
IBM COBOL for Linux on x86 1.2

Migration Guide

IBM

SC28-3454-00

Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 49.

Second Edition (October 2023)

This edition applies to IBM® COBOL for Linux® on x86 1.2 or later compilers until otherwise indicated in new editions.
Make sure you are using the correct edition for the level of the product.

You can view or download softcopy publications free of charge in the COBOL for Linux on x86 library.
© Copyright International Business Machines Corporation 2021, 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/support/pages/cobol-linux-x86-documentation-library

Contents

Chapter 1. Introduction... 1

Chapter 2. Migrating from an earlier version of COBOL for Linux on x86 to the
current version.. 3
Option changes.. 3
Migration of 32-bit applications to 64-bit mode...3
Linux distribution support..4
Optional programs support..5
Runtime compatibility..5

Chapter 3. Migrating from non-IBM COBOL compilers to COBOL for Linux on x86..... 7
Format changes..7

File suffix .cob for COBOL source...7
Free-format COBOL source files.. 7
Alphanumeric literals longer than 160 characters in COBOL source files..8
Extra and misplaced periods in COBOL source... 8
User-defined words.. 9
REPORT SECTION and SCREEN SECTION...11
Embedded null characters in variables... 11
Format of floating point literals..11
RECORD SEQUENTIAL file organization.. 12

Data representation... 13
IDENTIFICATION DIVISION changes... 14
DATA DIVISION changes... 15

OCCURS clauses in level 01... 15
COMP-X...16
Runtime errors because of uninitialized variables being converted to a display type.......................17
Redefined data items and OCCURS clauses..17
WHEN condition used with VALUE clause... 18
Expressions used with VALUE clause.. 19

PROCEDURE DIVISION changes...20
Moving national data items to alphanumeric data items.. 20
Undefined symbol errors for C functions being called.. 20
COBOL programs containing an ACCEPT statement... 21
BINARY formatted data in an ACCEPT statement...21
NULL parameters in CALL statements... 22
Unterminated nested statements..23

Output for positive numbers..24
Source conversion utility (scu).. 24

Source conversion utility (scu) options..26

Chapter 4. Migrating from Enterprise COBOL for z/OS to COBOL for Linux on x86... 31
Compiler options..31
Data representation... 31
Compiler and runtime environment variables.. 33
File specification.. 34
Interlanguage communication (ILC)... 35
Input and output..35
Runtime options...35
Source code line size... 36

 iii

Language elements..36
Complementary products..38
Getting IBM Enterprise COBOL for z/OS applications to compile.. 39
Getting IBM Enterprise COBOL for z/OS applications to run: overview... 39

Fixing differences caused by data representations.. 40
Fixing environment differences that affect portability..42
Fixing differences caused by language elements... 43

Writing code to run with IBM Enterprise COBOL for z/OS.. 43

Chapter 5. Migrating from COBOL for AIX to COBOL for Linux on x86..................... 45
Compiler options..45
Data representation... 46
Compiler and runtime environment variables.. 47
Language elements..47
File Specification..48

Notices..49
Trademarks.. 51

iv

Chapter 1. Introduction
This document presents topics to help you migrate COBOL source programs to COBOL for Linux on x86
1.2.

If you are upgrading from a previous version of COBOL for Linux on x86, see Chapter 2, “Migrating from an
earlier version of COBOL for Linux on x86 to the current version,” on page 3 for information on changes
you may need to be aware of when compiling and running your COBOL applications with COBOL for Linux
on x86 1.2.

COBOL for Linux on x86 is a part of the IBM COBOL compiler family. Migrating COBOL programs from
Enterprise COBOL for z/OS® or COBOL for AIX® to COBOL for Linux on x86 should be very straightforward.
However, you might have to update some of your compiler options and environment variables and take
into consideration differences in data representation between the platforms. From a COBOL language
perspective, all the IBM COBOL compilers conform to the ISO 1989:1985, Programming languages –
COBOL standard, therefore the majority of your COBOL source code should compile successfully with
COBOL for Linux on x86. Enterprise COBOL on z/OS is the most advanced of the IBM COBOL compilers
and supports several features in the COBOL 2002 and COBOL 2014 language standards. If you are
migrating from Enterprise COBOL for z/OS 6 and your COBOL source contains usage of new language
features, see “Language elements” on page 36 to confirm if those features are available in COBOL for
Linux on x86. For more information, see Chapter 4, “Migrating from Enterprise COBOL for z/OS to COBOL
for Linux on x86,” on page 31 and Chapter 5, “Migrating from COBOL for AIX to COBOL for Linux on x86,”
on page 45.

COBOL programs created using non-IBM COBOL compilers will normally have some source code
differences that will need to be modified to become compatible with COBOL for Linux on x86. These
differences are often the result of implementer extensions or deviations from standard COBOL but might
also be due to items in the COBOL standard that are specified as "implementor defined". The effort to
migrate to COBOL for Linux on x86 will depend largely on how many differences to Standard COBOL
were coded in the COBOL source files that you are migrating. COBOL for Linux on x86 includes a Source
Conversion Utility (scu) to assist with this migration effort. Differences in data representation between the
platforms and COBOL compilers may also need to be considered. For more information, see the Chapter
3, “Migrating from non-IBM COBOL compilers to COBOL for Linux on x86,” on page 7.

In this document, the term COBOL 2002 refers to the ISO/IEC 1989:2002, Information technology -
Programming languages - COBOL language standard. This does not imply that COBOL for Linux on x86
has implemented the new features found in COBOL 2002 although some have been implemented. We
are simply using COBOL 2002 to help you to identify extensions to COBOL that you might encounter as
you do your migration, and to help you to determine the changes that you might need to make to resolve
the extensions you encounter. It will be useful for you to refer to the COBOL for Linux on x86 Language
Reference and Programming Guide when modifying COBOL code. You can find these documents at the
COBOL for Linux on x86 documentation.

© Copyright IBM Corp. 2021, 2023 1

https://www.ibm.com/docs/en/cobol-linux-x86

2 IBM COBOL for Linux on x86 1.2: Migration Guide

Chapter 2. Migrating from an earlier version of COBOL
for Linux on x86 to the current version

This information describes some areas you might need to consider if migrating programs from COBOL for
Linux on x86 1.1 to 1.2.

Option changes
This information describes changes to options in COBOL for Linux on x86 1.2.

ADDR
The default option is changed from ADDR(32) to ADDR(64). The change means that if you want to
generate a 32-bit program in COBOL for Linux on x86 1.2, you must explicitly specify ADDR(32),
otherwise you generate a 64-bit program.

Migration of 32-bit applications to 64-bit mode
Execution results can change in 64-bit mode. If you migrate 32-bit applications to 64-bit mode, you might
need to do some recoding to accommodate the differences.

Although the main consideration in migrating to 64-bit mode is the change in size of data items, other
areas of an application could potentially be impacted, as described below.

LENGTH OF special register:

In 32-bit mode, the implicit definition of the LENGTH OF special register is PICTURE 9(9) USAGE IS
BINARY. In 64-bit mode, the implicit definition is PICTURE 9(18) USAGE IS BINARY.

LENGTH intrinsic function:

In 32-bit mode, FUNCTION LENGTH returns a 9-digit integer. In 64-bit mode, it returns an 18-digit
integer.

Address data items and index data items:

The storage allocation for data items that contain addresses or indexes is 4 bytes in 32-bit mode, and 8
bytes in 64-bit mode. The data items that are affected are those that are defined with any of the following
usages:

• POINTER
• FUNCTION-POINTER
• PROCEDURE-POINTER
• INDEX

The special register ADDRESS OF is implicitly defined as USAGE POINTER. Therefore storage is allocated
for it as described above for USAGE POINTER data items.

Layout of group items:

The change in allocation size of pointer data items and index data items between 32-bit mode and 64-bit
mode programs, described above, affects the layout of group items. In particular, data items that are
located after a pointer or index data item could be located at different offsets within a group. Also, the
number of slack bytes (bytes inserted by the compiler to ensure correct alignment) could differ, and thus
the total size of a group could change.

Restriction: Your COBOL programs should not rely on the layout of group items.

SYNCHRONIZED data items:

© Copyright IBM Corp. 2021, 2023 3

If the SYNCHRONIZED clause is specified for pointer data items or index data items, the items are aligned
on a fullword boundary in 32-bit mode and on a doubleword boundary in 64-bit mode.

Because the size of pointers is different between 32-bit and 64-bit applications, the offsets of data items
that are subsequent to them in a group, as well as the overall size of the group, will change. This is true
regardless of whether or not slack bytes are inserted by the compiler when SYNCHRONIZED is specified.
However, specifying SYNCHRONIZED will further affect the offsets of pointers and subsequent data items
in a group, as well as the group size due to the difference in the alignment for pointers between 32-bit and
64-bit applications.

Redefining pointer data items:

Because the size of a pointer is different between 32-bit and 64-bit applications, using it as the object
of a REDEFINES clause might yield undesired results unless the size of the redefining data item (that is,
the REDEFINES subject) is also changed accordingly. However, even if you change the redefining data
item to match the size of the pointer, carefully consider why you are redefining a pointer in the first place.
The value of a pointer is an address and generally speaking your program should only use pointers in the
COBOL statements that explicitly support using pointers such as the SET statement. Using a REDEFINES
clause to inspect or set the value of a pointer is not recommended.

Using the IGY-ADDR conditional compilation variable

In general, it is recommended that you code your programs so that they are not affected by the switch
from 32-bit to 64-bit applications. For example, there is no dependency on the layout of data items in a
group if you code your programs in this way.

However, if for some reason your programs are sensitive to the addressing mode, there is a predefined
conditional compilation variable named IGY-ADDR, which can be used to have different code paths
compiled based on the setting of the ADDR option. This allows you to maintain a single source file that will
work for both 32-bit and 64-bit compilations.

Data files:

Data files created by 32-bit mode programs can be processed by 64-bit mode programs, and data files
created by 64-bit mode programs can be processed by 32-bit mode programs. No addressing mode is
attached to a data file. However, if a record definition contains an address data item or index data item,
migration to 64-bit mode could cause the length of the record, and thus the length of the file, to change.

Middleware subsystems:

If a program depends on a middleware subsystem to do data-processing tasks, make sure that that
subsystem works with 64-bit programs.

Restriction: CICS® TXSeries® supports only 32-bit COBOL applications.

DB2® Version 11.5 supports either 32-bit or 64-bit COBOL applications.

Other considerations:

Linux does not support mixing 32-bit mode and 64-bit mode programs within an application, and the
linker does not support linking object files of different addressing modes. If a 64-bit program makes
interlanguage calls, or calls routines in a user library, make sure that 64-bit versions of the called routines
are available.

Linux distribution support
Linux distributions that have reached end of support such as RHEL 7.8 are not supported with COBOL for
Linux on x86 1.2. Check the Installation Guide for a list of Linux distributions supported by COBOL for
Linux on x86 1.2.

4 IBM COBOL for Linux on x86 1.2: Migration Guide

Optional programs support
Optional programs that have reached end of support, such as Db2® 11.1, are not supported with COBOL
for Linux on x86 1.2. Check the Installation Guide for a list of optional programs supported by COBOL for
Linux on x86 1.2.

Runtime compatibility
When you install COBOL for Linux on x86 1.2, the runtime library will be installed in the
location /opt/ibm/cobol/rte, upgrading previous versions of the runtime library that might have been
installed in that location. As the COBOL runtime library is upward compatible, any COBOL programs
created using COBOL for Linux on x86 1.1 will continue to run with the runtime library provided in COBOL
for Linux on x86 1.2.

Chapter 2. Migrating from an earlier version of COBOL for Linux on x86 to the current version 5

6 IBM COBOL for Linux on x86 1.2: Migration Guide

Chapter 3. Migrating from non-IBM COBOL compilers
to COBOL for Linux on x86

This information describes some areas you might need to consider if migrating programs from non-IBM
COBOL compilers to COBOL for Linux on x86.

Format changes
To run your source programs on IBM COBOL for Linux on x86, make the required format changes to your
source programs.

File suffix .cob for COBOL source
You can now compile a COBOL program by using a .cob suffix in addition to the .cbl suffix.

IBM COBOL for Linux on x86 supports the .cob suffix for COBOL source files.

See the following example:

$ cob2 -o tcCobol tcCobol.cob
IBM COBOL for Linux 1.2.0 compile started
End of compilation 1, program TCCOBOL, no statements flagged.

Free-format COBOL source files
IBM COBOL for Linux on x86 suppresses some messages that are related to enforcing fixed-format source
code.

When you use IBM COBOL for Linux on x86 to compile source code that contains free-format COBOL
source, you will receive the error messages in the following example:

$ cat tcFreeFormat.cbl
000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. FreeFormat.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 PROCEDURE DIVISION.
000700 BEGIN-MY-PROGRAM.
000800 DISPLAY "COBOL for Linux on x86 1.2.0...".
000900 STOP RUN.

$ cob2 tcFreeFormat.cbl
IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 8 IGYPS0009-E "DISPLAY" should not begin in area "A". It was processed as if found
 in area "B".
 9 IGYPS0009-E "STOP" should not begin in area "A". It was processed as if found in
 area "B".
-Messages Total Informational Warning Error Severe Terminating
0Printed: 2 2
End of compilation 1, program FREEFORMAT, highest severity: Error.
Return code 8

You can rewrite your source in fixed format, or use scu to convert your source from free-format source to
fixed-format source:

$ cat sol-tcFreeFormat.cbl
000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. FreeFormat.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500
000600 PROCEDURE DIVISION.
000700 BEGIN-MY-PROGRAM.

© Copyright IBM Corp. 2021, 2023 7

000800 DISPLAY "COBOL for Linux on x86 1.2.0...".
000900 STOP RUN.

Alphanumeric literals longer than 160 characters in COBOL source files
The length of an alphanumeric literal, excluding the separators that delimit the literal, must be greater
than zero and less than or equal to 160 alphanumeric character positions.

When you use IBM COBOL for Linux on x86 to compile source code that contains one or more
alphanumeric literals longer than 160 characters, you will receive the error message in the following
example:

$ cat tcAlphanumeric160.cbl
 000100 IDENTIFICATION DIVISION.
 000200 PROGRAM-ID. TEST-CASE.
 000300 ENVIRONMENT DIVISION.
 000400
 000500 DATA DIVISION.
 000600 WORKING-STORAGE SECTION.
 000700
 000800 01 VARIABLE PIC N(300) VALUE "BEGIN = = = = = = =
 000900- " =
 001000- " =
 001100- " =
 001200- "= = = = = = = = = = = = = = = END".
 001300
 001400 PROCEDURE DIVISION.
 001500 DISPLAY VARIABLE.
 001600 STOP RUN.

$ cob2 -o tcAlphanumeric160 tcAlphanumeric160.cbl IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 8 IGYDS0026-E An alphanumeric literal that was longer than 160 characters was
 specified. The literal was truncated to 160 characters.
-Messages Total Informational Warning Error Severe Terminating
0Printed: 1 1
End of compilation 1, program TEST-CASE, highest severity: Error.
Return code 8

According to Standard COBOL 2002, the length of an alphanumeric literal, excluding the separators that
delimit the literal, must be greater than zero and less than or equal to 160 alphanumeric character
positions.

Change your COBOL source to follow Standard COBOL 2002. You can change your code to split long
literals. As shown in the following example, MOVE “longliteral” to ITEM-1 can be split:

MOVE “long” to ITEM-1(1:4).
MOVE “literal” to ITEM-1(5:).

Extra and misplaced periods in COBOL source
You must remove extra or misplaced periods in the fixed-format source.

When you use IBM COBOL for Linux on x86 to compile source code that contains extra and misplaced
periods, you will receive the error messages in the following example:

$ cat tcPeriods.cbl
000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. TEST-CASE.
000030 ENVIRONMENT DIVISION.
000040 DATA DIVISION.
000050
000060 PROCEDURE DIVISION.
000070 PERFORM GREETING.
000080 .
000090
000100 STOP RUN.
000110
000120 GREETING.
000130 .
000140
000150 DISPLAY "HELLO FROM IBM.".

8 IBM COBOL for Linux on x86 1.2: Migration Guide

$ cob2 -o tcPeriods tcPeriods.cbl
IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 8 IGYPS0019-W No COBOL statement was found between periods.
 Same message on line: 13
-Messages Total Informational Warning Error Severe Terminating
0Printed: 2 2
End of compilation 1, program TEST-CASE, highest severity: Warning.
Return code 4

According to Standard COBOL 2002, fixed-format source cannot include extra or missing periods in the
source.

Change your COBOL source to follow Standard COBOL 2002, or use scu to remove extra and misplaced
periods:

$ cat sol-tcPeriods.cbl
000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. TEST-CASE.
000030 ENVIRONMENT DIVISION.
000040 DATA DIVISION.
000050
000060 PROCEDURE DIVISION.
000070 PERFORM GREETING.
000080
000090
000100 STOP RUN.
000110
000120 GREETING.
000130
000140
000150 DISPLAY "HELLO FROM IBM.".

User-defined words
Within a source element, a user-defined word can be used as only one type of source element.

Example 1

In the following example, the procedure name is the same as the program identifier:

$ cat tcSameName.cbl
000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. GREETING.
000030 ENVIRONMENT DIVISION.
000040 DATA DIVISION.
000050
000060 PROCEDURE DIVISION.
000070
000080 MY-PARAGRAPH.
000090 PERFORM GREETING.
000100 PERFORM END-PARAGRAPH.
000110
000120 GREETING.
000130 DISPLAY "WELCOME TO IBM COBOL for Linux 1.2.0...".
000140
000150 END-PARAGRAPH.
000160 DISPLAY "HAVE A NICE DAY!".

$ cob2 -o tcSameName tcSameName.cbl
IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 9 IGYPS3007-S "GREETING" was not defined as a procedure-name.
 The statement was discarded.
-Messages Total Informational Warning Error Severe Terminating
0Printed: 1 1
End of compilation 1, program GREETING, highest severity: Severe.
Return code 12

Example 2

In the following example, GREETING is used as both a data name and a procedure name:

$ cat tcSameName2.cbl
000010 IDENTIFICATION DIVISION.

Chapter 3. Migrating from non-IBM COBOL compilers to COBOL for Linux on x86 9

000020 PROGRAM-ID. TEST-CASE.
000030 ENVIRONMENT DIVISION.
000040 DATA DIVISION.
000050
000060 WORKING-STORAGE SECTION.
000070
000080 01 GREETING PIC X(20) VALUE "FROM IBM.".
000090 PROCEDURE DIVISION.
000100 MY-PROGRAM.
000110 PERFORM GREETING.
000120 STOP RUN.
000130
000140 GREETING.
000150 DISPLAY "HELLO " GREETING.

$ cob2 -o tcSameName tcSameName2.cbl
IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 11 IGYPS3007-S "GREETING" was not defined as a procedure-name.
 The statement was discarded.
-Messages Total Informational Warning Error Severe Terminating
0Printed: 1 1
End of compilation 1, program TEST-CASE, highest severity: Severe.
Return code 12

According to Standard COBOL 2002, a user-defined words within a source element can be used as only
one type of user-defined word.

Change your COBOL source to follow Standard COBOL 2002.

For Example 1:

$ cat sol-tcSameName.cbl
000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. GREETING.
000030 ENVIRONMENT DIVISION.
000040 DATA DIVISION.
000050
000060 PROCEDURE DIVISION.
000070
000080 MY-PARAGRAPH.
000090 PERFORM HELLO.
000100 PERFORM END-PARAGRAPH.
000110
000120 HELLO.
000130 DISPLAY "WELCOME TO IBM COBOL for Linux 1.2.0...".
000140
000150 END-PARAGRAPH.
000160 DISPLAY "HAVE A NICE DAY!".

For Example 2:

$ cat sol-tcSameName2.cbl
000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. TEST-CASE.
000030 ENVIRONMENT DIVISION.
000040 DATA DIVISION.
000050
000060 WORKING-STORAGE SECTION.
000070
000080 01 GREETING PIC X(20) VALUE "FROM IBM.".
000090 PROCEDURE DIVISION.
000100 MY-PROGRAM.
000110 PERFORM MY-GREETING.
000120 STOP RUN.
000130
000140 MY-GREETING.
000150 DISPLAY "HELLO " GREETING.

10 IBM COBOL for Linux on x86 1.2: Migration Guide

REPORT SECTION and SCREEN SECTION
IBM COBOL for Linux on x86 does not support REPORT SECTION or SCREEN SECTION.

When you use IBM COBOL for Linux on x86 to compile source code that contains REPORT SECTION or
SCREEN SECTION, you will receive the error messages in the following example:

$ cat tcReportScreenSection.cbl
 000010 IDENTIFICATION DIVISION.
 000020 PROGRAM-ID. TEST-CASE.
 000030 ENVIRONMENT DIVISION.
 000040 DATA DIVISION.
 000050
 000060 REPORT SECTION.
 000070 01 TYPE IS PAGE HEADING.
 000080 01 TYPE IS PAGE FOOTING.
 000090
 000100 SCREEN SECTION.

$ cob2 -o tcReportScreenSection tcReportScreenSection.cbl IBM COBOL for Linux 1.2.0 compile
started
0LineID Message code Message text
 6 IGYDS0148-S "REPORT" is a reserved word related to language not supported by this
 compiler. The statement was discarded.
 10 IGYDS0009-E "SCREEN" should not begin in area "A". It was processed as if found
 in area "B".
-Messages Total Informational Warning Error Severe Terminating
0Printed: 2 1 1
End of compilation 1, program TEST-CASE, highest severity: Severe.
Return code 12

For details about REPORT SECTION and SCREEN SECTION, see Standard COBOL 2002, section 13.7,
Report section, and section 13.8, Screen section.

Embedded null characters in variables
When you use IBM COBOL for Linux on x86 to compile source code that contains a variable with
embedded null characters, null characters will be removed.

See the output of MY-DATA in the following example. The null characters are removed.

$ cat tcBlankReplaceNull.cbl
 000010 IDENTIFICATION DIVISION.
 000020 PROGRAM-ID. "TEST-CASE".
 000030 ENVIRONMENT DIVISION.
 000040 CONFIGURATION SECTION.
 000050 DATA DIVISION.
 000060 WORKING-STORAGE SECTION.
 000080 77 MY-DATA PIC X(5) VALUE X"4F4E00004E".
 000120 PROCEDURE DIVISION.
 000125 DISPLAY MY-DATA "<-".
 000130 STOP RUN.
$ cob2 tcBlankReplaceNull.cbl IBM COBOL for Linux 1.2.0 compile started
End of compilation 1, program TEST-CASE, no statements flagged.
$ a.out
ONN<-

Format of floating point literals
IBM COBOL for Linux on x86 uses this format for floating point literals: [+|-] <mantissa>E [+|-]
<exponent>.

When you use IBM COBOL for Linux on x86 to compile source programs containing floating point literals
that do not use an E-notation; for example, if 1500.0 is used instead of 1.5E3, you will receive the error
messages in the following example:

$ cat tcFloatingFormat.cbl
 000100 IDENTIFICATION DIVISION.
 000200 PROGRAM-ID. TEST-CASE.
 000300 ENVIRONMENT DIVISION.
 000400 DATA DIVISION.
 000500
 000600 WORKING-STORAGE SECTION.

Chapter 3. Migrating from non-IBM COBOL compilers to COBOL for Linux on x86 11

 000700 01 FLOAT1 COMP-1 VALUE 1357.9.
 000800 01 FLOAT2 COMP-1 VALUE 2468.0.
 000900
 001000 PROCEDURE DIVISION.
 001100 DISPLAY "FLOAT 1 IS " FLOAT1.
 001200 DISPLAY "FLOAT 2 IS " FLOAT2.
 001300 STOP RUN.

$ cob2 -o tcFloatingFormat tcFloatingFormat.cbl IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 7 IGYGR1080-S A "VALUE" clause literal was not compatible with the
 data category of the subject data item. The "VALUE"
 clause was discarded.
 Same message on line: 8
-Messages Total Informational Warning Error Severe Terminating
0Printed: 2 2
End of compilation 1, program TEST-CASE, highest severity: Severe.
Return code 12

You can also use scu to convert such format of floating point literals.

RECORD SEQUENTIAL file organization
IBM COBOL for Linux on x86 does not support RECORD SEQUENTIAL file organization.

If your source contains the RECORD SEQUENTIAL file organization, you will receive the error messages in
the following example.

Change RECORD SEQUENTIAL to LINE SEQUENTIAL, and then compile again. You can also use scu to
replace RECORD SEQUENTIAL with LINE SEQUENTIAL.

$cat tcRecordSequential.cbl
 000010 IDENTIFICATION DIVISION.
 000020 PROGRAM-ID. TEST-CASE.
 000030 ENVIRONMENT DIVISION.
 000031
 000032 INPUT-OUTPUT SECTION.
 000033 FILE-CONTROL.
 000034 SELECT CONTACTS
 000035 ASSIGN TO "MYFILE.DAT"
 000036 ORGANIZATION IS RECORD SEQUENTIAL.
 000037
 000040 DATA DIVISION.
 000050 FILE SECTION.
 000051 FD CONTACTS
 000052 RECORD CONTAINS 20 CHARACTERS.
 000053 01 CONTACT-RECORD.
 000054 05 FNAME PIC X(10).
 000055 05 LNAME PIC X(10).
 000073
 000090 PROCEDURE DIVISION.
 000100 PERFORM OPEN-FILE.
 000110 PERFORM INPUT-DATA.
 000120 PERFORM SAVE-DATA.
 000130 PERFORM CLOSE-FILE.
 000140 PERFORM END-PROGRAM.
 000150
 000160 INPUT-DATA.
 000170 DISPLAY "ENTER FIRST NAME.".
 000180 ACCEPT FNAME.
 000190 DISPLAY "ENTER LAST NAME.".
 000200 ACCEPT LNAME.
 000210
 000220 OPEN-FILE.
 000230 OPEN OUTPUT CONTACTS.
 000240
 000250 SAVE-DATA.
 000260 WRITE CONTACT-RECORD.
 000270
 000280 CLOSE-FILE.
 000290 CLOSE CONTACTS.
 000300
 000310 END-PROGRAM.
 000320 STOP RUN.
$ cob2 -o tcRecordSequential tcRecordSequential.cbl IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 9 IGYLN2929-S Incorrect ORGANIZATION type detected at RECORD. Clause ignored.
 9 IGYLN1357-S Expected a data-name; SEQUENTIAL found. Statement or clause ignored.

12 IBM COBOL for Linux on x86 1.2: Migration Guide

 13 IGYGR1216-I A "RECORDING MODE" of "F" was assumed for file "CONTACTS".
-Messages Total Informational Warning Error Severe Terminating
0Printed: 3 1 2
End of compilation 1, program TEST-CASE, highest severity: Severe.
Return code 12

Data representation
The representation of data can differ between non-IBM compilers and COBOL for Linux on x86.

Binary data
IBM COBOL compilers use the native representation of the platform when handling binary (BINARY,
COMP, COMP-4 and COMP-5) data items. On Linux x86, binary data items will be stored and manipulated
in little-endian format (least significant digit at the lowest address).

When migrating COBOL applications from non-IBM compilers to COBOL for Linux on x86, you might get
unexpected results if your program accesses data that is stored in big-endian format as the compiler and
runtime will treat the data as little-endian format by default.

You can use the BINARY(BE) option to inform the COBOL for Linux on x86 compiler to handle BINARY,
COMP and COMP-4 data items in big-endian format consistent with non-IBM compilers that represent
binary items as big-endian. However, this will have some performance overhead as the compiler needs to
convert the data to and from its native format, little-endian. COMP-5 data items are not affected by the
BINARY(BE) or BINARY(LE) option as COMP-5 indicates a native binary data item that uses the native
representation of the platform. If you use a combination of COMP-5 and other BINARY/COMP/COMP-4
data types in your program, take care when using the BINARY(BE) option. If a particular data item needs
to remain in little-endian (LE) representation when BINARY(BE) has been specified, use the NATIVE
clause on the USAGE statement.

Note:

• Micro Focus Visual Studio and COBOL-IT store BINARY/COMP/COMP-4 data in big endian format,
irrespective of the platform, and COMP-5 data in the native endianness of the platform, so when using
COBOL for Linux on x86, you might need to use the BINARY(BE) option to work with data in a way that
is compatible with those compilers.

• If you are using IBM MQ, API parameters are expected to be in big endian format, so you will need to
use the BINARY(BE) and FLOAT(BE) option when working with MQ on Linux.

• IBM Db2, and Oracle Pro*COBOL add their own data areas in the generated COBOL program to
communicate with their client libraries. These client libraries expect data in native little-endian format
on Linux, even if they support big-endian host data. When working with Db2 or Pro*COBOL, you should
use the default native binary format (BINARY(NATIVE), or BINARY(LE)).

• Since IBM MQ expects a different binary format than IBM Db2 and Oracle Pro*COBOL, it is not
recommended to have MQ and SQL calls in the same compilation unit or batch compilation.

National data
IBM COBOL compilers use the native UTF-16 representation of the platform when handling national data.
On Linux x86, national data items will be stored and manipulated in UTF-16 little-endian format.

When migrating COBOL applications from non-IBM compilers to COBOL for Linux on x86, you might get
unexpected results if your program accesses data that is stored in big-endian format as the compiler and
runtime will treat the data as little-endian format by default.

You can use the UTF16(BE) option to inform the COBOL for Linux on x86 compiler to handle national data
items in big-endian format consistent with non-IBM compilers that represent national data items as big-
endian. However, this will have some performance overhead as the compiler needs to convert the data
to and from its native format, little-endian. If a particular data item needs to remain in little-endian (LE)
representation when UTF16(BE) has been specified, use the NATIVE clause on the USAGE statement.

Chapter 3. Migrating from non-IBM COBOL compilers to COBOL for Linux on x86 13

Related tasks
"Setting the locale" in Programming Guide
"Fixing differences caused by data representations" in Programming Guide

Related references
"CHAR" in Programming Guide
"SOSI" in Programming Guide

IDENTIFICATION DIVISION changes
IDENTIFICATION DIVISION must be the first division in each COBOL source program.

When you use IBM COBOL for Linux on x86 to compile source code that contains an IDENTIFICATION
DIVISION not as the first division in a COBOL source program, you will receive the error messages in the
following example:

$ cat tcIdentificationDivision.cbl
000010 ENVIRONMENT DIVISION.
000020 DATA DIVISION.
000030
000040 WORKING-STORAGE SECTION.
000050 01 GREETING PIC X(50) VALUE "HELLO FROM IBM...".
000060 01 GOODBYE PIC X(50) VALUE "HAVE A NICE DAY...".
000070
000080 IDENTIFICATION DIVISION.
000090 PROGRAM-ID. TEST-CASE.
000100
000110 PROCEDURE DIVISION.
000120 DISPLAY GREETING.
000130 DISPLAY GOODBYE.
000140 STOP RUN.

$ cob2 -o tcIdentificationDivision tcIdentificationDivision.cbl
IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 1 IGYLN0034-E Program-name expected; Default program-name COBOLPGM00 assumed.
 12 IGYPS2121-S "GREETING" was not defined as a data-name. The statement was
 discarded.
 Same message on line: 12
 13 IGYPS2121-S "GOODBYE" was not defined as a data-name. The statement was
 discarded.
 Same message on line: 13
 14 IGYSC0136-E End of source file was encountered or an "END PROGRAM" marker for a
 containing program was found, but an "END PROGRAM" marker for program
 "TEST-CASE" was not found. "END PROGRAM TEST-CASE" was assumed.
 14 IGYSC0136-E End of source file was encountered or an "END PROGRAM" marker for a
 containing program was found, but an "END PROGRAM" marker for program
 "COBOLPGM00" was not found. "END PROGRAM COBOLPGM00" was assumed.
-Messages Total Informational Warning Error Severe Terminating
0Printed: 7 3 4
End of compilation 1, program COBOLPGM00, highest severity: Severe.
Return code 12

According to Standard COBOL 2002, a source unit is a set of COBOL statements as specified in
this document and consists of an IDENTIFICATION DIVISION followed optionally by any of the
ENVIRONMENT DIVISION, DATA DIVISION, or PROCEDURE DIVISION, or a combination of those
divisions.

Change your COBOL source to follow Standard COBOL 2002:

$ cat sol-tcIdentificationDivision.cbl
000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. TEST-CASE.
000030 ENVIRONMENT DIVISION.
000040 DATA DIVISION.
000050
000060 WORKING-STORAGE SECTION.
000070 01 GREETING PIC X(50) VALUE "HELLO FROM IBM...".
000080 01 GOODBYE PIC X(50) VALUE "HAVE A NICE DAY...".
000090
000100 PROCEDURE DIVISION.
000110 DISPLAY GREETING.

14 IBM COBOL for Linux on x86 1.2: Migration Guide

000120 DISPLAY GOODBYE.
000130 STOP RUN.

DATA DIVISION changes
To run your source programs on IBM COBOL for Linux on x86, make the required DATA DIVISION
changes to your source programs.

OCCURS clauses in level 01
According to Standard COBOL 2002, you must follow the syntax rules for the OCCURS clause.

When you use IBM COBOL for Linux on x86 to compile source code that contains an OCCURS clause in
level 01, you will receive the error messages in the following example:

$ cat tcOccursClause.cbl
000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. TEST-CASE.
000030 ENVIRONMENT DIVISION.
000040 DATA DIVISION.
000050
000060 WORKING-STORAGE SECTION.
000061
000062
000063 01 EMPLOYEES OCCURS 100 TIMES.
000064 05 FNAME PIC X(10).
000065 05 LNAME PIC X(10).
000066 05 SALARY PIC 9(5).
000067
000068 77 COUNTER PIC 9.
000070
000071 PROCEDURE DIVISION.
000072 MOVE "DAVID" TO FNAME(1).
000073 MOVE "SMITH" TO LNAME(1).
000074 MOVE "60000" TO SALARY(1).
000075 MOVE "JENNY" TO FNAME(2).
000076 MOVE "HU" TO LNAME(2).
000077 MOVE "55000" TO SALARY(2).
000078
000080 DISPLAY-RESULT.
000081 PERFORM VARYING COUNTER FROM 1 BY 1 UNTIL COUNTER > 2
000082 DISPLAY "EMPLOYEE: " FNAME IN EMPLOYEES(COUNTER)" "
000083 LNAME IN EMPLOYEES(COUNTER)" "
000084 "Salary: " SALARY IN EMPLOYEES(COUNTER)
000085 END-PERFORM.
000086 STOP-PROGRAM.
000090 STOP RUN.
$ cob2 -o tcOccursClause tcOccursClause.cbl
IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 9 IGYDS1063-E An "OCCURS" clause was found in the definition of a level-1 item. The
 "OCCURS" clause was discarded.
-Messages Total Informational Warning Error Severe Terminating
0Printed: 1 1
End of compilation 1, program TEST-CASE, highest severity: Error.
Return code 8

According to Standard COBOL 2002, the OCCURS clause cannot be specified in a data description entry
that has any of the following items:

• A level-number of 01, 66, 77, or 88
• A variable-occurrence data item subordinate to it

Change your COBOL source to follow Standard COBOL 2002. For example, if you change the code in
the previous example by using the definition of EMPLOYEES that is moved from level 01 to level 03, it
compiles without messages.

$ cat sol-tcOccursClause.cbl
 000010 IDENTIFICATION DIVISION.
 000020 PROGRAM-ID. TEST-CASE.
 000030 ENVIRONMENT DIVISION.
 000040 DATA DIVISION.
 000050

Chapter 3. Migrating from non-IBM COBOL compilers to COBOL for Linux on x86 15

 000060 WORKING-STORAGE SECTION.
 000061
 000062 01.
 000063 03 EMPLOYEES OCCURS 100 TIMES.
 000065 05 FNAME PIC X(10).
 000066 05 LNAME PIC X(10).
 000067 05 SALARY PIC 9(5).
 000068
 000069 77 COUNTER PIC 9.000070
 000071 PROCEDURE DIVISION.
 000072 MOVE "DAVID" TO FNAME(1).
 000073 MOVE "SMITH" TO LNAME(1).
 000074 MOVE "60000" TO SALARY(1).
 000075 MOVE "JENNY" TO FNAME(2).
 000076 MOVE "HU" TO LNAME(2).
 000077 MOVE "55000" TO SALARY(2).
 000078
 000080 DISPLAY-RESULT.
 000082 PERFORM VARYING COUNTER FROM 1 BY 1 UNTIL COUNTER > 2
 000084 DISPLAY "EMPLOYEE: " FNAME IN EMPLOYEE(COUNTER) " "
 000085 LNAME IN EMPLOYEE(COUNTER) " "
 000085 "Salary: " SALARY IN EMPLOYEE(COUNTER)
 000086 END-PERFORM.
 000087 STOP-PROGRAM.
 000120 STOP RUN.

COMP-X
IBM COBOL for Linux on x86 does not support COMP-X.

When you use IBM COBOL for Linux on x86 to compile source code that contains COMP-X, you will receive
the error message in the following example:

$ cat tcCompX.cbl
 000010 IDENTIFICATION DIVISION.
 000020 PROGRAM-ID. TEST-CASE.
 000030 ENVIRONMENT DIVISION.
 000040 DATA DIVISION.
 000050
 000060 WORKING-STORAGE SECTION.
 000070 01 STU-ID PIC S9(4) COMP-X VALUE ZERO.

$ cob2 -o tcCompX tcCompX.cbl
IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 7 IGYDS1089-S "COMP-X" was invalid. Scanning was resumed at the
 next area "A" item, level-number, or the start of
 the next clause
-Messages Total Informational Warning Error Severe Terminating
0Printed: 1 1
End of compilation 1, program TEST-CASE, highest severity: Severe.
Return code 12

Change COMP-X to COMP-5, and make corresponding changes to the PICTURE clause. You must keep the
same allocated storage for the data item.

The following table shows the COMP-5 storage allocation:

Table 1. COMP-5 storage allocation

Picture Storage representation

S9(1) through S9(4) Binary halfword (2 bytes)

S9(5) through S9(9) Binary fullword (4 bytes)

S9(10) through S9(18) Binary doubleword (8 bytes)

9(1) through 9(4) Binary halfword (2 bytes)

9(5) through 9(9) Binary fullword (4 bytes)

9(10) through 9(18) Binary doubleword (8 bytes)

16 IBM COBOL for Linux on x86 1.2: Migration Guide

Runtime errors because of uninitialized variables being converted to a
display type

You will receive runtime error messages if the sender in a statement is moved to the receiver but the
sender does not contain valid data for the type of the receiver, possibly because the variable being moved
was not initialized.

When you run a program that contains an uninitialized variable, you will receive the error messages in the
following example:

$cat tcConvert2DisplayType.cbl
 000010 IDENTIFICATION DIVISION.
 000020 PROGRAM-ID. "TEST-CASE".
 000030 ENVIRONMENT DIVISION.
 000040 CONFIGURATION SECTION.
 000050 DATA DIVISION.
 000060 WORKING-STORAGE SECTION.
 000070 01 EMP-INFO.
 000080 05 EMP-ID PIC S9(5) sign is trailing separate.
 000090 01 EMP-ID2 PIC S9(4).
 000100 PROCEDURE DIVISION.
 000120 MOVE EMP-ID OF EMP-INFO TO EMP-ID2.
 000130 STOP RUN.

$ cob2 -o tcConvert2DisplayType tcConvert2DisplayType.cbl
IBM COBOL for Linux 1.2.0 compile started
End of compilation 1, program TEST-CASE, no statements flagged.
> tcConvert2DisplayType
 Traceback:
/opt/ibm/cobol/rte/usr/lib/libcob2_64r.so(+0xa6302)[0x7f46046d9302]
/opt/ibm/cobol/rte/usr/lib/libcob2_64r.so(writeERRmsg+0x72e)[0x7f46046b0d2e]
/opt/ibm/cobol/rte/usr/lib/libcob2_64r.so(+0x7e762)[0x7f46046b1762]
/opt/ibm/cobol/rte/usr/lib/libcob2_64r.so(_iwzcBCD_CONV_ZndTS_To_ZndTO+0x356)[0x7f460466f446]
tcConvert2DisplayType(TEST-CASE+0xce)[0x560b45e13eca]
 --- End of call chain ---
IWZ040S An invalid separate sign was detected.
IWZ901S Program exits due to severe or critical error.

Aborted (core dumped)

Initialize EMP-ID of EMP-INFO to 0:

$ cat sol-tcConvert2DisplayType.cbl
 000010 IDENTIFICATION DIVISION.
 000020 PROGRAM-ID. "TEST-CASE".
 000030 ENVIRONMENT DIVISION.
 000040 CONFIGURATION SECTION.
 000050 DATA DIVISION.
 000060 WORKING-STORAGE SECTION.
 000070 01 EMP-INFO.
 000080 05 EMP-ID PIC S9(5) SIGN IS TRAILING SEPARATE
 VALUE ZERO.
 000090 01 EMP-ID2 PIC S9(4).
 000100 PROCEDURE DIVISION.
 000120 MOVE EMP-ID OF EMP-INFO TO EMP-ID2.
 000130 STOP RUN.

In addition to initializing EMP-ID to 0, you can compile by using -qwsclear, which clears a program’s
WORKING-STORAGE to binary zeros when the program is initialized. The storage is cleared before
any VALUE clauses are applied. However, this approach is not preferred because of performance
considerations.

Redefined data items and OCCURS clauses
IBM COBOL for Linux on x86 does not support redefining a data item that has an OCCURS clause.

When you use IBM COBOL for Linux on x86 to compile source code where a data item with the OCCURS
clause is redefined, you will receive the error messages in the following example:

$ cat tcRedefineOccurs.cbl
 01 EMPLOYEE-INFO.

Chapter 3. Migrating from non-IBM COBOL compilers to COBOL for Linux on x86 17

 03 EMPLOYEE OCCURS 50 TIMES.
 05 NAME PIC X(30).
 05 AGE PIC 9(3).
 03 NEW-EMPLOYEE REDEFINES EMPLOYEE.
 04 G2 OCCURS 50.
 05 FNAME PIC X(10).
 05 LNAME PIC X(20).
 05 AGE PIC 9(3).

$ cob2 -o tcRedefineOccurs tcRedefineOccurs.cbl
IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 10 IGYLN1222-S EMPLOYEE contains a OCCURS clause. Clause ignored.
Messages Total Informational Warning Error Severe Terminating
Printed: 1 1
End of compilation 1, program PGM1, highest severity: Severe.
Return code 12

According to Standard COBOL 2002, the data item being redefined cannot contain an OCCURS clause.

Change your COBOL source to follow Standard COBOL 2002. For example, if you change the code in the
previous example by adding a group item and renumbering, it compiles without messages.

$ cat tcRedefineOccurs.cbl
 01 EMPLOYEE-INFO.
 02 G1.
 03 EMPLOYEE OCCURS 50 TIMES.
 05 NAME PIC X(30).
 05 AGE PIC 9(3).
 02 G2 REDEFINES G1.
 03 EMPLOYEE OCCURS 50 TIMES.
 05 FNAME PIC X(10).
 05 LNAME PIC X(20).
 05 AGE PIC 9(3).

WHEN condition used with VALUE clause
COBOL for Linux on x86 does not support the WHEN condition in format 2 of the VALUE clause.

Below is the syntax not supported:

Format 2: condition-name value

VALUE

IS

VALUES

ARE

literal-1

THROUGH

THRU

literal-2

IN alphabet-name-1

WHEN SET TO

FALSE

IS

literal-3

.

When using COBOL for Linux on x86 to compile source code that contains a data item with the above
WHEN condition of the VALUE clause, you will receive the following error message:

$cat example.cbl
 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 IsWeekday PIC A(10) VALUE "MON-FRI" WHEN SET TO FALSE IS "SAT/SUN".

18 IBM COBOL for Linux on x86 1.2: Migration Guide

 PROCEDURE DIVISION.
 STOP RUN.

IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 6 IGYDS1089-S "WHEN" was invalid. Scanning was resumed at the next area "A" item,
 level-number, or the start of the next clause.
-Messages Total Informational Warning Error Severe Terminating
0Printed: 1 1
End of compilation 1, program EXAMPLE, highest severity: Severe.
Return code 12

The conditional statement in the VALUE clause needs to be removed to compile successfully. To achieve
similar behavior as above, you can use the level 88 items. An example is as follows:

$cat modified.cbl
 IDENTIFICATION DIVISION.
 PROGRAM-ID. MODIFIED.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 dayType PIC A(10).
 88 weekday VALUE "MON-FRI".
 88 weekend VALUE "SAT/SUN".
 PROCEDURE DIVISION.
 SET weekday TO TRUE.
 IF weekday
 DISPLAY "Day type is a weekday!"
 END-IF.

 SET weekend TO TRUE.
 IF weekend
 DISPLAY "Day type is a weekend!"
 END-IF.
 STOP RUN.

Expressions used with VALUE clause
COBOL for Linux on x86 does not support the use of expressions with the VALUE clause. The VALUE
clause only supports literals. If an expression is used with the VALUE clause, the statement will be
discarded and the following error message will be emitted.

$cat example.cbl
 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 exampleItem pic x(11) value "hello" & " world".
 PROCEDURE DIVISION.
 DISPLAY exampleItem.
 STOP RUN.

IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 7 IGYDS1089-S "&" was invalid. Scanning was resumed at the next area "A" item,
 level-number, or the start of the next clause.
-Messages Total Informational Warning Error Severe Terminating
0Printed: 1 1
End of compilation 1, program EXAMPLE, highest severity: Severe.
Return code 12

To resolve this issue, you need to remove the expression from the VALUE clause as the VALUE clause only
supports literals.

Chapter 3. Migrating from non-IBM COBOL compilers to COBOL for Linux on x86 19

PROCEDURE DIVISION changes
To run your source programs on IBM COBOL for Linux on x86, make the required PROCEDURE DIVISION
changes to your source programs.

Moving national data items to alphanumeric data items
You cannot move a national data item to an alphanumeric data item.

When you use IBM COBOL for Linux on x86 to compile source code that contains a MOVE statement from
a national data item to an alphanumeric data item, you will receive the error message in the following
example:

$ cat tcNational2Alphanumeric.cbl
 000010 IDENTIFICATION DIVISION.
 000020 PROGRAM-ID. ND2AD.
 000030 ENVIRONMENT DIVISION.
 000040 CONFIGURATION SECTION.
 000050
 000060 DATA DIVISION.
 000070 WORKING-STORAGE SECTION.
 000080
 000090 01 DataNational PIC N(100).
 000100
 000110 01 DataAlphanumeric PIC X(100).
 000120
 000130 PROCEDURE DIVISION.
 000140 MOVE DataNational TO DataAlphanumeric.
 000150 STOP-MY-PROGRAM.
 000160 STOP RUN.

$ cob2 -o tcNational2Alphanumeric tcNational2Alphanumeric.cbl IBM COBOL for Linux 1.2.0
compile started 0LineID Message code Message text 14 IGYPA3005-S "DATANATIONAL
(NATIONAL ITEM)" and "DATAALPHANUMERIC (ALPHANUMERIC)" did not
follow the "MOVE" statement compatibility rules. The
statement was discarded. -Messages
Total Informational Warning Error Severe Terminating 0Printed:
1 1 End of compilation 1, program
ND2AD, highest severity: Severe. Return code 12

According to Standard COBOL 2002, you cannot move a national data item to an alphanumeric data item.

Change your COBOL source to follow Standard COBOL 2002.

Undefined symbol errors for C functions being called
Use the PGMNAME compiler option to control how the compiler handles program-names.

When you use IBM COBOL for Linux on x86 to compile source code that contains a call to a C function in
mixed or lowercase characters, you will receive the error messages in the following example:

$ cat cTest.c
 void CFunction(){
 printf("HELLO FROM C...\n");
 }

$ cat tcCallCFunction.cbl
 000010 IDENTIFICATION DIVISION.
 000020 PROGRAM-ID. TEST-CASE.
 000030 ENVIRONMENT DIVISION.
 000040 CONFIGURATION SECTION.
 000050 DATA DIVISION.
 000060 WORKING-STORAGE SECTION.
 000070
 000080 PROCEDURE DIVISION.
 000090 CALL "CFunction"
 000100 DISPLAY "HELLO FROM COBOL...".
 000110 STOP RUN.

$ gcc -m64 -fPIC -c cTest.c $ cob2 -o tcCallCFunction tcCallCFunction.cbl cTest.o IBM
COBOL for Linux 1.2.0 compile started End of compilation 1, program TEST-CASE, no
statements flagged. tcCallCFunction.o: In function `TEST-CASE': /home/user1/tcCallCFunction.cbl:

20 IBM COBOL for Linux on x86 1.2: Migration Guide

(.text+0xb5): undefined reference to `CFUNCTION' tcCallCFunction.o:(.rodata+0x50): undefined
reference to `CFUNCTION' collect2: error: ld returned 1 exit status

IBM COBOL for Linux on x86 folds program-names to uppercase. If you have COBOL source that contains
a call to a C function in mixed or lowercase characters, this function is folded to uppercase characters.
The linker will not find the program, and an error message is displayed to indicate an unresolved symbol.

You can use the PGMNAME compiler option to control how the compiler handles program-names.
The default is PGMNAME(UPPER), but you can use PGMNAME(MIXED) to process the program-name
as is, without truncation, translation, or folding to uppercase. When you specify PGMNAME(MIXED),
use the literal format of the program-name; that is, make the program-name a literal string such as
“programname”, or you will see the following message:

IGYDS1046-E A user-defined word was found as a "PROGRAM-ID" name under
the "PGMNAME(LONGMIXED)" compiler option.

For an example about a COBOL program that calls C functions, see Example: COBOL program calling C
functions in the COBOL for Linux on x86 Programming Guide.

$ cat sol-tcCallCFunction.cbl
000010 CBL PGMNAME(LONGMIXED)
000020 IDENTIFICATION DIVISION.
000030 PROGRAM-ID. "TEST-CASE".
000040 ENVIRONMENT DIVISION.
000050 CONFIGURATION SECTION.
000060 DATA DIVISION.
000070 WORKING-STORAGE SECTION.
000080
000090 PROCEDURE DIVISION.
000100 CALL "CFunction"
000110 DISPLAY "HELLO FROM COBOL...".
000120 STOP RUN.
$ cob2 -o sol-tcCallCFunction sol-tcCallCFunction.cbl cTest.o
IBM COBOL for Linux 1.2.0 compile started
End of compilation 1, program TEST-CASE, no statements flagged.
$ sol-tcCallCFunction
HELLO FROM C...
HELLO FROM COBOL...

COBOL programs containing an ACCEPT statement
In IBM COBOL for Linux on x86, the ACCEPT statement assigns an input line to the data item.

• If the input line is shorter than the data item, the data item is padded with spaces of the appropriate
representation.

• If the input line is longer than the data item:

– When a program reads from a screen, the remaining characters are discarded.
– When a program reads from a file, the remaining characters are retained as the next input line for the

file.

If the input data is longer than the receiving area, then IBM COBOL for Linux on x86 pads the area with
spaces of the appropriate representation for the receiving area.

According to Standard COBOL 2002, the implementer must define the size of a data transfer for each
hardware device.

BINARY formatted data in an ACCEPT statement
According to Standard COBOL 2002, the ACCEPT statement causes the transfer of data from the hardware
device. This data replaces the content of the data item referenced by identifier-1. Any conversion
of data that is required between the hardware device and the data item referenced by identifier-1
is defined by the implementer. The IBM COBOL for Linux on x86 implementation allows only displayable
data (display, national, numeric, alphanumeric) which precludes binary formatted data.

Chapter 3. Migrating from non-IBM COBOL compilers to COBOL for Linux on x86 21

When you use IBM COBOL for Linux on x86 to compile source code that contains BINARY formatted data
in an ACCEPT statement, you will receive the error message in the following example:

$ cat tcAcceptBinary.cbl
 000010 IDENTIFICATION DIVISION.
 000020 PROGRAM-ID. TEST-CASE.
 000030 ENVIRONMENT DIVISION.
 000040 DATA DIVISION.
 000050
 000060 WORKING-STORAGE SECTION.
 000070 01 EMPLOYEE-ID PIC S9(4) COMP-5 VALUE ZERO.
 000080
 000090 PROCEDURE DIVISION.
 000100 MY-PROGRAM.
 000110 DISPLAY "PLEASE INSERT EMPLOYEE'S ID NUMBER..".
 000120 ACCEPT EMPLOYEE-ID.
 000130
 000140 STOP RUN.

$ cob2 -o tcAcceptBinary tcAcceptBinary.cbl IBM COBOL for Linux 1.2.0 compile
started 0LineID Message code Message text 12 IGYLN0642-E Statement
accepted, but ACCEPT identifier may not achieve expected
conversion. -Messages Total
Informational Warning Error Severe Terminating 0Printed:
1 1 End of compilation 1, program
TEST-CASE, highest severity: Error. Return code 8

Change the data type from COMP-5 to DISPLAY, and make further changes to the input source as well.

$ cat sol-tcAcceptBinary.cbl
 000010 IDENTIFICATION DIVISION.
 000020 PROGRAM-ID. TEST-CASE.
 000030 ENVIRONMENT DIVISION.
 000040 DATA DIVISION.
 000050
 000060 WORKING-STORAGE SECTION.
 000070 01 EMP-ID PIC 9(4) VALUE ZEROES.
 000080 01 EMPLOYEE-ID PIC S9(4) COMP-5 VALUE ZERO.
 000090
 000100 PROCEDURE DIVISION.
 000110 MY-PROGRAM.
 000120 DISPLAY "PLEASE INSERT EMPLOYEE'S ID NUMBER..".
 000130 ACCEPT EMP-ID.
 000140 MOVE EMP-ID TO EMPLOYEE-ID.
 000150 STOP RUN.

NULL parameters in CALL statements
IBM COBOL for Linux on x86 does not support NULL parameters in a CALL statement.

When you use IBM COBOL for Linux on x86 to compile source code that contains NULL parameters in a
CALL statement, you will receive the error message in the following example:

$ cat tcCallNull.cbl
 000010 IDENTIFICATION DIVISION.
 000020 PROGRAM-ID. TEST-CASE.
 000030 ENVIRONMENT DIVISION.
 000040 DATA DIVISION.
 000050
 000060 WORKING-STORAGE SECTION.
 000070
 000080 PROCEDURE DIVISION.
 000090 CALL "TEST-CASE2" USING NULL.
 000100 STOP RUN.

$ cob2 -o tcCallNull tcCallNull.cbl IBM COBOL for Linux 1.2.0 compile
started 0LineID Message code Message text 9 IGYPS2000-S Expected a
data-name, but found "NULL". The "CALL" statement was
discarded. -Messages Total
Informational Warning Error Severe Terminating 0Printed:
1 1 End of compilation 1, program
TEST-CASE, highest severity: Severe. Return code 12

22 IBM COBOL for Linux on x86 1.2: Migration Guide

According to Standard COBOL 2002, syntax rules do not identify NULL as a valid parameter for the CALL
statement.

$ cat sol-tcCallNull.cbl
000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. TEST-CASE.
000030 ENVIRONMENT DIVISION.
000040 DATA DIVISION.
000050
000060 WORKING-STORAGE SECTION.
000070 01 NULLPTR USAGE POINTER VALUE NULL.
000080
000110 PROCEDURE DIVISION.
000140 CALL "TEST-CASE2" USING NULLPTR.
000150 STOP RUN.

Unterminated nested statements
COBOL for Linux on x86 does not support an unterminated conditional statement that is contained within
another statement with the exception of nested conditional statements within the IF statement. Nested
statements must be imperative and follow the rules stated for imperative statements.

When you use COBOL for Linux on x86, if the procedure division contains an unterminated conditional
statement that is nested, COBOL for Linux on x86 will emit the following error message.

$cat example.cbl
 IDENTIFICATION DIVISION.
 PROGRAM-ID.
 EXAMPLE
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 item PIC 9(10) VALUE 10.
 01 STU-ID PIC 9(10) VALUE 5.
 PROCEDURE DIVISION.
 EVALUATE item
 WHEN 10
 IF STU-ID = 5
 DISPLAY "5"
 END-EVALUATE
 STOP RUN.

IBM COBOL for Linux 1.2.0 compile started
0LineID Message code Message text
 12 IGYPS2112-E The "IF" statement did not have a matching scope terminator. A scope
 terminator was assumed on line 14. The execution results may not be
 correct.
-Messages Total Informational Warning Error Severe Terminating
0Printed: 1 1
End of compilation 1, program EXAMPLE, highest severity: Error.
Return code 8

The corresponding scope terminator needs to be added to the IF statement to become an imperative
statement, and therefore would allow the IF statement to be nested in another scope. So, to resolve this
issue, you can add the scope terminator to the source. Below is an example:

$cat example.cbl
 IDENTIFICATION DIVISION.
 PROGRAM-ID.
 EXAMPLE
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 item PIC 9(10) VALUE 10.
 01 STU-ID PIC 9(10) VALUE 5.
 PROCEDURE DIVISION.
 EVALUATE item
 WHEN 10
 IF STU-ID = 5
 DISPLAY "5"
 END-IF
 END-EVALUATE
 STOP RUN.

Chapter 3. Migrating from non-IBM COBOL compilers to COBOL for Linux on x86 23

Output for positive numbers
IBM COBOL for Linux on x86 output does not contain a plus sign (+) for positive numbers.

For example, when you use IBM COBOL for Linux on x86 to compile source code that contains a positive
number, the output does not display the plus sign (+):

$ cat tcPlusSign.cbl
 000010 IDENTIFICATION DIVISION.
 000020 PROGRAM-ID. TEST-CASE.
 000030 ENVIRONMENT DIVISION.
 000040
 000050 INPUT-OUTPUT SECTION.
 000060
 000070 DATA DIVISION.
 000080 WORKING-STORAGE SECTION.
 000090 01 POSITIVE-NUM PIC S9(4) COMP-5 VALUE ZERO.
 000100 01 NEGATIVE-NUM PIC S9(4) COMP-5 VALUE ZERO.
 000110
 000120 PROCEDURE DIVISION.
 000130 COMPUTE POSITIVE-NUM = 10 - 3.
 000140 COMPUTE NEGATIVE-NUM = 3 - 10.
 000150 DISPLAY "10 - 3 = " POSITIVE-NUM.
 000160 DISPLAY "3 - 10 = " NEGATIVE-NUM.
 000170 STOP RUN.

$ cob2 -o tcPlusSign tcPlusSign.cbl IBM COBOL for Linux 1.2.0 compile started End of
compilation 1, program TEST-CASE, no statements flagged.

$ tcPlusSign2
10 - 3 = +0007
3 - 10 = -0007

Note: This rule does not apply to numeric-edited items. If you use an editing sign control symbol in a
variable declared with USAGE DISPLAY or NATIONAL, such as the plus sign (+) in the following example:

000090 01 POSITIVE-NUM PIC +9(4).
000100 01 NEGATIVE-NUM PIC +9(4).

The output is as follows:

10 - 3 = +0007
3 - 10 = -0007

Source conversion utility (scu)
The source conversion utility, scu, is a stand-alone Linux program that assists in the conversion of COBOL
source programs from non-IBM or free-format source formats to a format that can be compiled by COBOL
for Linux on x86.

Scu performs the following transformations:

• Converts white space characters to true spaces, including tab expansion, with optional controls
• Normalizes line-end characters
• Repositions items to start in the proper areas, such as the indicator area, Area A, or Area B, as required
• Ensures special alignment for CBL (PROCESS) statements
• Optionally blanks sequence numbers in columns 1 through 6, and removes serial numbers in columns

73 through 80
• Converts anomalous fixed-source-format input by default, and optionally converts free-format input

It also makes the following syntax and semantic fixes:

• Adds missing spaces around quoted literals
• Adjusts the OCCURS clause to level 02 if it is at level 01
• Converts non-floating point literals to floating constant notations
• Fixes extra and misplaced periods

24 IBM COBOL for Linux on x86 1.2: Migration Guide

• Converts SET statements to MOVE when required by data types
• Converts "<>" to "NOT ="
• Replaces VALUES with VALUE
• Moves level 01 to Area A
• Replaces RECORD SEQUENTIAL with LINE SEQUENTIAL

Restrictions:

• Scu converts SET statements to MOVE only for the following data types:

– COMP, COMP-4, or BINARY
– COMP-3 or PACKED-DECIMAL
– COMP-5
– DISPLAY
– NATIONAL (non-literal)

• Scu might incorrectly convert the SET statement to MOVE if the statement spans two or more lines.
• Scu replaces VALUES with VALUE only when VALUES is followed by a literal on the same line.
• Scu converts non-floating point literals to floating constant notations only when the literals and VALUE

(or VALUES) are on the same line.
• Scu ignores the REPLACE statement and the REPLACING phrase of the COPY statement.

Tips:

• For more information about Area A and Area B, see "Reference format" in Language Reference.
• Usually scu does initial transformation changes, and then fixes syntax and semantic errors (the -N

option and copybooks are exceptions). However, if scu detects severe problems during transformation,
such as non-COBOL standard special line, scu will generate error messages and skip the syntax and
semantic phase. The -N option and copybook exceptions:

– When -N is specified, scu does only the initial transformation changes.
– Syntax and semantic errors in copybooks are fixed when these errors are fixed for the main source

file with the -G option specified. For more information about processing copybooks with scu, see
"Source conversion utility (scu) options" in Language Reference.

The output file contains compatible COBOL code that includes all fixes that scu can provide. If you do
not specify the -o option for an output file name, the default output file is filename.scu.cbl, where
filename is the original file name without the suffix. For example, the output file name for the source
abc.def.cob is abc.def.scu.cbl.

scu issues return codes that indicate a success or failure of program conversion. See the return codes
and corresponding explanations in the following table:

Table 2. Scu return codes

Return
code Explanation

0 To indicate that scu runs successfully.

1 - 4 Reserved for future use to indicate success.

5 To indicate a general failure.

6 To indicate a failure to open a copy file.

Attention: Scu converts source programs to a format that can be compiled with COBOL for Linux,
but scu might not identify or fix all incompatibilities that exist in the code. IBM does not guarantee
that the changes made by scu are error-free, or that the changes compile and run as you expect.

Chapter 3. Migrating from non-IBM COBOL compilers to COBOL for Linux on x86 25

You must verify the results that are produced by scu and make sure that the changes meet your
expectations. You might also need to further modify the code that scu attempted to correct.

Source conversion utility (scu) options
Multiple options are available in the source conversion utility (scu) for source program conversion.

The scu command has the following syntax:

scu -h

-\?

-V

?

-7

-b

-e

-E

-f

-G output_directory_name

-I input_directory_name

-L

-M

-N

-o output_filename

-s

-t tabstop

-t tabwidth

-v

source_filename

Option descriptions:

-7
If a line starts with a special character, the -7 option detects and moves the character to column 7
(the indicator area of fixed or extended format). The special character here can be an asterisk '*', slash
'/', dollar sign '$', character 'D' followed by space and 'd' followed by space. The characters that follow
the moved special character are handled depending on their positions:

• If the following characters are in column 2 - 7, the entire line is moved to the right until the special
character is in column 7.

• If the following characters are in Area A or B, they remain where they are, unless there are
characters in column 73 or beyond. When there are characters in column 73 or beyond, the
characters might be moved left to the start of Area B.

Notes:

• For a dollar sign '$', scu issues an error that states manual intervention is required for this line.
• The special character '-' as the first character of a line is moved to column 7 only when you specify

both the -f and -7 options or when the -f option is specified and '-' is in column 1.
• For special characters that are not in column 7 or are not moved to column 7, scu handles these

characters as regular (non-special) ones.

26 IBM COBOL for Linux on x86 1.2: Migration Guide

-b
Removes trailing blanks.

-e
Indicates whether an input file is in extended source format of a 252-character line. This option
allows scu to distinguish the extended format from the default fixed format and covert the source
code correctly.

-E
Tells scu that the output (the converted source) is not limited to the default 72 columns (the fixed
format). scu can extend the lines to the maximum length of 252 columns if necessary.

-f
Identifies the input source as being in free format. By default the fixed (compatible) source format
allows executable COBOL source code in Area A (column 8 - 11), and Area B (column 12 - 72), with
indicators in column 7. Optionally, if you specify -e, Area B is extended to column 252 for the input
file. The -f option causes scu to move COBOL source code from column 1 - 6 to the indicator column,
Area A, or Area B depending on the content of the source code to be moved.
The -f option handles free-format source lines that start with special characters in one of the
following ways:

• If the special character is in column 1 (the indicator area of free format), the character is moved to
column 7 (the indicator area of fixed format).

• If the special character is in column 2-11, it is moved to column 12 (the start column of Area B).

Notes:

• Special characters in a free-format source file can be '*', '/', '$', '-','D' followed by space and 'd'
followed by space.

• By default the -f option is not specified, and a special character at the start of a free-format line
is moved to column 12 (start column of Area B) only when it is in column 8-11 (Area A). When
the special character is in other columns, it remains where it is. A character that is not a special
character in column 7 is blanked out.

• When the -f option is used in combination with the -7 option, any special character in column 1-6
is moved to column 7. This usage is similar to the -7 option alone, but includes '-' as a special
character.

-G<copybook output directory name>
Fixes COPY files and places them in the specified directory. For a COPY file that is qualified with a
directory name, the directory name is kept as the subdirectory of the specified COPY file directory. If
the -G option is not specified, only the main source file is fixed.

Note: Do not insert spaces between -G and <copybook output directory name>.

-h
Provides scu basic help with information about the available functions of scu. You can also specify
-\? to display the same help information as -h does. For more detailed help, see the scu man page
by running the command man scu.

-I<copybook input directory name>
Adds the specified path to the directories to be searched for copybooks if a library-name or SYSLIB is
not specified.

Notes:

• This option is the uppercase letter I, not the lowercase letter l.
• Only a single path is allowed for each -I option. To add multiple paths, use multiple -I options.
• Do not insert spaces between -I and <copybook input directory name>.
• COPY files that are retrieved from an -I directory, fixed by scu and stored in the-G directory can

then be picked up by specifying -I and the same -G directory. In this way, scu uses a fixed version
of the copy file on subsequent runs against the same or different main source files.

Chapter 3. Migrating from non-IBM COBOL compilers to COBOL for Linux on x86 27

-L
Indents level numbers other than 01 and 77 to Area B when the level numbers are in Area A.

-M
Issues a scu fix code (for example, SCU0001) at the end of each fixed line and provides a short
description and summary at the bottom of the output file. When standard compatible COBOL is
input and the option -M is specified, a scu fix code is added to the unused noncompilable columns
(starting at column 82) to indicate that the line is changed. A summary is also provided to display fix
information that is associated with each fix code. The fix codes and summary are provided for syntax
and semantic changes, not for the initial transformation changes. For example, when you specify -f to
convert a file of free format to fixed 80 column or extended format, the line changes are made but you
do not receive a scu fix code.
Use the fix code numbering to identify the level of needed attention for the message:

Table 3. Scu message severity levels

Fix code
range Severity Description

SCU0001
-
SCU1999

Informational Scu expects that no further changes are needed for the fix.

SCU2000
-
SCU3999

Warning Scu expects that further changes might be needed. For instance, the
fix of changing OCCURS from level 01 to level 02 might require further
changes that are related to the fix.

SCU8000
-
SCU8999

Error Scu expects that further changes are required to complete the fix.

SCX0001 -
SCX8999

Unfixed error The problem is identified but scu is unable to fix the problem. The
SCXnnnn error code corresponds to the matching SCUnnnn fix code.

SCX9000 -
SCX9999

Ignored error The problem is identified, but scu does not attempt to fix it.

Note: Scu might not identify or fix all incompatibilities that exist in the code.

The following list gives examples of scu fix codes and the corresponding fixed errors:

SCU0001 fix for IGYDS0001-W: Add missing space(s).
SCU0004 fix for IGYPS0019-W: Extra and misplaced periods in COBOL source. Scu removes the
extra periods.
SCU1002 fix for IGYGR1080-S: Non-floating point literal is assigned to floating point data
item. Scu converts it to floating point constant notation.
SCU1005 fix for IGYPS2024-S: SET used in place of MOVE. Scu converts SET stmt to MOVE stmt.
SCU1006 fix for IGYPS2094-S: "<>" converted to "NOT = ".
SCU1008 fix for IGYDS0017-E: "01" not in Area A. Scu moves 01 to Area A.
SCU3001 fix for IGYDS1063-E: OCCURS clause in level 01. Scu changes it to level 02 and adds
a dummy 01.
SCU8001 fix for IGYDS0093-S: RECORD SEQUENTIAL not supported. Scu replaces RECORD
SEQUENTIAL with LINE SEQUENTIAL.
SCX9001 specified for an 02 level data item following an 01 level OCCURS that has been
changed
to an 02 level OCCURS with fix code SCU3001

-N
Enables scu to do only the initial transformation changes without syntax and semantic changes, and
forces the output to be written to the standard output.

-o <output filename>
Specifies the output file name for the source file. The output file can be qualified with an existing
directory. For example, the command scu -o/dirname1/abc.modified.cbl abc.cbl saves the
output file abc.modified.cbl in the /dirname1 directory. By default the output file is saved in

28 IBM COBOL for Linux on x86 1.2: Migration Guide

your current directory. If the -o option is not specified, the output file for the source file would be
abc.scu.cbl.

-s
Removes the leading and trailing sequence numbers by blanking columns 1-6 and truncating the
source line at column 73.

-t <tabwidth>
Passes to scu the tab width that is used in the source code to ensure that the converted data is in
correct columns. Tab characters that are encountered before a tab position are replaced by spaces
sufficient to move the ensuing character to the tab position. The default tab width is 8.

-t <tabstop>,...
Passes to scu the tab stops for conversion. Specify two or more tab stops separated by commas. Tab
characters encountered past the last tab position are replaced by a single space character.

-v
Enables verbose output so that error and fix information is sent to STDERR during the source
transformation, syntax and semantic checking, and fixing.

-V
Displays the version information of scu.

Copybooks and scu:

It is a good practice to have all copybooks go through transformation changes before scu attempts to
fix syntax and semantic errors, because currently scu does not automatically perform transformation
changes on copybooks. You can first run scu for your copybooks by specifying the -N option with any
other transformation options, such as -7, -b, -e, -E, -f, -L, -s, and -t. Then, run scu for the main
source files and specify -I with the copybook directory that contains the transformed copybooks for
syntax and semantic error processing.

Chapter 3. Migrating from non-IBM COBOL compilers to COBOL for Linux on x86 29

30 IBM COBOL for Linux on x86 1.2: Migration Guide

Chapter 4. Migrating from Enterprise COBOL for z/OS
to COBOL for Linux on x86

This information describes some areas you might need to consider if migrating programs from Enterprise
COBOL for z/OS to COBOL for Linux on x86.

Compiler options
COBOL for Linux on x86 does not support the following Enterprise COBOL compiler options.

ADATA, ADV, AFP, ARCH, AWO, BLOCK0, BUFSIZE, CODEPAGE, COPYLOC, COPYRIGHT, DATA,
DBCS, DECK, DISPSIGN, DLL, DUMP, EXPORTALL, FASTSRT, HGPR, INITCHECK, INITIAL, INLINE,
INTDATE, LANGUAGE, LP, MAXPCF, NAME, NUMCHECK, NUMPROC, OBJECT, OFFSET, OPTFILE, OUTDD,
PARMCHECK, QUALIFY, RENT, RMODE, RULES, SERVICE, SQLCCSID, SQLIMS, STGOPT, SUPPRESS,
THREAD, VLR, VSAMOPENFS, WORD, XMLPARSE, ZONECHECK, and ZONEDATA

While many of the options above have no equivalent on COBOL for Linux on x86 , the following options do
have equivalents:

• Use ADDR instead of LP
• Use -dll, -dso or -shared flag options instead of DLL
• Use -c in combination with -o flag options instead of OBJECT

Related tasks
"Getting IBM Enterprise COBOL for z/OS applications to compile" in the Programming Guide

Related references
"cob2 options" in Programming Guide

Data representation
The representation of data can differ between Enterprise COBOL and COBOL for Linux on x86.

Binary data
IBM COBOL compilers use the native representation of the platform when handling binary (BINARY,
COMP, COMP-4 and COMP-5) data items.

On Linux on x86, binary data items will be stored and manipulated in little-endian format, that is, the least
significant digit is at the lowest address. On z/OS, binary data items will be stored and manipulated in
big-endian format, that is, the most significant digit is at the lowest address.

When migrating COBOL applications from Enterprise COBOL for z/OS to COBOL for Linux on x86, you
might get unexpected results if your program accesses data that is stored in big-endian format as the
compiler and runtime will treat the data as little-endian format by default.

You can use the BINARY(BE) option to inform the COBOL for Linux on x86 compiler to handle BINARY,
COMP and COMP-4 data items in big-endian format consistent with Enterprise COBOL for z/OS. However,
this will have some performance overhead as the compiler needs to convert the data to and from its
native format, little-endian. COMP-5 data items are not affected by the BINARY(BE) or BINARY(LE)
option as COMP-5 indicates a native binary data item that uses the native representation of the platform.
If you use a combination of COMP-5 and other BINARY/COMP/COMP-4 data types in your program, take
care when using the BINARY(BE) option. If a particular data item needs to remain in little-endian (LE)
representation when BINARY(BE) has been specified, use the NATIVE clause on the USAGE statement.

Notes:

© Copyright IBM Corp. 2021, 2023 31

• If you are using IBM MQ, API parameters are expected to be in big endian format, so you will need to
use the BINARY(BE) and FLOAT(BE) option when working with MQ on Linux.

• IBM Db2 and Oracle Pro*COBOL add their own data areas in the generated COBOL program to
communicate with their client libraries. These client libraries expect data in native little-endian format
on Linux, even if they support big-endian host data. When working with Db2 or Pro*COBOL, you should
use the default native binary format, that is BINARY(NATIVE) or BINARY(LE).

• Since IBM MQ expects a different binary format than IBM Db2 and Oracle Pro*COBOL, it is not
recommended to have MQ and SQL calls in the same compilation unit or batch compilation.

Zoned decimal data
Sign representation for zoned decimal data is based on ASCII or EBCDIC depending on the setting of the
CHAR compiler option (NATIVE or EBCDIC) and whether the USAGE clause is specified with the NATIVE
phrase. COBOL for Linux on x86 processes the sign representation of zoned decimal data consistently
with the processing that occurs on z/OS when the compiler option NUMPROC(NOPFD) is in effect.

Packed-decimal data
Sign representation for unsigned packed-decimal numbers is different between COBOL for Linux on x86
and Enterprise COBOL. COBOL for Linux on x86 always uses a sign nibble of x'C' for unsigned packed-
decimal numbers. Enterprise COBOL uses a sign nibble of x'F' for unsigned packed-decimal numbers.
If you are going to share data files that contain packed-decimal numbers between Linux and z/OS,
it is recommended that you use signed packed-decimal numbers instead of unsigned packed-decimal
numbers.

Internal floating-point data (COMP-1, COMP-2)
You can use the FLOAT(BE) compiler option to indicate that internal floating-point data items are in the
IBM Z® data representation (hexadecimal) as opposed to the native (IEEE) format.

National data
IBM COBOL compilers use the native endianness of the platform when handling national data.

On Linux on x86, national data items will be stored and manipulated in UTF-16 little-endian format. On
z/OS, national data items will be stored and manipulated in UTF-16 big-endian format.

When migrating COBOL applications from Enterprise COBOL for z/OS to COBOL for Linux on x86, you
might get unexpected results if your program accesses data that is stored in big-endian format because
the compiler and runtime will treat the data as little-endian format by default.

You can use the UTF16(BE) option to inform the COBOL for Linux on x86 compiler to handle national
data items in big-endian format consistent with Enterprise COBOL for z/OS. However, this will have some
performance overhead as the compiler needs to convert the data to and from its native format, little-
endian. If a particular data item needs to remain in little-endian (LE) representation when UTF16(BE) has
been specified, use the NATIVE clause on the USAGE statement.

EBCDIC and ASCII data
You can specify the EBCDIC collating sequence for alphanumeric data items using the following language
elements:

• ALPHABET clause
• PROGRAM COLLATING SEQUENCE clause
• COLLATING SEQUENCE phrase of the SORT or MERGE statement

You can specify the CHAR(EBCDIC) compiler option to indicate that DISPLAY data items are in the IBM Z
data representation (EBCDIC).

32 IBM COBOL for Linux on x86 1.2: Migration Guide

Code-page determination for data conversion
For alphabetic, alphanumeric, DBCS, and national data items, the source code page used for implicit
conversion of native characters is determined from the locale in effect at run time.

For alphanumeric, DBCS, and national literals, the source code page used for implicit conversion of
characters is determined from the locale in effect at compile time.

DBCS character strings
Under COBOL for Linux on x86, ASCII DBCS character strings are not delimited with the shift-in and
shift-out characters except possibly with the dummy shift-in and shift-out characters as discussed below.

Use the SOSI compiler option to indicate that Linux workstation shift-out (X'1E') and shift-in (X'1F')
control characters delimit DBCS character strings in the source program, including user-defined words,
DBCS literals, alphanumeric literals, national literals, and comments. Host shift-out and shift-in control
characters (X'0E' and X'0F', respectively) are usually converted to workstation shift-out and shift-in
control characters when COBOL for Linux on x86 source code is downloaded, depending on the download
method that you use.

Using control characters X'00' through X'1F' within an alphanumeric literal can yield unpredictable
results.

Related tasks
"Setting the locale" in Programming Guide
"Fixing differences caused by data representations" in Programming Guide

Related references
"BINARY" in Programming Guide
"CHAR" in Programming Guide
"FLOAT" in Programming Guide
"SOSI" in Programming Guide
"UTF16" in Programming Guide

Compiler and runtime environment variables
COBOL for Linux on x86 recognizes several compiler and runtime environment variables that are not used
in Enterprise COBOL, as listed below.

• COBCPYEXT
• COBLSTDIR
• COBOPT
• DB2DBDFT
• DBCS_CODEPAGE
• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES
• LC_TIME
• LD_LIBRARY_PATH
• library-name
• NLSPATH
• SYSLIB
• text-name

Chapter 4. Migrating from Enterprise COBOL for z/OS to COBOL for Linux on x86 33

• TMPDIR
• TZ

Related information:

"Setting environment variables" in Programming Guide

File specification
There are some differences between the way COBOL for Linux on x86 handles files and the way
Enterprise COBOL handles files.

The differences between COBOL for Linux on x86 and Enterprise COBOL in file handling are in the
following areas:

• Single-volume files
• Source-file suffixes
• Generation data groups (GDGs)
• File concatenation

Single-volume files: COBOL for Linux on x86 treats all files as single-volume files. All other file
specifications are treated as comments. This difference affects the following items: REEL, UNIT,
MULTIPLE FILE TAPE clause, and CLOSE. . .UNIT/REEL.

Source-file suffixes: In COBOL for Linux on x86, when you compile using one of the cob2 commands,
COBOL source files that either have suffix .cbl or .cob are passed to the compiler. In Enterprise COBOL,
when you compile in the z/OS UNIX file system, only files that have suffix .cbl are passed to the compiler.

Generation data groups (GDGs): GDG support is almost identical to GDG support in Enterprise COBOL.
However, there are differences in COBOL for Linux on x86:

• Generation data sets (GDSs), or generation files as they are referred to in this information, are supported
for all file organizations and access modes in all the supported file systems.

• GDG support is not integrated into the file systems. A stand-alone utility, gdgmgr, is provided for
creating and deleting GDGs, managing and querying GDG entries, performing limit processing, and
reconciling the GDG catalog against the existing files.

• The resolution of generation file names occurs when the files are opened rather than at job initialization.
• Limit processing is done when a new generation is added to a group, rather than at job termination.
• The generational range within any given epoch is from 1 to 9999, inclusive, instead of being limited to

1000. Therefore generations 0001 and 9999 can exist in the same epoch.
• A group can contain 1000 generations instead of 255.
• Versioning is not supported. The automatically generated version is always v00.

File concatenation: In COBOL for Linux on x86, you concatenate multiple files by separating the file
identifiers with a colon (:). A COBOL file that is concatenated must have sequential or line-sequential
organization, must be accessed sequentially, and can be opened only for input.

Related concepts
"File systems" in Programming Guide
"Generation data groups" in Programming Guide

Related tasks
"Concatenating files" in Programming Guide
"Compiling from the command line" in Programming Guide

Related references
"Limit processing of generation data groups" in Programming Guide

34 IBM COBOL for Linux on x86 1.2: Migration Guide

Interlanguage communication (ILC)
ILC is available with C/C++ programs.

These are the differences in ILC behavior on Linux on x86 compared to using ILC on z/OS with Language
Environment®:

• There are differences in termination behavior when a COBOL STOP RUN or a C exit() is used.
• There is no coordinated condition handling with COBOL for Linux on x86. Avoid using a C longjmp() that

crosses COBOL programs.
• With Enterprise COBOL, the first program that is invoked within the process and that is enabled for

Language Environment is considered to be the "main" program. With COBOL for Linux on x86, the first
COBOL program invoked within the process is considered to be the main program by COBOL. This
difference affects language semantics that are sensitive to the definition of the run unit (the execution
unit that starts with a main program). For example, a STOP RUN results in the return of control to
the invoker of the main program, which in a mixed-language environment might be different as stated
above.

Related concepts
"Calling between COBOL and C/C++ programs" in Programming Guide
"Preinitializing the COBOL runtime environment" in Programming Guide

Input and output
COBOL for Linux on x86 supports input and output for sequential, relative, and indexed files with the Db2,
MONGO, SdU, SFS, and STL file systems, and also supports input and output for sequential files with the
QSAM file system and RSD file system.

Line-sequential input and output is supported by the native byte stream file support of the operating
system.

Sizes and values of the returned file status information can vary depending on which file system is used.

COBOL for Linux on x86 does not provide direct support for tape drives or diskette drives.

Related concepts
"File systems" in the Programming Guide
"Line-sequential file organization" in the Programming Guide

Related tasks
"Using file status keys" in the Programming Guide
"Using file system status codes" in the Programming Guide

Runtime options
COBOL for Linux on x86 does not recognize the following Enterprise COBOL runtime options, and treats
them as not valid: AIXBLD, ALL31, CBLPSHPOP, CBLQDA, COUNTRY, HEAP, MSGFILE, NATLANG, SIMVRD,
and STACK.

With Enterprise COBOL, you can use the STORAGE runtime option to initialize COBOL WORKING-STORAGE.
With COBOL for Linux on x86, use the WSCLEAR compiler option.

Related references
"Runtime environment variables" in Programming Guide
"Compiler and runtime common environment variables" in Programming Guide
"WSCLEAR" in Programming Guide

Chapter 4. Migrating from Enterprise COBOL for z/OS to COBOL for Linux on x86 35

Source code line size
In COBOL for Linux on x86, COBOL source lines can have varying lengths. A source line ends when a
newline control character is encountered or when the maximum line length has been reached.

In Enterprise COBOL, each source line has the same length.

Related references
"SRCFORMAT" in the Programming Guide

Language elements
The following table lists language elements that are different between Enterprise COBOL and COBOL for
Linux on x86 compilers, and where possible offers advice about how to handle such differences in COBOL
for Linux on x86 programs.

Many COBOL clauses and phrases that are valid in Enterprise COBOL are syntax checked but have no
effect on the execution of COBOL for Linux on x86 programs. These clauses and phrases should have
minimal effect on existing applications that you download. COBOL for Linux on x86 recognizes most
Enterprise COBOL language syntax even if that syntax has no functional effect.

Table 4. Language differences between Enterprise COBOL for z/OS and COBOL for Linux on x86

Language element COBOL for Linux on x86 implementation or restriction

ACCEPT statement If your Enterprise COBOL program expects ddnames as the targets of ACCEPT
statements, define these targets by using equivalent environment variables with
values set to appropriate file-names. In COBOL for Linux on x86, environment-
name and the associated environment-variable value, if set, determine file
identification.

APPLY WRITE-ONLY
clause

Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

ASSIGN clause COBOL for Linux on x86 uses a different syntax and mapping to the system
file-name based on assignment-name. ASSIGN. . .USING data-name is not
supported in Enterprise COBOL.

BLOCK CONTAINS clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

CALL statement A file-name as a CALL argument is not supported in COBOL for Linux on x86.

CLOSE statement The following phrases are syntax checked, but have no effect on the execution
of the program in COBOL for Linux on x86: FOR REMOVAL, WITH NO REWIND,
and UNIT/REEL. Avoid use of these phrases in programs that are intended to be
portable.

CODE-SET clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

DATA RECORDS clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

DISPLAY statement If your Enterprise COBOL program expects ddnames as the targets of DISPLAY
statements, define these targets by using equivalent environment variables with
values set to appropriate file-names. In COBOL for Linux on x86, environment-
name and the associated environment-variable value, if set, determine file
identification.

DYNAMIC LENGTH clause Dynamic-length elementary items are not currently supported in COBOL for Linux
on x86.

36 IBM COBOL for Linux on x86 1.2: Migration Guide

Table 4. Language differences between Enterprise COBOL for z/OS and COBOL for Linux on x86 (continued)

Language element COBOL for Linux on x86 implementation or restriction

File status data-name-1 Some values and meanings for file status 9x are different in Enterprise COBOL than
in COBOL for Linux on x86.

File status data-name-8 The format and values are different depending on the platform and the file system.

INDEX data items In Enterprise COBOL, INDEX data items are implicitly defined as 4 bytes. In COBOL
for Linux on x86 programs compiled with ADDR(32), their size is 4 bytes; with
ADDR(64), their size is 8 bytes.

INVOKE statement COBOL for Linux on x86 does not support writing object-oriented programs,
creating object instances of a COBOL or Java™ class or invoking a method defined
in a COBOL or Java class.

JSON GENERATE and
JSON PARSE statements

JSON is not currently supported in COBOL for Linux on x86.

LABEL RECORDS clause The phrases LABEL RECORD IS data-name, USE. . .AFTER. . .LABEL
PROCEDURE, and GO TO MORE-LABELS are syntax checked, but have no effect
on the execution of the program in COBOL for Linux on x86. A warning is issued
if you use any of these phrases. The user-label declaratives are not called at run
time. You cannot port programs that depend on the user-label processing that
z/OS QSAM supports.

MULTIPLE FILE TAPE Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86. On the Linux workstation, all files are treated as single-volume files.

OBJECT REFERENCE data
items

OBJECT REFERENCE data items are not supported in COBOL for Linux on x86.

OPEN statement The following phrases are syntax checked, but have no effect on the execution of
the program in COBOL for Linux on x86: REVERSED and WITH NO REWIND.

PASSWORD clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

POINTER, PROCEDURE-
POINTER, and
FUNCTION-POINTER data
items

In Enterprise COBOL, POINTER and FUNCTION-POINTER data items are implicitly
defined as 4 bytes as is the special register ADDRESS OF; PROCEDURE-POINTER
data items are implicitly defined as 8 bytes. In COBOL for Linux on x86 programs
compiled with ADDR(32), the size of each of these items is 4 bytes; with
ADDR(64), their size is 8 bytes.

READ. . .PREVIOUS In COBOL for Linux on x86 only, allows you to read the previous record for relative
or indexed files with DYNAMIC access mode

RECORD CONTAINS
clause

The RECORD CONTAINS n CHARACTERS clause is accepted with one exception:
RECORD CONTAINS 0 CHARACTERS is syntax checked, but has no effect on the
execution of the program in COBOL for Linux on x86.

RECORDING MODE clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86 for relative, indexed, and line-sequential files. RECORDING MODE U
is syntax checked, but has no effect on the execution of the program for sequential
files.

RERUN clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

RESERVE clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

Chapter 4. Migrating from Enterprise COBOL for z/OS to COBOL for Linux on x86 37

Table 4. Language differences between Enterprise COBOL for z/OS and COBOL for Linux on x86 (continued)

Language element COBOL for Linux on x86 implementation or restriction

SAME AREA clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

SAME SORT clause Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

SHIFT-IN, SHIFT-OUT
special registers

The COBOL for Linux on x86 compiler puts out an E-level message if it encounters
these registers unless the CHAR(EBCDIC) compiler option is in effect.

SORT-CONTROL special
register

The implicit definition and contents of this special register differ between host and
workstation COBOL.

SORT-CORE-SIZE special
register

The contents of this special register differ between host and workstation COBOL.

SORT-FILE-SIZE special
register

Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86. Values in this special register are not used.

SORT-MESSAGE special
register

Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

SORT-MODE-SIZE special
register

Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86. Values in this special register are not used.

SORT MERGE AREA
clause

Syntax checked, but has no effect on the execution of the program in COBOL for
Linux on x86

START. . . In COBOL for Linux on x86, the following relational operators are allowed: IS
LESS THAN, IS <, IS NOT GREATER THAN, IS NOT >, IS LESS THAN OR
EQUAL TO, IS <=.

STOP RUN Not supported in COBOL for Linux on x86 multithreaded programs; can be
replaced in a multithreaded program with a call to the C exit() function

UTF-8 phrase of the
USAGE clause and the 'U'
PICTURE symbol

The UTF-8 data class and UTF-8 data category are not currently supported in
COBOL for Linux on x86.

WRITE statement In COBOL for Linux on x86, if you specify WRITE. . .ADVANCING with
environment names C01 through C12 or S01 through S05, one line is advanced.

XML PARSE statement In Enterprise COBOL programs compiled using the host-only option
XMLPARSE(XMLSS), additional syntax (the ENCODING phrase and RETURNING
NATIONAL phrase) and special registers for namespace processing are available
that are not available with COBOL for Linux on x86.

Names known to the
platform environment

The following names are identified differently: program-name, text-name, library-
name, assignment-name, file-name in the SORT-CONTROL special register, basis-
name, DISPLAY or ACCEPT target identification, and system-dependent names.

Complementary products
COBOL Report Writer is not available on Linux on x86.

The COBOL Report Writer Precompiler is used on z/OS to compile applications that contain Report
Writer statements, or to permanently convert Report Writer statements to valid Enterprise COBOL
statements. More information about COBOL Report Writer is available at the Enterprise COBOL for z/OS
Documentation.

38 IBM COBOL for Linux on x86 1.2: Migration Guide

https://www.ibm.com/docs/en/cobol-zos/latest?topic=conversion-cobol-report-writer-precompiler
https://www.ibm.com/docs/en/cobol-zos/latest?topic=conversion-cobol-report-writer-precompiler

If you are migrating COBOL programs from z/OS to Linux on x86 and those programs use the COBOL
Report Writer Precompiler, first use the Precompiler to permanently convert Report Writer statements to
Enterprise COBOL statements, and then migrate the post-processed COBOL programs to Linux on x86.
Future changes to those programs that require updates in Report related sections might need to be
re-processed on z/OS and then moved to Linux on x86.

Getting IBM Enterprise COBOL for z/OS applications to compile
If you move Enterprise COBOL programs from an IBM Z system to a Linux on x86 system and compile
them using COBOL for Linux on x86, you need to choose the right compiler options and be aware of
language features that differ from IBM Enterprise COBOL for z/OS. You can also use the COPY statement
to help port programs.

About this task
Choosing the right compiler options: For additional information about Enterprise COBOL compiler
options that affect portability, see the related reference about compiler options.

Allowing for language features of Enterprise COBOL: Several language features that are valid in
Enterprise COBOL programs can create errors or unpredictable results when compiled with COBOL for
Linux on x86. For details, see the related reference about language elements.

Using the COPY statement to help port programs: In many cases, you can avoid potential portability
problems by using the COPY statement to isolate platform-specific code. For example, you can include
platform-specific code in a compilation for a given platform and exclude it from compilation for a different
platform. You can also use the COPY REPLACING phrase to globally change nonportable source code
elements, such as file-names.

Related tasks
"Setting environment variables" in the Programming Guide

Related references
Compiler options
“Language elements” on page 36
"COPY statement" in the Language Reference

Getting IBM Enterprise COBOL for z/OS applications to run:
overview

After you download an Enterprise COBOL program and successfully compile it using COBOL for Linux on
x86, the next step is to run the program. In many cases, you can get the same results as on IBM z/OS
without greatly modifying the source.

About this task
To assess whether to modify the source, you need to know how to fix the elements and behavior of the
COBOL language that vary due to the underlying hardware or software architecture.

Related tasks
“Fixing differences caused
by data representations” on page 40
“Fixing environment differences
that affect portability” on page 42
“Fixing differences caused
by language elements” on page 43

Chapter 4. Migrating from Enterprise COBOL for z/OS to COBOL for Linux on x86 39

Fixing differences caused by data representations
To ensure the same behavior for your programs, you should understand the differences in certain ways of
representing data, and take appropriate action.

About this task

Character data might be represented differently, depending on the USAGE clause that describes data
items and the locale that is in effect at run time. COBOL stores signed packed-decimal in the same
manner on both Linux on x86 and IBM z/OS. However, binary, external-decimal, floating-point, and
unsigned packed-decimal data are by default represented differently.

Most programs behave the same on IBM z/OS and Linux on x86 regardless of the data representation.

Related tasks
“Handling differences in ASCII SBCS and EBCDIC SBCS characters” on page 40
“Handling differences in IEEE and hexadecimal data” on page 41
“Handling differences in
ASCII multibyte and
EBCDIC DBCS strings” on page 42

Related references
“Data representation” on page 31

Handling differences in ASCII SBCS and EBCDIC SBCS characters
To avoid problems with the different data representation between ASCII and EBCDIC characters, use the
CHAR(EBCDIC) compiler option.

About this task
COBOL for Linux on x86 uses the ASCII character set, and Enterprise COBOL for z/OS uses the EBCDIC
character set. Therefore, most characters have a different hexadecimal value, as shown in the following
table.

Table 5. ASCII characters contrasted with EBCDIC

Character Hexadecimal value if ASCII Hexadecimal value if EBCDIC

'0' through '9' X'30' through X'39' X'F0' through X'F9'

'a' X'61' X'81'

'A' X'41' X'C1'

blank X'20' X'40'

Also, code that depends on the EBCDIC hexadecimal values of character data probably fails when the
character data has ASCII values, as shown in the following table.

Table 6. ASCII comparisons contrasted with EBCDIC

Comparison Evaluation if ASCII Evaluation if EBCDIC

'a' < 'A' False True

'A' < '1' False True

x >= '0' If true, does not indicate whether x is a
digit

If true, x is probably a digit

x = X'40' Does not test whether x is a blank Tests whether x is a blank

40 IBM COBOL for Linux on x86 1.2: Migration Guide

Because of these differences, the results of sorting character strings are different between EBCDIC and
ASCII. For many programs, these differences have no effect, but you should be aware of potential logic
errors if your program depends on the exact sequence in which some character strings are sorted. If your
program depends on the EBCDIC collating sequence and you are porting it to the workstation, you can
obtain the EBCDIC collating sequence by using PROGRAM COLLATING SEQUENCE IS EBCDIC or the
COLLSEQ(EBCDIC) compiler option.

Related references
"CHAR" in the Programming Guide
"COLLSEQ" in the Programming Guide

Handling differences in IEEE and hexadecimal data
To avoid most problems with the different representation between IEEE and hexadecimal floating-point
data, use the FLOAT(BE) compiler option.

About this task
COBOL for Linux on x86 represents floating-point data using the IEEE format. Enterprise COBOL for z/OS
uses the IBM Z hexadecimal format. The following table summarizes the differences between normalized
floating-point IEEE and normalized hexadecimal for USAGE COMP-1 data and USAGE COMP-2 data.

Table 7. IEEE contrasted with hexadecimal

Specification IEEE for COMP-1
data

Hexadecimal for
COMP-1 data

IEEE for COMP-2
data

Hexadecimal for
COMP-2 data

Range 1.17E-38* to
3.37E+38*

5.4E-79* to
7.2E+75*

2.23E-308* to
1.67E+308*

5.4E-79* to
7.2E+75*

Exponent
representation

8 bits 7 bits 11 bits 7 bits

Mantissa
representation

23 bits 24 bits 53 bits 56 bits

Digits of accuracy 6 digits 6 digits 15 digits 16 digits
* Indicates that the value can be positive or negative.

For most programs, these differences should create no problems. However, use caution when porting if
your program depends on hexadecimal representation of data.

Performance consideration: In general, IBM Z floating-point representation makes a program run more
slowly because the software must simulate the semantics of IBM Z hardware instructions. This is a
consideration especially if the FLOAT(BE) compiler option is in effect and a program has a large number
of floating-point calculations.

"Examples: numeric data and internal representation" in the Programming Guide

Related references
"FLOAT" in the Programming Guide

Chapter 4. Migrating from Enterprise COBOL for z/OS to COBOL for Linux on x86 41

Handling differences in ASCII multibyte and EBCDIC DBCS strings
To obtain Enterprise COBOL behavior for alphanumeric data items that contain DBCS characters, use the
CHAR(EBCDIC) and SOSI compiler options. To avoid problems with the different data representation
between ASCII DBCS and EBCDIC DBCS characters, use the CHAR(EBCDIC) compiler option.

About this task
In alphanumeric data items, Enterprise COBOL double-byte character strings (containing EBCDIC DBCS
characters) are enclosed in shift codes, and COBOL for Linux on x86 multibyte character strings
(containing ASCII DBCS, UTF-8, or EUC characters) are not enclosed in shift codes. The hexadecimal
values used to represent the same characters are also different.

In DBCS data items, Enterprise COBOL double-byte character strings are not enclosed in shift codes, but
the hexadecimal values used to represent characters are different from the hexadecimal values used to
represent the same characters in COBOL for Linux on x86 multibyte strings.

For most programs, these differences should not make porting difficult. However, if your program
depends on the hexadecimal value of a multibyte string, or expects that an alphanumeric character
string contains a mixture of single-byte characters and multibyte characters, use caution in your coding
practices.

Related references
"CHAR" in the Programming Guide
"SOSI" in the Programming Guide

Fixing environment differences that affect portability
Differences in file-names and control codes between Linux on x86 and IBM z/OS platforms can affect the
portability of your programs.

About this task
File naming conventions on Linux on x86 are very different from those on IBM z/OS. This difference
can affect portability if you use file-names in your COBOL source programs. The following file-name, for
example, is valid on Linux on x86 but not on IBM z/OS (except in the z/OS UNIX file system):

/users/joesmith/programs/cobol/myfile.cbl

Case sensitivity: Unlike z/OS, Linux is case sensitive. Names used in source programs (such as uppercase
file-names) should be named appropriately in Linux file directories.

Some characters that have no particular meaning on z/OS are interpreted as control characters by Linux.
This difference can lead to incorrect processing of ASCII text files. Files should not contain any of the
following characters:

• X'0A' (LF: line feed)
• X'0D' (CR: carriage return)
• X'1A' (EOF: end-of-file)

If you use device-dependent (platform-specific) control codes in your programs or files, these control
codes can cause problems when you try to port the programs or files to platforms that do not support the
control codes. As with all other platform-specific code, it is best to isolate such code as much as possible
so that you can replace it easily when you move the application to another platform.

42 IBM COBOL for Linux on x86 1.2: Migration Guide

Fixing differences caused by language elements
In general, you can expect portable COBOL programs to behave the same way on Linux as they do on
z/OS. However, be aware of the differences in file-status values used in I/O processing.

About this task
If your program responds to file-status data items, be concerned with two issues, depending on whether
the program is written to respond to the first or the second file-status data item:

• If your program responds to the first file-status data item (data-name-1), be aware that values returned
in the 9n range depend on the platform. If your program relies on the interpretation of a particular 9n
value (for example, 97), do not expect the value to have the same meaning on Linux that it has on z/OS.
Instead, revise your program so that it responds to any 9n value as a generic I/O failure.

• If your program responds to the second file-status data item (data-name-8), be aware that the values
returned depend on both the platform and file system. For example, the STL file system returns values
with a different record structure on Linux than the VSAM file system does on z/OS. If your program relies
on the interpretation of the second file-status data item, the program is probably not portable.

Related tasks
"Using file status keys" in the Programming Guide
"Using file system status codes" in the Programming Guide

Related references
"FILE STATUS clause" in the Programming Guide
"File status key" in the Programming Guide

Writing code to run with IBM Enterprise COBOL for z/OS
You can use COBOL for Linux on x86 to develop new applications, and take advantage of the productivity
gains and increased flexibility of using your Linux on x86 system. However, when you develop COBOL
programs, you need to avoid using features that are not supported by IBM Enterprise COBOL for z/OS.

About this task
Language features: COBOL for Linux on x86 supports several language features that are not supported by
Enterprise COBOL. As you write code on Linux on x86 that is intended to run on z/OS, avoid using these
features:

• Code-page names as arguments to the DISPLAY-OF and NATIONAL-OF intrinsic functions
• READ statement using the PREVIOUS phrase
• START statement using <, <=, or NOT > in the KEY phrase
• >>CALLINTERFACE compiler directive

Compiler options: Several compiler options are not available on Enterprise COBOL. Do not use any of the
following compiler options in your source code if you intend to port the code to z/OS:

• BINARY(NATIVE)
• CALLINT (treated as a comment)
• CHAR(NATIVE)
• FLOAT(NATIVE)

File names: Be aware of the difference in file-naming conventions between Linux and host file systems.
Avoid hard-coding the names of files in your source programs. Instead, use mnemonic names that you
define on each platform, and map them in turn to mainframe ddnames or environment variables. You
can then compile your program to accommodate the changes in file-names without having to change the
source code.

Specifically, consider how you refer to files in the following language elements:

Chapter 4. Migrating from Enterprise COBOL for z/OS to COBOL for Linux on x86 43

• ACCEPT or DISPLAY target names
• ASSIGN clause
• COPY statement (text-name or library-name)

File suffixes: In COBOL for Linux on x86, when you compile using one of the cob2 commands, COBOL
source files that have suffix .cbl or .cob are passed to the compiler. In mainframe COBOL, when you
compile in the z/OS UNIX file system, however, only files that have suffix .cbl are passed to the compiler.

Nested programs: Multithreaded programs on the mainframe must be recursive. Therefore, avoid coding
nested programs if you intend to port your programs to the mainframe and enable them to run in a
multithreaded environment.

44 IBM COBOL for Linux on x86 1.2: Migration Guide

Chapter 5. Migrating from COBOL for AIX to COBOL
for Linux on x86

This information describes some areas you might need to consider if migrating programs from COBOL for
AIX to COBOL for Linux on x86.

Compiler options
COBOL for Linux on x86 does not support the following COBOL for AIX compiler options.

ADATA
The ADATA option is not currently supported. Use the default NOADATA for now.

ARCH
This option is used by COBOL for AIX to target different Power® machine architectures. It is not
supported on Linux because COBOL for Linux on x86 makes use of the most efficient x86 instruction
set currently available.

ENTRYINT
This option is treated as a comment on AIX, and not supported on Linux.

DUMP
Use of this option will generate a warning message but will not terminate compilation.

LIB
Use of this option will generate a warning message but will not terminate compilation.

MAXMEM
Use of this option will generate a warning message but will not terminate compilation.

SIZE
Use of this option will generate a warning message but will not terminate compilation.

COBOL for Linux on x86 does not support the following COBOL for AIX flag options:
-cmain

On Linux, this option is accepted and ignored.

With COBOL for AIX, the -cmain option has an effect only if you also specify -host. When -host is
used, the compiler needs a pseudo main program to convert the arguments from EBCDIC to ASCII,
and then call the COBOL program. If you have a C or PL/I object file that contains a main routine, the
-cmain option informs cob2 not to link with the pseudo main, and makes the C or PL/I object file that
contains a main routine the main entry point in the executable file.

With COBOL for Linux on x86, cob2 always links with the pseudo main, and forces it to be the entry
point of the executable. You can still have your own C program called main, and it will be called from
the pseudo main. If you do provide your own main(), it must understand that it is being passed a
single z/OS style parameter list with the string null terminated.

struct plist {
 uint16_t len;
 uint8_t str[1025];
};

-p and -pg
These options are profiling options for use with tprof on AIX. On Linux, use Valgrind instead. No
additional instrumentation or changes to the COBOL program are needed to make use of Valgrind.

Related references
"cob2 options" in Programming Guide

© Copyright IBM Corp. 2021, 2023 45

Data representation
The representation of data can differ between COBOL for AIX and COBOL for Linux on x86.

Binary data
IBM COBOL compilers use the native representation of the platform when handling binary (BINARY,
COMP, COMP-4 and COMP-5) data items.

On Linux x86, binary data items will be stored and manipulated in little-endian format (least significant
digit at the lowest address). On AIX, binary data items will be stored and manipulated in big-endian
format (most significant digit at the lowest address).

When migrating COBOL applications from COBOL for AIX to COBOL for Linux on x86, you might get
unexpected results if your program accesses data that is stored in big-endian format as the compiler and
runtime will treat the data as little-endian format by default..

You can use the BINARY(BE) option to inform the COBOL for Linux on x86 compiler to handle BINARY,
COMP and COMP-4 data items in big-endian format consistent with COBOL for AIX, however this will have
some performance overhead as the compiler needs to convert the data to and from its native format,
little-endian. COMP-5 data items are not affected by the BINARY(BE) or BINARY(LE) option as COMP-5
indicates a native binary data item that uses the native representation of the platform. If you use a
combination of COMP-5 and other BINARY/COMP/COMP-4 data types in your program, take care when
using the BINARY(BE) option. If a particular data item needs to remain in little-endian (LE) representation
when BINARY(BE) has been specified, use the NATIVE clause on the USAGE statement.

Note:

• If you are using IBM MQ, API parameters are expected to be in big endian format, so you will need to
use the BINARY(BE) and FLOAT(BE) option when working with MQ on Linux.

• IBM Db2, and Oracle Pro*COBOL add their own data areas in the generated COBOL program to
communicate with their client libraries. These client libraries expect data in native little-endian format
on Linux, even if they support big-endian host data. When working with Db2 or Pro*COBOL, you should
use the default native binary format (BINARY(NATIVE), or BINARY(LE)).

• Since IBM MQ expects a different binary format than IBM Db2 and Oracle Pro*COBOL, it is not
recommended to have MQ and SQL calls in the same compilation unit or batch compilation.

National data
IBM COBOL compilers use the native UTF-16 representation of the platform when handling National data.

On Linux x86, National data items will be stored and manipulated in UTF-16 little-endian format. On AIX,
National data items will be stored and manipulated in UTF-16 big-endian format.

When migrating COBOL applications from COBOL for AIX to COBOL for Linux on x86, you might get
unexpected results if your program accesses data that is stored in big-endian format as the compiler and
runtime will treat the data as little-endian format by default..

You can use the UTF16(BE) option to inform the COBOL for Linux on x86 compiler to handle National
data items in big-endian format consistent with COBOL for AIX, however this will have some performance
overhead as the compiler needs to convert the data to and from its native format, little-endian. If a
particular data item needs to remain in little-endian (LE) representation when UTF16(BE) has been
specified, use the NATIVE clause on the USAGE statement.

Related tasks
"Setting the locale" in Programming Guide
"Fixing differences caused by data representations" in Programming Guide

Related references
"CHAR" in Programming Guide
"SOSI" in Programming Guide

46 IBM COBOL for Linux on x86 1.2: Migration Guide

Compiler and runtime environment variables
COBOL for Linux on x86 does not recognize the following compiler and runtime environment variables
that are available in COBOL for AIX.

• CLASSPATH
• COBJVMINITOPTIONS
• COBRTDUMP
• COBMSGS
• LIBPATH
• LOCPATH
• TMP

The ENCINA SFS related environment variables available with COBOL for AIX are renamed to CICS SFS
environment variables in COBOL for Linux on x86.

COBOL for Linux on x86 recognizes several compiler and runtime environment variables that are not used
in COBOL for AIX, as listed below.

• COBCORE
• COBOUTDIR
• DBCS_CODEPAGE
• LD_LIBRARY_PATH
• TMPDIR
• VFS_MONGODB_DATABASE
• VFS_MONGODB_URI

Related information:

"Setting environment variables" in Programming Guide

Language elements
The following table lists language elements that are different between COBOL for AIX and COBOL for
Linux on x86 compilers, and where possible offers advice about how to handle such differences in COBOL
for Linux on x86 programs.

Table 8. Language differences between COBOL for AIX and COBOL for Linux on x86

Language element COBOL for Linux on x86 implementation or restriction

INVOKE statement COBOL for Linux on x86 does not support writing object-oriented programs,
creating object instances of a COBOL or Java™ class, or invoking a method defined
in a COBOL or Java class.

OBJECT REFERENCE data
items

OBJECT REFERENCE data items are not supported in COBOL for Linux on x86.

SDU file system COBOL for Linux on x86 does not support the SDU file system. If you specify SDU,
it will be treated as if STL was specified. When you specify VSAM as the file system,
it will default to STL. See "Identifying files" in Programming Guide.

Chapter 5. Migrating from COBOL for AIX to COBOL for Linux on x86 47

File Specification
There are some differences between the way COBOL for Linux on x86 handles files and the way COBOL
for AIX handles files.

Opening files for writing
Opening a file for writing is a non-blocking call on AIX, but is a blocking call on Linux. On AIX, if multiple
processes are accessing the same file, process B will not wait for process A to be done with the file before
process B opens the file for a write. It is up to you to ensure that only one process writes to the file
at a time. On Linux, if one process has opened a file for a write, the second process will wait until the
first process is finished to avoid any file corruption. You can use the VFS_LOCK=0 environment variable
to change the file open for writing operation on Linux back to a non-blocking call. You should use this
environment variable with caution as there is the potential for file corruption.

48 IBM COBOL for Linux on x86 1.2: Migration Guide

Notices

Programming interfaces: Intended programming interfaces allow the customer to write programs to
obtain the services of IBM COBOL for Linux on x86.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive

© Copyright IBM Corp. 2021, 2023 49

Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 2010, 2015.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, or
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

50 Notices

For more information about the use of various technologies, including cookies, for these purposes,
see IBM's Privacy Policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at http://
www.ibm.com/privacy/details in the section entitled "Cookies, Web Beacons and Other Technologies,"
and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/
software/info/product-privacy.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Notices 51

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

52 IBM COBOL for Linux on x86 1.2: Migration Guide

IBM®

Product Number: 5737-L11

SC28-3454-00

	Contents
	Chapter 1. Introduction
	Chapter 2. Migrating from an earlier version of COBOL for Linux on x86 to the current version
	Option changes
	Migration of 32-bit applications to 64-bit mode
	Linux distribution support
	Optional programs support
	Runtime compatibility

	Chapter 3. Migrating from non-IBM COBOL compilers to COBOL for Linux on x86
	Format changes
	File suffix .cob for COBOL source
	Free-format COBOL source files
	Alphanumeric literals longer than 160 characters in COBOL source files
	Extra and misplaced periods in COBOL source
	User-defined words
	REPORT SECTION and SCREEN SECTION
	Embedded null characters in variables
	Format of floating point literals
	RECORD SEQUENTIAL file organization

	Data representation
	IDENTIFICATION DIVISION changes
	DATA DIVISION changes
	OCCURS clauses in level 01
	COMP-X
	Runtime errors because of uninitialized variables being converted to a display type
	Redefined data items and OCCURS clauses
	WHEN condition used with VALUE clause
	Expressions used with VALUE clause

	PROCEDURE DIVISION changes
	Moving national data items to alphanumeric data items
	Undefined symbol errors for C functions being called
	COBOL programs containing an ACCEPT statement
	BINARY formatted data in an ACCEPT statement
	NULL parameters in CALL statements
	Unterminated nested statements

	Output for positive numbers
	Source conversion utility (scu)
	Source conversion utility (scu) options

	Chapter 4. Migrating from Enterprise COBOL for z/OS to COBOL for Linux on x86
	Compiler options
	Data representation
	Compiler and runtime environment variables
	File specification
	Interlanguage communication (ILC)
	Input and output
	Runtime options
	Source code line size
	Language elements
	Complementary products
	Getting IBM Enterprise COBOL for z/OS applications to compile
	Getting IBM Enterprise COBOL for z/OS applications to run: overview
	Fixing differences caused by data representations
	Handling differences in ASCII SBCS and EBCDIC SBCS characters
	Handling differences in IEEE and hexadecimal data
	Handling differences in ASCII multibyte and EBCDIC DBCS strings

	Fixing environment differences that affect portability
	Fixing differences caused by language elements

	Writing code to run with IBM Enterprise COBOL for z/OS

	Chapter 5. Migrating from COBOL for AIX to COBOL for Linux on x86
	Compiler options
	Data representation
	Compiler and runtime environment variables
	Language elements
	File Specification

	Notices
	Trademarks

