
Using IBM Data Virtualization Manager for
z/OS
1.1

IBM

SC27-9301-02

Note

Before using this information and the product it supports, read the information in “Product legal
notices” on page 227.

This edition applies to Version 1 Release 1 of IBM Data Virtualization Manager for z/OS and to all subsequent releases
and modifications until otherwise indicated in new editions.

Last updated: 2024-04-01
© Copyright International Business Machines Corporation 2017, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© Rocket Software, Inc. 2017, 2022.

Contents

Tables... vii

About this information.. xi

How to send your comments to IBM...xiii
If you have a technical problem..xiii

Chapter 1. Virtualizing mainframe data.. 1
Multiple schema support... 2

Prerequisites for adding virtual tables to a schema.. 3
Creating schema maps on the server.. 3
Moving the existing maps or virtual tables to a schema... 4
Viewing schema maps from the ISPF panel.. 5

Using batch JCL jobs.. 5
Sample JCL - Batch Data Mapping...5
Sample JCL - DRDA bind.. 16
Sample JCL- Web Services Migration.. 17

Using the ISPF application.. 18
IBM Data Virtualization Manager for z/OS Interface for ACI...18
Adabas.. 40
DB2... 41
IBM Data Virtualization Manager for z/OS Interface for IMS DB: support for DBCTL........................ 43
VSAM and sequential files..55

Using the Data Mapping Facility.. 60
Setting default values for data maps .. 61
Displaying data maps... 61
Viewing individual data elements.. 62
Copying data maps...64
Refreshing data maps.. 65
Creating source library maps... 65

Bind or grant DRDA packages..66

Chapter 2. Migrating maps... 67

Chapter 3. Using the studio.. 69
Data Virtualization Manager studio overview..69
Perspectives ..70

DV Data perspective... 70
Services perspective ... 71

Connecting to the Data Virtualization Manager server .. 72
Connecting to the Data Virtualization Manager server..73
Completing the configuration of DRDA access to RDBMS data sources ..73
Locale considerations ..74

Creating server metadata.. 75
Creating virtual source libraries .. 75
Creating schemas in the studio..77
Creating virtual tables.. 79
Creating virtual views...105
Viewing copybook member name in metadata...106

 iii

Creating Db2 user-defined table functions... 106
Db2 federation nicknames for distributed environment...112

Validating SQL statements.. 114
Generating and executing SQL queries...114
Generating code from SQL.. 115
Updating the IMS child segments... 117
Accessing IT Operational Analytics data.. 118

Accessing SMF data... 118
Viewing documentation... 119

Accessing Db2 unload data... 120
Creating RESTful services..120

Setting REST z/OS Connect Web Services preferences.. 121
Connecting to z/OS Connect.. 121
Creating target systems... 123
Creating Web Services directories...124
Creating Web Services and operations..125
Web services migration..126

Server Trace... 126
Enabling studio calls in the Server Trace results.. 126
Starting Server Trace..127
Filtering Server Trace results...127
Using Server Trace Zoom... 127
Searching Server Trace messages...128
Labeling Server Trace messages... 128
Exporting Server Trace messages... 129
Importing Server Trace messages...130

DV Data preferences..130
Data Virtualization Manager preferences.. 130
Admin preferences...131
Code generation preferences.. 131
Console preferences.. 132
Dictionary preferences...132
Driver preferences..132
SQL preferences...133
Metadata Discovery preferences... 134
SSL preferences... 134

Exporting a virtual table to Software management configuration provider...136
Exporting a virtual view to a Software management configuration provider...136
Runstats function...137
Data Virtualization Manager support for NaturalONE version 9...138
About virtualizing large Db2 columns... 139

Using COBOL copybook map layouts to virtualize large Db2 columns...139

Chapter 4. Using JDBC Gateway...141
Starting the JDBC Gateway server.. 142
Launching the JDBC Gateway administrative console... 143
Using the JDBC Gateway administrative console...143
Configuring access to data sources using the JDBC Gateway... 144

Adding JDBC driver information for a data source..145
Creating a data source definition entry... 147
Configuring the Data Virtualization Manager server for JDBC Gateway sources............................. 148
Example: Configuring access to Oracle data...152

Setting preferences... 153
Setting JDBC driver preferences..154
Setting log preferences.. 154
Setting output preferences.. 155

Troubleshooting...155

iv

Chapter 5. SQL DMF supported data types..157
Adabas... 157
COBOL.. 157
IMS - DBD (database description)...159
Natural conversions...159
Natural DDM (data definition module).. 160
SQL Type Support by the IBM Data Virtualization Manager for z/OS interface..................................... 160

Chapter 6. Supported SQL functions...161
ABS...162
AVG...162
BETWEEN...163
BIGINT... 164
CASE...165
CHAR.. 166
CEILING... 172
COALESCE.. 173
COUNT..173
CONCAT..174
DATE...174
DAY...175
DAYOFWEEK.. 176
DAYOFYEAR... 177
DECIMAL.. 177
DELETE...179
DOUBLE..179
EXISTS... 180
FULL OUTER JOIN... 181
FLOAT... 181
GROUP-BY... 182
GROUP_CONCAT.. 183
HAVING.. 184
HEX...185
HOUR..185
IFNULL... 186
INNER JOIN... 186
INSERT...187
LARGE INTEGER (INTEGER)... 188
LEFT... 188
LEFT OUTER JOIN..189
LENGTH..190
LIKE..191
LOWER..191
LTRIM... 192
MAX.. 193
MICROSECOND..193
MIN...194
MINUTE..194
MOD..195
MONTH...196
ORDER BY.. 196
OUTER JOIN...199
RAND..200
REAL... 200
REPLACE.. 201
RIGHT OUTER JOIN...203

 v

ROUND... 203
RTRIM.. 204
SECOND... 205
SELECT... 206
SMALLINT.. 208
SUBSTR.. 209
SUM.. 210
SQRT...211
TIME... 212
TIMESTAMP... 212
TO_CHAR..214
TRIM...215
UNION..216
UNION ALL... 217
UPDATE.. 218
UPPER.. 222
WHERE... 222
YEAR...223

Accessibility features.. 225

Product legal notices... 227
Trademarks.. 229
Privacy Policy Considerations... 230
Terms and conditions.. 230

Index.. 231

vi

Tables

1. To Fingerprint a File...6

2. Source to DMF... 6

3. DBD and PSB Batch Extraction... 7

4. Source to DMF - Sequential...7

5. Source to DMF - To merge Map B into Map A... 8

6. Source to DMF - To merge a map into a DBD segment...8

7. Source to DMF - To remove a map from a DBD segment... 9

8. Source to DMF - To convert a map to a sequential map...9

9. VSAM from Source...10

10. To Convert a Map to a VSAM Map... 10

11. CICS...11

12. Adabas - Supported Input Parameters for Extracting an Adabas File.. 12

13. Adabas - Redefine Parameters...15

14. Adabas - OVERRIDES Parameters..16

15. DRDA bind... 16

16. Web services migration...17

17. Server ACI Facility...19

18. Conversions of COBOL data types to ODBC data types... 34

19. ACI timeout values..36

20. FORMAT column types and the SQL equivalent...40

21. Server Adabas Data Mapping Facility... 41

22. Server IMS Data Mapping Facility...43

23. Access to file type by interface...55

 vii

24. Server VSAM/Sequential Data Mapping Facility...55

25. Server Data Mapping Facility.. 60

26. Security permissions required to use the migration utility..67

27. Data definitions for Adabas.. 157

28. COBOL data definitions used by DMF...157

29. PIC S9(_) USAGE COMP-5.. 158

30. PIC 9(_) USAGE COMP-5.. 158

31. Data definitions for IMS - DBD... 159

32. Data definitions for Natural DDM..160

33. VIRTUAL TABLE - EMPL_COMP.. 161

34. VIRTUAL TABLE - EMPLOYEE... 161

35. Virtual Table - EMP..161

36. Virtual Table - JOIN1.. 162

37. Virtual Table - JOIN2.. 162

38. BETWEEN predicate and equivalent search conditions.. 163

39. Between.. 164

40. Case...166

41. Exists... 181

42. Full Outer Join...181

43. Group-By... 183

44. Having..185

45. Inner Join.. 187

46. Insert...188

47. Left Outer Join...190

48. Like.. 191

viii

49. RIGHT OUTER JOIN..203

50. SELECT ALL... 207

51. SELECT - Limited Columns and Row.. 208

52. SELECT - Condition... 208

53. SUB SELECT ... 208

54. VIRTUAL TABLE - EMPLOYEE... 217

55. VIRTUAL TABLE - EMPLOYEE... 217

 ix

x

About this information

This information supports IBM Data Virtualization Manager for z/OS (5698-DVM) and contains information
about using IBM Data Virtualization Manager for z/OS and the IBM Data Virtualization Manager studio,
which is a component that is provided with IBM Data Virtualization Manager for z/OS.

Purpose of this information
This document provides an overview of IBM Data Virtualization Manager for z/OS and presents the
information you need to access your data sources using the IBM Data Virtualization Manager studio.

Who should read this information
This information is intended for system and database administrators.

© Copyright IBM Corp. 2017, 2022 xi

xii Using IBM Data Virtualization Manager for z/OS:

How to send your comments to IBM

We appreciate your input on this documentation. Please provide us with any feedback that you have,
including comments on the clarity, accuracy, or completeness of the information.

Important: If your comment regards a technical problem, see instead “If you have a technical problem”
on page xiii.

Send an email to comments@us.ibm.com.

Include the following information:

• Your name and address
• Your email address
• Your phone or fax number
• The publication title and order number:

IBM Data Virtualization Manager for z/OS User Guide
SC27-9301-00

• The topic and page number or URL of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM®, you grant IBM a nonexclusive right to use or distribute the comments
in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are listed for sending
comments. Instead, take one or more of the following actions:

• Visit the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 2017, 2022 xiii

mailto:comments@us.ibm.com
http://support.ibm.com/

xiv Using IBM Data Virtualization Manager for z/OS:

Chapter 1. Virtualizing mainframe data
You can virtualize and access mainframe data using batch processing, the ISPF Server Data Mapping
Facility, or the IBM Data Virtualization Manager studio.

• Batch is typically used in a production lifecycle for adding and updating maps in your production
environment. Batch provides an audit trail for monitoring mainframe changes.

• The Data Virtualization Manager server ISPF interface provides interface facilities for accessing data
sources and a Data Mapping Facility for creating maps.

• The IBM Data Virtualization Manager studio allows you to connect to data sources and map data. In IBM
Data Virtualization Manager studio data maps are referred to as virtual tables and virtual collections. For
more information, see “Creating server metadata” on page 75.

Virtual tables (maps)
Mapping data means that the source data's definition is used to create a virtual table that matches the
definition of the source data. In the IBM Data Virtualization Manager studio data maps are referred to as
virtual tables for SQL solutions or virtual collections for NoSQL solutions.

The data definition depends on the programming language that compiles it. For example:

• For COBOL, it is a file definition or data definition.
• For PL/I, it is a Data Control Language (DCL) statement.

The information (length, format, and field elements) is extracted from the data definition and made
available to the Data Virtualization Manager server. The data maps refresh process is governed by the
Auto Refresh parameter that is specified by using the Data Mapping Defaults Options. To
access this feature in ISPF, select D Data Mapping from the Primary Option Menu. Select 0 Map
Defaults from the Server Data Mapping Facility Menu and then set the Auto Refresh parameter to
Yes.

Note: For batch job use the refresh control card in the SYSIN DD

Once created, a data map is called by using a parameter that is passed with an ODBC/JDBC SQL
statement. The data map controls the parsing and formatting of the result set, including the names that
are assigned to columns. By calling different maps, the Data Mapping Facility (DMF) can return different
views or subsets of the data.

Data maps are created by using a series of ISPF panels that allow you to specify a data set containing
a compile listing of a program that contains a data definition. The information (length, format, type, and
offset, for example) about each field element is extracted from the data definition and made available to
Data Virtualization Manager server.

Applications that use Data Virtualization Manager server through a Data Virtualization Manager client,
JDBC, and ODBC can use the data maps to manipulate or view the logical or physical data.

Note: The extracts for COBOL and PLI data maps are also available in batch. The AVZMFPAR member is
included in the server distributed hlq.SAVZCNTL data set as a sample JCL for extracting these types of
maps in batch.

When you use the DMF, follow these guidelines:

• Use one server as a test server and another server as a production server.
• Use the DD statement AVZMAPP as part of your initial setup to identify the data sets that contain the

maps for your production server.
• For each server, allocate one or more data sets, as needed. To facilitate central control of the production

map data set, allocate a “staging” data set for interim maps.

© Copyright IBM Corp. 2017, 2022 1

Restrictions for column extraction
The DMF can process up to 7,500 columns for a result set. If more than 7,500 columns are extracted, the
extract process continues, but it is recommended that you disable any unwanted columns to reduce the
total to 7,500.

Multiple schema support
Create and manage multiple schemas for virtual tables.

With the IBM Data Virtualization Manager for z/OS, you can create and manage multiple schemas. This
feature supports the use of multiple virtual schemas for virtual tables in Data Virtualization Manager. You
can create schemas in the server using JCL batch files, you can manage the schemas using the JCL batch
files and Data Virtualization Manager Studio.

With this feature you can:

• create multiple virtual tables with the same names in different schemas,
• create tables with same name for different departments or functions in an organization, and
• create virtual tables with the same names that references to different data sources.

Enhanced security
Support for multiple schemas enhances the security by giving you granular control and letting you
configure the security at a schema level instead of just at the table level.

You can now additionally configure the security at the schema level and at the schema data set level.
You can configure a schema such that only specified users can run queries from the Studio, JDBC, ODBC,
DSClient on the tables that are part of that schema. You can secure the data set of a schema so that only
specified users can create virtual tables or have read access to the virtual tables.

The following diagram illustrates an example where two different schemas have virtual tables with similar
names and are used by multiple applications:

2 Using IBM Data Virtualization Manager for z/OS:

Related concepts
“Prerequisites for adding virtual tables to a schema” on page 3
Ensure to follow these prerequisites before adding virtual tables to a schema.
Related tasks
“Creating schema maps on the server” on page 3
Create new schema maps on the server using the AVZMSCHM member and updating the JCL statements in
the control file.

Prerequisites for adding virtual tables to a schema
Ensure to follow these prerequisites before adding virtual tables to a schema.

You can only allocate the virtual tables that you can query using SQL or use with the SQL engine to a
schema. You cannot add a virtual table that uses legacy interfaces to a schema. This limitation is because
all the legacy interfaces use 31-bit storage, and the schema support requires 64-bit storage.

Here are the prerequisites for creating schemas:

• Every schema must have an associated data set that holds the virtual tables for that schema. The data
set is not defined in the started task JCL and is allocated and deallocated dynamically when a server
discovers a schema.

• You must associate only one data set per schema.
• You can create a data set by an IEFBR14 step in the batch job or by the studio wizard. If any other

process creates a data set, Data Virtualization Manager can use the dataset, but you must ensure that
the data set is correct.

• A schema map has a schema name and a map name. The schema name must not exceed 64 bytes. The
map name defaults to the first 50 bytes of the schema name if it is not specified. If this default map
name is not unique, you might come across an error, and you must provide a map name.

• Currently, you can create only 200 schemas and virtual directories per server.

Related concepts
“Multiple schema support” on page 2
Create and manage multiple schemas for virtual tables.

Creating schema maps on the server
Create new schema maps on the server using the AVZMSCHM member and updating the JCL statements in
the control file.

About this task
A new member called AVZMSCHM is added to the JCL statement in the control file. The job contains
instructions of the required modifications and information about the differences in the statement.

Update the JCL with the required information using the SYSIN statement.

Procedure
1. Modify the JCL according to the instructions provided in the hlq.CNTL(AVZMSCHM) member. Update

the SYSIN statements as follows:

SYSIN DD*
SCHEMA = NAME_OF_YOUR_SCHEMA
SCHEMA DATASET = MAP_DATA_SET_FOR_MAPS_IN_THIS_SCHEMA SCHEMA MAP
SAVE OPTION = SAVE
REFRESH OPTION = REFRESH

Chapter 1. Virtualizing mainframe data 3

Option Description

SCHEMA Name of your schema that you can use in the SQL
query.

SCHEMA DATASET Data set name for the schema.

SCHEMA MAP Map name for the schema.

2. Change the existing migration jobs by updating the hlq.CNTL(AVZGNMPM) member. Add a new
SYSIN statement as follows:

OPT VT SCHEMA=
VT SCHEMA=OLD_SCHEMA,NEW_SCHEMA
VT SCHEMA=OLD_SCHEMA_1,NEW_SCHEMA_1

Option Description

VT SCHEMA The schema name in which the virtual table must
reside. The format is old schema, new schema.
Add only one change pair per line.

To move a map that does not have a schema to a schema, use the ADD option as follows:

VTSCHEMA=ADD,NEW_SCHEMA

Note: Only one add statement is allowed per migration.

Related concepts
“Multiple schema support” on page 2
Create and manage multiple schemas for virtual tables.
Related tasks
“Moving the existing maps or virtual tables to a schema” on page 4
Move the existing maps or virtual tables to a specific schema using the hlq.CNTL(AVZGNMPM) member.
You can also use the standalone utility using the hlq.CNTL(AVZDMUT) member to move existing maps to
a schema.
“Viewing schema maps from the ISPF panel” on page 5
In the ISPF panel, view all the schema maps by navigating from Data Mapping to Map Display.

Moving the existing maps or virtual tables to a schema
Move the existing maps or virtual tables to a specific schema using the hlq.CNTL(AVZGNMPM) member.
You can also use the standalone utility using the hlq.CNTL(AVZDMUT) member to move existing maps to
a schema.

About this task
Move the existing maps or virtual tables to specific schemas using either the SYSIN statement in the
hlq.CNTL(AVZGNMPM) member or the standalone utility in the hlq.CNTL(AVZDMUT) member.

Procedure
1. Moving the maps using the SYSIN statement in the hlq.CNTL(AVZGNMPM) member. Use the SYSIN

statements as follows:

SYSIN DD *
VT SCHEMA = ADD,NEW_SCHEMA
MAP=NAMES_OF_MAPS_TO_PUT_IN_THIS_SCHEMA

Note: Using the migration job with the same SOURCE and TARGET SSID, the virtual table is copied to
the specified schema and the original map is also available in the default schema.

4 Using IBM Data Virtualization Manager for z/OS:

2. Moving the maps using the standalone utility in the hlq.CNTL(AVZDMUT) member: You can run the
standalone batch utility outside Data Virtualization Manager. Take your current map library and specify
the schema map library that you want to use. Ensure that schema map library name matches with
schema name that you defined when you created the schema. Anything that you have not defined to
move to the schema map library moves to the new map library. If you want to revert the changes, you
can restart the server and point to the current map library and redo the steps.

Use the instructions that are described in the job as follows:

//STEP1 EXEC PGM=SDBDMUT,REGION=0M
//STEPLIB DD DISP=SHR,DSN=&LOADLIB
//SYSEXEC DD DISP=SHR,DSN=&REXXLIB
//DVSMAPP DD DISP=SHR,DSN=&CURRENT_MAP_LIBRARY
//SCHEMAMP DD DISP=SHR,DSN=&SCHEMA_MAP_LIBRARY
//NEWMAPP DD DISP=SHR,DSN=&NEW_MAP_LIBRARY
//SYSPRINT DD SYSOUT=*
//SYSIN DD*
ADDSCHEMA
SCHEMA_NAME MAPNAME
MAPNAME
/*

Viewing schema maps from the ISPF panel
In the ISPF panel, view all the schema maps by navigating from Data Mapping to Map Display.

About this task
View all the schema maps by navigating from Data Mapping to Map Display. A list of schema maps is
displayed. DVSQL is the default schema. The existing maps are part of the DVSQL schema. You can open a
schema and display the list of maps that are part of the schema.

Note: On the ISPF panel, the structure name field displays the map name.

Using batch JCL jobs
Batch processing is typically used in a production lifecycle for adding and updating maps in your
production environment. Batch JCL jobs provide an audit trail for monitoring mainframe changes.

There are different ways to use batch processing:

• You can create a virtual table in the IBM Data Virtualization Manager studio and use a batch job to copy
the map into your production environment. For more information on creating virtual tables using IBM
Data Virtualization Manager studio, see “Creating virtual tables” on page 79.

• You can use the batch job to create the new virtual table that is then put directly into your production
environment.

Note: Using the IBM Data Virtualization Manager studio is the recommended method to create virtual
tables.

Sample JCL - Batch Data Mapping
You can use the AVZMFPAR member to extract batch maps for COBOL, PLI, Natural, Sequential Files,
DBD, PSBs, ADABAS, CICS, and VSAM data sources, as well as for MFS maps and stored procedures

. You must use a compiled listing to perform the extract.

Note: You must perform a mapping refresh before it shows in the display map command.

Tip: Use the sample batch job in member AVZMFPAR located in your hlq.SAVZCNTL data set for extracting
these maps in batch.

Table 1 on page 6 through Table 14 on page 16 describe the parameters that can be used in the
AVZMFPAR member.

Chapter 1. Virtualizing mainframe data 5

Table 1. To Fingerprint a File

Required? Parameter Description

Required SSID = AVZS The target subsystem to use this map.

Required FUNCTION = FRPT The function to be performed by the DMF parser.

Fingerprint (FRPT). When a file is fingerprinted, the file
is scanned to attempt to determine the language type,
such as COBOL.

Optional SOURCE = The name of the data set that contains the source to
parse.

Note: It is recommend that, instead of using this
parameter, you use the //SOURCE DD statement,
which overrides this parameter.

Table 2. Source to DMF

Required? Parameter Description

Required SSID = AVZS The target IBM Data Virtualization Manager for z/OS
subsystem to use this map.

Required FUNCTION = STOD The function to be performed by the DMF parser.

Optional SOURCE = HLQ.SOURCE.FILE The name of the data set that contains the source to
parse.

Note: It is recommended that, instead of using
this parameter, you use the //SOURCE DD statement,
which overrides this parameter.

Required START FIELD = The name of the first field to map.

Optional END FIELD = The name of the last field to map.

Optional OFFSET ZERO = Y/N Specifies whether to set the Start Search Field offset
to zero, even if it is not a group level or the first
definition in a group. Defaults to YES.

Optional SAVE OPTION = Specifies The DMF import save option. Valid values
are:

• NOSAVE
• SAVE (default)
• REPLACE

It is recommended that you use the SAVE value to
prevent overwriting another map.

Optional REFRESH OPTION = Specifies whether to refresh the map. Valid values are:

• NOREFRESH (default)
• REFRESH

6 Using IBM Data Virtualization Manager for z/OS:

Table 3. DBD and PSB Batch Extraction

Required? Parameter Description

Required SSID = AVZS The target IBM Data Virtualization Manager for z/OS
subsystem to use this map.

Required FUNCTION = STOD The function to be performed by the DMF parser.

Optional SOURCE = HLQ.SOURCE.FILE The name of the data set that contains the source to
parse.

Note: It is recommended that, instead of using
this parameter, you use the //SOURCE DD statement,
which overrides this parameter.

Optional END FIELD = The name of the last field to map.

Optional OFFSET ZERO = Y/N Specifies whether to set the Start Search Field offset
to zero, even if it is not a group level or the first
definition in a group. Defaults to YES.

Optional V2T Converts VAR fields to TRUE VAR fields if this option is
set. The TRUE VAR fields have a 2 byte length of data
field preceding the data.

Optional FLATTEN Setting this option to YES will flatten the arrays at
run time. Setting this option to NO will instantiate the
arrays as separate tables at run time.

Optional MAP DATASET The dataset name where the map will be stored.

Optional MAP NAME The structure name. The maximum length of the map
name is 30 bytes.

Optional SAVE OPTION = Specifies the DMF import save option. Valid values are:

• NOSAVE
• SAVE (default)
• REPLACE

It is recommended that you use the SAVE value to
prevent overwriting another map.

Optional REFRESH OPTION = Specifies whether to refresh the map. Valid values are:

• NOREFRESH (default)
• REFRESH

Table 4. Source to DMF - Sequential

Required? Parameter Description

Required SEQ FILE = Specifies the data set to associate with the map
(implies a sequential map for use by the sequential
interface).

Optional SEQ DSN COLUMN NAME = The sequential request data set column name, if data
set name (for PDS(E) data sets), that can be viewed by
the client.

Optional SEQ MEMBER COLUMN NAME = The sequential request member column name, if
member name (for PDS(E) data sets) that can be
viewed by the client.

Chapter 1. Virtualizing mainframe data 7

Table 4. Source to DMF - Sequential (continued)

Required? Parameter Description

Optional SEQ COLUMN NAME SEARCHABLE = The sequential request DSN and member column
names that can be used on the WHERE clause of a
SQL statement.

Table 5. Source to DMF - To merge Map B into Map A

Required? Parameter Description

Required SSID = AVZS The server subsystem that uses this map.

Required FUNCTION = MMER The function to be performed by the DMF parser.

Required MERGE A = The map that contains the merged information (Map A
of a merge function).

Required MERGE B = The name of the map that is merged into Map A.

Optional NEW MAP NAME = The name of the new map (structure name). The
maximum length is 30 bytes. This field is ignored for
maps that require specific names such as the DBD and
PSB maps. Defaults to the start field structure name.

Optional SAVE OPTION = Specifies The DMF import save option. Valid values
are:

• NOSAVE
• SAVE (default)
• REPLACE

It is recommended that you use the SAVE value to
prevent overwriting another map.

Optional REFRESH OPTION = Specifies whether to refresh the map. Valid values are:

• NOREFRESH (default)
• REFRESH

Table 6. Source to DMF - To merge a map into a DBD segment

Required? Parameter Description

Required SSID = AVZS The target server subsystem to use this map.

Required FUNCTION = MDBD The function to be performed by the DMF parser.

Required DBDNAME = The name of the DBD to link to or unlink from.

Required SEGMENT = The name of the segment in the DBDNAME to link to or
unlink from.

Required LINK MAP = The name of the map to link to the segment.

8 Using IBM Data Virtualization Manager for z/OS:

Table 6. Source to DMF - To merge a map into a DBD segment (continued)

Required? Parameter Description

Optional SAVE OPTION = Specifies The DMF import save option. Valid values
are:

• NOSAVE
• SAVE (default)
• REPLACE

It is recommended that you use the SAVE value to
prevent overwriting another map.

Optional REFRESH OPTION = Specifies whether to refresh the map. Valid values are:

• NOREFRESH (default)
• REFRESH

Optional DISABLE DUP = Y/N Indicates whether to disable duplicates in the DBD.

Optional DISABLE FILLER = Y/N Indicates whether to disable filler fields in the DBD.

Table 7. Source to DMF - To remove a map from a DBD segment

Required? Parameter Description

Required SSID = AVZS The target server subsystem to use this map.

Required FUNCTION = MDBD The function to be performed by the DMF parser.

Required DBDNAME = The name of the DBD to link to or unlink from.

Required SEGMENT = The name of the segment in the DBDNAME to link to or
unlink from.

Optional SAVE OPTION = Specifies the DMF import save option. Valid values are:

• NOSAVE
• SAVE (default)
• REPLACE

It is recommended that you use the SAVE value to
prevent overwriting another map.

Optional REFRESH OPTION = Specifies whether to refresh the map. Valid values are:

• NOREFRESH (default)
• REFRESH

Table 8. Source to DMF - To convert a map to a sequential map

Required? Parameter Description

Required SSID = AVZS The target subsystem to use this map.

Required FUNCTION = MTOS The function that the parser performs.

Required INPUT MAP NAME = The name of this map (structure name). Maximum
length is 30 bytes. This field is ignored for maps
that require specific names such as the DBD and PSB
maps. Defaults to the start field structure name.

Chapter 1. Virtualizing mainframe data 9

Table 8. Source to DMF - To convert a map to a sequential map (continued)

Required? Parameter Description

Required SEQ FILE = The data set associated with the map (implies a
sequential map for use by the sequential interface).

Optional SEQ DSN COLUMN NAME = The sequential request data set column name, if data
set name (for PDS(E) data sets), that can be viewed by
the client.

Optional SEQ MEMBER COLUMN NAME = The sequential request member column name, if
member name (for PDS(E) data sets) that can be
viewed by the client.

Optional SEQ COLUMN NAME SEARCHABLE = The sequential request DSN and member column
names that can be used on the WHERE clause of a
SQL statement.

Optional NEW MAP NAME = The name of this map (structure name). Maximum
length is 30 bytes. This field is ignored for maps
that require specific names such as the DBD and PSB
maps. Defaults to the start field structure name.

Optional SAVE OPTION = Specifies the DMF import save option. Valid values are:

• NOSAVE
• SAVE (default)
• REPLACE

It is recommended that you use the SAVE value to
prevent overwriting another map.

Optional REFRESH OPTION = Specifies whether to refresh the map. Valid values are:

• NOREFRESH (default)
• REFRESH

Table 9. VSAM from Source

Required? Parameter Description

Required VSAM FILE = HLQ.VSAM.FILE The VSAM file to be associated with this map (implies
a VSAM map for use by the VSAM or CICS VSAM
interface).

Optional ALT INDEX = Y/N Indicates that you want to use alternate indexes to
access this VSAM map. Default is NO.

Optional NEW MAP NAME = The name of this map, which is known as the structure
name. Maximum length is 30 bytes. This field is
ignored for maps that require specific names such as
the DBD and PSB maps. Defaults to the start field
structure name.

Table 10. To Convert a Map to a VSAM Map

Required? Parameter Description

Required SSID = AVZS The target server subsystem to use this map.

Required FUNCTION = MTOV The function to be performed by the DMF parser.

10 Using IBM Data Virtualization Manager for z/OS:

Table 10. To Convert a Map to a VSAM Map (continued)

Required? Parameter Description

Required INPUT MAP NAME = The name of this map (structure name). Maximum
length is 30 bytes. This field is ignored for maps
that require specific names such as the DBD and PSB
maps. Defaults to the start field structure name.

Required VSAM FILE = HLQ.VSAM.FILE The VSAM file to be associated with this map (implies
a VSAM map for use by the VSAM or CICS VSAM
interface).

Optional ALT INDEX = Y/N Indicates whether to use alternate indexes to access
this VSAM map. Default is NO.

Optional NEW MAP NAME = The name of this map (structure name). Maximum
length is 30 bytes. This field is ignored for maps
that require specific names such as the DBD and PSB
maps. Defaults to the start field structure name.

Table 11. CICS

Required? Parameter Description

Required CICS CONN = The name of the CICS connection to use for this map,
if this map is to be used by the CICS VSAM interface.

Required CICS TRAN = The name of the CICS transaction to use for this map,
if this map is to be used by the CICS VSAM interface.

Required CICS FCT = or CICS FCT ENTRY = The name of the CICS FCT entry to use for this map, if
this map is to be used by the CICS VSAM interface.

Optional AIXn FCT = where n is numeric for 1-8. The name of the CICS FCT entry to use for each IX
path found, if this name is to be used by the CICS
VSAM interface.

Optional SAVE OPTION = Specifies the DMF import save option. Valid values are:

• NOSAVE
• SAVE (default)
• REPLACE

It is recommended that you use the SAVE value to
prevent overwriting another map.

Optional REFRESH OPTION = Specifies whether to refresh the map. Valid values are:

• NOREFRESH (default)
• REFRESH

Attention:

• A COBOL listing with OPT(FULL) cannot be processed to produce a virtual table. Keywords for
this process define the same elements that you would specify on the ISPF panels.

Creating ADABAS virtual table:

When executing the AVZMBTPA utility without specifing a DDM on the SOURCE DD statement, the batch
utility performs an Adabas LF command to read the FDT and generates 2 byte column names. It is
recommended to supply a DDM view to provide long names, date, timestamp, scale formating.

Note: Some 2 byte column names are reserved for SQL, e.g. (AS, IF, IS, IN, ON, OR, TO, TS)

Chapter 1. Virtualizing mainframe data 11

Example:

//DMFEXTR1 EXEC PGM=IKJEFT01,PARM=(AVZMBTPA O'),REGION=0M
//STEPLIB DD DISP=SHR,DSN=your..SAVZLOAD
// DD DISP=SGR,DSN=your.ADABAS.LOAD <= ADALNKR routine
//SYSEXEC DD DISP=SHR,DSN=your..SAVZEXEC
//SOURCE DD DISP=SHR,DSN=SOURCE.DATASET.AND.MEMBER <= DDM LISTING
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//SYSIN DD *
 SSID = AVZS
 FUNCTION = ADLF
 MAP NAME = ADA100_FILE999_SALES
 SAVE OPTION = REPLACE
 REFRESH OPTION = REFRESH
 ADABAS DBID = 100
 ADABAS DBNAME = BATCHPARSER
 ADABAS FILE NUM = 999
 ADABAS SUBSYS = ADAB
 FLATTEN = YES
 MU COUNT = 3
 PE COUNT = 3
 CREATE COUNT FIELDS = YES
 USE DDM = YES
 REDEFINE_BEGIN
REDEFINE_FILE = 999 REDEFINE_FIELD = AA
 (REDEFINE_COLUMN = AA_COLUMN1 REDEFINE_FORMAT = A
 REDEFINE_LENGTH = 10 REDEFINE_OFFSET = 0)
 (REDEFINE_COLUMN = AA_COLUMN2 REDEFINE_FORMAT = A
 REDEFINE_LENGTH = 20 REDEFINE_OFFSET = 10)
REDEFINE_END
 BEGIN_OVERRIDES
 FILE = 999, FIELD = P2, FORMAT = P, SCALE = 2
 FILE = 999, FIELD = P8, FORMAT = P, SCALE = 2
 FILE = 999, FIELD = F2, FORMAT = A, LENGTH = 6
 FILE = 999, FIELD = U8, FORMAT = I, LENGTH = 4
 FILE = 999, FIELD = P4, FORMAT = D
 FILE = 999, FIELD = P7, FORMAT = S

END_OVERRIDES

/*

Table 12. Adabas - Supported Input Parameters for Extracting an Adabas File

Required? Parameter Description

Required SSID = AVZS The Data Virtualization Manager subsystem ID.

Required FUNCTION = ADLF The parser function for Adabas.

Required MAP NAME = The name of this map, which is known as the structure
name. The maximum length is 30 bytes.

Required ADABAS DBID = The database ID as shown on the ADAREP.

Optional ADABAS DBNAME = The database name as shown on the ADAREP. This
name is used for reporting purposes.

Required ADABAS FILE NUM = The file number of the Adabas file as shown on the
ADAREP.

Required ADABAS SUBSYS = The Adabas SVC router name assignment. If not
specified, the default is ADAB.

Required MU COUNT = The maximum allowed MU (multiple value field)
columns generated. Optional when using FLATTEN =
N. If not specified, the default is 0.

Required PE COUNT = The maximum allowed PE (periodic groups) columns
generated. Optional when using FLATTEN = N. If not
specified, the default is 0.

12 Using IBM Data Virtualization Manager for z/OS:

Table 12. Adabas - Supported Input Parameters for Extracting an Adabas File (continued)

Required? Parameter Description

Optional CREATE COUNT FIELDS = If set, the parser generates a count field for all MU
and PE fields. The name that is generated for the
field is the PE or MU field name plus the letters "_C"
(if using the field name in the DDM) or the PE or
MU field name plus the letter "C" (if using the field
name from the LF command). For example, if you run
AVZMBTPA by using the DDM, and the PE or MU name
ACCOUNTS, the generated name for the count field
is ACCOUNTS_C. If you run AVZMBTPA by using only
the LF command, and the PE or MU name is AA, the
generated name for the count field would be AAC.

Values are:

• Y for Yes
• N for No

Optional U_2_P = Indicates whether the extract converts all unpacked
format fields to the packed format.

Values are:

• Y for Yes
• N for No

The default is N.

Note: Use this parameter if you anticipate negative
Adabas unpacked decimal numbers; otherwise, an
alphanumeric representation is returned. For example,
-23 would be returned as 02L. Use of this parameter
changes the data type from character to numeric.

Optional B_2_I = Indicates whether the extract converts all 2-byte, 4-
byte, and 8-byte binary file fields to short integer,
integer, and big integer formats respectively.

Values are:

• Y for Yes
• N for No

The default is N.

Optional DE SEARCH ONLY = Generates control definitions that allow the client
to use WHERE columns that are Adabas descriptors
(such as SUPERDE, SUBDE, and HYPERDE).

Values are:

• Y for Yes
• N for No

The default is N.

Chapter 1. Virtualizing mainframe data 13

Table 12. Adabas - Supported Input Parameters for Extracting an Adabas File (continued)

Required? Parameter Description

Optional SEARCH BY PE INDEX = Allows the client to target rows that match a particular
occurrence of the PE field when searching rows by
using the WHERE clause. If not specified, all rows
where any occurrence of that PE field matches the
value specified are targeted.

Values are:

• Y for Yes
• N for No

The default is N.

Optional USE DDM = Uses the DDM source supplied on the source DD
statement to update the Adabas map with long field
names and to override the data types as defined in the
Adabas FDT. The DDM must be extracted using step
DDMEXTR in this JCL.

To generate a DDM member, execute a Natural batch
job. For example:

//CMPRINT DD DISP=SHR,DSN=hlq.DDMS(DDMEMBER)
//CMWKF01 DD DUMMY
//CMSYNIN DD *
 LOGON LIB
 LIST VIEW ADABAS-DDM FIN

Valid values are:

• Y for Yes
• N for No

The default is N.

Optional SAVE OPTION = Specifies the DMF import save option. Valid values are:

• NOSAVE
• SAVE
• REPLACE

It is recommended that you use the SAVE value to
prevent overwriting another map. The default is SAVE.

Optional REFRESH OPTION = Specifies whether to refresh the map. Valid values are:

• NOREFRESH
• REFRESH

The default is NOREFRESH.

14 Using IBM Data Virtualization Manager for z/OS:

Table 12. Adabas - Supported Input Parameters for Extracting an Adabas File (continued)

Required? Parameter Description

Optional SECURITY = Generates security on the “TABLE DEFINITION”.

Values are:

• Y for Yes
• N for No

The default is N.

To define a Data Virtualization Manager Resources for
Adabas file security, you must edit and submit one of
the following sample jobs (depending on your security
type) located in the hlq.SAVZCNTL library:

• AVZRAVDA for RACF security
• AVZAZVDA for CA ACF2 security
• AVZTSVDA for CA Top Secret Security

Optional ADASCRPWD = The password that is used to access the specified
file number. If the IBM Data Virtualization Manager
for z/OS Interface for Adabas accepts the password,
it passes it to the Adabas control block ADDS
3 field and generates the ADASCRPWD =password
statement.

Optional DBCS = Specifies which Adabas Alpha/Binary to use to store
pure DBCS data without SO/SI characters.

Table 13. Adabas - Redefine Parameters

Required? Parameter Description

Optional REDEFINE_FORMAT = x The 1-byte format type to be redefined. The rules for
redefining a field format must conform to the rules of
data type conversions that Adabas permits; otherwise,
an Adabas response code might be generated because
of a conversion mismatch.

Optional REDEFINE_PRECISION= nnn The precision override.

Optional REDEFINE_COLUMN = xxxxxxx... The 30-character name for the new redefined field
that replaces the elements that comprise the original
field. For example, if you are redefining field AA as
two new fields or columns, the REDEFINE_COLUMN
would indicate the new names for the two new fields:
AA_PART_1 and AA_PART_2.

Optional REDEFINE_OFFSET = nnn The offset of the new redefined field, where nnn is the
redefined offset to use.

Optional REDEFINE_AS_COUNT This option is used to support the SELECT COUNT(*)
statement when there is no unique descriptor (DE, UQ)
or fixed-format descriptor (DE, FI).

Optional SET_AS_PRIMARYKEY Allows you to set the field that is used as the primary
key when there is no unique descriptor (DE, UQ).

Chapter 1. Virtualizing mainframe data 15

Table 14. Adabas - OVERRIDES Parameters

Required? Parameter Description

Optional FILE Adabas file number.

Optional FIELD Adabas 2 byte field name.

Optional FORMAT Adabas overriding format. The
possible conversions are:

• Unpacked into Packed,
Unpacked into Integer, Fixed
into Alpha

• Packed into Date, Packed into
S (Timestamp), Binary into
Integer, Binary into Alpha

Optional LENGTH Field length in bytes.

Optional SCALE Scale specified for Packed and
Unpacked fields.

Sample JCL - DRDA bind
You can use AVZCLBND member to bind or grant access to DRDA packages.

The Table 15 on page 16 table describes the parameters in the sample JCL file.

Table 15. DRDA bind

Required? Parameter Description

Required SSID = AVZS The target subsystem to use this
map.

Required DB2!= Db2 for z/OS or Db2 LUW
subsystem ID.

Required FUNCTION= • BIND - bind package is created.
• GRANT - package permission

is given to the ID given in the
GRANTID field.

• BIND - GRANT or BOTH -
performs both bind and grant
operations.

By default, BOTH is chosen.

OPTIONAL REPLACE= Specifies if the existing packages
need to be replaced. Valid values
are N and Y. By default, N (no
replacement) is chosen.

OPTIONAL SECTIONS= Specifies the number of cursors
to use while processing results.
The default value is 200.

OPTIONAL COLLECTION Specifies the collection ID to be
assigned to the DB2 packages.
The default value is NULLID.

16 Using IBM Data Virtualization Manager for z/OS:

Table 15. DRDA bind (continued)

Required? Parameter Description

OPTIONAL GRANTID Specifies the ID for which the
package permissions must be
granted.The default value is
PUBLIC.

Sample JCL- Web Services Migration
You can use AVZSCMG1 member to migrate web services.

The Table 16 on page 17 table describes the parameters in the sample JCL file.

Table 16. Web services migration

Required? Parameter Description

Required SOURCE SERVER SSID = Specifies the subsystem ID
where the web services are
currently located.

Required TARGET SERVER SSID = Specifies the subsystem ID
where the web services will be
migrated to.

Required TARGET LOADLIB= Specifies the load library of the
target subsystem.

Required TARGET EXECFB= Specifies the EXECFB library of
the target subsystem.

Required SOURCE V/DIR= Specifies the directory where the
web services reside.

Required TARGET MICROFLOW DSN= Specifies the data set name of
the MFL data set on the target
system.

Required TARGET METADATA DSN= Specifies the data set name of
the MMAP data set on the target
system.

Required METADATA EXPORT PDS = Specifies the pds library where
the exported metadata objects
will be unloaded to.

Required MICROFLOW UNLOAD DSN = Specifies the file where the
exported web service microflow
objects will be unloaded to.

Required JCL MEMBER NAME= Specifies the pds member name
in the file allocated to ddname
ispfile for the jcl generated.

Optional WEB SERVICE= Specifies the web service to
migrate.

Optional TARGET SYSTEM= Specifies the new name of the
target subsystem.

Chapter 1. Virtualizing mainframe data 17

Table 16. Web services migration (continued)

Required? Parameter Description

Optional RESTRICTIP = Specifies the address of a
restricted IP address that must
be changed.

Optional SCHEMA= Specifies the schema name that
must be changed.

Optional TARGET V/DIR= Specifies the directory where the
web service must be placed.

Optional TARGET RULESET Specifies the ruleset name used
in the target directory.

Optional TARGET V/DIR URL = Specifies the url name used in
the target directory. This field
is required if target V/DIR is
mentioned.

Optional TARGET NAMESPACE= Specifies a new host and a port
number to be used for the target
namespace.

Optional SAVE OPTION = Specifies The DMF import save
option. Valid values are:

• NOSAVE
• SAVE (default)
• REPLACE

It is recommended that you
use the SAVE value to prevent
overwriting another map.

Optional REFRESH OPTION = Specifies whether to refresh the
map. Valid values are:

• NOREFRESH (default)
• REFRESH

Using the ISPF application
IBM Data Virtualization Manager for z/OS supports access to many data sources.

IBM Data Virtualization Manager for z/OS Interface for ACI
The Advanced Communication Interface (ACI) enables applications that are written in COBOL, Assember,
PL/I, or Natural and running in remote transaction processing (TP) environments to communicate with the
desktop.

ACI allows developers to create applications that can run services in their transaction processing (TP)
environments. In this case, the IBM Data Virtualization Manager for z/OS Interface for ACI provides
access to transactions in a CICS or Batch environment using the ACI API.

This interface also provides data access to JDBC and ODBC clients, web browser clients, and n-tier
applications. It allows any JDBC- or ODBC-enabled application to use standard JDBC or ODBC facilities
to make requests directly to a COBOL, Assembler, PL/I, or Natural program. A relational result set is
returned to the application running in its native transaction processing environment.

18 Using IBM Data Virtualization Manager for z/OS:

The ACI Interface Facilities option on the Data Virtualization Manager server - Primary Option Menu
provides access to the Server ACI Facility features.

Table 17. Server ACI Facility

Option Description

ACI Server Definition Create ACI server map information

Natural Extract Extract from Natural source

COBOL Extract Extract from a COBOL listing

PL/I Extract Extract from a PL/I listing

ACI Map Display Display ACI server map information

Map Display Display all map information

Map Copy Copy maps

Map Refresh Refresh maps

Active Server Display Display active ACI servers

ACI Error Create Create ACI error processing definitions

ACI Error Display Display ACI error processing definitions

ACI Execution Errors Display ACI execution errors

CICS Global ACI Count Monitor CICS global ACI counters

ACI Buffer Pools Display ACI buffer pool information

ACI server map information
Before you can use the CALL DVS_ACI request for data, you must first define a map to the server by using
the ACI Server Definition option in the ACI Facility.

Using this option, you can define an ACI server map. Users can create ACI server maps (service
definitions) for the following types of servers:

• CICS servers
• Batch servers
• Stored procedures

A stored procedure is a started task that runs as a stored procedure for ACI.

The map defines and stores the definition of a remote service application. The definitions are retrieved
when referenced in the second parameter of the CALL DVS_ACI request.

Defining an ACI server map
ACI server maps can be created in either of the following ways:

• Creating an ACI server map in batch
• Creating an ACI server map by using the Server ACI Facility panel

Chapter 1. Virtualizing mainframe data 19

Creating an ACI server map in batch
Use the AVZACMP1 member (located in the hlq.SAVZCNTL data set) for sample JCL that you can use to
create ACI server maps in batch.

Creating an ACI server map using the Server ACI Facility panel

Procedure
1. From the Data Virtualization Manager server - Primary Option Menu, select ACI and press Enter.
2. From the Server ACI Facility panel, select ACI Server Definition and press Enter.

The following sections guide you through creating an ACI CICS server definition and an ACI batch
server definition.

Creating an ACI server definition for CICS
Create an ACI server definition for CICS.

About this task
Use the following procedure to create the ACI server definition for CICS using the Server ACI Facility.

Note: You can use the AVZACMP2 member (located in the hlq.SAVZCNTL data set) for sample JCL that
you can use to create ACI CICS server data maps in batch.

Procedure
1. From the Server ACI Extract menu, select Create ACI CICS Server Definition and press Enter.
2. Complete the following fields:

Note: The (R) or (O) at the end of each field indicates whether the field is Required or Optional.

• Server Name: This value must correspond to the service information defined in the service
application.

• Server Service Class: This value must correspond to the service information defined in the service
application.

• Server Service: This value must correspond to the service information defined in the service
application.

Note:

– The combination of the server name, server service class, and server service identifies a service.
– If part of the name is changed while a service is active, all ACI services that are associated with

the former name are treated as orphan services because an ACI service with that name no longer
exists in the system. The ACI services that are associated with the former name still appear in
the active ACI server maps and continue to display until they time out or until they are manually
terminated.

• Persistent Connection: Y (Yes) allows persistent connections, and N (No) allows non-persistent
connections. The following differences distinguish persistent connections from non-persistent
connections:

– A persistent connection allows ongoing conversational requests and responses. The server is
"assigned" to the client until the client issues an end-of-conversation (EOC) request, at which
point, the ACI server program deregisters the service and terminates. When another connection
requests the same ACI service, a new ACI server is started. This implies that the client and service
are in conversation mode.

It is also possible for a persistent ACI server to be reused by different client connections after the
EOC request by deregistering and registering.

20 Using IBM Data Virtualization Manager for z/OS:

Note: Reusing persistent connections improves performance and reduces overhead. For
information about how to create a program to reuse persistent connections, see “Reusing
persistent connections”.

– A non-persistent connection is one in which a single request is issued and a single response is
received. The server is available for use by any client on a receive request. The service can be
used by any incoming client connection with the Data Virtualization Manager Server.

• Secure this Service: Y (Yes), restricts the connection to the user who has a SAF resource for the
ACI service. Only a user ID with a valid resource defined for the ACI service is allowed to start and
connect to that service during its life. This field defaults to N (No), which allows any user ID to start
and connect to that started ACI service. The format of the resource name is:

ACI.aci-mapname

Note: To secure a persistent ACI connection, you must edit and submit one of the following sample
jobs (depending on your security type) located in your hlq.SAVZCNTL library to specify the map name
to be used.

– AVZRAACI for RACF security
– AVZA2ACI for CA ACF2 security
– AVZTSACI for CA Top Security security

• Mirror Transaction: The name of the CICS transaction that corresponds to the EXCI mirror program
DFHMIRS.

• Connection Name: The name of the CICS connection, as defined in CICS and the Data Virtualization
Manager configuration member IN00, for DPL requests in CICS.

• Transaction Name: The user transaction to start in the CICS region.

Note: The Mirror Transaction, Connection Name, and Transaction Name are configured by the user
so the transaction can be invoked under CICS. They are previously defined in the Data Virtualization
Manager configuration member.

• Unit of Work Participant (for persistent connections only): Indicates whether this transaction can
process units of work. If so, the transaction must also support a persistent connection (the
Persistent Connection field must be set to Y (Yes).

• Maximum UOW Buffer Size (for UOW participants only): The maximum buffer size that UOW
transactions can accommodate for any single call (the maximum size of data that the ACI interface
can send to the ACI service at any one time). The buffer size is rounded to 1000-byte increments
and the maximum is 32,000. If 32,000 is specified, the ACI interface reduces that number to 31,767
bytes at execution time to comply with the maximum size the ACI service can receive at any one
time.

Note: The client can send any size data, including SQL_LONGVARCHAR and SQL_LONGVARBINARY
data types, which can be greater than 31,767 bytes long. The data that is received from the client
is buffered on the Data Virtualization Manager Server until a UOWLAST or UOWONLY request is
received “Query syntax”, at which time it is sent to the ACI service in size increments that do not
exceed the maximum UOW buffer size value.

• Max Execution Time: The maximum time, in seconds, that an ACI service can run before the ACI
service is set to TIMEOUT status, at which point, the client is released and receives notification that
the ACI service timed out. If you do not set this value, the client non-activity timer value is used.

For more information about the timeout values, see “Timeout values”.
• Secure Server to Userid: This value defaults to N (No), which allows any user ID to reconnect to that

started ACI service. To restrict the connection to the user who started the ACI service, set this value
to Y (Yes). Then only the user ID that started the ACI service is allowed to reconnect to the service
during its life.

• Auto Start: service Indicates to the Data Virtualization Manager server that it can start this service.

Chapter 1. Virtualizing mainframe data 21

• Max. No. Allowed: The maximum number of concurrent servers of this definition type that can run at
any given time.

Note: In cases where CICS is slow or has performance problems, a client request can be submitted
to multiple ACI services. To prevent a client request from being submitted to all ACI services, you
can limit the number of ACI services that the client request can be submitted to “Using submisson
limit checking”. When the registration is requested by a CICS program running online (not started by
the Data Virtualization Manager server), the Max Allowed setting does not take effect. See “Running
a CICS program not started by Data Virtualization Manager server”

• Auto Terminate (for non-persistent connections only): A number 0 - 99999 to indicate the number of
receives to accept before the system automatically terminates the server and the service deregisters
itself. If this field is blank, the default value is 0 (zero). Complete this field only if you specified N (No)
for the Persistent Connection field.

Note: This field limits the number of times that the server can receive requests after which it is
terminated to protect storage resources.

• Client Non-Activity Timer: The non-activity timer, which has the following functions:

– It is the amount of time that the client waits for the service to return before it times out.
– If the max execution time value is not set, it is used for the time that an ACI service can run before

timing out and releasing the client.
– If the maximum wait for server timer value is not set, it is used for the time that a client can wait

for an ACI service to be assigned before timing out.
– For persistent services, it is also the amount of time that the service remains idle waiting for a

client to converse with the service (the amount of time that is allowed for a client to interface with
a service).

Note: For persistent services only, if the ACIPERSISTTIMEOUT (ACI PERSISTENT SERVER
TIMEOUT) parameter is set to SERVER, the Server shutdown non-activity timer value is used
for all of the functions that are listed in the client non-activity timer description.

However, the ACIPERSISTTIMEOUT would not yet apply for servers that are still in a pending
registration state. Prior to registration, the Data Virtualization Manager uses the max wait for
server. If that is not set, the Data Virtualization Manager uses the client non-activity timer. If the
timer is not set, the DV uses a default of 15 seconds. For more information about the timeout
values, see “Timeout values”.

• Server Shutdown Non-Activity Timer (for non-persistent connections only): The amount of time the
service can be non-active before the Data Virtualization Manager Server requests it to terminate.
This field allows the less frequently used servers to stop, freeing up storage for the more frequently
used servers, improving the use of available resources.

Note: For persistent services, by default, the ACIPERSISTTIMEOUT (ACI PERSISTENT SERVER
TIMEOUT) parameter is set to CLIENT, so this field is not used, and the client non-activity timer
value is used. For more information about the timeout values, see “Timeout values”.

• Maximum Wait for Server Timer: The maximum time that a client can wait for an ACI service to
be assigned before the request is timed out and the client is released. If this value is not set, the
client non-activity timer value is used. For more information about the timeout values, see “Timeout
values”.

• SDCIFEN Information: If using SDCIFEN as the program associated with the CICS transaction
defined in the Transaction Name field to pass data to the transaction, enter the SDCIFEN
information. The following information is required:

– The name of the program to which SDCIFEN transfers control.
– The items to be passed to the transaction using the COMMAREA.

3. Press Enter to complete the ACI server definition. If it was successfully created, the system displays
the Service is now defined message.

4. Type the END (or press F3) to return to the Server ACI Facility options menu.

22 Using IBM Data Virtualization Manager for z/OS:

5. Select Map Refresh to refresh the data maps.

Results
To view the ACI server definitions after creating it, see “Displaying ACI server map information”.

Creating an ACI batch server definition

Procedure
1. From the Server ACI Extract menu, select Create ACI Batch Server Definition and press Enter.
2. Provide the following information for the Batch ACI server definition.

• Map Name: The name for the map.
• Server Name: This value must correspond to the service information defined in the service

application.
• Server Service Class: This value must correspond to the service information defined in the service

application.
• Server Service: This value must correspond to the service information defined in the service

application.

Note:

– The combination of the server name, server service class, and server service identify a service.
– If any part of the name is changed while a service is active, all ACI services that are associated

with the former name are treated as orphan services because an ACI service with that name no
longer exists in the system. The ACI services that are associated with the former name still appear
in the active ACI server maps display until they time out or until they are manually terminated.

• JCL DSN: Type of JCL DSN if submitting the service as a batch job.
• Console Command: Type of console command if submitting the service as a started task.
• Max Allowed: The maximum number of concurrent servers of this definition type that can run at any

given time.

– In cases where CICS is slow or has performance problems, a client request can be submitted to
multiple ACI services. To prevent a client request from being submitted to all ACI services, the
IBM Data Virtualization Manager for z/OS Interface for ACI limits the number of ACI services that
the client request can submit to as described in “Using submisson limit checking”.

– The Max Allowed setting does not take effect when the registration is requested by a CICS
program running online (not started by the server). See “Running a CICS program not started by
Data Virtualization Manager server”.

• Persistent Connection: Y (Yes) allows persistent connections, and N (No) allows non-persistent
connections. The following differences distinguish persistent connections from non-persistent
connections:

– A persistent connection allows ongoing conversational requests and responses. The server is
"assigned" to the client until the client issues an end-of-conversation (EOC) request, at which
point, the ACI server program unregisters the service and terminates. A new ACI server is started
when another connection requests the same ACI service. This implies that the client, and service
are in conversation mode.

It is also possible for a persistent ACI server to be reused by different client connections after the
EOC request by deregistering and registering.

Note: Reusing persistent connections improves performance and reduces overhead. For
information about how to create a program to reuse persistent connections, see “Reusing
persistent connections” .

Chapter 1. Virtualizing mainframe data 23

– A non-persistent connection is one in which a single request is issued and a single response is
received. The server is available for use by any client on a receive request. The service can be
used by any incoming client connection with the Data Virtualization Manager server.

• Secure this Service: Y (Yes), restricts the connection to the user who has a SAF resource for the
ACI service. Only a user ID with a valid resource defined for the ACI service is allowed to start and
connect to that service during its life. This field defaults to N (No), which allows any user ID to start
and connect to that started ACI service. The format of the resource name is:

ACI.aci-mapname

Note: To secure a persistent ACI connection, you must edit and submit one of the following sample
jobs (depending on your security type) located in your hlq.SAVZCNTL library to specify the map name
to be used.

– AVZRAACI for RACF security
– AVZA2ACI for CA ACF2 security
– AVZTSACI for CA Top Security security

• Auto Start service: Indicates to the DV that it may start this service.
• Unit of Work Participant (for persistent connections only): Indicates whether this transaction can

process units of work. If so, the transaction must also support a persistent connection (the
Persistent Connection field must be set to Y (Yes).

• Maximum UOW Buffer Size (for UOW participants only): The maximum buffer size that UOW
transactions can accommodate for any single call (the maximum size of data that the ACI interface
can send to the ACI service at any one time). The buffer size is rounded to 1000-byte increments
and the maximum is 32,000. If 32,000 is specified, the ACI interface reduces that number to 31,767
bytes at execution time to comply with the maximum size the ACI service can receive at any one
time.

Note: The client can send any size data, including SQL_LONGVARCHAR and SQL_LONGVARBINARY
data types, which can be greater than 31,767 bytes long. The data that is received from the client
is buffered on the Data Virtualization Manager server until a UOWLAST or UOWONLY request is
received (see “Query syntax” on page 38), at which time it is sent to the ACI service in size
increments that do not exceed the maximum UOW buffer size value.

• Auto Terminate (for non-persistent connections only): A number 0 - 99999 to indicate the number of
receives to accept before the system automatically terminates the server and the service deregisters
itself. If this field is blank, the default value is 0 (zero). Complete this field only if you specified N (No)
for the Persistent Connection field.

Note: This field limits the number of times that the server can receive requests after which it is
terminated to protect storage resources.

• Secure Server to Userid: This value defaults to N (No), which allows any user ID to reconnect to that
started ACI service. To restrict the connection to the user who started the ACI service, set this value
to Y (Yes). Then only the user ID that started the ACI service is allowed to reconnect to the service
during its life.

• Client Non-Activity Timer: The non-activity timer, which has the following functions:

– It is the amount of time that the client waits for the service to return before it times out.
– If the max execution time value is not set, it is used for the time that an ACI service can run before

timing out and releasing the client.
– If the maximum wait for server timer value is not set, it is used for the time that a client can wait

for an ACI service to be assigned before timing out.
– For persistent services, it is also the amount of time that the service remains idle waiting for a

client to converse with the service (the amount of time that is allowed for a client to interface with
a service).

24 Using IBM Data Virtualization Manager for z/OS:

Note: For persistent services only, if the ACIPERSISTTIMEOUT (ACI PERSISTENT SERVER
TIMEOUT) parameter is set to SERVER, the Server shutdown non-activity timer value is used
for all of the functions that are listed in the client non-activity timer description.

However, the ACIPERSISTTIMEOUT would not yet apply for servers that are still in a pending
registration state. Before registration, the DV uses the max wait for server. If that is not set, the DV
uses the client non-activity timer. If the timer is not set, the DV uses a default of 15 seconds. For
more information about the timeout values, see “Timeout values” on page 36.

• Server Shutdown Non-Activity Timer (for non-persistent connections only): The amount of time the
service can be non-active before the Data Virtualization Manager server requests it to terminate. This
field allows the less frequently used servers to “die,” freeing up storage for the more frequently used
servers, improving the use of available resources.

Note: For persistent services, by default, the ACIPERSISTTIMEOUT (ACI PERSISTENT SERVER
TIMEOUT) parameter is set to CLIENT, so this field is not used, and the client non-activity timer
value is used. For more informaiton about the timeout values, see “Timeout values” on page 36.

• Maximum Wait for Server Timer: The maximum time that a client can wait for an ACI service to
be assigned before the request is timed out and the client is released. If this value is not set, the
client non-activity timer value is used. For more information about the timeout values, see “Timeout
values” on page 36.

3. Press Enter to complete the ACI server definition. If it was successfully created, the system displays
the Service is now defined message.

4. Type the END command (or press F3) to return to the Server ACI Facility menu.
5. Select Map Refresh to refresh the data maps.

Results
To view the ACI server definition after you create it, see “Displaying ACI server map information”.

Extracting ACI data map information
You can extract information from a Natural source, a COBOL source, or a PL/I listing. This extraction
provides information about the characteristics of the program's input and output requirements.

Extracting a map from a Natural listing
You can extract a Natural listing by using either of the following methods:

• Using the AVZMFPAR member
• Using the DMF Parser

Using the AVZMFPAR member
To use this method, run the AVZMFPAR member that is located in your hlq.SAVZCNTL data set as a
sample JCL for extracting Natural maps.

For information about the available parameters in the AVZMFPAR member, see “Using batch JCL jobs”.

Using the DMF Parser

Procedure
1. From the Data Virtualization Manager server - Primary Option Menu, select ACI and press Enter.
2. From the Server ACI Facility menu, select Natural Extract and press Enter.

The DMF Map Creation Utility panel displays.
3. Specify the following information:

• Source Library Name: The data set and member name that contains the source code for the map
you want to create.

• Nat PGM: The program name of your batch Natural nucleus.

Chapter 1. Virtualizing mainframe data 25

• Load Lib: The name of the library where the Natural nucleus resides. If you are required to
concatenate multiple libraries to resolve all modules that are used during Natural execution, the
library names may be used.

• PARM: The Natural nucleus parameters that are required by your installation.
• TEMP DSN: The name of a temporary data set that is used as a work file by this execution.
• Temp DSN Space: Define this value large enough to contain the Natural object listing.
• Logon: The Natural library to be logged on to.
• List: The Natural object to be listed.
• ADARUN: Defines the Adabas execution requirements if not linked in the Natural nucleus. After you

enter the information about the panel, press Enter. The system displays a second DMF Map Creation
Utility panel.

4. Provide the following information

• Start Field: The field name where the map starts building.
• End Field: The field name where the map stops building. If not specified, the first field that is at the

same level as the Start Field stops the build process.
• Map Name: The name of the map in the DMF. This name also is used as the member name for the

map in the mapping data set, if possible.
• Use Offset Zero: If the Start Field is not an '01' level, start the offset at zero; otherwise, the offset

starts at the offset of the field in the structure.
• Edit Object Listing: Edit the object listing before the data is parsed and the data map is created.
• Map Data Set Name: The data set name where the map is stored. The default is the first data set in

the AVZMAPP DD statement for the subsystem.

Press Enter. The batch Natural nucleus is run to list the object you selected. Then, the ISPF editor
may be invoked, depending on the Edit Object Listing selection, so that you can delete or modify
information in the object listing.

5. Delete or modify information in the object listing, as appropriate. You can delete lines, fields, or
information you do not want to be extracted. Leave any data elements that you want to be extracted in
the editor.
The first three lines in the ISPF editor must be deleted, even if all of the other information is required
for the extract. Line 1 must be the first line as input into the extract; therefore, preceding lines must be
deleted. If this is not done, the Not Valid Source message appears.

6. Type the END command (or press PF3) after you complete all of your edits. The data remaining in the
ISPF editor is parsed and the data map is created. An Extract Successful message appears on the
extract screen.

7. Type the END command (or press PF3) to return to the Server ACI Facility menu.
8. Select Map Refresh to add your map to the map display list.

Extracting a map from a COBOL source or COBOL/PLI listing
You can extract a map form a COBOL source, or a COBOL or PLI listing, using either of the following
methods:

• Using the AVZMFPAR member
• Using the DMF parser

Using the AVZMFPAR member
Run the AVZMFPAR member that is located in your hlq.SAVZCNTL data set as a sample JCL for extracting
COBOL and PL/I maps.

For information about the available parameters that are located in the AVZMFPAR member, “Using batch
JCL jobs”.

26 Using IBM Data Virtualization Manager for z/OS:

Using the DMF Parser

Procedure
1. From the Data Virtualization Manager server - Primary Option Menu, select ACI and press Enter.
2. From the Server ACI Facility menu, select COBOL Extract and press Enter.

The DMF Map Creation Utility panel displays.

3. Specify the following information:

• Source Library Name: The data set name and member name that contain the source code for the
map you want to create.

• Start Field: The field name where the map starts building.
• End Field: The field name where the map stops building. If not specified, the first field that is at the

same level as the Start Field stops the build process.
• Map Name: The name of the map in the DMF. This name also is used as the member name for the

map in the mapping data set, if possible.
• Use Offset Zero: If the Start Field is not an '01' level, start the offset at zero; otherwise, the offset

starts at the offset of the field in the structure.
• Convert Var to True: Select Y (Yes) to convert VAR fields to TRUE VAR fields. TRUE VAR fields are
fields that have a 2-byte length of data field that precedes the data.

• Flatten Arrays: Determines whether arrays are flattened. Valid values depend on the product:

– For IBM Data Virtualization Manager for z/OS SQL, you can specify C (COMPATIBLE) or Y (YES).
– For IBM Data Virtualization Manager for z/OS Streams, you can specify C (COMPATIBLE) only.
– For IBM Data Virtualization Manager for z/OS SQL 92, you can specify C (COMPATIBLE), Y (YES), or
N (NO).

Note: The C (COMPATIBLE) value is provided for backwards compatibility with an older mapping
architecture. When C is specified, OCCURS fields are flattened in the map and OCCURS
DEPENDING ON fields generate an error message.

• Map Data Set Name: The data set name where the map is stored. The default is the first data set in
the AVZMAPP DD statement for the subsystem.

4. Type the END command (or press PF3). An Extract Successful message appears on the extract
screen.

5. Type the END command (or press PF3) to return to the Server ACI Facility menu.
6. Select Map Refresh to add your map to the map display list.

Displaying ACI server map information
Once the ACI servers are defined, you can view them using the ACI Map Display option. The ACI Data
Mapping Block panel displays ACI data mapping information only. The data maps displayed in this panel
represent the service, or remote application, characteristics.

About this task
To access the ACI Data Mapping Block panel:

Procedure
1. From the Data Virtualization Manager server - Primary Option Menu, select ACI and press Enter.
2. Select ACI Map Display from the Server ACI Facility menu. Press Enter.

The system displays the ACI Data Mapping Block panel.

Chapter 1. Virtualizing mainframe data 27

Note: Some active ACI server information can be returned in a result set using a simple query with the
IBM Data Virtualization Manager for z/OS driver. For more information, see “Using a query” on page
32.

Available commands
This program supports all four scrolling commands (UP, DOWN, LEFT, RIGHT) and their PF key equivalents
or scroll bar equivalents.

It also supports the primary SORT and LOCATE commands and the following line commands:

Line commands Description

P Prints map.

S Shows map.

D Disables map.

E Enables map.

M Modifies/displays map.

The M command can be used to display or modify an ACI server definition. If no fields are changed on the
panel that is displayed, the map is not saved. If any field is changed, the map is saved and a refresh is
required to make the changes active. Changes cannot be viewed until a refresh is done.

Column names
The following table describes each column name on the ISPF panels and provides a sort name (if
available).

Column name Description

STRUCTURE NAME The ACI server map name.

STATUS The active status of the ACI server.

MAX. NO. SERVERS The maximum number of services that can be
running concurrently.

ACTIVE SERVERS The number of services that are currently running.

HIGH WATER SERVER USAGE High water marks concerning service usage.

REGISTER COUNT The number of times a service registers.
Incremented when a REGISTER completes.

DEREG COUNT The number of times a service deregisters.
Incremented when a DEREGISTER completes.

SEND COUNT The number of buffers a service has sent to Data
Virtualization Manager server. Incremented when a
SEND completes.

RECEIVE COUNT The number of requests a service has received
from a client. Incremented when a RECEIVE or RCV
ON SND completes.

Note: RECV READY is not counted in this count
because a RECV READY means that the program is
waiting for a client. As soon as the client connects,
a RECEIVE occurs and this is when the count is
incremented.

28 Using IBM Data Virtualization Manager for z/OS:

Column name Description

TIMEOUT COUNT The number of times a client has timed out
waiting for a server (see “Timeout values” on page
36). Incremented when a client request (CALL
DVS_ACI) times out while waiting for an ACI server
to be available.

ABEND COUNT The number of times a server has terminated
abnormally. Incremented when an ACI server
service abends.

WAIT COUNT The number of times a client has been waiting
for an available server. Incremented each time a
CALL DVS_ACI request waits for an ACI service
(for example, a WAITING FOR THE SERVER
occurrence).

Note: The counts that are displayed on this panel are reset when the server is restarted.

If an error definition isdefined see “Displaying CICS global ACI counters” on page 33, the columns that
are described in the following table also contain information.

Column name Description

SUSPEND COUNT The number of times a server has been suspended
because of an error.

LAST SUSPENDED DATE TIME The last time a server was suspended.

SUSPEND ERROR The error that caused the server to abend.

SUSP_SEC REMAINING TOTAL The time (in seconds) until the server resumes.

TOTAL ERRORS The total number of errors that are received by the
server.

INACTIVE TIMEOUTS The number of inactive timeouts.

MODIFICATION DATE TIME The date and time the map was modified.

USERID The user ID of the map creator.

Displaying all map information
The Data Mapping Block panel displays all data maps that are defined to this Data Virtualization Manager
server.

About this task
To display map information:

Procedure
1. From the Data Virtualization Manager server - Primary Option Menu, select ACI and press Enter.
2. Select Map Display from the Server ACI Facility menu. Press Enter.

The system displays the Data Mapping Block panel. Several panels comprise this program. Use the
LEFT and RIGHT scroll commands (or PF keys) to shift between them.

Chapter 1. Virtualizing mainframe data 29

Available commands
This program supports all four scrolling commands (UP, DOWN, LEFT, RIGHT) and their PF key equivalents
or scroll bar equivalents.

It also supports the primary SORT and LOCATE commands and the following line commands:

Line commands Description

D Disables the map so it is unavailable for use.

E Enables the map for use.

K Deletes a map, making it unavailable for use.

P Prints the associated control block for the selected
row.

S Displays the associated control block for the
selected row.

X Displays the map elements for the selected row.

Column names
The following table provides a description and sort name (if available) for each column name on the ISPF
panels.

Column name Description Sort name

STRUCTURE NAME The data map name. NAME

TYPE The type of data map. TYPE

STATUS The status of the service:

• Enabled
• Disabled
• Deleted

STATUS

MR The MapReduce status. Y
indicates enabled and N indicates
disabled.

MR

LANGUAGE The language type from which
this map was generated.

LANGUAGE

AT Attachments (OPDWs) present in
the map (Yes/No)

AT

MODIFICATION DATE TIME The creation date and time of this
map.

DATE

USERID The user ID of the map creator. USERID

CREATION DATASET The data set from which the map
was extracted.

DATASET

Copying ACI maps

Procedure
1. From the Data Virtualization Manager server - Primary Option Menu, select ACI.

30 Using IBM Data Virtualization Manager for z/OS:

2. Then, select Map Copy from the Server ACI Facility panel. Press Enter.
The system displays the Move/Copy Utility panel.

3. Type one of the following commands in the Option field:

• C to copy
• CP to copy and print
• M to move
• MP to move and print

4. In the From ISPF Library fields, provide the information for the data set, including values for the
Project, Group, and Type information. If the data set is partitioned, type a member name in the
Member field:

• To move, copy, or promote a single member, type the member name.
• To move, copy, or promote all members, type * (asterisk).
• To request a member selection list, leave the member name blank or specify a pattern.

Alternatively, for any other partitioned or sequential data sets, you can specify the From Other
Partitioned or Sequential Data Set field. Type the data set name and volume serial number. Press
Enter.

Note: If you forget to enter a password for a data set that requires one, or if you enter the password
incorrectly, the system prompts you in standard TSO (line) mode. On TSO/TCAM systems, you may
need to press the CLEAR key before responding to the password prompt. If you enter the password
incorrectly or encounter any other problems, you may be prompted again to enter the password until
you reach a system limit of attempts.

Displaying active ACI server information
You can display active ACI server information in either of the following ways:

• “Using the active server display” on page 31
• “Using a query” on page 32

The information that displays represents active services or remote applications that are running in the
system. These services are registered to this Data Virtualization Manager server instance and are assigned
a server ID. The server name is the same as that defined in the service definition.

Using the active server display

Procedure
1. From the Data Virtualization Manager server - Primary Option Menu, select ACI and press Enter.
2. Select Active Server Display from the Server ACI Facility panel display and press Enter. The system

displays the ACI Servers panel.
Two panels comprise this program. Use the LEFT and RIGHT scroll commands (or PF keys) to shift
between them.

Note: Some active ACI server information can be returned in a result set by using a query. For more
information, see “Using a query” on page 32.

Available commands
This program supports all four scrolling commands (UP, DOWN, LEFT, RIGHT) and their PF key equivalents
or scroll bar equivalents.

It also supports the primary SORT and LOCATE commands and the following line commands:

Line commands Description

P Prints the map.

Chapter 1. Virtualizing mainframe data 31

Line commands Description

S Shows the map.

K Terminates the map.

Column names
The following table describes each column name on the ISPF panels and provides a sort name (if
available).

Column name Description

SERVER ID The server ID.

SERVER NAME The name of the server as defined in the service
definition.

STAT The status of the service:

• 0: Waiting for work from a client.
• 1: Busy or assigned conversationally to a client.
• 2: Registered but not assigned.
• 3: Deregistered but not released.
• 5: Waiting for the program to terminate or reset.
• 6: EOC issued waiting for service to process

command.
• 7: Start issued waiting for service to register.

Note: Status 4 is not used.

LAST ACTIVE This value depends on the status of the service:

For status 0, this is the number of seconds that the
service has been idle.

For other status values, this is the number of
seconds that the service has been in use.

CONN ID The CICS connection name or load balancing name

TRAN ID The CICS transaction name running in the CICS
region for this service.

TASK ID The CICS task ID running in the CICS region for this
service.

MAXIMUM LAST ACTIVE The high-water mark for the LAST ACTIVE count.

Note: The MAXIMUM LAST ACTIVE column
displays on the next panel. Use the RIGHT scroll
commands (or PF11 key) to scroll to the right.

AVG SEND BUFFER The send buffer size in bytes.

AVG RECV BUFFER The receive buffer size in bytes.

Using a query
Using the driver, your application can return active ACI server information in a result set by using a query.

About this task
The syntax of the query is:

32 Using IBM Data Virtualization Manager for z/OS:

CALL DVS_INFO('ACTIVEACISERVERS','optional-filters')

where:

• ACTIVEACISERVERS (Required) causes the query to return a result set with all active ACI servers
listed.

• optional-filters (Optional) Specifies a filter for the query. Valid filters are:

– NAME (server-name): Obtains results for the server name specified. For example:

CALL DVS_INFO('ACTIVEACISERVERS','NAME(SDCIFEN)')

– CONNECTION (connection-name): Obtains results for the CICS connection name or load balancing
name specified. For example:

CALL DVS_INFO('ACTIVEACISERVERS','CONNECTION(EXCS)')

– PERSIST (YES|NO|ALL): Obtains results for servers with the persistent status specified:

- YES selects persistent servers.
- NO selects non-persistent servers.
- ALL (Default) selects all servers (persistent and non-persistent).

For example:

CALL DVS_INFO('ACTIVEACISERVERS','PERSIST(ALL)')

Displaying CICS global ACI counters
With the CICS Global ACI Count option, you can display the current values of MAXTASKS and the number
of ACI services that are running for each CICS that is running ACI services. You can also display the last
service to update the counter. If the counter is determined to be inaccurate, the counter can be updated
by typing over the counter-value.

About this task
To display CICS Global ACI Counters:

Procedure
1. From the Data Virtualization Manager server - Primary Option Menu, select ACI and press Enter.
2. Select CICS Global Count from the Server ACI Facility panel and press Enter. The system displays the

Global ACI Counters Display panel.
Use the LEFT and RIGHT scroll commands (or PF keys) to shift between the two panels that display the
global ACI counters.

Note: The maximum number of ACI services started is managed globally among all Data Virtualization
Manager servers. This limits the number of ACI services even when the ACI configuration would
otherwise allow more services to start. Refer to the DEFINE CONNECTION statement, MAXTCUSHION
parameter. This defines a value that is used to further limit the number of ACI services that can be
started. The MAXTCUSHION value is subtracted from the MAXTASKS value found in CICS, and used to
reserve some tasks for non-ACI work in CICS.

Use the X line command to view all of the ACI Servers for a CICS APPLID.

Chapter 1. Virtualizing mainframe data 33

Converting program data types to ODBC

COBOL conversions
COBOL conversions describe how COBOL data types are converted to ODBC data types.

Table 18. Conversions of COBOL data types to ODBC data types

COBOL ODBC

Alphanumeric SQL_CHAR

Floating Point (If 4 bytes) SQL_FLOAT

(If 8 bytes) SQL_DOUBLE

Integer (If 2 bytes) SQL_SMALLINT

(If 4 bytes) SQL_INTEGER

Numeric SQL_NUMERIC

Packed SQL_DECIMAL

Natural conversions
Natural conversions describe how Natural data types are converted to ODBC data types.

Natural ODBC

A-Alphanumeric SQL_CHAR

B-Binary (If 2 bytes) SQL_SMALLINT

(If 4 bytes) SQL_INTEGER

C-Attribute Control N/A

D-Date *SQL_DECIMAL

F-Floating Point (If 4 bytes) SQL_FLOAT (If 8 bytes) SQL_DOUBLE

I-Integer (If 1 byte) SQL_BINARY

(If 2 bytes) SQL_SMALLINT

(If 4 bytes) SQL_INTEGER

L-Logical SQL_BINARY

N-Numeric SQL_NUMERIC

P-Packed SQL_DECIMAL

T-Time *SQL_DECIMAL

Note: Although the IBM Data Virtualization Manager for z/OS Interface for Adabas supports the
conversion of ODBC date and time to the Natural date and time format, the IBM Data Virtualization
Manager for z/OS Interface for Natural only allows the passing of the internal format for date and time (P6
and P12, respectively).

34 Using IBM Data Virtualization Manager for z/OS:

Reusing persistent connections
Persistent connections can be reused so that the ACI service can be used by different client connections.
The number of times that a service can be reused is controlled by the application, not by the IBM Data
Virtualization Manager for z/OS Interface for ACI.

Once the client issues the end-of-conversation (EOC) request, the ACI service and its CICS task normally
become unavailable. For the persistent service to be reused, the program must perform one of the
following actions:

• DEREGISTER and REGISTER again. Then, go into the RECV READY state.
• Enter the RECV READY state by using CONV-ID = 'NEW'. In this case, the IBM Data Virtualization

Manager for z/OS Interface for ACI implicitly issues a DEREGISTER/REGISTER on the client’s behalf.

Note: Although the ACI service is reused, the server ID of the service is changed each time because of
the DEREGISTER/REGISTER calls.

Using submisson limit checking
The ACI interface limits the number of ACI services that can be submitted for the client request. When a
request to start an ACI server is received from a client, the ACI interface attempts to start the ACI server
or waits for a short interval depending on the following criteria:

• The active ACI server queue is searched for an available ACI server that matches the ACI service
definition, as configured in the data map. If found, that server is assigned to this request and processing
continues.

For more information about creating an ACI service definition, see “Defining an ACI server map” on
page 19

• If either of the following situations occur, the request waits for a short interval:

– The number of active ACI servers is greater than the Max Allowed setting of the ACI service
definition, which specifies the maximum number of concurrent servers allowed.

– The number of start attempts for this request is greater than the maximum allowed (five).

Note: The first criterion that is met determines the action taken.

If no start attempts have been made for this request, a start attempt is made. The current registration
count for this ACI service definition is saved.

If the wait interval is less than a second, the request waits for another short interval.

If a start attempt is made, but the current registration count for this ACI service definition has changed,
another requestor may have obtained control of the ACI server. A new ACI server is started and the
current registration count for this ACI service definition is saved.

For other situations, the request waits for a short interval as defined. The interval time that a request
waits starts at 0.25 seconds and doubles for each waiting interval until it reaches a maximum of 5
seconds.

Note: The WAITING FOR SERVER message does not appear until after the interval reaches five seconds.

The maximum amount of time that a request waits for an ACI server to be assigned is defined by the
Maximum Wait For Server Timer value in the ACI service definition; otherwise, the Client Non-Activity
Timer value is used.

When the maximum amount of time is reached for the client to wait for an available server, the request
terminates with an error, depending on whether any servers are active for this ACI service definition:

• If at least one server is active for this ACI service definition:

DVS_ACI ERROR HAS OCCURRED RC -1062; TIMEOUT EXCEEDED, ALL SERVERS ARE BUSY

• If no servers are active for this ACI service definition:

Chapter 1. Virtualizing mainframe data 35

DVS_ACI ERROR HAS OCCURRED RC -1081; NO ACI SERVICE AVAILABLE / CANNOT
START ACI SERVICE - CHECK FOR SERVER FAILURE

Timeout values
Timeout values describe the amount of time to wait before timing out in the ACI server definition, how
each timeout value is set, and the resulting error message that is returned to the requesting application.

Table 19. ACI timeout values

Event Description Method of control Client error code returned

The timeout for a client waiting
for an available server (the amount
of time that the client waits for a
service connection).

• Maximum Wait for Server Timer
• If the Maximum Wait for Server

Timer value is not specified, the
Client Non-Activity Timer value is
used.

If no server is active:

DVS_ACI ERROR HAS
OCCURRED RC -1081;
NO ACI SERVICE
AVAILABLE / CANNOT
START ACI SERVICE -
CHECK FOR SERVER
FAILURE

If a server is active, but unavailable:

DVS_ACI ERROR HAS
OCCURRED RC -1062;
TIMEOUT EXCEEDED, ALL
SERVERS ARE BUSY

The timeout value for a client
waiting for a server to return (the
time that is allowed for a service to
complete a unit of work before the
result is sent to the client).

Client Non-Activity Timer DVS_ACI ERROR HAS
OCCURRED RC -1065;
SERVER HAS NOT
RESPONDED, TIMEOUT

The maximum server execution
time (the time that is allowed for a
server to run).

• Max Execution Time
• If the Max Execution Time is not
specified, the Client Non-Activity
Timer is used.

DVS_ACI ERROR HAS
OCCURRED RC -1065;
SERVER HAS NOT
RESPONDED, TIMEOUT

The timeout value for an idle server
waiting for a client to make a
request (the amount of time the
service can be non-active before
Data Virtualization Manager server
requests the service to terminate).

• Non-Persistent Connections:
Controlled by the Server
Shutdown Non-Activity Timer.

• Persistent Connections:
Controlled by the Client Non-
Activity Timer.

Note: For persistent connections, the method of controlling timeout values depends on the value of the
ACIPERSISTTIMEOUT (ACI PERSISTENT SERVER TIMEOUT) parameter:

• If the parameter ACIPERSISTTIMEOUT = CLIENT (default) is defined, the client non-activity timer
value is used.

• If the parameter ACIPERSISTTIMEOUT = SERVER is defined, the server shutdown non-activity timer
value is used for all of the client non-activity timer functions.

Handling interrupted connections
Interrupted connections affect the following items:

• ACI service status
• Client error codes

36 Using IBM Data Virtualization Manager for z/OS:

ACI service status
When the ACI service is busy in status 1, but the connection is interrupted while issuing a CALL DVS_ACI,
the IBM Data Virtualization Manager for z/OS Interface for ACI ensures that the situation is handled
appropriately by marking the connections as timed out. This allows the server to clean up and deregister.
The server is placed in status 5, which indicates that it is waiting for the application to terminate or to
reset.

The ACI service remains in status 5 until the application responds by using a SEND/RECEIVE command.
Once the SEND/RECEIVE is received, the application receives a TIMEOUT error code (#ETBCB-ERROR-
CODE = TIMEOUT). The application then issues a DEREGISTER, and the ACI service is cleaned up.

Client error codes
The client receives an appropriate error code, depending on which of the following occurrences caused
the interrupted connection:

• Connection Timing Out: If the application reaches the timeout setting while waiting for a server to
return or waiting for server execution (see “Creating an ACI server definition for CICS” on page 20 for
description) while issuing a CALL DVS_ACI, the application receives the following message:

DVS_ACI ERROR HAS OCCURRED RC -1065; SERVER HAS NOT RESPONDED, TIMEOUT

Note: In the case of persistent services, subsequent calls to this service get the following message:

DVS_ACI ERROR HAS OCCURRED RC -1065; SERVER HAS NOT RESPONDED, TIMEOUT

The service that is assigned to the client must be terminated so the client can restart another persistent
service and start a new conversation. Once the service is terminated, any subsequent calls to this
service receive the following message:

DVS_ACI ERROR HAS OCCURRED RC -1071; CONVERSATION HAS NOT BEEN
ESTABLISHED OR IS TIMED OUT BY SERVICE

The client must start a new conversation.

• Terminated Connection: If the connection was terminated, the client receives the following message:

Host Communication Failed

Connections can be terminated by the following methods:

– Data Virtualization Manager server FAILxxxxxTIME parameter, which terminates the connection if the
connection exceeds the value specified.

– Kill line command of the Remote User program (accessed from the Data Virtualization Manager
server - Primary Option Menu).

Running a CICS program not started by Data Virtualization Manager server
CICS programs that are not started by Data Virtualization Manager server can register with Data
Virtualization Manager server by using the SDBRTX table.

Note: The Max Allowed setting in the ACI service map does not take effect when registration is requested
by a program that is not started by Data Virtualization Manager server because this setting limits the
number of CICS transactions (the number of programs) that can be started by Data Virtualization Manager
server. The MAX NO SERVERS and MAX ACTIVE SERVERS counts in the ACI server maps display do not
apply for this type of registration scenario.

When registration is requested by a CICS program that is not started by Data Virtualization Manager
server, registration process performs the following actions:

• Determines the Data Virtualization Manager server subsystem. The SDBRTX table is checked to see if an
entry with the transaction name matches the transaction name under which the program is running:

Chapter 1. Virtualizing mainframe data 37

– If a match is found, the registration goes to the Data Virtualization Manager server subsystem
specified in this entry.

– If no match is found, the subsystem name on the default entry is used.
• Determines the ACI service. The ACI service is determined in the following ways:

– If ACIDEFAULTCONNNAME ((ACI DEFAULT CONNECTION NAME) is not set, the IBM Data
Virtualization Manager for z/OS Interface for ACI bypasses connection name checking. The first ACI
service with a triple name that matches the triple name that is specified by the program is used for
the registration process.

– If ACIDEFAULTCONNNAME is set, the IBM Data Virtualization Manager for z/OS Interface for ACI
enables connection name checking, which means that an ACI service is used for the registration
process only if the triple name matches the triple name that is specified by the program and
the connection name matches the value of ACIDEFAULTCONNNAME. If no match is found, the
registration request receives an ACI error code of 01000100.

Query syntax
The syntax of a query is:

CALL DVS_ACI('function','datamaps','data1',...,'dataN')

where

function is SEND, SOC, EOC, UOWFIRST, UOWMIDDLE, UOWLAST, or UOWONLY:

• SEND: The data strings are sent to the server defined in the server data map.

Note: The SEND function implies that you receive information in return.
• SOC: Start of conversation. This function is required for persistent servers. It is used to obtain an

existing service or to start a server and lock a server from use by the client.
• EOC: End of conversation. This function is required for persistent service. It is used to notify the service

that it is no longer registered to a client.
• UOWFIRST: Indicates that this message is the first part of a unit of work (UOW). The messages are

accumulated on the Data Virtualization Manager server until a request indicates a function of UOWLAST
is received.

• UOWMIDDLE: Indicates that this message is not the first part or the last part of a UOW. The messages are
accumulated on the Data Virtualization Manager server until a request indicates a function of UOWLAST
is received.

• UOWLAST: Indicates that this message is the last part of a UOW. When this is received, the Data
Virtualization Manager server processes the entire UOW, sending the messages to the ACI service in the
size increments it desires.

• UOWONLY: Indicates that this is a one-message UOW. When this is received, the Data Virtualization
Manager server processes the UOW, sending the messages to the ACI service in the size increments it
desires.

Note: For a UOW, the size of the message segments that are sent by the client are not dependent
on the size that the ACI service can accept. Any size segment can be sent by the client by using the
SQL_LONGVARCHAR and SQL_LONGVARBINARY data types.

datamaps are the data maps (up to three data map names):

• (Required) Specifies the map that defines the server to which the request is being assigned. The map
name is required.

• (Optional) Client map in (CMI). Defines the client input (data1-dataN) presented to the server. The CMI
represents the data format expected by the service.

If CMI is coded, the data parameters data1-dataN are validated as described in “Data validation”.

Note:

38 Using IBM Data Virtualization Manager for z/OS:

• For special considerations on passing numeric data with CMI, see “Passing numeric data”.
• CMI is not supported for UOW calls. If a CMI is specified for a UOW call, the following message is

generated:

DVS_ACI ERROR HAS OCCURRED RC -1086; INPUT DATA MAP NOT ALLOWED FOR UNIT
OF WORK TRANSACTIONS

• (Optional) Server map output (SMO). Describes the data as presented by the server. If SMO is coded, the
data buffer output from the source is presented as a result set described by the SMO data map.

If the SMO is not specified, the Data Virtualization Manager server cannot determine the maximum size
of the row in the result set until the first SEND call of each CALL DVS_ACI invocation is made. Once the
first SEND call is issued, the Data Virtualization Manager server uses the length of the first SEND call to
establish the maximum size of the row in the result set.

Note the following guidelines:

– If an optional CMI and SMO are specified, separate them by commas.
– If a CMI is omitted and an SMO is specified, use a comma as a placeholder for the CMI.
– You can run a simple CALL statement to return metadata for the CMI or SMO.

data1-dataN describes the data input to the server. If more than one data area is coded, a CMI is
required.

CMI considerations
When passing an ACI input map (CMI), remember the following considerations:

• Data validation
• Passing numeric data

Data validation
If CMI is coded, the data parameters data1-dataN are validated in the following ways:

• If only one data parameter is given, the CMI is used for validation of data types only; that is, numeric
fields are numeric.

• If more than one data parameter is given, the CMI is used to validate and buffer the data components as
input to the server.

Passing numeric data
The following considerations exist for passing numeric data with a CMI:

• Packed Decimal Fields. If a field is defined as Packed Decimal in the ACI input map, the following
guidelines apply:

– If the value passed has a scale that is too long, the size of the scale in the ACI input map is used. The
IBM Data Virtualization Manager for z/OS Interface for ACI allows the value if the adjusted precision
is less than or equal to the precision in the ACI input map, and the scale is truncated.

– Although the IBM Data Virtualization Manager for z/OS Interface for ACI allows you to pass a string to
a Packed Decimal field, it does not allow the decimal point to be specified in the string (the decimal is
based on what is defined in the ACI input map). Also, if the length of the string exceeds the precision
of the field, the leading digits in the string are truncated. For these reasons, it is not recommended to
pass a string value to a packed field.

• SmallInt Fields. The IBM Data Virtualization Manager for z/OS Interface for ACI allows a value that is
passed as an integer to a field defined in the ACI input map as SmallInt. Ensure that the value is less
than or equal to 32767. Otherwise, the data is truncated.

Using a CALL statement to obtain map metadata
The IBM Data Virtualization Manager for z/OS Interface for ACI allows users to view metadata information
for CMI and SMO maps on the client with a simple CALL statement. This allows a user to pass all the input

Chapter 1. Virtualizing mainframe data 39

parameters with the correct data types as required by the CMI or SMO without having to go into the server
ISPF panels to locate this information.

The format of the CALL statement is:

CALL DVS_MAP('DESCRIBE','mapname')

where mapname is the name of the map.

The CALL statement returns a result set with a single column named FORMAT. This column contains
details on the fields of the map. The following table describes the FORMAT column types and their SQL
equivalents.

Table 20. FORMAT column types and the SQL equivalent

FORMAT types SQL types

CHARACTER SQL_CHARACTER

NUMERIC SQL_NUMERIC

DECIMAL SQL_DECIMAL

INTEGER SQL_INTEGER

SMALLINT SQL_SMALLINT

FLOAT SQL_FLOAT

DOUBLE SQL_DOUBLE

DATE SQL_DATE

TIME SQL_TIME

TIMESTAMP SQL_TIMESTAMP

VARCHAR SQL_VARCHAR

LONGVARCHAR SQL_LONGVARCHAR

BINARY SQL_BINARY

VARBINARY SQL_VARBINARY

LONGVARBINARY SQL_LONGVARBINARY

UNICODE SQL_UNICODE

UNICODE_VARCHAR SQL_UNICODE_VARCHAR

UNICODE_LONGVARCHAR SQL_UNICODE_LONGVARCHAR

Adabas
The IBM Data Virtualization Manager for z/OS Interface for Adabas allows ODBC, JDBC, and Web clients
to access Adabas data in a relational model by using simple SQL-based queries. This interface can be
used with traditional client/server applications, desktop productivity tools that use ODBC, and 2-tier and
3-tier Web implementations. Using the IBM Data Virtualization Manager for z/OS Interface for Adabas,
any ODBC- or JDBC-enabled application can use standard ODBC or JDBC facilities to make SQL requests
directly to Adabas. The result is a relational result set, with no host programming required.

The Adabas Interface Facilities option on the Data Virtualization Manager server - Primary Option Menu
provides access to the Server Adabas Data Mapping Facility features.

40 Using IBM Data Virtualization Manager for z/OS:

Table 21. Server Adabas Data Mapping Facility

Option Description

Map Defaults Set map options

Map Create Create maps

Map Display Display all map information

Map Copy Copy maps

Map Refresh Refresh maps

Creating Adabas virtual tables using the Data Mapping Facility in batch
To extract and import Adabas data, use the sample JCL in the AVZMFPAR member.

Member AVZMFPAR, which is in the hlq.SAVZCNTL data set, contains sample JCL for extracting Adabas
virtual tables.

For information about the available parameters in the AVZMFPAR member, see “Using batch JCL jobs”.

DB2
The IBM Data Virtualization Manager for z/OS Interface for DB2 offers access to DB2-z/OS data, providing
maximum performance for organizations that need to integrate DB2 data with distributed or Web
applications without sacrificing flexibility, reliability, or security.

Regardless of how the data is initially represented, the IBM Data Virtualization Manager for z/OS Interface
for DB2 can integrate DB2 data and stored procedures without custom coding. In addition, one Data
Virtualization Manager server can access many DB2 subsystems.

The DB2 Interface Facilities option on the Primary Option Menu provides access to the Server Database
Control feature. The Server Database Control application allows you to view and modify the product
Server Database table. This table maps database names to entries in the Link table, which can be
displayed using the Link Control application. You can associate a database name with a new host name
(link) using a line command.

Database control program
The Database control program allows you to view the DB2 databases and group attachment names known
to the server, and to reset the logging request queue. The entries in this table are referenced for DB2
thread collection.

Invoking the DB2 control program

Procedure
From the Primary Option Menu, select DB2 and press Enter.
The Database Control program displays the first of two connections control facility panels. Use the LEFT
and RIGHT scroll commands (or PF keys) to shift between them.

Available commands
This program supports all four scrolling commands (UP, DOWN, LEFT, RIGHT) and their PF key equivalents
or scroll bar equivalents.

It also supports the primary SORT and LOCATE commands and the following line commands:

Line commands Description

C Clears the pending logging requests.

Chapter 1. Virtualizing mainframe data 41

Line commands Description

F Formats database information for the selected row.

P Prints the associated control block for the selected
row.

S Displays the control block for the selected row.

Column names
The following table describes each column name on the ISPF panels and provides a sort name (if
available).

Column name Description Sort name

SUBSYSTEM NAME The name of the database as it
will be referred to in application
programs.

NAME

SUBSYSTEM TYPE The type of database
management system.

TYPE

DATABASE VERSION The version of the database
management system

VERSION

DATABASE STATUS The status of the database
management system.

STATUS

MEMBER OF GROUP Database is a member of group
attachment.

GROUP

COMPLETED REQUESTS The number of completed
requests for the database
management system.

COMPLETED REQUESTS

PENDING REQUESTS The number of pending requests
for the database management
system.

PENDING REQUESTS

SSCT ADDRESS The address of the Subsystem
Communication Table (SSCT)
for this database management
system.

SSCT ADDRESS

RIB ADDRESS The address of the Release
Information Block (RIB) for this
database management system.

RIB

DB MODE Database operational mode. Valid
values are:

• CM: compatibility mode.
• ENFM: enable new function

mode.
• NFM: new function mode.

DB MODE

42 Using IBM Data Virtualization Manager for z/OS:

IBM Data Virtualization Manager for z/OS Interface for IMS DB: support for
DBCTL

IMS support for DBCTL accesses IMS data by using DL/I data calls through the CCTL (coordinator
controller). The CCTL provides communications for the DBCTL environment and consists of a subsystem
that contains a database resource client (DRA).

The DBTCL (database control) is an environment that allows full-function and data entry databases
(DEDBs) to be accessed from a management system.

The IMS Interface Facilities option on the Primary Option Menu provides access to the Server IMS Data
Mapping Facility features.

Table 22. Server IMS Data Mapping Facility

Option Description

Facilities General IMS Facilities Menu

IMS Data Mapping Create IMS Map Information

ODBA Open Database Access Menu

Choosing a connectivity method
The IBM Data Virtualization Manager for z/OS Interface for IMS DB allows access to IMS data when used
with the Data Virtualization Manager client, JDBC, or ODBC.

Using the IBM Data Virtualization Manager for z/OS Interface for IMS (CCTL/DBCTL), you can access data
by using the method that is described in the following section.

SQL access to IMS DB
The IBM Data Virtualization Manager for z/OS Interface for IMS CCTL/DBCTL allows you to access IMS
data by using SQL.

• Logical DBDs are not supported.
• The IBM Data Virtualization Manager for z/OS does not necessarily use the first PCB. It finds the best

PCB within the PSB that will satisfy the query. If it is a SELECT statement, it will use a PROCOPT=GO PCB
in preference to one with update capability.

• IMS can have separate positioning for each PCB. The IBM Data Virtualization Manager for z/OS can use
multiple PCBs within a PSB. For each cursor opened on a database, IBM Data Virtualization Manager
for z/OS will require a PCB in the PSB to use. If you open and hold open more than one cursor on the
database concurrently, an additional PCB is required in the PSB for each open cursor.

Note: If there are not enough PCB available within the PSB to support the number of cursors open at
the same time in the database, you will receive the following error message:

Unable to find available PCB.

If you set the setAutoCommit parameter to FALSE, to avoid being unable to find an available PCB, you
should consider closing a cursor as soon as possible after the completion of the SQL associated with the
cursor.

The process of enabling access to an IMS database involves extracting database information and issuing a
query. For more information, see “Using the method for SQL access to IMS DB” on page 51.

Extracting database information
You can extract information about the database from the following sources:

• IMS Database Description (DBD)
• Program Specification Block (PSB)
• Segment detail definitions

Chapter 1. Virtualizing mainframe data 43

Data Virtualization Manager server maintains segment detail definitions in the Virtualization Facility.
The primary segment information can be obtained from the IMS DBD for a specific database.
The DBD contains segment definitions, which can be viewed as individual segment descriptions.
Segment definitions contain information that describes the relationships between segments (parent/child
relationships), as well as the information access path.

IMS Database Description (DBD)
To access an IMS database, the IBM Data Virtualization Manager for z/OS Interface for IMS DB/SQL
requires that the Database Description (DBD) be extracted to create a DMF data mapping entry for every
DBD/segment combination.

Program Specification Block (PSB)
Program Specification Block (PSB) controls the access to IMS databases, and each PSB has one or more
Program Control Blocks (PCBs) that define the access to specific databases and database segments
within the IMS subsystem. To enable SQL access, a PSB must exist or be built that contains PCBs with the
necessary access to the IMS data mapped in virtual tables. The source for IMS PSBs is extracted using the
Data Studio tool and related to IMS virtual tables for SQL access.

While executing an SQL query, a client connection to the server defines an implicit database transaction.
In IMS, a PSB schedule defines an IMS transaction. For update transactions, only one PSB can be
scheduled at any point of time to ensure transactional consistency. When auto-commit is on, every SQL
statement is committed, PSB is terminated, and IMS transaction is completed. When auto-commit is off,
any updates issued, which are a part of a transaction, must be supported by the PSB scheduled for the
transaction. Attempts to perform an update within a single transaction that would require a different PSB
(from one already scheduled) returns an error.

If you are updating multiple IMS databases within a single transaction (with auto-commit off), all virtual
tables participating in the transaction must use the same PSB and that PSB must include PCBs for all
databases to be updated by the transaction.

The implicit database connection is ended under the following conditions:

• After each SQL statement execution when auto-commit is on. In this case, each execute instruction
commits the transaction.

• After commit/rollback request when auto-commit is off.
• After the client is disconnected when auto-commit is off. In this case, a commit is issued.

Note: The auto-commit flag is set in the application code and not set within Data Virtualization Manager.

When you extract the PSB, remember the following considerations:

• Segment sensitivity considerations. Access is allowed to all segments contained in the first PCB for a
PSB.

• Field sensitivity considerations. If field sensitivity is defined, WHERE clauses are allowed in the query.
• PCB considerations. Based on the SQL statement, the first DB PCB that has the necessary segment

sensitivity and the processing options is selected for database access.

Segment detail definitions
Sometimes, database segments are not defined fully in the DBD. Segment layout detail definitions can be
obtained from other sources, such as COBOL copybooks. To use segment detail definitions, they must be
extracted to create DMF entries, which must be linked to the associated DBD segment.

When extracting the segment detail definitions, remember the following considerations:

• Field Sensitivity: If field sensitivity is defined, WHERE clauses are allowed in the query.
• REDEFINES: Redefinitions are used to change the information that is accessed by the IBM Data

Virtualization Manager for z/OS Interface for IMS DB/SQL into a customized format, depending on how
the information is to be presented.

For example, assume PART-KEY is redefined as PART-PREFIX and PART-NUMBER:

44 Using IBM Data Virtualization Manager for z/OS:

01 PART-REC
 03 PART-KEY PIC X(17).
 03 PART-KEY-DETAIL REDEFINES PART-KEY.
 05 PART-PREFIX PIC X(02).
 05 PART-NUMBER PIC X(15).
 03 FILLER

In this case, the following SELECT statement is valid for column selection:

SELECT PART-PREFIX, PART-NUMBER FROM DI21PART.DFSSAM03_PARTROOT

• OCCURS: The Data Mapping Facility does not support OCCURS clauses that contain the DEPENDING ON
clause. When the OCCURS clause is used, it appends a numeric suffix to the corresponding column.

For example, if you executed the following OCCURS clause on PART-PREFIX:

05 PART-PREFIX OCCURS 3 TIMES

You would see the following column names:

PART-PREFIX-1
PART-PREFIX-2
PART-PREFIX-3

Database information
Database information is contained in the following parts:

• DBD: DI21PART
• PSB: DFSSAM03

DI21PART and DFSSAM03 are samples to demonstrate how IMS support works. The samples represent
how data shown in a hierarchical model is virtualized in tables.

Database definition (DBD)
This example is the DI21PART DBD of the PART sample database, represented in an IMS view in Figure 1
on page 46.

DBD NAME=DI21PART,ACCESS=(HISAM,VSAM)
DATASET DD1=DI21PART,DEVICE=3380,OVFLW=DI21PARO,
 SIZE=(2048,2048),RECORD=(678,678)
SEGM NAME=PARTROOT,PARENT=0,BYTES=50,FREQ=250
FIELD NAME=(PARTKEY,SEQ),TYPE=C,BYTES=17,START=1
SEGM NAME=STANINFO,PARENT=PARTROOT,BYTES=85,FREQ=1
FIELD NAME=(STANKEY,SEQ),TYPE=C,BYTES=2,START=1
SEGM NAME=STOKSTAT,PARENT=PARTROOT,BYTES=160,FREQ=2
FIELD NAME=(STOCKEY,SEQ),TYPE=C,BYTES=16,START=1
SEGM NAME=CYCCOUNT,PARENT=STOKSTAT,BYTES=25,FREQ=1
FIELD NAME=(CYCLKEY,SEQ),TYPE=C,BYTES=2,START=1
SEGM NAME=BACKORDR,PARENT=STOKSTAT,BYTES=75,FREQ=0
FIELD NAME=(BACKKEY,SEQ),TYPE=C,BYTES=10,START=1
DBDGEN
FINISH
END

Chapter 1. Virtualizing mainframe data 45

Figure 1. IMS database representation

Program Specification Block (PSB)
This example is the DFSSAM03 PSB of the PART sample database:

DBPCB01 PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=G,KEYLEN=43
 SENSEG NAME=PARTROOT,PARENT=0
 SENSEG NAME=STANINFO,PARENT=PARTROOT
 SENSEG NAME=STOKSTAT,PARENT=PARTROOT
 SENSEG NAME=CYCCOUNT,PARENT=STOKSTAT
 SENSEG NAME=BACKORDR,PARENT=STOKSTAT
 PSBGEN LANG=COBOL,PSBNAME=DFSSAM03
 END

Extracting the data
After the maps of the DBD and PSB are extracted, you can use the Data Mapping Facility to navigate
through the data.

Because IMS does not maintain a catalog that describes client information for each segment, Data
Virtualization Manager server maintains the information in the Data Mapping Facility. An IMS database
segment map definition is created based on the SQL statement processing requirements.

Figure 2. Using the Data Mapping Facility with the IBM Data Virtualization Manager for z/OS Interface for
IMB DB/SQL

46 Using IBM Data Virtualization Manager for z/OS:

Data access paths
Data can be accessed in or across hierarchical boundaries. For the DBD shown , all of the SELECT
statements that are shown in this section are valid.

The database representation of the DBD shown can be combined with the PSB and divided into specific
data paths.

Figure 3. Data access path 1

The following SELECT statements are valid for the data access path that is shown in Figure 3:

SELECT * FROM IMS_PARTROOT
SELECT * FROM IMS_PARTROOT P, IMS_STANINFO C
 WHERE P.CHILD_ID = C.PARENT_ID
 AND P.PARTKEY='02AB960C11'

Chapter 1. Virtualizing mainframe data 47

Figure 4. Data access path 2

The following SELECT statements are valid for the data access path that is shown in Figure 4:

SELECT * FROM IMS_PARTROOT
SELECT * FROM IMS_STOKSTAT
SELECT * FROM IMS_CYCCOUNT
SELECT * FROM IMS_PARTROOT P, IMS_STOKSTAT C
 WHERE P.CHILD_ID = C.PARENT_ID
 AND PARTKEY='02AB960C11'
SELECT * FROM IMS_PARTROOT P, IMS_STOKSTAT C1,
 IMS_CYCCOUNT C2
 WHERE P.CHILD_ID = C1.PARENT_ID
 AND C1.CHILD_ID = C2.PARENT_ID
 AND PARTKEY='02AB960C11'

48 Using IBM Data Virtualization Manager for z/OS:

Figure 5. Data access path 3

The following SELECT statements are valid for the data access path that is shown in Figure 5:

SELECT * FROM IMS_PARTROOT
SELECT * FROM IMS_STOKSTAT
SELECT * FROM IMS_BACKORDR
SELECT * IMS_PARTROOT P, IMS_STOKSTAT C
 WHERE P.CHILD_ID = C.PARENT_ID
 AND PARTKEY='02AB960C11'
SELECT * FROM IMS_PARTROOT P,
 IMS_STOKSTAT C1,IMS_BACKORDR C2
 WHERE P.CHILD_ID = C1.PARENT_ID
 AND C1.CHILD_ID = C2.PARENT_ID
 AND PARTKEY=’02AB960C11’

The following statements are not valid because they produce a Cartesian product (or Cartesian join):

SELECT * FROM IMS_PARTROOT, IMS_STANINFO
SELECT * FROM IMS_PARTROOT, IMS_STOKSTAT,DI21PART.
 DFSSAM03_CYCCOUNT

Running a statement that produces a Cartesian product results in a 1002 error code.

Note: To select from two different tables, a WHERE clause must be specified.

Selecting data
The IBM Data Virtualization Manager for z/OS Interface for IMS DB/SQL code parses the SELECT
statement, optimizes it, and processes the data by using the path that is determined by the optimizer.
The optimizer examines the SELECT criteria, and combines and sorts it. It also validates the access path.

For generic selections (SELECT *), all enabled columns in the data map for the segments listed in the
FROM clause are returned to the client. Selected columns can be requested from any segment in a given
path.

PSB security checking
The IBM Data Virtualization Manager for z/OS Server interface for IMS DBCTL/ODBA and IMS-Direct
supports PSB authorization. For DBCTL/ODBA requests, Data Virtualization Manager issues a SAF call to
verify the Data Virtualization Manager connected user-id has READ access to the PSB prior to scheduling

Chapter 1. Virtualizing mainframe data 49

the PSB in IMS. For IMS-Direct requests, this SAF call is issued even though a PSB is not scheduled in
IMS, so PSB level security is consistent regardless of the IMS data access used by the server. To activate
this security checking, set the IMSPSBSECURITY parameter to yes in the Data Virtualization Manager
server's IN00 file.

Creating a data map from SQL

Procedure
1. From the Data Virtualization Manager server - Primary Option Menu, select IMS and press Enter.

2. From the Server IMS Control Facility menu, select IMS Data Mapping and press Enter.
3. Select Generate a View of an IMS/ DB DBD and Segment from the menu and press Enter.

4. Provide the following information:

• Source Library Name: The data set name and member name that contain the source code for the
map you are creating.

• Start Field: The field name where the map starts building.
• End Field: The field name where the map stops building. If this name is not specified, the first field

that is at the same level as the Start Field stops the build process.
• Case Sensitive: If the Start Field or End Field are case-sensitive, set this value to Y (Yes) to preserve

the case.
• Map Name: The name of the map in the DMF. This name also is used as the member name for the

map in the mapping data set, if possible.
• Use Offset Zero: If the Start Field is not an '01' level, start the offset at zero; otherwise, the offset

starts at the offset of the field in the structure.
• Convert Var to True: Set this value to Y (Yes) to convert VAR fields to TRUE VAR fields. TRUE VAR
fields have a 2-byte data length field preceding the data.

• Flatten Arrays: Determines how arrays are processed. Valid values depend on the data source:

– Flatten arrays into a single fixed table at runtime (Y)
– Return arrays into separate tables at runtime (N)
– Flatten arrays now (C)

• Map Data Set Name: The data set name where the map is stored. The default is the first data set in
the AVZMAPP DD statement for the subsystem in the server started task.

• DBD Name: The name of the DBD for which you are creating a view.
• Segment Name: The name of the Segment, from the specified DBD, for which you are creating a

view.
• PSB Name: The name of the PSB to use to access the specified segment.

Note: If you leave this field BLANK, the product automatically selects a PSB name based on the SQL
query.

• PCB Name: The name of the PCB, from the specified PSB, to use to access the specified segment.

Note: If you leave this field BLANK, the product automatically selects a PCB name based on the SQL
query.

Press Enter.
5. If either the DBD Name or Segment Name field is BLANK, the system displays a panel allowing you to

choose a name from a selection list. Select a DBD Name or Segment Name from the Selection List.
6. Press Enter. If the operation is successful, the Create Successful message appears on the panel.

50 Using IBM Data Virtualization Manager for z/OS:

Using the method for SQL access to IMS DB
The IBM Data Virtualization Manager for z/OS Interface for IMS DB provides SQL access. Use the Data
Mapping Facility to define maps. Maps are defined once, and then updated/replaced, if needed.

You can extract a map from a source by using either of the following methods:

• “Using the AVZMFPAR member” on page 51
• “Using the DMF parser”

Using the AVZMFPAR member
Use the AVZMFPAR member that is located in your hlq.SAVZCNTL data set as a sample JCL to virtualize
DBC, PSB, and COBOL maps.

For more information about the parameters in the AVZMFPAR member, see “Using batch JCL jobs”.

Using the DMF parser

Procedure
1. From the Primary Option Menu, select IMS and press Enter.
2. From the IMS Control Facility menu, select IMS Data Mapping and press Enter.
3. Select Mapping Defaults from the menu and press Enter.
4. Make sure the Parser Version option is set to N (New).
5. Extract by using a DBD source:

a. Return to the IMS Mapping Option panel, and select the Extract using DBD Source option. Press
Enter.

b. Provide the following information:

• Source Library Name: The data set name and member name that contain the source code for the
map you are creating.

• Map Data Set Name: The data set name where the map is stored. The default is the first data set
in the AVZMAPP DD statement for the subsystem in the server started task. The map name is the
DBD or PSB name. This name also is used as the member name for the map in the mapping data
set, if possible.

c. Press Enter. If the extract completes with no errors, the Create Successful message appears
on the panel.

6. Extract the data map by using the PSB source.

a. Return to the IMS Mapping Options panel and select Extract Using PSB Source. Press Enter.
b. Provide the following information:

• Source Library Name: The data set name and member name that contain the source code for the
map you are creating.

• Map Data Set Name: The data set name where the map is stored. The default is the first data set
in the AVZMAPP DD statement for the subsystem in the server started task. The map name is the
DBD or PSB name. This name also is used as the member name for the map in the mapping data
set, if possible.

c. Press Enter. If the extract completes with no errors, the Create Successful message appears
on the panel.

7. Optional: Add segment detail definitions to the extracted DBD:

a. Return to the IMS Mapping Options panel and select Extract COBOL from listing. Press Enter.
b. Provide the following information:

• Source Library Name: The data set name and member name that contain the source code for the
map you want to create.

Chapter 1. Virtualizing mainframe data 51

• Start Field: The field name where the map starts building.
• End Field: The field name where the map stops building. If this name is not specified, the first
field that is at the same level as the Start Field stops the build process.

• Map Name: The name of the map in the DMF. This name also is used as the member name for the
map in the mapping data set, if possible.

• Use Offset Zero: If the Start Field is not an '01' level, start the offset at zero; otherwise, the offset
starts at the offset of the field in the structure.

• Flatten Arrays: Determines whether arrays are flattened. Valid values depend on the product:

– For IBM Data Virtualization Manager for z/OS SQL, you can specify C (COMPATIBLE) or Y (YES).
– For IBM Data Virtualization Manager for z/OS Streams, you can specify C (COMPATIBLE) only.
– For IBM Data Virtualization Manager for z/OS SQL 92, you can specify C (COMPATIBLE), Y

(YES), or N (NO).

Note: The C (COMPATIBLE) value is provided for backward compatibility with an older mapping
architecture. When C is specified, OCCURS fields are flattened in the map and OCCURS
DEPENDING ON fields generate an error message.

• Map Data Set Name: The data set name where the map is stored. The default is the first data set
in the AVZMAPP DD statement for the subsystem in the server started task.

c. Press Enter. If the extract completes with no errors, the Extract Successful message appears
on the panel. Both the map library and Data Virtualization Manager server contain the mapped
structure definition.

8. Merge the other maps into the DBD maps to add the segment detail definitions from the COBOL listings
to the DBD segments (see “Merging maps into a DBD map”).

9. Display the maps to make sure they were all created successfully (see “Displaying maps”).

Merging maps into a DBD map

Procedure
1. From the Primary Option Menu, select IMS and press Enter.
2. From the IMS Control Facility Menu, select IMS Data Mapping and press Enter.
3. From the panel, select Merge Other Maps into a DBD map and press Enter.
4. Enter information in the DBD Map Merge Utility panel.

• Provide the information for the Map Data Set Library, including values for the Project, Group, Type,
and Member fields (optional) for the DBD data map. Otherwise, you can use the Other Map Data Set
Name field to specify another data set for the DBD data map.

• To disable duplication fields, select the Disable duplicate fields parameter.
• To disable FILLER fields, select the Disable FILLER fields parameter.

Press Enter.

• If you specified a member name, that member is selected and the system displays the Data Map
Linkages panel.

• If you did not specify a member name, the system displays a Selection List panel.
5. Select a member:

a. From the Selection List panel, type one of the following commands in front of the member name:

• B: Browse the member
• E: Edit the member
• S: Select the member

Note: You can process one or multiple members.

52 Using IBM Data Virtualization Manager for z/OS:

b. Type the END command to process the members.
6. From the Data Map Linkages panel, in the LINK NAME column, type the names of the data maps that

were extracted from the COBOL listing to link with the DBD segments. Press Enter.
7. For each DBD segment that is linked to a data map, the Data Map link established message appears in

the MESSAGE column.

Note: To force a mapping update, you must delete or leave the link name blank, and press Enter to
process. After you see the Warning: No Linked Data Map defined message, you can rekey the
link name and press Enter to pick up the revised map layout. If you performed these steps and are
unable to pick up the new definition, you must perform a Map Refresh. You can also set the option
Auto Refresh to Y (Yes) on the panel prior to the map extract.

8. Type the END command to process the links. The system returns to the IMS DBD Map Links panel. If
the linking completes with no errors, the Create Successful message appears on the panel.

9. Return to the IMS Mapping Options panel and select Map Refresh from the menu.

a. Press Enter for a map refresh to add your map to the map display list. If the refresh completes with
no errors, the Refresh Successful message appears in the upper right corner of the panel.

Displaying maps
Displaying all maps is useful to make sure that maps are created correctly.

Procedure
1. Return to the IMS Mapping Options panel and select Display IMS DB DBD Maps from the menu and

press Enter.
The system displays the DBD maps. For more information about the available line commands and
column descriptions, see the following sections.

2. Return to the IMS Mapping Options panel and select Display IMS DB PSB Maps from the menu and
press Enter.
For more information about the available line commands and column descriptions see the following
sections.

3. Return to the IMS Mapping Options panel and select Display IMS DB COBOL/PLI Extract Maps from
the menu. Press Enter.

The system displays the PSB maps.
These examples show the information that displays for existing data maps. Use the LEFT and RIGHT
scroll commands (or PF keys) to shift between them.

• Available Commands

This program supports all four scrolling commands (UP, DOWN, LEFT, RIGHT) and their PF key
equivalents or scroll bar equivalents.

It also supports the primary SORT and LOCATE commands and the following line commands:

Line commands Description

D Disables the map causing it to be unavailable for
use.

E Enables the map for use.

K Deletes a map, also making it unavailable for
use.

P Prints the associated control block for the
selected row.

S Displays the associated control block for the
selected row.

Chapter 1. Virtualizing mainframe data 53

Line commands Description

X Displays map elements for the selected row.

• Column names

The following table describes each column name on the ISPF panels and provides a sort name (if
available).

Column names Description Sort name

STRUCTURE NAME The member names in the map
data set.

NAME

TYPE One of the following types of
structure:

– ADABAS
– Input
– Output
– Screen
– LPTBL
– Header
– USER

TYPE

STATUS Status of this map (Enabled,
Disabled, or Deleted)

STATUS

LANGUAGE Language type this map was
generated from (for example,
Adabas, COBOL, DB2, Natural,
VSAM). Determined at the time
of the extract. The extracted
map is independent of language
type.

LANGUAGE

AT Attachments (OPDWs) present
in the map (Yes/No)

AT

MODIFICATION DATE TIME The date and time the map
was modified. Used only for
informational purposes.

DATE

USER ID The user ID of the map creator.
Used only for informational
purposes.

USERID

CREATION DATASET The data set that the map was
extracted from.

DATASET

54 Using IBM Data Virtualization Manager for z/OS:

VSAM and sequential files
The IBM Data Virtualization Manager for z/OS Interface for VSAM provides seamless, real-time controlled
access to VSAM files, CICS-assigned KSDS VSAM files, RRDS VSAM files, and sequential files, including
flat files and partitioned data sets (PDSs) as shown in the following table.

Table 23. Access to file type by interface

Interface VSAM QSAM

ESDS KSDS/IAM RRDS

VSAM (read-only) YES YES YES YES

VSAM CICS (read/
write)

YES YES YES NO

VSAM RLS (read/
write)

YES YES YES YES

Using the IBM Data Virtualization Manager for z/OS Interface for VSAM, any ODBC- or JDBC-enabled
application can use standard ODBC or JDBC facilities to make SQL requests to VSAM and sequential files
and return a result set. No host programming is required.

The VSAM/Sequential Interface Facilities option on the Primary Option Menu provides access to the
Server VSAM/Sequential Data Mapping Facility features.

Table 24. Server VSAM/Sequential Data Mapping Facility

Option Description

Map Defaults Set the defaults for the mapping facility

Extract VSAM Extract from a VSAM file

Extract Seq Extract from a Sequential file

Map Display Display all map information

Map Copy Copy maps

Map Refresh Refresh maps

VSAM File Control Displays the status of VSAM files used in the system

Using the Data Mapping Facility (DMF)
Use the Data Mapping Facility (DMF) to create data maps for VSAM and sequential file access.

Creating data maps for VSAM file access
You can extract a map from a VSAM file. These instructions also apply if you are extracting a VSAM file
through CICS by selecting CICS / CICS Data Mapping / Extract VSAM from the Primary Option Menu.

You can extract a VSAM data map by using either of the methods:

• Using the AVZMFPAR member
• Using the DMF parser

Using the AVZMFPAR member
To extract VSAM maps in batch and to extract VSAM maps with alternate indexes, run the AVZMFPAR
member that is located in your hlq.SAVZCNTL data set as sample JCL. A compiled listing is required
to perform the extract. Also, a COBOL listing with OPT(FULL) cannot be processed to produce a map.
Keywords for this process define the same elements that you specify on the ISPF panels.

Chapter 1. Virtualizing mainframe data 55

Note: Perform a Map Refresh before updating the display with the IBM Data Virtualization Manager for
z/OS display map command.

For more information about the VSAM parameters that are located in the AVZMFPAR member, see “Using
batch JCL jobs”.

Using the DMF parser
To extract a VSAM data map using the DMF parser, follow these steps.

Procedure
1. From the Primary Option Menu, select VSAM/Sequential and press Enter.
2. From the VSAM/Seq Data Mapping Facility panel, select Map Defaults and press Enter.
3. Make sure the Parser Version is set to N (New).
4. Return to the VSAM/Seq Data Mapping Facility Display.
5. Select Extract VSAM from this menu and press Enter.
6. Provide the following information:

• Source Library Name: The data set name and member name that contain the source code for the
map being created.

• Start Field: The field name where the map starts building.
• End Field: The field name where the map stops building. If not specified, the first field that is at the

same level as the Start Field stops the build process.
• Map Name: The name of the map in the DMF. This name also is used as the member name for the

map in the mapping data set if possible.
• Use Offset Zero: If the Start Field is not an '01' level, start the offset at zero; otherwise, the offset

starts at the offset of the field in the structure.
• Flatten Arrays: Determines whether arrays are flattened. Valid values depend on the product:

– For IBM Data Virtualization Manager for z/OS SQL, specify C (COMPATIBLE) or Y (YES).
– For IBM Data Virtualization Manager for z/OS Streams, specify C (COMPATIBLE) only.
– For IBM Data Virtualization Manager for z/OS SQL 92 Engine, specify C (COMPATIBLE), Y (YES), or
N (NO).

Note: The C (COMPATIBLE) value is provided for backward compatibility with an older mapping
architecture. When C is specified, OCCURS fields are flattened in the map and OCCURS
DEPENDING ON fields generate an error message.

• Map Data Set Name: The data set name where the map is stored. The default is the first data set in
the AVZMAPP DD statement for the subsystem.

7. Press Enter. The system displays the VSAM Extract panel.
8. Provide the following information:

• For read-only VSAM files allocated to the Data Virtualization Manager server address space: In
the VSAM DSN field, type the VSAM data set name (DSN) for the data that you want to access. The
DSN is dynamically allocated during the execution of the query.

Note: To create the sample VSAM file, use the sample hlq.SAVZCNTL(DEFSTAFF).
• For READ/WRITE VSAM files via CICS:

– The FCT for this VSAM cluster.
– The CICS connection name, as defined in the Data Virtualization Manager server Initialization

EXEC.
– The mirror transaction name or the transaction ID, as defined in CICS.
– The name of the Post-Read Exit and Pre-Write Exit routines if you are using the exit processing

feature.

56 Using IBM Data Virtualization Manager for z/OS:

– Type Y or N to indicate whether to use alternate indexes for this file. For this example, specify Y
(Yes).

9. Press Enter. If you selected Y for alternate indexes, the VSAM Extract panel appears.
10. Specify the name of up to eight alternate indexes and press Enter. If the extract completes with no

errors, the Extract Successful message appears on the panel.
11. Select Map Refresh from the VSAM/Seq Data Mapping Facility menu to refresh the data maps.

Using alternate indexes for a VSAM cluster
The IBM Data Virtualization Manager for z/OS Interface for VSAM supports VSAM alternate indexes by
defining a data map that contains the following items:

About this task
• For read-only VSAM files allocated to the Data Virtualization Manager server address space, the data

map is the path name in the base VSAM cluster.
• For read/write access to VSAM files by using CICS, the data map is the base cluster ID and an alternate

index path ID as known to CICS.

The DMF allows for the same or different views in a VSAM file by changing the map name.

Procedure
1. From the Primary Option Menu, select VSAM/Sequential and press Enter.
2. From the VSAM/Seq Data Mapping Facility panel, select Extract VSAM and press Enter.
3. Provide the following information:

• Listing Library: Type the information for the listing, including values for the Project, Group, Type, and
Member fields. Alternatively, you can use the Other Partitioned Data Set Containing Listing field to
specify the data set.

• Map Library: Type the information for the map output data set, including values for the Project,
Group, Type, and Member fields. Alternatively, you can use the Other Partitioned Data Set To
Contain Map field to specify another data set for the map output.

4. Provide the following information in the Listing Search Criteria fields:

• Start Search Field: This is used to search the listing data set for the starting point of the
language-dependent data declaration. The search criteria must be unique enough to find the specific
declaration to be mapped. For best results, use the fully qualified name of the declaration as it
appears in the listing.

• End Search Field: If this field is blank, extraction starts with the level number of the line found and
continues until an equal or higher level is processed. If you enter a value in this field, extraction
continues until the ending search string is found in the listing.

• Offset Zero: (Y/N) Indicates whether to set the Start Search Field offset to zero, even if it is not a
group level or the first definition in a group.

5. Press Enter. The system displays the VSAM Extract panel.
6. Indicate whether to use alternate indexes for this file. Specify Y (Yes) to allow the use of alternate

indexes on this file.
7. Indicate whether to treat this file as an IAM file. The default is N (No); however, if the file is an IAM file,

it is still treated as an IAM file.
8. Press Enter. The system displays the following panel.
9. Provide the following information:

• For read-only VSAM files allocated to the Data Virtualization Manager server address space, the path
name of the VSAM alternative index. You can add up to 10 alternative index names.

• For read/write access to VSAM files by using CICS, the path name of the VSAM alternative index and
the CICS FCT name. You can add up to 8 alternative index names.

Chapter 1. Virtualizing mainframe data 57

Defining multiple VSAM logical records in the same file
If you are using the IBM Data Virtualization Manager for z/OS Interface for VSAM support of multiple
logical records in the same file, you must define different views in the VSAM file. You create different
maps that contain a different view for each of the logical records.

The following examples show two logical records from two different views in the same VSAM file.
One view contains demographic information, and a second view contains account information. The
RECORD_TYPE column specifies the view that contains the record.

Normally, a COBOL application that reads this data reads the record’s content by using a record type (or
view) indicator and then uses the redefinition of the record layout. If the COBOL program uses a redefine
of the data area, the data map that is extracted contains the redefined columns. The application checks
the content of RECORD_TYPE and uses the appropriate columns to view the data.

An alternative to this approach is to define the views in two separate data mapping definitions. Both
data maps refer to the same file, but each has a different table name to distinguish its view in
the VSAM data set. Using the preceding example, the data map DEMOGRAF can contain definitions
for ACCOUNT_NUMBER, RECORD_TYPE, NAME, and ADDRESS. The data map ACCOUNT can contain
ACCOUNT_NUMBER, RECORD_TYPE, and ACCOUNT_BALANCE. The application can issue the following
queries to obtain all rows (records) in each view:

SELECT * FROM DEMOGRAF WHERE RECORD_TYPE = 1
SELECT * FROM ACCOUNT WHERE RECORD_TYPE = 2

To alternate the views, the application can run the following statements, where the &VALUE information is
substituted from the previous query ACCOUNT_NUMBER column:

SELECT * FROM DEMOGRAPH WHERE RECORD_TYPE = 1
SELECT * FROM ACCOUNT WHERE ACCOUNT_NUMBER = "&VALUE" AND RECORD_TYPE = "2"

Creating data maps for sequential file access
You need to define a sequential file before you can access sequential files. You can define and extract this
map by using either of the following methods:

• Using the AVZMFPAR member
• Using the DMF parser

Using the AVZMFPAR member
To extract sequential maps in batch and to extract sequential maps with alternate indexes, run the
AVZMFPAR member that is located in your hlq.SAVZCNTL data set as sample JCL.

A COBOL listing with OPT(FULL) cannot be processed to produce a map. Keywords for this process define
the same elements that you specify on the ISPF panels.

Note: You must perform a Map Refresh before it shows in the IBM Data Virtualization Manager for z/OS
display map command.

For more information about the sequential parameters that are located in the AVZMFPAR member, see
“Using batch JCL jobs”.

Using the DMF parser

About this task
To extract a sequential data map using the DMF parser, follow these steps.

Procedure
1. From the Primary Option Menu, select VSAM/Sequential and press Enter.
2. From the VSAM/Seq Data Mapping Facility panel, select Extract Seq and press Enter.
3. Provide the following information:

58 Using IBM Data Virtualization Manager for z/OS:

• Source Library Name: The data set name and member name that contain the source code for the
map you want to create.

• Start Field: The field name that is used to start building the map.
• End Field: The field name that is used to stop building the map. If not specified, the first field that is

at the same level as the Start field stops the build process.
• Map Name: The name of the map in the DMF. This name also is used as the member name for the

map in the mapping data set if possible.
• Use Offset Zero: If the Start field is not an '01' level, start the offset at zero; otherwise, the offset

starts at the offset of the field in the structure.
• Flatten Arrays: Determines whether arrays are flattened. Valid values depend on the product:

– For Data Virtualization Manager server SQL, specify C (COMPATIBLE) or Y (YES).
– For Data Virtualization Manager server Streams, specify C (COMPATIBLE) only.
– For Data Virtualization Manager server SQL 92 Engine, specify C (COMPATIBLE), Y (YES), or N (NO).

Note: The C (COMPATIBLE) value is provided for backwards compatibility with an older mapping
architecture. When C is specified, OCCURS fields are flattened in the map and OCCURS
DEPENDING ON fields generate an error message.

• Map Data Set Name: The data set name where the map is stored. The default is the first data set in
the AVZMAPP DD statement for the subsystem in the server started task.

4. Press Enter. The system displays the Sequential Extract panel.
5. Provide the following information:

• For flat files: The data set name in the Enter DSN field.
• For PDSs: The data set name in the Enter DSN field. In addition, if you want to create a data map

that includes columns for viewing or searching the data set name and/or PDS member name, provide
the following information:

– To view the data set name, in the DSN Column Name field, type a column name that represents
the data set name information.

– To view the PDS member name, in the Member Column Name field, type a column name that
represents the member name information.

– If you want to search by the data set name or PDS member name columns, specify Y (Yes) to
indicate that the columns are allowed to be used in search criteria.

Note: If you do not specify the appropriate information to search by data set name or member
name, a query returns information for all PDS members of all of data sets, without any indication
of the corresponding member name or data set name.

6. Press Enter. If the extract completes with no errors, the Extract Successful message appears on
the panel.

7. Return to the VSAM/Seq Data Mapping Facility and select Map Refresh to refresh the data maps.

Query syntax
The following syntax shows the query for each type of data file:

• VSAM data (read-only)

select (5) * from vsam1

• VSAM for CICS data (read/write)

select (5) * from filea

• Sequential files

select * from flatfile

Chapter 1. Virtualizing mainframe data 59

Using a CALL statement to obtain map metadata
The IBM Data Virtualization Manager for z/OS Interface for VSAM and Sequential Files allows users
to view metadata information for VSAM or sequential file data maps on the client with a simple CALL
statement. The syntax of the call is:

CALL DVS_MAP('DESCRIBE','mapname')

where mapname is the name of the map.

This call returns a result set with a single column named FORMAT. The FORMAT column contains details
on the fields of the map. The FORMAT column types and their SQL equivalents are shown in the following
table.

FORMAT column types SQL equivalent

CHARACTER SQL_CHARACTER

NUMERIC SQL_NUMERIC

DECIMAL SQL_DECIMAL

INTEGER SQL_INTEGER

SMALLINT SQL_SMALLINT

FLOAT SQL_FLOAT

DOUBLE SQL_DOUBLE

DATE SQL_DATE

TIME SQL_TIME

TIMESTAMP SQL_TIMESTAMP

VARCHAR SQL_VARCHAR

LONGVARCHAR SQL_LONGVARCHAR

BINARY SQL_BINARY

VARBINARY SQL_VARBINARY

LONGVARBINARY SQL_LONGVARBINARY

UNICODE SQL_UNICODE

UNICODE_VARCHAR SQL_UNICODE_VARCHAR

UNICODE_LONGVARCHAR SQL_UNICODE_LONGVARCHAR

Using the Data Mapping Facility
You can use the Data Mapping Facility to set default maps to display, copy, or refresh data maps, to view
individual items in a data map, to generate RPC skeletons, and to create source library definitions.

The Data Mapping option on the Primary Option Menu provides access to the Data Mapping Facility
features.

Table 25. Server Data Mapping Facility

Option Description

Map Defaults Set the defaults for the mapping facility

Map Display Display all map information

Map Copy Copy maps

60 Using IBM Data Virtualization Manager for z/OS:

Table 25. Server Data Mapping Facility (continued)

Option Description

Map Refresh Refresh maps

VSAM File Control Displays the status of VSAM files used in the system

Source Library Management View or create source library definitions

Setting default values for data maps

Procedure
1. From the Primary Option Menu, select Data Mapping and press Enter.
2. From the Data Mapping Facility menu, select Map Defaults and press Enter.
3. Type Y (Yes) or N (No) for Auto Refresh. Press Enter.
Y means that the storage data maps are automatically refreshed after changes.
N requires a manual refresh by using the Map Refresh option.
Auto Refresh can incur significant overhead if you have several changes to make and you exit after
each change. Either make all changes before exiting, or turn off Auto Refresh and use the Map Refresh
option when you are finished.

If you set this value to Y, you do not need to perform a Map Refresh before the HTML generation. If you
set it to N, you must perform a Map Refresh before and after the HTML generation.

Results
The Profile Saved message appears, indicating that the data set name is saved in the user profile pool.

Displaying data maps

Procedure
1. From the Primary Option Menu, select Data Mapping and press Enter.
2. From the Data Mapping Facility menu, select Map Display and press Enter.

The Schema Listing panel displays.
3. Type X next to the schema to view the Data Mapping Block panel for the schema.

The Data Mapping Block panel displays.
4. Use the available line commands to perform the appropriate functions. The following commands are

available:

• P — Prints map
• S — Shows map
• D — Disables map
• E — Enables map
• K — Deletes map
• X — Displays map

Type the command name and press Enter.

Chapter 1. Virtualizing mainframe data 61

Results
The following table describes each column name on the ISPF panels and provides a sort name (if
available).

Column name Description Sort name

STRUCTURE NAME The member names in the map
data set.

NAME

TYPE TYPE

• ADABAS
• Input
• Output
• Screen
• LPTBL
• Header
• USER

TYPE

STATUS The status of the map (Enabled,
Disabled, or Deleted).

STATUS

MR Map Reduce (Yes/No) MR

LANGUAGE The language of the extracted
map. This value is determined at
the time of the extract.

LANGUAGE

AT Attachments (OPDWs) present in
the map (Yes/No)

AT

MODIFICATION DATE TIME The date and time the map was
last modified.

DATE

USERID The user ID of the map creator.
Used only for informational
purposes.

USERID

NOTE Comments

Viewing individual data elements

About this task
To display the contents of a data map, use the following instructions.

Procedure
1. From the Primary Option Menu, select Data Mapping and press Enter.
2. From the Data Mapping Facility menu, select Map Display and press Enter.

The Schema Listing panel displays.
3. Type X next to the schema to view the Data Mapping Block panel for the schema.

The Data Mapping Block panel displays.
4. Type X next to the structure to view individual data elements of that structure. Press Enter.

The system displays the Data Elements for the structure.
5. Use the available line commands to perform the appropriate functions. Available commands:

62 Using IBM Data Virtualization Manager for z/OS:

• P — Prints map
• S — Shows map
• D — Disables map
• E — Enables map
• C — Changes map

Type the command name and press Enter.

Results
The following table describes each column name on the ISPF panels and provides a sort name (if
available).

Column Name Value Description

FIELD NAME 1-50 characters The name of the field.

COLUMN NAME 1-18 characters The name of the column heading.
During map extract, column
names were created using the
field names and translating any
dash characters to underscores.
The map editor can be used
to make column names more
meaningful for users.

STATUS • Enabled
• Disabled

The status of the map.

LEVEL 1-nnn The level in relation to other
elements. This is maintained for
informational purposes only.

LENGTH 1-65635 The length of the data element.

FORMAT • Char
• Bin
• Packed
• Decimal
• Date, Time
• Group

The format of the data element.

OFFSET 1-65635 An offset is maintained as
the relative position 0 (zero)
displacement from the beginning
of the structure.

PRECISION 1-65635 The element precision.

SCALE 1-65635 The element scale.

LINKED STRUCTURE 1-8 characters The related structure name.

LINKED COLUMN 1-32 characters The related structure column
name.

FILL CHAR 1 character The default fill character.

FILL DATA 1-200 characters The default fill data.

Chapter 1. Virtualizing mainframe data 63

Column Name Value Description

ORIGINAL STATEMENT 1-80 characters The originating statement from
which the elements were
extracted. For items that were
entered using the editor, these
are not available.

Copying data maps
Data maps may be copied, or copied then edited to create new maps.

About this task
Use the following instructions to copy data maps.

Note: We recommend using the batch migration jobs for moving maps from one environment to another.

Procedure
1. From the Primary Option Menu, select Data Mapping and press Enter.
2. From the Data Mapping Facility menu, select Map Copy and press Enter.

The Move/Copy Utility panel displays.
3. Use the available line commands to perform the appropriate functions.

• C — Copy
• CP — Copy and Print
• M — Move
• MP — Move and Print

Type the command name and press Enter.
4. Project, Group, and Type are used for source code management. In the From ISPF Library fields,

specify the following information:

• Project
• Group
• Type
• Member (if the data set is partitioned). You can perform the following actions:

– To move, copy, or promote a single member, type the member name.
– To move, copy, or promote all members, type * (an asterisk).
– To request a member selection list, leave the member name blank or specify a pattern

Alternatively, for other partitioned or sequential data sets, you can specify the From Other Partitioned
or Sequential Data Set field. Type the data set name and volume serial (volume serial number).

Note: If you do not enter a correct password for a data set that requires one, the system prompts
you in standard TSO (line) mode. On TSO/TCAM systems, it may be necessary to press the CLEAR
key before you respond to the password prompt. If you enter the password incorrectly or encounter
other problems, you may be prompted again to enter the password until you reach a system limit of
attempts.

Press Enter.

64 Using IBM Data Virtualization Manager for z/OS:

Refreshing data maps
Refreshing a data map may be required when changes to the underlying data structure occur. When you
refresh a map, the Data Mapping Facility checks the library for modifications, and then refreshes in-core
map tables from the library.

About this task
Use the following instructions to refresh a data map.

Procedure
1. From the Primary Option Menu, select Data Mapping and press Enter.
2. From the Data Mapping Facility menu, select Map Refresh and press Enter.

If the refresh is completed with no errors, the Refresh Successful message appears on the Server
Mapping Facility options menu.

Creating source library maps
You can create new source library maps.

Procedure
1. From the Primary Option Menu, select Data Mapping and press Enter.
2. From the Server Data Mapping Facility panel, select Source Library Management and press Enter.
3. From the Data Mapping Facility menu, select Create Source Library Map and press Enter.

The Source Library Management panel displays.
4. Enter information for the Source Library Definitions.

• Type the name of the list of Source Libraries.
• Enter Y or N to specify whether to Replace an existing definition.
• Enter information to specify the Data Set Source Library or Natural Source Library. Data Set supports

all libraries except Natural.

Press Enter.
The system displays the Source Library panel and shows the new source library map.

Results
The following table describes each column name on the ISPF panels.

Column name Description

NAME The source library name.

DESCRIPTION A description of the source library.

REPLACE Replace an existing definition. Yes or No.

DATA SET NAME The name of the PDS/Sequential file that contains the source code.

NATURAL LIBRARY The name of the Natural library.

ADABAS DBID The Adabas database ID.

ADABAS FILE The FUSER or FDIC file number.

Chapter 1. Virtualizing mainframe data 65

Column name Description

SERVER TYPE The generic ACI server to run query:

• B — BATCH
• C — CICS

Displaying source library maps
You can view current source library maps.

Procedure
1. From the Primary Option Menu, select Data Mapping and press Enter.
2. From the Data Mapping Facility menu, select Display Source Library Map and press Enter.

The Source Library panel displays.
3. Use the available line commands to perform the appropriate functions. Available commands:

• P — Prints map
• S — Shows map
• D — Disables map
• E — Enables map

Type the command name and press Enter.

Bind or grant DRDA packages
Use the AVZCLBND member that is located in your hlq.SAVZCNTL data set as a sample JCL to bind DRDA
packages to a connected user or grant access to the packages to a connected user. The binding is needed
before any DDF connected subsystem can be used.

For information about the available parameters in the AVZCLBND member, see “Sample JCL - DRDA bind”
on page 16.

66 Using IBM Data Virtualization Manager for z/OS:

Chapter 2. Migrating maps
Use the Map Migration utility to move your virtual table maps from a development environment to a test or
production environment or from one release to another.

Before you begin
Before using the Map Migration utility, make sure that the following prerequisites have been met:

• IBM Data Virtualization Manager studio requirements

If migrating DB2 virtual tables, target systems used by each table must be defined in the target server
using one of the following definitions:

– If you want to use the same target system name, define the target system name on the target server.
– If you want to use a different target system name, then define the new target system name, and use

the TSYS=OLD_TSYS,NEW_TSYS parameter in the AVZGNMPM batch migration utility.
• Data Virtualization Manager server requirements

Make sure that both the origin and destination servers have been started.
• Data Virtualization Manager server security requirements

The following table summarizes the security permissions required to use the migration utility:

Table 26. Security permissions required to use the migration utility

JCL library Map export PDS Server map data set

The location where the
JCL resides.

The PDS library to which
the exported metadata
objects are unloaded.

The AVZMAPP DD data
set, which must be
the first data set in
the concatenation if the
parameter NEW MAP
DSN is not set.

Batch user ID UPDATE CREATE

READ

N/A

Server user ID N/A UPDATE UPDATE

READ

About this task
The Map Migration utility facilitates change control of the virtual table maps. Change control is the
process of moving the virtual table maps defined in a development environment to a test or production
environment or from one release to another.

You can use the AVZGNMPM member located in your hlq.SAVZCNTL data set for migrating virtual table
maps. See the AVZGNMPM member for a list of parameters available for use when migrating virtual table
maps.

You can use the AVZGNMPM member to perform the following tasks:

• Migrate one or multiple virtual table maps from one server to another.
• Change the virtual table map definition using the optional parameters. See the comments in the sample

job for more details.

© Copyright IBM Corp. 2017, 2022 67

Procedure
1. Customize the migration utility job, AVZGNMPM, for the requirements at your site.
2. Submit the AVZGNMPM batch job. Utility job AVZGNMPM extracts the contents of the maps, stores the

metadata objects in the map export PDS library, and creates the batch job that is used to rebuild the
maps on the target server.

3. Submit the batch JCL that was created in the previous step to rebuild the maps on the target server.

Results
The utility extracts the content of the map export PDS and rebuilds the map on the target server.

68 Using IBM Data Virtualization Manager for z/OS:

Chapter 3. Using the studio
This section presents the information you need to access to your mainframe data using the Data
Virtualization Manager studio.

Data Virtualization Manager studio overview
This topic introduces the Data Virtualization Manager studio and the function it provides in IBM Data
Virtualization Manager for z/OS.

Data Virtualization Manager enables users to have seamless access to mainframe data without
needing to know technical details, such as how the data is formatted or where it is located. Data
Virtualization Manager provides data integration without the complexity and cost associated with
extracting, transforming, and loading the data.

Data Virtualization Manager studio is an Eclipse-based user interface that communicates with the
Data Virtualization Manager server. You use the studio to create metadata objects, such as virtual
source libraries, virtual tables, virtual collections and virtual views on the host Data Virtualization
Manager server. These server metadata objects provide the information that is necessary to access your
mainframe data and off-host RDBMS data sources by virtualizing your data.

Getting started with the studio
The following list highlights the steps to start using Data Virtualization Manager studio:

• Before you can begin using the Data Virtualization Manager studio, you must first open the DV Data
perspective from the Window menu, and then connect to the Data Virtualization Manager server on the
mainframe that has the data that you want to access.

• To get access to the mainframe data, use the Data Virtualization Manager studio to create the following
components on the Data Virtualization Manager server:

– Virtual source libraries: A virtual source library is a reference to a library that already exists on the
mainframe. Virtual source libraries point to the information (metadata) that is required to virtualize
the source data. You create virtual source libraries using the Virtual Source Library Wizard.

– Virtual tables: A virtual table is a map to the data that you want to access from the data source. After
the virtual table is created, you can use it to generate and execute the SQL. The resulting SQL is used
to read and extract the mapped data from the mainframe. You create virtual tables using the New
Virtual Table Wizard. To get access to your data from programs or applications, you generate the
code from the SQL using the SQL Code Wizard.

– Virtual views: Optionally, you can use virtual tables to create virtual views from which you can
generate SQL queries. A virtual view is the SQL SELECT statement that contains the columns from the
source data that are used to read data directly from the data source. In some cases, creating a virtual
view is more convenient than regenerating and editing the SQL. Virtual views are also used if your
virtual table is missing columns or if you want to join different types of data. You create virtual views
using the New Virtual View Wizard.

– Virtual collections: When you create a virtual table, a virtual collection for NoSQL access to data is
automatically created. You generate the JavaScript from the virtual collection and use that JavaScript
to read and extract the data from the mainframe. Edits that you make to either the virtual table or
collection, are automatically applied to both. To edit the contents of a virtual table, you must edit the
SQL virtual table.

Note: Because the virtual table and virtual collections wizards require that you to enter the same
information, only the virtual table wizards are documented.

© Copyright IBM Corp. 2017, 2022 69

Perspectives
The perspective that you choose determines the views and editors that become available in the
workbench.

A perspective is an arrangement of views and editors in the workbench. You use perspectives to
accomplish a specific task or set of tasks. When you open a perspective, the menu items, tool bars,
views, editors, and wizards that are associated with that perspective become available in the workbench.

Opening perspectives
From the Window menu, you can open a perspective by selecting Open Perspective and selecting the
perspective that you want to use from the drop-down menu.

DV Data perspective
The DV Data perspective provides the default views, editors, and wizards that you use to perform tasks
that are associated with accessing your mainframe data.

Use this perspective to perform the following tasks:

• Explore mainframe resources and view metadata.
• Create and manage data sources.
• Generate and modify SQL queries.
• Create virtual tables from SQL.
• Create virtual views for use with complex SQL queries.
• Generate the code to use in your applications from SQL.

Views
The following views are available with this perspective:

Views Description

Active Connections Lists the open JDBC connections between the
studio and one or more servers. The current active
connection is used by the SQL Editor to issue SQL
queries over that JDBC connection. You can create
new or delete existing server connections.

Server view Lists data resources, stored procedures, and
metadata. You can perform tasks on selected
objects in the tree. Explorer views include the
following tabs:

• Client: Lists information that is related to data
sources and application development on your
local machine.

• Server: Lists the Data Virtualization Manager
server to which you have connected, view
resources, or perform tasks.

• Network: Lists the host and server connections
within your network. You can choose to view
or modify existing host and server connection
settings.

• Favorites: Lists shortcuts to the mainframe
resources that you frequently access.

70 Using IBM Data Virtualization Manager for z/OS:

Views Description

Server Trace Applies labels to Server Trace messages for use
when searching within the Server Trace view.

Lists Use to display details for each tree node or object
that is selected in an Explorer view.

Search Use to search for a text string within the Server
Trace results.

Server Trace Use to set and gather server diagnostic information
for support purposes.

Server Trace Import Use to import Server Trace (.isx) files.

SQL Results Use to display the result set returned from a SQL
query in the SQL Results tab, and the resulting
trace information in the SQL Messages tab.

NoSQL for MongoDB results Use to display the results returned from a query.

Studio Navigator Use to list shortcuts to key task views, wizards, and
editors.

Virtualization Facility Use to display virtual table mapping details.

Editors
The following text editors are available with this perspective:

Editors Description

Data Source Use to edit existing connection definitions.

Edit SQL Use to compose SQL statements and to invoke
queries against the server.

NoSQL for MongoDB Use to edit Mongo JavaScript scripts.

Virtualization Facility Use to edit metadata settings related to virtual
tables and virtual views.

Wizards
This perspective includes wizards that guide you through tasks, such as:

• Setting the server connection.
• Creating virtual source libraries.
• Creating virtual tables and views for SQL access to data.
• Creating virtual collections for NoSQL access to data.
• Generating application code from SQL.

Services perspective
The Services perspective provides the default views, wizards, and editors that you use to perform tasks
that are associated with creating and managing services.

The Services perspective allows you to manage the implementation of a Service-Oriented Architecture
(SOA) with your mainframe applications. This perspective provides the tools needed to build, develop, and
transform mainframe applications into web services and components. With the Services perspective,
users can easily explore resources on the mainframe, and browse mainframe application screens, define

Chapter 3. Using the studio 71

target systems, create Web Services, and related components, and generate components that capture
mainframe application logic.

The following views are available from the Services perspective.

Views Description

Services Navigator View Provides shortcuts to the following:

• Services – A shortcut to the Services folder on
the Server tab.

• New Target System – Starts the Target System
Wizard that is used to create a target system on
the Data Virtualization Manager server. The Web
Services operations use the target system to map
to your mainframe resources.

• New Web Services Directory – Starts the Web
Services Directory Wizard that is used to create
a Web Services directory. The Web Services
directly identifies the PDS on the mainframe that
is used to get the metadata libraries.

• z/OS Connect Configuration – Starts the z/OS
Connect Configuration Wizard that is used to
create the sample XML fragments for use in a
z/OS server.xml file.

Explorer Displays the following tabs and folders:

• Client tab (local machine view)

– zOSConnect folder – Contains the generated
SAR files and the server.xml file.

– zServices.Projects folder – Contains related
zServices project files such as Web Services
downloads.

• Server tab

– Web Services folder – Contains the Web
Services and operations that are executed to
get the mainframe data.

– Target Systems folder – Contains the target
systems that Web Services operations will use
to map to mainframe resources.

Editors Description

Editors are used to modify Web Services
component details.

• Target System Editor
• Virtual Directories Editor
• Web Services Editor
• Web Service Operations Editor

Connecting to the Data Virtualization Manager server
To access data on the mainframe, connect IBM Data Virtualization Manager studio to the Data
Virtualization Manager server that is running on a z/OS mainframe instance.

72 Using IBM Data Virtualization Manager for z/OS:

Connecting to the Data Virtualization Manager server
Use the IBM Data Virtualization Manager studio to connect to the Data Virtualization Manager server that
is running on an instance of z/OS®.

Before you begin
Before you can connect to the Data Virtualization Manager server, the server must be configured and
started.

Procedure
1. From the IBM Data Virtualization Manager studio menu, click Window > Open Perspective > DV Data.
2. On the Server tab, click Set Server.
3. In the Set Server dialog box, complete the following:

• Host: Select or enter the TCP/IP host name or IP address of the mainframe system on which the
Data Virtualization Manager server is deployed.

• Port: Enter the port number that the Data Virtualization Manager server uses. The default is 1200.
• Userid: Enter your mainframe user ID.
• User Password: Enter your password or password phrase for the mainframe user ID.

4. Click OK.

Completing the configuration of DRDA access to RDBMS data sources
To complete the configuration of DRDA access to RDBMS data sources, you must bind packages on the
Data Virtualization Manager server, and grant users the authority to use those packages.

Before you begin
You must know the host name and the port number of the Data Virtualization Manager server and your log
on credentials. Your log on credentials must have the authority to bind packages and grant privileges.

About this task
Perform the following task for each RDBMS data source that you want to access.

Procedure
1. From the studio, click Window > Open Perspective > DV Data.
2. On the Server tab, click Set Server.
3. In the Set Current Server dialog box, complete the following fields:

Option Description

Host Enter the TCP/IP host name or IP address of the mainframe system.

Port Enter the port number that is used to communicate with the Data Virtualization
Manager server. The default is 1200.

Userid Enter the mainframe user ID.

User Password Enter the password for the mainframe user ID.

4. Click OK.
5. On the Server tab, expand SQL > Data > Other Subsystems.
6. Right-click the subsystem and select BIND/GRANT Packages.
7. On the BIND/GRANT Packages page, complete the following fields:

Chapter 3. Using the studio 73

Field Action

Package Prefix Enter the two character prefix to assign to the package. The package prefix must
match the prefix that is defined on the mainframe server. If you change the
default prefix (DS), you must also change it in the hlq.SAVZEXEC(AVZSIN00)
file.

Number of
Cursors

Enter the number of cursors to use to process results. The default is 200.

Collection Enter the value to use to bind packages. The default is NULLID. This value is
normally determined by the DB2 Administrator.

Table Qualifier Enter the value to use to qualify unqualified SQL. This value is normally
determined by the DB2 Administrator.

Owner UserId Enter the user ID of the package owner. This value is normally determined by the
DB2 Administrator.

Grant to Set only when granting authority for the target DB2 server. The default is PUBLIC.

Bind Package Binds the product packages. This is the default setting.

Grant Execute Grants execute permissions on the package to the user ID that is specified in the
Grant to field.

Replace
Packages

Replaces an existing package for the specified subsystem. Select this option only
if the package already exists.

8. Depending on the options that you select, additional dialog boxes and messages might be displayed.
9. Review the results in the Results text box and click BIND/GRANT.

Locale considerations
You can modify the data source connection definitions to use different local code pages.

Before you begin
You have the option to change the default code page (US/English IBM 1047) that the studio uses
to perform character data translations between the native Java character encoding (UTF-8) and the
mainframe.

Procedure
1. To configure the data source connection definition, in the Active Connections view, close all open

connections.
2. On the Client tab, expand Data Virtualization Manager > Data Sources > JDBC > Default Config

File.
3. Right-click the data source that you want to modify and click Edit.
4. In the Data Source Editor, click the Connection String tab.
5. Add or modify the Charset setting to use the appropriate EBCDIC code page. For example,
Charset=IBM037.

6. If LGID=ENC exists in the connection string, delete it to avoid a conflict with the Charset setting.
7. Close the Data Source Editor.
8. When prompted, click Yes to save the data source definition.
9. To change the default Charset that the studio uses when creating connection definitions, from the

Window menu select Preferences, expand DV Data > Driver.
10. In Connection Overrides, enter the new Charset setting and click Apply.
11. On the Server tab, expand SQL > Data.

74 Using IBM Data Virtualization Manager for z/OS:

12. Right-click the data source to which you want to connect and select Create Connection Definition
(DSN).

13. Accept the default name that is displayed or enter a new DSN name and click OK.
14. In the Data Source Editor, click the Connection String tab and confirm that the new Charset

setting displays in the connection string.

Results
When running queries using the new data source definition, the character data (including language
specific glyphs) that you chose is displayed in the SQL Results view.

Creating server metadata
Using the Data Virtualization Manager studio, you create the server metadata that provides the
information necessary to virtualize your data. Server metadata includes virtual source libraries, virtual
tables, virtual collections, and virtual views.

Creating virtual source libraries
Virtual source libraries point to the information that IBM Data Virtualization Manager for z/OS needs in
order to access some types of mainframe data.

Before you begin
A virtual source library is a server metadata object that references a source library that exists on the
Data Virtualization Manager (host) server. The members of the source library contain layout information
specific to a type of data, for example a COBOL or PL/I copybook (copybook), Adabas Data Definition
Module (DDM) views, IMS Database Definition (DBD) files, or IMS Program Specification Block (PSB) files.
Virtual source libraries provide a reusable catalog of the host's data source libraries.

Note: When creating a virtual source library, the current user must have read access to the host data
source library.

About this task
Virtual source libraries are a prerequisite to creating virtual tables for the following types of data sources:

• Adabas
• IMS
• IBM MQ
• Sequential
• VSAM, VSAM CICS and IAM
• zFS and HFS
• DBMS
• IDMS
• Logstream

When creating the virtual source libraries you specify the following data set (PDS/PDSE) names based on
the type of data that you want to access:

• To access Adabas data, you specify the name of the PDS/PDSE that contains the Data Definition Module
(DDM) views that have been set up for the Adabas data in your environment.

• To access IMS data, you may need to create multiple virtual source libraries that reference multiple
types of source libraries. You may create a separate virtual source library that references the IMS DBD
files, the IMS PSB files, and the copybooks that describe the layout of each IMS segment. In each case,
you specify the PDS/PDSE that is specific to the source library.

Chapter 3. Using the studio 75

• To access IBM MQ data, you specify the name of the PDS/PDSE that contains the copybook that
describes the data written to the queue.

• To access sequential data, you specify the name of the PDS/PDSE that contains the copybook that
describes the structure of the sequential data records.

• To access VSAM, VSAM CICS, and IAM data, you specify the name of the PDS/PDSE that contains the
copybook that describes the structure of the VSAM, VSAM CICS, and IAM data records.

• To access z/FS and HFS data, you specify the name of the PDS/PDSE that contains the copybook that
describes the structure of the records in the data file.

Procedure
1. On the Server tab, expand Admin > Source Libraries.
2. Right-click Create Virtual Source Library and select Create Virtual Source Library.
3. Select the Data Set wizard and click Next.
4. On the Virtual Source Library page, complete the following fields:

Field Action

Name Enter a unique, meaningful name for the virtual source library you are
creating.

Description Enter an optional description for the virtual source library.

Library Name Enter the name of the PDS/PDSE that contains the layout information for
the data you want to access.

5. Click Finish.

Results
The new virtual source library is displayed in the Source Libraries folder.

Extracting DBDs and PSBs using IMS Catalog Node
The IMS Catalog Node introduces the ability to discover and extract IMS information from the IMS Catalog
database in the IBM Data Virtualization Manager for z/OS studio.

Before you begin
The IMS Catalog node appears in the IBM Data Virtualization Manager for z/OS server when the following
conditions are met in the server configuration:

• DBCTL or ODBA access is configured in the server IN00 file
• IMS Catalog maps are installed in the AVZMAPP DD concatenation.

For more information on how to install virtual table and virtual view maps for IMS catalog access, see
Installing virtual table and virtual view maps for IMS catalog access.

About this task
The IMS catalog implemented as a standard IMS database contains information about the DBDs and
PSBs. The studio supports extracting IMS Database Definition (DBD) and IMS Program Specification
Block (PSB) source from the catalog database as an alternative to the pre-existing DBD and PSB extract
from the source libraries. Before creating a virtual tables for IMS, you need to extract DBDs and PSBs.
The studio supports extracting DBD and PSB source from the catalog database as an alternative to the
pre-existing DBD and PSB extraction from the source libraries.

Procedure
To extract DBDs and PSBs carry out the following tasks.

76 Using IBM Data Virtualization Manager for z/OS:

Extracting Database Definitions (DBDs)
Use IMS Catalog Node to extract IMS Database Definitions (DBDs).

Procedure
1. Under the Server tab, expand Discovery > IMS Catalog node > ABCsubsystem and select DBD.
2. Right-click the required DBD version and select Extract DBD source.

Or,
a) Right-click and select View DBD source.
b) Click Extract DBD source.

If the DBD source is already extracted, then Extract Source button appears disabled.
The DBD Extract Source dialog box appears.

3. Click Finish to extract the DBD sources into the IMS product map library. The extracted source will be
available under data virtualization facility.
If the DBD source is already extracted, then Finish button appears disabled.

Extracting Program Specification Blocks (PSBs)
Use IMS Catalog Node to extract IMS Program Specification Blocks (PSBs).

Procedure
1. Under the Server tab, expand Discovery > IMS Catalog Node > ABCsubsystem and select PSB.
2. Right-click the required PSB version and select Extract PSB source.

Or,
a) Right-click and select View PSB source.
b) Click Extract PSB source.

If the PSB source is already extracted, then Extract Source button appears disabled.
The PSB Extract Source dialog box appears.

3. Click Finish to extract the PSB sources into the IMS product map library. The extracted source will be
available under data virtualization facility.
If the PSB source is already extracted, then Finish button appears disabled.

Creating schemas in the studio
To create virtual tables with similar names and have enhanced security create schemas.

About this task
Create schemas using the Create New Schema Wizard that is specific to the type of data that you
want to access. You can create multiple schemas within a database to logically categorize the relational
objects.

Procedure
1. From the studio, click Window > Open Prespective > DV Data.
2. On the Server tab, click Set Server.
3. In the Set Server dialog box, complete the following fields:

Option Description

Scan For More Servers... Searches for all the available servers.

Host Enter the TCP/IP host name or IP address of the
mainframe system.

Chapter 3. Using the studio 77

Option Description

Port Enter the port number that is used to
communicate with the Data Virtualization. The
default value of the Manager Server is 1200.

User ID Enter the mainframe user ID.

User Password Enter the password for the mainframe user ID.

4. Click OK.
5. On the Server tab, expand SQL > Data > ABCD node, where ABCD is the name of your server.

Or,

On the Server tab, expand SQL > Data node.
6. Right-click and select Create New Schema.

Create New Schema Wizard appears.
7. In the Schema Name box, enter the name of the schema.
8. In the High-Level Qualifier box, enter the value for your high-level qualifier.

If hlq is defined in the server, this field appears disabled and displays the value defined for the hlq in
the server. For more information see, “Creating schema maps on the server” on page 3.

9. In the Dataset name box, enter the name of the dataset.
By default, the studio generates the dataset name as <High Level Qualifier>D<Current
Date>T<Current Time>SCHEMA.

The dataset name is editable if the hlq is not defined in the server. If the hlq is defined in the server,
this field appears disabled and displays value defined for the dataset in the server.

Note: Each schema has a dataset defined.
10. In the Schema Map Name box, enter the name of the schema map. This field is auto populated

with the name entered in Schema Name box in step 7. You can edit the map name as per your
requirement.

11. Click Finish.
The Finish button is enabled only after populating all the mandatory fields.

Accessing the schema from studio and creating virtual table
Access the schemas and you can create virtual tables.

About this task
After creating schemas, you can view the schemas available in the data. Also, view the available virtual
tables in the schema and create new virtual tables under the required schema.

Procedure
1. From the studio, click Window > Open Prespective > DV Data.
2. On the Server tab, click Set Server.
3. In the Set Server dialog box, complete the following fields:

Option Description

Scan For More Servers... Searches for all the available servers.

Host Enter the TCP/IP host name or IP address of the
mainframe system.

78 Using IBM Data Virtualization Manager for z/OS:

Option Description

Port Enter the port number that is used to
communicate with the Data Virtualization. The
default value of the Manager Server is 1200.

User ID Enter the mainframe user ID.

User Password Enter the password for the mainframe user ID.

4. Click OK.
5. On the Server tab, expand SQL > Data > SSID node node, where SSID node is the name of your server.

A list of available schemas appear.
6. Click + to expand the schema and view the virtual tables in the schema. Right-click and select Create

Virtual Table to create a new virtual table. For more information, see “Creating virtual tables” on page
79.

Creating virtual tables
To access your data, create a virtual table or virtual view that maps to your source data and that matches
the definition of the source data structure on the mainframe.

From the virtual table or virtual view, you generate the SQL that is used to read and access the mapped
data from the mainframe. You create virtual tables using the New Virtual Table Wizard that is specific
to the type of data that you want to access. Some virtual tables, including SMF virtual tables, are made
available during the product installation.

The following high-level procedures must be completed prior to creating a virtual table:

• Start the IBM Data Virtualization Manager studio.
• Open the DV Data perspective.
• Connect to the Data Virtualization Manager server.
• Run the Create Source Library wizard to create a virtual source library to map to your mainframe data.

This procedure is not required to create virtual tables for RDBMS data.

Virtual table tasks
When a virtual table is selected on the Server tab, you can perform the following tasks:

• Edit: Edit the virtual table properties in the editor.
• Copy and Paste: Copy the virtual table and paste the copy under the Virtual Tables node.
• Disable: Disable the virtual table on this server.
• Delete: Delete the virtual table from the server.
• Create Virtual View: Create a virtual view from the virtual table.

Key and index information
To view a summary of key and index information for an existing virtual table, select the virtual table on the
Server tab and from the Window menu, select Show View > Properties. The properties for the selected
table are displayed in the Properties view.

If a virtual table includes columns that have a primary key or an index, the column is notated using the
following symbols:

• Key symbol – This column is associated with a primary key.
• Superscript numeral 1 – This column is associated with a unique index, but does not have an associated

primary key.
• Superscript asterisk – This column is associated with a non-unique index.

Chapter 3. Using the studio 79

This primary key and index information is also highlighted when you browse RDBMS tables under the
Other Subsystems tree.

You can control the identification of primary keys and indexes by setting the parameter
SQLENGDEFERIDXDISC and using the settings in SQL preferences.

Virtual collections for NoSQL data access
When you create a virtual table, a virtual collection for NoSQL access to data is automatically created. You
can generate the JavaScript from the virtual collection, and use that script to read and extract the data
from the mainframe. Because the virtual table and collections wizards require the same information be
entered, only the virtual table wizards are documented. Edits that you make to either the virtual table or
collection, are automatically applied to both. To edit the contents of a virtual table, you must edit the SQL
virtual table.

Creating virtual tables for Adabas data
Create a virtual table that maps to the Adabas data that you want to access, and from which the SQL used
to access the data is generated and executed.

Before you begin
Have the Adabas database ID and password, the file number, and the subsystem name available.

Procedure
1. Expand the SQL > Data > SSID node, where SSID is the name of your server.
2. Right-click Virtual Tables and select Create Virtual Table(s).
3. Under Wizards, select the ADABAS wizard and click Next.
4. On the New Virtual Table Wizard page, complete the following fields and click Next:

Field Action

Name Enter a unique name. The name can contain a maximum of 50 characters. The
name must consist of an uppercase letter followed by zero or more characters,
each of which is an uppercase letter, a digit, or the underscore character.

Metadata
Library

From the drop-down list, select the target library where the virtual table metadata
will be stored (for example, hlq.USER.MAP). The target libraries are specified in
the server's started task JCL.

Schema Name From the list of defined Schemas, select a Schema for the virtual table.

Description Enter an optional description.

Arrays Handling Enable one of the following array management options:

• Flatten arrays into a single fixed table at runtime: This relates to multiple
occurring (MU) fields and periodic (PE) groups.

• Return arrays into separate tables at runtime: This relates to multiple
occurring (MU) fields and periodic (PE) groups. A subtable is generated for each
array. Subtables only support read access.

5. On the ADABAS Details page, complete the following fields and click Next:
Field Action

DB ID Enter the Adabas database ID.

File Number Enter the number of the file to use.

80 Using IBM Data Virtualization Manager for z/OS:

Field Action

Adabas
Password

If the file is password-protected, enter the password. This password is stored and
encrypted in the virtual table so that future queries use the same password to
access the data.

SubSystem Enter the name of the Adabas subsystem.

Max MU Count Enter the maximum number of times to repeat the MU field. The default is 10.

Max PE Count Enter the maximum number of times to repeat the PE field. The default is 10.

Create Count
Field

Select this check box to index every MU or PE field so that the index (count) field
created precedes the repeating field. This index field tells the caller how many
repeating fields are being used.

Secure Select this check box to choose the Adabas file ID number to be used for file
name security.

DE Search only Select this check box if you want the utility to generate control definitions that
allow the client to only use WHERE columns that are Adabas descriptors (such as
superde, subde, and hyperde).

Search by PE
index

Select this check box to allow the client to target rows that match a particular
occurrence of the PE field when searching rows using the WHERE clause. If this
parameter is not specified, all rows where any occurrence of that PE field match
the value specified will be targeted.

Unpacked to
Packed

Select this check box to convert all unpacked format fields to packed format.

Binary to Integer Select this check box to convert all 2-byte and 4-byte binary fields to short
integer and integer formats, respectively.

Binary to Packed Select this check box to map the binary fields in the Adabas file to SQL decimal
columns (numeric packed decimal format) in the generated virtual table. Note the
following points:

• If the precision of the Adabas binary field allows for the possibility of a numeric
value that would cause data overflow when converted to SQL decimal, the
column in the virtual table will be mapped to SQL binary instead. This means
that Adabas fields with precision greater than 12 will continue to be mapped to
SQL binary.

• If you select the Binary to Integer check box and the Binary to Packed check
box, the precision of the Adabas binary field will determine if it gets mapped to
an SQL integer (that is, 2-byte or 4-byte fields) or a decimal type.

Advanced When reading large volumes of data from tables, click Advanced to display and
configure the MapReduce feature. The MapReduce feature enables you to divide
the data into logical partitions and process those partitions in parallel using the
Thread Count value. At runtime, the number of zIIP processors is verified and
one thread is used for each zIIP processor; resulting in improved performance.
The Thread Count value you specify overrides the default value (2) and the
discovered value. To disable MapReduce, select the Disable MapReduce check
box.

6. Optional: On the Data Definition Module page, if you have a Natural Data Definition Module (DDM)
listing of the file, you can complete the following to get additional metadata information:
Field Action

Available Source
Libraries

From the list of Available Source Libraries, select the virtual source library that
contains the data structure definition that you want the virtual table to use.

Chapter 3. Using the studio 81

Field Action

Source Library
Members

Select the names of each virtual source library member that represents the data
structure that you want to include. The green arrow next to a DDM indicates that it
is a suggested member, not that it is selected. Use Filter patterns to filter the list.

7. On the Virtual Table Layout page, complete the following fields and click Next:
Field Action

Source Expand the source file to verify that it displays the expected data layout.

Start Field This field is not supported for Adabas because the entire data layout is used.

End Field This field is not supported for Adabas because the entire data layout is used.

8. Click Finish.

What to do next
Use the studio to easily compose and execute SQL queries using your new virtual tables. See “Generating
and executing SQL queries” on page 114.

Important: Use caution when using the BASE_KEY in WHERE predicates, (for example, [PARENT
TABLE].BASE_KEY = [CHILD TABLE].PARENT_KEY) when joining the parent table with a child
subtable, since this will result in a table scan of the entire Adabas file. It is recommended instead to
use the CHILD_KEY (for example, [PARENT TABLE].CHILD_KEY = [CHILD TABLE].PARENT_KEY).

Creating virtual tables for RDBMS data sources
Create virtual tables that map to RDBMS data sources, such as Db2 for z/OS, Db2 LUW (Linux, UNIX, and
Windows), Oracle, and Microsoft SQL Server.

About this task
It is recommended that you create a virtual table for each RDBMS table from which you want to access
data. Creating a virtual table for each RDBMS table allows you to perform joins across data that may
originate from different DRDA accessible RDBMS subsystems or to perform joins between your RDBMS
data and other types of virtualized data, such as IMS or VSAM data.

This wizard allows you to create multiple virtual tables at a time if the selected source tables belong to
the same RDBMS subsystem. In this wizard, a view is treated the same as a table; each table or view is
mapped to a virtual table.

Db2 data access method:

When virtual tables are created for access to Db2 for z/OS data, an option is available to select the access
method. Db2 Direct is a Data Virtualization Manager server access method that reads the data in the
Db2 VSAM linear data sets directly instead of accessing the data through traditional Db2 APIs. For more
information, see "Db2 for z/OS data access methods" in the Installation and Customization Guide.

Note: The data access method options are not displayed if the Data Virtualization Manager server does
not support Db2 Direct.

Procedure
1. On the Server tab, explore the RDBMS metadata information by expanding the SQL > Data > Other

Subsystems node, and then navigating down the appropriate subtree. The hierarchy begins with the
subsystem, followed by the schema, and then the tables and views.

2. Select a single table or view from the tree, or use the following techniques to select multiple tables or
views:

• To select more than one individual node, hold down the Ctrl key and click each node to be included.

82 Using IBM Data Virtualization Manager for z/OS:

• To select a range of tables (or views), click the first table in the range, and then hold the Shift key and
select the last table in the range. All tables within the range will be included.

• To select a group of nodes, click the parent node. All of the children under the parent node will be
included. For example, select the Tables node to include all tables belonging to that schema. Or,
select the schema node to include all tables and views under that schema.

You can use a combination of these techniques. For example, you can select two schema nodes to
create virtual tables for all tables and views belonging to those two schemas.

3. Right-click the selected items and select Create Virtual Table(s). The New Virtual Tables Wizard
launches.

4. On the New Virtual Tables for DBMS access page, complete the following fields:
Field Action

Metadata Library From the drop-down list, select the target library where the virtual table
metadata will be stored (for example, hlq.USER.MAP). The target libraries are
specified in the server's started task JCL.

Schema Name From the list of defined Schemas, select a Schema for the virtual table.

Description Enter an optional description.

Naming Pattern Specify the format to use for the generated virtual table names. Use the
following variables to create naming patterns that are derived from the
RDBMS metadata:

• {Subsystem}: Subsystem name
• {Schema}: Source schema name
• {Table}: Source table name

Virtual Target
System

Select a virtual target system from the drop-down list. A virtual target system
points to the RDBMS subsystem that contains the data that you want to
access using the current virtual table. If there are no virtual target systems in
the drop-down list, click Create Target System to create one.

By using virtual target systems, you can easily change the name of the RDBMS
subsystem that is referenced in the virtual tables. For example, you create a
virtual target system called TSDSN1, and specify that it will access the RDBMS
subsystem DSN1. Then, you create 50 virtual tables that access data in the
RDBMS source TSDSN1 (that is, pointing to DSN1). If it becomes necessary to
change the name of the RDBMS source DSN1, you only have to change it in a
single place by editing the virtual target system. These target systems can be
located under the SQL > Target Systems > DBMS node in the server view tree.

• Use traditional
DB2 access
(read/write,
transactional
integrity)

• Use DB2-Direct
access (read-only,
high performance
bulk data access)

Select the access method to use when accessing Db2 for z/OS data.

Choose Use traditional DB2 access (read/write, transactional integrity) to
use Db2 APIs such as DRDA, CAF, and RRSAF. This is the default selection.

Choose Use DB2-Direct access (read-only, high performance bulk data
access) to use Db2 Direct.

Note: These options are available only when creating virtual tables for access
to Db2 for z/OS data and if the Data Virtualization Manager server supports
Db2 Direct.

Post-Read Exit
Name

To manipulate the data after reading it from the source file, enter the name of
the post-read exit to use. This is the custom exit routine that is installed on the
server and is used to perform additional processing after a record is read from
the data source.

Chapter 3. Using the studio 83

Field Action

Pre-Write Exit
Name

To manipulate the data before writing it to the source file, enter the name
of the pre-exit to use. This is the custom exit routine that is installed on the
server and is used to perform additional processing before a record is read
from the data source.

Advanced When reading large volumes of data from tables, click Advanced to display
and configure the MapReduce feature. The MapReduce feature enables you
to divide the data into logical partitions and process those partitions in parallel
using the Thread Count value. At runtime, the number of zIIP processors is
verified and one thread is used for each zIIP processor; resulting in improved
performance. The Thread Count value you specify overrides the default value
(2) and the discovered value. To disable MapReduce, select the Disable
MapReduce check box.

5. In the results table, review the list of selected entries. Modify the selections as needed.

Tip: Use the check box in the header row of the table to control the selection of all entries.
6. Click Finish.

What to do next
Use the studio to easily compose and execute SQL queries using your new virtual tables. See “Generating
and executing SQL queries” on page 114.

Creating virtual tables for IMS data
Create a virtual table that maps to the IMS data that you want to access, and from which the SQL used to
access the data is generated and executed.

Before you begin
The Program Specification Block (PSB) and Database Definition (DBD) source members, and the
copybooks for each segment must exist in the virtual source libraries defined to the server. For details,
see “Creating virtual source libraries ” on page 75.

To use the IMS Direct feature, the IMSDIRECTENABLED parameter must be enabled in the Data
Virtualization Manager server IN00 file.

About this task
When an IMS SQL query is run, the SQL Engine for the server will determine if the request is best executed
using IMS Direct (native file support) or if IMS APIs are required. The determination is based on the
database and file types supported as well as the size of the database.

Procedure
1. Expand the SQL > Data > SSID node, where SSID is the name of your server.
2. Right-click Virtual Tables and select Create Virtual Table(s).
3. Under Wizards, select the IMS wizard and click Next.
4. On the New IMS virtual Table(s) page, create metadata for an IMS virtual table by completing the

following steps:
a) Choose a DBD by doing one of the following steps:

• Select a DBD from the drop-down list.
• If your DBD does not appear in the drop-down list, click Extract DBD to create the requisite

metadata. The New IMS DBD Metadata Wizard launches. See “Using the IMS DBD Metadata
wizard” on page 85.

b) Choose a PSB by doing one of the following steps:

84 Using IBM Data Virtualization Manager for z/OS:

• Select a PSB from the drop-down list.
• If your PSB does not appear in the drop-down list, click Extract PSB to create the requisite

metadata. The New IMS PSB Metadata Wizard launches. See “Using the IMS PSB Metadata
wizard” on page 86.

c) Click Create Virtual Table to create a virtual table for an IMS segment in the selected DBD and
PSB. The New Virtual Table Wizard launches. See “Using the IMS Virtual Table wizard” on page
87.

Note: Both the DBD and PSB must be defined for this button to be enabled.
5. Click Finish.

What to do next
Use the studio to easily compose and execute SQL queries using your new virtual tables. See “Generating
and executing SQL queries” on page 114.

Using the IMS DBD Metadata wizard
Use the New IMS DBD Metadata Wizard to create DBD server metadata.

About this task
This wizard is used to create server metadata containing information extracted from the selected DBD
source. This DBD metadata is a prerequisite for creating IMS virtual tables. The name of each DBD map
will be determined from the contents of the DBD source.

Procedure
1. On the New DBD Metadata page, complete the following fields and click Next:

Field Action

Metadata Library From the drop-down list, select the target library where the DBD metadata will
be stored (for example, hlq.USER.MAP). The target libraries are specified in the
server's started task JCL.

Schema Name From the list of defined Schemas, select a Schema for the virtual table.

Description Enter an optional description.

2. On the Source Download page, completethe following fields and click Next:
Field Action

Available Source
Libraries

From the list of Available Source Libraries, select the virtual source library
that contains the DBD source member.

Source Library
Members

Select the DBD that you want to use and click Download to copy the
member from the mainframe to your desktop. Use Filter patterns to filter
the list.

Downloaded Source
Files

Review the list of downloaded members and ensure that the check box for
the DBD that you want to use has been selected.

3. On the Data Layout page, complete the following fields and click Next:
Field Action

Source Expand the source file to verify that it displays the expected database definition (DBD).

Start Field Accept the default root start field, or if multiple DBD nodes are present in the source
tree, you can click on one of the DBD nodes to indicate that you only want to map that
one DBD.

End Field End Field selection is disabled when extracting DBD source.

Chapter 3. Using the studio 85

4. On the IMS Server configuration page, complete the following fields:
Field Action

• Use IMS/DBCTL
(read/write,
transactional
integrity)

• Use IMS-Direct
(read-only, high
performance bulk
data access)

Select the IMS protocol to use.

Choose Use IMS/DBCTL (read/write, transactional integrity) to use IMS
API calls.

Choose the default option Use IMS-Direct (read-only, high performance
bulk data access) to enable IMS Direct for the DBD. To use this feature,
IMS Direct must also be enabled in the Data Virtualization Manager server
IN00 file. You must select this option for the DBD to be able to enable IMS
Direct for a virtual table.

IMS ID Override (used
with IMS-Direct only)

Specify the IMS ID of the IMS subsystem to use when multiple IMS
subsystems are defined for use with IMS Direct. This value will override
the default IMS ID in the DBD map.

Advanced When reading large volumes of data from tables, click Advanced to display
and configure the MapReduce feature. The MapReduce feature enables
you to divide the data into logical partitions and process those partitions
in parallel using the Thread Count value. At runtime, the number of zIIP
processors is verified and one thread is used for each zIIP processor;
resulting in improved performance. The Thread Count value you specify
overrides the default value (2) and the discovered value. To disable
MapReduce, select the Disable MapReduce check box.

5. Click Finish.

What to do next
Return to the New IMS Virtual Table(s) page and define the IMS PSB. See “Creating virtual tables for IMS
data” on page 84.

Using the IMS PSB Metadata wizard
Use the New IMS PSB Metadata Wizard to create PSB server metadata.

About this task
This wizard is used to create server metadata containing information extracted from the selected PSB
source. This PSB metadata is a prerequisite for creating IMS virtual tables. The name of each PSB map
will be determined from the contents of the PSB source.

Procedure
1. On the New PSB Metadata page, complete the following fields and click Next:

Field Action

Metadata Library From the drop-down list, select the target library where the PSB metadata will
be stored (for example, hlq.USER.MAP). The target libraries are specified in the
server's started task JCL.

Schema Name From the list of defined Schemas, select a Schema for the virtual table.

Description Enter an optional description.

2. On the Source Download page, completethe following fields and click Next:
Field Action

Available Source
Libraries

From the list of Available Source Libraries, select the virtual source library
that contains the PSB source member.

86 Using IBM Data Virtualization Manager for z/OS:

Field Action

Source Library
Members

Select the PSB that you want to use and click Download to copy the
member from the mainframe to your desktop. Use Filter patterns to filter
the list.

Downloaded Source
Files

Review the list of downloaded members and ensure that the check box for
the PSB that you want to use has been selected.

3. On the Data Layout page, complete the following fields and click Next:
Field Action

Source Expand the source file to verify that it displays the expected program specification block
(PSB).

Start Field Accept the default root start field, or if multiple PSB nodes are present in the source
tree, you can click on one of the PSB nodes to indicate that you only want to map that
one PSB.

End Field End Field selection is disabled when extracting DBD source.

4. Click Finish.

What to do next
Return to the New IMS Virtual Table(s) page and create the virtual table. See “Creating virtual tables for
IMS data” on page 84.

Using the IMS Virtual Table wizard
Use the New Virtual Table Wizard to create a new IMS virtual table.

About this task
This wizard is used to map an IMS segment using a copybook representation to produce a new IMS virtual
table.

Procedure
1. On the New IMS Virtual Table page, complete the following fields and click Next:

Field Action

Name Enter a unique name. The name can contain a maximum of 50 characters. The
name must consist of an uppercase letter followed by zero or more characters,
each of which is an uppercase letter, a digit, or the underscore character.

Metadata Library From the drop-down list, select the target library where the virtual table
metadata will be stored (for example, hlq.USER.MAP). The target libraries are
specified in the server's started task JCL.

Schema Name From the list of defined Schemas, select a Schema for the virtual table.

Description Enter an optional description.

Convert VAR*
fields to True
VAR* fields

This is a deprecated field and should not be selected.

Arrays Handling Select one of the following options:

• Flatten arrays into a single fixed table at runtime (Y): This option supports
both OCCURS and OCCURS DEPENDING ON statements.

Chapter 3. Using the studio 87

Field Action

• Return arrays into separate tables at runtime (N): This option supports both
OCCURS and OCCURS DEPENDING ON statements. A subtable is generated
for each array. Subtables support SQL read access only.

2. On the Source Download page, completethe following fields and click Next:
Field Action

Available Source
Libraries

From the list of Available Source Libraries, select the virtual source library
that contains the data structure definition that you want the virtual table to
use.

Source Library
Members

Select the PDS members that represent the data structures to include and
click Download to copy the members from the mainframe to your desktop.
Use Filter patterns to filter the list.

Downloaded Source
Files

Select one or more previously downloaded members.

3. On the Virtual Table Layout page, complete the following fields and click Next:
Field Action

Source Browse the source tree to verify that it displays the expected data layout. By default,
all of the fields in the tree will be included in the mapping. To include only a subset
of the fields for the mapping, modify the start field value and, optionally, the end field
value, as follows:

• For the start field, accept the default root start field, or expand the tree and select
a different start field. When selecting a different start field, Enable End Field
Selection must not be selected.

• For the end field, accept the default end field, or expand the tree and select a
different end field. When selecting a different end field, Enable End Field Selection
must be selected.

Start Field Identifies the first field within the data layout that will be mapped. To change this
value, make sure Enable End Field Selection is not selected, and select a different
start field in the Source tree.

Use Offset
Zero

Select this checkbox to start the selected structure from offset Zero (0).

By default, the selected structure starts from zero and the Use Offset Zero checkbox
is selected.

Clear the Use Offset Zero checkbox to calculate the offset from the start.

Enable End
Field
Selection

Use this field to control selection of the start field and end field values in the Source
tree. When this option is not selected (default), you can select the start field. When
this option is selected, you can select the end field.

End Field Identifies the last field within the data layout that will be mapped. To change this
value, make sure Enable End Field Selection is selected, and select a different end
field in the Source tree.

4. On the IMS Information page, complete the following fields:
Field Action

Segment Name From the drop-down list, select the segment name.

• Use IMS/DBCTL
(read/write,

Select the IMS protocol to use.

88 Using IBM Data Virtualization Manager for z/OS:

Field Action

transactional
integrity)

• Use IMS-Direct
(read-only, high
performance bulk
data access)

Choose the default option Use IMS/DBCTL (read/write, transactional
integrity) to use IMS API calls.

Choose Use IMS-Direct (read-only, high performance bulk data access)
to enable IMS Direct on the virtual table. To use this feature, IMS Direct
must also be enabled for the selected DBD and enabled in the Data
Virtualization Manager server IN00 file.

Post-Read Exit Name: To manipulate the data after reading it from the source file, enter the name
of the post-read exit to use. This is the custom exit routine that is installed
on the server and is used to perform additional processing after a record is
read from the data source.

Advanced When reading large volumes of data from tables, click Advanced to display
and configure the MapReduce feature. The MapReduce feature enables
you to divide the data into logical partitions and process those partitions
in parallel using the Thread Count value. At runtime, the number of zIIP
processors is verified and one thread is used for each zIIP processor;
resulting in improved performance. The Thread Count value you specify
overrides the default value (2) and the discovered value. To disable
MapReduce, select the Disable MapReduce check box.

5. Click Finish.

What to do next
Return to the New IMS Virtual Table(s) page and if necessary create the next virtual table. See “Creating
virtual tables for IMS data” on page 84.

Creating virtual tables for Logstream
Use the New Virtual Table Wizard to create a new Logstream virtual table.

Procedure
1. Expand the SQL > Data > SSID node, where SSID is the name of your server.
2. Right-click Virtual Tables and select Create Virtual Table(s).
3. Under Wizards, select the Logstream wizard and click Next.
4. On the New Virtual Table Wizard page, complete the following fields and click Next:

Field Action

Name Enter a unique name. The name can contain a maximum of 50 characters. The
name must consist of an uppercase letter followed by zero or more characters,
each of which is an uppercase letter, a digit, or the underscore character.

Metadata Library From the drop-down list, select the target library where the virtual table
metadata will be stored (for example, hlq.USER.MAP). The target libraries are
specified in the server's started task JCL.

Schema Name From the list of defined Schemas, select a Schema for the virtual table.

Description Enter an optional description.

Convert VAR*
fields to True
VAR* fields

This is a deprecated field and should not be selected.

Arrays Handling Enable one of the following array management options:

Chapter 3. Using the studio 89

Field Action

• Flatten arrays into a single fixed table at runtime: This relates to multiple
occurring (MU) fields and periodic (PE) groups.

• Return arrays into separate tables at runtime: This relates to multiple
occurring (MU) fields and periodic (PE) groups. A subtable is generated for
each array. Subtables only support read access.

• Flatten arrays now: If you select this option, you cannot change array-
handling after you save the virtual table.

5. On the Source Download page, completethe following fields and click Next:
Field Action

Available Source
Libraries

Select the source library that contains the data structure to use.

Source Library
Members

Select the PDS members that represent the data structures to include
and click Download to copy the members from the mainframe to your
desktop. Use Filter patterns to filter the list.

Download Source Files Select one or more previously downloaded members.

6. On the Virtual Table Layout page, complete the following fields and click Next:
Field Action

Source Browse the source tree to verify that it displays the expected data layout. By default,
all of the fields in the tree will be included in the mapping. To include only a subset
of the fields for the mapping, modify the start field value and, optionally, the end
field value, as follows:

• For the start field, accept the default root start field, or expand the tree and select
a different start field. When selecting a different start field, Enable End Field
Selection must not be selected.

• For the end field, accept the default end field, or expand the tree and select
a different end field. When selecting a different end field, Enable End Field
Selection must be selected.

Start Field Identifies the first field within the data layout that will be mapped. To change this
value, make sure Enable End Field Selection is not selected, and select a different
start field in the Source tree.

Enable End
Field
Selection

Use this field to control selection of the start field and end field values in the Source
tree. When this option is not selected (default), you can select the start field. When
this option is selected, you can select the end field.

End Field Identifies the last field within the data layout that will be mapped. To change this
value, make sure Enable End Field Selection is selected, and select a different end
field in the Source tree.

7. Optional: On the Virtual Table Redefines page, accept the default table redefines or expand
Redefine to modify your selection, and click Next.

8. Click Finish.
9. On the Data Source Details page, complete the following data source fields and click Next:

Field Action

Data Set
Name

Enter the Logstream data set name you want to use.

Post-Read
Exit Name

To manipulate the data after reading it from the source file, enter the name of the
post-read exit to use. This is the custom exit routine that is installed on the server

90 Using IBM Data Virtualization Manager for z/OS:

Field Action

and is used to perform additional processing after a record is read from the data
source.

Advanced When reading large volumes of data from tables, click Advanced to display and
configure the MapReduce feature. The MapReduce feature enables you to divide
the data into logical partitions and process those partitions in parallel using the
Thread Count value. At runtime, the number of zIIP processors is verified and one
thread is used for each zIIP processor; resulting in improved performance. The
Thread Count value you specify overrides the default value (2) and the discovered
value. To disable MapReduce, select the Disable MapReduce check box.

10. Click Finish.

Modifying a Logstream virtual table
Once a Logstream virtual table is created, Data Virtualization Manager lets you modify it.

About this task
You can modify the following values in the created virtual table.

• Source dataset name.
• Post-Read exit name.
• Pre-Write exit name.
• MapReduce thread count.

Procedure
1. Expand the SQL > Data > SSID node, where SSID is the name of your server.
2. Expand Virtual Tables and choose the virtual table that you want to modify.
3. Right-click the virtual table and click Edit.
4. Provide new values in Dataset Name:, Post-Read Exit Name:, or Pre-Write Exit Name:.
5. Click Advanced to change Thread Count values in MapReduce.
6. Save the changes.

Creating virtual tables for IBM MQ
Create a virtual table that maps to the IBM MQ data that you want to access, and from which the SQL used
to access the data is generated and executed.

Before you begin
Before creating the virtual table, verify that the MQ queue exists and that the copybook exists in
the source library. If you use delimited data, configure support for delimited data processing. See
"Configuring delimited data support" in the Installation and Customization Guide.

About this task
Data in MQ queues is described using COBOL or PLI data descriptions taken from copybooks or programs.

Procedure
1. Expand the SQL > Data > SSID node, where SSID is the name of your server.
2. Right-click Virtual Tables and select Create Virtual Table(s).
3. Under Wizards, select the MQ wizard and click Next.
4. On the New Virtual Table Wizard page, complete the following fields and click Next:

Chapter 3. Using the studio 91

Field Action

Name Enter a unique name. The name can contain a maximum of 50 characters. The
name must consist of an uppercase letter followed by zero or more characters,
each of which is an uppercase letter, a digit, or the underscore character.

Metadata
Library

From the drop-down list, select the target library where the virtual table metadata
will be stored (for example, hlq.USER.MAP). The target libraries are specified in
the server's started task JCL.

Schema Name From the list of defined Schemas, select a Schema for the virtual table.

Description Enter an optional description.

Arrays Handling Enable one of the following array management options:

• Flatten arrays into a single fixed table at runtime: This supports both
OCCURS and OCCURS DEPENDING ON statements.

• Return arrays into separate tables at runtime: This supports both OCCURS
and OCCURS DEPENDING ON statements. A subtable is generated for each
array. Subtables only support SQL read access.

5. On the Source Download page, completethe following fields and click Next:
Field Action

Available Source
Libraries

Select the source library that contains the data structure to use.

Source Library Members Select the PDS members that represent the data structures to include
and click Download to copy the members from the mainframe to your
desktop. Use Filter patterns to filter the list.

Downloaded Source
Files

Select one or more previously downloaded members.

6. On the Virtual Table Layout page, complete the following fields and click Next:
Field Action

Source Browse the source tree to verify that it displays the expected data layout. By default,
all of the fields in the tree will be included in the mapping. To include only a subset
of the fields for the mapping, modify the start field value and, optionally, the end field
value, as follows:

• For the start field, accept the default root start field, or expand the tree and select
a different start field. When selecting a different start field, Enable End Field
Selection must not be selected.

• For the end field, accept the default end field, or expand the tree and select a
different end field. When selecting a different end field, Enable End Field Selection
must be selected.

Start Field Identifies the first field within the data layout that will be mapped. To change this
value, make sure Enable End Field Selection is not selected, and select a different
start field in the Source tree.

Enable End
Field
Selection

Use this field to control selection of the start field and end field values in the Source
tree. When this option is not selected (default), you can select the start field. When
this option is selected, you can select the end field.

End Field Identifies the last field within the data layout that will be mapped. To change this
value, make sure Enable End Field Selection is selected, and select a different end
field in the Source tree.

7. On the MQ Details page, complete the following fields:

92 Using IBM Data Virtualization Manager for z/OS:

Field Action

Queue Manager
Name

Enter the IBM MQ queue manager name. The name is a four-character
subsystem name.

Queue Name Enter the IBM MQ queue name. The name can contain a maximum of 48
characters and must comply with z/OS data set naming standards.

Post-Read Exit
Name

To manipulate the data after reading it from the queue, enter the name of the
post-read exit to use. This is the custom exit routine that is installed on the server
and is used to perform additional processing after a record is read from the data
source.

8. Click Finish.

What to do next
Use the studio to easily compose and execute SQL queries using your new virtual tables. See “Generating
and executing SQL queries” on page 114.

Creating virtual tables for VSAM, VSAM CICS, and IAM data
Create a virtual table that maps to the VSAM, VSAM CICS, and IAM data that you want to access, and from
which the SQL used to access the data is generated and executed.

Before you begin
You must have the VSAM or VSAMCICS cluster name available (sourcelibrary.copybook.filename).

Procedure
1. Expand the SQL > Data > SSID node, where SSID is the name of your server.
2. Right-click Virtual Tables and select Create Virtual Table(s).
3. Under Wizards, select the VSAM/VSAMCICS wizard and click Next.
4. On the New Virtual Table Wizard page, complete the following fields and click Next:

Field Action

Name Enter a unique name. The name can contain a maximum of 50 characters. The
name must consist of an uppercase letter followed by zero or more characters,
each of which is an uppercase letter, a digit, or the underscore character.

Metadata Library From the drop-down list, select the target library where the virtual table
metadata will be stored (for example, hlq.USER.MAP). The target libraries are
specified in the server's started task JCL.

Schema Name From the list of defined Schemas, select a Schema for the virtual table.

Description Enter an optional description.

Convert VAR*
fields to True
VAR* fields

This is a deprecated field and should not be selected.

Arrays Handling Enable one of the following array management options:

• Flatten arrays into a single fixed table at runtime: This supports both
OCCURS and OCCURS DEPENDING ON statements.

• Return arrays into separate tables at runtime: This supports both OCCURS
and OCCURS DEPENDING ON statements. A subtable is generated for each
array. Subtables only support SQL read access.

Chapter 3. Using the studio 93

Field Action

• Flatten arrays now: If you select this option, you cannot change array-
handling after you save the virtual table.

5. On the Source Download page, completethe following fields and click Next:
Field Action

Available Source
Libraries

From the list of Available Source Libraries, select the virtual source library
that contains the data structure definition that you want the virtual table to
use.

Source Library
Members

Select the PDS members that represent the data structures to include and
click Download to copy the members from the mainframe to your desktop.
Use Filter patterns to filter the list.

Download Source
Files

Select one or more previously downloaded members.

6. On the Virtual Table Layout page, complete the following fields and click Next:
Field Action

Source Browse the source tree to verify that it displays the expected data layout. By default,
all of the fields in the tree will be included in the mapping. To include only a subset
of the fields for the mapping, modify the start field value and, optionally, the end field
value, as follows:

• For the start field, accept the default root start field, or expand the tree and select
a different start field. When selecting a different start field, Enable End Field
Selection must not be selected.

• For the end field, accept the default end field, or expand the tree and select a
different end field. When selecting a different end field, Enable End Field Selection
must be selected.

Start Field Identifies the first field within the data layout that will be mapped. To change this
value, make sure Enable End Field Selection is not selected, and select a different
start field in the Source tree.

Use Offset
Zero

Select this checkbox to start the selected structure from offset Zero (0).

By default, the selected structure starts from zero and the Use Offset Zero checkbox
is selected.

Clear the Use Offset Zero checkbox to calculate the offset from the start.

Enable End
Field
Selection

Use this field to control selection of the start field and end field values in the Source
tree. When this option is not selected (default), you can select the start field. When
this option is selected, you can select the end field.

End Field Identifies the last field within the data layout that will be mapped. To change this
value, make sure Enable End Field Selection is selected, and select a different end
field in the Source tree.

7. Optional: On the Virtual Table Redefines page, accept the default table redefines or expand Redefine
to modify your selection, and click Next.

8. Complete the following VSAM related fields:
Field Action

Cluster Name Enter the cluster name for the VSAM data set, and click Validate. The server
searches the catalog on the mainframe to confirm that the data set exists. If the
data set exists, a dialog displays the data set type.

94 Using IBM Data Virtualization Manager for z/OS:

Field Action

FCT Name
(VSAMCICS only)

Enter the name of the VSAM file that is defined for CICS.

CICS Connection
Name (VSAMCICS
only)

Enter the name of the CICS connection that is configured on the Server.

Mirror
Transaction
Name (VSAMCICS
only)

Enter the name of the Mirror Transaction that is defined for CICS.

Post-Read Exit
Name

To manipulate the data after reading it from the source file, enter the name of
the post-read exit to use. This is the custom exit routine that is installed on the
server and is used to perform additional processing after a record is read from
the data source.

Pre-Write Exit
Name

To manipulate the data before writing it to the source file, enter the name of the
pre-exit to use. This is the custom exit routine that is installed on the server and
is used to perform additional processing before a record is read from the data
source.

Alternate
Indexes

If the VSAM file has been defined to include alternate indexes, you can click Get
to add index information to the virtual table, or you can click Delete to remove
the information. Alternate indexes are used to improve query performance when
the search criteria includes columns that are not part of the primary index.
Alternate indexes have an indirect relationship to the cluster name, but they
must be defined separately. If you are using a KSDS VSAM or ESDS cluster, you
can specify alternative indexes that are associated with the cluster.

Advanced (VSAM
only)

When reading large volumes of data from tables, click Advanced to display
and configure the MapReduce feature. The MapReduce feature enables you to
divide the data into logical partitions and process those partitions in parallel
using the Thread Count value. At runtime, the number of zIIP processors is
verified and one thread is used for each zIIP processor; resulting in improved
performance. The Thread Count value you specify overrides the default value
(2) and the discovered value. To disable MapReduce, select the Disable
MapReduce check box.

9. Click Finish.

What to do next
Use the studio to easily compose and execute SQL queries using your new virtual tables. See “Generating
and executing SQL queries” on page 114.

Creating virtual tables for sequential data
Create a virtual table that maps to the sequential data that you want to access, and from which the SQL
used to access the data is generated and executed.

Before you begin
Before creating the virtual table, verify that the data set name exists and that the copybook exists in the
source library.

Procedure
1. Expand the SQL > Data > SSID node, where SSID is the name of your server.
2. Right-click Virtual Tables and select Create Virtual Table(s).

Chapter 3. Using the studio 95

3. Under Wizards, select the Sequential wizard and click Next.
4. On the New Virtual Table Wizard page, complete the following fields and click Next:

Field Action

Name Enter a unique name. The name can contain a maximum of 50 characters. The
name must consist of an uppercase letter followed by zero or more characters,
each of which is an uppercase letter, a digit, or the underscore character.

Metadata Library From the drop-down list, select the target library where the virtual table
metadata will be stored (for example, hlq.USER.MAP). The target libraries are
specified in the server's started task JCL.

Schema Name From the list of defined Schemas, select a Schema for the virtual table.

Description Enter an optional description.

Convert VAR*
fields to True
VAR* fields

This is a deprecated field and should not be selected.

Arrays Handling Enable one of the following array management options:

• Flatten arrays into a single fixed table at runtime: This supports both
OCCURS and OCCURS DEPENDING ON statements.

• Return arrays into separate tables at runtime: This supports both OCCURS
and OCCURS DEPENDING ON statements. A subtable is generated for each
array. Subtables only support SQL read access.

• Flatten arrays now: If you select this option, you cannot change array-
handling after you save the virtual table.

5. On the Source Download page, completethe following fields and click Next:
Field Action

Available Source
Libraries

Select the source library that contains the data structure to use.

Source Library
Members

Select the PDS members that represent the data structures to include and
click Download to copy the members from the mainframe to your desktop.
Use Filter patterns to filter the list.

Download Source Files Select one or more previously downloaded members.

6. On the Virtual Table Layout page, complete the following fields and click Next:
Field Action

Source Browse the source tree to verify that it displays the expected data layout. By default,
all of the fields in the tree will be included in the mapping. To include only a subset
of the fields for the mapping, modify the start field value and, optionally, the end field
value, as follows:

• For the start field, accept the default root start field, or expand the tree and select
a different start field. When selecting a different start field, Enable End Field
Selection must not be selected.

• For the end field, accept the default end field, or expand the tree and select a
different end field. When selecting a different end field, Enable End Field Selection
must be selected.

Start Field Identifies the first field within the data layout that will be mapped. To change this
value, make sure Enable End Field Selection is not selected, and select a different
start field in the Source tree.

96 Using IBM Data Virtualization Manager for z/OS:

Field Action

Use Offset
Zero

Select this checkbox to start the selected structure from offset Zero (0).

By default, the selected structure starts from zero and the Use Offset Zero checkbox
is selected.

Clear the Use Offset Zero checkbox to calculate the offset from the start.

Enable End
Field
Selection

Use this field to control selection of the start field and end field values in the Source
tree. When this option is not selected (default), you can select the start field. When
this option is selected, you can select the end field.

End Field Identifies the last field within the data layout that will be mapped. To change this
value, make sure Enable End Field Selection is selected, and select a different end
field in the Source tree.

7. Optional: On the Virtual Table Redefines page, accept the default table redefines or expand Redefine
to modify your selection, and click Next.

8. On the Data Source Details page, complete the following data source fields and click Next:
Field Action

Treat the
Dataset as
GDG

Select the Treat the Dataset as GDG checkbox to treat the data set name as GDG
data set name.

On selecting Treat the Dataset as GDG checkbox, the Member Name text box will
appear disabled.

Data Set
Name

Enter the data set name you want to use. The following data set types are supported:

• PDS or PDSE: Specify the partitioned data set name. This requires that you also
enter a Member name prior to validating that the member name exists on the host.

• Physical sequential: Specify the sequential data set name and click Validate to
verify that the data set name exists on the host.

• Generation Data Groups (GDG): Specify the GDG data set using the GDG syntax.
For example: hlq.DATA.SEQ(-1). You can also specify a base GDG name so that all
generations of the GDG will potentially be accessed. Click Validate to verify that the
data set name exists on the host.

Member If you selected a PDS or PDSE for the Data Set Name, you must also enter the
member name to use. Click Validate to verify that the member name exists on the
host.

Post-Read
Exit Name

To manipulate the data after reading it from the source file, enter the name of the
post-read exit to use. This is the custom exit routine that is installed on the server and
is used to perform additional processing after a record is read from the data source.

Advanced When reading large volumes of data from tables, click Advanced to display and
configure the MapReduce feature. The MapReduce feature enables you to divide the
data into logical partitions and process those partitions in parallel using the Thread
Count value. At runtime, the number of zIIP processors is verified and one thread is
used for each zIIP processor; resulting in improved performance. The Thread Count
value you specify overrides the default value (2) and the discovered value. To disable
MapReduce, select the Disable MapReduce check box.

9. Click Finish.

What to do next
Use the studio to easily compose and execute SQL queries using your new virtual tables. See “Generating
and executing SQL queries” on page 114.

Chapter 3. Using the studio 97

Creating virtual tables for zFS and HFS file system data
Create a virtual table that maps to file data that you want to access on a zFS or HFS file system and from
which the SQL used to access the data is generated and executed.

Before you begin
Before creating the virtual table, verify that the PDS members that represent the data structures for the
data you want to virtualize already exist in the source library.

Procedure
1. Expand the SQL > Data > SSID node, where SSID is the name of your server.
2. Right-click Virtual Tables and select Create Virtual Table(s).
3. Under Wizards, select the zFS wizard and click Next.
4. On the New Virtual Table Wizard page, complete the following fields and click Next:

Field Action

Name Enter a unique name. The name can contain a maximum of 50 characters. The
name must consist of an uppercase letter followed by zero or more characters,
each of which is an uppercase letter, a digit, or the underscore character.

Metadata Library From the drop-down list, select the target library where the virtual table
metadata will be stored (for example, hlq.USER.MAP). The target libraries are
specified in the server's started task JCL.

Schema Name From the list of defined Schemas, select a Schema for the virtual table.

Description Enter an optional description.

Convert VAR*
fields to True
VAR* fields

This is a deprecated field and should not be selected.

Arrays Handling Enable one of the following array management options:

• Flatten arrays into a single fixed table at runtime: This supports both
OCCURS and OCCURS DEPENDING ON statements.

• Return arrays into separate tables at runtime: This supports both OCCURS
and OCCURS DEPENDING ON statements. A subtable is generated for each
array. Subtables only support SQL read access.

5. On the Source Download page, completethe following fields and click Next:
Field Action

Download Folder Verify that the appropriate download folder is displayed.

Available Source
Libraries

Select the source library that contains the data structure to use.

Source Library Members Select the PDS members that represent the data structures to include
and click Download to copy the members from the mainframe to your
desktop.

Downloaded Source Files Select one or more previously downloaded members. Selecting
previously downloaded members is optional.

6. On the Virtual Table Layout page, complete the following fields and click Next:

98 Using IBM Data Virtualization Manager for z/OS:

Field Action

Source Browse the source tree to verify that it displays the expected data layout. By default,
all of the fields in the tree will be included in the mapping. To include only a subset
of the fields for the mapping, modify the start field value and, optionally, the end field
value, as follows:

• For the start field, accept the default root start field, or expand the tree and select
a different start field. When selecting a different start field, Enable End Field
Selection must not be selected.

• For the end field, accept the default end field, or expand the tree and select a
different end field. When selecting a different end field, Enable End Field Selection
must be selected.

Start Field Identifies the first field within the data layout that will be mapped. To change this
value, make sure Enable End Field Selection is not selected, and select a different
start field in the Source tree.

Enable End
Field
Selection

Use this field to control selection of the start field and end field values in the Source
tree. When this option is not selected (default), you can select the start field. When
this option is selected, you can select the end field.

End Field Identifies the last field within the data layout that will be mapped. To change this
value, make sure Enable End Field Selection is selected, and select a different end
field in the Source tree.

7. On the zFS Virtual Table Details page, complete the following fields:
Field Action

Pathname Enter the path name of the zFS file.

If the absolute path name of the zFS file is less than 255 characters in length, you
must include the root slash "/" in the path name. For example, /u/tsado/data/
stuff.txt.

If the absolute path name of the zFS file is greater than 255 characters in length, you
must enter the relative path name. The relative path name starts with the name of the
target system to indicate the top-level directory and does not include the leading root
slash. For example, data/stuff.txt, where "data" is the name of the target system.

Target
System

If you plan to map several zFS files under the same zFS directory location, specify a
target system to use.

You can click Create to add a new path name to use, or if a relative path name is
already specified in the Pathname field, you must select an existing target system from
the drop-down list.

If you choose to create a new target system, complete the following fields and click
Finish:

Name – Enter the name for the new target system.

CCSID – Enter the CCSID of the character set in which the zFS file data is encoded. The
default setting is EBCDIC 1047.

Base Pathname – Enter the absolute path name under which the zFS file resides.
Typically, this is the path name of the zFS subdirectory that contains your zFS file. At
runtime, the server will determine the location of the zFS file by concatenating the path
name with the value specified in the virtual table Pathname field. The server does not
insert additional slash (/) separators when concatenating the target system path name
and the virtual table path name. If the target system path name represents a complete
directory name, include the trailing slash (/tmp/).

Chapter 3. Using the studio 99

Field Action

Advanced When reading large volumes of data from tables, click Advanced to display and
configure the MapReduce feature. The MapReduce feature enables you to divide the
data into logical partitions and process those partitions in parallel using the Thread
Count value. At runtime, the number of zIIP processors is verified and one thread is
used for each zIIP processor; resulting in improved performance. The Thread Count
value you specify overrides the default value (2) and the discovered value. To disable
MapReduce, select the Disable MapReduce check box.

8. Click Finish.

What to do next
Use the studio to easily compose and execute SQL queries using your new virtual tables. See “Generating
and executing SQL queries” on page 114.

Creating virtual tables for CA IDMS data
Create virtual tables that map to the CA IDMS data that you want to access and from which the SQL used
to access the data is generated and executed.

Before you begin
The Data Virtualization Manager server must be configured for CA IDMS access, and the CA IDMS central
version referenced by the data server SYSCTL DD statement must be active.

About this task
CA IDMS schema records are mapped using the CA IDMS data dictionary. Each record is mapped as a
separate virtual table using the COBOL names to derive the SQL column names. In addition to records,
schema sets can be mapped as well. Virtual tables created for CA IDMS sets serve as correlation tables
between CA IDMS records so SQL joins can navigate the CA IDMS schema.

Procedure
1. On the Server tab, explore the CA IDMS metadata information by expanding the Discovery > IDMS

node, and then navigating down the appropriate subtree. The hierarchy begins with the data dictionary,
followed by the CA IDMS schema, the CA IDMS subschema, and then the associated records and sets.

2. Select one or more records, as follows:

• To select individual records, hold down the Ctrl key and click each record to include.
• To select a range of records, click the first record in the range, and then hold the Shift key and select

the last record in the range. All records within the range will be included.
• To select all child records under a parent, click the parent record.

3. Right-click the selected records and select Create Virtual Table(s). The New Virtual Tables Wizard
launches.

Note: You can map the relevant CA IDMS sets in the wizard.
4. On the Create IDMS virtual tables page, complete the following Common Virtual Table Settings:

Field Description

Metadata Library From the drop-down list, select the target library where the virtual table
metadata will be stored (for example, hlq.USER.MAP). The target libraries are
specified in the server's started task JCL.

Schema Name From the list of defined Schemas, select a Schema for the virtual table.

Description Enter an optional description.

Arrays Handling Select one of the following options:

100 Using IBM Data Virtualization Manager for z/OS:

Field Description

• Flatten arrays into a single fixed table at runtime (Y): This option supports
both OCCURS and OCCURS DEPENDING ON statements.

• Return arrays into separate tables at runtime (N): This option supports
both OCCURS and OCCURS DEPENDING ON statements. A subtable is
generated for each array. Subtables support SQL read access only.

Virtual Table
Naming Patterns

Specify the format to use for the generated virtual table names. You can
specify different patterns for records and sets. Use the following variables to
create naming patterns that are derived from the IDMS metadata:

• {SubSchema}: Subschema name
• {Record}: Record name
• {Set}: Set name

Prune IDMS record
field suffix from
column names

Select this option to remove the IDMS record field suffix from the column
names.

5. In the table that lists the IDMS records, review the list of selected entries. Modify the selections as
needed.

Tip: Use the check box in the header row of the table to control the selection of all entries.
6. To map the sets, click Fetch Related IDMS Sets. The studio collects additional metadata from the

server and displays the relevant items in the table that lists the IDMS sets.

7. In the table that lists the IDMS sets, review the list of selected entries. Modify the selections as
needed.

8. To disable MapReduce, click Advanced and select Disable MapReduce.
9. Click Finish.

Results
The studio creates the virtual tables (the metadata maps) on the server.

What to do next
Use the studio to easily compose and execute SQL queries using your new virtual tables. See “Generating
and executing SQL queries” on page 114.

Creating virtual tables for VSAM and sequential access using ADDI
Create virtual tables that map VSAM and sequential data for COBOL applications by using information
made available through IBM Application Discovery and Delivery Intelligence (ADDI).

Before you begin
The Data Virtualization Manager server must be configured to access one or more ADDI projects hosted
on Microsoft SQL Server. The studio recognizes ADDI when virtual views and target system maps are
installed. Map recognition is based on target systems starting with the string TSIAD and virtual views
starting with the name IADV_. For more information on configuring the server, see the Installation and
Customization Guide.

About this task
To create the virtual tables that are used to access VSAM and sequential data for COBOL applications,
information is queried in the ADDI project. Information is retrieved about the z/OS data sets and the
COBOL copybooks used to access the z/OS data sets.

The following restrictions and considerations apply:

Chapter 3. Using the studio 101

• Virtual table creation is restricted to data sets in the ADDI project that are processed by COBOL
programs using JCL. Data sets accessed using CICS as well as other databases (such as IMS, CA IDMS,
or Adabas) are not supported.

• When retrieving data sets from the ADDI project, the studio provides a list of all data sets discovered
in the ADDI project that correspond to copybook information. If the data set does not have a
corresponding copybook, the data set will not be presented in the studio.

• When creating virtual tables in the studio, duplicate records may appear in the generated list. (Duplicate
records have the same project and copybook record names but different ID values.) This is due to
multiple copies of the same copybook existing in the ADDI project. The studio provides a feature that
compares the definitions of the records and allows you to remove any duplicates.

• When mapping COBOL copybooks containing REDEFINES clauses, default mapping rules related to
REDEFINES will be applied which will result in disabled columns in the maps. Editing of virtual maps
may be required after generation to enable or disable generated columns.

• ADDI project names are limited to 13 characters due to location name restrictions in the z/OS server.

Procedure
1. On the Server tab, explore the ADDI metadata information by expanding the Discovery > IBM

Application Discovery node, and then navigating down the appropriate subtree. The hierarchy begins
with the project, followed by the data sets, and then the associated records.

2. Optional: Right-click a record and select Display Data Layout to show the copybook for the record.
3. Select one or more data sets or records to map, as follows:

• To select individual data sets or records, hold down the Ctrl key and click each data set or record to
include.

• To select a range of data sets or records, click the first data set or record in the range, and then hold
the Shift key and select the last data set or record in the range. All data sets or records within the
range will be included.

• To select all records under a data set, click the data set.
4. Right-click the selected data sets or records and select Create Virtual Table(s).

The New Virtual Tables Wizard launches, presenting a list of proposed virtual table names and the
COBOL structure names that will be used as a basis to create columns for the virtual tables.

5. On the Create virtual tables using IBM Application Discovery page, complete the following fields:
Field Description

Metadata
Library

From the drop-down list, select the target library where the virtual table metadata
will be stored (for example, hlq.USER.MAP). The target libraries are specified in the
server's started task JCL.

Schema Name From the list of defined Schemas, select a Schema for the virtual table.

Description Enter an optional description.

Naming Pattern Specify the format to use for the generated virtual table names. You can specify
different patterns for the project name and records. Use the following variables to
create naming patterns that are derived from the ADDI metadata:

• {Project}: ADDI project name
• {Record}: Record name

Arrays Handling Select one of the following options:

• Flatten arrays into a single fixed table at runtime (Y): This option supports
both OCCURS and OCCURS DEPENDING ON statements.

102 Using IBM Data Virtualization Manager for z/OS:

Field Description

• Return arrays into separate tables at runtime (N): This option supports both
OCCURS and OCCURS DEPENDING ON statements. A subtable is generated for
each array. Subtables support SQL read access only.

• Flatten arrays now (C): If you select this option, you cannot change array-
handling after you save the virtual table.

6. In the table that lists the records, review the list of selected entries and perform the following steps:
a) Optional: If duplicate target virtual table names appear, which are identified with a description in

the Errors column, click Remove Duplicates.
The studio compares the definitions of the records and removes any duplicates.

b) Click Validate to validate each data set and determine the data set type.
The studio populates the Type column with the correct data set type.

c) Modify the selections to map as needed.

Tip: Use the check box in the header row of the table to control the selection of all entries.
7. Optional: Click Advanced to display and complete the following fields:

Field Description

MapReduce
(Server
Parallelism
Overrides)

When reading large volumes of data from tables, you can use the MapReduce
feature. The MapReduce feature enables you to divide the data into logical
partitions and process those partitions in parallel using the Thread Count value.
At runtime, the number of zIIP processors is verified and one thread is used for
each zIIP processor; resulting in improved performance. The Thread Count value
you specify overrides the default value (2) and the discovered value. To disable
MapReduce, select the Disable MapReduce check box.

8. Click Finish.

Results
The virtual tables are created on the server and are visible under the SQL > Data > SSID > Virtual Tables
tree node, where SSID is the name of your server.

What to do next
Use the studio to easily compose and execute SQL queries using your new virtual tables. See “Generating
and executing SQL queries” on page 114.

Creating virtual tables for VSAM and sequential access using RAA
Create virtual tables that map VSAM and sequential data for COBOL applications by using information
made available through IBM Rational Asset Analyzer (RAA).

Before you begin
The Data Virtualization Manager server must be configured to access one or more RAA database schemas
hosted on Db2 for z/OS. The studio recognizes RAA when RAA virtual views and target system maps are
installed. Map recognition is based on target systems starting with the string TSRAA and virtual views
starting with the name RAAV_. For more information on configuring the server, see the Installation and
Customization Guide.

The preferred method to collect COBOL information is to retrieve record layouts directly from the
WebSphere Application Server that hosts RAA. The WebSphere Application Server must be configured
using the Metadata Discovery preferences. For more information, see “Metadata Discovery preferences”
on page 134.

Chapter 3. Using the studio 103

About this task
To create the virtual tables that are used to access VSAM and sequential data for COBOL applications,
information is queried in the RAA database and from the host. Information is retrieved about the z/OS
data sets and the COBOL copybooks used to access the z/OS data sets. If the WebSphere Application
Server has been configured, all access to the host for record layout information will first be attempted
using the WebSphere Application Server hosting RAA. If access to the RAA host fails and the record layout
is stored in a PDS, layout retrieval will be attempted using the current Data Virtualization Manager server.

The following restrictions and considerations apply:

• Virtual table creation is restricted to data sets in the RAA database that are processed by COBOL
programs using JCL. Data sets accessed using CICS as well as other databases (such as IMS, CA IDMS,
or Adabas) are not supported.

• When retrieving data sets from the RAA database, the studio provides a list of all data sets discovered
in the RAA database that correspond to copybook information. If the data set does not have a
corresponding copybook, the data set will not be presented in the studio.

• When creating virtual tables in the studio, duplicate records may appear in the generated list. (Duplicate
records have the same database and copybook record names but different ID values.) This is due to
multiple copies of the same copybook existing in the RAA database. The studio provides a feature that
compares the definitions of the records and allows you to remove any duplicates.

• When mapping COBOL copybooks containing REDEFINES clauses, default mapping rules related to
REDEFINES will be applied which will result in disabled columns in the maps. Editing of virtual maps
may be required after generation to enable or disable generated columns.

Procedure
1. On the Server tab, explore the RAA metadata information by expanding the Discovery > IBM Rational

Asset Analyzer node, and then navigating down the appropriate subtree. The hierarchy begins with
the database, followed by the data sets, and then the associated records.

2. Optional: Right-click a record and select Display Data Layout to show the copybook for the record.
3. Select one or more data sets or records to map, as follows:

• To select individual data sets or records, hold down the Ctrl key and click each data set or record to
include.

• To select a range of data sets or records, click the first data set or record in the range, and then hold
the Shift key and select the last data set or record in the range. All data sets or records within the
range will be included.

• To select all records under a data set, click the data set.
4. Right-click the selected data sets or records and select Create Virtual Table(s).

The New Virtual Tables Wizard launches, presenting a list of proposed virtual table names and the
COBOL structure names that will be used as a basis to create columns for the virtual tables.

5. On the Create virtual tables using IBM Rational Asset Analyzer page, complete the following fields:
Field Description

Metadata
Library

From the drop-down list, select the target library where the virtual table metadata
will be stored (for example, hlq.USER.MAP). The target libraries are specified in the
server's started task JCL.

Schema Name From the list of defined Schemas, select a Schema for the virtual table.

Description Enter an optional description.

Naming Pattern Specify the format to use for the generated virtual table names. You can specify
different patterns for the database name and records. Use the following variables
to create naming patterns that are derived from the RAA metadata:

• {Database}: RAA database name

104 Using IBM Data Virtualization Manager for z/OS:

Field Description

• {Record}: Record name

Arrays Handling Select one of the following options:

• Flatten arrays into a single fixed table at runtime (Y): This option supports
both OCCURS and OCCURS DEPENDING ON statements.

• Return arrays into separate tables at runtime (N): This option supports both
OCCURS and OCCURS DEPENDING ON statements. A subtable is generated for
each array. Subtables support SQL read access only.

• Flatten arrays now (C): If you select this option, you cannot change array-
handling after you save the virtual table.

6. In the table that lists the records, review the list of selected entries and perform the following steps:
a) Optional: If duplicate target virtual table names appear, which are identified with a description in

the Errors column, click Remove Duplicates.
The studio compares the definitions of the records and removes any duplicates.

b) Click Validate to validate the data set and determine the data set type.
The studio populates the Type column with the correct data set type.

c) Modify the selections to map as needed.

Tip: Use the check box in the header row of the table to control the selection of all entries.
7. Optional: Click Advanced to display and complete the following fields:

Field Description

MapReduce
(Server
Parallelism
Overrides)

When reading large volumes of data from tables, you can use the MapReduce
feature. The MapReduce feature enables you to divide the data into logical
partitions and process those partitions in parallel using the Thread Count value.
At runtime, the number of zIIP processors is verified and one thread is used for
each zIIP processor; resulting in improved performance. The Thread Count value
you specify overrides the default value (2) and the discovered value. To disable
MapReduce, select the Disable MapReduce check box.

8. Click Finish.

Results
The virtual tables are created on the server and are visible under the SQL > Data > SSID > Virtual Tables
tree node, where SSID is the name of your server.

What to do next
Use the studio to easily compose and execute SQL queries using your new virtual tables. See “Generating
and executing SQL queries” on page 114.

Creating virtual views
Consider creating a virtual view if columns in your virtual table are missing or if you want to join columns
from different virtual tables.

Before you begin
The virtual tables representing the data that you want to access or join must already exist.

About this task
A virtual view comprises the SELECT statement that contains the columns from the source data that are
used to read data directly from the data source. For example, SELECT * FROM HLS_JOIN_VSAM LIMIT

Chapter 3. Using the studio 105

1000;. In some cases, creating virtual views is more convenient than regenerating and editing SQL each
time you want to access the same data.

Procedure
1. In the Server View, expand SQL > Data > SSID > Virtual Tables.
2. Right-click the virtual table that represents the data that you want to access, and select Create

Virtual View.
3. In the Name field, enter a name for the virtual view.
4. From the Target drop-down list, select the target to use for this virtual view.
5. Optional: In the Description field, enter a description.
6. Click Next.
7. In the Table Browser, expand the Virtual Tables folder, and select an existing virtual table to use to

compose the SQL statement.
8. Click Next.
9. Optional: Review the resulting SQL statement and make any necessary modifications.

10. Click Validate to validate the SQL.
11. If valid, on the SQL Validation message that displays, click OK.
12. Click Finish.

Results
In the Server view, locate the new virtual view by expanding SQL > Data > SSID > Virtual Views.

Viewing copybook member name in metadata
The details of the copybook member name used during Virtual Table (VT) creation is captured and saved
to the DMF map XML file.

Procedure
To view the copybook member name:
1. Click Window->Show View->Virtualization Facility
2. In the Virtualization Facility pane, navigate to the VT for which you want to know the copybook

member name and double click it.
The <INPUT from=" field ..."/> contains the copybook member name that is used for VT creation.

Creating Db2 user-defined table functions
Use the New UDTF Definitions in DB2 Wizard to create user-defined table functions (UDTFs) in Db2 for
z/OS for access to any supported data source type.

Before you begin
Db2 Virtualization (DB2V) is a feature that provides single-point access to various data source types. For
additional information about configuring your system to use Db2 for z/OS as a primary access point, see
Using Db2 for z/OS to access multiple data source types.

To use this wizard, virtual tables should already exist for your data sources. See “Creating virtual tables”
on page 79.

About this task
Use the New UDTF Definitions in DB2 Wizard to create the necessary user-defined table functions and
views in Db2 for z/OS for access to any supported data source type. For existing virtual tables, this wizard
creates the necessary objects in a local Db2 subsystem so that Data Virtualization Manager data can be
queried using Db2 clients.

106 Using IBM Data Virtualization Manager for z/OS:

https://www.ibm.com/docs/en/izoda/1.1.0?topic=dsss-using-db2-zos-access-multiple-data-source-types

Procedure
1. Expand the SQL > Data > SSID node, where SSID is the name of your server.
2. In the Virtual Tables node, right-click one or more virtual tables, and select Create UDTF Definitions

in DB2.
3. In the New UDTF Definitions in DB2 Wizard, on the Generate DDL with user-defined table

functions page, complete the following fields:
Field Action

General DB2
Settings

Specify information about the Db2 subsystem where the UDTFs and views will be
created.

• Subsystem: Select the Db2 subsystem ID from the drop-down list.
• Schema: Select the schema from the drop-down list, or enter a new schema name.
• GRANT TO: Specify to whom privileges are granted for the generated UDTFs and

views. Clear this field to not include the GRANT TO statement in the generated DDL.
• UDTF Module: This value defaults to the UDTF module in use for your system.

If you need to change this value, enter the name of another UDTF module. The
following modules are available:

– AVZUDT9N
– AVZUDTAN
– AVZUDTBN
– AVZUDTCN

For more information, see "Using Db2 for z/OS to access multiple data source
types" in the Installation and Customization Guide.

• WLM Environment: The address space Db2 starts to run user-defined functions.
Leave this field blank to omit the WLM ENVIRONMENT clause in the generated DDL.

"Generate"
Actions

Specify whether to execute or save the DDL, or both.

• Execute generated DDL in DB2: Select this option to execute the generated DDL
on the specified Db2 subsystem.

• Save DDL to file: Optionally, enter a file name (with .sql extension) where to save
the DDL. This step might be required if you do not have authorization to execute the
DDL. Or, you might want to review the DDL in the SQL Editor first, before running it
in Db2.

– Append to file: Select to append the generated DDL to an existing file.
– Open file in SQL Editor: Select to open the generated DDL in the SQL Editor.

Naming
Patterns

Specify the format to use for the generated function and view names. Use the
following variables to create naming patterns:

• {Server}: Data Virtualization Manager server name
• {Table}: Virtual table name

The Function Name and View Name columns are editable in the table, so you can
also customize the names on an individual basis.

Note: If Views is blank, views will not be generated.

4. Click Generate.

Results
The DDL for creating UDTFs and corresponding views is generated. For more information, see “Generated
DDL for UDTFs” on page 108.

Chapter 3. Using the studio 107

After the DDL is executed, a UDTF and a corresponding view are created for each selected virtual table.
In the Server tab, locate the new objects by expanding SQL > Data > Other Subsystems > db2SSID >
schema, and then the appropriate nodes, as follows:

• The Db2 views are located in the Views node.
• The Db2 UDTFs are located in the DB2V > User-Defined Table Functions node.

What to do next
After the Db2 views and UDTFs have been created, you can perform the following tasks:

• Using the new Db2 views, compose and execute SQL queries to access the data. You can do this from
the Data Virtualization Manager studio or from a Db2 client.

• Using the new Db2 UDTFs, compose and execute SQL queries to select data from the virtual table.
Queries can be generated for a specific UDTF function or for a subset of columns within a UDTF.

See “Generating and executing SQL queries” on page 114.

Generated DDL for UDTFs
This topic describes the DDL that is generated by the New UDTF Definitions in DB2 Wizard in the Data
Virtualization Manager studio when creating Db2 UDTFs and corresponding views for virtual tables.

For each Data Virtualization Manager map created as a view in Db2, there are two DDL statements
defining catalog objects to Db2. The first statement is a CREATE FUNCTION statement, which describes
the user-defined function to retrieve data from Data Virtualization Manager. The second statement is a
CREATE VIEW statement, which calls the user-defined table function.

Example: CREATE FUNCTION
The following example shows the Db2 DDL generated to define the user-defined table function for the
STAFFVS table:

CREATE FUNCTION "TSUSER"."AVZS_STAFFVS"
 (CONDITION VARCHAR(24576) CCSID EBCDIC FOR SBCS DATA,
 AVZNAME VARCHAR(254) CCSID EBCDIC FOR SBCS DATA,
 COLINFO VARCHAR(24576) CCSID EBCDIC FOR SBCS DATA,
 REQUEST VARCHAR(254) CCSID EBCDIC FOR SBCS DATA)
 RETURNS TABLE
 ("STAFFVS_KEY_ID" SMALLINT,
 "STAFFVS_DATA_NAME_L" SMALLINT,
 "STAFFVS_DATA_NAME" CHAR(9),
 "STAFFVS_DATA_DEPT" SMALLINT,
 "STAFFVS_DATA_JOB" CHAR(5),
 "STAFFVS_DATA_YRS" SMALLINT,
 "STAFFVS_DATA_FILLER" CHAR(8))
 EXTERNAL NAME "AVZUDTCN"
 LANGUAGE ASSEMBLE
 PARAMETER STYLE DB2SQL
 DETERMINISTIC
 FENCED
 NO SQL
 SCRATCHPAD 2048
 FINAL CALL
 DISALLOW PARALLEL
 DBINFO WLM ENVIRONMENT DSN1WLM1
 STAY RESIDENT YES
 ASUTIME NO LIMIT
 SECURITY USER;

Note the following about the UDTF DDL:

• The following parameters are common to the generic table function:

(CONDITION VARCHAR(24576) CCSID EBCDIC FOR SBCS DATA,
 AVZNAME VARCHAR(254) CCSID EBCDIC FOR SBCS DATA,

108 Using IBM Data Virtualization Manager for z/OS:

 COLINFO VARCHAR(24576) CCSID EBCDIC FOR SBCS DATA,
 REQUEST VARCHAR(254) CCSID EBCDIC FOR SBCS DATA)

These parameters are required on every UDTF definition for a Data Virtualization Manager virtual table
referenced by a view in Db2. For more information about these parameters, see “UDTF parameters” on
page 109.

• The RETURNS TABLE clause describes the columns in the Data Virtualization Manager table as defined
in the map.

Warning: These columns must match exactly the map definition to prevent errors as the UDTF does not
have access to this information at invocation time and therefore does no SQL type conversion.

Note that the system parameter SQLENGCHARTOVARCHAR changes column definitions and must be
considered when defining the UDTF. Because the RETURNS TABLE clause describes the return table
data to Db2, each map requires a separate UDTF definition. While tables having identical columns can
technically share the same definition, this practice is not recommended unless the table is from a
common map shared by multiple Data Virtualization Manager servers.

• The following DDL elements contain information you can customize at view creation time.
Considerations for this information are as follows:

– CREATE FUNCTION "TSUSER"."AVZS_STAFFVS" – Like most DB2 catalog objects, function names
include both a schema name and a function name. The studio wizard provides flexibility in both the
schema and function naming, including a default pattern for function names.

– EXTERNAL NAME "AVZUDTCN" – The external name will always be in the form AVZUDTaN, where a
is the z/OS architecture level (9, A, B, C).

– WLM ENVIRONMENT DSN1WLM1 – Identifies the name of the address space that Db2 starts for
running user-defined functions. A reasonable default is the Db2 subsystem ID suffixed with WLM1,
which the user can change if necessary. This element is optional, and when omitted, the default WLM
environment for that Db2 subsystem will be chosen at runtime.

Example: CREATE VIEW
The following example shows the Db2 DDL generated to define the view to call the user-defined table
function:

CREATE VIEW "TSUSER"."AVZS_VSTAFFVS" AS
 SELECT
"STAFFVS_KEY_ID","STAFFVS_DATA_NAME_L","STAFFVS_DATA_NAME","STAFFVS_DATA_DEPT",
 "STAFFVS_DATA_JOB","STAFFVS_DATA_YRS","STAFFVS_DATA_FILLER"
 FROM TABLE("TSUSER"."AVZS_STAFFVS"
 ('',
 'AVZS...STAFFVS',
 '7,STAFFVS_KEY_ID,STAFFVS_DATA_NAME_L,STAFFVS_DATA_NAME,STAFFVS_DATA_DEPT,' ||
 'STAFFVS_DATA_JOB,STAFFVS_DATA_YRS,STAFFVS_DATA_FILLER',
 '')
 CARDINALITY 10000);

The CARDINALITY clause value is controlled by the DB2 CARDINALITY in generated UDTF query setting
in “SQL preferences” on page 133.

UDTF parameters
The following table describes the parameters that must be passed when calling the UDTF.

Chapter 3. Using the studio 109

Parameter Description

CONDITION ('') The CONDITION parameter can be used to add
a WHERE predicate to the generated SQL sent
to the Data Virtualization Manager server. For
example, if you want to create a Db2 view that
returns all managers using the STAFFVS example,
you could specify 'WHERE STAFFVS_DATA_JOB
= ''MGR''' in the CONDITION parameter.
Generally, this value will be defined as ''.

Note: By using the WHERE predicate on the
UDTF call in the CONDITION parameter, the result
set is filtered on the UDTF call. If you use the
WHERE predicate when querying the view instead
of passing it as a CONDITION parameter, all
results will be returned on the UDTF call first and
then filtered on the view call. This might affect
performance.

AVZNAME ('AVZS...STAFFVS') The AVZNAME is a four-part period-separated
name in the form dddd.bbbb.ssssssss.vvvvvvvv
where:

• dddd – The 4-character subsystem name or
5-8 character group name for the local Data
Virtualization Manager server. If the name is
greater than 4 characters, the token is assumed
to be a group name.

• bbbb – The 4-character subsystem name if the
table is in another Db2 subsystem. Generally, this
token will be omitted.

• ssssssss – The schema name for the table in the
Data Virtualization Manager server. This token is
for future use and should be omitted.

• vvvvvvvv – The virtual table name in the Data
Virtualization Manager server.

COLINFO ('7,STAFFVS_KEY_ID,...') Describes the column count and optionally the
Data Virtualization Manager virtual table column
name list to the table function. Minimally, this must
include the number of columns in the return table
(for example, '7'). The form shown in the example
includes a comma-separated list of every column
in the table in COLNO order. If provided, this list
will be used to generate optimized queries when
the Db2 user queries a subset of columns in the
view definition.

Warning: It is critical that this count matches
the number of columns included in the RETURNS
TABLE clause of the CREATE FUNCTION DDL.

REQUEST ('') Specifies runtime options. See the next section,
“REQUEST runtime options” on page 111

110 Using IBM Data Virtualization Manager for z/OS:

REQUEST runtime options
Runtime options can be passed as comma-separated values in the REQUEST parameter. In most cases,
these values are used to diagnose problems with the UDTF and should be added under the direction of
contact IBM Software Support.. The following runtime options can be added to the REQUEST parameter
to control execution of the table function:

Option Description

GROUPNAME Instructs the table function to use the first part of AVZNAME as a Data
Virtualization Manager server group name instead of a Data Virtualization
Manager subsystem ID. It is only needed if the first token is 4 or less characters
in length, but can also be included for documentation purposes if desired (for
example, 'GROUPNAME').

MRC(n) Enables MRC or MRCC processing. When specified without MRID, the UDTF will
create multiple MRC connections to the Data Virtualization Manager server and
partition row data across connections based on the map/reduce partitioning
algorithm for the underlying target database or data set. When specified with
MRID, MRC will act as a single participant in an MRCC request (for example,
'MRC(6),MRID(1)').

MRID(n) Used in conjunction with MRC to identify the map/reduce participant ID
associated with a view in MRCC request environments. Db2 views set up with
MRC and MRID will read a subset of the virtual table data based on the map/
reduce partitioning algorithm for the underlying target database or data set (for
example, 'MRC(6),MRID(1)')

TRACE() Instructs the UDTF to send trace information to the Data Virtualization Manager
server after a successful connection is open to the server. In the server trace, all
trace information is enclosed between the XML tokens <DVUDFT_TRACE> and </
DVUDFT_TRACE>. The following comma-separated sub-options can be specified
within the TRACE() option.

• BUILDINFO – Displays the build date and architecture level of the UDTF
program. This trace is issued immediately after a successful connection
is established to the Data Virtualization Manager server (for example,
‘TRACE(BUILDINFO)’).

• CLOSE – Displays a message when a UDTF query is closed (for example,
‘TRACE(CLOSE)’).

• SQL – Displays the generated SQL sent to the Data Virtualization Manager
server in response to the UDTF call from Db2 (for example, ‘TRACE(SQL)’).

• STATS – Displays a summary of the statistics at query close time,
including rows retrieved and producer/consumer wait times (for example,
‘TRACE(STATS)’).

VPIO(n) When used with VPDNAME, VPIO sets the number of I/O threads for a VPD group
(for example, ‘VPNAME(VPG1),VPNO(6),VPIO(3)’).

VPNAME(name) Enables VPD processing by defining a VPD group name (for example,
‘VPNAME(VPG1),VPNO(6),VPIO(3)’).

VPNO(n) Sets the number of members in a VPD group (for example,
‘VPNAME(VPG1),VPNO(6),VPIO(3)’).

VPTO(n) Sets the timeout value in seconds for a VPD group (for example,
‘VPNAME(VPG1),VPNO(6),VPIO(3),VPTO(10)’).

Chapter 3. Using the studio 111

UDTF generated query example
The following example shows a query of a Db2 UDTF, generated in the Data Virtualization Manager studio,
where a subset of the virtual table columns have been selected:

-- Description: Retrieve the result set for AVZS_STAFFVS
-- Tree Location: rs99/46000/SQL/Data/Other Subsystems/DSN1/TSUSER/DB2V/
User-Defined Table Functions/AVZS_STAFFVS
-- Remarks: DB2V:AVZS...STAFFVS
SELECT "STAFFVS_DATA_NAME","STAFFVS_DATA_DEPT","STAFFVS_DATA_JOB","STAFFVS_DATA_YRS"
 FROM TABLE("TSUSER"."AVZS_STAFFVS"
 ('',
 'AVZS...STAFFVS',
 '7,STAFFVS_KEY_ID,STAFFVS_DATA_NAME_L,STAFFVS_DATA_NAME,STAFFVS_DATA_DEPT,' ||
 'STAFFVS_DATA_JOB,STAFFVS_DATA_YRS',
 '')
 CARDINALITY 10000);

You can then modify the UDTF arguments in the generated SQL, such as the following options:

• Use the CONDITION parameter to add a WHERE predicate
• Use the TRACE parameter to send trace information to the server

The following example shows these modifications:

SELECT "STAFFVS_DATA_NAME","STAFFVS_DATA_DEPT","STAFFVS_DATA_JOB","STAFFVS_DATA_YRS"
 FROM TABLE("TSUSER"."AVZS_STAFFVS"
 ('WHERE STAFFVS_DATA_YRS > 5',
 'AVZS...STAFFVS',
 '7,STAFFVS_KEY_ID,STAFFVS_DATA_NAME_L,STAFFVS_DATA_NAME,STAFFVS_DATA_DEPT,' ||
 'STAFFVS_DATA_JOB,STAFFVS_DATA_YRS',
 'TRACE(BUILDINFO,SQL,STATS)')
 CARDINALITY 10000);

Db2 federation nicknames for distributed environment
Data Virtualization Manager studio supports the integration and creation of Db2 federation nicknames for
virtual tables in a Db2 distributed environment.

The Db2 LUW 11.5.4 installer includes the JDBC driver as a part of the installation. This simplifies the
process of plugging into various IBM offerings; Db2 database family, IBM Cloud Pack for Data, IBM Cloud
Pack for Data as a service, and stand-alone IBM public Cloud offerings. To know more about nicknames in
the federated system, refer working with nicknames.

This functionality:

• Connects to any Db2 Linux based environment that is configured with Data Virtualization Manager.
• Supports insert/update/delete operations on nicknames.
• Supports the use of predicates on the nicknames or views.
• Supports the creation of multiple nicknames using parallelism (MRC).

Creating nicknames
Create a Db2 federation nickname to enable the Db2 views created on Data Virtualization Manager virtual
tables query data in a Data Virtualization Manager server using the JDBC driver.

Before you begin
Ensure that the following tasks are completed before configuring a nickname:

• Configure the Db2 Linux instance with Data Virtualization Manager by adding the required details in the
IN00 file.

• Link the credentials of the Db2 Linux instance with the specific TSO ID.

112 Using IBM Data Virtualization Manager for z/OS:

https://www.ibm.com/support/producthub/db2/docs/content/SSEPGG_11.5.0/com.ibm.data.fluidquery.doc/topics/iiyvfed_working_w_nn.html

• Enable the AVZELUWG rule to enable the Data Virtualization Manager server to connect to the Db2 Linux
instance.

• In case of Db2 Linux version that is earlier than 11.5.4, ensure that the JDBC driver jar and the
corresponding log jar files are added to the classpath. Use the echo $CLASSPATH command to view
the value of the CLASSPATH variable in a Linux environment.

Procedure
1. Select the virtual table and right-click and select Create Db2 distributed Federation Definition.
2. Enter the following details in New Nickname Definitions in DB2 Wizard.

• DB2 System: Select the Db2 LUW system on which the nicknames and view are created.
• Schema: Select the schema from the drop down list. The schema names are populated from the

selected Db2 system.
• DB2 User: Enter the name of the Db2 user. This field allows the Db2 user to create nicknames under

a different schema.

Note: The user must have appropriate permissions to perform these actions.
• Parallelism: Set the value for MRC parameter of the JDBC driver. This field determines the number

of threads executed in parallel based on the specified value. The value entered is equal to the
number of nicknames that are created in the Db2 LUW system. The default value is 4.

• Execute generated DDL in Db2: By default, this option is selected. If this option is selected, the
generated script is immediately executed against the Db2 LUW system. If this option is not selected,
the script is generated but not executed. To manually execute this script, right-click the script and
select the Execute SQL option.

• Save DDL to file: Specify the file name (a suffix of .sql) for the generated script.

– Append to file: If this option is selected and the file name that is mentioned by the user already
exists in the local machine, the generated script code is appended to the existing file. If this option
is not selected, a new file is created containing the generated script code on the local machine.

– Open file in SQL Editor: By default, this option is selected. Selecting this option makes the
generated script file to open in the SQL Editor of the Data Virtualization Manager Studio.

• Default Options: This field contains the default set of options that are needed to configure the
federation server connection. This field cannot be edited.

• Additional Options: Additional options can be added in the format parameter_name1
parameter_value1, parameter_name2 parameter_value2 and so on. For example:

DB2_MAXIMAL_PUSHDOWN ‘Y’, collating_sequence ‘Y’

• JDBC URL: Specifies the JDBC connection string that is used to connect to the Data Virtualization
Manager Server from the Federation server. This field is populated with the current active
connection.

• Driver Package Path: Specifies the path where the JDBC driver and log jars are located in the
selected Db2 LUW machine.

• Nicknames: Specifies the naming pattern for the nicknames to be created.
• View: Specifies the naming pattern of the view that concatenates all the nicknames.

3. Click Generate.
After the script is executed, it is displayed on the SQL Messages section of the SQL Results tab. You
can modify the script, if required, and execute it again.

Chapter 3. Using the studio 113

Validating SQL statements
Data Virtualization Manager studio allows you to validate SQL queries before you execute them. You can
select one or more SQL queries for validation.

About this task
You can validate the following types of SQL queries:

• SELECT queries
• INSERT, UPDATE, and DELETE queries
• Queries with parameter markers
• Queries with unnamed column

Data Virtualization Manager studio performs the following when validating the SQL queries:

• Checks syntax accuracy.
• Checks if the table name is valid. If invalid, the error message Error: Unable to process map

table_name is displayed.
• Checks if the column name is valid. If invalid, the error message Error: Invalid column reference

column_name in SQL is displayed.

You can select one or more SQL queries for validation. To validate the SQL queries, perform the following
steps in the SQL editor of the studio.

Note: Parameterized INSERT and UPDATE to a Db2 table's Graphic column on the Z system with UTF8
(IBM1208) is not supported.

Procedure
1. Select the SQL query or SQL queries that you wish to validate.
2. Right-click the selection and select Validate SQL from the context menu that appears.

Results
If the validation is successful, Validation Succeeded message is displayed. Else, appropriate error
messages are displayed.

Generating and executing SQL queries
To test SQL access to your data, generate and execute a SQL query from an existing virtual table or virtual
view.

Before you begin
To avoid fetching large result sets that are memory intensive, the Data Virtualization Manager studio
provides settings related to SQL generation and retrieval that can limit the amount of data that is actually
retrieved for a particular query execution. For more information, see “SQL preferences” on page 133.

Important: When writing SQL to access Adabas data, use caution when using the BASE_KEY in WHERE
predicates, (for example, [PARENT TABLE].BASE_KEY = [CHILD TABLE].PARENT_KEY) when
joining the parent table with a child subtable, since this will result in a table scan of the entire Adabas
file. It is recommended instead to use the CHILD_KEY (for example, [PARENT TABLE].CHILD_KEY =
[CHILD TABLE].PARENT_KEY).

Procedure
1. On the Server tab, right-click a virtual table and select Generate Query.
2. Choose from the following options:

114 Using IBM Data Virtualization Manager for z/OS:

• Yes – Generate the SQL query in the Data Source Editor and execute the query.
• No – Generate the SQL query in the SQL Editor without executing the query. The generated SQL

SELECT statement has all columns from the selected table. If the table contains a large number
of columns, to avoid enumerating the various column names you can choose all columns using the
Generate Query with * option.

3. Optional: In the SQL Editor view, modify the SQL to select only the data that you want to access. Any
ANSI compliant SQL is acceptable.

4. To view or test the data that the SQL statement returns, right-click the highlighted SELECT statement
and click either Execute SQL to view results in the SQL Results view, or Execute SQL and File results
to save the results in a .csv file.

5. Optional: To create a virtual view of the SQL, highlight the SELECT statement, right-click and select
Create a virtual view.

Results
In the SQL Results view:

• Double-click a row to view additional details about that row.
• Select the Export Result Set view option to export the SQL results to a .csv file.
• Click SQL Messages to view query-related system messages.

By default, if a result set includes 25 or more columns, each set of 25 columns are displayed
incrementally as groups. You can choose which group you want to view using the Columns Group field.
You can set the number of columns that you want to include in each group, ranging from 25-200, in the
Columns per group field.

To change how SQL results display in the SQL Results view, see “Data Virtualization Manager
preferences” on page 130.

What to do next
After the SQL statement is generated, you can perform any of the following tasks:

• Modify the SQL to meet your needs
• Execute the SQL to test and view the resulting data
• Create virtual views to join data or include missing columns
• Generate a SQL class to get access to data from your programs or applications

Generating code from SQL
Use the Code wizard to generate the code that is used to get SQL access to data from your programs or
applications.

Before you begin
The virtual table or virtual view that maps to the data that you want to access must already exist on the
server.

Procedure
1. To launch the Code wizard from the Server tab, right-click the virtual table or virtual view and select

Generate Code From SQL.
Alternatively, to compose and execute your SQL query directly from a selected SQL statement in the
editor, right-click on the selected SQL statement and select Generate Code From SQL.

2. On the SQL page, accept or change the file name that will be used to store the generated code.
3. Select from the following query options and click Next:

• Use Selected View – Creates a simple query. This is the default setting.

Chapter 3. Using the studio 115

• Compose the SQL Statement – Selects all table columns and displays the resulting SQL statement.
If necessary, you can choose to modify the resulting SQL statement before continuing to the next
step.

4. On the SQL Result Set page, review the result set and optionally rename variables, and click Next.
5. On the Code Generation page, choose the programming language that you want to use to generate the

SQL:

• Java JDBC Class
• Java Spark Application
• Scala Jupyter Notebook
• Scala Spark Application
• Python Jupyter Notebook
• VB.NET Class
• C# Class
• Other (Specify XSLT file)

Note: The generated Scala Jupyter Notebook code provides a simple starter program showing you
how to use the JDBC driver to load data into a Spark application. The wizard does not allow SQL
parameter markers for this application type.

6. To finish generating the code, complete one of the following options:

• If you did not choose the Scala Jupyter Notebook option, click Finish.
• If you did chose the Scala Jupyter Notebook option, complete the following fields and click Finish:

Field Action

Jupyter Kernel Name Enter the name of the kernel to use.

Include additional Jars
in the Generated Code

Select to include additional JAR files when generating the code. This
setting is optional and is only available after you set the Generate Code
preferences to include additional Jar files.

Leave credentials
blank (use IOCTL)

Select to use the IOCTL command call.

Use the pandas API
- Only for Python
Notebook

If you select Python Notebook, the dialog displays this option that let's you
use the pandas API.

Credentials processing
in generated code

Select from the following credential processing options:

• Omit password text – the generated code will contain *** for the
password variable, and will need to be updated manually.

• Use password text – the password is included in the generated code in
hashed format.

• Use INI file – if this option is chosen, you must also specify the INI data
set name to indicate that the DSN section in the INI file contains the
user and password settings. Click Sample to generate and reference a
sample INI file on your local system. This file must be available on the
host where Jupyter Spark is running.

Preferences Click Preferences to review the default settings for code generation.

Results
The generated code is saved in your workspace and is accessible from the studio Client tab. The resulting
file opens and can be modified in the editor if the Scala Jupyter Notebook option was not selected.
Otherwise, the resulting file can be uploaded to Jupyter using the Jupyter Web UI.

116 Using IBM Data Virtualization Manager for z/OS:

Updating the IMS child segments
This section describes the conditions when you can insert, update or delete a child segment using
the RECORD_ID and the PARENT_ID parameters, and contains the information on SEGMENT_RBA and
PARENT_RBA columns

RECORD_ID: This field is the key feedback area from the DLI call for a target segment, and contains the
sequence field information for all segments from the root segment to the target segment accessed. Note
that if any segment in the path does not have a sequence field, identifying information for those segments
is not included.

PARENT_ID: This field is the hex form of the RECORD_ID for a parent segment, and does not include the
sequence field of the target segment.

CHILD_ID: This field contains the hex key to the child record if it has a child record.

A child segment can be inserted only if a unique sequence field is present in the child segment's direct
parent and all parents in the upward hierarchical path to the root (including the root). If any segment
in the hierarchical path does not have a unique sequence field, unambiguously positioning on the direct
parent segment for the segment to be inserted is not possible and the segment cannot be inserted.

While inserting a child segment, either the RECORD_ID or the PARENT_ID parameter must be provided as
one of the insert values. This column is used to position on the correct parent segment in the database
while inserting the new child segment. The RECORD_ID parameter can only be used if all sequence fields
up the hierarchical path contain character data (i.e., no integers or packed fields).

The following example shows insertion of child segments using the RECORD_ID parameter.

INSERT INTO PART_DI21PART_STAININFO(STANKEY, PROCUREMENT_CODE, MAKE_SPAN, RECORD_ID)
VALUES('13', '09', 100, '02AN960C1 ');

The following example shows insertion of child segments using the PARENT_ID parameter.

INSERT INTO PART_DI21PART_STAININFO(STANKEY, PROCUREMENT_CODE, MAKE_SPAN, PARENT_ID)
VALUES('13', '09', 100, 'F0F2C1D5F9F6F0C3F1F040404040404040');

The RECORD_ID parameter can be used to qualify the segment instance that is to be updated or deleted
only if all the sequence fields (i.e., from the root segment down to and including the target segment) are
of type character. If not, the PARENT_ID must be used to qualify the parent of the segment and the key of
the segment to update must also be provided in the WHERE clause.

The following example shows deletion of elements using the RECORD_ID parameter.

DELETE FROM PART_DI21PART_STAININFO WHERE
RECORD_ID = '02AN960C10 08'

The following example shows deletion of elements using the PARENT_ID parameter.

DELETE FROM PART_DI21PART_STAININFO WHERE
PARENT_ID = 'F0F2C1D5F9F6F0C3F1F040404040404040' AND STANKEY = '08'

SEGMENT_RBA and PARENT_RBA columns:

PARENT_ID and CHILD_ID columns created for IMS virtual tables are based on the information available
in the PCB key feedback area. Segments that are descendants of parents with no sequence fields or
duplicate sequence fields do not contain enough information to perform SQL joins between parent
and child segments. To support join operations in these situations, the columns SEGMENT_RBA and
PARENT_RBA can be optionally generated as a BIGINT value containing the physical address of a
segment and its parent in the database.

The SEGMENT_RBA column is added to all IMS-Direct maps and the PARENT_RBA column is added to
all maps for non-root IMS segments. The value in these columns is the RBA position of the prefix for the
segment (and parent segment) in the VSAM/OSAM dataset containing the segment data.

If DBCTL is selected to access the data instead of IMS-Direct, these columns return 0.

Chapter 3. Using the studio 117

The SEGMENT_RBA and the PARENT_RBA columns are added to IMS-Direct tables after PARENT_ID and
CHILD_ID columns are added during system startup or map refresh time if the following conditions are
met:

1. The virtual table is defined for IMS-Direct access.
2. The system parameter SQLGENIMSDIRBACOLS is set to YES in the IN00 file.

Parameter name Parameter description Defaul
t value

Update Output
only

SQLGENIMSDIRRBACOLS SQL GEN IMS-DIRECT RBA COLUMNS.
For IMS-DIRECT enabled virtual tables,
this parameter generates SEGMENT-RBA
or PARENT-RBA BIGINT columns to return
the physical RBA positions of the source
segment and its parent.

YES NO

Note: IMS data update via a secondary index is not supported unless they index the root and the data
used for the index comes from the root.

Accessing IT Operational Analytics data
To access, analyze, and report IT Operational Analytics (ITOA) data, generate the SQL from ITOA virtual
tables.

When you configure the Data Virtualization Manager server, you have the option to include pre-defined
data maps that administrators can use to access the following types of ITOA data:

• IBM System Management Facilities files (SMF)
• Operations Log files (OPERLOG_SYSLOG)
• System Log files (SYSLOG)

After you have configured the Data Virtualization Manager server to use ITOA pre-defined data maps, you
can generate the SQL that is used to access ITOA data from the ITOA virtual tables.

For information about configuring access to operational analytics data with pre-defined data maps, see
"Configuring access to SMF data for IT Operational Analytics" in the Installation and Customization Guide.

Accessing SMF data
Use SMF virtual tables to get SQL access to data in System Management Files (SMF).

About this task
When accessing data in SMF files, you use predefined virtual columns that are defined in the SMF virtual
table map.

When using SMF log streams, you can use the following virtual columns to retrieve timestamp values:
LS_TIMESTAMP

Timestamp for log stream in GMT. When used in a WHERE predicate, the timestamp is searched in
GMT.

LS_TIMESTAMP_LOCAL
Timestamp for log stream in local time zone. When used in a WHERE predicate, the timestamp is
searched as local time.

To get SQL access to SMF data, complete the procedure that follows.

Procedure
1. From the Server view, expand SQL > Data > SSID > Virtual Tables.

118 Using IBM Data Virtualization Manager for z/OS:

2. Right-click the SMF virtual table or view from which you want to access the data.
3. Right-click Generate Query, and then review the resulting SQL statement. If necessary, you can

modify the statement to meet your needs. The following shows a sample SQL statement:

-- --- Name : SMF_00000
-- This statement will return all rows and all columns from the
-- following table:
-- Name : SMF_00000 : null
-- Catalog : null
-- Schema : DVSQL
-- Remarks : DATA - SMFDATA
-- Tree Location: rs28/1200/SQL/Data/VDBS/Virtual Tables/SMF_00000
-- The sql statement:
SELECT SMF_LEN, SMF_ZERO, SMF_FLAG, SMF_RTY, SMF_TIME, SMF_SID, SMF_SSI,
 SMF_STY, SMF_SEQN, SMF0JWT, SMF0BUF, SMF0VST, SMF0OPT, SMF0RST, SMF0RSV,
 SMF0OSL, SMF0SYN, SMF0SYP, SMF0TZ, SMF0MSWT, SMF0MTWT
FROM SMF_00000 LIMIT 1000;

4. Optional: Execute the SQL statement to view, test, or save the resulting data.

What to do next
Get the code to use in your programs and applications by creating a SQL class from the virtual table.

Viewing documentation
Use the Browse Documentation option to view the detailed documentation available for the SMF virtual
tables, columns in the SMF virtual tables, the SMF sub-tables, and the columns in the SMF sub-tables.

Before you begin
Ensure that the server started task PROC has the following DD name:

//AVZSHDOC DD DISP=SHR,DSN=hlq.SAVZHDOC

About this task
The following steps will explain how to view the documentation for the SMF virtual tables, columns in the
SMF virtual tables, the SMF sub-tables, and columns in the SMF sub-tables.

Procedure
Expand the SQL > Data > SSID node, where SSID is the name of your server.
To view documentation for the SMF virtual table.

• Select the SMF Virtual Table, right-click the virtual table, and then click Browse Documentation to
view the documentation.

To view documentation for the columns in the SMF virtual table.

• Expand the SMF virtual table, right-click the required column and then select Browse Documentation.

To view the documentation for the sub-tables.

• Right-click the sub-table and then click Browse Documentation.

To view the documentation for the columns in the SMF sub-table.

• Expand the sub-table, right-click the required field and then select Browse Documentation.

To view the documentation for the SMF virtual table where Browse Documentation feature is not
available.
a) Right-click the SMF virtual table where Browse Documentation feature is enabled and then click

Browse Documentation.
The documentation page appears.

b) Click Documentation Index.

Chapter 3. Using the studio 119

List of all the SMF virtual tables along with the links to their respective documentation appears.
c) Select the SMF virtual table for which you want to view the documentation.

Accessing Db2 unload data
Using existing Db2 virtual table definitions, you can issue SQL queries against your Db2 sequential unload
data sets.

Before you can access your Db2 unload data using your Db2 virtual tables, you must configure access
to the Db2 sequential unload data set. This access is configured using a virtual table rule. VTB rule
AVZMDLDU is provided to demonstrate redirecting a Db2 virtual table to a Db2 unload data set. For
information about setting up access, see "Configuring access to Db2 unload data sets" in the Installation
and Customization Guide.

After you have performed the configuration steps, you can generate the SQL that is used to access the
Db2 unload data using your existing Db2 virtual tables.

As an example, consider a virtual table named DSNA_EMPLOYEES that maps the EMPLOYEES table in
Db2 subsystem DSNA. With the virtual table rule that specifies the Db2 unload data set enabled, you can
query an unload sequential dataset named EMPLOYEE.UNLOAD.SEQ by issuing the following query:

SELECT * FROM MDLDU_DSNA_EMPLOYEES__EMPLOYEE_UNLOAD_SEQ

The rule performs the necessary steps to access the unload data set directly.

The following restrictions and considerations apply when using this feature:

• SQL access to Db2 unload files is limited to SQL queries only.
• The columns in the Db2 virtual table definition must exactly match the table unloaded in Db2.

Creating RESTful services
Use IBM z/OS Connect Enterprise Edition and Data Virtualization Manager Web Services to fully leverage
the value of your mainframe data without requiring application developers to be familiar with mainframe
systems. Data integration using Web Services makes your mainframe data accessible to new digital
technologies through fast, simple, and secure APIs.

You can use the Data Virtualization Manager studio to create RESTful services to access all Db2
objects such as Db2 tables, views, stored procedures, and user-defined table functions (UDTFs). When a
RESTful API requests mainframe data, z/OS Connect communicates the request to the Data Virtualization
Manager server using the WebSphere Optimized Local Adapter (WOLA). The Data Virtualization Manager
server executes the requested Web Service to get and return the data to z/OS Connect as objects.

This environment includes the following components:

• Data Virtualization Manager server – Provides mainframe data access to RESTful APIs through z/OS
Connect. The Data Virtualization Manager server executes the specified Web Service to get the
requested mainframe data and converts and returns that data as objects.

• IBM Data Virtualization Manager studio– Use the z/OS Connect Configuration Wizard to generate
the Data Virtualization configuration and connection settings that will be included in the z/OS Connect
Server.xml file. Use the Web Services wizard to create a Web Service and to define the operations
required to get the mainframe data.

• z/OS Connect – Enables RESTful API access to existing backend z/OS mainframe services and
applications. Routes the data processing requests from a mapped URL of a specific application to the
Data Virtualization Manager server.

• WOLA – Provides external access to the internal local communications component of the WebSphere
server.

• IBM WebSphere (web server) – Interfaces with remote applications to get data requests over HTTP,
REST, and TCP/IP and communicates those requests to the z/OS Connect server.

120 Using IBM Data Virtualization Manager for z/OS:

Getting started
Start the IBM Data Virtualization Manager studio and connect to the Data Virtualization Manager server
that will host the Web Services to begin creating Web Services and operations, including:

Setting REST z/OS Connect Web Services preferences
Save your preferred settings to use when invoking and executing a Web Service request for z/OS Connect.

REST via z/OS Connect
To set Web Services preferences, complete the following:

1. From the Window menu, select Preferences.
2. On the Preferences page, expand Data Virtualization and expand Web Services.
3. Select REST via z/OS Connect.
4. Complete the following fields:

• Service Provider URL(s) – For each service provider, click New and enter the URL of the z/OS
Connect server that you want to use to launch REST via z/OS Connect related actions and click OK.
For example: https://<host>:<port>/12346/dvs. If multiple URLs are entered, the URL of the Data
Virtualization Manager server that is currently connected is used.

• Max Records Parameter – Enter the maximum number of records that you want returned. The
default value is 20.

• Prompt user before executing generated query – Enable this option if you want to prompt users
before executing a generated query using REST via z/OS Connect. By default, after generating
a query the query is automatically executed and the generated REST URL is displayed in a web
browser.

Note: Ensure that your z/OS Connect server is up and running. For more information on how to
configure z/OS Connect for Data Virtualization Manager, refer solution.

5. Click Apply.
6. Click OK.

Connecting to z/OS Connect
Run the z/OS Connect Configuration Wizard to create the XML fragments used to connect the Data
Virtualization Manager server to your z/OS Connect environment.

Before you begin
If you are using RACF, in order for the z/OS Connect server and the Data Virtualization Manager server
to connect and function properly, CBIND resource classes are required. For more information, see “RACF
CBIND resource classes” on page 123.

About this task
The z/OS Connect Configuration Wizard is used to provide the z/OS Connect systems programmer with
the Data Virtualization information to include in the z/OS Connect server.xml file. If you do not have all
of the information that the wizard prompts you to enter, you can choose to exclude that information from
being generated. Completing this wizard is optional.

Procedure
1. To start the z/OS Connect Configuration Wizard, in the Studio Navigator click z/OS Connect

Configuration.

Chapter 3. Using the studio 121

https://%3chost%3e:%3cport%3e/12346/dvs

2. The z/OS Connect Configuration page displays the default IBM Data Virtualization Manager for z/OS
service provider settings. You can choose to complete the following Data Virtualization configuration
fields (all blank fields are optional):
Section Fields

HTTP Endpoint Enter the following Data Virtualization Manager server HTTP endpoint port
numbers to use when connecting to a z/OS Connect server:

• HTTP Port
• HTTPS Port

Exclude this fragment: If you already have the HTTP endpoint settings
configured in a server.xml file or if you do not know the HTTP port numbers,
you can choose to exclude this information from being generated.

WOLA Enter the names to use to identify a specific z/OS Connect instance or a
region in which to connect. To identify a Data Virtualization Manager server
on a z/OS Connect instance, enter the following information:

• Register Name: Identifies a specific path between the Data Virtualization
Manager server and a z/OS Connect instance. The name must be unique
and it must match the RNAME parameter name that is defined in the Data
Virtualization Manager server IN00 file.

• WOLA Group Name: The name of the WOLA group to use. The name must
be unique and it must match the WNAME parameter name that is defined in
the Data Virtualization Manager server IN00 file.

Security SAF Group: Enter the z/OS Connect SAF group name.

Exclude this fragment: If you already have the SAF group name configured
in the z/OS Connect server.xml file or if you do not know the name, you
can choose to exclude this information from being generated.

3. Click Finish.
Review the results that display in the XML Editor and make any necessary modifications. You can
copy XML fragments from the generated server.xml file into the z/OS Connect server.xml file. You can
also choose to export and send the generated server.xml file to the appropriate z/OS Connect systems
programmer. The following shows the results of a sample server.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!--
Sample z/OS Connect Server Configuration for the DVS Service Provider.
This is not a complete server.xml file. It contains several XML sections
that you can copy and paste into your actual server.xml file on the host.
-->
<server>
<!--
HTTP Endpoint Details
-->
<httpEndpoint httpsPort="12346" httpPort="12345"
 host="*" id="defaultHttpEndpoint"/>
<!--
Enable SAF Security with Group Name (ZCONUSER)
-->
<webAppSecurity allowFailOverToBasicAuth="true"/>
<safRegistry id="saf"/>
<safAuthorization id="saf2"></safAuthorization>
<zosconnect_zosConnectManager globalInvokeGroup="ZCONUSER"
 globalOperationsGroup="<!--
Adapter Details with WOLA Group Name (RDVWOLA)
-->
<zosLocalAdapters wolaName3="NAME3" wolaName2="NAME2"
 wolaGroup="RDVWOLA"/><!--
 DVS Service Details with Register Name (DVSR1)
 -->
 <zosconnect_zosConnectService invokeURI="/dvs"
 serviceDescription="" serviceRef="dvsService" serviceName="dvsService"
 id="zosConnectDvsService"/>

122 Using IBM Data Virtualization Manager for z/OS:

 <usr_dvsService invokeURI="/dvs" serviceName="DVSS1"
 registerName="DVSR1" connectionFactoryRef="wolaCF" id="dvsService"/>
 <connectionFactory jndiName="eis/ola" id="wolaCF">
 <properties.ola/>
 </connectionFactory>
 <zosconnect_zosConnectService serviceRef="svc1"
 serviceAsyncRequestTimeout="600s" serviceName="dvs1" id="sdef1"/>
 <zosconnect_localAdaptersConnectService connectionWaitTimeout="7200"
 connectionFactoryRef="wolaCF" serviceName="DVSS1"
 registerName="DVSR1" id="svc1"/>
<zosconnect_zosConnectManager id="dvsy1" requireSecure="false" requireAuth="true"
preserveJsonObjectPayloadOrder="true" asyncRequestTimeout="600s"/>
</server>

Note:

Do not use /dvs for a base path name while creating APIs in the IBM Data Studio. This causes a conflict
as /dvs is used as the invokeURI attribute for the service provider on zcEE.

What to do next
You can now begin creating the Web Services components using the studio wizards.

RACF CBIND resource classes
If you are using RACF, in order for the z/OS Connect server and the Data Virtualization Manager server to
connect and function properly, CBIND resource classes are required.

Either a generic or discrete CBIND resource definition is required, as follows:

• For a generic definition, use a CBIND class of BBG.WOLA.wolaGroup.** with UACC(READ).
• For a discrete definition, use a CBIND class of BBG.WOLA.wolaGroup.wolaName2.wolaName3 with
UACC(READ).

The default values for wolaName2 and wolaName3 are NAME2 and NAME3, respectively, and are defined
in the ZCONNECTPWNAMEX parameter. If an existing zcEE server already exists with specified values for
wolaName2 and wolaName3, you must change the values in ZCONNECTPWNAMEX to those values.

Creating target systems
Create a target system on the Data Virtualization Manager server that the Web Services operations will
use to map to mainframe resources.

Before you begin
Before creating the target system, you must know the name of the code page to use and the type of target
system to create.

Procedure
1. On the Server tab, expand Services > Target Systems and click Create Target System.
2. On the Target Systems page, identify the target system to use by completing the following:

• Name – Enter a unique name for the new target system.
• Connection– Select the SQL92 connection type.
• CCSID – Accept the default mainframe 1047 CCSID or use the drop-down list to select a different

mainframe value.
3. Click Finish.

On the Server tab, the new target system displays under the Target Systems folder.

Chapter 3. Using the studio 123

What to do next
After creating a target system, you can create Web Services directories that are used to identify the PDS
on the mainframe where the metadata libraries exist.

Creating Web Services directories
You create Web Services directories to identify the Partitioned Data Set (PDS) on the mainframe where
the metadata libraries exist.

Before you begin
To create a Web Service directory, you need the following:

• The URL path name that is used to access Web Services.
• The mainframe high-level qualifier to use.
• The name of the microflow library to use. This microflow library is being created for future use.
• All the necessary security authorization to perform updates to the metadata libraries.

Procedure
1. On the Server tab, expand Services > Web Services and select Create Directory.
2. On the Web Services Directories page, complete the following:

• Name – Enter a unique name to identify the Web Services directory on your local machine. You
cannot use this name when creating new Web Services within the directory. For example, if
you name your directory "MyWebServices" you cannot name a Web Service within that directory
"MyWebServices." This directory is used when generating files that reside on your local machine. No
files or file structures will be created on the mainframe.

• High Level Qualifier– Enter a high level qualifier to use as a data set prefix when creating,
verifying, or editing the metadata library on the mainframe that is associated with this Web Services
directory. By default, the data set name containing the Web Service and operations is hlq.MMAP. If
this library does not already exist, it will be created.

• Supported Protocols– Select the default REST via z/OS Connect or SOAP protocol which will be
used by the Web Services in this directory.

• Advanced

– URL Path – To explicitly define the mainframe metadata library, enter the URL name in the text
box. This is a data set where the metadata for all components contained within the library will be
stored. For example, /ZCEE/.

– Metadata Library – Accept the default metadata library that displays or enter the name of a
specific metadata library. For example, hlq.servername.MMAP.

3. Click Next.
4. On the Microflow Library page, under the list of Current Microflow Libraries select a library to use or

click Create New Microflow Library and complete the following fields:

• Library Name – Enter a unique library name.
• Library Dataset – Enter the data set name to use.

5. Click Finish.
The new Web Services directory displays on the Server tab under the Web Services folder.

What to do next
You can now begin creating Web Services and operations.

124 Using IBM Data Virtualization Manager for z/OS:

Creating Web Services and operations
You create Web Services and operations that are used to get the RESTful API requested mainframe data
and to transform the data into objects.

Before you begin
Before creating a Web Service, you need to know the name of the virtual table or virtual view that will
be used to generate the SQL statement. You must also identify or verify the Data Virtualization Manager
server service provider URLs to use to launch REST via z/OS Connect related actions (for details, see
“Setting REST z/OS Connect Web Services preferences” on page 121).

Procedure
1. On the Server tab, expand Services > Web Services.
2. Expand the Web Services directory where you want the Web Service to reside and double-click

Create Service.
3. On the Web Services page, enter a unique name for the new Web Service and click Next.
4. To add a new operation to the Web Service, on the Web Service Operation Type page, select Data

Integration (REST via z/OS Connect or SOAP) and click Next.
5. In the Browse SQL Metadata box, select the virtual table or virtual view to use when generating the

SQL statement and click Next.
6. On the SQL page, accept the default Name and Description fields or enter a new name or description.
7. In the SQL Statement text box, accept or modify the SQL statement that displays and click Next.

Note: RESTful URIs use GET operation for SELECT statements and POST operation for INSERT,
UPDATE, and DELETE statements.

8. In the SQL Inputs page, you can define the inputs to the SQL statements.
9. On the SQL Results Set page, verify that the results are correct and make any necessary

modifications.
10. Click Finish.

The Web Service operation details display in the Web Service Operation Editor. If necessary, modify
the details in the editor.

11. To validate your Web Service complete the following:

• Right-click the operation in your new Web Service and select z/OS Connect REST Interface >
Refresh to synchronize your new Web Service with the service provider.

• Right-click the operation in your new Web Service and select z/OS Connect REST Interface >
Execute Query to test the new Web Service in a web browser.

12. Optional: To test the Web Service, right-click the new operation or the new Web Service and click
Open in Tester. Choose one of the following test options:

• Default: use the default test settings.
• Create New: create a new test group that you can name and configure.
• Select an existing test group.

13. Optional: To create a .sar file, on the Server tab, right-click on the Web Service operation and click
Create z/OS Connect SAR File(s). The file is saved to your workspace and is available from the
zOSConnect folder on the Client tab.

You can use this SAR file to create a service and deploy it using integration platforms such as IBM
Explorer.

What to do next
To continue adding more operations under this Web Service group, click Create New Operation and
repeat the steps starting at step 5.

Chapter 3. Using the studio 125

Web services migration
Use the AVZSCMG1 member that is located in your hlq.SAVZCNTL data set as a sample JCL for migrating
web services.

For information about the available parameters in the AVZSCMG1 member, see “Sample JCL- Web
Services Migration” on page 17.

Server Trace
Use the Server Trace view to record and view Data Virtualization Manager server messages.

In the Server Trace view, you can perform the following tasks:

To collect and view diagnostics for the client, run the Gather Diagnostics wizard, which saves the
information to a .zip folder.

Enabling studio calls in the Server Trace results
To include studio trace calls in your Server Trace results, enable the DV Data Enable Server Tracing of
Studio Calls preference.

Before you begin
You must be able to connect to the Data Virtualization Manager server from which you want to collect
trace information.

Procedure
1. From the Window menu, select Open Preferences > DV Data.
2. To enable tracing, select the Enable Server Tracing of Studio Calls check box. Enable Server Tracing

of Studio Calls is enabled by default.
3. In the studio HTTP Debug Option drop-down list, select one of the following HTTP debug options:

Field Action

Off Do not collect HTTP messages. All trace activities are deactivated, including
interactive tracing.

Normal Commands that complete with a failure status are traced after execution, including
the return codes.

All All instructions are traced before execution.

Commands All commands are traced before execution. Return codes are also traced for
commands that complete with an error or failure status.

Error Commands that complete with error status are traced after execution, including the
return codes.

Failure Commands that complete with a failure status are traced after execution, including
the return codes.

Intermediates All instructions are traced before execution. All terms, intermediate results, and
substituted variable names are traced during expression evaluation. The final results
of any expression that is evaluated also displays. Values assigned by arg, parse, or
pull instructions are also traced.

Labels Shows all labels when executed.

Results All instructions are traced before execution. The final result of any expression that
is evaluated also displays. Values assigned by arg, parse, or pull instructions are
also traced.

126 Using IBM Data Virtualization Manager for z/OS:

Starting Server Trace
Start tracing Data Virtualization Manager server records in the Server Trace view.

Before you begin
Before running Server Trace, you must be able to connect to the Data Virtualization Manager server from
which you want to collect the trace information.

Procedure
1. From the Studio Navigator view, on the Common Tools tab, click Server Trace.
2. To start tracing, click Play (the blue arrow).

The Server Trace table displays trace records.
3. Optional: To view message details, double-click the message and the details are displayed on the

Server Trace Zoom page.
You can also choose to search for specific details within the message.

Filtering Server Trace results
Use the Profile option to filter the records that display in the Server Trace view.

Before you begin
You must be able to connect to the Data Virtualization Manager server from which you want to filter trace
information. You can set filtering criteria before or after you run a Server Trace. Your most current filtering
selections are automatically saved as your default filtering profile.

Procedure
1. On the Server Trace view, click Profile.
2. On the Server Trace Profile page, enable the fields that you want to include in the results.
3. For each enabled field, click Add to further filter your results. You can either select from the values

that are displayed or enter the value when prompted.
4. Click OK to save changes to your profile and to apply the profile to the results in the Server Trace

table.

What to do next
Use the Display option to select and sort columns that display in the filtered table. You can also choose to
export the trace results.

Using Server Trace Zoom
Use Server Trace Zoom view to view Server Trace message details.

Before you begin
Server Trace must be running before you can open the Server Trace Zoom view.

Procedure
1. In the Server Trace view, double-click the message for which you want to view details.
2. In the Server Trace Zoom view, view message details and choose from the following options:

Field Action

Previous Click Previous to search for the previous occurrence of the text string entered.

Chapter 3. Using the studio 127

Field Action

Next Click Next to search for the next occurrence of the text string entered.

Search Click Search and enter a search string. To search for the next occurrence of the text string,
click Search again.

Close Click Close to close the search dialog.

Searching Server Trace messages
You can search Server Trace message results for a particular text string or message ID.

Before you begin
You must start the Server Trace before you can begin searching within the resulting Server Trace
messages.

Procedure
1. On the Server Trace view, click the drop-down menu, and select Search.
2. On the Search page that is displayed, in the From section, select one the following options to specify

how to search within the results:
Field Action

First Search for the first occurrence of the text string.

Last Search for the last occurrence of the text string.

ID Search starting from the message ID you enter.

3. In the For field, enter the text string to use for searching within the message control blocks. Text
strings cannot include spaces or special characters, and wild card searches are not supported.

4. Select Previous to find previous occurrences of the text string, or select Next to find the next
occurrence of the text string.

5. Click Search to begin the search.

What to do next
View messages that meet the search criteria in the Server Trace view.

Labeling Server Trace messages
Create labels to bookmark server trace messages that you frequently access.

Before you begin
You must start the Server Trace before you can begin labeling messages.

Procedure
1. In the Server Trace view, right-click the message that you want to label and select Add Label.
2. On the Message Label dialog, enter text for the Label and click OK.
3. Optional: In the Labels view, double-click the label to locate the message in the Server Trace view.

128 Using IBM Data Virtualization Manager for z/OS:

Exporting Server Trace messages
Use the Server Trace view to export server trace messages as either ISX or CVS files.

About this task
You can limit the number of messages that you can export into a file by setting the Server Trace export
size limit on the Admin preferences page.

Procedure
1. In the Server Trace view, from the drop-down menu, select Export.
2. Under Export Type, select one of the following message export options:

Field Action

Summary Exports the following minimum message information:

• Message ID
• Date
• Time
• User ID
• Message text

Full Exports all available message information and all data about that message
including:

• Message ID
• Date
• Time
• User ID
• Message text
• Zoom

Comma
Separated Format

Exports all table information to a CVS file. This file type cannot be imported for
viewing in the Server Trace view.

3. Under Export Content, select one of the following message content options:
Field Action

Message ID Range Select a range of messages to export by entering the first message ID in
From, and the last message ID to include in To.

Transaction ID Exports only those messages with the RRS transaction ID value that you
specify.

Global Transaction ID Exports only those messages with the RRS global transaction ID that you
specify.

Connection ID Exports only those messages that are associated with a specific client that is
currently connected to the server.

Message ID List Lists message IDs. This option is only available if the Full export type option
is selected.

4. Click Next.
5. On the Export File page, click Browse to specify a file name and export location.
6. Click Finish.

Chapter 3. Using the studio 129

Importing Server Trace messages
To import and view Server Trace messages, use the Import File Viewer tab.

Before you begin
Server Trace must be running before you can import a file.

Procedure
1. In the Server Trace view, click the Import File Viewer tab and click Import.
2. Navigate to the ISX file that you want to import.
3. Double-click the ISX file. Messages and message details display on the Import File Viewer tab.
4. Optional: To view more details about a message, right-click on the message and select Zoom.
5. Optional: To change how the messages display, click Display.

DV Data preferences
Preferences allow you to customize several IBM Data Virtualization Manager for z/OS settings.

To view preferences, from the Window menu, select Open Preferences > DV Data.

Data Virtualization Manager preferences
Use Data Virtualization Manager preferences to set preferences such as general session and SQL results
settings.

General Data Virtualization Manager preferences are identified and described in the table that follows.

Field Description

Enable Server Tracing of Studio Calls Includes the studio trace calls in your server trace results.
This setting is enabled by default.

Studio HTTP Debug Option The studio type of debug option to be used. The default
setting is Normal.

Studio Fixed Width Font Determines the font, font style, and font size that displays in
studio. The default setting is Courier New-regular-9.

Hex Encoding Sets the Hex encoding to use. The default setting is UTF-8.

File Encoding Determines the file encoding setting to use. The default
setting is windows-1252.

CSV File Delimiter Determines the type of file delimiter to use for CSV files. The
default setting is a comma (,).

New Connection (DSN) Naming Pattern Determines the naming pattern to use when new connections
are made. The default setting is {SubSystem}.

Studio Connection Timeout (secs) The number of seconds to wait before a server connection is
determined to be unsuccessful. The default setting is 10.

Studio Operation Timeout (secs) The number of seconds to wait before determining that the
studio operation is unsuccessful. The default setting is 30.

Studio Remote Control Port The port number that the studio uses for remote connections.
The default setting is 31416.

130 Using IBM Data Virtualization Manager for z/OS:

Field Description

Use UPPER case logon credentials for
both JDBC and HTTP connections

Select this check box to require that logon credentials use
uppercase characters for JDBC driver and HTTP connections.
This setting is enabled by default.

For systems that have mixed-case password support, you
must clear this check box and add the following statement
to your hlq.SAVZEXEC(AVZSIN00) file:

"MODIFY PARM NAME(PASSWORDCASE) VALUE(ASIS)"

Admin preferences
Use Admin preferences to set the maximum number of Server Trace messages that you want to export
and to enable the tracing of Data Virtualization Manager studio calls in the Server Trace view.

Admin preferences are identified and described in the table that follows.

Field Description

Server Trace export size limit Sets the maximum number of messages to export. The
default value is 5000. Specifying a value greater than 5000
can cause a MAX CPU TIME EXCEEDED error to occur.

Enable tracing of Studio Calls in Server
Trace View

Includes studio trace calls in your Server Trace results. This
setting is disabled by default.

Code generation preferences
Use Code Generation preferences to customize how your code is generated.

Code Generation preferences are identified and described in the table that follows.

Field Description

Jupyter Kernel Name The name of the kernel to use as defined in your Jupyter
configuration.

Jupyter Kernel Name Identifies any additional JAR files that are not yet defined in
the Spark configuration and that are required at runtime. The
URL, file://, or http:// naming format must be used. For
example, you can add the following required JDBC driver JAR
files:

• file:///opt/dv-jdbc/dv-jdbc-3.1.201608041929.jar
• file:///opt/dv-jdbc/log4j-api-2.6.2.jar
• file:///opt/dv-jdbc/log4j-core-2.6.2.jar

INI Filename (as credentials store) The INI file name that serves as your credentials store. The
default setting is blank ().

INI Data Set Name (DSN) The INI file name to use for DSN. The INI file name that you
choose to enter can contain multiple credentials. The DSN
name is used to identify each set of credentials. For example,
you could use the mainframe userid in the DSN name. The
default setting is blank ().

Chapter 3. Using the studio 131

Console preferences
Use Console preferences to view or modify console display settings.

Console preferences are identified and described in the table that follows.

Field Description

Fixed width console Enable to specify a maximum number of characters to display
in the console. This setting is disabled by default.

Maximum character width: If Fixed width console is
enabled, enter the maximum number of characters to display
in the console. The default is 80 characters.

Limit console output Enable to limit the console buffer and entry sizes by setting
the maximum number of characters permitted:

• Console buffer size (characters). The default setting is
80000.

• Console entry size limit (characters). The default setting is
500.

Dictionary preferences
Use Dictionary preferences to add or delete reserved words in dictionaries, and add or delete dictionaries
based on the languages being used.

Dictionary preferences are identified and described in the table that follows.

Field Description

Dictionary Lists the default dictionaries. You can add new dictionaries to
the list or delete existing dictionaries from the list.

Reserved word Lists reserved words for each dictionary. You can add new
words to the list or delete existing words from the list.

Driver preferences
Use Driver preferences to enable JDBC driver tracing and to specify the default location of the driver
configuration files.

Driver preferences are identified and described in the table that follows.

Field Description

Enable Tracing Enables tracing for the JDBC driver. If you change this option,
you must restart the IBM Data Virtualization Manager studio
to complete the change. This setting is disabled by default.

Note: You can also access data sources that are stored in
other configuration files, by adding those configuration files
from the Client view.

Default DSN Config File Specifies the default location of the DSN file. This file is used
to store the JDBC connection definitions that are generated
for use in the Active Connections view.

132 Using IBM Data Virtualization Manager for z/OS:

Field Description

Connection Overrides To override the connection settings that the IBM Data
Virtualization Manager studio uses when it creates JDBC
connection definitions, specify a single name-value pair or a
semicolon-delimited list to be used. The default setting is a
blank field ().

SQL preferences
Use SQL preferences to specify settings related to SQL query generation, the SQL Results view, and SQL
metadata retrieval.

SQL preferences are identified and described in the table that follows.

Field Description

SQL Generate Query Behavior Determines whether you are prompted to execute SQL or if
SQL executes automatically. Options include:

• Generate query and issue user prompt. This is the default
setting.

• Generate and execute query (no prompt)
• Generate query but do not execute query (no prompt)

SQL Results Max Rows Maximum number of rows to return in the SQL Results view.
The default value is 1000.

SQL Results Max Bytes Maximum number of data bytes to return in the SQL Results
view. The default value is 1000000.

SQL Results values accessed as Specifies how data values are returned. Options include
String or Object. The default setting is String.

DB2 CARDINALITY in generated UDTF
query

Specifies the cardinality value for the CARDINALITY clause
that is included in generated UDTF queries. Using the
CARDINALITY clause can improve the performance of queries
with UDTF references. The default value is 10000. Specifying
0 omits the CARDINALITY clause from the generated query.

Use prepared statement to retrieve
SQL column info for DB2 or DRDA
tables

The IBM Data Virtualization Manager studio obtains column
metadata information from the server for Db2 and DRDA
tables and views when you expand a table or view node under
the Other Subsystems tree in the Server view, or in other
situations where column information needs to be retrieved.

The IBM Data Virtualization Manager studio supports two
different ways of retrieving this column metadata information:

• Using a prepared statement. Typically, this server call will
be faster; however, this option requires that the user have
SELECT privileges to the table in the remote database. This
method is the default and will be used when this preference
is selected.

• Using the JDBC getColumns() API. This method is the
more conventional approach; however, in some cases (for
example, Oracle), the remote DRDA subsystem may take a
long time to process the metadata query. This method will
be used when this preference is cleared.

Chapter 3. Using the studio 133

Field Description

Fetch primary key and index
information for virtual tables

If this preference is selected, then when you expand a virtual
table or view in the Server view, any primary key or indexed
column nodes will be identified. This identification process
requires the IBM Data Virtualization Manager studio to make
additional metadata calls to the server. To disable these
calls and the associated identifications, you can clear this
preference and thus speed up the time taken to populate the
column nodes. This preference is selected by default.

Fetch primary key and index
information for DB2 or DRDA tables

If this preference is selected, then when you expand a
table or view node under the Other Subsystems tree in
the Server view, any primary key or indexed column nodes
will be identified. This identification process requires the
IBM Data Virtualization Manager studio to make additional
metadata calls to the server (and subsequently to the remote
database). In some cases, these additional calls may be
rather expensive (for example, Oracle). To disable these
calls and the associated identifications, you can clear this
preference to speed up the time taken to populate the
column nodes. This preference is cleared by default.

Metadata Discovery preferences
Use Metadata Discovery preferences to define settings for the WebSphere Application Server that hosts
IBM Rational Asset Analyzer (RAA).

When using RAA to access VSAM or sequential data sets for COBOL applications, complete COBOL layout
information that is required to map data is not available in the Db2 database. The mapping wizard uses a
RESTful HTTP query to collect record layouts when data is mapped. While this query can be done directly
to the Data Virtualization Manager server for data in PDS files, the preferred method to collect COBOL
information is to retrieve record layouts directly from the WebSphere Application Server that hosts RAA.

Metadata Discovery preferences are identified and described in the table that follows.

Field Description

RAA REST Root URL Location of the RAA WebSphere Application Server. For
example: https://<host>:<port>

Alternate User ID User ID for the RAA WebSphere Application Server. You can
leave this field blank if the credentials are the same as those
used to connect to the current Data Virtualization Manager
server (using Set Server).

Alternate Password Password for the RAA WebSphere Application Server user ID.
Specify a value in this field only if a user ID has been specified
in the Alternate User ID field.

SSL preferences
Use SSL preferences to secure JDBC and HTTP network communications between the IBM Data
Virtualization Manager studio and the Data Virtualization Manager server.

SSL preferences are identified and described in the table that follows.

134 Using IBM Data Virtualization Manager for z/OS:

Field Description

Use SSL for Studio-Server
communications (JDBC and HTTP)

Enables secure JDBC and HTTP network communications
between the IBM Data Virtualization Manager studio and the
Data Virtualization Manager server.

If enabled, select the Protocol version to use for
communications between the IBM Data Virtualization
Manager studio and the Data Virtualization Manager server.

The default setting is TLS 1.2.

Server Authentication Select the authentication strategy to use:

• Require Server Validation: Enable to require that all Data
Virtualization Manager server certificates be authenticated
and complete the following fields:

– Truststore: The path name of the file on the local
machine. The file must contain the Data Virtualization
Manager server certificate authority (CA).

– Password: The password for the truststore file.
– Type: The truststore file type. For example, JKS, PKCS12,

BKS, UBER.
• Allow Self-Signed Certificates: Enable to allow the Data

Virtualization Manager server to use self-signed certificates
and complete the following fields:

– Truststore: The path name of the file on the local
machine. The file must contain the self-signed server CA
(certificate authority) certificate.

– Password: The password for the truststore file.
– Type: The truststore file type. For example: JKS, PKCS12,

BKS, UBER.
• Trust All: Enable to allow all Data Virtualization Manager

server certificates. If enabled, the IBM Data Virtualization
Manager studio does not validate the server certificate.

The default setting is Require Server Validation.

Client Authentication To enable client authentication by the Data Virtualization
Manager server, select Enable Client Authentication and
complete the following fields:

• Keystore: The path name of the file on the local machine.
The file must contain a client certificate which has been
signed by the server CA.

• Password: The password for the keystore.
• Type: The keystore file type. For example: JKS, PKCS12,

BKS, UBER.
• Alias: To confirm that the password is valid and that the

alias (label) appears, click Refresh.

This setting is disabled by default.

Chapter 3. Using the studio 135

Exporting a virtual table to Software management configuration
provider

Data Virtualization Manager allows you to export a Virtual Table (VT) to any Software management
configuration (SCM) provider. Data Virtualization Manager Studio includes Jgit library, which is an Eclipse
Distribution License based Java library, to provide APIs for implementing Git version control system. JGit
supports repository access routines, version control features, and network protocols.

Before you begin
Configure an SSH key for the remote Git repository using the passphrase same as the password that is
used to connect to Data Virtualization Manager. The SSH private key must be available in the default
ssh keys directory user.home/.ssh/id_rsa. Data Virtualization Manager uses the SSH private key as
credentials along with the passphrase while executing any Git APIs that need the credentials to be
passed.

Procedure
1. Expand the SQL > Data > SSID node, where SSID is the name of your server.
2. Expand Virtual Tables.
3. Right-click the virtual table that you want to export and click Export TO SCM.
4. Provide the local GIT repository path in Local Repository Path and click Next.
5. Confirm the changes in the preview window.
6. Click Finish. The created XML files is exported to the GIT repository.

Exporting a virtual view to a Software management configuration
provider

With Data Virtualization Manager, you can export a Virtual View (VV) to any Software management
configuration (SCM) provider. Data Virtualization Manager Studio includes JGit library, which is an Eclipse
Distribution License based Java library, to provide APIs for implementing Git version control system. JGit
supports repository access routines, version control features, and network protocols.

Before you begin
Configure an SSH key for the remote Git repository using the passphrase same as the password that is
used to connect to Data Virtualization Manager. The SSH private key must be available in the default
ssh keys directory user.home/.ssh/id_rsa. Data Virtualization Manager uses the SSH private key as
credentials along with the passphrase while executing any Git APIs that need the credentials to be
passed.

Procedure
1. Expand the SQL > Data > SSID node, where SSID is the name of your server.
2. Expand Virtual Views.
3. Right-click the virtual view that you want to export and click Export to SCM.
4. Provide the local Git repository path in the Local Repository Path and click Next.
5. Confirm the changes in the preview window.
6. Click Finish.

Results
The created XML files are exported to the Git repository.

136 Using IBM Data Virtualization Manager for z/OS:

Runstats function
Use the Runstats function to analyze or troubleshoot an SQL query or find out statistics about the data
that is stored in the target database table. The SQL engine uses the statistics that Runstats gathers
to determine the access path to the stored data. Runstats works on all the data sources that Data
Virtualization Manager supports.

Overview of the Runstats function
The Runstats function updates statistics in the system repository about the characteristics of a table
and statistical views. These characteristics include the number of records, number of pages, and average
record length. The optimizer uses these statistics to determine access paths to the data.

Runstats collects and stores the statistics within the global variable NODE : GLOBAL9 , SUBNODE; STAT.
The RUNSTATS – DISPLAY option lets you meaningfully retrieve the statistics.

Note: With ADABAS, the Runstats function has the following limitations:

• The ADABAS S1 call on an ADABAS virtual table that has MapReduce enabled returns an error code 7
when the time exceeds the maximum search time that is set by the TLSCMD parameter.

• The Runstats function with the display option (RUNSTATS – DISPLAY) might not work.

Statistics collected by the Runstats function
• Total number of values in a particular column.
• Total number of distinct values in a column.
• Percentage distribution of unique values.
• Metadata about the table and columns.

Prerequisites to use Runstats
You require READ or SELECT access on the data sources where you want to use the Runstats function.

Using the Runstats function
Run the following command to collect the data statistics using the Runstats function:

SELECT RUNSTATS (‘<Virtual_Table_Name>’, ‘RUNSTATS-OPTIONS’);

You can use the following Runstats options:

RUNSTATS – RESET
Resets the previous statistics and restarts the collection of the data.

RUNSTATS – CLEAR
Deletes the collected Runstats data statistics.

RUNSTATS – DISPLAY
Displays the collected Runstats data statistics.

RUNSTATS – DB2STAT
Collects only the DB2 data statistics.

RUNSTATS – CATALOG
Collects the data statistics from the catalog data.

RUNSTATS – NOVDEC
Enables the NOVDEC flag that trims all the trailing and leading spaces from the characters and zeroes
from the numbers.

RUNSTATS – NOHASH
Enables the NOHASH flag.

Note: The options are case-sensitive.

Chapter 3. Using the studio 137

Example of Runstats with the RESET option on a VSAM file system:

select RUNSTATS('ZIPCODES','RESET');

Output:

RUNSTATS processed for ZIPCODES

Example of Runstats with the DISPLAY option on a VSAM file system:

select RUNSTATS('ZIPCODES','DISPLAY');

Output:

Statistics for table ZIPCODES, number of rows = 29467, average row length = 0
Total Unique PCT Name
29467 29467 100.00 ZIP
29467 16698 56.66 CITY
29467 51 0.17 STATE
29467 19001 64.48 POPULATION
29467 29459 99.97 LOC_X
29467 29435 99.89 LOC_Y

Example of Runstats with the RESET option on IMS:

select RUNSTATS('IMS_FLOOR_DEP','RESET');

Output:

RUNSTATS processed for IMS_FLOOR_DEP

Example of Runstats with the DISPLAY option on IMS:

select RUNSTATS('IMS_FLOOR_DEP','DISPLAY');

Output:

Statistics for table IMS_FLOOR_DEP, number of rows = 100007, average row length = 0
Total Unique PCT Name
100007 100007 100.00 DEP_KEY
100007 100006 99.99 DEP_KEY_NUMBER
100007 3 0.00 DEP_KEY_SUFFIX
100007 100007 100.00 RECORD_ID
100007 100005 99.99 PARENT_ID
100007 100007 100.00 CHILD_ID

Data Virtualization Manager support for NaturalONE version 9
Data Virtualization Manager supports NaturalONE version 9 (v9) by giving an option to generate a local
stored procedure file that you can use with a compiler on another system.

NaturalONE v9 does not contain compilers on the mainframe servers. When you use Data Virtualization
Manager to create a stored procedure using NaturalONE v9, the files are created but the compilation fails
on the mainframe server.

Data Virtualization Manager now lets you create a local natural stored procedure (.NSP) file when you
create a new virtual stored procedure that you can use with a compiler on a different system.

In the Data Virtualization Manager studio, when you create a virtual stored ACI procedure using the
Create Virtual Stored Procedure dialog box, in the ACI panel, ensure that you select Save Stub as .NSP.
When you run this step, a Stub Generation Results panel is displayed that contains the information about
the location of the .NSP file. After the process completes, the .NSP file opens in the Data Virtualization
Manager Studio.

If you use any other version of NaturalONE, you can generate a local .NSP file and compile it using a
different compiler.

138 Using IBM Data Virtualization Manager for z/OS:

About virtualizing large Db2 columns
Easily query large, single Db2 columns by using COBOL copybook mapping layouts to map the Db2
columns to virtual tables.

With Data Virtualization Manager, you can create virtual Data Virtualization Manager tables that map a
large, single Db2 column using a COBOL copybook or a PLI include file. When you query the virtual table,
the single Db2 column is read and split into separate columns based on the original data mapping layout
that is described in the copybook.

Data Virtualization Manager optimizes queries by matching the generated column names for the copybook
structure with the column names in the Db2 table. When the column names match, the WHERE clauses of
the columns referenced in the copybook virtual tables are automatically included in the WHERE clauses
that are passed to retrieve data from the Db2 table.

For more information, see “Using COBOL copybook map layouts to virtualize large Db2 columns” on page
139.

Considerations
• The Db2 fixed character columns are limited to 254 bytes therefore, COBOL or PLI layouts greater than

254 bytes must be stored in Db2 as a LONG VARCHAR column. In these cases, the COBOL or PLI layout
to map the VARCHAR must include a 2 byte binary length field as the first data item in the structure. If
the layout does not include this data item, then the layout needs to be modified to ensure the correct
alignment of the data.

• SQL UPDATE is supported, but SQL INSERT and DELETE statements are not supported unless the
COBOL or PLI layout uses subtables and the insert or delete request is for a subtable instance. Insert
and delete requests requiring an insert or delete of a Db2 row must use the virtual table mapped to the
DB2 table instead of the virtual table mapped from the COBOL copybook or PLI include file.

• Db2 virtual tables are limited to a single link to a COBOL or PLI metadata table. If a DB2 table requires
multiple links to a COBOL or PLI layout, then create separate Db2 virtual tables with unique table names
for each link.

Using COBOL copybook map layouts to virtualize large Db2 columns
Virtualize your large Db2 columns using COBOL copybook mapping layouts to create virtual Data
Virtualization Manager tables.

About this task
Use the following steps in the Data Virtualization Manager studio to create a Data Virtualization Manager
virtual table using a COBOL copybook or a PLI include file mapping layout and link the metadata map to
the Db2 column:

Procedure
1. For the Db2 table that contains the large column, right-click and select Create Virtual Table (s).
2. From the Virtualization Facility > Cobol, select Create Metadata and then select and download the

appropriate COBOL library.
A metadata map for the COBOL copybook or PLI include file is created.

3. Right-click the Db2 column and select Link Db2 Column to Metadata Map. Select the appropriate
values for Db2 Column Name and Metadata Map.
The COBOL or PLI metadata map is linked the Db2 column.

Results
The Db2 column is available as a virtual table. You can query the virtual table that reads the Db2 column
and splits the Db2 column data in fields using the COBOL copybook mapping layout.

Chapter 3. Using the studio 139

Related information
“About virtualizing large Db2 columns” on page 139
Easily query large, single Db2 columns by using COBOL copybook mapping layouts to map the Db2
columns to virtual tables.

140 Using IBM Data Virtualization Manager for z/OS:

Chapter 4. Using JDBC Gateway
The JDBC Gateway is a Data Virtualization Manager distributed application server that allows direct
connectivity to JDBC 4.0 data sources. The use of another federation server is not required.

Data sources
The JDBC Gateway solution is designed to work with any JDBC 4.0 compliant database. The following
combinations of JDBC databases and drivers have been tested and verified to be supported by the JDBC
Gateway:

• Hadoop 2.9.2 with the Hive 2.0 standalone JDBC driver
• Oracle 12 using the Oracle Thin Driver, version 6
• PostgreSQL version 11.1 using the JDBC driver version 42.2.5
• Greenplum versions 5.x and 6.x are supported using the JDBC driver.

Note:

1. The degree of JDBC compliance can vary across different driver vendor implementations and versions.
In some cases, there may be interoperability problems when trying to use a particular JDBC driver to
access a particular DBMS.

2. In PostgreSQL, it is recommended not to use double quotes for the table names or the column names
in the CREATE script. Using double quotes will make the identifier as case sensitive and result in a
failed query if exact match is not given.

3. Greenplum database support has the following limitations:

• If there is a TEXT column or a BYTEA column in the Greenplum database, then Data Virtualization
Manager is unable to create a virtual table.

• Insert and update functions on boolean are not supported.
• The character_data and yes_or_no data types are not supported.

Getting started
Use the following procedure to access your first data source using the JDBC Gateway:

1. Install the JDBC Gateway. See Installing JDBC Gateway.
2. Start the JDBC Gateway server. See “Starting the JDBC Gateway server” on page 142.
3. Launch the JDBC Gateway administrative console in a supported browser using the following URL:

http://host:port/gateway

See “Launching the JDBC Gateway administrative console” on page 143.
4. In the JDBC Gateway administrative console, perform the following steps:

a. Determine the port that the JDBC Gateway will use for listening for incoming DRDA requests. You
can review or change the port using the Server Status area of the JDBC Gateway administrative
console. See “Using the JDBC Gateway administrative console” on page 143.

b. Set up access to the data source by performing the following tasks:

i) Locate and add JDBC driver information for the data source. See “Adding JDBC driver
information for a data source” on page 145.

ii) Create a data source definition entry, specifying the location name, driver, URL and user
information. See “Creating a data source definition entry” on page 147.

5. In the Data Virtualization Manager server, set up access to the data source by performing the following
tasks:

© Copyright IBM Corp. 2017, 2022 141

a. Register the connection to the JDBC Gateway by entering the location, host and the port for the
data source.

b. Enable the SEF rules and set global variables for the data source.

For information about these tasks, see “Configuring the Data Virtualization Manager server for JDBC
Gateway sources” on page 148.

6. Use the Data Virtualization Manager studio to create virtual tables and views from the JDBC data
source, just as you do for other supported sources, such as VSAM or IMS.

Starting the JDBC Gateway server
Start the JDBC Gateway server so that you can connect directly to JDBC data sources.

Before you begin
The JDBC Gateway must be installed. See Installing JDBC Gateway.

About this task
Use the following procedure to start the JDBC Gateway server.

Information about the startup and additional activity of the JDBC Gateway is available in the Java Console
and in the following log file:

home_dir_for_user_profile\Application Data\IBM\JDBC Gateway\log\jetty.out

Procedure
1. At a command prompt in the JDBC Gateway installation directory, run one of the following commands:

• For Windows:

startServer.cmd
• For Linux or Unix:

chmod 775 startServer.sh

./startServer.sh

Information about the startup process is displayed using the following format:

Using settings file: home_dir_for_user_profile\Application Data\IBM\JDBC Gateway\Settings\jgate.properties
Server is starting. It will be available on: http://localhost:port
Server process ID: processID
See home_dir_for_user_profile\Application Data\IBM\JDBC Gateway\log\jetty.out for server status
information.

2. Wait for the JDBC Gateway server startup process to complete, which is indicated by the following
message in the jetty.out log file:

date time : JGATE Server started and ready to accept connections on port port_number

3. Optional: To stop the JDBC Gateway server, run the following command in the JDBC Gateway
installation directory:

• For Windows:

stopServer.cmd
• For Linux or Unix:

chmod 775 stopServer.sh

./stopServer.sh

142 Using IBM Data Virtualization Manager for z/OS:

Results
The JDBC Gateway server has been started and is ready for use. Information about the activity of the
JDBC Gateway is available in the Java Console and in the log files.

What to do next
Start the JDBC Gateway administrative console. See “Launching the JDBC Gateway administrative
console” on page 143.

Launching the JDBC Gateway administrative console
Launch the JDBC Gateway administrative console so that you can configure connections to JDBC data
sources.

Before you begin
The JDBC Gateway server must be installed and active. See Installing JDBC Gateway and “Starting the
JDBC Gateway server” on page 142.

About this task
Use the following procedure to start the JDBC Gateway administrative console.

Only a single user (web client) can access the JDBC Gateway administrative console at a time.

Note: The JDBC Gateway does not require an external web application server. It contains its own Jetty
web application server.

Procedure
1. In a web browser, launch the JDBC Gateway administrative console using the following URL:

http://server:port/gateway

where:

• server is the machine name or address where the JDBC Gateway server is running
• port is the port specified during the installation
• gateway is the gateway specified during the installation

2. Enter the Username and Password specified during installation.

The JDBC Gateway administrative console launches.

Results
The JDBC Gateway administrative console is running and ready for use. Information about the activity of
the JDBC Gateway is available in the Java Console and in the log files.

What to do next
Configure access to data sources in the JDBC Gateway and the Data Virtualization Manager server. See
“Configuring access to data sources using the JDBC Gateway” on page 144.

Using the JDBC Gateway administrative console
Use the JDBC Gateway administrative console to create and manage your data source definitions.

Before you begin
The JDBC Gateway must be installed, the JDBC Gateway server must be active, and the JDBC Gateway
administrative console must be launched. See Installing JDBC Gateway.

Chapter 4. Using JDBC Gateway 143

Procedure
Use the JDBC Gateway administrative console to create and manage your data source definitions. The
following table describes the areas of the default JDBC Gateway view:
Field/Element Action

Add New Data
Source

Click this button add a new data source. For details, see “Creating a data source
definition entry” on page 147.

Location

JDBC URL

Displays a list of defined data sources. Select an entry to display properties and
location information.

• Location: Location name of the data source.

Note: This value corresponds to the LOCATION parameter defined for the data
source in the Data Virtualization Manager server.

• JDBC URL: The URL that points to the data source.

Server Status Displays and controls the JDBC Gateway server status and the DRDA listener
port.

• Status: JDBC Gateway server status. Click Start or Stop to control the server.
• Port: The port on which the JDBC Gateway is listening for incoming DRDA

requests. Click Edit to change the port number. This setting also allows you
to control whether the server is started automatically when the JDBC Gateway
startServer script is run.

Note: This port value will be used when adding a JGATE database definition
statement to the Data Virtualization Manager server configuration file
(AVZSIN00).

Location
Information

Displays the following details for selected data source entry:

• Domain: Domain name of the JDBC Gateway.
• Location: Name of the target data source.
• Port: Port on which the JDBC Gateway is listening for incoming DRDA requests.

Note: These values will be used when adding a JGATE database definition
statement to the Data Virtualization Manager server configuration file
(AVZSIN00).

Click Test Connection to test the connection to the data source. If you have
specified any information incorrectly you will not be able to connect.

Configuring access to data sources using the JDBC Gateway
Configure access to JDBC data sources that will be accessed using the JDBC Gateway.

To configure access for a data source, you must complete the following steps:

1. Add the compliant JDBC driver for the data source to the JDBC Gateway. See “Adding JDBC driver
information for a data source” on page 145.

2. Create the data source definition entry in the JDBC Gateway, specifying the location name, driver, URL,
and user information. See “Creating a data source definition entry” on page 147.

3. Configure the Data Virtualization Manager server for the data source. See “Configuring the Data
Virtualization Manager server for JDBC Gateway sources” on page 148.

144 Using IBM Data Virtualization Manager for z/OS:

Adding JDBC driver information for a data source
Add JDBC driver information to the JDBC Gateway.

Before you begin
The JDBC Gateway must be installed, the JDBC Gateway server must be active, and the JDBC Gateway
administrative console must be launched. See Installing JDBC Gateway.

About this task
The JDBC Gateway requires a compliant JDBC driver for each data source to be accessed. You must
locate and add JDBC driver information for each data source. The driver files must be accessible to the
JDBC Gateway. The JDBC Gateway retains the defined JDBC driver information, and you would only
repeat this specification process to add new drivers or make changes to the properties of an existing
driver.

In preparation for this task, obtain the following driver information for the data source from the data
source vendor or from the driver documentation:

• Driver class name. For example: org.postgresql.Driver
• Driver JAR files
• URL format. Each data source type has a unique URL format that is used to access the data and is
specific by vendor. For example, for Postgres: jdbc:postgresql://{host}:{port}/{database}

To add JDBC driver information to the JDBC Gateway, using the JDBC Gateway administrative console,
you will define the driver library for the data source, and then add the driver files to the library. Use the
following procedure to add JDBC driver information for a data source.

Procedure
1. In the JDBC Gateway administrative console, select Preferences > JDBC Libraries.

The following table describes the areas of the page:

Area Description

JDBC driver libraries JDBC driver libraries that are already set up. Use
the search bar to quickly locate information in the
table.

Driver files JAR files associated with selected driver library.

Details Additional information about the selected driver
library

2. Add a driver library by performing the following steps:
a) Click the Add Driver button.
b) In the Add New Driver Library window, provide the following information:

Field Action

Enter new library name Enter a name for the library. The JDBC driver
information for each type of database is
organized by libraries. It is recommended that
the name that you specify describes the JDBC
information that will be included in the library.
For example, if you are adding JDBC driver
information for accessing Postgres databases,
you might call the library Postgres. However,
this is a descriptive field and can include any
text.

Chapter 4. Using JDBC Gateway 145

Field Action

Driver class name Specify the actual name of the driver class that
will be used. This information can be found in
your JDBC driver documentation. For example:
org.postgresql.Driver

URL templates Optional: Specify a generic example of
a correctly formatted URL that could
be used to connect to the database.
For example, if you are adding JDBC
driver information for accessing Postgres
databases, you might specify the following
JDBC URL template: jdbc:postgresql://
{host}:{port}/{database}. The generic
information as specified in the template is
presented when you are adding data sources,
where you will replace the generic information
with the specific database information.

Note: The Validate and JDBC Driver Properties options are not applicable until the driver files
have been added.

c) Click OK.
3. Add JDBC driver files to the library by performing the following steps:

a) Click the Add Driver Files button.
b) In the Add Files dialog, click Add and specify the path to the JDBC driver files to add.
c) Click OK.

4. Optional: Update JDBC driver information as follows:

• To edit the JDBC driver library information, validate the drivers, or add connection keywords, select
an existing JDBC driver library from the list and click Edit Driver. The Edit Driver Library window
opens where you can make changes to the library name, class name, and URL templates. You can
also use the Validate option to validate the driver files, and the JDBC Driver Properties option to
enter driver-specific connection keywords.

• To remove a JDBC driver library, select an existing JDBC driver library from the list and click Remove
Driver. The library, including all the JAR files that it contains, is removed.

• To remove a JAR file from a JDBC driver library, select an existing file from the list and click Remove
Driver File. The file is removed.

5. Click OK.

Results
The JDBC driver information is saved.

Note: You must repeat this process for each JDBC driver that will be used to access a data source type.

What to do next
Create the data source definition entry, specifying the location name, driver, URL, and user information.
“Creating a data source definition entry” on page 147.

146 Using IBM Data Virtualization Manager for z/OS:

Creating a data source definition entry
Configure the JDBC Gateway for access to data sources.

Before you begin
The JDBC Gateway must be installed, the JDBC Gateway server must be active, and the JDBC Gateway
administrative console must be launched. See Installing JDBC Gateway.

Also, the compliant JDBC driver should be added to the JDBC Gateway. See “Adding JDBC driver
information for a data source” on page 145.

About this task
Use the following procedure to create a data source definition entry. This data source definition entry is
made in the JDBC Gateway administrative console and is used for access to the data source by the JDBC
Gateway.

Procedure
1. In the JDBC Gateway administrative console, click the Add New Data Source button.
2. In the JDBC Gateway dialog, complete the following fields.

Field Action

Location Enter the location name. A valid value is a string 1 - 16 characters. For
example: ORCL.

Note: This value must match the LOCATION value that will be specified for the
corresponding data source definition in the Data Virtualization Manager server
configuration file.

Connection
Parameters

Enter the JDBC connection information, as follows:

• JDBC Driver: Specify the library for the JDBC driver that will be used to
access the data source. Select a library from the drop-down list, or click
the ellipsis (…) option to the right of the field to open the Select JDBC
Driver dialog where you can create additional JDBC driver libraries. (For
more information, see “Adding JDBC driver information for a data source” on
page 145.)

• JDBC URL: Specify the URL that points to the data source to which you want
to connect. The format for the URL can be displayed in the drop-down list if a
JDBC URL template was supplied when the driver was configured.

Note: You can also use the Build URL by URL-Template dialog box to form
the correct string. Click Build URL to open the Build URL by URL-Template
dialog box. From the JDBC URL drop-down list, select the template. In the
table, specify the server, port, and database information and click OK. The
result URL string is added to the JDBC URL list. This feature is available if a
JDBC URL template was provided when the driver was configured.

• Advanced: Click Advanced to specify any driver-specific connection string
keywords and their values that will be used for the data source. The list
of available advanced properties will change depending on both the type
of driver being used, and the version of the driver. For information on
any keywords that are required by a selected database driver, see the
documentation for the driver.

Set User
Information

Click Set User Information to provide authorization information used when
accessing the data source. Provide the following information on the User
Information dialog:

Chapter 4. Using JDBC Gateway 147

Field Action

• User ID and password are required: Select this option to require the use of
a user ID and password when accessing the data source. If the data source
allows access without a user ID and password, selecting this option will
override that allowance.

• Allow users to save password: Select this option to allow users to save
passwords.

• Allow users to change password: Select this option to allow users to change
passwords. (Note: This option is for Db2 only.)

• User name and Password: Specify the user ID and password that will be
used to access the data source. The user ID and password that you specify
when connecting to the data source are used to authorize the user.

Test Connection Click Test Connection to test the connection to the data source. If you have
specified any information incorrectly, you will not be able to connect.

3. Click Finish.

Results
The connection to the data source is validated. If successful, the data source location is added to the list
of available data sources.

What to do next
Configure the Data Virtualization Manager server for the JDBC Gateway source.

Configuring the Data Virtualization Manager server for JDBC Gateway
sources

Configure the Data Virtualization Manager server for use with the JDBC Gateway.

Before you begin
Configure access to the data source using the JDBC Gateway. See “Creating a data source definition
entry” on page 147.

About this task
To use the JDBC Gateway to connect to your data source, the following changes must be made to the Data
Virtualization Manager server:

• The DEFINE DATABASE TYPE value must be set, as follows:

"DEFINE DATABASE TYPE(JGATE Datasource)"

JGATE
DDF endpoint is the JDBC Gateway.

Datasource
Optional

You can select HIVE, MSSQL, ORACLE, POSTGRES, or TERADATA as data sources.
• Optionally, the following utility and SEF procedure can be configured in support of TYPE(JGATE):

AVZDRATH
A utility that sets encrypted passwords in GLOBALU variables. You can also use this utility to list
existing credential information.

148 Using IBM Data Virtualization Manager for z/OS:

AVZEJGAG
An ATH rule that switches credentials when connecting to a JGATE data source using DRDA. This
rule uses AES encrypted passwords stored as GLOBALU system variables.

Procedure
1. In the Data Virtualization Manager server configuration file (xVZyIN00), register the connection to the

JDBC Gateway using a definition statement, such as the following example:

"DEFINE DATABASE TYPE(JGATE datasource)" ,
 "NAME(name)" ,
 "LOCATION(location)" ,
 "DDFSTATUS(ENABLE)" ,
 "DOMAIN(your.domain.name)" ,
 "PORT(port)" ,
 "SECMEC(EUSRIDPWD)" ,
 "AUTHTYPE(AES)" ,
 "IPADDR(1.1.1.1)" ,
 "CCSID(37)"

The following table lists the parameters:

Parameter Description Valid values

AUTHTYPE Authentication type. This can be
either DES for Diffie Hellman
Encryption Standard or AES for
Advanced Encryption Standard.

When AUTHTYPE is not
supplied, the default is DES.

To force AES, the option must be
added to the DEFINE DATABASE
statement. Each server can be
different in what is supported as
to AES/DES.

Each server can be different in
what is supported as to AES/
DES.

For this setting to have effect,
you must specify a security
mechanism (SECMEC) that
requests encryption.

DES
Diffie Hellman Encryption
Standard (default value)

AES
Advanced Encryption
Standard.

CCSID Specify the EBCDIC single-
byte application CCSID (Coded
Character Set Identifier)
configured for this RDBMS
subsystem on the RDBMS
installation panel DSNTIPF,
option 7. (Optional)

Refer to the RDBMS vendor
documentation for a list of valid
CCSIDs.

DDFSTATUS The DDF activation status can
be altered online by using
the ISPF 4-Db2 dialog panels.
(Required)

ENABLE
Make this DDF definition
active.

DISABLE
DDF endpoint is not used.

Chapter 4. Using JDBC Gateway 149

Parameter Description Valid values

DOMAIN The domain name or hostname
on which the JDBC Gateway
server is running. Either
DOMAIN or IPADDR is required,
but not both.

No default value.

IPADDR The dot-notation IPV4 address
of the host on which the
JDBC Gateway server is running.
Either DOMAIN or IPADDR is
required, but not both.

If this parameter is not
specified, the value 127.0.0.1
(local host) is the default. For
group director definitions, use
the DVIPA IP address of the
group director.

LOCATION For JGATE: The location name
specified in the JDBC Gateway
data source definition entry.
See “Creating a data source
definition entry” on page 147.

(Required)

A valid value is a string 1 - 16
characters.

NAME The database name as known to
the server. (Required)

A valid value consists of 1 - 4
characters. Clients use this ID
when they request access to a
specific downstream database
server.

PORT The TCP/IP port on which
the JDBC Gateway server is
listening. (Required)

A valid 1-5 numeric string.

If this keyword is not entered,
the default DRDA port number
443 is used.

SECMEC The DRDA security mechanism
in force.

EUSRIDPWD
Encrypt the user ID and
password.

USRIDPWD
User ID and password are
sent as is. No encryption is
used.

USRIDONL
User ID is sent as is.
No encryption is used for
the user ID only (client
security).

USRENCPWD
Encrypt password only.

150 Using IBM Data Virtualization Manager for z/OS:

Parameter Description Valid values

TYPE Defines the DDF endpoint type.

JGATE
DDF endpoint is the JDBC
Gateway.

datasource
This is optional and you can
select a valid datasource as
per your requirement.

When using the JDBC Gateway,
JGATE is the valid value.

Datasource:

Valid values for the datasource
are: HIVE, MSSQL, ORACLE,
POSTGRES, and TERADATA.

2. Optional: To define alternate authentication information, use the sample job AVZDRATH to add a global
default user definition or authentication information for specific mainframe users as follows:
a) Locate the AVZDRATH member in the hlq.SAVZCNTL data set.
b) Modify the JCL according to the instructions provided in the AVZDRATH member.

When adding the SYSIN statements that define the alternate credentials for logging in to your JDBC
Gateway source, as instructed in the JCL, make sure to specify the correct DBTYPE. For JDBC
Gateway sources, specify DBTYPE=JGATE.

c) Submit the job.
d) Optional: To verify the information stored in the GLOBALU variables and list existing authentication,

use the REPORT=SUMMARY statement in the AVZDRATH member and submit the job.
e) Optional: To enter the encrypted password, enter ENCPWD = encrypted password statement in

the AVZDRATH member and submit the job.
3. Optional: If using alternate authentication information, auto-enable the SEF ATH rule

SAVZXATH(AVZEJGAG) to provide the logon credentials to each JDBC Gateway data source instance.
Global variables are used to define alternate authentication credential mapping for the SEF ATH rule.
a) On the Data Virtualization Manager server - Primary Option Menu, select option E for Rules Mgmt.
b) Select option 2 for SEF Rule Management.
c) Enter * to display all rules, or ATH to display only authentication rules.
d) Enable the rule by specifying E and pressing Enter.
e) Set the rule to Auto-Enable by specifying A and pressing Enter.

Setting the rule to Auto-enable activates the rule automatically when the server is restarted.
4. Restart the Data Virtualization Manager server.

Results
The connection between the JDBC Gateway and the Data Virtualization Manager server for the JDBC data
source has been defined.

What to do next
Use the studio to create virtual tables and views from the JDBC data source.

Encrypting Passwords in Data Virtualization Manager server using JDBC
Gateway
Encrypt password in the Data Virtualization Manager server.

Before you begin
To encrypt a password, ensure the following:

• The JDBC Gateway server must be installed and active. See Installing JDBC Gateway
• The user must have login credentials to Mainframe.

Chapter 4. Using JDBC Gateway 151

• Set ENCRPASS to ENABLE in the server to use the web interface.

About this task
Encryption of the password is a part of configuring the Data Virtualization Manager server. This section
outlines the steps to encrypt your password.

Procedure
1. In a web browser, launch the Encrypt Password console using the following URL:

 http://server:port/encryptpassword

where:

• server is the machine name or address where the Mainframe server is running.
• port is the server port.

Note: Always use SSL connection.
2. Enter the Username, Password and then click Sign in. Use your mainframe credentials. The Encrypt

Password console launches.
3. Enter the Password and then re-enter the same password. Click Generate Encrypted Password.

The Encrypted Password box displays the encrypted password.

Example: Configuring access to Oracle data
Configure the JDBC Gateway for access to Oracle data.

Before you begin
The JDBC Gateway must be installed, the JDBC Gateway server must be active, and the JDBC Gateway
administrative console must be launched. See Installing JDBC Gateway.

About this task
Use the following procedure to configure access to Oracle data.

Procedure
1. Download the Oracle Thin Driver from the Oracle website. For example, ojdbc8.jar.
2. In the JDBC Gateway administrative console, select Preferences > JDBC Libraries, and then complete

the following steps:
a) Select the row for the Driver Library Name Oracle Thin Driver in the table, and click Add

Driver Files.
b) Use the Add Files dialog to add the Oracle Thin Driver file.
c) Click OK to close the JDBC Libraries preference page.

3. Create a JDBC Gateway data source for Oracle as follows:
a) Select File > New > Other, and then in the New wizard dialog, select Data Source and click Next.
b) Complete the following fields:

Field Action

Location Enter the location name. For example, Oracle.

152 Using IBM Data Virtualization Manager for z/OS:

Field Action

Connection Parameters Enter the connection parameters:

• JDBC Driver: From the drop-down list, select
Oracle Thin Driver.

• JDBC URL: Enter the JDBC URL as
follows: jdbc:oracle:thin:@//oracle-
host:1521/ORCL

Set User Information Click Set User Information, and enter the
credentials for accessing the Oracle database,
as follows:

• User name: OracleUser
• Password: OraclePwd

c) Click Test Connection.
d) Click Finish.

4. In the Data Virtualization Manager server configuration file, register the connection to the JDBC
Gateway data source using a definition statement, such as the following example:

"DEFINE DATABASE TYPE(JGATE)" ,
 "NAME(ORCL)" ,
 "LOCATION(Oracle)" ,
 "DDFSTATUS(ENABLE)" ,
 "SECMEC(USRIDPWD)" ,
 "PORT(1527)" ,
 "IPADDR(10.26.4.125)" ,
 "CCSID(37)"
 "IDLETIME(110)"

For details about this statement, see“Configuring the Data Virtualization Manager server for JDBC
Gateway sources” on page 148.

5. In the Data Virtualization Manager server, enable rule AVZEJGAG. For more information, see
“Configuring the Data Virtualization Manager server for JDBC Gateway sources” on page 148..

Results
The following connections have been established:

• The connection from the JDBC Gateway to the Oracle data source
• The connection between the JDBC Gateway and the Data Virtualization Manager server for the Oracle

data source

What to do next
Use the studio to create virtual tables and views to access the Oracle data.

Setting preferences
The Preferences dialog is used to set user preferences and add necessary drivers.

The Preferences window consists of two panes. The left pane displays the list of preferences groups and
the right pane displays the page for the selected group. The following groups of preferences are displayed
in the Preferences window:

• JDBC Libraries
• Log
• Output

Chapter 4. Using JDBC Gateway 153

Setting JDBC driver preferences
Use the JDBC Libraries preferences to set up and manage JDBC driver information for your data sources.

About this task
You can use the JDBC Libraries preferences page to review, define or update JDBC driver information for
each type of database (such as Db2®, Informix®, Oracle) that will be accessed.

Use the following procedure to access the JDBC Libraries preferences page. For details about adding new
driver definitions, see “Adding JDBC driver information for a data source” on page 145.

Procedure
1. To access the JDBC Libraries page, select Preferences > JDBC Libraries.

All of the JDBC driver libraries that you have already set up are listed in the JDBC driver libraries
area. The JAR files associated with selected driver library are listed in the Driver files area. Additional
information about the selected driver library is displayed on the Details panel.

2. For information about adding or editing driver definitions, see “Adding JDBC driver information for a
data source” on page 145.

Setting log preferences
Use the Log page of the Preferences window to activate a log file that will track JDBC Gateway processing
information.

About this task
The log file information can be useful in debugging.

It is recommended to leave the log level at the default setting of error. Only increase the level at the
direction of IBM Software Support.

Use the following procedure to specify the log file preferences.

Procedure
1. Click Preferences > Log.
2. Check Enable log to activate the log file for debugging purposes. If this check box is selected, the log

file option fields are enabled.
3. Check one or more of the log file options to indicate what information should be gathered. It is

recommended that all options remain checked. The available log file options are as follows:

• Print stack trace for log exceptions
• Print log class and method
• Print log user token

4. Click Edit Log Categories to modify the category level.
The following levels are available: none, emergency, alert, critical, error, warning, notice,
info, debug, all.

5. Click Apply to save your preferences choices.
6. Click Restore Defaults to restore the default preference values.
7. Click OK to close the Preferences window.

You can collect the generated log file and save it as a zip file to be able to send it for IBM Software
Support.

To collect the generated log file:
8. Click Help > Collect Support Data.... In the Collect Support Data window, you can choose the option

All dates if you want all the files generated from the beginning or specify a date range.

154 Using IBM Data Virtualization Manager for z/OS:

9. Click Save Report. This will save the log file as a zip file on your local system.

Setting output preferences
You can use the Output page of the Preferences window to activate the Output view that tracks the
information about errors and connections in the JDBC Gateway.

About this task
The information from the Output view can be useful for debugging. It can be delivered as a report in the
Output view and automatically added to the log file.

Use the following procedure to specify the output file preferences:

Procedure
1. Click Preferences > Output.
2. On the Output page, you can specify the following options:

Show errors
This option displays all error texts in the Output view.

Show connection status
This option displays the statuses of connections to data sources in the Output view.

Automatically activate Output view
When an error occurs or a message appears, this option automatically opens the Output view.

3. Click Apply to save your preferences choices.
4. Click Restore Defaults to restore the default preference values.
5. Click OK to close the Preferences window.

Troubleshooting
Collect troubleshooting data to provide to technical support.

About this task
Use the following procedure to collect troubleshooting data.

Procedure
1. Set the log level to debug. See “Setting log preferences” on page 154.
2. Reproduce the issue.
3. Set the log level to the previous value.
4. Select Help > Collect Support Data.
5. Complete the fields and click Save Report.

Chapter 4. Using JDBC Gateway 155

156 Using IBM Data Virtualization Manager for z/OS:

Chapter 5. SQL DMF supported data types
This appendix contains the language-specific data definitions that are used by the Data Mapping Facility
(DMF) and shows the equivalent SQL data types that are used by IBM Data Virtualization Manager for
z/OS. It also shows the SQL data types that are supported by the different interfaces in IBM Data
Virtualization Manager for z/OS.

Adabas
Although it is not a programming language, Adabas has a file definition, created by the Adabas database
administrator, that is used to generate a map.

Table 27. Data definitions for Adabas

Data definition SQL type Host format

A - Alphanumeric SQL_Char Character

B - Binary SQL_Binary Binary

F - Fixed point Length 2 SQL_Smallint Smallint

Length 4 SQL_Integer Integer

Length 8 SQL_BigInt BigInt

G - Floating point Length 4 SQL_Float Float

Length 8 SQL_Double Float

P - Packed decimal SQL_Decimal Packed Decimal

Length 4 SQL_Date Date

Length 7 SQL_Timestamp Timestamp

U - Unpacked decimal SQL_Char Unpacked decimal

W – Wide Alphanumeric Not supported Not supported

COBOL
This topic lists the data definitions of COBOL that are used by the Data Mapping Facility (DMF) and shows
the equivalent SQL data types that are used by IBM Data Virtualization Manager for z/OS.

Table 28. COBOL data definitions used by DMF

Data definition SQL data type Host format

PIC X(30)

PIC A(30)

SQL_Char Character

PIC S9(3)V9(3)

PIC S9(3)V9(3) USAGE DISPLAY

SQL_Char Display Numeric

PIC G(30) USAGE DISPLAY-1 SQL_Graphic (SQL_Unicode) Graphic (DBCS)

© Copyright IBM Corp. 2017, 2022 157

Table 28. COBOL data definitions used by DMF (continued)

Data definition SQL data type Host format

PIC S9(_) USAGE BINARY

PIC S9(_) USAGE COMP

PIC S9(_) USAGE COMP-4

Length 1 to 4 SQL_Smallint

Length 5 to 9 SQL_Integer

Length 10 to 18 SQL_Binary

Smallint

Integer

Binary

Note: Fields with a length of 10
to 18 become SQL_BIGINT when
support for BIGINT is added.

USAGE IS COMP-1 SQL_Float Float

USAGE IS COMP-2 SQL_Double Float

PIC S9(03)V9(3) USAGE COMP-3

PIC S9(03)V9(3) USAGE
PACKED-DECIMAL

SQL_Decimal Packed Decimal

PIC S9(7)V99 COMP SQL_Decimal Signed Binary Integer

PIC 9(7)V99 COMP SQL_Decimal Unsigned Binary Integer

PIC S9(_) USAGE COMP-5

PIC 9(_) USAGE COMP-5

Length 1 to 4 SQL_Smallint

Length 5 to 9 SQL_Integer

Length 10 to 18 SQL_Binary

Smallint

Integer

Binary

Note: Fields with a length of 10
to 18 become SQL_BIGINT when
support for BIGINT is added.

Table 29. PIC S9(_) USAGE COMP-5

Picture Storage representation Numeric values

S9(1) through S9(4)

S9(5) through S9(9)

S9(10) through S9(18)

Binary half-word (2 bytes)

Binary full-word (4 bytes)

Binary double-word (8 bytes)

-32768 to +32767

-2,147,483,648 to
+2,147,483,647

-9,223,372,036,854,775,808 to
+9.223,372,036,854,775,807

Table 30. PIC 9(_) USAGE COMP-5

Picture Storage representation Numeric values

9(1) through 9(4)

9(5) through 9(9)

9(10) through 9(18)

Binary half-word (2 bytes)

Binary full-word (4 bytes)

Binary double-word (8 bytes)

0 to 65535

0 to 4,294,967,295

0 to
18,446,744,073,709,551,615

158 Using IBM Data Virtualization Manager for z/OS:

IMS - DBD (database description)
A database description defines an IMS database. To increase the available data type, merge a COBOL map
with the database description.

Table 31. Data definitions for IMS - DBD

Data definition SQL type Host format

TYPE=C - Alphanumeric SQL_Char Character

TYPE =X - Hexadecimal SQL_Binary Binary

TYPE=P - Packed Decimal SQL_Decimal Packed Decimal

TYPE=F - Binary Fullword

Note: Only valid for MSDB
databases.

SQL_Integer Integer

TYPE=H - Binary Halfword

Note: Only valid for MSDB
databases.

SQL_Smallint Smallint

Natural conversions
The table describes how Natural data types are converted to ODBC data types.

Natural ODBC

A-Alphanumeric SQL_CHAR

B-Binary (If 2 bytes) SQL_SMALLINT

(If 4 bytes) SQL_INTEGER

C-Attribute Control N/A

D-Date *SQL_DECIMAL

F-Floating Point (If 4 bytes) SQL_FLOAT (If 8 bytes) SQL_DOUBLE

I-Integer (If 1 byte) SQL_BINARY

(If 2 bytes) SQL_SMALLINT

(If 4 bytes) SQL_INTEGER

L-Logical SQL_BINARY

N-Numeric SQL_NUMERIC

P-Packed SQL_DECIMAL

T-Time *SQL_DECIMAL

Note: Although the IBM Data Virtualization Manager for z/OS Interface for ADABAS supports the
conversion of ODBC date and time to the Natural date and time format, the IBM Data Virtualization
Manager for z/OS Interface for Natural only allows the passing of the internal format for date and time (P6
and P12, respectively).

Chapter 5. SQL DMF supported data types 159

Natural DDM (data definition module)
A DDM is a file that is used to create a view of an ADABAS file. It is used to provide long column names
and to limit the view to a subset of the fields that are defined in the Adabas file.

Table 32. Data definitions for Natural DDM

Data definition SQL type Host format

A – Alphanumeric SQL_Char Character

B - Binary SQL_Binary Binary

F - Fixed point Length 2 SQL_Smallint Smallint

Length 4 SQL_Integer Integer

G - Floating point Length 4 SQL_Float Float

Length 8 SQL_Double Float

P - Packed decimal SQL_Decimal Packed Decimal

N – Unpacked decimal SQL_Char Unpacked decimal

D - Date SQL_Date

T - Time SQL_Time Not supported

SQL_Graphic Graphic (DBCS)

SQL Type Support by the IBM Data Virtualization Manager for z/OS
interface

SQL Type VSAM/
CICS VSAM

Adabas ACI SQL/IMS CICS SP IMS SP

SQL_Char X X X X X X

SQL_Numeric X X X X X X

SQL_Decimal X X X X X X

SQL_Bigint

SQL_Integer X X X X X X

SQL_Smallint X X X X X X

SQL_Float

SQL_Real

SQL_Double

SQL_Date X X

SQL_Time X X

SQL_Binary X X X X X X

SQL_Graphic X X X X X X

160 Using IBM Data Virtualization Manager for z/OS:

Chapter 6. Supported SQL functions

This chapter describes the SQL functions supported in Data Virtualization Manager for z/OS.

The JDBC and ODBC drivers has aggregation capabilities and supports parallelism for the following
functions.

• Count
• Min
• Max
• SUM
• AVG
• ORDER BY

Based on the MapReduce (MRC) value set in the driver connection properties, the driver queries the Data
Virtualization Manager in threads, aggregate the results, and display them.

Examples are used to explain some of the supported SQL functions. Following tables are used in the
examples to illustrate the SQL function outputs:

Table 33. VIRTUAL TABLE - EMPL_COMP

EMPL_ID EMPL_NAME COMPANY LOCATION UPDATED_TS

1 AKHIL TIMBER INC. NY 2019-11-26

05:39:59.454707

2 ELICA STANLEY INC. TX

3 SMITH CHROME INC. WA

1919574970 KANE

Table 34. VIRTUAL TABLE - EMPLOYEE

EMPL_NAME AGE DEPT INDUSTRY SALARY DATEOFJOIN

BUMRAH 53 SALES RETAIL 50000 2019-11-25

CEASAR 43 MARKETING RETAIL 20000

ELICA 23 CUST SUPR RETAIL 5000 2019-10-10

DEV 33 ADMIN RETAIL 25000 2019-11-27

NEWTON 53 DATA RETAIL 75000 2019-11-25

SAMUEL 43 IT BANKING 75000 2019-11-25

ELICA

Table 35. Virtual Table - EMP

EMPL_NAME AGE DEPT INDUSTRY SALARY DATEOFJOIN

DEV 33 ADMIN RETAIL 25000 2019-11-27

WAYNE 36 ADMIN RETAIL 45000 2018-11-01

© Copyright IBM Corp. 2017, 2022 161

Table 36. Virtual Table - JOIN1

ID NAME DEPT JOB YEARS SALARY COMM

999 JOHN SALES 16.99

10 MIC 20 MGR 7 98357 0.00

20 WILLIAM 20 SALES 8 78171 612.45

30 MIC 38 MGR 5 77506 0.00

40 OBRIEN 38 SALES 6 78006 846.55

Table 37. Virtual Table - JOIN2

ID NAME DEPT JOB YEARS SALARY COMM

0 SANDERS 20 MGR 7 18357

1 WILLIAM 20 SALES 8 18171 612.45

ABS
The ABS function returns the absolute value of a number.

The argument must be an expression that returns a value of any built-in numeric data type.

The arguments can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

The result of the function has the same data type and length attribute as the argument.

Notes
Syntax alternatives:

ABS should be used for conformance to the SQL standard.

Example:

The following statement returns the absolute value of the values in the SALARY column from the table
EMPLOYEE.

SELECT ABS(SALARY) FROM EMPLOYEE;

The above example returns the following:

50000
20000
5000
25000
75000
75000

AVG
The AVG function returns the average of a set of numbers.

162 Using IBM Data Virtualization Manager for z/OS:

The argument values can be of any built-in numeric data type, and their sum must be within the range of
the data type of the result.

The arguments can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

The data type of the result is determined as follows:

• DECFLOAT(34) if the argument is DECFLOAT(n).
• Large integer if the argument is small integer.
• Double precision floating-point if the argument is single precision floating-point.
• Otherwise, the result is the same as the data type of the argument.

If the data type of the argument values is decimal with precision p and scale s, the precision (P) and scale
(S) of the result depend on p and the decimal precision option:

• If p is greater than 15 or the DEC31 option is in effect, P is 31 and S is max(0,28-p+s).
• Otherwise, P is 15 and S is 15-p+s.

The function is applied to the set of values derived from the argument values by the elimination of null
values. If DISTINCT is specified, redundant duplicate values are also eliminated.

If the type of the result is integer, the fractional part of the average is lost.

Example:

The following example returns the average of values in the column SALARY in the table EMPLOYEE.

 SELECT AVG(SALARY) FROM EMPLOYEE;

The above example returns 49000.00000.

BETWEEN
The BETWEEN predicate determines whether a given value lies between two other given values that are
specified in ascending order.

Each of the predicate's two forms has an equivalent search condition, as shown in the following table:

Table 38. BETWEEN predicate and equivalent search conditions

BETWEEN predicate Equivalent search condition

value1 BETWEEN value2 AND \value3 value1 >= value2 AND value1 <= value3

Note: Might not be equivalent if value1, value2,
or value3 are columns or derived values based on
columns that are not the same CCSID set because
the clause is evaluated in Unicode.

value1 NOT BETWEEN value2 AND value3

or, equivalently:

NOT(value1 BETWEEN value2 AND value3)

value1 < value2 OR value1 > value3

Note: Might not be equivalent if value1, value2,
or value3 are columns or derived values based on
columns that are not the same CCSID set because
the clause is evaluated in Unicode.

Chapter 6. Supported SQL functions 163

If the operands include a mixture of datetime values and valid string representations of datetime values,
all values are converted to the data type of the datetime operand.

Example:

A BETWEEN B AND C

The following example returns the record where the age of an employee in the table EMPLOYEE is >50.

SELECT EMPL_NAME,AGE FROM EMPLOYEE
WHERE AGE >50

The above example returns the following.

Table 39. Between

EMPL_NAME AGE

BUMRAH 53

NEWTON 53

BIGINT
The BIGINT function returns a big integer representation of either a number or a character or graphic
string representation of a number.

Numeric to Big Integer

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned to a big integer column
or a variable. If the whole part of the argument is not within the range of big integers, an error is
returned. The fractional part of the argument is truncated.

String to Big Integer

string-expression
An expression that returns a value of a character or graphic string (except a CLOB and DBCLOB)
with a length attribute that is not greater than 255 bytes. The string must contain a valid string
representation of a number.

The result is the same number that would result from CAST(string-expression AS BIGINT).
Leading and trailing blanks are eliminated and the resulting string must conform to the rules for
forming an integer constant. If the whole part of the argument is not within the range of big integers,
an error is returned.

The result of the function is a big integer.

To increase the portability of applications, use the CAST specification.

Example 1:

164 Using IBM Data Virtualization Manager for z/OS:

The following example returns 7 from the table EMPLOYEE:

SELECT BIGINT(COUNT(*)) FROM EMPLOYEE;

CASE
The CASE statement selects an execution path based on the evaluation of one or more conditions. A CASE
statement operates in the same way as a CASE expression.

Syntax

simple-when-clause:

searched-when-clause:

Description

CASE
Begins a case-expression.

simple-when-clause
Specifies the expression prior to the first WHEN keyword that is tested for equality with the value
of each expression that follows the WHEN keyword, and the result to be executed when those
expressions are equal. If the comparison is true, the THEN statement is executed. If the result is
unknown or false, processing continues to the next expression or the ELSE statement.

The data type of the expression prior to the first WHEN keyword must be comparable to the data types
of each expression that follows the WHEN keywords.

searched-when-clause
Specifies the search-condition that is applied to each row or group of table data presented for
evaluation, and the result when that condition is true. search-condition cannot contain a fullselect. If
the search condition is true, the THEN statement is executed. If the condition is unknown or false,
processing continues to the next search condition or the ELSE statement.

SQL-procedure-statement
Specifies a statement that follows the THEN and ELSE keyword. The statement specifies the result of
a searched-when-clause or a simple-when-clause that is true, or the result if no case is true.

search-condition
Specifies a condition that is true, false, or unknown about a row or group of table data.

ELSE SQL-procedure-statement
If none of the conditions specified in the simple-when-clause or searched-when-clause are true, the
statements in the else-clause are executed.

If none of the conditions specified in the WHEN clause are true and an ELSE clause is not specified, an
error is returned at run time, and the execution of the CASE statement is terminated.

END CASE
Ends a case-statement.

Note:

If none of the conditions specified in the WHEN clause are true and an ELSE clause is not specified, an
error is returned at run time, and the execution of the CASE statement is terminated.

CASE statements that use a simple case statement WHEN clause can be nested up to three levels. CASE
statements that use a searched statement WHEN clause have no limit to the number of nesting levels.

Chapter 6. Supported SQL functions 165

Examples:

The following example assigns the experience level of 1 to employees with age <40 and the experience
level of 2 to employees with age >40 from the table EMPLOYEE.

SELECT EMPL_NAME,
CASE
WHEN AGE > 40 THEN 'LEVEL 2'
WHEN AGE < 40 THEN 'LEVEL 1'
END AS EXP_LEVEL,
FROM EMPLOYEE;

The above example returns the following:

Table 40. Case

EMPL_NAME EXP_LEVEL

BUMRAH LEVEL 2

CEASAR LEVEL 2

ELICA LEVEL 1

DEV LEVEL 1

NEWTON LEVEL 2

SAMUEL LEVEL 2

ELICA

CHAR
The CHAR function returns a fixed-length character string representation of the argument.

The syntax of the CHAR function depends on the data type of the input argument. The following types of
input arguments are accepted.

The CHAR function returns a fixed-length character string representation of one of the following values:

• An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT
• A decimal number if the first argument is a decimal number
• A double-precision floating-point number if the first argument is a DOUBLE or REAL
• A decimal floating-point number if the first argument is a DECFLOAT
• A character string value if the first argument is any type of character string
• A graphic string if the first argument is an EBCDIC or Unicode graphic string
• A datetime value if the first argument is a date, time, or timestamp
• A row ID value if the first argument is a row ID

The result of the function is a fixed-length character string (CHAR).

The result can be null; if the first argument is null, the result is the null value.

Integer to Character:

CHAR( integer-expression)

integer-expression
An expression that returns a value that is a built-in integer data type (SMALLINT, INTEGER, or
BIGINT).

166 Using IBM Data Virtualization Manager for z/OS:

The result is the fixed-length character string representation of the argument in the form of an SQL integer
constant. The result is the smallest number of characters that can be used to represent the value of
the argument, padded with blanks. The result consists of n characters that are the significant digits that
represent the value of the argument with a preceding minus sign if the argument is negative. A positive
value starts with a digit and always includes at least one trailing blank. Leading zeroes are not included.
The result is left justified:

• If the argument is a small integer, the length of the result is 6. If the number of characters in the result is
less than 6, the result is padded on the right with blanks.

• If the argument is a large integer, the length of the result is 11; if the number of characters in the result
is less than 11, the result is padded on the right with blanks.

• If the argument is a big integer, the length of the result is 20. If the number of characters in the result is
less than 20, the result is padded on the right with blanks.

A positive value always includes one trailing blank.

The CCSID of the result is determined from the application encoding scheme.

Decimal to Character:

CHAR( decimal-expression

, decimal-character

)

decimal-expression
An expression that returns a value that is a built-in decimal data type. To specify a different precision
and scale for the value of the expression, apply the DECIMAL function before applying the CHAR
function.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must not be a digit, a plus sign (+), a minus sign (-), or a blank. The
default is the period (.) or comma (,).

The result is the fixed-length character string representation of the first argument. The result is the
smallest number of characters that can be used to represent the value of the argument, except that
trailing zeros are included.

The result includes a decimal character and up to p digits, where p is the precision of the decimal-
expression with the preceding minus sign if the argument is negative. A positive value starts with a digit
or the decimalcharacter, and always includes at least one trailing blank. Leading zeros are not returned.
If the scale of decimal-expression is zero, the decimal character is not returned. If the number of bytes in
the result is less than the defined length of the result, the result is padded on the right with blanks.

The length of the result is 2 +p, where p is the precision of the decimal-expression.

The CCSID of the result is determined from the application encoding scheme.

Floating-Point to Character:

CHAR(  floating-point-expression)

floating-point-expression
An expression that returns a value that is a built-in floating-point data type (DOUBLE or REAL).

The result is the fixed-length character string representation of the argument in the form of an SQL
floating-point constant. If the argument is negative, the first character of the result is a minus sign;
otherwise, the first character is a digit. If the argument is zero, the result is 0E0.

The length of the result is 24. The result includes the smallest number of characters that can represent
the value of the argument such that the mantissa consists of a single digit, other than zero, followed by a
period and a sequence of digits.

Chapter 6. Supported SQL functions 167

If the number of characters in the result is less than 24, the result is padded on the right with blanks.

The CCSID of the result is determined from the application encoding scheme.

Decimal floating-point to Character:

CHAR( decimal-floating-point-expression)

decimal-floating-point-expression
An expression that returns a value that is a built-in decimal floating-point data type (DECFLOAT).

The result is the fixed-length character string representation of the argument in the form of an SQL
decimal floating-point constant.

If the result value is Infinity, sNaN, or NaN, the strings 'INFINITY', 'SNAN', and 'NAN', respectively, are
returned. The DECFLOAT special value sNaN does not result in an exception when converted to a string.

The length of the result is 42. If the number of characters in the result is less than 42, the result is padded
on the right with blanks. Trailing zeros are significant. If the argument is negative, the first character of the
result is a minus sign. Otherwise, the first character is a digit, or a letter if the result value is Infinity, sNaN,
or NaN.

The CCSID of the result is determined from the application encoding scheme.

Character to Character:

CHAR(character-expression

, integer
, CODEUNITS16

CODEUNITS32

OCTETS

)

character-expression
An expression that returns a value of a built-in character string.

integer
The length attribute for the resulting fixed-length character string. The value must be an integer
constant between 1 and 255.

If the length is not specified, the length attribute of the result is the minimum of 255 and the length
attribute of character-expression. If character-expression is an empty string constant, an error occurs.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the unit that is used to express integer. If character-expression is a character string that is
defined as bit data, CODEUNITS16 and CODEUNITS32 cannot be specified.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.
OCTETS

Specifies that integer is expressed in terms of bytes.

The actual length is the same as the length attribute of the result. If the length of character-expression is
less than the length attribute of the result, the result is padded with blanks to the length of the result. If
the length of character-expression is greater than the length attribute of the result, the result is truncated.
Unless all of the truncated characters are blanks, a warning is returned.

If character-expression is bit data, the result is bit data. Otherwise, the CCSID of the result is the same as
the CCSID of character-expression.

168 Using IBM Data Virtualization Manager for z/OS:

Graphic to Character:

CHAR(graphic-expression

, integer
, CODEUNITS16

CODEUNITS32

)

graphic-expression
An expression that returns a value of a built-in graphic string.

integer
The length attribute for the resulting fixed-length character string. The value must be an integer
constant between 1 and 255.

If the length is not specified, the length attribute of the result is the minimum of 255 and the length
attribute of graphic-expression. The length attribute of graphic-expression is (3 * length(graphic-
expression)). If graphic-expression is an empty string constant, an error occurs.

CODEUNITS16 or CODEUNITS32
Specifies the unit that is used to express integer.
CODEUNITS16

Specifies that integer is expressed in terms of 16-bit UTF-16 code units.
CODEUNITS32

Specifies that integer is expressed in terms of 32-bit UTF-32 code units.

The actual length is the same as the length attribute of the result. If the length of graphic-expression is
less than the length attribute of the result, the result is padded with blanks to the length of the result. If
the length of graphic-expression is greater than the length attribute of the result, the result is truncated.
Unless all of the truncated characters are blanks, a warning is returned.

The CCSID of the result is the character mixed CCSID that corresponds to the graphic CCSID of graphic-
expression.

Datetime to Character:

CHAR(datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

datetime-expression
An expression that is one of the following built-in data types:
date

The result is the character string representation of the date in the format that is specified by
the second argument. If the second argument is omitted, the DATE precompiler option, if one is
provided, otherwise field DATE FORMAT on installation panel DSNTIP4 specifies the format. If the
format is LOCAL, field LOCAL DATE LENGTH on installation panel DSNTIP4 specifies the length of
the result. Otherwise, the length of the result is 10.

LOCAL denotes the local format at the Db2 subsystem that executes the SQL statement. If LOCAL
is used for the format, a date exit routine must be installed at that Db2 subsystem.

An error occurs if the second argument is specified and is not a valid value.

Chapter 6. Supported SQL functions 169

time
The result is the character string representation of the time in the format that is specified by
the second argument. If the second argument is omitted, the TIME precompiler option, if one is
provided, otherwise field TIME FORMAT on installation panel DSNTIP4 specifies the format. If the
format is LOCAL, the field LOCAL TIME LENGTH on installation panel DSNTIP4 specifies the length
of the result. Otherwise, the length of the result is 8.

LOCAL denotes the local format at the Db2 subsystem that executes the SQL statement. If LOCAL
is used for the format, a time exit routine must be installed at that Db2 subsystem.

An error occurs if the second argument is specified and is not a valid value.

timestamp without time zone
The result is the character string representation of the timestamp. If datetime-expression
is a TIMESTAMP(0) value, the length of the result is 19. If datetime-expression is a
TIMESTAMP(integer) value, the length of the result is 20+integer. Otherwise, the length of the
result is 26. The second argument must not be specified.

timestamp with time zone
The result is the character string representation of the timestamp with time zone, formatted
as yyyy-mm-dd-hh.mm.ss.nnnnnn±th:tm with the appropriate number of 'n' characters for the
precision of the timestamp. If datetime-expression is a TIMESTAMP(0) WITH TIME ZONE, the
length of the result is 147. If datetime-expression is a TIMESTAMP(integer) WITH TIME ZONE, the
length of the result is 148+integer. The second argument must not be specified.

The CCSID of the result is determined from the context in which the function is invoked.
ISO, EUR, USA, JIS, or LOCAL

Specifies the date or time format of the resulting character string.

Row ID to Character:
CHAR( row-ID-expression)

row-ID-expression
An expression that returns a value that is a built-in row ID data type.

The result is the fixed-length character string representation of the argument. The result is bit data.

The length of the result is 40. If the length of row-ID-expression is less than 40, the result is padded on
the right with hexadecimal zeros to a length of 40.

Examples
Example 1:

HIREDATE is a DATE column in sample table DSN8D10.EMP. When it represents the date 15
December 1976 (as it does for employee 140), the following example returns the string value
'12/15/1976' in character string variable DATESTRING:

 EXEC SQL SELECT CHAR(HIREDATE, USA)
 INTO :DATESTRING
 FROM DSN8D10.EMP
 WHERE EMPNO = '000140';

Example 2:
Host variable HOUR has a data type of DECIMAL(6,0) and contains a value of 50000. Interpreted
as a time duration, this value is 5 hours. Assume that STARTING is a TIME column in some table.
Then, when STARTING represents 17 hours, 30 minutes, and 12 seconds after midnight, the following
example returns the value '10:30 PM':

 CHAR(STARTING+:HOURS, USA)

170 Using IBM Data Virtualization Manager for z/OS:

Example 3:
Assume that RECEIVED is defined as a TIMESTAMP column in table TABLEY. When the value
of the date portion of RECEIVED represents the date 10 March 1997 and the time portion
represents 6 hours and 15 seconds after midnight, the following example returns the string value
'1997-03-10-06.00.15.000000':

 SELECT CHAR(RECEIVED)
 FROM TABLEY
 WHERE INTCOL = 1234;

Example 4:
For sample table DSN8D10.EMP, the following SQL statement sets the host variable AVERAGE, which
is defined as CHAR(33), to the character string representation of the average employee salary.

 EXEC SQL SELECT CHAR(AVG(SALARY))
 INTO :AVERAGE
 FROM DSN8D10.EMP;

With DEC31, the result of AVG applied to a decimal number is a decimal number with a precision of 31
digits. The only host languages in which such a large decimal variable can be defined are Assembler
and C. For host languages that do not support such large decimal numbers, use the method shown in
this example.

Example 5:
For the rows in sample table DSN8D10.EMP, return the values in column LASTNAME, which is
defined as VARCHAR(15), as a fixed-length character string and limit the length of the results to
10 characters.

 SELECT CHAR(LASTNAME,10)
 FROM DSN8D10.EMP;

For rows that have a LASTNAME with a length greater than 10 characters (excluding trailing blanks), a
warning that the value is truncated is returned.

Example 6:
FIRSTNAME is a VARCHAR(12) column in a Unicode table T1. One of its values is the 6-character
string 'Jürgen'. When FIRSTNAME has the values shown under 'Function', the results are shown under
'Returns':

 Function ... Returns ...

 CHAR(FIRSTNAME,3,CODEUNITS32) 'Jür ' -- x'4AC3BC722020202020202020'
 CHAR(FIRSTNAME,3,CODEUNITS16) 'Jür ' -- x'4AC3BC722020202020'
 CHAR(FIRSTNAME,3,OCTETS) 'Jü' -- x'4AC3BC'

Example 7
For the rows in sample table DSN8D10.EMP, return the values in column EDLEVEL, which is defined as
SMALLINT, as a fixed-length character string.

 SELECT CHAR(EDLEVEL)
 FROM DSN8D10.EMP;

An EDLEVEL of 18 is returned as CHAR(6) value '18 ' (18 followed by four blanks).

Example 8:
In sample table DSN8D10.EMP, the SALARY column is defined as DECIMAL(9,2). For those employees
who have a salary of 52750.00, return the hire date and the salary, using a comma as the decimal
character in the salary (52750,00).

 SELECT HIREDATE, CHAR(SALARY, ',')
 FROM DSN8D10.EMP
 WHERE SALARY = 52750.00;

The salary is returned as the string value '52750,00'.

Chapter 6. Supported SQL functions 171

Example 9:
Repeat the scenario in Example 8 except subtract the SALARY column from 60000.00 and return the
salary with the default decimal character.

SELECT HIREDATE, CHAR (60000.00 - SALARY)
 FROM DSN8D10.EMP
 WHERE SALARY = 52750.00;

The salary is returned as the string value '7250.00'.

Example 10:
Assume that host variable SEASONS_TICKETS is defined as INTEGER and has a value of 10000. Use
the DECIMAL and CHAR functions to change the value into the character string ' 10000.00'.

 SELECT CHAR(DECIMAL(:SEASONS_TICKETS,7,2))
 FROM SYSIBM.SYSDUMMY1;

Example 11:
Assume that columns COL1 and COL2 in table T1 are both defined as REAL and that T1 contains
a single row with the values 7.1E+1 and 7.2E+2 for the two columns. Add the two columns and
represent the result as a character string.

 SELECT CHAR(COL1 + COL2)
 FROM T1;

The result is the character value '1.43E2 '.

CEILING
The CEILING function returns the smallest integer value that is greater than or equal to the argument.

CEILING( numeric-expression)

The argument must be an expression that returns a value of any built-in numeric data type.

The argument can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

The result of the function has the same data type and length attribute as the argument except that the
scale is 0 if the argument is DECIMAL. For example, an argument with a data type of DECIMAL(5,5) results
in DECIMAL(5,0).

The result can be null; if the argument is null, the result is the null value.

Examples
Example 1

The following statement shows the use of CEILING on positive and negative values:

 SELECT CEILING(3.5), CEILING(3.1), CEILING(-3.1), CEILING(-3.5)
 FROM SYSIBM.SYSDUMMY1;

This example returns: 04., 04., -03., -03.

Example 2:

Using sample table DSN8D10.EMP, find the highest monthly salary for all the employees. Round the result
up to the next integer. The SALARY column has a decimal data type.

 SELECT CEILING(MAX(SALARY)/12)
 FROM DSN8D10.EMP;

172 Using IBM Data Virtualization Manager for z/OS:

This example returns 04396. because the highest paid employee is Christine Haas who earns $52750.00
per year. Her average monthly salary before applying the CEIL function is 4395.83.

COALESCE
The function COALESCE returns the value of the first non-null expression.

The arguments can be of either a built-in or user-defined data type.

The COALESCE function cannot be used as a source function when creating a user-defined function.

The arguments are evaluated in the order in which they are specified, and the result of the function is the
first argument that is not null.

The selected argument is converted, if necessary, to the attributes of the result. If the COALESCE function
has more than two arguments, the rules are applied to the first two arguments to determine a candidate
result type. The rules are then applied to that candidate result type and the third argument to determine
another candidate result type. This process continues until all arguments are analyzed and the final result
type is determined.

If there are any mixed character string or graphic string and numeric arguments, the string value is
implicitly cast to a DECFLOAT(34) value.

The COALESCE function can also handle a subset of the functions provided by CASE expressions. The
result of using COALESCE(e1,e2) is the same as using the expression:

CASE WHEN e1 IS NOT NULL THEN e1 ELSE e2 END

VALUE can be specified as a synonym for COALESCE.

Example 1

The following example returns the value of the first nonnull expression between DATEOFJOIN and
CURRENT_DATE from the table EMPLOYEE.

SELECT COALESCE(DATEOFJOIN, CURRENT_DATE) AS JOINDATE FROM EMPLOYEE;

The above example returns the following.

JOINDATE
2019-11-25
2020-01-06
2019-10-10
2019-11-27
2019-11-25
2019-11-25
2020-01-06

COUNT
The COUNT function returns the number of rows or values in a set of rows or values.

The argument values can be of any built-in data type other than a BLOB, CLOB, DBCLOB, or XML.

Chapter 6. Supported SQL functions 173

If the argument of COUNT(*) is a set of rows, the result would be the number of rows in the set. Any row
that includes only null values is included in the count.

If the argument of COUNT(expression) or COUNT(ALL expression) is a set of values, the function is
applied to the set of values derived from the argument values by the elimination of null values. The result
is the number of nonnull values in the set, including duplicates.

If the argument of COUNT(DISTINCT expression) is a set of values, the function is applied to the set
of values derived from the argument values by the elimination of null values and redundant duplicate
values. The result is the number of different nonnull values in the set.

Example

The following statement counts the number of rows from the table EMPLOYEE.

SELECT COUNT(*) FROM EMPLOYEE

The above example returns 7.

CONCAT
The function CONCAT combines two compatible string arguments.

Either argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

The result of the function is a string that consists of the first string followed by the second string.

The CONCAT function is identical to the CONCAT operator.

Example:

The following example combines strings available in the columns EMPL_NAME and DEPT from the table
EMPLOYEE.

SELECT CONCAT(EMPL_NAME , ' ', DEPT) AS EMPL_DEPT FROM EMPLOYEE

The above example returns the following.

EMPL_DEPT
BUMRAH SALES
CEASAR MARKETING
ELICA CUST SUPR
DEV ADMIN
NEWTON DATA
SAMUEL IT

DATE
The DATE function returns a date that is derived from a value.

The argument must be an expression that returns one of the following built-in data types: a date, a
timestamp, a character string, a graphic string, or any numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and it must have one of
the following values:

– A valid string representation of a date or timestamp with an actual length that is not greater than 255
bytes.

174 Using IBM Data Virtualization Manager for z/OS:

– A character or graphic string with an actual length of 7 that represents a valid date in the form
yyyynnn, where yyyy are digits denoting a year and nnn are digits between 001 and 366 denoting a
day of that year.

• If expression is a number, it must be greater than or equal to one and less than or equal to 3652059.

If expression is not a DATE value, expression is cast as follows:

• – If expression is a TIMESTAMP WITH TIME ZONE value, expression is cast to TIMESTAMP WITHOUT
TIME ZONE, with the same precision as expression.

– If expression is a string, expression is cast to DATE.

The result of the function is a date.

The other rules depend on the data type of the argument:

• If the argument is a timestamp, the result is the date part of the timestamp.
• If the argument is a date, the result is that date.
• If the argument is a number, the result is the date that is n-1 days after January 1, 0001, where n is

the integral part of the number.
• If the argument is a string, the result is the date that is represented by the string. If the string contains

a time zone, the time zone is ignored. If the CCSID of the string is not the same as the corresponding
default CCSID at the server, the string is first converted to that CCSID.

The result CCSID is the appropriate CCSID of the argument encoding scheme and the result subtype is
the appropriate subtype of the CCSID.

Example 1:

The following example selects records of employees who joined later than 2019-11-10 from the table
EMPLOYEE.

SELECT * FROM EMPLOYEE WHERE DATEOFJOIN > '2019-11-10'

The above example returns the following.

EMPL_NAME, AGE, DEPT, INDUSTRY, SALARY, DATEOFJOIN
BUMRAH , 53 , SALES , RETAIL , 50000 , 2019-11-25
DEV , 33 , ADMIN , RETAIL , 25000 , 2019-11-27
NEWTON , 53 , DATA , RETAIL , 75000 , 2019-11-25
SAMUEL , 43 , IT , BANKING , 75000 , 2019-11-25

DAY
The DAY function returns the day part in the given argument.

The argument must be an expression that returns one of the following built-in data types: a date, a
timestamp, a character string, a graphic string, or any numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be
a valid string representation of a date or timestamp with an actual length that is not greater than 255
bytes.

• If expression is a number, it must be a date duration or a timestamp duration.

If expression is a timestamp with a time zone value, or a valid string representation of a timestamp with a
time zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The other rules for the function depend on the data type of the argument:

Chapter 6. Supported SQL functions 175

• If the argument is a date, timestamp, or string representation of either, the result is the day part of
the value, which is an integer between 1 and 31.

• If the argument is a date duration or timestamp duration, the result is the day part of the value, which
is an integer between -99 and 99. A nonzero result has the same sign as the argument.

• If the argument contains a time zone, the result is the year part of the value expressed in UTC.

Example:

The following example returns the day part in the given string DATEOFJOIN from the table EMPLOYEE:

SELECT DAY(DATEOFJOIN) FROM EMPLOYEE

The above example returns the following.

25

10
27
25
25

DAYOFWEEK
The DAYOFWEEK function returns an integer, in the range of 1 to 7, that represents the day of the
week, where 1 is Sunday and 7 is Saturday. The DAYOFWEEK function is similar to the DAYOFWEEK_ISO
function.

DAYOFWEEK( expression)

The schema is SYSIBM.

The argument must be an expression that returns a value of one of the following built-in data types: a
date, a timestamp, a character string, or a graphic string.

If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a date or timestamp with an actual length that is not greater than 255 bytes.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

Examples for DAYOFWEEK
The result can be null; if the argument is null, the result is the null value.

Example 1

The following statement uses sample table DSN8D10.EMP, set the integer host variable DAY_OF_WEEK
to the day of the week that Christine Haas (EMPNO = '000010') was hired (HIREDATE). The result is that
DAY_OF_WEEK is set to 6, which represents Friday.

SELECT DAYOFWEEK(HIREDATE)
 INTO :DAY_OF_WEEK
 FROM DSN8D10.EMP
 WHERE EMPNO = '000010';

Example 2

SELECT DAYOFWEEK(CAST('10/11/1998' AS DATE)),
 DAYOFWEEK(TIMESTAMP('10/12/1998', '01.02')),

176 Using IBM Data Virtualization Manager for z/OS:

 DAYOFWEEK(CAST(CAST('10/11/1998' AS DATE) AS CHAR(20))),
 DAYOFWEEK(CAST(TIMESTAMP('10/12/1998', '01.02') AS CHAR(26)))
 FROM SYSIBM.SYSDUMMY1;

Example 3

The following invocations of the DAYOFWEEK function all return the value 5, which represents Thursday.
(1 represents Sunday for DAYOFWEEK results.) When the input argument contains a time zone, the result
is determined from the UTC representation of the input value. The string representations of the example
timestamp with time zone values in the SELECT statement all have the same UTC representation:
2003-01-02-20.00.00.

SELECT DAYOFWEEK('2003-01-02-20.00.00'),
 DAYOFWEEK('2003-01-02-12.00.00-08:00'),
 DAYOFWEEK('2003-01-03-05.00.00+09:00')
 FROM SYSIBM.SYSDUMMY1;

DAYOFYEAR
The DAYOFYEAR function returns an integer, in the range of 1 to 366, that represents the day of the year,
where 1 is January 1.

The argument must be an expression that returns a value of one of the following built-in data types: a
date, a timestamp, a character string, or a graphic string.

If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a date or timestamp with an actual length that is not greater than 255 bytes.

If expression is a timestamp with a time zone value, or a valid string representation of a timestamp with a
time zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

Example 1:

The following example selects the day part from the given value DATEOFJOIN from the table EMPLOYEE:

SELECT DAYOFYEAR(DATEOFJOIN) FROM EMPLOYEE

The above example returns the following.

329

283
331
329
329

DECIMAL
The DECIMAL function returns a decimal representation of either a number or a character-string or
graphic-string representation of a number, an integer, or a decimal number.

Numeric to Decimal:

String to Decimal:

Chapter 6. Supported SQL functions 177

Numeric to decimal

numeric-expression
An expression that returns a value of any built-in numeric data type.

precision
An integer constant with a value greater than or equal to 1 and less than or equal to 31.

The default for precision depends on the data type of the numeric-expression:

• 5 for small integer
• 11 for large integer
• 19 for big integer
• 15 for floating point or decimal
• 31 for decimal floating point

scale
An integer constant that is greater than or equal to zero and less than or equal to precision. The value
specifies the scale of the result. The default value is 0.

The result of the function is the same number that would occur if the argument were assigned to a
decimal column or variable with precision p and scale s, where p and s are specified by the second and
third arguments. An error occurs if the number of significant digits required to represent the whole part of
the number is greater than p-s.

String to decimal

string-expression
An expression that returns a value of a character or graphic string (except a CLOB or DBCLOB)
with a length attribute that is not greater than 255 bytes. The string must contain a valid string
representation of a number. Leading and trailing blanks are removed from the string, and the resulting
substring must conform to the rules for forming a valid string representation of an SQL integer or
decimal constant.

precision
An integer constant with a value in the range 1 to 31. The value of this second argument specifies the
precision of the result. If not specified, the default is 15.

scale
An integer constant that is greater than or equal to zero and less than or equal to precision. The value
specifies the scale of the result. The default value is 0.

decimal-character
A single-byte character constant used to delimit the decimal digits in string-expression from the
whole part of the number. The character cannot be a digit, plus (+), minus (-), or blank. The default
value is period (.) or comma (,); the default value cannot be used in string-expression if a different
value for decimal-character is specified.

Digits are truncated from the end of the decimal number if the number of digits to the right of the decimal
separator character is greater than the scale s. An error is returned if the number of significant digits to
the left of the decimal character (the whole part of the number) in string-expression is greater than p-s.

The result of the function is a decimal number with precision of p and scale of s, where p and s are the
second and third arguments.

Notes

Syntax alternatives:
To increase the portability of applications when the precision is specified, use the CAST specification.

178 Using IBM Data Virtualization Manager for z/OS:

Example
Represent the average salary of the employees in the table EMPLOYEE as an 8-digit decimal number
with two of these digits to the right of the decimal point.

SELECT DECIMAL(AVG(SALARY),8,2)
 FROM EMPLOYEE;

The above example returns 49000.00

DELETE
The DELETE statement deletes rows from a table or a view. The table or view can be at the current server
or Data Virtualization Manager server with which the current server can establish a connection. There are
two forms of this statement:

• The searched DELETE form is used to delete one or more rows, optionally determined by a search
condition.

• The positioned DELETE form specifies that one or more rows corresponding to the current cursor
position are to be deleted.

searched delete:

Note:

• If the period-clause is specified, the fetch-clause must not be specified.
• The same clause must not be specified more than one time.

positioned delete:

Example:

The following example delete a record that matches the condition EMPL_NAME = 'DAVE' from the table
EMPLOYEE.

DELETE FROM EMPLOYEE
WHERE EMPL_NAME = 'DAVE'

DOUBLE
The DOUBLE functions returns a floating-point representation of either a number or a character-string or
graphic-string representation of a number, an integer, a decimal number, or a floating-point number.

Numeric to Double

DOUBLE (numeric-expression)

numeric-expression

An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the expression were assigned to a double precision
floating-point column or variable.

Chapter 6. Supported SQL functions 179

String to Double

DOUBLE (string-expression)

string-expression

An expression that returns a value of a character or graphic string (except a CLOB or DBCLOB)
with a length attribute that is not greater than 255 bytes. The string must contain a valid string
representation of a number.

The result is the same number that would result from CAST(string-expression AS DOUBLE
PRECISION). Leading and trailing blanks are removed from the string, and the resulting substring
must conform to the rules for forming a valid string representation of an SQL floating-point, integer, or
decimal constant.

The result of the function is a double precision floating-point number.

The result can be null; if the argument is null, the result is the null value.

Example
Using sample table DSN8D10.EMP, find the ratio of salary to commission for employees whose
commission is not zero. The columns involved in the calculation, SALARY and COMM, have decimal data
types. To eliminate the possibility of out-of-range results, apply the DOUBLE function to SALARY so that
the division is carried out in floating-point.

SELECT EMPNO, DOUBLE(SALARY)/COMM
 FROM DSN8D10.EMP
 WHERE COMM > 0;

EXISTS
The EXISTS predicate tests for the existence of certain rows. The fullselect can specify any number of
columns, and can result in true or false.

Notes:

• The outer SELECT list of fullselect must not contain an array value.

The result of the EXISTS predicate:

• Is true only if the number of rows that is specified by the fullselect is not zero.
• Is false only if the number of rows specified by the fullselect is zero.
• Cannot be unknown.

The SELECT clause in the fullselect can specify any number of columns because the values returned by
the fullselect are ignored. For convenience, use: SELECT *

Unlike NULL, LIKE, and IN predicates, the EXISTS predicate has no form that contains the word NOT. To
negate an EXISTS predicate, precede it with the logical operator NOT, as : NOT EXISTS (fullselect)

The result is then false if the EXISTS predicate is true, and true if the predicate is false. Here, NOT is a
logical operator and not a part of the predicate.

Example 1:

180 Using IBM Data Virtualization Manager for z/OS:

The following example compares the values in the column EMPL_NAME of the table EMPLOYEE with the
values in the column EMPL_NAME of the table EMPL_COMP and returns the record that has a similar name
with age >20.

SELECT T1.EMPL_ID, T1.EMPL_NAME FROM EMPL_COMP T1
WHERE EXISTS
SELECT T2.AGE FROM EMPLOYEE T2 WHERE T1.EMPL_NAME = T2.EMPL_NAME AND T2.AGE > 20)

The above example returns the following.

Table 41. Exists

EMPL_ID EMPL_NAME

2 ELICA

FULL OUTER JOIN
The FULL OUTER JOIN clause results in the inclusion of rows from two tables. If a value is missing when
rows are joined, that value is null in the resultant table.

The join condition for a full outer join must be a search condition that compares two columns. The
predicates of the search condition can be combined only with AND. Each predicate must have the form
'expression = expression'.

Example:

The following query performs a full outer join of the EMPLOYEE and EMPL_COMP tables:

SELECT A.EMPL_NAME, B.EMPL_ID, A.DEPT, A.INDUSTRY, B.COMPANY, B.LOCATION
FROM EMPLOYEE A
FULL OUTER JOIN EMPL_COMP B
ON
A.EMPL_NAME = B.EMPL_NAME

The result table looks like this:

Table 42. Full Outer Join

EMPL_NAME EMPL_ID DEPT INDUSTRY COMPANY LOCATION

1 TIMBER INC.

BUMRAH SALES RETAIL

CEASAR MARKETING RETAIL

DEV ADMIN RETAIL

ELICA 2 CUST SUPR RETAIL STANLEY INC. TX

ELICA 2 STANLEY INC. TX

NEWTON DATA RETAIL

FLOAT
The FLOAT function returns a floating-point representation of either a number or a string representation of
a number.

Chapter 6. Supported SQL functions 181

Notes
Syntax alternatives:

FLOAT is a synonym for DOUBLE_PRECISION or DOUBLE.

Example:

The following example returns the floating point representation of the values in the AGE from the table
EMPLOYEE.

SELECT FLOAT(AGE) FROM EMPLOYEE

The above example returns the following.

53.0
43.0
23.0
33.0
53.0
43.0

GROUP-BY
The GROUP BY clause specifies a result table that consists of a grouping of the rows of intermediate result
table that is the result of the previous clause.

group-by-clause

In its simplest form, a GROUP BY clause contains a grouping-expression.

grouping-expression
A grouping-expression is an expression that defines the grouping of R. The following restrictions apply
to grouping-expression:

• If grouping-expression is a single column, the column name must unambiguously identify a column
of R.

• The result of grouping-expression cannot be a LOB data type (or a distinct type that is based on a
LOB) or an XML data type.

• grouping-expression cannot include any of the following items:

– A correlated column
– A host variable
– An aggregate function
– Any function or expression that is not deterministic or that is defined to have an external action
– A scalar fullselect
– A CASE expression whose searched-when-clause contains a quantified predicate, an IN predicate

using a fullselect, or an EXISTS predicate

The result of GROUP BY is a set of groups of rows. In each group of more than one row, all values of each
grouping-expression are equal, and all rows with the same set of values of the grouping-expression are in
the same group.

If a grouping-expression contains DECFLOAT values, the DECFLOAT values with the same value will be in
the same group. But the number of digits returned for each group is unpredictable.

Because every row of a group contains the same value of any grouping-expression, a grouping-expression
can be used in a search condition in a HAVING clause or an expression in a SELECT clause, or in a

182 Using IBM Data Virtualization Manager for z/OS:

sort-key-expression of an ORDER BY clause. In each case, the reference specifies only one value for each
group. For example, if grouping-expression is col1+col2, col1+col2+3 would be an allowed expression
in the select list. Associative rules for expressions do not allow the similar expression of 3+col1+col2,
unless parentheses are used to ensure that the corresponding expression is evaluated in the same order.
Thus, 3+(col1+col2) would also be allowed in the select list. If the concatenation operator is used,
grouping-expression must be used exactly as the expression was specified in the select list.

If a grouping-expression contains varying-length strings with trailing blanks, the values in the group can
differ in the number of trailing blanks and might not all have the same length. In that case, a reference
to grouping-expression still specifies only one value for each group, but the value for a group is chosen
arbitrarily from the available set of values. Thus, the actual length of the result value is unpredictable.

Example:

The following example groups the record by INDUSTRY from the table EMPLOYEE.

SELECT COUNT(DEPT), INDUSTRY FROM EMPLOYEE
GROUP BY INDUSTRY

The above example returns the following.

Table 43. Group-By

INDUSTRY

1 BANKING

5 RETAIL

GROUP_CONCAT
The GROUP_CONCAT function returns a string with concatenated non-NULL value from a group.

The GROUP_CONCAT function is used to concatenate and aggregate values from multiple rows within a
specific column into a single string. It's useful for combining and displaying related data in a compact
format.

GROUP_CONCAT( expression)

For the GROUP_CONCAT function we can set the maximum output length of the column using the server
parameter or the SET statement else it would be defaulted to 32K. When the length is exceeded, the data
is truncated.

You can use the following SET statement:

SET GROUP_CONCAT_MAX = value

This will set the maximum length for the life of the current session or until another SET statement
changes it again.

Or,

You can use the following server parameter to set the maximum output length:

Parameter Description

SQLENGCATMAXLEN The SQLENGCATMAXLEN controls the maximum
length of the output for a GROUP_CONCAT function.
Set to zero for the global default, which is the
maximum varchar length minus 32. The value
can be overridden at the session level via a SET
command or a VTB rule at the table level.

Chapter 6. Supported SQL functions 183

• The primary purpose of the GROUP_CONCAT function is to concatenate values from multiple rows into a
single string.

• You can use GROUP_CONCAT to aggregate data based on a certain column or attribute.
• The GROUP_CONCAT can be used to create a list of tags for each record.
• When working with hierarchical data structures, you can use GROUP_CONCAT() to show parent-child

relationships in a readable format.
• In applications, you can use GROUP_CONCAT to display a user's preferences, settings, or selected

options in a user-friendly format.
• GROUP_CONCAT is useful for displaying data in applications, reports, or user interfaces where a single
field needs to show multiple related values.

• The function allows you to define custom separators (other than commas) and order concatenated
values, giving you flexibility in how data is presented.

Example:

The following example concatenates values from the table EMPLOYEE:

SELECT GROUP_CONCAT(EMPL_NAME) FROM EMPLOYEE;

HAVING
The HAVING clause specifies a result table that consists of those groups of the intermediate result table
for which the search-condition is true. The intermediate result table is the result of the previous clause. If
this clause is not GROUP BY, the intermediate result table is considered a single group with no grouping
columns of the previous clause of the subselect.

having-clause

Each column-name in search-condition must be one of the following:

• Unambiguously identify a grouping column of the intermediate result table
• Be specified within an aggregate function
• Be a correlated reference. A column-name is a correlated reference if it identifies a column of a table,

view, common-table-expression, or nested-table-expression that is identified in an outer subselect

A group of the intermediate result table to which the search condition is applied supplies the argument for
each function in the search condition, except for any function whose argument is a correlated reference.

If the search condition contains a subquery, the subquery can be thought of as being executed each time
the search condition is applied to a group of the intermediate result table, and the results used in applying
the search condition. In actuality, the subquery is executed for each group only if it contains a correlated
reference.

A correlated reference to a group of the intermediate result table must either identify a grouping column
or be contained within an aggregate function.

When HAVING is used without GROUP BY, any expression or column name in the select list must appear
within an aggregate function.

Example:

The following example groups the records by INDUSTRY column from the table EMPLOYEE and returns the
records with count >= 1 .

SELECT COUNT(DEPT) AS COUNT, INDUSTRY
FROM EMPLOYEE
GROUP BY INDUSTRY
HAVING COUNT(DEPT) >= 1

184 Using IBM Data Virtualization Manager for z/OS:

The above example returns the following.

Table 44. Having

COUNT INDUSTRY

1 BANKING

5 RETAIL

HEX
The HEX function returns a hexadecimal representation of a value.

The argument must be an expression that returns a value of any built-in data type that is not XML. A
character or binary string must not have a maximum length greater than 16352. A graphic string must not
have a maximum length greater than 8176.

The result of the function is a character string.

The result is a string of hexadecimal digits. The first two represent the first byte of the argument, the next
two represent the second byte of the argument, and so forth. If the argument is a datetime value, the
result is the hexadecimal representation of the internal form of the argument.

If the argument is a fixed-length string and the length of the result is less than 255, the result is a
fixed-length string. Otherwise, the result is a varying-length string with a length attribute that depends on
the following considerations:

• If the argument is not a varying-length string, the length attribute of the result string is the same as
the length of the result.

• If the argument is a varying-length character or binary string, the length attribute of the result string
is twice the length attribute of the argument.

• If the argument is a varying-length graphic string, the length attribute of the result string is four times
the length attribute of the argument.

If expression returns string data, the CCSID of the result is the SBCS CCSID that corresponds to the CCSID
of expression. Otherwise, the CCSID of the result is determined from the context in which the function
was invoked.

If the argument is a graphic string, the length of the result is four times the maximum length of the
argument. Otherwise, the length of the result is twice the (maximum) length of the argument.

Example:

The following example returns the hexadecimal value of the column AGE from the table EMPLOYEE.

SELECT HEX(AGE) FROM EMPLOYEE

The above example returns the following:

00000035
0000002B
00000017
00000021
00000035
0000002B

HOUR
The HOUR function returns the hour part of the given argument.

Chapter 6. Supported SQL functions 185

The argument must be an expression that returns a value of one of the following built-in data types: a
time, a timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a time or timestamp with an actual length of not greater than 255 bytes.

• If expression is a number, it must be a time or timestamp duration.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The other rules depend on the data type of the argument:

• If the argument is a time, timestamp, or string representation of either, the result is the hour part of
the value, which is an integer between 1 and 24.

• If the argument is a time duration or timestamp duration, the result is the hour part of the value,
which is an integer between -99 and +99. A nonzero result has the same sign as the argument.

• If the argument contains a time zone, the result is the year part of the value expressed in UTC.

Example:

The following example returns the hour part in the string UPDATED_TS from the table EMPL_COMP.

SELECT HOUR(UPDATED_TS) FROM EMPL_COMP

The above example returns 5.

IFNULL
The IFNULL function returns the first nonnull expression.

IFNULL is identical to the COALESCE scalar function except that IFNULL is limited to two arguments
instead of multiple arguments.

Example:

The following example returns 0 if the value in the SALARY column from the table EMPLOYEE is NULL.

SELECT EMPL_NAME, IFNULL(SALARY,0)
 FROM EMPLOYEE;

The above example returns the following.

EMPL_NAME,
BUMRAH , 50000
CEASAR , 20000
ELICA , 0
DEV , 25000
NEWTON , 75000
SAMUEL , 75000
ELICA , 0

INNER JOIN
You can use an inner join in a SELECT statement to retrieve only the rows that satisfy the join conditions
on every specified table.

186 Using IBM Data Virtualization Manager for z/OS:

You can request an inner join, by running a SELECT statement in which you specify the tables that you
want to join the FROM clause and specify a WHERE clause or an ON clause to indicate the join condition.
The join condition can be any simple or compound search condition that does not contain a subquery
reference.

In the simplest type of inner join, the join condition is column1=column2.

Example:

The following example joins the records with similar employee name from the tables EMPLOYEE and
EMPL_COMP.

SELECT A.EMPL_NAME, B.EMPL_ID, A.DEPT, A.INDUSTRY, B.COMPANY, B.LOCATION
FROM EMPLOYEE A
INNER JOIN EMPL_COMP B
ON
A.EMPL_NAME = B.EMPL_NAME "

The above example returns the following.

Table 45. Inner Join

EMPL_NAME EMPL_ID DEPT INDUSTRY COMPANY LOCATION

ELICA 2 CUST SUPER RETAIL STANLEY INC. TX

ELICA 2 STANLEY INC. TX

INSERT
The INSERT statement inserts rows into a table or view. The table or view can be at the current server or
any Data Virtualization Manager server with which the current server can establish a connection.

The INSERT via VALUES form is used to insert a single row into the table or view using the values provided
or referenced.

The owner of a view, unlike the owner of a table, might not have INSERT authority on the view (or can
have INSERT authority without being able to grant it to others). The nature of the view itself can preclude
its use for INSERT.

Syntax

include-column:

data-type:

Example:

Chapter 6. Supported SQL functions 187

The example inserts the values (0003,'SMITH','CHROME INC.','WA') to the table EMPLOYEE:

INSERT INTO EMPL_COMP (EMPL_ID, EMPL_NAME, COMPANY, LOCATION) VALUES(0003,'SMITH',
'CHROME INC.','WA');

The following is the updated table after the record insertion.

Table 46. Insert

EMPL_ID EMPL_NAME COMPANY LOCATION UPDATED_TS

1 AKHIL TIMBER INC. NY 2019-11-26
05:39:59.454707

2 ELICA STANLEY INC. TX

3 SMITH CHROME INC. WA

LARGE INTEGER (INTEGER)
A large integer is a binary integer with a precision of 31 bits.

The range of large integers is -2147483648 to +2147483647.

Example:

The following example selects the values in the SALARY column of the table EMPLOYEE as an integer.

SELECT CAST(SALARY AS INTEGER) FROM EMPLOYEE

The above example returns the following.

50000
20000

25000
75000
75000

LEFT
The LEFT function returns a string that consists of the specified number of leftmost bytes of the specified
string units.

Character string:

The LEFT function returns the leftmost string of character-expression, graphic-expression, or binary-
expression consisting of length of the string units that are specified implicitly or explicitly.

character-expression
An expression that specifies the string from which the result is derived. The string must be a
character string. A substring of character-expression is zero or more contiguous code points of
character-expression.

The string can contain mixed data. Depending on the units that are specified to evaluate the function,
the result is not necessarily a properly formed mixed data character string.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

188 Using IBM Data Virtualization Manager for z/OS:

length
An expression that specifies the length of the result. The value must be an integer between 0 and n,
where n is the length attribute of character-expression, expressed in the units that are either implicitly
or explicitly specified.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER value.

The character-expression, graphic-expression, or binary-expression is effectively padded on the right with
the necessary number of padding characters so that the specified substring of the expression always
exists. The encoding scheme of the data determines the padding character:

• For ASCII SBCS data or ASCII mixed data, the padding character is X'20'.
• For ASCII DBCS data, the padding character depends on the CCSID; for example, for Japanese (CCSID

301) the padding character is X'8140', while for simplified Chinese it is X'A1A1'.
• For EBCDIC SBCS data or EBCDIC mixed data, the padding character is X'40'.
• For EBCDIC DBCS data, the padding character is X'4040'.
• For Unicode SBCS data or UTF-8 (Unicode mixed data), the padding character is X'20'.
• For UTF-16 (Unicode DBCS) data, the padding character is X'0020'.
• For binary data, the padding character is X'00'.

The result of the function is a varying-length string with a length attribute that is the same as the length
attribute of the first expression and a data type that depends on the data type of the expression:

• VARCHAR if character-expression is CHAR or VARCHAR
• CLOB if character-expression is CLOB
• VARGRAPHIC if graphic-expression is GRAPHIC or VARGRAPHIC
• DBCLOB if graphic-expression is DBCLOB
• VARBINARY if binary-expression is BINARY or VARBINARY
• BLOB if binary-expression is BLOB

The actual length of the result is determined from length.

The CCSID of the result is the same as that of the first expression.

Example:

Assume that the column EMPL_NAME has a value "Richard". The following example returns "Ric" which
are the three leftmost characters.

SELECT LEFT(EMPL_NAME, 3) FROM EMPLOYEE

LEFT OUTER JOIN
The LEFT OUTER JOIN clause lists rows from the left table even if there are no matching rows on right
table.

As in an inner join, the join condition of a left outer join can be any simple or compound search condition
that does not contain a subquery reference

Example:

Consider the following example using the records in the table EMPLOYEE:

SELECT A.EMPL_NAME, B.EMPL_ID, A.DEPT, A.INDUSTRY, B.COMPANY, B.LOCATION
FROM EMPLOYEE A
LEFT OUTER JOIN EMPL_COMP B
ON
A.EMPL_NAME = B.EMPL_NAME

Chapter 6. Supported SQL functions 189

The result table looks like the following example:

Table 47. Left Outer Join

EMPL_NAME EMPL_ID DEPT INDUSTRY COMPANY LOCATION

BUMRAH SALES RETAIL

CEASAR MARKETING RETAIL

ELICA 2 CUST SUPR RETAIL STANLEY INC. TX

DEV ADMIN RETAIL

NEWTON DATA RETAIL

SAMUEL IT BANKING

ELICA 2 STANLEY INC. TX

LENGTH
The LENGTH function returns the length of a value.

The argument must be an expression that returns a value of any built-in data type that is not XML.

The result of the function is a large integer.

The result is the length of the argument. The length of a varying-length string is the actual length, not the
maximum length.

The length of a graphic string is the number of double-byte characters. Unicode UTF-16 data is treated as
graphic data; a UTF-16 supplementary character takes two DBCS characters to represent and as such is
counted as two DBCS characters.

The length of all other values is the number of bytes used to represent the value:

• 2 for small integer
• 4 for large integer
• 8 for big integer
• The integer part of (p/2)+1 for decimal numbers with precision p
• 16 for DECFLOAT(34)
• 8 for DECFLOAT(16)
• 4 for single precision floating-point
• 8 for double precision floating-point
• The length of the string for strings
• 4 for DATE
• 3 for TIME
• 10 for TIMESTAMP
• 12 for TIMESTAMP WITH TIME ZONE
• 7+((p+1)/2) for TIMESTAMP(p)
• 9+((p+1)/2) for TIMESTAMP(p) WITH TIME ZONE
• The length of the row ID

Example 1:

190 Using IBM Data Virtualization Manager for z/OS:

The following example assigns the length of the string available in the column EMPL_NAME from the table
EMPLOYEE to the variable NAME_LENGTH:

SELECT LENGTH(EMPL_NAME) AS NAME_LENGTH FROM EMPLOYEE

The above example returns the following.

NAME_LENGTH
6
6
5
3
6
6
5

LIKE
The LIKE predicate searches for strings that have a certain pattern.

The match-expression is the string to be tested for conformity to the pattern specified in pattern-
expression. Underscore and percent sign characters in the pattern have a special meaning instead of
their literal meanings unless escape-expression is specified.

The following example returns the rows where the INDUSTRY column value contains the stringRET from
the table EMPLOYEE.

SELECT * FROM EMPLOYEE WHERE INDUSTRY LIKE 'RET%'

The above example returns the following:

Table 48. Like

EMPL_NAME DEPT INDUSTRY SALARY DATEOFJOIN

BUMRAH 53 RETAIL 50000 11/25/2019

CEASER 43 RETAIL 20000

ELICA 23 RETAIL 5000 10/10/2019

DEV 33 RETAIL 25000 11/27/2019

NEWTON 53 RETAIL 75000 11/25/2019

LOWER
The LOWER function returns a string in which all the characters are converted to lowercase characters.

string-expression

An expression that specifies the string to be converted. string-expression must return a value that is a
built-in character or graphic string. A character string argument must not be a CLOB, and a graphic string
argument must not be a DBCLOB. If string-expression is an EBCDIC graphic string, a blank string must
not be specified for locale-name-string. If string-expression is bit data, locale-name-string must not be
specified.

Chapter 6. Supported SQL functions 191

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

Syntax alternatives:

LCASE is a synonym for LOWER. LOWER should be used for conformance to the SQL standard.

Example

The following example returns the characters in the variable EMPL_NAME in lowercase from the table
EMPLOYEE.

SELECT LOWER(EMPL_NAME) FROM EMPLOYEE

The above example returns the following:

bumrah
ceasar
elica
dev
newton
samuel
elica

LTRIM
The LTRIM function removes spaces from the beginning of a string expression.

The LTRIM function removes all of the spaces that are contained in the left side of the given string-
expression.

string-expression
An expression that specifies the source string. The argument must be an expression that returns a
value that is a built-in string data type that is not a LOB, or a numeric data type. If the value is not a
string data type, it is implicitly cast to VARCHAR before the function is evaluated. If string-expression
is not FOR BIT DATA, trim-expression must not be FOR BIT DATA.

The result of the function depends on the data type of string-expression:

• VARCHAR if string-expression is a character string. If string-expression is defined as FOR BIT DATA the
result is FOR BIT DATA.

• VARGRAPHIC if string-expression is a graphic string.
• VARBINARY if string-expression is a binary string.

The length attribute of the result is the same as the length attribute of string-expression.

Example:

The following example removes the spaces from the left side of the values in the EMPL_NAME from the
table EMPLOYEE:

SELECT LTRIM(EMPL_NAME) FROM EMPLOYEE

The above example returns the following.

BUMRAH
CEASAR
ELICA
DEV
NEWTON

192 Using IBM Data Virtualization Manager for z/OS:

SAMUEL
ELICA

MAX
The MAX scalar function returns the maximum value in a set of values.

All but the first argument can be parameter markers. There must be two or more arguments.

Each argument must be an expression that returns a value of any built-in data type other than a CLOB,
DBCLOB, BLOB, ROWID, or XML.

Character string arguments and binary string arguments cannot have a length attribute greater than
32704, and graphic string arguments cannot have a length attribute greater than 16352.

The arguments are evaluated in the order in which they are specified. The result of the function is the
maximum argument value.

The selected argument is converted, if necessary, to the attributes of the result. If the MAX function has
more than two arguments, the rules are applied to the first two arguments to determine a candidate result
type. The rules are then applied to that candidate result type and the third argument to determine another
candidate result type. This process continues until all arguments are analyzed and the final result type
and CCSID is determined.

Notes

Syntax alternatives:
GREATEST is a synonym for MAX.

Example 1:

The following example selects the maximum value among the values in the SALARY column from the table
EMPLOYEE.

SELECT MAX(SALARY) FROM EMPLOYEE

The above example returns 75000.

MICROSECOND
The MICROSECOND function returns the microsecond part of a value.

The argument must be an expression that returns a value of one of the following built-in data types: a
timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a timestamp with an actual length of not greater than 255 bytes.

• If expression is a number, it must be a timestamp duration.

If the expression is a timestamp with a time zone, or a valid string representation of a timestamp with a
time zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The other rules depend on the data type of the argument:

• If the argument is a timestamp or string representation of a timestamp, the result is the
microsecond part of the value, which is an integer between 0 and 999999. If the precision of the
timestamp exceeds 6, the value is truncated.

Chapter 6. Supported SQL functions 193

• If the argument is a duration, the result is the microsecond part of the value, which is an integer
between -999999 and 999999. A nonzero result has the same sign as the argument.

Example 1:

The following example returns the microsecond part of the string in the column UPDATED_TS in the table
EMPL_COMP:

SELECT MICROSECOND(UPDATED_TS) FROM EMPL_COMP WHERE UPDATED_TS IS NOT NULL

The above example returns 454707.

MIN
The MIN scalar function returns the minimum value in a set of values.

All but the first argument can be parameter markers. There must be two or more arguments.

Each argument must be an expression that returns a value of any built-in data type other than a CLOB,
DBCLOB, BLOB, ROWID, or XML.

Character string arguments and binary string arguments cannot have a length attribute greater than
32704, and graphic string arguments cannot have a length attribute greater than 16352.

The arguments are evaluated in the order in which they are specified. The result of the function is the
minimum argument value.

The selected argument is converted, if necessary, to the attributes of the result. If the MIN function has
more than two arguments, the rules are applied to the first two arguments to determine a candidate result
type. The rules are then applied to that candidate result type and the third argument to determine another
candidate result type. This process continues until all arguments are analyzed and the final result type
and CCSID is determined.

Notes
Syntax alternatives:

LEAST is a synonym for MIN.

Example 1:

The following example selects the minimum value among the values in the SALARY column from the table
EMPLOYEE

SELECT MIN(SALARY) FROM EMPLOYEE

The above example returns 20000.

MINUTE
The MINUTE function returns the minute part of a value.

The argument must be an expression that returns a value of one of the following built-in data types: a
time, a timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a time or timestamp with an actual length of not greater than 255 bytes.

• If expression is a number, it must be a time or timestamp duration.

194 Using IBM Data Virtualization Manager for z/OS:

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The other rules depend on the data type of the argument:

• If the argument is a time, timestamp, or string representation of either, the result is the minute part
of the value, which is an integer between 0 and 59.

• If the argument is a time duration or timestamp duration, the result is the minute part of the value,
which is an integer between -99 and 99. A nonzero result has the same sign as the argument.

• If the argument contains a time zone, the result is the year part of the value expressed in UTC.

Example 1:

The following example selects the minute part of the string available in the UPDATED_TS column in the
table EMPL_COMP.

SELECT MINUTE(UPDATED_TS) FROM EMPL_COMP WHERE UPDATED_TS IS NOT NULL

The above example returns 39.

MOD
The MOD function divides the first argument by the second argument and returns the remainder.

The formula used to calculate the remainder is:

MOD(x,y) = x - FLOOR(x/y) * y

Where x/y is the truncated integer result of the division. The result is negative only if the first argument is
negative.

Each argument must be an expression that returns a value of any built-in numeric data type.

The arguments can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

The attributes of the result are based on the arguments as follows:

• If both arguments are large or small integers, the data type of the result is large integer.
• If both arguments are integers and at least one argument is a big integer, the data type of the result is

big integer.
• If one argument is an integer and the other is a decimal, the data type of the result is decimal with the

same precision and scale as the decimal argument.
• If both arguments are decimal, the data type of the result is decimal. The precision of the result is
min(p-s,p'-s') + max(s,s') and the scale of the result is max(s,s'),

– where the symbols p and s denote the precision and scale of the first argument, and the symbols p'
and s' denote the precision and scale of the second argument.

– If one argument is a floating-point number, and the other is not a DECFLOAT, or both argument is a
floating-point number, the data type of the result is double precision floating-point.

The operation is performed in floating-point. If necessary, the operands are first converted to double
precision floating-point numbers. For example, an operation that involves a floating-point number
and either an integer or a decimal number is performed with a temporary copy of the integer or
decimal number that has been converted to double precision floating-point. The result of a floating-
point operation must be within the range of floating-point numbers.

– If either argument is a DECFLOAT, the data type of the result is DECFLOAT(34).

Chapter 6. Supported SQL functions 195

If either argument is a special decimal floating point value, the general rules for arithmetic operations
apply.

If one argument is a DECFLOAT and the second argument is zero, the result is NaN and an invalid
operation condition is returned.

Example:

The following example returns the remainder of dividing the value available in the SALARY column from
the table EMPLOYEE by 3.

SELECT MOD(SALARY, 3) FROM EMPLOYEE

The above example returns the following.

2
2

1
0
0

MONTH
The MONTH function returns the month part of a value.

The argument must be an expression that returns one of the following built-in data types: a date, a
timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a date or timestamp with an actual length of not greater than 255 bytes.

• If expression is a number, it must be a date or timestamp duration.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a time
zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The other rules depend on the data type of the argument:

• If the argument is a date, timestamp, or string representation of either, the result is the month part
of the value, which is an integer between 1 and 12.

• If the argument is a date duration or timestamp duration, the result is the month part of the value,
which is an integer between -99 and 99. A nonzero result has the same sign as the argument.

• If the argument contains a time zone, the result is the year part of the value expressed in UTC.

Example 1:

The following example selects the month part in the value available in the UPDATED_TS column in the
table EMPLOYEE:

SELECT MONTH(UPDATED_TS) FROM EMPL_COMP WHERE UPDATED_TS IS NOT NULL

The above example returns 11

ORDER BY
The ORDER BY clause specifies an ordering of the rows of the result table.

order-by-clause

196 Using IBM Data Virtualization Manager for z/OS:

sort-key:

A subselect that contains an ORDER BY clause cannot be specified in the outermost fullselect of a view.

If the subselect is not enclosed within parentheses and is not the outermost fullselect, the ORDER BY
clause cannot be specified. The ORDER BY clause cannot be used in an outermost fullselect that contains
a FOR UPDATE clause.

An ORDER BY clause that is specified in a subselect only affects the order of the rows that are returned by
the query if the subselect is the outermost fullselect, except when a nested subselect includes an ORDER
BY clause and the outermost fullselect specifies that the ordering of the rows should be retained (by using
the ORDER OF table-designator clause).

Multiple ORDER BY clauses can be specified in the same subselect if each clause is separated with
parentheses.

INPUT SEQUENCE
Indicates that the result table reflects the input order of the rows specified in the VALUES clause of
an INSERT statement. INPUT SEQUENCE ordering can be specified only when an INSERT statement is
specified in a from-clause.

ORDER OF table-designator
Specifies that the same ordering of the rows for the result table that is designated by table-designator
should be applied to the result table of the subselect (or fullselect) that contains the ORDER OF
specification. There must be a table reference in the FROM clause of the subselect (or fullselect) that
specifies this clause and matches table-designator.

For an ORDER BY clause in an OLAP specification, table-designator must not specify a table function,
a collection-derived table, a materialized view, a nested table expression that is materialized, an alias,
or a synonym.

sort-key
A column-name, integer, or sort-key-expression that specifies the value that is to be used to order the
rows of the result of the subselect.

If a single sort-key is identified, the rows are ordered by the values of that sort-key. If more than one
sort-key is identified, the rows are ordered by the values of the first sort-key, then by the values of the
second sort-key, and so on. A sort-key cannot be a LOB or XML expression.

The result table can be ordered by a named column in the select list by specifying a sort-key that is an
integer or the column name. The result table can be ordered by an unnamed column in the select list
by specifying a sort-key that is an integer or, in some cases, by a sort-key-expression that matches the
expression in the select list.

column-name
An identifier that usually identifies a column of the result table. In this case, column-name must
be the name of a named column in the select list. If the fullselect includes a set operator, the
column name cannot be qualified.

If the query is a subselect, the column-name can also identify a column name of a table, view,
or nested table expression identified in the FROM clause, including a column that is defined as
implicitly hidden. The subselect must not include any of the following:

Chapter 6. Supported SQL functions 197

• DISTINCT in the select list
• Aggregate functions in the select list
• GROUP BY clause

integer
An unsigned integer that must be greater than 0 and not greater than the number of columns in
the result table. The integer n identifies the nth column of the result table.

sort-key-expression
An expression that is not simply a column-name or unsigned integer constant. The query to which
ordering is applied must be a subselect to use this form of the sort-key.

The sort-key-expression cannot include an expression that is not deterministic or a function that
is defined to have an external action except for the RID built-in function and the ROW CHANGE
expression. If sort-key-expression includes an aggregate function, the input arguments to that
function must not reference a named column in the select list that is derived from an aggregate
function.

If DISTINCT is used in the select list of the subselect, sort-key-expression must match an
expression in the select list of the subselect. Scalar-fullselects are never matched.

If the subselect is grouped, the sort-key-expression might or might not be in the select list of the
subselect. When sort-key-expression is not in the select list the following rules apply:

• Each expression in the ORDER BY clause must either:

– Use one or more grouping expressions
– Use a column name that either unambiguously identifies a grouping column of R or is

specified within a aggregate function.
• Each expression in the ORDER BY clause must not contain a scalar fullselect.

ASC
Uses the values of the sort-key in ascending order.

ASC is the default.

DESC
Uses the values of the sort-key in descending order.

The null value is higher than all other values. If your ordering specification does not determine a complete
ordering, rows with duplicate values of the last identified sort-key have an arbitrary order. If you do not
specify ORDER BY, the rows of the result table have an arbitrary order.

Column access controls do not effect the operation of the ORDER BY clause. The order is based on the
original column values. However, after column masks are applied, the masked values in the final result
table might not reflect the order of the original column values.

Column names in sort keys: A column name in a sort-key must conform to the following rules:

• If the column name is qualified, the query must be a subselect. The column name must unambiguously
identify a column of a table, view, or nested table expression in the FROM clause of the subselect; its
value is used to compute the value of the sort specification.

• If the column name is unqualified and the query is a subselect:

– If the column name is identical to the name of more than one column of the result table, the column
name must unambiguously identify a column of some table, view, or nested table expression in the
FROM clause of the ordering subselect.

– If the column name is identical is one column of the result table, its value is used to compute the
value of the sort specification.

– If the column name is not identical to a column in the result table, it must unambiguously identify a
column of a table, view, or nested table expression in the FROM clause of the subselect. If the column
name is identical to one column of a table, view, or nested table expression in the FROM clause of the
subselect, its value is used to compute the value of the sort specification.

198 Using IBM Data Virtualization Manager for z/OS:

Example:

The following example sorts the rows from the table EMPLOYEE in an ascending order.

SELECT EMPL_NAME, AGE FROM EMPLOYEE ORDER BY AGE ASC

The above example returns the following:

EMPL_NAME , AGE
ELICA , 23
DEV , 33
CEASAR , 43
SAMUEL , 43
BUMRAH , 53
NEWTON , 53
ELICA ,

OUTER JOIN
An outer join is a method of combining two or more tables so that the result includes unmatched rows of
one of the tables, or of both tables. The matching is based on the join condition.

Data Virtualization Manager supports three types of outer joins:

full outer join
Includes unmatched rows from both tables. If any column of the result table does not have a value,
that column has the null value in the result table.

left outer join
Includes rows from the table that is specified before LEFT OUTER JOIN that have no matching values
in the table that is specified after LEFT OUTER JOIN.

right outer join
Includes rows from the table that is specified after RIGHT OUTER JOIN that have no matching values
in the table that is specified before RIGHT OUTER JOIN.

The following table illustrates how the sample PARTS and PRODUCTS tables can be combined using the
three outer join functions.

The result table contains data that is joined from all of the tables, for rows that satisfy the search
conditions.

The result columns of a join have names if the outermost SELECT list refers to base columns. However,
if you use a function (such as COALESCE or VALUE) to build a column of the result, that column does not
have a name unless you use the AS clause in the SELECT list.

Chapter 6. Supported SQL functions 199

RAND
The RAND function returns a random floating-point value between 0 and 1. An argument can be specified
as an optional seed value.

numeric-expression
If numeric-expression is specified, it is used as the seed value. The argument must be an expression
that returns a value of a built-in integer data type (SMALLINT or INTEGER). The value must be
between 0 and 2,147,483,646.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) and then assigned to an INTEGER value.

The result of the function is a double precision floating-point number.

A specific seed value, other than zero, will produce the same sequence of random numbers for a specific
instance of a RAND function in a query each time the query is executed. The seed value is used only for
the first invocation of an instance of the RAND function within a statement. RAND(0) is processed the
same as RAND().

The RAND function is a non-deterministic function.

Example:

The following example assigns a random number for the column EMPL_ID in the table EMPLOYEE.

INSERT INTO EMPL_COMP (EMPL_ID, EMPL_NAME) VALUES(RANDOM(),'KANE');

The above example assigns a random value for the EMPL_ID column for the employee KANE as shown
below.

EMPL_ID, EMPL_NAME, COMPANY, LOCATION, UPDATED_TS
1 , AKHIL , TIMBER INC. , NY , 2019-11-26 05:39:59.454707
2 , ELICA , STANLEY INC. , TX ,
3 , SMITH , CHROME INC. , WA ,
1919574970 , KANE , , ,

REAL
The REAL function returns a single-precision floating-point representation of either a number or a string
representation of a number.

Numeric to Real:

String to Real:

Numeric to Real

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned to a single precision
floating-point column or variable. If the numeric value of the argument is not within the range of single
precision floating-point, an error occurs.

200 Using IBM Data Virtualization Manager for z/OS:

String to Real

string-expression
An expression that returns a value of a character or graphic string (except a CLOB or DBCLOB)
with a length attribute that is not greater than 255 bytes. The string must contain a valid string
representation of a number.

The result is the same number that would result from CAST(string-expression AS REAL).
Leading and trailing blanks are eliminated and the resulting string must conform to the rules for
forming an SQL floating-point, integer, or decimal constant.

The result of the function is a single precision floating-point number.

Notes

Syntax alternatives:
To increase the portability of applications, use the CAST specification.

Examples

Example 1:
Using the sample table EMPLOYEE, find the ratio of salary to age for employees. The columns
involved, SALARY and AGE, have decimal data types. To express the result in single precision floating-
point, apply REAL to SALARY so that the division is carried out in floating-point (actually double
precision) and then apply REAL to the complete expression so that the results are returned in single
precision floating-point.

SELECT EMPL_NAME, REAL(SALARY/AGE) FROM EMPLOYEE
 WHERE AGE > 0;

The above example returns the following.

EMPL_NAME,
BUMRAH , 943.396240234375
CEASAR , 465.1162109375
ELICA ,
DEV , 757.57568359375
NEWTON , 1415.09423828125
SAMUEL , 1744.18603515625

REPLACE
The REPLACE function replaces all occurrences of a search-string in a source-string with a replace-string.
If the search-string is not found in the source-string, the source-string is returned unchanged.

source-string
An expression that specifies the source string. The expression must return a value that is a built-in
character string, graphic string, or binary string data type that is not a LOB and it cannot be an empty
string.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

search-string
An expression that specifies the string to be removed from the source string. The expression must
return a value that is a built-in character string, graphic string, or binary string data type that is not a
LOB; the value cannot be an empty string.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

Chapter 6. Supported SQL functions 201

replace-string
An expression that specifies the replacement string. The expression must return a value that is a
built-in character string, graphic string, or binary string data type that is not a LOB.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

If replace-string is not specified or is an empty string, nothing replaces the string that is removed from
the source string.

The actual length of each string must be 32764 bytes or less for character and binary strings or 16382 or
less for graphic strings.

All three arguments must have compatible data types. If the expressions have different CCSID sets, then
the expressions are converted to the CCSID set of source-string.

The data type of the result of the function depends on the data type of source-string, search-string, and
replace-string:

• VARCHAR if source-string is a character string. The encoding scheme of the result is the same as
source-string. The CCSID of the result depends on the arguments:

– If source-string, search-string, or replace-string is bit data, the result is bit data.
– If source-string, search-string, and replace-string are all SBCS Unicode data, the CCSID of the result

is the CCSID for SBCS Unicode data.
– If source-string is SBCS Unicode data, and search-string or replace-string is not SBCS Unicode data,

the CCSID of the result is the mixed CCSID for Unicode data.
– Otherwise, the CCSID of the result is the mixed CCSID that corresponds to the CCSID of source-

string. However, if the input is EBCDIC or ASCII and there is no corresponding system CCSID for
mixed, the CCSID of the result is the CCSID of source-string.

• VARGRAPHIC if source-string is a graphic. The encoding scheme of the result is the same as source-
string. The CCSID of the result is the same as the CCSID of source-string.

• VARBINARY if source-string, search-string, and replace-string are binary strings.

The length attribute of the result depends on the arguments:

• If the length attribute of replace-string is less than or equal to the length attribute of search-string, the
length attribute of the result is the length attribute of source-string.

• If the length attribute of replace-string is greater than the length attribute of search-string, the length
attribute of the result is determined as follows depending on the data type of the result:

– For VARCHAR or VARBINARY:

- If L1 < = 4000, the length attribute of the result is MIN(4000, (L3*(L1/L2)) +
MOD(L1,L2))

- Otherwise, the length attribute of the result is MIN(32764 , (L3*(L1/L2)) + MOD(L1,L2))
– For VARGRAPHIC:

- If L1 < = 2000, the length attribute of the result is MIN(2000, (L3*(L1/L2)) +
MOD(L1,L2))

- Otherwise, the length attribute of the result is MIN(16382 , (L3*(L1/L2)) + MOD(L1,L2))

where:

– L1 is the length attribute of source-string
– L2 is the length attribute of search-string if the search string is a string constant. Otherwise, L2 is 1.
– L3 is the length attribute of replace-string

If the result is a character string or binary string, the length attribute of the result must not exceed
32764 . If the result is a graphic string, the length attribute of the result must not exceed 16382 .

202 Using IBM Data Virtualization Manager for z/OS:

The actual length of the result is the actual length of source-string plus the number of occurrences of
search-string that exist in source-string multiplied by the actual length of replace-string minus the actual
length of search-string. If the actual length of the result string exceeds the maximum for the return data
type, an error occurs.

Example:

The following example replace all occurrences of CEASAR with GEORGE in the string available in the
column EMPL_NAME from the table EMPLOYEE.

SELECT REPLACE(EMPL_NAME,'CEASAR','GEORGE') FROM EMPLOYEE

The above example returns the following.

BUMRAH
GEORGE
ELICA
DEV
NEWTON
SAMUEL
ELICA

RIGHT OUTER JOIN
The RIGHT OUTER JOIN clause lists rows from the right table even if there are no matching rows on left
table.

As in an inner join, the join condition of a right outer join can be any simple or compound search condition
that does not contain a subquery reference

Example

The following example joins the tables Table 36 on page 162 and Table 37 on page 162.

SELECT A.ID, A.NAME, A.DEPT, A.JOB, A.YEARS, A.SALARY, A.COMM
FROM JOIN1;
RIGHT OUTER JOIN
JOIN2 B;
ON A.ID=B.ID

The query returns the following.

Table 49. RIGHT OUTER JOIN

ID NAME DEPT JOB YEARS SALARY COMM

999 JOHN SALES 16.99

10 MIC 20 MGR 7 98357 0.00

20 WILLIAM 20 SALES 8 78171 612.45

30 MIC 38 MGR 5 77506 0.00

40 OBRIEN 38 SALES 6 78006 846.55

ROUND
The ROUND function returns a number that is rounded to the specified number of places to the right or
left of the decimal place.

Chapter 6. Supported SQL functions 203

numeric-expression-1
An expression that returns a value of any built-in numeric data type.

If expression-1 is a decimal floating-point data type, the DECFLOAT ROUNDING MODE will not be
used. The rounding behavior of ROUND corresponds to a value of ROUND_HALF_UP. If you want a
different rounding behavior, use the QUANTIZE function.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34).

numeric-expression-2

An expression that returns a value that is a built-in numeric, character string or graphic string data
type. If the value is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the
function.

The absolute value of integer specifies the number of places to the right of the decimal point
for the result if numeric-expression-2 is not negative. If numeric-expression-2 is negative, numeric-
expression-1 is rounded to the sum of the absolute value of numeric-expression-2+1 number of
places to the left of the decimal point.

If the absolute value of numeric-expression-2 is larger than the number of digits to the left of the
decimal point, the result is 0. (For example, ROUND(748.58,-4) returns 0.)

If numeric-expression-1 is positive, a digit value of 5 is rounded to the next higher positive number. If
numeric-expression-1 is negative, a digit value of 5 is rounded to the next lower negative number.

The result of the function has the same data type and length attribute as the first argument except that
the precision is increased by one if the argument is DECIMAL and the precision is less than 31. For
example, an argument with a data type of DECIMAL(5,2) results in DECIMAL(6,2). An argument with a
data type of DECIMAL(31,2) results in DECIMAL(31,2).

Example 1:

The following example rounds the number available in the SALARYcolumn in the table EMPLOYEE.

SELECT ROUND(SALARY) FROM EMPLOYEE

The above example returns the following.

50000
20000

25000
75000
75000

RTRIM
The RTRIM function removes spaces from the right side of a string expression.

The RTRIM function removes all of the spaces contained at the right side of a string-expression.

string-expression
An expression that specifies the source string. The argument must be an expression that returns a
value that is a built-in string data type that is not a LOB, or a numeric data type. If the value is not a
string data type, it is implicitly cast to VARCHAR before the function is evaluated. If string-expression
is not FOR BIT DATA, trim-expression must not be FOR BIT DATA.

The result of the function depends on the data type of string-expression.

204 Using IBM Data Virtualization Manager for z/OS:

• VARCHAR if string-expression is a character string. If string-expression is defined as FOR BIT DATA, the
result is FOR BIT DATA.

• VARGRAPHIC if string-expression is a graphic string.
• VARBINARY if string-expression is a binary string.

The length attribute of the result is the same as the length attribute of string-expression.

Example:
The following example removes spaces at the right side of the values in the EMPL_NAME from the
table EMPLOYEE:

SELECT RTRIM(EMPL_NAME) FROM EMPLOYEE

The above example returns the following.

BUMRAH
CEASAR
ELICA
DEV
NEWTON
SAMUEL
ELICA

SECOND
The SECOND function returns the seconds part of a value with optional fractional seconds.

SECOND( expression

, integer-constant

)

expression

expression must be an expression that returns a value of one of the following built-in data types: a
time, a timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must
be a valid string representation of a time or timestamp with an actual length that is not greater than
255 bytes.

• If expression is a number, it must be a time or timestamp duration.

integer-constant
integer-constant must be an integer constant that represents the scale for the fractional seconds
portion of expression. The value must be in the range 0 through 12. If integer-constant is not specified,
the result does not include fractional seconds.

If expression is a timestamp with a time zone, or a valid string representation of a timestamp with a
time zone, the result is determined from the UTC representation of the datetime value.

The result of the function with a single argument is a large integer. The result of the function with two
arguments is DECIMAL(2+s,s) where s is the value of integer-constant.

The result can be null; if the first argument is null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a time, timestamp, or string representation of a time or a timestamp:

The result is the seconds part of the value (0 to 59) and any fractional seconds that are included
in the value. If the second argument is specified, the result includes integer-constant digits of the
fractional seconds part of the value where applicable. If there are no fractional seconds in the value,
zeros are returned.

• If the argument is a time duration or timestamp duration:

Chapter 6. Supported SQL functions 205

The result is the seconds part of the value (-99 to 99) and any fractional seconds that are included
in the value. If the second argument is specified, the result includes integer-constant digits of the
fractional seconds part of the value where applicable. If there are no fractional seconds in the value,
zeros are returned. A nonzero result has the same sign as the expression.

Examples
Example 1:

Assume that the variable TIME_DUR is declared in a PL/I program as DECIMAL(6,0) and can therefore be
interpreted as a time duration. When TIME_DUR has the value 153045, the following function returns the
value 45.

 SECOND(:TIME_DUR)

Example 2:

Assume that RECEIVED is a TIMESTAMP column and that one of its values is the internal equivalent of
'1988-12-25-17.12.30.000000'. The following function returns the value 30.

 SECOND(RECEIVED)

Example 3:

The following invocations of the SECOND function returns the same result:

SELECT SECOND('2003-01-02-20.10.05.123456'),
 SECOND('2003-01-02-12.10.05.123456-08:00'),
 SECOND('2003-01-03-05.10.05.123456+09:00')
 FROM SYSIBM.SYSDUMMY1;

For each invocation of the SECOND function in this SELECT statement, the result is 5.

When the input argument contains a time zone, the result is determined from the UTC representation
of the input value. The string representations of a timestamp with a time zone in the SELECT statement
all have the same UTC representation: 2003-01-02-20.10.05.123456. The second portion of the UTC
representation is 5.

Example 4:

Return the seconds with fractional seconds from a current timestamp with milliseconds.

SELECT SECOND(CURRENT_TIMESTAMP(3),3)
 FROM SYSIBM.SYSDUMMY1;

The SELECT statement returns a DECIMAL(5,3) value that is based on the current timestamp and could be
something like 54.321.

SELECT
The SELECT statement made up a series of clauses that are defined by SQL as being executed in a
logical order. SELECT statements allow users to definite and organize information that is retrieved from a
specified table.

206 Using IBM Data Virtualization Manager for z/OS:

Note:

• The read-only-clause must not be specified if an update-clause is specified.
• The same clause must not be specified more than one time.

The tables and the view identified in a select statement can be at the current server or any subsystem
with which the current server can establish a connection.

For local queries or remote queries, if a table is encoded as ASCII or Unicode, the retrieved data is
encoded in EBCDIC.

A select statement can implicitly or explicitly invoke user-defined functions or implicitly invoke stored
procedures. This technique is known as nesting of SQL statements. A function or procedure is implicitly
invoked in a select statement when it is invoked at a lower level. For instance, if you invoke a user-defined
function from a select statement and the user-defined function invokes a stored procedure, you are
implicitly invoking the stored procedure.

• common-table-expression

A common table expression defines a result table with table-identifier that can be referenced in any
FROM clause of the fullselect that follows.

• read-only-clause

The read-only clause specifies that the result table is read-only. Therefore, the cursor cannot be
referred to in positioned UPDATE or DELETE statements.

Example

SELECT - All Rows

The following example selects all rows from the table EMPLOYEE.

SELECT * FROM EMPLOYEE;

Result

Table 50. SELECT ALL

EMPL_NAME AGE DEPT INDUSTRY SALARY DATEOFJOIN

BUMRAH 53 SALES RETAIL 50000 2019-11-25

CEASAR 43 MARKETING RETAIL 20000

ELICA 23 CUST SUPR RETAIL 5000 2019-10-10

DEV 33 ADMIN RETAIL 25000 2019-11-27

NEWTON 53 DATA RETAIL 75000 2019-11-25

SAMUEL 43 IT BANKING 75000 2019-11-25

ELICA

SELECT - Limited Columns and Row

The following example selects only the columns EMPL_NAME, AGE, and limits the records to 3.

SELECT EMPL_NAME, AGE
FROM EMPLOYEE LIMIT 3;

Result

Chapter 6. Supported SQL functions 207

Table 51. SELECT - Limited Columns and Row

EMPL_NAME AGE

BUMRAH 53

CEASAR 43

ELICA 23

SELECT - Condition

The following example applies the condition of selecting only the record where the EMPL_NAME has
LOCATION = 'TX' in the table EMPL_COMP.

SELECT EMPL_NAME, AGE, DEPT, INDUSTRY, SALARY, DATEOFJOIN
FROM EMPLOYEE
WHERE EMPL_NAME = (SELECT EMPL_NAME FROM EMPL_COMP WHERE LOCATION = 'TX');

Result

Table 52. SELECT - Condition

EMPL_NAME AGE DEPT INDUSTRY SALARY DATEOFJOIN

ELICA 23 CUST SUPR RETAIL 5000 2019-10-10

ELICA

Sub Select

The following example executes the sub select function first and selects EMPL_NAME, AGE, and
INDUSTRY columns from the table EMPLOYEE and limits the record to 10. And then the outer SELECT
function selects only the EMPL_NAME column from the sub select result and limits to 5 records.

SELECT EMPL_NAME FROM (SELECT EMPL_NAME, AGE, INDUSTRY, FROM EMPLOYEE LIMIT 10) LIMIT 5

Result

Table 53. SUB SELECT

EMPL_NAME

BUMRAH

CEASAR

ELICA

DEV

NEWTON

SAMUEL

SMALLINT
The SMALLINT function returns a small integer representation either of a number or of a string
representation of a number.

Numeric to Smallint:
SMALLINT( numeric-expression)

208 Using IBM Data Virtualization Manager for z/OS:

String to Smallint:
SMALLINT( string-expression)

Numeric to Smallint

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned to a small integer
column or variable. If the whole part of the argument is not within the range of small integers, an error
occurs. If present, the decimal part of the argument is truncated.

String to Smallint

string-expression
An expression that returns a value of character or graphic string (except a CLOB or DBCLOB) with a
length attribute that is not greater than 255 bytes for a character string or 127 for a graphic string. The
string must contain a valid string representation of a number.

The result is the same number that would result from CAST(string-expression AS SMALLINT).
Leading and trailing blanks are eliminated and the resulting string must conform to the rules for
forming an SQL integer constant.

The result of the function is a small integer.

The result can be null; if the argument is null, the result is the null value.

Examples
Example 1:

Using sample table DSN8D10.EMP, find the average education level (EDLEVEL) of the employees in
department 'A00'. Round the result to the nearest full education level.

 SELECT SMALLINT(AVG(EDLEVEL)+.5)
 FROM DSN8D10.EMP
 WHERE DEPT = 'A00';

Assuming that the five employees in the department have education levels of '19', '18', '14', '18', and '14',
the result is '17'.

SUBSTR
The SUBSTR function returns a substring of a string.

string-expression
An expression that specifies the string from which the result is derived. The string must be a
character, graphic, or binary string. If string-expression is a character string, the result of the function
is a character string. If it is a graphic string, the result of the function is a graphic string. If it is a binary
string, the result of the function is a binary string.

The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

A substring of string-expression is zero or more contiguous characters of string-expression. If string-
expression is a graphic string, a character is a DBCS character. If string-expression is a character
string or a binary string, a character is a byte. The SUBSTR function accepts mixed data strings.
However, because SUBSTR operates on a strict byte-count basis, the result will not necessarily be a
properly formed mixed data string.

Chapter 6. Supported SQL functions 209

start
An expression that specifies the position within string-expression to be the first character of the
result. The value of the large integer must be between 1 and the length attribute of string-expression.
(The length attribute of a varying-length string is its maximum length.) A value of 1 indicates that the
first character of the substring is the first character of string-expression.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER value.

length
An expression that specifies the length of the resulting substring. If specified, length must be an
expression that returns a value that is a built-in large integer data type.

The argument can also be a character string or graphic string data type. The string input is implicitly
cast to a numeric value of DECFLOAT(34) which is then assigned to an INTEGER value.

The value must be greater than or equal to 0 and less than or equal to n, where n is the length
attribute of string-expression - start + 1. The specified length must not, however, be the
large integer constant 0.

If length is explicitly specified, string-expression is effectively padded on the right with the necessary
number of characters so that the specified substring of string-expression always exists. Hexadecimal
zeros are used as the padding character when string-expression is binary data. Otherwise, a blank is
used as the padding character.

If string-expression is a fixed-length string, omission of length is an implicit specification of
LENGTH(string-expression) - start + 1, which is the number of characters (or bytes)
from the character (or byte) specified by start to the last character (or byte) of string-expression.
If string-expression is a varying-length string, omission of length is an implicit specification of the
greater of zero or LENGTH(string-expression) - start + 1. If the resulting length is zero, the
result is an empty string.

If length is explicitly specified by a large integer constant that is 255 or less, and string-expression is
not a LOB, the result is a fixed-length string with a length attribute of length. If length is not explicitly
specified, but string-expression is a fixed-length string and start is an integer constant, the result is a
fixed-length string with a length attribute equal to LENGTH(string-expression) - start + 1.
In all other cases, the result is a varying-length string. If length is explicitly specified by a large integer
constant, the length attribute of the result is length; otherwise, the length attribute of the result is the
same as the length attribute of string-expression.

The CCSID of the result is the CCSID of string-expression.

Example 1:

The following example returns the substring from the value in the INDUSTRYcolumn from the table
EMPLOYEE.

SELECT SUBSTR(INDUSTRY,1,3) FROM EMPLOYEE

The above example returns the following.

RET
RET
RET
RET
RET
BAN

SUM
The SUM function returns the sum of a set of numbers.

210 Using IBM Data Virtualization Manager for z/OS:

The argument values can be of any built-in numeric data type, and their sum must be within the range of
the data type of the result.

The arguments can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

The data type of the result is determined as follows:

• DECFLOAT(34) if the argument is DECFLOAT(n).
• Large integer if the argument is small integer.
• Double precision floating-point if the argument is single precision floating-point.
• Otherwise, the result is the same as the data type of the argument.

If the data type of the argument values is decimal, the scale of the result is the same as the scale of the
argument values, and the precision of the result depends on the precision of the argument values and the
decimal precision option:

• If the precision of the argument values is greater than 15 or the DEC31 option is in effect, the precision
of the result is min(31,P+10), where P is the precision of the argument values.

• Otherwise, the precision of the result is 15.

Example:

The following example selects the sum of the values in the numerical column SALARY from the table
EMPLOYEE.

SELECT SUM(SALARY) FROM EMPLOYEE

The above examples returns 250000

SQRT
The SQRT function returns the square root of the argument.

The argument must be an expression that returns the value of any built-in numeric data type. If the
argument is DECFLOAT, the operation is performed in DECFLOAT. Otherwise, the argument is converted to
a double precision floating-point number for processing by the functions.

The argument can also be a character string or graphic string data type. The string input is implicitly cast
to a numeric value of DECFLOAT(34).

If the argument is DECFLOAT(n), the result is DECFLOAT(n). Otherwise, the result of the function is a
double precision floating-point number. If the argument is a special decimal floating point value, the
general rules for arithmetic operations apply.

Example:

The following example returns the square root value of the numerical column SALARY from the table
EMPLOYEE.

SELECT SQRT(SALARY) FROM EMPLOYEE

The above example returns the following:

Chapter 6. Supported SQL functions 211

223.60679774997897
141.42135623730948
70.71067811865474
158.11388300841895
273.8612787525831
273.8612787525831

TIME
The TIME function returns a time that is derived from a value.

TIME( expression)

The argument must be an expression that returns a value of one of the following built-in data types: a
time, a timestamp, a character string, or a graphic string. If expression is a character or graphic string, it
must not be a CLOB or DBCLOB, and its value must be a valid string representation of a time or timestamp
with an actual length of not greater than 255 bytes. A time zone in a string representation of a timestamp
is ignored.

If expression is a TIMESTAMP WITH TIME ZONE value, expression is first cast to TIMESTAMP WITHOUT
TIME ZONE, with the same precision as expression.

If expression is not a TIME value, expression is cast as follows:

• If expression is a TIMESTAMP WITH TIME ZONE value, expression is cast to TIMESTAMP WITHOUT
TIME ZONE, with the same precision as expression.

• If expression is a string, expression is cast to TIME.

The result of the function is a time.

The result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
If the argument is a time

the result is that time.
If the argument is a timestamp

the result is the time part of the timestamp.
If the argument is a string

the result is the time or time part of the timestamp represented by the string. If the CCSID of the
string is not the same as the corresponding default CCSID at the server, the string is first converted to
that CCSID.

The result CCSID is the appropriate CCSID of the argument encoding scheme and the result subtype is the
appropriate subtype of the CCSID.

Example: Assume that a table named CLASSES contains one row for each scheduled class. Assume also
that the class starting times are in the TIME column named STARTTM. Using these assumptions, select
those rows in CLASSES that represent classes that start at 1:30 P.M.

SELECT *
 FROM CLASSES
 WHERE TIME(STARTTM) = '13:30:00';

TIMESTAMP
The TIMESTAMP function returns a TIMESTAMP WITHOUT TIME ZONE value from its argument or
arguments.

212 Using IBM Data Virtualization Manager for z/OS:

The rules for the arguments depend on whether the second argument is specified.

• If only one argument is specified: The argument must be an expression that returns a value of one of
the following built-in data types: a date, a timestamp, a character string, a graphic string, or a binary
string. If expression-1 is a character or graphic string, it must not be a CLOB or DBCLOB and it must
have one of the following values:

– A valid string representation of a date or timestamp with an actual length that is not greater than 255
bytes. A time zone in a string representation of a timestamp is ignored.

– A character string or graphic string with an actual length of 8 that is assumed to be a IBM® Z Store
Clock value.

– A character string with an actual length of 13 that is assumed to be a result from the
GENERATE_UNIQUE function.

– A character string or graphic string with an actual length of 14 that represents a valid date and time in
the form yyyyxxddhhmmss, where yyyy is the year, xx is the month, dd is the day, hh is the hour, mm
is the minute, and ss is the seconds.

If expression-1 is a binary string, it must not be a BLOB and its value must be one of the following:

– A binary string with an actual length of 8 bytes that is assumed to be a IBM Z Store Clock value.
– A binary string with an actual length of 16 bytes that is assumed to be a IBM Z Store Clock extended

value.
• If both arguments are specified:,

– If the data type of the second argument is not an integer:

The first argument must be an expression that returns a value of one of the following built-in data
types: a date, a character string, or a graphic string. The second argument must be an expression
that returns a value of one of the following built-in data types: a time, a character string, or a graphic
string. A character string or graphic string must be a valid string representation of a time.

If expression-1 is a character string or graphic string, it must not be a CLOB or DBCLOB, and its value
must be a valid string representation of a date with an actual length that is not greater than 255
bytes. If expression-2 is a character string or graphic string, it must not be a CLOB or DBCLOB, and its
value must be a valid string representation of a time with an actual length that is not greater than 255
bytes.

– If the data type of the second argument is integer:

The first argument must be an expression that returns a value of one of the following built-in data
types: a timestamp, a date, a character string, or a graphic string. The second argument must be an
integer constant in the range 0 to 12 that represents the timestamp precision.

If expression-1 is a character string or graphic string, it must not be a CLOB or DBCLOB, and its value
must be a valid string representation of a timestamp or a date with an actual length that is not greater
than 255 bytes.

If expression-1 is a binary string, it must not be a BLOB, and its value must conform to the rules for
when only one argument is specified. The second argument must be an integer constant in the range
0 to 12 that represents the timestamp precision.

The result of the function is a TIMESTAMP WITHOUT TIME ZONE value.

The timestamp precision and other rules depend on whether the second argument is specified:

If both arguments are specified and the second argument is not an integer:
The result is a TIMESTAMP(6) WITHOUT TIME ZONE value with the date that is specified by the first
argument and the time that is specified by the second argument. The fractional seconds part of the
timestamp is zero.

Chapter 6. Supported SQL functions 213

If both arguments are specified and the second argument is an integer:
The result is a TIMESTAMP WITHOUT TIME ZONE value with the precision that is specified in the
second argument.

If only one argument is specified and it is a TIMESTAMP (p) WITHOUT TIME ZONE:
The result is that TIMESTAMP (p) WITHOUT TIME ZONE value.

If only one argument is specified and it is a TIMESTAMP(p) WITH TIME ZONE:
The result is the argument value, cast to TIMESTAMP(p) WITHOUT TIME ZONE. The value is the local
timestamp, not UTC.

If only one argument is specified and it is a date:
The result is that date with an assumed time of midnight that is cast to TIMESTAMP(0) WITHOUT
TIME ZONE.

If only one argument is specified and it is a character or graphic string:
The result is the TIMESTAMP(6) WITHOUT TIME ZONE value that is represented by that string
extended with any missing time information. If the argument is a string of length 14, the TIMESTAMP
has a fractional seconds part of zero. The string value must not contain a specification of time zone.

If only one argument is specified and it is a binary string:
The result is the TIMESTAMP(6) WITHOUT TIME ZONE value that is represented by that string. If the
year value in the resulting timestamp is greater than 9999 an error is returned (SQLSTATE 22007,
SQLCODE -180).

If the arguments include only date information, the time information in the result value is all zeros.

If an argument is a string with a CCSID that is not the same as the corresponding default CCSID at the
server, the string is first converted to that CCSID.

The result CCSID is the appropriate CCSID of the argument encoding scheme and the result subtype is
the appropriate subtype of the CCSID. If both arguments are specified and their encoding schemes are
different, the result CCSID is the appropriate CCSID of the application encoding scheme.

Notes

Specifying an LRSN as an argument:
When a 6-byte LRSN is used as the argument to the TIMESTAMP function, it must be left justified and
padded on the right to a total length of 8 bytes. When a 10-byte LRSN is used, it must be left justified
and padded on the right to a total length of 16 bytes.

Syntax alternatives:
If only one argument is specified, the CAST specification should be used for maximal portability.

TIMESTAMP_TZ is a similar function.

Examples

Example:
The following example selects the timestamp from the column UPDATED_TS in the table EMPLOYEE:

SELECT TIMESTAMP(UPDATED_TS) FROM EMPL_COMP

The above example returns 2019-11-26 05:39:59.454707.

TO_CHAR
The TO_CHAR function returns a character string representation of a timestamp value that has been
formatted using a specified character template.

Character to VARCHAR

TO_CHAR (character-expression)

214 Using IBM Data Virtualization Manager for z/OS:

Timestamp to VARCHAR

TO_CHAR (timestamp-expression , format-string)

Decimal floating-point to VARCHAR

TO_CHAR (decimal-floating-point-expression

, format-string

)

TRIM
The TRIM function removes bytes from the beginning, from the end, or from both the beginning and end of
a string expression.

TRIM (

BOTH

B

LEADING

L

TRAILING

T

trim-constant

FROM

string-expression)

The first argument, if specified, indicates whether characters are removed from the end or the beginning
of the string. If the first argument is not specified, the characters are removed from both the end and the
beginning of the string.

trim-constant

Specifies a constant that indicates the binary, SBCS, or DBCS character that is to be removed. If
string-expression is a character string, trim-constant must be an SBCS or DBCS single-character (2
bytes) constant. If string-expression is a binary string, trim-constant must be a single-byte binary
string constant. If string-expression is a DBCS graphic or DBCS-only string, trim-constant must be a
graphic constant that consists of a single DBCS character.

The default for trim-constant depends on the data type of string-expression:

• A DBCS blank if string-expression is a DBCS graphic string. For ASCII, the CCSID determines the hex
value that represents a DBCS blank. For example, for Japanese (CCSID 301), X'8140' represents a
DBCS blank, while for Simplified Chinese, X'A1A1' represents a DBCS blank. For EBCDIC, X'4040'
represents a DBCS blank.

• A UTF-16 or UCS-2 blank (X'0020') if string-expression is a Unicode graphic string.
• A value of X'00' if string-expression is a binary string.
• Otherwise, a single byte blank. For EBCDIC, X'40' represents a blank. When not EBCDIC, X'20'

represents a blank.

string-expression

An expression that returns a value that is a built-in character string data type, graphic data type,
binary string data type, or numeric data type. string-expression must not be a LOB. If string-expression
is numeric, it is cast to a character string before the function is evaluated.

string-expression and trim-expression must have compatible data types.

The data type of the result depends on the data type of string-expression:

• If string-expression is a character string data type, the result is VARCHAR. If string-expression is defined
as FOR BIT DATA the result is FOR BIT DATA.

Chapter 6. Supported SQL functions 215

• If string-expression is a graphic string data type, the result is VARGRAPHIC.
• If string-expression is a binary string data type, the result is VARBINARY.

The length attribute of the result is the same as the length attribute of string-expression. The actual length
of the result is the length of string-expression minus the number of characters removed. If all of the
characters are removed, the result is an empty string.

If string-expression can be null, the result can be null; if string-expression is null, the result is the null
value.

The CCSID of the result is the same as that of string-expression.

Note:
Valid content for EBCDIC mixed string input:

If string-expression is an EBCDIC mixed string, the string must contain valid EBCDIC mixed data.

Examples
Example:

Assume the host variable HELLO of type CHAR(9) has a value of ' Hello '.

SELECT TRIM(:HELLO), TRIM(TRAILING FROM :HELLO)
 FROM SYSIBM.SYSDUMMY1

Results in 'Hello' and ' Hello' respectively.

Example:

Assume the host variable BALANCE of type CHAR(9) has a value of '000345.50'.

SELECT TRIM(L '0' FROM :BALANCE)
 FROM SYSIBM.SYSDUMMY1

Results in '345.50'

UNION
Using the UNION keyword, you can combine two or more subselects to form a fullselect.

When SQL encounters the UNION keyword, it processes each subselect to form an interim result table, it
combines the interim result table of each subselect and deletes duplicate rows to form a combined result
table. You can use different clauses and techniques when coding select-statements.

The combined list is derived from two tables and contains no duplicates.

To better understand the results from these SQL statements, imagine that SQL goes through the following
process:

When you use UNION:

• Any ORDER BY clause must appear after the last subselect that is part of the union. The ORDER BY
clause specifies that the combined result table is to be in collated sequence. ORDER BY is not allowed
in a view.

• A name may be specified on the ORDER BY clause if the result columns are named. A result column is
named if the corresponding columns in each of the unioned select-statements have the same name. An
AS clause can be used to assign a name to columns in the select list.

To identify which subselect each row is from, you can include a constant at the end of the select list of
each subselect in the union. When SQL returns your results, the last column contains the constant for the
subselect that is the source of that row. For example, you can specify:

 SELECT A, B, 'A1' ...
 UNION
 SELECT X, Y, 'B2'...

216 Using IBM Data Virtualization Manager for z/OS:

When a row is returned, it includes a value (either A1 or B2) to indicate the table that is the source of the
row's values. If the column names in the union are different, SQL uses the set of column names specified
in the first subselect when interactive SQL displays or prints the results, or in the SQLDA resulting from
processing an SQL DESCRIBE statement.

Note: Sort sequence is applied after the fields across the UNION pieces are made compatible. The sort
sequence is used for the distinct processing that implicitly occurs during UNION processing.

The following example combines the records from the tables Table 34 on page 161 and Table 35 on page
161.

SELECT A.EMPL_NAME, A.AGE, A.DEPT, A.INDUSTRY, A.SALARY, A.DATEOFJOIN
FROM EMPLOYEE A
UNION
SELECT B.EMPL_NAME, B.AGE, B.DEPT, B.INDUSTRY, B.SALARY, B.DATEOFJOIN
FROM EMP B;

The query combines all the records and leaves out the duplicate records.

Table 54. VIRTUAL TABLE - EMPLOYEE

EMPL_NAME AGE DEPT INDUSTRY SALARY DATEOFJOIN

BUMRAH 53 SALES RETAIL 50000 2019-11-25

CEASAR 43 MARKETING RETAIL 20000

ELICA 23 CUST SUPR RETAIL 5000 2019-10-10

DEV 33 ADMIN RETAIL 25000 2019-11-27

NEWTON 53 DATA RETAIL 75000 2019-11-25

SAMUEL 43 IT BANKING 75000 2019-11-25

ELICA

WAYNE 36 ADMIN RETAIL 45000 2018-11-01

UNION ALL
If you want to keep duplicates in the result of a UNION operation, specify the UNION ALL keyword instead
of just UNION.

This topic uses the same steps and example as “UNION” on page 216.

The following example combines all the records from the tables Table 34 on page 161 and Table 35 on
page 161.

SELECT A.EMPL_NAME, A.AGE, A.DEPT, A.INDUSTRY, A.SALARY, A.DATEOFJOIN
FROM EMPLOYEE A
UNION ALL
SELECT B.EMPL_NAME, B.AGE, B.DEPT, B.INDUSTRY, B.SALARY, B.DATEOFJOIN
FROM EMP B;

The query includes all the records including the duplicate records.

Table 55. VIRTUAL TABLE - EMPLOYEE

EMPL_NAME AGE DEPT INDUSTRY SALARY DATEOFJOIN

BUMRAH 53 SALES RETAIL 50000 2019-11-25

CEASAR 43 MARKETING RETAIL 20000

ELICA 23 CUST SUPR RETAIL 5000 2019-10-10

Chapter 6. Supported SQL functions 217

Table 55. VIRTUAL TABLE - EMPLOYEE (continued)

EMPL_NAME AGE DEPT INDUSTRY SALARY DATEOFJOIN

DEV 33 ADMIN RETAIL 25000 2019-11-27

NEWTON 53 DATA RETAIL 75000 2019-11-25

SAMUEL 43 IT BANKING 75000 2019-11-25

ELICA

DEV 33 ADMIN RETAIL 25000 2019-11-27

WAYNE 36 ADMIN RETAIL 45000 2018-11-01

UPDATE
The UPDATE statement updates the values of specified columns in rows of a table.

There are two forms of this statement:

• The searched UPDATE form is used to update one or more rows optionally determined by a search
condition.

• The positioned UPDATE form specifies that one or more rows corresponding to the current cursor
position are to be updated.

searched update:

positioned update:

include-column:

data-type:

built-in-type:

218 Using IBM Data Virtualization Manager for z/OS:

assignment clause:

Notes:

• 1 The number of expressions, DEFAULT, and NULL keywords must match the number of column-names.
Expressions must not refer to UNPACK-function-invocation..

• 3 The number of items returned from UNPACK-function-invocation must match the number of column
names.

Description
table-name

Identifies the object of the UPDATE statement. The name must identify a table that exists at the Data
Virtualization Manager server that is identified by the implicitly or explicitly specified location name.

correlation-name
Can be used within search-condition or assignment-clause to designate the table.

include-column
Specifies a set of columns that are included, along with the columns of table-name, in the result table
of the UPDATE statement when it is nested in the FROM clause of the outer fullselect that is used in a
subselect, SELECT statement, or in a SELECT INTO statement. The included columns are appended to
the end of the list of columns that is identified by table-name. If no value is assigned to a column that
is specified by an include-column, a NULL value is returned for that column.
INCLUDE

Introduces a list of columns that are to be included in the result table of the UPDATE statement.
The included columns are only available if the UPDATE statement is nested in the FROM clause of
a SELECT statement or a SELECT INTO statement.

Chapter 6. Supported SQL functions 219

column-name
Specifies the name for a column of the result table of the UPDATE statement that is not the same
name as another included column nor a column in the table that is specified in table-name.

data-type
Specifies the data type of the included column. The included columns are nullable.
built-in-type

Specifies a built-in data type.

The CCSID 1208 and CCSID 1200 clauses must not be specified for an INCLUDE column.

distinct-type
Specifies a distinct type. Any length, precision, or scale attributes for the column are those of
the source type of the distinct type as specified by using the CREATE TYPE statement.

SET
Introduces the assignment of values to column names.
assignment-clause

If row-fullselect is specified, the number of columns in the result of row-fullselect must match
the number of column-names that are specified. If row-fullselect is not specified, the number of
expressions must match the number of column-names that are specified.

column-name
Identifies a column that is to be updated. column-name must identify a column of the specified
table, and that column must be updatable if extended indicator variables are not enabled. The
column must not identify a generated column where the column is derived from a scalar function,
constant, or expression. column-name can also identify an INCLUDE column that must not be
qualified. The same column must not be specified more than one time.

expression
Indicates the new value of the column.

DEFAULT
Specifies that the default value is used based on how the corresponding column is defined in the
table.

UNPACK-function-invocation
Specifies an invocation of the UNPACK built-in function. The number of fields that are returned by
the UNPACK function invocation must be the same as the number of column-names.

WHERE
Specifies the rows to be updated. You can omit the clause, give a search condition, or specify a cursor.
If you omit the clause, all rows of the table are updated.
search-condition

Specifies any search condition described in Language elements. Each column-name in the search
condition, other than in a subquery, must identify a column of the table.

The search-condition is applied to each row of the table and the updated rows are those for which
the result of the search-condition is true. If the unique key or primary key is a parent key, the
constraints are effectively checked at the end of the operation.

If the search condition contains a subquery, the subquery can be thought of as being executed
each time the search condition is applied to a row, and the results used in applying the search
condition. In actuality, a subquery with no correlated references is executed just once, whereas it
is possible that a subquery with a correlated reference must be executed once for each row.

WHERE CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. cursor-name must identify a declared
cursor as explained in the description of the DECLARE CURSOR statement in DECLARE CURSOR. If
the UPDATE statement is embedded in a program, the DECLARE CURSOR statement must include
select-statement rather than statement-name.

The object of the UPDATE statement must also be identified in the FROM clause of the SELECT
statement of the cursor. The columns to be updated can be identified in the FOR UPDATE clause of

220 Using IBM Data Virtualization Manager for z/OS:

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/sqlref/src/tpc/db2z_langelementsoverview.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_declarecursor.html?view=kc

that SELECT statement though they do not have to be identified. If the columns are not specified, the
columns that can be updated include all the updatable columns of the table that is identified in the
first FROM clause of the fullselect.

The result table of the cursor must not be read-only. For an explanation of read-only result tables, see
Read-only cursors. Note that the object of the UPDATE statement must not be identified as the object
of the subquery in the WHERE clause of the SELECT statement of the cursor.

When the UPDATE statement is executed, the cursor must be open and positioned on a row or rowset
of the result table.

• If the cursor is positioned on a single row, that row is the one updated.
• If the cursor is positioned on a rowset, all rows corresponding to the rows of the current rowset are

updated.

FOR ROW n OF ROWSET
Specifies which row of the current rowset is to be updated. The corresponding row of the rowset is
updated, and the cursor remains positioned on the current rowset.

host-variable or integer-constant is assigned to an integral value k. If host-variable is specified, it
must be an exact numeric type with scale zero, must not include an indicator variable, and k must be
in the range 1 - 32767.

The cursor must be positioned on a rowset, and the specified value must be a valid value for the
set of rows most recently retrieved for the cursor. If the specified row cannot be updated, an error
is returned. It is possible that the specified row is within the bounds of the rowset most recently
requested, but the current rowset contains less than the number of rows that were implicitly or
explicitly requested when that rowset was established.

If this clause is not specified, the cursor position determines the rows that will be affected. If the
cursor is positioned on a single row, that row is the one updated. In the case where the most recent
FETCH statement returned multiple rows of data (but not as a rowset), this position would be on the
last row of data that was returned. If the cursor is positioned on a rowset, all rows corresponding to
the current rowset are updated. The cursor position remains unchanged.

It is possible for another application process to update a row in the base table of the SELECT
statement so that the specified row of the cursor no longer has a corresponding row in the base table.
An attempt to update such a row results in an error.

Datetime representation when using datetime registers:
As explained under Datetime special registers, when two or more datetime registers are implicitly or
explicitly specified in a single SQL statement, they represent the same point in time. This is also true
when multiple rows are updated.

Other SQL statements in the same unit of work:
The following statements cannot follow an UPDATE statement in the same unit of work:

• An INSERT, UPDATE, or DELETE statement that updates accelerator-only tables from a different
accelerator.

Examples
Example 1

Change employee 000190's telephone number to 3565 in a sample table EMP.

 UPDATE EMP
 SET PHONENO='3565'
 WHERE EMPNO='000190';

Example 2
Give each member of department D11 a 100-dollar raise.

 UPDATE EMP

Chapter 6. Supported SQL functions 221

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_declarecursor.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/sqlref/src/tpc/db2z_rules4specialregisters.html?view=kc

 SET SALARY = SALARY + 100
 WHERE WORKDEPT = 'D11';

Example 3
Employee 000250 is going on a leave of absence. Set the employee's pay values (SALARY, BONUS,
and COMMISSION) to null.

 UPDATE EMP
 SET SALARY = NULL, BONUS = NULL, COMM = NULL
 WHERE EMPNO='000250';

UPPER
The UPPER function returns a string in which all the characters have been converted to uppercase
characters.

string-expression
An expression that specifies the string to be converted. The string-expression must return a value
that is a built-in character or a graphic string. A character string argument must not be a CLOB,
and a graphic string argument must not be a DBCLOB. If string-expression is an EBCDIC graphic
string, a blank string must not be specified for locale-name-string. If string-expression is bit data,
locale-name-string must not be specified.

Syntax alternatives:
UCASE is a synonym for UPPER. UPPER should be used for conformance to the SQL standard.

Examples

The following example converts the characters available in the EMPL_NAME from the table EMPLOYEE to
uppercase characters.

SELECT UPPER(EMPL_NAME) FROM EMPLOYEE

The above example returns the following.

BUMRAH
CEASAR
ELICA
DEV
NEWTON
SAMUEL
ELICA

WHERE
The WHERE clause specifies a result table that consists of those rows of R for which the search condition
is true. R is the result of the FROM clause of the subselect.

The search condition must conform to the following rules:

• Each column name must unambiguously identify a column of R or be a correlated reference. A column
name is a correlated reference if it identifies a column of a table, view, common-table-expression, or
nested-table-expression that is identified in an outer subselect.

• An aggregate function must not be specified unless the WHERE clause is specified in a subquery of a
HAVING clause and the argument of the function is a correlated reference to a group.

222 Using IBM Data Virtualization Manager for z/OS:

Any subquery in the search-condition is effectively executed for each row of R and the results are used in
the application of the search-condition to the given row of R. A subquery is actually executed for each row
of R only if it includes a correlated reference. In fact, a subquery with no correlated references is executed
just one time, whereas a subquery with a correlated reference might have to be executed one time for
each row.

The column access control does not affect the operation of the WHERE clause.

Example:

The following example returns the rows from the table EMPLOYEE with columns EMPL_NAME and AGE
where AGE is greater than 50.

SELECT EMPL_NAME,AGE FROM EMPLOYEE
WHERE AGE >50

The above example returns the following:

BUMRAH , 53
NEWTON , 53

YEAR
The YEAR function returns the year part of a value that is a character or graphic string. The value must be
a valid string representation of a date or timestamp.

The argument must be an expression that returns one of the following built-in data types: a date, a
timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, it must not be a CLOB or DBCLOB, and its value must be a
valid string representation of a date or timestamp with an actual length of not greater than 255 bytes.

• If expression is a number, it must be a date or timestamp duration.

If the expression is a timestamp with a time zone, or a valid string representation of a timestamp with a
time zone, the result is determined from the UTC representation of the datetime value.

The result of the function is a large integer.

The other rules depend on the data type of the argument specified:

• If the argument is a date, a timestamp, or a string representation of either, the result is the year part
of the value, which is an integer between 1 and 9999.

• If the argument is a date duration or a timestamp duration, the result is the year part of the value,
which is an integer between -9999 and 9999. A nonzero result has the same sign as the argument.

• If the argument contains a time zone, the result is the year part of the value expressed in UTC.

Example 1:

The following example selects the year part from the column UPDATED_TS from the table EMPL_COMP.

SELECT YEAR(UPDATED_TS) FROM EMPL_COMP

The above example returns 2019.

Chapter 6. Supported SQL functions 223

224 Using IBM Data Virtualization Manager for z/OS:

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use a software product successfully.

The major accessibility features in this product enable users to perform the following activities:

• Use assistive technologies such as screen readers and screen magnifier software. Consult the assistive
technology documentation for specific information when using it to access z/OS interfaces.

• Customize display attributes such as color, contrast, and font size.
• Operate specific or equivalent features by using only the keyboard. Refer to the following publications

for information about accessing ISPF interfaces:

– z/OS ISPF User's Guide, Volume 1
– z/OS TSO/E Primer
– z/OS TSO/E User's Guide

These guides describe how to use the ISPF interface, including the use of keyboard shortcuts or
function keys (PF keys), include the default settings for the PF keys, and explain how to modify their
functions.

© Copyright IBM Corp. 2017, 2022 225

226 Using IBM Data Virtualization Manager for z/OS:

Product legal notices

This information was developed for products and services offered in the U.S.A.

This material may be available from IBM in other languages. However, you may be required to own a copy
of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive

© Copyright IBM Corp. 2017, 2022 227

Armonk, NY 10504-1785
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.html.

Adobe and the Adobe logo are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States, and/or other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the Unites States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions:

Applicability: These terms and conditions are in addition to any terms of use for the IBM website.

228 Using IBM Data Virtualization Manager for z/OS:

http://www.ibm.com/legal/copytrade.html

Personal use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Privacy policy considerations

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and the section titled "Cookies, Web Beacons,
and Other Technologies" in IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details. Also,
see the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/
software/info/product-privacy.

Trademarks

About this task

Procedure

Product legal notices 229

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy

Privacy Policy Considerations

About this task

Procedure

Terms and conditions

About this task

Procedure

230 Using IBM Data Virtualization Manager for z/OS:

Index

A
accessibility

overview 225
accessing data 18
accessing schema 78
ACI server map

defining 19
displaying information 27
extracting information 25

Adabas
accessing Adabas data 80

ADDI 101
AVZMFPAR member 5

B
batch

copying maps 5
creating maps 5
extracting maps 5

batchmember
AVZMFPAR 5

bind and grant 73

C
CA IDMS data

accessing 100
virtual tables 100

client authentication 134
code 115
configuring

access to data sources 147
JDBC Gateway 148
Oracle access 152

connecting
Data Virtualization Manager server 73

Console
display settings 132

cookie policy 227, 229
Copybook 139
copying maps 5
creating maps 5

D
data

accessing 1
virtualization 1

Data Mapping Facility
Adabas data definitions 157
COBOL data types 157
data definitions 157
displaying data maps 61
IMS DBD 159

Data Mapping Facility (continued)
Natural data definition module (DDM) 160
Natural data type conversion to ODBC 159
SQL data types 157
SQL type support 160

Data Service 130
data source connections 74
data sources 18
Db2 columns 139
DB2 subsystems

accessing 73
Db2 unload data

virtual tables 120
Db2 Virtualization (DB2V) 106
DBMS data

accessing 82
virtual tables 82

DDM 160
DNS default file 132
driver class name 154

H
HTTP

debug 126
messages 126

I
IBM Application Discovery and Delivery Intelligence 101
IBM MQ

accessing 91
virtual tables 91

IBM Rational Asset Analyzer 103
IMS

accessing 84
database description (DBD) 159
DBD metadata 85
PSB metadata 86
SQL access to database 43
virtual tables 84, 87

interface
ACI 18
Adabas 40
DB2 41
Sequential 55
VSAM 55

Interface for ACI 18
Interface for Adabas 40
Interface for DB2 41
Interface for VSAM and Sequential 55
internationalization 74

J
JARS 154

Index 231

JavaScript 115
JDBC driver settings 132
JDBC Gateway

configuring 148
preferences 153
starting the administrative console 143
starting the server 142

JDBC libraries 154
JDBC preferences 154

L
legal notices

cookie policy 227, 229
notices 227
programming interface information 227
trademarks 227, 228

locale considerations 74
Log preferences 154
Logstream

virtual tables 89

M
Map Migration utility 67
mapping

batch 1
IBM Data Virtualization Manager studio 1
ISPF 1

maps
copying 64
creating source library maps 65
displaying source library maps 66
refreshing 65
setting default 61
viewing individual data elements 62

migrating maps 67
Multiple schema support 77, 78

N
New IMS DBD Metadata Wizard 85
New IMS PSB Metadata Wizard 86
New UDTF Definitions in DB2 Wizard 106
New Virtual Table Wizard 87, 89
notices 227

O
Oracle

configuring access 152
Output preferences 155
overview

perspectives 70
Studio 69

P
perspectives

DV Data 70
Services 71
Web Services 71

preferences

preferences (continued)
Admin 131
Code Generation 131
Console 132
Data Service 130
Dictionary 132
Drivers 132
JDBC 154
Log 154
Metadata 134
Output 155
SQL 133
Web Services 71, 121, 123–125

programming interface information 227

R
RAA 103
RESTful APIs

Web Services 125
RESTful services 120

S
Scala 115
screen readers and magnifiers 225
searching Server Trace

messages 128
sending comments to IBM xiii
sequential data

accessing 95, 101, 103
virtual tables 95, 101, 103

server authentication 134
Server Trace

enabling 126
exporting messages 129
filtering results 127
importing messages 130
labeling 128
messages 128
starting 127
view 126
zoom 127

SMF
virtual tables 118

SQL
executing queries 114
generating queries 114
validating queries 114

SQL class 115
SQL data access

virtual table 79
SSL 134
Studio

overview 69

T
target systems

create 123
trademarks 227, 228
troubleshooting

Server Trace 126

232 Using IBM Data Virtualization Manager for z/OS:

U
unload data

virtual tables 120
URL template 154
User-defined table functions 106, 108

V
validating

SQL queries 114
virtual collections

SMF 118
virtual source libraries

creating 75
virtual tables

Adabas 80
CA IDMS data 100
Db2 unload data 120
HFS data 98
IBM Application Discovery and Delivery Intelligence 101
IBM MQ 91
IBM Rational Asset Analyzer 103
IMS

DBD 85
PSB 86

IMS data 84, 87
Logstream 89
sequential data 95, 101, 103
SMF 118
VSAM 93
VSAM data 101, 103
zFS data 98

virtual views
creating 105

Virtualization 139
VSAM

accessing data 93
virtual tables 93

VSAM data
accessing 101, 103
virtual tables 101, 103

W
Web Services

creating 125
creating Web Services directories 124
directories 124
RESTful APIs 125
target systems 123
z/OS Connect Configuration Wizard
121

Z
z/OS Connect

Connect Configuration Wizard 121
z/OS Connect Enterprise

Edition
Web Services 120

zFS data
accessing 98

zFS data (continued)
virtual tables 98

Index 233

234 Using IBM Data Virtualization Manager for z/OS:

IBM®

SC27-9301-02

	Contents
	Tables
	About this information
	How to send your comments to IBM
	If you have a technical problem

	Chapter 1. Virtualizing mainframe data
	Multiple schema support
	Prerequisites for adding virtual tables to a schema
	Creating schema maps on the server
	Moving the existing maps or virtual tables to a schema
	Viewing schema maps from the ISPF panel

	Using batch JCL jobs
	Sample JCL - Batch Data Mapping
	Sample JCL - DRDA bind
	Sample JCL- Web Services Migration

	Using the ISPF application
	IBM Data Virtualization Manager for z/OS Interface for ACI
	ACI server map information
	Defining an ACI server map
	Creating an ACI server map in batch
	Creating an ACI server map using the Server ACI Facility panel
	Creating an ACI server definition for CICS
	Creating an ACI batch server definition

	Extracting ACI data map information
	Extracting a map from a Natural listing
	Using the AVZMFPAR member
	Using the DMF Parser

	Extracting a map from a COBOL source or COBOL/PLI listing
	Using the AVZMFPAR member
	Using the DMF Parser

	Displaying ACI server map information
	Available commands
	Column names

	Displaying all map information
	Available commands
	Column names

	Copying ACI maps
	Displaying active ACI server information
	Using the active server display
	Available commands
	Column names

	Using a query

	Displaying CICS global ACI counters
	Converting program data types to ODBC
	COBOL conversions
	Natural conversions

	Reusing persistent connections
	Using submisson limit checking
	Timeout values
	Handling interrupted connections
	ACI service status
	Client error codes

	Running a CICS program not started by Data Virtualization Manager server
	Query syntax
	CMI considerations
	Data validation
	Passing numeric data

	Using a CALL statement to obtain map metadata

	Adabas
	Creating Adabas virtual tables using the Data Mapping Facility in batch

	DB2
	Database control program
	Invoking the DB2 control program
	Available commands
	Column names

	IBM Data Virtualization Manager for z/OS Interface for IMS DB: support for DBCTL
	Choosing a connectivity method
	SQL access to IMS DB
	Extracting database information
	IMS Database Description (DBD)
	Program Specification Block (PSB)
	Segment detail definitions

	Database information
	Extracting the data
	Data access paths
	Selecting data

	PSB security checking
	Creating a data map from SQL
	Using the method for SQL access to IMS DB
	Using the AVZMFPAR member
	Using the DMF parser
	Merging maps into a DBD map
	Displaying maps

	VSAM and sequential files
	Using the Data Mapping Facility (DMF)
	Creating data maps for VSAM file access
	Using the AVZMFPAR member
	Using the DMF parser
	Using alternate indexes for a VSAM cluster
	Defining multiple VSAM logical records in the same file

	Creating data maps for sequential file access
	Using the AVZMFPAR member
	Using the DMF parser

	Query syntax
	Using a CALL statement to obtain map metadata

	Using the Data Mapping Facility
	Setting default values for data maps
	Displaying data maps
	Viewing individual data elements
	Copying data maps
	Refreshing data maps
	Creating source library maps
	Displaying source library maps

	Bind or grant DRDA packages

	Chapter 2. Migrating maps
	Chapter 3. Using the studio
	Data Virtualization Manager studio overview
	Perspectives
	DV Data perspective
	Services perspective

	Connecting to the Data Virtualization Manager server
	Connecting to the Data Virtualization Manager server
	Completing the configuration of DRDA access to RDBMS data sources
	Locale considerations

	Creating server metadata
	Creating virtual source libraries
	Extracting DBDs and PSBs using IMS Catalog Node
	Extracting Database Definitions (DBDs)
	Extracting Program Specification Blocks (PSBs)

	Creating schemas in the studio
	Accessing the schema from studio and creating virtual table

	Creating virtual tables
	Creating virtual tables for Adabas data
	Creating virtual tables for RDBMS data sources
	Creating virtual tables for IMS data
	Using the IMS DBD Metadata wizard
	Using the IMS PSB Metadata wizard
	Using the IMS Virtual Table wizard

	Creating virtual tables for Logstream
	Modifying a Logstream virtual table

	Creating virtual tables for IBM MQ
	Creating virtual tables for VSAM, VSAM CICS, and IAM data
	Creating virtual tables for sequential data
	Creating virtual tables for zFS and HFS file system data
	Creating virtual tables for CA IDMS data
	Creating virtual tables for VSAM and sequential access using ADDI
	Creating virtual tables for VSAM and sequential access using RAA

	Creating virtual views
	Viewing copybook member name in metadata
	Creating Db2 user-defined table functions
	Generated DDL for UDTFs

	Db2 federation nicknames for distributed environment
	Creating nicknames

	Validating SQL statements
	Generating and executing SQL queries
	Generating code from SQL
	Updating the IMS child segments
	Accessing IT Operational Analytics data
	Accessing SMF data
	Viewing documentation

	Accessing Db2 unload data
	Creating RESTful services
	Setting REST z/OS Connect Web Services preferences
	Connecting to z/OS Connect
	RACF CBIND resource classes

	Creating target systems
	Creating Web Services directories
	Creating Web Services and operations
	Web services migration

	Server Trace
	Enabling studio calls in the Server Trace results
	Starting Server Trace
	Filtering Server Trace results
	Using Server Trace Zoom
	Searching Server Trace messages
	Labeling Server Trace messages
	Exporting Server Trace messages
	Importing Server Trace messages

	DV Data preferences
	Data Virtualization Manager preferences
	Admin preferences
	Code generation preferences
	Console preferences
	Dictionary preferences
	Driver preferences
	SQL preferences
	Metadata Discovery preferences
	SSL preferences

	Exporting a virtual table to Software management configuration provider
	Exporting a virtual view to a Software management configuration provider
	Runstats function
	Data Virtualization Manager support for NaturalONE version 9
	About virtualizing large Db2 columns
	Using COBOL copybook map layouts to virtualize large Db2 columns

	Chapter 4. Using JDBC Gateway
	Starting the JDBC Gateway server
	Launching the JDBC Gateway administrative console
	Using the JDBC Gateway administrative console
	Configuring access to data sources using the JDBC Gateway
	Adding JDBC driver information for a data source
	Creating a data source definition entry
	Configuring the Data Virtualization Manager server for JDBC Gateway sources
	Encrypting Passwords in Data Virtualization Manager server using JDBC Gateway

	Example: Configuring access to Oracle data

	Setting preferences
	Setting JDBC driver preferences
	Setting log preferences
	Setting output preferences

	Troubleshooting

	Chapter 5. SQL DMF supported data types
	Adabas
	COBOL
	IMS - DBD (database description)
	Natural conversions
	Natural DDM (data definition module)
	SQL Type Support by the IBM Data Virtualization Manager for z/OS interface

	Chapter 6. Supported SQL functions
	ABS
	AVG
	BETWEEN
	BIGINT
	CASE
	CHAR
	CEILING
	COALESCE
	COUNT
	CONCAT
	DATE
	DAY
	DAYOFWEEK
	DAYOFYEAR
	DECIMAL
	DELETE
	DOUBLE
	EXISTS
	FULL OUTER JOIN
	FLOAT
	GROUP-BY
	GROUP_CONCAT
	HAVING
	HEX
	HOUR
	IFNULL
	INNER JOIN
	INSERT
	LARGE INTEGER (INTEGER)
	LEFT
	LEFT OUTER JOIN
	LENGTH
	LIKE
	LOWER
	LTRIM
	MAX
	MICROSECOND
	MIN
	MINUTE
	MOD
	MONTH
	ORDER BY
	OUTER JOIN
	RAND
	REAL
	REPLACE
	RIGHT OUTER JOIN
	ROUND
	RTRIM
	SECOND
	SELECT
	SMALLINT
	SUBSTR
	SUM
	SQRT
	TIME
	TIMESTAMP
	TO_CHAR
	TRIM
	UNION
	UNION ALL
	UPDATE
	UPPER
	WHERE
	YEAR

	Accessibility features
	Product legal notices
	Trademarks
	Privacy Policy Considerations
	Terms and conditions

	Index
	A
	B
	C
	D
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

