address of values

ST R1,QMFP8
LA R1,DSQ_VARIABLE_CHAR Address of value data type
ST R1,QMFP9

01 QMFP9,X'80" Set end of parameter list
LA R1,QMFPLIST Address of parameter list
CALL DSQCIA
SPACE 1
*khkkkhkkkhkhkkhhkkhhkkkhhkkhhkkhhkkkhhkhhkkhkhkkhhkhhkkhkhkkkhhkhhkkhkhkhkhhkhhkkhkhhkhhkhhkkhkhkhkhhkkhhkhkhhkhhkkhkkkhkkkk
* Set numeric values into query using SET command *

SPACE 1

LA R1,20 Set values for SET GLOBAL command
ST R1,VVAL1

LA R1,40
ST R1,VVAL2

LA R1,84
ST R1,VVAL3

LA R1,SETGL Addr of SET GLOBAL command length
ST R1,QMFP2

LA R1,SETG Address of SET GLOBAL command
ST R1,QMFP3

LA R1,3 Three SET GLOBAL variables
ST R1, NUMPARMS

LA R1,NUMPARMS Address of number of parameters
ST R1,QMFP4

LA R1,VNAME1L Address of variable name lengths
ST R1,QMFP5

LA R1,VNAME1 Address of variable names

ST R1,QMFP6

LA R1,VVALI1L Address of value lengths

ST R1,QMFP7

LA R1,VVAL1 Address of values

ST R1,QMFP8
LA R1,DSQ_VARIABLE_FINT Address of value data type
ST R1,QMFP9

0I QMFP9,X'80" Set end of parameter list
LA R1,QMFPLIST Address of parameter list
CALL DSQCIA
SPACE 1
* Run a query *
LA R1,QUERYL Addr of RUN QUERY command length
ST R1,QMFP2
LA R1, QUERY Address of RUN QUERY command

130 Query Management Facility Version 12 Release 2: Developing QMF applications



ST R1,QMFP3

oI QMFP3,X'80" Set end of parameter list
LA R1,QMFPLIST Address of parameter list
CALL DSQCIA
SPACE 1
*khkkkhkkkhkhkkhhkkhhkkkhhkkhhkkhkhkkkhkhkhhkkhhkkhhkhhkkhkhkhkhhkhhkkhkhhkhhkhhkkhkhkhkhhkhhkkhkhkhkhhkkhhkkkhkhkhhkhkkkhkkk
* Print the result of the query *
LA R1,REPTL Addr of PRINT Report command lth
ST R1,QMFP2
LA R1,REPT Address of PRINT Report command
ST R1,QMFP3
0I QMFP3,X'80" Set end of parameter list
LA R1,QMFPLIST Address of parameter list
CALL DSQCIA
SPACE
1
* End the query interface session *
*khkkkhkkkhkhkkhhkkkhkkkhhkkhhkkhhkkkhhkhhkkhkhkkhhkhhkkhkhkhkhhkhhkkhkhhkhhkhhkkhkhhkhhkhhkkhkhkhkhhkkhhkkkhhkhhkkhkkkhkkkkx
LA R1,ENDQIL Address of EXIT command length
ST R1,QMFP2
LA R1,ENDQI Address of EXIT command
ST R1,QMFP3
oI QMFP3,X'80" Set end of parameter list
LA R1,QMFPLIST Address of parameter list
CALL DSQCIA
SPACE 1
*khkkkhkkkhkhkkhhkkhkhkkkhhkkhhkkhhkkkhhkhhkkhhkhkkhhkhhkkhkhkhkhhkhhkkhkhkkkhhkkhhkkhkhkhkhhkhhkkhkhkhkhhkhhkhkhkhkhhkkhkkkhkkk
* Free Keyboard *
EXEC CICS SEND CONTROL FREEKB
SPACE 1
* Return *
SPACE 1
XR R15,R15 ZERO RETURN CODE
DFHEIRET RCREG=15
* Data Areas *
SPACE 1
* Query Interface commands
SPACE 1
STARTQI DC C'START' START FUNCTION
SETG DC C'SET GLOBAL' SET GLOBAL FUNCTION
QUERY DC C'RUN QUERY 01' RUN QUERY
REPT DC C'PRINT REPORT (FORM=F1,QUEUEN=DSQP,QUEUET=TS)'
ENDQI DC C'EXIT' END INTERFACE
SPACE 1
DS OF
STARTQIL DC ALA(L'STARTQI) LENGTH OF START FUNCTION
SETGL DC AL4(L'SETG) LENGTH OF SET GLOBAL FUNCTION
QUERYL DC AL4 (L 'QUERY) LENGTH OF RUN QUERY COMMAND
REPTL DC ALA(L'REPT) LENGTH OF PRINT REPORT COMMAND
ENDQIL DC AL4(L'ENDQI) LENGTH OF END INTERFACE COMMAND
SPACE 1
* START command keywozxd
SPACE 1

STARTKY DC C'DSQSMODE"

STARTV DC C'INTERACTIVE'
DS OF

STARTKYL DC ALA (L 'STARTKY)

STARTVL DC ALA(L'STARTV)
SPACE 1

* SET GLOBAL command variable names
SPACE 1

VNAME1 DC C'MYVARO1'

VNAME2 DC C'SHORT'

VNAME3 DC C'MYVARO3'
DS OF

VNAME1L DC AL4(L'VNAME1)

VNAME2L DC ALA(L'VNAME2)

VNAME3L DC ALA(L'VNAME3)
SPACE 1

* SET GLOBAL command values
SPACE 1

VVAL1L DC AL4A(L'VVALL)

VVAL2L DC ALA(L'VVAL2)

VVAL3L DC ALA(L'VVAL3)

Chapter 11. Programming language specifications for using the callable interface 131



* Callable interface communications definition

DSQCOMMA
* Equates for registers 0-15
RO EQU 00
R1 EQU 01
R2 EQU 02
R3 EQU 03
R4 EQU 04
R5 EQU 05
R6 EQU 06
R7 EQU 07
R8 EQU 08
R9 EQU 09
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

* Local variables located in CICS working storage
DFHEISTG DSECT
ORG DFHEIUSR
NUMPARMS DS F NUMBER OF KEYWORDS
* QMF SET GLOBAL command values
VVAL1 DS F
VVAL2 DS F
VVAL3 DS F
* QMF Callable interface parameter list
QMFPLIST DS oD

QMFP1 DS F

QMFP2 DS F

QMFP3 DS F

QMFP4 DS F

QMFP5 DS F

QMFP6 DS F

QMFP7 DS F

QMFP8 DS F

QMFP9 DS F

* Callable interface communications area

CICOMM DS CL (DSQCOMM_LEN)
CSECT
SPACE 1

END DSQABFAC

Related reference

Conventions for National Language Feature information

Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

Sample Assembler program for TSO
IBM provides a sample Assembler program for TSO named DSQABFA.

This sample Assembler program for TSO is in the QMF1210.SDSQSAPn library (where n is a national
language identifier).

This sample program for the Assembler callable interface performs the following functions:

- Starts QMF
Sets three global variables

* Runs a query called Q1

Prints the resulting report by using form F1
Ends the QMF session

QMF does not supply query Q1 or form F1, but the sample program uses these objects.

DSQABFA TITLE 'SAMPLE QMF CALLABLE INTERFACE'

DSQABFA CSECT

DSQABFA AMODE 31

DSQABFA RMODE ANY

Sk ok ok e ko ok ok o ko ok ok ok ko ok e ko ok ek o ko ok ko ok ok ok ko ok ok ok ok ok ok ko ok sk ok ok ok ok ok
* *
* Sample Program: DSQABFA *

132 Query Management Facility Version 12 Release 2: Developing QMF applications



* Assembler Version of the QMF Callable Interface *

* *
ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
SPACE 1
STM R14,R12,12(R13) SAVE ENTRY REGISTERS
BALR R12,0 INITIALIZE BASE REGISTER
USING *,R12
LA R2,SAVEAREA CHAIN SAVE AREAS

ST R2,8(R13)
ST R13,SAVEAREA+4

LR R13,R2 ESTABLISH SAVE AREA

SPACE 1
* Start a query interface session *
*hkkkkkkhkkhkkhkkhkhkhkkhkkhhkkhkkhkhhkkhkkhhkkhkkhkhhkkhkkhhhkkhkhhkkhkkhhhkkhkhhkhkkhkhhkkhkkhhhkkhhhkkhkkhhhkkhkhhhkkhhhkkhkhhhkkhhik

LA R4 ,CICOMM ESTABLISH ACCESS TO DSQCOMM

USING DSQCOMM,R4

SPACE 1

MVC  DSQ_COMM_LEVEL,DSQ_CURRENT_COMM_LEVEL

LA R1,1 1 PARAMETER

ST R1, NUMPARMS
CALL DSQCIA,

(CICOMM, QI COMMON AREA
STARTQIL, START COMMAND LENGTH
STARTQI, START COMMAND
NUMPARMS, NUMBER OF KEYWORDS
STARTKYL, KEYWORD LENGTHS
STARTKY, KEYWORDS
STARTVL, VALUE LENGTHS
STARTV, VALUES
DSQ_VARIABLE_CHAR),VL VALUES ARE CHARACTERS
SPACE 1
*kkkkkkhkkhkkhkkhkhkhkkhkkhhkkhkkhhhkkhkkhhkkhkkhkhhkkhkkhhhkkhhhkkhkkhhhkkhhhkhkkhhhkkhkkhhhkkhhhkkhkkhhhkkhkhhhkkhhhkkhkhhhkkhhhk
* Set numeric values into query using SET command *
SPACE 1
LA R1,20 SET VALUES TO BE MODIFIED
ST R1,VVAL1
LA R1,40
ST R1,VVAL2
LA R1,84
ST R1,VVAL3
LA R1,3 3 PARAMETERS
ST R1, NUMPARMS
SPACE 1
CALL DSQCIA,
(CICOMM,
SETGL, SET GLOBAL COMMAND LENGTH
SETG, SET GLOBAL COMMAND
NUMPARMS, NUM OF VARIABLES TO BE SET
VNAMELL, VARIABLE NAME LENGTHS
VNAME1, VARIABLE NAMES
VVAL1L, VALUE LENGTHS
VVALZL, VALUES
DSQ_VARIABLE_FINT),VL VALUES ARE INTEGERS
SPACE 1
*hkkkhkkkkhkkhkkhkkhkhkhkkhkkhhkkhkkhkhhkkhkkhhkkhkkhkhhkkhkkhhhkkhhhkkhkkhhhkkhhhkhkkhkhhkkhkkhhhkkhhhkkhkkhhhkkhkhhkkhkkhhhkkhkkhhhkkhhik
* Run a query *
SPACE 1
CALL DSQCIA,
(CICOMM,
QUERYL, QUERY COMMAND LENGTH
QUERY) , VL TEXT OF QUERY COMMAND
SPACE 1
*kkkkkkhkkhkkhkkhkhkhkkhkkhhkkhkkhhhkkhkkhhkhkkhkhhkkhkkhhhkkhhhkkhkkhhhkkhhhhkkhkhhkkhkkhhhkkhhhkkhkkhhhkkhhhkhkkhhhkkhkkhhhkkhhik
* Print the result of the query *
SPACE 1
CALL DSQCIA, (CICOMM,REPTL,REPT),VL
SPACE 1
*kkkkkkhkkhkkhkkhkhkhkkhkkhhkkhkkhkhhkkhkhhkkhkkhkhhkkhkkhhhkkhkhhkkhkkhhhkkhhhkkhkkhhhkkhkkhhhkkhhhkkhkkhhhkkhhhkhkkhhhkkhkhhhkkhhik
* End the query interface session *
SPACE 1
CALL DSQCIA, (CICOMM,ENDQIL,ENDQI),VL
SPACE 1
*hkkkhkkkkhkkhkkhkkhkhkhkkhkhhkkhkkhkhhkkhkhhkhkkhkhhkkhkkhhhkkhhhkkhkkhhhkkhkhhhkkhkhhkkhkkhhhkkhhhkkhkkhhhkkhkhhkhkkhhhkkhkkhhhkkhhik
* Return *
SPACE 1
SR R15,R15 SET RETURN CODE

Chapter 11. Programming language specifications for using the callable interface 133



L

L

LM

BR
EJECT

R13,4(R13)
R14,12(R13)
RO,R12,20(R13)
R14

RESTORE CALLER REGISTERS

*khkkkhkkkhkhkkhhkkhhkkkhhkkhhkkhkhkkkhkhkhhkkhhkkhhkhhkkhkhkhkhhkhhkkhkhhkhhkhhkkhkhkhkhhkhhkkhkhkhkhhkkhhkkkhkhkhhkhkkkhkkk
* Data Areas

C'PRINT REPORT (FORM=F1)'

START FUNCTION

SET GLOBAL FUNCTION
RUN QUERY

PRINT REPORT
END INTERFACE

LENGTH OF START FUNCTION

LENGTH OF SET GLOBAL FUNCTION
LENGTH OF RUN QUERY COMMAND
LENGTH OF PRINT REPORT COMMAND
LENGTH OF END INTERFACE COMMAND

NUMBER OF KEYWORDS

EQUATES FOR REGISTERS 0-15

SPACE 1
* Query Interface commands
SPACE 1
STARTQI DC C'START'
SETG DC C'SET GLOBAL'
QUERY DC C'RUN QUERY Q1'
REPT DC
ENDQI DC C'EXIT'
SPACE 1
DS OF
STARTQIL DC AL4(L'STARTQI)
SETGL DC AL4(L'SETG)
QUERYL DC AL4 (L'QUERY)
REPTL DC AL4(L'REPT)
ENDQIL DC AL4(L'ENDQI)
SPACE 1
* START command keyword
SPACE 1
STARTKY DC C'DSQSMODE'
STARTV DC C'INTERACTIVE'
DS OF
STARTKYL DC ALA (L'STARTKY)
STARTVL DC AL4(L'STARTV)
SPACE 1
* SET GLOBAL command variable names
SPACE 1
VNAME1 DC C'MYVARO1'
VNAME2 DC C'SHORT'
VNAME3 DC C'MYVARO3'
DS OF
VNAMEL1L DC ALA (L'VNAMEL)
VNAME2L DC AL4(L'VNAME2)
VNAME3L DC AL4(L'VNAME3)
SPACE 1
* SET GLOBAL command values
SPACE 1
VVAL1 DS F
VVAL2 DS F
VVAL3 DS F
VVALLL DC AL4A(L'VVALL)
VVAL2L DC AL4(L'VVAL2)
VVAL3L DC AL4(L'VVAL3)
SPACE 1
NUMPARMS DS F
SPACE 1
* Callable interface communications area
SPACE 1
CICOMM DS CL (DSQCOMM_LEN)
SPACE 1
SAVEAREA DS 18F
EJECT
DSQCOMMA
SPACE 1
RO EQU 00
R1 EQU 01
R2 EQU 02
R3 EQU 03
R4 EQU 04
R5 EQU 05
R6 EQU 06
R7 EQU 07
R8 EQU 08
R9 EQU 09
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
SPACE 1
END DSQABFA

134 Query Management Facility Version 12 Release 2: Developing QMF applications



Related reference

Conventions for National Language Feature information
Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

DSQCOMM for Assembler

The Assembler interface communications area file is named DSQCOMMA.

The DSQCOMMA file is provided in the QMF1210.SDSQSAPn library (where n is a national language
identifier). A copy of the file is shown here:

MACRO
DSQCOMMA
* Callable interface - variable constants *
*khkkkkkkhkhkkhkhkkhkhkkkhhkhhkkhhkhkkhhkhhkkhhkhkhhkhhkkhhkhkhhkhhkhhkhkhhkhhkkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhhkhhkhkik
*
* Communications Level ID
*
DSQ_CURRENT_COMM_LEVEL DC CL12'DSQL>001002<"
*

* Query Product IDs
*

DSQ_QRW DC c'o1’
DSQ_QMF DC c'o2'
DSQ_QM4 DC c'e3’

*

* Query Product Release IDs
*

DSQ_QRW_V1R2 DC  C'o1’
DSQ_QRW_V1R3 DC  C'02'
DSQ_QMF_V2R4 DC  Cc'e1l’
DSQ_QMF_V3R1 DC  C'02'
DSQ_QMF_V3R1IM1 DC  C'03'
DSQ_QMF_V3R2 DC  C'04’
DSQ_QMF_V3R3 DC  C'O5'
DSQ_QMF_V6R1 DC  C'06'
DSQ_QMF_V7R1 DC  C'07'
DSQ_QM4_V1R1 DC  C'O1’
DSQ_QMF_V7R2 DC  C'08’
DSQ_QMF_V8R1 DC  C'09'
DSQ_QMF_V9R1 DC  C'10'
DSQ_QMF_V10R1 DC  C'11'
*

* Extended parameter data types
*
DSQ_VARIABLE_CHAR DC C'CHAR'
DSQ_VARIABLE_FINT DC C'FINT'
*

* Return codes
*

DSQ_SUCCESS EQU 0]

DSQ_WARNING EQU 4

DSQ_FAILURE EQU 8

DSQ_SEVERE EQU 16

*

* Instance ID values

*

DSQ_CONTINUE EQU 0

*

* Cancel indicator

*

DSQ_CANCEL_YES EQU C'1'

DSQ_CANCEL_NO EQU c'o'

*

*

DSQ_INTERACTIVE EQU c'1'

DSQ_BATCH EQU c'2'

*

DSQ_YES EQU c'1'

DSQ_NO EQU c'2'

*
*khkkkkkkhkhkkhkhkkhhkkkhhkhhkkhhkhkhkhkhhkkhhkhkhhkhhkkhhkhkhhkhhkkhhkhkhhkhhkkhhkhkhhkhhkhhkhkhkhkhhkhkhkhkhhkhhkkhkik
* Callable interface communications area *
e e e e e e e e e e e e e e e e e e e e e e e o e e e e o e o e o e o o e ok ok o ok o o ok ok o ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
DSQCOMM DSECT

Chapter 11. Programming language specifications for using the callable interface 135



DSQ_RETURN_CODE DS F FUNCTION RETURN CODE
DSQ_INSTANCE_ID DS F ID ESTABLISHED IN START CMD
DSQ_COMM_LEVEL DS cL12 COMMUNICATIONS LEVEL ID
DSQ_PRODUCT DS cL2 QUERY PRODUCT ID
DSQ_PRODUCT_RELEASE DS  CL2 QUERY PRODUCT RELEASE ID
DSQ_RESERVE1L DS cL28 RESERVED
DSQ_MESSAGE_ID DS cLs COMPLETION MESSAGE ID
DSQ_Q_MESSAGE_ID DS CcL8 QUERY MESSAGE ID
DSQ_START_PARM_ERROR DS CL8 START PARAMETER IN ERROR
DSQ_CANCEL_IND DS C CMD CANCEL INDICATOR
DSQ_RESERVE2 DS cL23 RESERVED
DSQ_RESERVE3 DS CL156 RESERVED
DSQ_MESSAGE_TEXT DS cL128 COMPLETION MESSAGE
DSQ_Q_MESSAGE_TEXT DS cL128 QUERY MESSAGE

SPACE 1
DSQCOMM_LEN EQU  %-DSQCOMM LENGTH OF DSQCOMM AREA

MEND

Related reference

Conventions for National Language Feature information

Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

Running your Assembler programs in CICS
After you write your program, you need to translate, assemble, and link-edit it before you can run it.

The REXX JCL and CLISTs in these examples are not provided with QMF, but you can copy them from
here, altering them to suit your needs

When you translate, assemble, and link-edit a program that uses the QMF callable interface, be aware of
the following conditions:

« The interface communications area, DSQCOMMA, must be available to the assemble step or copied into
your program as a DSECT.

« The QMF interface module, DSQCIA, must be made available during the link-edit step of your program.
The JCL shown here is an example of how to use the procedure DFHEBTAL, supplied with CICS.

//sampasm JoB

// EXEC PROC=DFHEBTAL

//TRN.SYSIN DD =

*ASM XOPTS(CICS translator options ..... )

Your program or copy of QMF sample DSQABFA

/*
//* Provide access to QMF communications macro DSQCOMM
//ASM.SYSLIB DD DSN=QMF1210.SDSQSAPE,DISP=SHR
//* Provide access to QMF interface module
//* Allocation for your CICS library
//LKED.CICSLOAD DD
//* Allocation for your target library
//LKED.SYSLMOD DD
//* Allocation for the QMF load module library
//LKED.QMFLOAD DD DSN=QMF1210.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE CICSLOAD (DFHEATI)

INCLUDE CICSLOAD(DFHEAIOQ)

INCLUDE QMFLOAD(DSQCIA)

ORDER DFHEAI,DFHEAIO

ENTRY sampasm

MODE AMODE(31) RMODE(31)

NAME sampasm(R)
/*

136 Query Management Facility Version 12 Release 2: Developing QMF applications



Running your Assembler programs in TSO

You must assemble and link-edit your program before you can run it in TSO.

Assembling and link-editing in TSO

This listing shows a sample job that assembles and link-edits your program. Some parameters might vary
from one QMF installation to the next.

//sampasm JoB

//STEP1 EXEC PROC=ASMACL

//* Provide access to QMF communications macro DSQCOMM
//C.SYSLIB DD DSN=QMF1210.SAMPLIB,DISP=SHR
//C.SYSIN DD *

?our program or copy of QMF sample DSQABFA

/*
//* Provide access to QMF interface module
//* Allocation for your target library
//L.SYSLMOD DD
//* Allocation for the QMF load library
//L.QMFLOAD DD DSN=QMF1210.SDSQLOAD,DISP=SHR
//L.SYSIN DD *

INCLUDE QMFLOAD(DSQCIA)

ENTRY sampasm

MODE AMODE(31) RMODE(31)

NAME sampasm(R)
/*

Running in TSO with ISPF
After your program is assembled successfully, you can run it under ISPF.

Run your program in TSO under ISPF by writing a program similar to the CLIST shown here:

PROC O

CONTROL ASIS

[ Fekedede ek ek e kok o ek ok e kok ok ek ok e okok ok ek ok o kok ok ok ok o kok ok ek ok o kok ok ok ok ke ok
/* Specify attribute list for dataset allocations */
/

ATTR PRINTDCB LRECL(2133) RECFM(F B A) BLKSIZE(1330)

ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)

ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)

ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
/************************************************************/
/* Datasets used by TSO */
[ Feke e ek o ek ek ok o ek ok e kok ok ek ok e kok ok ek ok o kok ok ok ok o kok ok ok ok o kok ok ok ok ke ok
ALLOC FI(SYSPROC) DA('QMF1210.SDSQCLTE','ISR.ISRCLIB')

ALLOC FI(SYSEXEC) DA('QMF1210.SDSQEXCE')

[ Fekeede ek o ek ek ok o ek ok e okok ok ek ok e kok ok ek ok o kok ok ok ok ook ok ko ok ook ok ek ok ke ok
/* Datasets used by ISPF */
/

ALLOC FI(ISPLLIB) SHR REUSE +

DA('QMF1210.SDSQLOAD', 'ADM.GDDMLOAD"', 'DSN.DSNEXIT', 'DSN.DSNLOAD")
ALLOC FI(ISPMLIB) SHR REUSE +
DA('QMF1210.SDSQMLBE"', 'ISR.ISRMLIB', 'ISP.ISPMLIB")
ALLOC FI(ISPPLIB) SHR REUSE +
DA('QMF1210.SDSQPLBE', 'ISR.ISRPLIB', 'ISP.ISPPLIB')
ALLOC FI(ISPSLIB) SHR REUSE +
DA('QMF1210.SDSQSLBE', 'ISR.ISRSLIB', 'ISP.ISPSLIB")
ALLOC FI(ISPTLIB) SHR REUSE +
DA('ISR.ISRTLIB', 'ISP.ISPTLIB")

/

/* QMF/GDDM Datasets */
[ ek e e s e ke ko e ko ek ok ek ke ek ok ek ok ok ek ok e ko ok ek ok ek ko ek ok ek ko ke ok
ALLOC FI(ADMGGMAP) DA('QMF1210.SDSQMAPE') SHR REUSE

ALLOC FI(ADMCFORM) DA('QMF1210.DSQCFORM') SHR REUSE

ALLOC FI(DSQUCFRM) DA('QMF1210.DSQUCFRM') SHR REUSE

ALLOC FI(ADMSYMBL) DA('ADM.GDDMSYM') SHR REUSE

ALLOC FI(ADMGDF) DA('ADM.GDDM.CHARTLIB') SHR REUSE

Chapter 11. Programming language specifications for using the callable interface 137



ALLOC FI(ADMDEFS) DA('ADM.GDDM.NICKNAME') SHR REUSE

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /

/* Datasets used by QMF */
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /

ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)

ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)

ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)

ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS

ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)

ALLOC FI(DSQPNLE) DA('QMF1210.DSQPNLE') SHR REUSE
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /

/* Start your program as the initial ISPF dialog */
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /

/
ISPSTART PGM(sampasm) NEWAPPL (DSQE)
EXIT CODE(4)

The EXIT CODE (4) statement suppresses the ISPF disposition panel.

Running in TSO without ISPF
After your program is assembled successfully, you can run it without ISPF.

Run your program in TSO without ISPF by writing a program similar to the CLIST shown here:

PROC 0O

CONTROL ASIS
/************************************************************/
/* Note: QMF, Db2 and GDDM load libraries must be allocated =%/

/* before executing this CLIST. */
/* Name of QMF load library is "QMF1210.SDSQLOAD". */
/* Specify attribute list for dataset allocations */

[ Kk gk kkok gk Kk kk ok gk kkokdk Kk ok Kk dkkkokkk ok ok kkkkkkkkk Kk ok kkkkkkkk kKK [
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE (3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
[ *Fk Kk hkkdkhkhkkFkhkhdkhkhkkhkhkhkkhkhkkkkhkhkkhkhkkkkkxkkkH* [

/* Datasets used by TSO */
A R K A AR KA A A A KK KA KR K KA AR KR KR KRR /
ALLOC FI(SYSPROC) DA('QMF1210.SDSQCLTE"')
ALLOC FI(SYSEXEC) DA('QMF1210.SDSQEXCE"')
ey /
/* QMF/GDDM Datasets */

[ kkdkk e kok ok ke k ok sk okok ok ok ok sk okok ok ok ok sk okok ok ok sk ok ok ok ok ok ok kok ko ok ko k ok ko ok ko k ok ok
ALLOC FI(ADMGGMAP) DA('QMF1210.SDSQMAPE') SHR REUSE

ALLOC FI(ADMCFORM) DA('QMF1210.DSQCFORM') SHR REUSE

ALLOC FI(DSQUCFRM) DA('QMF1210.DSQUCFRM') SHR REUSE

ALLOC FI(ADMSYMBL) DA('ADM.GDDMSYM') SHR REUSE

ALLOC FI(ADMGDF) DA('ADM.GDDM.CHARTLIB') SHR REUSE

ALLOC FI(ADMDEFS) DA('ADM.GDDM.NICKNAME') SHR REUSE

/

/* Datasets used by QMF */
/************************************************************/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)

ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)

ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)

ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS

ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)

ALLOC FI(DSQPNLE) DA('QMF1210.DSQPNLE') SHR REUSE

/

/* Start your program using TSO CALL command */
[ kkdkk e kok ok ke k ok sk okok ok ok sk okok ok ok kok ok ok ok ok ok ok ok ok ok kok ok ok ok kok ok ok k ok ko ok ko k ke ok /
CALL sampasm

EXIT CODE(0)

C language interface

You can use the C language with the callable interface in QMF.

Interface communications area mapping for C language (DSQCOMMC)
DSQCOMMC provides DSQCOMM mapping for C language programs and is provided with QMF.
The table shows the values for DSQCOMMC.

138 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 45. Interface communications area for DSQCOMMC

Structure name

Data type

Description

DSQ_RETURN_CODE

signed long
integer

Indicates the status of a QMF command after it is run
Its values are:
DSQ_SUCCESS

Successful execution of the request
DSQ_WARNING

Normal completion with warnings
DSQ_FAILURE

Command did not run correctly

DSQ_SEVERE
Severe error; QMF session terminated

DSQ_INSTANCE_ID

signed long
integer

Identifier established by QMF during execution of the
START command

DSQ_COMM_LEVEL

character, length
12

Identifies the level of the DSQCOMM

In your application, include instructions that

initialize this variable to the value of
DSQ_CURRENT_COMM_LEVEL before issuing the QMF
START command.

DSQ_PRODUCT

character, length
2

Identifies the IBM query product in use

Variables that begin with DSQ_QMF specify QMF for
TSO and QOMF for CICS versions.

DSQ_PRODUCT_RELEASE

character, length
2

Release level of QMF in use

Variable DSQ_QMF_V11R1 specifies QMF Version 12
Release 1.

DSQ_RESERVE1

character, length
28

Reserved for future use

DSQ_MESSAGE_ID

character, length
8

Completion message ID

DSQ_Q_MESSAGE_ID

character, length
8

Query message ID

DSQ_START_PARM_ERROR

character, length
8

Parameter in error when START failed due to a
parameter error

DSQ_CANCEL_IND

character, length
1

Contains one of two values, depending on whether the
user canceled while a QMF command was running:

. DSQ_CANCEL_YES
« DSQ_CANCEL_NO

DSQ_RESERVE2

character, length
23

Reserved for future use

DSQ_RESERVE3

character, length
156

Reserved for future use

DSQ_MESSAGE_TEXT

character, length
128

Completion message text

Chapter 11. Programming language specifications for using the callable interface 139




Table 45. Interface communications area for DSQCOMMC (continued)

Structure name Data type Description
DSQ_Q_MESSAGE_TEXT character, length | Query message text
128

Function calls for the C language
QMF provides two function calls for the C language: DSQCIC and DSQCICE.

DSQCIC

This call is for QMF commands that do not require access to application program variables. Use this call
for most QMF commands; its syntax is as follows:

DSQCIC (&DSQCOMM,&CMDLTH,&CMDSTR)

The parameters have the following values:

DSQCOMM
The interface communications area

CMDLTH
Length of the command string (CMDSTR); a long type parameter

CMDSTR
The QMF command to run, specified as an array of unsigned character type of the length specified by
CMDLTH

The QMF command must be in uppercase.

DSQCICE

This call has an extended syntax for the QMF commands that require access to application program
variables: START, TRACE, and the extended formats of GET GLOBAL and SET GLOBAL.

DSQCICE (&DSQCOMM,&CMDLTH,&CMDSTR,
&PNUM, &KLTH, &KWORD,
&VLTH, &VALUE, &VTYPE) ;

The parameters have the following values:

DSQCOMM
The interface communications area.

CMDLTH

Length of the command string (CMDSTR); a long integer parameter.
CMDSTR

QMF command to run; an array of unsigned character type. The QMF command must be in uppercase.
PNUM

Number of command keywords or trace areas; a long integer parameter.

KLTH
The length of each specified keyword (KWORD) or trace title; a long integer parameter or an array of
long integer parameters.

KWORD
QMF keyword, keywords, or address of trace titles; each is a character, array of characters, or array of
addresses to trace titles.

VLTH
The length of each value that is associated with the keyword or trace title; a long integer parameter or
array of long integer parameters.

140 Query Management Facility Version 12 Release 2: Developing QMF applications



VALUE

The value that is associated with each keyword or the address of a value that is associated with a
trace title.

Its type is specified in the VTYPE parameter and can be an unsigned character array, a long integer
parameter, or array of long integer parameters. For trace data, VTYPE must be FINT.

VTYPE

Data type of the contents of the VALUE parameter.

This parameter has one of two values, which are provided in the interface communications area,
DSQCOMMC:

« DSQ_VARIABLE_CHAR for unsigned character type
« DSQ_VARIABLE_FINT for long integer

All of the values that are specified in the VALUE field must have the data type that is specified by
VTYPE.

The C language interface has the following parameter considerations:

Command strings and the START, GET, and SET command parameters are all input character strings.
With these strings, C requires you to pass a storage area that is terminated with a null value, which
must be included in the length of the parameter. Use the compile-time length function to obtain the
parameter length that is passed to the QMF interface.

If the string is not terminated by a null value before reaching the end of the string, an error is returned
by QMF. The null value (X'00') indicates the end of a character string.

For C parameters that are output character strings, including values obtained by the GET command,
QMF moves data from QMF storage to the storage area of the application. QMF also sets the null
indicator at the end of the string. If the character string does not fit in the user's storage area, a warning
message is issued and the data is truncated on the right. A null indicator is always placed at the end of
the data string.

C language programming example

The sample C program, DSQABFC, is provided with QMF. The sample program is a member of the library
QMF1210.SDSQSAPN (where n is a national language identifier).

The sample program for the IBM C language callable interface performs the following functions:

Starts QMF

Sets three global variables

Runs a query called Q1

Prints the resulting report by using form F1
Ends the QMF session

QMF does not supply query Q1 or form F1, but the sample program uses these objects.

/******************************************************************/
/* Sample Program: DSQABFC

*/

/7 C version of the callable interface

*

/******************************************************************/

/* Include standard and string "C" functions

*/

AR AR AR AR KKK AR AR AR AR AR AR AR AR AR AR AR AR /
#include <string.h>

#include <stdlib.h>

[ Fkokok ke kok ok ok ke kok ok ok o ok kok ok ok ok ok ok ok ok ok ek ok ok ok ok ok ke ko ok ok ok ok ok kok ok ok o ko kok ok ok ok ko ok ok ok /
/* Include and declare query interface communications area
*/

/******************************************************************/

Chapter 11. Programming language specifications for using the callable interface 141



##include <DSQCOMMC.H>

int main()

struct dsqcomm communication_area; /* DSQCOMM from include

*/

/******************************************************************/
/* Query interface command length and commands

*/
/******************************************************************/
signed long command_length;

static char start_query_interface[] = "START";

static char set_global_variables[] = "SET GLOBAL";

static char run_query[] = "RUN QUERY Q1";

static char print_report[] = "PRINT REPORT (FORM=F1";

static char end_query_interface[] = "EXIT";

.................................................................. /
/* Query command extension, number of parameters and lengths
*/
[ RS S AFAFAFEFA RS S SAFAFAFAFE R RIS S S AFAFARI RIS SRR AR A /
signed long number_of_parameters; /* number of variables
*/
signed long keyword_lengths[10]; /* lengths of keyword names
*/
signed long data_lengths[10]; /* lengths of variable data
*/
KRR AR ARE IR SRR AR ARE R RIS A AR AT AR RIS AR AFA TR /
/* Variable data type constants
*/
[ RS A A AFAFAFA TSRS A AFEFEFE IR SIS AFAFIFA TR RS AK AR A /
static char char_data_type[] = DSQ_VARIABLE_CHAR;
static char int_data_type[] = DSQ_VARIABLE_FINT;
.................................................................. /
/* Keyword parameter and value for START command
*/
[ RS R AR ARAFAFERE SRS SR A AFAFEFFERE SRS AR AFARA RIS SRS AR A /
static char start_keywords[] = "DSQSMODE";
static char start_keyword_values[] = "INTERACTIVE";
[HRESK A A AFAFA TR RS SR AFAFA R R RS SE SR ERA R R RS SRS AR /
/* Keyword parameter and values for SET command
*
.................................................................. /

/

#define SIZE_VAL 8

char set_keywords [3][SIZE_VAL]; /* Parameter name array
*/

signed long set_values[3]; /* Parameter value array

*/

[ Fhkk kK Kk hhkkhhhhk kK hhhhkkkhhhhhkkkhhhhkkkhhhkhkkkkhhkhkkkkkkkkkkkkkxkkxk* /
/* MAIN PROGRAM

*/
/******************************************************************/
/* Start a query interface session

*/

strncpy (communication_area.dsq_comm_level,
DSQ_CURRENT_COMM_LEVEL,
sizeof(communication_area.dsq_comm_level));

number_of_parameters = 1;

command_length = sizeof(start_query_interface);

keyword_lengths[0] = sizeof(start_keywords);

data_lengths[0] = sizeof(start_keyword_values);

dsqcice(&communication_area, ;

&command_length, ;
&start_query_interface[0],
&number_of_parameters, ;
&keyword_lengths[0],
&start_keywords[0],
&data_lengths[0],

&start_keyword_values[0],
&char_data_type[0]);

142 Query Management Facility Version 12 Release 2: Developing QMF applications



number_of_parameters = 3;
command_length = sizeof(set_global_variables);
strcpy(set_keywords[0], "MYVARO1") ;
strcpy(set_keywords[1], "SHORT");
strcpy (set_keywords[2], "MYVARO3");
keyword_lengths[0] = SIZE_VAL;
keyword_lengths[1] SIZE_VAL;
keyword_lengths[2] = SIZE_VAL;
data_lengths[0] = sizeof(long);
data_lengths([1] sizeof(long);
data_lengths[2] sizeof(long);
set_values[0] = 20;

set_values[1] 40;

set_values[2] = 84;
dsqgcice(&communication_area, ;

&command_length, ;

&set_global_variables[0],
&number_of_parameters, ;

&keyword_lengths[0],
&set_keywords[0][0],
&data_lengths[0],
&set_values[0],
&int_data_type[0]);

/******************************************************************/

/* Run a query

*/

/******************************************************************/
command_length = sizeof(run_query);
dsqgcic(&communication_area,&command_length, ;

&run_query[0]);

/******************************************************************/

/* Print the results of the query

*/

/******************************************************************/
command_length = sizeof(print_report);
dsqgcic(&communication_area,&command_length, ;

&print_report[0]);
/******************************************************************/
/* End the query interface session
*/
/******************************************************************/

command_length = sizeof(end_query_interface);
dsqgcic(&communication_area,&command_length, ;

&end_query_interface[0]);
exit(0);

DSQCOMM for C

The interface communications area file for the C language is named DSQCOMMC.
The DSQCOMMC include file, shown here, is provided with QMF.

.................................................................. /
/* C include for query callable interface */
/******************************************************************/
/* Structure declare for communications area */
struct dsqcomm {

long int dsq_return_code; /* Function return code */
long int dsq_instance_id; /* ID established in START cmdx/
char dsq_comm_level[12]; /* Communications level id */
char dsq_product[2]; /* Query product id */
char dsq_product_release[2]; /* Query product release */

Chapter 11. Programming language specifications for using the callable interface 143



char dsq_reservel[28]; /* Reserved */

char dsq_message_id[8]; /* Completion message ID */
char dsq_q_message_id[8]; /* Query message ID */
char dsq_start_parm_error[8]; /* Start parameter in error =*/
char dsq_cancel_ind[1]; /* Cmd cancelled indicator */
/* 1 = cancelled, 0 = not cancelledx/
char dsq_reserve2[23]; /* RESERVED AREAS */
char dsq_reserve3[156];
char dsq_message_text[128]; /* Message text */
char dsq_q_message_text[128]; /* Query message text */
§ 5

/* RETURN CODES */

#define DSQ_SUCCESS 0

#tdefine DSQ_WARNING 4

#tdefine DSQ_FAILURE 8

#define DSQ_SEVERE 16

/* Communications Level */

#tdefine DSQ_CURRENT_COMM_LEVEL "DSQL>001002<"

/* Query Product Codes */

tfdefine DSQ_QRW "o1"

#define DSQ_QMF "02"

#define DSQ_QM3 "e3"

/* Query Product Release Levels */

#tdefine DSQ_QRW_VIR2 "g1"

#define DSQ_QRW_VIR3 "02"

#define DSQ_QMF_V2R4 "e1"

tdefine DSQ_QMF_V3R1 02"

#define DSQ_QMF_V3R1M1 "o3"

#tdefine DSQ_QMF_V3R2 "p4"

jtfdefine DSQ_QMF_V3R3 "05"

#define DSQ_QMF_V6R1 "o6"

#tdefine DSQ_QMF_V7R1 "e7"

#tdefine DSQ_QM4_VIR1 "g1"

#define DSQ_QMF_V7R2 "o8"

#tdefine DSQ_QMF_V8R1 "e9"

#tdefine DSQ_QMF_V9R1 "10"

#define DSQ_QMF_V10R1 11"

/* INSTANCE CODES */

#tdefine DSQ_CONTINUE 0

/* CANCELLED INDICATOR */

#tdefine DSQ_CANCEL_YES 140

#define DSQ_CANCEL_NO "o

/* VARIABLE TYPES */

#tdefine DSQ_VARIABLE_CHAR "CHAR"

jtfdefine DSQ_VARIABLE_FINT "FINT"

jtdefine DSQ_INTERACTIVE "

jtfdefine DSQ_BATCH "

#define DSQ_YES "

jtfdefine DSQ_NO 2

/* Call interface structure */

/* Calling format for normal call with 3 parameters */

#define dsqcic(parml, parm2, parm3 )\
dsqcicx( parml, parm2, parm3)

/* Calling format for call with CMD_EXT area 9 parameters */
#define dsqcice(parml, parm2, parm3,\

parm4, parm5, parmé, parm7, parm8, parm9 )\

dsqcicx( parml, parm2, parm3,

parm4, parm5, parmé,

parm7, parm8, parm9 )

/* DECLARE 0S LINKAGE FORMAT */

144 Query Management Facility Version 12 Release 2: Developing QMF applications



#pragma linkage (dsqcicx, 0S)

Running your C programs in CICS
After you write your program in C, you need to translate, compile, and link-edit it before you can run it.

These examples show the necessary steps to translate, compile, and link-edit your program. The REXX
JCL and CLISTs in these examples are not provided with QMF, but you can copy them from here, altering
them to suit your needs.

When you translate, compile, and link-edit a program that uses the QMF callable interface under CICS,
consider the following conditions:

« The interface communications area DSQCOMMC must be available to the compile step or copied into
your program.

« The QMF interface module DSQCICX must be available during the link-edit step of your program.
» Programs written in C must be link-edited with AMODE=31.

The example shown here uses the procedure DFHYITDL, supplied with CICS.

//sampleC JOB
// EXEC PROC=DFHYITDL
//TRN.SYSIN DD *

Your program or copy of QMF sample DSQABFC

/*

//* Provide Access to QMF Communications Macro DSQCOMMC
//C.SYSLIB DD DSN=QMF1210.SDSQSAPE,DISP=SHR

//* Allocation for target library
//LKED.SYSLMOD DD

//* Allocation for QMF load library
//LKED.QMFLOAD DD DSN=QMF1210.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE QMFLOAD(DSQCICX)

NAME sampleC(R)

/*

Running your C programs in TSO

To run your C program in TSO, compile and link-edit the program, and then run it in either with or without
ISPF.

Compiling and link-editing in TSO
You must compile and link-edit your C program before you can run it in TSO.

This job compiles and link-edits your callable interface application by using the IBM C compiler for z/0OS.
Some parameters might vary from one QMF installation to the next.

//sampleC JOB

//STEP1 EXEC PROC=EDCCB,

// INFILE='name of dataset that contains source code',
// OUTFILE='name of dataset that contains executable'
//* Provide Access to QMF Communications Macro DSQCOMM
//COMPILE.SYSLIB DD DSN=QMF1210.SAMPLIB,DISP=SHR
//BIND.QMFLOAD DD DSN=QMF1210.SDSQLOAD,DISP=SHR
//BIND.SYSIN DD =*

INCLUDE QMFLOAD(DSQCICX)

/*

Chapter 11. Programming language specifications for using the callable interface 145



Running your programs in TSO without ISPF
After your C program compiles successfully, you can run it without ISPF.

Run your program in TSO without ISPF by writing a program similar to the CLIST shown:

PROC O
CONTROL ASIS
R R Rk Rk o o )

/* Note: QMF, Db2, GDDM and C load libraries must be */
/* allocated before running this CLIST. */
/* Name of QMF load library is "QMF1210.SDSQLOAD". */
/* Specify attribute list for dataset allocations */

[ Fkk gk kkk gk Kk kkk gk ok kokdk Kk kK kkkkkokkk ok ok kkkkkkkkkkkkkkkkkkkkk kK [
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE (3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
[ *kk Kk hkkdkhkhkh ok hkhdkhkhkhhkhkhkkhkhkkhkhxhkkhkhxkkkhxhxkH* [

/* Datasets used by TSO */
AR A A AR AR A A KRR KA KA AR /
ALLOC FI(SYSPROC) DA('QMF1210.SDSQCLTE"')
ALLOC FI(SYSEXEC) DA('QMF1210.SDSQEXCE')
B R /
/* QMF/GDDM Datasets */

[k dkk e kok ok ke k ok okok ok ok ok sk okok ok ok ok sk okok ok ok ok ok ok ok sk kok ok ok sk ok k ok ko ok ko k ke ok /
ALLOC FI(ADMGGMAP) DA('QMF1210.SDSQMAPE') SHR REUSE

ALLOC FI(ADMCFORM) DA('QMF1210.DSQCFORM') SHR REUSE

ALLOC FI(DSQUCFRM) DA('QMF1210.DSQUCFRM') SHR REUSE

ALLOC FI(ADMSYMBL) DA('ADM.GDDMSYM') SHR REUSE

ALLOC FI(ADMGDF) DA('ADM.GDDM.CHARTLIB') SHR REUSE

ALLOC FI(ADMDEFS) DA('ADM.GDDM.NICKNAME') SHR REUSE

/

/* Datasets used by QMF */
/************************************************************/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)

ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)

ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)

ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS

ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)

ALLOC FI(DSQPNLE) DA('QMF1210.DSQPNLE') SHR REUSE

/

/* Start your program using TSO CALL command */
[ kkdkk e kok ok ke k ok sk okok ok ko ok sk okok ok ok sk okok ok ko ok ok okok ok kok sk ok ok kok sk k ok ko ok ko k ke ok /
CALL sampleC

EXIT CODE(0)

Running your programs in TSO under ISPF
After your C program compiles successfully, you can run it under ISPF.

Run your program in TSO under ISPF by writing a program similar to the CLIST for running DSQABFC

shown here:
PROC 0O
CONTROL ASIS
[HREX A A AFAFE TSRS A AFAFIFARE SRR AIFAFAFEF RS SR AR /
/* Specify attribute list for dataset allocations */

[ Fkok ok ke kkokok ok ke k ok ok ok ke k ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ko k ok ok ok ko k ok ok ok /
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE (3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /
/* Datasets used by TSO */
Tt LY /
ALLOC FI(SYSPROC) DA('QMF1210.SDSQCLTE','ISR.ISRCLIB')
ALLOC FI(SYSEXEC) DA('QMF1210.SDSQEXCE')
e /
/* Datasets used by ISPF */

[ FF Kk kkkkkkkkkkkkkhkkhkkhkkkkkkkkkkkkkkkkkkkkkkkkkkk kK k* /
ALLOC FI(ISPLLIB) SHR REUSE +

DA('QMF1210.SDSQLOAD"', 'ADM.GDDMLOAD', 'DSN.DSNEXIT', 'DSN.DSNLOAD', +
'"EDC.SEDCLINK', 'PLI.SIBMLINK")
ALLOC FI(ISPMLIB) SHR REUSE +
DA('QMF1210.SDSQMLBE"', 'ISR.ISRMLIB', 'ISP.ISPMLIB")

146 Query Management Facility Version 12 Release 2: Developing QMF applications



ALLOC FI(ISPPLIB) SHR REUSE +

DA('QMF1210.SDSQPLBE', 'ISR.ISRPLIB', 'ISP.ISPPLIB')
ALLOC FI(ISPSLIB) SHR REUSE +

DA('QMF1210.SDSQSLBE', 'ISR.ISRSLIB', 'ISP.ISPSLIB')
ALLOC FI(ISPTLIB) SHR REUSE +

DA('ISR.ISRTLIB', 'ISP.ISPTLIB')

/

/* QMF/GDDM Datasets */
[ ek s s e e e ke e ke sk ek ok o ek ok ek ok ok ek ok ek ok ok ek ok ek ko ek ok sk ko keok
ALLOC FI(ADMGGMAP) DA('QMF1210.SDSQMAPE') SHR REUSE

ALLOC FI(ADMCFORM) DA('QMF1210.DSQCFORM') SHR REUSE

ALLOC FI(DSQUCFRM) DA('QMF1210.DSQUCFRM') SHR REUSE

ALLOC FI(ADMSYMBL) DA('ADM.GDDMSYM') SHR REUSE

ALLOC FI(ADMGDF) DA('ADM.GDDM.CHARTLIB') SHR REUSE

ALLOC FI(ADMDEFS) DA('ADM.GDDM.NICKNAME') SHR REUSE

/

/* Datasets used by QMF */
/************************************************************/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)

ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)

ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)

ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS

ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)

ALLOC FI(DSQPNLE) DA('QMF1210.DSQPNLE') SHR REUSE

/

/* Start your program as the initial ISPF dialog */
[k ke kkok ok kok ok ok kok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ko ok ok ok k ok ko /
ISPSTART PGM(sampleC) NEWAPPL (DSQE)

EXIT CODE(4)

The EXIT CODE (4) statement suppresses the ISPF disposition panel.

COBOL language interface

You can use the COBOL language with the callable interface in QMF.

Interface communications area mapping for COBOL (DSQCOMMB)
DSQCOMMB provides DSQCOMM mapping for COBOL language programs and is provided with QMF.
The table shows the values for DSQCOMMB.

Table 46. Interface communications area for COBOL (DSQCOMMB)

Structure name Data type Description

DSQ-RETURN-CODE PIC 9(8) Indicates the status of a QMF command after is run
Its values are:
DSQ-SUCCESS

Successful execution of the request

DSQ-WARNING
Normal completion with warnings

DSQ-FAILURE
Command did not run correctly

DSQ-SEVERE
Severe error; QMF session terminated

DSQ-INSTANCE-ID PIC 9(8) Identifier established by QMF during execution of the
START command
DSQ-COMM-LEVEL PIC X(12) Identifies the level of the DSQCOMM

In your application, include instructions that

initialize this variable to the value of
DSQ_CURRENT_COMM_LEVEL before issuing the QMF
START command.

Chapter 11. Programming language specifications for using the callable interface 147



Table 46. Interface communications area for COBOL (DSQCOMMB) (continued)

Structure name Data type Description

DSQ-PRODUCT PIC X(2) Identifies the IBM query product in use
Variables that begin with DSQ-QMF specify QMF for
TSO and QMF for CICS versions.

DSQ-PRODUCT-RELEASE PIC X(2) Release level of QMF in use
Variable DSQ_QMF_V11R1 specifies QMF Version 12
Release 1.

DSQ-RESERVE1 PIC X(28) Reserved for future use

DSQ-MESSAGE-ID PIC X(8) Completion message ID

DSQ-Q-MESSAGE-ID PIC X(8) Query message ID

DSQ-START-PARM-ERROR PIC X(8) Parameter in error when START failed due to a
parameter error

DSQ-CANCEL-IND PIC X(1) Contains one of two values, depending on whether the
user canceled while a QMF command was running:
« DSQ-CANCEL-YES
« DSQ-CANCEL-NO

DSQ-RESERVE2 PIC X(23) Reserved for future use

DSQ-RESERVE3 PIC X(156) Reserved for future use

DSQ-MESSAGE-TEXT PIC X(128) Completion message text

DSQ-Q-MESSAGE-TEXT PIC X(128) Query message text

Function calls for COBOL

QMF provides one function call for the COBOL language: DSQCIB. The function call has two formats:
DSQCIB and DSQCIB (extended format).

DSQCIB

This call is for QMF commands that do not require access to application program variables. Use this call

for most QMF commands.

CALL DSQCIB USING DSQCOMM CMDLTH CMDSTR

The parameters have the following values:

DSQCOMM

The interface communications area

CMDLTH

Length of the command string (CMDSTR); an integer parameter

CMDSTR

QMF command to run; an uppercase character string of the length specified by CMDLTH

148 Query Management Facility Version 12 Release 2: Developing QMF applications




DSQCIB (extended format)

This call has an extended syntax for the QMF commands that require access to application program
variables: START, TRACE, and the extended formats of GET GLOBAL and SET GLOBAL.

DSQCIB USING
DSQCOMM CMDLTH CMDSTR
PNUM KLTH KWORD VLTH VALUE VTYPE

The parameters have the following values:

DSQCOMM
The interface communications area.

CMDLTH
The length of the command string (CMDSTR); an integer parameter.

CMDSTR
The QMF command to run; an uppercase character string of the length specified by CMDLTH.

PNUM
The number of command keywords or trace areas; an integer parameter.

KLTH
The length of each specified keyword or trace title; an integer parameter or an array of integer
parameters.

KWORD
QMF keyword, keywords, or address of trace titles.

Each is a character, array of characters, or array of addresses to trace titles whose lengths are
specified by KLTH. If all the keywords have the same length, you can use an array of characters.

VLTH
The length of each value that is associated with the keyword or trace title; an integer parameter or an
array of integer parameters.

VALUE
The value that is associated with each keyword or the address of a value that is associated with a
trace title.

Its type is specified in the VTYPE parameter, and can be a character, an array of characters, an integer
parameter, or an array of integer parameters. For trace data, VTYPE must be FINT.

VTYPE
Data type of the contents of the VALUE parameter.

This parameter has one of two values, which are provided in the communications area, DSQCOMMB:

« DSQ-VARIABLE-CHAR for character values
« DSQ-VARIABLE-FINT for integer values

All values that are specified in the VALUE field must have the data type that is specified by VTYPE.

The ISPF LIBDEF service with COBOL

Change dynamic calls to the QMF interface (DSQCIB) to static calls to use the LIBDEF function in your
QMF application.

For example, consider the following call identifier statement:
CALL DSQCIB USING ...
You can change this statement to its call literal form as follows:

CALL "DSQCIB" USING ...

Chapter 11. Programming language specifications for using the callable interface 149



COBOL programming example

The sample COBOL program, DSQABFCO, is provided with QMF. The sample program is a member of the
library QMF1210.SDSQSAPn (where n is a national language identifier).

The sample program for the COBOL callable interface performs the following functions:

Starts QMF
Sets three global variables

* Runs a query called Q1

Prints the resulting report by using form F1
Ends the QMF session

QMF does not supply query Q1 or form F1, but the sample program uses these objects.
For CICS, the STOP RUN statement must be changed to a GOBACK statement.

*hkkkkkkhkkhkkhkkhkhkhkkhkkhkkhkkhkhkhkkhkhkhkhkkhkhhkkhkkhhhkkhkhhkhkkhkhhkhhhhkkhkhhkkhkkhkhhkkhkhkhkhkkhkhhkkhkhkhhkkhhhkk
* The following is a COBOL version of the query *
* callable interface *** DSQABFCO **. *
*hkkkkkkhkkhkkhkkhkhkhkkhkhkhkkhkkhkhkhkkhkhhhkkhhhkkhkkhhhkkhkhkhkkhkkhhhkhkhhhkkhkhhkkhkkhkhhkkhkhhkhkkhkhhkkhkhkhkhkhhhkk
IDENTIFICATION DIVISION.
PROGRAM-ID. DSQABFCO.
DATE-COMPILED.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
* Copy DSQCOMMB definition - contains query interface variables x
*hkkkkkkkhkkhkkhkhkkhkkhkhkkkhhkhkkhkkhhhkkhhhkkhkkhhhkkhkhhkkhkkhhhkkhkhhhkkhkhhkkhkkhkhhkhkhhkhkkhkhhkhkhkhkhkhhhkkk
COPY DSQCOMMB.

* Query interface commands

01 STARTQI PIC X(5) VALUE "START".
01 SETG PIC X(10) VALUE "SET GLOBAL".
01 QUERY PIC X(12) VALUE "RUN QUERY Q1".
01 REPT PIC X(22) VALUE "PRINT REPORT (FORM=F1 ".
01 ENDQI PIC X(4) VALUE "EXIT".
* Query command length
01 QICLTH PIC 9(8) USAGE IS COMP-4.
* Number of variables
01 QIPNUM PIC 9(8) USAGE IS COMP-4.
* Keyword variable lengths
01 QIKLTHS.
03  KLTHS PIC 9(8) OCCURS 10 USAGE IS COMP-4.
* Value Lengths
01 QIVLTHS.
03  VLTHS PIC 9(8) OCCURS 10 USAGE IS COMP-4.
* Start command keyword
01 SNAMES.

03 SNAME1 PIC X(8) VALUE "DSQSMODE".
* Start command keyword value
01 SVALUES.
03 SVALUE1 PIC X(11) VALUE "INTERACTIVE".
* Set GLOBAL command variable names to set
01 VNAMES.
03 VNAME1 PIC X(7) VALUE "MYVARO1".
03 VNAME2 PIC X(5) VALUE "SHORT".
03 VNAME3 PIC X(7) VALUE "MYVARO3".
* Variable value parameters

01 VVALUES.
03  VVALS PIC 9(8) OCCURS 10 USAGE IS COMP-4.
01  TEMP PIC 9(8) USAGE IS COMP-4.

PROCEDURE DIVISION.

*

* Start a query interface session
MOVE DSQ-CURRENT-COMM-LEVEL TO DSQ-COMM-LEVEL.
MOVE 5 TO QICLTH.
MOVE 8 TO KLTHS(1).
MOVE 11 TO VLTHS(1).
MOVE 1 TO QIPNUM.
CALL DSQCIB USING DSQCOMM, QICLTH, STARTQI,

QIPNUM, QIKLTHS, SNAMES,

150 Query Management Facility Version 12 Release 2: Developing QMF applications



* Set numeric values into query variables using SET GLOBAL command
MOVE 10 TO QICLTH.
MOVE 7 TO KLTHS(1).
MOVE 5 TO KLTHS(2).
MOVE 7 TO KLTHS(3).
MOVE 4 TO VLTHS(1).
MOVE 4 TO VLTHS(2).
MOVE 4 TO VLTHS(3).
MOVE 20 TO VVALS(1).
MOVE 40 TO VVALS(2).
MOVE 84 TO VVALS(3).
MOVE 3 TO QIPNUM.
CALL DSQCIB USING DSQCOMM, QICLTH, SETG,
QIPNUM, QIKLTHS, VNAMES,
QIVLTHS, VVALUES, DSQ-VARIABLE-FINT.

*

Run a query
MOVE 12 TO QICLTH.
CALL DSQCIB USING DSQCOMM, QICLTH, QUERY.

*

Print the results of the query
MOVE 22 TO QICLTH.
CALL DSQCIB USING DSQCOMM, QICLTH, REPT.

*

End the query interface session
MOVE 4 TO QICLTH.
CALL DSQCIB USING DSQCOMM, QICLTH, ENDQI.

STOP RUN.

Related reference

Conventions for National Language Feature information

Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

DSQCOMM for COBOL

The interface communications area file for the COBOL language is named DSQCOMMB.
The DSQCOMMB include file shown here, is provided with QMF:

* COBOL INCLUDE FOR QUERY CALLABLE INTERFACE
ek o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok

* STRUCTURE DECLARE FOR COMMUNICATIONS AREA

01 DSQCOMM.

03 DSQ-RETURN-CODE PIC 9(8) USAGE IS COMP.

* FUNCTION RETURN CODE *
03 DSQ-INSTANCE-ID PIC 9(8) USAGE IS COMP.

* IDENTIFIER FROM START CMD =*
03 DSQ-COMM-LEVEL PIC X(12).

* COMMUNICATIONS LEVEL *
03 DSQ-PRODUCT PIC X(2).

* QUERY PRODUCT ID *
03 DSQ-PRODUCT-RELEASE PIC X(2).

* QUERY PRODUCT RELEASE *
03 DSQ-RESERVE1 PIC X(28).

* RESERVED AREA *
03 DSQ-MESSAGE-ID PIC X(8).

* COMPLETION MESSAGE ID *
03 DSQ-Q-MESSAGE-ID PIC X(8).

* QUERY MESSAGE ID *
03 DSQ-START-PARM-ERROR PIC X(8).

* START PARAMETER IN ERROR  *
03 DSQ-CANCEL-IND PIC X(1).

* = COMMAND CANCELLED *

* O = COMMAND NOT CANCELLED =*
03 DSQ-RESERVE2 PIC X(23).

* RESERVED AREA *
03 DSQ-RESERVE3 PIC X(156).

* RESERVED AREA *
03 DSQ-MESSAGE-TEXT PIC X(128).

* QMF MESSAGE TEXT *
03 DSQ-Q-MESSAGE-TEXT PIC X(128).

* QMF QUERY MESSAGE TEXT *

Chapter 11. Programming language specifications for using the callable interface 151



* 512 BYTES TOTAL *

*

VALUES FOR DSQ-RETURN-CODE
01 DSQ-SUCCESS PIC 9(8) USAGE IS COMP VALUE 0.
01 DSQ-WARNING PIC 9(8) USAGE IS COMP VALUE 4.
01 DSQ-FAILURE PIC 9(8) USAGE IS COMP VALUE 8.
01 DSQ-SEVERE PIC 9(8) USAGE IS COMP VALUE 16.
* VALUES FOR DSQ-INSTANCE-ID
01 DSQ-CONTINUE PIC 9(8) USAGE IS COMP VALUE 0.
* VALUES FOR DSQ-COMM-LEVEL
01 DSQ-CURRENT-COMM-LEVEL PIC X(12) VALUE "DSQL>001002<".

* VALUES FOR DSQ-PRODUCT

01 DSQ-QRW PIC X(2) VALUE "01".
01 DSQ-QMF PIC X(2) VALUE "02".
01 DSQ-QM4 PIC X(2) VALUE "03".

* VALUES FOR DSQ-PRODUCT-RELEASE

01 DSQ-QRW-V1R2 PIC X(2) VALUE "01".
01 DSQ-QRW-V1R3 PIC X(2) VALUE "02".
01 DSQ-QMF-V2R4 PIC X(2) VALUE "01".
01 DSQ-QMF-V3R1 PIC X(2) VALUE "02".
01 DSQ-QMF-V3R1IM1 PIC X(2) VALUE "03".
01 DSQ-QMF-V3R2 PIC X(2) VALUE "04".
01 DSQ-QMF-V3R3 PIC X(2) VALUE "05".
01 DSQ-QMF-V6R1 PIC X(2) VALUE "06".
01 DSQ-QMF-V7R1 PIC X(2) VALUE "07".
01 DSQ-QM4-ViR1 PIC X(2) VALUE "01".
01 DSQ-QMF-V7R2 PIC X(2) VALUE "08".
01 DSQ-QMF-V8R1 PIC X(2) VALUE "09".
01 DSQ-QMF-V9R1 PIC X(2) VALUE "10".
01 DSQ-QMF-V10R1 PIC X(2) VALUE "11".

* VALUES FOR DSQ-CANCEL-IND

01 DSQ-CANCEL-YES PIC X(1) VALUE "1".
01 DSQ-CANCEL-NO PIC X(1) VALUE "0".

* VALUES FOR MODE

01 DSQ-INTERACTIVE PIC X(1) VALUE "1".
01 DSQ-BATCH PIC X(1) VALUE "2".

* VALUES YES AND NO

01 DSQ-YES PIC X(1) VALUE "1".
01 DSQ-NO PIC X(1) VALUE "2".

* CALLABLE INTERFACE PROGRAM NAME
01 DSQCIB PIC X(6) VALUE "DSQCIB".
* VALUES FOR VARIABLE TYPE ON CALL PARAMETER

01 DSQ-VARIABLE-CHAR PIC X(4) VALUE "CHAR".
01 DSQ-VARIABLE-FINT PIC X(4) VALUE "FINT".

Considerations for running your COBOL callable interface program
Pay attention to the details about running a COBOL program that uses the QMF callable interface.

When you translate, compile, and link-edit a program that uses the QMF callable interface, consider the
following conditions:

« The execution environment

QMF is run as an Assembler program in the COBOL environment. Your COBOL program must call the
QMF interface program, DSQCIB, by using a COBOL dynamic call.

« Whether to use quotation marks or apostrophes

152 Query Management Facility Version 12 Release 2: Developing QMF applications



You must use either double quotation marks (") or apostrophes (') to delimit literals in a COBOL
program. You can specify the delimiter of your choice to the CICS translation process and the COBOL
compiler by specifying QUOTE or APOST. Make sure the APOST or QUOTE option in effect for the COBOL
compiler matches that of the CICS translator.

The communications area (DSQCOMMB) and the sample COBOL program (DSQABFCO) as distributed by
QMF use quotations to delimit literals. If your site or program uses apostrophes instead of quotation
marks, change DSQCOMMB or copy the structure to your program, changing quotation marks to
apostrophes.

« Availability of the communications area (DSQCOMMB)

The communications area DSQCOMMB must be available to the COBOL compile step or copied into your
program as a control structure.

« Availability of the interface module (DSQCIB)

The QMF interface module must be available during the link-edit step of your program.

Running your COBOL programs in CICS

After you write your program in COBOL, you need to translate, compile, and link-edit it before you can run
it.

The JCL in these examples is not provided with QMF, but you can copy it from here, altering it to suit your
needs.

The example shows the procedure DFHEBTVL, supplied with CICS, and which supports COBOL.

//samCOBOL JOB
// EXEC PROC=DFHEBTVL

//TRN.SYSIN DD =

*CBL XOPTS(CICS translator options ...QUOTE COBOL2)

?our program or copy of QMF sample DSQABFCO

/*
//* Provide access to QMF communications macro DSQCOMMB
//COB.SYSLIB DD DSN=QMF1210.SDSQSAPE,DISP=SHR
//* Allocation for target library
//LKED.SYSLMOD DD
//* Allocation for QMF load library
//LKED.QMFLOAD DD DSN=QMF1210.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE CICSLOAD(DFHECI)

INCLUDE QMFLOAD(DSQCIB)

ORDER DFHECI

ENTRY samCOBOL

MODE AMODE(31) RMODE(31)

NAME samCOBOL (R)
/*

Running your COBOL programs in TSO
To run your COBOL program in TSO, compile and link-edit the program, and then run it in either with or
without ISPF.
Compiling and link-editing in TSO
You must compile and link-edit your COBOL program before you can run it in TSO.

This job uses the COBOL compiler to compile your callable interface application. It then link-edits your
application. Some parameters might vary from one QMF installation to the next.

//samCOBOL JOB
//STEP1 EXEC PROC=IGYWCL
//* Provide access to QMF communications macro DSQCOMM

Chapter 11. Programming language specifications for using the callable interface 153



//COBOL.SYSLIB DD DSN=QMF1210.SAMPLIB,DISP=SHR
//COBOL.SYSIN DD %

?our program or copy of QMF sample DSQABFCO

//* Provide access to QMF interface module
//* Allocation for target library
//LKED.SYSLMOD DD
//* Allocation for QMF load library
//LKED.QMFLOAD DD DSN=QMF1210.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE QMFLOAD(DSQCIB)

ENTRY samCOBOL

MODE AMODE(31) RMODE(31)

NAME samCOBOL (R)
/*

Related reference

Running your programs in TSO without ISPF
After your COBOL program compiles successfully, you can run it with JCL without ISPF.

Running your programs in TSO under ISPF
After your COBOL program compiles successfully, you can run it under ISPF.

Running your programs in TSO without ISPF
After your COBOL program compiles successfully, you can run it with JCL without ISPF.

Run the COBOL compiler and linkage editor in TSO without ISPF by writing a program similar to the CLIST
shown here:

PROC O
CONTROL ASIS

/ /
/* Note: QMF, Db2, GDDM and COBOL load libraries must be */

/* allocated before running this CLIST. */
/* Name of QMF load library is "QMF1210.SDSQLOAD". */
/************************************************************/
/* Specify attribute list for dataset allocations */
[EREXE A AFAFARE R RIS S I AFAFE R RS S SR AFE IR RS S KSR A /

ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)

/

/* Datasets used by TSO */
/************************************************************/
ALLOC FI(SYSPROC) DA('QMF1210.SDSQCLTE"')

ALLOC FI(SYSEXEC) DA('QMF1210.SDSQEXCE"')
/************************************************************/
/* QMF/GDDM Datasets */

/

ALLOC FI(ADMGGMAP) DA('QMF1210.SDSQMAPE') SHR REUSE

ALLOC FI(ADMCFORM) DA('QMF1210.DSQCFORM') SHR REUSE

ALLOC FI(DSQUCFRM) DA('QMF1210.DSQUCFRM') SHR REUSE

ALLOC FI(ADMSYMBL) DA('ADM.GDDMSYM') SHR REUSE

ALLOC FI(ADMGDF) DA('ADM.GDDM.CHARTLIB') SHR REUSE

ALLOC FI(ADMDEFS) DA('ADM.GDDM.NICKNAME') SHR REUSE
/************************************************************/
/* Datasets used by QMF */

/

ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)

ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)

ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)

ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS

ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)

ALLOC FI(DSQPNLE) DA('QMF1210.DSQPNLE') SHR REUSE
/************************************************************/
/* Start your program using TSO CALL command */

/
CALL samCOBOL
EXIT CODE(0)

154 Query Management Facility Version 12 Release 2: Developing QMF applications



Related reference
Compiling and link-editing in TSO
You must compile and link-edit your COBOL program before you can run it in TSO.

Running your programs in TSO under ISPF
After your COBOL program compiles successfully, you can run it under ISPF.

Running your programs in TSO under ISPF
After your COBOL program compiles successfully, you can run it under ISPF.

Run your program in TSO under ISPF by writing a program similar to the CLIST shown here:

PROC 0O
CONTROL ASIS
[ Fhkk kK Kk hhkkhhhhhkkkhhhhkkkkhhhkhkkkkhhhkkkkkhhkhkkkkkhkkkkkkkkkxk* /

/* Specify attribute list for dataset allocations */
[EHEXE A AT AFEFE RS SRS AFAFI R RS SRS AFAFA IR RS SR SRR A /
ATTR PRINTDCB LRECL(2133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
[HHEHH A AFHFEFEFA SRS A AFAFE RIS SR AFA R RIS SRS /
/* Datasets used by TSO */

/************************************************************/
ALLOC FI(SYSPROC) DA('QMF1210.SDSQCLTE', 'ISR.ISRCLIB')

ALLOC FI(SYSEXEC) DA('QMF1210.SDSQEXCE"')
/************************************************************/
/* Datasets used by ISPF */

/
ALLOC FI(ISPLLIB) SHR REUSE +

DA('QMF1210.SDSQLOAD', 'ADM.GDDMLOAD"', 'DSN.DSNEXIT', 'DSN.DSNLOAD', +
'PRDUCT.COB2LIB")

ALLOC FI(ISPMLIB) SHR REUSE +

DA('QMF1210.SDSQMLBE', 'ISR.ISRMLIB', 'ISP.ISPMLIB')
ALLOC FI(ISPPLIB) SHR REUSE +

DA('QMF1210.SDSQPLBE', 'ISR.ISRPLIB', 'ISP.ISPPLIB')
ALLOC FI(ISPSLIB) SHR REUSE +

DA('QMF1210.SDSQSLBE"', 'ISR.ISRSLIB', 'ISP.ISPSLIB")
ALLOC FI(ISPTLIB) SHR REUSE +

DA('ISR.ISRTLIB', 'ISP.ISPTLIB')
/************************************************************/
/* QMF/GDDM Datasets */

/

ALLOC FI(ADMGGMAP) DA('QMF1210.SDSQMAPE') SHR REUSE

ALLOC FI(ADMCFORM) DA('QMF1210.DSQCFORM') SHR REUSE

ALLOC FI(DSQUCFRM) DA('QMF1210.DSQUCFRM') SHR REUSE

ALLOC FI(ADMSYMBL) DA('ADM.GDDMSYM') SHR REUSE

ALLOC FI(ADMGDF) DA('ADM.GDDM.CHARTLIB') SHR REUSE

ALLOC FI(ADMDEFS) DA('ADM.GDDM.NICKNAME') SHR REUSE
/************************************************************/
/* Datasets used by QMF */

/

ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)

ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)

ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)

ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS

ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)

ALLOC FI(DSQPNLE) DA('QMF1210.DSQPNLE') SHR REUSE
/************************************************************/
/* Start your program as the initial ISPF dialog */

/
ISPSTART PGM(samCOBOL) NEWAPPL (DSQE)
EXIT CODE(4)

The EXIT CODE (4) statement suppresses the display of the ISPF disposition panel.

Related reference
Compiling and link-editing in TSO
You must compile and link-edit your COBOL program before you can run it in TSO.

Running your programs in TSO without ISPF

Chapter 11. Programming language specifications for using the callable interface 155



After your COBOL program compiles successfully, you can run it with JCL without ISPF.

Fortran language interface

You can use the Fortran language with the callable interface in QMF for TSO.
Restriction: Because Fortran is not available under CICS, the QMF callable interface for Fortran does not
work under CICS.
Interface communications area mapping for Fortran (DSQCOMMF)
DSQCOMMF provides DSQCOMM mapping for Fortran language programs and is provided with QMF.

The table shows the information for DSQCOMMF, which you must not alter:

Table 47. Interface communications area for Fortran (DSQCOMMEF)

Structure name Data type Description
DSQ_RETURN_CODE INTEGER Indicates the status of a QMF command after it is
run

Its values are:

DSQ_SUCCESS
Successful execution of the request

DSQ_WARNING
Normal completion with warnings

DSQ_FAILURE
Command did not run correctly

DSQ_SEVERE
Severe error; QMF session terminated

DSQ_INSTANCE_ID INTEGER Identifier established by QMF during execution of
the START command
DSQ_COMM_LEVEL CHARACTER(12) Identifies the level of the DSQCOMM

In your application, include instructions that
initialize this variable to the value of
DSQ_CURRENT_COMM_LEVEL before issuing the
OMF START command.

DSQ_PRODUCT CHARACTER(2) Identifies the IBM query product in use

Variables that begin with DSQ_QMF specify QMF
for TSO versions.

DSQ_PRODUCT_RELEASE CHARACTER(2) Release level of OMF in use
Variable DSQ_QMF_V11R1 specifies QMF Version
12 Release 1.

DSQ_RESERVE1 CHARACTER(28) Reserved for future use

DSQ_MESSAGE_ID CHARACTER(8) Completion message ID

DSQ_Q_MESSAGE_ID CHARACTER(8) Query message ID

DSQ_START_PARM_ERROR CHARACTER(8) Parameter in error when START failed due to a

parameter error

156 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 47. Interface communications area for Fortran (DSQCOMMEF) (continued)

Structure name Data type Description

DSQ_CANCEL_IND CHARACTER(2) Contains one of two values, depending on whether
the user canceled while a QMF command was
running:

. DSQ_CANCEL_YES
. DSQ_CANCEL_NO

DSQ_RESERVE2 CHARACTER(23) Reserved for future use
DSQ_RESERVE3 CHARACTER(156) Reserved for future use
DSQ_MESSAGE_TEXT CHARACTER(128) Completion message text
DSQ_Q_MESSAGE_TEXT CHARACTER(128) Query message text

Function calls for Fortran

QMF provides two function calls for the Fortran language: DSQCIF and DSQCIFE. Both calls are described
in the communications area (DSQCOMMF).

DSQCIF

This call is for QMF commands that do not require access to application program variables. Use this call
for most QMF commands.

RC = DSQCIF(DSQCOMM,
+ CMDLTH,
+ CMDSTR)

The parameters have the following values:

DSQCOMM
The communications area.

CMDLTH
The length of the command string (CMDSTR); an integer parameter.

CMDSTR
QMF command to run; an uppercase character string of the length that is specified by CMDLTH.

DSQCIFE

This call has an extended syntax for the commands that require access to application program variables:
START, TRACE, and the extended formats of GET GLOBAL and SET GLOBAL.

The syntax for this call is:

RC = DSQCIFE(DSQCOMM,
CMDLTH,
CMDSTR,
PNUM,
KLTH,
KWORD,
VLTH,
VALUE,
VTYPE)

+ 4+ o+ o+

The parameters have the following values:

DSQCOMM
The interface communications area.

Chapter 11. Programming language specifications for using the callable interface 157



CMDLTH
The length of the command string (CMDSTR); an integer parameter.

CMDSTR
The QMF command to run; an uppercase character string of the length that is specified by CMDLTH.

PNUM
The number of command keywords or trace areas; an integer parameter.

KLTH
The length of each specified keyword or trace title; an integer parameter or parameter array.

KWORD
QMF keyword, keywords, or address of trace titles; a character, array of characters, or array of
addresses to trace titles whose lengths are specified by KLTH.

You can use an array of characters if all of the keywords have the same length. The keywords must be
in contiguous storage and not separated by any special delimiters.

VLTH
The length of each value that is associated with the keyword or trace title; an integer parameter or
parameter array.

VALUE
The value that is associated with each keyword or the address of a value that is associated with a
trace title.

Its type is specified in the VTYPE parameter and can be a character, array of characters, integer
parameter, or parameter array. For trace data, VTYPE must be FINT. If you have character values, the
values must be in contiguous storage and not separated by any special delimiters.

VTYPE
Data type of the contents of the VALUE parameter.

This parameter has one of two values, which are provided in the communications area, DSQCOMMF:

« DSQ_VARIABLE_CHAR for character values
« DSQ_VARIABLE_FINT for integer values

All values that are specified in the VALUE field must have the data type that is specified by VTYPE.

Fortran programming example

The sample program, DSQABFF, is provided with QMF. The sample program is a member of the library
QMF1210.SDSQSAPnN (where n is a national language identifier).

The sample program for the Fortran callable interface performs the following functions:

Starts QMF
Sets three global variables

* Runs a query called Q1

Prints the resulting report by using form F1
Ends the QMF session

QMF does not supply query Q1 or form F1, but the sample program uses these objects.

[0 R R R R B R R S R S 2 2 2 S S S
C Sample program: DSQABFF

C FORTRAN version of QMF manager callable interface

C

C Creation Date: 11/21/89

©
C ENVIRONMENT: API IN FORTRAN

©
©
C Processing:
© a. Start a query manager session using the callable interface.
©

158 Query Management Facility Version 12 Release 2: Developing QMF applications



(on

. Set global query manager numeric variables.
d. Run a query manager query using the callable interface.
e. Print a report using the callable interface.
f. Exit the query manager session.
Prerequisites:1. Create the SAMPLE database.
2. Create a prompted query, Q1, which has a SELECT state
3. Create a form, F1, that displays data for query Q1.

B S S S e e e S e
PROGRAM DSQABFF

(®

C Query interface command lengths and commands
[0 R R R R R R R R R B B R R S 2 T T T
INTEGER COMMAND_LENGTH
CHARACTER START_QUERY_INTERFACE%5,
SET_GLOBAL_VARIABLES*10,
RUN_QUERY%12,
PRINT_REPORT%22,
END_QUERY_INTERFACEx*4

INTEGER NUMBER_OF_PARAMETERS,
+ KEYWORD_LENGTHS (10) ,
+ DATA_LENGTHS (10)

[0 R R R R R R R R R R R B B R S S S T T S
C Variable data type constants

CHARACTER CHAR_DATA_TYPEx*4,

ES INT_DATA_TYPEx4

[0 R R R R R R R R R R B B R S S 2 T T T
© Keyword parameter and value for START command

CHARACTER*8 START_KEYWORDS(1)
CHARACTER*11 START_KEYWORD_VALUES(1)

[0 R R R R R R R R R R R B B R S S S T T T
© Keyword parameter and values for SET command

CHARACTER  SET_KEYWORDS (19)
CHARACTER  SET_KEYWORD_1x%7,

+ SET_KEYWORD_2%5,
+ SET_KEYWORD_3%7

EQUIVALENCE (SET_KEYWORDS( 1), SET_KEYWORD_ 1),
+ (SET_KEYWORDS( 8), SET_KEYWORD_2),
+ (SET_KEYWORDS (13), SET_KEYWORD_3)

CHARACTER  SET_VALUES(12)
INTEGER*4  SET_VALUE_1,

+ SET_VALUE_2,
+ SET_VALUE_3

EQUIVALENCE (SET_VALUES(1), SET_VALUE_1),
+ (SET_VALUES(5), SET_VALUE_2),
+ (SET_VALUES(9), SET_VALUE_3)

[0 R R R R R R R R R R R R R S S T T S S T
C Declare command length and return code variables

INTEGER LEN,
+ RC

Chhkkhkhkhhhhhhhkhhhkhkhhkhkhkhhkhkhkhhkhkhhhkhhhkhkhkhhkhkhhhkhhhkhkhhhkhkhhkhkhkhhkhkhkhhkkhkhhkhkhkkkkk
C Initialization

DATA START_QUERY_INTERFACE /'START' /

Chapter 11. Programming language specifications for using the callable interface 159



DATA SET_GLOBAL_VARIABLES /'SET GLOBAL' /
DATA RUN_QUERY /"RUN QUERY Q1' /
DATA PRINT_REPORT /"PRINT REPORT (FORM=F1)'/
DATA END_QUERY_INTERFACE  /'EXIT' /
DATA CHAR_DATA_TYPE /DSQ_VARIABLE_CHAR /
DATA INT_DATA_TYPE /DSQ_VARIABLE_FINT /

Chhkkkhhkhhkhkhkhkhkhkhkhkkhkkhhhhhkhkhkhkhkhkhkkkhhhhhhhkhhkhkrkrkrkhkhkkkhhhhhhhk
C Start query session

DSQ_COMM_LEVEL = DSQ_CURRENT_COMM_LEVEL
NUMBER_OF_PARAMETERS 1
COMMAND_LENGTH
KEYWORD_LENGTHS (1)
DATA_LENGTHS (1)
START_KEYWORDS (1)
START_KEYWORD_VALUES (1)

LEN (START_QUERY_INTERFACE)
LEN(START_KEYWORDS (1))

LEN (START_KEYWORD_VALUES (1))
'DSQSMODE

"INTERACTIVE'

RC = DSQCIFE(DSQCOMM,
COMMAND_LENGTH,
START_QUERY_INTERFACE,
NUMBER_OF _PARAMETERS,
KEYWORD_LENGTHS,
START_KEYWORDS,
DATA_LENGTHS,
START_KEYWORD_VALUES,
CHAR_DATA_TYPE)

+ 4+ 4+ o+

[0 R R R R R R R R R B B R S S T T S
C Set numeric values into query using SET command

C ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
NUMBER_OF _PARAMETERS = 3
COMMAND_LENGTH = LEN(SET_GLOBAL_VARIABLES)
SET_KEYWORD_1 = 'MYVAROL'
SET_KEYWORD_2 = 'SHORT'
SET_KEYWORD_3 = 'MYVARO3'
KEYWORD_LENGTHS(1) = LEN(SET_KEYWORD_1)
KEYWORD_LENGTHS(2) = LEN(SET_KEYWORD_2)
KEYWORD_LENGTHS(3) = LEN(SET_KEYWORD_3)
DATA_LENGTHS (1) =4
DATA_LENGTHS (2) =4
DATA_LENGTHS (3) =4
SET_VALUE_1 = 20
SET_VALUE_2 = 40
SET_VALUE_3 = 84
RC = DSQCIFE(DSQCOMM,
+ COMMAND_LENGTH,
+ SET_GLOBAL_VARIABLES,
+ NUMBER_OF _PARAMETERS,
+ KEYWORD_LENGTHS,
+ SET_KEYWORDS,
+ DATA_LENGTHS,
+ SET_VALUES,
+ INT_DATA_TYPE)
C ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

C Run a query
[0 R R R R R R R R R R B B R S S T T T 5
COMMAND_LENGTH = LEN(RUN_QUERY)
RC = DSQCIF(DSQCOMM,
+ COMMAND_LENGTH,
+ RUN_QUERY)

[0 R R R R R R R R B B R S S 2 T T T
© Print the results of the query

C ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

COMMAND_LENGTH = LEN(PRINT_REPORT)

RC = DSQCIF(DSQCOMM,

+ COMMAND_LENGTH,

+ PRINT_REPORT)
C ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
C End the query interface session
C ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

COMMAND_LENGTH = LEN(END_QUERY_INTERFACE)
RC = DSQCIF(DSQCOMM,
+ COMMAND_LENGTH,
+ END_QUERY_INTERFACE)

160 Query Management Facility Version 12 Release 2: Developing QMF applications



END

Related reference

Conventions for National Language Feature information

Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

DSQCOMM for Fortran

The interface communications area file for the Fortran language is named DSQCOMMF.
The DSQCOMMEF include file shown here, is provided with QMF:

C ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
C FORTRAN include file for callable interface
Chhhkhkhkhkhhkhkhhkhkhkhhkhkhkhkhkhkhhkhkhkhhkhkhhhkhkhhkhkhkhhkhkrkhkhkhkhhhkhkhhkhkhhhkhkrkhkhkhkhhkkhkkhkkrxhkix
C Return codes
INTEGER DSQ_SUCCESS, DSQ_WARNING, DSQ_FAILURE, DSQ_SEVERE
PARAMETER (
+ DSQ_SUCCESS = 0,
o DSQ_WARNING = 4,
+ DSQ_FAILURE = 8,
+ DSQ_SEVERE = 16)
C Communications level
CHARACTER DSQ_CURRENT_COMM_LEVELx12
PARAMETER (
+ DSQ_CURRENT_COMM_LEVEL = 'DSQL>001002<")
C Query product IDs
CHARACTER DSQ_QRW%2, DSQ_QMF%2, DSQ_QM4%2
PARAMETER (
+ DSQ_QRW = '01',
+ DSQ_QMF = '02',
+ DSQ_QM4 = '03')
C Query product release levels
CHARACTER DSQ_ORW_V1R2%2,  DSQ_QRW_V1R3%2,
o DSQ_QMF_V2R4%2,  DSQ_QMF_V3R1x%2,
+ DSQ_QMF_V3R1M1%2, DSQ_QMF_V3R2%2,
+ DSQ_QMF_V3R3%2,  DSQ_QMF_V6R1x2,
o DSQ_QMF_V7R1x2,  DSQ_QM4_VIR1x2,
+ DSQ_QMF_V7R2%2, DSQ_QMF_V8R1x2,
+ DSQ_QMF_V9R1x2,  DSQ_QMF_V1OR1x2
PARAMETER (
+ DSQ_QRW_V1iR2 = '0O1',
+ DSQ_QRW_V1R3 = '02"',
o DSQ_QMF_V2R4 = '01',
+ DSQ_QMF_V3R1 = '02',
+ DSQ_QMF_V3R1IM1 = '03',
+ DSQ_QMF_V3R2 = '04',
+ DSQ_QMF_V3R3 = '05',
+ DSQ_QMF_V6R1 = '06',
o DSQ_QMF_V7R1 = '07',
+ DSQ_QM4_ViR1 = '01',
+ DSQ_QMF_V7R2 = '08',
o DSQ_QMF_V8R1 = '09',
+ DSQ_QMF_V9R1 = '10',
+ DSQ_QMF_V10R1 = '11'")
C Host variable types
CHARACTER DSQ_VARIABLE_CHARx4, DSQ_VARIABLE_FINT%4
PARAMETER (
+ DSQ_VARIABLE_CHAR = 'CHAR',
+ DSQ_VARIABLE_FINT = 'FINT')
C Cancel indicator
CHARACTER DSQ_CANCEL_YES, DSQ_CANCEL_NO
PARAMETER (
+ DSQ_CANCEL_YES = '1',
+ DSQ_CANCEL_NO = '0")

CHARACTER DSQCOMM(512)
INTEGER  DSQ_RETURN_CODE, DSQ_INSTANCE_ID
CHARACTER DSQ_COMM_LEVEL*12,

+ DSQ_PRODUCT*2,
+ DSQ_PRODUCT_RELEASE*2,
+ DSQ_RESERVE1%28,

Chapter 11. Programming language specifications for using the callable interface 161



+ DSQ_MESSAGE_ID%8,
+ DSQ_Q_MESSAGE_ID%8,
+ DSQ_START_PARM_ERROR*8,
+ DSQ_CANCEL_IND*1,
+ DSQ_RESERVE2%23,
+ DSQ_RESERVE3%156,
+ DSQ_MESSAGE_TEXT%128,
+ DSQ_Q_MESSAGE_TEXT%128

EQUIVALENCE  (DSQCOMM( 1), DSQ_RETURN_CODE ),
+ (DSQCOMM( 5), DSQ_INSTANCE_ID ),
+ (DSQCOMM( 9), DSQ_COMM_LEVEL ),
+ (DSQCOMM(21), DSQ_PRODUCT ),
+ (DSQCOMM(23), DSQ_PRODUCT_RELEASE ),
+ (DSQCOMM(25), DSQ_RESERVE1L ),
+ (DSQCOMM(53), DSQ_MESSAGE_ID ),
+ (DSQCOMM(61), DSQ_Q_MESSAGE_ID ),
+ (DSQCOMM(69), DSQ_START_PARM_ERROR ),
+ (DSQCOMM(77), DSQ_CANCEL_IND ),
+ (DSQCOMM(78), DSQ_RESERVE2 ),
+ (DSQCOMM(101) , DSQ_RESERVE3 ),
+ (DSQCOMM(257) , DSQ_MESSAGE_TEXT ),
+ (DSQCOMM(385), DSQ_Q_MESSAGE_TEXT )

C Callable interface normal and extended calls
EXTERNAL DSQCIF
EXTERNAL DSQCIFE

Running your Fortran programs

To run your Fortran program in TSO, compile and link-edit the program, and then run it in either with or
without ISPF.

Compiling and link-editing your program
You must compile and link-edit your Fortran program before you can run it in TSO.

JCL for running the Fortran compiler and linkage editor uses the Fortran compiler for z/OS. Some
parameters might vary from one QMF installation to the next.

The JCL in this example is not provided with QMF, but you can copy it from here, altering it to suit your
needs.

//samFORT JoB

//STEP1 EXEC PROC=VSF2CL

//* Provide access to QMF communications macro DSQCOMM
//FORT.SYSLIB DD DSN=QMF1210.SAMPLIB,DISP=SHR
//FORT.SYSIN DD *

?our program or copy of QMF sample DSQABFF

/*
//* Provide access to QMF interface module
//* Allocation for target library
//LKED.SYSLMOD DD
//* Allocation for QMF load library
//LKED.QMFLOAD DD DSN=QMF1210.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE QMFLOAD(DSQCIF)

INCLUDE QMFLOAD(DSQCIFE)

ENTRY samFORT

MODE AMODE(31) RMODE(31)

NAME samFORT(R)
/*

162 Query Management Facility Version 12 Release 2: Developing QMF applications



Running your programs in TSO without ISPF
After your Fortran program compiles successfully, you can run it with JCL without ISPF.

The JCL in this example is not provided with QMF, but you can copy it from here, altering it to suit your
needs.

The program shown here runs your callable interface application by using the Fortran compiler. Some
parameters can vary from one QMF installation to the next:

PROC 0O

CONTROL ASIS
/************************************************************/
/* Note: QMF, Db2, GDDM and FORTRAN load libraries must be =/

/* allocated before running this CLIST. */
/* Name of QMF load library is "QMF1210.SDSQLOAD". */
/* Specify attribute list for dataset allocations */

[ Fkk gk ok kok gk Kkokkk gk ok kokdk Kk ok kkdkkkokkk ok ok kkkkkkkkk Kk kkkkkkkkk kKK [
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE (3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
[ *kkdkhkkdkhkhkkFkhkhkkhkhkhhkhkhkhhkhkkhkhxhkkhkhkkkkhxkkk** [

/* Datasets used by TSO */
AR A A AR KKK A A KRR KKK KKK AR AR AR AR /
ALLOC FI(SYSPROC) DA('QMF1210.SDSQCLTE"')
ALLOC FI(SYSEXEC) DA('QMF1210.SDSQEXCE')
B R /
/* QMF/GDDM Datasets */

[ Kkdkkdkok ok ke k ok ook ok ok ok sk okok ok ko ok sk okok ok ok ok ok ok ok ok ko ok ok ok sk ok k ko ok ko k ok ok /
ALLOC FI(ADMGGMAP) DA('QMF1210.SDSQMAPE') SHR REUSE

ALLOC FI(ADMCFORM) DA('QMF1210.DSQCFORM') SHR REUSE

ALLOC FI(DSQUCFRM) DA('QMF1210.DSQUCFRM') SHR REUSE

ALLOC FI(ADMSYMBL) DA('ADM.GDDMSYM') SHR REUSE

ALLOC FI(ADMGDF) DA('ADM.GDDM.CHARTLIB') SHR REUSE

ALLOC FI(ADMDEFS) DA('ADM.GDDM.NICKNAME') SHR REUSE

/

/* Datasets used by QMF */
/************************************************************/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)

ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)

ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)

ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS

ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)

ALLOC FI(DSQPNLE) DA('QMF1210.DSQPNLE') SHR REUSE

/

/* Start your program using TSO CALL command */
[ Kk kok ok ok sk okok ok ok sk kok ok ok ok sk ok ok ok ok ok ok ok ok ok sk kok ko ok sk ok k ok ok ko k ok ok /
CALL samFORT

EXIT CODE(0)

Running in TSO under ISPF
After your Fortran program compiles successfully, you can run it under ISPF.

The CLIST in this example is not provided with QMF, but you can copy it from here, altering it to suit your
needs.

The CLIST shown here runs your callable interface application by using the Fortran compiler. Some
parameters can vary from one QMF installation to the next:

PROC 0O

CONTROL ASIS

[HHER A AFAFIFA TSRS A AFAFI IR RIS AIFAFAFERE RIS SR AR /
/* Specify attribute list for dataset allocations */

[ Fokok ok dkkok ok ok ke k ok ok ok ke k ok ok ok ke k ok ok ok ko k ok ok ok ko k ok ok ok k ok ok ok ko k ok ok ok /
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE (3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)

/
ALLOC FI(SYSPROC) DA('QMF1210.SDSQCLTE', 'ISR.ISRCLIB')
ALLOC FI(SYSEXEC) DA('QMF1210.SDSQEXCE')

Chapter 11. Programming language specifications for using the callable interface 163



/

/* Datasets used by ISPF */
[ % dkkk ok dekk ok kk ok ok ok ok ko ok ok ok ok ok ok ok ok ok k k& ok ok ko ok ko k ok k& ok k ko kk ok
ALLOC FI(ISPLLIB) SHR REUSE +

DA('QMF1210.SDSQLOAD', 'ADM.GDDMLOAD', 'DSN.DSNEXIT', 'DSN.DSNLOAD', +

"PRDUCT.VSF2LOAD")

ALLOC FI(ISPMLIB) SHR REUSE +

DA('QMF1210.SDSQMLBE', 'ISR.ISRMLIB', 'ISP.ISPMLIB"')
ALLOC FI(ISPPLIB) SHR REUSE +

DA('QMF1210.SDSQPLBE', 'ISR.ISRPLIB', 'ISP.ISPPLIB"')
ALLOC FI(ISPSLIB) SHR REUSE +

DA('QMF1210.SDSQSLBE', 'ISR.ISRSLIB', 'ISP.ISPSLIB')
ALLOC FI(ISPTLIB) SHR REUSE +

DA('ISR.ISRTLIB', 'ISP.ISPTLIB"')
/************************************************************/
/* QMF/GDDM Datasets */
/

ALLOC FI(ADMGGMAP) DA('QMF1210.SDSQMAPE') SHR REUSE

ALLOC FI(ADMCFORM) DA('QMF1210.DSQCFORM') SHR REUSE

ALLOC FI(DSQUCFRM) DA('QMF1210.DSQUCFRM') SHR REUSE

ALLOC FI(ADMSYMBL) DA('ADM.GDDMSYM') SHR REUSE

ALLOC FI(ADMGDF) DA('ADM.GDDM.CHARTLIB') SHR REUSE

ALLOC FI(ADMDEFS) DA('ADM.GDDM.NICKNAME') SHR REUSE
/************************************************************/
/* Datasets used by QMF */
/

ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)

ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)

ALLOC FI(DSQUDUMP) SYSOUT (X) USING(UDUMPDCB)

ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS

ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)

ALLOC FI(DSQPNLE) DA('QMF1210.DSQPNLE') SHR REUSE
/************************************************************/
/* Start your program as the initial ISPF dialog */
/

ISPSTART PGM(samFORT) NEWAPPL (DSQE)
EXIT CODE(4)

The EXIT CODE (4) statement suppresses the display of the ISPF disposition panel.

PL/I language interface

You can use the PL/I language with the callable interface in QMF.

Interface communications area mapping for PL/I (DSQCOMML)
DSQCOMML provides DSQCOMM mapping for PL/I and is provided with QMF.

The table shows the

values for DSQCOMML.

Table 48. Interface communications area for PL/I (DSQCOMML)

Structure name

Data type

Description

DSQ_RETURN_CODE

FIXED BIN(31)

Indicates the status of a QMF command after it is run
Its values are:
DSQ_SUCCESS

Successful execution of the request
DSQ_WARNING

Normal completion with warnings
DSQ_FAILURE

Command did not run correctly

DSQ_SEVERE
Severe error; QMF session terminated

DSQ_INSTANCE_ID

FIXED BIN(31)

Identifier established by QMF during execution of the
START command

164 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 48. Interface communications area for PL/T (DSQCOMML) (continued)

Structure name Data type Description

DSQ_COMM_LEVEL CHAR(12) Identifies the level of the DSQCOMM communications
area
In your application, include instructions that
initialize this variable to the value of
DSQ_CURRENT_COMM_LEVEL before issuing the QMF
START command.

DSQ_PRODUCT CHAR(2) Identifies the IBM query product in use. Variables that
begin with DSQ_QMF specify QMF for TSO and CICS
versions.

DSQ_PRODUCT_RELEASE CHAR(2) Release level of OMF in use. Variable DSQ_QMF_V11R1
specifies QMF Version 12 Release 1.

DSQ_RESERVE1 CHAR(28) Reserved for future use

DSQ_MESSAGE_ID CHAR(8) Completion message ID

DSQ_Q_MESSAGE_ID CHAR(8) Query message ID

DSQ_START_PARM_ERROR CHAR(8) Parameter in error when START failed due to a
parameter error

DSQ_CANCEL_IND CHAR(1) Contains one of two values, depending on whether the
user canceled while a QMF command was running:

« DSQ_CANCEL_YES
« DSQ_CANCEL_NO

DSQ_RESERVE2 CHAR(23) Reserved for future use

DSQ_RESERVE3 CHAR(156) Reserved for future use

DSQ_MESSAGE_TEXT CHAR(128) Completion message text

DSQ_Q_MESSAGE_TEXT CHAR(128) Query message text

Function calls for PL/I

QMEF provides two function calls for PL/I: DSQCIPL and DSQCIPX. Both calls are described in the
communications area (DSQCOMML).

DSQCIPL syntax

This call is for QMF commands that do not require access to application program variables. Use this call

for most QMF commands.

CALL DSQCIPL (DSQCOMM,
CMDLTH,
CMDSTR)

The parameters have the following values:

DSQCOMM
The interface communications area.

CMDLTH
The length of the command string (CMDSTR).

Chapter 11. Programming language specifications for using the callable interface 165



CMDSTR
The QMF command to run; an uppercase character string of the length specified by CMDLTH.

DSQCIPX syntax

This call is for the commands that require access to application program variables: START, TRACE, and the
extended formats of GET GLOBAL and SET GLOBAL.

The syntax for this call is:

CALL DSQCIPX(DSQCOMM,
CMDLTH,
CMDSTR,
PNUM,
KLTH,
KWORD,
VLTH,
VALUE,
VTYPE)

The parameters have the following values:

DSQCOMM
The interface communications area.

CMDLTH
The length of the command string (CMDSTR); an integer FIXED BIN(31) parameter.

CMDSTR
The QMF command to run; an uppercase character string of the length specified by CMDLTH.

PNUM
The number of command keywords or trace areas; an integer FIXED BIN(31) parameter.

KLTH
The length of each specified keyword or trace title; an integer FIXED BIN(31) parameter or parameter
array.

KWORD
The QMF keyword, keywords, or address of trace titles.

Each is a character, array of characters, or array of addresses to trace titles whose lengths are
specified by KLTH. You can use an array of characters if all of the keywords have the same length. The
keywords must be in contiguous storage and not separated by any special delimiters.

VLTH
The length of each value that is associated with the keyword or trace title; an integer FIXED BIN(31)
parameter or parameter array.

VALUE
The value that is associated with each keyword or the address of a value that is associated with a
trace title.

Its type is specified in the VTYPE parameter and can be a character, array of characters, integer FIXED
BIN(31) parameter, or parameter array. If you have character values, the values must be in contiguous
storage and not separated by any special delimiters.

VTYPE
Data type of the contents of the VALUE parameter.

This parameter has one of two values, which are provided in the DSQCOMML communications area:

« DSQ_VARIABLE_CHAR for character values
« DSQ_VARIABLE_FINT for integer FIXED BIN(31) values

All values that are specified in the VALUE field must have the data type that is specified in VTYPE.

166 Query Management Facility Version 12 Release 2: Developing QMF applications



PL/I programming example

The sample program, DSQABFP, is provided with QMF and uses PL/I. The sample program is a member of
the library QMF1210.SDSQSAPn (where n is a national language identifier).

The sample program for the PL/I language callable interface performs the following functions:

Starts QMF
Sets three global variables

* Runs a query called Q1

Prints the resulting report by using form F1
Ends the QMF session

QMF does not supply query Q1 or form F1, but the sample program uses these objects.

DSQABFP: PROCEDURE OPTIONS(MAIN REENTRANT) REORDER;

B /
/* Sample program: DSQABFP */
/* PL/I version of the QMF callable interface */
AR AR A A AR AR A AR A AR AR AR AR AR AR AR AR AR A /
/********************************************************************/
/* Include and declare query interface communications area */

J R S e S S ey
9%INCLUDE SYSLIB(DSQCOMML) ;

/********************************************************************/

/> Built in function */
.................................................................... /

DCL LENGTH BUILTIN;

AR AR A AR AR AR AR AR KRR AR IR AR AR AR AT AR AR AR AR /

/* Query interface command length and commands */

/********************************************************************/

DCL COMMAND_LENGTH FIXED BIN(31);

DCL START_QUERY_INTERFACE CHAR(5) INIT('START');

DCL SET_GLOBAL_VARIABLES  CHAR(10) INIT('SET GLOBAL');

DCL RUN_QUERY CHAR(12) INIT('RUN QUERY Q1');

DCL PRINT_REPORT CHAR(22) INIT('PRINT REPORT (FORM=F1)');
DCL END_QUERY_INTERFACE CHAR(4) INIT('EXIT');

[ Fkkk ek ke kkok ok ko kok ok ok ek ok ok ok ok ok ek ok ok ok ok ok ke ko ok ok ok ok ok kok ok ok ok ok kok ok ok ok ok kok ok ok ok k ok ok ok ke ok /
/* Query command extension, number of parameters and lengths */

DCL NUMBER_OF_PARAMETERS FIXED BIN(31);/* number of variables */
DCL KEYWORD_LENGTHS (10) FIXED BIN(31);/* lengths of keyword namesx/
DCL DATA_LENGTHS(10) FIXED BIN(31);/* lengths of variable datax/

/********************************************************************/
/* Keyword parameter and value for START command */
[ Fkkdekok ok ek ok ok ok ek ok ok ok ok ko ok ok ok ko ok ok ok ok ok ek ok ko ok ok ok ok ok ok ok ko ok ke ok ok ok ok ok ok ok
DCL START_KEYWORDS CHAR(8) INIT('DSQSMODE');

DCL START_KEYWORD_VALUES CHAR(21) INIT('INTERACTIVE');

/********************************************************************/
/* Keyword parameter and value for SET command */
J R e Y
DCL 1 SET_KEYWORDS,

3 SET_KEYWORDS_1 CHAR(7) INIT('MYVARO1'),

3 SET_KEYWORDS_2 CHAR(5) INIT('SHORT'),

3 SET_KEYWORDS_3 CHAR(7) INIT('MYVARG3');

DCL 1 SET_VALUES,

3 SET_VALUES_1 FIXED BIN(31),
3 SET_VALUES_2 FIXED BIN(31),
3 SET_VALUES_3 FIXED BIN(31);
AR AR A A AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR /
/* Main program */
/********************************************************************/
DSQCOMM = '';
DSQ_COMM_LEVEL = DSQ_CURRENT_COMM_LEVEL;
.................................................................... /
/* Start a query interface session */

/********************************************************************/

Chapter 11. Programming language specifications for using the callable interface 167



NUMBER_OF_PARAMETERS = 1;

COMMAND_LENGTH = LENGTH(START_QUERY_INTERFACE);
KEYWORD_LENGTHS(1) = LENGTH(START_KEYWORDS) ;
DATA_LENGTHS(1) = LENGTH(START_KEYWORD_VALUES) ;

CALL DSQCIPX(DSQCOMM,
COMMAND_LENGTH,
START_QUERY_INTERFACE,
NUMBER_OF _PARAMETERS,
KEYWORD_LENGTHS,
START_KEYWORDS,
DATA_LENGTHS,
START_KEYWORD_VALUES,
DSQ_VARIABLE_CHAR) ;

/* Set numeric values into query using SET command */
/********************************************************************/
NUMBER_OF _PARAMETERS = 3;

COMMAND_LENGTH = LENGTH(SET_GLOBAL_VARIABLES);

KEYWORD_LENGTHS (1) = LENGTH(SET_KEYWORDS_1);

KEYWORD_LENGTHS (2) = LENGTH(SET_KEYWORDS_2);

KEYWORD_LENGTHS (3) = LENGTH(SET_KEYWORDS_3);

DATA_LENGTHS (1)
DATA_LENGTHS (2)
DATA_LENGTHS (3)
SET_VALUES_1 = 20;
SET_VALUES 2 = 40;
SET_VALUES_3 = 84;

4
4;
4

’

CALL DSQCIPX(DSQCOMM,
COMMAND_LENGTH,
SET_GLOBAL_VARIABLES,
NUMBER_OF _PARAMETERS,
KEYWORD_LENGTHS,
SET_KEYWORDS,
DATA_LENGTHS,

SET_VALUES,
DSQ_VARIABLE_FINT);
AR R A AR AR AR SR SRS SR IR R AR AR AR AR ST S SRR AR AR AR AR SRS /
/* Run a query */
e /
COMMAND_LENGTH = LENGTH(RUN_QUERY) ;
CALL DSQCIPL (DSQCOMM,
COMMAND_LENGTH,
RUN_QUERY) ;
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /
/* Print the results of the query */
[HFERER AR AR SR SRS R SRR RER RIS SR S SRR RERERAR AR AR SR SRS /
COMMAND_LENGTH = LENGTH(PRINT_REPORT);
CALL DSQCIPL (DSQCOMM,
COMMAND_LENGTH,
PRINT_REPORT) ;
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /
/* End the query interface session */
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /

/
COMMAND_LENGTH = LENGTH(END_QUERY_INTERFACE);
CALL DSQCIPL(DSQCOMM,
COMMAND_LENGTH,
END_QUERY_INTERFACE) ;
END DSQABFP;
Related reference
Conventions for National Language Feature information

168 Query Management Facility Version 12 Release 2: Developing QMF applications



Db2 QMF is available in several different languages, each of which is provided by a National Language
Feature (NLF).

DSQCOMM for PL/I
The interface communications area for PL/I, is named DSQCOMML
.................................................................... /
/* PL/I include for query callable interface */
/********************************************************************/
/* Structure declare for communications area */
DCL
1 DSQCOMM,
3 DSQ_RETURN_CODE FIXED BIN(31), /* Function return code =*/
3 DSQ_INSTANCE_ID FIXED BIN(31), /* Start ID */
3 DSQ_COMM_LEVEL CHAR(12), /* Communications level =x/
3 DSQ_PRODUCT CHAR(2), /* Query product ID */
3 DSQ_PRODUCT_RELEASE CHAR(2), /* Query product release */
3 DSQ_RESERVE1 CHAR(28), /* Reserved */
3 DSQ_MESSAGE_ID CHAR(8), /* Completion message ID x/
3 DSQ_Q_MESSAGE_ID CHAR(8), /* Query message ID */
3 DSQ_START_PARM_ERROR CHAR(8), /* Start parms in error =/
3 DSQ_CANCEL_IND CHAR(1), /* Cmd cancel indicator =*/
/* 1 = cancelled, 0 = not cancelledx/
3 DSQ_RESERVE2 CHAR(23), /* Reserved */
3 DSQ_RESERVE3 CHAR(156), /* Reserved */
3 DSQ_MESSAGE_TEXT CHAR(128), /* QMF command message */
3 DSQ_Q_MESSAGE_TEXT CHAR(128) ; /* QMF query message */
/* Return codes */
DCL
DSQ_SUCCESS FIXED BIN(31) INIT(®) STATIC,
DSQ_WARNING FIXED BIN(31) INIT(4) STATIC,
DSQ_FAILURE FIXED BIN(31) INIT(8) STATIC,
DSQ_SEVERE FIXED BIN(31) INIT(16) STATIC;
/* Communications level */
DCL
DSQ_CURRENT_COMM_LEVEL CHAR(12) INIT('DSQL>001002<') STATIC;
/* Query product ID */
DCL
DSQ_QRW CHAR(2) INIT('G1') STATIC,
DSQ_QMF CHAR(2) INIT('02') STATIC,
DSQ_QM4 CHAR(2) INIT('OG3') STATIC;
/* Query product release ID */
DCL
DSQ_QRW_V1R2 CHAR(2) INIT('G1') STATIC,
DSQ_QRW_V1R3 CHAR(2) INIT('02') STATIC,
DSQ_QMF_V2R4 CHAR(2) INIT('@1') STATIC,
DSQ_QMF_V3R1 CHAR(2) INIT('02') STATIC,
DSQ_QMF_V3R1M1 CHAR(2) INIT('03') STATIC,
DSQ_QMF_V3R2 CHAR(2) INIT('OG4') STATIC,
DSQ_QMF_V3R3 CHAR(2) INIT('G5') STATIC,
DSQ_QMF_V6R1 CHAR(2) INIT('06') STATIC,
DSQ_QMF_V7R1 CHAR(2) INIT('Q@7') STATIC,
DSQ_QM4_ViR1 CHAR(2) INIT('G1') STATIC,
DSQ_QMF_V7R2 CHAR(2) INIT('08') STATIC,
DSQ_QMF_V8R1 CHAR(2) INIT('@9') STATIC,
DSQ_QMF_V9R1 CHAR(2) INIT('10') STATIC,
DSQ_QMF_V10R1 CHAR(2) INIT('11') STATIC;
/* Cancelled indicator */
DCL
DSQ_CANCEL_YES CHAR(1) INIT('1') STATIC,
DSQ_CANCEL_NO CHAR(1) INIT('Q') STATIC;
/* Variable types */
DCL
DSQ_VARIABLE_CHAR CHAR(4) INIT('CHAR') STATIC,
DSQ_VARIABLE_FINT CHAR(4) INIT('FINT') STATIC;
/* Mode */
DCL
DSQ_INTERACTIVE CHAR(1) INIT('1') STATIC,
DSQ_BATCH CHAR(1) INIT('2') STATIC;

Chapter 11. Programming language specifications for using the callable interface 169



/* Yes or no */

DCL
DSQ_YES CHAR(1) INIT('1') STATIC,
DSQ_NO CHAR(1) INIT('2') STATIC;
/* Query interface entry point */
DCL
DSQCIPL ENTRY (%, /* Interface block */
FIXED BIN(31), /* Length of command */
CHAR (%)) /* Command string */
EXTERNAL OPTIONS(ASSEMBLER);
DCL
DSQCIPX ENTRY (*, /* Interface block */
FIXED BIN(31), /* Length of command */
CHAR(*), /* Command string */
FIXED BIN(31), /* # of command keywords x/
*, /* Length of keyword */
*, /* Keyword string */
*, /* Length of value */
*, /* Value of keyword */
CHAR(4)) /* Data type of value */

EXTERNAL OPTIONS(ASSEMBLER) ;

Running your programs under CICS
After you write your program in PL/I, you need to compile and run it.

When you translate, compile, and link-edit a program that uses the QMF callable interface, consider the
following conditions:

« The communications area (DSQCOMML) must be available in the compile step or copied into your
program.

« The QMF interface modules DSQCIPL and DSQCIPX must be available during the link-edit step of your
program.

This example uses the procedure DFHVITVL supplied with CICS. This JCL is not provided with QMF, but
you can copy it and alter it to suit your needs.

//samPLI JOB
// EXEC PROC=DFHVITVL
//PLI.SYSIN DD =*

Your program or copy of QMF sample DSQABFP

/*

//* Provide access to QMF communications macro DSQCOMML
//PLI.SYSLIB DD DSN=QMF1210.SDSQSAPE,DISP=SHR
//* Provide access to QMF interface module

//* Allocation for target library
//LKED.SYSLMOD DD

//* Allocation for QMF load library
//LKED.QMFLOAD DD DSN=QMF1210.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD =*

INCLUDE QMFLOAD(DSQCIPL)

INCLUDE QMFLOAD (DSQCIPX)

MODE AMODE (31) RMODE(31)

NAME sampPLI(R)

/*

170 Query Management Facility Version 12 Release 2: Developing QMF applications



Running your programs under TSO

To run your PL/I program in TSO, compile and link-edit the program, and then run it in either with or
without ISPF.

Compiling and link-editing in TSO
You must compile and link-edit your PL/I program before you can run it in TSO.

This JCL uses the PL/I compiler to compile your callable interface application and then link-edits the
application. Some parameters can vary from one QMF installation to the next.

//samPLI JOB

//STEP1 EXEC PROC=IBMZCPL

//* Provide Access to QMF Communications Macro DSQCOMML
//PLI.SYSLIB DD DSN=QMF1210.SAMPLIB,DISP=SHR
//PLI.SYSIN DD %

QOUI program or copy of QMF sample DSQABFP

//* Allocation for target library
//LKED.SYSLMOD DD

//* Allocation for QMF load library
//LKED.QMFLOAD DD DSN=QMF1210.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE QMFLOAD(DSQCIPL)

INCLUDE QMFLOAD (DSQCIPX)

ENTRY CEESTART

MODE AMODE (31) RMODE (ANY)

NAME sampPLI(R)

/*

Related reference
Running in TSO without ISPF
After your PL/I program is assembled successfully, you can run it without ISPF.

Running in TSO under ISPF
After your PL/I program is assembled successfully, you can run it under ISPF.

Running in TSO without ISPF
After your PL/I program is assembled successfully, you can run it without ISPF.

Run your program in TSO without ISPF by writing a program similar to the CLIST shown here:

PROC O
CONTROL ASIS
e /
/* Note: QMF, Db2, GDDM and PL/I load libraries must be */
/* allocated before running this CLIST. */
/* Name of QMF load library is "QMF1210.SDSQLOAD". */
A T L T e /
/* Specify attribute list for dataset allocations */
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /

/

ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)

ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE (3120)

ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)

ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)

[ Fkokok ek kkokok ok kok ok ok ok ke k ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ko k ok ok ok ko k ok ok ok /

/* Datasets used by TSO */

[HHEXH A AFAFEFE RS SRS R AFAFA R RS SR AR AFARA R RS SR SRR A /

ALLOC FI(SYSPROC) DA('QMF1210.SDSQCLTE"')

ALLOC FI(SYSEXEC) DA('QMF1210.SDSQEXCE"')
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /

/* QMF/GDDM Datasets */
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /

ALLOC FI(ADMGGMAP) DA('QMF1210.SDSQMAPE') SHR REUSE
ALLOC FI(ADMCFORM) DA('QMF1210.DSQCFORM') SHR REUSE
ALLOC FI(DSQUCFRM) DA('QMF1210.DSQUCFRM') SHR REUSE
ALLOC FI(ADMSYMBL) DA('ADM.GDDMSYM') SHR REUSE

Chapter 11. Programming language specifications for using the callable interface 171



ALLOC FI(ADMGDF) DA('ADM.GDDM.CHARTLIB') SHR REUSE
ALLOC FI(ADMDEFS) DA('ADM.GDDM.NICKNAME') SHR REUSE
/************************************************************/
/* Datasets used by QMF */

/

ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)

ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)

ALLOC FI(DSQUDUMP) SYSOUT (X) USING(UDUMPDCB)

ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS

ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)

ALLOC FI(DSQPNLE) DA('QMF1210.DSQPNLE') SHR REUSE
/************************************************************/
/* Start your program using TSO CALL command */

/
CALL sampPLI
EXIT CODE(0)

Related reference
Compiling and link-editing in TSO
You must compile and link-edit your PL/I program before you can run it in TSO.

Running in TSO under ISPF
After your PL/I program is assembled successfully, you can run it under ISPF.

Running in TSO under ISPF
After your PL/I program is assembled successfully, you can run it under ISPF.

Run your program in TSO under ISPF by writing a program similar to the CLIST shown here:

PROC 0O

CONTROL ASIS

[HRERH A A AFIFA ISR SAFAFAFIFARE SRR AIFAFIFER RS S AR /
/* Specify attribute list for dataset allocations */

[ Fkok ok kkkok ok ok ke k ok ok ok ke k ok ok ok k ok ok ok k ok ok ok ok kok ok ok ko kok ok ok ok k ok ok ok /
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE (3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /
/* Datasets used by TSO */
T et LY /
ALLOC FI(SYSPROC) DA('QMF1210.SDSQCLTE','ISR.ISRCLIB')
ALLOC FI(SYSEXEC) DA('QMF1210.SDSQEXCE')
e /
/* Datasets used by ISPF */

/************************************************************/
ALLOC FI(ISPLLIB) SHR REUSE +
DA('QMF1210.SDSQLOAD', 'ADM.GDDMLOAD', 'DSN.DSNEXIT', 'DSN.DSNLOAD', +
"PLI.PLILINK','PLI.SIBMLINK")
ALLOC FI(ISPMLIB) SHR REUSE +
DA('QMF1210.SDSQMLBE"', 'ISR.ISRMLIB', 'ISP.ISPMLIB"')
ALLOC FI(ISPPLIB) SHR REUSE +
DA('QMF1210.SDSQPLBE', 'ISR.ISRPLIB', 'ISP.ISPPLIB"')
ALLOC FI(ISPSLIB) SHR REUSE +
DA('QMF1210.SDSQSLBE', 'ISR.ISRSLIB', 'ISP.ISPSLIB')
ALLOC FI(ISPTLIB) SHR REUSE +
DA('ISR.ISRTLIB', 'ISP.ISPTLIB"')
/************************************************************/
/* QMF/GDDM Datasets */
/

ALLOC FI(ADMGGMAP) DA('QMF1210.SDSQMAPE') SHR REUSE

ALLOC FI(ADMCFORM) DA('QMF1210.DSQCFORM') SHR REUSE

ALLOC FI(DSQUCFRM) DA('QMF1210.DSQUCFRM') SHR REUSE

ALLOC FI(ADMSYMBL) DA('ADM.GDDMSYM') SHR REUSE

ALLOC FI(ADMGDF) DA('ADM.GDDM.CHARTLIB') SHR REUSE

ALLOC FI(ADMDEFS) DA('ADM.GDDM.NICKNAME') SHR REUSE
/************************************************************/
/* Datasets used by QMF */

/

ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)

ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)

ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)

ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS

ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)

ALLOC FI(DSQPNLE) DA('QMF1210.DSQPNLE') SHR REUSE

[ Fk ke kkok ke kok sk kok ok sk kok ok ok ok ok ok kok ok ok ok ok ok ok ok ok ok ok ko ok ok ko ok ko ok ok ok k ok ke ok /

172 Query Management Facility Version 12 Release 2: Developing QMF applications



/* Start your program as the initial ISPF dialog */

/
ISPSTART PGM(sampPLI) NEWAPPL (DSQE)
EXIT CODE(4)

The EXIT CODE (4) statement suppresses the ISPF disposition panel.

Related reference
Compiling and link-editing in TSO
You must compile and link-edit your PL/I program before you can run it in TSO.

Running in TSO without ISPF
After your PL/I program is assembled successfully, you can run it without ISPF.

REXX language interface

REXX is an interpretive language; it does not have to be compiled.

However, programs that use compiled REXX or other compiled languages have better performance than
the same programs written that use interpretive REXX. A REXX compiler is available for REXX programs,
but not for procedures with logic.

Under TSO, start QMF with the REXX callable interface when you use procedures with logic and certain
OMF form functions (calculations, defined columns, and conditions). The REXX callable interface can
reduce resources required to use REXX services.

For example, fewer resources are required to issue PRINT REPORT or BOTTOM commands on the
REPORT panel if QMF is started with the REXX callable interface. The reduction of resource consumption
can be substantial and is most noticeable when running QMF under TSO.

The REXX language always operates in a command environment that determines how and where the
command is processed. If you write a REXX program that issues QMF commands, you can use the QMF
command environment through the ADDRESS QRW command.

Restriction: Because REXX is not available under QMF for CICS, the QMF callable interface for REXX does
not work under CICS.

Related concepts

ADDRESS QRW and the QMF command environment

When QMF is started in TSO, ISPF, or native z/0OS, QMF creates a REXX command environment called
QRW. When you are executing a REXX program, you can set the default command environment to QRW
by issuing the REXX ADDRESS command ADDRESS QRW. With ADDRESS QRW, QMF remains the default
command environment until you issue another ADDRESS command.

Interface communications variables for REXX

The interface communications variables consist of several REXX variables. They are set after the
completion of every call and must not be altered by the calling program.

The interface communications variables for REXX variables are shown in this table:

Chapter 11. Programming language specifications for using the callable interface 173



Table 49. Interface communications variables for REXX

Structure name Description

dsq_return_code Integer that indicates the results of executing a QMF command
Possible values are:

dsq_success
Successful processing of the request

dsq_warning
Normal completion with warnings

dsq_failure
Command did not process correctly

dsq_severe
Severe error that forces the QMF session to end

Additional calls to QMF cannot be made with this instance ID.

The value of dsq_xreturn_code is also placed in the REXX variable

rc.

dsq_instance_id Identifier that is established by QMF during processing of the START
command

dsq_product Identifies the IBM query product in use

Variables that begin with dsq_gmzf specify QMF for TSO versions.

dsq_product_release Release level of QMF in use

Variable dsq_gmf_v12r1 specifies QMF Version 12 Release 1.

dsq_message_id Completion message ID

dsg_q_message_id Query message ID

dsq_start_parm_error Parameter in error when START failed due to a parameter error

dsq_cancel_ind Command cancel indicator that indicates whether the user canceled
command processing while QMF was running a command; possible
values are:

dsq_cancel_yes
The user canceled the command

dsqg_cancel_no
The user did not cancel the command

dsq_message_text Completion message text

dsq_q_message_text Query message text

Function call for REXX

The callable interface is accessed by using normal REXX function calls. QMF provides an external
subroutine called DSQCIX, which is used to run all QMF commands issued through the callable interface.

The syntax for the DSQCIX function call is as follows:
call DSQCIX cmd parmlist

In this syntax, cmd is a QMF command written as an uppercase character string and parmlist is a list of
parameter and value pairs.

174 Query Management Facility Version 12 Release 2: Developing QMF applications



Syntax of the parameter list for the DSQCIX function call

T

»— ( parmname — = — value

)

Pass the entire command, including the parmlist, to QMF as a single REXX variable written as a character
string. This string must be enclosed in quotation marks (' ") or (" "). When using REXX variables as part of
the command string, do not enclose the argument. For example:

CALL DSQCIX "RUN QUERY NAME (&ECN="REXAUG",CONFIRM=YES)"

parmname
Name of a parameter

value
Value that is to be associated with the parameter name specified by parmname

Here are some examples of function calls:

call DSQCIX "RUN QUERY Q1"
call DSQCIX "PRINT REPORT (FORM=F1"
call DSQCIX "EXIT"

In the parmlist, the same results occur whether the following elements are present or not:

« Comma (,) between parameters (a space produces the same result)
« Closing parenthesis (which is not required)
« Equalsign (=) between parmname and value (a space produces the same result)

Each of the following would produce the same results:

call dsqcix "SET GLOBAL (abc=17, def=26"
call dsqcix "SET GLOBAL ( abc=17 def=26"
call dsqcix "SET GLOBAL ( abc=17 , def=26)"
call dsqcix "SET GLOBAL (abc 17 def=26)"

REXX programming example
The sample REXX program, DSQABFYX, is provided with QMF.

You can look at the sample source code listing here or you can access it online. The sample program is a
member of the library QMF1210.SDSQEXCE.

The sample program for the REXX callable interface performs the following functions:

Starts QMF
Sets three global variables

* Runs a query called Q1
« Prints the resulting report by using form F1
« Ends the QMF session

QMF does not supply query Q1 or form F1, but the sample program uses these objects.

HREXX ok ko A&k Aok A ok Ak ok kA ok Aok ok Ao /
/* Sample program: DSQABFX */
/* REXX version of the QMF callable interface */
R /

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /
/* Start a query interface session */

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| /

Chapter 11. Programming language specifications for using the callable interface 175



call dsqcix "START (DSQSMODE=INTERACTIVE"
say dsq_message_id dsq_message_text
if dsq_return_code = dsq_severe then exit dsq_return_code

/********************************************************************/
/* Set numeric values into query using SET command */

call dsqcix "SET GLOBAL (MYVARO1=20,SHORT=40,MYVARO3=84"
say dsg_message_id dsq_message_text
if dsq_return_code = dsq_severe then exit dsq_return_code

AR R A AR AR AR SRS SR IR R R AR AR ARSI S S SRR AR AR AR SRS /
/* Run a query %/
[HRERER AR R AR ARSI SR RERERAR AR ARSI SRR R RAR AR RS SRS /

call dsqcix "RUN QUERY Q1"
say dsq_message_id dsq_message_text
if dsq_return_code = dsq_severe then exit dsq_return_code

/* Print the results of the query */
/********************************************************************/

call dsqcix "PRINT REPORT (FORM=F1)"
say dsq_message_id dsq_message_text
if dsq_return_code = dsq_severe then exit dsq_return_code

/********************************************************************/
/* End the query interface session */

call dsqcix "EXIT"
say dsqg_message_id dsq_message_text
exit dsq_return_code

Running your REXX programs
After you write your program in REXX, you need to run it.

You can run your REXX program in TSO by writing a program similar to the one shown here:

/
/* Issue TSO allocates for QMF product */
/*****************************************************************/

Address TSO

"ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)"
"ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)"
"ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)"
"ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)"
"ALLOC FI(SYSPROC) SHR REUSE ",
"DA('QMF1210.DSQCLSTE, ",
" 'DSN.DSNCLIST"')"
"ALLOC FI(SYSEXEC) SHR REUSE ",
"DA('QMF1210.SDSQEXCE" )"
"ALLOC FI(ISPLLIB) SHR REUSE ",
"DA('QMF1210.SDSQLOAD, ' ",
"'ADM.GDDM.GDDMLOAD, ' ",
" 'DSN.DSNLOAD"')"
"ALLOC FI(DSQPNLE) DA('QMF1210.DSQPNLE') SHR REUSE"
"ALLOC FI(DSQPRINT) SYSOUT USING(PRINTDCB)"
"ALLOC FI(SYSPRT) SYSOUT(X) LRECL(132) RECFM(FBA) BLKSIZE(132)"
"ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)"
"ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)"
"ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS"
"ALLOC DDNAME (DSQEDIT) UNIT(SYSDA) NEW USING(EDITDCB)"
"ALLOC FI(ADMDEFS) DA('ADM.GDDM.NICKNAME') SHR REUSE"
"ALLOC FI(ADMGGMAP) DA('QMF1210.SDSQMAPE') SHR REUSE"
"ALLOC FI(ADMCFORM) DA('QMF1210.DSQCHART') SHR REUSE"
"ALLOC FI(DSQUCFRM) DA('QMF1210.DSQUCFRM') SHR REUSE"
"ALLOC FI(ADMGDF)  DA('GDDM.ADMGDF') SHR REUSE"
"ALLOC FI(ADMSYMBL) DA('ADM.GDDM.GDDMSYM') SHR REUSE"

/* The beginning of your REXX program ..... */

176 Query Management Facility Version 12 Release 2: Developing QMF applications



)* The end of your REXX program ........ */

A REXX example of using an INTERACT loop

You can make the END command in an interactive session behave similarly to the way END behaves in
interactive QMF.

Normally, when your callable interface program issues an INTERACT command and the user issues the

END command, QMF immediately returns control to your program. However, interactive QMF allows the
user to issue the END command to return to the QMF home panel. Issuing the END command a second

time ends the QMF session.

Add the logic in the following example to your program to allow the END command to behave similarly to
interactive QMF.

This program uses dsq_message_id to determine how to proceed. These values can change from one
release to the next.

This program is not distributed with QMF.

/*REXX*************************************************************/
/* Sample program: Using INTERACT loop */
[ Fkokok ke ke kokok ok ke ke kok ok ok ok ke ok kok ok ok ok ok ok ok ok ok ek ok ok ok ok ok ek keok ok ok ok ke ok kok ok ok ok ok kok ok ok ok ko k ok ok /
/******************************************************************/
/* Start an interactive QMF session */
[ Fkokok ke kokok ok ok ke kok ok ok ok ke ok kok ok ok ke ok ok ok ok ok ek ok ok ok ok ok ek kok ok ok ok ke kok ok ok ok ok kok ok ok ok ok ok ok ok ok /
trace error

parms = "START (DSQSMODE=INTERACTIVE"

call dsqcix parms

if dsq_return_code = dsq_severe then exit dsq_return_code

[ Fkokok ke ke kok ok ok ek ke kok ok ok ok ok kok ok ok ke ok ok ok ok ok ke ke ok ok ok ok ok ek ke ok ok ok ok ko kok ok ok o ko kok ok ok ok ko kok ok ok /

/* SET GLOBAL to show panel IDs */

AR AR AT AT ERAIA SR AT SIS AR A TSR A AS AR ARSI AR AR /

call dsqcix "SET GLOBAL (DSQDC_SHOW_PANID=1"

if dsq_return_code = dsq_severe then exit dsq_return_code
.................................................................. /

/* Issue message */

/******************************************************************/
call dsqcix "MESSAGE (TEXT='OK, you may enter a command.')"

if dsq_return_code = dsq_severe then exit dsq_return_code
/******************************************************************/

/* INTERACT loop */
[ Fkokok ke kok ok ok ko kok ok ok ok ok kok ok ok ek ok ok ok ok ok ke ke ok ok ok ok ok ek kok ok ok ok ke ok kok ok ok ok ko kok ok ok ko ok ok ok /
Continue = "yes"
Do while continue = "yes"
call DSQCIX "INTERACT"
Select
When (dsq_return_code = dsq_severe) Then /% Severe error */
Continue = "no"
When (dsq_message_id = "DSQ21869") Then /% END from HOME panel x/
Continue = "no"
When (dsq_message_id = "DSQ90557") Then /* User issued EXIT */
Continue = "no"
Otherwise nop /* OK continue session */
End
End
.................................................................. /
/* End the session */
/******************************************************************/
if dsq_message_id <> "DSQ90557" then /% EXIT not issued */
call dsqcix "EXIT" /* Issue EXIT */

exit dsq_return_code

Chapter 11. Programming language specifications for using the callable interface 177



178 Query Management Facility Version 12 Release 2: Developing QMF applications



Appendix A. Product interface macros

This table lists macros that are provided with QMF as General Use Programming Interfaces for customers.

Important: Do not use any QMF macros as programming interfaces other than those macros identified

here.

Table 50. Macros that provide interfaces to QMF functions

Purpose

Macro names

Product interface macro

DSQQMFn

In this program name, n is a national language
identifier). For English, this identifier is E.

Callable interface macros

« Assembler

- DSQCIA

— DSQCOMMA
- COBOL

— DSQCIB

- DSQCOMMB
« C/C++

- DSQCIC

— DSQCICE

- DSQCOMMC
 Fortran
— DSQCIF
— DSQCIFE
— DSQCOMMF
PL/I
— DSQCIPL
— DSQCIPX
- DSQCOMML
« REXX

— DSQCIX

Command interface macro

DSQCCI

QMF governor exit routine interface macros

« DXEGOVA
« DXEXCBA

QMF user edit exit routine macro

DXEECS

Related reference

Conventions for National Language Feature information

Db2 QMF is available in several different languages, each of which is provided by a National Language

Feature (NLF).

© Copyright IBM Corp. 1982, 2021

179



180 Query Management Facility Version 12 Release 2: Developing QMF applications



Appendix B. QMF global variables

QMF provides many global variables that help you control aspects of your QMF session, QMF commands,
and panel display. The global variables also help you control behavior of QMF functions in procedures and
applications.

Naming convention for QMF global variables

The naming convention for most global variables that are provided with QMF is DSQcc_xXXXXXXXXXXX. CC
identifies the category of variable, and xxxxxxxxxxxx is a descriptive name up to 12 characters long. An
underscore character () is included after cc.

cc can be any one of the following identifiers:
AP
Variables for profile-related state information

AO
Variables for other (not profile-related) state information

CM
Variables for information about the message produced by the previous command

CP
Variables for information about the Table Editor

DC
Variables that control how QMF displays information displayed on the screen

EC
Variables that control how QMF executes commands and procedures

QC
Variables whose values are produced by a CONVERT QUERY option

QM

Variables that contain RUN QUERY error message information

QW
Variables unique to QMF for Workstation.

Session variables

Session variables follow a different naming convention. Session variables are global variables that store
the values that users enter in some fields on some panels if the DSQEC_SESSGLV_SAV global variable is
set to 1 or 2. The naming convention for session variables is as follows:

DXYnpppp_LIn_dd
where:

« nis the national language identifier

» pppp is the last four letters of the panel ID

« [nis an ID that is associated with the field

- ddis an ID that is associated with the field and is used only if the field is dependent on another field

© Copyright IBM Corp. 1982, 2021 181



Setting and displaying values for global variables

If the value you want to assign to a global variable is 55 or fewer bytes, use the SET GLOBAL command to
assign the value. If the variable is over 55 bytes, use the SHOW GLOBALS command.

About this task

By default, a global variable value is retained until you reset it or end the QMF session. However, the
DSQEC_USERGLV_SAV global variable can be set to save global variable values from one session to

another.

To customize global variables at initialization, see the information in Installing and Managing QMF for TSO
and CICS about initializing global variables and QMF session behavior when QMF starts.

Procedure

To assign a value that is over 55 bytes to a global variable:
1. Use the SHOW GLOBALS command to display the GLOBALS panel.
2. Press the Show Field key to display the entire entry field.

The maximum length for a global variable on the Show Global Variable screen is 32,768 bytes.

3. Type the value for the variable on the lines provided.

Global variables for state information not related to the profile

DSQAO global variables contain status information or settings of parameters or flags. None of these global
variables can be modified by the SET GLOBAL command.

Table 51. Global variables for state information not related to the profile

Callable interface variable name

Command interface variable
name

Length

Description

DSQAO_APPL_TRACE

DSQATRAC

01

0
for level AO

for level A1

for level A2

DSQAO_ATTENTION

DSQCATTN

01

User attention flag.

DSQAO_BATCH

DSQABATC

01

Batch or interactive mode; values can be:

1
for an interactive session

for a batch-mode session

DSQAO_CONNECT_ID

DSQAAUTH

128

The user ID used to connect to the database and
under which work is done.

The value of this variable changes when you
issue the following command or statement:

« Issue a QMF CONNECT command to
reconnect to the database under a different
authorization ID

« Issue a SET CURRENT SQLID statement on a
Db2 for z/OS database.

DSQAQ_CONNECT_LOC

None

18

The location name of the database to which
you are currently connected; the name is 16
characters (padded to the right with blanks, if
necessary).

182 Query Management Facility Version 12 Release 2: Developing QMF applications



Table 51. Global variables for state information not related to the profile (continued)

Command interface variable

Callable interface variable name name Length Description

DSQAO_CURSOR_OPEN DSQACRSR 01’ Database cursor status; values can be:

1

if the cursor is open
2

if the cursor is closed

DSQAO_DATE_FORMAT None 05 Contains the value that is specified in
SYSIBM.DATE_FORMAT.

Values can be ISO, USA, EUR, JIS, or LOCAL.

DSQAO_DB_MANAGER DSQADBMG 01 Database manager, indicated by one of the
following values:

1
DB2 for VSE and VM
2
Db2 for z/OS
3
Db2 for Linux, UNIX, and Windows
4
DB2 for iSeries
DSQAO_DBCS DSQADBCS 01 DBCS support status; values can be:
1
for DBCS support
2
for no DBCS support

DSQAO_DSQSBSTG None 10 Contains the value specified by the DSQSBSTG
parameter or the default if the parameter was
not specified.

DSQAO_DSQSFISO None 01 Contains the value that is specified by the
DSQSFISO parameter or the default if the
parameter was not specified.

The following values are used:

0
QMF is not precompiled with DATE(ISO)
and TIME(ISO).

1
QMF is precompiled with DATE(ISO) and
TIME(ISO). This is the default.

DSQAO_DSQSMRFI None 01 This field reflects the value that was specified

for the DSQSMRFI program parameter when
QMF was started.

0
NO was specified for the DSQSMRFI
program parameter, meaning that Db2
single-row fetch and insert is used.

1

YES was specified for the DSQSMRFI
program parameter, meaning that Db2
multirow fetch and insert is used. Multirow
fetch uses a rowset cursor.

Appendix B. QMF global variables 183



Table 51. Global variables for state information not related to the profile (continued)

Callable interface variable name

Command interface variable
name

Length

Description

DSQAO_DSQSMTHD

None

01

Contains the value specified by the DSQSMTHD
program parameter or the default if the
parameter was not specified.

The following values are used:

0
NO was specified; QMF runs with one
thread. This is the default.

YES was specified; QMF will run with

a second thread that will be used for
commands (RUN QUERY, DISPLAY TABLE)
and subsequent scrolling (BOTTOM, TOP,
FORWARD, BACKWARD, RIGHT and LEFT)
of reports with open cursors.

DSQAQ_DSQSPILL

None

01

Contains the value specified by the DSQSPILL
parameter or the default if the parameter was
not specified.

The following values are used:

0
for not using spill storage. This value
corresponds with a DSQSPILL parameter
value of NO.

for using spill storage. This value
corresponds with a DSQSPILL parameter
value of YES.

DSQAQ_DSQSPTYP

None

Contains the value specified by the DSQSPTYP
parameter or the default if the parameter was
not specified.

The following values are used:

FILE
for spilling data to a file.

64BIT
for spilling data to extended virtual storage.

DSQAQ_DSQSRSTG

None

Contains the value specified by the DSQSRSTG
parameter or the default if the parameter was
not specified.

184 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 51. Global variables for state information not related to the profile (continued)

Callable interface variable name

Command interface variable
name

Length

Description

DSQAO_FORM_PANEL

DSQASUBP

02

Current form panel; values can be:

1
for FORM.MAIN

for FORM.COLUMNS

for FORM.PAGE

for FORM.FINAL

for FORM.BREAK1

for FORM.BREAK2

for FORM.BREAK3

for FORM.BREAK4

for FORM.BREAK5

10
for FORM.BREAK6

11
for FORM.OPTIONS

12
for FORM.CALC

13
for FORM.DETAIL

14
for FORM.CONDITIONS

A blank value means that the form does not
exist in QMF temporary storage.

DSQAQ_INTERACT

DSQAIACT

01

Setting of the interact flag; values can be:

0
for no interactive execution

when interactive execution is allowed

DSQAQ_LOCAL_DB2

None

18

The location name of the local Db2 for z/OS
database.

This value is the location name for

the subsystem named in the variable
DSQAO_SUBSYS_ID. In a remote unit of work
environment, DSQ_LOCAL_DB2 is the name
of the application requester. The name is 16
characters (padded to the right with blanks, if
necessary).

DSQAO_LOCATION

DSQAITLO

18

Location name of the current object, if any.

This value is applicable only if a three-part name
was used. The name is 16 characters (padded to
the right with blanks, if necessary).

DSQAQ_NLF_LANG

DSQALANG

01

National language of user; for the English
language environment, this value is ‘E’.

DSQAO_NUM_FETCHED

DSQAROWS

16

Fetched data rows; contains '0' when the DATA
object is empty.

Appendix B. QMF global variables 185



Table 51. Global variables for state information not related to the profile (continued)

Command interface variable

Callable interface variable name name Length Description

DSQAO_OBJ_NAME DSQAITMN 128 The name of the table (contained in a report),
query, procedure, or form shown on the
currently displayed panel.

If the current panel does not display an object,
or if the displayed object has no name, this
variable contains blanks.

DSQAO_OBJ_OWNER DSQAITMO 128 The owner of the table (contained in a report),
query, procedure, or form shown on the
currently displayed panel.

If the current panel does not display an object,
or if the displayed object has no owner, this
variable contains blanks
DSQAO_OTC_LICENSE None 01 QMF product identifier
0
Indicates that no product identifier was
found.

1
Indicates that the product identifier for
DB2 for QMF for z/OS standalone product,
5697-QM2, was found.

2
Indicates that the product identifier for DB2
QMF Classic Edition (5650-DB2 or 5615
DB2) was found.

3
Indicates that the product identifier for DB2
QMF Enterprise Edition (5650-DB2 or 5615
DB2) was found.

DSQAO_PANEL_TYPE DSQAITEM 01 Type of current panel; values can be:

1
for HOME

2
for QUERY

3
for REPORT

4
for FORM

5
for PROC

6
for PROFILE

7
for CHART

8
for LIST

9
for Table Editor

A
for GLOBALS

DSQAO_QMF_RELEASE DSQAREVN 02 Numeric release number of QMF, which is

displayed in header records for exported forms,
reports, and prompted queries. For QMF Version
12 Release 2, this value is '19".

186 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 51. Global variables for state information not related to the profile (continued)

Command interface variable

Callable interface variable name name Length Description
DSQAO_QMF_VER_RLS DSQAQMF 10 Version and release of QMF. For QMF Version 12
Release 2, this value is 'QMFV12R1.0".
DSQAO_QMFADM None 01 QMF administrator authority:
0

Current authorization ID does not have QMF
administrator authority.

1
Current authorization ID has administrator
authority.

DSQAO_QRY_SUBTYPE DSQASUBI 01 Query subtype; values can be:

1
for a subtype of SQL

2
for a subtype of QBE

3

for a subtype of PROMPTED

Blank means that the current panel is not
QUERY.

DSQAO_QUERY_MODEL DSQAMODL 01 Model for data access.

Value is always '1' for relational.

DSQAO_ROW_LENGTH DSQAROWW 05 Contains a value indicating the length in bytes of
each data row returned from the last processed
query (if the report is still in storage). If the
report is no longer in storage, the value is reset
to 0 (zero).

Values can be:

0
No report currently in storage.

Indicates the number of bytes in the row.

DSQAO_SAME_CMD DSQACMDM 01 Values can be:

0
if the two commands are not the same

1
if the two commands are the same

DSQAO_STO_PROC_INT None 01 Shows whether QMF for TSO was started as a
Db2 for z/OS stored procedure. Possible values
are:

1]
QMF was not started as a stored procedure.

1
QMF was started as a stored procedure.

DSQAO_SUBSYS_ID None 04 If QMF is running in TSO, this value is the ID
of the local Db2 subsystem to which QMF is
attached.

If you specify a value for the DSQSSUBS
program parameter in CICS, this global variable
contains that value. The parameter is tolerated
and the value is not processed. The value is
placed in the global variable field and nothing
is done with it. This logic permits the same
program to be used in multiple environments.

Appendix B. QMF global variables 187



Table 51. Global variables for state information not related to the profile (continued)

Callable interface variable name

Command interface variable
name

Length

Description

DSQAOQO_SYSTEM_ID

DSQASYST

01

Current operating system; values can be:
2

TSO under z/0S

TSO or native z/OS

CICS

DSQAO_TERMINATE

DSQCSESC

01

QMF termination flag; values can be:

0
if the session was not marked for
termination

if the session was marked for termination

DSQAO_TIME_FORMAT

None

05

Contains the value that is specified in
SYSIBM.TIME_FORMAT.

Values can be ISO, USA, EUR, JIS, or LOCAL.

DSQAQ_VARIATION

DSQAVARN

02

Form panel variation number; blank means
FORM.DETAIL is not the current panel.

Global variables for profile-related state information

DSQAP global variables store information related to QMF profile settings. None of these global variables
can be modified by the SET GLOBAL command.

Table 52. Global variables for profile-related state information

Callable interface variable name

Command interface variable
name

Length

Description

DSQAP_CASE

DSQAPCAS

01

CASE parameter; values can be:

1
for UPPER

for MIXED

for STRING

If your site uses RACF support for mixed-

case passwords under TSO, set this value to

2. Without this setting, all input (including
passwords) is converted to uppercase, causing
the CONNECT command to fail. When you set
CASE to MIXED, ensure that you enter all

input in uppercase, because QMF recognizes
commands only in uppercase.

DSQAP_CONFIRM

DSQAPRMP

01

CONFIRM parameter; values can be:

0
for NO

for YES

188 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 52. Global variables for profile-related state information (continued)

Command interface variable
Callable interface variable name name Length Description

DSQAP_DECIMAL DSQAPDEC 01 DECIMAL parameter; values can be:

1

for PERIOD
2

for COMMA
3

for FRENCH

DSQAP_LENGTH DSQAPLEN 18 LENGTH parameter; its value is that of the
parameter (‘1' through '999' or 'CONT").

DSQAP_MODEL None 08 MODEL parameter; its value is that of the
parameter.

DSQAP_PFKEY_TABLE DSQAPPFK 31 Name of the function keys table.

DSQAP_PRINTER DSQAPPRT 08 PRINTER parameter; values can be:

« A nickname for a GDDM printer.
« Blanks for the printer associated with
DSQPRINT.
DSQAP_QUERY_LANG DSQAPLNG 01 LANGUAGE parameter; values can be:
1
for SQL
2
for QBE
3
for PROMPTED

DSQAP_QUERY_MODEL DSQAMODP 01 Model for data access.

Value is always '1' for relational.

DSQAP_RESOURC_GRP DSQAPGRP 16 RESOURCE GROUP parameter.

DSQAP_SPACE DSQAPSPC 50 SPACE parameter; its value is that of the
parameter.

DSQAP_SYNONYM_TBL DSQAPSYN 31 Name of the synonyms table used for the
current QMF session. When a user enters a
command synonym, the synonym definition
must be stored in the table named here or the
command fails.

DSQAP_TRACE DSQAPTRC 18 TRACE parameter; values can be:

ALL

(maximum tracing)
NONE

(minimum tracing)
You can also specify a series of letters and
numbers that specifies which components are to
be traced at which levels of detail (for example,
A2L2C1).

DSQAP_WIDTH DSQAPWID 18 WIDTH parameter; its value is that of the
parameter ('22' through '999").

Appendix B. QMF global variables 189



Global variables associated with CICS

DSQAP global variables are associated with CICS environments. Only DSQAP_CICS_PQNAME and
DSQAP_CICS_PQTYPE can be modified by the SET GLOBAL command.

When the queue type is transient data (TD), the maximum length of the corresponding queue name is 4.
For example, if DSQAO_CICS_SQTYPE is TD, the maximum length of DSQAO_CICS_SQNAME is 4.

Table 53. Global variables associated with the CICS environment

Callable interface variable name

Command interface variable
name

Length

Description

DSQAP_CICS_PONAME

None

08

Names the CICS data queue to contain the QMF
print output.

DSQAP_CICS_PQTYPE

Type of CICS storage used to contain the QMF
print output:

TS
Writes the QMF print to a CICS temporary
storage queue on an auxiliary storage
device. This value is the default.

TD
Writes the QMF print to a CICS transient
data queue.

DSQAOQO_CICS_SQNAME

None

08

Names the CICS data queue to be used as the
spill file.

DSQAQ_CICS_SQTYPE

None

02

Type of CICS storage used to contain the QMF
spill file:

TS
Writes the QMF spill data to a CICS
temporary storage queue on an auxiliary
storage device. This value is the default.

TD
Writes the QMF spill data to a CICS
transient data queue.

DSQAQ_CICS_TQNAME

None

08

Names the CICS data queue to contain the QMF
trace data.

DSQAQ_CICS_TQTYPE

None

02

Type of CICS storage used to contain the QMF
trace data:

TS
Writes the QMF trace to a CICS temporary
storage queue on an auxiliary storage
device.

TD
Writes the QMF trace to a CICS transient
data queue. This value is the default.

Global variables related to a message produced by the most recent

command

DSQCM global variables contain information about the most recent QMF command that was issued. None
of these global variables can be modified by the SET GLOBAL command.

Table 54. Global variables that capture information about the most recently issued command

Command interface variable

Callable interface variable name name Length Description
DSQCM_MESSAGE DSQCM_MESSAGE 80 Message text.
DSQCM_MESSAGE_ALL DSQCIMSA 360 Complete message text.

190 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 54. Global variables that capture information about the most recently issued command (continued)

Command interface variable

Callable interface variable name name Length Description
DSQCM_MSG_HELP DSQCIMID 08 ID of message help panel.
DSQCM_MSG_NUMBER DSQCIMNO 08 Message number.
DSQCM_SUB_TXT_nn DSQCIMnn 20 Substitution value nn.

Global variables associated with the Table Editor

DSQCP global variables are associated with the operations of the Table Editor. All of these global variables
can be modified by the SET GLOBAL command.

The following table shows global variables that are associated with the operations of the Table Editor. All
of these global variables can be modified by the SET GLOBAL command.

If the CONFIRM option of the EDIT TABLE command is NO, the Table Editor suppresses the display of
all confirmation panels. If the CONFIRM option is YES, the Table Editor determines which categories of
confirmation are enabled by checking the values of the global variables that are shown in this table.

The Table Editor defaults depend on the SAVE keyword from the EDIT TABLE command:

« When SAVE=IMMEDIATE, the default for each category is to enable.

« When SAVE=END, the default for the DELETE, MODIFY, and END/CANCEL categories is to enable; the
default for the ADD and CHANGE categories is to disable.

Table 55. Global variables associated with the Table Editor

Command interface variable

Callable interface variable name name Length Description
DSQCP_RMV_BLANKS None 01 Retains or removes trailing blanks of VARCHAR
columns. This variable affects only the Table
Editor in Change mode. Values can be:
0
Trailing blanks of VARCHAR columns are
not removed.
1
Trailing blanks of VARCHAR columns are
removed. This value is the default.
DSQCP_TEADD None 01 Displays a confirmation panel after an ADD
subcommand; values can be:
0
Panel is disabled.
1
Panelis enabled.
2
Panel is enabled or disabled depending on
the Table Editor defaults. This value is the
default.
DSQCP_TECHG None 01 Displays a confirmation panel after a CHANGE

subcommand; values can be:

0

Panel is disabled.
1

Panel is enabled.
2

Panel is enabled or disabled depending on
the Table Editor defaults. This value is the
default.

Appendix B. QMF global variables 191



Table 55. Global variables associated with the Table Editor (continued)

Callable interface variable name

Command interface variable
name

Length

Description

DSQCP_TEDEL

None

01

Displays a confirmation panel after a DELETE
subcommand; values can be:

0
Panel is disabled.

1
Panel is enabled.

Panel is enabled or disabled depending on
the Table Editor defaults. This value is the
default.

DSQCP_TEDFLT

None

01

The reserved character used to indicate the
default value for a column in the Table Editor;
initially set to a plus sign (+) character.

DSQCP_TEDFLT_DBCS

None

04

The reserved DBCS character used to indicate
the default value for a graphic string column in
the Table Editor.

The value must be a 4-byte mixed string,
composed of one DBCS character, preceded

by the shift-out character, and followed by the
shift-in character. It is initially set to a DBCS plus
sign (+) character. This global variable is used
only in a DBCS environment.

DSQCP_TEEND

None

01

Displays a confirmation panel when you issue an
END subcommand or a CANCEL subcommand to
terminate a Table Editor subsession.

The panel can be displayed in several variations:
« If END or CANCEL is issued
« If modifications are made to the database

« If the screen contains modified data when
END or CANCEL is issued

Values can be:

0
Panel is disabled.

Panel is enabled.

Panel is enabled or disabled depending on
the Table Editor defaults. This value is the
default.

DSQCP_TEMOD

None

01

Displays a confirmation panel when displayed
data is modified and a PREVIOUS, CLEAR, SHOW
CHANGE, SHOW SEARCH, REFRESH, or NEXT
subcommand is issued. The resulting panel
includes the name of the subcommand as part
of the panel text. Values can be:

0
Panel is disabled.

Panel is enabled.

Panel is enabled or disabled depending on
the Table Editor defaults.

DSQCP_TENULL

None

01

The reserved character used to indicate the null
value for a column in the Table Editor; initially
set to a hyphen (-) character.

192 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 55. Global variables associated with the Table Editor (continued)

Callable interface variable name

Command interface variable
name

Length

Description

DSQCP_TENULL_DBCS

None

04

The reserved DBCS character used to indicate

the null value for a graphic-string column in
the Table Editor. The character is also used to
indicate ignore in the context of search criteria.

The value must be a 4-byte mixed string
composed of one DBCS character, preceded

by the shift-out character, and followed by the
shift-in character. It is initially set to a DBCS
hyphen (-) character. This global variable is used
only in a DBCS environment.

Global variables that control various displays

DSQDC global variables control the display of certain kinds of information. All of these global variables can
be modified by the SET GLOBAL command.

Table 56. Global variables that control the display of certain types of information

Callable interface
variable name

Command interface
variable name

Length

Description

DSQDC_COL_LABELS

None

01

Controls whether the column heading shown in FORM.MAIN
and FORM.COLUMNS defaults to the database label assigned
to the column or the name of the column in the table from
which it was selected.

0
Column names are used as column headings in default
QMF forms.

Database labels are used as column headings in default
QMF forms. This value is the default value.

DSQDC_COST_EST

None

01

Controls the display of the database cost estimate; values can
be:

0

Does not display the cost estimate.
1

Displays the cost estimate. This value is the default.
2

Does not display the database status and cost estimate
panels.

Appendix B. QMF global variables 193



Table 56. Global variables that control the display of certain types of information (continued)

Callable interface
variable name

Command interface
variable name

Length

Description

DSQDC_CURRENCY

None

18

The currency symbol used when the DC edit code is specified.

The value can be a string with a length from 1 to 18 bytes. For
English, the default is the euro currency symbol. The default
varies for other languages. In a DBCS environment, this value
can be a mixed string of SBCS and DBCS characters. The total
length of the mixed string, including the shift-out and shift-in
characters, cannot exceed 18 bytes.

If you require a currency symbol that is not represented

on the keyboard, you can still specify the symbol. Set the
DSQDC_CURRENCY variable in a procedure with logic to

the hex value that is equivalent to the correct symbol. For
example, the following procedure sets the currency symbol to
HEX '9F', which specifies the euro currency symbol in English
OMF:

/% */
"SET GLOBAL (DSQDC_CURRENCY =" 'OF'X

If trailing blanks are needed for the currency symbol, put
the currency symbol in single quotation marks. This example
shows the blanks for French QMF:

SET GLOBAL (DSQDC_CURRENCY = 'FR '

You can issue this command from the command line orin a
linear procedure.

DSQDC_DISPLAY_RPT

DSQADPAN

01

Displays a report after RUN QUERY; values can be:

0
QMF does not display the resulting report from a RUN
QUERY command.

This value is the default if QMF is started interactively
with DSQQMFn (where n is a where n is a National
Language Feature identifier). This value is also the default
if QMF is started in batch mode. Changing this variable
when QMF is started in batch mode does not cause any
QMF screen to display.

QMF automatically displays the report.

This value is the default if QMF is started with the
callable interface. The value can be overridden with the
DSQADPAN program parameter on the START command.

When setting this global variable to 1, you can review the
displayed report and choose whether to commit or roll back
changes. To do this, press F3 (END) when you have finished
reviewing your changes. You will then be prompted to either
commit or roll back changes. Select 1 to commit or 2 to roll
back your changes and then press Enter.

194 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 56. Global variables that control the display of certain types of information (continued)

Callable interface

Command interface

variable name variable name Length Description
DSQDC_EC_CHAR None 05 User-defined default edit code for character data (fixed

character, varying character, and very long character).

C
Does not change the display of the data. This is the
default.

cw
Wraps the data at the column width boundary.

CcT
Wraps the data at the column boundary, breaking the line
at the nearest blank space.

CDx
Wraps the column data according to a delimiter (x) you
specify if the data cannot fit on one line. The delimiter can
be any character, including a blank and does not appear in
the output.

Uxxxx
User-defined formatting. Replace xxxx with 0 - 4
characters (letters, digits, or special characters).

Vxxxx
User-defined formatting. Replace xxxx with 0 - 4
characters (letters, digits, or special characters).

B
Binary formatting.

BW
Binary formatting with column wrapping at the column
width boundary.

X
Hexadecimal formatting..

XwW
Hexadecimal formatting with column wrapping at the
column width boundary.

M
Displays metadata (data type and length) instead of the
actual data.

DSQDC_EC_DATE None 05 Default edit code for DATE data. Values can be:

TDYx
Four-digit year with year first.
TDMx
Four-digit year with month first.
TDDx
Four-digit year with day first.
TDYAx
Abbreviated two-digit year with year first.

TDYMx
Abbreviated two-digit year with month first.

TDDAX

Abbreviated two-digit year with day first.
TDL

Locally defined date format.
D

Default date format of the database system. This is the
default value for this global variable.

X represents the character that you specify to serve as the
delimiter between parts of the date.

Appendix B. QMF global variables 195



Table 56. Global variables that control the display of certain types of information (continued)

Callable interface
variable name

Command interface
variable name

Length

Description

DSQDC_EC_DEC

None

05

User defined default edit code for decimal data.

E or EZ
Scientific notation. A Z in the second position of the edit
code suppresses zero values.

D, DC, DZ, DZC,1,1Z, 3, JZ, K, KZ, L, LZ, P, PZ
Decimal notation with different combinations of leading
zeros, minus signs for negative numbers, thousands
separators, currency symbols, and percent signs.

Each code can be followed by a'' (blank), a number (from
0to 99) or an * (astersik). Specifying a blank is the same
as specifying a 0. A value of K invokes the same behavior
as KO. For example, K, KO, K3 or Kx are all valid settings.

When the code is followed by a number (from 0 to 99)

or blank, that tells how many places to allow after the
decimal point. A C in the second or third position of the D
edit code displays a user-defined currency symbol instead
of the standard currency symbol. A Z in the second
position of the edit code suppresses zero values.

When the code is followed by an *, QMF will format
decimal data based on the column definition of the
database.

The default value is Lx. When Lx is specified, QMF will
format decimal data based on the column definition of
the database. This behavior is consistent with previous
releases of QMF.

A C in the second or third position of the D edit code
displays a user-defined currency symbol instead of
the standard currency symbol.

A Zin the second position of the edit code suppresses
zero values.

The default value is L. When L* is specified, QMF will
format decimal data based on the column definition
of the database. This behavior is consistent with
previous releases of QMF.

Uxxxx
User-defined formatting. Replace xxxx with 0 - 4
characters (letters, digits, or special characters).

Vxxxx
User-defined formatting. Replace xxxx with 0 - 4
characters (letters, digits, or special characters).

M
Displays metadata (data type and length) instead of the
actual data.

196 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 56. Global variables that control the display of certain types of information (continued)

Callable interface

Command interface

variable name variable name Length Description
DSQDC_EC_NUM None 05 User-defined default edit code for numeric data (integer, small
integer, and big integer.)
E or EZ
Scientific notation. A Z in the second position of the edit
code suppresses zero values.
D, DC, Dz, DZC, 1,12, J,32, K, KZ,L, LZ, P, PZ
Decimal notation with different combinations of leading
zeros, minus signs for negative numbers, thousands
separators, currency symbols, and percent signs.
A C in the second or third position of the D edit code
displays a user-defined currency symbol instead of
the standard currency symbol.
A Zin the second position of the edit code suppresses
zero values.
The default valueis L.
Uxxxx
User-defined formatting. Replace xxxx with 0 - 4
characters (letters, digits, or special characters).
Vxxxx
User-defined formatting. Replace xxxx with 0 - 4
characters (letters, digits, or special characters).
M
Displays metadata (data type and length) instead of the
actual data.
DSQDC_EC_TIME None 05 Default edit code for TIME data. Values can be:

TTSx
24-hour clock format (including seconds).

TTCx
12-hour clock format (including seconds).

TTAx
Abbreviated clock format (no seconds).

TTAN
Abbreviated clock format (no seconds, no delimiter).
TTUx
USA format.
TTL
Locally defined time format.
TT

Default time format of the database system. This is the
default value for this global variable.

X represents the character that you specify to serve as the
delimiter between parts of the time.

Appendix B. QMF global variables 197



Table 56. Global variables that control the display of certain types of information (continued)

Callable interface

Command interface

variable name variable name Length Description
DSQDC_LIST_ORDER None 02 Sets the default sort order for objects in a list of database
objects. Values for the first character can be:
1
The list uses the default order.
2
The list is sorted by object owner.
3
The list is sorted by object name.
4
The list is sorted by object type.
5
The list is sorted by date modified.
6
The list is sorted by date last used. The list of commands
that cause this date to be updated is set by the
DSQEC_LAST_RUN global variable.
Values for the second character can be:
A
The list is sorted in ascending order.
D
The list is sorted in descending order.
This variable applies only to objects that are listed as a result
of the LIST command. It does not apply to lists produced in
other contexts, such as from a Display Prompt panel, and it
does not apply to lists of tables.
DSQDC_POS_SQLCODE None 01 Sets the action QMF takes when a positive SQL code is
returned from the database. Possible values are:
0
Does not log the message to the trace data file
(DSQDEBUG) and no help text is provided.
1
Logs the QMF message associated with the SQL code to
the trace data file (DSQDEBUG).
2
QMF message help is available for the positive SQL code.
This global variable does not apply to SQL codes +495 and
+100.
DSQDC_SCROLL_AMT None 04 Sets the scroll amount for QMF panels; values can be:

Csr
Sets the scroll amount to cursor.

QMF scrolls the line or column where the cursor is
positioned to the bottom of the scrollable area when you
scroll backward. Likewise, QMF scrolls to the top when
you scroll forward, and to the far left and far right when
you scroll left or right.

Half
Sets scroll amount to half the scrollable area.
Page
Sets scroll amount to a full page. This value is the default.

Sets scroll amount to n number of lines or columns. You
can specify any number from 1 to 9999 for n.

198 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 56. Global variables that control the display of certain types of information (continued)

Callable interface Command interface
variable name variable name Length Description
DSQDC_SHORT_EXPT None 01 Applies to data or tables exported with a value of QMF on the
DATAFORMAT parameter of the EXPORT command. Controls
the length of all column name fields in the header records.
Possible values are:
0
QMF sets the length of column fields in the header
records to 30 bytes. This length is the default length for:
« Db2 for z/OS Version 8.1.5, or later
- DB2 foriSeries Version 5.2, or later
« Db2 for Linux, UNIX, and Windows, Version 8.1, or later
1
QMF sets the length of column fields in the header
records to 18 bytes. This length is the default length for:
« Db2 for z/0S, Version 8.1.5, or earlier
- DB2 for iSeries, Version 5.2, or earlier
« Db2 for Linux, UNIX, and Windows, Version 8.1, or
earlier
« AllLDB2 Server for VSE and VM databases
DSQDC_SHOW_PANID DSQCPDSP 01 Displays panel IDs of QMF panels; values can be:
0
Suppresses panel identifiers. This value is the default.
1
Displays panel identifiers.

Related reference

Global variables that control how commands and procedures are executed

Global variables that control how commands and procedures are

executed

DSQEC global variables control how commands and procedures are executed. All of these global variables
can be modified by the SET GLOBAL command.

Table 57. Global variables that control how commands and procedures are executed

Command
interface
Callable interface variable name | variable name | Length | Description
DSQEC_ALIASES None 31 View for retrieving lists of table and view aliases when you request a list
of tables from a Db2 for z/OS location. Also applies if the current server is
Db2 for z/OS or Db2 for Linux, UNIX, and Windows.
DSQEC_BUFFER_SIZE None 03 Sets the length of the data buffer used to fetch data from the database.
Valid values range from 4 - 256 (each integer is 1KB; for example, 4
equals 4K, 256 equals 256K, etc.). The default value is 4 (4KB).
DSQEC_CC None 01 Suppresses the carriage control characters in the report output format;
values can be:
0
No carriage control character in column 1.
1
Carriage control is in effect; the report has a carriage control
character in column 1.
DSQEC_COLS_LDB2 None 31 View for retrieving column information for a table at the current location, if

that location is Db2 for z/0S.

Appendix B. QMF global variables 199



Table 57. Global variables that control how commands and procedures are executed (continued)

Callable interface variable name

Command
interface
variable name

Length

Description

DSQEC_COLS_RDB2

None

31

View for retrieving column information for a table at a remote Db2 for
z/0S location (if it is not the current location).

DSQEC_COLS_SQL

None

31

View for retrieving column information for a table in a DB2 for VSE and VM
database.

DSQEC_CON_ACC_RES

None

01

Applies to executable SELECT queries that QMF submits to Db2 for z/OS.
Use this variable to specify how you want the database to proceed when
the data to be selected is locked by an insert, update, or delete operation.
When you set this variable, QMF specifies the clause associated with

the variable value on the concurrent-access-resolution attribute of the
PREPARE statement for the SELECT query. Executable SELECT queries
can result not only from QMF queries (such as SQL SELECT queries,
prompted queries, or QBE P. queries), but also from other QMF operations
such as DISPLAY TABLE.

Possible values are:

1]
QMEF specifies no concurrent access resolution options on the
PREPARE statement associated with the pending SQL SELECT
statement. This value is the default.

SKIP LOCKED DATA

This value can be specified for executable SELECT statements
directed to Db2 for z/OS Version 9 (New Function Mode), or later.

USE CURRENTLY COMMITTED

This value can be specified for executable SELECT statements
directed to Db2 for z/OS Version 10 (New Function Mode), or later.

WAIT FOR OUTCOME

This value can be specified for executable SELECT statements
directed to Db2 for z/OS Version 10 (New Function Mode), or later.

DSQEC_CON_CSWL

None

01

This global variable enables the use of the DB2 for z/OS statement
concentration with literals feature. It applies to dynamic SQL SELECT
statements submitted to DB2 for z/OS through QMF commands such as
RUN QUERY and DISPLAY, EXPORT and PRINT TABLE. When you set this
variable, QMF specifies support through the DB2 for z/0S CONCENTRATE
STATEMENTS WITH LITERALS prepare attribute:

0 = Do not enable DB2 for z/OS statement concentration with literals. This
is the default.

1 = Enable DB2 for z/OS statement concentration with literals.

DSQEC_CURR_FOLDER

None

128

Specifies the name of the current folder to be used for QMF commands
that allow folder processing (SAVE, LIST, and ERASE). The default is blank.

When a folder name is identified in this global variable, that folder is used
when any QMF command that uses QMF folder objects is processed. For
example, when DSQEC_CURR_FOLDER is set and the SAVE QUERY AS Q1
command is executed, the query will be saved and the query object will
be included in the folder that is identified in the global variable.

You can override this global variable by specifying a folder name with

the FOLDER keyword with the QMF command. In this case, the folder
name that is specified with the FOLDER keyword overrides the folder
name that is specified in the DSQEC_CURR_FOLDER global variable. If this
global variable is blank and the FOLDER keyword is not specified, folder
processing is not used.

Restriction: This global variable is not supported when QMF is connected
to DB2 Server for VSE and VM.

200 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 57. Global variables that control how commands and procedures are executed (continued)

Callable interface variable name

Command
interface
variable name

Length

Description

DSQEC_DISABLEADM

None

01

Suppression of QMF administrator authority. When the value of this global
variable is changed, the effect is immediate. Possible values can be:

0
QMF administrator authority is available (if the authorization ID has
QMF administrator authority).

QMF administrator authority is suppressed (regardless of the
authority of the authorization ID).

The initial default value for this global variable can be overridden by
the DSQUOPTS initialization exit routine. Alternately, QMF administrator
authority can be controlled by the user's profile MODEL setting.

DSQEC_DSALLOC_DIR

None

03

Specifies the number of directory blocks to be used when exporting a
member of a new PDS data set in TSO. The value must be greater than
zero for PDS data sets.

If you are using the site default type of data set or PDSE data sets, QMF
ignores the value of this global variable. To use the site default type of
data set, set DSQEC_PO to 0. To use PDSE data sets, set DSQEC_PO to 2.

If your site uses sequential data sets, set this global variable to zero.

DSQEC_DSALLOC_PRI

None

08

QMF allocates data sets in tracks. This global variable specifies the
primary quantity of tracks for the TSO data set that is used to store the
results of the QMF EXPORT command.

Values can be from 1 to the maximum size allowed by the storage device
and operating system. The default value is 15. A value of zero is not
allowed.

PS, PDS, and PDSE data sets can have a maximum value of 16777215
tracks.

DSQEC_DSALLOC_SEC

None

08

QMF allocates data sets in tracks. This global variable specifies the
secondary quantity of tracks for the TSO data set that is used to store
the results of the QMF EXPORT command.

Values can be from zero to the maximum size allowed by the storage
device and operating system. The default value is 105 tracks.

PS and PDS data sets can have a maximum value of 65535 tracks; PDSE
data sets can have a maximum value of 16777215 tracks.

DSQEC_DSLRECL1

None

05

Specifies the logical record length (LRECL) that is to be used when an SQL
query or QMF procedure is exported to a new data set. Valid values are 79
-32760.

The default value is 79.

DSQEC_DSQSFISO

None

01

Specifies the format of CHAR(datetime-expression) data within a QMF
report. The following values are used:

0
The result of CHAR(datetime-expression) data is in the format
specified in the DATE FORMAT and TIME FORMAT fields on
Db2 installation panel DSNTIP4. The current Db2 DATE and
TIME format values can be found by referencing global variables
DSQAO_DATE_FORMAT and DSQAQO_TIME_FORMAT.

1

The result of CHAR(datetime-expression) data is in ISO format.

DSQEC_DSQSFISO takes its default value from the value of program
parameter DSQSFISO. The DSQSFISO program parameter setting may

be seen in state global variable DSQAO_DSQSFISO. Note that if
DSQEC_DSQSFISO is modified, the value of DSQAO_DSQSFISO will not
change. DSQEC_DSQSFISO should be referenced for the current behavior
settings.

Appendix B. QMF global variables 201



Table 57. Global variables that control how commands and procedures are executed (continued)

Command
interface
Callable interface variable name | variable name | Length | Description
DSQEC_DS_SUPPORT None 01 Provides support for QMF Data Service (QDS)
0
Do not allow access to QMF Data Service (default).
1
Allow access to QMF Data Service.
This global variable controls whether RUN QUERY (SQL, PQ or
QBE), DISPLAY TABLE, DRAW, EXPORT and PRINT TABLE commands
should be analyzed by the QMF Data Service component. If an object
that is referenced in the command is defined to the QMF Data Service
component, then the entire command is executed by QMF Data
Service. If none of the objects referenced in the command access an
object defined to QMF Data Service, then the command is executed
by the current Db2 connection.
If the QDS service could not be loaded or is not available, then this
value is ignored and all requests are routed to Db2.
DSQEC_DS_NOPAR None 01 Indicates whether Parallelism is currently in use.
0
Parallelism is currently in use (default).
1
Parallelism is not currently in use.
DSQEC_DS_PAR None 02 The valid values:
-1
No restrictions are placed on QDS (default).
0
QDS will advise DVS that Map Reduce may be used, but Map Reduce
Client may not be used.
1
Neither Map Reduce nor Map Reduce Client are allowed.
2-10
Both Map Reduce and Map Reduce Client can be used, but the
degree of Map Reduce Client parallelism is limited to the number
specified. (For example, 2 means that 2 parallel paths can be used, 3
means 3 can be used, and so on.)
Note: If DSQEC_DS_NOPAR is set to 1 then the value of DSQEC_DS_PAR
is ignored and no parallelism is in use.
DSQEC_EDITOR None 18 Specifies the value to use for the EDITOR keyword on the EDIT command

when the EDITOR keyword is not specified.
The valid values for this global variable are:

PDF
The ISPF/PDF editor is used to edit the procedure or query. To use
the PDF editor to edit a query or procedure, start QMF as an ISPF
dialog.

EE

The SQL QUERY or PROC enhanced editor is used to edit the
procedure or query.

editorname
The name of any other editor that is available to you. You can
also specify the name of a CLIST that starts an editor. For more
information about available editors, see your QMF administrator.

The default value is blank.

202 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 57. Global variables that control how commands and procedures are executed (continued)

Callable interface variable name

Command
interface
variable name

Length

Description

DSQEC_EDITOR_PVIEW

None

1

Controls the QMF Enhanced Editor preview command. The preview
command is available when you edit an SQL query to preview the results
of a SELECT query.

0
Do not allow the preview command to run. Message DYQE069 is
issued to warn the user that the command is inactive.

Allow the preview command to run. This is the default.

DSQEC_EXPL_MODE

None

07

Specifies the setting that is to be used for the Db2 special register
CURRENT EXPLAIN MODE when the RUN QUERY command is issued. The
special register controls the behavior of the EXPLAIN facility for eligible
dynamic SQL statements. Before a query is run, QMF sets the CURRENT
EXPLAIN MODE special register to the value that is specified by this global
variable.

The valid values for this global variable are:

NO
The EXPLAIN facility is disabled and no EXPLAIN information is
captured when explainable dynamic statements are run. This is the
default value.

YES
The EXPLAIN facility is enabled and EXPLAIN information is inserted
into the EXPLAIN tables for eligible dynamic SQL statements after
the statement is prepared and run. All dynamic SQL statements are
compiled and run.

EXPLAIN
The EXPLAIN facility is enabled and EXPLAIN information is inserted
into the EXPLAIN tables for eligible dynamic SQL statements after
the statement is prepared. Dynamic statements, except for SET
statements, are not run.

For servers other than Db2 for Linux, UNIX, and Windows or DB2 10 for
z/0S (New Function Mode) or later, the only valid value is NO.

DSQEC_EXTND_STG

None

31

Specifies the number of megabytes of extended storage that QMF
acquires on each request to the extended storage manager when the
DSQSPTYP program parameter is set to 64BIT. This program parameter is
available in QMF for TSO only.

When an operation requires extended storage, QMF requests the specified
amount until the operation is complete or extended storage is exhausted.

When setting this global variable, consider the average size of DATA
objects with which your QMF users work. If the average size is large and
you set the value low, QMF issues many calls to the extended storage
manager to complete the DATA object. These repeated calls might affect
performance.

Values can be from 1 to 1000. The default value is 25, indicating that QMF
requests 25 MB of storage on each request.

DSQEC_FORM_LANG

None

01

Establishes the default NLF language in a saved, exported, or imported
form; values can be:

1]
The form uses the presiding NLF language.

The form uses English. This value is the default.

Appendix B. QMF global variables 203



Table 57. Global variables that control how commands and procedures are executed (continued)

Command
interface
Callable interface variable name | variable name | Length | Description
DSQEC_ISOLATION None 01 Default query isolation level.
Values can be:
0
Isolation level UR (uncommitted read)
Uncommitted read can be useful in a distributed environment.
However, if you are using uncommitted read, any reports that users
view might contain data that was deleted from the database after the
report was displayed.
1
Isolation level CS (cursor stability)
This value is the default. When using cursor stability, QMF does not
display the report until all database commands that affects the data
in the report are complete.
DSQEC_KEEP_THREAD None 01 Specifies whether a thread is released or kept active at the end of a query.

This global variable does not affect threads that are created for
procedures that run in batch mode or threads that are created when

QMF is connected to a remote database through the CONNECT command.
When procedures are run in batch mode, threads persist until the
procedure completes. When QMF is connected to a remote database,
threads persist until the connection ends.

The valid values for this global variable are:

0
The thread is released at the end of the query. This is the default
value.

If this setting is used, the SET DB2 global variable statement fails
unless it is run in one of the following situations:

« The statement is included in a procedure that is run in batch
mode. The Db2 global variable is reset to its default value after
the procedure completes.

« The QMF CONNECT command is issued to connect to a remote
database and the SET DB2 global variable statement is run on the
remote database.

« The SET DB2 global variable statement is included in a
multistatement query and the QMF DSQEC_RUN_MQ global
variable is set to 1. The Db2 global variable is reset to its default
value after the query completes.

The thread is kept active until the end of the QMF session or the
DSQEC_KEEP_THREAD global variable is set to 0. This setting allows
users to run the SET DB2 global variable statement to set Db2 global
variables.

If you set any Db2 global variables while DSQEC_KEEP_THREAD is set to
1 and then change DSQEC_KEEP_THREAD to 0, those Db2 global variables
revert to their default values.

204 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 57. Global variables that control how commands and procedures are executed (continued)

Command
interface
Callable interface variable name | variable name | Length | Description

DSQEC_LAST_RUN None 01 Specifies the set of commands that cause the LAST_USED field on QMF
object lists to be updated. This field is based on the LAST_USED column
of the Q.OBJECT_DIRECTORY control table. The value in the LAST_USED
column is updated regardless of whether the issued command is
successful. However, in some cases, the LAST_USED column is not
updated immediately, and if QMF is terminated abnormally, the column
might not be updated.

Possible values are:

0
QMF updates the LAST_USED timestamp whenever any of the
following commands is issued:

» CONVERT
« DISPLAY
« EXPORT

« IMPORT

« LAYOUT

« PRINT

+ RUN

» SAVE

This value is the default.

QMEF restricts updates of the LAST_USED timestamp to RUN, SAVE,
and IMPORT commands only.

QMF restricts updates of the LAST_USED timestamp to the RUN
command only.

DSQEC_LIST_OWNER None 128 | Provides the default value for the OWNER parameter of the LIST
command. Specify an authorization ID up to 128 characters long. This
variable is blank by default, resulting in a list of objects owned by the
current authorization ID.

You can use selection symbols in the variable value. Use an underscore
(1) in place of a single character and a percent sign (%) in place of zero or
more characters. For example, the following command followed by a LIST
command instructs QMF to list only objects that are owned by user IDs
that begin with the characters RO:

SET GLOBAL (DSQEC_LIST_OWNER=RO%
The following command sets the default owner to any user IDs that begin
with I, have any character in the second position, and any characters in
the remaining positions:

SET GLOBAL (DSQEC_LIST_OWNER=I_%
The value you set with this global variable does not apply to lists

displayed when you press the List key on QMF panels other than the home
panel.

Appendix B. QMF global variables 205



Table 57. Global variables that control how commands and procedures are executed (continued)

Callable interface variable name

Command
interface
variable name

Length

Description

DSQEC_LOB_COLMAX

None

10

Specifies the maximum data size of a LOB column that is to be retrieved,
in bytes, up to the maximum LOB size of 2147483637, or 2 GB. A value of
0 specifies no maximum.

By default, LOB metadata is retrieved instead of LOB data. However, if an
edit code other than M is specified or if the DSQEC_LOB_RETRV global
variable is set to 3, LOB data is retrieved instead of metadata. In this case,
if a user queries a table that contains LOB data that is larger than the
maximum, an error is issued and no report data is displayed. If a user
issues an EXPORT TABLE, PRINT TABLE, SAVE DATA, or EXPORT DATA
command for a table or data object that contains LOB data that is larger
than the maximum, an error is issued and the command is terminated.

The default is 32767.

DSQEC_LOB_RETRV

None

01

Specifies how LOB data or metadata is retrieved. The valid values are:

1
Displays LOB metadata in results. To display actual LOB data, you
can change the M edit code to another edit code. When this value
is specified, QMF uses LOB locators to access LOB data. This is the
default setting.

Displays LOB metadata only in results. The M edit code is the only
valid edit code for LOB data. When this value is specified, QMF does
not use LOB locators.

Retrieves and displays actual LOB data in results. When this value is
specified, QMF does not use LOB locators to access LOB data.

DSQEC_LOB_SAVE

None

01

Specifies whether users can save LOB data to a table in the database
using the QMF SAVE DATA or IMPORT TABLE command. The valid values
are:

0 - Disable LOB Save
Specifies that users cannot issue the QMF SAVE DATA or IMPORT
TABLE commands to save data to a table in the database if any
column contains LOB data. An error message is displayed and no
datais saved if a LOB column exists.

1 - Enable LOB Save
Specifies that users can save LOB data to a table in the database
using the QMF SAVE DATA or IMPORT TABLE commands. This is the
default value.

DSQEC_NLFCMD_LANG

None

01

Sets expected NLF language for commands. Values can be:

0
Commands must be in the presiding NLF language. This value is the
default.

Commands must be in English.

DSQEC_PO

None

01

Specifies the type of partitioned (PO) data set to create when exporting a
QMF object to a new TSO data set. Values can be:

0
Allocates a data set of the type listed as the default for your site. This
type is specified in the IGDSMSxx member of the SYS1.PARMLIB.
This value is the default value.

1
Allocates a PDS data set for the exported data.

2

Allocates a PDSE data set for the exported data.

206 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 57. Global variables that control how commands and procedures are executed (continued)

Callable interface variable name

Command
interface
variable name

Length

Description

DSQEC_PRO_ENABLE

None

01

Controls whether a confirmation panel is displayed before QMF overwrites
or discards the contents of the QUERY, FORM, PROC, or PROFILE
temporary storage areas. Possible values are:

0
No confirmation panel is displayed before the contents of the
supported temporary storage areas are overwritten. This value is the
default.

A confirmation panel is displayed if the global variable that
corresponds to the temporary storage area in question is also set

to 1. The following global variables individually control overwrites in
each of the supported temporary storage areas:

« DSQEC_PRO_FORM controls overwrites of the FORM temporary
storage area, which stores current QMF report formatting
specifications.

« DSQEC_PRO_PROC controls overwrites of the PROC temporary
storage area, which stores current QMF procedures.

» DSQEC_PRO_PROF controls overwrites of the PROFILE temporary
storage area, which stores current QMF profile settings.

« DSQEC_PRO_QUERY controls overwrites of the QUERY temporary
storage area, which stores the current QMF query.

DSQEC_PRO_FORM

None

01

This variable controls whether a confirmation panel is displayed before
QMF overwrites or discards the contents of the FORM temporary storage
area. The DSQEC_PRO_ENABLE global variable must be set to 1. Possible
values are:

0
No confirmation panel is displayed before the contents of the
temporary storage area are discarded.

A confirmation panel is displayed, giving the user the opportunity to
proceed or cancel the command that caused the pending discard.
The contents of the temporary storage area can then be saved with
the SAVE command.

DSQEC_PRO_PROC

None

01

This variable controls whether a confirmation panel is displayed before
QMF overwrites or discards the contents of the PROC temporary storage
area. The DSQEC_PRO_ENABLE global variable must be set to 1. Possible
values are:

0
No confirmation panel is displayed before the contents of the
temporary storage area are discarded.

A confirmation panel is displayed before the contents of the
temporary storage area are discarded. The user can proceed or
cancel the command that caused the pending discard. The contents
of the temporary storage area can then be saved with the SAVE
command.

Appendix B. QMF global variables 207



Table 57. Global variables that control how commands and procedures are executed (continued)

Command
interface

Callable interface variable name | variable name | Length | Description

DSQEC_PRO_PROF None 01 This variable controls whether a confirmation panel is displayed before
QMF overwrites or discards the contents of the PROFILE temporary
storage area. The DSQEC_PRO_ENABLE global variable must be set to
1. Possible values are:

0
No confirmation panel is displayed before the contents of the
temporary storage area are discarded.

1
A confirmation panel is displayed before the contents of the
temporary storage area are discarded. The user can proceed or
cancel the command that caused the pending discard. The contents
of the temporary storage area can then be saved with the SAVE
command.

DSQEC_PRO_QUERY None 01 | This variable controls whether a confirmation panel is displayed before
QMF overwrites or discards the contents of the QUERY temporary storage
area. The DSQEC_PRO_ENABLE global variable must be set to 1. Possible
values are:

0
No confirmation panel is displayed before the contents of the
temporary storage area are discarded.

1
A confirmation panel is displayed before the contents of the
temporary storage area are discarded. The user can proceed or
cancel the command that caused the pending discard. The contents
of the temporary storage area can then be saved with the SAVE
command.

DSQEC_RERUN_IPROC None 01 Reruns the invocation procedure after the END command; values can be:
0

Suppresses rerun of the invocation procedure after the END
command.
1
Reruns the invocation procedure after the END command. This value
is the default.
If you start QMF with an invocation procedure, set this variable to '0'; QMF
terminates instead of rerunning the procedure.
DSQEC_RESET_RPT None 31 Determines whether QMF prompts you when an incomplete DATA object

in temporary storage might be affecting performance; possible values are:

0
Reset Report prompt panel is not displayed and QMF completes the
running report. This value is the default value.

1
Reset Report prompt panel is displayed; this panel prompts you to
complete or reset the currently running report before starting the
new command.

2

Reset Report prompt panel is not displayed and QMF resets the
currently running report.

208 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 57. Global variables that control how commands and procedures are executed (continued)

Callable interface variable name

Command
interface
variable name

Length

Description

DSQEC_RUN_MQ

None

01

Specifies whether the RUN QUERY command supports multiple
statements in an SQL query. Possible values are:

0
Multiple SQL statements are not supported. If you set this variable
to 0 and run an SQL query that contains multiple statements, QMF
ignores all statements after encountering the first semicolon. This
value is the default.

Multiple SQL statements are supported. A semicolon must be placed
at the end of each statement except the last.

Restrictions: Although a SELECT statement can be included with
other statements in a query, only one SELECT statement can be
included per query. CALL and CREATE PROCEDURE statements must
be used alone in an SQL query.

DSQEC_SAV_ACCELNM

None

128

Specifies the name of the default accelerator to be used when creating
accelerator-only tables from SAVE DATA, IMPORT TABLE and RUN QUERY
to TABLE commands. This variable is referenced only if the ACCELERATOR
keyword is not specified.

Although you can set this global variable to a blank, do not set it to blank if
the DSQEC_SAV_ALLOWED global variable is set to '4".

DSQEC_SAV_ACCELDB

None

08

Contains a data base name to be used on creation of new accelerator
only tables in Db2 for z/OS data bases. This variable is referenced only
when an accelerator only table is being created from the SAVE DATA,
IMPORT TABLE and RUN QUERY with TABLE keyword commands. When
this variable is not blank, the IN DATABASE clause will be specified on the
CREATE TABLE statement and accelerator only tables will be created in
the specified database. The default for this variable is blank.

Note that when creating accelerator only tables via the SAVE DATA,
IMPORT TABLE and RUN QUERY with TABLE keyword commands, QMF
does not reference the user's profile SPACE value.

Appendix B. QMF global variables 209



Table 57. Global variables that control how commands and procedures are executed (continued)

Callable interface variable name

Command
interface
variable name

Length

Description

DSQEC_SAV_ALLOWED

None

01

Controls whether users save data to a new table in the database or in an
accelerator using the QMF SAVE DATA, RUN QUERY to TABLE, or IMPORT
TABLE commands. Except for option 0, this field does not influence the
location of existing tables that the replaced data is in or teh data is
appended to. Existing tables are replaced or appended to in the database
or accelerator regardless of the setting of this variable.

Valid values for this global variable are:

0 - Disable Save Data
Users cannot issue the QMF SAVE DATA, RUN QUERY to TABLE, or
IMPORT TABLE commands to save data to a table in the database or
accelerator. An error message will be displayed and no data will be
saved.

1 - Enable Save Data to database tables only
Users can save data to a table in the database by using the QMF
SAVE DATA, RUN QUERY to TABLE, or IMPORT TABLE commands.
Users cannot save data to accelerator-only tables. This setting is the
default.

2 - Enable Save Data to accelerator only tables only
Users can save data to an accelerator-only table by using the
QMF SAVE DATA, RUN QUERY to TABLE, or IMPORT TABLE
commands. Users cannot save data to database tables. The
DSQEC_SAV_ACCELNM global variable contains the default name of
the accelerator but can be overridden by the ACCELERATOR keyword.

3 - Enable Save Data to either database or accelerator only tables
(database default)
Users can save data either to a table in the database or to an
accelerator-only table by using the QMF SAVE DATA, RUN QUERY
to TABLE, or IMPORT TABLE commands. If no command keyword
overrides are present, such as SPACE or ACCEL, tables are saved in
the database.

4 - Enable Save Data to either database or accelerator only tables
(accelerator default)
Users can save data either to a table in the database or to an
accelerator-only table by using the QMF SAVE DATA, RUN QUERY
to TABLE, or IMPORT TABLE commands. If no command keyword
overrides are present, such as SPACE or ACCELERATOR, tables
are saved in the accelerator. When this option is chosen, the
DSQEC_SAV_ACCELNM global variable must contain the name of the
accelerator.

DSQEC_SAV_LOADER

None

01

Allows the Db2 LOAD utility (cross-loader feature) to be used when using
the RUN QUERY with TABLE keyword.

0
Run Query with TABLE keyword will not use the Db2 LOAD utility
(cross-loader feature) to save the data. (Default)

Run Query with TABLE keyword will use the Db2 LOAD utility (cross-
loader feature) to save the data.

210 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 57. Global variables that control how commands and procedures are executed (continued)

Callable interface variable name

Command
interface
variable name

Length

Description

DSQEC_SAV_LOGCTL

None

02

The Db2 Load Utility cross-loader feature returns errors in a result set.
DSQEC_SAV_LOGCTL controls the amount of output returned from the
cross-loader that is saved by QMF.
-1

QMF will not save any results.

QMF will save all results.

1-16
QMF will save results with a return code greater than what you
entered or higher.

Examples:

« DSQEC_SAV_LOGCTL is set to 4 and the LOADER returns a RC of 8. The
result set will be saved.

» DSQEC_SAV_LOGCTL is set to 8 and the LOADER returns a RC of 4. The
result set will not be saved.

DSQEC_SAV_LOGTABLE

None

The name of the table to which QMF saves result sets returned from the
cross-loader.

Q.ERROR_LOG is the default name and should be created when QMF is
installed. This is the QMF message error log.

The name can be a one or two-part name in the form of:
USERID.TABLENAME

If left blank the result set will not be saved.

If the user enters a name other than Q.ERROR_LOG, the table must exist.
QMF will not create the table. No save will be done. An entry will be

made in the QMF trace indicating the result set was not saved. It is also
recommended that the error log be in a different table space than the one
the data is being saved it otherwise QMF may not be able to have the
result set if the utility is terminated.

Appendix B. QMF global variables 211



Table 57. Global variables that control how commands and procedures are executed (continued)

Callable interface variable name

Command
interface
variable name

Length

Description

DSQEC_SESSGLV_SAV

None

01

Controls whether user input in some data entry fields on some panels

is saved within and across QMF sessions. User input is saved as session
variables that are stored in the Q.GLOBAL_VARS table as global variables
that are named with a DXY prefix. The DSQEC_SESSGLV_SAV global
variable is checked throughout the session, as well as when QMF starts
and exits. The valid values are:

0
If this setting is specified when QMF starts, all session variables are
deleted from the Q.GLOBAL_VARS table.

If this setting is specified during a QMF session, all session variables
are deleted from storage. No session variables are saved for the
remainder of the current session unless this setting is changed to 1
or 2.

If this setting is specified when QMF exits, all session variables are
deleted from the Q.GLOBAL_VARS table, which means that no user
input persists to the next QMF session.

This is the default value.

If this setting is specified when QMF starts, all session variables for
the user are restored from the Q.GLOBAL_VARS table.

If this setting is specified during a QMF session, session variables are
saved for the remainder of the current session. For example, if you
enter values in the LIST Command Prompt panel, exit the LIST panel,
and return to that panel within the same session, those fields are
populated with the values that you previously entered.

If this setting is specified when QMF exits, all session variables that
were created or changed by the user during the current session are
discarded and not saved to the Q.GLOBAL_VARS table. All session
variable values that existed in the Q.GLOBAL_VARS table before

the current session remain unchanged. You can use this option, for
example, to reinitialize the same session variable values at the start
of each QMF session.

When the next QMF session is started, the value reverts to O unless it
is overridden by an initial global variable that set by an administrator.

If this setting is specified when QMF starts, all session variables for
the user are restored from the Q.GLOBAL_VARS table.

If this setting is specified during a QMF session, session variables are
saved for the remainder of the current session unless this setting is
changed to 0. For example, if you enter values in the LIST Command
Prompt panel, exit the LIST panel, and return to that panel within

the same session, those fields are populated with the values that you
previously entered.

If this setting is specified when QMF exits, all session variables are
saved to the Q.GLOBAL_VARS table, which means that any user input
that was saved during the session also persists to the next QMF
session.

This parameter applies to most fields on command prompt panels that
are accessed through the following commands: CONNECT, CONVERT,
DISPLAY, DRAW, EDIT, ERASE, EXPORT, IMPORT, LIST, PRINT, RESET,
RUN, SAVE, SET, and SHOW.

DSQEC_SHARE

None

31

Specifies the default value for the SHARE parameter; possible values are:

0
Do not share data with other users.

Share data with other users.

212 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 57. Global variables that control how commands and procedures are executed (continued)

Callable interface variable name

Command
interface
variable name

Length

Description

DSQEC_SP_RS_NUM

None

04

Indicates which result set returned by a stored procedure is used to
create the report. Possible values are:

(1]
Ignores result sets.
Returns the first result set.

Returns the second result set.

Returns the nth result set. The maximum value for nis 32.

DSQEC_SPAC_OVRIDE

None

01

Specifies whether users can override the default table space that is
specified in the QMF profile.

Valid values for this global variable are:

0 - Disable Space Keyword Option
Users cannot issue the SAVE DATA, RUN QUERY to TABLE, or IMPORT
TABLE commands with the SPACE keyword option.

1 - Enable Space Keyword Option
Users can issue the SAVE DATA, RUN QUERY to TABLE, or IMPORT
TABLE commands with the space keyword option. This setting is the
default.

DSQEC_SQLQRYSZ_2M

None

01

Controls whether SQL queries greater than 32,767 bytes (32 KB) in length
are supported by the RUN QUERY command.

0
SQL queries directed to Db2 for z/OS, DB2 for iSeries, and Db2 for
Linux, UNIX, and Windows databases are limited to 32,767 bytes (32
KB). This value is the default.

SQL queries can be greater than 32 KB. The maximum supported
query size varies depending on the type of database to which the
query is directed:

« Queries directed to Db2 for z/OS can be up to 2 MB in length.

« Queries directed to DB2 for iSeries or Db2 for Linux, UNIX, and
Windows can be up to 65 KB in length.

These maximums assume that the version of the database to which
the RUN QUERY command is directed supports queries of this size.
SQL queries directed to DB2 for VSE and VM are limited to 8 KB.

Additional customization might be required to run queries larger than 32
KB from QMF for CICS.

DSQEC_TABS_LDB2

None

31

View for retrieving lists of tables and views at the current server, if it is
Db2 for z/OS or Db2 for Linux, UNIX, and Windows

DSQEC_TABS_RDB2

None

31

View for retrieving lists of tables and views at remote Db2 subsystems.

DSQEC_TABS_SQL

None

31

View for retrieving lists of tables and views for a DB2 for VSE and VM
database.

DSQEC_TRACE_LIMIT

None

31

Limits the amount of trace output to the specified number of bytes. The
valid range is 0 - 2147483647.

This variable can be used to reduce the size of QMF trace output.

This global variable is typically set as directed by IBM Software Support.

Appendix B. QMF global variables 213



Table 57. Global variables that control how commands and procedures are executed (continued)

Command
interface
Callable interface variable name | variable name | Length | Description
DSQEC_TRACE_MODULE None 54 Contains the names of QMF modules to be traced.
Up to 6 modules can be specified, separated by commas.
After module names are specified in the global variable, initiate the trace
by issuing the SET PROFILE command with the TRACE keyword to set to
ALL. Example: SET PROFILE (TRACE=ALL
Note: If modules are specified via the SET GLOBAL command from the
command line, the module names must be enclosed in single quotes.
DSQEC_TWO_GB_ROW None 01 [ controls the length of rows returned in QMF reports. Use one of the

following values:

0
Limits the length of a data row in a QMF report to 32 KB, unless the
report contains an XML or LOB column.

1
Allows the length of a data row to be greater than 32 KB, uptoa
maximum length of 2 GB.

Important:

« Regardless of the DSQEC_TWO_GB_ROW global variable setting, up to 2
GB of XML, CLOB, or BLOB data, and up to 1 GB of DBCLOB data can be
displayed by default. However, the maximum length of a LOB row can
be restricted by the DSQEC_LOB_COLMAX global variable.

» Regardless of the DSQEC_TWO_GB_ROW global variable setting, a
single table cannot have a maximum record size that is greater than
the page size. Db2 stores records within pages that are 4 KB, 8 KB, 16
KB, or 32 KB in size. So, the maximum length of a data row that can
be displayed remains at 32 KB when you display or select data from a
single table. If you display or select data from a view that joins two or
more tables, the row length can be up to 2 GB.

Because of these page size considerations, the length of a data row
in a QMF report that can be saved with the SAVE DATA command is
also limited to 32 KB. The ability to save LOB data is controlled by the
DSQEC_LOB_SAVE global variable.

214 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 57. Global variables that control how commands and procedures are executed (continued)

1]

Command
interface
Callable interface variable name | variable name | Length | Description
DSQEC_USERGLV_SAV None 01 Determines whether global variables that were created or changed by

the user, including those that start with “DSQ,” are saved when the
QMF session ends. Values that are to be saved are stored in the
Q.GLOBAL_VARS table and associated with the user ID of the session.
If the values are saved, they are restored at the start of the user’s next
QMF session. The valid values are:

When QMF exits, all global variables are deleted from the
Q.GLOBAL_VARS table, and no global variables from the current
session are saved to the Q.GLOBAL_VARS table. This is the default
value.

When QMF exits, all global variables that were created or changed
by the user during the current session are discarded and not saved
to the Q.GLOBAL_VARS table. All global variable values that were
already in the Q.GLOBAL_VARS table remain as they were prior to
the current QMF session. You can use this option, for example, to
re-initialize the same global variable values at the start of each QMF
session.

When the next QMF session is started, the value reverts to 0 unless it
is overridden by an initial global variable that set by an administrator.

When QMF exits, all global variables that were created or changed
by the user are saved to the Q.GLOBAL_VARS table. When the user
starts QMF again, global variables that were saved from the user’s
previous session are restored. Any values that were defined by an

administrator in the Q.GLOBAL_VARS table are superseded by the

user’s values unless the variable was defined as read-only.

Related reference

PREPARE statement for Db2See the information about the concurrent-access-resolution attribute of the

PREPARE statement.

Global variables that store results of CONVERT QUERY

DSQQC global variables reflect the results of a CO
can be modified by the SET GLOBAL command.

NVERT QUERY command. None of these global variables

Table 58. Global variables that reflect the results of a CONVERT QUERY command

Command interface variable
Callable interface variable name name Length Description
DSQQC_LENGTH_nnn DSQCLnnn 05 Length of converted result nnn.
DSQQC_QRY_COUNT DSQCQCNT 03 Number of queries in converted result; value
must always be '1' unless the original query is
a QBE I. or U. query.
DSQQC_ORY_LANG DSQCQLNG 01 Language of converted query; values can be:
1
for SQL
2
for QBE
3
for Prompted
DSQQC_QRY_TYPE DSQCQTYP Not specified | First word in converted results.
DSQQC_RESULT_nnn DSQCQnnn Not specified | nnn

Appendix B. QMF global variables 215


http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_prepare.htm

Global variables that show RUN QUERY error message information

DSQQM global variables store the results of a RUN QUERY command. None of these global variables can
be modified by the SET GLOBAL command.

Table 59. Global variables that store the results of a RUN QUERY command

Command interface variable

Callable interface variable name name Length Description

DSQQM_MESSAGE DSQCIQMG 80 Text of query message.

DSQQM_MESSAGE_ALL DSQCIQOMA 360 Complete query message text.

DSQQM_MSG_HELP DSQCIQID 08 ID of message help panel.

DSQQOM_MSG_NUMBER DSQCIQNO 08 Message number.

DSQQOM_SQL_RC DSQCISQL 16 The SQLCODE from the last command or query.

DSQQM_SOQL_STATE None 05 The SQLSTATE associated with the SQLCODE in
DSQQM_SQL_RC, if SQLSTATE is returned by the
database manager.

DSQQM_SUB_TXT_nn DSQCIQnn 20 Substitution value nn.

DSQQM_SUBST_VARS DSQCIQ00 04 Number of substitution variables.

Global variables that store panel input values

DXY global variables store the values that users enter in data entry fields if the DSQEC_SESSGLV_SAV
global variable is set to 1 or 2. Input in only some data entry fields on some panels is saved. User input
for fields that are not listed in the following table are not saved, regardless of the DSQEC_SESSGLV_SAV
global variable setting.

All of these global variables can be modified by the SET GLOBAL command. However, use caution
when changing or deleting these variables because doing so changes the values that are generated on
command prompt panels.

Table 60. Mapping between DXY global variables and panel field names

Global variable name

(where n is a national

language identifier and

Inis an ID associated

with a line of a

multiline field) Range of In values Command Field name
DXYnPCO1_In 01-03 CONNECT User
DXYnPCO1_05 - CONNECT Location
DXYnPC03_01 - CONNECT (CICS) Location
DXYnPCNV_In 02-07 CONVERT Name
DXYnPDSP_In 02 -07 DISPLAY Name
DXYnPDSP_In_01 02 -07 DISPLAY QUERY Name
DXYnPDSP_In_02 02 -07 DISPLAY PROC Name
DXYnPDSP_[n_03 02-07 DISPLAY FORM Name
DXYnPDSP_In_05 02-07 DISPLAY REPORT Name
DXYnPDSP_In_07 02-07 DISPLAY CHART Name
DXYnPDSP_In_08 02 -07 DISPLAY TABLE Name

216 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 60. Mapping between DXY global variables and panel field names (continued)

Global variable name
(where n is a national
language identifier and
Inis an ID associated
with aline of a

multiline field) Range of [n values Command Field name
DXYnPDRS_In 01-06 DRAW Name
DXYnPDRS_07 - DRAW Type
DXYnPDRS_08 - DRAW Identifier
DXYnPEDT_01 - EDIT Type
DXYnPED1_In 01-06 EDIT (QUERY or PROC) [Name
DXYnPED2_In 01-06 EDIT TABLE Name
DXYnPED2_07 - EDIT TABLE Mode
DXYnPED3_In 01-06 EDIT (QUERY or PROC), |Name

then make changes and

exit without saving.
DXYnPED3_09 - EDIT (QUERY or PROC), [Comment

then make changes and

exit without saving.
DXYnPED3_In 10-12 EDIT (QUERY or PROC), |[Folder

then make changes and

exit without saving.
DXYnPERA_In 02-07 ERASE Name
DXYnPERA_In_01 02-07 ERASE QUERY Name
DXYnPERA_In_02 02 -07 ERASE PROC Name
DXYnPERA_In_03 02 -07 ERASE FORM Name
DXYnPERA_In_08 02 -07 ERASE TABLE Name
DXYnPEXM_In 02-07 EXPORT Name
DXYnPEXM_[n_01 02-07 EXPORT QUERY Name
DXYnPEXM_[n_02 02-07 EXPORT PROC Name
DXYnPEXM_[n_03 02 -07 EXPORT FORM Name
DXYnPEXM_In_05 02 -07 EXPORT REPORT Name
DXYnPEXM_[n_06 02 -07 EXPORT DATA Name
DXYnPEXM_I[n_07 02-07 EXPORT CHART Name
DXYnPEXM_[n_08 02-07 EXPORT TABLE Name
DXYnPXM1_In 01-05 EXPORT, then Enter (in | To

TSO)
DXYnPXM1_(n_01 01-05 EXPORT QUERY, then To

Enter (in TSO)

Appendix B. QMF global variables 217




Table 60. Mapping between DXY global variables and panel field names (continued)

Global variable name
(where n is a national
language identifier and
Inis an ID associated
with aline of a

multiline field) Range of [n values Command Field name

DXYnPXM1_In_02 01-05 EXPORT PROC, then To
Enter (in TSO)

DXYnPXM1_06 - EXPORT, then Enter (in Member
TSO)

DXYnPXM1_06_01 - EXPORT QUERY, then Member
Enter (in TSO)

DXYnPXM1_06_02 - EXPORT PROC, then Member
Enter (in TSO)

DXYnPXM2_01_07 - EXPORT CHART, then Member
Enter (in TSO)

DXYnPXM3_I[n_05 01-05 EXPORT REPORT, then To
Enter (in TSO)

DXYnPXM3_06_05 - EXPORT REPORT, then Member
Enter (in TSO)

DXYnPXM3_08_05 - EXPORT REPORT, then Dataformat
Enter (in TSO)

DXYnPXM4_In_06 01-05 EXPORT DATA, then To
Enter (in TSO)

DXYnPXM4_06_06 - EXPORT DATA, then Member
Enter (in TSO)

DXYnPXM4_08_06 - EXPORT DATA, then Dataformat
Enter (in TSO)

DXYnPXM4_09_06 - EXPORT DATA, then Outputmode
Enter (in TSO)

DXYnPXM4_10_06 - EXPORT DATA, then Header
Enter (in TSO)

DXYnPXM4_In_08 01-05 EXPORT TABLE, then To
Enter (in TSO)

DXYnPXM4_06_08 - EXPORT TABLE, then Member
Enter (in TSO)

DXYnPXM4_08_08 - EXPORT TABLE, then Dataformat
Enter (in TSO)

DXYnPXM4_09_08 - EXPORT TABLE, then Outputmode
Enter (in TSO)

DXYnPXM4_10_08 - EXPORT TABLE, then Header
Enter (in TSO)

DXYnPXM5_In_03 01-05 EXPORT FORM, then To
Enter (in TSO)

218 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 60. Mapping between DXY global variables and panel field names (continued)

Global variable name
(where n is a national
language identifier and
Inis an ID associated
with aline of a

multiline field) Range of [n values Command Field name

DXYnPXM5_06_03 - EXPORT FORM, then Member
Enter (in TSO)

DXYnPXM5_08_03 - EXPORT FORM, then Language
Enter (in TSO)

DXYnPXC1_01

EXPORT, then Enter (in
CICS)

Queue Name

DXYnPXC1_01_01 - EXPORT QUERY, then Queue Name
Enter (in CICS)

DXYnPXC1_01_02 - EXPORT PROC, then Queue Name
Enter (in CICS)

DXYnPXC1_02 - EXPORT, then Enter (in | Queue Type
CICS)

DXYnPXC1_02_01 - EXPORT QUERY, then Queue Type
Enter (in CICS)

DXYnPXC1_02_02 - EXPORT PROC, then Queue Type
Enter (in CICS)

DXYnPXC1_04 - EXPORT, then Enter (in | Suspend
CICS)

DXYnPXC1_04_01 - EXPORT QUERY, then Suspend
Enter (in CICS)

DXYnPXC1_04_02 - EXPORT PROC, then Suspend
Enter (in CICS)

DXYnPXC3_01_05 - EXPORT REPORT, then [Queue Name
Enter (in CICS)

DXYnPXC3_02_05 - EXPORT REPORT, then Queue Type
Enter (in CICS)

DXYnPXC3_04_05 - EXPORT REPORT, then Suspend
Enter (in CICS)

DXYnPXC3_05_05 - EXPORT REPORT, then Dataformat
Enter (in CICS)

DXYnPXC4_01_06 - EXPORT DATA, then Queue Name
Enter (in CICS)

DXYnPXC4_02_06 - EXPORT DATA, then Queue Type
Enter (in CICS)

DXYnPXC4_04_06 - EXPORT DATA, then Suspend
Enter (in CICS)

DXYnPXC4_05_06 - EXPORT DATA, then Dataformat

Enter (in CICS)

Appendix B. QMF global variables 219




Table 60. Mapping between DXY global variables and panel field names (continued)

Global variable name
(where n is a national
language identifier and
Inis an ID associated
with aline of a

multiline field) Range of [n values Command Field name

DXYnPXC4_06_06 - EXPORT DATA, then Outputmode
Enter (in CICS)

DXYnPXC4_07_06 - EXPORT DATA, then Header

Enter (in CICS)

DXYnPXC5_01_03

EXPORT FORM, then
Enter (in CICS)

Queue Name

DXYnPXC5_02_03 - EXPORT FORM, then Queue Type
Enter (in CICS)
DXYnPXC5_04_03 - EXPORT FORM, then Suspend
Enter (in CICS)
DXYnPXC5_05_03 - EXPORT FORM, then Language
Enter (in CICS)
DXYnPIMM_In 02 -07 IMPORT (in TSO) Name
DXYnPIMM_(n_01 02 -07 IMPORT QUERY (in TSO) [ Name
DXYnPIMM_[n_02 02 -07 IMPORT PROC (in TSO) [Name
DXYnPIMM_[n_03 02-07 IMPORT FORM (in TSO) [Name
DXYnPIMM_[n_06 02-07 IMPORT DATA (in TSO) |Name
DXYnPIMM_[n_08 02-07 IMPORT TABLE (in TSO) |Name
DXYnPIMM_In 08-12 IMPORT (in TSO) From
DXYnPIMM_(n_01 08-12 IMPORT QUERY (in TSO) |From
DXYnPIMM_[n_02 08-12 IMPORT PROC (in TSO) [From
DXYnPIMM_I[n_03 08-12 IMPORT FORM (in TSO) [From
DXYnPIMM_In_06 08-12 IMPORT DATA (in TSO) | From
DXYnPIMM_I[n_08 08-12 IMPORT TABLE (in TSO) | From
DXYnPIMM_13 - IMPORT (in TSO) Member
DXYnPIMM_13_01 - IMPORT QUERY (in TSO) [ Member
DXYnPIMM_13_02 - IMPORT PROC (in TSO) |[Member
DXYnPIMM_13_03 - IMPORT FORM (in TSO) [Member
DXYnPIMM_13_06 - IMPORT DATA (in TSO) | Member
DXYnPIMM_13_08 - IMPORT TABLE (in TSO) |Member
DXYnPIQF_03 - IMPORT, then Enter (in | Comment
TSO)
DXYnPIQF_03_01 - IMPORT QUERY, then Comment

Enter (in TSO)

220 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 60. Mapping between DXY global variables and panel field names (continued)

Global variable name
(where n is a national
language identifier and
Inis an ID associated
with aline of a

multiline field) Range of [n values Command Field name

DXYnPIQF_03_02 - IMPORT PROC, then Comment
Enter (in TSO)

DXYnPIQL_03_03 - IMPORT FORM, then Comment
Enter (in TSO)

DXYnPIQL_04_03 - IMPORT FORM, then Language
Enter (in TSO)

DXYnPITB_02_08 - IMPORT TABLE, then Comment
Enter (in TSO)

DXYnPITB_04_08 - IMPORT TABLE, then Space
Enter (in TSO)

DXYnPITB_I[n_08 05-07 IMPORT TABLE, then Accelerator
Enter (in TSO)

DXYnPIMC_In 02 -07 IMPORT (in CICS) Name

DXYnPIMC_In_01 02 -07 IMPORT QUERY (in Name
CICS)

DXYnPIMC_In_02 02-07 IMPORT PROC (in CICS) [Name

DXYnPIMC_In_03 02 -07 IMPORT FORM (in CICS) | Name

DXYnPIMC_In_06 02-07 IMPORT DATA (in CICS) |Name

DXYnPIMC_In_08 02 -07 IMPORT TABLE (in CICS) | Name

DXYnPIMC_08

IMPORT (in CICS)

Queue Name

DXYnPIMC_08_01 - IMPORT QUERY (in Queue Name
CICS)
DXYnPIMC_08_02 - IMPORT PROC (in CICS) | Queue Name
DXYnPIMC_08_03 - IMPORT FORM (in CICS) | Queue Name
DXYnPIMC_08_06 - IMPORT DATA (in CICS) |Queue Name
DXYnPIMC_08_08 - IMPORT TABLE (in CICS) | Queue Name
DXYnPIMC_09 - IMPORT (in CICS) Queue Type
DXYnPIMC_09_01 - IMPORT QUERY (in Queue Type
CICS)
DXYnPIMC_09_02 - IMPORT PROC (in CICS) | Queue Type
DXYnPIMC_09_03 - IMPORT FORM (in CICS) |Queue Type
DXYnPIMC_09_06 - IMPORT DATA (in CICS) | Queue Type
DXYnPIMC_09_08 - IMPORT TABLE (in CICS) | Queue Type
DXYnPIMC_10 - IMPORT (in CICS) Suspend

Appendix B. QMF global variables 221




Table 60. Mapping between DXY global variables and panel field names (continued)

Global variable name
(where n is a national
language identifier and
Inis an ID associated
with aline of a

multiline field) Range of [n values Command Field name
DXYnPIMC_10_01 - IMPORT QUERY (in Suspend
CICS)
DXYnPIMC_10_02 - IMPORT PROC (in CICS) [Suspend
DXYnPIMC_10_03 - IMPORT FORM (in CICS) [Suspend
DXYnPIMC_10_06 - IMPORT DATA (in CICS) [Suspend
DXYnPIMC_10_08 - IMPORT TABLE (in CICS) | Suspend
DXYnPLST_01 - LIST (QUERIES, PROCS, |Type
FORMS, ANALYTICS,
QOMF, TABLES, or ALL)
DXYnPLST_In 02-04 LIST (QUERIES, PROCS, |Owner
FORMS, ANALYTICS,
QMF, TABLES, or ALL)
DXYnPLST _In 05-07 LIST (QUERIES, PROCS, [Name
FORMS, ANALYTICS,
OMF, TABLES, or ALL)
DXYnPLST_08 - LIST (QUERIES, PROCS, |Location
FORMS, ANALYTICS,
QMF, TABLES, or ALL)
DXYnPPRT_In 02 -07 PRINT (in TSO) Name
DXYnPPRT_[n_01 02-07 PRINT QUERY (in TSO) Name
DXYnPPRT_In_02 02-07 PRINT PROC (in TSO) Name
DXYnPPRT_In_03 02 - 07 PRINT FORM (in TSO) Name
DXYnPPRT_I[n_04 02-07 PRINT PROFILE (in TSO) [ Name
DXYnPPRT_Iln_05 02-07 PRINT REPORT (in TSO) [Name
DXYnPPRT_I[n_07 02-07 PRINT CHART (in TSO) Name
DXYnPPRT_[n_08 02-07 PRINT TABLE (in TSO) Name
DXYnPPR2_01_07 - PRINT CHART, then Printer
Enter (in TSO)
DXYnPPR3_01_01 - PRINT QUERY, then Printer
Enter (in TSO)
DXYnPPR3_01_02 - PRINT PROC, then Enter | Printer
(in TSO)
DXYnPPR3_01_03 - PRINT FORM, then Enter | Printer
(in TSO)
DXYnPPR3_01_04 - PRINT PROFILE, then Printer

Enter (in TSO)

222 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 60. Mapping between DXY global variables and panel field names (continued)

Global variable name
(where n is a national
language identifier and
Inis an ID associated
with aline of a

multiline field) Range of [n values Command Field name
DXYnPPR3_01_08 - PRINT TABLE, then Printer

Enter (in TSO)
DXYnPPR4_01_05 - PRINT REPORT, then Printer

Enter (in TSO)
DXYnPPR5_In 02 -07 PRINT (in CICS) Name
DXYnPPR5_[n_01 02 -07 PRINT QUERY (in CICS) [Name
DXYnPPR5_[n_02 02 -07 PRINT PROC (in CICS) Name
DXYnPPR5_[n_03 02 -07 PRINT FORM (in CICS) Name
DXYnPPR5_I[n_04 02 -07 PRINT PROFILE (in Name

CICS)
DXYnPPR5_[n_05 02 -07 PRINT REPORT (in CICS) [ Name
DXYnPPR5_[n_07 02 -07 PRINT CHART (in CICS) [Name
DXYnPPR5_[n_08 02 -07 PRINT TABLE (in CICS) [Name
DXYnPPR5_08 - PRINT (in CICS) Queue Name
DXYnPPR5_08_01 - PRINT QUERY (in CICS) [Queue Name

DXYnPPR5_08_02

PRINT PROC (in CICS)

Queue Name

DXYnPPR5_08_03

PRINT FORM (in CICS)

Queue Name

DXYnPPR5_08_04

PRINT PROFILE (in
CICS)

Queue Name

DXYnPPR5_08_05 - PRINT REPORT (in CICS) [ Queue Name
DXYnPPR5_08_07 - PRINT CHART (in CICS) |Queue Name
DXYnPPR5_08_08 - PRINT TABLE (in CICS) |Queue Name
DXYnPPR5_09 - PRINT (in CICS) Queue Type
DXYnPPR5_09_01 - PRINT QUERY (in CICS) |Queue Type
DXYnPPR5_09_02 - PRINT PROC (in CICS) Queue Type
DXYnPPR5_09_03 - PRINT FORM (in CICS) Queue Type
DXYnPPR5_09_04 - PRINT PROFILE (in Queue Type
CICS)

DXYnPPR5_09_05 - PRINT REPORT (in CICS) | Queue Type
DXYnPPR5_09_07 - PRINT CHART (in CICS) |Queue Type
DXYnPPR5_09_08 - PRINT TABLE (in CICS) | Queue Type
DXYnPPR5_10 - PRINT (in CICS) Suspend
DXYnPPR5_10_01 - PRINT QUERY (in CICS) [Suspend

Appendix B. QMF global variables 223




Table 60. Mapping between DXY global variables and panel field names (continued)

Global variable name
(where n is a national
language identifier and
Inis an ID associated
with aline of a

multiline field) Range of [n values Command Field name
DXYnPPR5_10_02 - PRINT PROC (in CICS) Suspend
DXYnPPR5_10_03 - PRINT FORM (in CICS) Suspend
DXYnPPR5_10_04 - PRINT PROFILE (in Suspend
CICS)
DXYnPPR5_10_05 - PRINT REPORT (in CICS) | Suspend
DXYnPPR5_10_07 - PRINT CHART (in CICS) [Suspend
DXYnPPR5_10_08 - PRINT TABLE (in CICS) [ Suspend
DXYnPRNM_(n 02 -07 RENAME Old Name
DXYnPRNM_In 08-10 RENAME New Name
DXYnPRST_01 - RESET Type
DXYnPRSG_01 - RESET GLOBAL Enter ALL ...
DXYnPRSG_[n 02-11 RESET GLOBAL Global variable name
DXYnPRUN_[n 02-07 RUN Name
DXYnPRUN_[n_01 02 -07 RUN QUERY Name
DXYnPRUN_[n_02 02 -07 RUN PROC Name
DXYnPRU3_In 01-06 RUN QUERY, then Enter |Form
DXYnPRU3_08 - RUN QUERY, then Enter |Rowlimit
DXYnPRU3_In 09-14 RUN QUERY, then Enter | Analytic
DXYnPRU3_In 15-20 RUN QUERY, then Enter |Table
DXYnPRU3_22 - RUN QUERY, then Enter | Comment
DXYnPRU3_23 - RUN QUERY, then Enter |[Space
DXYnPRU3_In 24 - 26 RUN QUERY, then Enter | Accelerator
DXYnPRU4_01 - RUN PROC, then Enter [ Arg
DXYnPSAV_01 - SAVE Type
DXYnPSA2_In 01-06 SAVE DATA Name
DXYnPSA2_08 - SAVE DATA Comment
DXYnPSA2_10 - SAVE DATA Space
DXYnPSA2 _In 11-13 SAVE DATA Accelerator
DXYnPSA3_ln_01 01-06 SAVE QUERY Name
DXYnPSA3_ln_02 01-06 SAVE PROC Name
DXYnPSA3_09_01 - SAVE QUERY Comment

224 Query Management Facility Version 12 Release 2: Developing QMF applications




Table 60. Mapping between DXY global variables and panel field names (continued)

Global variable name

(where n is a national

language identifier and

Inis an ID associated

with aline of a

multiline field) Range of [n values Command Field name
DXYnPSA3_09_02 - SAVE PROC Comment
DXYnPSA3_[n_01 10-12 SAVE QUERY Folder
DXYnPSA3_I[n_02 10-12 SAVE PROC Folder
DXYnPSA4 _In 01-06 SAVE FORM Name
DXYnPSA4_09 - SAVE FORM Comment
DXYnPSA4_In 11-13 SAVE FORM Folder
DXYnPSET_01 - SET Type
DXYnPSGL_In 01 -19 (even numbers) |SET GLOBAL Var
DXYnPSGL_In 02 - 20 (odd numbers) SET GLOBAL Value
DXYnPSHO_01 - SHOW Enter the name ...

Appendix B. QMF global variables 225



226 Query Management Facility Version 12 Release 2: Developing QMF applications



Notices

This information was developed for products and services offered in the US. This material may be
available from IBM in other languages. However, you may be required to own a copy of the product
or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan, Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

© Copyright IBM Corp. 1982, 2021 227



Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any
equivalent agreement between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform

for which the sample programs are written. These examples have not been thoroughly tested under

all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as shown below.

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information

This publication documents intended Programming Interfaces that allow the customer to write programs
to obtain the services of QMF.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at http://
www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions:
Applicability: These terms and conditions are in addition to any terms of use for the IBM website.

Personal use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

228 Notices


http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Rights: Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS

ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Privacy policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,

to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,

see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”

and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http:/www.ibm.com/
software/info/product-privacy.

Notices 229


http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy

230 Query Management Facility Version 12 Release 2: Developing QMF applications



Glossary of terms and acronyms

abnormal end of task (abend)
The termination of a task, job, or subsystem because of an error condition that recovery facilities
cannot resolve during execution.

address space
The range of addresses available to a computer program or process. Address space can refer to
physical storage, virtual storage, or both.

Advanced Program-to-Program Communication
See APPC.

aggregate function
Any of a group of functions that summarizes data in a column. They are requested with these usage
codes on the form panels: AVERAGE, CALC, COUNT, FIRST, LAST, MAXIMUM, MINIMUM, STDEV, SUM,
CSUM, PCT, CPCT, TPCT, TCPCT.

aggregation variable
An aggregation function that is placed in a report using the FORM.BREAK, FORM.CALC, FORM.DETAIL,
or FORM.FINAL panels. Its value appears as part of the break footing, detail block text, or final text
when the report is produced.

alias
An alternative name used to identify a table, view, database, or nickname. An alias can be used in SQL
statements to refer to a table, view, or database in the same Db2 system or subsystem or in a remote
Db2 system or subsystem.

APAR (Authorized Program Analysis Report)
A request for correction of a defect in a supported release of an program supplied by IBM.

APF (authorized program facility)
In a z/OS environment, a facility that permits the identification of programs that are authorized to use
restricted functions.

API (application programming interface)
An interface that allows an application program that is written in a high-level language to use specific
data or functions of the operating system or another program.

application
One or more computer programs or software components that use QMF services to provide
functionality in direct support of a specific business process or processes.

APPC (Advanced Program-to-Program Communication)
An implementation of the SNA LU 6.2 protocol that allows interconnected systems to communicate
and share the processing of programs.

application plan
The control structure that is produced during the bind process. The default name for the QMF Version
12.1 application plan is QMF1210.

application programming interface
See API.

application requester
The source of a request to a remote DRDA-enabled relational database management system
(RDBMS). Only Db2 for z/OS databases can function as application requesters because this is the
only type of database in which QMF can be started.

application server
The target of a request from an application requester. The database management system (DBMS) at
the application server site services the request. Connectivity with remote servers is not supported
when QMF for TSO is running as a Db2 for z/OS stored procedure.

© Copyright IBM Corp. 1982, 2021 231



argument
A value passed to or returned from a function or procedure at run time.

authorization identifier (authorization ID)
A character string that designates a set of privileges and can be used to verify authority. An
authorization ID can represent an object, an individual user, an organizational group, a function, or
a database role. QMF authenticates either the database authorization ID or, optionally, the QMF TSO
logon ID, against the CREATOR column of the Q.PROFILES table during QMF initialization.

Authorized Program Analysis Report
See APAR.

Authorized program facility
See APF.

auxiliary table
A table that stores columns outside the table in which they are defined. See also base table.

base product
The English-language version of QMF, established when QMF is installed. Any other language
environment is established after installation by installing the National Language Feature (NLF)
associated with that language.

base table
A table that is created by the SQL CREATE TABLE statement and that holds persistent data.
binary string
A sequence of bytes that is not associated with a coded character set and therefore is never
converted. For example, the BLOB data type is a binary string. See also CCSID.
bind
To convert the output from the DBMS precompiler to a usable control structure, such as an access
plan, an application plan, or a package.

bit data
Data with a data type of CHAR or VARCHAR that is not associated with a coded character set and
therefore is never converted.

buffer pool
An area of memory into which data pages are read and in which they are modified and held during
processing. See also address space.

built-in function
A strongly typed, high-performance function that is integral to the Db2 database. A built-in function
can be referenced in SQL statements anywhere that an expression is valid.

CAF (call attachment facility)
A Db2 for z/OS attachment facility for application programs that run in TSO or z/OS batch. The CAF
is an alternative to the DSN command processor and provides greater control over the execution
environment.

call attachment facility
See CAF.

callable interface
A programming interface that provides access to QMF objects and services.

cascade delete
A process by which the Db2 database manager enforces referential constraints by deleting all
descendent rows of a deleted parent row.

catalog
A collection of tables and views that contains descriptions of objects such as tables, views, and
indexes. See also QMF object catalog.

CCSID (coded character set identifier)
A 16-bit number that includes a specific set of encoding scheme identifiers, character set identifiers,
code page identifiers, and other information that uniquely identifies the coded graphic-character

232 Query Management Facility Version 12 Release 2: Developing QMF applications



representation. Because QMF uses display services provided by GDDM, the GDDM application code
page must agree with the CCSIDs in use for the database. See also binary string.

character string
A sequence of bytes that represents bit data, single-byte characters, or a mixture of single-byte and
multibyte characters.

check constraint
A user-defined constraint that specifies the values that specific columns of a base table can contain.
See also constraint.

CICS (Customer Information Control System)
An IBM licensed program that provides online transaction-processing services and management for
business applications.

clause
In SQL, a distinct part of a statement in the language structure, such as a SELECT clause or a WHERE
clause.

CM (Compatibility Mode)
An installation mode of QMF Version 8.1 and QMF Version 9.1 that limited owner and object names in
the QMF object catalog to eight and 18 characters, respectively. See also NFM.

code page
A particular assignment of code points to graphic characters. Within a given code page, a code point
can have only one specific meaning. A code page also identifies how undefined code points are
handled.

coded character set identifier
See CCSID.

coexistence
The state during which two QMF releases exist in the same Db2 subsystem. QMF Version 12.1 can
coexist with QMF Version 9.1 New Function Mode or QMF Version 8.1 New Function Mode only.

column
The vertical component of a database table. A column has a name and a particular data type (for
example, character, decimal, or integer).

column function
See aggregate function.

column wrapping
The value formatting in a report where the values occupy several lines within a column. Column
wrapping is often used when a column contains values whose length exceeds the column width, such
as cases requiring the display of XML data.

command interface
An interface for issuing QMF commands. The command interface allows you to issue QMF commands
from an ISPF dialog running under QMF. Using this interface, QMF communicates with the dialog
through the ISPF variable pool.

command synonym
The verb or verb/object part of a site-defined command. After command synonyms are defined and
activated in the QMF profile, users can enter the synonyms on the QMF command line as they do with
regular QMF commands.

command synonym table
A table that stores one site-defined command in each row. You assign a set of command synonyms to
a user by storing the name of this table in the user's profile.

comparison operator
In SQL, a symbol used in comparison expressions to specify a relationship between two values.
Comparison operators are = (equal to), <> (not equal to), < (less than), > (greater than), <= (less than
or equal to), and >= (greater than or equal to).

Compatibility Mode
See CM.

Glossary of terms and acronyms 233



commit
To end a unit of work by releasing locks so that the database changes made by that unit of work can
be perceived by other processes. This operation makes the data changes permanent.

concatenation
Joining two characters or strings to form one string.

connection
In data communication, an association established between entities for conveying information. See
also SQL connection. Connectivity with remote servers is not supported when QMF for TSO is running
as a Db2 for z/OS stored procedure.

constant
A language element that specifies an unchanging value. Constants are classified as string constants or
numeric constants.

constraint
A rule that limits the values that can be inserted, deleted, or updated in a table.

control section
See CSECT.

control tables
A set of tables that QMF uses to store information about QMF objects and manage QMF operations.
See also QMF object catalog.

correlated reference
A reference to a column of a table or view that is outside a subquery.

correlation name
An identifier specified and used within a single SQL statement as the exposed name for objects such
as a table, view, table function reference, nested table expression, or data change table reference.
Correlation names are useful in an SQL statement to allow two distinct references to the same base
table and to allow an alternative name to be used to represent an object.

CSECT (control section)
The part of a program specified by the programmer to be a relocatable unit, all elements of which are
to be loaded into adjoining main storage locations.

current location
The application server to which the QMF session is currently connected. After the connection is made,
this server processes all SQL statements. When initializing QMF, the current location can be indicated
using the DSQSDBNM startup parameter. Connectivity with remote servers is not supported when
QMF for TSO is running as a Db2 for z/OS stored procedure.

current object
A QMF object that is held in temporary storage so that, with each use, it can be readily accessed
without requiring database retrieval. There are seven temporary storage areas: QUERY, FORM, PROC,
PROFILE, REPORT, DATA, and CHART. Users can navigate to all areas but the DATA area using the
SHOW and DISPLAY commands. See also temporary storage.

cursor
A named control structure used by an application program to point to and select a row of data from a
set.

Customer Information Control System
See CICS.

data type
A classification identifying one of various kinds of data. In SQL, the data type is an attribute of
columns, literals, host variables, special registers, parameters, and the results of functions and
expressions.

database
A collection of interrelated or independent data items that are stored together to serve one or more
applications.

234 Query Management Facility Version 12 Release 2: Developing QMF applications



database administrator
A person who is responsible for the design, development, operation, security, maintenance, and use of
a database.

database management system
See DBMS.

database manager
A program that manages data by providing centralized control, data independence, and complex
physical structures for efficient access, integrity, recovery, concurrency control, privacy, and security.

database server
A software program that uses a database manager to provide database services to other software
programs or computers.

DBCS (double-byte character set)
A set of characters in which each character is represented by two bytes. These character sets are
commonly used by national languages such as Japanese and Chinese, which have more symbols than
can be represented by a single byte. See also SBCS.

DBMS (database management system)
A software system that controls the creation, organization, and modification of a database and the
access to the data that is stored within it.

DCT (destination control table)
A table describing each of the transient data destinations used in CICS. This table contains an entry
for each extrapartition, intrapartition, and indirect destination.

default form
The QMF form created when a saved form is not specified on the RUN QUERY command.

default value
A predetermined value, attribute, or option that is assumed when no other value is specified. A default
value can be defined for column data in Db2 tables by specifying the DEFAULT keyword in an SQL
statement that changes data (such as INSERT, UPDATE, and MERGE).

dependent row
A row that contains a foreign key that matches the value of a parent key in the parent row. The foreign
key value represents a reference from the dependent row to the parent row.

dependent table
A table that is a dependent of an object. For example, a table with a foreign key is a dependent of the
table containing the corresponding primary key.

destination control table
See DCT.

detail block text
The text in the body of a report that is associated with a particular row of data.
detail heading text
The text in the heading of a report.
detail variation
A data formatting definition specified on a FORM.DETAIL panel that can be used to conditionally
format a report or part of a report.

distinct type
A user-defined data type that shares a common representation with built-in data types.

distributed data
Data that is stored on more than one system and is available to remote users and application
programs.

distributed database
A database that appears to users as a logical whole, locally accessible database, but consists of
databases in multiple locations that are connected by a data communications network.

Distributed Relational Database Architecture™
See DRDA.

Glossary of terms and acronyms 235



distributed unit of work
A form of distributed relational database processing that enables a user or application program
to read or update data at multiple locations within a unit of work. Within one unit of work, an
application, such as QMF, running in one system can direct SQL requests to multiple remote database
management systems using the SQL supported by those systems. The request is made through a
QMF command that includes a three-part table or view name. QMF commands with three-part names
cannot be directed to Db2 for VM or VSE databases or used when QMF for TSOhas been started as a
Db2 for z/OS stored procedure. Three-part names in QMF commands also cannot refer to a table that
contains large object (LOB) data types.

double-byte character set
See DBCS.

double-precision floating-point number
A 64-bit approximate representation of a real number.

DRDA (Distributed Relational Database Architecture)
The architecture that defines formats and protocols for providing transparent access to remote data.
DRDA defines two types of functions: the application requester function and the application server
function.

environment
A named collection of logical and physical resources used to support the performance of a function.

exit routine
A program that receives control from another program to perform specific functions.

Extensible Markup Language
See XML.

extended syntax
Syntax that is used for the QMF SET GLOBAL and GET GLOBAL commands and certain function calls
in a callable interface application. Extended syntax defines parameters used by QMF callable interface
applications written in Assembler, C, COBOL, Fortran, or PL/I.

fallback
The process of returning to a prior release of a software program after attempting or completing
migration to a current release.

fetch
The process of retrieving rows from the database or a file to create a QMF DATA object. QMF supports
multirow fetch through the use of the DSQSMRFI parameter.

foreign key
In arelational database, a key in one table that references the primary key in another table.

GDDM (Graphical Data Display Manager)
Graphics software that defines and displays text and graphics for output on a display device or printer.

global variable
A named entity whose value persists for the duration of a QMF session by default. QMF uses global
variables to manage both session and database activity. Some global variables can be set with the SET
GLOBAL command, while others record information about the state of the current QMF session and
therefore cannot be set.

graphic string
A sequence of double-byte character set (DBCS) characters.

Graphical Data Display Manager
See GDDM.

host
The controlling or highest-level system in a data communications configuration.

HTML (hypertext markup language)
A markup language that conforms to the Standard Generalized Markup Language (SGML) standard and
was designed primarily to support the online display of textual and graphical information, including
hypertext links.

236 Query Management Facility Version 12 Release 2: Developing QMF applications



hypertext markup language
See HTML.

ICU (Interactive Chart Utility)
A menu-driven component of IBM's Graphical Data Display Manager (GDDM) product that allows
non-programmers to display, print, or plot charts, graphs, and diagrams.

identity column
A column that provides a way for the Db2 database manager to automatically generate a numeric
value for each row that is inserted into a table. Identity columns are defined with the AS IDENTITY
clause. A table can have no more than one identity column.

index
A set of pointers that is logically ordered by the values of a key. Indexes provide quick access to data
and can enforce uniqueness of the key values for the rows in the table.

inner join
The result of a join operation that includes only the matched rows of both tables that are being joined.
See also outer join.

installation verification procedure
See IVP.

Integrated Exchange Format
See IXF.

Interactive Chart Utility
See ICU.

Interactive System Productivity Facility
See ISPF.

ISPF (Interactive System Productivity Facility)
An IBM licensed program that serves as a full-screen editor and dialog manager. Used for writing
application programs, it provides a means of generating standard screen panels and interactive
dialogs between the application programmer and terminal user.

IVP (installation verification procedure)
A procedure or program whose purpose is to verify that a product has been correctly installed.

IXF (Integrated Exchange Format)
A protocol for transferring tabular data among various software products.

JCL (job control language)
A command language that identifies a job to an operating system and describes the job's
requirements.

job control language
See JCL.

join
An SQL relational operation that allows retrieval of data from two or more tables based on matching
column values.

key
A column or an ordered collection of columns that is identified in the description of a table, index, or
referential constraint. The same column can be part of more than one key.

keyword
One of the predefined words of a programming language, artificial language, application, or command.

keyword parameter
A parameter that consists of a keyword followed by one or more values. See also positional
parameter.

large object
See LOB.

link-edit
To create a loadable computer program by means of a linkage editor.

Glossary of terms and acronyms 237



linkage editor
A computer program for creating load modules from one or more object modules or load modules by
resolving cross-references among the modules and, if necessary, adjusting addresses.

literal
A character string whose value is defined by the characters themselves. For example, the numeric
constant 7 has the value 7, and the character constant 'CHARACTERS' has the value CHARACTERS.

linear procedure
A sequenced set of QMF commands or command synonyms that can be used to perform several
operations at once. See also procedure with logic.

linear syntax
QMF command syntax that is entered in one statement of a program or procedure, or that can be
entered on the QMF command line.

load module
A program in a form suitable for loading into main storage for execution.

LOB (large object)
A sequence of bytes with a size ranging from 0 bytes to 2 gigabytes (less 1 byte). There are three LOB
data types: binary large object (BLOB), character large object (CLOB, which can include single-byte
characters only or a mixture of single-byte and double-byte characters), and double-byte character
large object (DBCLOB). QMF supports a LOB column size of up to 32 KB.

local
Pertaining to databases, objects, or applications that are installed or stored in the system in which
QMF is currently running.

location
A specific relational database server in a distributed relational database system. Each location has a
unique location name.

location name
The unique name of a database server. An application uses the location name to access a Db2
database server.

lock
A means of serializing a sequence of events or serializing access to data.

log

A collection of records that sequentially describes the events that occur in a system.
LUw

An abbreviation for Linux, UNIX, and Windows.

National Language Feature
See NLF.

New Function Mode
See NFM.

NFM (New Function Mode)
An installation mode of QMF Version 8.1 and QMF Version 9.1 that allowed owner and object names in
the QMF object catalog to be the maximum length allowed by the database. QMF Version 12.1 allows
owner and object names to be as long as the database allows as well. See also CM.

NLF (National Language Feature)
Any of several optional features available with QMF. NLFs allow users to interact with QMF in specific
native languages.

object
A named storage space that consists of a set of characteristics that describe the space and, in some
cases, data. An object is anything that occupies space in storage, can be located in a library or
directory, can be secured, and on which defined operations can be performed. See also QMF object.

outer join
The result of a join operation that includes the matched rows of both tables that are being joined and
preserves some or all of the unmatched rows of the tables that are being joined. See also inner join.

238 Query Management Facility Version 12 Release 2: Developing QMF applications



package
A control-structure database object produced during program preparation that can contain both
executable forms of static SQL statements or XQuery expressions and placement holders for
executable forms of dynamic SQL statements.

panel
A formatted display of information on a screen that can also include entry fields.

parameter
A value or reference passed to a function, command, or program that serves as input or controls
actions. The value is supplied by a user or by another program or process.

partition
A portion of a page set. Each partition corresponds to a single, independently extendable data set.
Partitions can be extended to a maximum size of 1, 2, or 4 gigabytes, depending on the number of
partitions in the partitioned page set. All partitions of a given page set have the same maximum size.

plan
See application plan.

positional parameter
A parameter that must appear in a specified location, relative to other parameters. See also keyword
parameter.

precision
An attribute of a number that describes the total number of significant digits.

predicate
An element of a search condition that expresses or implies a comparison operation.

primary authorization ID
The authorization identifier used to identify an application process to Db2 for z/0S.

primary key
In a relational database, a key that uniquely identifies one row of a database table.

privilege
In SQL, a capability given to a user by the processing of a GRANT statement.

procedure
A sequenced set of statements or commands used to perform one or more tasks. See also linear
procedure and procedure with logic.

procedure with logic
A set of statements that performs one or more tasks. A procedure with logic begins with a REXX
comment and allows conditional logic (which uses REXX), calculations, build strings, and TSO or CICS
commands. See also linear procedure.

profile
An object that contains information about the characteristics of the user's session.

program temporary fix
See PTF.

prompted query
A menu-driven query controlled by user-provided parameters.

PTF (program temporary fix)
For System i®,System p, and System z°, products, a fix that is tested by IBM and is made available to
all customers.

QBE (Query-by-Example)
A component of QMF that allows users to create queries graphically.

QMF administrator authority
Users with this authority can perform the following commands on QMF queries, forms, and
procedures that are owned by other users without forcing the owners to share these objects with
all users: SAVE, ERASE, IMPORT, EXPORT, and DISPLAY. QMF administrator authority is determined
either by the user's profile MODEL column value, or, if the user has INSERT or DELETE authority for the
Q.PROFILES table itself.

Glossary of terms and acronyms 239



QMF administrator
A user who has QMF administrator authority.

Query-by-Example
See OBE.

QMF object
An object used by QMF users to query, format, and present data or otherwise manage interaction
between QMF and the database. QMF objects include queries and query result data, forms,
procedures, reports, charts, and the QMF profile. Each QMF object has a named temporary storage
area that is used to display the object. All objects except reports and charts can be saved in the
database; reports and charts are created dynamically upon user request by applying the formatting
specifications of a particular QMF form to result data that has been returned from the database. See
also temporary storage.

QMF object catalog
A set of control tables that stores information about QMF queries, procedures, forms, folders,
and analytics objects. These control tables include Q.OBJECT_DIRECTORY, Q.OBJECT_DATA, and
Q.OBJECT_REMARKS.

qualifier
When referring to a QMF object, the part of the name that identifies the owner or the location of an
object. When referring to a TSO data set, any part of the name that is separated from the rest of
the name by periods. For example, ‘TCK’, ‘XYZ’, and ‘QUERY’ are all qualifiers in the data set name
‘TCK.XYZ.QUERY".

query
A request for information from a database based on specific conditions: for example, a request for a
list of all customers in a customer table whose balances are greater than $1000. In QMF, a query also
refers to SQL statements submitted from the Prompted Query, QBE, or SQL query panel, even if these
statements are not requests for information (SELECT statements).

RCT (resource control table)
A Db2 control table that defines the relationship between CICS transactions and Db2 resources.

RDBMS (relational database management system)
A collection of hardware and software that organizes and provides access to a relational database.

RDO (resource definition online)
In CICS, a facility that allows the user to define certain CICS resources interactively while CICS
is running. Specifically, RDO allows the user to define terminals, programs, and transactions
interactively.

record
The storage representation of a row or other data.

record length
The length of storage that represents a row or other data.

reentrant
Executable code that can reside in storage as one shared copy for all database threads. Reentrant
code is not self-modifying and provides separate storage areas for each thread.

referential constraint
The requirement that the nonnull values of a designated foreign key are valid only if they also appear
as values of the primary key of the parent table. The referential constraint is always defined from the
perspective of the dependent file.

relational database
A database that can be perceived as a set of tables and manipulated in accordance with the relational
model of data. Each database includes a set of system catalog tables that describe the logical and
physical structure of the data, a configuration file containing the parameter values allocated for the
database, and a recovery log with ongoing transactions and archivable transactions.

relational database management system
See RDBMS.

240 Query Management Facility Version 12 Release 2: Developing QMF applications



remote
Pertaining to databases, objects, or applications that are installed or stored on a system other than
the system where QMF is currently executing. You can access objects (including QMF queries, forms,
procedures, folders, and analytics objects) at a remote server by using the QMF CONNECT command.
You can also use a QMF command with a three-part table or view name if you want to access just
tables or views at a remote location. Remote access is not permitted when QMF for TSO is running as
a Db2 for z/OS stored procedure.

remote unit of work
A form of distributed relational database processing in which an application program, such as QMF,
can access data on a remote database within a unit of work. The connection is established by the QMF
CONNECT command. The CONNECT command cannot be used when QMF for TSO is running as a Db2
for z/OS stored procedure.

requester
See application requester.

resource
The object of a lock or claim, which could be a table space, an index space, a data partition, an index
partition, or a logical partition.

resource control table
See RCT.

resource definition online
See RDO.

Restructured Extended Executor
See REXX.

REXX (Restructured Extended Executor)
A general-purpose, high-level programming language, particularly suitable for EXEC procedures or
programs for personal computing.

roll back
To restore data that is changed by an SQL statement to the state at its last commit point. If a failure
occurs in a query that contains multiple statements and no COMMIT statements, all statements,
except those that affect the QMF session (such as SET), are rolled back. If a failure occurs in a
query that contains one or more COMMIT statements, all updates after the last successful COMMIT
statement are rolled back. In either case, the query ends after the failure.

routine
A program or sequence of instructions called by a program. Typically, a routine has a general purpose
and is frequently used.

row
The horizontal component of a table, consisting of a sequence of values, one for each column of the
table.

runtime variable
A variable in a procedure or query whose value is specified by the user when the procedure or query is
run. The value of a runtime variable is only available in the current procedure or query. See also global
variable.

SBCS (single-byte character set)
A coded character set in which each character is represented by a 1-byte code. A 1-byte code point
allows representation of up to 256 characters. See also double-byte character set.

scalar function
An SQL function that optionally accepts arguments and that returns a single scalar value each time
that it is invoked. A scalar function can be referenced in an SQL statement wherever an expression is
valid.

scratchpad area
A work area used in conversational processing to retain information from an application program
across executions of the program.

Glossary of terms and acronyms 241



search condition
A criterion for selecting rows from a table. A search condition consists of one or more predicates.

secondary authorization ID
In Db2 for z/0OS, an authorization identifier that is associated with a primary authorization ID by an
authorization exit routine. See also primary authorization ID.

segmented table space
A table space that is divided into equal-sized groups of pages called segments. Segments are
assigned to tables so that rows of different tables are never stored in the same segment. See also
table space.

server
See application server.

session
All interactions between the user and QMF from the time the user invokes QMF until the EXIT
command is issued.

shift-in character
A control character (X'OF") that is used in EBCDIC systems to denote that the subsequent bytes
represent SBCS characters. See also shift-out character.

shift-out character
A control character (X'OE") that is used in EBCDIC systems to denote that the subsequent bytes, up to
the next shift-in control character, represent DBCS characters. See also shift-in character.

single-byte character set
See SBCS.

single-precision floating-point number
A 32-bit approximate representation of a real number.

SQL (Structured Query Language)
A standardized language for defining and manipulating data in a relational database.

SQL authorization ID
See SQLID.

SQL connection
An association between an application process and a local or remote application server or database
server. See also remote unit of work, distributed unit of work.

SQL function
A function that is implemented entirely by using a subset of SQL statements and SQL PL statements.

SQL ID (SQL authorization ID)
In Db2 for z/0S, the ID that is used for checking the authorization of dynamic SQL statements in some
situations.

SQL return code
The SQLSTATE or SQLCODE that indicates whether the previously run SQL statement completed
successfully, with one or more warnings, or with an error.

SQLCA (Structured Query Language Communication Area)
A set of variables that provides an application program with information about the execution of its SQL
statements or requests from the database manager. When an error is associated with an SQL code,
the QMF message help (available by pressing the Help key) displays the contents of the SQLCA.

stored procedure
A routine that can be invoked using the SQL CALL statement to perform operations that can include
both host language statements and SQL statements.

stored procedure interface
An interface to QMF for TSO that allows you to start QMF as a Db2 for z/OS stored procedure, pass
the name of a QMF query or procedure that performs the work you require, and receive up to 21 result
sets back, including a result set for trace output. QMF for TSO can be started in this manner from any
product that can run a Db2 for z/OS stored procedure.

242 Query Management Facility Version 12 Release 2: Developing QMF applications



Structured Query Language
See SOL.

Structured Query Language Communication Area
See SQLCA.

subquery
A complete SQL query that appears in a WHERE or HAVING clause of another query.

substitution variable
(1) A variable in a procedure or query whose value is specified either by a global variable or by a
runtime variable. (2) A variable in a QMF form whose value is specified by a global variable.

substring
A part of a character string.

subsystem
In Db2 for z/0S, a distinct instance of a relational database management system (RDBMS).

table
In a relational database, a database object that consists of a specific number of columns and is used
to store an unordered set of rows. See also base table.

table space
A logical unit of storage in a database. In Db2 for z/0S, a table space is a page set and can contain
one or more tables. In Db2 for Linux, UNIX, and Windows, a table space is a collection of containers,
and the data, index, long field, and LOB portions of a table can be stored in the same table space orin
separate table spaces.

temporary storage
An area used to store a QMF object temporarily while the user is working on it so that, with each
use, it can be readily accessed without further database retrieval. There are seven temporary storage
areas: QUERY, DATA, FORM, PROC, REPORT, CHART, or PROFILE. With the exception of query result
data (the DATA object), the QMF objects in these areas can be displayed using the SHOW command
followed by the name of the storage area. Though the contents of the DATA area cannot be directly
displayed, users can issue the SHOW REPORT or SHOW CHART commands to see the query result
data formatted with the specifications of the form currently in the FORM area. See also QMF object,
current object.

temporary storage queue
In CICS, a queue of data items which can be read and reread, in any sequence. The queue is created
by a task, and persists until the same task or a another task deletes it. See also transient data queue.

thread
The Db2 structure that describes an application's connection, traces its progress, processes resource
functions, and delimits its accessibility to Db2 resources and services. Most Db2 functions execute
under a thread structure.

three-part name
The full name of a table, view, or alias that consists of a location name, an authorization identifier,
and an object name, separated by periods. QMF commands that include three-part names can be
initiated only from Db2 for z/OS databases and can be directed to all databases except DB2 for VM or
VSE. When QMF for TSO has been started as a Db2 for z/OS stored procedure, QMF commands with
three-part names are not supported.

Time Sharing Option
See TSO.
trace

A record of the processing of a computer program or transaction. The information collected from a
trace can be used to assess problems and performance.

transaction
A unit of processing consisting of one or more application programs, affecting one or more objects,
that is initiated by a single request.

Glossary of terms and acronyms 243



transient data queue
A CICS storage area where objects are stored for subsequent internal or external processing. See also
temporary storage queue.

trigger
A database object that is associated with a single base table or view and that defines a rule. The rule
consists of a set of SQL statements that runs when an insert, update, or delete database operation
occurs on the associated base table or view.

TSO (Time Sharing Option)
A base element of the z/OS operating system that allows users to work interactively with the system.

two-phase commit
A two-step process by which recoverable resources in an external subsystem are committed. During
the first step, the database manager subsystems are polled to ensure that they are ready to commit. If
all subsystems respond positively, the database manager instructs them to commit.

UDF (user-defined function)
A function that is defined to the Db2 database system by using the CREATE FUNCTION statement and
that can be referenced thereafter in SQL statements. A UDF can be an external function or an SQL
function.

Unicode
A character encoding standard that supports the interchange, processing, and display of text that
is written in the common languages around the world, plus some classical and historical texts. The
Unicode standard has a 16-bit character set defined by ISO 10646.

unit of recovery (UR)
A sequence of operations within a unit of work between points of consistency.

unit of work (UOW)
A recoverable sequence of operations within an application process. At any time, an application
process is a single UOW, but the life of an application process can involve many UOWs as a result
of commit or rollback operations. In a multisite update operation, a single UOW can include several
units of recovery. In QMF SQL queries that include multiple statements and no COMMIT statements,
all statements comprise a single unit of work, so all statements except those that affect the session
(such as SET) are rolled back in the event of a failure. In QMF SQL queries that include multiple
statements and one or more COMMIT statements, a unit of work consists of a COMMIT statement and
all previous statements back to the beginning of the query or the last COMMIT statement. If a failure
occurs, all updates after the last successful COMMIT statement are rolled back.

user-defined function
See UDF.

view
A logical table that is based on data stored in an underlying set of tables. The data returned by a view
is determined by a SELECT statement that is run on the underlying tables.

XML (Extensible Markup Language)
A standard metalanguage for defining markup languages that is based on Standard Generalized
Markup Language (SGML).

z/0S
An IBM mainframe operating system that uses 64-bit real storage.

244 Query Management Facility Version 12 Release 2: Developing QMF applications



Index

Special Characters

+sign in Table Editor columns, changing 191

Numerics
64BIT option, DSQSPTYP parameter 46

A

A option for debugging 123
ADD command
Table Editor confirmation 191
ADDRESS command 13, 25
administrator authority, global variables for 182, 199
alias
view that retrieves aliases for LIST 199
application plan
default ID, V12.1 46
application programming interfaces
callable interface, See callable interface
command interface, See commands, interface
stored procedure (TSO only), See stored procedure
interface
applications
bilingual 32
CICS environment 3
command synonym 2
commands
INTERACT 39
overview 37
processing 15
controlling 1
data records 90
debugging 123
developing 1
implementation methods 3
ISPF requirements 27
procedures 7
procedures with logic 3
starting 2
types 1
ARG statement 11
arguments 11
ascending order for lists 193
Assembler
CICS
sample program 129
z/0S 136
communications area 135
function calls 128
High Level Assembler (HLASM) 127
language interface 127
macros 179
sample program 129
TSO sample programs 132, 137
attention flag for applications 182

batch QMF
global variable for mode of operation 182
batch QMF session, globals for 182
BIGINT data type
column width on export 60
exporting
column data format, IXF 66
edit code keywords, exported form 93
bilingual objects 32
BINARY data type
column width on export 60
exporting
column data format, IXF 66
edit code keywords, exported form 93
SQLTYPE codes on export (QMF format) 60
BINARY keyword seen in exported forms 93
break panel 93

c

C language
callable interface 138
CICS 145
communications area
DSQCOMM 143
mapping 138
function calls 140
interface requirements 140
ISPF 146
sample programs 141
TSO 145
CALL instruction 13
CALL statement
specifying result set for report 199
callable interface
application, running 19
calling from procedure with logic 13
CICS, running under 20
CcoBOL 147
command processing information 15
commands 18
communications area
143
COBOL 151
defining 16
error handling 19
set fields 16
debugging applications 123
description 15
FORTRAN 156
GET GLOBAL command 38
ISPF 3
languages 3, 15, 127
macros 179
PL/T164

Index 245



callable interface (continued)
program 3
return codes 18
REXX
communications variables 173
description 173
invoking with 7
uses 3
sample programs
Assembler 129
c141
COBOL 150
START command
starting QMF 19
syntax 45
CANCEL command
Table Editor confirmation 191
carriage control characters, suppressing 199
CASE parameter of QMF profile 188
CCSID used for XML exports 81
CDATA tags in exported XML 81
cell tags in exported XML 81
CHANGE command
Table Editor confirmation 191
CHAR data type
column width on export 60
exporting
column data format, IXF 66
edit code keywords, exported form 93
SQLTYPE codes on export (QMF format) 60
CHAR keyword seen in exported forms 93
chart objects 118
CICS environment
Assembler
z/0S requirements
136
callable interface 3
COBOL programs 153
CONNECT command 8
data queue
IXF format 66
transient data queues 121
using to transfer QMF objects 60
Db2 interaction 20
global variables related to 190
program start parameter overrides 20
region 20
CLEAR command
Table Editor confirmation 191
COBOL
callable interface 147
CICS 153
communications area 147
delimiters 152
DSQCOMM 151
execution requirements 152
function calls 148
ISPF 154
macros 179
sample program 150
TSO 153
coded character set identifier, XML exports 81
codes, SQL, See SQL codes
column

column (continued)
C records 66
data format 66
default indicator in Table Editor 191

DESCRIBE command, See DESCRIBE command

heading
labels vs. names 193
name lengths on EXPORT 60, 193
widths on export 60
command synonyms
creating 58
definitions 188
example 2
NLF table 31
commands
applications 37
bilingual applications 34
environment 25
global variables that support 182
globals that store message output 190
INTERACT 39
interface
description 21
invoking from a program 22
requirements 3
return codes 22
sample program 21
SELECT service 22
language variable 33
length 15
national language, setting 199
return code 11
RUN 9
SET GLOBAL 44
system specific 8
comment
application data records 90, 102
exported formats 102
comments, sending to IBM ix
communications area
COBOL 147,151
defining 16
FORTRAN 161
PL/1169
Compatibility Mode and multirow fetch 46
concurrent access resolution 199
CONFIRM parameter of QMF profile 188
confirmation panels
Reset Report 199
temporary storage overwrites 199
CONNECT command
DB2 for VM or VSE 8
description 37
example 37
global variable for CONNECT ID 182
initial procedures 7
mixed-case passwords 8, 188
procedures 8
connectivity with remote servers
stored procedure interface restrictions 37
control areas in exported objects
records of form files 87
records of report files 87
T records 88

246 Query Management Facility Version 12 Release 2: Developing QMF applications



control information

removing from reports 107
conventions for highlighting viii
CONVERT QUERY command

global variables for 215

restricting update of last used date 199
cost estimate for query, disabling 193
CSV data

exporting 83
CSV export format

file size maximum 119
currency symbol, changing 193
current location 37
cursor

stability, enabling 199

status of 182

D

D, DC, DZ, DZC edit codes
currency symbol, changing 193
data
D records 66
exporting 60
object
formats 60
IXF exported format 66
records, exporting 60, 81
type widths 60
DATA object
global variables related to 182
incomplete, enabling Reset Report panel 199
data record format
XML data type 81
data set, defining for exports 199
data types, export considerations 60, 93
database
SQL codes, See SQL codes
subsystem ID, global variable 182
uncommitted read vs. cursor stability 199
database manager, global that stores type 182
database remote connections 8
DATAFORMAT parameter values, EXPORT command
QMF 60, 193
DATE data type
column width on export 60
exporting
column data format, IXF 66
edit code keywords, exported form 93
ISO format on export 60
SQLTYPE codes on export (QMF format) 60
DATE keyword seen in exported forms 93
date last used, object lists 193, 199
date modified, ordering lists by 193
DB2 for VM or VSE
CONNECT command 8
remote connections 8
DBCS support
changing default indicator, Table Editor 191
changing null indicator, Table Editor 191
global variables related to 182
debugging applications
ISPF, using 30
PDF dialog test 30

DECFLOAT data type
column width on export 60
exporting
column data format, IXF 66
edit code keywords, exported form 93
SQLTYPE codes on export (QMF format) 60
DECIMAL data type
column width on export 60
exporting
column data format, IXF 66
edit code keywords, exported form 93
SQLTYPE codes on export (QMF format) 60

decimal floating-point data type, See DECFLOAT data type

DECIMAL parameter of QMF profile 188
DELETE command

Table Editor confirmation 191
delimiters

between statements in SQL queries 199
descending order for lists 193
DESCRIBE command

views that support 199
directory blocks, specifying upon export 199
DISPLAY command

restricting update of last used date 199
dollar sign in reports, changing 193
DSQ parameters on START command

DSQADPAN 46

DSQALANG 46

DSQSBSTG 46

DSQSCMD 46

DSQSDBCS 46

DSQSDBNM 46

DSQSDBQN 46

DSQSDBQT 46

DSQSDBUG 46

DSQSIROW 46

DSQSMODE 46

DSQSMRFI 46

DSQSPILL 46

DSQSPLAN 46

DSQSPRID 46

DSQSPTYP 46

DSQSRSTG 46

DSQSRUN 46

DSQSSPQN 46

DSQSSUBS 46
DSQ1SCEM schema file 81
DSQ1STSH style sheet file 81
DSQABFA 132
DSQABFAC 129
DSQAO global variables 182
DSQAP global variables 188, 190
DSQCIA 128
DSQCIX subroutine 174
DSQCM global variables 190
DSQCOMM

Assembler 135

€138,143

coBoL 147

defining 16

DSQCOMMA 135

DSQCOMMC 143

error handling 19

message text 125

Index 247



DSQCOMM (continued)

set fields 16
DSQCP global variables 191
DSQDEBUG trace log

logging positive SQL codes 193
DSQEC global variables 199
DSQEC_NLFCMD_LANG variable 33,199
DSQQC global variables 215
DSQQM globalvariables 216
DSQSDBLG parameter 46
DSQUOPTS initialization routine 199
DXY global variables 216

E

edit codes, keywords seen in exports 93
EDIT command

default editor 199
END command

command interface 22

description 38

interactive session 177

rerunning initial procedures 7

session types 38

Table Editor confirmation 191
end-of-object record (E) 90
environment global variable 182
estimated query cost, disabling 193
euro currency symbol, enabling 193
EXIT command 38
EXPORT command

column name lengths 60, 193

DATA 60

data object 60

form, national language used 199

forms

edit code keywords 93
IXF option 66

restricting update of last used date 199

table object 60
TSO
specifying storage 199
using CICS 121
XML specification used 81
exporting
charts 118
CSV data 83
data and tables 60
file size maximums 119
form objects 59
forms 84
hex codes for data types 60
keywords used for edit codes 93
LOB data 81
object types 59
procedures 118
prompted queries 84
QBE queries 118
reports 84
SQL queries 118
storage considerations 121
versus saving 60
width calculations for data types 60
extended storage, using for spill data

exte

exte

nded storage, using for spill data (continued)
required program parameters 46

setting amount 199

nded syntax

SET GLOBAL command 44

extended-format decimal floating-point data, See DECFLOAT
data type

Extensible Markup Language (XML) data type, See XML data
type

F

feedback, sending to IBM ix

fetch, multirow 46

FILE

option, DSQSPTYP parameter 46

FLOAT data type

column width on export 60
exporting

column data format, IXF 66

edit code keywords, exported form 93
SQLTYPE codes on export (QMF format) 60

form

data records on export 93
data type keywords on export 93
exporting

file size maximum 119
field numbers 93
FORM.COLUMNS

column names vs. labels 193
FORM.MAIN

column names vs. labels 193
header records on export 93
importing 102
LAYOUT command 93
multicultural support for SAVE, EXPORT, IMPORT 199
panels

globals related to 182
table numbers 93
translating 93

formats

column data 66
data, exporting 60
encoded

definition 59
form object 93
header record 60
IXF 59, 66
prompted query object 109
report object

no control information 107
table 60

FORTRAN

callable interface 156
communications area 156
DSQABFF 158

DSQCOMM 161

function calls 157

ISPF 163

macros 179

sample program 158

TSO 162

function calls

€140
DSQCIC 140

248 Query Management Facility Version 12 Release 2: Developing QMF applications



function calls (continued)
DSQCICE 140
function keys
where definitions are stored 188

G

GDDM (Graphical Data Display Manager) 39
GET GLOBAL command 18, 38
global variables
administrator authority 182
administratorauthority 199
application trace level 182
batch vs. interactive operation 182
carriage control characters in printouts 199
CASE parameter of profile 188
CICS
printing 190
spill data 190
tracing 190
classes of
DSQAO 182
DSQAP 188, 190
DSQCM 190
DSQCP 191
DSQEC 199
DSQQC 215
DSQQM 216
DXY 216
stored procedure interface 182
column labels vs. names 193
command support 182
command synonym definitions 188
concurrent access resolution 199
CONFIRM parameter of profile 188
CONNECT ID 182
creating 44
creating variables 44
currency symbol 193
current form panel 182
current object 182
current panel name 182
database cursor status 182
database manager 182
DBCS support 182
EXPORT command storage (TSO) 199
extended storage for spill data 199
fetched rows, number of 182
invocation procedure, rerunning 199
isolation level for queries 199
LANGUAGE parameter of profile 188
last used date on objects 199
length of column names on EXPORT 60, 193
LENGTH parameter of profile 188
LIST command
OWNER default 199
views that support 199
list of 181
list order 193
local database name 182
message output 190
MODEL parameter of profile 188
multicultural support 182, 199
multistatement SQL queries 199

global variables (continued)

notification of positive SQL codes 193
owner name 182
panel IDs, displaying 193
PRINTER parameter of profile 188
QMF used through RUW 188
query model 182
query subtypes 182
relative cost estimate panel 193
remote location name 182
report display after RUN QUERY 193
Reset Report panel display 199
RESOURCE GROUP parameter of profile 188
result set for stored procedures 199
row length in QMF reports 199
rules for 45
RUN QUERY messages 216
scroll amount 193
setting
SET GLOBAL command 44
setting at initialization 182, 199
setting/displaying 182
SHARE parameter of SAVE command 199
SPACE parameter of profile 188
SQL queries over 32 KB 199
stored procedure interface 182
subsystem ID 182
temporary storage overwrites 199
TRACE parameter of profile 188
user attention flag 182
version/release 182
WIDTH parameter of profile 188
GRAPHIC data type
column width on export 60
exporting
column data format, IXF 66
edit code keywords, exported form 93
SQLTYPE codes on export (QMF format) 60
GRAPHIC keyword seen in exported forms 93
Graphics Data Format (GDF) 118

H

header record

fields 85

form object 93

format 60

IXF 66

object level 85

XML exports 81
headings, column, See heading
hex codes for exported data types 93
highlighting conventions viii
home panel 7
HTML format for reports

exporting in 106

file size maximum 119

I

ICU (Interactive Chart Utility) 39
IMPORT command
accelerator tables 199

Index 249



IMPORT command (continued)
DATA option 83
definition 59
errors and warnings during execution of 93
national language used, IMPORT FORM 199
restricting update of last used date 199
using CICS 121
XML specification used 81
importing
form object 93
object level information 85
prompted query object 116
tables created outside QMF 60
incomplete data object
enabling Reset Report panel 199
prompt panel 83
initial procedures
bilingual applications 33
CONNECT command 7
name, specifying 7
storing 7
writing 7
INTEGER data type
column width on export 60
exporting
column data format, IXF 66
edit code keywords, exported form 93
SQLTYPE codes on export (QMF format) 60
INTERACT command
command form 41
description 39
session
ending 39
form 39
termination 38
interact switch (DSQAO_INTERACT) 41
interactive execution of QMF, global variable 182
interactive mode
GDDM ICU 39
initial procedures 7
QMF 39
interactive QMF
global variable for mode of operation 182
interfaces to QMF
callable interface, See callable interface
command interface, See commands, interface
stored procedure interface, See stored procedure
interface
isolation level for queries 199
ISPF (Interactive System Productivity Facility)
callable interface 28
IXF export format
binary 66
character 66
description 66
examples 66
file size maximum 119
long name support 66
version numbers 66

K

keywords
for edit codes, in exported file 93

keywords (continued)
START command 46

L

L option for debugging 123
labels vs. names for column headings 193
LANGUAGE parameter, QMF profile 188
languages supported
programming for callable interface 3
translations, See multicultural support
last used date for objects
limiting to RUN, SAVE, IMPORT 199
sorting lists by 193
LAYOUT command
restricting update of last used date 199
LENGTH parameter of QMF profile 188
license agreement global variable for QMF VUE 182
linear procedure
STOPPROC option 41
suppressing 41
links
non-IBM Web sites
228
LIST command
order of items, changing 193
OWNER parameter default 199
underlying views
globals that store view names 199
LOB data
exporting 81
location name
global variable that stores 182
locks on data
concurrent access resolution options 199
preventing escalation 199
log, trace 193
LONG VARCHAR data type
exporting
column data format, IXF 66
LONG VARGRAPHIC data type
exporting
column data format, IXF 66

long-format decimal floating-point data, See DECFLOAT data

type

M

macros, product interface 179
maximum lengths
SQL queries 199
MESSAGE command
description 41
displaying text 41
examples 41
ISPF panels 41
options 41
QMF help panels 41
suppressing linear procedure execution 41
tracing 124
messages
global variables related to
message support for positive SQL codes 193

250 Query Management Facility Version 12 Release 2: Developing QMF applications



messages (continued)

global variables related to (continued)

messages from prior command 190
RUN QUERY messages 216

migration information 85
minisession

invalid commands 56

report 56

valid commands 56
mixed-case passwords 188
mode of operation

global variable that shows 182
MODEL parameter, QMF profile 188
monetary values, changing currency symbol 193
MR parameter

three-part name failures 46
multicultural support

forms (SAVE/EXPORT/IMPORT) 199

global variables related to 182, 199
multilingual environments 34
multirow fetch

three-part name failures 46
multistatement queries 199

N

names
for columns, changing to database labels 193
ordering lists by 193
views that support LIST command, globals for 199
National Language Feature (NLF) 199
See also multicultural support
New Function Mode and multirow fetch 46
NEXT command
Table Editor confirmation 191
NLF (National Language Feature)
defined 31
language 31
language ID 27
multilingual environments 34
panel requirements 31
session environments 31
See also multicultural support
notices
legal 227
notification of positive SQL codes 193
null
values
default character for, Table Editor 191
numeric
data
currency symbol, changing 193
NUMERIC keyword seen in exported forms 93

o
object
global variables related to current 182
last used date 193,199
sharing 199
type
ordering lists by 193
online help

online help (continued)

QMF message help

displaying positive SQL codes 193

operating system, global variable for 182
order

LIST command items, changing 193
overwrites of temporary storage, preventing 199
owner names

default for LIST command 199

global variables related to 182

ordering lists by 193

P

panels
confirmation
temporary storage overwrites, preventing 199
current 39
IDs
displaying 193
interactive 39
names
global variables related to 182
relative cost estimate, disabling 193
PARSE ARG statement 11
parse services and exporting XML 81
passwords, mixed-case 8
PDF 29, 30
PDS and PDSE data sets
defining export storage 199
defining type to QMF 199
performance
concurrent access resolution options 199
PL/I
callable interface 164
CICS 170
communications area 164
DSQABFP 167
DSQCOMM 169
function calls 165
ISPF 171
macros 179
sample program 167
TS0 171
z/0S 170
positive SQL codes, message support 193
PREPARE statement, concurrent access resolution 199
prerequisite Db2 for z/OS knowledge vii
PREVIOUS command
Table Editor confirmation 191
primary space allocation upon export 199
PRINT command
CICS
queue name/type 190
global variables
restricting last used date 199
suppressing carriage control characters 199
PRINTER parameter
QMF profile 188
procedure
exporting
file size maximum 119
initialization, setting variables during 182
invocation, rerunning 199

Index 251



procedure (continued)

preventing overwrites of PROC panel 199

stored procedures, See stored procedure
product interface macros 179
profile

global variables related to 188

preventing overwrites of unsaved values 199
program calls 15
programming interface information 228
prompted query

data records 109

export format 109

exporting

file size maximum 119

field numbers 109

header records 109

import/export file specifications

119

table numbers 109
PS data sets, defining for export 199

Q

Q.SYSTEM_INI procedure 182

QBE (Query-By-Example)
export format 118
file size maximum on export 119
import/export file specifications
119

QMF administrator authority, See administrator authority,

global variables for
QMF format for exporting data and tables 60, 119
gmf_data.xsd schema file 81
query
CALL statements
specifying result set for report 199
converting, See CONVERT QUERY command
estimated cost, disabling 193
isolation level 199
model global variable 182
preventing overwrites of QUERY panel 199
report from run
suppressing 193
running, See RUN QUERY command
SQL, See SQL queries
subtypes as stored in globals 182
queue
global variables for printing to 190
global variables for spill data 190

R

RACF and mixed-case passwords 188
records
application data (*) 90
column (C) 66
data (D) 66
data continuation (C) 92
data value (V) 87
fixed format 85
formats 60
header 85
table description (T) 66

records (continued)
variable format 87
REFRESH command
Table Editor confirmation 191
relative cost estimate panel, disabling 193
release number of QMF, global variable for 182
remote data access
user ID for CONNECT 182
remote unit of work
command behavior 37
reports
across 103
displaying text 41
export example 103
export format 103
export records 103
export uses 103
exported across 108
exporting
file size maximum 119
exporting without control information 107
field numbers 103
HTML 106
line (L) records 90
minisession 56
object
across 103
export format 103
field numbers 103
table numbers 103
panel 2
printing
carriage control characters 199
records 85
row data 89
row length, setting 199
sample header 103
stored procedure runs, See stored procedure
suppressing after query is run 193
table data 88
table numbers 103
Reset Report panel, enabling 199
resource contention, reducing 199
RESOURCE GROUP parameter, QMF profile 188
result set
records in exported XML 81
specifying which to use for report 199
return codes
callable interface 18
command interface 22
message 12
nonzero 11
rows
maximum length 199
RUN command
embedded substitution variables 13
prompt panel 9
restricting update of last used date 199
substitution variables 9
RUN QUERY command
accelerator tables 199
global variables for messages 216
multistatement queries 199
SQL queries over 32 KB 199

252 Query Management Facility Version 12 Release 2: Developing QMF applications



RUW (remote unit of work) 8

S

SAVE command
form, national language used 199
restricting update of last used date 199
SHARE parameter, global that sets 199
SAVE DATA command
accelerator tables 199
SAVE option
EDIT TABLE command
globals related to 191
schema definition in exported XML file 81
scroll amount, setting 193
secondary space allocation upon export 199
SELECT PGM service, ISPF 28
SELECT statements
concurrent access resolution options 199
service information viii
service trace
PL/I example 53
session global variables 216
session, variables that record state 182
SET GLOBAL command
callable interface 18, 44
extended syntax 44
prompting for variables 9
syntax 44
SHARE parameter of SAVE command 199
SHOW command

SHOW CHANGE, Table Editor confirmation 191

SHOW GLOBALS 182

SHOW SEARCH, Table Editor confirmation 191

signal on error instruction 11

SKIP LOCKED DATA option for SELECT statements 199

SMALLINT data type
column width on export 60
exporting
column data format, IXF 66
edit code keywords, exported form 93
SQLTYPE codes on export (QMF format) 60
sort order for LIST command 193
SPACE parameter, QMF profile 188
specification for XML export/import 81
spill file
global variables that support 190
use of extended storage in TSO 199
SQL codes
displaying from last command 216
positive, enabling message support 193
SQL keywords

multistatement queries, See multistatement queries

SELECT

concurrent access resolution options 199

SQL queries
exporting
file size maximum 119
lengths over 32 KB 199
SQLID special register 182
SQLSTATE information, displaying 216
START command
debugging errors 125
interface communications area 16

START command (continued)
keywords
DSQADPAN 46
DSQALANG 46
DSQSBSTG 46
DSQSCMD 46
DSQSDBCS 46
DSQSDBNM 46
DSQSDBQN 46
DSQSDBQT 46
DSQSDBUG 46
DSQSIROW 46
DSQSMODE 46
DSQSMRFI 46
DSQSPILL 46
DSQSPRID 46
DSQSPTYP 46
DSQSRSTG 46
DSQSRUN 46
DSQSSPON 46
DSQSSUBS 46
list 46
QMF startup 19, 45
syntax 45
state of QMF session, variables for 182
storage
export considerations
XML data 83
exported file size maximums 118
extended, spill data (TSO) 46
specifying when exporting 199
spill data
extended virtual 199
stored procedure
specifying result set for report 199
starting QMF for TSOas
global variable support 182
stored procedure interface
DSQSDBLG parameter 46
remote data access restrictions 8
style sheet for exported XML files 81
substitution variables
assigning values 9
global variables, setting 9
REXX program calls 13
syntax 9
subsystem ID, global variable 182
support information viii
symbol for currency, changing 193
synonyms, command 58
syntax diagrams, how to read viii

T

table records in exported files 66
tables
creating outside QMF 66
description records (T) 66, 88
exporting 60
form, numbers 93
LIST command
global variables related to 199
object

Index 253



tables (continued)
object (continued)
import/export file specifications
119
import/export rules 83
importing 60
processing 60
prompted query, numbers 109
report, numbers 103
row records (R) 89
temporary storage
CICS
global related to printing 190
global related to spill file 190
confirmation for overwrites 199
global variables for tracing 190
modifying 19
queue 121
restrictions 3
termination flag variable 182
terms of VUE license agreement (global variable) 182
three-part names in QMF commands
failures when MR=YES 46
TIME data type
column width on export 60
exporting
column data format, IXF 66
edit code keywords, exported form 93
ISO format on export 60
SQLTYPE codes on export (QMF format) 60
TIME keyword seen in exported forms 93
TIMEST keyword seen in exported forms 93
TIMESTAMP data type
column width on export 60
exporting
column data format, IXF 66
edit code keywords, exported form 93
ISO format on export 60
SQLTYPE codes on export (QMF format) 60
TIMESTAMP WITH TIME ZONE data type
column width on export 60
exporting
column data format, IXF 66
column record formats 66
edit code keywords, exported form 93
IXF version numbers for export 66
ISO format on export 60
SQLTYPE codes on export (QMF format) 60
TRACE command
PL/I example 53
traceability 52
tracing
A option 123
allocating file for 124
application trace level 182
creating trace definitions 30
example 124
global variables for 190
ISPF commands 30
L option 123
positive SQL codes 193
profile parameter for 188
setting 123
turning off 124

transient data
contrasted with temporary storage 121
global related to printing 190
global related to spill file 190
global variables for tracing 190
translatable applications 34

translations available in QMF, See multicultural support

TSO
Assembler callable interface programs 137
Assembler programs 137
C callable interface programs 145
C programs 145
extended storage for spill data 46
mixed-case passwords on RACF 8
REXX callable interface programs 176
REXX programs 176

TSTMPTZ keyword seen in exported forms 93

U

uncommitted read, enabling 199
UNKNOWN keyword seen in exported forms 93

USE CURRENTLY COMMITTED option for SELECT statements

199
user attention flag 182
user ID, database connections 182
user-defined edit codes
keyword seen in exported forms 93

\'

validation of exported XML file 81
VARBINARY data type
column width on export 60
exporting
column data format, IXF 66
edit code keywords, exported form 93
SQLTYPE codes on export (QMF format) 60
VARCHAR data type
column width on export 60
exporting
column data format, IXF 66
SQLTYPE codes on export (QMF format) 60
VARGRAPHIC data type
column width on export 60
exporting
column data format, IXF 66
edit code keywords, exported form 93
SQLTYPE codes on export (QMF format) 60
variables
error handling 19
global
substitution 9
pool 15
prompting for 9
rc11
rules 45
setting 9
substitution 9
variation panels 93
variations, FORM.DETAIL
global variable that stores number 182
VBS format, XML data exports 81

254 Query Management Facility Version 12 Release 2: Developing QMF applications



version number
IXF versions on export 66
QMF, global that stores 182
view
LIST command, globals related to 199
virtual storage, See storage
VM platform
three-part name restrictions 46
VSE platform
three-part name restrictions 46
VUE license agreement global variable 182

w

WAIT FOR OUTCOME option for SELECT statements 199
WIDTH parameter, QMF profile 188

X

XML data type
exporting
file size maximum 119
format of data records 81
storage considerations 83

Index 255



256 Query Management Facility Version 12 Release 2: Developing QMF applications






Product Number: 5650-DB2
5615-DB2
5697-QM2

SC27-8878



	Contents
	About this information
	What you should know before you begin
	Service updates and support information
	Highlighting conventions
	How to read syntax diagrams
	How to send your comments

	Chapter 1.  QMF application development overview
	What is application development in QMF?
	How can users use your application?
	Interacting primarily with the application
	Starting the application from a QMF session

	What QMF application development tools are available?
	QMF procedures
	Application programming interfaces to QMF

	Conventions for National Language Feature information

	Chapter 2.  Procedures as applications
	Initial procedures
	QMF CONNECT within a procedure
	Substitution variables in procedures
	Specifying values on the RUN command
	Specifying values on the RUN command prompt panel

	REXX variables in procedures with logic
	Passing arguments to a procedure with logic
	REXX error-handling statements in procedures with logic
	Branching to error-handling subroutines
	Messages with the REXX EXIT statement

	Calling REXX programs from a procedure with logic
	Calling REXX programs without substitution variables
	Calling REXX programs that contain substitution variables


	Chapter 3.  The callable interface and QMF applications
	What is the callable interface?
	Considerations for using the QMF callable interface
	The interface communications area (DSQCOMM)
	Return codes
	Commands for using the callable interface
	Starting QMF from an application
	Running your callable interface application
	The callable interface in QMF
	Error handling
	Running callable interface programs under CICS

	Chapter 4.  Issuing QMF commands from an ISPF dialog
	Writing a program that uses the command interface: an example
	Invoking the command interface
	The END command
	Variables in the command interface
	Command interface return codes

	Chapter 5.  ADDRESS QRW and the QMF command environment
	Chapter 6.  Writing QMF applications that use ISPF services
	Starting and running QMF from an ISPF application
	Running queries that contain variables
	Starting a program that uses ISPF services from within QMF
	ISPF services in a procedure with logic
	The EDIT command with ISPF
	ISPF and debugging applications

	Chapter 7.  Writing bilingual applications
	Comparing the English and NLF environments
	Creating objects for use in bilingual applications
	The command language variable
	Initial procedures in bilingual applications
	English-only commands
	Multilingual environments
	Creating translatable applications

	Chapter 8.  QMF commands in applications
	Commands designed for applications
	CONNECT
	END
	EXIT
	GET GLOBAL (extended syntax)
	INTERACT
	The session form of INTERACT
	The command form of INTERACT

	MESSAGE
	SET GLOBAL (extended syntax)
	Syntax of SET GLOBAL (extended syntax)
	Guidelines for defining and using global variables

	START
	General syntax
	START command keywords

	TRACE
	PL/I coding example for TRACE


	Commands you can use in a RUN QUERY report minisession
	Command synonyms

	Chapter 9.  Exporting and importing objects
	What you can do with an exported UNIX file, TSO data set, or CICS data queue
	Exporting versus saving data
	Exporting data objects and database tables
	Exporting data or tables in QMF format
	Exporting data or tables in IXF format
	Exporting data or tables in XML format
	Exporting data or tables in CSV format
	Rules and information for exporting and importing data objects and tables
	Allocation of UNIX files, TSO data sets, or CICS data queues
	Export errors


	Exporting forms, reports, and prompted queries
	General format of the exported file
	Header records
	Records of the exported object
	Data value records (V)
	Data table description records (T)
	Table row records (R)
	End-of-object record (E)
	Application data record (*)
	Report line records (L)
	Data continuation records (C)


	Exporting a form
	Considerations for QMF form objects in applications
	Exporting a standard report
	Exporting a report in HTML format
	Exporting a report without control information
	Exporting an across-style report
	Exporting a prompted query
	Ensuring that the exported prompted query has a valid format

	Importing forms and prompted queries
	Procedures and SQL queries
	Exported form-based charts and QBE queries
	Size specifications for externalized objects
	Storage considerations
	CICS data queues
	TSO data sets


	Chapter 10.  Debugging your QMF applications
	Debugging your callable interface applications
	The L option for tracing
	The A option for tracing
	Turning the tracing off
	Allocating the QMF trace data output
	The QMF MESSAGE command for tracing

	Errors on the START or other QMF commands

	Chapter 11.  Programming language specifications for using the callable interface
	Assembler language interface
	Interface communications area mapping for Assembler (DSQCOMMA)
	Function calls for Assembler language
	Assembler programming example
	Sample Assembler program for CICS
	Sample Assembler program for TSO

	DSQCOMM for Assembler
	Running your Assembler programs in CICS
	Running your Assembler programs in TSO
	Assembling and link-editing in TSO
	Running in TSO with ISPF
	Running in TSO without ISPF


	C language interface
	Interface communications area mapping for C language (DSQCOMMC)
	Function calls for the C language
	C language programming example
	DSQCOMM for C
	Running your C programs in CICS
	Running your C programs in TSO
	Compiling and link-editing in TSO
	Running your programs in TSO without ISPF
	Running your programs in TSO under ISPF


	COBOL language interface
	Interface communications area mapping for COBOL (DSQCOMMB)
	Function calls for COBOL
	The ISPF LIBDEF service with COBOL
	COBOL programming example
	DSQCOMM for COBOL
	Considerations for running your COBOL callable interface program
	Running your COBOL programs in CICS
	Running your COBOL programs in TSO
	Compiling and link-editing in TSO
	Running your programs in TSO without ISPF
	Running your programs in TSO under ISPF


	Fortran language interface
	Interface communications area mapping for Fortran (DSQCOMMF)
	Function calls for Fortran
	Fortran programming example
	DSQCOMM for Fortran
	Running your Fortran programs
	Compiling and link-editing your program
	Running your programs in TSO without ISPF
	Running in TSO under ISPF


	PL/I language interface
	Interface communications area mapping for PL/I (DSQCOMML)
	Function calls for PL/I
	PL/I programming example
	DSQCOMM for PL/I
	Running your programs under CICS
	Running your programs under TSO
	Compiling and link-editing in TSO
	Running in TSO without ISPF
	Running in TSO under ISPF


	REXX language interface
	Interface communications variables for REXX
	Function call for REXX
	REXX programming example
	Running your REXX programs
	A REXX example of using an INTERACT loop


	Appendix A.  Product interface macros
	Appendix B.  QMF global variables
	Naming convention for QMF global variables
	Setting and displaying values for global variables
	Global variables for state information not related to the profile
	Global variables for profile-related state information
	Global variables associated with CICS
	Global variables related to a message produced by the most recent command
	Global variables associated with the Table Editor
	Global variables that control various displays
	Global variables that control how commands and procedures are executed
	Global variables that store results of CONVERT QUERY
	Global variables that show RUN QUERY error message information
	Global variables that store panel input values

	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	Privacy policy considerations

	Glossary
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


