
IBM SPSS Modeler 18.6 Python Scripting
and Automation Guide

IBM

Note

Before you use this information and the product it supports, read the information in “Notices” on page
453.

Product Information

This edition applies to version 18, release 4, modification 0 of IBM® SPSS® Modeler and to all subsequent releases and
modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation .
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Chapter 1. Scripting and the Scripting Language...1
Scripting overview..1
Types of Scripts..1
Stream Scripts..1

Stream script example: Training a neural net..3
Jython code size limits... 3

Standalone Scripts... 3
Standalone script example: Saving and loading a model..4
Standalone script example: Generating a Feature Selection model...4

SuperNode Scripts... 5
SuperNode Script Example.. 5

Looping and conditional execution in streams..6
Looping in streams... 7
Conditional execution in streams...9

Executing and interrupting scripts ... 11
Find and Replace... 11

Chapter 2. The Scripting Language... 15
Scripting language overview..15
Python and Jython... 15
Python Scripting...15

Operations.. 16
Lists...16
Strings...17
Remarks..19
Statement Syntax... 19
Identifiers... 19
Blocks of Code..19
Passing Arguments to a Script... 20
Examples.. 20
Mathematical Methods...21
Using Non-ASCII characters.. 22

Object-Oriented Programming.. 23
Defining a Class.. 24
Creating a Class Instance...24
Adding Attributes to a Class Instance... 24
Defining Class Attributes and Methods... 25
Hidden Variables.. 25
Inheritance... 25

Chapter 3. Scripting in IBM SPSS Modeler.. 27
Types of scripts.. 27
Streams, SuperNode streams, and diagrams... 27

Streams...27
SuperNode streams..27
Diagrams...27

Executing a stream.. 27
The scripting context... 28
Referencing existing nodes..29

Finding nodes... 29

 iii

Setting properties...30
Creating nodes and modifying streams...31

Creating nodes..31
Linking and unlinking nodes...31
Importing, replacing, and deleting nodes... 33
Traversing through nodes in a stream... 34

Clearing, or removing, items..34
Getting information about nodes.. 35

Chapter 4. The Scripting API..37
Introduction to the Scripting API.. 37
Example 1: searching for nodes using a custom filter..37
Example 2: allowing users to obtain directory or file information based on their privileges.................. 37
Metadata: Information about data.. 38
Accessing Generated Objects..40
Handling errors.. 42
Stream, Session, and SuperNode Parameters..42
Global Values... 46
Working with Multiple Streams: Standalone Scripts.. 47

Chapter 5. Scripting tips.. 49
Modifying stream execution.. 49
Looping through nodes.. 49
Accessing Objects in the IBM SPSS Collaboration and Deployment Services Repository 49
Generating an encoded password...52
Script checking...52
Scripting from the command line.. 52
Compatibility with previous releases.. 52
Accessing stream execution results ...53

Table content model ..54
XML Content Model ... 55
JSON Content Model ... 57
Column statistics content model and pairwise statistics content model...58

Chapter 6. Command Line Arguments...63
Invoking the software.. 63
Using command line arguments..63

System arguments..64
Parameter arguments.. 65
Server connection arguments.. 66
IBM SPSS Collaboration and Deployment Services Repository Connection Arguments................... 67
IBM SPSS Analytic Server connection arguments...68
Combining Multiple Arguments... 68

Chapter 7. Properties Reference.. 71
Properties reference overview.. 71

Syntax for properties..71
Node and stream property examples.. 73

Node properties overview... 73
Common Node Properties..73

Chapter 8. Stream properties ... 75

Chapter 9. Source Node Properties...79
Source node common properties.. 79
asimport Properties... 86

iv

cognosimport Node Properties... 87
databasenode properties.. 91
datacollectionimportnode Properties... 92
excelimportnode Properties.. 96
extensionimportnode properties...97
fixedfilenode Properties.. 99
gsdata_import Node Properties..104
jsonimportnode Properties..104
sasimportnode Properties...104
simgennode properties... 105
statisticsimportnode Properties..107
tm1odataimport Node Properties...107
tm1import Node Properties (deprecated).. 108
twcimport node properties..109
userinputnode properties..110
variablefilenode Properties... 111
xmlimportnode Properties.. 116

Chapter 10. Record Operations Node Properties... 119
appendnode properties... 119
aggregatenode properties... 119
balancenode properties.. 120
cplexoptnode properties... 121
derive_stbnode properties.. 124
distinctnode properties... 126
extensionprocessnode properties.. 127
mergenode properties... 129
rfmaggregatenode properties... 130
samplenode properties... 133
selectnode properties... 135
sortnode properties...135
spacetimeboxes properties...136
streamingtimeseries Properties..138

Chapter 11. Field Operations Node Properties.. 147
anonymizenode properties..147
autodataprepnode properties... 148
astimeintervalsnode properties.. 152
binningnode properties... 152
derivenode properties... 155
ensemblenode properties... 159
fillernode properties.. 160
filternode properties..161
historynode properties.. 162
partitionnode properties... 163
reclassifynode properties..164
reordernode properties... 165
reprojectnode properties.. 165
restructurenode properties... 166
rfmanalysisnode properties.. 167
settoflagnode properties... 168
statisticstransformnode properties.. 169
timeintervalsnode properties (deprecated)..169
transposenode properties... 175
typenode properties.. 176

Chapter 12. Graph Node Properties.. 185

 v

Graph node common properties... 185
collectionnode Properties... 186
distributionnode Properties.. 187
evaluationnode Properties.. 188
graphboardnode Properties.. 190
histogramnode Properties...195
mapvisualization properties..196
multiplotnode Properties.. 200
plotnode Properties...201
timeplotnode Properties... 204
eplotnode Properties...205
tsnenode Properties.. 206
webnode Properties.. 208

Chapter 13. Modeling Node Properties... 211
Common modeling node properties... 211
anomalydetectionnode properties..212
apriorinode properties...213
associationrulesnode properties.. 215
autoclassifiernode properties... 218

Setting Algorithm Properties... 220
autoclusternode properties...220
autonumericnode properties...222
bayesnetnode properties.. 224
c50node properties... 226
carmanode properties... 228
cartnode properties... 229
chaidnode properties.. 232
coxregnode properties.. 234
decisionlistnode properties...237
discriminantnode properties...238
extensionmodelnode properties...240
factornode properties..243
featureselectionnode properties.. 245
genlinnode properties... 247
glmmnode properties.. 252
gle properties...257
kmeansnode properties.. 264
kmeansasnode properties...265
knnnode properties... 266
kohonennode properties... 268
linearnode properties.. 269
linearasnode properties.. 271
logregnode properties... 272
lsvmnode properties..278
neuralnetnode properties..279
neuralnetworknode properties... 282
questnode properties.. 284
randomtrees properties.. 287
regressionnode properties.. 289
sequencenode properties... 291
slrmnode properties.. 293
statisticsmodelnode properties.. 294
stpnode properties.. 294
svmnode properties...300
tcmnode Properties... 301
ts properties...307

vi

treeas properties... 317
twostepnode Properties.. 319
twostepAS Properties..320

Chapter 14. Model nugget node properties... 323
applyanomalydetectionnode Properties...323
applyapriorinode Properties..323
applyassociationrulesnode Properties... 324
applyautoclassifiernode Properties.. 324
applyautoclusternode Properties..326
applyautonumericnode Properties... 326
applybayesnetnode Properties... 326
applyc50node Properties.. 327
applycarmanode Properties.. 327
applycartnode Properties..327
applychaidnode Properties... 328
applycoxregnode Properties... 328
applydecisionlistnode Properties..329
applydiscriminantnode Properties..329
applyextension properties...329
applyfactornode Properties...331
applyfeatureselectionnode Properties... 331
applygeneralizedlinearnode Properties.. 331
applyglmmnode Properties... 332
applygle Properties..332
applygmm properties.. 333
applykmeansnode Properties... 333
applyknnnode Properties.. 333
applykohonennode Properties.. 333
applylinearnode Properties... 334
applylinearasnode Properties... 334
applylogregnode Properties.. 334
applylsvmnode Properties...335
applyneuralnetnode Properties.. 335
applyneuralnetworknode properties.. 335
applyocsvmnode properties..336
applyquestnode Properties... 336
applyrandomtrees Properties... 337
applyregressionnode Properties... 338
applyselflearningnode properties... 338
applysequencenode Properties.. 338
applysvmnode Properties..338
applystpnode Properties... 339
applytcmnode Properties.. 339
applyts Properties..339
applytimeseriesnode Properties (deprecated)...340
applytreeas Properties.. 340
applytwostepnode Properties... 340
applytwostepAS Properties...341
applyxgboosttreenode properties...341
applyxgboostlinearnode properties.. 341
hdbscannugget properties.. 341
kdeapply properties...341

Chapter 15. Database modeling node properties...343
Node Properties for Microsoft Modeling... 343

Microsoft Modeling Node Properties... 343

 vii

Microsoft Model Nugget Properties .. 345
Node Properties for Oracle Modeling..347

Oracle Modeling Node Properties ...347
Oracle Model Nugget Properties ...354

Node Properties for IBM Netezza Analytics Modeling..355
Netezza Modeling Node Properties... 355
Netezza Model Nugget Properties... 369

Chapter 16. Output node properties... 371
analysisnode properties.. 371
dataauditnode properties..372
extensionoutputnode properties.. 374
kdeexport properties... 375
matrixnode properties...376
meansnode properties.. 378
reportnode properties... 380
setglobalsnode properties.. 382
simevalnode properties...383
simfitnode properties.. 384
statisticsnode properties...384
statisticsoutputnode Properties..386
tablenode properties... 386
transformnode properties... 388

Chapter 17. Export Node Properties... 391
Common Export Node Properties... 391
asexport Properties... 391
cognosexportnode Properties...392
databaseexportnode properties... 394
datacollectionexportnode Properties... 399
excelexportnode Properties.. 400
extensionexportnode properties...400
jsonexportnode Properties..401
outputfilenode Properties... 402
sasexportnode Properties... 403
statisticsexportnode Properties..404
tm1odataexport Node Properties... 404
tm1export Node Properties (deprecated).. 406
xmlexportnode Properties...408

Chapter 18. IBM SPSS Statistics Node Properties.. 409
statisticsimportnode Properties..409
statisticstransformnode properties.. 409
statisticsmodelnode properties.. 410
statisticsoutputnode Properties..411
statisticsexportnode Properties..411

Chapter 19. Python Node Properties..413
gmm properties... 413
hdbscannode properties... 414
kdemodel properties... 415
kdeexport properties... 416
gmm properties... 417
ocsvmnode properties...418
rfnode properties...420
smotenode Properties... 422
tsnenode Properties.. 423

viii

xgboostlinearnode Properties...424
xgboosttreenode Properties..426

Chapter 20. Spark Node Properties..429
isotonicasnode Properties...429
kmeansasnode properties...429
multilayerperceptronnode Properties...430
xgboostasnode Properties.. 431

Chapter 21. SuperNode properties... 435

Appendix A. Node names reference..437
Model Nugget Names.. 437
Avoiding Duplicate Model Names... 439
Output type names.. 439

Appendix B. Migrating from legacy scripting to Python scripting..........................441
Legacy script migration overview..441
General differences... 441
The scripting context... 441
Commands versus functions... 441
Literals and comments.. 442
Operators... 443
Conditionals and looping...444
Variables.. 444
Node, output and model types..445
Property names... 445
Node references.. 445
Getting and setting properties.. 446
Editing streams.. 446

Node operations...447
Looping...447
Executing streams... 448
Accessing objects through the file system and repository...449

Stream operations..450
Model operations... 450
Document output operations...451

Other differences between legacy scripting and Python scripting.. 451

Notices..453
Trademarks.. 454
Terms and conditions for product documentation... 454

Index.. 457

 ix

x

Chapter 1. Scripting and the Scripting Language

Scripting overview
Scripting in IBM SPSS Modeler is a powerful tool for automating processes in the user interface. Scripts
can perform the same types of actions that you perform with a mouse or a keyboard, and you can use
them to automate tasks that would be highly repetitive or time consuming to perform manually.

You can use scripts to:

• Impose a specific order for node executions in a stream.
• Set properties for a node as well as perform derivations using a subset of CLEM (Control Language for

Expression Manipulation).
• Specify an automatic sequence of actions that normally involves user interaction--for example, you can

build a model and then test it.
• Set up complex processes that require substantial user interaction--for example, cross-validation

procedures that require repeated model generation and testing.
• Set up processes that manipulate streams—for example, you can take a model training stream, run it,

and produce the corresponding model-testing stream automatically.

This chapter provides high-level descriptions and examples of stream-level scripts, standalone scripts,
and scripts within SuperNodes in the IBM SPSS Modeler interface. More information on scripting
language, syntax, and commands is provided in the chapters that follow.

Note:

You cannot import and run scripts created in IBM SPSS Statistics within IBM SPSS Modeler.

Types of Scripts
IBM SPSS Modeler uses three types of scripts:

• Stream scripts are stored as a stream property and are therefore saved and loaded with a specific
stream. For example, you can write a stream script that automates the process of training and applying
a model nugget. You can also specify that whenever a particular stream is executed, the script should
be run instead of the stream's canvas content.

• Standalone scripts are not associated with any particular stream and are saved in external text files.
You might use a standalone script, for example, to manipulate multiple streams together.

• SuperNode scripts are stored as a SuperNode stream property. SuperNode scripts are only available
in terminal SuperNodes. You might use a SuperNode script to control the execution sequence of the
SuperNode contents. For nonterminal (source or process) SuperNodes, you can define properties for the
SuperNode or the nodes it contains in your stream script directly.

Stream Scripts
Scripts can be used to customize operations within a particular stream, and they are saved with that
stream. Stream scripts can be used to specify a particular execution order for the terminal nodes within a
stream. You use the stream script dialog box to edit the script that is saved with the current stream.

To access the stream script tab in the Stream Properties dialog box:

1. From the Tools menu, choose:

Stream Properties > Execution
2. Click the Execution tab to work with scripts for the current stream.

Use the toolbar icons at the top of the stream script dialog box for the following operations:

• Import the contents of a preexisting stand-alone script into the window.
• Save a script as a text file.
• Print a script.
• Append default script.
• Edit a script (undo, cut, copy, paste, and other common edit functions).
• Execute the entire current script.
• Execute selected lines from a script.
• Stop a script during execution. (This icon is only enabled when a script is running.)
• Check the syntax of the script and, if any errors are found, display them for review in the lower pane of

the dialog box.

Note: From version 16.0 onwards, SPSS Modeler uses the Python scripting language. All versions before
16.0 used a scripting language unique to SPSS Modeler, now referred to as Legacy scripting. Depending
on the type of script you are working with, on the Execution tab select the Default (optional script)
execution mode and then select either Python or Legacy.

You can specify whether a script is or is not run when the stream is executed. To run the script each time
the stream is executed, respecting the execution order of the script, select Run this script. This setting
provides automation at the stream level for quicker model building. However, the default setting is to
ignore this script during stream execution. Even if you select the option Ignore this script, you can always
run the script directly from this dialog box.

The script editor includes the following features that help with script authoring:

• Syntax highlighting; keywords, literal values (such as strings and numbers), and comments are
highlighted.

• Line numbering.
• Block matching; when the cursor is placed by the start of a program block, the corresponding end block

is also highlighted.
• Suggested auto-completion.

The colors and text styles that are used by the syntax highlighter can be customized by using the IBM
SPSS Modeler display preferences. To access the display preferences, choose Tools > Options > User
Options and select the Syntax tab.

A list of suggested syntax completions can be accessed by selecting Auto-Suggest from the context
menu, or pressing Ctrl + Space. Use the cursor keys to move up and down the list, then press Enter to
insert the selected text. To exit from auto-suggest mode without modifying the existing text, press Esc.

The Debug tab displays debugging messages and can be used to evaluate script state once the script is
executed. The Debug tab consists of a read-only text area and a single-line input text field. The text area
displays text that is sent to either standard output or standard error by the scripts, for example through
error message text. The input text field takes input from the user. This input is then evaluated within the
context of the script that was most recently executed within the dialog (known as the scripting context).
The text area contains the command and resulting output so that the user can see a trace of commands.
The text input field always contains the command prompt (--> for Legacy scripting).

A new scripting context is created in the following circumstances:

• A script is executed by using either Run this script or Run selected lines.
• The scripting language is changed.

If a new scripting context is created, the text area is cleared.

Note: Executing a stream outside of the script pane does not modify the script context of the script pane.
The values of any variables that are created as part of that execution are not visible within the script
dialog box.

2 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Stream script example: Training a neural net
A stream can be used to train a neural network model when executed. Normally, to test the model, you
might run the modeling node to add the model to the stream, make the appropriate connections, and
execute an Analysis node.

Using an IBM SPSS Modeler script, you can automate the process of testing the model nugget after
you have created it. For example, the following stream script to test the demo stream druglearn.str
(available in the /Demos/streams/ folder under your IBM SPSS Modeler installation) could be run from
the Stream Properties dialog (Tools > Stream Properties > Script):

stream = modeler.script.stream()
neuralnetnode = stream.findByType("neuralnetwork", None)
results = []
neuralnetnode.run(results)
appliernode = stream.createModelApplierAt(results[0], "Drug", 594, 187)
analysisnode = stream.createAt("analysis", "Drug", 688, 187)
typenode = stream.findByType("type", None)
stream.linkBetween(appliernode, typenode, analysisnode)
analysisnode.run([])

The following bullets describe each line in this script example.

• The first line defines a variable that points to the current stream.
• In line 2, the script finds the Neural Net builder node.
• In line 3, the script creates a list where the execution results can be stored.
• In line 4, the Neural Net model nugget is created. This is stored in the list defined on line 3.
• In line 5, a model apply node is created for the model nugget and placed on the stream canvas.
• In line 6, an analysis node called Drug is created.
• In line 7, the script finds the Type node.
• In line 8, the script connects the model apply node created in line 5 between the Type node and the

Analysis node.
• Finally, the Analysis node is executed to produce the Analysis report.

It is possible to use a script to build and run a stream from scratch, starting with a blank canvas.

Jython code size limits
Jython compiles each script to Java bytecode, which is then executed by the Java Virtual Machine (JVM).
However, Java imposes a limit on the size of a single bytecode file. So when Jython attempts to load the
bytecode, it can cause the JVM to crash. IBM SPSS Modeler is unable to prevent this from happening.

Ensure that you write your Jython scripts using good coding practices (such as minimizing duplicated
code by using variables or functions to compute common intermediate values). If necessary, you may
need to split your code over several source files or define it using modules as these are compiled into
separate bytecode files.

Standalone Scripts
The Standalone Script dialog box is used to create or edit a script that is saved as a text file. It displays the
name of the file and provides facilities for loading, saving, importing, and executing scripts.

To access the standalone script dialog box:

From the main menu, choose:

Tools > Standalone Script

The same toolbar and script syntax-checking options are available for standalone scripts as for stream
scripts. See the topic “Stream Scripts” on page 1 for more information.

Chapter 1. Scripting and the Scripting Language 3

Standalone script example: Saving and loading a model
Standalone scripts are useful for stream manipulation. Suppose that you have two streams—one that
creates a model and another that uses graphs to explore the generated rule set from the first stream with
existing data fields. A standalone script for this scenario might look something like this:

taskrunner = modeler.script.session().getTaskRunner()

Modify this to the correct Modeler installation Demos folder.
Note use of forward slash and trailing slash.
installation = "C:/Program Files/IBM/SPSS/Modeler/19/Demos/"

First load the model builder stream from file and build a model
druglearn_stream = taskrunner.openStreamFromFile(installation + "streams/druglearn.str", True)
results = []
druglearn_stream.findByType("c50", None).run(results)

Save the model to file
taskrunner.saveModelToFile(results[0], "rule.gm")

Now load the plot stream, read the model from file and insert it into the stream
drugplot_stream = taskrunner.openStreamFromFile(installation + "streams/drugplot.str", True)
model = taskrunner.openModelFromFile("rule.gm", True)
modelapplier = drugplot_stream.createModelApplier(model, "Drug")

Now find the plot node, disconnect it and connect the
model applier node between the derive node and the plot node
derivenode = drugplot_stream.findByType("derive", None)
plotnode = drugplot_stream.findByType("plot", None)
drugplot_stream.disconnect(plotnode)
modelapplier.setPositionBetween(derivenode, plotnode)
drugplot_stream.linkBetween(modelapplier, derivenode, plotnode)
plotnode.setPropertyValue("color_field", "$C-Drug")
plotnode.run([])

Note: To learn more about scripting language in general, see “Scripting language overview” on page 15.

Standalone script example: Generating a Feature Selection model
Starting with a blank canvas, this example builds a stream that generates a Feature Selection model,
applies the model, and creates a table that lists the 15 most important fields relative to the specified
target.

stream = modeler.script.session().createProcessorStream("featureselection",
True)

statisticsimportnode = stream.createAt("statisticsimport", "Statistics
File", 150, 97)
statisticsimportnode.setPropertyValue("full_filename", "$CLEO_DEMOS/
customer_dbase.sav")

typenode = stream.createAt("type", "Type", 258, 97)
typenode.setKeyedPropertyValue("direction", "response_01", "Target")

featureselectionnode = stream.createAt("featureselection", "Feature
Selection", 366, 97)
featureselectionnode.setPropertyValue("top_n", 15)
featureselectionnode.setPropertyValue("max_missing_values", 80.0)
featureselectionnode.setPropertyValue("selection_mode", "TopN")
featureselectionnode.setPropertyValue("important_label", "Check Me Out!")
featureselectionnode.setPropertyValue("criteria", "Likelihood")

stream.link(statisticsimportnode, typenode)
stream.link(typenode, featureselectionnode)
models = []
featureselectionnode.run(models)

Assumes the stream automatically places model apply nodes in the stream
applynode = stream.findByType("applyfeatureselection", None)

4 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

tablenode = stream.createAt("table", "Table", applynode.getXPosition() + 96,
applynode.getYPosition())
stream.link(applynode, tablenode)
tablenode.run([])

The script creates a source node to read in the data, uses a Type node to set the role (direction) for the
response_01 field to Target, and then creates and executes a Feature Selection node. The script also
connects the nodes and positions each on the stream canvas to produce a readable layout. The resulting
model nugget is then connected to a Table node, which lists the 15 most important fields as determined
by the selection_mode and top_n properties. See the topic “featureselectionnode properties” on page
245 for more information.

SuperNode Scripts
You can create and save scripts within any terminal SuperNodes using the IBM SPSS Modeler scripting
language. These scripts are only available for terminal SuperNodes and are often used when creating
template streams or to impose a special execution order for the SuperNode contents. SuperNode scripts
also enable you to have more than one script running within a stream.

For example, let's say you needed to specify the order of execution for a complex stream, and your
SuperNode contains several nodes including a SetGlobals node, which needs to be executed before
deriving a new field used in a Plot node. In this case, you can create a SuperNode script that executes the
SetGlobals node first. Values calculated by this node, such as the average or standard deviation, can then
be used when the Plot node is executed.

Within a SuperNode script, you can specify node properties in the same manner as other scripts.
Alternatively, you can change and define the properties for any SuperNode or its encapsulated nodes
directly from a stream script. See the topic Chapter 21, “SuperNode properties,” on page 435 for more
information. This method works for source and process SuperNodes as well as terminal SuperNodes.

Note: Since only terminal SuperNodes can execute their own scripts, the Scripts tab of the SuperNode
dialog box is available only for terminal SuperNodes.

To open the SuperNode script dialog box from the main canvas:
Select a terminal SuperNode on the stream canvas and, from the SuperNode menu, choose:

SuperNode Script...

To open the SuperNode script dialog box from the zoomed-in SuperNode canvas:
Right-click the SuperNode canvas, and from the context menu, choose:

SuperNode Script...

SuperNode Script Example
The following SuperNode script declares the order in which the terminal nodes inside the SuperNode
should be executed. This order ensures that the Set Globals node is executed first so that the values
calculated by this node can then be used when another node is executed.

execute 'Set Globals'
execute 'gains'
execute 'profit'
execute 'age v. $CC-pep'
execute 'Table'

Locking and unlocking SuperNodes
The following example illustrates how you can lock and unlock a SuperNode:

Chapter 1. Scripting and the Scripting Language 5

stream = modeler.script.stream()
superNode=stream.findByID('id854RNTSD5MB')
unlock one super node
print 'unlock the super node with password abcd'
if superNode.unlock('abcd'):
 print 'unlocked.'
else:
 print 'invalid password.'
lock one super node
print 'lock the super node with password abcd'
superNode.lock('abcd')

Looping and conditional execution in streams
From version 16.0 onwards, SPSS Modeler enables you to create some basic scripts from within a stream
by selecting values within various dialog boxes instead of having to write instructions directly in the
scripting language. The two main types of scripts you can create in this way are simple loops and a way to
execute nodes if a condition has been met.

You can combine both looping and conditional execution rules within a stream. For example, you may
have data relating to sales of cars from manufacturers worldwide. You could set up a loop to process the
data in a stream, identifying details by the country of manufacture, and output the data to different graphs
showing details such as sales volume by model, emissions levels by both manufacturer and engine size,
and so on. If you were interested in analyzing European information only, you could also add conditions to
the looping that prevented graphs being created for manufacturers based in America and Asia.

Note: Because both looping and conditional execution are based on background scripts they are only
applied to a whole stream when it is run.

• Looping You can use looping to automate repetitive tasks. For example, this might mean adding a
given number of nodes to a stream and changing one node parameter each time. Alternatively, you
could control the running of a stream or branch again and again for a given number of times, as in the
following examples:

– Run the stream a given number of times and change the source each time.
– Run the stream a given number of times, changing the value of a variable each time.
– Run the stream a given number of times, entering one extra field on each execution.
– Build a model a given number of times and change a model setting each time.

• Conditional Execution You can use this to control how terminal nodes are run, based on conditions that
you predefine, examples may include the following:

– Based on whether a given value is true or false, control if a node will be run.
– Define whether looping of nodes will be run in parallel or sequentially.

Both looping and conditional execution are set up on the Execution tab within the Stream Properties
dialog box. Any nodes that are used in conditional or looping requirements are shown with an additional
symbol attached to them on the stream canvas to indicate that they are taking part in looping and
conditional execution.

You can access the Execution tab in one of 3 ways:

• Using the menus at the top of the main dialog box:

1. From the Tools menu, choose:

Stream Properties > Execution
2. Click the Execution tab to work with scripts for the current stream.

• From within a stream:

1. Right-click on a node and choose Looping/Conditional Execution.
2. Select the relevant submenu option.

• From the graphic toolbar at the top of the main dialog box, click the stream properties icon.

6 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

If this is the first time you have set up either looping or conditional execution details, on the Execution
tab select the Looping/Conditional Execution execution mode and then select either the Conditional or
Looping subtab.

Looping in streams
With looping you can automate repetitive tasks in streams; examples may include the following:

• Run the stream a given number of times and change the source each time.
• Run the stream a given number of times, changing the value of a variable each time.
• Run the stream a given number of times, entering one extra field on each execution.
• Build a model a given number of times and change a model setting each time.

You set up the conditions to be met on the Looping subtab of the stream Execution tab. To display the
subtab, select the Looping/Conditional Execution execution mode.

Any looping requirements that you define will take effect when you run the stream, if the Looping/
Conditional Execution execution mode has been set. Optionally, you can generate the script code for
your looping requirements and paste it into the script editor by clicking Paste... in the bottom right corner
of the Looping subtab; the main Execution tab display changes to show the Default (optional script)
execution mode with the script in the top part of the tab. This means that you can define a looping
structure using the various looping dialog box options before generating a script that you can customize
further in the script editor. Note that when you click Paste... any conditional execution requirements you
have defined will also be displayed in the generated script.

Important: The looping variables that you set in a SPSS Modeler stream may be overridden if you run
the stream in a IBM SPSS Collaboration and Deployment Services job. This is because the IBM SPSS
Collaboration and Deployment Services job editor entry overrides the SPSS Modeler entry. For example, if
you set a looping variable in the stream to create a different output file name for each loop, the files are
correctly named in SPSS Modeler but are overridden by the fixed entry entered on the Result tab of the
IBM SPSS Collaboration and Deployment Services Deployment Manager.

To set up a loop
1. Create an iteration key to define the main looping structure to be carried out in a stream. See Create an

iteration key for more information.
2. Where needed, define one or more iteration variables. See Create an iteration variable for more

information.
3. The iterations and any variables you created are shown in the main body of the subtab. By default,

iterations are executed in the order they appear; to move an iteration up or down the list, click on it to
select it then use the up or down arrow in the right hand column of the subtab to change the order.

Creating an iteration key for looping in streams
You use an iteration key to define the main looping structure to be carried out in a stream. For example, if
you are analyzing car sales, you could create a stream parameter Country of manufacture and use this as
the iteration key; when the stream is run this key is set to each different country value in your data during
each iteration. Use the Define Iteration Key dialog box to set up the key.

To open the dialog box, either select the Iteration Key... button in the bottom left corner of the Looping
subtab, or right click on any node in the stream and select either Looping/Conditional Execution >
Define Iteration Key (Fields) or Looping/Conditional Execution > Define Iteration Key (Values). If you
open the dialog box from the stream, some of the fields may be completed automatically for you, such as
the name of the node.

To set up an iteration key, complete the following fields:

Iterate on. You can select from one of the following options:

Chapter 1. Scripting and the Scripting Language 7

• Stream Parameter - Fields. Use this option to create a loop that sets the value of an existing stream
parameter to each specified field in turn.

• Stream Parameter - Values. Use this option to create a loop that sets the value of an existing stream
parameter to each specified value in turn.

• Node Property - Fields. Use this option to create a loop that sets the value of a node property to each
specified field in turn.

• Node Property - Values. Use this option to create a loop that sets the value of a node property to each
specified value in turn.

What to Set. Choose the item that will have its value set each time the loop is executed. You can select
from one of the following options:

• Parameter. Only available if you select either Stream Parameter - Fields or Stream Parameter -
Values. Select the required parameter from the available list.

• Node. Only available if you select either Node Property - Fields or Node Property - Values. Select the
node for which you want to set up a loop. Click the browse button to open the Select Node dialog and
choose the node you want; if there are too many nodes listed you can filter the display to only show
certain types of nodes by selecting one of the following categories: Source, Process, Graph, Modeling,
Output, Export, or Apply Model nodes.

• Property. Only available if you select either Node Property - Fields or Node Property - Values. Select
the property of the node from the available list.

Fields to Use. Only available if you select either Stream Parameter - Fields or Node Property - Fields.
Choose the field, or fields, within a node to use to provide the iteration values. You can select from one of
the following options:

• Node. Only available if you select Stream Parameter - Fields. Select the node that contains the details
for which you want to set up a loop. Click the browse button to open the Select Node dialog and choose
the node you want; if there are too many nodes listed you can filter the display to only show certain
types of nodes by selecting one of the following categories: Source, Process, Graph, Modeling, Output,
Export, or Apply Model nodes.

• Field List. Click the list button in the right column to display the Select Fields dialog box, within which
you select the fields in the node to provide the iteration data. See “Selecting fields for iterations” on
page 9 for more information.

Values to Use. Only available if you select either Stream Parameter - Values or Node Property - Values.
Choose the value, or values, within the selected field to use as iteration values. You can select from one of
the following options:

• Node. Only available if you select Stream Parameter - Values. Select the node that contains the details
for which you want to set up a loop. Click the browse button to open the Select Node dialog and choose
the node you want; if there are too many nodes listed you can filter the display to only show certain
types of nodes by selecting one of the following categories: Source, Process, Graph, Modeling, Output,
Export, or Apply Model nodes.

• Field List. Select the field in the node to provide the iteration data.
• Value List. Click the list button in the right column to display the Select Values dialog box, within which

you select the values in the field to provide the iteration data.

Creating an iteration variable for looping in streams
You can use iteration variables to change the values of stream parameters or properties of selected nodes
within a stream each time a loop is executed. For example, if your stream loop is analyzing car sales data
and using Country of manufacture as the iteration key, you may have one graph output showing sales by
model and another graph output showing exhaust emissions information. In these cases you could create
iteration variables that create new titles for the resultant graphs, such as Swedish vehicle emissions and
Japanese car sales by model. Use the Define Iteration Variable dialog box to set up any variables that you
require.

8 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

To open the dialog box, either select the Add Variable... button in the bottom left corner of the Looping
subtab, or right click on any node in the stream and select:Looping/Conditional Execution > Define
Iteration Variable.

To set up an iteration variable, complete the following fields:

Change. Select the type of attribute that you want to amend. You can choose from either Stream
Parameter or Node Property.

• If you select Stream Parameter, choose the required parameter and then, by using one of the following
options, if available in your stream, define what the value of that parameter should be set to with each
iteration of the loop:

– Global variable. Select the global variable that the stream parameter should be set to.
– Table output cell. To set a stream parameter to be the value in a table output cell, select the table

from the list and enter the Row and Column to be used.
– Enter manually. Select this if you want to manually enter a value for this parameter to take in each

iteration. When you return to the Looping subtab a new column is created into which you enter the
required text.

• If you select Node Property, choose the required node and one of its properties and then set the value
you want to use for that property. Set the new property value by using one of the following options:

– Alone. The property value will use the iteration key value. See “Creating an iteration key for looping in
streams” on page 7 for more information.

– As prefix to stem. Uses the iteration key value as a prefix to what you enter in the Stem field.
– As suffix to stem. Uses the iteration key value as a suffix to what you enter in the Stem field

If you select either the prefix or suffix option you are prompted to add the additional text to the Stem
field. For example, if your iteration key value is Country of manufacture, and you select As prefix to
stem, you might enter - sales by model in this field.

Selecting fields for iterations
When creating iterations you can select one or more fields using the Select Fields dialog box.

Sort by You can sort available fields for viewing by selecting one of the following options:

• Natural View the order of fields as they have been passed down the data stream into the current node.
• Name Use alphabetical order to sort fields for viewing.
• Type View fields sorted by their measurement level. This option is useful when selecting fields with a

particular measurement level.

Select fields from the list one at a time or use the Shift-click and Ctrl-click methods to select multiple
fields. You can also use the buttons below the list to select groups of fields based on their measurement
level, or to select or deselect all fields in the table.

Note that the fields available for selection are filtered to show only the fields that are appropriate for the
stream parameter or node property you are using. For example, if you are using a stream parameter that
has a storage type of String, only fields that have a storage type of String are shown.

Conditional execution in streams
With conditional execution you can control how terminal nodes are run, based on the stream contents
matching conditions that you define; examples may include the following:

• Based on whether a given value is true or false, control if a node will be run.
• Define whether looping of nodes will be run in parallel or sequentially.

You set up the conditions to be met on the Conditional subtab of the stream Execution tab. To display the
subtab, select the Looping/Conditional Execution execution mode.

Chapter 1. Scripting and the Scripting Language 9

Any conditional execution requirements that you define will take effect when you run the stream, if the
Looping/Conditional Execution execution mode has been set. Optionally, you can generate the script
code for your conditional execution requirements and paste it into the script editor by clicking Paste... in
the bottom right corner of the Conditional subtab; the main Execution tab display changes to show the
Default (optional script) execution mode with the script in the top part of the tab. This means that you
can define conditions using the various looping dialog box options before generating a script that you can
customize further in the script editor. Note that when you click Paste... any looping requirements you
have defined will also be displayed in the generated script.

To set up a condition:

1. In the right hand column of the Conditional subtab, click the Add New Condition button to open
the Add Conditional Execution Statement dialog box. In this dialog you specify the condition that
must be met in order for the node to be executed.

2. In the Add Conditional Execution Statement dialog box, specify the following:

a. Node. Select the node for which you want to set up conditional execution. Click the browse button
to open the Select Node dialog and choose the node you want; if there are too many nodes
listed you can filter the display to show nodes by one of the following categories: Export, Graph,
Modeling, or Output node.

b. Condition based on. Specify the condition that must be met for the node to be executed. You can
choose from one of four options: Stream parameter, Global variable, Table output cell, or Always
true. The details you enter in the bottom half of the dialog box are controlled by the condition you
choose.

• Stream parameter. Select the parameter from the list available and then choose the Operator for
that parameter; for example, the operator may be More than, Equals, Less than, Between, and so
on. You then enter the Value, or minimum and maximum values, depending on the operator.

• Global variable. Select the variable from the list available; for example, this might include: Mean,
Sum, Minimum value, Maximum value, or Standard deviation. You then select the Operator and
values required.

• Table output cell. Select the table node from the list available and then choose the Row and
Column in the table. You then select the Operator and values required.

• Always true. Select this option if the node must always be executed. If you select this option,
there are no further parameters to select.

3. Repeat steps 1 and 2 as often as required until you have set up all the conditions you require. The node
you selected and the condition to be met before that node is executed are shown in the main body of
the subtab in the Execute Node and If this condition is true columns respectively.

4. By default, nodes and conditions are executed in the order they appear; to move a node and condition
up or down the list, click on it to select it then use the up or down arrow in the right hand column of the
subtab to change the order.

In addition, you can set the following options at the bottom of the Conditional subtab:

• Evaluate all in order. Select this option to evaluate each condition in the order in which they are shown
on the subtab. The nodes for which conditions have been found to be "True" will all be executed once all
the conditions have been evaluated.

• Execute one at a time. Only available if Evaluate all in order is selected. Selecting this means that if
a condition is evaluated as "True", the node associated with that condition is executed before the next
condition is evaluated.

• Evaluate until first hit. Selecting this means that only the first node that returns a "True" evaluation
from the conditions you specified will be run.

10 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Executing and interrupting scripts
A number of ways of executing scripts are available. For example, on the stream script or standalone
script dialog, the "Run this script" button executes the complete script:

Figure 1. Run This Script button

The "Run selected lines" button executes a single line, or a block of adjacent lines, that you have selected
in the script:

Figure 2. Run Selected Lines button

You can execute a script using any of the following methods:

• Click the "Run this script" or "Run selected lines" button within a stream script or standalone script
dialog box.

• Run a stream where Run this script is set as the default execution method.
• Use the -execute flag on startup in interactive mode. See the topic “Using command line arguments”

on page 63 for more information.

Note: A SuperNode script is executed when the SuperNode is executed as long as you have selected Run
this script within the SuperNode script dialog box.

Interrupting script execution
Within the stream script dialog box, the red stop button is activated during script execution. Using this
button, you can abandon the execution of the script and any current stream.

Find and Replace
The Find/Replace dialog box is available in places where you edit script or expression text, including the
script editor, CLEM expression builder, or when defining a template in the Report node. When editing text
in any of these areas, press Ctrl+F to access the dialog box, making sure cursor has focus in a text area.
If working in a Filler node, for example, you can access the dialog box from any of the text areas on the
Settings tab, or from the text field in the Expression Builder.

1. With the cursor in a text area, press Ctrl+F to access the Find/Replace dialog box.
2. Enter the text you want to search for, or choose from the drop-down list of recently searched items.
3. Enter the replacement text, if any.
4. Click Find Next to start the search.
5. Click Replace to replace the current selection, or Replace All to update all or selected instances.
6. The dialog box closes after each operation. Press F3 from any text area to repeat the last find

operation, or press Ctrl+F to access the dialog box again.

Search Options

Match case. Specifies whether the find operation is case-sensitive; for example, whether myvar matches
myVar. Replacement text is always inserted exactly as entered, regardless of this setting.

Whole words only. Specifies whether the find operation matches text embedded within words. If
selected, for example, a search on spider will not match spiderman or spider-man.

Regular expressions. Specifies whether regular expression syntax is used (see next section). When
selected, the Whole words only option is disabled and its value is ignored.

Chapter 1. Scripting and the Scripting Language 11

Selected text only. Controls the scope of the search when using the Replace All option.

Regular Expression Syntax

Regular expressions allow you to search on special characters such as tabs or newline characters, classes
or ranges of characters such as a through d, any digit or non-digit, and boundaries such as the beginning
or end of a line. The following types of expressions are supported.

Table 1. Character matches

Characters Matches

x The character x

\\ The backslash character

\0n The character with octal value 0n (0 <= n <= 7)

\0nn The character with octal value 0nn (0 <= n <= 7)

\0mnn The character with octal value 0mnn (0 <= m <= 3, 0 <= n <= 7)

\xhh The character with hexadecimal value 0xhh

\uhhhh The character with hexadecimal value 0xhhhh

\t The tab character ('\u0009')

\n The newline (line feed) character ('\u000A')

\r The carriage-return character ('\u000D')

\f The form-feed character ('\u000C')

\a The alert (bell) character ('\u0007')

\e The escape character ('\u001B')

\cx The control character corresponding to x

Table 2. Matching character classes

Character classes Matches

[abc] a, b, or c (simple class)

[^abc] Any character except a, b, or c (subtraction)

[a-zA-Z] a through z or A through Z, inclusive (range)

[a-d[m-p]] a through d, or m through p (union). Alternatively this could be
specified as [a-dm-p]

[a-z&&[def]] a through z, and d, e, or f (intersection)

[a-z&&[^bc]] a through z, except for b and c (subtraction). Alternatively this could be
specified as [ad-z]

[a-z&&[^m-p]] a through z, and not m through p (subtraction). Alternatively this could
be specified as [a-lq-z]

Table 3. Predefined character classes

Predefined character classes Matches

. Any character (may or may not match line terminators)

\d Any digit: [0-9]

12 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 3. Predefined character classes (continued)

Predefined character classes Matches

\D A non-digit: [^0-9]

\s A white space character: [\t\n\x0B\f\r]

\S A non-white space character: [^\s]

\w A word character: [a-zA-Z_0-9]

\W A non-word character: [^\w]

Table 4. Boundary matches

Boundary matchers Matches

^ The beginning of a line

$ The end of a line

\b A word boundary

\B A non-word boundary

\A The beginning of the input

\Z The end of the input but for the final terminator, if any

\z The end of the input

Chapter 1. Scripting and the Scripting Language 13

14 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 2. The Scripting Language

Scripting language overview
The scripting facility for IBM SPSS Modeler enables you to create scripts that operate on the SPSS
Modeler user interface, manipulate output objects, and run command syntax. You can run scripts directly
from within SPSS Modeler.

Scripts in IBM SPSS Modeler are written in the scripting language Python. The Java-based
implementation of Python that is used by IBM SPSS Modeler is called Jython. The scripting language
consists of the following features:

• A format for referencing nodes, streams, projects, output, and other IBM SPSS Modeler objects.
• A set of scripting statements or commands that can be used to manipulate these objects.
• A scripting expression language for setting the values of variables, parameters, and other objects.
• Support for comments, continuations, and blocks of literal text.

The following sections describe the Python scripting language, the Jython implementation of Python, and
the basic syntax for getting started with scripting within IBM SPSS Modeler. Information about specific
properties and commands is provided in the sections that follow.

Python and Jython
Jython is an implementation of the Python scripting language, which is written in the Java language
and integrated with the Java platform. Python is a powerful object-oriented scripting language. Jython is
useful because it provides the productivity features of a mature scripting language and, unlike Python,
runs in any environment that supports a Java virtual machine (JVM). This means that the Java libraries on
the JVM are available to use when you are writing programs. With Jython, you can take advantage of this
difference, and use the syntax and most of the features of the Python language

As a scripting language, Python (and its Jython implementation) is easy to learn and efficient to code,
and has minimal required structure to create a running program. Code can be entered interactively, that
is, one line at a time. Python is an interpreted scripting language; there is no precompile step, as there
is in Java. Python programs are simply text files that are interpreted as they are input (after parsing for
syntax errors). Simple expressions, like defined values, as well as more complex actions, such as function
definitions, are immediately executed and available for use. Any changes that are made to the code can
be tested quickly. Script interpretation does, however, have some disadvantages. For example, use of an
undefined variable is not a compiler error, so it is detected only if (and when) the statement in which the
variable is used is executed. In this case, the program can be edited and run to debug the error.

Python sees everything, including all data and code, as an object. You can, therefore, manipulate these
objects with lines of code. Some select types, such as numbers and strings, are more conveniently
considered as values, not objects; this is supported by Python. There is one null value that is supported.
This null value has the reserved name None.

For a more in-depth introduction to Python and Jython scripting, and for some example scripts, see
http://www.ibm.com/developerworks/java/tutorials/j-jython1/j-jython1.html and http://www.ibm.com/
developerworks/java/tutorials/j-jython2/j-jython2.html.

Python Scripting
This guide to the Python scripting language is an introduction to the components that are most likely to be
used when scripting in IBM SPSS Modeler, including concepts and programming basics. This will provide
you with enough knowledge to start developing your own Python scripts to use within IBM SPSS Modeler.

http://www.ibm.com/developerworks/java/tutorials/j-jython1/j-jython1.html
http://www.ibm.com/developerworks/java/tutorials/j-jython2/j-jython2.html
http://www.ibm.com/developerworks/java/tutorials/j-jython2/j-jython2.html

Operations
Assignment is done using an equals sign (=). For example, to assign the value "3" to a variable called "x"
you would use the following statement:

x = 3

The equals sign is also used to assign string type data to a variable. For example, to assign the value "a
string value" to the variable "y" you would use the following statement:

y = "a string value"

The following table lists some commonly used comparison and numeric operations, and their
descriptions.

Table 5. Common comparison and numeric operations

Operation Description

x < y Is x less than y?

x > y Is x greater than y?

x <= y Is x less than or equal to y?

x >= y Is x greater than or equal to y?

x == y Is x equal to y?

x != y Is x not equal to y?

x <> y Is x not equal to y?

x + y Add y to x

x - y Subtract y from x

x * y Multiply x by y

x / y Divide x by y

x ** y Raise x to the y power

Lists
Lists are sequences of elements. A list can contain any number of elements, and the elements of the list
can be any type of object. Lists can also be thought of as arrays. The number of elements in a list can
increase or decrease as elements are added, removed, or replaced.

Examples

[] Any empty list.

[1] A list with a single element, an integer.

["Mike", 10, "Don", 20] A list with four elements, two string elements and
two integer elements.

[[],[7],[8,9]] A list of lists. Each sub-list is either an empty list or
a list of integer elements.

x = 7; y = 2; z = 3;
[1, x, y, x + y]

A list of integers. This example demonstrates the
use of variables and expressions.

16 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

You can assign a list to a variable, for example:

mylist1 = ["one", "two", "three"]

You can then access specific elements of the list, for example:

mylist[0]

This will result in the following output:

one

The number in the brackets ([]) is known as an index and refers to a particular element of the list. The
elements of a list are indexed starting from 0.

You can also select a range of elements of a list; this is called slicing. For example, x[1:3] selects the
second and third elements of x. The end index is one past the selection.

Strings
A string is an immutable sequence of characters that is treated as a value. Strings support all of the
immutable sequence functions and operators that result in a new string. For example, "abcdef"[1:4]
results in the output "bcd".

In Python, characters are represented by strings of length one.

Strings literals are defined by the use of single or triple quoting. Strings that are defined using single
quotes cannot span lines, while strings that are defined using triple quotes can. A string can be enclosed
in single quotes (') or double quotes ("). A quoting character may contain the other quoting character
un-escaped or the quoting character escaped, that is preceded by the backslash (\) character.

Examples

"This is a string"
'This is also a string'
"It's a string"
'This book is called "Python Scripting and Automation Guide".'
"This is an escape quote (\") in a quoted string"

Multiple strings separated by white space are automatically concatenated by the Python parser. This
makes it easier to enter long strings and to mix quote types in a single string, for example:

"This string uses ' and " 'that string uses ".'

This results in the following output:

This string uses ' and that string uses ".

Strings support several useful methods. Some of these methods are given in the following table.

Table 6. String methods

Method Usage

s.capitalize() Initial capitalize s

s.count(ss {,start {,end}}) Count the occurrences of ss in s[start:end]

s.startswith(str {, start {, end}})
s.endswith(str {, start {, end}})

Test to see if s starts with str
Test to see if s ends with str

s.expandtabs({size}) Replace tabs with spaces, default size is 8

Chapter 2. The Scripting Language 17

Table 6. String methods (continued)

Method Usage

s.find(str {, start {, end}})
s.rfind(str {, start {, end}})

Finds first index of str in s; if not found, the result
is -1. rfind searches right to left.

s.index(str {, start {, end}})
s.rindex(str {, start {, end}})

Finds first index of str in s; if not found: raise
ValueError. rindex searches right to left.

s.isalnum Test to see if the string is alphanumeric

s.isalpha Test to see if the string is alphabetic

s.isnum Test to see if the string is numeric

s.isupper Test to see if the string is all uppercase

s.islower Test to see if the string is all lowercase

s.isspace Test to see if the string is all whitespace

s.istitle Test to see if the string is a sequence of initial cap
alphanumeric strings

s.lower()
s.upper()
s.swapcase()
s.title()

Convert to all lower case
Convert to all upper case
Convert to all opposite case
Convert to all title case

s.join(seq) Join the strings in seq with s as the separator

s.splitlines({keep}) Split s into lines, if keep is true, keep the new
lines

s.split({sep {, max}}) Split s into "words" using sep (default sep is a
white space) for up to max times

s.ljust(width)
s.rjust(width)
s.center(width)
s.zfill(width)

Left justify the string in a field width wide
Right justify the string in a field width wide
center justify the string in a field width wide
Fill with 0.

s.lstrip()
s.rstrip()
s.strip()

Remove leading white space
Remove trailing white space
Remove leading and trailing white space

s.translate(str {,delc}) Translate s using table, after removing any
characters in delc. str should be a string with
length == 256.

s.replace(old, new {, max}) Replaces all or max occurrences of string old with
string new

18 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Remarks
Remarks are comments that are introduced by the pound (or hash) sign (#). All text that follows the
pound sign on the same line is considered part of the remark and is ignored. A remark can start in any
column. The following example demonstrates the use of remarks:

#The HelloWorld application is one of the most simple
print 'Hello World' # print the Hello World line

Statement Syntax
The statement syntax for Python is very simple. In general, each source line is a single statement. Except
for expression and assignment statements, each statement is introduced by a keyword name, such as
if or for. Blank lines or remark lines can be inserted anywhere between any statements in the code. If
there is more than one statement on a line, each statement must be separated by a semicolon (;).

Very long statements can continue on more than one line. In this case the statement that is to continue on
to the next line must end with a backslash (\), for example:

x = "A loooooooooooooooooooong string" + \
 "another looooooooooooooooooong string"

When a structure is enclosed by parentheses (()), brackets ([]), or curly braces ({}), the statement can
be continued on to a new line after any comma, without having to insert a backslash, for example:

x = (1, 2, 3, "hello",
 "goodbye", 4, 5, 6)

Identifiers
Identifiers are used to name variables, functions, classes and keywords. Identifiers can be any length, but
must start with either an alphabetical character of upper or lower case, or the underscore character (_).
Names that start with an underscore are generally reserved for internal or private names. After the first
character, the identifier can contain any number and combination of alphabetical characters, numbers
from 0-9, and the underscore character.

There are some reserved words in Jython that cannot be used to name variables, functions, or classes.
They fall under the following categories:

• Statement introducers: assert, break, class, continue, def, del, elif, else, except, exec,
finally, for, from, global, if, import, pass, print, raise, return, try, and while

• Parameter introducers: as, import, and in
• Operators: and, in, is, lambda, not, and or

Improper keyword use generally results in a SyntaxError.

Blocks of Code
Blocks of code are groups of statements that are used where single statements are expected. Blocks of
code can follow any of the following statements: if, elif, else, for, while, try, except, def, and
class. These statements introduce the block of code with the colon character (:), for example:

if x == 1:
 y = 2
 z = 3
elif:
 y = 4
 z = 5

Indentation is used to delimit code blocks (rather than the curly braces that are used in Java). All lines in
a block must be indented to the same position. This is because a change in the indentation indicates the
end of a code block. It is usual to indent by four spaces per level. It is recommended that spaces are used

Chapter 2. The Scripting Language 19

to indent the lines, rather than tabs. Spaces and tabs must not be mixed. The lines in the outermost block
of a module must start at column one, else a SyntaxError will occur.

The statements that make up a code block (and follow the colon) can also be on a single line, separated
by semicolons, for example:

if x == 1: y = 2; z = 3;

Passing Arguments to a Script
Passing arguments to a script is useful as it means a script can be used repeatedly without modification.
The arguments that are passed on the command line are passed as values in the list sys.argv. The
number of values passed can be obtained by using the command len(sys.argv). For example:

import sys
print "test1"
print sys.argv[0]
print sys.argv[1]
print len(sys.argv)

In this example, the import command imports the entire sys class so that the methods that exist for this
class, such as argv, can be used.

The script in this example can be invoked using the following line:

/u/mjloos/test1 mike don

The result is the following output:

/u/mjloos/test1 mike don
test1
mike
don
3

Examples
The print keyword prints the arguments immediately following it. If the statement is followed by a
comma, a new line is not included in the output. For example:

print "This demonstrates the use of a",
print " comma at the end of a print statement."

This will result in the following output:

This demonstrates the use of a comma at the end of a print statement.

The for statement is used to iterate through a block of code. For example:

mylist1 = ["one", "two", "three"]
for lv in mylist1:
 print lv
 continue

In this example, three strings are assigned to the list mylist1. The elements of the list are then printed,
with one element of each line. This will result in the following output:

one
two
three

In this example, the iterator lv takes the value of each element in the list mylist1 in turn as the for loop
implements the code block for each element. An iterator can be any valid identifier of any length.

20 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

The if statement is a conditional statement. It evaluates the condition and returns either true or false,
depending on the result of the evaluation. For example:

mylist1 = ["one", "two", "three"]
for lv in mylist1:
 if lv == "two"
 print "The value of lv is ", lv
 else
 print "The value of lv is not two, but ", lv
 continue

In this example, the value of the iterator lv is evaluated. If the value of lv is two a different string is
returned to the string that is returned if the value of lv is not two. This results in the following output:

The value of lv is not two, but one
The value of lv is two
The value of lv is not two, but three

Mathematical Methods
From the math module you can access useful mathematical methods. Some of these methods are given in
the following table. Unless specified otherwise, all values are returned as floats.

Table 7. Mathematical methods

Method Usage

math.ceil(x) Return the ceiling of x as a float, that is the
smallest integer greater than or equal to x

math.copysign(x, y) Return x with the sign of y. copysign(1, -0.0)
returns -1

math.fabs(x) Return the absolute value of x

math.factorial(x) Return x factorial. If x is negative or not an integer,
a ValueError is raised.

math.floor(x) Return the floor of x as a float, that is the largest
integer less than or equal to x

math.frexp(x) Return the mantissa (m) and exponent (e) of x as
the pair (m, e). m is a float and e is an integer,
such that x == m * 2**e exactly. If x is zero,
returns (0.0, 0), otherwise 0.5 <= abs(m) <
1.

math.fsum(iterable) Return an accurate floating point sum of values in
iterable

math.isinf(x) Check if the float x is positive or negative infinitive

math.isnan(x) Check if the float x is NaN (not a number)

math.ldexp(x, i) Return x * (2**i). This is essentially the inverse
of the function frexp.

math.modf(x) Return the fractional and integer parts of x. Both
results carry the sign of x and are floats.

math.trunc(x) Return the Real value x, that has been truncated
to an Integral.

math.exp(x) Return e**x

Chapter 2. The Scripting Language 21

Table 7. Mathematical methods (continued)

Method Usage

math.log(x[, base]) Return the logarithm of x to the given value
of base. If base is not specified, the natural
logarithm of x is returned.

math.log1p(x) Return the natural logarithm of 1+x (base e)

math.log10(x) Return the base-10 logarithm of x

math.pow(x, y) Return x raised to the power y. pow(1.0, x) and
pow(x, 0.0) always return 1, even when x is
zero or NaN.

math.sqrt(x) Return the square root of x

In addition to the mathematical functions, there are some useful trigonometric methods. These methods
are shown in the following table.

Table 8. Trigonometric methods

Method Usage

math.acos(x) Return the arc cosine of x in radians

math.asin(x) Return the arc sine of x in radians

math.atan(x) Return the arc tangent of x in radians

math.atan2(y, x) Return atan(y / x) in radians.

math.cos(x) Return the cosine of x in radians.

math.hypot(x, y) Return the Euclidean norm sqrt(x*x + y*y).
This is the length of the vector from the origin to
the point (x, y).

math.sin(x) Return the sine of x in radians

math.tan(x) Return the tangent of x in radians

math.degrees(x) Convert angle x from radians to degrees

math.radians(x) Convert angle x from degrees to radians

math.acosh(x) Return the inverse hyperbolic cosine of x

math.asinh(x) Return the inverse hyperbolic sine of x

math.atanh(x) Return the inverse hyperbolic tangent of x

math.cosh(x) Return the hyperbolic cosine of x

math.sinh(x) Return the hyperbolic cosine of x

math.tanh(x) Return the hyperbolic tangent of x

There are also two mathematical constants. The value of math.pi is the mathematical constant pi. The
value of math.e is the mathematical constant e.

Using Non-ASCII characters
In order to use non-ASCII characters, Python requires explicit encoding and decoding of strings into
Unicode. In IBM SPSS Modeler, Python scripts are assumed to be encoded in UTF-8, which is a standard

22 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Unicode encoding that supports non-ASCII characters. The following script will compile because the
Python compiler has been set to UTF-8 by SPSS Modeler.

However, the resulting node will have an incorrect label.

Figure 3. Node label containing non-ASCII characters, displayed incorrectly

The label is incorrect because the string literal itself has been converted to an ASCII string by Python.

Python allows Unicode string literals to be specified by adding a u character prefix before the string literal:

This will create a Unicode string and the label will be appear correctly.

Figure 4. Node label containing non-ASCII characters, displayed correctly

Using Python and Unicode is a large topic which is beyond the scope of this document. Many books and
online resources are available that cover this topic in great detail.

Object-Oriented Programming
Object-oriented programming is based on the notion of creating a model of the target problem in your
programs. Object-oriented programming reduces programming errors and promotes the reuse of code.
Python is an object-oriented language. Objects defined in Python have the following features:

• Identity. Each object must be distinct, and this must be testable. The is and is not tests exist for this
purpose.

• State. Each object must be able to store state. Attributes, such as fields and instance variables, exist for
this purpose.

• Behavior. Each object must be able to manipulate its state. Methods exist for this purpose.

Python includes the following features for supporting object-oriented programming:

• Class-based object creation. Classes are templates for the creation of objects. Objects are data
structures with associated behavior.

• Inheritance with polymorphism. Python supports single and multiple inheritance. All Python instance
methods are polymorphic and can be overridden by subclasses.

Chapter 2. The Scripting Language 23

• Encapsulation with data hiding. Python allows attributes to be hidden. When hidden, attributes can
be accessed from outside the class only through methods of the class. Classes implement methods to
modify the data.

Defining a Class
Within a Python class, both variables and methods can be defined. Unlike in Java, in Python you can
define any number of public classes per source file (or module). Therefore, a module in Python can be
thought of similar to a package in Java.

In Python, classes are defined using the class statement. The class statement has the following form:

class name (superclasses): statement

or

class name (superclasses):
 assignment
 .
 .
 function
 .
 .

When you define a class, you have the option to provide zero or more assignment statements. These
create class attributes that are shared by all instances of the class. You can also provide zero or more
function definitions. These function definitions create methods. The superclasses list is optional.

The class name should be unique in the same scope, that is within a module, function or class. You can
define multiple variables to reference the same class.

Creating a Class Instance
Classes are used to hold class (or shared) attributes or to create class instances. To create an instance of
a class, you call the class as if it were a function. For example, consider the following class:

class MyClass:
 pass

Here, the pass statement is used because a statement is required to complete the class, but no action is
required programmatically.

The following statement creates an instance of the class MyClass:

x = MyClass()

Adding Attributes to a Class Instance
Unlike in Java, in Python clients can add attributes to an instance of a class. Only the one instance is
changed. For example, to add attributes to an instance x, set new values on that instance:

x.attr1 = 1
x.attr2 = 2
 .
 .
x.attrN = n

24 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Defining Class Attributes and Methods
Any variable that is bound in a class is a class attribute. Any function defined within a class is a method.
Methods receive an instance of the class, conventionally called self, as the first argument. For example,
to define some class attributes and methods, you might enter the following code:

class MyClass
 attr1 = 10 #class attributes
 attr2 = "hello"

 def method1(self):
 print MyClass.attr1 #reference the class attribute

 def method2(self):
 print MyClass.attr2 #reference the class attribute

 def method3(self, text):
 self.text = text #instance attribute
 print text, self.text #print my argument and my attribute

 method4 = method3 #make an alias for method3

Inside a class, you should qualify all references to class attributes with the class name; for example,
MyClass.attr1. All references to instance attributes should be qualified with the self variable; for
example, self.text. Outside the class, you should qualify all references to class attributes with the
class name (for example MyClass.attr1) or with an instance of the class (for example x.attr1, where
x is an instance of the class). Outside the class, all references to instance variables should be qualified
with an instance of the class; for example, x.text.

Hidden Variables
Data can be hidden by creating Private variables. Private variables can be accessed only by the class
itself. If you declare names of the form __xxx or __xxx_yyy, that is with two preceding underscores, the
Python parser will automatically add the class name to the declared name, creating hidden variables, for
example:

class MyClass:
 __attr = 10 #private class attribute

 def method1(self):
 pass

 def method2(self, p1, p2):
 pass

 def __privateMethod(self, text):
 self.__text = text #private attribute

Unlike in Java, in Python all references to instance variables must be qualified with self; there is no
implied use of this.

Inheritance
The ability to inherit from classes is fundamental to object-oriented programming. Python supports both
single and multiple inheritance. Single inheritance means that there can be only one superclass. Multiple
inheritance means that there can be more than one superclass.

Inheritance is implemented by subclassing other classes. Any number of Python classes can be
superclasses. In the Jython implementation of Python, only one Java class can be directly or indirectly
inherited from. It is not required for a superclass to be supplied.

Any attribute or method in a superclass is also in any subclass and can be used by the class itself, or
by any client as long as the attribute or method is not hidden. Any instance of a subclass can be used
wherever and instance of a superclass can be used; this is an example of polymorphism. These features
enable reuse and ease of extension.

Chapter 2. The Scripting Language 25

Example

class Class1: pass #no inheritance

class Class2: pass

class Class3(Class1): pass #single inheritance

class Class4(Class3, Class2): pass #multiple inheritance

26 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 3. Scripting in IBM SPSS Modeler

Types of scripts
In IBM SPSS Modeler there are three types of script:

• Stream scripts are used to control execution of a single stream and are stored within the stream.
• SuperNode scripts are used to control the behavior of SuperNodes.
• Stand-alone or session scripts can be used to coordinate execution across a number of different

streams.

Various methods are available to be used in scripts in IBM SPSS Modeler with which you can access a
wide range of SPSS Modeler functionality. These methods are also used in Chapter 4, “The Scripting API,”
on page 37 to create more advanced functions.

Streams, SuperNode streams, and diagrams
Most of the time, the term stream means the same thing, regardless of whether it is a stream that
is loaded from a file or used within a SuperNode. It generally means a collection of nodes that are
connected together and can be executed. In scripting, however, not all operations are supported in all
places, meaning a script author should be aware of which stream variant they are using.

Streams
A stream is the main IBM SPSS Modeler document type. It can be saved, loaded, edited and executed.
Streams can also have parameters, global values, a script, and other information associated with them.

SuperNode streams
A SuperNode stream is the type of stream used within a SuperNode. Like a normal stream, it contains
nodes which are linked together. SuperNode streams have a number of differences from a normal stream:

• Parameters and any scripts are associated with the SuperNode that owns the SuperNode stream, rather
than with the SuperNode stream itself.

• SuperNode streams have additional input and output connector nodes, depending on the type of
SuperNode. These connector nodes are used to flow information into and out of the SuperNode stream,
and are created automatically when the SuperNode is created.

Diagrams
The term diagram covers the functions that are supported by both normal streams and SuperNode
streams, such as adding and removing nodes, and modifying connections between the nodes.

Executing a stream
The following example runs all executable nodes in the stream, and is the simplest type of stream script:

modeler.script.stream().runAll(None)

The following example also runs all executable nodes in the stream:

stream = modeler.script.stream()
stream.runAll(None)

In this example, the stream is stored in a variable called stream. Storing the stream in a variable is useful
because a script is typically used to modify either the stream or the nodes within a stream. Creating a
variable that stores the stream results in a more concise script.

The scripting context
The modeler.script module provides the context in which a script is executed. The module is
automatically imported into a SPSS Modeler script at run time. The module defines four functions that
provide a script with access to its execution environment:

• The session() function returns the session for the script. The session defines information such as the
locale and the SPSS Modeler backend (either a local process or a networked SPSS Modeler Server) that
is being used to run any streams.

• The stream() function can be used with stream and SuperNode scripts. This function returns the
stream that owns either the stream script or the SuperNode script that is being run.

• The diagram() function can be used with SuperNode scripts. This function returns the diagram within
the SuperNode. For other script types, this function returns the same as the stream() function.

• The supernode() function can be used with SuperNode scripts. This function returns the SuperNode
that owns the script that is being run.

The four functions and their outputs are summarized in the following table.

Table 9. Summary of modeler.script functions

Script type session() stream() diagram() supernode()

Standalone Returns a session Returns the current
managed stream
at the time the
script was invoked
(for example, the
stream passed via
the batch mode
-stream option),
or None.

Same as for
stream()

Not applicable

Stream Returns a session Returns a stream Same as for
stream()

Not applicable

SuperNode Returns a session Returns a stream Returns a
SuperNode stream

Returns a
SuperNode

The modeler.script module also defines a way of terminating the script with an exit code. The
exit(exit-code) function stops the script from executing and returns the supplied integer exit code.

One of the methods that is defined for a stream is runAll(List). This method runs all executable
nodes. Any models or outputs that are generated by executing the nodes are added to the supplied list.

It is common for a stream execution to generate outputs such as models, graphs, and other output. To
capture this output, a script can supply a variable that is initialized to a list, for example:

stream = modeler.script.stream()
results = []
stream.runAll(results)

When execution is complete, any objects that are generated by the execution can be accessed from the
results list.

28 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Referencing existing nodes
A stream is often pre-built with some parameters that must be modified before the stream is executed.
Modifying these parameters involves the following tasks:

1. Locating the nodes in the relevant stream.
2. Changing the node or stream settings (or both).

Finding nodes
Streams provide a number of ways of locating an existing node. These methods are summarized in the
following table.

Table 10. Methods for locating an existing node

Method Return type Description

s.findAll(type, label) Collection Returns a list of all nodes with
the specified type and label.
Either the type or label can be
None, in which case the other
parameter is used.

s.findAll(filter,
recursive)

Collection Returns a collection of all
nodes that are accepted by the
specified filter. If the recursive
flag is True, any SuperNodes
within the specified stream are
also searched.

s.findByID(id) Node Returns the node with the
supplied ID or None if no such
node exists. The search is limited
to the current stream.

s.findByType(type, label) Node Returns the node with the
supplied type, label, or both.
Either the type or name can be
None, in which case the other
parameter is used. If multiple
nodes result in a match, then
an arbitrary one is chosen and
returned. If no nodes result in a
match, then the return value is
None.

s.findDownstream(fromNode
s)

Collection Searches from the supplied list
of nodes and returns the set
of nodes downstream of the
supplied nodes. The returned list
includes the originally supplied
nodes.

s.findUpstream(fromNodes) Collection Searches from the supplied list
of nodes and returns the set of
nodes upstream of the supplied
nodes. The returned list includes
the originally supplied nodes.

Chapter 3. Scripting in IBM SPSS Modeler 29

Table 10. Methods for locating an existing node (continued)

Method Return type Description

s.findProcessorForID(Stri
ng id, boolean recursive)

Node Returns the node with the
supplied ID or None if no such
node exists. If the recursive flag
is true, then any composite
nodes within this diagram are
also searched.

As an example, if a stream contained a single Filter node that the script needed to access, the Filter node
can be found by using the following script:

stream = modeler.script.stream()
node = stream.findByType("filter", None)
...

Alternatively, if the ID of the node (as shown on the Annotations tab of the node dialog box) is known, the
ID can be used to find the node, for example:

stream = modeler.script.stream()
node = stream.findByID("id32FJT71G2") # the filter node ID
...

Setting properties
Nodes, streams, models, and outputs all have properties that can be accessed and, in most cases, set.
Properties are typically used to modify the behavior or appearance of the object. The methods that are
available for accessing and setting object properties are summarized in the following table.

Table 11. Methods for accessing and setting object properties

Method Return type Description

p.getPropertyValue(proper
tyName)

Object Returns the value of the named
property or None if no such
property exists.

p.setPropertyValue(proper
tyName, value)

Not applicable Sets the value of the named
property.

p.setPropertyValues(prope
rties)

Not applicable Sets the values of the named
properties. Each entry in the
properties map consists of a
key that represents the property
name and the value that should
be assigned to that property.

p.getKeyedPropertyValue(
propertyName, keyName)

Object Returns the value of the named
property and associated key or
None if no such property or key
exists.

p.setKeyedPropertyValue(
propertyName, keyName,
value)

Not applicable Sets the value of the named
property and key.

30 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

For example, if you wanted to set the value of a Variable File node at the start of a stream, you can use the
following script:

stream = modeler.script.stream()
node = stream.findByType("variablefile", None)
node.setPropertyValue("full_filename", "$CLEO/DEMOS/DRUG1n")
...

Alternatively, you might want to filter a field from a Filter node. In this case, the value is also keyed on the
field name, for example:

stream = modeler.script.stream()
Locate the filter node ...
node = stream.findByType("filter", None)
... and filter out the "Na" field
node.setKeyedPropertyValue("include", "Na", False)

Creating nodes and modifying streams
In some situations, you might want to add new nodes to existing streams. Adding nodes to existing
streams typically involves the following tasks:

1. Creating the nodes.
2. Linking the nodes into the existing stream flow.

Creating nodes
Streams provide a number of ways of creating nodes. These methods are summarized in the following
table.

Table 12. Methods for creating nodes

Method Return type Description

s.create(nodeType, name) Node Creates a node of the specified
type and adds it to the specified
stream.

s.createAt(nodeType,
name, x, y)

Node Creates a node of the specified
type and adds it to the specified
stream at the specified location.
If either x < 0 or y < 0, the
location is not set.

s.createModelApplier(mode
lOutput, name)

Node Creates a model applier node
that is derived from the supplied
model output object.

For example, to create a new Type node in a stream you can use the following script:

stream = modeler.script.stream()
Create a new type node
node = stream.create("type", "My Type")

Linking and unlinking nodes
When a new node is created within a stream, it must be connected into a sequence of nodes before it
can be used. Streams provide a number of methods for linking and unlinking nodes. These methods are
summarized in the following table.

Chapter 3. Scripting in IBM SPSS Modeler 31

Table 13. Methods for linking and unlinking nodes

Method Return type Description

s.link(source, target) Not applicable Creates a new link between the
source and the target nodes.

s.link(source, targets) Not applicable Creates new links between the
source node and each target
node in the supplied list.

s.linkBetween(inserted,
source, target)

Not applicable Connects a node between two
other node instances (the source
and target nodes) and sets the
position of the inserted node to
be between them. Any direct link
between the source and target
nodes is removed first.

s.linkPath(path) Not applicable Creates a new path between
node instances. The first node is
linked to the second, the second
is linked to the third, and so on.

s.unlink(source, target) Not applicable Removes any direct link between
the source and the target nodes.

s.unlink(source, targets) Not applicable Removes any direct links
between the source node and
each object in the targets list.

s.unlinkPath(path) Not applicable Removes any path that exists
between node instances.

s.disconnect(node) Not applicable Removes any links between the
supplied node and any other
nodes in the specified stream.

s.isValidLink(source,
target)

boolean Returns True if it would be
valid to create a link between
the specified source and target
nodes. This method checks that
both objects belong to the
specified stream, that the source
node can supply a link and the
target node can receive a link,
and that creating such a link
will not cause a circularity in the
stream.

The example script that follows performs these five tasks:

1. Creates a Variable File input node, a Filter node, and a Table output node.
2. Connects the nodes together.
3. Sets the file name on the Variable File input node.
4. Filters the field "Drug" from the resulting output.
5. Executes the Table node.

stream = modeler.script.stream()
filenode = stream.createAt("variablefile", "My File Input ", 96, 64)
filternode = stream.createAt("filter", "Filter", 192, 64)
tablenode = stream.createAt("table", "Table", 288, 64)

32 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

stream.link(filenode, filternode)
stream.link(filternode, tablenode)
filenode.setPropertyValue("full_filename", "$CLEO_DEMOS/DRUG1n")
filternode.setKeyedPropertyValue("include", "Drug", False)
results = []
tablenode.run(results)

Importing, replacing, and deleting nodes
As well as creating and connecting nodes, it is often necessary to replace and delete nodes from the
stream. The methods that are available for importing, replacing and deleting nodes are summarized in the
following table.

Table 14. Methods for importing, replacing, and deleting nodes

Method Return type Description

s.replace(originalNode,
replacementNode,
discardOriginal)

Not applicable Replaces the specified node from
the specified stream. Both the
original node and replacement
node must be owned by the
specified stream.

s.insert(source, nodes,
newIDs)

List Inserts copies of the nodes in
the supplied list. It is assumed
that all nodes in the supplied
list are contained within the
specified stream. The newIDs
flag indicates whether new IDs
should be generated for each
node, or whether the existing ID
should be copied and used. It
is assumed that all nodes in a
stream have a unique ID, so this
flag must be set to True if the
source stream is the same as
the specified stream. The method
returns the list of newly inserted
nodes, where the order of the
nodes is undefined (that is, the
ordering is not necessarily the
same as the order of the nodes
in the input list).

s.delete(node) Not applicable Deletes the specified node from
the specified stream. The node
must be owned by the specified
stream.

s.deleteAll(nodes) Not applicable Deletes all the specified nodes
from the specified stream. All
nodes in the collection must
belong to the specified stream.

s.clear() Not applicable Deletes all nodes from the
specified stream.

Chapter 3. Scripting in IBM SPSS Modeler 33

Traversing through nodes in a stream
A common requirement is to identify nodes that are either upstream or downstream of a particular node.
The stream provides a number of methods that can be used to identify these nodes. These methods are
summarized in the following table.

Table 15. Methods to identify upstream and downstream nodes

Method Return type Description

s.iterator() Iterator Returns an iterator over the node
objects that are contained in the
specified stream. If the stream
is modified between calls of the
next() function, the behavior of
the iterator is undefined.

s.predecessorAt(node,
index)

Node Returns the specified immediate
predecessor of the supplied node
or None if the index is out of
bounds.

s.predecessorCount(node) int Returns the number of
immediate predecessors of the
supplied node.

s.predecessors(node) List Returns the immediate
predecessors of the supplied
node.

s.successorAt(node,
index)

Node Returns the specified immediate
successor of the supplied node
or None if the index is out of
bounds.

s.successorCount(node) int Returns the number of
immediate successors of the
supplied node.

s.successors(node) List Returns the immediate
successors of the supplied node.

Clearing, or removing, items
Legacy scripting supports various uses of the clear command, for example:

• clear outputs To delete all output items from the manager palette.
• clear generated palette To clear all model nuggets from the Models palette.
• clear stream To remove the contents of a stream.

Python scripting supports a similar set of functions; the removeAll() command is used to clear the
Streams, Outputs, and Models managers For example:

• To clear the Streams manager:

session = modeler.script.session()
session.getStreamManager.removeAll()

• To clear the Outputs manager:

session = modeler.script.session()
session.getDocumentOutputManager().removeAll()

34 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

• To clear the Models manager:

session = modeler.script.session()
session.getModelOutputManager().removeAll()

Getting information about nodes
Nodes fall into a number of different categories such as data import and export nodes, model building
nodes, and other types of nodes. Every node provides a number of methods that can be used to find out
information about the node.

The methods that can be used to obtain the ID, name, and label of a node are summarized in the following
table.

Table 16. Methods to obtain the ID, name, and label of a node

Method Return type Description

n.getLabel() string Returns the display label of
the specified node. The label
is the value of the property
custom_name only if that
property is a non-empty string
and the use_custom_name
property is not set; otherwise, the
label is the value of getName().

n.setLabel(label) Not applicable Sets the display label of the
specified node. If the new label is
a non-empty string it is assigned
to the property custom_name,
and False is assigned to
the property use_custom_name
so that the specified label
takes precedence; otherwise, an
empty string is assigned to
the property custom_name and
True is assigned to the property
use_custom_name.

n.getName() string Returns the name of the specified
node.

n.getID() string Returns the ID of the specified
node. A new ID is created each
time a new node is created. The
ID is persisted with the node
when it is saved as part of a
stream so that when the stream
is opened, the node IDs are
preserved. However, if a saved
node is inserted into a stream,
the inserted node is considered
to be a new object and will be
allocated a new ID.

Methods that can be used to obtain other information about a node are summarized in the following table.

Chapter 3. Scripting in IBM SPSS Modeler 35

Table 17. Methods for obtaining information about a node

Method Return type Description

n.getTypeName() string Returns the scripting name of this
node. This is the same name that
could be used to create a new
instance of this node.

n.isInitial() Boolean Returns True if this is an initial
node, that is one that occurs at
the start of a stream.

n.isInline() Boolean Returns True if this is an in-line
node, that is one that occurs mid-
stream.

n.isTerminal() Boolean Returns True if this is a terminal
node, that is one that occurs at
the end of a stream.

n.getXPosition() int Returns the x position offset of
the node in the stream.

n.getYPosition() int Returns the y position offset of
the node in the stream.

n.setXYPosition(x, y) Not applicable Sets the position of the node in
the stream.

n.setPositionBetween(sour
ce, target)

Not applicable Sets the position of the node in
the stream so that it is positioned
between the supplied nodes.

n.isCacheEnabled() Boolean Returns True if the cache
is enabled; returns False
otherwise.

n.setCacheEnabled(val) Not applicable Enables or disables the cache for
this object. If the cache is full and
the caching becomes disabled,
the cache is flushed.

n.isCacheFull() Boolean Returns True if the cache is full;
returns False otherwise.

n.flushCache() Not applicable Flushes the cache of this node.
Has no affect if the cache is not
enabled or is not full.

36 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 4. The Scripting API

Introduction to the Scripting API
The Scripting API provides access to a wide range of SPSS Modeler functionality. All the methods
described so far are part of the API and can be accessed implicitly within the script without further
imports. However, if you want to reference the API classes, you must import the API explicitly with the
following statement:

import modeler.api

This import statement is required by many of the Scripting API examples.

A full guide to the classes, methods, and parameters that are available through the scripting API can be
found in the document IBM SPSS Modeler Python Scripting API Reference Guide.

Example 1: searching for nodes using a custom filter
The section “Finding nodes” on page 29 included an example of searching for a node in a stream using
the type name of the node as the search criterion. In some situations, a more generic search is required
and this can be implemented using the NodeFilter class and the stream findAll() method. This kind
of search involves the following two steps:

1. Creating a new class that extends NodeFilter and that implements a custom version of the
accept() method.

2. Calling the stream findAll() method with an instance of this new class. This returns all nodes that
meet the criteria defined in the accept() method.

The following example shows how to search for nodes in a stream that have the node cache enabled. The
returned list of nodes could be used to either flush or disable the caches of these nodes.

import modeler.api

class CacheFilter(modeler.api.NodeFilter):
 """A node filter for nodes with caching enabled"""
 def accept(this, node):
 return node.isCacheEnabled()

cachingnodes = modeler.script.stream().findAll(CacheFilter(), False)

Example 2: allowing users to obtain directory or file information
based on their privileges

To avoid the PSAPI being opened to users, a method called session.getServerFileSystem() can be
used via calling the PSAPI function to create a file system object.

The following example shows how to allow a user to get directory or file information based on the
privileges of the user that connects to the IBM SPSS Modeler Server.

import modeler.api
stream = modeler.script.stream()
sourceNode = stream.findByID('')
session = modeler.script.session()
fileSystem = session.getServerFileSystem()
parameter = stream.getParameterValue('VPATH')
serverDirectory = fileSystem.getServerFile(parameter)
files = fileSystem.getFiles(serverDirectory)
for f in files:
 if f.isDirectory():
 print 'Directory:'

 else:
 print 'File:'
 sourceNode.setPropertyValue('full_filename',f.getPath())
 break
 print f.getName(),f.getPath()
stream.execute()

Metadata: Information about data
Because nodes are connected together in a stream, information about the columns or fields that are
available at each node is available. For example, in the Modeler UI, this allows you to select which fields
to sort or aggregate by. This information is called the data model.

Scripts can also access the data model by looking at the fields coming into or out of a node. For some
nodes, the input and output data models are the same, for example a Sort node simply reorders the
records but doesn't change the data model. Some, such as the Derive node, can add new fields. Others,
such as the Filter node can rename or remove fields.

In the following example, the script takes the standard IBM SPSS Modeler druglearn.str stream, and
for each field, builds a model with one of the input fields dropped. It does this by:

1. Accessing the output data model from the Type node.
2. Looping through each field in the output data model.
3. Modifying the Filter node for each input field.
4. Changing the name of the model being built.
5. Running the model build node.

Note: Before running the script in the druglean.str stream, remember to set the scripting language
to Python (the stream was created in a previous version of IBM SPSS Modeler so the stream scripting
language is set to Legacy).

import modeler.api

stream = modeler.script.stream()
filternode = stream.findByType("filter", None)
typenode = stream.findByType("type", None)
c50node = stream.findByType("c50", None)
Always use a custom model name
c50node.setPropertyValue("use_model_name", True)

lastRemoved = None
fields = typenode.getOutputDataModel()
for field in fields:
 # If this is the target field then ignore it
 if field.getModelingRole() == modeler.api.ModelingRole.OUT:
 continue

 # Re-enable the field that was most recently removed
 if lastRemoved != None:
 filternode.setKeyedPropertyValue("include", lastRemoved, True)

 # Remove the field
 lastRemoved = field.getColumnName()
 filternode.setKeyedPropertyValue("include", lastRemoved, False)

 # Set the name of the new model then run the build
 c50node.setPropertyValue("model_name", "Exclude " + lastRemoved)
 c50node.run([])

The DataModel object provides a number of methods for accessing information about the fields or
columns within the data model. These methods are summarized in the following table.

Table 18. DataModel object methods for accessing information about fields or columns

Method Return type Description

d.getColumnCount() int Returns the number of columns
in the data model.

38 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 18. DataModel object methods for accessing information about fields or columns (continued)

Method Return type Description

d.columnIterator() Iterator Returns an iterator that returns
each column in the "natural"
insert order. The iterator returns
instances of Column.

d.nameIterator() Iterator Returns an iterator that returns
the name of each column in the
"natural" insert order.

d.contains(name) Boolean Returns True if a column with
the supplied name exists in this
DataModel, False otherwise.

d.getColumn(name) Column Returns the column with the
specified name.

d.getColumnGroup(name) ColumnGroup Returns the named column group
or None if no such column group
exists.

d.getColumnGroupCount() int Returns the number of column
groups in this data model.

d.columnGroupIterator() Iterator Returns an iterator that returns
each column group in turn.

d.toArray() Column[] Returns the data model as an
array of columns. The columns
are ordered in their "natural"
insert order.

Each field (Column object) includes a number of methods for accessing information about the column.
The table below shows a selection of these.

Table 19. Column object methods for accessing information about the column

Method Return type Description

c.getColumnName() string Returns the name of the column.

c.getColumnLabel() string Returns the label of the column
or an empty string if there is no
label associated with the column.

c.getMeasureType() MeasureType Returns the measure type for the
column.

c.getStorageType() StorageType Returns the storage type for the
column.

c.isMeasureDiscrete() Boolean Returns True if the column is
discrete. Columns that are either
a set or a flag are considered
discrete.

c.isModelOutputColumn() Boolean Returns True if the column is a
model output column.

Chapter 4. The Scripting API 39

Table 19. Column object methods for accessing information about the column (continued)

Method Return type Description

c.isStorageDatetime() Boolean Returns True if the column's
storage is a time, date or
timestamp value.

c.isStorageNumeric() Boolean Returns True if the column's
storage is an integer or a real
number.

c.isValidValue(value) Boolean Returns True if the specified
value is valid for this storage, and
valid when the valid column
values are known.

c.getModelingRole() ModelingRole Returns the modeling role for the
column.

c.getSetValues() Object[] Returns an array of valid values
for the column, or None if either
the values are not known or the
column is not a set.

c.getValueLabel(value) string Returns the label for the value in
the column, or an empty string if
there is no label associated with
the value.

c.getFalseFlag() Object Returns the "false" indicator
value for the column, or None if
either the value is not known or
the column is not a flag.

c.getTrueFlag() Object Returns the "true" indicator value
for the column, or None if either
the value is not known or the
column is not a flag.

c.getLowerBound() Object Returns the lower bound value
for the values in the column,
or None if either the value is
not known or the column is not
continuous.

c.getUpperBound() Object Returns the upper bound value
for the values in the column,
or None if either the value is
not known or the column is not
continuous.

Note that most of the methods that access information about a column have equivalent methods defined
on the DataModel object itself. For example the two following statements are equivalent:

dataModel.getColumn("someName").getModelingRole()
dataModel.getModelingRole("someName")

Accessing Generated Objects
Executing a stream typically involves producing additional output objects. These additional objects might
be a new model, or a piece of output that provides information to be used in subsequent executions.

40 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

In the example below, the druglearn.str stream is used again as the starting point for the stream. In
this example, all nodes in the stream are executed and the results are stored in a list. The script then
loops through the results, and any model outputs that result from the execution are saved as an IBM SPSS
Modeler model (.gm) file, and the model is PMML exported.

import modeler.api

stream = modeler.script.stream()

Set this to an existing folder on your system.
Include a trailing directory separator
modelFolder = "C:/temp/models/"

Execute the stream
models = []
stream.runAll(models)

Save any models that were created
taskrunner = modeler.script.session().getTaskRunner()
for model in models:
 # If the stream execution built other outputs then ignore them
 if not(isinstance(model, modeler.api.ModelOutput)):
 continue

 label = model.getLabel()
 algorithm = model.getModelDetail().getAlgorithmName()

 # save each model...
 modelFile = modelFolder + label + algorithm + ".gm"
 taskrunner.saveModelToFile(model, modelFile)

 # ...and export each model PMML...
 modelFile = modelFolder + label + algorithm + ".xml"
 taskrunner.exportModelToFile(model, modelFile, modeler.api.FileFormat.XML)

The task runner class provides a convenient way running various common tasks. The methods that are
available in this class are summarized in the following table.

Table 20. Methods of the task runner class for performing common tasks

Method Return type Description

t.createStream(name,
autoConnect, autoManage)

Stream Creates and returns a new
stream. Note that code that must
create streams privately without
making them visible to the user
should set the autoManage flag
to False.

t.exportDocumentToFile(
documentOutput, filename,
fileFormat)

Not applicable Exports the stream description
to a file using the specified file
format.

t.exportModelToFile(model
Output, filename,
fileFormat)

Not applicable Exports the model to a file using
the specified file format.

t.exportStreamToFile(stre
am, filename, fileFormat)

Not applicable Exports the stream to a file using
the specified file format.

t.insertNodeFromFile(file
name, diagram)

Node Reads and returns a node from
the specified file, inserting it into
the supplied diagram. Note that
this can be used to read both
Node and SuperNode objects.

t.openDocumentFromFile(fi
lename, autoManage)

DocumentOutput Reads and returns a document
from the specified file.

Chapter 4. The Scripting API 41

Table 20. Methods of the task runner class for performing common tasks (continued)

Method Return type Description

t.openModelFromFile(filen
ame, autoManage)

ModelOutput Reads and returns a model from
the specified file.

t.openStreamFromFile(file
name, autoManage)

Stream Reads and returns a stream from
the specified file.

t.saveDocumentToFile(
documentOutput, filename)

Not applicable Saves the document to the
specified file location.

t.saveModelToFile(modelOu
tput, filename)

Not applicable Saves the model to the specified
file location.

t.saveStreamToFile(stream
, filename)

Not applicable Saves the stream to the specified
file location.

Handling errors
The Python language provides error handling via the try...except code block. This can be used within
scripts to trap exceptions and handle problems that would otherwise cause the script to terminate.

In the example script below, an attempt is made to retrieve a model from a IBM SPSS Collaboration and
Deployment Services Repository. This operation can cause an exception to be thrown, for example, the
repository login credentials might not have been set up correctly, or the repository path is wrong. In the
script, this may cause a ModelerException to be thrown (all exceptions that are generated by IBM
SPSS Modeler are derived from modeler.api.ModelerException).

import modeler.api

session = modeler.script.session()
try:
 repo = session.getRepository()
 m = repo.retrieveModel("/some-non-existent-path", None, None, True)
 # print goes to the Modeler UI script panel Debug tab
 print "Everything OK"
except modeler.api.ModelerException, e:
 print "An error occurred:", e.getMessage()

Note: Some scripting operations may cause standard Java exceptions to be thrown; these are not derived
from ModelerException. In order to catch these exceptions, an additional except block can be used to
catch all Java exceptions, for example:

import modeler.api
import java.lang.Exception

session = modeler.script.session()
try:
 repo = session.getRepository()
 m = repo.retrieveModel("/some-non-existent-path", None, None, True)
 # print goes to the Modeler UI script panel Debug tab
 print "Everything OK"
except modeler.api.ModelerException, e:
 print "An error occurred:", e.getMessage()
except java.lang.Exception, e:
 print "A Java exception occurred:", e.getMessage()

Stream, Session, and SuperNode Parameters
Parameters provide a useful way of passing values at runtime, rather than hard coding them directly in
a script. Parameters and their values are defined in the same as way for streams, that is, as entries in
the parameters table of a stream or SuperNode, or as parameters on the command line. The Stream and
SuperNode classes implement a set of functions defined by the ParameterProvider object as shown in

42 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

the following table. Session provides a getParameters() call which returns an object that defines those
functions.

Table 21. Functions defined by the ParameterProvider object

Method Return type Description

p.parameterIterator() Iterator Returns an iterator of parameter
names for this object.

p.getParameterDefinition(
parameterName)

ParameterDefinition Returns the parameter definition
for the parameter with the
specified name, or None if no
such parameter exists in this
provider. The result may be
a snapshot of the definition
at the time the method was
called and need not reflect any
subsequent modifications made
to the parameter through this
provider.

p.getParameterLabel(param
eterName)

string Returns the label of the named
parameter, or None if no such
parameter exists.

p.setParameterLabel(param
eterName, label)

Not applicable Sets the label of the named
parameter.

p.getParameterStorage(
parameterName)

ParameterStorage Returns the storage of the named
parameter, or None if no such
parameter exists.

p.setParameterStorage(
parameterName, storage)

Not applicable Sets the storage of the named
parameter.

p.getParameterType(parame
terName)

ParameterType Returns the type of the named
parameter, or None if no such
parameter exists.

p.setParameterType(parame
terName, type)

Not applicable Sets the type of the named
parameter.

p.getParameterValue(param
eterName)

Object Returns the value of the named
parameter, or None if no such
parameter exists.

p.setParameterValue(param
eterName, value)

Not applicable Sets the value of the named
parameter.

In the following example, the script aggregates some Telco data to find which region has the lowest
average income data. A stream parameter is then set with this region. That stream parameter is then used
in a Select node to exclude that region from the data, before a churn model is built on the remainder.

The example is artificial because the script generates the Select node itself and could therefore have
generated the correct value directly into the Select node expression. However, streams are typically
pre-built, so setting parameters in this way provides a useful example.

Chapter 4. The Scripting API 43

The first part of the example script creates the stream parameter that will contain the region with the
lowest average income. The script also creates the nodes in the aggregation branch and the model
building branch, and connects them together.

import modeler.api

stream = modeler.script.stream()

Initialize a stream parameter
stream.setParameterStorage("LowestRegion", modeler.api.ParameterStorage.INTEGER)

First create the aggregation branch to compute the average income per region
statisticsimportnode = stream.createAt("statisticsimport", "SPSS File", 114, 142)
statisticsimportnode.setPropertyValue("full_filename", "$CLEO_DEMOS/telco.sav")
statisticsimportnode.setPropertyValue("use_field_format_for_storage", True)

aggregatenode = modeler.script.stream().createAt("aggregate", "Aggregate", 294, 142)
aggregatenode.setPropertyValue("keys", ["region"])
aggregatenode.setKeyedPropertyValue("aggregates", "income", ["Mean"])

tablenode = modeler.script.stream().createAt("table", "Table", 462, 142)

stream.link(statisticsimportnode, aggregatenode)
stream.link(aggregatenode, tablenode)

selectnode = stream.createAt("select", "Select", 210, 232)
selectnode.setPropertyValue("mode", "Discard")
Reference the stream parameter in the selection
selectnode.setPropertyValue("condition", "'region' = '$P-LowestRegion'")

typenode = stream.createAt("type", "Type", 366, 232)
typenode.setKeyedPropertyValue("direction", "churn", "Target")

c50node = stream.createAt("c50", "C5.0", 534, 232)

stream.link(statisticsimportnode, selectnode)
stream.link(selectnode, typenode)
stream.link(typenode, c50node)

The example script creates the following stream.

Figure 5. Stream that results from the example script

The following part of the example script executes the Table node at the end of the aggregation branch.

First execute the table node
results = []
tablenode.run(results)

The following part of the example script accesses the table output that was generated by the execution of
the Table node. The script then iterates through rows in the table, looking for the region with the lowest
average income.

Running the table node should produce a single table as output
table = results[0]

44 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

table output contains a RowSet so we can access values as rows and columns
rowset = table.getRowSet()
min_income = 1000000.0
min_region = None

From the way the aggregate node is defined, the first column
contains the region and the second contains the average income
row = 0
rowcount = rowset.getRowCount()
while row < rowcount:
 if rowset.getValueAt(row, 1) < min_income:
 min_income = rowset.getValueAt(row, 1)
 min_region = rowset.getValueAt(row, 0)
 row += 1

The following part of the script uses the region with the lowest average income to set the "LowestRegion"
stream parameter that was created earlier. The script then runs the model builder with the specified
region excluded from the training data.

Check that a value was assigned
if min_region != None:
 stream.setParameterValue("LowestRegion", min_region)
else:
 stream.setParameterValue("LowestRegion", -1)

Finally run the model builder with the selection criteria
c50node.run([])

The complete example script is shown below.

import modeler.api

stream = modeler.script.stream()

Create a stream parameter
stream.setParameterStorage("LowestRegion", modeler.api.ParameterStorage.INTEGER)

First create the aggregation branch to compute the average income per region
statisticsimportnode = stream.createAt("statisticsimport", "SPSS File", 114, 142)
statisticsimportnode.setPropertyValue("full_filename", "$CLEO_DEMOS/telco.sav")
statisticsimportnode.setPropertyValue("use_field_format_for_storage", True)

aggregatenode = modeler.script.stream().createAt("aggregate", "Aggregate", 294, 142)
aggregatenode.setPropertyValue("keys", ["region"])
aggregatenode.setKeyedPropertyValue("aggregates", "income", ["Mean"])

tablenode = modeler.script.stream().createAt("table", "Table", 462, 142)

stream.link(statisticsimportnode, aggregatenode)
stream.link(aggregatenode, tablenode)

selectnode = stream.createAt("select", "Select", 210, 232)
selectnode.setPropertyValue("mode", "Discard")
Reference the stream parameter in the selection
selectnode.setPropertyValue("condition", "'region' = '$P-LowestRegion'")

typenode = stream.createAt("type", "Type", 366, 232)
typenode.setKeyedPropertyValue("direction", "churn", "Target")

c50node = stream.createAt("c50", "C5.0", 534, 232)

stream.link(statisticsimportnode, selectnode)
stream.link(selectnode, typenode)
stream.link(typenode, c50node)

First execute the table node
results = []
tablenode.run(results)

Running the table node should produce a single table as output
table = results[0]

table output contains a RowSet so we can access values as rows and columns
rowset = table.getRowSet()
min_income = 1000000.0
min_region = None

Chapter 4. The Scripting API 45

From the way the aggregate node is defined, the first column
contains the region and the second contains the average income
row = 0
rowcount = rowset.getRowCount()
while row < rowcount:
 if rowset.getValueAt(row, 1) < min_income:
 min_income = rowset.getValueAt(row, 1)
 min_region = rowset.getValueAt(row, 0)
 row += 1

Check that a value was assigned
if min_region != None:
 stream.setParameterValue("LowestRegion", min_region)
else:
 stream.setParameterValue("LowestRegion", -1)

Finally run the model builder with the selection criteria
c50node.run([])

Global Values
Global values are used to compute various summary statistics for specified fields. These summary values
can be accessed anywhere within the stream. Global values are similar to stream parameters in that
they are accessed by name through the stream. They are different from stream parameters in that the
associated values are updated automatically when a Set Globals node is run, rather than being assigned
by scripting or from the command line. The global values for a stream are accessed by calling the stream's
getGlobalValues() method.

The GlobalValues object defines the functions that are shown in the following table.

Table 22. Functions that are defined by the GlobalValues object

Method Return type Description

g.fieldNameIterator() Iterator Returns an iterator for each field
name with at least one global
value.

g.getValue(type,
fieldName)

Object Returns the global value for
the specified type and field
name, or None if no value
can be located. The returned
value is generally expected to
be a number, although future
functionality may return different
value types.

g.getValues(fieldName) Map Returns a map containing the
known entries for the specified
field name, or None if there are
no existing entries for the field.

GlobalValues.Type defines the type of summary statistics that are available. The following summary
statistics are available:

• MAX: the maximum value of the field.
• MEAN: the mean value of the field.
• MIN: the minimum value of the field.
• STDDEV: the standard deviation of the field.
• SUM: the sum of the values in the field.

46 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

For example, the following script accesses the mean value of the "income" field, which is computed by a
Set Globals node:

import modeler.api

globals = modeler.script.stream().getGlobalValues()
mean_income = globals.getValue(modeler.api.GlobalValues.Type.MEAN, "income")

Working with Multiple Streams: Standalone Scripts
To work with multiple streams, a standalone script must be used. The standalone script can be edited and
run within the IBM SPSS Modeler UI or passed as a command line parameter in batch mode.

The following standalone script opens two streams. One of these streams builds a model, while the
second stream plots the distribution of the predicted values.

Change to the appropriate location for your system
demosDir = "C:/Program Files/IBM/SPSS/Modeler/18.6.0/DEMOS/streams/"

session = modeler.script.session()
tasks = session.getTaskRunner()

Open the model build stream, locate the C5.0 node and run it
buildstream = tasks.openStreamFromFile(demosDir + "druglearn.str", True)
c50node = buildstream.findByType("c50", None)
results = []
c50node.run(results)

Now open the plot stream, find the Na_to_K derive and the histogram
plotstream = tasks.openStreamFromFile(demosDir + "drugplot.str", True)
derivenode = plotstream.findByType("derive", None)
histogramnode = plotstream.findByType("histogram", None)

Create a model applier node, insert it between the derive and histogram nodes
then run the histgram
applyc50 = plotstream.createModelApplier(results[0], results[0].getName())
applyc50.setPositionBetween(derivenode, histogramnode)
plotstream.linkBetween(applyc50, derivenode, histogramnode)
histogramnode.setPropertyValue("color_field", "$C-Drug")
histogramnode.run([])

Finally, tidy up the streams
buildstream.close()
plotstream.close()

The following example shows how you can also iterate over the open streams (all the streams open in the
Streams tab). Note that this is only supported in standalone scripts.

for stream in modeler.script.streams():
 print stream.getName()

Chapter 4. The Scripting API 47

48 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 5. Scripting tips

This section provides an overview of tips and techniques for using scripts, including modifying stream
execution, using an encoded password in a script, and accessing objects in the IBM SPSS Collaboration
and Deployment Services Repository.

Modifying stream execution
When a stream is run, its terminal nodes are executed in an order optimized for the default situation.
In some cases, you may prefer a different execution order. To modify the execution order of a stream,
complete the following steps from the Execution tab of the stream properties dialog box:

1. Begin with an empty script.
2. Click the Append default script button on the toolbar to add the default stream script.
3. Change the order of statements in the default stream script to the order in which you want statements

to be executed.

Looping through nodes
You can use a for loop to loop through all of the nodes in a stream. For example, the following two script
examples loop through all nodes and changes field names in any Filter nodes to upper case.

This scripts can be used in any stream that has a Filter node, even if no fields are actually filtered. Simply
add a Filter node that passes all fields in order to change field names to upper case across the board.

Alternative 1: using the data model nameIterator() function
stream = modeler.script.stream()
for node in stream.iterator():
 if (node.getTypeName() == "filter"):
 # nameIterator() returns the field names
 for field in node.getInputDataModel().nameIterator():
 newname = field.upper()
 node.setKeyedPropertyValue("new_name", field, newname)

Alternative 2: using the data model iterator() function
stream = modeler.script.stream()
for node in stream.iterator():
 if (node.getTypeName() == "filter"):
 # iterator() returns the field objects so we need
 # to call getColumnName() to get the name
 for field in node.getInputDataModel().iterator():
 newname = field.getColumnName().upper()
 node.setKeyedPropertyValue("new_name", field.getColumnName(), newname)

The script loops through all nodes in the current stream, and checks whether each node is a Filter.
If so, the script loops through each field in the node and uses either the field.upper() or
field.getColumnName().upper() function to change the name to upper case.

Accessing Objects in the IBM SPSS Collaboration and Deployment
Services Repository

If you have a license for the IBM SPSS Collaboration and Deployment Services Repository, you can store
and retrieve objects from the repository by using script commands. Use the repository to manage the
lifecycle of data mining models and related predictive objects in the context of enterprise applications,
tools, and solutions.

Connecting to the IBM SPSS Collaboration and Deployment Services Repository
To access the repository, you must first set up a valid connection to it, either through the Tools menu
of the SPSS Modeler user interface or through the command line. For more information, see “ IBM SPSS
Collaboration and Deployment Services Repository Connection Arguments” on page 67.

Getting access to the repository
The repository can be accessed from the session, for example:

repo = modeler.script.session().getRepository()

Retrieving objects from the repository
Within a script, use the retrieve* functions to access various objects, including streams, models,
output, and nodes. A summary of the retrieval functions is shown in the following table.

Table 23. Retrieve scripting functions

Object Type Repository Function

Stream repo.retrieveStream(String path, String version, String label, Boolean
autoManage)

Model repo.retrieveModel(String path, String version, String label, Boolean
autoManage)

Output repo.retrieveDocument(String path, String version, String label, Boolean
autoManage)

Node repo.retrieveProcessor(String path, String version, String label,
ProcessorDiagram diagram)

For example, you can retrieve a stream from the repository with the following function:

stream = repo.retrieveStream("/projects/retention/risk_score.str", None, "production", True)

This example retrieves the risk_score.str stream from the specified folder. The label production
identifies which version of the stream to retrieve, and the last parameter specifies that SPSS Modeler is
to manage the stream (for example, so the stream appears in the Streams tab if the SPSS Modeler user
interface is visible). As an alternative, to use a specific, unlabeled version:

stream = repo.retrieveStream("/projects/retention/risk_score.str", "0:2015-10-12 14:15:41.281",
None, True)

Note: If both the version and label parameters are None, then the latest version is returned.

Storing objects in the repository
To use scripting to store objects in the repository, use the store* functions. A summary of the store
functions is shown in the following table.

Table 24. Store scripting functions

Object Type Repository Function

Stream repo.storeStream(ProcessorStream stream, String path, String label)

Model repo.storeModel(ModelOutput modelOutput, String path, String label)

Output repo.storeDocument(DocumentOutput documentOutput, String path, String
label)

50 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 24. Store scripting functions (continued)

Object Type Repository Function

Node repo.storeProcessor(Processor node, String path, String label)

For example, you can store a new version of the risk_score.str stream with the following function:

versionId = repo.storeStream(stream, "/projects/retention/risk_score.str", "test")

This example stores a new version of the stream, associates the "test" label with it, and returns the
version marker for the newly created version.

Note: If you do not want to associate a label with the new version, pass None for the label.

Managing repository folders
By using folders within the repository, you can organize objects into logical groups and make it easier to
see which objects are related. Create folders by using the createFolder() function, as in the following
example:

newpath = repo.createFolder("/projects", "cross-sell")

This example creates a new folder that is called "cross-sell" in the "/projects" folder. The function
returns the full path to the new folder.

To rename a folder, use the renameFolder() function:

repo.renameFolder("/projects/cross-sell", "cross-sell-Q1")

The first parameter is the full path to the folder to be renamed, and the second is the new name to give
that folder.

To delete an empty folder, use the deleteFolder() function:

repo.deleteFolder("/projects/cross-sell")

Locking and unlocking objects
From a script, you can lock an object to prevent other users from updating any of its existing versions or
creating new versions. You can also unlock an object that you have locked.

The syntax to lock and unlock an object is:

repo.lockFile(REPOSITORY_PATH)
repo.lockFile(URI)

repo.unlockFile(REPOSITORY_PATH)
repo.unlockFile(URI)

As with storing and retrieving objects, the REPOSITORY_PATH gives the location of the object in the
repository. The path must be enclosed in quotation marks and use forward slashes as delimiters. It is not
case sensitive.

repo.lockFile("/myfolder/Stream1.str")
repo.unlockFile("/myfolder/Stream1.str")

Alternatively, you can use a Uniform Resource Identifier (URI) rather than a repository path to give the
location of the object. The URI must include the prefix spsscr: and must be fully enclosed in quotation

Chapter 5. Scripting tips 51

marks. Only forward slashes are allowed as path delimiters, and spaces must be encoded. That is, use
%20 instead of a space in the path. The URI is not case sensitive. Here are some examples:

repo.lockFile("spsscr:///myfolder/Stream1.str")
repo.unlockFile("spsscr:///myfolder/Stream1.str")

Note that object locking applies to all versions of an object - you cannot lock or unlock individual versions.

Generating an encoded password
In certain cases, you may need to include a password in a script; for example, you may want to access a
password-protected data source. Encoded passwords can be used in:

• Node properties for Database Source and Output nodes
• Command line arguments for logging into the server
• Database connection properties stored in a .par file (the parameter file generated from the Publish tab

of an export node)

Through the user interface, a tool is available to generate encoded passwords based on the Blowfish
algorithm (see http://www.schneier.com/blowfish.html for more information). Once encoded, you can
copy and store the password to script files and command line arguments. The node property epassword
used for databasenode and databaseexportnode stores the encoded password.

1. To generate an encoded password, from the Tools menu choose:

Encode Password...
2. Specify a password in the Password text box.
3. Click Encode to generate a random encoding of your password.
4. Click the Copy button to copy the encoded password to the Clipboard.
5. Paste the password to the desired script or parameter.

Script checking
You can quickly check the syntax of all types of scripts by clicking the red check button on the toolbar of
the Standalone Script dialog box.

Figure 6. Stream script toolbar icons

Script checking alerts you to any errors in your code and makes recommendations for improvement. To
view the line with errors, click on the feedback in the lower half of the dialog box. This highlights the error
in red.

Scripting from the command line
Scripting enables you to run operations typically performed in the user interface. Simply specify and run a
standalone script on the command line when launching IBM SPSS Modeler. For example:

client -script scores.txt -execute

The -script flag loads the specified script, while the -execute flag executes all commands in the script
file.

Compatibility with previous releases
Scripts created in previous releases of IBM SPSS Modeler should generally work unchanged in the current
release. However, model nuggets may now be inserted in the stream automatically (this is the default

52 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

http://www.schneier.com/blowfish.html

setting), and may either replace or supplement an existing nugget of that type in the stream. Whether
this actually happens depends on the settings of the Add model to stream and Replace previous model
options (Tools > Options > User Options > Notifications). You may, for example, need to modify a script
from a previous release in which nugget replacement is handled by deleting the existing nugget and
inserting the new one.

Scripts created in the current release may not work in earlier releases.

If a script created in an older release uses a command that has since been replaced (or deprecated),
the old form will still be supported, but a warning message will be displayed. For example, the old
generated keyword has been replaced by model, and clear generated has been replaced by clear
generated palette. Scripts that use the old forms will still run, but a warning will be displayed.

Accessing stream execution results
Many IBM SPSS Modeler nodes produce output objects such as models, charts, and tabular data. Many of
these outputs contain useful values that can be used by scripts to guide subsequent runs. These values
are grouped into content containers (referred to as simply containers) which can be accessed using tags
or IDs that identify each container. The way these values are accessed depends on the format or "content
model" used by that container.

For example, many predictive model outputs use a variant of XML called PMML to represent information
about the model such as which fields a decision tree uses at each split, or how the neurones in a neural
network are connected and with what strengths. Model outputs that use PMML provide an XML Content
Model that can be used to access that information. For example:

stream = modeler.script.stream()
Assume the stream contains a single C5.0 model builder node
and that the datasource, predictors and targets have already been
set up
modelbuilder = stream.findByType("c50", None)
results = []
modelbuilder.run(results)
modeloutput = results[0]

check how many contents are there and what are their names
tags = modeloutput.getContentModelTags()
print "Content Model Tags :" , tags

Now that we have the C5.0 model output object, access the
relevant content model
cm = modeloutput.getContentModel("PMML")
if (cm != None) :
 # The PMML content model is a generic XML-based content model that
 # uses XPath syntax. Use that to find the names of the data fields.
 # The call returns a list of strings match the XPath values
 dataFieldNames = cm.getStringValues("/PMML/DataDictionary/DataField",
"name")
 print "Data Field Names:" , dataFieldNames

IBM SPSS Modeler supports the following content models in scripting:

• Table content model provides access to the simple tabular data represented as rows and columns.
• XML content model provides access to content stored in XML format.
• JSON content model provides access to content stored in JSON format.
• Column statistics content model provides access to summary statistics about a specific field.
• Pair-wise column statistics content model provides access to summary statistics between two fields

or values between two separate fields.

Note that the following nodes don't contain these content models:

• Time Series

Chapter 5. Scripting tips 53

• Discriminant
• SLRM
• TCM
• All Python nodes
• All Spark nodes
• All Database Modeling nodes
• Extension Model
• STP

Table content model
The table content model provides a simple model for accessing simple row and column data. The values
in a particular column must all have the same type of storage (for example, strings or integers).

API
Table 25. API

Return Method Description

int getRowCount() Returns the number of rows in
this table.

int getColumnCount() Returns the number of columns
in this table.

String getColumnName(int
columnIndex)

Returns the name of the column
at the specified column index.
The column index starts at 0.

StorageType getStorageType(int
columnIndex)

Returns the storage type of the
column at the specified index.
The column index starts at 0.

Object getValueAt(int rowIndex,
int columnIndex)

Returns the value at the specified
row and column index. The row
and column indices start at 0.

void reset() Flushes any internal storage
associated with this content
model.

Nodes and outputs
This table lists nodes that build outputs which include this type of content model.

Table 26. Nodes and outputs

Node name Output name Container ID

table table "table"

Example script

stream = modeler.script.stream()
from modeler.api import StorageType

Set up the variable file import node
varfilenode = stream.createAt("variablefile", "DRUG Data", 96, 96)

54 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

varfilenode.setPropertyValue("full_filename", "$CLEO_DEMOS/DRUG1n")

Next create the aggregate node and connect it to the variable file node
aggregatenode = stream.createAt("aggregate", "Aggregate", 192, 96)
stream.link(varfilenode, aggregatenode)

Configure the aggregate node
aggregatenode.setPropertyValue("keys", ["Drug"])
aggregatenode.setKeyedPropertyValue("aggregates", "Age", ["Min", "Max"])
aggregatenode.setKeyedPropertyValue("aggregates", "Na", ["Mean", "SDev"])

Then create the table output node and connect it to the aggregate node
tablenode = stream.createAt("table", "Table", 288, 96)
stream.link(aggregatenode, tablenode)

Execute the table node and capture the resulting table output object
results = []
tablenode.run(results)
tableoutput = results[0]

Access the table output's content model
tablecontent = tableoutput.getContentModel("table")

For each column, print column name, type and the first row
of values from the table content
col = 0
while col < tablecontent.getColumnCount():
 print tablecontent.getColumnName(col), \
 tablecontent.getStorageType(col), \
 tablecontent.getValueAt(0, col)
 col = col + 1

The output in the scripting Debug tab will look something like this:

Age_Min Integer 15
Age_Max Integer 74
Na_Mean Real 0.730851098901
Na_SDev Real 0.116669731242
Drug String drugY
Record_Count Integer 91

XML Content Model
The XML Content Model provides access to XML-based content.

The XML Content Model supports the ability to access components based on XPath expressions. XPath
expressions are strings that define which elements or attributes are required by the caller. The XML
Content Model hides the details of constructing various objects and compiling expressions that are
typically required by XPath support. This makes it simpler to call from Python scripting.

The XML Content Model includes a function that returns the XML document as a string. This allows Python
script users to use their preferred Python library to parse the XML.

API
Table 27. API

Return Method Description

String getXMLAsString() Returns the XML as a string.

Chapter 5. Scripting tips 55

Table 27. API (continued)

Return Method Description

number getNumericValue(String
xpath)

Returns the result of evaluating
the path with return type of
numeric (for example, count the
number of elements that match
the path expression).

boolean getBooleanValue(String
xpath)

Returns the boolean result of
evaluating the specified path
expression.

String getStringValue(String
xpath, String attribute)

Returns either the attribute value
or XML node value that matches
the specified path.

List of strings getStringValues(String
xpath, String attribute)

Returns a list of all attribute
values or XML node values that
match the specified path.

List of lists of strings getValuesList(String
xpath, <List of strings>
attributes, boolean
includeValue)

Returns a list of all attribute
values that match the specified
path along with the XML node
value if required.

Hash table (key:string,
value:list of string)

getValuesMap(String
xpath, String
keyAttribute, <List of
strings> attributes,
boolean includeValue)

Returns a hash table that uses
either the key attribute or XML
node value as key, and the list of
specified attribute values as table
values.

boolean isNamespaceAware() Returns whether the XML parsers
should be aware of namespaces.
Default is False.

void setNamespaceAware(boolean
value)

Sets whether the XML parsers
should be aware of namespaces.
This also calls reset() to
ensure changes are picked up by
subsequent calls.

void reset() Flushes any internal storage
associated with this content
model (for example, a cached
DOM object).

Nodes and outputs
This table lists nodes that build outputs which include this type of content model.

Table 28. Nodes and outputs

Node name Output name Container ID

Most model builders Most generated models "PMML"

"autodataprep" n/a "PMML"

56 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Example script
The Python scripting code to access the content might look like this:

results = []
modelbuilder.run(results)
modeloutput = results[0]
cm = modeloutput.getContentModel("PMML")

dataFieldNames = cm.getStringValues("/PMML/DataDictionary/DataField", "name")
predictedNames = cm.getStringValues("//MiningSchema/
MiningField[@usageType='predicted']", "name")

JSON Content Model
The JSON Content Model is used to provide support for JSON format content. This provides a basic API to
allow callers to extract values on the assumption that they know which values are to be accessed.

API
Table 29. API

Return Method Description

String getJSONAsString() Returns the JSON content as a
string.

Object getObjectAt(<List of
cbjecta> path,
JSONArtifact artifact)
throws Exception

Returns the object at the
specified path. The supplied root
artifact may be null in which
case the root of the content is
used. The returned value may
be a literal string, integer, real
or boolean, or a JSON artifact
(either a JSON object or a JSON
array).

Hash table (key:object,
value:object>

getChildValuesAt(<List
of object> path,
JSONArtifact artifact)
throws Exception

Returns the child values of the
specified path if the path leads to
a JSON object or null otherwise.
The keys in the table are strings
while the associated value may
be a literal string, integer, real
or boolean, or a JSON artifact
(either a JSON object or a JSON
array).

List of objects getChildrenAt(<List of
object> path path,
JSONArtifact artifact)
throws Exception

Returns the list of objects at
the specified path if the path
leads to a JSON array or null
otherwise. The returned values
may be a literal string, integer,
real or boolean, or a JSON
artifact (either a JSON object or
a JSON array).

void reset() Flushes any internal storage
associated with this content
model (for example, a cached
DOM object).

Chapter 5. Scripting tips 57

Nodes and outputs
This table lists nodes that build outputs which include this type of content model.

Table 30. Nodes and outputs

Node name Output name Container ID

"applykmeansas" n/a "JSON_MV"

"applyxgboosttree" n/a "JSON_MV"

Example scripts
The following scripts retrieve JSON files:

applykmeansas = stream.findByType("applykmeansas",None)
mvjson = applykmeansas.getContentModel("JSON_MV")
print(mvjson.getJSONAsString())

applyxgboosttree = stream.findByType("applyxgboosttree",None)
mvjson = applyxgboosttree.getContentModel("JSON_MV")
print(mvjson.getJSONAsString())

Column statistics content model and pairwise statistics content model
The column statistics content model provides access to statistics that can be computed for each field
(univariate statistics). The pairwise statistics content model provides access to statistics that can be
computed between pairs of fields or values in a field.

The possible statistics measures are:

• Count
• UniqueCount
• ValidCount
• Mean
• Sum
• Min
• Max
• Range
• Variance
• StandardDeviation
• StandardErrorOfMean
• Skewness
• SkewnessStandardError
• Kurtosis
• KurtosisStandardError
• Median
• Mode
• Pearson
• Covariance
• TTest

58 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

• FTest

Some values are only appropriate from single column statistics while others are only appropriate for
pairwise statistics.

Nodes that will produce these are:

• Statistics node produces column statistics and can produce pairwise statistics when correlation fields
are specified

• Data Audit node produces column and can produce pairwise statistics when an overlay field is
specified.

• Means node produces pairwise statistics when comparing pairs of fields or comparing a field's values
with other field summaries.

Which content models and statistics are available will depend on both the particular node's capabilities
and the settings within the node.

ColumnStatsContentModel API
Table 31. ColumnStatsContentModel API

Return Method Description

List<StatisticType> getAvailableStatistics() Returns the available statistics
in this model. Not all fields will
necessarily have values for all
statistics.

List<String> getAvailableColumns() Returns the column names for
which statistics were computed.

Number getStatistic(String
column, StatisticType
statistic)

Returns the statistic values
associated with the column.

void reset() Flushes any internal storage
associated with this content
model.

PairwiseStatsContentModel API
Table 32. PairwiseStatsContentModel API

Return Method Description

List<StatisticType> getAvailableStatistics() Returns the available statistics
in this model. Not all fields will
necessarily have values for all
statistics.

List<String> getAvailablePrimaryColumn
s()

Returns the primary column
names for which statistics were
computed.

List<Object> getAvailablePrimaryValue
s()

Returns the values of the primary
column for which statistics were
computed.

List<String> getAvailableSecondaryColu
mns()

Returns the secondary column
names for which statistics were
computed.

Chapter 5. Scripting tips 59

Table 32. PairwiseStatsContentModel API (continued)

Return Method Description

Number getStatistic(String
primaryColumn, String
secondaryColumn,
StatisticType statistic)

Returns the statistic values
associated with the columns.

Number getStatistic(String
primaryColumn, Object
primaryValue, String
secondaryColumn,
StatisticType statistic)

Returns the statistic values
associated with the primary
column value and the secondary
column.

void reset() Flushes any internal storage
associated with this content
model.

Nodes and outputs
This table lists nodes that build outputs which include this type of content model.

Table 33. Nodes and outputs

Node name Output name Container ID Notes

"means"

(Means node)

"means" "columnStatistics"

"means"

(Means node)

"means" "pairwiseStatistic
s"

"dataaudit"

(Data Audit node)

"means" "columnStatistics"

"statistics"

(Statistics node)

"statistics" "columnStatistics" Only generated when
specific fields are
examined.

"statistics"

(Statistics node)

"statistics" "pairwiseStatistic
s"

Only generated when
fields are correlated.

Example script

from modeler.api import StatisticType
stream = modeler.script.stream()

Set up the input data
varfile = stream.createAt("variablefile", "File", 96, 96)
varfile.setPropertyValue("full_filename", "$CLEO/DEMOS/DRUG1n")

Now create the statistics node. This can produce both
column statistics and pairwise statistics
statisticsnode = stream.createAt("statistics", "Stats", 192, 96)
statisticsnode.setPropertyValue("examine", ["Age", "Na", "K"])

60 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

statisticsnode.setPropertyValue("correlate", ["Age", "Na", "K"])
stream.link(varfile, statisticsnode)

results = []
statisticsnode.run(results)
statsoutput = results[0]
statscm = statsoutput.getContentModel("columnStatistics")
if (statscm != None):
 cols = statscm.getAvailableColumns()
 stats = statscm.getAvailableStatistics()
 print "Column stats:", cols[0], str(stats[0]), " = ",
statscm.getStatistic(cols[0], stats[0])

statscm = statsoutput.getContentModel("pairwiseStatistics")
if (statscm != None):
 pcols = statscm.getAvailablePrimaryColumns()
 scols = statscm.getAvailableSecondaryColumns()
 stats = statscm.getAvailableStatistics()
 corr = statscm.getStatistic(pcols[0], scols[0], StatisticType.Pearson)
 print "Pairwise stats:", pcols[0], scols[0], " Pearson = ", corr

Chapter 5. Scripting tips 61

62 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 6. Command Line Arguments

Invoking the software
You can use the command line of your operating system to start IBM SPSS Modeler as follows.

Microsoft Windows
1. On a computer where IBM SPSS Modeler is installed, open a DOS, or command-prompt, window.
2. Switch to the installation path for IBM SPSS Modeler (for example, [Installpath]\Program
Files\IBM\SPSS\Modeler\18.6\bin).

3. To start the IBM SPSS Modeler interface in interactive mode, type the modelerclient command
followed by the required arguments; for example:

modelerclient -stream report.str -execute

You can use the available arguments (flags) to connect to a server, load streams, run scripts, or specify
other parameters as needed.

Mac OS
1. Locate the Mac OS command path for IBM SPSS Modeler (for example, [Installpath]/
Applications/IBM/SPSS/Modeler/18.6/IBM SPSS Modeler.app/Contents/MacOS).

2. To start the IBM SPSS Modeler interface in interactive mode, run the modeler command followed by
the required arguments; for example:

./modeler -stream report.str -execute

Using command line arguments
You can append command line arguments (also referred to as flags) to the initial modelerclient
command to alter the invocation of IBM SPSS Modeler.

Several types of command line arguments are available, and are described later in this section.

Table 34. Types of command line arguments

Argument type Where described

System arguments See the topic “System arguments” on page 64 for
more information.

Parameter arguments See the topic “Parameter arguments” on page 65
for more information.

Server connection arguments See the topic “Server connection arguments” on
page 66 for more information.

IBM SPSS Collaboration and Deployment Services
Repository connection arguments

See the topic “ IBM SPSS Collaboration and
Deployment Services Repository Connection
Arguments” on page 67 for more information.

IBM SPSS Analytic Server connection arguments See the topic “ IBM SPSS Analytic Server
connection arguments” on page 68 for more
information.

For example, you can use the -server, -stream and -execute flags to connect to a server and then
load and run a stream, as follows:

modelerclient -server -hostname myserver -port 80 -username dminer
-password 1234 -stream mystream.str -execute

Note that when running against a local client installation, the server connection arguments are not
required.

Parameter values that contain spaces can be enclosed in double quotes—for example:

modelerclient -stream mystream.str -Pusername="Joe User" -execute

You can also execute IBM SPSS Modeler states and scripts in this manner, using the -state and
-script flags, respectively.

Note: If you use a structured parameter in a command, you must precede quotation marks with a
backslash. This prevents the quotation marks being removed during interpretation of the string.

Debugging command line arguments
To debug a command line, use the modelerclient command to launch IBM SPSS Modeler with the
desired arguments. This enables you to verify that commands will execute as expected. You can also
confirm the values of any parameters passed from the command line in the Session Parameters dialog
box (Tools menu, Set Session Parameters).

System arguments
The following table describes system arguments available for command line invocation of the user
interface.

Table 35. System arguments

Argument Behavior/Description

@ <commandFile> The @ character followed by a filename specifies a command list. When
modelerclient encounters an argument beginning with @, it operates on
the commands in that file as if they had been on the command line. See the
topic “Combining Multiple Arguments” on page 68 for more information.

-directory <dir> Sets the default working directory. In local mode, this directory is used for
both data and output. Example: -directory c:/ or -directory c:\\

-server_directory
<dir>

Sets the default server directory for data. The working directory, specified by
using the -directory flag, is used for output.

-execute After starting, execute any stream, state, or script loaded at startup. If a script
is loaded in addition to a stream or state, the script alone will be executed.

-stream <stream> At startup, load the stream specified. Multiple streams can be specified, but
the last stream specified will be set as the current stream.

-stream_password
<password>

At startup, load a stream that's password encrypted. For example, you
might run a command such as: clemb.exe -stream enc-stream1.str
-stream_password Pass1234 -execute

-script <script> At startup, load the standalone script specified. This can be specified in
addition to a stream or state as described below, but only one script can
be loaded at startup.

-model <model> At startup, load the generated model (.gm format file) specified.

-state <state> At startup, load the saved state specified.

64 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 35. System arguments (continued)

Argument Behavior/Description

-project <project> Load the specified project. Only one project can be loaded at startup.

-output <output> At startup, load the saved output object (.cou format file).

-help Display a list of command line arguments. When this option is specified, all
other arguments are ignored and the Help screen is displayed.

-P <name>=<value> Used to set a startup parameter. Can also be used to set node properties (slot
parameters).

Note: Default directories can also be set in the user interface. To access the options, from the File menu,
choose Set Working Directory or Set Server Directory.

Loading multiple files
From the command line, you can load multiple streams, states, and outputs at startup by repeating the
relevant argument for each object loaded. For example, to load and run two streams called report.str
and train.str, you would use the following command:

modelerclient -stream report.str -stream train.str -execute

Loading objects from the IBM SPSS Collaboration and Deployment Services
Repository
Because you can load certain objects from a file or from the IBM SPSS Collaboration and Deployment
Services Repository (if licensed), the filename prefix spsscr: and, optionally, file: (for objects on disk)
tells IBM SPSS Modeler where to look for the object. The prefix works with the following flags:

• -stream
• -script
• -output
• -model
• -project

You use the prefix to create a URI that specifies the location of the object—for example, -stream
"spsscr:///folder_1/scoring_stream.str". The presence of the spsscr: prefix requires that a
valid connection to the IBM SPSS Collaboration and Deployment Services Repository has been specified
in the same command. So, for example, the full command would look like this:

modelerclient -spsscr_hostname myhost -spsscr_port 8080
-spsscr_username myusername -spsscr_password mypassword
-stream "spsscr:///folder_1/scoring_stream.str" -execute

Note that from the command line, you must use a URI. The simpler REPOSITORY_PATH is not supported.
(It works only within scripts.) For more details about URIs for objects in the IBM SPSS Collaboration and
Deployment Services Repository, see the topic “Accessing Objects in the IBM SPSS Collaboration and
Deployment Services Repository ” on page 49.

Parameter arguments
Parameters can be used as flags during command line execution of IBM SPSS Modeler. In command line
arguments, the -P flag is used to denote a parameter of the form -P <name>=<value>.

Parameters can be any of the following:

• Simple parameters (or parameters used directly in CLEM expressions).

Chapter 6. Command Line Arguments 65

• Slot parameters, also referred to as node properties. These parameters are used to modify the settings
of nodes in the stream. See the topic “Node properties overview” on page 73 for more information.

• Command line parameters, used to alter the invocation of IBM SPSS Modeler.

For example, you can supply data source user names and passwords as a command line flag, as follows:

modelerclient -stream response.str -P:databasenode.datasource="{\"ORA
10gR2\",user1,mypsw,false}"

The format is the same as that of the datasource parameter of the databasenode node property. For
more information, see: “databasenode properties” on page 91.

The last parameter should be set to true if you're passing an encoded password. Also note that no
leading spaces should be used in front of the database user name and password (unless, of course, your
user name or password actually contains a leading space).

Note: If the node is named, you must surround the node name with double quotes and escape the
quotes with a backslash. For example, if the data source node in the preceding example has the name
Source_ABC the entry would be as follows:

modelerclient -stream response.str
-P:databasenode.\"Source_ABC\".datasource="{\"ORA 10gR2\",
 user1,mypsw,true}"

A backslash is also required in front of the quotes that identify a structured parameter, as in the following
TM1 datasource example:

clemb -server -hostname 9.115.21.169 -port 28053 -username administrator
 -execute -stream C:\Share\TM1_Script.str -P:tm1import.pm_host="http://9.115.21.163:9510/
pmhub/pm"
 -P:tm1import.tm1_connection={\"SData\",\"\",\"admin\",\"apple\"}
 -P:tm1import.selected_view={\"SalesPriorCube\",\"salesmargin%\"}

Note: If the database name (in the datasource property) contains one or more spaces, periods (also
known as a "full stop"), or underscores, you can use the "backslash double quote" format to treat it
as string. For example: "{\"db2v9.7.6_linux\"}" or: "{\"TDATA 131\"}". In addition, always
enclose datasource string values in double quotes and curly braces, as in the following example:
"{\"SQL Server\",spssuser,abcd1234,false}".

Server connection arguments
The -server flag tells IBM SPSS Modeler that it should connect to a public server, and the flags
-hostname, -use_ssl, -port, -username, -password, and -domain are used to tell IBM SPSS
Modeler how to connect to the public server. If no -server argument is specified, the default or local
server is used.

Examples
To connect to a public server:

modelerclient -server -hostname myserver -port 80 -username dminer
-password 1234 -stream mystream.str -execute

To connect to a server cluster:

modelerclient -server -cluster "QA Machines" \
-spsscr_hostname pes_host -spsscr_port 8080 \
-spsscr_username asmith -spsscr_epassword xyz

Note that connecting to a server cluster requires the Coordinator of Processes through IBM SPSS
Collaboration and Deployment Services, so the -cluster argument must be used in combination with

66 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

the repository connection options (spsscr_*). See the topic “ IBM SPSS Collaboration and Deployment
Services Repository Connection Arguments” on page 67 for more information.

Table 36. Server connection arguments

Argument Behavior/Description

-server Runs IBM SPSS Modeler in server mode, connecting to a public server
using the flags -hostname, -port, -username, -password, and
-domain.

-hostname <name> The hostname of the server machine. Available in server mode only.

-use_ssl Specifies that the connection should use SSL (secure socket layer). This
flag is optional; the default setting is not to use SSL.

-port <number> The port number of the specified server. Available in server mode only.

-cluster <name> Specifies a connection to a server cluster rather than a named server;
this argument is an alternative to the hostname, port and use_ssl
arguments. The name is the cluster name, or a unique URI which identifies
the cluster in the IBM SPSS Collaboration and Deployment Services
Repository. The server cluster is managed by the Coordinator of Processes
through IBM SPSS Collaboration and Deployment Services. See the topic
“ IBM SPSS Collaboration and Deployment Services Repository Connection
Arguments” on page 67 for more information.

-username <name> The user name with which to log on to the server. Available in server mode
only.

-password <password> The password with which to log on to the server. Available in server mode
only.

Note: If the -password argument is not used, you will be prompted for a
password.

-epassword
<encodedpasswordstring>

The encoded password with which to log on to the server. Available in
server mode only.

Note: An encoded password can be generated from the Tools menu of the
IBM SPSS Modeler application.

-domain <name> The domain used to log on to the server. Available in server mode only.

-P <name>=<value> Used to set a startup parameter. Can also be used to set node properties
(slot parameters).

IBM SPSS Collaboration and Deployment Services Repository Connection
Arguments

If you want to store or retrieve objects from IBM SPSS Collaboration and Deployment Services via the
command line, you must specify a valid connection to the IBM SPSS Collaboration and Deployment
Services Repository. For example:

modelerclient -spsscr_hostname myhost -spsscr_port 8080
-spsscr_username myusername -spsscr_password mypassword
-stream "spsscr:///folder_1/scoring_stream.str" -execute

The following table lists the arguments that can be used to set up the connection.

Chapter 6. Command Line Arguments 67

Table 37. IBM SPSS Collaboration and Deployment Services Repository connection arguments

Argument Behavior/Description

-spsscr_hostname <hostname or
IP address>

The hostname or IP address of the server on which the IBM SPSS
Collaboration and Deployment Services Repository is installed.

-spsscr_port <number> The port number on which the IBM SPSS Collaboration and
Deployment Services Repository accepts connections (typically,
8080 by default).

-spsscr_use_ssl Specifies that the connection should use SSL (secure socket
layer). This flag is optional; the default setting is not to use SSL.

-spsscr_username <name> The user name with which to log on to the IBM SPSS Collaboration
and Deployment Services Repository.

-spsscr_password <password> The password with which to log on to the IBM SPSS Collaboration
and Deployment Services Repository.

-spsscr_epassword <encoded
password>

The encoded password with which to log on to the IBM SPSS
Collaboration and Deployment Services Repository.

-spsscr_providername <name> The authentication provider used for logging on to the IBM
SPSS Collaboration and Deployment Services Repository (Active
Directory or LDAP). This is not required if using the native (Local
Repository) provider.

IBM SPSS Analytic Server connection arguments
If you want to store or retrieve objects from IBM SPSS Analytic Server via the command line, you must
specify a valid connection to IBM SPSS Analytic Server.

Note: The default location of Analytic Server is obtained from SPSS Modeler Server. Users can also define
their own Analytic Server connections via Tools > Analytic Server Connections.

The following table lists the arguments that can be used to set up the connection.

Table 38. IBM SPSS Analytic Server connection arguments

Argument Behavior/Description

-analytic_server_username The user name with which to log on to IBM SPSS Analytic Server.

-analytic_server_password The password with which to log on to IBM SPSS Analytic Server.

-analytic_server_epassword The encoded password with which to log on to IBM SPSS Analytic
Server.

-analytic_server_credential The credentials used to log on to IBM SPSS Analytic Server.

Combining Multiple Arguments
Multiple arguments can be combined in a single command file specified at invocation by using the @
symbol followed by the filename. This enables you to shorten the command line invocation and overcome
any operating system limitations on command length. For example, the following startup command uses
the arguments specified in the file referenced by <commandFileName>.

modelerclient @<commandFileName>

68 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Enclose the filename and path to the command file in quotation marks if spaces are required, as follows:

modelerclient @ "C:\Program
Files\IBM\SPSS\Modeler\nn\scripts\my_command_file.txt"

The command file can contain all arguments previously specified individually at startup, with one
argument per line. For example:

-stream report.str
-Porder.full_filename=APR_orders.dat
-Preport.filename=APR_report.txt
-execute

When writing and referencing command files, be sure to follow these constraints:

• Use only one command per line.
• Do not embed an @CommandFile argument within a command file.

Chapter 6. Command Line Arguments 69

70 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 7. Properties Reference

Properties reference overview
You can specify a number of different properties for nodes, streams, projects, and SuperNodes. Some
properties are common to all nodes, such as name, annotation, and ToolTip, while others are specific
to certain types of nodes. Other properties refer to high-level stream operations, such as caching or
SuperNode behavior. Properties can be accessed through the standard user interface (for example, when
you open a dialog box to edit options for a node) and can also be used in a number of other ways.

• Properties can be modified through scripts, as described in this section. For more information, see
“Syntax for properties” on page 71.

• Node properties can be used in SuperNode parameters.
• Node properties can also be used as part of a command line option (using the -P flag) when starting

IBM SPSS Modeler.

In the context of scripting within IBM SPSS Modeler, node and stream properties are often called slot
parameters. In this guide, they are referred to as node or stream properties.

Syntax for properties
Properties can be set using the following syntax

OBJECT.setPropertyValue(PROPERTY, VALUE)

or:

OBJECT.setKeyedPropertyValue(PROPERTY, KEY, VALUE)

The value of properties can be retrieved using the following syntax:

VARIABLE = OBJECT.getPropertyValue(PROPERTY)

or:

VARIABLE = OBJECT.getKeyedPropertyValue(PROPERTY, KEY)

where OBJECT is a node or output, PROPERTY is the name of the node property that your expression
refers to, and KEY is the key value for keyed properties.. For example, the following syntax is used to find
the filter node, and then set the default to include all fields and filter the Age field from downstream data:

filternode = modeler.script.stream().findByType("filter", None)
filternode.setPropertyValue("default_include", True)
filternode.setKeyedPropertyValue("include", "Age", False)

All nodes used in IBM SPSS Modeler can be located using the stream findByType(TYPE, LABEL)
function. At least one of TYPE or LABEL must be specified.

Structured properties
There are two ways in which scripting uses structured properties for increased clarity when parsing:

• To give structure to the names of properties for complex nodes, such as Type, Filter, or Balance nodes.
• To provide a format for specifying multiple properties at once.

Structuring for Complex Interfaces
The scripts for nodes with tables and other complex interfaces (for example, the Type, Filter, and Balance
nodes) must follow a particular structure in order to parse correctly. These properties need a name that is
more complex than the name for a single identifier, this name is called the key. For example, within a Filter
node, each available field (on its upstream side) is switched on or off. In order to refer to this information,
the Filter node stores one item of information per field (whether each field is true or false). This property
may have (or be given) the value True or False. Suppose that a Filter node named mynode has (on its
upstream side) a field called Age. To switch this to off, set the property include, with the key Age, to the
value False, as follows:

mynode.setKeyedPropertyValue("include", "Age", False)

Structuring to Set Multiple Properties
For many nodes, you can assign more than one node or stream property at a time. This is referred to as
the multiset command or set block.

In some cases, a structured property can be quite complex. An example is as follows:

sortnode.setPropertyValue("keys", [["K", "Descending"], ["Age",
"Ascending"], ["Na", "Descending"]])

Another advantage that structured properties have is their ability to set several properties on a node
before the node is stable. By default, a multiset sets all properties in the block before taking any action
based on an individual property setting. For example, when defining a Fixed File node, using two steps to
set field properties would result in errors because the node is not consistent until both settings are valid.
Defining properties as a multiset circumvents this problem by setting both properties before updating the
data model.

Abbreviations
Standard abbreviations are used throughout the syntax for node properties. Learning the abbreviations is
helpful in constructing scripts.

Table 39. Standard abbreviations used throughout the syntax

Abbreviation Meaning

abs Absolute value

len Length

min Minimum

max Maximum

correl Correlation

covar Covariance

num Number or numeric

pct Percent or percentage

transp Transparency

xval Cross-validation

var Variance or variable (in source nodes)

72 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Node and stream property examples
Node and stream properties can be used in a variety of ways with IBM SPSS Modeler. They are most
commonly used as part of a script, either a standalone script, used to automate multiple streams or
operations, or a stream script, used to automate processes within a single stream. You can also specify
node parameters by using the node properties within the SuperNode. At the most basic level, properties
can also be used as a command line option for starting IBM SPSS Modeler. Using the -p argument as part
of command line invocation, you can use a stream property to change a setting in the stream.

Table 40. Node and stream property examples

Property Meaning

s.max_size Refers to the property max_size of the node
named s.

s:samplenode.max_size Refers to the property max_size of the node
named s, which must be a Sample node.

:samplenode.max_size
Refers to the property max_size of the Sample
node in the current stream (there must be only one
Sample node).

s:sample.max_size Refers to the property max_size of the node
named s, which must be a Sample node.

t.direction.Age Refers to the role of the field Age in the Type node
t.

:.max_size *** NOT LEGAL *** You must specify either the
node name or the node type.

The example s:sample.max_size illustrates that you do not need to spell out node types in full.

The example t.direction.Age illustrates that some slot names can themselves be structured—in
cases where the attributes of a node are more complex than simply individual slots with individual values.
Such slots are called structured or complex properties.

Node properties overview
Each type of node has its own set of legal properties, and each property has a type. This type may be a
general type—number, flag, or string—in which case settings for the property are coerced to the correct
type. An error is raised if they cannot be coerced. Alternatively, the property reference may specify the
range of legal values, such as Discard, PairAndDiscard, and IncludeAsText, in which case an error
is raised if any other value is used. Flag properties should be read or set by using values of true and
false. (Variations including Off, OFF, off, No, NO, no, n, N, f, F, false, False, FALSE, or 0 are also
recognized when setting values but may cause errors when reading property values in some cases. All
other values are regarded as true. Using true and false consistently will avoid any confusion.) In this
guide's reference tables, the structured properties are indicated as such in the Property description
column, and their usage formats are given.

Common Node Properties
A number of properties are common to all nodes (including SuperNodes) in IBM SPSS Modeler.

Table 41. Common node properties

Property name Data type Property description

use_custom_name flag

Chapter 7. Properties Reference 73

Table 41. Common node properties (continued)

Property name Data type Property description

name string Read-only property that reads
the name (either auto or custom)
for a node on the canvas.

custom_name string Specifies a custom name for the
node.

tooltip string

annotation string

keywords string Structured slot that specifies
a list of keywords associated
with the object (for example,
["Keyword1" "Keyword2"]).

cache_enabled flag

node_type source_supernode
process_supernode
terminal_supernode
all node names as specified for
scripting

Read-only property used to refer
to a node by type. For example,
instead of referring to a node only
by name, such as real_income,
you can also specify the type,
such as userinputnode or
filternode.

SuperNode-specific properties are discussed separately, as with all other nodes. See the topic Chapter
21, “SuperNode properties,” on page 435 for more information.

74 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 8. Stream properties

A variety of stream properties can be controlled by scripting. To reference stream properties, you must set
the execution method to use scripts:

stream = modeler.script.stream()
stream.setPropertyValue("execute_method", "Script")

Example

The node property is used to refer to the nodes in the current stream. The following stream script
provides an example:

stream = modeler.script.stream()
annotation = stream.getPropertyValue("annotation")

annotation = annotation + "\n\nThis stream is called \"" + stream.getLabel() + "\" and
 contains the following nodes:\n"

for node in stream.iterator():
 annotation = annotation + "\n" + node.getTypeName() + " node called \"" + node.getLabel()
 + "\""

stream.setPropertyValue("annotation", annotation)

The above example uses the node property to create a list of all nodes in the stream and write that list in
the stream annotations. The annotation produced looks like this:

This stream is called "druglearn" and contains the following nodes:

type node called "Define Types"
derive node called "Na_to_K"
variablefile node called "DRUG1n"
neuralnetwork node called "Drug"
c50 node called "Drug"
filter node called "Discard Fields"

Stream properties are described in the following table.

Table 42. Stream properties

Property name Data type Property description

execute_method Normal

Script

Table 42. Stream properties (continued)

Property name Data type Property description

date_format
"DDMMYY"
"MMDDYY"
"YYMMDD"
"YYYYMMDD"
"YYYYDDD"
DAY
MONTH
"DD-MM-YY"
"DD-MM-YYYY"
"MM-DD-YY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD.YYYY"
"DD.MON.YY"
"DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY
q Q YYYY
ww WK YYYY

date_baseline number

date_2digit_baseline number

time_format "HHMMSS"
"HHMM"
"MMSS"
"HH:MM:SS"
"HH:MM"
"MM:SS"
"(H)H:(M)M:(S)S"
"(H)H:(M)M"
"(M)M:(S)S"
"HH.MM.SS"
"HH.MM"
"MM.SS"
"(H)H.(M)M.(S)S"
"(H)H.(M)M"
"(M)M.(S)S"

time_rollover flag

import_datetime_as_string flag

decimal_places number

decimal_symbol Default

Period

Comma

angles_in_radians flag

use_max_set_size flag

max_set_size number

76 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 42. Stream properties (continued)

Property name Data type Property description

ruleset_evaluation Voting

FirstHit

refresh_source_nodes flag Use to refresh source nodes
automatically upon stream
execution.

script string

annotation string

name string Note: This property is read-only.
If you want to change the name
of a stream, you should save it
with a different name.

parameters Use this property to update
stream parameters from within a
stand- alone script.

nodes See detailed information below.

encoding SystemDefault

"UTF-8"

stream_rewriting boolean

stream_rewriting_maximise
_sql

boolean

stream_rewriting_optimise_cl
em_
execution

boolean

stream_rewriting_optimise_sy
ntax_
execution

boolean

enable_parallelism boolean

sql_generation boolean

database_caching boolean

sql_logging boolean

sql_generation_logging boolean

sql_log_native boolean

sql_log_prettyprint boolean

record_count_suppress_inp
ut

boolean

record_count_feedback_int
erval

integer

Chapter 8. Stream properties 77

Table 42. Stream properties (continued)

Property name Data type Property description

use_stream_auto_create_node_
settings

boolean If true, then stream-specific
settings are used, otherwise user
preferences are used.

create_model_applier_for_new
_
models

boolean If true, when a model builder
creates a new model, and it has
no active update links, a new
model applier is added.

Note: If you are using IBM SPSS
Modeler Batch version 15 you
must explicitly add the model
applier within your script.

create_model_applier_upda
te_links createEnabled

createDisabled
doNotCreate

Defines the type of link created
when a model applier node is
added automatically.

create_source_node_from_b
uilders

boolean If true, when a source builder
creates a new source output, and
it has no active update links, a
new source node is added.

create_source_node_update
_links createEnabled

createDisabled
doNotCreate

Defines the type of link created
when a source node is added
automatically.

has_coordinate_system boolean If true, applies a coordinate
system to the entire stream.

coordinate_system string The name of the selected
projected coordinate system.

deployment_area ModelRefresh
Scoring
None

Choose how you want to deploy
the stream. If this value is set
to None, no other deployment
entries are used.

scoring_terminal_node_id string Choose the scoring branch in the
stream. It can be any terminal
node in the stream.

scoring_node_id string Choose the nugget in the scoring
branch.

model_build_node_id string Choose the modeling node in the
stream.

78 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 9. Source Node Properties

Source node common properties
Properties that are common to all source nodes are listed below, with information on specific nodes in the
topics that follow.

Example 1

varfilenode = modeler.script.stream().create("variablefile", "Var. File")
varfilenode.setPropertyValue("full_filename", "$CLEO_DEMOS/DRUG1n")
varfilenode.setKeyedPropertyValue("check", "Age", "None")
varfilenode.setKeyedPropertyValue("values", "Age", [1, 100])
varfilenode.setKeyedPropertyValue("type", "Age", "Range")
varfilenode.setKeyedPropertyValue("direction", "Age", "Input")

Example 2
This script assumes that the specified data file contains a field called Region that represents a multi-line
string.

from modeler.api import StorageType
from modeler.api import MeasureType

Create a Variable File node that reads the data set containing
the "Region" field
varfilenode = modeler.script.stream().create("variablefile", "My Geo Data")
varfilenode.setPropertyValue("full_filename", "C:/mydata/mygeodata.csv")
varfilenode.setPropertyValue("treat_square_brackets_as_lists", True)

Override the storage type to be a list...
varfilenode.setKeyedPropertyValue("custom_storage_type", "Region",
StorageType.LIST)
...and specify the type if values in the list and the list depth
varfilenode.setKeyedPropertyValue("custom_list_storage_type", "Region",
StorageType.INTEGER)
varfilenode.setKeyedPropertyValue("custom_list_depth", "Region", 2)

Now change the measurement to indentify the field as a geospatial value...
varfilenode.setKeyedPropertyValue("measure_type", "Region",
MeasureType.GEOSPATIAL)
...and finally specify the necessary information about the specific
type of geospatial object
varfilenode.setKeyedPropertyValue("geo_type", "Region", "MultiLineString")
varfilenode.setKeyedPropertyValue("geo_coordinates", "Region", "2D")
varfilenode.setKeyedPropertyValue("has_coordinate_system", "Region", True)
varfilenode.setKeyedPropertyValue("coordinate_system", "Region",
 "ETRS_1989_EPSG_Arctic_zone_5-47")

Table 43. Source node common properties

Property name Data type Property description

direction Input

Target

Both

None

Partition

Split

Frequency

RecordID

Keyed property for field roles.

Usage format:

NODE.direction.FIELDNAME

Note: The values In and Out are now deprecated.
Support for them may be withdrawn in a future
release.

type Range

Flag

Set

Typeless

Discrete

Ordered Set

Default

Type of field. Setting this property to Default
will clear any values property setting, and if
value_mode is set to Specify, it will be reset to
Read. If value_mode is already set to Pass or
Read, it will be unaffected by the type setting.

Usage format:

NODE.type.FIELDNAME

storage Unknown

String

Integer

Real

Time

Date

Timestamp

Read-only keyed property for field storage type.

Usage format:

NODE.storage.FIELDNAME

80 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 43. Source node common properties (continued)

Property name Data type Property description

check None

Nullify

Coerce

Discard

Warn

Abort

Keyed property for field type and range checking.

Usage format:

NODE.check.FIELDNAME

values [value value] For a continuous (range) field, the first value is
the minimum, and the last value is the maximum.
For nominal (set) fields, specify all values. For flag
fields, the first value represents false, and the
last value represents true. Setting this property
automatically sets the value_mode property to
Specify. The storage is determined based on the
first value in the list, for example, if the first value is
a string then the storage is set to String.

Usage format:

NODE.values.FIELDNAME

value_mode Read

Pass

Read+

Current

Specify

Determines how values are set for a field on the
next data pass.

Usage format:

NODE.value_mode.FIELDNAME

Note that you cannot set this property to Specify
directly; to use specific values, set the values
property.

default_value_mode Read

Pass

Specifies the default method for setting values for
all fields.

Usage format:

NODE.default_value_mode

This setting can be overridden for specific fields by
using the value_mode property.

Chapter 9. Source Node Properties 81

Table 43. Source node common properties (continued)

Property name Data type Property description

extend_values flag Applies when value_mode is set to Read. Set to T
to add newly read values to any existing values for
the field. Set to F to discard existing values in favor
of the newly read values.

Usage format:

NODE.extend_values.FIELDNAME

value_labels string Used to specify a value label. Note that values must
be specified first.

enable_missing flag When set to T, activates tracking of missing values
for the field.

Usage format:

NODE.enable_missing.FIELDNAME

missing_values [value value ...] Specifies data values that denote missing data.

Usage format:

NODE.missing_values.FIELDNAME

range_missing flag When this property is set to T, specifies whether a
missing-value (blank) range is defined for a field.

Usage format:

NODE.range_missing.FIELDNAME

missing_lower string When range_missing is true, specifies the lower
bound of the missing-value range.

Usage format:

NODE.missing_lower.FIELDNAME

missing_upper string When range_missing is true, specifies the upper
bound of the missing-value range.

Usage format:

NODE.missing_upper.FIELDNAME

82 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 43. Source node common properties (continued)

Property name Data type Property description

null_missing flag When this property is set to T, nulls (undefined
values that are displayed as $null$ in the
software) are considered missing values.

Usage format:

NODE.null_missing.FIELDNAME

whitespace_missing flag When this property is set to T, values containing
only white space (spaces, tabs, and new lines) are
considered missing values.

Usage format:

NODE.whitespace_missing.FIELDNAME

description string Used to specify a field label or description.

default_include flag Keyed property to specify whether the default
behavior is to pass or filter fields:

NODE.default_include

Example:

set mynode:filternode.default_include
= false

include flag Keyed property used to determine whether
individual fields are included or filtered:

NODE.include.FIELDNAME.

new_name string

Chapter 9. Source Node Properties 83

Table 43. Source node common properties (continued)

Property name Data type Property description

measure_type Range /
MeasureType.RANGE

Discrete /
MeasureType.DISCR
ETE

Flag /
MeasureType.FLAG

Set /
MeasureType.SET

OrderedSet /
MeasureType.ORDER
ED_SET

Typeless /
MeasureType.TYPEL
ESS

Collection /
MeasureType.COLLE
CTION

Geospatial /
MeasureType.GEOSP
ATIAL

This keyed property is similar to type in that it
can be used to define the measurement associated
with the field. What is different is that in Python
scripting, the setter function can also be passed
one of the MeasureType values while the getter
will always return on the MeasureType values.

collection_measure Range /
MeasureType.RANGE

Flag /
MeasureType.FLAG

Set /
MeasureType.SET

OrderedSet /
MeasureType.ORDER
ED_SET

Typeless /
MeasureType.TYPEL
ESS

For collection fields (lists with a depth of 0),
this keyed property defines the measurement type
associated with the underlying values.

84 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 43. Source node common properties (continued)

Property name Data type Property description

geo_type Point

MultiPoint

LineString

MultiLineString

Polygon

MultiPolygon

For geospatial fields, this keyed property defines
the type of geospatial object represented by this
field. This should be consistent with the list depth
of the values.

has_coordinate_syst
em

boolean For geospatial fields, this property defines whether
this field has a coordinate system

coordinate_system string For geospatial fields, this keyed property defines
the coordinate system for this field.

custom_storage_type Unknown /
MeasureType.UNKNO
WN

String /
MeasureType.STRIN
G

Integer /
MeasureType.INTEG
ER

Real /
MeasureType.REAL

Time /
MeasureType.TIME

Date /
MeasureType.DATE

Timestamp /
MeasureType.TIMES
TAMP

List /
MeasureType.LIST

This keyed property is similar to custom_storage
in that it can be used to define the override storage
for the field. What is different is that in Python
scripting, the setter function can also be passed
one of the StorageType values while the getter
will always return on the StorageType values.

Chapter 9. Source Node Properties 85

Table 43. Source node common properties (continued)

Property name Data type Property description

custom_list_storage
_type

String /
MeasureType.STRIN
G

Integer /
MeasureType.INTEG
ER

Real /
MeasureType.REAL

Time /
MeasureType.TIME

Date /
MeasureType.DATE

Timestamp /
MeasureType.TIMES
TAMP

For list fields, this keyed property specifies the
storage type of the underlying values.

custom_list_depth integer For list fields, this keyed property specifies the
depth of the field

max_list_length integer Only available for data with a measurement level of
either Geospatial or Collection. Set the maximum
length of the list by specifying the number of
elements the list can contain.

max_string_length integer Only available for typeless data and used when
you are generating SQL to create a table. Enter
the value of the largest string in your data; this
generates a column in the table that is big enough
to contain the string.

asimport Properties
The Analytic Server source enables you to run a stream on Hadoop Distributed File System (HDFS).

Example

node.setPropertyValue("use_default_as", False)
node.setPropertyValue("connection",
["false","9.119.141.141","9080","analyticserver","ibm","admin","admin","false
","","","",""])

Table 44. asimport properties

asimport properties Data type Property description

data_source string The name of the data source.

86 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 44. asimport properties (continued)

asimport properties Data type Property description

use_default_as boolean If set to True, uses the default
Analytic Server connection
configured in the server
options.cfg file. If set to
False, uses the connection of
this node.

connection ["string","string","strin
g",
"string","string","string
","string",
"string" ,"string","strin
g", "string" ,"string"]

A list property containing
the Analytic Server connection
details. The format
is: ["is_secure_connect",
"server_url",
"server_port",
"context_root",
"consumer", "user_name",
"password", "use-
kerberos-auth",
"kerberos-krb5-config-
file-path", "kerberos-
jaas-config-file-path",
"kerberos-krb5-service-
principal-name", "enable-
kerberos-debug"] Where:
is_secure_connect:
indicates whether secure
connection is used, and is
either true or false. use-
kerberos-auth: indicates
whether kerberos authentication
is used, and is either true
or false. enable-kerberos-
debug: indicates whether
the debug mode of kerberos
authentication is used, and
is either true or false.

cognosimport Node Properties
The IBM Cognos source node imports data from Cognos Analytics databases.

Example

node = stream.create("cognosimport", "My node")
node.setPropertyValue("cognos_connection", ["http://mycogsrv1:9300/p2pd/
servlet/dispatch",
 True, "", "", ""])
node.setPropertyValue("cognos_package_name", "/Public Folders/GOSALES")
node.setPropertyValue("cognos_items", ["[GreatOutdoors].[BRANCH].
[BRANCH_CODE]", "[GreatOutdoors]
.[BRANCH].[COUNTRY_CODE]"])

Chapter 9. Source Node Properties 87

Table 45. cognosimport node properties

cognosimport node
properties

Data type Property description

mode Data

Report

Specifies whether to import Cognos
data (default) or reports.

88 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 45. cognosimport node properties (continued)

cognosimport node
properties

Data type Property description

cognos_connection ["string",flag,"string",
"string" ,"string"]

A list property containing
the connection details for
the Cognos server. The
format is: ["Cognos_server_URL",
login_mode, "namespace",
"username", "password"]

where:

Cognos_server_URL is the URL of the
Cognos server containing the source.

login_mode indicates whether
anonymous login is used, and is either
true or false; if set to true, the
following fields should be set to "".

namespace specifies the security
authentication provider used to log on
to the server.

username and password are those
used to log on to the Cognos server.

Instead of login_mode, the following
modes are also available:

• anonymousMode. For
example: ['Cognos_server_url',
'anonymousMode',
"namespace", "username",
"password"]

• credentialMode. For
example: ['Cognos_server_url',
'credentialMode',
"namespace", "username",
"password"]

• storedCredentialMode. For
example: ['Cognos_server_url',
'storedCredentialMode',
"stored_credential_name"]

Where stored_credential_name
is the name of a Cognos credential in
the repository.

Chapter 9. Source Node Properties 89

Table 45. cognosimport node properties (continued)

cognosimport node
properties

Data type Property description

cognos_package_name string The path and name of the Cognos
package from which you are importing
data objects, for example:

/Public Folders/GOSALES

Note: Only forward slashes are valid.

cognos_items ["field","field", ... ,"field"] The name of one or more data
objects to be imported. The format
of field is [namespace].[query_subject].
[query_item]

cognos_filters field The name of one or more filters to apply
before importing data.

cognos_data_paramet
ers

list Values for prompt parameters for data.
Name-and-value pairs are enclosed in
square brackets, and multiple pairs are
separated by commas and the whole
string enclosed in square brackets.

Format:

[["param1", "value"],…,["paramN",
"value"]]

cognos_report_direc
tory

field The Cognos path of a folder or package
from which to import reports, for
example:

/Public Folders/GOSALES

Note: Only forward slashes are valid.

cognos_report_name field The path and name within the report
location of a report to import.

cognos_report_param
eters

list Values for report parameters. Name-
and-value pairs are enclosed in square
brackets, and multiple pairs are
separated by commas and the whole
string enclosed in square brackets.

Format:

[["param1", "value"],…,["paramN",
"value"]]

90 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

databasenode properties
You can use the Database node to import data from a variety of other packages
using ODBC (Open Database Connectivity), including Microsoft SQL Server, Db2,
Oracle, and others.

Example

import modeler.api
stream = modeler.script.stream()
node = stream.create("database", "My node")
node.setPropertyValue("mode", "Table")
node.setPropertyValue("query", "SELECT * FROM drug1n")
node.setPropertyValue("datasource", "Drug1n_db")
node.setPropertyValue("username", "spss")
node.setPropertyValue("password", "spss")
node.setPropertyValue("tablename", ".Drug1n")

Table 46. databasenode properties

databasenode properties Data type Property description

mode Table

Query

Specify Table to connect to a database
table by using dialog box controls, or
specify Query to query the selected
database by using SQL.

datasource string Database name (see also note below).

username string Database connection details (see also
note below).

password string

credential string Name of credential stored in IBM SPSS
Collaboration and Deployment Services.
This can be used instead of the
username and password properties. The
credential's user name and password
must match the user name and password
required to access the database

use_credential Set to True or False.

epassword string Specifies an encoded password as an
alternative to hard-coding a password in
a script.

See the topic “Generating an encoded
password” on page 52 for more
information. This property is read-only
during execution.

tablename string Name of the table you want to access.

Chapter 9. Source Node Properties 91

Table 46. databasenode properties (continued)

databasenode properties Data type Property description

strip_spaces None

Left

Right

Both

Options for discarding leading and trailing
spaces in strings.

use_quotes AsNeeded

Always

Never

Specify whether table and column names
are enclosed in quotation marks when
queries are sent to the database (for
example, if they contain spaces or
punctuation).

query string Specifies the SQL code for the query you
want to submit.

Note: If the database name (in the datasource property) contains spaces, then instead of individual
properties for datasource, username and password, you can also use a single datasource property in
the following format:

Table 47. databasenode properties - datasource specific

databasenode properties Data type Property description

datasource string Format:

[database_name,username,passwor
d[,true | false]]

The last parameter is for use with
encrypted passwords. If this is set to
true, the password will be decrypted
before use.

Use this format also if you are changing the data source; however, if you just want to change the username
or password, you can use the username or password properties.

datacollectionimportnode Properties
The Data Collection Data Import node imports survey data based on the Data
Collection Data Model used by market research products. The Data Collection Data
Library must be installed to use this node.

Example

node = stream.create("datacollectionimport", "My node")
node.setPropertyValue("metadata_name", "mrQvDsc")
node.setPropertyValue("metadata_file", "C:/Program Files/IBM/SPSS/
DataCollection/DDL/Data/
Quanvert/Museum/museum.pkd")
node.setPropertyValue("casedata_name", "mrQvDsc")
node.setPropertyValue("casedata_source_type", "File")

92 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

node.setPropertyValue("casedata_file", "C:/Program Files/IBM/SPSS/
DataCollection/DDL/Data/
Quanvert/Museum/museum.pkd")
node.setPropertyValue("import_system_variables", "Common")
node.setPropertyValue("import_multi_response", "MultipleFlags")

Table 48. datacollectionimportnode properties

datacollectionimportnode
properties

Data type Property description

metadata_name string The name of the MDSC. The special
value DimensionsMDD indicates that
the standard Data Collection metadata
document should be used. Other possible
values include:

mrADODsc

mrI2dDsc

mrLogDsc

mrQdiDrsDsc

mrQvDsc

mrSampleReportingMDSC

mrSavDsc

mrSCDsc

mrScriptMDSC

The special value none indicates that
there is no MDSC.

metadata_file string Name of the file where the metadata is
stored.

Chapter 9. Source Node Properties 93

Table 48. datacollectionimportnode properties (continued)

datacollectionimportnode
properties

Data type Property description

casedata_name string The name of the CDSC. Possible values
include:

mrADODsc

mrI2dDsc

mrLogDsc

mrPunchDSC

mrQdiDrsDsc

mrQvDsc

mrRdbDsc2

mrSavDsc

mrScDSC

mrXmlDsc

The special value none indicates that
there is no CDSC.

casedata_source_type Unknown

File

Folder

UDL

DSN

Indicates the source type of the CDSC.

casedata_file string When casedata_source_type is File,
specifies the file containing the case data.

casedata_folder string When casedata_source_type is
Folder, specifies the folder containing the
case data.

casedata_udl_string string When casedata_source_type is UDL,
specifies the OLD-DB connection string
for the data source containing the case
data.

94 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 48. datacollectionimportnode properties (continued)

datacollectionimportnode
properties

Data type Property description

casedata_dsn_string string When casedata_source_type is DSN,
specifies the ODBC connection string for
the data source.

casedata_project string When reading case data from a Data
Collection database, you can enter the
name of the project. For all other case
data types, this setting should be left
blank.

version_import_mode All

Latest

Specify

Defines how versions should be handled.

specific_version string When version_import_mode is Specify,
defines the version of the case data to be
imported.

use_language string Defines whether labels of a specific
language should be used.

language string If use_language is true, defines the
language code to use on import. The
language code should be one of those
available in the case data.

use_context string Defines whether a specific context should
be imported. Contexts are used to
vary the description associated with
responses.

context string If use_context is true, defines the
context to import. The context should be
one of those available in the case data.

use_label_type string Defines whether a specific type of label
should be imported.

label_type string If use_label_type is true, defines the
label type to import. The label type should
be one of those available in the case data.

user_id string For databases requiring an explicit login,
you can provide a user ID and password
to access the data source.

password string

import_system_variables Common

None

All

Specifies which system variables are
imported.

import_codes_variables flag

Chapter 9. Source Node Properties 95

Table 48. datacollectionimportnode properties (continued)

datacollectionimportnode
properties

Data type Property description

import_sourcefile_variabl
es

flag

import_multi_response MultipleFlags

Single

excelimportnode Properties
The Excel Import node imports data from Microsoft Excel in the .xlsx file format. An
ODBC data source is not required.

Examples

#To use a named range:
node = stream.create("excelimport", "My node")
node.setPropertyValue("excel_file_type", "Excel2007")
node.setPropertyValue("full_filename", "C:/drug.xlsx")
node.setPropertyValue("use_named_range", True)
node.setPropertyValue("named_range", "DRUG")
node.setPropertyValue("read_field_names", True)

#To use an explicit range:
node = stream.create("excelimport", "My node")
node.setPropertyValue("excel_file_type", "Excel2007")
node.setPropertyValue("full_filename", "C:/drug.xlsx")
node.setPropertyValue("worksheet_mode", "Name")
node.setPropertyValue("worksheet_name", "Drug")
node.setPropertyValue("explicit_range_start", "A1")
node.setPropertyValue("explicit_range_end", "F300")

Table 49. excelimportnode properties

excelimportnode properties Data type Property description

excel_file_type Excel2007

full_filename string The complete filename, including path.

use_named_range Boolean Whether to use a named range. If true, the
named_range property is used to specify
the range to read, and other worksheet
and data range settings are ignored.

named_range string

worksheet_mode Index

Name

Specifies whether the worksheet is
defined by index or name.

worksheet_index integer Index of the worksheet to be read,
beginning with 0 for the first worksheet,
1 for the second, and so on.

worksheet_name string Name of the worksheet to be read.

96 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 49. excelimportnode properties (continued)

excelimportnode properties Data type Property description

data_range_mode FirstNonBlank

ExplicitRange

Specifies how the range should be
determined.

blank_rows StopReading

ReturnBlankRows

When data_range_mode is
FirstNonBlank, specifies how blank rows
should be treated.

explicit_range_start string When data_range_mode is
ExplicitRange, specifies the starting point
of the range to read.

explicit_range_end string

read_field_names Boolean Specifies whether the first row in the
specified range should be used as field
(column) names.

scanLineCount integer Specifies the number of rows to scan for
the column and storage type. Default is
200.

extensionimportnode properties

With the Extension Import node, you can run R or
Python for Spark scripts to import data.

Python for Spark example

Script example for Python for Spark
import modeler.api
stream = modeler.script.stream()
node = stream.create("extension_importer", "extension_importer")
node.setPropertyValue("syntax_type", "Python")

python_script = """
import spss.pyspark
from pyspark.sql.types import *

cxt = spss.pyspark.runtime.getContext()

_schema = StructType([StructField('id', LongType(), nullable=False), \
StructField('age', LongType(), nullable=True), \
StructField('Sex', StringType(), nullable=True), \
StructField('BP', StringType(), nullable=True), \
StructField('Cholesterol', StringType(), nullable=True), \
StructField('K', DoubleType(), nullable=True), \
StructField('Na', DoubleType(), nullable=True), \
StructField('Drug', StringType(), nullable=True)])

if cxt.isComputeDataModelOnly():
 cxt.setSparkOutputSchema(_schema)
else:
 df = cxt.getSparkInputData()
 if df is None:
 drugList=[(1,23,'F','HIGH','HIGH',0.792535,0.031258,'drugY'), \
(2,47,'M','LOW','HIGH',0.739309,0.056468,'drugC'),\
 (3,47,'M','LOW','HIGH',0.697269,0.068944,'drugC'),\
 (4,28,'F','NORMAL','HIGH',0.563682,0.072289,'drugX'),\

Chapter 9. Source Node Properties 97

 (5,61,'F','LOW','HIGH',0.559294,0.030998,'drugY'),\
 (6,22,'F','NORMAL','HIGH',0.676901,0.078647,'drugX'),\
 (7,49,'F','NORMAL','HIGH',0.789637,0.048518,'drugY'),\
 (8,41,'M','LOW','HIGH',0.766635,0.069461,'drugC'),\
 (9,60,'M','NORMAL','HIGH',0.777205,0.05123,'drugY'),\
 (10,43,'M','LOW','NORMAL',0.526102,0.027164,'drugY')]
 sqlcxt = cxt.getSparkSQLContext()
 rdd = cxt.getSparkContext().parallelize(drugList)
 print 'pyspark read data count = '+str(rdd.count())
 df = sqlcxt.createDataFrame(rdd, _schema)

 cxt.setSparkOutputData(df)
"""

node.setPropertyValue("python_syntax", python_script)

R example

Script example for R
node.setPropertyValue("syntax_type", "R")

R_script = """# 'JSON Import' Node v1.0 for IBM SPSS Modeler
'RJSONIO' package created by Duncan Temple Lang - http://cran.r-project.org/web/packages/
RJSONIO
'plyr' package created by Hadley Wickham http://cran.r-project.org/web/packages/plyr
Node developer: Danil Savine - IBM Extreme Blue 2014
Description: This node allows you to import into SPSS a table data from a JSON.
Install function for packages
packages <- function(x){
 x <- as.character(match.call()[[2]])
 if (!require(x,character.only=TRUE)){
 install.packages(pkgs=x,repos="http://cran.r-project.org")
 require(x,character.only=TRUE)
 }
}
packages
packages(RJSONIO)
packages(plyr)
This function is used to generate automatically the dataModel
getMetaData <- function (data) {
 if (dim(data)[1]<=0) {

 print("Warning : modelerData has no line, all fieldStorage fields set to strings")
 getStorage <- function(x){return("string")}

 } else {

 getStorage <- function(x) {
 res <- NULL
 #if x is a factor, typeof will return an integer so we treat the case on the side
 if(is.factor(x)) {
 res <- "string"
 } else {
 res <- switch(typeof(unlist(x)),
 integer = "integer",
 double = "real",
 character = "string",
 "string")
 }
 return (res)
 }
 }

 col = vector("list", dim(data)[2])
 for (i in 1:dim(data)[2]) {
 col[[i]] <- c(fieldName=names(data[i]),
 fieldLabel="",
 fieldStorage=getStorage(data[i]),
 fieldMeasure="",
 fieldFormat="",
 fieldRole="")
 }
 mdm<-do.call(cbind,col)
 mdm<-data.frame(mdm)
 return(mdm)
}
From JSON to a list
txt <- readLines('C:/test.json')
formatedtxt <- paste(txt, collapse = '')

98 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

json.list <- fromJSON(formatedtxt)
 # Apply path to json.list
 if(strsplit(x='true', split='
 ' ,fixed=TRUE)[[1]][1]) {
 path.list <- unlist(strsplit(x='id_array', split=','))
 i = 1
 while(i<length(path.list)+1){
 if(is.null(getElement(json.list, path.list[i]))){
 json.list <- json.list[[1]]
 }else{
 json.list <- getElement(json.list, path.list[i])
 i <- i+1
 }
 }
 }
From list to dataframe via unlisted json
i <-1
filled <- data.frame()
while(i < length(json.list)+ 1){
 unlisted.json <- unlist(json.list[[i]])
 to.fill <- data.frame(t(as.data.frame(unlisted.json, row.names = names(unlisted.json))),
stringsAsFactors=FALSE)
 filled <- rbind.fill(filled,to.fill)
 i <- 1 + i
}
Export to SPSS Modeler Data
modelerData <- filled
print(modelerData)
modelerDataModel <- getMetaData(modelerData)
print(modelerDataModel)

"""

node.setPropertyValue("r_syntax", R_script)

Table 50. extensionimportnode properties

extensionimportnode properties Data type Property description

syntax_type R

Python

Specify which script runs – R or
Python (R is the default).

r_syntax string The R scripting syntax to run.

python_syntax string The Python scripting syntax to
run.

fixedfilenode Properties
The Fixed File node imports data from fixed-field text files—that is, files whose
fields are not delimited but start at the same position and are of a fixed length.
Machine-generated or legacy data are frequently stored in fixed-field format.

Example

node = stream.create("fixedfile", "My node")
node.setPropertyValue("full_filename", "$CLEO_DEMOS/DRUG1n")
node.setPropertyValue("record_len", 32)
node.setPropertyValue("skip_header", 1)
node.setPropertyValue("fields", [["Age", 1, 3], ["Sex", 5, 7], ["BP", 9,
10], ["Cholesterol",
 12, 22], ["Na", 24, 25], ["K", 27, 27], ["Drug", 29, 32]])
node.setPropertyValue("decimal_symbol", "Period")
node.setPropertyValue("lines_to_scan", 30)

Chapter 9. Source Node Properties 99

Table 51. fixedfilenode properties

fixedfilenode properties Data type Property description

record_len number Specifies the number of characters in each
record.

line_oriented flag Skips the new-line character at the end of
each record.

decimal_symbol Default

Comma

Period

The type of decimal separator used in
your data source.

skip_header number Specifies the number of lines to ignore at
the beginning of the first record. Useful for
ignoring column headers.

auto_recognize_datetime flag Specifies whether dates or times are
automatically identified in the source
data.

lines_to_scan number

fields list Structured property.

full_filename string Full name of file to read, including
directory.

strip_spaces None

Left

Right

Both

Discards leading and trailing spaces in
strings on import.

invalid_char_mode Discard

Replace

Removes invalid characters (null, 0, or
any character non-existent in current
encoding) from the data input or replaces
invalid characters with the specified one-
character symbol.

invalid_char_replacement string

use_custom_values flag

100 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 51. fixedfilenode properties (continued)

fixedfilenode properties Data type Property description

custom_storage Unknown

String

Integer

Real

Time

Date

Timestamp

Chapter 9. Source Node Properties 101

Table 51. fixedfilenode properties (continued)

fixedfilenode properties Data type Property description

custom_date_format "DDMMYY"

"MMDDYY"

"YYMMDD"

"YYYYMMDD"

"YYYYDDD"

DAY

MONTH

"DD-MM-YY"

"DD-MM-YYYY"

"MM-DD-YY"

"MM-DD-YYYY"

"DD-MON-YY"

"DD-MON-YYYY"

"YYYY-MM-DD"

"DD.MM.YY"

"DD.MM.YYYY"

"MM.DD.YY"

"MM.DD.YYYY"

"DD.MON.YY"

"DD.MON.YYYY"

This property is applicable only if a
custom storage has been specified.

102 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 51. fixedfilenode properties (continued)

fixedfilenode properties Data type Property description

"DD/MM/YY"

"DD/MM/YYYY"

"MM/DD/YY"

"MM/DD/YYYY"

"DD/MON/YY"

"DD/MON/YYYY"

MON YYYY

q Q YYYY

ww WK YYYY

custom_time_format "HHMMSS"

"HHMM"

"MMSS"

"HH:MM:SS"

"HH:MM"

"MM:SS"

"(H)H:(M)M:(S)S"

"(H)H:(M)M"

"(M)M:(S)S"

"HH.MM.SS"

"HH.MM"

"MM.SS"

"(H)H.(M)M.(S)S"

"(H)H.(M)M"

"(M)M.(S)S"

This property is applicable only if a
custom storage has been specified.

Chapter 9. Source Node Properties 103

Table 51. fixedfilenode properties (continued)

fixedfilenode properties Data type Property description

custom_decimal_symbol field Applicable only if a custom storage has
been specified.

encoding StreamDefault

SystemDefault

"UTF-8"

Specifies the text-encoding method.

gsdata_import Node Properties
Use the Geospatial source node to bring map or spatial data into your data mining
session.

Table 52. gsdata_import node properties

gsdata_import node properties Data type Property description

full_filename string Enter the file path to the .shp file you want to
load.

map_service_URL string Enter the map service URL to connect to.

map_name string Only if map_service_URL is used; this
contains the top level folder structure of the
map service.

jsonimportnode Properties
The JSON source node imports data from a JSON file.

Table 53. jsonimportnode properties

jsonimportnode properties Data type Property description

full_filename string The complete filename, including path.

string_format records

values

Specify the format of the JSON string.
Default is records.

auto_label Added in version 18.2.1.1.

sasimportnode Properties
The SAS Import node imports SAS data into IBM SPSS Modeler.

104 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Example

node = stream.create("sasimport", "My node")
node.setPropertyValue("format", "Windows")
node.setPropertyValue("full_filename", "C:/data/retail.sas7bdat")
node.setPropertyValue("member_name", "Test")
node.setPropertyValue("read_formats", False)
node.setPropertyValue("full_format_filename", "Test")
node.setPropertyValue("import_names", True)

Table 54. sasimportnode properties

sasimportnode properties Data type Property description

format Windows

UNIX

Transport

SAS7

SAS8

SAS9

Format of the file to be imported.

full_filename string The complete filename that you enter,
including its path.

member_name string Specify the member to import from the
specified SAS transport file.

read_formats flag Reads data formats (such as variable
labels) from the specified format file.

full_format_filename string

import_names NamesAndLabels

LabelsasNames

Specifies the method for mapping variable
names and labels on import.

simgennode properties
The Simulation Generate node provides an easy way to generate simulated data—either
from scratch using user specified statistical distributions or automatically using the
distributions obtained from running a Simulation Fitting node on existing historical data.
This is useful when you want to evaluate the outcome of a predictive model in the
presence of uncertainty in the model inputs.

Table 55. simgennode properties

simgennode properties Data type Property description

fields Structured property See example

correlations Structured property See example

keep_min_max_setting boolean

refit_correlations boolean

Chapter 9. Source Node Properties 105

Table 55. simgennode properties (continued)

simgennode properties Data type Property description

max_cases integer Minimum value is 1000, maximum
value is 2,147,483,647

create_iteration_field boolean

iteration_field_name string

replicate_results boolean

random_seed integer

parameter_xml string Returns the parameter Xml as a
string

fields example
This is a structured slot parameter with the following syntax:

simgennode.setPropertyValue("fields", [
 [field1, storage, locked, [distribution1], min, max],
 [field2, storage, locked, [distribution2], min, max],
 [field3, storage, locked, [distribution3], min, max]
])

distribution is a declaration of the distribution name followed by a list containing pairs of attribute
names and values. Each distribution is defined in the following way:

[distributionname, [[par1], [par2], [par3]]]

simgennode = modeler.script.stream().createAt("simgen", u"Sim Gen", 726, 322)
simgennode.setPropertyValue("fields", [["Age", "integer", False, ["Uniform",[["min","1"],
["max","2"]]], "", ""]])

For example, to create a node that generates a single field with a Binomial distribution, you might use the
following script:

simgen_node1 = modeler.script.stream().createAt("simgen", u"Sim Gen", 200, 200)
simgen_node1.setPropertyValue("fields", [["Education", "Real", False, ["Binomial", [["n", 32],
 ["prob", 0.7]]], "", ""]])

The Binomial distribution takes 2 parameters: n and prob. Since Binomial does not support minimum and
maximum values, these are supplied as an empty string.

Note: You cannot set the distribution directly; you use it in conjunction with the fields property.

The following examples show all the possible distribution types. Note that the threshold is entered as
thresh in both NegativeBinomialFailures and NegativeBinomialTrial.

stream = modeler.script.stream()

simgennode = stream.createAt("simgen", u"Sim Gen", 200, 200)

beta_dist = ["Field1", "Real", False, ["Beta",[["shape1","1"],["shape2","2"]]], "", ""]
binomial_dist = ["Field2", "Real", False, ["Binomial",[["n" ,"1"],["prob","1"]]], "", ""]
categorical_dist = ["Field3", "String", False, ["Categorical", [["A",0.3],["B",0.5],["C",0.2]]], "", ""]
dice_dist = ["Field4", "Real", False, ["Dice", [["1" ,"0.5"],["2","0.5"]]], "", ""]
exponential_dist = ["Field5", "Real", False, ["Exponential", [["scale","1"]]], "", ""]
fixed_dist = ["Field6", "Real", False, ["Fixed", [["value","1"]]], "", ""]
gamma_dist = ["Field7", "Real", False, ["Gamma", [["scale","1"],["shape"," 1"]]], "", ""]
lognormal_dist = ["Field8", "Real", False, ["Lognormal", [["a","1"],["b","1"]]], "", ""]
negbinomialfailures_dist = ["Field9", "Real", False, ["NegativeBinomialFailures",[["prob","0.5"],["thresh","1"]]], "", ""]
negbinomialtrial_dist = ["Field10", "Real", False, ["NegativeBinomialTrials",[["prob","0.2"],["thresh","1"]]], "", ""]
normal_dist = ["Field11", "Real", False, ["Normal", [["mean","1"] ,["stddev","2"]]], "", ""]
poisson_dist = ["Field12", "Real", False, ["Poisson", [["mean","1"]]], "", ""]
range_dist = ["Field13", "Real", False, ["Range", [["BEGIN","[1,3]"] ,["END","[2,4]"],["PROB","[[0.5],[0.5]]"]]], "", ""]
triangular_dist = ["Field14", "Real", False, ["Triangular", [["min","0"],["max","1"],["mode","1"]]], "", ""]
uniform_dist = ["Field15", "Real", False, ["Uniform", [["min","1"],["max","2"]]], "", ""]
weibull_dist = ["Field16", "Real", False, ["Weibull", [["a","0"],["b","1 "],["c","1"]]], "", ""]

106 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

simgennode.setPropertyValue("fields", [\
beta_dist, \
binomial_dist, \
categorical_dist, \
dice_dist, \
exponential_dist, \
fixed_dist, \
gamma_dist, \
lognormal_dist, \
negbinomialfailures_dist, \
negbinomialtrial_dist, \
normal_dist, \
poisson_dist, \
range_dist, \
triangular_dist, \
uniform_dist, \
weibull_dist
])

correlations example
This is a structured slot parameter with the following syntax:

simgennode.setPropertyValue("correlations", [
 [field1, field2, correlation],
 [field1, field3, correlation],
 [field2, field3, correlation]
])

Correlation can be any number between +1 and -1. You can specify as many or as few correlations as you
like. Any unspecified correlations are set to zero. If any fields are unknown, the correlation value should
be set on the correlation matrix (or table) and is shown in red text. When there are unknown fields, it is
not possible to execute the node.

statisticsimportnode Properties
The IBM SPSS Statistics File node reads data from the .sav file format used by IBM
SPSS Statistics, as well as cache files saved in IBM SPSS Modeler, which also use
the same format.

The properties for this node are described under “statisticsimportnode Properties” on page 409.

tm1odataimport Node Properties
The IBM Cognos TM1 source node imports data from Cognos TM1 databases.

Table 56. tm1odataimport node properties

tm1odataimport node
properties

Data type Property description

credential_type inputCredential or
storedCredential

Used to indicate the credential type.

input_credential list When the credential_type is
inputCredential; specify the domain, user
name and password.

stored_credential_name string When the credential_type is
storedCredential; specify the name of
credential on the C&DS server.

Chapter 9. Source Node Properties 107

Table 56. tm1odataimport node properties (continued)

tm1odataimport node
properties

Data type Property description

selected_view ["field" "field"] A list property containing the details of the
selected TM1 cube and the name of the cube
view from where data will be imported into
SPSS. For example:
TM1_import.setPropertyValue("selec
ted_view", ['plan_BudgetPlan',
'Goal Input'])

is_private_view flag Specifies whether the selected_view is a
private view. Default value is false.

selected_columns ["field"] Specify the selected column; only one item
can be specified.
For example:
setPropertyValue("selected_columns
", ["Measures"])

selected_rows ["field" "field"] Specify the selected rows.
For example:
setPropertyValue("selected_rows",
["Dimension_1_1", "Dimension_2_1",
"Dimension_3_1", "Periods"])

connection_type AdminServer
TM1Server

Indicates the connection type. Default is
AdminServer.

admin_host string The URL for the host name of the REST
API. Required if the connection_type is
AdminServer.

server_name string The name of the TM1 server selected
from the admin_host. Required if the
connection_type is AdminServer.

server_url string The URL for the TM1 Server REST API.
Required if the connection_type is
TM1Server.

tm1import Node Properties (deprecated)
The IBM Cognos TM1 source node imports data from Cognos TM1 databases.

Note: This node was deprecated in Modeler 18.0. The replacement node script name is tm1odataimport.

108 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 57. tm1import node properties

tm1import node properties Data type Property description

pm_host string Note: Only for version 16.0 and 17.0

The host name. For example:
TM1_import.setPropertyValue("pm_ho
st", 'http://9.191.86.82:9510/
pmhub/pm')

tm1_connection ["field","field", ... ,"fi
eld"]

Note: Only for version 16.0 and 17.0

A list property containing the connection
details for the TM1 server. The
format is: ["TM1_Server_Name","tm1_
username","tm1_ password"]

For example:
TM1_import.setPropertyValue("tm1_c
onnection", ['Planning Sample',
"admin", "apple"])

selected_view ["field" "field"] A list property containing the details of the
selected TM1 cube and the name of the cube
view from where data will be imported into
SPSS. For example:
TM1_import.setPropertyValue("selec
ted_view", ['plan_BudgetPlan',
'Goal Input'])

selected_column ["field"] Specify the selected column; only one item
can be specified.

For example:
setPropertyValue("selected_columns
", ["Measures"])

selected_rows ["field" "field"] Specify the selected rows.

For example:
setPropertyValue("selected_rows",
["Dimension_1_1", "Dimension_2_1",
"Dimension_3_1", "Periods"])

twcimport node properties
The TWC source node imports weather data from The Weather Company, an IBM
Business. You can use it to obtain historical or forecast weather data for a location.
This can help you develop weather-driven business solutions for better decision-
making using the most accurate and precise weather data available.

Chapter 9. Source Node Properties 109

Table 58. twcimport node properties

twcimport node
properties

Data type Property description

TWCDataImport.latit
ude

Real Specifies a latitude value in the format
[-90.0˜90.0]

TWCDataImport.longi
tude

Real Specifies a longitude value in the format
[-180.0˜180.0].

TWCDataImport.licen
seKey

string Specifies the license key obtained from
The Weather Company.

TWCDataImport.measu
rmentUnit

English

Metric

Hybrid

Specifies the measurement unit.
Possible values are English, Metric,
or Hybrid. Metric is the default.

TWCDataImport.dataT
ype

Historical

Forecast

Specifies the type of weather data to
input. Possible values are Historical
or Forecast. Historical is the
default.

TWCDataImport.start
Date

Integer If Historical is specified for
TWCDataImport.dataType, specify a
start date in the format yyyyMMdd.

TWCDataImport.endDa
te

Integer If Historical is specified for
TWCDataImport.dataType, specify
an end date in the format yyyyMMdd.

TWCDataImport.forec
astHour

6

12

24

48

If Forecast is specified for
TWCDataImport.dataType, specify
6, 12, 24, or 48 for the hour.

userinputnode properties
The User Input node provides an easy way to create synthetic data—either from
scratch or by altering existing data. This is useful, for example, when you want to
create a test dataset for modeling.

Example

node = stream.create("userinput", "My node")
node.setPropertyValue("names", ["test1", "test2"])
node.setKeyedPropertyValue("data", "test1", "2, 4, 8")
node.setKeyedPropertyValue("custom_storage", "test1", "Integer")
node.setPropertyValue("data_mode", "Ordered")

110 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 59. userinputnode properties

userinputnode properties Data type Property description

data

names Structured slot that sets or returns a list of
field names generated by the node.

custom_storage Unknown

String

Integer

Real

Time

Date

Timestamp

Keyed slot that sets or returns the storage
for a field.

data_mode Combined

Ordered

If Combined is specified, records are
generated for each combination of set
values and min/max values. The number
of records generated is equal to the
product of the number of values in each
field. If Ordered is specified, one value is
taken from each column for each record
in order to generate a row of data. The
number of records generated is equal to
the largest number values associated with
a field. Any fields with fewer data values
will be padded with null values.

values Note: This property has been deprecated
in favor of userinputnode.data and
should no longer be used.

variablefilenode Properties
The Variable File node reads data from free-field text files—that is, files whose
records contain a constant number of fields but a varied number of characters.
This node is also useful for files with fixed-length header text and certain types of
annotations.

Example

node = stream.create("variablefile", "My node")
node.setPropertyValue("full_filename", "$CLEO_DEMOS/DRUG1n")
node.setPropertyValue("read_field_names", True)
node.setPropertyValue("delimit_other", True)
node.setPropertyValue("other", ",")
node.setPropertyValue("quotes_1", "Discard")
node.setPropertyValue("decimal_symbol", "Comma")
node.setPropertyValue("invalid_char_mode", "Replace")
node.setPropertyValue("invalid_char_replacement", "|")

Chapter 9. Source Node Properties 111

node.setKeyedPropertyValue("use_custom_values", "Age", True)
node.setKeyedPropertyValue("direction", "Age", "Input")
node.setKeyedPropertyValue("type", "Age", "Range")
node.setKeyedPropertyValue("values", "Age", [1, 100])

Table 60. variablefilenode properties

variablefilenode properties Data type Property description

skip_header number Specifies the number of characters to
ignore at the beginning of the first record.

num_fields_auto flag Determines the number of fields in each
record automatically. Records must be
terminated with a new-line character.

num_fields number Manually specifies the number of fields in
each record.

delimit_space flag Specifies the character used to delimit
field boundaries in the file.

delimit_tab flag

delimit_new_line flag

delimit_non_printing flag

delimit_comma flag In cases where the comma is both the
field delimiter and the decimal separator
for streams, set delimit_other to true,
and specify a comma as the delimiter by
using the other property.

delimit_other flag Allows you to specify a custom delimiter
using the other property.

other string Specifies the delimiter used when
delimit_other is true.

decimal_symbol Default

Comma

Period

Specifies the decimal separator used in
the data source.

multi_blank flag Treats multiple adjacent blank delimiter
characters as a single delimiter.

read_field_names flag Treats the first row in the data file as
labels for the column.

strip_spaces None

Left

Right

Both

Discards leading and trailing spaces in
strings on import.

112 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 60. variablefilenode properties (continued)

variablefilenode properties Data type Property description

invalid_char_mode Discard

Replace

Removes invalid characters (null, 0, or
any character non-existent in current
encoding) from the data input or replaces
invalid characters with the specified one-
character symbol.

invalid_char_replacement string

break_case_by_newline flag Specifies that the line delimiter is the
newline character.

lines_to_scan number Specifies how many lines to scan for
specified data types.

auto_recognize_datetime flag Specifies whether dates or times are
automatically identified in the source
data.

quotes_1 Discard

PairAndDiscard

IncludeAsText

Specifies how single quotation marks are
treated upon import.

quotes_2 Discard

PairAndDiscard

IncludeAsText

Specifies how double quotation marks are
treated upon import.

full_filename string Full name of file to be read, including
directory.

use_custom_values flag

custom_storage Unknown

String

Integer

Real

Time

Date

Timestamp

Chapter 9. Source Node Properties 113

Table 60. variablefilenode properties (continued)

variablefilenode properties Data type Property description

custom_date_format "DDMMYY"

"MMDDYY"

"YYMMDD"

"YYYYMMDD"

"YYYYDDD"

DAY

MONTH

"DD-MM-YY"

"DD-MM-YYYY"

"MM-DD-YY"

"MM-DD-YYYY"

"DD-MON-YY"

"DD-MON-YYYY"

"YYYY-MM-DD"

"DD.MM.YY"

"DD.MM.YYYY"

"MM.DD.YY"

"MM.DD.YYYY"

"DD.MON.YY"

"DD.MON.YYYY"

Applicable only if a custom storage has
been specified.

114 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 60. variablefilenode properties (continued)

variablefilenode properties Data type Property description

"DD/MM/YY"

"DD/MM/YYYY"

"MM/DD/YY"

"MM/DD/YYYY"

"DD/MON/YY"

"DD/MON/YYYY"

MON YYYY

q Q YYYY

ww WK YYYY

custom_time_format "HHMMSS"

"HHMM"

"MMSS"

"HH:MM:SS"

"HH:MM"

"MM:SS"

"(H)H:(M)M:(S)S"

"(H)H:(M)M"

"(M)M:(S)S"

"HH.MM.SS"

"HH.MM"

"MM.SS"

"(H)H.(M)M.(S)S"

"(H)H.(M)M"

"(M)M.(S)S"

Applicable only if a custom storage has
been specified.

Chapter 9. Source Node Properties 115

Table 60. variablefilenode properties (continued)

variablefilenode properties Data type Property description

custom_decimal_symbol field Applicable only if a custom storage has
been specified.

encoding StreamDefault

SystemDefault

"UTF-8"

Specifies the text-encoding method.

xmlimportnode Properties
The XML source node imports data in XML format into the stream. You can import a
single file, or all files in a directory. You can optionally specify a schema file from which
to read the XML structure.

Example

node = stream.create("xmlimport", "My node")
node.setPropertyValue("full_filename", "c:/import/ebooks.xml")
node.setPropertyValue("records", "/author/name")

Table 61. xmlimportnode properties

xmlimportnode properties Data type Property description

read single

directory

Reads a single data file (default), or all
XML files in a directory.

recurse flag Specifies whether to additionally read XML
files from all the subdirectories of the
specified directory.

full_filename string (required) Full path and file name of XML
file to import (if read = single).

directory_name string (required) Full path and name of directory
from which to import XML files (if read =
directory).

full_schema_filename string Full path and file name of XSD or DTD file
from which to read the XML structure. If
you omit this parameter, structure is read
from the XML source file.

records string XPath expression (e.g. /author/name) to
define the record boundary. Each time this
element is encountered in the source file,
a new record is created.

mode read

specify

Read all data (default), or specify which
items to read.

116 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 61. xmlimportnode properties (continued)

xmlimportnode properties Data type Property description

fields List of items (elements and attributes) to
import. Each item in the list is an XPath
expression.

Chapter 9. Source Node Properties 117

118 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 10. Record Operations Node Properties

appendnode properties
The Append node concatenates sets of records. It is useful for combining datasets
with similar structures but different data.

Example

node = stream.create("append", "My node")
node.setPropertyValue("match_by", "Name")
node.setPropertyValue("match_case", True)
node.setPropertyValue("include_fields_from", "All")
node.setPropertyValue("create_tag_field", True)
node.setPropertyValue("tag_field_name", "Append_Flag")

Table 62. appendnode properties

appendnode properties Data type Property description

match_by Position

Name

You can append datasets based on the
position of fields in the main data source or
the name of fields in the input datasets.

match_case flag Enables case sensitivity when matching field
names.

include_fields_from Main

All

create_tag_field flag

tag_field_name string

aggregatenode properties
The Aggregate node replaces a sequence of input records with summarized,
aggregated output records.

Example

node = stream.create("aggregate", "My node")
dbnode is a configured database import node
stream.link(dbnode, node)
node.setPropertyValue("contiguous", True)
node.setPropertyValue("keys", ["Drug"])
node.setKeyedPropertyValue("aggregates", "Age", ["Sum", "Mean"])
node.setPropertyValue("inc_record_count", True)
node.setPropertyValue("count_field", "index")
node.setPropertyValue("extension", "Aggregated_")
node.setPropertyValue("add_as", "Prefix")

Table 63. aggregatenode properties

aggregatenode properties Data type Property description

keys list Lists fields that can be used as keys
for aggregation. For example, if Sex and
Region are your key fields, each unique
combination of M and F with regions N and
S (four unique combinations) will have an
aggregated record.

contiguous flag Select this option if you know that all
records with the same key values are
grouped together in the input (for example,
if the input is sorted on the key fields). Doing
so can improve performance.

aggregates Structured property listing the numeric
fields whose values will be aggregated, as
well as the selected modes of aggregation.

aggregate_exprs Keyed property which keys the derived field
name with the aggregate expression used to
compute it. For example:

aggregatenode.setKeyedPropertyValue
("aggregate_exprs", "Na_MAX",
"MAX('Na')")

extension string Specify a prefix or suffix for duplicate
aggregated fields (sample below).

add_as Suffix

Prefix

inc_record_count flag Creates an extra field that specifies how
many input records were aggregated to form
each aggregate record.

count_field string Specifies the name of the record count field.

allow_approximation Boolean Allows approximation of order statistics
when aggregation is performed in Analytic
Server

bin_count integer Specifies the number of bins to use in
approximation

balancenode properties
The Balance node corrects imbalances in a dataset, so it conforms to a specified
condition. The balancing directive adjusts the proportion of records where a
condition is true by the factor specified.

Example

node = stream.create("balance", "My node")
node.setPropertyValue("training_data_only", True)
node.setPropertyValue("directives", [[1.3, "Age > 60"], [1.5, "Na > 0.5"]])

120 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 64. balancenode properties

balancenode properties Data type Property description

directives Structured property to balance proportion of
field values based on number specified (see
example below).

training_data_only flag Specifies that only training data should be
balanced. If no partition field is present in
the stream, then this option is ignored.

This node property uses the format:

[[number, string] \ [number, string] \ ... [number, string]].

Note: If strings (using double quotation marks) are embedded in the expression, they must be preceded
by the escape character " \ ". The " \ " character is also the line continuation character, which you
can use to align the arguments for clarity.

cplexoptnode properties
The CPLEX Optimization node provides the ability to use complex mathematical
(CPLEX) based optimization via an Optimization Programming Language (OPL) model
file. This functionality was available in the IBM Analytical Decision Management
product, which is no longer supported. But you can also use the CPLEX node in SPSS
Modeler without requiring IBM Analytical Decision Management.

Table 65. cplexoptnode properties

cplexoptnode properties Data type Property description

opl_model_text string The OPL (Optimization Programming
Language) script program that the CPLEX
Optimization node will run and then
generate the optimization result.

opl_tuple_set_name string The tuple set name in the OPL model that
corresponds to the incoming data. This is
not required and is normally not set via
script. It should only be used for editing
field mappings of a selected data source.

data_input_map List of structured
properties

The input field mappings for a data
source. This is not required and is
normally not set via script. It should only
be used for editing field mappings of a
selected data source.

Chapter 10. Record Operations Node Properties 121

Table 65. cplexoptnode properties (continued)

cplexoptnode properties Data type Property description

md_data_input_map List of structured
properties

The field mappings between each
tuple defined in the OPL, with each
corresponding field data source (incoming
data). Users can edit them each
individually per data source. With this
script, you can set the property directly
to set all mappings at once. This setting is
not shown in the user interface.

Each entity in the list is structured data:

Data Source Tag. The tag of the data
source, which can be found in the
data source drop-down. For example, for
0_Products_Type the tag is 0.

Data Source Index. The physical
sequence (index) of the data source. This
is determined by the connection order.

Source Node. The source node
(annotation) of the data source. This can
be found in the data source drop-down.
For example, for 0_Products_Type the
source node is Products.

Connected Node. The prior node
(annotation) that connects the current
CPLEX optimization node. This can be
found in the data source drop-down.
For example, for 0_Products_Type the
connected node is Type.

Tuple Set Name. The tuple set name of
the data source. It must match what's
defined in the OPL.

Tuple Field Name. The tuple set field
name of the data source. It must match
what's defined in the OPL tuple set
definition.

Storage Type. The field storage type.
Possible values are int, float, or
string.

122 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 65. cplexoptnode properties (continued)

cplexoptnode properties Data type Property description

Data Field Name. The field name of the
data source.

Example:

[[0,0,'Product','Type','Products','pr
od_id_tup','int','prod_id'],
[0,0,'Product','Type','Products','pro
d_name_tup','string',
'prod_name'],
[1,1,'Components','Type','Components'
,
'comp_id_tup','int','comp_id'],
[1,1,'Components','Type',
'Components','comp_name_tup','string'
,'comp_name']]

opl_data_text string The definition of some variables or data
used for the OPL.

output_value_mode string Possible values are raw or dvar. If dvar
is specified, on the Output tab the user
must specify the object function variable
name in OPL for the output. If raw is
specified, the objective function will be
output directly, regardless of name.

decision_variable_name string The objective function variable name in
defined in the OPL. This is enabled only
when the output_value_mode property
is set to dvar.

objective_function_value_
fieldname

string The field name for the objective function
value to use in the output. Default is
_OBJECTIVE.

output_tuple_set_names string The name of the predefined tuples from
the incoming data. This acts as the
indexes of the decision variable and is
expected to be output with the Variable
Outputs. The Output Tuple must be
consistent with the decision variable
definition in the OPL. If there are multiple
indexes, the tuple names must be joined
by a comma (,).

An example for a single tuple is
Products, with the corresponding
OPL definition being dvar float+
Production[Products];

An example for multiple tuples
is Products,Components, with the
corresponding OPL definition being dvar
float+ Production[Products]
[Components];

Chapter 10. Record Operations Node Properties 123

Table 65. cplexoptnode properties (continued)

cplexoptnode properties Data type Property description

decision_output_map List of structured
properties

The field mapping between variables
defined in the OPL that will be output and
the output fields. Each entity in the list is
structured data:

Variable Name. The variable name in the
OPL to output.

Storage Type. Possible values are int,
float, or string.

Output Field Name. The expected field
name in the results (output or export).

Example:

[['Production','int','res'],
['Remark','string','res_1']['Cost',
'float','res_2']]

derive_stbnode properties
The Space-Time-Boxes node derives Space-Time-Boxes from latitude, longitude
and timestamp fields. You can also identify frequent Space-Time-Boxes as
hangouts.

Example

node = modeler.script.stream().createAt("derive_stb", "My node", 96, 96)

Individual Records mode
node.setPropertyValue("mode", "IndividualRecords")
node.setPropertyValue("latitude_field", "Latitude")
node.setPropertyValue("longitude_field", "Longitude")
node.setPropertyValue("timestamp_field", "OccurredAt")
node.setPropertyValue("densities", ["STB_GH7_1HOUR", "STB_GH7_30MINS"])
node.setPropertyValue("add_extension_as", "Prefix")
node.setPropertyValue("name_extension", "stb_")

Hangouts mode
node.setPropertyValue("mode", "Hangouts")
node.setPropertyValue("hangout_density", "STB_GH7_30MINS")
node.setPropertyValue("id_field", "Event")
node.setPropertyValue("qualifying_duration", "30MINUTES")
node.setPropertyValue("min_events", 4)
node.setPropertyValue("qualifying_pct", 65)

Table 66. Space-Time-Boxes node properties

derive_stbnode properties Data type Property description

mode IndividualRecords
Hangouts

latitude_field field

longitude_field field

124 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 66. Space-Time-Boxes node properties (continued)

derive_stbnode properties Data type Property description

timestamp_field field

hangout_density density A single density. See densities for valid
density values.

densities [density,density,...,
density]

Each density is a string, for example
STB_GH8_1DAY.

Note: There are limits to which densities are
valid. For the geohash, values from GH1 to
GH15 can be used. For the temporal part,
the following values can be used:

EVER
1YEAR
1MONTH
1DAY
12HOURS
8HOURS
6HOURS
4HOURS
3HOURS
2HOURS
1HOUR
30MINS
15MINS
10MINS
5MINS
2MINS
1MIN
30SECS
15SECS
10SECS
5SECS
2SECS
1SEC

id_field field

qualifying_duration 1DAY
12HOURS
8HOURS
6HOURS
4HOURS
3HOURS
2Hours
1HOUR
30MIN
15MIN
10MIN
5MIN
2MIN
1MIN
30SECS
15SECS
10SECS
5SECS
2SECS
1SECS

Must be a string.

min_events integer Minimum valid integer value is 2.

qualifying_pct integer Must be in the range of 1 and 100.

add_extension_as Prefix
Suffix

name_extension string

Chapter 10. Record Operations Node Properties 125

distinctnode properties
The Distinct node removes duplicate records, either by passing the first distinct
record to the data stream or by discarding the first record and passing any
duplicates to the data stream instead.

Example

node = stream.create("distinct", "My node")
node.setPropertyValue("mode", "Include")
node.setPropertyValue("fields", ["Age" "Sex"])
node.setPropertyValue("keys_pre_sorted", True)

Table 67. distinctnode properties

distinctnode properties Data type Property description

mode Include

Discard

You can include the first distinct record in
the data stream, or discard the first distinct
record and pass any duplicate records to the
data stream instead.

grouping_fields list Lists fields used to determine whether
records are identical.

Note: This property is deprecated from IBM
SPSS Modeler 16 onwards.

composite_value Structured slot See example below.

composite_values Structured slot See example below.

inc_record_count flag Creates an extra field that specifies how
many input records were aggregated to form
each aggregate record.

count_field string Specifies the name of the record count field.

sort_keys Structured slot. Note: This property is deprecated from IBM
SPSS Modeler 16 onwards.

default_ascending flag

low_distinct_key_count flag Specifies that you have only a small number
of records and/or a small number of unique
values of the key field(s).

keys_pre_sorted flag Specifies that all records with the same key
values are grouped together in the input.

disable_sql_generation flag

Example for composite_value property
The composite_value property has the following general form:

node.setKeyedPropertyValue("composite_value", FIELD, FILLOPTION)

FILLOPTION has the form [FillType, Option1, Option2, ...].

126 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Examples:

node.setKeyedPropertyValue("composite_value", "Age", ["First"])
node.setKeyedPropertyValue("composite_value", "Age", ["last"])
node.setKeyedPropertyValue("composite_value", "Age", ["Total"])
node.setKeyedPropertyValue("composite_value", "Age", ["Average"])
node.setKeyedPropertyValue("composite_value", "Age", ["Min"])
node.setKeyedPropertyValue("composite_value", "Age", ["Max"])
node.setKeyedPropertyValue("composite_value", "Date", ["Earliest"])
node.setKeyedPropertyValue("composite_value", "Date", ["Latest"])
node.setKeyedPropertyValue("composite_value", "Code", ["FirstAlpha"])
node.setKeyedPropertyValue("composite_value", "Code", ["LastAlpha"])

The custom options require more than one argument, these are added as a list, for example:

node.setKeyedPropertyValue("composite_value", "Name", ["MostFrequent", "FirstRecord"])
node.setKeyedPropertyValue("composite_value", "Date", ["LeastFrequent", "LastRecord"])
node.setKeyedPropertyValue("composite_value", "Pending", ["IncludesValue", "T", "F"])
node.setKeyedPropertyValue("composite_value", "Marital", ["FirstMatch", "Married", "Divorced",
"Separated"])
node.setKeyedPropertyValue("composite_value", "Code", ["Concatenate"])
node.setKeyedPropertyValue("composite_value", "Code", ["Concatenate", "Space"])
node.setKeyedPropertyValue("composite_value", "Code", ["Concatenate", "Comma"])
node.setKeyedPropertyValue("composite_value", "Code", ["Concatenate", "UnderScore"])

Example for composite_values property
The composite_values property has the following general form:

node.setPropertyValue("composite_values", [
 [FIELD1, [FILLOPTION1]],
 [FIELD2, [FILLOPTION2]],
.
.
])

Example:

node.setPropertyValue("composite_values", [
 ["Age", ["First"]],
 ["Name", ["MostFrequent", "First"]],
 ["Pending", ["IncludesValue", "T"]],
 ["Marital", ["FirstMatch", "Married", "Divorced", "Separated"]],
 ["Code", ["Concatenate", "Comma"]]
])

extensionprocessnode properties

With the Extension Transform node, you can take
data from a stream and apply transformations to
the data using R scripting or Python for Spark
scripting.

Python for Spark example

script example for Python for Spark
import modeler.api
stream = modeler.script.stream()
node = stream.create("extension_process", "extension_process")
node.setPropertyValue("syntax_type", "Python")

process_script = """
import spss.pyspark.runtime
from pyspark.sql.types import *

cxt = spss.pyspark.runtime.getContext()

Chapter 10. Record Operations Node Properties 127

if cxt.isComputeDataModelOnly():
 _schema = StructType([StructField("Age", LongType(), nullable=True), \
 StructField("Sex", StringType(), nullable=True), \
 StructField("BP", StringType(), nullable=True), \
 StructField("Na", DoubleType(), nullable=True), \
 StructField("K", DoubleType(), nullable=True), \
 StructField("Drug", StringType(), nullable=True)])
 cxt.setSparkOutputSchema(_schema)
else:
 df = cxt.getSparkInputData()
 print df.dtypes[:]
 _newDF = df.select("Age","Sex","BP","Na","K","Drug")
 print _newDF.dtypes[:]
 cxt.setSparkOutputData(_newDF)
"""

node.setPropertyValue("python_syntax", process_script)

R example

script example for R
node.setPropertyValue("syntax_type", "R")
node.setPropertyValue("r_syntax", """day<-as.Date(modelerData$dob, format="%Y-%m-%d")
next_day<-day + 1
modelerData<-cbind(modelerData,next_day)
var1<-c(fieldName="Next day",fieldLabel="",fieldStorage="date",fieldMeasure="",fieldFormat="",
fieldRole="")
modelerDataModel<-data.frame(modelerDataModel,var1)""")

Table 68. extensionprocessnode properties

extensionprocessnode
properties

Data type Property description

syntax_type R

Python

Specify which script runs – R or Python (R is
the default).

r_syntax string The R scripting syntax to run.

python_syntax string The Python scripting syntax to run.

use_batch_size flag Enable use of batch processing.

batch_size integer Specify the number of data records to
include in each batch.

convert_flags StringsAndDoubles
LogicalValues

Option to convert flag fields.

convert_missing flag Option to convert missing values to the R NA
value.

convert_datetime flag Option to convert variables with date or
datetime formats to R date/time formats.

convert_datetime_class POSIXct
POSIXlt

Options to specify to what format variables
with date or datetime formats are
converted.

128 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

mergenode properties
The Merge node takes multiple input records and creates a single output record
containing some or all of the input fields. It is useful for merging data from different
sources, such as internal customer data and purchased demographic data.

Example

node = stream.create("merge", "My node")
assume customerdata and salesdata are configured database import nodes
stream.link(customerdata, node)
stream.link(salesdata, node)
node.setPropertyValue("method", "Keys")
node.setPropertyValue("key_fields", ["id"])
node.setPropertyValue("common_keys", True)
node.setPropertyValue("join", "PartialOuter")
node.setKeyedPropertyValue("outer_join_tag", "2", True)
node.setKeyedPropertyValue("outer_join_tag", "4", True)
node.setPropertyValue("single_large_input", True)
node.setPropertyValue("single_large_input_tag", "2")
node.setPropertyValue("use_existing_sort_keys", True)
node.setPropertyValue("existing_sort_keys", [["id", "Ascending"]])

Table 69. mergenode properties

mergenode properties Data type Property description

method Order

Keys

Condition

Rankedcondition

Specify whether records are merged in the
order they are listed in the data files, if
one or more key fields will be used to
merge records with the same value in the
key fields, if records will be merged if a
specified condition is satisfied, or if each
row pairing in the primary and all secondary
data sets are to be merged; using the
ranking expression to sort any multiple
matches into order from low to high.

condition string If method is set to Condition, specifies
the condition for including or discarding
records.

key_fields list

common_keys flag

join Inner

FullOuter

PartialOuter

Anti

outer_join_tag.n flag In this property, n is the tag name as
displayed in the Select Dataset dialog box.
Note that multiple tag names may be
specified, as any number of datasets could
contribute incomplete records.

Chapter 10. Record Operations Node Properties 129

Table 69. mergenode properties (continued)

mergenode properties Data type Property description

single_large_input flag Specifies whether optimization for having
one input relatively large compared to the
other inputs will be used.

single_large_input_tag string Specifies the tag name as displayed in the
Select Large Dataset dialog box. Note that
the usage of this property differs slightly
from the outer_join_tag property (flag
versus string) because only one input
dataset can be specified.

use_existing_sort_keys flag Specifies whether the inputs are already
sorted by one or more key fields.

existing_sort_keys [['string', 'Ascending'] \
['string'', 'Descending']]

Specifies the fields that are already sorted
and the direction in which they are sorted.

primary_dataset string If method is Rankedcondition, select the
primary data set in the merge. This can be
considered as the left side of an outer join
merge.

rename_duplicate_field
s

Boolean If method is Rankedcondition, and this
is set to Y, if the resulting merged data
set contains multiple fields with the same
name from different data sources the
respective tags from the data sources are
added at the start of the field column
headers.

merge_condition string

ranking_expression string

Num_matches integer The number of matches to be returned,
based on the merge_condition and
ranking_expression. Minimum 1,
maximum 100.

rfmaggregatenode properties
The Recency, Frequency, Monetary (RFM) Aggregate node enables you to take
customers' historical transactional data, strip away any unused data, and combine
all of their remaining transaction data into a single row that lists when they last dealt
with you, how many transactions they have made, and the total monetary value of
those transactions.

Example

node = stream.create("rfmaggregate", "My node")
node.setPropertyValue("relative_to", "Fixed")
node.setPropertyValue("reference_date", "2007-10-12")
node.setPropertyValue("id_field", "CardID")
node.setPropertyValue("date_field", "Date")
node.setPropertyValue("value_field", "Amount")
node.setPropertyValue("only_recent_transactions", True)
node.setPropertyValue("transaction_date_after", "2000-10-01")

130 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 70. rfmaggregatenode properties

rfmaggregatenode
properties

Data type Property description

relative_to Fixed

Today

Specify the date from which the recency of
transactions will be calculated.

reference_date date Only available if Fixed is chosen in
relative_to.

contiguous flag If your data are presorted so that all records
with the same ID appear together in the
data stream, selecting this option speeds up
processing.

id_field field Specify the field to be used to identify the
customer and their transactions.

date_field field Specify the date field to be used to calculate
recency against.

value_field field Specify the field to be used to calculate the
monetary value.

extension string Specify a prefix or suffix for duplicate
aggregated fields.

add_as Suffix

Prefix

Specify if the extension should be added
as a suffix or a prefix.

discard_low_value_reco
rds

flag Enable use of the
discard_records_below setting.

discard_records_below number Specify a minimum value below which
any transaction details are not used when
calculating the RFM totals. The units of
value relate to the value field selected.

only_recent_transactio
ns

flag Enable use of either the
specify_transaction_date or
transaction_within_last settings.

specify_transaction_da
te

flag

transaction_date_after date Only available if
specify_transaction_date is selected.
Specify the transaction date after which
records will be included in your analysis.

transaction_within_las
t

number Only available if
transaction_within_last is selected.
Specify the number and type of periods
(days, weeks, months, or years) back from
the Calculate Recency relative to date after
which records will be included in your
analysis.

Chapter 10. Record Operations Node Properties 131

Table 70. rfmaggregatenode properties (continued)

rfmaggregatenode
properties

Data type Property description

transaction_scale Days

Weeks

Months

Years

Only available if
transaction_within_last is selected.
Specify the number and type of periods
(days, weeks, months, or years) back from
the Calculate Recency relative to date after
which records will be included in your
analysis.

save_r2 flag Displays the date of the second most recent
transaction for each customer.

save_r3 flag Only available if save_r2 is selected.
Displays the date of the third most recent
transaction for each customer.

Rprocessnode Properties
The R Transform node enables you to take data
from an IBM(r) SPSS(r) Modeler stream and modify
the data using your own custom R script. After the
data is modified it is returned to the stream.

Example

node = stream.create("rprocess", "My node")
node.setPropertyValue("custom_name", "my_node")
node.setPropertyValue("syntax", """day<-as.Date(modelerData$dob, format="%Y-
%m-%d")
next_day<-day + 1
modelerData<-cbind(modelerData,next_day)
var1<-c(fieldName="Next
day",fieldLabel="",fieldStorage="date",fieldMeasure="",fieldFormat="",
fieldRole="")
modelerDataModel<-data.frame(modelerDataModel,var1)""")
node.setPropertyValue("convert_datetime", "POSIXct")

Table 71. Rprocessnode properties

Rprocessnode properties Data type Property description

syntax string

convert_flags StringsAndDoubles
LogicalValues

convert_datetime flag

convert_datetime_class
POSIXct
POSIXlt

convert_missing flag

use_batch_size flag Enable use of batch processing

132 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 71. Rprocessnode properties (continued)

Rprocessnode properties Data type Property description

batch_size integer Specify the number of data records to be
included in each batch

samplenode properties
The Sample node selects a subset of records. A variety of sample types are
supported, including stratified, clustered, and nonrandom (structured) samples.
Sampling can be useful to improve performance, and to select groups of related
records or transactions for analysis.

Example

/* Create two Sample nodes to extract
 different samples from the same data */

node = stream.create("sample", "My node")
node.setPropertyValue("method", "Simple")
node.setPropertyValue("mode", "Include")
node.setPropertyValue("sample_type", "First")
node.setPropertyValue("first_n", 500)

node = stream.create("sample", "My node")
node.setPropertyValue("method", "Complex")
node.setPropertyValue("stratify_by", ["Sex", "Cholesterol"])
node.setPropertyValue("sample_units", "Proportions")
node.setPropertyValue("sample_size_proportions", "Custom")
node.setPropertyValue("sizes_proportions", [["M", "High", "Default"], ["M",
"Normal", "Default"],
 ["F", "High", 0.3], ["F", "Normal", 0.3]])

Table 72. samplenode properties

samplenode properties Data type Property description

method Simple

Complex

mode Include

Discard

Include or discard records that meet the
specified condition.

sample_type First

OneInN

RandomPct

Specifies the sampling method.

first_n integer Records up to the specified cutoff point will
be included or discarded.

one_in_n number Include or discard every nth record.

rand_pct number Specify the percentage of records to include
or discard.

use_max_size flag Enable use of the maximum_size setting.

Chapter 10. Record Operations Node Properties 133

Table 72. samplenode properties (continued)

samplenode properties Data type Property description

maximum_size integer Specify the largest sample to be included or
discarded from the data stream. This option
is redundant and therefore disabled when
First and Include are specified.

set_random_seed flag Enables use of the random seed setting.

random_seed integer Specify the value used as a random seed.

complex_sample_type Random

Systematic

sample_units Proportions

Counts

sample_size_proportion
s

Fixed

Custom

Variable

sample_size_counts Fixed

Custom

Variable

fixed_proportions number

fixed_counts integer

variable_proportions field

variable_counts field

use_min_stratum_size flag

minimum_stratum_size integer This option only applies when a
Complex sample is taken with Sample
units=Proportions.

use_max_stratum_size flag

maximum_stratum_size integer This option only applies when a
Complex sample is taken with Sample
units=Proportions.

clusters field

stratify_by [field1 ... fieldN]

specify_input_weight flag

input_weight field

new_output_weight string

134 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 72. samplenode properties (continued)

samplenode properties Data type Property description

sizes_proportions [[string string value]
[string string value]…]

If sample_units=proportions and
sample_size_proportions=Custom,
specifies a value for each possible
combination of values of stratification fields.

default_proportion number

sizes_counts [[string string value]
[string string value]…]

Specifies a value for each possible
combination of values of stratification fields.
Usage is similar to sizes_proportions
but specifying an integer rather than a
proportion.

default_count number

selectnode properties
The Select node selects or discards a subset of records from the data stream based
on a specific condition. For example, you might select the records that pertain to a
particular sales region.

Example

node = stream.create("select", "My node")
node.setPropertyValue("mode", "Include")
node.setPropertyValue("condition", "Age < 18")

Table 73. selectnode properties

selectnode properties Data type Property description

mode Include

Discard

Specifies whether to include or discard
selected records.

condition string Condition for including or discarding
records.

sortnode properties
The Sort node sorts records into ascending or descending order based on the values
of one or more fields.

Example

node = stream.create("sort", "My node")
node.setPropertyValue("keys", [["Age", "Ascending"], ["Sex", "Descending"]])
node.setPropertyValue("default_ascending", False)
node.setPropertyValue("use_existing_keys", True)
node.setPropertyValue("existing_keys", [["Age", "Ascending"]])

Chapter 10. Record Operations Node Properties 135

Table 74. sortnode properties

sortnode properties Data type Property description

keys list Specifies the fields you want to sort against.
If no direction is specified, the default is
used.

default_ascending flag Specifies the default sort order.

use_existing_keys flag Specifies whether sorting is optimized by
using the previous sort order for fields that
are already sorted.

existing_keys Specifies the fields that are already sorted
and the direction in which they are sorted.
Uses the same format as the keys property.

spacetimeboxes properties
Space-Time-Boxes (STB) are an extension of Geohashed spatial locations. More
specifically, an STB is an alphanumeric string that represents a regularly shaped
region of space and time.

Table 75. spacetimeboxes properties

spacetimeboxes properties Data type Property description

mode IndividualRecords

Hangouts

latitude_field field

longitude_field field

timestamp_field field

136 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 75. spacetimeboxes properties (continued)

spacetimeboxes properties Data type Property description

densities [density, density,
density…]

Each density is a string. For example:
STB_GH8_1DAY

Note there are limits to which densities are
valid.

For the geohash, values from GH1-GH15
can be used.

For the temporal part, the following values
can be used:

EVER
1YEAR
1MONTH
1DAY
12HOURS
8HOURS
6HOURS
4HOURS
3HOURS
2HOURS
1HOUR
30MINS
15MINS
10MINS
5MINS
2 MINS
1 MIN
30SECS
15SECS
10SECS
5 SECS
2 SECS
1SEC

field_name_extension string

add_extension_as Prefix

Suffix

hangout_density density Single density (see above)

id_field field

qualifying_duration 1DAY
12HOURS
8HOURS
6HOURS
4HOURS
2HOURS
1HOUR
30MIN
15MIN
10MIN
5MIN
2MIN
1MIN
30SECS
15SECS
10SECS
5SECS
2SECS
1SECS

This must be a string.

min_events integer Minimum value is 2

qualifying_pct integer Must be in range 1-100

Chapter 10. Record Operations Node Properties 137

streamingtimeseries Properties
The Streaming Time Series node builds and scores time series models in one step.

Note: This Streaming Time Series node replaces the original Streaming TS node that
was deprecated in version 18 of SPSS Modeler.

Table 76. streamingtimeseries properties

streamingtimeseries Properties Values Property description

targets field The Streaming Time
Series node forecasts
one or more targets,
optionally using one or
more input fields as
predictors. Frequency
and weight fields are
not used. See the topic
“Common modeling node
properties” on page 211
for more information.

candidate_inputs [field1 ... fieldN] Input or predictor fields
used by the model.

use_period flag

date_time_field field

input_interval None

Unknown

Year

Quarter

Month

Week

Day

Hour

Hour_nonperiod

Minute

Minute_nonperiod

Second

Second_nonperiod

138 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 76. streamingtimeseries properties (continued)

streamingtimeseries Properties Values Property description

period_field field

period_start_value integer

num_days_per_week integer

start_day_of_week Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

num_hours_per_day integer

start_hour_of_day integer

timestamp_increments integer

cyclic_increments integer

cyclic_periods list

output_interval None

Year

Quarter

Month

Week

Day

Hour

Minute

Second

is_same_interval flag

cross_hour flag

aggregate_and_distribute list

Chapter 10. Record Operations Node Properties 139

Table 76. streamingtimeseries properties (continued)

streamingtimeseries Properties Values Property description

aggregate_default Mean

Sum

Mode

Min

Max

distribute_default Mean

Sum

group_default Mean

Sum

Mode

Min

Max

missing_imput Linear_interp

Series_mean

K_mean

K_median

Linear_trend

k_span_points integer

use_estimation_period flag

estimation_period Observations

Times

date_estimation list Only available if you use
date_time_field

period_estimation list Only available if you use
use_period

observations_type Latest

Earliest

observations_num integer

140 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 76. streamingtimeseries properties (continued)

streamingtimeseries Properties Values Property description

observations_exclude integer

method ExpertModeler

Exsmooth

Arima

expert_modeler_method ExpertModeler

Exsmooth

Arima

consider_seasonal flag

detect_outliers flag

expert_outlier_additive flag

expert_outlier_level_shift flag

expert_outlier_innovational flag

expert_outlier_level_shift flag

expert_outlier_transient flag

expert_outlier_seasonal_additive flag

expert_outlier_local_trend flag

expert_outlier_additive_patch flag

consider_newesmodels flag

Chapter 10. Record Operations Node Properties 141

Table 76. streamingtimeseries properties (continued)

streamingtimeseries Properties Values Property description

exsmooth_model_type Simple

HoltsLinearTrend

BrownsLinearTrend

DampedTrend

SimpleSeasonal

WintersAdditive

WintersMultiplicativ
e

DampedTrendAdditive

DampedTrendMultiplic
ative

MultiplicativeTrendA
dditive

MultiplicativeSeason
al

MultiplicativeTrendM
ultiplicative

MultiplicativeTrend

futureValue_type_method Compute

specify

exsmooth_transformation_type None

SquareRoot

NaturalLog

arima.p integer

arima.d integer

arima.q integer

arima.sp integer

arima.sd integer

arima.sq integer

142 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 76. streamingtimeseries properties (continued)

streamingtimeseries Properties Values Property description

arima_transformation_type None

SquareRoot

NaturalLog

arima_include_constant flag

tf_arima.p. fieldname integer For transfer functions.

tf_arima.d. fieldname integer For transfer functions.

tf_arima.q. fieldname integer For transfer functions.

tf_arima.sp. fieldname integer For transfer functions.

tf_arima.sd. fieldname integer For transfer functions.

tf_arima.sq. fieldname integer For transfer functions.

tf_arima.delay. fieldname integer For transfer functions.

tf_arima.transformation_type.
fieldname

None

SquareRoot

NaturalLog

For transfer functions.

arima_detect_outliers flag

arima_outlier_additive flag

arima_outlier_level_shift flag

arima_outlier_innovational flag

arima_outlier_transient flag

arima_outlier_seasonal_additive flag

arima_outlier_local_trend flag

arima_outlier_additive_patch flag

conf_limit_pct real

events fields

forecastperiods integer

extend_records_into_future flag

conf_limits flag

noise_res flag

Chapter 10. Record Operations Node Properties 143

streamingts properties (deprecated)
Note: This original Streaming Time Series node was deprecated in version 18 of
SPSS Modeler and replaced by the new Streaming Time Series node that is designed
to harness the power of IBM SPSS Analytic Server and process big data.

The Streaming TS node builds and scores time series models in one step, without
the need for a Time Intervals node.

Example

node = stream.create("streamingts", "My node")
node.setPropertyValue("deployment_force_rebuild", True)
node.setPropertyValue("deployment_rebuild_mode", "Count")
node.setPropertyValue("deployment_rebuild_count", 3)
node.setPropertyValue("deployment_rebuild_pct", 11)
node.setPropertyValue("deployment_rebuild_field", "Year")

Table 77. streamingts properties

streamingts properties Data type Property description

custom_fields flag If custom_fields=false, the settings
from an upstream Type node are used.
If custom_fields=true, targets and
inputs must be specified.

targets [field1...fieldN]

inputs [field1...fieldN]

method ExpertModeler
Exsmooth
Arima

calculate_conf flag

conf_limit_pct real

use_time_intervals_node flag If use_time_intervals_node=true,
then the settings from an upstream
Time Intervals node are used.
If use_time_intervals_node=false,
interval_offset_position,
interval_offset, and interval_type
must be specified.

interval_offset_position LastObservation
LastRecord

LastObservation refers to Last valid
observation. LastRecord refers to Count
back from last record.

interval_offset number

interval_type Periods
Years
Quarters
Months
WeeksNonPeriodic
DaysNonPeriodic
HoursNonPeriodic
MinutesNonPeriodic
SecondsNonPeriodic

events fields

144 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 77. streamingts properties (continued)

streamingts properties Data type Property description

expert_modeler_method
AllModels
Exsmooth
Arima

consider_seasonal flag

detect_outliers flag

expert_outlier_additive flag

expert_outlier_level_shi
ft

flag

expert_outlier_innovatio
nal

flag

expert_outlier_transient flag

expert_outlier_seasonal_
additive

flag

expert_outlier_local_tre
nd

flag

expert_outlier_additive_
patch

flag

exsmooth_model_type Simple
HoltsLinearTrend
BrownsLinearTrend
DampedTrend
SimpleSeasonal
WintersAdditive
WintersMultiplicativ
e

exsmooth_transformation_
type None

SquareRoot
NaturalLog

arima_p integer Same property as for Time Series modeling
node

arima_d integer Same property as for Time Series modeling
node

arima_q integer Same property as for Time Series modeling
node

arima_sp integer Same property as for Time Series modeling
node

arima_sd integer Same property as for Time Series modeling
node

arima_sq integer Same property as for Time Series modeling
node

arima_transformation_typ
e None

SquareRoot
NaturalLog

Same property as for Time Series modeling
node

Chapter 10. Record Operations Node Properties 145

Table 77. streamingts properties (continued)

streamingts properties Data type Property description

arima_include_constant flag Same property as for Time Series modeling
node

tf_arima_p.fieldname integer Same property as for Time Series modeling
node. For transfer functions.

tf_arima_d.fieldname integer Same property as for Time Series modeling
node. For transfer functions.

tf_arima_q.fieldname integer Same property as for Time Series modeling
node. For transfer functions.

tf_arima_sp.fieldname integer Same property as for Time Series modeling
node. For transfer functions.

tf_arima_sd.fieldname integer Same property as for Time Series modeling
node. For transfer functions.

tf_arima_sq.fieldname integer Same property as for Time Series modeling
node. For transfer functions.

tf_arima_delay.fieldname integer Same property as for Time Series modeling
node. For transfer functions.

tf_arima_transformation_typ
e.
fieldname

None
SquareRoot
NaturalLog

arima_detect_outlier_mod
e None

Automatic

arima_outlier_additive flag

arima_outlier_level_shif
t

flag

arima_outlier_innovation
al

flag

arima_outlier_transient flag

arima_outlier_seasonal_a
dditive

flag

arima_outlier_local_tren
d

flag

arima_outlier_additive_p
atch

flag

deployment_force_rebuild flag

deployment_rebuild_mode
Count
Percent

deployment_rebuild_count number

deployment_rebuild_pct number

deployment_rebuild_field <field>

146 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 11. Field Operations Node Properties

anonymizenode properties
The Anonymize node transforms the way field names and values are represented
downstream, thus disguising the original data. This can be useful if you want to
allow other users to build models using sensitive data, such as customer names or
other details.

Example

stream = modeler.script.stream()
varfilenode = stream.createAt("variablefile", "File", 96, 96)
varfilenode.setPropertyValue("full_filename", "$CLEO/DEMOS/DRUG1n")
node = stream.createAt("anonymize", "My node", 192, 96)
Anonymize node requires the input fields while setting the values
stream.link(varfilenode, node)
node.setKeyedPropertyValue("enable_anonymize", "Age", True)
node.setKeyedPropertyValue("transformation", "Age", "Random")
node.setKeyedPropertyValue("set_random_seed", "Age", True)
node.setKeyedPropertyValue("random_seed", "Age", 123)
node.setKeyedPropertyValue("enable_anonymize", "Drug", True)
node.setKeyedPropertyValue("use_prefix", "Drug", True)
node.setKeyedPropertyValue("prefix", "Drug", "myprefix")

Table 78. anonymizenode properties

anonymizenode properties Data type Property description

enable_anonymize flag When set to True, activates anonymization of field
values (equivalent to selecting Yes for that field in the
Anonymize Values column).

use_prefix flag When set to True, a custom prefix will be used if one has
been specified. Applies to fields that will be anonymized
by the Hash method and is equivalent to choosing the
Custom radio button in the Replace Values dialog box for
that field.

prefix string Equivalent to typing a prefix into the text box in the
Replace Values dialog box. The default prefix is the
default value if nothing else has been specified.

transformation Random

Fixed

Determines whether the transformation parameters for
a field anonymized by the Transform method will be
random or fixed.

set_random_seed flag When set to True, the specified seed value will be used
(if transformation is also set to Random).

random_seed integer When set_random_seed is set to True, this is the seed
for the random number.

scale number When transformation is set to Fixed, this value is
used for "scale by." The maximum scale value is normally
10 but may be reduced to avoid overflow.

Table 78. anonymizenode properties (continued)

anonymizenode properties Data type Property description

translate number When transformation is set to Fixed, this value is
used for "translate." The maximum translate value is
normally 1000 but may be reduced to avoid overflow.

autodataprepnode properties
The Automated Data Preparation (ADP) node can analyze your data and identify
fixes, screen out fields that are problematic or not likely to be useful, derive new
attributes when appropriate, and improve performance through intelligent screening
and sampling techniques. You can use the node in fully automated fashion, allowing
the node to choose and apply fixes, or you can preview the changes before they are
made and accept, reject, or amend them as desired.

Example

node = stream.create("autodataprep", "My node")
node.setPropertyValue("objective", "Balanced")
node.setPropertyValue("excluded_fields", "Filter")
node.setPropertyValue("prepare_dates_and_times", True)
node.setPropertyValue("compute_time_until_date", True)
node.setPropertyValue("reference_date", "Today")
node.setPropertyValue("units_for_date_durations", "Automatic")

Table 79. autodataprepnode properties

autodataprepnode properties Data type Property description

objective Balanced

Speed

Accuracy

Custom

custom_fields flag If true, allows you to specify target, input,
and other fields for the current node.
If false, the current settings from an
upstream Type node are used.

target field Specifies a single target field.

inputs [field1 ... fieldN] Input or predictor fields used by the
model.

use_frequency flag

frequency_field field

use_weight flag

weight_field field

excluded_fields Filter

None

148 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 79. autodataprepnode properties (continued)

autodataprepnode properties Data type Property description

if_fields_do_not_match StopExecution

ClearAnalysis

prepare_dates_and_times flag Control access to all the date and time
fields

compute_time_until_date flag

reference_date Today

Fixed

fixed_date date

units_for_date_durations Automatic

Fixed

fixed_date_units Years

Months

Days

compute_time_until_time flag

reference_time CurrentTime

Fixed

fixed_time time

units_for_time_durations Automatic

Fixed

fixed_date_units Hours

Minutes

Seconds

extract_year_from_date flag

extract_month_from_date flag

extract_day_from_date flag

extract_hour_from_time flag

extract_minute_from_time flag

extract_second_from_time flag

exclude_low_quality_input
s

flag

exclude_too_many_missing flag

Chapter 11. Field Operations Node Properties 149

Table 79. autodataprepnode properties (continued)

autodataprepnode properties Data type Property description

maximum_percentage_missin
g

number

exclude_too_many_categori
es

flag

maximum_number_categories number

exclude_if_large_category flag

maximum_percentage_catego
ry

number

prepare_inputs_and_target flag

adjust_type_inputs flag

adjust_type_target flag

reorder_nominal_inputs flag

reorder_nominal_target flag

replace_outliers_inputs flag

replace_outliers_target flag

replace_missing_continuou
s_inputs

flag

replace_missing_continuou
s_target

flag

replace_missing_nominal_i
nputs

flag

replace_missing_nominal_t
arget

flag

replace_missing_ordinal_i
nputs

flag

replace_missing_ordinal_t
arget

flag

maximum_values_for_ordina
l

number

minimum_values_for_contin
uous

number

outlier_cutoff_value number

outlier_method Replace

Delete

rescale_continuous_inputs flag

rescaling_method MinMax

ZScore

150 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 79. autodataprepnode properties (continued)

autodataprepnode properties Data type Property description

min_max_minimum number

min_max_maximum number

z_score_final_mean number

z_score_final_sd number

rescale_continuous_target flag

target_final_mean number

target_final_sd number

transform_select_input_fi
elds

flag

maximize_association_with
_target

flag

p_value_for_merging number

merge_ordinal_features flag

merge_nominal_features flag

minimum_cases_in_category number

bin_continuous_fields flag

p_value_for_binning number

perform_feature_selection flag

p_value_for_selection number

perform_feature_construct
ion

flag

transformed_target_name_e
xtension

string

transformed_inputs_name_e
xtension

string

constructed_features_root
_name

string

years_duration_
name_extension

string

months_duration_
name_extension

string

days_duration_
name_extension

string

hours_duration_
name_extension

string

minutes_duration_
name_extension

string

seconds_duration_
name_extension

string

Chapter 11. Field Operations Node Properties 151

Table 79. autodataprepnode properties (continued)

autodataprepnode properties Data type Property description

year_cyclical_name_extens
ion

string

month_cyclical_name_exten
sion

string

day_cyclical_name_extensi
on

string

hour_cyclical_name_extens
ion

string

minute_cyclical_name_exte
nsion

string

second_cyclical_name_exte
nsion

string

astimeintervalsnode properties
Use the Time Intervals node to specify intervals and derive a new time field for
estimating or forecasting. A full range of time intervals is supported, from seconds to
years.

Table 80. astimeintervalsnode properties

astimeintervalsnode properties Data type Property description

time_field field Can accept only a single continuous
field. That field is used by the node as
the aggregation key for converting the
interval. If an integer field is used here
it is considered to be a time index.

dimensions [field1 field2 …
fieldn]

These fields are used to create individual
time series based on the field values.

fields_to_aggregate [field1 field2 …
fieldn]

These fields are aggregated as part of
changing the period of the time field.
Any fields not included in this picker are
filtered out of the data leaving the node.

binningnode properties
The Binning node automatically creates new nominal (set) fields based on the
values of one or more existing continuous (numeric range) fields. For example,
you can transform a continuous income field into a new categorical field containing
groups of income as deviations from the mean. Once you have created bins for the
new field, you can generate a Derive node based on the cut points.

Example

node = stream.create("binning", "My node")
node.setPropertyValue("fields", ["Na", "K"])
node.setPropertyValue("method", "Rank")
node.setPropertyValue("fixed_width_name_extension", "_binned")

152 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

node.setPropertyValue("fixed_width_add_as", "Suffix")
node.setPropertyValue("fixed_bin_method", "Count")
node.setPropertyValue("fixed_bin_count", 10)
node.setPropertyValue("fixed_bin_width", 3.5)
node.setPropertyValue("tile10", True)

Table 81. binningnode properties

binningnode properties Data type Property description

fields [field1 field2 ...
fieldn]

Continuous (numeric range) fields
pending transformation. You can bin
multiple fields simultaneously.

method FixedWidth

EqualCount

Rank

SDev

Optimal

Method used for determining cut points
for new field bins (categories).

rcalculate_bins Always

IfNecessary

Specifies whether the bins are
recalculated and the data placed in the
relevant bin every time the node is
executed, or that data is added only to
existing bins and any new bins that have
been added.

fixed_width_name_extension string The default extension is _BIN.

fixed_width_add_as Suffix

Prefix

Specifies whether the extension is added
to the end (suffix) of the field name or to
the start (prefix). The default extension is
income_BIN.

fixed_bin_method Width

Count

fixed_bin_count integer Specifies an integer used to determine
the number of fixed-width bins
(categories) for the new field(s).

fixed_bin_width real Value (integer or real) for calculating
width of the bin.

equal_count_name_

extension

string The default extension is _TILE.

equal_count_add_as Suffix

Prefix

Specifies an extension, either suffix or
prefix, used for the field name generated
by using standard p-tiles. The default
extension is _TILE plus N, where N is the
tile number.

tile4 flag Generates four quantile bins, each
containing 25% of cases.

Chapter 11. Field Operations Node Properties 153

Table 81. binningnode properties (continued)

binningnode properties Data type Property description

tile5 flag Generates five quintile bins.

tile10 flag Generates 10 decile bins.

tile20 flag Generates 20 vingtile bins.

tile100 flag Generates 100 percentile bins.

use_custom_tile flag

custom_tile_name_extension string The default extension is _TILEN.

custom_tile_add_as Suffix

Prefix

custom_tile integer

equal_count_method RecordCount

ValueSum

The RecordCount method seeks to
assign an equal number of records
to each bin, while ValueSum assigns
records so that the sum of the values in
each bin is equal.

tied_values_method Next

Current

Random

Specifies which bin tied value data is to
be put in.

rank_order Ascending

Descending

This property includes Ascending
(lowest value is marked 1) or
Descending (highest value is marked 1).

rank_add_as Suffix

Prefix

This option applies to rank, fractional
rank, and percentage rank.

rank flag

rank_name_extension string The default extension is _RANK.

rank_fractional flag Ranks cases where the value of the new
field equals rank divided by the sum
of the weights of the nonmissing cases.
Fractional ranks fall in the range of 0–1.

rank_fractional_name_

extension

string The default extension is _F_RANK.

rank_pct flag Each rank is divided by the number of
records with valid values and multiplied
by 100. Percentage fractional ranks fall in
the range of 1–100.

rank_pct_name_extension string The default extension is _P_RANK.

sdev_name_extension string

154 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 81. binningnode properties (continued)

binningnode properties Data type Property description

sdev_add_as Suffix

Prefix

sdev_count One

Two

Three

optimal_name_extension string The default extension is _OPTIMAL.

optimal_add_as Suffix

Prefix

optimal_supervisor_field field Field chosen as the supervisory field to
which the fields selected for binning are
related.

optimal_merge_bins flag Specifies that any bins with small
case counts will be added to a larger,
neighboring bin.

optimal_small_bin_threshold integer

optimal_pre_bin flag Indicates that prebinning of dataset is to
take place.

optimal_max_bins integer Specifies an upper limit to avoid creating
an inordinately large number of bins.

optimal_lower_end_point Inclusive

Exclusive

optimal_first_bin Unbounded

Bounded

optimal_last_bin Unbounded

Bounded

derivenode properties
The Derive node modifies data values or creates new fields from one or more
existing fields. It creates fields of type formula, flag, nominal, state, count, and
conditional.

Example 1

Create and configure a Flag Derive field node
node = stream.create("derive", "My node")
node.setPropertyValue("new_name", "DrugX_Flag")

Chapter 11. Field Operations Node Properties 155

node.setPropertyValue("result_type", "Flag")
node.setPropertyValue("flag_true", "1")
node.setPropertyValue("flag_false", "0")
node.setPropertyValue("flag_expr", "'Drug' == \"drugX\"")

Create and configure a Conditional Derive field node
node = stream.create("derive", "My node")
node.setPropertyValue("result_type", "Conditional")
node.setPropertyValue("cond_if_cond", "@OFFSET(\"Age\", 1) = \"Age\"")
node.setPropertyValue("cond_then_expr", "(@OFFSET(\"Age\", 1) = \"Age\" ><
@INDEX")
node.setPropertyValue("cond_else_expr", "\"Age\"")

Example 2
This script assumes that there are two numeric columns called XPos and YPos that represent the X
and Y coordinates of a point (for example, where an event took place). The script creates a Derive node
that computes a geospatial column from the X and Y coordinates representing that point in a specific
coordinate system:

stream = modeler.script.stream()
Other stream configuration code
node = stream.createAt("derive", "Location", 192, 96)
node.setPropertyValue("new_name", "Location")
node.setPropertyValue("formula_expr", "['XPos', 'YPos']")
node.setPropertyValue("formula_type", "Geospatial")
Now we have set the general measurement type, define the
specifics of the geospatial object
node.setPropertyValue("geo_type", "Point")
node.setPropertyValue("has_coordinate_system", True)
node.setPropertyValue("coordinate_system", "ETRS_1989_EPSG_Arctic_zone_5-47")

Table 82. derivenode properties

derivenode properties Data type Property description

new_name string Name of new field.

mode Single

Multiple

Specifies single or multiple fields.

fields list Used in Multiple mode only to select
multiple fields.

name_extension string Specifies the extension for the new
field name(s).

add_as Suffix

Prefix

Adds the extension as a prefix (at
the beginning) or as a suffix (at the
end) of the field name.

156 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 82. derivenode properties (continued)

derivenode properties Data type Property description

result_type Formula

Flag

Set

State

Count

Conditional

The six types of new fields that you
can create.

formula_expr string Expression for calculating a new
field value in a Derive node.

flag_expr string

flag_true string

flag_false string

set_default string

set_value_cond string Structured to supply the condition
associated with a given value.

state_on_val string Specifies the value for the new field
when the On condition is met.

state_off_val string Specifies the value for the new field
when the Off condition is met.

state_on_expression string

state_off_expression string

state_initial On

Off

Assigns each record of the new field
an initial value of On or Off. This
value can change as each condition
is met.

count_initial_val string

count_inc_condition string

count_inc_expression string

count_reset_conditio
n

string

cond_if_cond string

cond_then_expr string

cond_else_expr string

Chapter 11. Field Operations Node Properties 157

Table 82. derivenode properties (continued)

derivenode properties Data type Property description

formula_measure_type Range / MeasureType.RANGE

Discrete /
MeasureType.DISCRETE

Flag / MeasureType.FLAG

Set / MeasureType.SET

OrderedSet /
MeasureType.ORDERED_SET

Typeless /
MeasureType.TYPELESS

Collection /
MeasureType.COLLECTION

Geospatial /
MeasureType.GEOSPATIAL

This property can be used to define
the measurement associated with
the derived field. The setter function
can be passed either a string or
one of the MeasureType values.
The getter will always return on the
MeasureType values.

collection_measure Range / MeasureType.RANGE

Flag / MeasureType.FLAG

Set / MeasureType.SET

OrderedSet /
MeasureType.ORDERED_SET

Typeless /
MeasureType.TYPELESS

For collection fields (lists with a
depth of 0), this property defines the
measurement type associated with
the underlying values.

geo_type Point

MultiPoint

LineString

MultiLineString

Polygon

MultiPolygon

For geospatial fields, this property
defines the type of geospatial object
represented by this field. This
should be consistent with the list
depth of the values

has_coordinate_syste
m

boolean For geospatial fields, this property
defines whether this field has a
coordinate system

158 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 82. derivenode properties (continued)

derivenode properties Data type Property description

coordinate_system string For geospatial fields, this property
defines the coordinate system for
this field

ensemblenode properties
The Ensemble node combines two or more model nuggets to obtain more accurate
predictions than can be gained from any one model.

Example

Create and configure an Ensemble node
Use this node with the models in demos\streams\pm_binaryclassifier.str
node = stream.create("ensemble", "My node")
node.setPropertyValue("ensemble_target_field", "response")
node.setPropertyValue("filter_individual_model_output", False)
node.setPropertyValue("flag_ensemble_method", "ConfidenceWeightedVoting")
node.setPropertyValue("flag_voting_tie_selection", "HighestConfidence")

Table 83. ensemblenode properties

ensemblenode properties Data type Property description

ensemble_target_field field Specifies the target field for all
models used in the ensemble.

filter_individual_model_o
utput

flag Specifies whether scoring results
from individual models should be
suppressed.

flag_ensemble_method Voting

ConfidenceWeightedVoting

RawPropensityWeightedVoti
ng

AdjustedPropensityWeighte
dVoting

HighestConfidence

AverageRawPropensity

AverageAdjustedPropensity

Specifies the method used to
determine the ensemble score.
This setting applies only if the
selected target is a flag field.

set_ensemble_method Voting

ConfidenceWeightedVoting

HighestConfidence

Specifies the method used to
determine the ensemble score.
This setting applies only if the
selected target is a nominal field.

Chapter 11. Field Operations Node Properties 159

Table 83. ensemblenode properties (continued)

ensemblenode properties Data type Property description

flag_voting_tie_selection Random

HighestConfidence

RawPropensity

AdjustedPropensity

If a voting method is selected,
specifies how ties are resolved.
This setting applies only if the
selected target is a flag field.

set_voting_tie_selection Random

HighestConfidence

If a voting method is selected,
specifies how ties are resolved.
This setting applies only if the
selected target is a nominal field.

calculate_standard_error flag If the target field is continuous,
a standard error calculation is
run by default to calculate
the difference between the
measured or estimated values
and the true values; and to
show how close those estimates
matched.

fillernode properties
The Filler node replaces field values and changes storage. You can choose to replace
values based on a CLEM condition, such as @BLANK(@FIELD). Alternatively, you can
choose to replace all blanks or null values with a specific value. A Filler node is often
used together with a Type node to replace missing values.

Example

node = stream.create("filler", "My node")
node.setPropertyValue("fields", ["Age"])
node.setPropertyValue("replace_mode", "Always")
node.setPropertyValue("condition", "(\"Age\" > 60) and (\"Sex\" = \"M\"")
node.setPropertyValue("replace_with", "\"old man\"")

Table 84. fillernode properties

fillernode properties Data type Property description

fields list Fields from the dataset whose values will
be examined and replaced.

replace_mode Always

Conditional

Blank

Null

BlankAndNull

You can replace all values, blank values,
or null values, or replace based on a
specified condition.

160 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 84. fillernode properties (continued)

fillernode properties Data type Property description

condition string

replace_with string

filternode properties
The Filter node filters (discards) fields, renames fields, and maps fields from one
source node to another.

Example:

node = stream.create("filter", "My node")
node.setPropertyValue("default_include", True)
node.setKeyedPropertyValue("new_name", "Drug", "Chemical")
node.setKeyedPropertyValue("include", "Drug", False)

Using the default_include property. Note that setting the value of the default_include property does
not automatically include or exclude all fields; it simply determines the default for the current selection.
This is functionally equivalent to clicking the Include fields by default button in the Filter node dialog
box. For example, suppose you run the following script:

node = modeler.script.stream().create("filter", "Filter")
node.setPropertyValue("default_include", False)
Include these two fields in the list
for f in ["Age", "Sex"]:
 node.setKeyedPropertyValue("include", f, True)

This will cause the node to pass the fields Age and Sex and discard all others. After running the previous
script, now suppose you add the following lines to the script to name two more fields:

node.setPropertyValue("default_include", False)
Include these two fields in the list
for f in ["BP", "Na"]:
 node.setKeyedPropertyValue("include", f, True)

This will add two more fields to the filter so that a total of four fields are passed (Age, Sex, BP, Na). In
other words, resetting the value of default_include to False doesn't automatically reset all fields.

Alternatively, if you now change default_include to True, either using a script or in the Filter node
dialog box, this would flip the behavior so the four fields listed above would be discarded rather than
included. When in doubt, experimenting with the controls in the Filter node dialog box may be helpful in
understanding this interaction.

Chapter 11. Field Operations Node Properties 161

Table 85. filternode properties

filternode properties Data type Property description

default_include flag Keyed property to specify whether the
default behavior is to pass or filter fields:

Note that setting this property does
not automatically include or exclude
all fields; it simply determines whether
selected fields are included or excluded
by default. See example below for
additional comments.

include flag Keyed property for field inclusion and
removal.

new_name string

historynode properties
The History node creates new fields containing data from fields in previous records.
History nodes are most often used for sequential data, such as time series data.
Before using a History node, you may want to sort the data using a Sort node.

Example

node = stream.create("history", "My node")
node.setPropertyValue("fields", ["Drug"])
node.setPropertyValue("offset", 1)
node.setPropertyValue("span", 3)
node.setPropertyValue("unavailable", "Discard")
node.setPropertyValue("fill_with", "undef")

Table 86. historynode properties

historynode properties Data type Property description

fields list Fields for which you want a history.

offset number Specifies the latest record (prior to the
current record) from which you want to
extract historical field values.

span number Specifies the number of prior records
from which you want to extract values.

unavailable Discard

Leave

Fill

For handling records that have no history
values, usually referring to the first
several records (at the top of the dataset)
for which there are no previous records
to use as a history.

fill_with String

Number

Specifies a value or string to be used
for records where no history value is
available.

162 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

partitionnode properties
The Partition node generates a partition field, which splits the data into separate
subsets for the training, testing, and validation stages of model building.

Example

node = stream.create("partition", "My node")
node.setPropertyValue("create_validation", True)
node.setPropertyValue("training_size", 33)
node.setPropertyValue("testing_size", 33)
node.setPropertyValue("validation_size", 33)
node.setPropertyValue("set_random_seed", True)
node.setPropertyValue("random_seed", 123)
node.setPropertyValue("value_mode", "System")

Table 87. partitionnode properties

partitionnode properties Data type Property description

new_name string Name of the partition field generated by the
node.

create_validation flag Specifies whether a validation partition
should be created.

training_size integer Percentage of records (0–100) to be
allocated to the training partition.

testing_size integer Percentage of records (0–100) to be
allocated to the testing partition.

validation_size integer Percentage of records (0–100) to be
allocated to the validation partition. Ignored
if a validation partition is not created.

training_label string Label for the training partition.

testing_label string Label for the testing partition.

validation_label string Label for the validation partition. Ignored if a
validation partition is not created.

value_mode System

SystemAndLabel

Label

Specifies the values used to represent each
partition in the data. For example, the
training sample can be represented by the
system integer 1, the label Training, or a
combination of the two, 1_Training.

set_random_seed Boolean Specifies whether a user-specified random
seed should be used.

random_seed integer A user-specified random seed value. For this
value to be used, set_random_seed must
be set to True.

enable_sql_generation Boolean Specifies whether to use SQL pushback to
assign records to partitions.

Chapter 11. Field Operations Node Properties 163

Table 87. partitionnode properties (continued)

partitionnode properties Data type Property description

unique_field Specifies the input field used to ensure
that records are assigned to partitions in a
random but repeatable way. For this value to
be used, enable_sql_generation must
be set to True.

reclassifynode properties
The Reclassify node transforms one set of categorical values to another.
Reclassification is useful for collapsing categories or regrouping data for analysis.

Example

node = stream.create("reclassify", "My node")
node.setPropertyValue("mode", "Multiple")
node.setPropertyValue("replace_field", True)
node.setPropertyValue("field", "Drug")
node.setPropertyValue("new_name", "Chemical")
node.setPropertyValue("fields", ["Drug", "BP"])
node.setPropertyValue("name_extension", "reclassified")
node.setPropertyValue("add_as", "Prefix")
node.setKeyedPropertyValue("reclassify", "drugA", True)
node.setPropertyValue("use_default", True)
node.setPropertyValue("default", "BrandX")
node.setPropertyValue("pick_list", ["BrandX", "Placebo", "Generic"])

Table 88. reclassifynode properties

reclassifynode properties Data type Property description

mode Single

Multiple

Single reclassifies the categories for
one field. Multiple activates options
enabling the transformation of more than
one field at a time.

replace_field flag

field string Used only in Single mode.

new_name string Used only in Single mode.

fields [field1 field2 ...
fieldn]

Used only in Multiple mode.

name_extension string Used only in Multiple mode.

add_as Suffix

Prefix

Used only in Multiple mode.

reclassify string Structured property for field values.

use_default flag Use the default value.

default string Specify a default value.

164 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 88. reclassifynode properties (continued)

reclassifynode properties Data type Property description

pick_list [string string …
string]

Allows a user to import a list of known
new values to populate the drop-down
list in the table.

reordernode properties
The Field Reorder node defines the natural order used to display fields downstream.
This order affects the display of fields in a variety of places, such as tables, lists, and
the Field Chooser. This operation is useful when working with wide datasets to make
fields of interest more visible.

Example

node = stream.create("reorder", "My node")
node.setPropertyValue("mode", "Custom")
node.setPropertyValue("sort_by", "Storage")
node.setPropertyValue("ascending", False)
node.setPropertyValue("start_fields", ["Age", "Cholesterol"])
node.setPropertyValue("end_fields", ["Drug"])

Table 89. reordernode properties

reordernode properties Data type Property description

mode Custom

Auto

You can sort values automatically or
specify a custom order.

sort_by Name

Type

Storage

ascending flag

start_fields [field1 field2 …
fieldn]

New fields are inserted after these fields.

end_fields [field1 field2 …
fieldn]

New fields are inserted before these
fields.

reprojectnode properties
Within SPSS Modeler, items such as the Expression Builder spatial functions, the
Spatio-Temporal Prediction (STP) Node, and the Map Visualization Node use the
projected coordinate system. Use the Reproject node to change the coordinate
system of any data that you import that uses a geographic coordinate system.

Chapter 11. Field Operations Node Properties 165

Table 90. reprojectnode properties

reprojectnode properties Data type Property description

reproject_fields [field1 field2 …
fieldn]

List all the fields that are to be
reprojected.

reproject_type Streamdefault

Specify

Choose how to reproject the fields.

coordinate_system string The name of the coordinate system to be
applied to the fields. Example:

set
reprojectnode.coordinate_system
= “WGS_1984_World_Mercator”

restructurenode properties
The Restructure node converts a nominal or flag field into a group of fields that
can be populated with the values of yet another field. For example, given a field
named payment type, with values of credit, cash, and debit, three new fields would
be created (credit, cash, debit), each of which might contain the value of the actual
payment made.

Example

node = stream.create("restructure", "My node")
node.setKeyedPropertyValue("fields_from", "Drug", ["drugA", "drugX"])
node.setPropertyValue("include_field_name", True)
node.setPropertyValue("value_mode", "OtherFields")
node.setPropertyValue("value_fields", ["Age", "BP"])

Table 91. restructurenode properties

restructurenode properties Data type Property description

fields_from [category category
category]

all

include_field_name flag Indicates whether to use the field name
in the restructured field name.

value_mode OtherFields

Flags

Indicates the mode for specifying the
values for the restructured fields. With
OtherFields, you must specify which
fields to use (see below). With Flags, the
values are numeric flags.

value_fields list Required if value_mode is
OtherFields. Specifies which fields to
use as value fields.

166 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

rfmanalysisnode properties
The Recency, Frequency, Monetary (RFM) Analysis node enables you to determine
quantitatively which customers are likely to be the best ones by examining
how recently they last purchased from you (recency), how often they purchased
(frequency), and how much they spent over all transactions (monetary).

Example

node = stream.create("rfmanalysis", "My node")
node.setPropertyValue("recency", "Recency")
node.setPropertyValue("frequency", "Frequency")
node.setPropertyValue("monetary", "Monetary")
node.setPropertyValue("tied_values_method", "Next")
node.setPropertyValue("recalculate_bins", "IfNecessary")
node.setPropertyValue("recency_thresholds", [1, 500, 800, 1500, 2000, 2500])

Table 92. rfmanalysisnode properties

rfmanalysisnode
properties

Data type Property description

recency field Specify the recency field. This may be a
date, timestamp, or simple number.

frequency field Specify the frequency field.

monetary field Specify the monetary field.

recency_bins integer Specify the number of recency bins to be
generated.

recency_weight number Specify the weighting to be applied to
recency data. The default is 100.

frequency_bins integer Specify the number of frequency bins to be
generated.

frequency_weight number Specify the weighting to be applied to
frequency data. The default is 10.

monetary_bins integer Specify the number of monetary bins to be
generated.

monetary_weight number Specify the weighting to be applied to
monetary data. The default is 1.

tied_values_method Next

Current

Specify which bin tied value data is to be
put in.

recalculate_bins Always

IfNecessary

add_outliers flag Available only if recalculate_bins is set
to IfNecessary. If set, records that lie
below the lower bin will be added to the
lower bin, and records above the highest
bin will be added to the highest bin.

Chapter 11. Field Operations Node Properties 167

Table 92. rfmanalysisnode properties (continued)

rfmanalysisnode
properties

Data type Property description

binned_field Recency

Frequency

Monetary

recency_thresholds value value Available only if recalculate_bins is set
to Always. Specify the upper and lower
thresholds for the recency bins. The upper
threshold of one bin is used as the lower
threshold of the next—for example, [10 30
60] would define two bins, the first bin with
upper and lower thresholds of 10 and 30,
with the second bin thresholds of 30 and
60.

frequency_thresholds value value Available only if recalculate_bins is set
to Always.

monetary_thresholds value value Available only if recalculate_bins is set
to Always.

settoflagnode properties
The Set to Flag node derives multiple flag fields based on the categorical values
defined for one or more nominal fields.

Example

node = stream.create("settoflag", "My node")
node.setKeyedPropertyValue("fields_from", "Drug", ["drugA", "drugX"])
node.setPropertyValue("true_value", "1")
node.setPropertyValue("false_value", "0")
node.setPropertyValue("use_extension", True)
node.setPropertyValue("extension", "Drug_Flag")
node.setPropertyValue("add_as", "Suffix")
node.setPropertyValue("aggregate", True)
node.setPropertyValue("keys", ["Cholesterol"])

Table 93. settoflagnode properties

settoflagnode properties Data type Property description

fields_from [category category
category]

all

true_value string Specifies the true value used by the node
when setting a flag. The default is T.

168 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 93. settoflagnode properties (continued)

settoflagnode properties Data type Property description

false_value string Specifies the false value used by the
node when setting a flag. The default is
F.

use_extension flag Use an extension as a suffix or prefix to
the new flag field.

extension string

add_as Suffix

Prefix

Specifies whether the extension is added
as a suffix or prefix.

aggregate flag Groups records together based on key
fields. All flag fields in a group are
enabled if any record is set to true.

keys list Key fields.

statisticstransformnode properties
The Statistics Transform node runs a selection of IBM SPSS Statistics syntax
commands against data sources in IBM SPSS Modeler. This node requires a licensed
copy of IBM SPSS Statistics.

The properties for this node are described under “statisticstransformnode properties” on page 409.

timeintervalsnode properties (deprecated)
Note: This node was deprecated in version 18 of SPSS Modeler and replaced by the
new Time Series node.

The Time Intervals node specifies intervals and creates labels (if needed) for
modeling time series data. If values are not evenly spaced, the node can pad or
aggregate values as needed to generate a uniform interval between records.

Example

node = stream.create("timeintervals", "My node")
node.setPropertyValue("interval_type", "SecondsPerDay")
node.setPropertyValue("days_per_week", 4)
node.setPropertyValue("week_begins_on", "Tuesday")
node.setPropertyValue("hours_per_day", 10)
node.setPropertyValue("day_begins_hour", 7)
node.setPropertyValue("day_begins_minute", 5)
node.setPropertyValue("day_begins_second", 17)
node.setPropertyValue("mode", "Label")
node.setPropertyValue("year_start", 2005)
node.setPropertyValue("month_start", "January")
node.setPropertyValue("day_start", 4)
node.setKeyedPropertyValue("pad", "AGE", "MeanOfRecentPoints")
node.setPropertyValue("agg_mode", "Specify")
node.setPropertyValue("agg_set_default", "Last")

Chapter 11. Field Operations Node Properties 169

Table 94. timeintervalsnode properties

timeintervalsnode properties Data type Property description

interval_type None

Periods

CyclicPeriods

Years

Quarters

Months

DaysPerWeek

DaysNonPeriodic

HoursPerDay

HoursNonPeriodic

MinutesPerDay

MinutesNonPeriodic

SecondsPerDay

SecondsNonPeriodic

mode Label

Create

Specifies whether you want to label
records consecutively or build the series
based on a specified date, timestamp,
or time field.

field field When building the series from the data,
specifies the field that indicates the
date or time for each record.

period_start integer Specifies the starting interval for
periods or cyclic periods

cycle_start integer Starting cycle for cyclic periods.

year_start integer For interval types where applicable,
year in which the first interval falls.

quarter_start integer For interval types where applicable,
quarter in which the first interval falls.

170 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 94. timeintervalsnode properties (continued)

timeintervalsnode properties Data type Property description

month_start
January
February
March
April
May
June
July
August
September
October
November
December

day_start integer

hour_start integer

minute_start integer

second_start integer

periods_per_cycle integer For cyclic periods, number within each
cycle.

fiscal_year_begins January
February
March
April
May
June
July
August
September
October
November
December

For quarterly intervals, specifies the
month when the fiscal year begins.

week_begins_on Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

For periodic intervals (days per week,
hours per day, minutes per day, and
seconds per day), specifies the day on
which the week begins.

Chapter 11. Field Operations Node Properties 171

Table 94. timeintervalsnode properties (continued)

timeintervalsnode properties Data type Property description

day_begins_hour integer For periodic intervals (hours per day,
minutes per day, seconds per day),
specifies the hour when the day
begins. Can be used in combination
with day_begins_minute and
day_begins_second to specify an
exact time such as 8:05:01. See usage
example below.

day_begins_minute integer For periodic intervals (hours per day,
minutes per day, seconds per day),
specifies the minute when the day
begins (for example, the 5 in 8:05).

day_begins_second integer For periodic intervals (hours per day,
minutes per day, seconds per day),
specifies the second when the day
begins (for example, the 17 in 8:05:17).

days_per_week integer For periodic intervals (days per week,
hours per day, minutes per day, and
seconds per day), specifies the number
of days per week.

hours_per_day integer For periodic intervals (hours per day,
minutes per day, and seconds per day),
specifies the number of hours in the
day.

interval_increment 1

2

3

4

5

6

10

15

20

30

For minutes per day and seconds per
day, specifies the number of minutes or
seconds to increment for each record.

field_name_extension string

field_name_extension_as_pr
efix

flag

172 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 94. timeintervalsnode properties (continued)

timeintervalsnode properties Data type Property description

date_format
"DDMMYY"
"MMDDYY"
"YYMMDD"
"YYYYMMDD"
"YYYYDDD"
DAY
MONTH
"DD-MM-YY"
"DD-MM-YYYY"
"MM-DD-YY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD.YYYY"
"DD.MON.YY"
"DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY
q Q YYYY
ww WK YYYY

time_format "HHMMSS"
"HHMM"
"MMSS"
"HH:MM:SS"
"HH:MM"
"MM:SS"
"(H)H:(M)M:(S)S"
"(H)H:(M)M"
"(M)M:(S)S"
"HH.MM.SS"
"HH.MM"
"MM.SS"
"(H)H.(M)M.(S)S"
"(H)H.(M)M"
"(M)M.(S)S"

aggregate Mean

Sum

Mode

Min

Max

First

Last

TrueIfAnyTrue

Specifies the aggregation method for a
field.

Chapter 11. Field Operations Node Properties 173

Table 94. timeintervalsnode properties (continued)

timeintervalsnode properties Data type Property description

pad Blank

MeanOfRecentPoints

True

False

Specifies the padding method for a field.

agg_mode All

Specify

Specifies whether to aggregate or
pad all fields with default functions
as needed or specify the fields and
functions to use.

agg_range_default Mean

Sum

Mode

Min

Max

Specifies the default function to use
when aggregating continuous fields.

agg_set_default Mode

First

Last

Specifies the default function to use
when aggregating nominal fields.

agg_flag_default TrueIfAnyTrue

Mode

First

Last

pad_range_default Blank

MeanOfRecentPoints

Specifies the default function to use
when padding continuous fields.

pad_set_default Blank

MostRecentValue

pad_flag_default Blank

True

False

174 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 94. timeintervalsnode properties (continued)

timeintervalsnode properties Data type Property description

max_records_to_create integer Specifies the maximum number of
records to create when padding the
series.

estimation_from_beginning flag

estimation_to_end flag

estimation_start_offset integer

estimation_num_holdouts integer

create_future_records flag

num_future_records integer

create_future_field flag

future_field_name string

transposenode properties
The Transpose node swaps the data in rows and columns so that records become
fields and fields become records.

Example

node = stream.create("transpose", "My node")
node.setPropertyValue("transposed_names", "Read")
node.setPropertyValue("read_from_field", "TimeLabel")
node.setPropertyValue("max_num_fields", "1000")
node.setPropertyValue("id_field_name", "ID")

Table 95. transposenode properties

transposenode properties Data type Property description

transpose_method enum Specifies the transpose method: Normal
(normal), CASE to VAR (casetovar), or
VAR to CASE (vartocase).

transposed_names Prefix

Read

Property for the Normal transpose method.
New field names can be generated
automatically based on a specified prefix,
or they can be read from an existing field in
the data.

prefix string Property for the Normal transpose method.

num_new_fields integer Property for the Normal transpose method.
When using a prefix, specifies the maximum
number of new fields to create.

read_from_field field Property for the Normal transpose method.
Field from which names are read. This must
be an instantiated field or an error will
occur when the node is executed.

Chapter 11. Field Operations Node Properties 175

Table 95. transposenode properties (continued)

transposenode properties Data type Property description

max_num_fields integer Property for the Normal transpose method.
When reading names from a field, specifies
an upper limit to avoid creating an
inordinately large number of fields.

transpose_type Numeric

String

Custom

Property for the Normal transpose method.
By default, only continuous (numeric range)
fields are transposed, but you can choose
a custom subset of numeric fields or
transpose all string fields instead.

transpose_fields list Property for the Normal transpose method.
Specifies the fields to transpose when the
Custom option is used.

id_field_name field Property for the Normal transpose method.

transpose_casetovar_id
fields

field Property for the CASE to VAR (casetovar)
transpose method. Accepts multiple fields
to be used as index fields.

field1 ... fieldN

transpose_casetovar_co
lumnfields

field Property for the CASE to VAR (casetovar)
transpose method. Accepts multiple fields
to be used as column fields.

field1 ... fieldN

transpose_casetovar_va
luefields

field Property for the CASE to VAR (casetovar)
transpose method. Accepts multiple fields
to be used as value fields.

field1 ... fieldN

transpose_vartocase_id
fields

field Property for the VAR to CASE (vartocase)
transpose method. Accepts multiple fields
to be used as ID variable fields.

field1 ... fieldN

transpose_vartocase_va
lfields

field Property for the VAR to CASE (vartocase)
transpose method. Accepts multiple fields
to be used as value variable fields.

field1 ... fieldN

typenode properties
The Type node specifies field metadata and properties. For example, you can
specify a measurement level (continuous, nominal, ordinal, or flag) for each field,
set options for handling missing values and system nulls, set the role of a field for
modeling purposes, specify field and value labels, and specify values for a field.

176 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Example

node = stream.createAt("type", "My node", 50, 50)
node.setKeyedPropertyValue("check", "Cholesterol", "Coerce")
node.setKeyedPropertyValue("direction", "Drug", "Input")
node.setKeyedPropertyValue("type", "K", "Range")
node.setKeyedPropertyValue("values", "Drug", ["drugA", "drugB", "drugC",
"drugD", "drugX",
 "drugY", "drugZ"])
node.setKeyedPropertyValue("null_missing", "BP", False)
node.setKeyedPropertyValue("whitespace_missing", "BP", False)
node.setKeyedPropertyValue("description", "BP", "Blood Pressure")
node.setKeyedPropertyValue("value_labels", "BP", [["HIGH", "High Blood
Pressure"],
 ["NORMAL", "normal blood pressure"]])

Note that in some cases you may need to fully instantiate the Type node in order for other nodes to work
correctly, such as the fields from property of the Set to Flag node. You can simply connect a Table
node and execute it to instantiate the fields:

tablenode = stream.createAt("table", "Table node", 150, 50)
stream.link(node, tablenode)
tablenode.run(None)
stream.delete(tablenode)

Table 96. typenode properties

typenode
properties

Data type Property description

direction Input

Target

Both

None

Partition

Split

Frequency

RecordID

Keyed property for field roles.

Note: The values In and Out are now
deprecated. Support for them may be
withdrawn in a future release.

Chapter 11. Field Operations Node Properties 177

Table 96. typenode properties (continued)

typenode
properties

Data type Property description

type Range

Flag

Set

Typeless

Discrete

OrderedSet

Default

Measurement level of the field
(previously
called the "type" of field). Setting type to
Default will clear any values
parameter
setting, and if value_mode has the value
Specify, it will be reset to Read.
If value_mode is set to Pass or Read,
 setting type will not affect
value_mode.

Note: The data types used internally
differ from those visible in the type
node. The correspondence is as follows:
Range -> Continuous Set - > Nominal
OrderedSet -> Ordinal Discrete- >
Categorical

storage Unknown

String

Integer

Real

Time

Date

Timestamp

Read-only keyed property for field storage
type.

check None

Nullify

Coerce

Discard

Warn

Abort

Keyed property for field type and range
checking.

178 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 96. typenode properties (continued)

typenode
properties

Data type Property description

values [value value] For continuous fields, the first value is
the minimum, and the last value is the
maximum. For nominal fields, specify all
values. For flag fields, the first value
represents false, and the last value
represents true. Setting this property
automatically sets the value_mode
property to Specify.

value_mode Read

Pass

Read+

Current

Specify

Determines how values are set. Note that
you cannot set this property to Specify
directly; to use specific values, set the
values property.

extend_valu
es

flag Applies when value_mode is set to
Read. Set to T to add newly read values
to any existing values for the field. Set to
F to discard existing values in favor of the
newly read values.

enable_miss
ing

flag When set to T, activates tracking of
missing values for the field.

missing_val
ues

[value value ...] Specifies data values that denote missing
data.

range_missi
ng

flag Specifies whether a missing-value (blank)
range is defined for a field.

missing_low
er

string When range_missing is true, specifies
the lower bound of the missing-value
range.

missing_upp
er

string When range_missing is true, specifies
the upper bound of the missing-value
range.

null_missin
g

flag When set to T, nulls (undefined values
that are displayed as $null$ in the
software) are considered missing values.

whitespace_
missing

flag When set to T, values containing only
white space (spaces, tabs, and new lines)
are considered missing values.

description string Specifies the description for a field.

value_label
s

[[Value LabelString] [Value LabelString] ...] Used to specify labels for value pairs.

Chapter 11. Field Operations Node Properties 179

Table 96. typenode properties (continued)

typenode
properties

Data type Property description

display_pla
ces

integer Sets the number of decimal places for
the field when displayed (applies only to
fields with REAL storage). A value of –1
will use the stream default.

export_plac
es

integer Sets the number of decimal places for the
field when exported (applies only to fields
with REAL storage). A value of –1 will use
the stream default.

decimal_sep
arator

DEFAULT

PERIOD

COMMA

Sets the decimal separator for the field
(applies only to fields with REAL storage).

date_format "DDMMYY"
"MMDDYY"
"YYMMDD"
"YYYYMMDD"
"YYYYDDD"
DAY
MONTH
"DD-MM-YY"
"DD-MM-YYYY"
"MM-DD-YY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD.YYYY"
"DD.MON.YY"
"DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY
q Q YYYY
ww WK YYYY

Sets the date format for the field (applies
only to fields with DATE or TIMESTAMP
storage).

time_format "HHMMSS"
"HHMM"
"MMSS"
"HH:MM:SS"
"HH:MM"
"MM:SS"
"(H)H:(M)M:(S)S"
"(H)H:(M)M"
"(M)M:(S)S"
"HH.MM.SS"
"HH.MM"
"MM.SS"
"(H)H.(M)M.(S)S"
"(H)H.(M)M"
"(M)M.(S)S"

Sets the time format for the field (applies
only to fields with TIME or TIMESTAMP
storage).

180 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 96. typenode properties (continued)

typenode
properties

Data type Property description

number_form
at

DEFAULT

STANDARD

SCIENTIFIC

CURRENCY

Sets the number display format for the
field.

standard_pl
aces

integer Sets the number of decimal places for the
field when displayed in standard format.
A value of –1 will use the stream default.
Note that the existing display_places
slot will also change this but is now
deprecated.

scientific_
places

integer Sets the number of decimal places for the
field when displayed in scientific format.
A value of –1 will use the stream default.

currency_pl
aces

integer Sets the number of decimal places for the
field when displayed in currency format. A
value of –1 will use the stream default.

grouping_sy
mbol

DEFAULT

NONE

LOCALE

PERIOD

COMMA

SPACE

Sets the grouping symbol for the field.

column_widt
h

integer Sets the column width for the field. A
value of –1 will set column width to Auto.

justify AUTO

CENTER

LEFT

RIGHT

Sets the column justification for the field.

Chapter 11. Field Operations Node Properties 181

Table 96. typenode properties (continued)

typenode
properties

Data type Property description

measure_typ
e

Range / MeasureType.RANGE

Discrete / MeasureType.DISCRETE

Flag / MeasureType.FLAG

Set / MeasureType.SET

OrderedSet /
MeasureType.ORDERED_SET

Typeless / MeasureType.TYPELESS

Collection /
MeasureType.COLLECTION

Geospatial /
MeasureType.GEOSPATIAL

This keyed property is similar to type
in that it can be used to define the
measurement associated with the field.
What is different is that in Python
scripting, the setter function can also be
passed one of the MeasureType values
while the getter will always return on the
MeasureType values.

collection_
measure

Range / MeasureType.RANGE

Flag / MeasureType.FLAG

Set / MeasureType.SET

OrderedSet /
MeasureType.ORDERED_SET

Typeless / MeasureType.TYPELESS

For collection fields (lists with a depth
of 0), this keyed property defines the
measurement type associated with the
underlying values.

geo_type Point

MultiPoint

LineString

MultiLineString

Polygon

MultiPolygon

For geospatial fields, this keyed property
defines the type of geospatial object
represented by this field. This should
be consistent with the list depth of the
values.

has_coordin
ate_ system

boolean For geospatial fields, this property defines
whether this field has a coordinate
system

coordinate_
system

string For geospatial fields, this keyed property
defines the coordinate system for this
field.

182 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 96. typenode properties (continued)

typenode
properties

Data type Property description

custom_stor
age_ type

Unknown / MeasureType.UNKNOWN

String / MeasureType.STRING

Integer / MeasureType.INTEGER

Real / MeasureType.REAL

Time / MeasureType.TIME

Date / MeasureType.DATE

Timestamp /
MeasureType.TIMESTAMP

List / MeasureType.LIST

This keyed property is similar to
custom_storage in that it can be used
to define the override storage for the
field. What is different is that in Python
scripting, the setter function can also be
passed one of the StorageType values
while the getter will always return on the
StorageType values.

custom_list
_
storage_typ
e

String / MeasureType.STRING

Integer / MeasureType.INTEGER

Real / MeasureType.REAL

Time / MeasureType.TIME

Date / MeasureType.DATE

Timestamp /
MeasureType.TIMESTAMP

For list fields, this keyed property
specifies the storage type of the
underlying values.

custom_list
_depth

integer For list fields, this keyed property
specifies the depth of the field

max_list_le
ngth

integer Only available for data with a
measurement level of either Geospatial or
Collection. Set the maximum length of the
list by specifying the number of elements
the list can contain.

max_string_
length

integer Only available for typeless data and used
when you are generating SQL to create a
table. Enter the value of the largest string
in your data; this generates a column in
the table that is big enough to contain the
string.

Chapter 11. Field Operations Node Properties 183

184 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 12. Graph Node Properties

Graph node common properties
This section describes the properties available for graph nodes, including common properties and
properties that are specific to each node type.

Table 97. Common graph node properties

Common graph node
properties

Data type Property description

title string Specifies the title. Example: "This is a title."

caption string Specifies the caption. Example: "This is a
caption."

output_mode Screen

File

Specifies whether output from the graph node is
displayed or written to a file.

output_format BMP

JPEG

PNG

HTML

output (.cou)

Specifies the type of output. The exact type of
output allowed for each node varies.

full_filename string Specifies the target path and filename for output
generated from the graph node.

use_graph_size flag Controls whether the graph is sized explicitly,
using the width and height properties below.
Affects only graphs that are output to screen.
Not available for the Distribution node.

graph_width number When use_graph_size is True, sets the graph
width in pixels.

graph_height number When use_graph_size is True, sets the graph
height in pixels.

Turning off optional fields
Optional fields, such as an overlay field for plots, can be turned off by setting the property value to "
" (empty string), as shown in the following example:

plotnode.setPropertyValue("color_field", "")

Specifying colors
The colors for titles, captions, backgrounds, and labels can be specified by using the hexadecimal strings
starting with the hash (#) symbol. For example, to set the graph background to sky blue, you would use
the following statement:

mygraphnode.setPropertyValue("graph_background", "#87CEEB")

Here, the first two digits, 87, specify the red content; the middle two digits, CE, specify the green content;
and the last two digits, EB, specify the blue content. Each digit can take a value in the range 0–9 or A–F.
Together, these values can specify a red-green-blue, or RGB, color.

Note: When specifying colors in RGB, you can use the Field Chooser in the user interface to determine the
correct color code. Simply hover over the color to activate a ToolTip with the desired information.

collectionnode Properties
The Collection node shows the distribution of values for one numeric field relative to
the values of another. (It creates graphs that are similar to histograms.) It is useful
for illustrating a variable or field whose values change over time. Using 3-D graphing,
you can also include a symbolic axis displaying distributions by category.

Example

node = stream.create("collection", "My node")
"Plot" tab
node.setPropertyValue("three_D", True)
node.setPropertyValue("collect_field", "Drug")
node.setPropertyValue("over_field", "Age")
node.setPropertyValue("by_field", "BP")
node.setPropertyValue("operation", "Sum")
"Overlay" section
node.setPropertyValue("color_field", "Drug")
node.setPropertyValue("panel_field", "Sex")
node.setPropertyValue("animation_field", "")
"Options" tab
node.setPropertyValue("range_mode", "Automatic")
node.setPropertyValue("range_min", 1)
node.setPropertyValue("range_max", 100)
node.setPropertyValue("bins", "ByNumber")
node.setPropertyValue("num_bins", 10)
node.setPropertyValue("bin_width", 5)

Table 98. collectionnode properties

collectionnode properties Data type Property description

over_field field

over_label_auto flag

over_label string

collect_field field

collect_label_auto flag

collect_label string

three_D flag

by_field field

by_label_auto flag

186 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 98. collectionnode properties (continued)

collectionnode properties Data type Property description

by_label string

operation Sum

Mean

Min

Max

SDev

color_field string

panel_field string

animation_field string

range_mode Automatic

UserDefined

range_min number

range_max number

bins ByNumber

ByWidth

num_bins number

bin_width number

use_grid flag

graph_background color Standard graph colors are described at the
beginning of this section.

page_background color Standard graph colors are described at the
beginning of this section.

distributionnode Properties
The Distribution node shows the occurrence of symbolic (categorical) values, such
as mortgage type or gender. Typically, you might use the Distribution node to show
imbalances in the data, which you could then rectify using a Balance node before
creating a model.

Example

node = stream.create("distribution", "My node")
"Plot" tab
node.setPropertyValue("plot", "Flags")
node.setPropertyValue("x_field", "Age")
node.setPropertyValue("color_field", "Drug")
node.setPropertyValue("normalize", True)

Chapter 12. Graph Node Properties 187

node.setPropertyValue("sort_mode", "ByOccurence")
node.setPropertyValue("use_proportional_scale", True)

Table 99. distributionnode properties

distributionnode properties Data type Property description

plot SelectedFields

Flags

x_field field

color_field field Overlay field.

normalize flag

sort_mode ByOccurence

Alphabetic

use_proportional_scale flag

evaluationnode Properties
The Evaluation node helps to evaluate and compare predictive models. The
evaluation chart shows how well models predict particular outcomes. It sorts
records based on the predicted value and confidence of the prediction. It splits
the records into groups of equal size (quantiles) and then plots the value of the
business criterion for each quantile from highest to lowest. Multiple models are
shown as separate lines in the plot.

Example

node = stream.create("evaluation", "My node")
"Plot" tab
node.setPropertyValue("chart_type", "Gains")
node.setPropertyValue("cumulative", False)
node.setPropertyValue("field_detection_method", "Name")
node.setPropertyValue("inc_baseline", True)
node.setPropertyValue("n_tile", "Deciles")
node.setPropertyValue("style", "Point")
node.setPropertyValue("point_type", "Dot")
node.setPropertyValue("use_fixed_cost", True)
node.setPropertyValue("cost_value", 5.0)
node.setPropertyValue("cost_field", "Na")
node.setPropertyValue("use_fixed_revenue", True)
node.setPropertyValue("revenue_value", 30.0)
node.setPropertyValue("revenue_field", "Age")
node.setPropertyValue("use_fixed_weight", True)
node.setPropertyValue("weight_value", 2.0)
node.setPropertyValue("weight_field", "K")

188 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 100. evaluationnode properties

evaluationnode properties Data type Property description

chart_type
Gains
Response
Lift
Profit
ROI
ROC

inc_baseline flag

field_detection_method Metadata

Name

use_fixed_cost flag

cost_value number

cost_field string

use_fixed_revenue flag

revenue_value number

revenue_field string

use_fixed_weight flag

weight_value number

weight_field field

n_tile Quartiles

Quintles

Deciles

Vingtiles

Percentiles

1000-tiles

cumulative flag

style Line

Point

Chapter 12. Graph Node Properties 189

Table 100. evaluationnode properties (continued)

evaluationnode properties Data type Property description

point_type
Rectangle
Dot
Triangle
Hexagon
Plus
Pentagon
Star
BowTie
HorizontalDash
VerticalDash
IronCross
Factory
House
Cathedral
OnionDome
ConcaveTriangle
OblateGlobe
CatEye
FourSidedPillow
RoundRectangle
Fan

export_data flag

data_filename string

delimiter string

new_line flag

inc_field_names flag

inc_best_line flag

inc_business_rule flag

business_rule_condition string

plot_score_fields flag

score_fields [field1 ... fieldN]

target_field field

use_hit_condition flag

hit_condition string

use_score_expression flag

score_expression string

caption_auto flag

graphboardnode Properties
The Graphboard node offers many different types of graphs in one single node.
Using this node, you can choose the data fields you want to explore and then select
a graph from those available for the selected data. The node automatically filters out
any graph types that would not work with the field choices.

Note: If you set a property that is not valid for the graph type (for example, specifying y_field for a
histogram), that property is ignored.

190 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Note: In the UI, on the Detailed tab of many different graph types, there is a Summary field; this field is
not currently supported by scripting.

Example

node = stream.create("graphboard", "My node")
node.setPropertyValue("graph_type", "Line")
node.setPropertyValue("x_field", "K")
node.setPropertyValue("y_field", "Na")

Chapter 12. Graph Node Properties 191

Table 101. graphboardnode properties

graphboard
properties

Data type Property description

graph_type 2DDotplot

3DArea

3DBar

3DDensity

3DHistogram

3DPie

3DScatterplot

Area

ArrowMap

Bar

BarCounts

BarCountsMap

BarMap

BinnedScatter

Boxplot

Bubble

ChoroplethMeans

ChoroplethMedians

ChoroplethSums

ChoroplethValues

Identifies the graph type.

192 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 101. graphboardnode properties (continued)

graphboard
properties

Data type Property description

ChoroplethCounts

CoordinateMap

CoordinateChoroplethMeans

CoordinateChoroplethMedians

CoordinateChoroplethSums

CoordinateChoroplethValues

CoordinateChoroplethCounts

Dotplot

Heatmap

HexBinScatter

Histogram

Line

LineChartMap

LineOverlayMap

Parallel

Path

Pie

PieCountMap

PieCounts

PieMap

Chapter 12. Graph Node Properties 193

Table 101. graphboardnode properties (continued)

graphboard
properties

Data type Property description

PointOverlayMap

PolygonOverlayMap

Ribbon

Scatterplot

SPLOM

Surface

x_field field Specifies a custom label for the x
axis. Available only for labels.

y_field field Specifies a custom label for the y
axis. Available only for labels.

z_field field Used in some 3-D graphs.

color_field field Used in heat maps.

size_field field Used in bubble plots.

categories_fiel
d

field

values_field field

rows_field field

columns_field field

fields field

start_longitude
_field

field Used with arrows on a reference
map.

end_longitude_f
ield

field

start_latitude_
field

field

end_latitude_fi
eld

field

data_key_field field Used in various maps.

panelrow_field string

panelcol_field string

animation_field string

longitude_field field Used with co-ordinates on maps.

latitude_field field

map_color_field field

194 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

histogramnode Properties
The Histogram node shows the occurrence of values for numeric fields. It is often
used to explore the data before manipulations and model building. Similar to the
Distribution node, the Histogram node frequently reveals imbalances in the data.

Example

node = stream.create("histogram", "My node")
"Plot" tab
node.setPropertyValue("field", "Drug")
node.setPropertyValue("color_field", "Drug")
node.setPropertyValue("panel_field", "Sex")
node.setPropertyValue("animation_field", "")
"Options" tab
node.setPropertyValue("range_mode", "Automatic")
node.setPropertyValue("range_min", 1.0)
node.setPropertyValue("range_max", 100.0)
node.setPropertyValue("num_bins", 10)
node.setPropertyValue("bin_width", 10)
node.setPropertyValue("normalize", True)
node.setPropertyValue("separate_bands", False)

Table 102. histogramnode properties

histogramnode properties Data type Property description

field field

color_field field

panel_field field

animation_field field

range_mode Automatic

UserDefined

range_min number

range_max number

bins ByNumber

ByWidth

num_bins number

bin_width number

normalize flag

separate_bands flag

x_label_auto flag

x_label string

y_label_auto flag

y_label string

use_grid flag

Chapter 12. Graph Node Properties 195

Table 102. histogramnode properties (continued)

histogramnode properties Data type Property description

graph_background color Standard graph colors are described at the
beginning of this section.

page_background color Standard graph colors are described at the
beginning of this section.

normal_curve flag Indicates whether the normal distribution
curve should be shown on the output.

mapvisualization properties
The Map Visualization node can accept multiple input connections and display
geospatial data on a map as a series of layers. Each layer is a single geospatial
field; for example, the base layer might be a map of a country, then above that you
might have one layer for roads, one layer for rivers, and one layer for towns.

Table 103. mapvisualization properties

mapvisualization
properties

Data type Property description

tag string Sets the name of the tag for the input. The
default tag is a number based on the order
that inputs were connected to the node
(the first connection tag is 1, the second
connection tag is 2, etc.

layer_field field Selects which geo-field from the data set
is displayed as a layer on the map. The
default selection is based on the following
sort order:

• First - Point
• Linestring
• Polygon
• Multipoint
• MultiLinestring
• Last - MultiPolygon

If there are two fields with the
same measurement type, the first field
alphabetically (by name) will be selected by
default.

color_type boolean Specifies whether a standard color is
applied to all features of the geo-field, or an
overlay field which colors the features based
on values from another field in the data set.
Possible values are standard or overlay.
The default is standard.

196 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 103. mapvisualization properties (continued)

mapvisualization
properties

Data type Property description

color string If standard is selected for color_type,
the drop-down contains the same color
palette as the chart category color order on
the user options Display tab.

Default is chart category color 1.

color_field field If overlay is selected for color_type, the
drop-down contains all fields from the same
data set as the geo-field selected as the
layer.

symbol_type boolean Specifies whether a standard symbol is
applied to all records of the geo-field, or an
overlay symbol which changes the symbol
icon for the points based on values from
another field in the data set. Possible values
are standard or overlay. The default is
standard.

symbol string If standard is selected for symbol_type,
the drop-down contains a selection of
symbols that can be used to display points
on the map.

symbol_field field If overlay is selected for symbol_type,
the drop-down contains all of the nominal,
ordinal, or categorical fields from the same
data set as the geo-field selected as the
layer.

size_type boolean Specifies whether a standard size is applied
to all records of the geo-field, or an overlay
size which changes the size of symbol icon
or the line thickness based on values from
another field in the data set. Possible values
are standard or overlay. The default is
standard.

size string If standard is selected for size_type,
for point or multipoint, the drop-
down contains a selection of sizes for
the symbol selected. For linestring
or multilinestring, the drop-down
contains a selection of line thicknesses.

size_field field If overlay is selected for size_type, the
drop-down contains all of the fields from the
same data set as the geo-field selected as
the layer.

Chapter 12. Graph Node Properties 197

Table 103. mapvisualization properties (continued)

mapvisualization
properties

Data type Property description

transp_type boolean Specifies whether a standard transparency
is applied to all records of the geo-field,
or an overlay transparency which changes
the level of transparency for the symbol,
line, or polygon based on values from
another field in the data set. Possible values
are standard or overlay. The default is
standard.

transp integer If standard is selected for transp_type,
the drop-down contains a selection of
transparency levels starting at 0% (opaque)
and increasing to 100% (transparent) in 10%
increments. Sets the transparency of points,
lines, or polygons on the map.

If overlay is selected for size_type, the
drop-down contains all of the fields from the
same data set as the geo-field selected as
the layer.

For points, multipoints, linestrings,
and multilinestrings, polygons and
multipolygons (that are the bottom
layer), the default is 0%. For polygons and
multipolygons that are not the bottom
layer, the default is 50% (to avoid obscuring
layers beneath these polygons).

transp_field field If overlay is selected for transp_type,
the drop-down contains all of the fields from
the same data set as the geo-field selected
as the layer.

data_label_field field Specifies the field to use as data labels
on the map. For example, if the layer this
setting is applied to is a polygon layer, then
the data label might be the name field –
containing the name of each polygon. So
selecting the name field here would result
in those names being displayed on the map.

use_hex_binning boolean Enables hex binning and enables all of
the aggregation drop-downs. This setting is
turned off by default.

198 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 103. mapvisualization properties (continued)

mapvisualization
properties

Data type Property description

color_aggregation and
transp_aggregation

string If you select an overlay field for a points
layer using hex binning, then all the values
for that field must be aggregated for all
points within the hexagon. Therefore, you
must specify an aggregation function for any
overlay fields you want to apply to the map.

The available aggregation functions are:

Continuous (Real or Integer storage):

• Sum
• Mean
• Min
• Max
• Median
• 1st Quartile
• 3rd Quartile

Continuous (Time, Date, or Timestamp
storage):

• Mean
• Min
• Max

Nominal/Categorical:

• Mode
• Min
• Max

Flag:

• True if any true
• False if any false

custom_storage string Sets the overall storage type of the field.
Default is List. If List is specified,
the following custom_value_storage and
list_depth controls are disabled.

custom_value_storage string Sets the storage types of the elements in the
list instead of to the field as a whole. The
default is Real.

Chapter 12. Graph Node Properties 199

Table 103. mapvisualization properties (continued)

mapvisualization
properties

Data type Property description

list_depth integer Sets the depth of the list field. Ther required
depth depends on the type of geofield,
following these criteria:

• Point - 0
• LineString - 1
• Polygon - 2
• Multipoint - 1
• MultiLineString - 2
• Multipolygon - 3

You must know the type of geospatial field
you are converting back to a list and the
required depth for that kind of field. If set
incorrectly, the field cannot be used.

The default value is 0, minimum is 0, and
maximum is 10.

multiplotnode Properties
The Multiplot node creates a plot that displays multiple Y fields over a single X field.
The Y fields are plotted as colored lines; each is equivalent to a Plot node with Style
set to Line and X Mode set to Sort. Multiplots are useful when you want to explore
the fluctuation of several variables over time.

Example

node = stream.create("multiplot", "My node")
"Plot" tab
node.setPropertyValue("x_field", "Age")
node.setPropertyValue("y_fields", ["Drug", "BP"])
node.setPropertyValue("panel_field", "Sex")
"Overlay" section
node.setPropertyValue("animation_field", "")
node.setPropertyValue("tooltip", "test")
node.setPropertyValue("normalize", True)
node.setPropertyValue("use_overlay_expr", False)
node.setPropertyValue("overlay_expression", "test")
node.setPropertyValue("records_limit", 500)
node.setPropertyValue("if_over_limit", "PlotSample")

Table 104. multiplotnode properties

multiplotnode properties Data type Property description

x_field field

y_fields list

panel_field field

animation_field field

normalize flag

200 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 104. multiplotnode properties (continued)

multiplotnode properties Data type Property description

use_overlay_expr flag

overlay_expression string

records_limit number

if_over_limit PlotBins

PlotSample

PlotAll

x_label_auto flag

x_label string

y_label_auto flag

y_label string

use_grid flag

graph_background color Standard graph colors are described at the
beginning of this section.

page_background color Standard graph colors are described at the
beginning of this section.

plotnode Properties
The Plot node shows the relationship between numeric fields. You can create a plot
by using points (a scatterplot) or lines.

Example

node = stream.create("plot", "My node")
"Plot" tab
node.setPropertyValue("three_D", True)
node.setPropertyValue("x_field", "BP")
node.setPropertyValue("y_field", "Cholesterol")
node.setPropertyValue("z_field", "Drug")
"Overlay" section
node.setPropertyValue("color_field", "Drug")
node.setPropertyValue("size_field", "Age")
node.setPropertyValue("shape_field", "")
node.setPropertyValue("panel_field", "Sex")
node.setPropertyValue("animation_field", "BP")
node.setPropertyValue("transp_field", "")
node.setPropertyValue("style", "Point")
"Output" tab
node.setPropertyValue("output_mode", "File")
node.setPropertyValue("output_format", "JPEG")
node.setPropertyValue("full_filename", "C:/temp/graph_output/
plot_output.jpeg")

Chapter 12. Graph Node Properties 201

Table 105. plotnode properties

plotnode properties Data type Property description

x_field field Specifies a custom label for the x axis.
Available only for labels.

y_field field Specifies a custom label for the y axis.
Available only for labels.

three_D flag Specifies a custom label for the y axis.
Available only for labels in 3-D graphs.

z_field field

color_field field Overlay field.

size_field field

shape_field field

panel_field field Specifies a nominal or flag field for use in
making a separate chart for each category.
Charts are paneled together in one output
window.

animation_field field Specifies a nominal or flag field for illustrating
data value categories by creating a series of
charts displayed in sequence using animation.

transp_field field Specifies a field for illustrating data value
categories by using a different level of
transparency for each category. Not available
for line plots.

overlay_type None

Smoother

Function

Specifies whether an overlay function or
LOESS smoother is displayed.

overlay_expression string Specifies the expression used when
overlay_type is set to Function.

style Point

Line

202 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 105. plotnode properties (continued)

plotnode properties Data type Property description

point_type
Rectangle
Dot
Triangle
Hexagon
Plus
Pentagon
Star
BowTie
HorizontalDash
VerticalDash
IronCross
Factory
House
Cathedral
OnionDome
ConcaveTriangle
OblateGlobe
CatEye
FourSidedPillow
RoundRectangle
Fan

x_mode Sort

Overlay

AsRead

x_range_mode Automatic

UserDefined

x_range_min number

x_range_max number

y_range_mode Automatic

UserDefined

y_range_min number

y_range_max number

z_range_mode Automatic

UserDefined

z_range_min number

z_range_max number

jitter flag

records_limit number

if_over_limit PlotBins

PlotSample

PlotAll

Chapter 12. Graph Node Properties 203

Table 105. plotnode properties (continued)

plotnode properties Data type Property description

x_label_auto flag

x_label string

y_label_auto flag

y_label string

z_label_auto flag

z_label string

use_grid flag

graph_background color Standard graph colors are described at the
beginning of this section.

page_background color Standard graph colors are described at the
beginning of this section.

use_overlay_expr flag Deprecated in favor of overlay_type.

timeplotnode Properties
The Time Plot node displays one or more sets of time series data. Typically, you
would first use a Time Intervals node to create a TimeLabel field, which would be
used to label the x axis.

Example

node = stream.create("timeplot", "My node")
node.setPropertyValue("y_fields", ["sales", "men", "women"])
node.setPropertyValue("panel", True)
node.setPropertyValue("normalize", True)
node.setPropertyValue("line", True)
node.setPropertyValue("smoother", True)
node.setPropertyValue("use_records_limit", True)
node.setPropertyValue("records_limit", 2000)
Appearance settings
node.setPropertyValue("symbol_size", 2.0)

Table 106. timeplotnode properties

timeplotnode properties Data type Property description

plot_series Series

Models

use_custom_x_field flag

x_field field

y_fields list

panel flag

normalize flag

line flag

204 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 106. timeplotnode properties (continued)

timeplotnode properties Data type Property description

points flag

point_type
Rectangle
Dot
Triangle
Hexagon
Plus
Pentagon
Star
BowTie
HorizontalDash
VerticalDash
IronCross
Factory
House
Cathedral
OnionDome
ConcaveTriangle
OblateGlobe
CatEye
FourSidedPillow
RoundRectangle
Fan

smoother flag You can add smoothers to the plot only if you
set panel to True.

use_records_limit flag

records_limit integer

symbol_size number Specifies a symbol size.

panel_layout Horizontal

Vertical

eplotnode Properties
The E-Plot (Beta) node shows the relationship between numeric fields. It is similar
to the Plot node, but its options differ and its output uses a new graphing interface
specific to this node. Use the beta-level node to play around with new graphing
features.

Table 107. eplotnode properties

eplotnode properties Data type Property description

x_field string Specify the field to display on the
horizontal X axis.

y_field string Specify the field to display on the vertical
Y axis.

color_field string Specify the field to use for the color map
overlay in the output, if desired.

size_field string Specify the field to use for the size map
overlay in the output, if desired.

Chapter 12. Graph Node Properties 205

Table 107. eplotnode properties (continued)

eplotnode properties Data type Property description

shape_field string Specify the field to use for the shape map
overlay in the output, if desired.

interested_fields string Specify the fields you'd like to include in
the output.

records_limit integer Specify a number for the maximum
number of records to plot in the output.
2000 is the default.

if_over_limit Boolean Specify whether to use the Sample option
or the Use all data option if the
records_limit is surpassed. Sample is
the default, and it randomly samples the
data until it hits the records_limit. If
you specify Use all data to ignore the
records_limit and plot all data points,
note that this may dramatically decrease
performance.

tsnenode Properties

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a tool for visualizing high-
dimensional data. It converts affinities of data points to probabilities. This t-SNE
node in SPSS Modeler is implemented in Python and requires the scikit-learn©

Python library.

Table 108. tsnenode properties

tsnenode properties Data type Property description

mode_type string Specify simple or expert mode.

n_components string Dimension of the embedded space (2D or
3D). Specify 2 or 3. Default is 2.

method string Specify barnes_hut or exact. Default is
barnes_hut.

init string Initialization of embedding. Specify
random or pca. Default is random.

target_field

Renamed to target starting with
version 18.2.1.1

string Target field name. It will be a colormap on
the output graph. The graph will use one
color if no target field is specified.

perplexity float The perplexity is related to the number of
nearest neighbors used in other manifold
learning algorithms. Larger datasets
usually require a larger perplexity.
Consider selecting a value between 5 and
50. Default is 30.

206 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 108. tsnenode properties (continued)

tsnenode properties Data type Property description

early_exaggeration float Controls how tight the natural clusters in
the original space are in the embedded
space, and how much space will be
between them. Default is 12.0.

learning_rate float Default is 200.

n_iter integer Maximum number of iterations for the
optimization. Set to at least 250. Default
is 1000.

angle float The angular size of the distant node as
measured from a point. Specify a value in
the range of 0-1. Default is 0.5.

enable_random_seed Boolean Set to true to enable the random_seed
parameter. Default is false.

random_seed integer The random number seed to use. Default
is None.

n_iter_without_progress integer Maximum iterations without progress.
Default is 300.

min_grad_norm string If the gradient norm is below this
threshold, the optimization will be
stopped. Default is 1.0E-7. Possible
values are:

• 1.0E-1
• 1.0E-2
• 1.0E-3
• 1.0E-4
• 1.0E-5
• 1.0E-6
• 1.0E-7
• 1.0E-8

isGridSearch Boolean Set to true to perform t-SNE with several
different perplexities. Default is false.

output_Rename Boolean Specify true if you want to provide a
custom name, or false to name the
output automatically. Default is false.

output_to string Specify Screen or Output. Default is
Screen.

full_filename string Specify the output file name.

output_file_type string Output file format. Specify HTML or
Output object. Default is HTML.

Chapter 12. Graph Node Properties 207

webnode Properties
The Web node illustrates the strength of the relationship between values of two
or more symbolic (categorical) fields. The graph uses lines of various widths to
indicate connection strength. You might use a Web node, for example, to explore the
relationship between the purchase of a set of items at an e-commerce site.

Example

node = stream.create("web", "My node")
"Plot" tab
node.setPropertyValue("use_directed_web", True)
node.setPropertyValue("to_field", "Drug")
node.setPropertyValue("fields", ["BP", "Cholesterol", "Sex", "Drug"])
node.setPropertyValue("from_fields", ["BP", "Cholesterol", "Sex"])
node.setPropertyValue("true_flags_only", False)
node.setPropertyValue("line_values", "Absolute")
node.setPropertyValue("strong_links_heavier", True)
"Options" tab
node.setPropertyValue("max_num_links", 300)
node.setPropertyValue("links_above", 10)
node.setPropertyValue("num_links", "ShowAll")
node.setPropertyValue("discard_links_min", True)
node.setPropertyValue("links_min_records", 5)
node.setPropertyValue("discard_links_max", True)
node.setPropertyValue("weak_below", 10)
node.setPropertyValue("strong_above", 19)
node.setPropertyValue("link_size_continuous", True)
node.setPropertyValue("web_display", "Circular")

Table 109. webnode properties

webnode properties Data type Property description

use_directed_web flag

fields list

to_field field

from_fields list

true_flags_only flag

line_values Absolute

OverallPct

PctLarger

PctSmaller

strong_links_heavier flag

num_links ShowMaximum

ShowLinksAbove

ShowAll

max_num_links number

208 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 109. webnode properties (continued)

webnode properties Data type Property description

links_above number

discard_links_min flag

links_min_records number

discard_links_max flag

links_max_records number

weak_below number

strong_above number

link_size_continuous flag

web_display Circular

Network

Directed

Grid

graph_background color Standard graph colors are described at the
beginning of this section.

symbol_size number Specifies a symbol size.

Chapter 12. Graph Node Properties 209

210 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 13. Modeling Node Properties

Common modeling node properties
The following properties are common to some or all modeling nodes. Any exceptions are noted in the
documentation for individual modeling nodes as appropriate.

Table 110. Common modeling node properties

Property Values Property description

custom_fields flag If true, allows you to specify target,
input, and other fields for the current
node. If false, the current settings from
an upstream Type node are used.

target

or

targets

field

or

[field1 ... fieldN]

Specifies a single target field or
multiple target fields depending on the
model type.

inputs [field1 ... fieldN] Input or predictor fields used by the
model.

partition field

use_partitioned_data flag If a partition field is defined, this
option ensures that only data from the
training partition is used to build the
model.

use_split_data flag

splits [field1 ... fieldN] Specifies the field or fields to use
for split modeling. Effective only if
use_split_data is set to True.

use_frequency flag Weight and frequency fields are used
by specific models as noted for each
model type.

frequency_field field

use_weight flag

weight_field field

use_model_name flag

model_name string Custom name for new model.

mode Simple

Expert

anomalydetectionnode properties
The Anomaly Detection node identifies unusual cases, or outliers, that do not
conform to patterns of “normal” data. With this node, it is possible to identify
outliers even if they do not fit any previously known patterns and even if you are not
exactly sure what you are looking for.

Example

node = stream.create("anomalydetection", "My node")
node.setPropertyValue("anomaly_method", "PerRecords")
node.setPropertyValue("percent_records", 95)
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("peer_group_num_auto", True)
node.setPropertyValue("min_num_peer_groups", 3)
node.setPropertyValue("max_num_peer_groups", 10)

Table 111. anomalydetectionnode properties

anomalydetectionnode
Properties

Values Property description

inputs [field1 ... fieldN] Anomaly Detection models screen
records based on the specified input
fields. They do not use a target field.
Weight and frequency fields are also
not used. See the topic “Common
modeling node properties” on page
211 for more information.

mode Expert

Simple

anomaly_method IndexLevel

PerRecords

NumRecords

Specifies the method used to
determine the cutoff value for
flagging records as anomalous.

index_level number Specifies the minimum cutoff value
for flagging anomalies.

percent_records number Sets the threshold for flagging
records based on the percentage of
records in the training data.

num_records number Sets the threshold for flagging
records based on the number of
records in the training data.

num_fields integer The number of fields to report for
each anomalous record.

impute_missing_values flag

adjustment_coeff number Value used to balance the relative
weight given to continuous and
categorical fields in calculating the
distance.

212 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 111. anomalydetectionnode properties (continued)

anomalydetectionnode
Properties

Values Property description

peer_group_num_auto flag Automatically calculates the number
of peer groups.

min_num_peer_groups integer Specifies the minimum number
of peer groups used when
peer_group_num_auto is set to
True.

max_num_per_groups integer Specifies the maximum number of
peer groups.

num_peer_groups integer Specifies the number of peer groups
used when peer_group_num_auto
is set to False.

noise_level number Determines how outliers are treated
during clustering. Specify a value
between 0 and 0.5.

noise_ratio number Specifies the portion of memory
allocated for the component that
should be used for noise buffering.
Specify a value between 0 and 0.5.

apriorinode properties
The Apriori node extracts a set of rules from the data, pulling out the rules with the
highest information content. Apriori offers five different methods of selecting rules
and uses a sophisticated indexing scheme to process large data sets efficiently.
For large problems, Apriori is generally faster to train; it has no arbitrary limit on
the number of rules that can be retained, and it can handle rules with up to 32
preconditions. Apriori requires that input and output fields all be categorical but
delivers better performance because it is optimized for this type of data.

Example

node = stream.create("apriori", "My node")
"Fields" tab
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("partition", "Test")
For non-transactional
node.setPropertyValue("use_transactional_data", False)
node.setPropertyValue("consequents", ["Age"])
node.setPropertyValue("antecedents", ["BP", "Cholesterol", "Drug"])
For transactional
node.setPropertyValue("use_transactional_data", True)
node.setPropertyValue("id_field", "Age")
node.setPropertyValue("contiguous", True)
node.setPropertyValue("content_field", "Drug")
"Model" tab
node.setPropertyValue("use_model_name", False)
node.setPropertyValue("model_name", "Apriori_bp_choles_drug")
node.setPropertyValue("min_supp", 7.0)
node.setPropertyValue("min_conf", 30.0)
node.setPropertyValue("max_antecedents", 7)
node.setPropertyValue("true_flags", False)
node.setPropertyValue("optimize", "Memory")

Chapter 13. Modeling Node Properties 213

"Expert" tab
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("evaluation", "ConfidenceRatio")
node.setPropertyValue("lower_bound", 7)

Table 112. apriorinode properties

apriorinode Properties Values Property description

consequents field Apriori models use Consequents and
Antecedents in place of the standard
target and input fields. Weight and
frequency fields are not used. See
the topic “Common modeling node
properties” on page 211 for more
information.

antecedents [field1 ... fieldN]

min_supp number

min_conf number

max_antecedents number

true_flags flag

optimize Speed

Memory

use_transactional_data flag When the value is true, the score for
each transaction ID is independent from
other transaction IDs. When the data to
be scored is too large to obtain acceptable
performance, we recommend separating
the data.

contiguous flag

id_field string

content_field string

mode Simple

Expert

evaluation RuleConfidence

DifferenceToPrior

ConfidenceRatio

InformationDifferenc
e

NormalizedChiSquare

lower_bound number

214 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 112. apriorinode properties (continued)

apriorinode Properties Values Property description

optimize Speed

Memory

Use to specify whether model building
should be optimized for speed or for
memory.

associationrulesnode properties
The Association Rules Node is similar to the Apriori Node; however, unlike Apriori,
the Association Rules Node can process list data. In addition, the Association Rules
Node can be used with IBM SPSS Analytic Server to process big data and take
advantage of faster parallel processing.

Table 113. associationrulesnode properties

associationrulesnode
properties

Data type Property description

predictions field Fields in this list can only appear as a
predictor of a rule

conditions [field1...fieldN] Fields in this list can only appear as a
condition of a rule

max_rule_conditions integer The maximum number of conditions that
can be included in a single rule. Minimum
1, maximum 9.

max_rule_predictions integer The maximum number of predictions that
can be included in a single rule. Minimum 1,
maximum 5.

max_num_rules integer The maximum number of rules that can be
considered as part of rule building. Minimum
1, maximum 10,000.

rule_criterion_top_n Confidence

Rulesupport

Lift

Conditionsupport

Deployability

The rule criterion that determines the value
by which the top "N" rules in the model are
chosen.

true_flags Boolean Setting as Y determines that only the true
values for flag fields are considered during
rule building.

rule_criterion Boolean Setting as Y determines that the rule
criterion values are used for excluding rules
during model building.

Chapter 13. Modeling Node Properties 215

Table 113. associationrulesnode properties (continued)

associationrulesnode
properties

Data type Property description

min_confidence number 0.1 to 100 - the percentage value for the
minimum required confidence level for a
rule produced by the model. If the model
produces a rule with a confidence level less
than the value specified here the rule is
discarded.

min_rule_support number 0.1 to 100 - the percentage value for
the minimum required rule support for a
rule produced by the model. If the model
produces a rule with a rule support level
less than the specified value the rule is
discarded.

min_condition_support number 0.1 to 100 - the percentage value for the
minimum required condition support for a
rule produced by the model. If the model
produces a rule with a condition support
level less than the specified value the rule
is discarded.

min_lift integer 1 to 10 - represents the minimum required
lift for a rule produced by the model. If
the model produces a rule with a lift level
less than the specified value the rule is
discarded.

exclude_rules Boolean Used to select a list of related fields from
which you do not want the model to create
rules.

Example: set :gsarsnode.exclude_rules =
[[[field1,field2, field3]],[[field4, field5]]] -
where each list of fields separated by [] is
a row in the table.

num_bins integer Set the number of automatic bins that
continuous fields are binned to. Minimum 2,
maximum 10.

max_list_length integer Applies to any list fields for which the
maximum length is not known. Elements
in the list up until the number specified
here are included in the model build; any
further elements are discarded. Minimum 1,
maximum 100.

output_confidence Boolean

output_rule_support Boolean

output_lift Boolean

output_condition_suppo
rt

Boolean

output_deployability Boolean

216 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 113. associationrulesnode properties (continued)

associationrulesnode
properties

Data type Property description

rules_to_display upto

all

The maximum number of rules to display in
the output tables.

display_upto integer If upto is set in rules_to_display, set
the number of rules to display in the output
tables. Minimum 1.

field_transformations Boolean

records_summary Boolean

rule_statistics Boolean

most_frequent_values Boolean

most_frequent_fields Boolean

word_cloud Boolean

word_cloud_sort Confidence

Rulesupport

Lift

Conditionsupport

Deployability

word_cloud_display integer Minimum 1, maximum 20

max_predictions integer The maximum number of rules that can be
applied to each input to the score.

criterion Confidence

Rulesupport

Lift

Conditionsupport

Deployability

Select the measure used to determine the
strength of rules.

allow_repeats Boolean Determine whether rules with the same
prediction are included in the score.

check_input NoPredictions

Predictions

NoCheck

Chapter 13. Modeling Node Properties 217

autoclassifiernode properties
The Auto Classifier node creates and compares a number of different models for
binary outcomes (yes or no, churn or do not churn, and so on), allowing you to
choose the best approach for a given analysis. A number of modeling algorithms are
supported, making it possible to select the methods you want to use, the specific
options for each, and the criteria for comparing the results. The node generates a set
of models based on the specified options and ranks the best candidates according
to the criteria you specify.

Example

node = stream.create("autoclassifier", "My node")
node.setPropertyValue("ranking_measure", "Accuracy")
node.setPropertyValue("ranking_dataset", "Training")
node.setPropertyValue("enable_accuracy_limit", True)
node.setPropertyValue("accuracy_limit", 0.9)
node.setPropertyValue("calculate_variable_importance", True)
node.setPropertyValue("use_costs", True)
node.setPropertyValue("svm", False)

Table 114. autoclassifiernode properties

autoclassifiernode Properties Values Property description

target field For flag targets, the Auto Classifier
node requires a single target and
one or more input fields. Weight
and frequency fields can also be
specified. See the topic “Common
modeling node properties” on
page 211 for more information.

ranking_measure Accuracy

Area_under_curve

Profit

Lift

Num_variables

ranking_dataset Training

Test

number_of_models integer Number of models to include in
the model nugget. Specify an
integer between 1 and 100.

calculate_variable_importance flag

enable_accuracy_limit flag

accuracy_limit integer Integer between 0 and 100.

enable_ area_under_curve
_limit

flag

218 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 114. autoclassifiernode properties (continued)

autoclassifiernode Properties Values Property description

area_under_curve_limit number Real number between 0.0 and
1.0.

enable_profit_limit flag

profit_limit number Integer greater than 0.

enable_lift_limit flag

lift_limit number Real number greater than 1.0.

enable_number_of_variables_lim
it

flag

number_of_variables_limit number Integer greater than 0.

use_fixed_cost flag

fixed_cost number Real number greater than 0.0.

variable_cost field

use_fixed_revenue flag

fixed_revenue number Real number greater than 0.0.

variable_revenue field

use_fixed_weight flag

fixed_weight number Real number greater than 0.0

variable_weight field

lift_percentile number Integer between 0 and 100.

enable_model_build_time_limit flag

model_build_time_limit number Integer set to the number of
minutes to limit the time taken to
build each individual model.

enable_stop_after_time_limit flag

stop_after_time_limit number Real number set to the number of
hours to limit the overall elapsed
time for an auto classifier run.

enable_stop_after_valid_model_
produced

flag

use_costs flag

<algorithm> flag Enables or disables the use of a
specific algorithm.

<algorithm>.<property> string Sets a property value for a specific
algorithm. See the topic “Setting
Algorithm Properties” on page
220 for more information.

Chapter 13. Modeling Node Properties 219

Setting Algorithm Properties
For the Auto Classifier, Auto Numeric, and Auto Cluster nodes, properties for specific algorithms used by
the node can be set using the general form:

autonode.setKeyedPropertyValue(<algorithm>, <property>, <value>)

For example:

node.setKeyedPropertyValue("neuralnetwork", "method", "MultilayerPerceptron")

Algorithm names for the Auto Classifier node are cart, chaid, quest, c50, logreg, decisionlist,
bayesnet, discriminant, svm and knn.

Algorithm names for the Auto Numeric node are cart, chaid, neuralnetwork, genlin, svm,
regression, linear and knn.

Algorithm names for the Auto Cluster node are twostep, k-means, and kohonen.

Property names are standard as documented for each algorithm node.

Algorithm properties that contain periods or other punctuation must be wrapped in single quotes, for
example:

node.setKeyedPropertyValue("logreg", "tolerance", "1.0E-5")

Multiple values can also be assigned for property, for example:

node.setKeyedPropertyValue("decisionlist", "search_direction", ["Up",
"Down"])

To enable or disable the use of a specific algorithm:

node.setPropertyValue("chaid", True)

Note: In cases where certain algorithm options are not available in the Auto Classifier node, or when only
a single value can be specified rather than a range of values, the same limits apply with scripting as when
accessing the node in the standard manner.

autoclusternode properties
The Auto Cluster node estimates and compares clustering models, which identify
groups of records that have similar characteristics. The node works in the same
manner as other automated modeling nodes, allowing you to experiment with
multiple combinations of options in a single modeling pass. Models can be
compared using basic measures with which to attempt to filter and rank the
usefulness of the cluster models, and provide a measure based on the importance of
particular fields.

Example

node = stream.create("autocluster", "My node")
node.setPropertyValue("ranking_measure", "Silhouette")
node.setPropertyValue("ranking_dataset", "Training")
node.setPropertyValue("enable_silhouette_limit", True)
node.setPropertyValue("silhouette_limit", 5)

220 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 115. autoclusternode properties

autoclusternode Properties Values Property description

evaluation field Note: Auto Cluster node only.
Identifies the field for which an
importance value will be calculated.
Alternatively, can be used to identify
how well the cluster differentiates the
value of this field and, therefore; how
well the model will predict this field.

ranking_measure Silhouette

Num_clusters

Size_smallest_cluster

Size_largest_cluster

Smallest_to_largest

Importance

ranking_dataset Training

Test

summary_limit integer Number of models to list in the report.
Specify an integer between 1 and 100.

enable_silhouette_limit flag

silhouette_limit integer Integer between 0 and 100.

enable_number_less_limit flag

number_less_limit number Real number between 0.0 and 1.0.

enable_number_greater_li
mit

flag

number_greater_limit number Integer greater than 0.

enable_smallest_cluster_
limit

flag

smallest_cluster_units Percentage

Counts

smallest_cluster_limit_p
ercentage

number

smallest_cluster_limit_c
ount

integer Integer greater than 0.

enable_largest_cluster_l
imit

flag

Chapter 13. Modeling Node Properties 221

Table 115. autoclusternode properties (continued)

autoclusternode Properties Values Property description

largest_cluster_units Percentage

Counts

largest_cluster_limit_pe
rcentage

number

largest_cluster_limit_co
unt

integer

enable_smallest_largest_
limit

flag

smallest_largest_limit number

enable_importance_limit flag

importance_limit_conditi
on

Greater_than

Less_than

importance_limit_greater
_than

number Integer between 0 and 100.

importance_limit_less_th
an

number Integer between 0 and 100.

<algorithm> flag Enables or disables the use of a
specific algorithm.

<algorithm>.<property> string Sets a property value for a specific
algorithm. See the topic “Setting
Algorithm Properties” on page 220 for
more information.

autonumericnode properties
The Auto Numeric node estimates and compares models for continuous numeric
range outcomes using a number of different methods. The node works in the same
manner as the Auto Classifier node, allowing you to choose the algorithms to use
and to experiment with multiple combinations of options in a single modeling pass.
Supported algorithms include neural networks, C&R Tree, CHAID, linear regression,
generalized linear regression, and support vector machines (SVM). Models can be
compared based on correlation, relative error, or number of variables used.

Example

node = stream.create("autonumeric", "My node")
node.setPropertyValue("ranking_measure", "Correlation")
node.setPropertyValue("ranking_dataset", "Training")
node.setPropertyValue("enable_correlation_limit", True)
node.setPropertyValue("correlation_limit", 0.8)
node.setPropertyValue("calculate_variable_importance", True)
node.setPropertyValue("neuralnetwork", True)
node.setPropertyValue("chaid", False)

222 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 116. autonumericnode properties

autonumericnode Properties Values Property description

custom_fields flag If True, custom field settings will be
used instead of type node settings.

target field The Auto Numeric node requires a
single target and one or more input
fields. Weight and frequency fields
can also be specified. See the topic
“Common modeling node properties”
on page 211 for more information.

inputs [field1 … field2]

partition field

use_frequency flag

frequency_field field

use_weight flag

weight_field field

use_partitioned_data flag If a partition field is defined, only
the training data are used for model
building.

ranking_measure Correlation

NumberOfFields

ranking_dataset Test

Training

number_of_models integer Number of models to include in the
model nugget. Specify an integer
between 1 and 100.

calculate_variable_impor
tance

flag

enable_correlation_limit flag

correlation_limit integer

enable_number_of_fields_
limit

flag

number_of_fields_limit integer

enable_relative_error_li
mit

flag

relative_error_limit integer

enable_model_build_time_
limit

flag

model_build_time_limit integer

enable_stop_after_time_l
imit

flag

Chapter 13. Modeling Node Properties 223

Table 116. autonumericnode properties (continued)

autonumericnode Properties Values Property description

stop_after_time_limit integer

stop_if_valid_model flag

<algorithm> flag Enables or disables the use of a
specific algorithm.

<algorithm>.<property> string Sets a property value for a specific
algorithm. See the topic “Setting
Algorithm Properties” on page 220 for
more information.

bayesnetnode properties
The Bayesian Network node enables you to build a probability model by combining
observed and recorded evidence with real-world knowledge to establish the
likelihood of occurrences. The node focuses on Tree Augmented Naïve Bayes (TAN)
and Markov Blanket networks that are primarily used for classification.

Example

node = stream.create("bayesnet", "My node")
node.setPropertyValue("continue_training_existing_model", True)
node.setPropertyValue("structure_type", "MarkovBlanket")
node.setPropertyValue("use_feature_selection", True)
Expert tab
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("all_probabilities", True)
node.setPropertyValue("independence", "Pearson")

Table 117. bayesnetnode properties

bayesnetnode Properties Values Property description

inputs [field1 ... fieldN] Bayesian network models use a
single target field, and one or
more input fields. Continuous fields
are automatically binned. See the
topic “Common modeling node
properties” on page 211 for more
information.

continue_training_existing_
model

flag

structure_type TAN

MarkovBlanket

Select the structure to be used when
building the Bayesian network.

use_feature_selection flag

parameter_learning_method Likelihood

Bayes

Specifies the method used to
estimate the conditional probability
tables between nodes where the
values of the parents are known.

224 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 117. bayesnetnode properties (continued)

bayesnetnode Properties Values Property description

mode Expert

Simple

missing_values flag

all_probabilities flag

independence Likelihood

Pearson

Specifies the method used
to determine whether paired
observations on two variables are
independent of each other.

significance_level number Specifies the cutoff value for
determining independence.

maximal_conditioning_set number Sets the maximal number of
conditioning variables to be used for
independence testing.

inputs_always_selected [field1 ... fieldN] Specifies which fields from the
dataset are always to be used when
building the Bayesian network.

Note: The target field is always
selected.

maximum_number_inputs number Specifies the maximum number of
input fields to be used in building the
Bayesian network.

calculate_variable_importan
ce

flag

calculate_raw_propensities flag

calculate_adjusted_propensi
ties

flag

adjusted_propensity_partiti
on

Test

Validation

buildr properties
The R Building node enables you to enter custom R
script to perform model building and model scoring
deployed in IBM SPSS Modeler.

Example

node = stream.create("buildr", "My node")
node.setPropertyValue("score_syntax", """
result<-predict(modelerModel,newdata=modelerData)
modelerData<-cbind(modelerData,result)
var1<-
c(fieldName="NaPrediction",fieldLabel="",fieldStorage="real",fieldMeasure="",

Chapter 13. Modeling Node Properties 225

fieldFormat="",fieldRole="")
modelerDataModel<-data.frame(modelerDataModel,var1)""")

Table 118. buildr properties

buildr Properties Values Property description

build_syntax string R scripting syntax for model building.

score_syntax string R scripting syntax for model scoring.

convert_flags
StringsAndDoubles
LogicalValues

Option to convert flag fields.

convert_datetime flag Option to convert variables with date
or datetime formats to R date/time
formats.

convert_datetime_class POSIXct
POSIXlt

Options to specify to what format
variables with date or datetime formats
are converted.

convert_missing flag Option to convert missing values to R
NA value.

output_html flag Option to display graphs on a tab in the
R model nugget.

output_text flag Option to write R console text output to
a tab in the R model nugget.

c50node properties
The C5.0 node builds either a decision tree or a rule set. The model works by
splitting the sample based on the field that provides the maximum information gain
at each level. The target field must be categorical. Multiple splits into more than two
subgroups are allowed.

Example

node = stream.create("c50", "My node")
"Model" tab
node.setPropertyValue("use_model_name", False)
node.setPropertyValue("model_name", "C5_Drug")
node.setPropertyValue("use_partitioned_data", True)
node.setPropertyValue("output_type", "DecisionTree")
node.setPropertyValue("use_xval", True)
node.setPropertyValue("xval_num_folds", 3)
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("favor", "Generality")
node.setPropertyValue("min_child_records", 3)
"Costs" tab
node.setPropertyValue("use_costs", True)
node.setPropertyValue("costs", [["drugA", "drugX", 2]])

226 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 119. c50node properties

c50node Properties Values Property description

target field C50 models use a single target field
and one or more input fields. A
weight field can also be specified. See
the topic “Common modeling node
properties” on page 211 for more
information.

output_type DecisionTree

RuleSet

group_symbolics flag

use_boost flag

boost_num_trials number

use_xval flag

xval_num_folds number

mode Simple

Expert

favor Accuracy

Generality

Favor accuracy or generality.

expected_noise number

min_child_records number

pruning_severity number

use_costs flag

costs structured This is a structured property.

use_winnowing flag

use_global_pruning flag On (True) by default.

calculate_variable_impor
tance

flag

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

adjusted_propensity_part
ition

Test

Validation

Chapter 13. Modeling Node Properties 227

carmanode properties
The CARMA model extracts a set of rules from the data without requiring you to
specify input or target fields. In contrast to Apriori the CARMA node offers build
settings for rule support (support for both antecedent and consequent) rather than
just antecedent support. This means that the rules generated can be used for a
wider variety of applications—for example, to find a list of products or services
(antecedents) whose consequent is the item that you want to promote this holiday
season.

Example

node = stream.create("carma", "My node")
"Fields" tab
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("use_transactional_data", True)
node.setPropertyValue("inputs", ["BP", "Cholesterol", "Drug"])
node.setPropertyValue("partition", "Test")
"Model" tab
node.setPropertyValue("use_model_name", False)
node.setPropertyValue("model_name", "age_bp_drug")
node.setPropertyValue("use_partitioned_data", False)
node.setPropertyValue("min_supp", 10.0)
node.setPropertyValue("min_conf", 30.0)
node.setPropertyValue("max_size", 5)
Expert Options
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("use_pruning", True)
node.setPropertyValue("pruning_value", 300)
node.setPropertyValue("vary_support", True)
node.setPropertyValue("estimated_transactions", 30)
node.setPropertyValue("rules_without_antecedents", True)

Table 120. carmanode properties

carmanode Properties Values Property description

inputs [field1 ... fieldn] CARMA models use a list of input
fields, but no target. Weight and
frequency fields are not used. See
the topic “Common modeling node
properties” on page 211 for more
information.

id_field field Field used as the ID field for model
building.

contiguous flag Used to specify whether IDs in the ID
field are contiguous.

use_transactional_data flag

content_field field

min_supp number(percent) Relates to rule support rather than
antecedent support. The default is
20%.

min_conf number(percent) The default is 20%.

max_size number The default is 10.

228 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 120. carmanode properties (continued)

carmanode Properties Values Property description

mode Simple

Expert

The default is Simple.

exclude_multiple flag Excludes rules with multiple
consequents. The default is False.

use_pruning flag The default is False.

pruning_value number The default is 500.

vary_support flag

estimated_transactions integer

rules_without_antecedent
s

flag

cartnode properties
The Classification and Regression (C&R) Tree node generates a decision tree that
allows you to predict or classify future observations. The method uses recursive
partitioning to split the training records into segments by minimizing the impurity at
each step, where a node in the tree is considered “pure” if 100% of cases in the
node fall into a specific category of the target field. Target and input fields can be
numeric ranges or categorical (nominal, ordinal, or flags); all splits are binary (only
two subgroups).

Example

node = stream.createAt("cart", "My node", 200, 100)
"Fields" tab
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("target", "Drug")
node.setPropertyValue("inputs", ["Age", "BP", "Cholesterol"])
"Build Options" tab, "Objective" panel
node.setPropertyValue("model_output_type", "InteractiveBuilder")
node.setPropertyValue("use_tree_directives", True)
node.setPropertyValue("tree_directives", """Grow Node Index 0 Children 1 2
Grow Node Index 2 Children 3 4""")
"Build Options" tab, "Basics" panel
node.setPropertyValue("prune_tree", False)
node.setPropertyValue("use_std_err_rule", True)
node.setPropertyValue("std_err_multiplier", 3.0)
node.setPropertyValue("max_surrogates", 7)
"Build Options" tab, "Stopping Rules" panel
node.setPropertyValue("use_percentage", True)
node.setPropertyValue("min_parent_records_pc", 5)
node.setPropertyValue("min_child_records_pc", 3)
"Build Options" tab, "Advanced" panel
node.setPropertyValue("min_impurity", 0.0003)
node.setPropertyValue("impurity_measure", "Twoing")
"Model Options" tab
node.setPropertyValue("use_model_name", True)
node.setPropertyValue("model_name", "Cart_Drug")

Chapter 13. Modeling Node Properties 229

Table 121. cartnode properties

cartnode Properties Values Property description

target field C&R Tree models require a single
target and one or more input fields. A
frequency field can also be specified.
See the topic “Common modeling node
properties” on page 211 for more
information.

continue_training_existi
ng_model

flag

objective Standard

Boosting

Bagging

psm

psm is used for very large datasets, and
requires a Server connection.

model_output_type Single

InteractiveBuilder

use_tree_directives flag

tree_directives string Specify directives for growing the tree.
Directives can be wrapped in triple
quotes to avoid escaping newlines or
quotes. Note that directives may be
highly sensitive to minor changes in
data or modeling options and may not
generalize to other datasets.

use_max_depth Default

Custom

max_depth integer Maximum tree depth, from 0 to
1000. Used only if use_max_depth =
Custom.

prune_tree flag Prune tree to avoid overfitting.

use_std_err flag Use maximum difference in risk (in
Standard Errors).

std_err_multiplier number Maximum difference.

max_surrogates number Maximum surrogates.

use_percentage flag

min_parent_records_pc number

min_child_records_pc number

min_parent_records_abs number

min_child_records_abs number

230 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 121. cartnode properties (continued)

cartnode Properties Values Property description

use_costs flag

costs structured Structured property.

priors Data

Equal

Custom

custom_priors structured Structured property.

adjust_priors flag

trails number Number of component models for
boosting or bagging.

set_ensemble_method Voting

HighestProbability

HighestMeanProbabilit
y

Default combining rule for categorical
targets.

range_ensemble_method Mean

Median

Default combining rule for continuous
targets.

large_boost flag Apply boosting to very large data sets.

min_impurity number

impurity_measure Gini

Twoing

Ordered

train_pct number Overfit prevention set.

set_random_seed flag Replicate results option.

seed number

calculate_variable_impor
tance

flag

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

adjusted_propensity_part
ition

Test

Validation

Chapter 13. Modeling Node Properties 231

chaidnode properties
The CHAID node generates decision trees using chi-square statistics to identify
optimal splits. Unlike the C&R Tree and QUEST nodes, CHAID can generate
nonbinary trees, meaning that some splits have more than two branches. Target
and input fields can be numeric range (continuous) or categorical. Exhaustive CHAID
is a modification of CHAID that does a more thorough job of examining all possible
splits but takes longer to compute.

Example

filenode = stream.createAt("variablefile", "My node", 100, 100)
filenode.setPropertyValue("full_filename", "$CLEO_DEMOS/DRUG1n")
node = stream.createAt("chaid", "My node", 200, 100)
stream.link(filenode, node)

node.setPropertyValue("custom_fields", True)
node.setPropertyValue("target", "Drug")
node.setPropertyValue("inputs", ["Age", "Na", "K", "Cholesterol", "BP"])
node.setPropertyValue("use_model_name", True)
node.setPropertyValue("model_name", "CHAID")
node.setPropertyValue("method", "Chaid")
node.setPropertyValue("model_output_type", "InteractiveBuilder")
node.setPropertyValue("use_tree_directives", True)
node.setPropertyValue("tree_directives", "Test")
node.setPropertyValue("split_alpha", 0.03)
node.setPropertyValue("merge_alpha", 0.04)
node.setPropertyValue("chi_square", "Pearson")
node.setPropertyValue("use_percentage", False)
node.setPropertyValue("min_parent_records_abs", 40)
node.setPropertyValue("min_child_records_abs", 30)
node.setPropertyValue("epsilon", 0.003)
node.setPropertyValue("max_iterations", 75)
node.setPropertyValue("split_merged_categories", True)
node.setPropertyValue("bonferroni_adjustment", True)

Table 122. chaidnode properties

chaidnode Properties Values Property description

target field CHAID models require a single target
and one or more input fields. A
frequency field can also be specified.
See the topic “Common modeling node
properties” on page 211 for more
information.

continue_training_existi
ng_model

flag

objective Standard

Boosting

Bagging

psm

psm is used for very large datasets, and
requires a Server connection.

232 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 122. chaidnode properties (continued)

chaidnode Properties Values Property description

model_output_type Single

InteractiveBuilder

use_tree_directives flag

tree_directives string

method Chaid

ExhaustiveChaid

use_max_depth Default

Custom

max_depth integer Maximum tree depth, from 0 to
1000. Used only if use_max_depth =
Custom.

use_percentage flag

min_parent_records_pc number

min_child_records_pc number

min_parent_records_abs number

min_child_records_abs number

use_costs flag

costs structured Structured property.

trails number Number of component models for
boosting or bagging.

set_ensemble_method Voting

HighestProbability

HighestMeanProbabilit
y

Default combining rule for categorical
targets.

range_ensemble_method Mean

Median

Default combining rule for continuous
targets.

large_boost flag Apply boosting to very large data sets.

split_alpha number Significance level for splitting.

merge_alpha number Significance level for merging.

bonferroni_adjustment flag Adjust significance values using
Bonferroni method.

split_merged_categories flag Allow resplitting of merged categories.

Chapter 13. Modeling Node Properties 233

Table 122. chaidnode properties (continued)

chaidnode Properties Values Property description

chi_square Pearson

LR

Method used to calculate the chi-
square statistic: Pearson or Likelihood
Ratio

epsilon number Minimum change in expected cell
frequencies..

max_iterations number Maximum iterations for convergence.

set_random_seed integer

seed number

calculate_variable_impor
tance

flag

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

adjusted_propensity_part
ition

Test

Validation

maximum_number_of_models integer

coxregnode properties
The Cox regression node enables you to build a survival model for time-to-event
data in the presence of censored records. The model produces a survival function
that predicts the probability that the event of interest has occurred at a given time (t)
for given values of the input variables.

Example

node = stream.create("coxreg", "My node")
node.setPropertyValue("survival_time", "tenure")
node.setPropertyValue("method", "BackwardsStepwise")
Expert tab
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("removal_criterion", "Conditional")
node.setPropertyValue("survival", True)

Table 123. coxregnode properties

coxregnode Properties Values Property description

survival_time field Cox regression models require a
single field containing the survival
times.

target field Cox regression models require a
single target field, and one or more
input fields. See the topic “Common
modeling node properties” on page
211 for more information.

234 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 123. coxregnode properties (continued)

coxregnode Properties Values Property description

method Enter

Stepwise

BackwardsStepwise

groups field

model_type MainEffects

Custom

custom_terms ["BP*Sex" "BP*Age"]

mode Expert

Simple

max_iterations number

p_converge 1.0E-4

1.0E-5

1.0E-6

1.0E-7

1.0E-8

0

p_converge 1.0E-4

1.0E-5

1.0E-6

1.0E-7

1.0E-8

0

Chapter 13. Modeling Node Properties 235

Table 123. coxregnode properties (continued)

coxregnode Properties Values Property description

l_converge 1.0E-1

1.0E-2

1.0E-3

1.0E-4

1.0E-5

0

removal_criterion LR

Wald

Conditional

probability_entry number

probability_removal number

output_display EachStep

LastStep

ci_enable flag

ci_value 90

95

99

correlation flag

display_baseline flag

survival flag

hazard flag

log_minus_log flag

one_minus_survival flag

separate_line field

value number or string If no value is specified for a field, the
default option "Mean" will be used
for that field.

236 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

decisionlistnode properties
The Decision List node identifies subgroups, or segments, that show a higher or
lower likelihood of a given binary outcome relative to the overall population. For
example, you might look for customers who are unlikely to churn or are most likely
to respond favorably to a campaign. You can incorporate your business knowledge
into the model by adding your own custom segments and previewing alternative
models side by side to compare the results. Decision List models consist of a list of
rules in which each rule has a condition and an outcome. Rules are applied in order,
and the first rule that matches determines the outcome.

Example

node = stream.create("decisionlist", "My node")
node.setPropertyValue("search_direction", "Down")
node.setPropertyValue("target_value", 1)
node.setPropertyValue("max_rules", 4)
node.setPropertyValue("min_group_size_pct", 15)

Table 124. decisionlistnode properties

decisionlistnode
Properties

Values Property description

target field Decision List models use a single
target and one or more input fields. A
frequency field can also be specified.
See the topic “Common modeling node
properties” on page 211 for more
information.

model_output_type Model

InteractiveBuilder

search_direction Up

Down

Relates to finding segments; where Up
is the equivalent of High Probability,
and Down is the equivalent of Low
Probability..

target_value string If not specified, will assume true value
for flags.

max_rules integer The maximum number of segments
excluding the remainder.

min_group_size integer Minimum segment size.

min_group_size_pct number Minimum segment size as a
percentage.

confidence_level number Minimum threshold that an input
field has to improve the likelihood of
response (give lift), to make it worth
adding to a segment definition.

max_segments_per_rule integer

mode Simple

Expert

Chapter 13. Modeling Node Properties 237

Table 124. decisionlistnode properties (continued)

decisionlistnode
Properties

Values Property description

bin_method EqualWidth

EqualCount

bin_count number

max_models_per_cycle integer Search width for lists.

max_rules_per_cycle integer Search width for segment rules.

segment_growth number

include_missing flag

final_results_only flag

reuse_fields flag Allows attributes (input fields which
appear in rules) to be re-used.

max_alternatives integer

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

adjusted_propensity_part
ition

Test

Validation

discriminantnode properties
Discriminant analysis makes more stringent assumptions than logistic regression
but can be a valuable alternative or supplement to a logistic regression analysis
when those assumptions are met.

Example

node = stream.create("discriminant", "My node")
node.setPropertyValue("target", "custcat")
node.setPropertyValue("use_partitioned_data", False)
node.setPropertyValue("method", "Stepwise")

Table 125. discriminantnode properties

discriminantnode
Properties

Values Property description

target field Discriminant models require a single
target field and one or more input
fields. Weight and frequency fields are
not used. See the topic “Common
modeling node properties” on page
211 for more information.

238 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 125. discriminantnode properties (continued)

discriminantnode
Properties

Values Property description

method Enter

Stepwise

mode Simple

Expert

prior_probabilities AllEqual

ComputeFromSizes

covariance_matrix WithinGroups

SeparateGroups

means flag Statistics options in the Advanced
Output dialog box.

univariate_anovas flag

box_m flag

within_group_covariance flag

within_groups_correlatio
n

flag

separate_groups_covarian
ce

flag

total_covariance flag

fishers flag

unstandardized flag

casewise_results flag Classification options in the Advanced
Output dialog box.

limit_to_first number Default value is 10.

summary_table flag

leave_one_classification flag

combined_groups flag

separate_groups_covarian
ce

flag Matrices option Separate-groups
covariance.

territorial_map flag

combined_groups flag Plot option Combined-groups.

separate_groups flag Plot option Separate-groups.

summary_of_steps flag

F_pairwise flag

Chapter 13. Modeling Node Properties 239

Table 125. discriminantnode properties (continued)

discriminantnode
Properties

Values Property description

stepwise_method WilksLambda

UnexplainedVariance

MahalanobisDistance

SmallestF

RaosV

V_to_enter number

criteria UseValue

UseProbability

F_value_entry number Default value is 3.84.

F_value_removal number Default value is 2.71.

probability_entry number Default value is 0.05.

probability_removal number Default value is 0.10.

calculate_variable_impor
tance

flag

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

adjusted_propensity_part
ition

Test

Validation

extensionmodelnode properties

With the Extension Model node, you can run R or
Python for spark scripts to build and score results.

Python for Spark example

script example for Python for Spark
import modeler.api
stream = modeler.script.stream()
node = stream.create("extension_build", "extension_build")
node.setPropertyValue("syntax_type", "Python")

build_script = """
import json
import spss.pyspark.runtime

240 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.linalg import DenseVector
from pyspark.mllib.tree import DecisionTree

cxt = spss.pyspark.runtime.getContext()
df = cxt.getSparkInputData()
schema = df.dtypes[:]

target = "Drug"
predictors = ["Age","BP","Sex","Cholesterol","Na","K"]

def metaMap(row,schema):
 col = 0
 meta = []
 for (cname, ctype) in schema:
 if ctype == 'string':
 meta.append(set([row[col]]))
 else:
 meta.append((row[col],row[col]))
 col += 1
 return meta

def metaReduce(meta1,meta2,schema):
 col = 0
 meta = []
 for (cname, ctype) in schema:
 if ctype == 'string':
 meta.append(meta1[col].union(meta2[col]))
 else:
 meta.append((min(meta1[col][0],meta2[col][0]),max(meta1[col][1],meta2[col][1])))
 col += 1
 return meta

metadata = df.rdd.map(lambda row: metaMap(row,schema)).reduce(lambda x,y:metaReduce(x,y,schema))

def setToList(v):
 if isinstance(v,set):
 return list(v)
 return v

metadata = map(lambda x: setToList(x), metadata)
print metadata

lookup = {}
for i in range(0,len(schema)):
 lookup[schema[i][0]] = i

def row2LabeledPoint(dm,lookup,target,predictors,row):
 target_index = lookup[target]
 tval = dm[target_index].index(row[target_index])
 pvals = []
 for predictor in predictors:
 predictor_index = lookup[predictor]
 if isinstance(dm[predictor_index],list):
 pval = dm[predictor_index].index(row[predictor_index])
 else:
 pval = row[predictor_index]
 pvals.append(pval)
 return LabeledPoint(tval,DenseVector(pvals))

count number of target classes
predictorClassCount = len(metadata[lookup[target]])

define function to extract categorical predictor information from datamodel
def getCategoricalFeatureInfo(dm,lookup,predictors):
 info = {}
 for i in range(0,len(predictors)):
 predictor = predictors[i]
 predictor_index = lookup[predictor]
 if isinstance(dm[predictor_index],list):
 info[i] = len(dm[predictor_index])
 return info

convert dataframe to an RDD containing LabeledPoint
lps = df.rdd.map(lambda row: row2LabeledPoint(metadata,lookup,target,predictors,row))

treeModel = DecisionTree.trainClassifier(
 lps,
 numClasses=predictorClassCount,
 categoricalFeaturesInfo=getCategoricalFeatureInfo(metadata, lookup, predictors),
 impurity='gini',
 maxDepth=5,

Chapter 13. Modeling Node Properties 241

 maxBins=100)

_outputPath = cxt.createTemporaryFolder()
treeModel.save(cxt.getSparkContext(), _outputPath)
cxt.setModelContentFromPath("TreeModel", _outputPath)
cxt.setModelContentFromString("model.dm",json.dumps(metadata), mimeType="application/json")\
 .setModelContentFromString("model.structure",treeModel.toDebugString())

"""

node.setPropertyValue("python_build_syntax", build_script)

R example

script example for R
node.setPropertyValue("syntax_type", "R")
node.setPropertyValue("r_build_syntax", """modelerModel <-
lm(modelerData$Na~modelerData$K,modelerData)
modelerDataModel
modelerModel
""")

Table 126. extensionmodelnode properties

extensionmodelnode
Properties

Values Property description

syntax_type R

Python

Specify which script runs – R or Python
(R is the default).

r_build_syntax string The R scripting syntax for model
building.

r_score_syntax string The R scripting syntax for model
scoring.

python_build_syntax string The Python scripting syntax for model
building.

python_score_syntax string The Python scripting syntax for model
scoring.

convert_flags StringsAndDoubles
LogicalValues

Option to convert flag fields.

convert_missing flag Option to convert missing values to R
NA value.

convert_datetime flag Option to convert variables with date
or datetime formats to R date/time
formats.

convert_datetime_class POSIXct
POSIXlt

Options to specify to what format
variables with date or datetime formats
are converted.

output_html flag Option to display graphs on a tab in the
R model nugget.

output_text flag Option to write R console text output to
a tab in the R model nugget.

242 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

factornode properties
The PCA/Factor node provides powerful data-reduction techniques to reduce
the complexity of your data. Principal components analysis (PCA) finds linear
combinations of the input fields that do the best job of capturing the variance in the
entire set of fields, where the components are orthogonal (perpendicular) to each
other. Factor analysis attempts to identify underlying factors that explain the pattern
of correlations within a set of observed fields. For both approaches, the goal is to
find a small number of derived fields that effectively summarizes the information in
the original set of fields.

Example

node = stream.create("factor", "My node")
"Fields" tab
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("inputs", ["BP", "Na", "K"])
node.setPropertyValue("partition", "Test")
"Model" tab
node.setPropertyValue("use_model_name", True)
node.setPropertyValue("model_name", "Factor_Age")
node.setPropertyValue("use_partitioned_data", False)
node.setPropertyValue("method", "GLS")
Expert options
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("complete_records", True)
node.setPropertyValue("matrix", "Covariance")
node.setPropertyValue("max_iterations", 30)
node.setPropertyValue("extract_factors", "ByFactors")
node.setPropertyValue("min_eigenvalue", 3.0)
node.setPropertyValue("max_factor", 7)
node.setPropertyValue("sort_values", True)
node.setPropertyValue("hide_values", True)
node.setPropertyValue("hide_below", 0.7)
"Rotation" section
node.setPropertyValue("rotation", "DirectOblimin")
node.setPropertyValue("delta", 0.3)
node.setPropertyValue("kappa", 7.0)

Table 127. factornode properties

factornode Properties Values Property description

inputs [field1 ... fieldN] PCA/Factor models use a list of input
fields, but no target. Weight and
frequency fields are not used. See
the topic “Common modeling node
properties” on page 211 for more
information.

Chapter 13. Modeling Node Properties 243

Table 127. factornode properties (continued)

factornode Properties Values Property description

method PC

ULS

GLS

ML

PAF

Alpha

Image

mode Simple

Expert

max_iterations number

complete_records flag

matrix Correlation

Covariance

extract_factors ByEigenvalues

ByFactors

min_eigenvalue number

max_factor number

rotation None

Varimax

DirectOblimin

Equamax

Quartimax

Promax

delta number If you select DirectOblimin as your
rotation data type, you can specify a
value for delta.

If you do not specify a value, the
default value for delta is used.

244 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 127. factornode properties (continued)

factornode Properties Values Property description

kappa number If you select Promax as your rotation
data type, you can specify a value for
kappa.

If you do not specify a value, the
default value for kappa is used.

sort_values flag

hide_values flag

hide_below number

featureselectionnode properties
The Feature Selection node screens input fields for removal based on a set of
criteria (such as the percentage of missing values); it then ranks the importance of
remaining inputs relative to a specified target. For example, given a data set with
hundreds of potential inputs, which are most likely to be useful in modeling patient
outcomes?

Example

node = stream.create("featureselection", "My node")
node.setPropertyValue("screen_single_category", True)
node.setPropertyValue("max_single_category", 95)
node.setPropertyValue("screen_missing_values", True)
node.setPropertyValue("max_missing_values", 80)
node.setPropertyValue("criteria", "Likelihood")
node.setPropertyValue("unimportant_below", 0.8)
node.setPropertyValue("important_above", 0.9)
node.setPropertyValue("important_label", "Check Me Out!")
node.setPropertyValue("selection_mode", "TopN")
node.setPropertyValue("top_n", 15)

For a more detailed example that creates and applies a Feature Selection model, see in.

Table 128. featureselectionnode properties

featureselectionnode
Properties

Values Property description

target field Feature Selection models rank
predictors relative to the specified
target. Weight and frequency
fields are not used. See the
topic “Common modeling node
properties” on page 211 for more
information.

screen_single_category flag If True, screens fields that have too
many records falling into the same
category relative to the total number
of records.

Chapter 13. Modeling Node Properties 245

Table 128. featureselectionnode properties (continued)

featureselectionnode
Properties

Values Property description

max_single_category number Specifies the threshold used
when screen_single_category
is True.

screen_missing_values flag If True, screens fields with too
many missing values, expressed as
a percentage of the total number of
records.

max_missing_values number

screen_num_categories flag If True, screens fields with too
many categories relative to the total
number of records.

max_num_categories number

screen_std_dev flag If True, screens fields with a
standard deviation of less than or
equal to the specified minimum.

min_std_dev number

screen_coeff_of_var flag If True, screens fields with a
coefficient of variance less than or
equal to the specified minimum.

min_coeff_of_var number

criteria Pearson

Likelihood

CramersV

Lambda

When ranking categorical predictors
against a categorical target, specifies
the measure on which the
importance value is based.

unimportant_below number Specifies the threshold p values
used to rank variables as important,
marginal, or unimportant. Accepts
values from 0.0 to 1.0.

important_above number Accepts values from 0.0 to 1.0.

unimportant_label string Specifies the label for the
unimportant ranking.

marginal_label string

important_label string

selection_mode ImportanceLevel

ImportanceValue

TopN

246 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 128. featureselectionnode properties (continued)

featureselectionnode
Properties

Values Property description

select_important flag When selection_mode is set
to ImportanceLevel, specifies
whether to select important fields.

select_marginal flag When selection_mode is set
to ImportanceLevel, specifies
whether to select marginal fields.

select_unimportant flag When selection_mode is set
to ImportanceLevel, specifies
whether to select unimportant fields.

importance_value number When selection_mode is set to
ImportanceValue, specifies the
cutoff value to use. Accepts values
from 0 to 100.

top_n integer When selection_mode is set to
TopN, specifies the cutoff value to
use. Accepts values from 0 to 1000.

genlinnode properties
The Generalized Linear model expands the general linear model so that the
dependent variable is linearly related to the factors and covariates through a
specified link function. Moreover, the model allows for the dependent variable to
have a non-normal distribution. It covers the functionality of a wide number of
statistical models, including linear regression, logistic regression, loglinear models
for count data, and interval-censored survival models.

Example

node = stream.create("genlin", "My node")
node.setPropertyValue("model_type", "MainAndAllTwoWayEffects")
node.setPropertyValue("offset_type", "Variable")
node.setPropertyValue("offset_field", "Claimant")

Table 129. genlinnode properties

genlinnode Properties Values Property description

target field Generalized Linear models require a
single target field which must be a
nominal or flag field, and one or more
input fields. A weight field can also
be specified. See the topic “Common
modeling node properties” on page
211 for more information.

use_weight flag

weight_field field Field type is only continuous.

target_represents_trials flag

Chapter 13. Modeling Node Properties 247

Table 129. genlinnode properties (continued)

genlinnode Properties Values Property description

trials_type Variable

FixedValue

trials_field field Field type is continuous, flag, or
ordinal.

trials_number number Default value is 10.

model_type MainEffects

MainAndAllTwoWayEffec
ts

offset_type Variable

FixedValue

offset_field field Field type is only continuous.

offset_value number Must be a real number.

base_category Last

First

include_intercept flag

mode Simple

Expert

distribution BINOMIAL

GAMMA

IGAUSS

NEGBIN

NORMAL

POISSON

TWEEDIE

MULTINOMIAL

IGAUSS: Inverse Gaussian.

NEGBIN: Negative binomial.

negbin_para_type Specify

Estimate

248 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 129. genlinnode properties (continued)

genlinnode Properties Values Property description

negbin_parameter number Default value is 1. Must contain a non-
negative real number.

tweedie_parameter number

link_function IDENTITY

CLOGLOG

LOG

LOGC

LOGIT

NEGBIN

NLOGLOG

ODDSPOWER

PROBIT

POWER

CUMCAUCHIT

CUMCLOGLOG

CUMLOGIT

CUMNLOGLOG

CUMPROBIT

CLOGLOG: Complementary log-log.

LOGC: log complement.

NEGBIN: Negative binomial.

NLOGLOG: Negative log-log.

CUMCAUCHIT: Cumulative cauchit.

CUMCLOGLOG: Cumulative
complementary log-log.

CUMLOGIT: Cumulative logit.

CUMNLOGLOG: Cumulative negative
log-log.

CUMPROBIT: Cumulative probit.

power number Value must be real, nonzero number.

method Hybrid

Fisher

NewtonRaphson

max_fisher_iterations number Default value is 1; only positive
integers allowed.

Chapter 13. Modeling Node Properties 249

Table 129. genlinnode properties (continued)

genlinnode Properties Values Property description

scale_method MaxLikelihoodEstimate

Deviance

PearsonChiSquare

FixedValue

scale_value number Default value is 1; must be greater
than 0.

covariance_matrix ModelEstimator

RobustEstimator

max_iterations number Default value is 100; non-negative
integers only.

max_step_halving number Default value is 5; positive integers
only.

check_separation flag

start_iteration number Default value is 20; only positive
integers allowed.

estimates_change flag

estimates_change_min number Default value is 1E-006; only positive
numbers allowed.

estimates_change_type Absolute

Relative

loglikelihood_change flag

loglikelihood_change_min number Only positive numbers allowed.

loglikelihood_change_typ
e

Absolute

Relative

hessian_convergence flag

hessian_convergence_min number Only positive numbers allowed.

hessian_convergence_type Absolute

Relative

case_summary flag

contrast_matrices flag

descriptive_statistics flag

estimable_functions flag

model_info flag

250 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 129. genlinnode properties (continued)

genlinnode Properties Values Property description

iteration_history flag

goodness_of_fit flag

print_interval number Default value is 1; must be positive
integer.

model_summary flag

lagrange_multiplier flag

parameter_estimates flag

include_exponential flag

covariance_estimates flag

correlation_estimates flag

analysis_type TypeI

TypeIII

TypeIAndTypeIII

statistics Wald

LR

citype Wald

Profile

tolerancelevel number Default value is 0.0001.

confidence_interval number Default value is 95.

loglikelihood_function Full

Kernel

singularity_tolerance 1E-007

1E-008

1E-009

1E-010

1E-011

1E-012

Chapter 13. Modeling Node Properties 251

Table 129. genlinnode properties (continued)

genlinnode Properties Values Property description

value_order Ascending

Descending

DataOrder

calculate_variable_impor
tance

flag

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

adjusted_propensity_part
ition

Test

Validation

glmmnode properties
A generalized linear mixed model (GLMM) extends the linear model so that the
target can have a non-normal distribution, is linearly related to the factors and
covariates via a specified link function, and so that the observations can be
correlated. Generalized linear mixed models cover a wide variety of models, from
simple linear regression to complex multilevel models for non-normal longitudinal
data.

Table 130. glmmnode properties

glmmnode Properties Values Property description

residual_subject_spec structured The combination of values of the
specified categorical fields that
uniquely define subjects within the
data set

repeated_measures structured Fields used to identify repeated
observations.

residual_group_spec [field1 ... fieldN] Fields that define independent
sets of repeated effects covariance
parameters.

252 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 130. glmmnode properties (continued)

glmmnode Properties Values Property description

residual_covariance_type Diagonal

AR1

ARMA11

COMPOUND_SYMMETRY

IDENTITY

TOEPLITZ

UNSTRUCTURED

VARIANCE_COMPONENTS

Specifies covariance structure for
residuals.

custom_target flag Indicates whether to use target defined
in upstream node (false) or custom
target specified by target_field
(true).

target_field field Field to use as target if
custom_target is true.

use_trials flag Indicates whether additional field or
value specifying number of trials is to
be used when target response is a
number of events occurring in a set of
trials. Default is false.

use_field_or_value Field

Value

Indicates whether field (default) or
value is used to specify number of
trials.

trials_field field Field to use to specify number of trials.

trials_value integer Value to use to specify number of trials.
If specified, minimum value is 1.

use_custom_target_refere
nce

flag Indicates whether custom reference
category is to be used for a categorical
target. Default is false.

target_reference_value string Reference category to use if
use_custom_target_reference is
true.

Chapter 13. Modeling Node Properties 253

Table 130. glmmnode properties (continued)

glmmnode Properties Values Property description

dist_link_combination Nominal

Logit

GammaLog

BinomialLogit

PoissonLog

BinomialProbit

NegbinLog

BinomialLogC

Custom

Common models for distribution of
values for target. Choose Custom to
specify a distribution from the list
provided bytarget_distribution.

target_distribution Normal

Binomial

Multinomial

Gamma

Inverse

NegativeBinomial

Poisson

Distribution of values for target when
dist_link_combination is Custom.

254 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 130. glmmnode properties (continued)

glmmnode Properties Values Property description

link_function_type Identity

LogC

Log

CLOGLOG

Logit

NLOGLOG

PROBIT

POWER

CAUCHIT

Link function to relate target
values to predictors.
If target_distribution is
Binomial you can use any
of the listed link functions.
If target_distribution is
Multinomial you can use
CLOGLOG, CAUCHIT, LOGIT,
NLOGLOG, or PROBIT.
If target_distribution is
anything other than Binomial or
Multinomial you can use
IDENTITY, LOG, or POWER.

link_function_param number Link function parameter value
to use. Only applicable
if normal_link_function or
link_function_type is POWER.

use_predefined_inputs flag Indicates whether fixed effect fields
are to be those defined upstream
as input fields (true) or those
from fixed_effects_list (false).
Default is false.

fixed_effects_list structured If use_predefined_inputs is
false, specifies the input fields to use
as fixed effect fields.

use_intercept flag If true (default), includes the
intercept in the model.

random_effects_list structured List of fields to specify as random
effects.

regression_weight_field field Field to use as analysis weight field.

use_offset None

offset_value

offset_field

Indicates how offset is specified. Value
None means no offset is used.

offset_value number Value to use for offset if use_offset
is set to offset_value.

offset_field field Field to use for offset value if
use_offset is set to offset_field.

Chapter 13. Modeling Node Properties 255

Table 130. glmmnode properties (continued)

glmmnode Properties Values Property description

target_category_order Ascending

Descending

Data

Sorting order for categorical targets.
Value Data specifies using the sort
order found in the data. Default is
Ascending.

inputs_category_order Ascending

Descending

Data

Sorting order for categorical predictors.
Value Data specifies using the sort
order found in the data. Default is
Ascending.

max_iterations integer Maximum number of iterations the
algorithm will perform. A non-negative
integer; default is 100.

confidence_level integer Confidence level used to compute
interval estimates of the model
coefficients. A non-negative integer;
maximum is 100, default is 95.

degrees_of_freedom_metho
d

Fixed

Varied

Specifies how degrees of freedom are
computed for significance test.

test_fixed_effects_coeff
ecients

Model

Robust

Method for computing the parameter
estimates covariance matrix.

use_p_converge flag Option for parameter convergence.

p_converge number Blank, or any positive value.

p_converge_type Absolute
Relative

use_l_converge flag Option for log-likelihood convergence.

l_converge number Blank, or any positive value.

l_converge_type Absolute
Relative

use_h_converge flag Option for Hessian convergence.

h_converge number Blank, or any positive value.

h_converge_type
Absolute
Relative

max_fisher_steps integer

singularity_tolerance number

256 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 130. glmmnode properties (continued)

glmmnode Properties Values Property description

use_model_name flag Indicates whether to specify a custom
name for the model (true) or to use
the system-generated name (false).
Default is false.

model_name string If use_model_name is true, specifies
the model name to use.

confidence onProbability

onIncrease

Basis for computing scoring confidence
value: highest predicted probability, or
difference between highest and second
highest predicted probabilities.

score_category_probabili
ties

flag If true, produces predicted
probabilities for categorical targets.
Default is false.

max_categories integer If
score_category_probabilities
is true, specifies maximum number of
categories to save.

score_propensity flag If true, produces propensity scores
for flag target fields that indicate
likelihood of "true" outcome for field.

emeans structure For each categorical field from the
fixed effects list, specifies whether to
produce estimated marginal means.

covariance_list structure For each continuous field from the
fixed effects list, specifies whether to
use the mean or a custom value when
computing estimated marginal means.

mean_scale Original

Transformed

Specifies whether to compute
estimated marginal means based on
the original scale of the target (default)
or on the link function transformation.

comparison_adjustment_me
thod

LSD

SEQBONFERRONI

SEQSIDAK

Adjustment method to use when
performing hypothesis tests with
multiple contrasts.

gle properties
A GLE extends the linear model so that the target can have a non-normal
distribution, is linearly related to the factors and covariates via a specified link
function, and so that the observations can be correlated. Generalized linear mixed
models cover a wide variety of models, from simple linear regression to complex
multilevel models for non-normal longitudinal data.

Chapter 13. Modeling Node Properties 257

Table 131. gle properties

gle Properties Values Property description

custom_target flag Indicates whether to use target defined in
upstream node (false) or custom target
specified by target_field (true).

target_field field Field to use as target if custom_target is
true.

use_trials flag Indicates whether additional field or value
specifying number of trials is to be used
when target response is a number of events
occurring in a set of trials. Default is false.

use_trials_field_or_val
ue

Field

Value

Indicates whether field (default) or value is
used to specify number of trials.

trials_field field Field to use to specify number of trials.

trials_value integer Value to use to specify number of trials. If
specified, minimum value is 1.

use_custom_target_refer
ence

flag Indicates whether custom reference
category is to be used for a categorical
target. Default is false.

target_reference_value string Reference category to use if
use_custom_target_reference is true.

dist_link_combination NormalIdentity

GammaLog

PoissonLog

NegbinLog

TweedieIdentity

NominalLogit

BinomialLogit

BinomialProbit

BinomialLogC

CUSTOM

Common models for distribution of values for
target.

Choose CUSTOM to specify a
distribution from the list provided by
target_distribution.

258 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 131. gle properties (continued)

gle Properties Values Property description

target_distribution Normal

Binomial

Multinomial

Gamma

INVERSE_GAUSS

NEG_BINOMIAL

Poisson

TWEEDIE

UNKNOWN

Distribution of values for target when
dist_link_combination is Custom.

Chapter 13. Modeling Node Properties 259

Table 131. gle properties (continued)

gle Properties Values Property description

link_function_type UNKNOWN

IDENTITY

LOG

LOGIT

PROBIT

COMPL_LOG_LOG

POWER

LOG_COMPL

NEG_LOG_LOG

ODDS_POWER

NEG_BINOMIAL

GEN_LOGIT

CUMUL_LOGIT

CUMUL_PROBIT

CUMUL_COMPL_LOG_L
OG

CUMUL_NEG_LOG_LOG

CUMUL_CAUCHIT

Link function to relate target values to
predictors. If target_distribution is
Binomial you can use:

UNKNOWN

IDENTITY

LOG

LOGIT

PROBIT

COMPL_LOG_LOG

POWER

LOG_COMPL

NEG_LOG_LOG

ODDS_POWER

If target_distribution is
NEG_BINOMIAL you can use:

NEG_BINOMIAL.

If target_distribution is UNKNOWN, you
can use:

GEN_LOGIT

CUMUL_LOGIT

CUMUL_PROBIT

CUMUL_COMPL_LOG_LOG

CUMUL_NEG_LOG_LOG

CUMUL_CAUCHIT

link_function_param number Tweedie parameter value to use. Only
applicable if normal_link_function or
link_function_type is POWER.

260 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 131. gle properties (continued)

gle Properties Values Property description

tweedie_param number Link function parameter value to use. Only
applicable if dist_link_combination
is set to TweedieIdentity, or
link_function_type is TWEEDIE.

use_predefined_inputs flag Indicates whether model effect fields
are to be those defined upstream
as input fields (true) or those from
fixed_effects_list (false).

model_effects_list structured If use_predefined_inputs is false,
specifies the input fields to use as model
effect fields.

use_intercept flag If true (default), includes the intercept in
the model.

regression_weight_field field Field to use as analysis weight field.

use_offset None

Value

Variable

Indicates how offset is specified. Value None
means no offset is used.

offset_value number Value to use for offset if use_offset is set
to offset_value.

offset_field field Field to use for offset value if use_offset is
set to offset_field.

target_category_order Ascending

Descending

Sorting order for categorical targets. Default
is Ascending.

inputs_category_order Ascending

Descending

Sorting order for categorical predictors.
Default is Ascending.

max_iterations integer Maximum number of iterations the algorithm
will perform. A non-negative integer; default
is 100.

confidence_level number Confidence level used to compute interval
estimates of the model coefficients. A non-
negative integer; maximum is 100, default is
95.

test_fixed_effects_coef
fecients

Model

Robust

Method for computing the parameter
estimates covariance matrix.

detect_outliers flag When true the algorithm finds influential
outliers for all distributions except
multinomial distribution.

conduct_trend_analysis flag When true the algorithm conducts trend
analysis for the scatter plot.

Chapter 13. Modeling Node Properties 261

Table 131. gle properties (continued)

gle Properties Values Property description

estimation_method FISHER_SCORING

NEWTON_RAPHSON

HYBRID

Specify the maximum likelihood estimation
algorithm.

max_fisher_iterations integer If using the FISHER_SCORING
estimation_method, the maximum
number of iterations. Minimum 0, maximum
20.

scale_parameter_method
MLE
FIXED
DEVIANCE
PEARSON_CHISQUARE

Specify the method to be used for the
estimation of the scale parameter.

scale_value number Only available if
scale_parameter_method is set to
Fixed.

negative_binomial_metho
d MLE

FIXED

Specify the method to be for the estimation
of the negative binomial ancillary parameter.

negative_binomial_value number Only available if
negative_binomial_method is set to
Fixed.

non_neg_least_squares flag Whether to perform non-negative least
squares. Default is false.

use_p_converge flag Option for parameter convergence.

p_converge number Blank, or any positive value.

p_converge_type flag True = Absolute, False = Relative

use_l_converge flag Option for log-likelihood convergence.

l_converge number Blank, or any positive value.

l_converge_type flag True = Absolute, False = Relative

use_h_converge flag Option for Hessian convergence.

h_converge number Blank, or any positive value.

h_converge_type flag True = Absolute, False = Relative

max_iterations integer Maximum number of iterations the algorithm
will perform. A non-negative integer; default
is 100.

sing_tolerance integer

use_model_selection flag Enables the parameter threshold and model
selection method controls..

262 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 131. gle properties (continued)

gle Properties Values Property description

method
LASSO
ELASTIC_NET
FORWARD_STEPWISE
RIDGE

Determines the model selection method, or
if using Ridge the regularization method,
used.

detect_two_way_interact
ions

flag When True the model will automatically
detect two-way interactions between input
fields.

This control should only be enabled if the
model is main effects only (that is, where
the user has not created any higher order
effects) and if the method selected is
Forward Stepwise, Lasso, or Elastic Net.

automatic_penalty_param
s

flag Only available if model selection method is
Lasso or Elastic Net.

Use this function to enter penalty parameters
associated with either the Lasso or Elastic
Net variable selection methods.

If True, default values are used. If False,
the penalty parameters are enabled custom
values can be entered.

lasso_penalty_param number Only available if model selection
method is Lasso or Elastic Net and
automatic_penalty_params is False.
Specify the penalty parameter value for
Lasso.

elastic_net_penalty_par
am1

number Only available if model selection
method is Lasso or Elastic Net and
automatic_penalty_params is False.
Specify the penalty parameter value for
Elastic Net parameter 1.

elastic_net_penalty_par
am2

number Only available if model selection
method is Lasso or Elastic Net and
automatic_penalty_params is False.
Specify the penalty parameter value for
Elastic Net parameter 2.

probability_entry number Only available if the method selected is
Forward Stepwise. Specify the significance
level of the f statistic criterion for effect
inclusion.

probability_removal number Only available if the method selected is
Forward Stepwise. Specify the significance
level of the f statistic criterion for effect
removal.

Chapter 13. Modeling Node Properties 263

Table 131. gle properties (continued)

gle Properties Values Property description

use_max_effects flag Only available if the method selected is
Forward Stepwise.

Enables the max_effects control.

When False the default number of effects
included should equal the total number of
effects supplied to the model, minus the
intercept.

max_effects integer Specify the maximum number of effects
when using the forward stepwise building
method.

use_max_steps flag Enables the max_steps control.

When False the default number of steps
should equal three times the number of
effects supplied to the model, excluding the
intercept.

max_steps integer Specify the maximum number of steps to
be taken when using the Forward Stepwise
building method.

use_model_name flag Indicates whether to specify a custom name
for the model (true) or to use the system-
generated name (false). Default is false.

model_name string If use_model_name is true, specifies the
model name to use.

usePI flag If true, predictor importance is calculated..

kmeansnode properties
The K-Means node clusters the data set into distinct groups (or clusters). The
method defines a fixed number of clusters, iteratively assigns records to clusters,
and adjusts the cluster centers until further refinement can no longer improve the
model. Instead of trying to predict an outcome, k-means uses a process known as
unsupervised learning to uncover patterns in the set of input fields.

Example

node = stream.create("kmeans", "My node")
"Fields" tab
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("inputs", ["Cholesterol", "BP", "Drug", "Na", "K",
"Age"])
"Model" tab
node.setPropertyValue("use_model_name", True)
node.setPropertyValue("model_name", "Kmeans_allinputs")
node.setPropertyValue("num_clusters", 9)
node.setPropertyValue("gen_distance", True)
node.setPropertyValue("cluster_label", "Number")
node.setPropertyValue("label_prefix", "Kmeans_")

264 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

node.setPropertyValue("optimize", "Speed")
"Expert" tab
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("stop_on", "Custom")
node.setPropertyValue("max_iterations", 10)
node.setPropertyValue("tolerance", 3.0)
node.setPropertyValue("encoding_value", 0.3)

Table 132. kmeansnode properties

kmeansnode Properties Values Property description

inputs [field1 ... fieldN] K-means models perform cluster
analysis on a set of input fields but
do not use a target field. Weight and
frequency fields are not used. See
the topic “Common modeling node
properties” on page 211 for more
information.

num_clusters number

gen_distance flag

cluster_label String

Number

label_prefix string

mode Simple

Expert

stop_on Default

Custom

max_iterations number

tolerance number

encoding_value number

optimize Speed

Memory

Use to specify whether model building
should be optimized for speed or for
memory.

kmeansasnode properties
K-Means is one of the most commonly used clustering algorithms. It clusters
data points into a predefined number of clusters. The K-Means-AS node in SPSS
Modeler is implemented in Spark. For details about K-Means algorithms, see https://
spark.apache.org/docs/3.4.0/ml-clustering.html#clustering. Note that the K-Means-
AS node performs one-hot encoding automatically for categorical variables.

Chapter 13. Modeling Node Properties 265

https://spark.apache.org/docs/3.4.0/ml-clustering.html#clustering
https://spark.apache.org/docs/3.4.0/ml-clustering.html#clustering

Table 133. kmeansasnode properties

kmeansasnode Properties Values Property description

roleUse string Specify predefined to use predefined
roles, or custom to use custom field
assignments. Default is predefined.

autoModel Boolean Specify true to use the default
name ($S-prediction) for the new
generated scoring field, or false to
use a custom name. Default is true.

features field List of the field names for input
when the roleUse property is set to
custom.

name string The name of the new generated scoring
field when the autoModel property is
set to false.

clustersNum integer The number of clusters to create.
Default is 5.

initMode string The initialization algorithm. Possible
values are k-means|| or random.
Default is k-means||.

initSteps integer The number of initialization steps
when initMode is set to k-means||.
Default is 2.

advancedSettings Boolean Specify true to make the following
four properties available. Default is
false.

maxIteration integer Maximum number of iterations for
clustering. Default is 20.

tolerance string The tolerance to stop the iterations.
Possible settings are 1.0E-1,
1.0E-2, ..., 1.0E-6. Default is
1.0E-4.

setSeed Boolean Specify true to use a custom random
seed. Default is false.

randomSeed integer The custom random seed when the
setSeed property is true.

knnnode properties
The k-Nearest Neighbor (KNN) node associates a new case with the category or
value of the k objects nearest to it in the predictor space, where k is an integer.
Similar cases are near each other and dissimilar cases are distant from each other.

Example

node = stream.create("knn", "My node")
Objectives tab
node.setPropertyValue("objective", "Custom")
Settings tab - Neighbors panel

266 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

node.setPropertyValue("automatic_k_selection", False)
node.setPropertyValue("fixed_k", 2)
node.setPropertyValue("weight_by_importance", True)
Settings tab - Analyze panel
node.setPropertyValue("save_distances", True)

Table 134. knnnode properties

knnnode Properties Values Property description

analysis PredictTarget

IdentifyNeighbors

objective Balance

Speed

Accuracy

Custom

normalize_ranges flag

use_case_labels flag Check box to enable next option.

case_labels_field field

identify_focal_cases flag Check box to enable next option.

focal_cases_field field

automatic_k_selection flag

fixed_k integer Enabled only if
automatic_k_selectio is False.

minimum_k integer Enabled only if
automatic_k_selectio is True.

maximum_k integer

distance_computation Euclidean

CityBlock

weight_by_importance flag

range_predictions Mean

Median

perform_feature_selectio
n

flag

forced_entry_inputs [field1 ... fieldN]

stop_on_error_ratio flag

number_to_select integer

minimum_change number

Chapter 13. Modeling Node Properties 267

Table 134. knnnode properties (continued)

knnnode Properties Values Property description

validation_fold_assign_b
y_field

flag

number_of_folds integer Enabled only if
validation_fold_assign_by_fie
ld is False

set_random_seed flag

random_seed number

folds_field field Enabled only if
validation_fold_assign_by_fie
ld is True

all_probabilities flag

save_distances flag

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

adjusted_propensity_part
ition

Test

Validation

kohonennode properties
The Kohonen node generates a type of neural network that can be used to cluster
the data set into distinct groups. When the network is fully trained, records that are
similar should be close together on the output map, while records that are different
will be far apart. You can look at the number of observations captured by each unit
in the model nugget to identify the strong units. This may give you a sense of the
appropriate number of clusters.

Example

node = stream.create("kohonen", "My node")
"Model" tab
node.setPropertyValue("use_model_name", False)
node.setPropertyValue("model_name", "Symbolic Cluster")
node.setPropertyValue("stop_on", "Time")
node.setPropertyValue("time", 1)
node.setPropertyValue("set_random_seed", True)
node.setPropertyValue("random_seed", 12345)
node.setPropertyValue("optimize", "Speed")
"Expert" tab
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("width", 3)
node.setPropertyValue("length", 3)
node.setPropertyValue("decay_style", "Exponential")
node.setPropertyValue("phase1_neighborhood", 3)
node.setPropertyValue("phase1_eta", 0.5)
node.setPropertyValue("phase1_cycles", 10)
node.setPropertyValue("phase2_neighborhood", 1)

268 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

node.setPropertyValue("phase2_eta", 0.2)
node.setPropertyValue("phase2_cycles", 75)

Table 135. kohonennode properties

kohonennode Properties Values Property description

inputs [field1 ... fieldN] Kohonen models use a list of input
fields, but no target. Frequency and
weight fields are not used. See
the topic “Common modeling node
properties” on page 211 for more
information.

continue flag

show_feedback flag

stop_on Default

Time

time number

optimize Speed

Memory

Use to specify whether model building
should be optimized for speed or for
memory.

cluster_label flag

mode Simple

Expert

width number

length number

decay_style Linear

Exponential

phase1_neighborhood number

phase1_eta number

phase1_cycles number

phase2_neighborhood number

phase2_eta number

phase2_cycles number

linearnode properties
Linear regression models predict a continuous target based on linear relationships
between the target and one or more predictors.

Chapter 13. Modeling Node Properties 269

Example

node = stream.create("linear", "My node")
Build Options tab - Objectives panel
node.setPropertyValue("objective", "Standard")
Build Options tab - Model Selection panel
node.setPropertyValue("model_selection", "BestSubsets")
node.setPropertyValue("criteria_best_subsets", "ASE")
Build Options tab - Ensembles panel
node.setPropertyValue("combining_rule_categorical", "HighestMeanProbability")

Table 136. linearnode properties

linearnode Properties Values Property description

target field Specifies a single target field.

inputs [field1 ... fieldN] Predictor fields used by the model.

continue_training_existi
ng_model

flag

objective Standard

Bagging

Boosting

psm

psm is used for very large datasets, and
requires a Server connection.

use_auto_data_preparatio
n

flag

confidence_level number

model_selection ForwardStepwise

BestSubsets

None

criteria_forward_stepwis
e

AICC

Fstatistics

AdjustedRSquare

ASE

probability_entry number

probability_removal number

use_max_effects flag

max_effects number

use_max_steps flag

max_steps number

270 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 136. linearnode properties (continued)

linearnode Properties Values Property description

criteria_best_subsets AICC

AdjustedRSquare

ASE

combining_rule_continuou
s

Mean

Median

component_models_n number

use_random_seed flag

random_seed number

use_custom_model_name flag

custom_model_name string

use_custom_name flag

custom_name string

tooltip string

keywords string

annotation string

linearasnode properties
Linear regression models predict a continuous target based on linear relationships
between the target and one or more predictors.

Table 137. linearasnode properties

linearasnode Properties Values Property description

target field Specifies a single target field.

inputs [field1 ... fieldN] Predictor fields used by the model.

weight_field field Analysis field used by the model.

custom_fields flag The default value is TRUE.

intercept flag The default value is TRUE.

detect_2way_interaction flag Whether or not to consider two way
interaction. The default value is TRUE.

cin number The interval of confidence used to
compute estimates of the model
coefficients. Specify a value greater
than 0 and less than 100. The default
value is 95.

Chapter 13. Modeling Node Properties 271

Table 137. linearasnode properties (continued)

linearasnode Properties Values Property description

factor_order ascending

descending

The sort order for categorical
predictors. The default value is
ascending.

var_select_method ForwardStepwise

BestSubsets

none

The model selection method
to use. The default value is
ForwardStepwise.

criteria_for_forward_ste
pwise

AICC

Fstatistics

AdjustedRSquare

ASE

The statistic used to determine
whether an effect should be added
to or removed from the model. The
default value is AdjustedRSquare.

pin number The effect that has the smallest p-
value less than this specified pin
threshold is added to the model. The
default value is 0.05.

pout number Any effects in the model with a p-
value greater than this specified pout
threshold are removed. The default
value is 0.10.

use_custom_max_effects flag Whether to use max number of effects
in the final model. The default value is
FALSE.

max_effects number Maximum number of effects to use in
the final model. The default value is 1.

use_custom_max_steps flag Whether to use the maximum number
of steps. The default value is FALSE.

max_steps number The maximum number of steps before
the stepwise algorithm stops. The
default value is 1.

criteria_for_best_subset
s

AICC

AdjustedRSquare

ASE

The mode of criteria to use. The default
value is AdjustedRSquare.

logregnode properties
Logistic regression is a statistical technique for classifying records based on values
of input fields. It is analogous to linear regression but takes a categorical target field
instead of a numeric range.

272 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Multinomial Example

node = stream.create("logreg", "My node")
"Fields" tab
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("target", "Drug")
node.setPropertyValue("inputs", ["BP", "Cholesterol", "Age"])
node.setPropertyValue("partition", "Test")
"Model" tab
node.setPropertyValue("use_model_name", True)
node.setPropertyValue("model_name", "Log_reg Drug")
node.setPropertyValue("use_partitioned_data", True)
node.setPropertyValue("method", "Stepwise")
node.setPropertyValue("logistic_procedure", "Multinomial")
node.setPropertyValue("multinomial_base_category", "BP")
node.setPropertyValue("model_type", "FullFactorial")
node.setPropertyValue("custom_terms", [["BP", "Sex"], ["Age"], ["Na", "K"]])
node.setPropertyValue("include_constant", False)
"Expert" tab
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("scale", "Pearson")
node.setPropertyValue("scale_value", 3.0)
node.setPropertyValue("all_probabilities", True)
node.setPropertyValue("tolerance", "1.0E-7")
"Convergence..." section
node.setPropertyValue("max_iterations", 50)
node.setPropertyValue("max_steps", 3)
node.setPropertyValue("l_converge", "1.0E-3")
node.setPropertyValue("p_converge", "1.0E-7")
node.setPropertyValue("delta", 0.03)
"Output..." section
node.setPropertyValue("summary", True)
node.setPropertyValue("likelihood_ratio", True)
node.setPropertyValue("asymptotic_correlation", True)
node.setPropertyValue("goodness_fit", True)
node.setPropertyValue("iteration_history", True)
node.setPropertyValue("history_steps", 3)
node.setPropertyValue("parameters", True)
node.setPropertyValue("confidence_interval", 90)
node.setPropertyValue("asymptotic_covariance", True)
node.setPropertyValue("classification_table", True)
"Stepping" options
node.setPropertyValue("min_terms", 7)
node.setPropertyValue("use_max_terms", True)
node.setPropertyValue("max_terms", 10)
node.setPropertyValue("probability_entry", 3)
node.setPropertyValue("probability_removal", 5)
node.setPropertyValue("requirements", "Containment")

Binomial Example

node = stream.create("logreg", "My node")
"Fields" tab
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("target", "Cholesterol")
node.setPropertyValue("inputs", ["BP", "Drug", "Age"])
node.setPropertyValue("partition", "Test")
"Model" tab
node.setPropertyValue("use_model_name", False)
node.setPropertyValue("model_name", "Log_reg Cholesterol")
node.setPropertyValue("multinomial_base_category", "BP")
node.setPropertyValue("use_partitioned_data", True)
node.setPropertyValue("binomial_method", "Forwards")
node.setPropertyValue("logistic_procedure", "Binomial")
node.setPropertyValue("binomial_categorical_input", "Sex")

Chapter 13. Modeling Node Properties 273

node.setKeyedPropertyValue("binomial_input_contrast", "Sex", "Simple")
node.setKeyedPropertyValue("binomial_input_category", "Sex", "Last")
node.setPropertyValue("include_constant", False)
"Expert" tab
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("scale", "Pearson")
node.setPropertyValue("scale_value", 3.0)
node.setPropertyValue("all_probabilities", True)
node.setPropertyValue("tolerance", "1.0E-7")
"Convergence..." section
node.setPropertyValue("max_iterations", 50)
node.setPropertyValue("l_converge", "1.0E-3")
node.setPropertyValue("p_converge", "1.0E-7")
"Output..." section
node.setPropertyValue("binomial_output_display", "at_each_step")
node.setPropertyValue("binomial_goodness_of_fit", True)
node.setPropertyValue("binomial_iteration_history", True)
node.setPropertyValue("binomial_parameters", True)
node.setPropertyValue("binomial_ci_enable", True)
node.setPropertyValue("binomial_ci", 85)
"Stepping" options
node.setPropertyValue("binomial_removal_criterion", "LR")
node.setPropertyValue("binomial_probability_removal", 0.2)

Table 138. logregnode properties

logregnode Properties Values Property description

target field Logistic regression models require a
single target field and one or more
input fields. Frequency and weight
fields are not used. See the topic
“Common modeling node properties”
on page 211 for more information.

logistic_procedure Binomial

Multinomial

include_constant flag

mode Simple

Expert

method Enter

Stepwise

Forwards

Backwards

BackwardsStepwise

binomial_method Enter

Forwards

Backwards

274 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 138. logregnode properties (continued)

logregnode Properties Values Property description

model_type MainEffects

FullFactorial

Custom

When FullFactorial is specified as
the model type, stepping methods will
not be run, even if specified. Instead,
Enter will be the method used.

If the model type is set to Custom but
no custom fields are specified, a main-
effects model will be built.

custom_terms [[BP Sex][BP][Age]]

multinomial_base_categor
y

string Specifies how the reference category
is determined.

binomial_categorical_inp
ut

string

binomial_input_contrast Indicator

Simple

Difference

Helmert

Repeated

Polynomial

Deviation

Keyed property for categorical input
that specifies how the contrast is
determined.

binomial_input_category First

Last

Keyed property for categorical input
that specifies how the reference
category is determined.

scale None

UserDefined

Pearson

Deviance

scale_value number

all_probabilities flag

Chapter 13. Modeling Node Properties 275

Table 138. logregnode properties (continued)

logregnode Properties Values Property description

tolerance 1.0E-5

1.0E-6

1.0E-7

1.0E-8

1.0E-9

1.0E-10

min_terms number

use_max_terms flag

max_terms number

entry_criterion Score

LR

removal_criterion LR

Wald

probability_entry number

probability_removal number

binomial_probability_ent
ry

number

binomial_probability_rem
oval

number

requirements HierarchyDiscrete
HierarchyAll

Containment

None

max_iterations number

max_steps number

276 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 138. logregnode properties (continued)

logregnode Properties Values Property description

p_converge 1.0E-4

1.0E-5

1.0E-6

1.0E-7

1.0E-8

0

l_converge 1.0E-1

1.0E-2

1.0E-3

1.0E-4

1.0E-5

0

delta number

iteration_history flag

history_steps number

summary flag

likelihood_ratio flag

asymptotic_correlation flag

goodness_fit flag

parameters flag

confidence_interval number

asymptotic_covariance flag

classification_table flag

stepwise_summary flag

info_criteria flag

monotonicity_measures flag

binomial_output_display at_each_step

at_last_step

binomial_goodness_of_fit flag

Chapter 13. Modeling Node Properties 277

Table 138. logregnode properties (continued)

logregnode Properties Values Property description

binomial_parameters flag

binomial_iteration_histo
ry

flag

binomial_classification_
plots

flag

binomial_ci_enable flag

binomial_ci number

binomial_residual outliers

all

binomial_residual_enable flag

binomial_outlier_thresho
ld

number

binomial_classification_
cutoff

number

binomial_removal_criteri
on

LR

Wald

Conditional

calculate_variable_impor
tance

flag

calculate_raw_propensiti
es

flag

lsvmnode properties
The Linear Support Vector Machine (LSVM) node enables you to classify data into
one of two groups without overfitting. LSVM is linear and works well with wide data
sets, such as those with a very large number of records.

Table 139. lsvmnode properties

lsvmnode Properties Values Property description

intercept flag Includes the intercept in the
model. Default value is True.

target_order Ascending

Descending

Specifies the sorting order for
the categorical target. Ignored
for continuous targets. Default is
Ascending.

278 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 139. lsvmnode properties (continued)

lsvmnode Properties Values Property description

precision number Used only if measurement level
of target field is Continuous.
Specifies the parameter related
to the sensitiveness of the loss
for regression. Minimum is 0 and
there is no maximum. Default
value is 0.1.

exclude_missing_value
s

flag When True, a record is excluded
if any single value is missing. The
default value is False.

penalty_function L1

L2

Specifies the type of penalty
function used. The default value is
L2.

lambda number Penalty (regularization)
parameter.

calculate_variable_im
portance

flag For models that produce
an appropriate measure of
importance,this option displays a
chart that indicates the relative
importance of each predictor in
estimating the model. Note that
variable importance may take
longer to calculate for some
models, particularly when working
with large datasets, and is off
by default for some models as a
result. Variable importance is not
available for decision list models.

neuralnetnode properties
Important: A newer version of the Neural Net modeling node, with enhanced features, is available in
this release and is described in the next section (neuralnetwork). Although you can still build and score a
model with the previous version, we recommend updating your scripts to use the new version. Details of
the previous version are retained here for reference.

Example

node = stream.create("neuralnet", "My node")
"Fields" tab
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("targets", ["Drug"])
node.setPropertyValue("inputs", ["Age", "Na", "K", "Cholesterol", "BP"])
"Model" tab
node.setPropertyValue("use_partitioned_data", True)
node.setPropertyValue("method", "Dynamic")
node.setPropertyValue("train_pct", 30)
node.setPropertyValue("set_random_seed", True)
node.setPropertyValue("random_seed", 12345)
node.setPropertyValue("stop_on", "Time")
node.setPropertyValue("accuracy", 95)
node.setPropertyValue("cycles", 200)
node.setPropertyValue("time", 3)

Chapter 13. Modeling Node Properties 279

node.setPropertyValue("optimize", "Speed")
"Multiple Method Expert Options" section
node.setPropertyValue("m_topologies", "5 30 5; 2 20 3, 1 10 1")
node.setPropertyValue("m_non_pyramids", False)
node.setPropertyValue("m_persistence", 100)

Table 140. neuralnetnode properties

neuralnetnode Properties Values Property description

targets [field1 ... fieldN] The Neural Net node expects one or
more target fields and one or more
input fields. Frequency and weight
fields are ignored. See the topic
“Common modeling node properties”
on page 211 for more information.

method Quick

Dynamic

Multiple

Prune

ExhaustivePrune

RBFN

prevent_overtrain flag

train_pct number

set_random_seed flag

random_seed number

mode Simple

Expert

stop_on Default

Accuracy

Cycles

Time

Stopping mode.

accuracy number Stopping accuracy.

cycles number Cycles to train.

time number Time to train (minutes).

continue flag

show_feedback flag

binary_encode flag

280 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 140. neuralnetnode properties (continued)

neuralnetnode Properties Values Property description

use_last_model flag

gen_logfile flag

logfile_name string

alpha number

initial_eta number

high_eta number

low_eta number

eta_decay_cycles number

hid_layers One

Two

Three

hl_units_one number

hl_units_two number

hl_units_three number

persistence number

m_topologies string

m_non_pyramids flag

m_persistence number

p_hid_layers One

Two

Three

p_hl_units_one number

p_hl_units_two number

p_hl_units_three number

p_persistence number

p_hid_rate number

p_hid_pers number

p_inp_rate number

p_inp_pers number

p_overall_pers number

r_persistence number

r_num_clusters number

Chapter 13. Modeling Node Properties 281

Table 140. neuralnetnode properties (continued)

neuralnetnode Properties Values Property description

r_eta_auto flag

r_alpha number

r_eta number

optimize Speed

Memory

Use to specify whether model building
should be optimized for speed or for
memory.

calculate_variable_impor
tance

flag Note: The sensitivity_analysis
property used in previous releases is
deprecated in favor of this property.
The old property is still supported, but
calculate_variable_importance
is recommended.

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

adjusted_propensity_part
ition

Test

Validation

neuralnetworknode properties
The Neural Net node uses a simplified model of the way the human brain
processes information. It works by simulating a large number of interconnected
simple processing units that resemble abstract versions of neurons. Neural
networks are powerful general function estimators and require minimal statistical
or mathematical knowledge to train or apply.

Example

node = stream.create("neuralnetwork", "My node")
Build Options tab - Objectives panel
node.setPropertyValue("objective", "Standard")
Build Options tab - Ensembles panel
node.setPropertyValue("combining_rule_categorical", "HighestMeanProbability")

Table 141. neuralnetworknode properties

neuralnetworknode
Properties

Values Property description

targets [field1 ... fieldN] Specifies target fields.

inputs [field1 ... fieldN] Predictor fields used by the model.

splits [field1 ... fieldN Specifies the field or fields to use for
split modeling.

282 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 141. neuralnetworknode properties (continued)

neuralnetworknode
Properties

Values Property description

use_partition flag If a partition field is defined, this
option ensures that only data from the
training partition is used to build the
model.

continue flag Continue training existing model.

objective Standard

Bagging

Boosting

psm

psm is used for very large datasets, and
requires a Server connection.

method MultilayerPerceptron

RadialBasisFunction

use_custom_layers flag

first_layer_units number

second_layer_units number

use_max_time flag

max_time number

use_max_cycles flag

max_cycles number

use_min_accuracy flag

min_accuracy number

combining_rule_categoric
al

Voting

HighestProbability

HighestMeanProbabilit
y

combining_rule_continuou
s

Mean

Median

component_models_n number

overfit_prevention_pct number

use_random_seed flag

random_seed number

Chapter 13. Modeling Node Properties 283

Table 141. neuralnetworknode properties (continued)

neuralnetworknode
Properties

Values Property description

missing_values listwiseDeletion

missingValueImputatio
n

use_model_name boolean

model_name string

confidence onProbability

onIncrease

score_category_probabili
ties

flag

max_categories number

score_propensity flag

use_custom_name flag

custom_name string

tooltip string

keywords string

annotation string

questnode properties
The QUEST node provides a binary classification method for building decision trees,
designed to reduce the processing time required for large C&R Tree analyses while
also reducing the tendency found in classification tree methods to favor inputs that
allow more splits. Input fields can be numeric ranges (continuous), but the target
field must be categorical. All splits are binary.

Example

node = stream.create("quest", "My node")
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("target", "Drug")
node.setPropertyValue("inputs", ["Age", "Na", "K", "Cholesterol", "BP"])
node.setPropertyValue("model_output_type", "InteractiveBuilder")
node.setPropertyValue("use_tree_directives", True)
node.setPropertyValue("max_surrogates", 5)
node.setPropertyValue("split_alpha", 0.03)
node.setPropertyValue("use_percentage", False)
node.setPropertyValue("min_parent_records_abs", 40)
node.setPropertyValue("min_child_records_abs", 30)
node.setPropertyValue("prune_tree", True)
node.setPropertyValue("use_std_err", True)
node.setPropertyValue("std_err_multiplier", 3)

284 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 142. questnode properties

questnode Properties Values Property description

target field QUEST models require a single target
and one or more input fields. A
frequency field can also be specified.
See the topic “Common modeling node
properties” on page 211 for more
information.

continue_training_existi
ng_model

flag

objective Standard

Boosting

Bagging

psm

psm is used for very large datasets, and
requires a Server connection.

model_output_type Single

InteractiveBuilder

use_tree_directives flag

tree_directives string

use_max_depth Default

Custom

max_depth integer Maximum tree depth, from 0 to
1000. Used only if use_max_depth =
Custom.

prune_tree flag Prune tree to avoid overfitting.

use_std_err flag Use maximum difference in risk (in
Standard Errors).

std_err_multiplier number Maximum difference.

max_surrogates number Maximum surrogates.

use_percentage flag

min_parent_records_pc number

min_child_records_pc number

min_parent_records_abs number

min_child_records_abs number

use_costs flag

costs structured Structured property.

Chapter 13. Modeling Node Properties 285

Table 142. questnode properties (continued)

questnode Properties Values Property description

priors Data

Equal

Custom

custom_priors structured Structured property.

adjust_priors flag

trails number Number of component models for
boosting or bagging.

set_ensemble_method Voting

HighestProbability

HighestMeanProbabilit
y

Default combining rule for categorical
targets.

range_ensemble_method Mean

Median

Default combining rule for continuous
targets.

large_boost flag Apply boosting to very large data sets.

split_alpha number Significance level for splitting.

train_pct number Overfit prevention set.

set_random_seed flag Replicate results option.

seed number

calculate_variable_impor
tance

flag

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

adjusted_propensity_part
ition

Test

Validation

286 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

randomtrees properties
The Random Trees node is similar to the existing C&RT node; however, the Random
Trees node is designed to process big data to create a single tree and displays the
resulting model in the output viewer that was added in SPSS Modeler version 17.
The Random Trees tree node generates a decision tree that you use to predict or
classify future observations. The method uses recursive partitioning to split the
training records into segments by minimizing the impurity at each step, where
a node in the tree is considered pure if 100% of cases in the node fall into a
specific category of the target field. Target and input fields can be numeric ranges or
categorical (nominal, ordinal, or flags); all splits are binary (only two subgroups).

Table 143. randomtrees properties

randomtrees Properties Values Property description

target field In the Random Trees node, models
require a single target and one or more
input fields. A frequency field can also
be specified. See the topic “Common
modeling node properties” on page
211 for more information.

number_of_models integer Determines the number of models
to build as part of the ensemble
modeling.

use_number_of_predictors flag Determines whether
number_of_predictors is used.

number_of_predictors integer Specifies the number of predictors to
be used when building split models.

use_stop_rule_for_accura
cy

flag Determines whether model building
stops when accuracy cannot be
improved.

sample_size number Reduce this value to improve
performance when processing very
large datasets.

handle_imbalanced_data flag If the target of the model is a
particular flag outcome, and the ratio
of the desired outcome to a non-
desired outcome is very small, then
the data is imbalanced and the
bootstrap sampling that is conducted
by the model may affect the model's
accuracy. Enable imbalanced data
handling so that the model will capture
a larger proportion of the desired
outcome and generate a stronger
model.

use_weighted_sampling flag When False, variables for each node
are randomly selected with the same
probability. When True, variables are
weighted and selected accordingly.

Chapter 13. Modeling Node Properties 287

Table 143. randomtrees properties (continued)

randomtrees Properties Values Property description

max_node_number integer Maximum number of nodes allowed in
individual trees. If the number would
be exceeded on the next split, tree
growth halts.

max_depth integer Maximum tree depth before growth
halts.

min_child_node_size integer Determines the minimum number of
records allowed in a child node after
the parent node is split. If a child
node would contain fewer records than
specified here the parent node will not
be split

use_costs flag

costs structured Structured property. The format is a
list of 3 values: the actual value, the
predicted value, and the cost if that
prediction is wrong. For example:

tree.setPropertyValue("costs",
[["drugA", "drugB", 3.0], ["drugX",
"drugY", 4.0]])

default_cost_increase none

linear

square

custom

Note: only enabled for ordinal targets.

Set default values in the costs matrix.

max_pct_missing integer If the percentage of missing values
in any input is greater than the value
specified here, the input is excluded.
Minimum 0, maximum 100.

exclude_single_cat_pct integer If one category value represents a
higher percentage of the records
than specified here, the entire field
is excluded from model building.
Minimum 1, maximum 99.

max_category_number integer If the number of categories in a
field exceeds this value, the field
is excluded from model building.
Minimum 2.

min_field_variation number If the coefficient of variation of a
continuous field is smaller than this
value, the field is excluded from model
building.

288 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 143. randomtrees properties (continued)

randomtrees Properties Values Property description

num_bins integer Only used if the data is made up of
continuous inputs. Set the number of
equal frequency bins to be used for the
inputs; options are: 2, 4, 5, 10, 20, 25,
50, or 100.

topN integer Specifies the number of rules to report.
Default value is 50, with a minimum of
1 and a maximum of 1000.

regressionnode properties
Linear regression is a common statistical technique for summarizing data and
making predictions by fitting a straight line or surface that minimizes the
discrepancies between predicted and actual output values.

Note: The Regression node is due to be replaced by the Linear node in a future release. We recommend
using Linear models for linear regression from now on.

Example

node = stream.create("regression", "My node")
"Fields" tab
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("target", "Age")
node.setPropertyValue("inputs", ["Na", "K"])
node.setPropertyValue("partition", "Test")
node.setPropertyValue("use_weight", True)
node.setPropertyValue("weight_field", "Drug")
"Model" tab
node.setPropertyValue("use_model_name", True)
node.setPropertyValue("model_name", "Regression Age")
node.setPropertyValue("use_partitioned_data", True)
node.setPropertyValue("method", "Stepwise")
node.setPropertyValue("include_constant", False)
"Expert" tab
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("complete_records", False)
node.setPropertyValue("tolerance", "1.0E-3")
"Stepping..." section
node.setPropertyValue("stepping_method", "Probability")
node.setPropertyValue("probability_entry", 0.77)
node.setPropertyValue("probability_removal", 0.88)
node.setPropertyValue("F_value_entry", 7.0)
node.setPropertyValue("F_value_removal", 8.0)
"Output..." section
node.setPropertyValue("model_fit", True)
node.setPropertyValue("r_squared_change", True)
node.setPropertyValue("selection_criteria", True)
node.setPropertyValue("descriptives", True)
node.setPropertyValue("p_correlations", True)
node.setPropertyValue("collinearity_diagnostics", True)
node.setPropertyValue("confidence_interval", True)
node.setPropertyValue("covariance_matrix", True)
node.setPropertyValue("durbin_watson", True)

Chapter 13. Modeling Node Properties 289

Table 144. regressionnode properties

regressionnode Properties Values Property description

target field Regression models require a single
target field and one or more input
fields. A weight field can also be
specified. See the topic “Common
modeling node properties” on page
211 for more information.

method Enter

Stepwise

Backwards

Forwards

include_constant flag

use_weight flag

weight_field field

mode Simple

Expert

complete_records flag

tolerance 1.0E-1

1.0E-2

1.0E-3

1.0E-4

1.0E-5

1.0E-6

1.0E-7

1.0E-8

1.0E-9

1.0E-10

1.0E-11

1.0E-12

Use double quotes for arguments.

290 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 144. regressionnode properties (continued)

regressionnode Properties Values Property description

stepping_method useP

useF

useP : use probability of F

useF: use F value

probability_entry number

probability_removal number

F_value_entry number

F_value_removal number

selection_criteria flag

confidence_interval flag

covariance_matrix flag

collinearity_diagnostics flag

regression_coefficients flag

exclude_fields flag

durbin_watson flag

model_fit flag

r_squared_change flag

p_correlations flag

descriptives flag

calculate_variable_impor
tance

flag

sequencenode properties
The Sequence node discovers association rules in sequential or time-oriented data.
A sequence is a list of item sets that tends to occur in a predictable order. For
example, a customer who purchases a razor and aftershave lotion may purchase
shaving cream the next time he shops. The Sequence node is based on the CARMA
association rules algorithm, which uses an efficient two-pass method for finding
sequences.

Example

node = stream.create("sequence", "My node")
"Fields" tab
node.setPropertyValue("id_field", "Age")
node.setPropertyValue("contiguous", True)
node.setPropertyValue("use_time_field", True)
node.setPropertyValue("time_field", "Date1")
node.setPropertyValue("content_fields", ["Drug", "BP"])
node.setPropertyValue("partition", "Test")
"Model" tab
node.setPropertyValue("use_model_name", True)
node.setPropertyValue("model_name", "Sequence_test")
node.setPropertyValue("use_partitioned_data", False)
node.setPropertyValue("min_supp", 15.0)

Chapter 13. Modeling Node Properties 291

node.setPropertyValue("min_conf", 14.0)
node.setPropertyValue("max_size", 7)
node.setPropertyValue("max_predictions", 5)
"Expert" tab
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("use_max_duration", True)
node.setPropertyValue("max_duration", 3.0)
node.setPropertyValue("use_pruning", True)
node.setPropertyValue("pruning_value", 4.0)
node.setPropertyValue("set_mem_sequences", True)
node.setPropertyValue("mem_sequences", 5.0)
node.setPropertyValue("use_gaps", True)
node.setPropertyValue("min_item_gap", 20.0)
node.setPropertyValue("max_item_gap", 30.0)

Table 145. sequencenode properties

sequencenode Properties Values Property description

id_field field To create a Sequence model, you need
to specify an ID field, an optional
time field, and one or more content
fields. Weight and frequency fields are
not used. See the topic “Common
modeling node properties” on page
211 for more information.

time_field field

use_time_field flag

content_fields [field1 ... fieldn]

contiguous flag

min_supp number

min_conf number

max_size number

max_predictions number

mode Simple

Expert

use_max_duration flag

max_duration number

use_gaps flag

min_item_gap number

max_item_gap number

use_pruning flag

pruning_value number

set_mem_sequences flag

mem_sequences integer

292 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

slrmnode properties
The Self-Learning Response Model (SLRM) node enables you to build a model in
which a single new case, or small number of new cases, can be used to reestimate
the model without having to retrain the model using all data.

Example

node = stream.create("slrm", "My node")
node.setPropertyValue("target", "Offer")
node.setPropertyValue("target_response", "Response")
node.setPropertyValue("inputs", ["Cust_ID", "Age", "Ave_Bal"])

Table 146. slrmnode properties

slrmnode Properties Values Property description

target field The target field must be a nominal or
flag field. A frequency field can also
be specified. See the topic “Common
modeling node properties” on page
211 for more information.

target_response field Type must be flag.

continue_training_existi
ng_model

flag

target_field_values flag Use all: Use all values from source.

Specify: Select values required.

target_field_values_spec
ify

[field1 ... fieldN]

include_model_assessment flag

model_assessment_random_
seed

number Must be a real number.

model_assessment_sample_
size

number Must be a real number.

model_assessment_iterati
ons

number Number of iterations.

display_model_evaluation flag

max_predictions number

randomization number

scoring_random_seed number

sort Ascending

Descending

Specifies whether the offers with
the highest or lowest scores will be
displayed first.

model_reliability flag

calculate_variable_impor
tance

flag

Chapter 13. Modeling Node Properties 293

statisticsmodelnode properties
The Statistics Model node enables you to analyze and work with your data by
running IBM SPSS Statistics procedures that produce PMML. This node requires
a licensed copy of IBM SPSS Statistics.

The properties for this node are described under “statisticsmodelnode properties” on page 410.

stpnode properties
The Spatio-Temporal Prediction (STP) node uses data that contains location data,
input fields for prediction (predictors), a time field, and a target field. Each location
has numerous rows in the data that represent the values of each predictor at each
time of measurement. After the data is analyzed, it can be used to predict target
values at any location within the shape data that is used in the analysis.

Table 147. stpnode properties

stpnode properties Data type Property description

Fields tab

target field This is the target field.

location field The location field for the model.
Only geospatial fields are allowed.

location_label field The categorical field to be used in
the output to label the locations
chosen in location

time_field field The time field for the model.
Only fields with continuous
measurement are allowed, and
the storage type must be time,
date, timestamp, or integer.

inputs [field1 ... fieldN] A list of input fields.

Time Intervals tab

interval_type_timestamp Years

Quarters

Months

Weeks

Days

Hours

Minutes

Seconds

294 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 147. stpnode properties (continued)

stpnode properties Data type Property description

interval_type_date Years

Quarters

Months

Weeks

Days

interval_type_time Hours

Minutes

Seconds

Limits the number of days per
week that are taken into account
when creating the time index that
STP uses for calculation

interval_type_integer Periods

(Time index fields only,
Integer storage)

The interval to which the data set
will be converted. The selection
available is dependent on the
storage type of the field that is
chosen as the time_field for
the model.

period_start integer

start_month January

February

March

April

May

June

July

August

September

October

November

December

The month the model will start to
index from (for example, if set to
March but the first record in the
data set is January, the model
will skip the first two records and
start indexing at March.

Chapter 13. Modeling Node Properties 295

Table 147. stpnode properties (continued)

stpnode properties Data type Property description

week_begins_on Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

The starting point for the time
index created by STP from the
data

days_per_week integer Minimum 1, maximum 7, in
increments of 1

hours_per_day integer The number of hours the model
accounts for in a day. If this is
set to 10, the model will start
indexing at the day_begins_at
time and continue indexing for 10
hours, then skip to the next value
matching the day_begins_at
value, etc.

day_begins_at 00:00

01:00

02:00

03:00

...

23:00

Sets the hour value that the model
starts indexing from.

296 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 147. stpnode properties (continued)

stpnode properties Data type Property description

interval_increment 1

2

3

4

5

6

10

12

15

20

30

This increment setting is for
minutes or seconds. This
determines where the model
creates indexes from the data.
So with an increment of 30 and
interval type seconds, the model
will create an index from the data
every 30 seconds.

data_matches_interval Boolean If set to N, the conversion
of the data to the regular
interval_type occurs before
the model is built.

If your data is already
in the correct format, and
the interval_type and any
associated settings match your
data, set this to Y to prevent the
conversion or aggregation of your
data.

Setting this to Y disables all of the
Aggregation controls.

Chapter 13. Modeling Node Properties 297

Table 147. stpnode properties (continued)

stpnode properties Data type Property description

agg_range_default Sum

Mean

Min

Max

Median

1stQuartile

3rdQuartile

This determines the default
aggregation method used for
continuous fields. Any continuous
fields which are not specifically
included in the custom
aggregation will be aggregated
using the method specified here.

custom_agg [[field, aggregation
method],[]..]

Demo:

[['x5'
'FirstQuartile']['x4'
'Sum']]

Structured property:

Script parameter: custom_agg

For example:

set :stpnode.custom_agg =
[

[field1 function]

[field2 function]

]

Where function is the
aggregation function to be used
with that field.

Basics tab

include_intercept flag

max_autoregressive_lag integer Minimum 1, maximum 5, in
increments of 1. This is the
number of previous records
required for a prediction. So
if set to 5, for example, then
the previous 5 records are used
to create a new forecast. The
number of records specified
here from the build data are
incorporated into the model and,
therefore, the user does not need
to provide the data again when
scoring the model.

298 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 147. stpnode properties (continued)

stpnode properties Data type Property description

estimation_method Parametric

Nonparametric

The method for modeling the
spatial covariance matrix

parametric_model Gaussian

Exponential

PoweredExponential

Order parameter for Parametric
spatial covariance model

exponential_power number Power level for
PoweredExponential model.
Minimum 1, maximum 2.

Advanced tab

max_missing_values integer The maximum percentage of
records with missing values
allowed in the model.

significance number The significance level for
hypotheses testing in the model
build. Specifies the significance
value for all the tests in STP
model estimation, including two
Goodness of Fit tests, effect F-
tests, and coefficient t-tests.

Output tab

model_specifications flag

temporal_summary flag

location_summary flag Determines whether the Location
Summary table is included in the
model output.

model_quality flag

test_mean_structure flag

mean_structure_coefficients flag

autoregressive_coefficients flag

test_decay_space flag

parametric_spatial_covarian
ce

flag

correlations_heat_map flag

correlations_map flag

location_clusters flag

similarity_threshold number The threshold at which output
clusters are considered similar
enough to be merged into a single
cluster.

Chapter 13. Modeling Node Properties 299

Table 147. stpnode properties (continued)

stpnode properties Data type Property description

max_number_clusters integer The upper limit for the number of
clusters which can be included in
the model output.

Model Options tab

use_model_name flag

model_name string

uncertainty_factor number Minimum 0, maximum 100.
Determines the increase in
uncertainty (error) applied to
predictions in the future. It is the
upper and lower bound for the
predictions.

svmnode properties
The Support Vector Machine (SVM) node enables you to classify data into one of two
groups without overfitting. SVM works well with wide data sets, such as those with a
very large number of input fields.

Example

node = stream.create("svm", "My node")
Expert tab
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("all_probabilities", True)
node.setPropertyValue("kernel", "Polynomial")
node.setPropertyValue("gamma", 1.5)

Table 148. svmnode properties

svmnode Properties Values Property description

all_probabilities flag

stopping_criteria 1.0E-1

1.0E-2

1.0E-3 (default)

1.0E-4

1.0E-5

1.0E-6

Determines when to stop the
optimization algorithm.

regularization number Also known as the C parameter.

precision number Used only if measurement level of
target field is Continuous.

300 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 148. svmnode properties (continued)

svmnode Properties Values Property description

kernel RBF(default)

Polynomial

Sigmoid

Linear

Type of kernel function used for
the transformation.

rbf_gamma number Used only if kernel is RBF.

gamma number Used only if kernel is
Polynomial or Sigmoid.

bias number

degree number Used only if kernel is
Polynomial.

calculate_variable_im
portance

flag

calculate_raw_propens
ities

flag

calculate_adjusted_
propensities

flag

adjusted_propensity_p
artition

Test

Validation

tcmnode Properties
Temporal causal modeling attempts to discover key causal relationships in time
series data. In temporal causal modeling, you specify a set of target series and a set
of candidate inputs to those targets. The procedure then builds an autoregressive
time series model for each target and includes only those inputs that have the most
significant causal relationship with the target.

Table 149. tcmnode properties

tcmnode Properties Values Property description

custom_fields Boolean

dimensionlist [dimension1 ... dimensionN]

data_struct Multiple

Single

metric_fields fields

both_target_and_input [f1 ... fN]

targets [f1 ... fN]

Chapter 13. Modeling Node Properties 301

Table 149. tcmnode properties (continued)

tcmnode Properties Values Property description

candidate_inputs [f1 ... fN]

forced_inputs [f1 ... fN]

use_timestamp Timestamp

Period

input_interval None

Unknown

Year

Quarter

Month

Week

Day

Hour

Hour_nonperiod

Minute

Minute_nonperiod

Second

Second_nonperiod

period_field string

period_start_value integer

num_days_per_week integer

302 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 149. tcmnode properties (continued)

tcmnode Properties Values Property description

start_day_of_week Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

num_hours_per_day integer

start_hour_of_day integer

timestamp_increments integer

cyclic_increments integer

cyclic_periods list

output_interval None

Year

Quarter

Month

Week

Day

Hour

Minute

Second

is_same_interval Same

Notsame

cross_hour Boolean

aggregate_and_distribute list

Chapter 13. Modeling Node Properties 303

Table 149. tcmnode properties (continued)

tcmnode Properties Values Property description

aggregate_default Mean

Sum

Mode

Min

Max

distribute_default Mean

Sum

group_default Mean

Sum

Mode

Min

Max

missing_imput Linear_interp

Series_mean

K_mean

K_meridian

Linear_trend

None

k_mean_param integer

k_median_param integer

missing_value_threshold integer

conf_level integer

max_num_predictor integer

max_lag integer

epsilon number

threshold integer

is_re_est Boolean

num_targets integer

304 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 149. tcmnode properties (continued)

tcmnode Properties Values Property description

percent_targets integer

fields_display list

series_display list

network_graph_for_target Boolean

sign_level_for_target number

fit_and_outlier_for_targ
et

Boolean

sum_and_para_for_target Boolean

impact_diag_for_target Boolean

impact_diag_type_for_tar
get

Effect

Cause

Both

impact_diag_level_for_ta
rget

integer

series_plot_for_target Boolean

res_plot_for_target Boolean

top_input_for_target Boolean

forecast_table_for_targe
t

Boolean

same_as_for_target Boolean

network_graph_for_series Boolean

sign_level_for_series number

fit_and_outlier_for_seri
es

Boolean

sum_and_para_for_series Boolean

impact_diagram_for_serie
s

Boolean

impact_diagram_type_for_
series

Effect

Cause

Both

impact_diagram_level_for
_series

integer

series_plot_for_series Boolean

residual_plot_for_series Boolean

Chapter 13. Modeling Node Properties 305

Table 149. tcmnode properties (continued)

tcmnode Properties Values Property description

forecast_table_for_serie
s

Boolean

outlier_root_cause_analy
sis

Boolean

causal_levels integer

outlier_table Interactive

Pivot

Both

rmsp_error Boolean

bic Boolean

r_square Boolean

outliers_over_time Boolean

series_transormation Boolean

use_estimation_period Boolean

estimation_period Times

Observation

observations list

observations_type Latest

Earliest

observations_num integer

observations_exclude integer

extend_records_into_futu
re

Boolean

forecastperiods integer

max_num_distinct_values integer

display_targets FIXEDNUMBER

PERCENTAGE

goodness_fit_measure ROOTMEAN

BIC

RSQUARE

top_input_for_series Boolean

aic Boolean

306 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 149. tcmnode properties (continued)

tcmnode Properties Values Property description

rmse Boolean

ts properties
The Time Series node estimates exponential smoothing, univariate Autoregressive
Integrated Moving Average (ARIMA), and multivariate ARIMA (or transfer function)
models for time series data and produces forecasts of future performance. This
Time Series node is similar to the previous Time Series node that was deprecated
in SPSS Modeler version 18. However, this newer Time Series node is designed to
harness the power of IBM SPSS Analytic Server to process big data, and display the
resulting model in the output viewer that was added in SPSS Modeler version 17.

Table 150. ts properties

ts Properties Values Property description

targets field The Time Series node
forecasts one or more
targets, optionally using
one or more input fields
as predictors. Frequency
and weight fields are
not used. See the topic
“Common modeling node
properties” on page 211
for more information.

candidate_inputs [field1 ... fieldN] Input or predictor fields
used by the model.

use_period flag

date_time_field field

Chapter 13. Modeling Node Properties 307

Table 150. ts properties (continued)

ts Properties Values Property description

input_interval None

Unknown

Year

Quarter

Month

Week

Day

Hour

Hour_nonperiod

Minute

Minute_nonperiod

Second

Second_nonperiod

period_field field

period_start_value integer

num_days_per_week integer

start_day_of_week Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

num_hours_per_day integer

start_hour_of_day integer

timestamp_increments integer

308 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 150. ts properties (continued)

ts Properties Values Property description

cyclic_increments integer

cyclic_periods list

output_interval None

Year

Quarter

Month

Week

Day

Hour

Minute

Second

is_same_interval flag

cross_hour flag

aggregate_and_distribute list

aggregate_default Mean

Sum

Mode

Min

Max

distribute_default Mean

Sum

group_default Mean

Sum

Mode

Min

Max

Chapter 13. Modeling Node Properties 309

Table 150. ts properties (continued)

ts Properties Values Property description

missing_imput Linear_interp

Series_mean

K_mean

K_median

Linear_trend

k_span_points integer

use_estimation_period flag

estimation_period Observations

Times

date_estimation list Only available if you use
date_time_field

period_estimation list Only available if you use
use_period

observations_type Latest

Earliest

observations_num integer

observations_exclude integer

method ExpertModeler

Exsmooth

Arima

expert_modeler_method ExpertModeler

Exsmooth

Arima

consider_seasonal flag

detect_outliers flag

expert_outlier_additive flag

expert_outlier_level_shift flag

expert_outlier_innovational flag

expert_outlier_level_shift flag

expert_outlier_transient flag

310 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 150. ts properties (continued)

ts Properties Values Property description

expert_outlier_seasonal_additive flag

expert_outlier_local_trend flag

expert_outlier_additive_patch flag

consider_newesmodels flag

exsmooth_model_type Simple

HoltsLinearTrend

BrownsLinearTrend

DampedTrend

SimpleSeasonal

WintersAdditive

WintersMultiplicativ
e

DampedTrendAdditive

DampedTrendMultiplic
ative

MultiplicativeTrendA
dditive

MultiplicativeSeason
al

MultiplicativeTrendM
ultiplicative

MultiplicativeTrend

Specifies the Exponential
Smoothing method.
Default is Simple.

Chapter 13. Modeling Node Properties 311

Table 150. ts properties (continued)

ts Properties Values Property description

futureValue_type_method Compute

specify

If Compute is used, the
system computes the
Future Values for the
forecast period for each
predictor.

For each predictor, you
can choose from a list of
functions (blank, mean of
recent points, most
recent value) or use
specify to enter values
manually. To specify
individual fields and
properties, use the
extend_metric_value
s property. For example:

set :ts.futureValue_t
ype_method="specify"
set :ts.extend_metric
_values=[{'Market_1',
'USER_SPECIFY',
[1,2,3]},
{'Market_2','MOST_REC
ENT_VALUE', ''},
{'Market_3','RECENT_P
OINTS_MEAN', ''}]

exsmooth_transformation_type None

SquareRoot

NaturalLog

arima.p integer

arima.d integer

arima.q integer

arima.sp integer

arima.sd integer

arima.sq integer

arima_transformation_type None

SquareRoot

NaturalLog

arima_include_constant flag

tf_arima.p. fieldname integer For transfer functions.

tf_arima.d. fieldname integer For transfer functions.

tf_arima.q. fieldname integer For transfer functions.

312 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 150. ts properties (continued)

ts Properties Values Property description

tf_arima.sp. fieldname integer For transfer functions.

tf_arima.sd. fieldname integer For transfer functions.

tf_arima.sq. fieldname integer For transfer functions.

tf_arima.delay. fieldname integer For transfer functions.

tf_arima.transformation_type.
fieldname

None

SquareRoot

NaturalLog

For transfer functions.

arima_detect_outliers flag

arima_outlier_additive flag

arima_outlier_level_shift flag

arima_outlier_innovational flag

arima_outlier_transient flag

arima_outlier_seasonal_additive flag

arima_outlier_local_trend flag

arima_outlier_additive_patch flag

max_lags integer

cal_PI flag

conf_limit_pct real

events fields

continue flag

scoring_model_only flag Use for models with
very large numbers (tens
of thousands) of time
series.

forecastperiods integer

extend_records_into_future flag

extend_metric_values fields Allows you to provide
future values for
predictors.

conf_limits flag

noise_res flag

Chapter 13. Modeling Node Properties 313

Table 150. ts properties (continued)

ts Properties Values Property description

max_models_output integer Controls how many
models are shown in
output. Default is 10.
Models are not shown
in output if the total
number of models built
exceeds this value.
Models are still available
for scoring.

timeseriesnode properties (deprecated)
Note: This original Time Series node was deprecated in version 18 of SPSS Modeler
and replaced by the new Time Series node that is designed to harness the power of
IBM SPSS Analytic Server and process big data.

The Time Series node estimates exponential smoothing, univariate Autoregressive
Integrated Moving Average (ARIMA), and multivariate ARIMA (or transfer function)
models for time series data and produces forecasts of future performance. A Time
Series node must always be preceded by a Time Intervals node.

Example

node = stream.create("timeseries", "My node")
node.setPropertyValue("method", "Exsmooth")
node.setPropertyValue("exsmooth_model_type", "HoltsLinearTrend")
node.setPropertyValue("exsmooth_transformation_type", "None")

Table 151. timeseriesnode properties

timeseriesnode Properties Values Property description

targets field The Time Series node
forecasts one or more
targets, optionally using
one or more input fields
as predictors. Frequency
and weight fields are
not used. See the topic
“Common modeling node
properties” on page 211
for more information.

continue flag

method ExpertModeler

Exsmooth

Arima

Reuse

expert_modeler_method flag

314 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 151. timeseriesnode properties (continued)

timeseriesnode Properties Values Property description

consider_seasonal flag

detect_outliers flag

expert_outlier_additive flag

expert_outlier_level_shift flag

expert_outlier_innovational flag

expert_outlier_level_shift flag

expert_outlier_transient flag

expert_outlier_seasonal_additive flag

expert_outlier_local_trend flag

expert_outlier_additive_patch flag

exsmooth_model_type Simple

HoltsLinearTrend

BrownsLinearTrend

DampedTrend

SimpleSeasonal

WintersAdditive

WintersMultiplicativ
e

exsmooth_transformation_type None

SquareRoot

NaturalLog

arima_p integer

arima_d integer

arima_q integer

arima_sp integer

arima_sd integer

arima_sq integer

arima_transformation_type None

SquareRoot

NaturalLog

Chapter 13. Modeling Node Properties 315

Table 151. timeseriesnode properties (continued)

timeseriesnode Properties Values Property description

arima_include_constant flag

tf_arima_p. fieldname integer For transfer functions.

tf_arima_d. fieldname integer For transfer functions.

tf_arima_q. fieldname integer For transfer functions.

tf_arima_sp. fieldname integer For transfer functions.

tf_arima_sd. fieldname integer For transfer functions.

tf_arima_sq. fieldname integer For transfer functions.

tf_arima_delay. fieldname integer For transfer functions.

tf_arima_transformation_type.
fieldname

None

SquareRoot

NaturalLog

For transfer functions.

arima_detect_outlier_mode None

Automatic

arima_outlier_additive flag

arima_outlier_level_shift flag

arima_outlier_innovational flag

arima_outlier_transient flag

arima_outlier_seasonal_additive flag

arima_outlier_local_trend flag

arima_outlier_additive_patch flag

conf_limit_pct real

max_lags integer

events fields

scoring_model_only flag Use for models with
very large numbers (tens
of thousands) of time
series.

316 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

treeas properties
The Tree-AS node is similar to the existing CHAID node; however, the Tree-AS node
is designed to process big data to create a single tree and displays the resulting
model in the output viewer that was added in SPSS Modeler version 17. The
node generates a decision tree by using chi-square statistics (CHAID) to identify
optimal splits. This use of CHAID can generate nonbinary trees, meaning that some
splits have more than two branches. Target and input fields can be numeric range
(continuous) or categorical. Exhaustive CHAID is a modification of CHAID that does
a more thorough job of examining all possible splits but takes longer to compute.

Table 152. treeas properties

treeas Properties Values Property description

target field In the Tree-AS node, CHAID models
require a single target and one or more
input fields. A frequency field can also
be specified. See the topic “Common
modeling node properties” on page
211 for more information.

method chaid

exhaustive_chaid

max_depth integer Maximum tree depth, from 0 to 20. The
default value is 5.

num_bins integer Only used if the data is made up of
continuous inputs. Set the number of
equal frequency bins to be used for the
inputs; options are: 2, 4, 5, 10, 20, 25,
50, or 100.

record_threshold integer The number of records at which the
model will switch from using p-values
to Effect sizes while building the tree.
The default is 1,000,000; increase or
decrease this in increments of 10,000.

split_alpha number Significance level for splitting. The
value must be between 0.01 and 0.99.

merge_alpha number Significance level for merging. The
value must be between 0.01 and 0.99.

bonferroni_adjustment flag Adjust significance values using
Bonferroni method.

effect_size_threshold_co
nt

number Set the Effect size threshold when
splitting nodes and merging categories
when using a continuous target. The
value must be between 0.01 and 0.99.

effect_size_threshold_ca
t

number Set the Effect size threshold when
splitting nodes and merging categories
when using a categorical target. The
value must be between 0.01 and 0.99.

split_merged_categories flag Allow resplitting of merged categories.

Chapter 13. Modeling Node Properties 317

Table 152. treeas properties (continued)

treeas Properties Values Property description

grouping_sig_level number Used to determine how groups of
nodes are formed or how unusual
nodes are identified.

chi_square pearson

likelihood_ratio

Method used to calculate the chi-
square statistic: Pearson or Likelihood
Ratio

minimum_record_use use_percentage

use_absolute

min_parent_records_pc number Default value is 2. Minimum 1,
maximum 100, in increments of 1.
Parent branch value must be higher
than child branch.

min_child_records_pc number Default value is 1. Minimum 1,
maximum 100, in increments of 1.

min_parent_records_abs number Default value is 100. Minimum 1,
maximum 100, in increments of 1.
Parent branch value must be higher
than child branch.

min_child_records_abs number Default value is 50. Minimum 1,
maximum 100, in increments of 1.

epsilon number Minimum change in expected cell
frequencies..

max_iterations number Maximum iterations for convergence.

use_costs flag

costs structured Structured property. The format is a
list of 3 values: the actual value, the
predicted value, and the cost if that
prediction is wrong. For example:

tree.setPropertyValue("costs",
[["drugA", "drugB", 3.0], ["drugX",
"drugY", 4.0]])

default_cost_increase none

linear

square

custom

Note: only enabled for ordinal targets.

Set default values in the costs matrix.

calculate_conf flag

display_rule_id flag Adds a field in the scoring output that
indicates the ID for the terminal node
to which each record is assigned.

318 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

twostepnode Properties
The TwoStep node uses a two-step clustering method. The first step makes a single
pass through the data to compress the raw input data into a manageable set of
subclusters. The second step uses a hierarchical clustering method to progressively
merge the subclusters into larger and larger clusters. TwoStep has the advantage of
automatically estimating the optimal number of clusters for the training data. It can
handle mixed field types and large data sets efficiently.

Example

node = stream.create("twostep", "My node")
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("inputs", ["Age", "K", "Na", "BP"])
node.setPropertyValue("partition", "Test")
node.setPropertyValue("use_model_name", False)
node.setPropertyValue("model_name", "TwoStep_Drug")
node.setPropertyValue("use_partitioned_data", True)
node.setPropertyValue("exclude_outliers", True)
node.setPropertyValue("cluster_label", "String")
node.setPropertyValue("label_prefix", "TwoStep_")
node.setPropertyValue("cluster_num_auto", False)
node.setPropertyValue("max_num_clusters", 9)
node.setPropertyValue("min_num_clusters", 3)
node.setPropertyValue("num_clusters", 7)

Table 153. twostepnode properties

twostepnode Properties Values Property description

inputs [field1 ... fieldN] TwoStep models use a list of input
fields, but no target. Weight and
frequency fields are not recognized.
See the topic “Common modeling node
properties” on page 211 for more
information.

standardize flag

exclude_outliers flag

percentage number

cluster_num_auto flag

min_num_clusters number

max_num_clusters number

num_clusters number

cluster_label String

Number

label_prefix string

distance_measure Euclidean

Loglikelihood

Chapter 13. Modeling Node Properties 319

Table 153. twostepnode properties (continued)

twostepnode Properties Values Property description

clustering_criterion AIC

BIC

twostepAS Properties
TwoStep Cluster is an exploratory tool that is designed to reveal natural groupings
(or clusters) within a data set that would otherwise not be apparent. The algorithm
that is employed by this procedure has several desirable features that differentiate
it from traditional clustering techniques, such as handling of categorical and
continuous variables, automatic selection of number of clusters, and scalability.

Table 154. twostepAS properties

twostepAS Properties Values Property description

inputs [f1 ... fN] TwoStepAS models use a
list of input fields, but
no target. Weight and
frequency fields are not
recognized.

use_predefined_roles Boolean Default=True

use_custom_field_assignments Boolean Default=False

cluster_num_auto Boolean Default=True

min_num_clusters integer Default=2

max_num_clusters integer Default=15

num_clusters integer Default=5

clustering_criterion AIC

BIC

automatic_clustering_method use_clustering_criterion_settin
g

Distance_jump

Minimum

Maximum

feature_importance_method use_clustering_criterion_settin
g

effect_size

use_random_seed Boolean

random_seed integer

320 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 154. twostepAS properties (continued)

twostepAS Properties Values Property description

distance_measure Euclidean

Loglikelihood

include_outlier_clusters Boolean Default=True

num_cases_in_feature_tree_leaf_i
s_less_than

integer Default=10

top_perc_outliers integer Default=5

initial_dist_change_threshold integer Default=0

leaf_node_maximum_branches integer Default=8

non_leaf_node_maximum_branches integer Default=8

max_tree_depth integer Default=3

adjustment_weight_on_measurement
_level

integer Default=6

memory_allocation_mb number Default=512

delayed_split Boolean Default=True

fields_to_standardize [f1 ... fN]

adaptive_feature_selection Boolean Default=True

featureMisPercent integer Default=70

coefRange number Default=0.05

percCasesSingleCategory integer Default=95

numCases integer Default=24

include_model_specifications Boolean Default=True

include_record_summary Boolean Default=True

include_field_transformations Boolean Default=True

excluded_inputs Boolean Default=True

evaluate_model_quality Boolean Default=True

show_feature_importance bar
chart

Boolean Default=True

show_feature_importance_
word_cloud

Boolean Default=True

show_outlier_clusters
interactive_table_and_chart

Boolean Default=True

show_outlier_clusters_pivot_tabl
e

Boolean Default=True

across_cluster_feature_importanc
e

Boolean Default=True

across_cluster_profiles_pivot_ta
ble

Boolean Default=True

Chapter 13. Modeling Node Properties 321

Table 154. twostepAS properties (continued)

twostepAS Properties Values Property description

withinprofiles Boolean Default=True

cluster_distances Boolean Default=True

cluster_label String

Number

label_prefix String

322 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 14. Model nugget node properties

Model nugget nodes share the same common properties as other nodes. See the topic “Common Node
Properties” on page 73 for more information.

applyanomalydetectionnode Properties
Anomaly Detection modeling nodes can be used to generate an Anomaly Detection model nugget. The
scripting name of this model nugget is applyanomalydetectionnode. For more information on scripting the
modeling node itself, “anomalydetectionnode properties” on page 212

Table 155. applyanomalydetectionnode properties

applyanomalydetectionnode
Properties

Values Property description

anomaly_score_method FlagAndScore

FlagOnly

ScoreOnly

Determines which outputs are created for
scoring.

num_fields integer Fields to report.

discard_records flag Indicates whether records are discarded
from the output or not.

discard_anomalous_records flag Indicator of whether to discard the
anomalous or non-anomalous records. The
default is off, meaning that non-anomalous
records are discarded. Otherwise, if on,
anomalous records will be discarded.
This property is enabled only if the
discard_records property is enabled.

applyapriorinode Properties
Apriori modeling nodes can be used to generate an Apriori model nugget. The scripting name of
this model nugget is applyapriorinode. For more information on scripting the modeling node itself,
“apriorinode properties” on page 213

Table 156. applyapriorinode properties

applyapriorinode Properties Values Property description

max_predictions number (integer)

ignore_unmatached flag

allow_repeats flag

check_basket NoPrediction
s

Predictions

NoCheck

Table 156. applyapriorinode properties (continued)

applyapriorinode Properties Values Property description

criterion Confidence

Support

RuleSupport

Lift

Deployabilit
y

applyassociationrulesnode Properties
The Association Rules modeling node can be used to generate an association rules model nugget. The
scripting name of this model nugget is applyassociationrulesnode. For more information on scripting the
modeling node itself, see “associationrulesnode properties” on page 215.

Table 157. applyassociationrulesnode properties

applyassociationrulesn
ode properties

Data type Property description

max_predictions integer The maximum number of rules that can be
applied to each input to the score.

criterion Confidence

Rulesupport

Lift

Conditionsupport

Deployability

Select the measure used to determine the
strength of rules.

allow_repeats Boolean Determine whether rules with the same
prediction are included in the score.

check_input NoPredictions

Predictions

NoCheck

applyautoclassifiernode Properties
Auto Classifier modeling nodes can be used to generate an Auto Classifier model nugget. The scripting
name of this model nugget is applyautoclassifiernode.For more information on scripting the modeling
node itself, “autoclassifiernode properties” on page 218

324 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 158. applyautoclassifiernode properties

applyautoclassifiernode
Properties

Values Property description

flag_ensemble_method Voting

EvaluationWeightedVoting

ConfidenceWeightedVoting

RawPropensityWeightedVoti
ng

HighestConfidence

AverageRawPropensity

Specifies the method used to
determine the ensemble score.
This setting applies only if the
selected target is a flag field.

flag_evaluation_selection Accuracy

AUC_ROC

This option is for flag
target only, to decide which
evaluation measure is chosen for
evaluation-weighted voting.

filter_individual_model_o
utput

flag Specifies whether scoring results
from individual models should be
suppressed.

is_ensemble_update flag Enables continuous auto
machine learning mode, which
adds new component models
into an existing auto model set
instead of replacing the existing
auto model, and re-evaluates
measures of existing component
models using newly available
data.

is_auto_ensemble_weights_
reevaluation

flag Enables automatic model
weights reevaluation.

use_accumulated_factor flag Accumulated factor is used to
compute accumulated measures.

accumulated_factor number (double) Max value is 0.99, and min value
is 0.85.

use_accumulated_reducing flag Performs model reducing based
on accumulated limit during
model refresh.

accumulated_reducing_limi
t

number (double) Max value is 0.7, and min value
is 0.1.

use_accumulated_weighted_
evaluation

flag Accumulated evaluation measure
is used for voting when
the evaluation-weighted voting
method is selected for the
ensemble method.

Chapter 14. Model nugget node properties 325

Table 158. applyautoclassifiernode properties (continued)

applyautoclassifiernode
Properties

Values Property description

flag_voting_tie_selection Random

HighestConfidence

RawPropensity

If a voting method is selected,
specifies how ties are resolved.
This setting applies only if the
selected target is a flag field.

set_ensemble_method Voting

EvaluationWeightedVoting

ConfidenceWeightedVoting

HighestConfidence

Specifies the method used to
determine the ensemble score.
This setting applies only if the
selected target is a set field.

set_voting_tie_selection Random

HighestConfidence

If a voting method is selected,
specifies how ties are resolved.
This setting applies only if the
selected target is a nominal field.

applyautoclusternode Properties
Auto Cluster modeling nodes can be used to generate an Auto Cluster model nugget. The scripting name
of this model nugget is applyautoclusternode. No other properties exist for this model nugget. For more
information on scripting the modeling node itself, “autoclusternode properties” on page 220

applyautonumericnode Properties
Auto Numeric modeling nodes can be used to generate an Auto Numeric model nugget. The scripting
name of this model nugget is applyautonumericnode.For more information on scripting the modeling node
itself, “autonumericnode properties” on page 222

Table 159. applyautonumericnode properties

applyautonumericnode
Properties

Values Property description

calculate_standard_error flag

applybayesnetnode Properties
Bayesian network modeling nodes can be used to generate a Bayesian network model nugget. The
scripting name of this model nugget is applybayesnetnode. For more information on scripting the
modeling node itself, “bayesnetnode properties” on page 224.

Table 160. applybayesnetnode properties

applybayesnetnode
Properties

Values Property description

all_probabilities flag

raw_propensity flag

adjusted_propensity flag

326 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 160. applybayesnetnode properties (continued)

applybayesnetnode
Properties

Values Property description

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

applyc50node Properties
C5.0 modeling nodes can be used to generate a C5.0 model nugget. The scripting name of this
model nugget is applyc50node. For more information on scripting the modeling node itself, “c50node
properties” on page 226.

Table 161. applyc50node properties

applyc50node Properties Values Property description

sql_generate udf

Never

NoMissingValues

Used to set SQL generation options
during rule set execution. The default
value is udf.

calculate_conf flag Available when SQL generation is
enabled; this property includes
confidence calculations in the
generated tree.

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

applycarmanode Properties
CARMA modeling nodes can be used to generate a CARMA model nugget. The scripting name of this
model nugget is applycarmanode. No other properties exist for this model nugget. For more information
on scripting the modeling node itself, “carmanode properties” on page 228.

applycartnode Properties
C&R Tree modeling nodes can be used to generate a C&R Tree model nugget. The scripting name of this
model nugget is applycartnode. For more information on scripting the modeling node itself, “cartnode
properties” on page 229.

Table 162. applycartnode properties

applycartnode Properties Values Property description

enable_sql_generation Never

MissingValues

NoMissingValues

Used to set SQL generation options
during rule set execution.

Chapter 14. Model nugget node properties 327

Table 162. applycartnode properties (continued)

applycartnode Properties Values Property description

calculate_conf flag Available when SQL generation is
enabled; this property includes
confidence calculations in the
generated tree.

display_rule_id flag Adds a field in the scoring output that
indicates the ID for the terminal node
to which each record is assigned.

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

applychaidnode Properties
CHAID modeling nodes can be used to generate a CHAID model nugget. The scripting name of this
model nugget is applychaidnode. For more information on scripting the modeling node itself, “chaidnode
properties” on page 232.

Table 163. applychaidnode properties

applychaidnode Properties Values Property description

enable_sql_generation Never

MissingValues

Used to set SQL generation options
during rule set execution.

calculate_conf flag

display_rule_id flag Adds a field in the scoring output that
indicates the ID for the terminal node
to which each record is assigned.

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

applycoxregnode Properties
Cox modeling nodes can be used to generate a Cox model nugget. The scripting name of this model
nugget is applycoxregnode. For more information on scripting the modeling node itself, “coxregnode
properties” on page 234.

Table 164. applycoxregnode properties

applycoxregnode Properties Values Property description

future_time_as Intervals

Fields

time_interval number

num_future_times integer

328 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 164. applycoxregnode properties (continued)

applycoxregnode Properties Values Property description

time_field field

past_survival_time field

all_probabilities flag

cumulative_hazard flag

applydecisionlistnode Properties
Decision List modeling nodes can be used to generate a Decision List model nugget. The scripting name
of this model nugget is applydecisionlistnode. For more information on scripting the modeling node itself,
“decisionlistnode properties” on page 237.

Table 165. applydecisionlistnode properties

applydecisionlistnode
Properties

Values Property description

enable_sql_generation flag When true, IBM SPSS Modeler will try
to push back the Decision List model to
SQL.

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

applydiscriminantnode Properties
Discriminant modeling nodes can be used to generate a Discriminant model nugget. The scripting name of
this model nugget is applydiscriminantnode. For more information on scripting the modeling node itself,
“discriminantnode properties” on page 238.

Table 166. applydiscriminantnode properties

applydiscriminantnode
Properties

Values Property description

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

applyextension properties
Extension Model nodes can be used to generate
an Extension model nugget. The scripting name
of this model nugget is applyextension. For more
information on scripting the modeling node itself,
see “extensionmodelnode properties” on page
240.

Chapter 14. Model nugget node properties 329

Python for Spark example

script example for Python for Spark
applyModel = stream.findByType("extension_apply", None)

score_script = """
import json
import spss.pyspark.runtime
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.linalg import DenseVector
from pyspark.mllib.tree import DecisionTreeModel
from pyspark.sql.types import StringType, StructField

cxt = spss.pyspark.runtime.getContext()

if cxt.isComputeDataModelOnly():
 _schema = cxt.getSparkInputSchema()
 _schema.fields.append(StructField("Prediction", StringType(), nullable=True))
 cxt.setSparkOutputSchema(_schema)
else:
 df = cxt.getSparkInputData()

 _modelPath = cxt.getModelContentToPath("TreeModel")
 metadata = json.loads(cxt.getModelContentToString("model.dm"))

 schema = df.dtypes[:]
 target = "Drug"
 predictors = ["Age","BP","Sex","Cholesterol","Na","K"]

 lookup = {}
 for i in range(0,len(schema)):
 lookup[schema[i][0]] = i

 def row2LabeledPoint(dm,lookup,target,predictors,row):
 target_index = lookup[target]
 tval = dm[target_index].index(row[target_index])
 pvals = []
 for predictor in predictors:
 predictor_index = lookup[predictor]
 if isinstance(dm[predictor_index],list):
 pval = row[predictor_index] in dm[predictor_index] and
dm[predictor_index].index(row[predictor_index]) or -1
 else:
 pval = row[predictor_index]
 pvals.append(pval)
 return LabeledPoint(tval, DenseVector(pvals))

 # convert dataframe to an RDD containing LabeledPoint
 lps = df.rdd.map(lambda row: row2LabeledPoint(metadata,lookup,target,predictors,row))
 treeModel = DecisionTreeModel.load(cxt.getSparkContext(), _modelPath);
 # score the model, produces an RDD containing just double values
 predictions = treeModel.predict(lps.map(lambda lp: lp.features))

 def addPrediction(x,dm,lookup,target):
 result = []
 for _idx in range(0, len(x[0])):
 result.append(x[0][_idx])
 result.append(dm[lookup[target]][int(x[1])])
 return result

 _schema = cxt.getSparkInputSchema()
 _schema.fields.append(StructField("Prediction", StringType(), nullable=True))
 rdd2 = df.rdd.zip(predictions).map(lambda x:addPrediction(x, metadata, lookup, target))
 outDF = cxt.getSparkSQLContext().createDataFrame(rdd2, _schema)

 cxt.setSparkOutputData(outDF)
"""
applyModel.setPropertyValue("python_syntax", score_script)

R example

script example for R
applyModel.setPropertyValue("r_syntax", """
result<-predict(modelerModel,newdata=modelerData)
modelerData<-cbind(modelerData,result)
var1<-c(fieldName="NaPrediction",fieldLabel="",fieldStorage="real",fieldMeasure="",

330 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

fieldFormat="",fieldRole="")
modelerDataModel<-data.frame(modelerDataModel,var1)""")

Table 167. applyextension properties

applyextension Properties Values Property Description

r_syntax string R scripting syntax for model
scoring.

python_syntax string Python scripting syntax for model
scoring.

use_batch_size flag Enable use of batch processing.

batch_size integer Specify the number of data
records to be included in each
batch.

convert_flags
StringsAndDoubles
LogicalValues

Option to convert flag fields.

convert_missing flag Option to convert missing values
to the R NA value.

convert_datetime flag Option to convert variables with
date or datetime formats to R
date/time formats.

convert_datetime_class POSIXct
POSIXlt

Options to specify to what format
variables with date or datetime
formats are converted.

applyfactornode Properties
PCA/Factor modeling nodes can be used to generate a PCA/Factor model nugget. The scripting name
of this model nugget is applyfactornode. No other properties exist for this model nugget. For more
information on scripting the modeling node itself, “factornode properties” on page 243.

applyfeatureselectionnode Properties
Feature Selection modeling nodes can be used to generate a Feature Selection model nugget. The
scripting name of this model nugget is applyfeatureselectionnode. For more information on scripting the
modeling node itself, “featureselectionnode properties” on page 245.

Table 168. applyfeatureselectionnode properties

applyfeatureselectionnod
e Properties

Values Property description

selected_ranked_fields Specifies which ranked fields are
checked in the model browser.

selected_screened_fields Specifies which screened fields are
checked in the model browser.

applygeneralizedlinearnode Properties
Generalized Linear (genlin) modeling nodes can be used to generate a Generalized Linear model nugget.
The scripting name of this model nugget is applygeneralizedlinearnode. For more information on scripting
the modeling node itself, “genlinnode properties” on page 247.

Chapter 14. Model nugget node properties 331

Table 169. applygeneralizedlinearnode properties

applygeneralizedlinearno
de Properties

Values Property description

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

applyglmmnode Properties
GLMM modeling nodes can be used to generate a GLMM model nugget. The scripting name of this
model nugget is applyglmmnode. For more information on scripting the modeling node itself, “glmmnode
properties” on page 252.

Table 170. applyglmmnode properties

applyglmmnode Properties Values Property description

confidence onProbability

onIncrease

Basis for computing scoring confidence
value: highest predicted probability, or
difference between highest and second
highest predicted probabilities.

score_category_probabili
ties

flag If set to True, produces the predicted
probabilities for categorical targets.
A field is created for each category.
Default is False.

max_categories integer Maximum number of categories
for which to predict
probabilities. Used only if
score_category_probabilities
is True.

score_propensity flag If set to True, produces raw
propensity scores (likelihood of "True"
outcome) for models with flag targets.
If partitions are in effect, also produces
adjusted propensity scores based on
the testing partition. Default is False.

enable_sql_generation udf

native

Used to set SQL generation options
during stream execution. The options
are to pushback to the database
and score using a SPSS® Modeler
Server scoring adapter (if connected
to a database with a scoring adapter
installed), or to score within SPSS
Modeler.

The default value is udf.

applygle Properties
The GLE modeling node can be used to generate a GLE model nugget. The scripting name of this model
nugget is applygle. For more information on scripting the modeling node itself, see “gle properties” on
page 257.

332 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 171. applygle properties

applygle Properties Values Property description

enable_sql_generation udf

native

Used to set SQL generation options
during stream execution. Choose either
to pushback to the database and score
using a SPSS Modeler Server scoring
adapter (if connected to a database
with a scoring adapter installed), or
score within SPSS Modeler.

applygmm properties
The Gaussian Mixture node can be used to generate a Gaussian Mixture model nugget. The scripting name
of this model nugget is applygmm. The properties in the following table are available in version 18.2.1.1
and later. For more information on scripting the modeling node itself, see “gmm properties” on page 413.

Table 172. applygmm properties

applygmm properties Data type Property description

centers

item_count

total

dimension

components

partition

applykmeansnode Properties
K-Means modeling nodes can be used to generate a K-Means model nugget. The scripting name of this
model nugget is applykmeansnode. No other properties exist for this model nugget. For more information
on scripting the modeling node itself, “kmeansnode properties” on page 264.

applyknnnode Properties
KNN modeling nodes can be used to generate a KNN model nugget. The scripting name of this model
nugget is applyknnnode. For more information on scripting the modeling node itself, “knnnode properties”
on page 266.

Table 173. applyknnnode properties

applyknnnode Properties Values Property description

all_probabilities flag

save_distances flag

applykohonennode Properties
Kohonen modeling nodes can be used to generate a Kohonen model nugget. The scripting name of this
model nugget is applykohonennode. No other properties exist for this model nugget. For more information
on scripting the modeling node itself, “c50node properties” on page 226.

Chapter 14. Model nugget node properties 333

applylinearnode Properties
Linear modeling nodes can be used to generate a Linear model nugget. The scripting name of this
model nugget is applylinearnode. For more information on scripting the modeling node itself, “linearnode
properties” on page 269.

Table 174. applylinearnode Properties

linear Properties Values Property description

use_custom_name flag

custom_name string

enable_sql_generation udf

native

puresql

Used to set SQL generation options
during stream execution. The options
are to pushback to the database
and score using a SPSS® Modeler
Server scoring adapter (if connected
to a database with a scoring adapter
installed), to score within SPSS
Modeler, or to pushback to the
database and score using SQL.

The default value is udf.

applylinearasnode Properties
Linear-AS modeling nodes can be used to generate a Linear-AS model nugget. The scripting name of
this model nugget is applylinearasnode. For more information on scripting the modeling node itself,
“linearasnode properties” on page 271.

Table 175. applylinearasnode Properties

applylinearasnode Property Values Property description

enable_sql_generation udf

native

The default value is udf.

applylogregnode Properties
Logistic Regression modeling nodes can be used to generate a Logistic Regression model nugget. The
scripting name of this model nugget is applylogregnode. For more information on scripting the modeling
node itself, “logregnode properties” on page 272.

Table 176. applylogregnode properties

applylogregnode Properties Values Property description

calculate_raw_propensiti
es

flag

calculate_conf flag

enable_sql_generation flag

334 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

applylsvmnode Properties
LSVM modeling nodes can be used to generate an LSVM model nugget. The scripting name of this model
nugget is applylsvmnode. For more information on scripting the modeling node itself, see “lsvmnode
properties” on page 278.

Table 177. applylsvmnode properties

applylsvmnode Properties Values Property description

calculate_raw_propensities flag Specifies whether to calculate raw
propensity scores.

enable_sql_generation udf

native

Specifies whether to score using the
Scoring Adapter (if installed) or in
process, or to score outside of the
database.

applyneuralnetnode Properties
Neural Net modeling nodes can be used to generate a Neural Net model nugget. The scripting name
of this model nugget is applyneuralnetnode. For more information on scripting the modeling node itself,
“neuralnetnode properties” on page 279.

Caution: A newer version of the Neural Net nugget, with enhanced features, is available in this release
and is described in the next section (applyneuralnetwork). Although the previous version is still available,
we recommend updating your scripts to use the new version. Details of the previous version are retained
here for reference, but support for it will be removed in a future release.

Table 178. applyneuralnetnode properties

applyneuralnetnode
Properties

Values Property description

calculate_conf flag Available when SQL generation is enabled;
this property includes confidence
calculations in the generated tree.

enable_sql_generation flag

nn_score_method Difference

SoftMax

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

applyneuralnetworknode properties
Neural Network modeling nodes can be used to generate a Neural Network model nugget. The scripting
name of this model nugget is applyneuralnetworknode. For more information on scripting the modeling
node itself, neuralnetworknode Properties.

Chapter 14. Model nugget node properties 335

Table 179. applyneuralnetworknode properties

applyneuralnetworknode
Properties

Values Property description

use_custom_name flag

custom_name string

confidence onProbability

onIncrease

score_category_probabili
ties

flag

max_categories number

score_propensity flag

enable_sql_generation udf

native

puresql

Used to set SQL generation options
during stream execution. The options
are to pushback to the database
and score using a SPSS® Modeler
Server scoring adapter (if connected
to a database with a scoring adapter
installed), to score within SPSS
Modeler, or to pushback to the
database and score using SQL.

The default value is udf.

applyocsvmnode properties
One-Class SVM nodes can be used to generate a One-Class SVM model nugget. The scripting name of this
model nugget is applyocsvmnode. No other properties exist for this model nugget. For more information
on scripting the modeling node itself, see “ocsvmnode properties” on page 418.

applyquestnode Properties
QUEST modeling nodes can be used to generate a QUEST model nugget. The scripting name of this
model nugget is applyquestnode. For more information on scripting the modeling node itself, “questnode
properties” on page 284.

Table 180. applyquestnode properties

applyquestnode Properties Values Property description

enable_sql_generation Never

MissingValues

NoMissingValues

Used to set SQL generation options
during rule set execution.

calculate_conf flag

display_rule_id flag Adds a field in the scoring output that
indicates the ID for the terminal node
to which each record is assigned.

336 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 180. applyquestnode properties (continued)

applyquestnode Properties Values Property description

calculate_raw_propensiti
es

flag

calculate_adjusted_prope
nsities

flag

applyr Properties
R Building nodes can be used to generate an R model nugget. The scripting name of this model nugget is
applyr. For more information on scripting the modeling node itself, “buildr properties” on page 225.

Table 181. applyr properties

applyr Properties Values Property Description

score_syntax string R scripting syntax for model
scoring.

convert_flags StringsAndDoubles
LogicalValues

Option to convert flag fields.

convert_datetime flag Option to convert variables with
date or datetime formats to R
date/time formats.

convert_datetime_class POSIXct
POSIXlt

Options to specify to what format
variables with date or datetime
formats are converted.

convert_missing flag Option to convert missing values
to R NA value.

use_batch_size flag Enable use of batch processing

batch_size integer Specify the number of data
records to be included in each
batch

applyrandomtrees Properties
The Random Trees modeling node can be used to generate a Random Trees model nugget. The scripting
name of this model nugget is applyrandomtrees. For more information on scripting the modeling node
itself, see “randomtrees properties” on page 287.

Table 182. applyrandomtrees properties

applyrandomtrees
Properties

Values Property description

calculate_conf flag This property includes confidence
calculations in the generated tree.

Chapter 14. Model nugget node properties 337

Table 182. applyrandomtrees properties (continued)

applyrandomtrees
Properties

Values Property description

enable_sql_generation udf

native

Used to set SQL generation options
during stream execution. Choose either
to pushback to the database and score
using a SPSS Modeler Server scoring
adapter (if connected to a database
with a scoring adapter installed), or
score within SPSS Modeler.

applyregressionnode Properties
Linear Regression modeling nodes can be used to generate a Linear Regression model nugget. The
scripting name of this model nugget is applyregressionnode. No other properties exist for this model
nugget. For more information on scripting the modeling node itself, “regressionnode properties” on page
289.

applyselflearningnode properties
Self-Learning Response Model (SLRM) modeling nodes can be used to generate a SLRM model nugget.
The scripting name of this model nugget is applyselflearningnode. For more information on scripting the
modeling node itself, “slrmnode properties” on page 293.

Table 183. applyselflearningnode properties

applyselflearningnode
Properties

Values Property description

max_predictions number

randomization number

scoring_random_seed number

sort ascending

descending

Specifies whether the offers with the
highest or lowest scores will be displayed
first.

model_reliability flag Takes account of model reliability option
on Settings tab.

applysequencenode Properties
Sequence modeling nodes can be used to generate a Sequence model nugget. The scripting name of
this model nugget is applysequencenode. No other properties exist for this model nugget. For more
information on scripting the modeling node itself, “sequencenode properties” on page 291.

applysvmnode Properties
SVM modeling nodes can be used to generate an SVM model nugget. The scripting name of this
model nugget is applysvmnode. For more information on scripting the modeling node itself, “svmnode
properties” on page 300.

338 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 184. applysvmnode properties

applysvmnode Properties Values Property description

all_probabilities flag

calculate_raw_propensities flag

calculate_adjusted_propensi
ties

flag

applystpnode Properties
The STP modeling node can be used to generate an associated model nugget, which display the
model output in the Output Viewer. The scripting name of this model nugget is applystpnode. For more
information on scripting the modeling node itself, see “stpnode properties” on page 294.

Table 185. applystpnode properties

applystpnode properties Data type Property description

uncertainty_factor Boolean Minimum 0, maximum 100.

applytcmnode Properties
Temporal Causal Modeling (TCM) modeling nodes can be used to generate a TCM model nugget. The
scripting name of this model nugget is applytcmnode. For more information on scripting the modeling
node itself, see “tcmnode Properties” on page 301.

Table 186. applytcmnode properties

applytcmnode Properties Values Property description

ext_future boolean

ext_future_num integer

noise_res boolean

conf_limits boolean

target_fields list

target_series list

applyts Properties
The Time Series modeling node can be used to generate a Time Series model nugget. The scripting
name of this model nugget is applyts. For more information on scripting the modeling node itself, see “ts
properties” on page 307.

Table 187. applyts properties

applyts Properties Values Property description

extend_records_into_future Boolean

ext_future_num integer

compute_future_values_input Boolean

forecastperiods integer

noise_res boolean

Chapter 14. Model nugget node properties 339

Table 187. applyts properties (continued)

applyts Properties Values Property description

conf_limits boolean

target_fields list

target_series list

includeTargets field

applytimeseriesnode Properties (deprecated)
The Time Series modeling node can be used to generate a Time Series model nugget. The scripting name
of this model nugget is applytimeseriesnode. For more information on scripting the modeling node itself,
“timeseriesnode properties (deprecated)” on page 314.

Table 188. applytimeseriesnode properties

applytimeseriesnode Properties Values Property description

calculate_conf flag

calculate_residuals flag

applytreeas Properties
Tree-AS modeling nodes can be used to generate a Tree-AS model nugget. The scripting name of this
model nugget is applytreenas. For more information on scripting the modeling node itself, see “treeas
properties” on page 317.

Table 189. applytreeas properties

applytreeas Properties Values Property description

calculate_conf flag This property includes confidence
calculations in the generated tree.

display_rule_id flag Adds a field in the scoring output that
indicates the ID for the terminal node
to which each record is assigned.

enable_sql_generation udf

native

Used to set SQL generation options
during stream execution. Choose either
to pushback to the database and score
using a SPSS Modeler Server scoring
adapter (if connected to a database
with a scoring adapter installed), or
score within SPSS Modeler.

applytwostepnode Properties
TwoStep modeling nodes can be used to generate a TwoStep model nugget. The scripting name of this
model nugget is applytwostepnode. No other properties exist for this model nugget. For more information
on scripting the modeling node itself, “twostepnode Properties” on page 319.

340 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

applytwostepAS Properties
TwoStep AS modeling nodes can be used to generate a TwoStep AS model nugget. The scripting name
of this model nugget is applytwostepAS. For more information on scripting the modeling node itself,
“twostepAS Properties” on page 320.

Table 190. applytwostepAS Properties

applytwostepAS Properties Values Property description

enable_sql_generation udf

native

Used to set SQL generation options
during stream execution. The options
are to pushback to the database
and score using a SPSS® Modeler
Server scoring adapter (if connected
to a database with a scoring adapter
installed), or to score within SPSS
Modeler.

The default value is udf.

applyxgboosttreenode properties
The XGBoost Tree node can be used to generate an XGBoost Tree model nugget. The scripting name of
this model nugget is applyxgboosttreenode. The properties in the following table were added in 18.2.1.1.
For more information on scripting the modeling node itself, see “xgboosttreenode Properties” on page
426.

Table 191. applyxgboosttreenode properties

applyxgboosttreenode
properties

Data type Property description

use_model_name

model_name

applyxgboostlinearnode properties
XGBoost Linear nodes can be used to generate an XGBoost Linear model nugget. The scripting name of
this model nugget is applyxgboostlinearnode. No other properties exist for this model nugget. For more
information on scripting the modeling node itself, see “xgboostlinearnode Properties” on page 424.

hdbscannugget properties
The HDBSCAN node can be used to generate an HDBSCAN model nugget. The scripting name of this
model nugget is hdbscannugget. No other properties exist for this model nugget. For more information
on scripting the modeling node itself, see “hdbscannode properties” on page 414.

kdeapply properties
The KDE Modeling node can be used to generate a KDE model nugget. The scripting name of this model
nugget is kdeapply. For information on scripting the modeling node itself, see “kdemodel properties” on
page 415.

Chapter 14. Model nugget node properties 341

Table 192. kdeapply properties

kdeapply properties Data type Property description

outLogDensity

Renamed to out_log_density
starting with version 18.2.1.1

boolean Specify True or False to include or
exclude the log density value in the
output. Default is False.

342 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 15. Database modeling node properties

IBM SPSS Modeler supports integration with data mining and modeling tools available from database
vendors, including Microsoft SQL Server Analysis Services, Oracle Data Mining, and IBM Netezza®

Analytics. You can build and score models using native database algorithms, all from within the IBM
SPSS Modeler application. Database models can also be created and manipulated through scripting using
the properties described in this section.

For example, the following script excerpt illustrates the creation of a Microsoft Decision Trees model by
using the IBM SPSS Modeler scripting interface:

stream = modeler.script.stream()
msbuilder = stream.createAt("mstreenode", "MSBuilder", 200, 200)

msbuilder.setPropertyValue("analysis_server_name", 'localhost')
msbuilder.setPropertyValue("analysis_database_name", 'TESTDB')
msbuilder.setPropertyValue("mode", 'Expert')
msbuilder.setPropertyValue("datasource", 'LocalServer')
msbuilder.setPropertyValue("target", 'Drug')
msbuilder.setPropertyValue("inputs", ['Age', 'Sex'])
msbuilder.setPropertyValue("unique_field", 'IDX')
msbuilder.setPropertyValue("custom_fields", True)
msbuilder.setPropertyValue("model_name", 'MSDRUG')

typenode = stream.findByType("type", None)
stream.link(typenode, msbuilder)
results = []
msbuilder.run(results)
msapplier = stream.createModelApplierAt(results[0], "Drug", 200, 300)
tablenode = stream.createAt("table", "Results", 300, 300)
stream.linkBetween(msapplier, typenode, tablenode)
msapplier.setPropertyValue("sql_generate", True)
tablenode.run([])

Node Properties for Microsoft Modeling

Microsoft Modeling Node Properties

Common Properties
The following properties are common to the Microsoft database modeling nodes.

Table 193. Common Microsoft node properties

Common Microsoft Node
Properties

Values Property Description

analysis_database_name string Name of the Analysis Services database.

analysis_server_name string Name of the Analysis Services host.

use_transactional_data flag Specifies whether input data is in tabular or
transactional format.

inputs list Input fields for tabular data.

target field Predicted field (not applicable to MS Clustering or
Sequence Clustering nodes).

Table 193. Common Microsoft node properties (continued)

Common Microsoft Node
Properties

Values Property Description

unique_field field Key field.

msas_parameters structured Algorithm parameters. See the topic “Algorithm
Parameters” on page 345 for more information.

with_drillthrough flag With Drillthrough option.

MS Decision Tree
There are no specific properties defined for nodes of type mstreenode. See the common Microsoft
properties at the start of this section.

MS Clustering
There are no specific properties defined for nodes of type msclusternode. See the common Microsoft
properties at the start of this section.

MS Association Rules
The following specific properties are available for nodes of type msassocnode:

Table 194. msassocnode properties

msassocnode Properties Values Property Description

id_field field Identifies each transaction in the data.

trans_inputs list Input fields for transactional data.

transactional_target field Predicted field (transactional data).

MS Naive Bayes
There are no specific properties defined for nodes of type msbayesnode. See the common Microsoft
properties at the start of this section.

MS Linear Regression
There are no specific properties defined for nodes of type msregressionnode. See the common
Microsoft properties at the start of this section.

MS Neural Network
There are no specific properties defined for nodes of type msneuralnetworknode. See the common
Microsoft properties at the start of this section.

MS Logistic Regression
There are no specific properties defined for nodes of type mslogisticnode. See the common Microsoft
properties at the start of this section.

MS Time Series
There are no specific properties defined for nodes of type mstimeseriesnode. See the common
Microsoft properties at the start of this section.

344 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

MS Sequence Clustering
The following specific properties are available for nodes of type mssequenceclusternode:

Table 195. mssequenceclusternode properties

mssequenceclusternode
Properties

Values Property Description

id_field field Identifies each transaction in the data.

input_fields list Input fields for transactional data.

sequence_field field Sequence identifier.

target_field field Predicted field (tabular data).

Algorithm Parameters
Each Microsoft database model type has specific parameters that can be set using the
msas_parameters property--for example:

stream = modeler.script.stream()
msregressionnode = stream.findByType("msregression", None)
msregressionnode.setPropertyValue("msas_parameters",
[["MAXIMUM_INPUT_ATTRIBUTES", 255],
["MAXIMUM_OUTPUT_ATTRIBUTES", 255]])

These parameters are derived from SQL Server. To see the relevant parameters for each node:

1. Place a database source node on the canvas.
2. Open the database source node.
3. Select a valid source from the Data source drop-down list.
4. Select a valid table from the Table name list.
5. Click OK to close the database source node.
6. Attach the Microsoft database modeling node whose properties you want to list.
7. Open the database modeling node.
8. Select the Expert tab.

The available msas_parameters properties for this node are displayed.

Microsoft Model Nugget Properties
The following properties are for the model nuggets created using the Microsoft database modeling nodes.

MS Decision Tree
Table 196. MS Decision Tree properties

applymstreenode Properties Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

datasource string Name of the SQL Server ODBC data source name
(DSN).

Chapter 15. Database modeling node properties 345

Table 196. MS Decision Tree properties (continued)

applymstreenode Properties Values Description

sql_generate flag

udf

Enables SQL generation.

MS Linear Regression
Table 197. MS Linear Regression properties

applymsregressionnode
Properties

Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

MS Neural Network
Table 198. MS Neural Network properties

applymsneuralnetworknode
Properties

Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

MS Logistic Regression
Table 199. MS Logistic Regression properties

applymslogisticnode
Properties

Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

346 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

MS Time Series
Table 200. MS Time Series properties

applymstimeseriesnode
Properties

Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

start_from new_predictio
n

historical_
prediction

Specifies whether to make future predictions or
historical predictions.

new_step number Defines starting time period for future
predictions.

historical_step number Defines starting time period for historical
predictions.

end_step number Defines ending time period for predictions.

MS Sequence Clustering
Table 201. MS Sequence Clustering properties

applymssequenceclusternod
e Properties

Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

Node Properties for Oracle Modeling

Oracle Modeling Node Properties
The following properties are common to Oracle database modeling nodes.

Table 202. Common Oracle node properties

Common Oracle Node Properties Values Property Description

target field

inputs List of fields

partition field Field used to partition the data into separate
samples for the training, testing, and validation
stages of model building.

Chapter 15. Database modeling node properties 347

Table 202. Common Oracle node properties (continued)

Common Oracle Node Properties Values Property Description

datasource

username

password

epassword

use_model_name flag

model_name string Custom name for new model.

use_partitioned_data flag If a partition field is defined, this option ensures
that only data from the training partition is used
to build the model.

unique_field field

auto_data_prep flag Enables or disables the Oracle automatic data
preparation feature (11g databases only).

costs structured Structured property in the form:

[[drugA drugB 1.5] [drugA drugC
2.1]], where the arguments in [] are actual
predicted costs.

mode Simple

Expert

Causes certain properties to be ignored if set
to Simple, as noted in the individual node
properties.

use_prediction_probability flag

prediction_probability string

use_prediction_set flag

Oracle Naive Bayes
The following properties are available for nodes of type oranbnode.

Table 203. oranbnode properties

oranbnode Properties Values Property Description

singleton_threshold number 0.0–1.0.*

pairwise_threshold number 0.0–1.0.*

priors Data

Equal

Custom

custom_priors structured Structured property in the form:

set :oranbnode.custom_priors =
[[drugA 1][drugB 2][drugC 3][drugX
4][drugY 5]]

348 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

* Property ignored if mode is set to Simple.

Oracle Adaptive Bayes
The following properties are available for nodes of type oraabnnode.

Table 204. oraabnnode properties

oraabnnode Properties Values Property Description

model_type SingleFeature

MultiFeature

NaiveBayes

use_execution_time_limit flag *

execution_time_limit integer Value must be greater than 0.*

max_naive_bayes_predictors integer Value must be greater than 0.*

max_predictors integer Value must be greater than 0.*

priors Data

Equal

Custom

custom_priors structured Structured property in the form:

set :oraabnnode.custom_priors =
[[drugA 1][drugB 2][drugC 3][drugX
4][drugY 5]]

* Property ignored if mode is set to Simple.

Oracle Support Vector Machines
The following properties are available for nodes of type orasvmnode.

Table 205. orasvmnode properties

orasvmnode Properties Values Property Description

active_learning Enable

Disable

kernel_function Linear

Gaussian

System

Chapter 15. Database modeling node properties 349

Table 205. orasvmnode properties (continued)

orasvmnode Properties Values Property Description

normalization_method zscore

minmax

none

kernel_cache_size integer Gaussian kernel only. Value must
be greater than 0.*

convergence_tolerance number Value must be greater than 0.*

use_standard_deviation flag Gaussian kernel only.*

standard_deviation number Value must be greater than 0.*

use_epsilon flag Regression models only.*

epsilon number Value must be greater than 0.*

use_complexity_factor flag *

complexity_factor number *

use_outlier_rate flag One-Class variant only.*

outlier_rate number One-Class variant only. 0.0–1.0.*

weights Data

Equal

Custom

custom_weights structured Structured property in the form:

set :orasvmnode.custom_we
ights = [[drugA 1][drugB
2][drugC 3][drugX 4]
[drugY 5]]

* Property ignored if mode is set to Simple.

Oracle Generalized Linear Models
The following properties are available for nodes of type oraglmnode.

Table 206. oraglmnode properties

oraglmnode Properties Values Property Description

normalization_method zscore

minmax

none

350 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 206. oraglmnode properties (continued)

oraglmnode Properties Values Property Description

missing_value_handling ReplaceWithMean

UseCompleteRecords

use_row_weights flag *

row_weights_field field *

save_row_diagnostics flag *

row_diagnostics_table string *

coefficient_confidence number *

use_reference_category flag *

reference_category string *

ridge_regression Auto

Off

On

*

parameter_value number *

vif_for_ridge flag *

* Property ignored if mode is set to Simple.

Oracle Decision Tree
The following properties are available for nodes of type oradecisiontreenode.

Table 207. oradecisiontreenode properties

oradecisiontreenode
Properties

Values Property Description

use_costs flag

impurity_metric Entropy

Gini

term_max_depth integer 2–20.*

term_minpct_node number 0.0–10.0.*

term_minpct_split number 0.0–20.0.*

term_minrec_node integer Value must be greater than 0.*

term_minrec_split integer Value must be greater than 0.*

display_rule_ids flag *

* Property ignored if mode is set to Simple.

Chapter 15. Database modeling node properties 351

Oracle O-Cluster
The following properties are available for nodes of type oraoclusternode.

Table 208. oraoclusternode properties

oraoclusternode Properties Values Property Description

max_num_clusters integer Value must be greater than 0.

max_buffer integer Value must be greater than 0.*

sensitivity number 0.0–1.0.*

* Property ignored if mode is set to Simple.

Oracle KMeans
The following properties are available for nodes of type orakmeansnode.

Table 209. orakmeansnode properties

orakmeansnode Properties Values Property Description

num_clusters integer Value must be greater than 0.

normalization_method zscore

minmax

none

distance_function Euclidean

Cosine

iterations integer 0–20.*

conv_tolerance number 0.0–0.5.*

split_criterion Variance

Size

Default is Variance.*

num_bins integer Value must be greater than 0.*

block_growth integer 1–5.*

min_pct_attr_support number 0.0–1.0.*

* Property ignored if mode is set to Simple.

Oracle NMF
The following properties are available for nodes of type oranmfnode.

352 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 210. oranmfnode properties

oranmfnode Properties Values Property Description

normalization_method minmax

none

use_num_features flag *

num_features integer 0–1. Default value is estimated from the data by
the algorithm.*

random_seed number *

num_iterations integer 0–500.*

conv_tolerance number 0.0–0.5.*

display_all_features flag *

* Property ignored if mode is set to Simple.

Oracle Apriori
The following properties are available for nodes of type oraapriorinode.

Table 211. oraapriorinode properties

oraapriorinode Properties Values Property Description

content_field field

id_field field

max_rule_length integer 2–20.

min_confidence number 0.0–1.0.

min_support number 0.0–1.0.

use_transactional_data flag

Oracle Minimum Description Length (MDL)
There are no specific properties defined for nodes of type oramdlnode. See the common Oracle
properties at the start of this section.

Oracle Attribute Importance (AI)
The following properties are available for nodes of type oraainode.

Table 212. oraainode properties

oraainode Properties Values Property Description

custom_fields flag If true, allows you to specify target, input, and
other fields for the current node. If false, the
current settings from an upstream Type node
are used.

Chapter 15. Database modeling node properties 353

Table 212. oraainode properties (continued)

oraainode Properties Values Property Description

selection_mode ImportanceLe
vel

ImportanceVa
lue

TopN

select_important flag When selection_mode is set to
ImportanceLevel, specifies whether to select
important fields.

important_label string Specifies the label for the "important" ranking.

select_marginal flag When selection_mode is set to
ImportanceLevel, specifies whether to select
marginal fields.

marginal_label string Specifies the label for the "marginal" ranking.

important_above number 0.0–1.0.

select_unimportant flag When selection_mode is set to
ImportanceLevel, specifies whether to select
unimportant fields.

unimportant_label string Specifies the label for the "unimportant"
ranking.

unimportant_below number 0.0–1.0.

importance_value number When selection_mode is set to
ImportanceValue, specifies the cutoff value
to use. Accepts values from 0 to 100.

top_n number When selection_mode is set to TopN,
specifies the cutoff value to use. Accepts values
from 0 to 1000.

Oracle Model Nugget Properties
The following properties are for the model nuggets created using the Oracle models.

Oracle Naive Bayes
There are no specific properties defined for nodes of type applyoranbnode.

Oracle Adaptive Bayes
There are no specific properties defined for nodes of type applyoraabnnode.

Oracle Support Vector Machines
There are no specific properties defined for nodes of type applyorasvmnode.

Oracle Decision Tree
The following properties are available for nodes of type applyoradecisiontreenode.

354 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 213. applyoradecisiontreenode properties

applyoradecisiontreenode
Properties

Values Property Description

use_costs flag

display_rule_ids flag

Oracle O-Cluster
There are no specific properties defined for nodes of type applyoraoclusternode.

Oracle KMeans
There are no specific properties defined for nodes of type applyorakmeansnode.

Oracle NMF
The following property is available for nodes of type applyoranmfnode:

Table 214. applyoranmfnode properties

applyoranmfnode Properties Values Property Description

display_all_features flag

Oracle Apriori
This model nugget cannot be applied in scripting.

Oracle MDL
This model nugget cannot be applied in scripting.

Node Properties for IBM Netezza Analytics Modeling

Netezza Modeling Node Properties
The following properties are common to IBM Netezza database modeling nodes.

Table 215. Common Netezza node properties

Common Netezza Node
Properties

Values Property Description

custom_fields flag If true, allows you to specify target, input, and
other fields for the current node. If false, the
current settings from an upstream Type node are
used.

inputs [field1 ... fieldN] Input or predictor fields used by the model.

target field Target field (continuous or categorical).

record_id field Field to be used as unique record identifier.

use_upstream_connection flag If true (default), the connection details
specified in an upstream node. Not used if
move_data_to_connection is specified.

Chapter 15. Database modeling node properties 355

Table 215. Common Netezza node properties (continued)

Common Netezza Node
Properties

Values Property Description

move_data_connection flag If true, moves the data to the database
specified by connection. Not used if
use_upstream_connection is specified.

connection structured The connection string for the Netezza database
where the model is stored. Structured property in
the form:

['odbc' '<dsn>' '<username>' '<psw>'
'<catname>' '<conn_attribs>' [true|
false]]

where:

<dsn> is the data source name

<username> and <psw> are the username and
password for the database

<catname> is the catalog name

<conn_attribs> are the connection attributes

true | false indicates whether the password is
needed.

table_name string Name of database table where model is to be
stored.

use_model_name flag If true, uses the name specified by model_name as
the name of the model, otherwise model name is
created by the system.

model_name string Custom name for new model.

include_input_fields flag If true, passes all input fields downstream,
otherwise passes only record_id and fields
generated by model.

Netezza Decision Tree
The following properties are available for nodes of type netezzadectreenode.

Table 216. netezzadectreenode properties

netezzadectreenode
Properties

Values Property Description

impurity_measure Entropy

Gini

The measurement of impurity,
used to evaluate the best place
to split the tree.

356 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 216. netezzadectreenode properties (continued)

netezzadectreenode
Properties

Values Property Description

max_tree_depth integer Maximum number of levels to
which tree can grow. Default is
62 (the maximum possible).

min_improvement_splits number Minimum improvement in
impurity for split to occur. Default
is 0.01.

min_instances_split integer Minimum number of unsplit
records remaining before split
can occur. Default is 2 (the
minimum possible).

weights structured Relative weightings for classes.
Structured property in the form:

set :netezza_dectree.weig
hts = [[drugA 0.3][drugB
0.6]]

Default is weight of 1 for all
classes.

pruning_measure Acc

wAcc

Default is Acc (accuracy).
Alternative wAcc (weighted
accuracy) takes class weights
into account while applying
pruning.

prune_tree_options allTrainingData

partitionTrainingData

useOtherTable

Default is to use
allTrainingData to estimate
model accuracy. Use
partitionTrainingData to
specify a percentage of training
data to use, or useOtherTable
to use a training data set from a
specified database table.

perc_training_data number If prune_tree_options is set
to partitionTrainingData,
specifies percentage of data to
use for training.

prune_seed integer Random seed to be used for
replicating analysis results when
prune_tree_options is set
to partitionTrainingData;
default is 1.

pruning_table string Table name of a separate pruning
dataset for estimating model
accuracy.

compute_probabilities flag If true, produces a confidence
level (probability) field as well as
the prediction field.

Chapter 15. Database modeling node properties 357

Netezza K-Means
The following properties are available for nodes of type netezzakmeansnode.

Table 217. netezzakmeansnode properties

netezzakmeansnode
Properties

Values Property Description

distance_measure Euclidean

Manhattan

Canberra

maximum

Method to be used for measuring distance between
data points.

num_clusters integer Number of clusters to be created; default is 3.

max_iterations integer Number of algorithm iterations after which to stop
model training; default is 5.

rand_seed integer Random seed to be used for replicating analysis
results; default is 12345.

Netezza Bayes Net
The following properties are available for nodes of type netezzabayesnode.

Table 218. netezzabayesnode properties

netezzabayesnode
Properties

Values Property Description

base_index integer Numeric identifier assigned to first input field for
internal management; default is 777.

sample_size integer Size of sample to take if number of attributes is
very large; default is 10,000.

display_additional_infor
mation

flag If true, displays additional progress information in
a message dialog box.

type_of_prediction best

neighbors

nn-neighbors

Type of prediction algorithm to use: best
(most correlated neighbor), neighbors (weighted
prediction of neighbors), or nn-neighbors (non null-
neighbors).

Netezza Naive Bayes
The following properties are available for nodes of type netezzanaivebayesnode.

Table 219. netezzanaivebayesnode properties

netezzanaivebayesnode
Properties

Values Property Description

compute_probabilities flag If true, produces a confidence level (probability)
field as well as the prediction field.

358 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 219. netezzanaivebayesnode properties (continued)

netezzanaivebayesnode
Properties

Values Property Description

use_m_estimation flag If true, uses m-estimation technique for avoiding
zero probabilities during estimation.

Netezza KNN
The following properties are available for nodes of type netezzaknnnode.

Table 220. netezzaknnnode properties

netezzaknnnode Properties Values Property Description

weights structured Structured property used to assign weights to
individual classes. Example:

set :netezzaknnnode.weights = [[drugA
0.3][drugB 0.6]]

distance_measure Euclidean

Manhattan

Canberra

Maximum

Method to be used for measuring the distance
between data points.

num_nearest_neighbors integer Number of nearest neighbors for a particular case;
default is 3.

standardize_measurements flag If true, standardizes measurements for continuous
input fields before calculating distance values.

use_coresets flag If true, uses core set sampling to speed up
calculation for large data sets.

Netezza Divisive Clustering
The following properties are available for nodes of type netezzadivclusternode.

Table 221. netezzadivclusternode properties

netezzadivclusternode
Properties

Values Property Description

distance_measure Euclidean

Manhattan

Canberra

Maximum

Method to be used for measuring the distance
between data points.

max_iterations integer Maximum number of algorithm iterations to
perform before model training stops; default is 5.

Chapter 15. Database modeling node properties 359

Table 221. netezzadivclusternode properties (continued)

netezzadivclusternode
Properties

Values Property Description

max_tree_depth integer Maximum number of levels to which data set can
be subdivided; default is 3.

rand_seed integer Random seed, used to replicate analyses; default is
12345.

min_instances_split integer Minimum number of records that can be split,
default is 5.

level integer Hierarchy level to which records are to be scored;
default is -1.

Netezza PCA
The following properties are available for nodes of type netezzapcanode.

Table 222. netezzapcanode properties

netezzapcanode Properties Values Property Description

center_data flag If true (default), performs data centering (also
known as "mean subtraction") before the analysis.

perform_data_scaling flag If true, performs data scaling before the analysis.
Doing so can make the analysis less arbitrary when
different variables are measured in different units.

force_eigensolve flag If true, uses less accurate but faster method of
finding principal components.

pc_number integer Number of principal components to which data set
is to be reduced; default is 1.

Netezza Regression Tree
The following properties are available for nodes of type netezzaregtreenode.

Table 223. netezzaregtreenode properties

netezzaregtreenode
Properties

Values Property Description

max_tree_depth integer Maximum number of levels to
which the tree can grow below
the root node; default is 10.

split_evaluation_measure Variance Class impurity measure, used to
evaluate the best place to split
the tree; default (and currently
only option) is Variance.

min_improvement_splits number Minimum amount to reduce
impurity before new split is
created in tree.

min_instances_split integer Minimum number of records that
can be split.

360 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 223. netezzaregtreenode properties (continued)

netezzaregtreenode
Properties

Values Property Description

pruning_measure mse

r2

pearson

spearman

Method to be used for pruning.

prune_tree_options allTrainingData

partitionTrainingData

useOtherTable

Default is to use
allTrainingData to estimate
model accuracy. Use
partitionTrainingData to
specify a percentage of training
data to use, or useOtherTable
to use a training data set from a
specified database table.

perc_training_data number If prune_tree_options is
set to PercTrainingData,
specifies percentage of data to
use for training.

prune_seed integer Random seed to be used for
replicating analysis results when
prune_tree_options is set to
PercTrainingData; default is
1.

pruning_table string Table name of a separate pruning
dataset for estimating model
accuracy.

compute_probabilities flag If true, specifies that variances
of assigned classes should be
included in output.

Netezza Linear Regression
The following properties are available for nodes of type netezzalineregressionnode.

Table 224. netezzalineregressionnode properties

netezzalineregressionnod
e Properties

Values Property Description

use_svd flag If true, uses Singular Value Decomposition matrix
instead of original matrix, for increased speed and
numerical accuracy.

include_intercept flag If true (default), increases overall accuracy of
solution.

calculate_model_diagnost
ics

flag If true, calculates diagnostics on the model.

Chapter 15. Database modeling node properties 361

Netezza Time Series
The following properties are available for nodes of type netezzatimeseriesnode.

Table 225. netezzatimeseriesnode properties

netezzatimeseriesnode
Properties

Values Property Description

time_points field Input field containing the date or
time values for the time series.

time_series_ids field Input field containing time series
IDs; used if input contains more
than one time series.

model_table field Name of database table where
Netezza time series model will be
stored.

description_table field Name of input table that
contains time series names and
descriptions.

seasonal_adjustment_table field Name of output table where
seasonally adjusted values
computed by exponential
smoothing or seasonal trend
decomposition algorithms will be
stored.

algorithm_name SpectralAnalysis or
spectral

ExponentialSmoothing or
esmoothing

ARIMA

SeasonalTrendDecompositio
n or std

Algorithm to be used for time
series modeling.

trend_name N

A

DA

M

DM

Trend type for exponential
smoothing:

N - none

A - additive

DA - damped additive

M - multiplicative

DM - damped multiplicative

362 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 225. netezzatimeseriesnode properties (continued)

netezzatimeseriesnode
Properties

Values Property Description

seasonality_type N

A

M

Seasonality type for exponential
smoothing:

N - none

A - additive

M - multiplicative

interpolation_method linear

cubicspline

exponentialspline

Interpolation method to be used.

timerange_setting SD

SP

Setting for time range to use:

SD - system-determined (uses
full range of time series data)

SP - user-specified
via earliest_time and
latest_time

earliest_time integer

date

time

timestamp

Start and end values, if
timerange_setting is SP.

Format should follow
time_points value.

For example, if the
time_points field contains a
date, this should also be a date.

Example:

set
NZ_DT1.timerange_setting
= 'SP'

set NZ_DT1.earliest_time
= '1921-01-01'

set NZ_DT1.latest_time =
'2121-01-01'

latest_time

Chapter 15. Database modeling node properties 363

Table 225. netezzatimeseriesnode properties (continued)

netezzatimeseriesnode
Properties

Values Property Description

arima_setting SD

SP

Setting for the ARIMA algorithm
(used only if algorithm_name is
set to ARIMA):

SD - system-determined

SP - user-specified

If arima_setting = SP, use
the following parameters to set
the seasonal and non-seasonal
values. Example (non-seasonal
only):

set NZ_DT1.algorithm_name
= 'arima'

set NZ_DT1.arima_setting
= 'SP'

set NZ_DT1.p_symbol =
'lesseq'

set NZ_DT1.p = '4'

set NZ_DT1.d_symbol =
'lesseq'

set NZ_DT1.d = '2'

set NZ_DT1.q_symbol =
'lesseq'

set NZ_DT1.q = '4'

p_symbol less

eq

lesseq

ARIMA - operator for parameters
p, d, q, sp, sd, and sq:

less - less than

eq - equals

lesseq - less than or equal to

d_symbol

q_symbol

sp_symbol

sd_symbol

sq_symbol

p integer ARIMA - non-seasonal degrees of
autocorrelation.

q integer ARIMA - non-seasonal derivation
value.

364 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 225. netezzatimeseriesnode properties (continued)

netezzatimeseriesnode
Properties

Values Property Description

d integer ARIMA - non-seasonal number
of moving average orders in the
model.

sp integer ARIMA - seasonal degrees of
autocorrelation.

sq integer ARIMA - seasonal derivation
value.

sd integer ARIMA - seasonal number of
moving average orders in the
model.

advanced_setting SD

SP

Determines how advanced
settings are to be handled:

SD - system-determined

SP - user-specified via
period , units_period and
forecast_setting.

Example:

set
NZ_DT1.advanced_setting =
'SP'

set NZ_DT1.period = 5

set NZ_DT1.units_period =
'd'

period integer Length of seasonal cycle,
specified in conjunction with
units_period. Not applicable
for spectral analysis.

Chapter 15. Database modeling node properties 365

Table 225. netezzatimeseriesnode properties (continued)

netezzatimeseriesnode
Properties

Values Property Description

units_period ms

s

min

h

d

wk

q

y

Units in which period is
expressed:

ms - milliseconds

s - seconds

min - minutes

h - hours

d - days

wk - weeks

q - quarters

y - years

For example, for a weekly time
series use 1 for period and wk
for units_period.

forecast_setting forecasthorizon

forecasttimes

Specifies how forecasts are to be
made.

forecast_horizon integer

date

time

timestamp

If forecast_setting =
forecasthorizon, specifies
end point value for forecasting.

Format should follow
time_points value.

For example, if the
time_points field contains a
date, this should also be a date.

forecast_times integer

date

time

timestamp

If forecast_setting =
forecasttimes, specifies
values to use for making
forecasts.

Format should follow
time_points value.

For example, if the
time_points field contains a
date, this should also be a date.

366 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 225. netezzatimeseriesnode properties (continued)

netezzatimeseriesnode
Properties

Values Property Description

include_history flag Indicates if historical values are
to be included in output.

include_interpolated_valu
es

flag Indicates if interpolated values
are to be included in output. Not
applicable if include_history
is false.

Netezza Generalized Linear
The following properties are available for nodes of type netezzaglmnode.

Table 226. netezzaglmnode properties

netezzaglmnode Properties Values Property Description

dist_family bernoulli

gaussian

poisson

negativebinomial

wald

gamma

Distribution type; default is
bernoulli.

dist_params number Distribution parameter value
to use. Only applicable
if distribution is
Negativebinomial.

trials integer Only applicable if
distribution is Binomial.
When target response is a
number of events occurring in
a set of trials, target field
contains number of events, and
trials field contains number of
trials.

model_table field Name of database table where
Netezza generalized linear model
will be stored.

maxit integer Maximum number of iterations
the algorithm should perform;
default is 20.

Chapter 15. Database modeling node properties 367

Table 226. netezzaglmnode properties (continued)

netezzaglmnode Properties Values Property Description

eps number Maximum error value (in
scientific notation) at which
algorithm should stop finding
best fit model. Default is -3,
meaning 1E-3, or 0.001.

tol number Value (in scientific notation)
below which errors are treated
as having a value of zero. Default
is -7, meaning that error values
below 1E-7 (or 0.0000001) are
counted as insignificant.

link_func identity

inverse

invnegative

invsquare

sqrt

power

oddspower

log

clog

loglog

cloglog

logit

probit

gaussit

cauchit

canbinom

cangeom

cannegbinom

Link function to use; default is
logit.

368 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 226. netezzaglmnode properties (continued)

netezzaglmnode Properties Values Property Description

link_params number Link function parameter value
to use. Only applicable if
link_function is power or
oddspower.

interaction [[[colnames1],[levels1]],
[[colnames2],[levels2]],
...,[[colnamesN],[levelsN]],]

Specifies interactions between
fields. colnames is a list of input
fields, and level is always 0 for
each field.

Example:

[[["K","BP","Sex","K"],
[0,0,0,0]],
[["Age","Na"],[0,0]]]

intercept flag If true, includes the intercept in
the model.

Netezza Model Nugget Properties
The following properties are common to Netezza database model nuggets.

Table 227. Common Netezza model nugget properties

Common Netezza Model Nugget
Properties

Values Property Description

connection string The connection string for the Netezza
database where the model is stored.

table_name string Name of database table where model is
stored.

Other model nugget properties are the same as those for the corresponding modeling node.

The script names of the model nuggets are as follows.

Table 228. Script names of Netezza model nuggets

Model Nugget Script Name

Decision Tree applynetezzadectreenode

K-Means applynetezzakmeansnode

Bayes Net applynetezzabayesnode

Naive Bayes applynetezzanaivebayesnode

KNN applynetezzaknnnode

Divisive Clustering applynetezzadivclusternode

PCA applynetezzapcanode

Regression Tree applynetezzaregtreenode

Linear Regression applynetezzalineregressionnode

Chapter 15. Database modeling node properties 369

Table 228. Script names of Netezza model nuggets (continued)

Model Nugget Script Name

Time Series applynetezzatimeseriesnode

Generalized Linear applynetezzaglmnode

370 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 16. Output node properties

Output node properties differ slightly from those of other node types. Rather than referring to a particular
node option, output node properties store a reference to the output object. This is useful in taking a value
from a table and then setting it as a stream parameter.

This section describes the scripting properties available for output nodes.

analysisnode properties
The Analysis node evaluates predictive models' ability to generate accurate
predictions. Analysis nodes perform various comparisons between predicted values
and actual values for one or more model nuggets. They can also compare predictive
models to each other.

Example

node = stream.create("analysis", "My node")
"Analysis" tab
node.setPropertyValue("coincidence", True)
node.setPropertyValue("performance", True)
node.setPropertyValue("confidence", True)
node.setPropertyValue("threshold", 75)
node.setPropertyValue("improve_accuracy", 3)
node.setPropertyValue("inc_user_measure", True)
"Define User Measure..."
node.setPropertyValue("user_if", "@TARGET = @PREDICTED")
node.setPropertyValue("user_then", "101")
node.setPropertyValue("user_else", "1")
node.setPropertyValue("user_compute", ["Mean", "Sum"])
node.setPropertyValue("by_fields", ["Drug"])
"Output" tab
node.setPropertyValue("output_format", "HTML")
node.setPropertyValue("full_filename", "C:/output/analysis_out.html")

Table 229. analysisnode properties

analysisnode properties Data type Property description

output_mode Screen

File

Used to specify target location
for output generated from the
output node.

use_output_name flag Specifies whether a custom
output name is used.

output_name string If use_output_name is true,
specifies the name to use.

output_format Text (.txt)

HTML (.html)

Output (.cou)

Used to specify the type of
output.

by_fields list

Table 229. analysisnode properties (continued)

analysisnode properties Data type Property description

full_filename string If disk, data, or HTML output,
the name of the output file.

coincidence flag

performance flag

evaluation_binary flag

confidence flag

threshold number

improve_accuracy number

field_detection_method Metadata

Name

Determines how predicted
fields are matched to the
original target field. Specify
Metadata or Name.

inc_user_measure flag

user_if expr

user_then expr

user_else expr

user_compute [Mean Sum Min
Max SDev]

dataauditnode properties
The Data Audit node provides a comprehensive first look at the data, including
summary statistics, histograms and distribution for each field, as well as information
on outliers, missing values, and extremes. Results are displayed in an easy-to-read
matrix that can be sorted and used to generate full-size graphs and data preparation
nodes.

Example

filenode = stream.createAt("variablefile", "File", 100, 100)
filenode.setPropertyValue("full_filename", "$CLEO_DEMOS/DRUG1n")
node = stream.createAt("dataaudit", "My node", 196, 100)
stream.link(filenode, node)
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("fields", ["Age", "Na", "K"])
node.setPropertyValue("display_graphs", True)
node.setPropertyValue("basic_stats", True)
node.setPropertyValue("advanced_stats", True)
node.setPropertyValue("median_stats", False)
node.setPropertyValue("calculate", ["Count", "Breakdown"])
node.setPropertyValue("outlier_detection_method", "std")
node.setPropertyValue("outlier_detection_std_outlier", 1.0)
node.setPropertyValue("outlier_detection_std_extreme", 3.0)
node.setPropertyValue("output_mode", "Screen")

372 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 230. dataauditnode properties

dataauditnode properties Data type Property description

custom_fields flag

fields [field1 … fieldN]

overlay field

display_graphs flag Used to turn the display of
graphs in the output matrix on
or off.

basic_stats flag

advanced_stats flag

median_stats flag

calculate Count

Breakdown

Used to calculate missing
values. Select either, both, or
neither calculation method.

outlier_detection_method std

iqr

Used to specify the detection
method for outliers and
extreme values.

outlier_detection_std_outlier number If
outlier_detection_metho
d is std, specifies the number
to use to define outliers.

outlier_detection_std_extreme number If
outlier_detection_metho
d is std, specifies the number
to use to define extreme
values.

outlier_detection_iqr_outlier number If
outlier_detection_metho
d is iqr, specifies the number
to use to define outliers.

outlier_detection_iqr_extreme number If
outlier_detection_metho
d is iqr, specifies the number
to use to define extreme
values.

use_output_name flag Specifies whether a custom
output name is used.

output_name string If use_output_name is true,
specifies the name to use.

output_mode Screen

File

Used to specify target location
for output generated from the
output node.

Chapter 16. Output node properties 373

Table 230. dataauditnode properties (continued)

dataauditnode properties Data type Property description

output_format Formatted (.tab)

Delimited (.csv)

HTML (.html)

Output (.cou)

Used to specify the type of
output.

paginate_output flag When the output_format is
HTML, causes the output to be
separated into pages.

lines_per_page number When used with
paginate_output, specifies
the lines per page of output.

full_filename string

extensionoutputnode properties
The Extension Output node enables you to analyze
data and the results of model scoring using your
own custom R or Python for Spark script. The
output of the analysis can be text or graphical. The
output is added to the Output tab of the manager
pane; alternatively, the output can be redirected to
a file.

Python for Spark example

script example for Python for Spark
import modeler.api
stream = modeler.script.stream()
node = stream.create("extension_output", "extension_output")
node.setPropertyValue("syntax_type", "Python")

python_script = """
import json
import spss.pyspark.runtime

cxt = spss.pyspark.runtime.getContext()
df = cxt.getSparkInputData()
schema = df.dtypes[:]
print df
"""

node.setPropertyValue("python_syntax", python_script)

R example

script example for R
node.setPropertyValue("syntax_type", "R")
node.setPropertyValue("r_syntax", "print(modelerData$Age)")

374 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 231. extensionoutputnode properties

extensionoutputnode properties Data type Property description

syntax_type R

Python

Specify which script runs – R or
Python (R is the default).

r_syntax string R scripting syntax for model
scoring.

python_syntax string Python scripting syntax for
model scoring.

convert_flags
StringsAndDoubles
LogicalValues

Option to convert flag fields.

convert_missing flag Option to convert missing
values to the R NA value.

convert_datetime flag Option to convert variables
with date or datetime formats
to R date/time formats.

convert_datetime_class POSIXct
POSIXlt

Options to specify to what
format variables with date
or datetime formats are
converted.

output_to Screen
File

Specify the output type
(Screen or File).

output_type Graph
Text

Specify whether to produce
graphical or text output.

full_filename string File name to use for the
generated output.

graph_file_type HTML
COU

File type for the output file
(.html or .cou).

text_file_type
HTML
TEXT
COU

Specify the file type for text
output (.html, .txt, or .cou).

kdeexport properties
Kernel Density Estimation (KDE)© uses the Ball Tree or KD Tree algorithms for
efficient queries, and combines concepts from unsupervised learning, feature
engineering, and data modeling. Neighbor-based approaches such as KDE are some
of the most popular and useful density estimation techniques. The KDE Modeling
and KDE Simulation nodes in SPSS Modeler expose the core features and commonly
used parameters of the KDE library. The nodes are implemented in Python.

Table 232. kdeexport properties

kdeexport properties Data type Property description

bandwidth double Default is 1.

Chapter 16. Output node properties 375

Table 232. kdeexport properties (continued)

kdeexport properties Data type Property description

kernel string The kernel to use: gaussian or tophat.
Default is gaussian.

algorithm string The tree algorithm to use: kd_tree,
ball_tree, or auto. Default is auto.

metric string The metric to use when calculating
distance. For the kd_tree algorithm,
choose from: Euclidean, Chebyshev,
Cityblock, Minkowski, Manhattan,
Infinity, P, L2, or L1. For the
ball_tree algorithm, choose from:
Euclidian, Braycurtis, Chebyshev,
Canberra, Cityblock, Dice, Hamming,
Infinity, Jaccard, L1, L2,
Minkowski, Matching, Manhattan,
P, Rogersanimoto, Russellrao,
Sokalmichener, Sokalsneath, or
Kulsinski. Default is Euclidean.

atol float The desired absolute tolerance of the
result. A larger tolerance will generally
lead to faster execution. Default is 0.0.

rtol float The desired relative tolerance of the
result. A larger tolerance will generally
lead to faster execution. Default is 1E-8.

breadthFirst boolean Set to True to use a breadth-first
approach. Set to False to use a depth-
first approach. Default is True.

LeafSize integer The leaf size of the underlying tree.
Default is 40. Changing this value may
significantly impact the performance.

pValue double Specify the P Value to use if you're using
Minkowski for the metric. Default is 1.5.

matrixnode properties
The Matrix node creates a table that shows relationships between fields. It is most
commonly used to show the relationship between two symbolic fields, but it can
also show relationships between flag fields or numeric fields.

Example

node = stream.create("matrix", "My node")
"Settings" tab
node.setPropertyValue("fields", "Numerics")
node.setPropertyValue("row", "K")
node.setPropertyValue("column", "Na")
node.setPropertyValue("cell_contents", "Function")
node.setPropertyValue("function_field", "Age")
node.setPropertyValue("function", "Sum")
"Appearance" tab
node.setPropertyValue("sort_mode", "Ascending")

376 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

node.setPropertyValue("highlight_top", 1)
node.setPropertyValue("highlight_bottom", 5)
node.setPropertyValue("display", ["Counts", "Expected", "Residuals"])
node.setPropertyValue("include_totals", True)
"Output" tab
node.setPropertyValue("full_filename", "C:/output/matrix_output.html")
node.setPropertyValue("output_format", "HTML")
node.setPropertyValue("paginate_output", True)
node.setPropertyValue("lines_per_page", 50)

Table 233. matrixnode properties

matrixnode properties Data type Property description

fields Selected

Flags

Numerics

row field

column field

include_missing_values flag Specifies whether user-missing
(blank) and system missing
(null) values are included in the
row and column output.

cell_contents CrossTabs

Function

function_field string

function Sum

Mean

Min

Max

SDev

sort_mode Unsorted

Ascending

Descending

highlight_top number If non-zero, then true.

highlight_bottom number If non-zero, then true.

Chapter 16. Output node properties 377

Table 233. matrixnode properties (continued)

matrixnode properties Data type Property description

display [Counts

Expected

Residuals

RowPct

ColumnPct

TotalPct]

include_totals flag

use_output_name flag Specifies whether a custom
output name is used.

output_name string If use_output_name is true,
specifies the name to use.

output_mode Screen

File

Used to specify target location
for output generated from the
output node.

output_format Formatted (.tab)

Delimited (.csv)

HTML (.html)

Output (.cou)

Used to specify the type of
output. Both the Formatted
and Delimited formats can
take the modifier transposed,
which transposes the rows and
columns in the table.

paginate_output flag When the output_format is
HTML, causes the output to be
separated into pages.

lines_per_page number When used with
paginate_output, specifies
the lines per page of output.

full_filename string

meansnode properties
The Means node compares the means between independent groups or between
pairs of related fields to test whether a significant difference exists. For example,
you could compare mean revenues before and after running a promotion or compare
revenues from customers who did not receive the promotion with those who did.

Example

node = stream.create("means", "My node")
node.setPropertyValue("means_mode", "BetweenFields")
node.setPropertyValue("paired_fields", [["OPEN_BAL", "CURR_BAL"]])

378 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

node.setPropertyValue("label_correlations", True)
node.setPropertyValue("output_view", "Advanced")
node.setPropertyValue("output_mode", "File")
node.setPropertyValue("output_format", "HTML")
node.setPropertyValue("full_filename", "C:/output/means_output.html")

Table 234. meansnode properties

meansnode properties Data type Property description

means_mode BetweenGroups

BetweenFields

Specifies the type of means
statistic to be executed on the
data.

test_fields [field1 ...
fieldn]

Specifies the test field
when means_mode is set to
BetweenGroups.

grouping_field field Specifies the grouping field.

paired_fields [[field1 field2]

[field3 field4]

...]

Specifies the field pairs to use
when means_mode is set to
BetweenFields.

label_correlations flag Specifies whether correlation
labels are shown in output.
This setting applies only
when means_mode is set to
BetweenFields.

correlation_mode Probability

Absolute

Specifies whether to label
correlations by probability or
absolute value.

weak_label string

medium_label string

strong_label string

weak_below_probability number When correlation_mode is
set to Probability, specifies
the cutoff value for weak
correlations. This must be a
value between 0 and 1—for
example, 0.90.

strong_above_probability number Cutoff value for strong
correlations.

weak_below_absolute number When correlation_mode is
set to Absolute, specifies
the cutoff value for weak
correlations. This must be a
value between 0 and 1—for
example, 0.90.

strong_above_absolute number Cutoff value for strong
correlations.

Chapter 16. Output node properties 379

Table 234. meansnode properties (continued)

meansnode properties Data type Property description

unimportant_label string

marginal_label string

important_label string

unimportant_below number Cutoff value for low field
importance. This must be a
value between 0 and 1—for
example, 0.90.

important_above number

use_output_name flag Specifies whether a custom
output name is used.

output_name string Name to use.

output_mode Screen

File

Specifies the target location
for output generated from the
output node.

output_format Formatted (.tab)

Delimited (.csv)

HTML (.html)

Output (.cou)

Specifies the type of output.

full_filename string

output_view Simple

Advanced

Specifies whether the simple or
advanced view is displayed in
the output.

reportnode properties
The Report node creates formatted reports containing fixed text as well as data
and other expressions derived from the data. You specify the format of the report
using text templates to define the fixed text and data output constructions. You can
provide custom text formatting by using HTML tags in the template and by setting
options on the Output tab. You can include data values and other conditional output
by using CLEM expressions in the template.

Example

node = stream.create("report", "My node")
node.setPropertyValue("output_format", "HTML")
node.setPropertyValue("full_filename", "C:/report_output.html")
node.setPropertyValue("lines_per_page", 50)
node.setPropertyValue("title", "Report node created by a script")
node.setPropertyValue("highlights", False)

380 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 235. reportnode properties

reportnode properties Data type Property description

output_mode Screen

File

Used to specify target location
for output generated from the
output node.

output_format HTML (.html)

Text (.txt)

Output (.cou)

Used to specify the type of file
output.

format Auto

Custom

Used to choose whether output
is automatically formatted or
formatted using HTML included
in the template. To use HTML
formatting in the template,
specify Custom.

use_output_name flag Specifies whether a custom
output name is used.

output_name string If use_output_name is true,
specifies the name to use.

text string

full_filename string

highlights flag

title string

lines_per_page number

routputnode properties
The R Output node enables you to analyze data and
the results of model scoring using your own custom
R script. The output of the analysis can be text or
graphical. The output is added to the Output tab of
the manager pane; alternatively, the output can be
redirected to a file.

Table 236. routputnode properties

routputnode properties Data type Property description

syntax string

convert_flags StringsAndDoubles
LogicalValues

convert_datetime flag

convert_datetime_class
POSIXct
POSIXlt

convert_missing flag

Chapter 16. Output node properties 381

Table 236. routputnode properties (continued)

routputnode properties Data type Property description

output_name
Auto
Custom

custom_name string

output_to
Screen
File

output_type
Graph
Text

full_filename string

graph_file_type
HTML
COU

text_file_type HTML
TEXT
COU

setglobalsnode properties
The Set Globals node scans the data and computes summary values that can be
used in CLEM expressions. For example, you can use this node to compute statistics
for a field called age and then use the overall mean of age in CLEM expressions by
inserting the function @GLOBAL_MEAN(age).

Example

node = stream.create("setglobals", "My node")
node.setKeyedPropertyValue("globals", "Na", ["Max", "Sum", "Mean"])
node.setKeyedPropertyValue("globals", "K", ["Max", "Sum", "Mean"])
node.setKeyedPropertyValue("globals", "Age", ["Max", "Sum", "Mean", "SDev"])
node.setPropertyValue("clear_first", False)
node.setPropertyValue("show_preview", True)

Table 237. setglobalsnode properties

setglobalsnode properties Data type Property description

globals [Sum Mean Min
Max SDev]

Structured property where
fields to be set must be
referenced with the following
syntax:

node.setKeyedPropertyVa
lue(
"globals", "Age",
["Max", "Sum",
"Mean", "SDev"])

clear_first flag

show_preview flag

382 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

simevalnode properties
The Simulation Evaluation node evaluates a specified predicted target field, and
presents distribution and correlation information about the target field.

Table 238. simevalnode properties

simevalnode properties Data type Property description

target field

iteration field

presorted_by_iteration boolean

max_iterations number

tornado_fields [field1...fieldN]

plot_pdf boolean

plot_cdf boolean

show_ref_mean boolean

show_ref_median boolean

show_ref_sigma boolean

num_ref_sigma number

show_ref_pct boolean

ref_pct_bottom number

ref_pct_top number

show_ref_custom boolean

ref_custom_values [number1...numberN]

category_values Category
Probabilities
Both

category_groups Categories
Iterations

create_pct_table boolean

pct_table Quartiles
Intervals
Custom

pct_intervals_num number

pct_custom_values [number1...numberN]

Chapter 16. Output node properties 383

simfitnode properties
The Simulation Fitting node examines the statistical distribution of the data in each
field and generates (or updates) a Simulation Generate node, with the best fitting
distribution assigned to each field. The Simulation Generate node can then be used
to generate simulated data.

Table 239. simfitnode properties

simfitnode properties Data type Property description

build
Node
XMLExport
Both

use_source_node_name boolean

source_node_name string The custom name of the source
node that is either being
generated or updated.

use_cases All
LimitFirstN

use_case_limit integer

fit_criterion AndersonDarling
KolmogorovSmirnov

num_bins integer

parameter_xml_filename string

generate_parameter_import boolean

statisticsnode properties
The Statistics node provides basic summary information about numeric fields. It
calculates summary statistics for individual fields and correlations between fields.

Example

node = stream.create("statistics", "My node")
"Settings" tab
node.setPropertyValue("examine", ["Age", "BP", "Drug"])
node.setPropertyValue("statistics", ["mean", "sum", "sdev"])
node.setPropertyValue("correlate", ["BP", "Drug"])
"Correlation Labels..." section
node.setPropertyValue("label_correlations", True)
node.setPropertyValue("weak_below_absolute", 0.25)
node.setPropertyValue("weak_label", "lower quartile")
node.setPropertyValue("strong_above_absolute", 0.75)
node.setPropertyValue("medium_label", "middle quartiles")
node.setPropertyValue("strong_label", "upper quartile")
"Output" tab
node.setPropertyValue("full_filename", "c:/output/statistics_output.html")
node.setPropertyValue("output_format", "HTML")

384 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 240. statisticsnode properties

statisticsnode properties Data type Property description

use_output_name flag Specifies whether a custom
output name is used.

output_name string If use_output_name is true,
specifies the name to use.

output_mode Screen

File

Used to specify target location
for output generated from the
output node.

output_format Text (.txt)

HTML (.html)

Output (.cou)

Used to specify the type of
output.

full_filename string

examine list

correlate list

statistics [count mean sum
min max range
variance sdev
semean median
mode]

correlation_mode Probability

Absolute

Specifies whether to label
correlations by probability or
absolute value.

label_correlations flag

weak_label string

medium_label string

strong_label string

weak_below_probability number When correlation_mode is
set to Probability, specifies
the cutoff value for weak
correlations. This must be a
value between 0 and 1—for
example, 0.90.

strong_above_probability number Cutoff value for strong
correlations.

weak_below_absolute number When correlation_mode is
set to Absolute, specifies
the cutoff value for weak
correlations. This must be a
value between 0 and 1—for
example, 0.90.

strong_above_absolute number Cutoff value for strong
correlations.

Chapter 16. Output node properties 385

statisticsoutputnode Properties
The Statistics Output node allows you to call an IBM SPSS Statistics procedure
to analyze your IBM SPSS Modeler data. A wide variety of IBM SPSS Statistics
analytical procedures is available. This node requires a licensed copy of IBM SPSS
Statistics.

The properties for this node are described under “statisticsoutputnode Properties” on page 411.

tablenode properties
The Table node displays the data in table format, which can also be written to a file.
This is useful anytime that you need to inspect your data values or export them in an
easily readable form.

Example

node = stream.create("table", "My node")
node.setPropertyValue("highlight_expr", "Age > 30")
node.setPropertyValue("output_format", "HTML")
node.setPropertyValue("transpose_data", True)
node.setPropertyValue("full_filename", "C:/output/table_output.htm")
node.setPropertyValue("paginate_output", True)
node.setPropertyValue("lines_per_page", 50)

Table 241. tablenode properties

tablenode properties Data type Property description

full_filename string If disk, data, or HTML output, the
name of the output file.

use_output_name flag Specifies whether a custom output
name is used.

output_name string If use_output_name is true,
specifies the name to use.

output_mode Screen

File

Used to specify target location for
output generated from the output
node.

output_format Formatted (.tab)

Delimited (.csv)

HTML (.html)

Output (.cou)

Used to specify the type of output.

transpose_data flag Transposes the data before export
so that rows represent fields and
columns represent records.

paginate_output flag When the output_format is HTML,
causes the output to be separated
into pages.

386 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 241. tablenode properties (continued)

tablenode properties Data type Property description

lines_per_page number When used with
paginate_output, specifies the
lines per page of output.

highlight_expr string

output string A read-only property that holds a
reference to the last table built by
the node.

value_labels [[Value LabelString]

[Value LabelString] ...]

Used to specify labels for value pairs.

display_places integer Sets the number of decimal places
for the field when displayed (applies
only to fields with REAL storage).
A value of –1 will use the stream
default.

export_places integer Sets the number of decimal places
for the field when exported (applies
only to fields with REAL storage).
A value of –1 will use the stream
default.

decimal_separator DEFAULT

PERIOD

COMMA

Sets the decimal separator for the
field (applies only to fields with REAL
storage).

date_format "DDMMYY"
"MMDDYY"
"YYMMDD"
"YYYYMMDD"
"YYYYDDD"
DAY
MONTH
"DD-MM-YY"
"DD-MM-YYYY"
"MM-DD-YY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD.YYYY"
"DD.MON.YY"
"DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY
q Q YYYY
ww WK YYYY

Sets the date format for the field
(applies only to fields with DATE or
TIMESTAMP storage).

Chapter 16. Output node properties 387

Table 241. tablenode properties (continued)

tablenode properties Data type Property description

time_format "HHMMSS"

"HHMM"

"MMSS"

"HH:MM:SS"

"HH:MM"

"MM:SS"

"(H)H:(M)M:(S)S"

"(H)H:(M)M"

"(M)M:(S)S"

"HH.MM.SS"

"HH.MM"

"MM.SS"

"(H)H.(M)M.(S)S"

"(H)H.(M)M"

"(M)M.(S)S"

Sets the time format for the field
(applies only to fields with TIME or
TIMESTAMP storage).

column_width integer Sets the column width for the field. A
value of –1 will set column width to
Auto.

justify AUTO

CENTER

LEFT

RIGHT

Sets the column justification for the
field.

transformnode properties
The Transform node allows you to select and visually preview the results of
transformations before applying them to selected fields.

388 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Example

node = stream.create("transform", "My node")
node.setPropertyValue("fields", ["AGE", "INCOME"])
node.setPropertyValue("formula", "Select")
node.setPropertyValue("formula_log_n", True)
node.setPropertyValue("formula_log_n_offset", 1)

Table 242. transformnode properties

transformnode properties Data type Property description

fields [field1… fieldn] The fields to be used in the
transformation.

formula All

Select

Indicates whether all or
selected transformations
should be calculated.

formula_inverse flag Indicates if the inverse
transformation should be used.

formula_inverse_offset number Indicates a data offset to be
used for the formula. Set as 0
by default, unless specified by
user.

formula_log_n flag Indicates if the logn
transformation should be used.

formula_log_n_offset number

formula_log_10 flag Indicates if the log10
transformation should be used.

formula_log_10_offset number

formula_exponential flag Indicates if the exponential
transformation (ex) should be
used.

formula_square_root flag Indicates if the square root
transformation should be used.

use_output_name flag Specifies whether a custom
output name is used.

output_name string If use_output_name is true,
specifies the name to use.

output_mode Screen

File

Used to specify target location
for output generated from the
output node.

output_format HTML (.html)

Output (.cou)

Used to specify the type of
output.

paginate_output flag When the output_format is
HTML, causes the output to be
separated into pages.

Chapter 16. Output node properties 389

Table 242. transformnode properties (continued)

transformnode properties Data type Property description

lines_per_page number When used with
paginate_output, specifies
the lines per page of output.

full_filename string Indicates the file name to be
used for the file output.

390 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 17. Export Node Properties

Common Export Node Properties
The following properties are common to all export nodes.

Table 243. Common export node properties

Property Values Property description

publish_path string Enter the rootname name to be used
for the published image and parameter
files.

publish_metadata flag Specifies if a metadata file is produced
that describes the inputs and outputs
of the image and their data models.

publish_use_parameters flag Specifies if stream parameters are
included in the *.par file.

publish_parameters string list Specify the parameters to be included.

execute_mode export_data

publish

Specifies whether the node executes
without publishing the stream, or if
the stream is automatically published
when the node is executed.

asexport Properties
The Analytic Server export enables you to run a stream on Hadoop Distributed File System (HDFS).

Example

node.setPropertyValue("use_default_as", False)
node.setPropertyValue("connection",
["false","9.119.141.141","9080","analyticserver","ibm","admin","admin","false
","","","",""])

Table 244. asexport properties

asexport properties Data type Property description

data_source string The name of the data source.

export_mode string Specifies whether to append
exported data to the existing data
source, or to overwrite the
existing data source.

use_default_as boolean If set to True, uses the default
Analytic Server connection
configured in the server
options.cfg file. If set to
False, uses the connection of
this node.

Table 244. asexport properties (continued)

asexport properties Data type Property description

connection ["string","string","strin
g",
"string","string","string
","string",
"string" ,"string","strin
g", "string" ,"string"]

A list property containing
the Analytic Server connection
details. The format
is: ["is_secure_connect",
"server_url",
"server_port",
"context_root",
"consumer", "user_name",
"password", "use-
kerberos-auth",
"kerberos-krb5-config-
file-path", "kerberos-
jaas-config-file-path",
"kerberos-krb5-service-
principal-name", "enable-
kerberos-debug"] Where:
is_secure_connect:
indicates whether secure
connection is used, and is
either true or false. use-
kerberos-auth: indicates
whether kerberos authentication
is used, and is either true
or false. enable-kerberos-
debug: indicates whether
the debug mode of kerberos
authentication is used, and
is either true or false.

cognosexportnode Properties
The IBM Cognos Export node exports data in a format that can be read by Cognos
databases.

For this node, you must define a Cognos connection and an ODBC connection.

Cognos connection
The properties for the Cognos connection are as follows.

392 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 245. cognosexportnode properties

cognosexportnode
properties

Data type Property description

cognos_connection ["string","flag","string","string","string"] A list property containing the
connection details for the
Cognos server. The format
is: ["Cognos_server_URL",
login_mode, "namespace",
"username", "password"]

where:

Cognos_server_URL is the URL of
the Cognos server containing the
source.

login_mode indicates whether
anonymous login is used, and is
either true or false; if set to true,
the following fields should be set to
"".

namespace specifies the security
authentication provider used to log
on to the server.

username and password are those
used to log on to the Cognos server.

Instead of login_mode, the
following modes are also available:

• anonymousMode. For example:
['Cognos_server_url',
'anonymousMode',
"namespace", "username",
"password"]

• credentialMode. For example:
['Cognos_server_url',
'credentialMode',
"namespace", "username",
"password"]

Chapter 17. Export Node Properties 393

Table 245. cognosexportnode properties (continued)

cognosexportnode
properties

Data type Property description

• storedCredentialMode.
For example:
['Cognos_server_url',
'storedCredentialMode',
"stored_credential_name"]

Where
stored_credential_name is the
name of a Cognos credential in the
repository.

cognos_package_nam
e

string The path and name of the Cognos
package to which you are exporting
data, for example:

/Public Folders/MyPackage

cognos_datasource string

cognos_export_mode Publish

ExportFile

cognos_filename string

ODBC connection
The properties for the ODBC connection are identical to those listed for databaseexportnode in the
next section, with the exception that the datasource property is not valid.

databaseexportnode properties
The Database export node writes data to an ODBC-compliant relational data source.
In order to write to an ODBC data source, the data source must exist and you must
have write permission for it.

Example

'''
Assumes a datasource named "MyDatasource" has been configured
'''
stream = modeler.script.stream()
db_exportnode = stream.createAt("databaseexport", "DB Export", 200, 200)
applynn = stream.findByType("applyneuralnetwork", None)
stream.link(applynn, db_exportnode)

Export tab
db_exportnode.setPropertyValue("username", "user")
db_exportnode.setPropertyValue("datasource", "MyDatasource")
db_exportnode.setPropertyValue("password", "password")
db_exportnode.setPropertyValue("table_name", "predictions")
db_exportnode.setPropertyValue("write_mode", "Create")
db_exportnode.setPropertyValue("generate_import", True)

394 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

db_exportnode.setPropertyValue("drop_existing_table", True)
db_exportnode.setPropertyValue("delete_existing_rows", True)
db_exportnode.setPropertyValue("default_string_size", 32)

Schema dialog
db_exportnode.setKeyedPropertyValue("type", "region", "VARCHAR(10)")
db_exportnode.setKeyedPropertyValue("export_db_primarykey", "id", True)
db_exportnode.setPropertyValue("use_custom_create_table_command", True)
db_exportnode.setPropertyValue("custom_create_table_command", "My SQL Code")

Indexes dialog
db_exportnode.setPropertyValue("use_custom_create_index_command", True)
db_exportnode.setPropertyValue("custom_create_index_command", "CREATE BITMAP
INDEX <index-name>
 ON <table-name> <(index-columns)>")
db_exportnode.setKeyedPropertyValue("indexes", "MYINDEX", ["fields", ["id",
"region"]])

Table 246. databaseexportnode properties

databaseexportnode
properties

Data type Property description

datasource string

username string

password string

epassword string This slot is read-only during
execution. To generate an
encoded password, use the
Password Tool available from
the Tools menu. See the
topic “Generating an encoded
password” on page 52 for more
information.

table_name string

write_mode Create

Append

Merge

map string Maps a stream field name to
a database column name (valid
only if write_mode is Merge).

For a merge, all fields must be
mapped in order to be exported.
Field names that do not exist in
the database are added as new
columns.

key_fields list Specifies the stream field that is
used for key; map property shows
what this corresponds to in the
database.

Chapter 17. Export Node Properties 395

Table 246. databaseexportnode properties (continued)

databaseexportnode
properties

Data type Property description

join Database

Add

drop_existing_table flag

delete_existing_rows flag

default_string_size integer

type Structured property used to set
the schema type.

generate_import flag

use_custom_create_table_c
ommand

flag Use the custom_create_table slot
to modify the standard CREATE
TABLE SQL command.

custom_create_table_comma
nd

string Specifies a string command to
use in place of the standard
CREATE TABLE SQL command.

use_batch flag The following properties are
advanced options for database
bulk-loading. A True value for
Use_batch turns off row-by-row
commits to the database.

batch_size number Specifies the number of records
to send to the database before
committing to memory.

bulk_loading Off

ODBC

External

Specifies the type of bulk-
loading. Additional options for
ODBC and External are listed
below.

not_logged flag

odbc_binding Row

Column

Specify row-wise or column-wise
binding for bulk-loading via
ODBC.

loader_delimit_mode Tab

Space

Other

For bulk-loading via an external
program, specify type of
delimiter. Select Other in
conjunction with the

loader_other_delimiter

property to specify delimiters,
such as the comma (,).

loader_other_delimiter string

396 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 246. databaseexportnode properties (continued)

databaseexportnode
properties

Data type Property description

specify_data_file flag A True flag activates the
data_file property below,
where you can specify the
filename and path to write
to when bulk-loading to the
database.

data_file string

specify_loader_program flag A True flag activates the
loader_program property
below, where you can specify the
name and location of an external
loader script or program.

loader_program string

gen_logfile flag A True flag activates the
logfile_name below, where
you can specify the name of a file
on the server to generate an error
log.

logfile_name string

check_table_size flag A True flag allows table checking
to ensure that the increase in
database table size corresponds
to the number of rows exported
from IBM SPSS Modeler.

loader_options string Specify additional arguments,
such as -comment and
-specialdir, to the loader
program.

export_db_primarykey flag Specifies whether a given field is
a primary key.

use_custom_create_index_c
ommand

flag If true, enables custom SQL for
all indexes.

custom_create_index_comma
nd

string Specifies the SQL command used
to create indexes when custom
SQL is enabled. (This value can
be overridden for specific indexes
as indicated below.)

indexes.INDEXNAME.fields Creates the specified index if
necessary and lists field names
to be included in that index.

INDEXNAME
"use_custom_create_
index_command"

flag Used to enable or disable custom
SQL for a specific index. See
examples after the following
table.

Chapter 17. Export Node Properties 397

Table 246. databaseexportnode properties (continued)

databaseexportnode
properties

Data type Property description

INDEXNAME
"custom_create_index_comm
and"

string Specifies the custom SQL used
for the specified index. See
examples after the following
table.

indexes.INDEXNAME.remove flag If True, removes the specified
index from the set of indexes.

table_space string Specifies the table space that will
be created.

use_partition flag Specifies that the distribute hash
field will be used.

partition_field string Specifies the contents of the
distribute hash field.

Note: For some databases, you can specify that database tables are created for export with compression
(for example, the equivalent of CREATE TABLE MYTABLE (...) COMPRESS YES; in SQL). The
properties use_compression and compression_mode are provided to support this feature, as follows.

Table 247. databaseexportnode properties using compression features

databaseexportnode
properties

Data type Property description

use_compression Boolean If set to True, creates tables for export
with compression.

compression_mode Row

Page

Sets the level of compression for SQL
Server databases.

Default

Direct_Load_Opera
tions

All_Operations

Basic

OLTP

Query_High

Query_Low

Archive_High

Archive_Low

Sets the level of compression for
Oracle databases. Note that the
values OLTP, Query_High, Query_Low,
Archive_High, and Archive_Low
require a minimum of Oracle 11gR2.

398 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Example showing how to change the CREATE INDEX command for a specific index:

db_exportnode.setKeyedPropertyValue("indexes", "MYINDEX",
["use_custom_create_index_command",
 True])db_exportnode.setKeyedPropertyValue("indexes", "MYINDEX",
["custom_create_index_command",
 "CREATE BITMAP INDEX <index-name> ON <table-name> <(index-columns)>"])

Alternatively, this can be done via a hash table:

db_exportnode.setKeyedPropertyValue("indexes", "MYINDEX", ["fields":["id",
"region"],
 "use_custom_create_index_command":True,
"custom_create_index_command":"CREATE INDEX <index-name> ON
 <table-name> <(index-columns)>"])

datacollectionexportnode Properties
The Data Collection export node outputs data in the format used by Data Collection
market research software. A Data Collection Data Library must be installed to use
this node.

Example

stream = modeler.script.stream()
datacollectionexportnode = stream.createAt("datacollectionexport", "Data
Collection", 200, 200)
datacollectionexportnode.setPropertyValue("metadata_file", "c:\\museums.mdd")
datacollectionexportnode.setPropertyValue("merge_metadata", "Overwrite")
datacollectionexportnode.setPropertyValue("casedata_file", "c:\
\museumdata.sav")
datacollectionexportnode.setPropertyValue("generate_import", True)
datacollectionexportnode.setPropertyValue("enable_system_variables", True)

Table 248. datacollectionexportnode properties

datacollectionexportnode properties Data type Property description

metadata_file string The name of the metadata file
to export.

merge_metadata Overwrite

MergeCurrent

enable_system_variables flag Specifies whether the
exported .mdd file should
include Data Collection system
variables.

casedata_file string The name of the .sav file to
which case data is exported.

generate_import flag

Chapter 17. Export Node Properties 399

excelexportnode Properties
The Excel export node outputs data in the Microsoft Excel .xlsx file format.
Optionally, you can choose to launch Excel automatically and open the exported
file when the node is executed.

Example

stream = modeler.script.stream()
excelexportnode = stream.createAt("excelexport", "Excel", 200, 200)
excelexportnode.setPropertyValue("full_filename", "C:/output/myexport.xlsx")
excelexportnode.setPropertyValue("excel_file_type", "Excel2007")
excelexportnode.setPropertyValue("inc_field_names", True)
excelexportnode.setPropertyValue("inc_labels_as_cell_notes", False)
excelexportnode.setPropertyValue("launch_application", True)
excelexportnode.setPropertyValue("generate_import", True)

Table 249. excelexportnode properties

excelexportnode properties Data type Property description

full_filename string

excel_file_type Excel2007

export_mode Create

Append

inc_field_names flag Specifies whether field names
should be included in the first
row of the worksheet.

start_cell string Specifies starting cell for
export.

worksheet_name string Name of the worksheet to be
written.

launch_application flag Specifies whether Excel should
be invoked on the resulting
file. Note that the path
for launching Excel must
be specified in the Helper
Applications dialog box (Tools
menu, Helper Applications).

generate_import flag Specifies whether an Excel
Import node should be
generated that will read the
exported data file.

extensionexportnode properties

With the Extension Export node, you can run R or
Python for Spark scripts to export data.

400 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Python for Spark example

script example for Python for Spark
import modeler.api
stream = modeler.script.stream()
node = stream.create("extension_export", "extension_export")
node.setPropertyValue("syntax_type", "Python")

python_script = """import spss.pyspark.runtime
from pyspark.sql import SQLContext
from pyspark.sql.types import *

cxt = spss.pyspark.runtime.getContext()
df = cxt.getSparkInputData()
print df.dtypes[:]
_newDF = df.select("Age","Drug")
print _newDF.dtypes[:]

df.select("Age", "Drug").write.save("c:/data/ageAndDrug.json", format="json")
"""

node.setPropertyValue("python_syntax", python_script)

R example

script example for R
node.setPropertyValue("syntax_type", "R")
node.setPropertyValue("r_syntax", """write.csv(modelerData, "C:/export.csv")""")

Table 250. extensionexportnode properties

extensionexportnode properties Data type Property description

syntax_type R

Python

Specify which script runs – R or
Python (R is the default).

r_syntax string The R scripting syntax to run.

python_syntax string The Python scripting syntax to
run.

convert_flags StringsAndDoubles
LogicalValues

Option to convert flag fields.

convert_missing flag Option to convert missing
values to the R NA value.

convert_datetime flag Option to convert variables
with date or datetime formats
to R date/time formats.

convert_datetime_class
POSIXct
POSIXlt

Options to specify to what
format variables with date
or datetime formats are
converted.

jsonexportnode Properties
The JSON export node outputs data in JSON format.

Chapter 17. Export Node Properties 401

Table 251. jsonexportnode properties

jsonexportnode properties Data type Property description

full_filename string The complete filename,
including path.

string_format records

values

Specify the format of the JSON
string. Default is records.

generate_import flag Specifies whether a JSON
Import node should be
generated that will read the
exported data file. Default is
False.

outputfilenode Properties
The Flat File export node outputs data to a delimited text file. It is useful for
exporting data that can be read by other analysis or spreadsheet software.

Example

stream = modeler.script.stream()
outputfile = stream.createAt("outputfile", "File Output", 200, 200)
outputfile.setPropertyValue("full_filename", "c:/output/flatfile_output.txt")
outputfile.setPropertyValue("write_mode", "Append")
outputfile.setPropertyValue("inc_field_names", False)
outputfile.setPropertyValue("use_newline_after_records", False)
outputfile.setPropertyValue("delimit_mode", "Tab")
outputfile.setPropertyValue("other_delimiter", ",")
outputfile.setPropertyValue("quote_mode", "Double")
outputfile.setPropertyValue("other_quote", "*")
outputfile.setPropertyValue("decimal_symbol", "Period")
outputfile.setPropertyValue("generate_import", True)

Table 252. outputfilenode properties

outputfilenode properties Data type Property description

full_filename string Name of output file.

write_mode Overwrite

Append

inc_field_names flag

use_newline_after_records flag

delimit_mode Comma

Tab

Space

Other

402 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 252. outputfilenode properties (continued)

outputfilenode properties Data type Property description

other_delimiter char

quote_mode None

Single

Double

Other

other_quote flag

generate_import flag

encoding StreamDefault

SystemDefault

"UTF-8"

sasexportnode Properties
The SAS export node outputs data in SAS format, to be read into SAS or a
SAS-compatible software package. Three SAS file formats are available: SAS for
Windows/OS2, SAS for UNIX, or SAS Version 7/8.

Example

stream = modeler.script.stream()
sasexportnode = stream.createAt("sasexport", "SAS Export", 200, 200)
sasexportnode.setPropertyValue("full_filename", "c:/output/
SAS_output.sas7bdat")
sasexportnode.setPropertyValue("format", "SAS8")
sasexportnode.setPropertyValue("export_names", "NamesAndLabels")
sasexportnode.setPropertyValue("generate_import", True)

Table 253. sasexportnode properties

sasexportnode properties Data type Property description

format Windows

UNIX

SAS7

SAS8

Variant property label fields.

full_filename string

export_names NamesAndLabels

NamesAsLabels

Used to map field names from
IBM SPSS Modeler upon export
to IBM SPSS Statistics or SAS
variable names.

Chapter 17. Export Node Properties 403

Table 253. sasexportnode properties (continued)

sasexportnode properties Data type Property description

generate_import flag

statisticsexportnode Properties
The Statistics Export node outputs data in IBM SPSS Statistics .sav or .zsav format.
The .sav or .zsav files can be read by IBM SPSS Statistics Base and other
products. This is also the format used for cache files in IBM SPSS Modeler.

The properties for this node are described under “statisticsexportnode Properties” on page 411.

tm1odataexport Node Properties
The IBM Cognos TM1 Export node exports data in a format that can be read by
Cognos TM1 databases.

Table 254. tm1odataexport node properties

tm1odataexport node
properties

Data type Property description

credential_type inputCredential or
storedCredential

Used to indicate the credential type.

input_credential list When the credential_type is
inputCredential; specify the domain, user
name and password.

stored_credential_name string When the credential_type is
storedCredential; specify the name of
credential on the C&DS server.

selected_cube field The name of the cube to which you are
exporting data. For example:
TM1_export.setPropertyValue("selec
ted_cube", "plan_BudgetPlan")

404 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 254. tm1odataexport node properties (continued)

tm1odataexport node
properties

Data type Property description

spss_field_to_tm1_element
_mapping

list The tm1 element to be mapped
to must be part of the column
dimension for selected cube view. The
format is: [[[Field_1, Dimension_1,
False], [Element_1, Dimension_2,
True], ...], [[Field_2,
ExistMeasureElement, False],
[Field_3, NewMeasureElement,
True], ...]]
There are 2 lists to describe the mapping
information. Mapping a leaf element to a
dimension corresponds to example 2 below:
Example 1: The first list: ([[Field_1,
Dimension_1, False], [Element_1,
Dimension_2, True], ...]) is used for
the TM1 Dimension map information.
Each 3 value list indicates dimension mapping
information. The third Boolean value is
used to indicate if it selects an element
of a dimension. For example: "[Field_1,
Dimension_1, False]" means that
Field_1 is mapped to Dimension_1;
"[Element_1, Dimension_2, True]"
means that Element_1 is selected for
Dimension_2.
Example 2: The second list: ([[Field_2,
ExistMeasureElement, False],
[Field_3, NewMeasureElement,
True], ...]) is used for the TM1 Measure
Dimension Element map information.
Each 3 value list indicates measure
element mapping information. The third
Boolean value is used to indicate
the need to create a new element.
"[Field_2, ExistMeasureElement,
False]" means that Field_2 is mapped
to the ExistMeasureElement; "[Field_3,
NewMeasureElement, True]" means
the NewMeasureElement needs to be
the measure dimension chosen in
selected_measure and that Field_3 is
mapped to it.

selected_measure string Specify the measure dimension.
Example:
setPropertyValue("selected_measure
", "Measures")

connection_type AdminServer
TM1Server

Indicates the connection type. Default is
AdminServer.

admin_host string The URL for the host name of the REST
API. Required if the connection_type is
AdminServer.

Chapter 17. Export Node Properties 405

Table 254. tm1odataexport node properties (continued)

tm1odataexport node
properties

Data type Property description

server_name string The name of the TM1 server selected
from the admin_host. Required if the
connection_type is AdminServer.

server_url string The URL for the TM1 Server REST API.
Required if the connection_type is
TM1Server.

tm1export Node Properties (deprecated)
The IBM Cognos TM1 Export node exports data in a format that can be read by
Cognos TM1 databases.

Note: This node was deprecated in Modeler 18.0. The replacement node script name is tm1odataexport.

Table 255. tm1export node properties

tm1export node properties Data type Property description

pm_host string Note: Only for version 16.0 and 17.0

The host name. For example:
TM1_export.setPropertyValue("pm_ho
st", 'http://9.191.86.82:9510/
pmhub/pm')

tm1_connection ["field","field", ... ,"fi
eld"]

Note: Only for version 16.0 and 17.0

A list property containing the connection
details for the TM1 server. The
format is: ["TM1_Server_Name", "tm1_
username", "tm1_password"]

For example:
TM1_export.setPropertyValue("tm1_c
onnection", ['Planning Sample',
"admin" "apple"])

selected_cube field The name of the cube to which you are
exporting data. For example:
TM1_export.setPropertyValue("selec
ted_cube", "plan_BudgetPlan")

406 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 255. tm1export node properties (continued)

tm1export node properties Data type Property description

spssfield_tm1element_mapp
ing

list The tm1 element to be mapped
to must be part of the column
dimension for selected cube view. The
format is: [[[Field_1, Dimension_1,
False], [Element_1, Dimension_2,
True], ...], [[Field_2,
ExistMeasureElement, False],
[Field_3, NewMeasureElement,
True], ...]]

There are 2 lists to describe the mapping
information. Mapping a leaf element to a
dimension corresponds to example 2 below:

Example 1: The first list: ([[Field_1,
Dimension_1, False], [Element_1,
Dimension_2, True], ...]) is used for
the TM1 Dimension map information.

Each 3 value list indicates dimension mapping
information. The third Boolean value is
used to indicate if it selects an element
of a dimension. For example: "[Field_1,
Dimension_1, False]" means that
Field_1 is mapped to Dimension_1;
"[Element_1, Dimension_2, True]"
means that Element_1 is selected for
Dimension_2.

Example 2: The second list: ([[Field_2,
ExistMeasureElement, False],
[Field_3, NewMeasureElement,
True], ...]) is used for the TM1 Measure
Dimension Element map information.

Each 3 value list indicates measure
element mapping information. The third
Boolean value is used to indicate
the need to create a new element.
"[Field_2, ExistMeasureElement,
False]" means that Field_2 is mapped
to the ExistMeasureElement; "[Field_3,
NewMeasureElement, True]" means
the NewMeasureElement needs to be
the measure dimension chosen in
selected_measure and that Field_3 is
mapped to it.

Chapter 17. Export Node Properties 407

Table 255. tm1export node properties (continued)

tm1export node properties Data type Property description

selected_measure string Specify the measure dimension.

Example:
setPropertyValue("selected_measure
", "Measures")

xmlexportnode Properties
The XML export node outputs data to a file in XML format. You can optionally create
an XML source node to read the exported data back into the stream.

Example

stream = modeler.script.stream()
xmlexportnode = stream.createAt("xmlexport", "XML Export", 200, 200)
xmlexportnode.setPropertyValue("full_filename", "c:/export/data.xml")
xmlexportnode.setPropertyValue("map", [["/catalog/book/genre", "genre"], ["/
catalog/book/title", "title"]])

Table 256. xmlexportnode properties

xmlexportnode properties Data type Property description

full_filename string (required) Full path and file name of XML
export file.

use_xml_schema flag Specifies whether to use an XML schema
(XSD or DTD file) to control the structure
of the exported data.

full_schema_filename string Full path and file name of XSD or DTD file
to use. Required if use_xml_schema is
set to true.

generate_import flag Generates an XML source node that will
read the exported data file back into the
stream.

records string XPath expression denoting the record
boundary.

map string Maps field name to XML structure.

408 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 18. IBM SPSS Statistics Node Properties

statisticsimportnode Properties
The Statistics File node reads data from the .sav or .zsav file format used by IBM SPSS
Statistics, as well as cache files saved in IBM SPSS Modeler, which also use the same
format.

Example

stream = modeler.script.stream()
statisticsimportnode = stream.createAt("statisticsimport", "SAV Import",
200, 200)
statisticsimportnode.setPropertyValue("full_filename", "C:/data/drug1n.sav")
statisticsimportnode.setPropertyValue("import_names", True)
statisticsimportnode.setPropertyValue("import_data", True)

Table 257. statisticsimportnode properties

statisticsimportnode
properties

Data type Property description

full_filename string The complete filename, including path.

password string The password. The password parameter
must be set before the file_encrypted
parameter.

file_encrypted flag Whether or not the file is password
protected.

import_names NamesAndLabels

LabelsAsNames

Method for handling variable names and
labels.

import_data DataAndLabels

LabelsAsData

Method for handling values and labels.

use_field_format_for_stor
age

Boolean Specifies whether to use IBM SPSS
Statistics field format information when
importing.

statisticstransformnode properties
The Statistics Transform node runs a selection of IBM SPSS Statistics syntax
commands against data sources in IBM SPSS Modeler. This node requires a licensed
copy of IBM SPSS Statistics.

Example

stream = modeler.script.stream()
statisticstransformnode = stream.createAt("statisticstransform",
"Transform", 200, 200)
statisticstransformnode.setPropertyValue("syntax", "COMPUTE NewVar = Na +

K.")
statisticstransformnode.setKeyedPropertyValue("new_name", "NewVar", "Mixed
Drugs")
statisticstransformnode.setPropertyValue("check_before_saving", True)

Table 258. statisticstransformnode properties

statisticstransformnode properties Data type Property description

syntax string

check_before_saving flag Validates the entered syntax
before saving the entries.
Displays an error message if
the syntax is invalid.

default_include flag See the topic “filternode
properties” on page 161 for
more information.

include flag See the topic “filternode
properties” on page 161 for
more information.

new_name string See the topic “filternode
properties” on page 161 for
more information.

statisticsmodelnode properties
The Statistics Model node enables you to analyze and work with your data by
running IBM SPSS Statistics procedures that produce PMML. This node requires
a licensed copy of IBM SPSS Statistics.

Example

stream = modeler.script.stream()
statisticsmodelnode = stream.createAt("statisticsmodel", "Model", 200, 200)
statisticsmodelnode.setPropertyValue("syntax", "COMPUTE NewVar = Na + K.")
statisticsmodelnode.setKeyedPropertyValue("new_name", "NewVar", "Mixed
Drugs")

statisticsmodelnode properties Data type Property description

syntax string

default_include flag See the topic “filternode
properties” on page 161 for
more information.

include flag See the topic “filternode
properties” on page 161 for
more information.

new_name string See the topic “filternode
properties” on page 161 for
more information.

410 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

statisticsoutputnode Properties
The Statistics Output node allows you to call an IBM SPSS Statistics procedure
to analyze your IBM SPSS Modeler data. A wide variety of IBM SPSS Statistics
analytical procedures is available. This node requires a licensed copy of IBM SPSS
Statistics.

Example

stream = modeler.script.stream()
statisticsoutputnode = stream.createAt("statisticsoutput", "Output", 200,
200)
statisticsoutputnode.setPropertyValue("syntax", "SORT CASES BY Age(A) Sex(A)
BP(A) Cholesterol(A)")
statisticsoutputnode.setPropertyValue("use_output_name", False)
statisticsoutputnode.setPropertyValue("output_mode", "File")
statisticsoutputnode.setPropertyValue("full_filename", "Cases by Age, Sex
and Medical History")
statisticsoutputnode.setPropertyValue("file_type", "HTML")

Table 259. statisticsoutputnode properties

statisticsoutputnode properties Data type Property description

mode Dialog

Syntax

Selects "IBM SPSS Statistics
dialog" option or Syntax Editor

syntax string

use_output_name flag

output_name string

output_mode Screen

File

full_filename string

file_type HTML

SPV

SPW

statisticsexportnode Properties
The Statistics Export node outputs data in IBM SPSS Statistics .sav or .zsav format.
The .sav or .zsav files can be read by IBM SPSS Statistics Base and other
products. This is also the format used for cache files in IBM SPSS Modeler.

Example

stream = modeler.script.stream()
statisticsexportnode = stream.createAt("statisticsexport", "Export", 200,
200)
statisticsexportnode.setPropertyValue("full_filename", "c:/output/

Chapter 18. IBM SPSS Statistics Node Properties 411

SPSS_Statistics_out.sav")
statisticsexportnode.setPropertyValue("field_names", "Names")
statisticsexportnode.setPropertyValue("launch_application", True)
statisticsexportnode.setPropertyValue("generate_import", True)

Table 260. statisticsexportnode properties

statisticsexportn
ode properties

Data type Property description

full_filename string

file_type sav

zsav

Save file in sav or zsav format. For example:

statisticsexportnode.setPropertyValue("file_
type","sav")

encrypt_file flag Whether or not the file is password protected.

password string The password.

launch_applicatio
n

flag

export_names NamesAndLabels

NamesAsLabels

Used to map field names from IBM SPSS Modeler upon
export to IBM SPSS Statistics or SAS variable names.

generate_import flag

412 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 19. Python Node Properties

gmm properties
A Gaussian Mixture© model is a probabilistic model that assumes all the data points
are generated from a mixture of a finite number of Gaussian distributions with
unknown parameters. One can think of mixture models as generalizing k-means
clustering to incorporate information about the covariance structure of the data as
well as the centers of the latent Gaussians. The Gaussian Mixture node in SPSS
Modeler exposes the core features and commonly used parameters of the Gaussian
Mixture library. The node is implemented in Python.

Table 261. gmm properties

gmm properties Data type Property description

use_partition boolean Set to True or False to specify whether
to use partitioned data. Default is False.

covariance_type string Specify Full, Tied, Diag, or Spherical
to set the covariance type.

number_component integer Specify an integer for the number of
mixture components. Minimum value is 1.
Default value is 2.

component_lable boolean Specify True to set the cluster label to a
string or False to set the cluster label to
a number. Default is False.

label_prefix string If using a string cluster label, you can
specify a prefix.

enable_random_seed boolean Specify True if you want to use a random
seed. Default is False.

random_seed integer If using a random seed, specify an
integer to be used for generating random
samples.

tol Double Specify the convergence threshold.
Default is 0.000.1.

max_iter integer Specify the maximum number of iterations
to perform. Default is 100.

init_params string Set the initialization parameter to use.
Options are Kmeans or Random.

warm_start boolean Specify True to use the solution of the
last fitting as the initialization for the next
call of fit. Default is False.

hdbscannode properties
Hierarchical Density-Based Spatial Clustering (HDBSCAN)© uses unsupervised
learning to find clusters, or dense regions, of a data set. The HDBSCAN node in
SPSS Modeler exposes the core features and commonly used parameters of the
HDBSCAN library. The node is implemented in Python, and you can use it to cluster
your dataset into distinct groups when you don't know what those groups are at first.

Table 262. hdbscannode properties

hdbscannode properties Data type Property description

inputs field Input fields for clustering.

useHPO boolean Specify true or false to enable or
disable Hyper-Parameter Optimization
(HPO) based on Rbfopt, which
automatically discovers the optimal
combination of parameters so that the
model will achieve the expected or lower
error rate on the samples. Default is
false.

min_cluster_size integer The minimum size of clusters. Specify an
integer. Default is 5.

min_samples integer The number of samples in a neighborhood
for a point to be considered a core
point. Specify an integer. If set to 0, the
min_cluster_size is used. Default is 0.

algorithm string Specify which algorithm to use:
best, generic, prims_kdtree,
prims_balltree, boruvka_kdtree, or
boruvka_balltree. Default is best.

metric string Specify which metric to use when
calculating distance between instances in
a feature array: euclidean, cityblock,
L1, L2, manhattan, braycurtis,
canberra, chebyshev, correlation,
minkowski, or sqeuclidean. Default is
euclidean.

useStringLabel boolean Specify true to use a string cluster label,
or false to use a number cluster label.
Default is false.

stringLabelPrefix string If the useStringLabel parameter is set
to true, specify a value for the string
label prefix. Default prefix is cluster.

approx_min_span_tree boolean Specify true to accept an approximate
minimum spanning tree, or false if
you are willing to sacrifice speed for
correctness. Default is true.

cluster_selection_method string Specify the method to use for selecting
clusters from the condensed tree: eom
or leaf. Default is eom (Excess of Mass
algorithm).

414 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 262. hdbscannode properties (continued)

hdbscannode properties Data type Property description

allow_single_cluster boolean Specify true if you want to allow single
cluster results. Default is false.

p_value double Specify the p value to use if you're using
minkowski for the metric. Default is 1.5.

leaf_size integer If using a space tree
algorithm (boruvka_kdtree, or
boruvka_balltree), specify the
number of points in a leaf node of the tree.
Default is 40.

outputValidity boolean Specify true or false to control whether
the Validity Index chart is included in the
model output.

outputCondensed boolean Specify true or false to control whether
the Condensed Tree chart is included in
the model output.

outputSingleLinkage boolean Specify true or false to control whether
the Single Linkage Tree chart is included in
the model output.

outputMinSpan boolean Specify true or false to control whether
the Min Span Tree chart is included in the
model output.

is_split Added in version 18.2.1.1.

kdemodel properties
Kernel Density Estimation (KDE)© uses the Ball Tree or KD Tree algorithms for
efficient queries, and combines concepts from unsupervised learning, feature
engineering, and data modeling. Neighbor-based approaches such as KDE are some
of the most popular and useful density estimation techniques. The KDE Modeling
and KDE Simulation nodes in SPSS Modeler expose the core features and commonly
used parameters of the KDE library. The nodes are implemented in Python.

Table 263. kdemodel properties

kdemodel properties Data type Property description

bandwidth double Default is 1.

kernel string The kernel to use: gaussian, tophat,
epanechnikov, exponential, linear,
or cosine. Default is gaussian.

algorithm string The tree algorithm to use: kd_tree,
ball_tree, or auto. Default is auto.

Chapter 19. Python Node Properties 415

Table 263. kdemodel properties (continued)

kdemodel properties Data type Property description

metric string The metric to use when calculating
distance. For the kd_tree algorithm,
choose from: Euclidean, Chebyshev,
Cityblock, Minkowski, Manhattan,
Infinity, P, L2, or L1. For the
ball_tree algorithm, choose from:
Euclidian, Braycurtis, Chebyshev,
Canberra, Cityblock, Dice, Hamming,
Infinity, Jaccard, L1, L2,
Minkowski, Matching, Manhattan,
P, Rogersanimoto, Russellrao,
Sokalmichener, Sokalsneath, or
Kulsinski. Default is Euclidean.

atol float The desired absolute tolerance of the
result. A larger tolerance will generally
lead to faster execution. Default is 0.0.

rtol float The desired relative tolerance of the
result. A larger tolerance will generally
lead to faster execution. Default is 1E-8.

breadthFirst

renamed to breadth_first
starting with version 18.2.1.1

boolean Set to True to use a breadth-first
approach. Set to False to use a depth-
first approach. Default is True.

LeafSize

renamed to leaf_size starting
with version 18.2.1.1

integer The leaf size of the underlying tree.
Default is 40. Changing this value may
significantly impact the performance.

pValue double Specify the P Value to use if you're using
Minkowski for the metric. Default is 1.5.

custom_name

default_node_name

use_HPO

kdeexport properties
Kernel Density Estimation (KDE)© uses the Ball Tree or KD Tree algorithms for
efficient queries, and combines concepts from unsupervised learning, feature
engineering, and data modeling. Neighbor-based approaches such as KDE are some
of the most popular and useful density estimation techniques. The KDE Modeling
and KDE Simulation nodes in SPSS Modeler expose the core features and commonly
used parameters of the KDE library. The nodes are implemented in Python.

Table 264. kdeexport properties

kdeexport properties Data type Property description

bandwidth double Default is 1.

416 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 264. kdeexport properties (continued)

kdeexport properties Data type Property description

kernel string The kernel to use: gaussian or tophat.
Default is gaussian.

algorithm string The tree algorithm to use: kd_tree,
ball_tree, or auto. Default is auto.

metric string The metric to use when calculating
distance. For the kd_tree algorithm,
choose from: Euclidean, Chebyshev,
Cityblock, Minkowski, Manhattan,
Infinity, P, L2, or L1. For the
ball_tree algorithm, choose from:
Euclidian, Braycurtis, Chebyshev,
Canberra, Cityblock, Dice, Hamming,
Infinity, Jaccard, L1, L2,
Minkowski, Matching, Manhattan,
P, Rogersanimoto, Russellrao,
Sokalmichener, Sokalsneath, or
Kulsinski. Default is Euclidean.

atol float The desired absolute tolerance of the
result. A larger tolerance will generally
lead to faster execution. Default is 0.0.

rtol float The desired relative tolerance of the
result. A larger tolerance will generally
lead to faster execution. Default is 1E-8.

breadthFirst boolean Set to True to use a breadth-first
approach. Set to False to use a depth-
first approach. Default is True.

LeafSize integer The leaf size of the underlying tree.
Default is 40. Changing this value may
significantly impact the performance.

pValue double Specify the P Value to use if you're using
Minkowski for the metric. Default is 1.5.

gmm properties
A Gaussian Mixture© model is a probabilistic model that assumes all the data points
are generated from a mixture of a finite number of Gaussian distributions with
unknown parameters. One can think of mixture models as generalizing k-means
clustering to incorporate information about the covariance structure of the data as
well as the centers of the latent Gaussians. The Gaussian Mixture node in SPSS
Modeler exposes the core features and commonly used parameters of the Gaussian
Mixture library. The node is implemented in Python.

Table 265. gmm properties

gmm properties Data type Property description

use_partition boolean Set to True or False to specify whether
to use partitioned data. Default is False.

Chapter 19. Python Node Properties 417

Table 265. gmm properties (continued)

gmm properties Data type Property description

covariance_type string Specify Full, Tied, Diag, or Spherical
to set the covariance type.

number_component integer Specify an integer for the number of
mixture components. Minimum value is 1.
Default value is 2.

component_lable boolean Specify True to set the cluster label to a
string or False to set the cluster label to
a number. Default is False.

label_prefix string If using a string cluster label, you can
specify a prefix.

enable_random_seed boolean Specify True if you want to use a random
seed. Default is False.

random_seed integer If using a random seed, specify an
integer to be used for generating random
samples.

tol Double Specify the convergence threshold.
Default is 0.000.1.

max_iter integer Specify the maximum number of iterations
to perform. Default is 100.

init_params string Set the initialization parameter to use.
Options are Kmeans or Random.

warm_start boolean Specify True to use the solution of the
last fitting as the initialization for the next
call of fit. Default is False.

ocsvmnode properties
The One-Class SVM node uses an unsupervised learning algorithm. The node can
be used for novelty detection. It will detect the soft boundary of a given set of
samples, to then classify new points as belonging to that set or not. This One-Class
SVM modeling node in SPSS Modeler is implemented in Python and requires the
scikit-learn© Python library.

Table 266. ocsvmnode properties

ocsvmnode properties Data type Property description

role_use

Renamed to custom_fields
starting with version 18.2.1.1

string Specify predefined to use predefined
roles or custom to use custom field
assignments. Default is predefined.

splits field List of the field names for split.

use_partition Boolean Specify true or false. Default is true. If
set to true, only training data will be used
when building the model.

418 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 266. ocsvmnode properties (continued)

ocsvmnode properties Data type Property description

mode_type string The mode. Possible values are simple or
expert. All parameters on the Expert tab
will be disabled if simple is specified.

stopping_criteria string A string of scientific notation. Possible
values are 1.0E-1, 1.0E-2, 1.0E-3,
1.0E-4, 1.0E-5, or 1.0E-6. Default is
1.0E-3.

precision float The regression precision (nu). Bound on
the fraction of training errors and support
vectors. Specify a number greater than 0
and less than or equal to 1.0. Default is
0.1.

kernel string The kernel type to use in the algorithm.
Possible values are linear, poly, rbf,
sigmoid, or precomputed. Default is
rbf.

enable_gamma Boolean Enables the gamma parameter. Specify
true or false. Default is true.

gamma float This parameter is only enabled for the
kernels rbf, poly, and sigmoid. If
the enable_gamma parameter is set to
false, this parameter will be set to auto.
If set to true, the default is 0.1.

coef0 float Independent term in the kernel function.
This parameter is only enabled for the
poly kernel and the sigmoid kernel.
Default value is 0.0.

degree integer Degree of the polynomial kernel function.
This parameter is only enabled for the
poly kernel. Specify any integer. Default
is 3.

shrinking Boolean Specifies whether to use the shrinking
heuristic option. Specify true or false.
Default is false.

enable_cache_size Boolean Enables the cache_size parameter.
Specify true or false. Default is false.

cache_size float The size of the kernel cache in MB. Default
is 200.

pc_type string The type of the parallel coordinates
graphic. Possible options are
independent or general.

lines_amount integer Maximum number of lines to include on
the graphic. Specify an integer between 1
and 1000.

Chapter 19. Python Node Properties 419

Table 266. ocsvmnode properties (continued)

ocsvmnode properties Data type Property description

lines_fields_custom Boolean Enables the lines_fields parameter,
which allows you to specify custom fields
to show in the graph output. If set to
false, all fields will be shown. If set to
true, only the fields specified with the
lines_fields parameter will be shown. For
performance reasons, a maximum of 20
fields will be displayed.

lines_fields field List of the field names to include on the
graphic as vertical axes.

enable_graphic Boolean Specify true or false. Enables graphic
output (disable this option if you want to
save time and reduce stream file size).

enable_hpo Boolean Specify true or false to enable or
disable the HPO options. If set to
true, Rbfopt will be applied to find
out the "best" One-Class SVM model
automatically, which reaches the target
objective value defined by the user with
the following target_objval parameter.

target_objval float The objective function value (error rate
of the model on the samples) we want
to reach (for example, the value of the
unknown optimum). Set this parameter to
the appropriate value if the optimum is
unknown (for example, 0.01).

max_iterations integer Maximum number of iterations for trying
the model. Default is 1000.

max_evaluations integer Maximum number of function evaluations
for trying the model, where the focus is
accuracy over speed. Default is 300.

rfnode properties

The Random Forest node uses an advanced implementation of a bagging algorithm
with a tree model as the base model. This Random Forest modeling node in SPSS
Modeler is implemented in Python and requires the scikit-learn© Python library.

Table 267. rfnode properties

rfnode properties Data type Property description

role_use string Specify predefined to use predefined
roles or custom to use custom field
assignments. Default is predefined.

inputs field List of the field names for input.

splits field List of the field names for split.

420 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 267. rfnode properties (continued)

rfnode properties Data type Property description

n_estimators integer Number of trees to build. Default is 10.

specify_max_depth Boolean Specify custom max depth. If false,
nodes are expanded until all leaves are
pure or until all leaves contain less than
min_samples_split samples. Default is
false.

max_depth integer The maximum depth of the tree. Default is
10.

min_samples_leaf integer Minimum leaf node size. Default is 1.

max_features string The number of features to consider when
looking for the best split:

• If auto, then
max_features=sqrt(n_features)
for classifier and
max_features=sqrt(n_features) for
regression.

• If sqrt, then
max_features=sqrt(n_features).

• If log2, then max_features=log2
(n_features).

Default is auto.

bootstrap Boolean Use bootstrap samples when building
trees. Default is true.

oob_score Boolean Use out-of-bag samples to estimate the
generalization accuracy. Default value is
false.

extreme Boolean Use extremely randomized trees. Default
is false.

use_random_seed Boolean Specify this to get replicated results.
Default is false.

random_seed integer The random number seed to use when
build trees. Specify any integer.

cache_size float The size of the kernel cache in MB. Default
is 200.

enable_random_seed Boolean Enables the random_seed parameter.
Specify true or false. Default is false.

enable_hpo Boolean Specify true or false to enable
or disable the HPO options. If set
to true, Rbfopt will be applied to
determine the "best" Random Forest
model automatically, which reaches the
target objective value defined by the
user with the following target_objval
parameter.

Chapter 19. Python Node Properties 421

Table 267. rfnode properties (continued)

rfnode properties Data type Property description

target_objval float The objective function value (error rate
of the model on the samples) you want
to reach (for example, the value of the
unknown optimum). Set this parameter to
the appropriate value if the optimum is
unknown (for example, 0.01).

max_iterations integer Maximum number of iterations for trying
the model. Default is 1000.

max_evaluations integer Maximum number of function evaluations
for trying the model, where the focus is
accuracy over speed. Default is 300.

smotenode Properties
The Synthetic Minority Over-sampling Technique (SMOTE) node provides an over-
sampling algorithm to deal with imbalanced data sets. It provides an advanced
method for balancing data. The SMOTE process node in SPSS Modeler is
implemented in Python and requires the imbalanced-learn© Python library.

Table 268. smotenode properties

smotenode properties Data type Property description

target_field

Renamed to target starting with
version 18.2.1.1

field The target field.

sample_ratio string Enables a custom ratio value. The two
options are Auto (sample_ratio_auto)
or Set ratio (sample_ratio_manual).

sample_ratio_value float The ratio is the number of samples in the
minority class over the number of samples
in the majority class. It must be larger
than 0 and less than or equal to 1. Default
is auto.

enable_random_seed Boolean If set to true, the random_seed property
will be enabled.

random_seed integer The seed used by the random number
generator.

k_neighbours integer The number of nearest neighbours to be
used for constructing synthetic samples.
Default is 5.

m_neighbours integer The number of nearest neighbours to
be used for determining if a minority
sample is in danger. This option is
only enabled with the SMOTE algorithm
types borderline1 and borderline2.
Default is 10.

422 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 268. smotenode properties (continued)

smotenode properties Data type Property description

algorithm_kind

Renamed to algorithm starting
with version 18.2.1.1

string The type of SMOTE algorithm: regular,
borderline1, or borderline2.

usepartition

Renamed to use_partition
starting with version 18.2.1.1

Boolean If set to true, only training data will be
used for model building. Default is true.

tsnenode Properties

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a tool for visualizing high-
dimensional data. It converts affinities of data points to probabilities. This t-SNE
node in SPSS Modeler is implemented in Python and requires the scikit-learn©

Python library.

Table 269. tsnenode properties

tsnenode properties Data type Property description

mode_type string Specify simple or expert mode.

n_components string Dimension of the embedded space (2D or
3D). Specify 2 or 3. Default is 2.

method string Specify barnes_hut or exact. Default is
barnes_hut.

init string Initialization of embedding. Specify
random or pca. Default is random.

target_field

Renamed to target starting with
version 18.2.1.1

string Target field name. It will be a colormap on
the output graph. The graph will use one
color if no target field is specified.

perplexity float The perplexity is related to the number of
nearest neighbors used in other manifold
learning algorithms. Larger datasets
usually require a larger perplexity.
Consider selecting a value between 5 and
50. Default is 30.

early_exaggeration float Controls how tight the natural clusters in
the original space are in the embedded
space, and how much space will be
between them. Default is 12.0.

learning_rate float Default is 200.

n_iter integer Maximum number of iterations for the
optimization. Set to at least 250. Default
is 1000.

Chapter 19. Python Node Properties 423

Table 269. tsnenode properties (continued)

tsnenode properties Data type Property description

angle float The angular size of the distant node as
measured from a point. Specify a value in
the range of 0-1. Default is 0.5.

enable_random_seed Boolean Set to true to enable the random_seed
parameter. Default is false.

random_seed integer The random number seed to use. Default
is None.

n_iter_without_progress integer Maximum iterations without progress.
Default is 300.

min_grad_norm string If the gradient norm is below this
threshold, the optimization will be
stopped. Default is 1.0E-7. Possible
values are:

• 1.0E-1
• 1.0E-2
• 1.0E-3
• 1.0E-4
• 1.0E-5
• 1.0E-6
• 1.0E-7
• 1.0E-8

isGridSearch Boolean Set to true to perform t-SNE with several
different perplexities. Default is false.

output_Rename Boolean Specify true if you want to provide a
custom name, or false to name the
output automatically. Default is false.

output_to string Specify Screen or Output. Default is
Screen.

full_filename string Specify the output file name.

output_file_type string Output file format. Specify HTML or
Output object. Default is HTML.

xgboostlinearnode Properties
XGBoost Linear© is an advanced implementation of a gradient boosting algorithm
with a linear model as the base model. Boosting algorithms iteratively learn weak
classifiers and then add them to a final strong classifier. The XGBoost Linear node in
SPSS Modeler is implemented in Python.

424 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 270. xgboostlinearnode properties

xgboostlinearnode properties Data type Property description

TargetField

Renamed to target starting with
version 18.2.1.1

field

InputFields

Renamed to inputs starting with
version 18.2.1.1

field

alpha Double The alpha linear booster parameter.
Specify any number 0 or greater. Default
is 0.

lambda Double The lambda linear booster parameter.
Specify any number 0 or greater. Default
is 1.

lambdaBias Double The lambda bias linear booster parameter.
Specify any number. Default is 0.

numBoostRound

Renamed to num_boost_round
starting with version 18.2.1.1

integer The num boost round value for model
building. Specify a value between 1 and
1000. Default is 10.

objectiveType string The objective type for the learning task.
Possible values are reg:linear,
reg:logistic, reg:gamma,
reg:tweedie, count:poisson, rank:p
airwise, binary:logistic, or multi.
Note that for flag targets, only
binary:logistic or multi can be
used. If multi is used, the score result
will show the multi:softmax and
multi:softprob XGBoost objective
types.

random_seed integer The random number seed. Any number
between 0 and 9999999. Default is 0.

useHPO Boolean Specify true or false to enable or
disable the HPO options. If set to
true, Rbfopt will be applied to find
out the "best" One-Class SVM model
automatically, which reaches the target
objective value defined by the user with
the target_objval parameter.

Chapter 19. Python Node Properties 425

xgboosttreenode Properties
XGBoost Tree© is an advanced implementation of a gradient boosting algorithm
with a tree model as the base model. Boosting algorithms iteratively learn weak
classifiers and then add them to a final strong classifier. XGBoost Tree is very
flexible and provides many parameters that can be overwhelming to most users, so
the XGBoost Tree node in SPSS Modeler exposes the core features and commonly
used parameters. The node is implemented in Python.

Table 271. xgboosttreenode properties

xgboosttreenode properties Data type Property description

TargetField

Renamed to target starting with
version 18.2.1.1

field The target fields.

InputFields

Renamed to inputs starting with
version 18.2.1.1

field The input fields.

treeMethod

Renamed to tree_method
starting with version 18.2.1.1

string The tree method for model building.
Possible values are auto, exact, or
approx. Default is auto.

numBoostRound

Renamed to num_boost_round
starting with version 18.2.1.1

integer The num boost round value for model
building. Specify a value between 1 and
1000. Default is 10.

maxDepth

Renamed to max_depth starting
with version 18.2.1.1

integer The max depth for tree growth. Specify a
value of 1 or higher. Default is 6.

minChildWeight

Renamed to min_child_weight
starting with version 18.2.1.1

Double The min child weight for tree growth.
Specify a value of 0 or higher. Default is
1.

maxDeltaStep

Renamed to max_delta_step
starting with version 18.2.1.1

Double The max delta step for tree growth.
Specify a value of 0 or higher. Default is
0.

426 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 271. xgboosttreenode properties (continued)

xgboosttreenode properties Data type Property description

objectiveType

Renamed to objective_type
starting with version 18.2.1.1

string The objective type for the learning task.
Possible values are reg:linear,
reg:logistic, reg:gamma,
reg:tweedie, count:poisson, rank:p
airwise, binary:logistic, or multi.
Note that for flag targets, only
binary:logistic or multi can be
used. If multi is used, the score result
will show the multi:softmax and
multi:softprob XGBoost objective
types.

earlyStopping

Renamed to early_stopping
starting with version 18.2.1.1

Boolean Whether to use the early stopping
function. Default is False.

earlyStoppingRounds

Renamed to
early_stopping_rounds
starting with version 18.2.1.1

integer Validation error needs to decrease at least
every early stopping round(s) to continue
training. Default is 10.

evaluationDataRatio

Renamed to
evaluation_data_ratio
starting with version 18.2.1.1

Double Ration of input data used for validation
errors. Default is 0.3.

random_seed integer The random number seed. Any number
between 0 and 9999999. Default is 0.

sampleSize

Renamed to sample_size
starting with version 18.2.1.1

Double The sub sample for control overfitting.
Specify a value between 0.1 and 1.0.
Default is 0.1.

eta Double The eta for control overfitting. Specify a
value between 0 and 1. Default is 0.3.

gamma Double The gamma for control overfitting. Specify
any number 0 or greater. Default is 6.

colsSampleRatio

Renamed to col_sample_ratio
starting with version 18.2.1.1

Double The colsample by tree for control
overfitting. Specify a value between 0.01
and 1. Default is 1.

colsSampleLevel

Renamed to col_sample_level
starting with version 18.2.1.1

Double The colsample by level for control
overfitting. Specify a value between 0.01
and 1. Default is 1.

lambda Double The lambda for control overfitting. Specify
any number 0 or greater. Default is 1.

Chapter 19. Python Node Properties 427

Table 271. xgboosttreenode properties (continued)

xgboosttreenode properties Data type Property description

alpha Double The alpha for control overfitting. Specify
any number 0 or greater. Default is 0.

scalePosWeight

Renamed to scale_pos_weight
starting with version 18.2.1.1

Double The scale pos weight for handling
imbalanced datasets. Default is 1.

use_HPO

Added for version 18.2.1.1

428 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 20. Spark Node Properties

isotonicasnode Properties

Isotonic Regression belongs to the family of regression algorithms. The
Isotonic-AS node in SPSS Modeler is implemented in Spark. For details
about Isotonic Regression algorithms, see https://spark.apache.org/docs/3.4.0/
mllib-isotonic-regression.html#isotonic-regression.

Table 272. isotonicasnode properties

isotonicasnode properties Data type Property description

label string This property is a dependent variable for
which isotonic regression is calculated.

features string This property is an independent variable.

weightCol string The weight represents a number of
measures. Default is 1.

isotonic Boolean This property indicates whether the type
is isotonic or antitonic.

featureIndex integer This property is for the index of the
feature if featuresCol is a vector
column. Default is 0.

kmeansasnode properties
K-Means is one of the most commonly used clustering algorithms. It clusters
data points into a predefined number of clusters. The K-Means-AS node in SPSS
Modeler is implemented in Spark. For details about K-Means algorithms, see https://
spark.apache.org/docs/3.4.0/ml-clustering.html#clustering. Note that the K-Means-
AS node performs one-hot encoding automatically for categorical variables.

Table 273. kmeansasnode properties

kmeansasnode Properties Values Property description

roleUse string Specify predefined to use predefined
roles, or custom to use custom field
assignments. Default is predefined.

autoModel Boolean Specify true to use the default
name ($S-prediction) for the new
generated scoring field, or false to
use a custom name. Default is true.

features field List of the field names for input
when the roleUse property is set to
custom.

name string The name of the new generated scoring
field when the autoModel property is
set to false.

https://spark.apache.org/docs/3.4.0/mllib-isotonic-regression.html#isotonic-regression
https://spark.apache.org/docs/3.4.0/mllib-isotonic-regression.html#isotonic-regression
https://spark.apache.org/docs/3.4.0/ml-clustering.html#clustering
https://spark.apache.org/docs/3.4.0/ml-clustering.html#clustering

Table 273. kmeansasnode properties (continued)

kmeansasnode Properties Values Property description

clustersNum integer The number of clusters to create.
Default is 5.

initMode string The initialization algorithm. Possible
values are k-means|| or random.
Default is k-means||.

initSteps integer The number of initialization steps
when initMode is set to k-means||.
Default is 2.

advancedSettings Boolean Specify true to make the following
four properties available. Default is
false.

maxIteration integer Maximum number of iterations for
clustering. Default is 20.

tolerance string The tolerance to stop the iterations.
Possible settings are 1.0E-1,
1.0E-2, ..., 1.0E-6. Default is
1.0E-4.

setSeed Boolean Specify true to use a custom random
seed. Default is false.

randomSeed integer The custom random seed when the
setSeed property is true.

multilayerperceptronnode Properties
Multilayer perceptron is a classifier based on the feedforward artificial
neural network and consists of multiple layers. Each layer is fully
connected to the next layer in the network. The MultiLayerPerceptron-AS
node in SPSS Modeler is implemented in Spark. For details about the
multilayer perceptron classifier (MLPC), see https://spark.apache.org/docs/latest/
ml-classification-regression.html#multilayer-perceptron-classifier.

Table 274. multilayerperceptronnode properties

multilayerperceptronnode
properties

Data type Property description

features field One or more fields to use as inputs for the
prediction.

label field The field to use as the target for the
prediction.

layers[0] integer The number of perceptron layers to
include. Default is 1.

layers[1…<latest-1>] integer The number of hidden layers. Default is 1.

layers[<latest>] integer The number of output layers. Default is 1.

seed integer The custom random seed.

430 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier

Table 274. multilayerperceptronnode properties (continued)

multilayerperceptronnode
properties

Data type Property description

maxiter integer The maximum number of iterations to
perform. Default is 10.

xgboostasnode Properties
XGBoost is an advanced implementation of a gradient boosting algorithm. Boosting
algorithms iteratively learn weak classifiers and then add them to a final strong
classifier. XGBoost is very flexible and provides many parameters that can be
overwhelming to most users, so the XGBoost-AS node in SPSS Modeler exposes
the core features and commonly used parameters. The XGBoost-AS node is
implemented in Spark.

Table 275. xgboostasnode properties

xgboostasnode properties Data type Property description

target_field field List of the field names for target.

input_fields field List of the field names for inputs.

nWorkers integer The number of workers used to train the
XGBoost model. Default is 1.

numThreadPerTask integer The number of threads used per worker.
Default is 1.

useExternalMemory Boolean Whether to use external memory as
cache. Default is false.

boosterType string The booster type to use. Available options
are gbtree, gblinear, or dart. Default
is gbtree.

numBoostRound integer The number of rounds for boosting.
Specify a value of 0 or higher. Default is
10.

scalePosWeight Double Control the balance of positive and
negative weights. Default is 1.

randomseed integer The seed used by the random number
generator. Default is 0.

objectiveType string The learning objective. Possible
values are reg:linear,
reg:logistic, reg:gamma,
reg:tweedie, rank:pairwise,
binary:logistic, or multi. Note that
for flag targets, only binary:logistic
or multi can be used. If multi is
used, the score result will show the
multi:softmax and multi:softprob
XGBoost objective types. Default is
reg:linear.

Chapter 20. Spark Node Properties 431

Table 275. xgboostasnode properties (continued)

xgboostasnode properties Data type Property description

evalMetric string Evaluation metrics for validation data. A
default metric will be assigned according
to the objective. Possible values are
rmse, mae, logloss, error, merror,
mlogloss, auc, ndcg, map, or gamma-
deviance. Default is rmse.

lambda Double L2 regularization term on weights.
Increasing this value will make the model
more conservative. Specify any number 0
or greater. Default is 1.

alpha Double L1 regularization term on weights.
Increasing this value will make the model
more conservative. Specify any number 0
or greater. Default is 0.

lambdaBias Double L2 regularization term on bias. If the
gblinear booster type is used, this
lambda bias linear booster parameter is
available. Specify any number 0 or greater.
Default is 0.

treeMethod string If the gbtree or dart booster type is
used, this tree method parameter for tree
growth (and the other tree parameters
that follow) is available. It specifies the
XGBoost tree construction algorithm to
use. Available options are auto, exact,
or approx. Default is auto.

maxDepth integer The maximum depth for trees. Specify a
value of 2 or higher. Default is 6.

minChildWeight Double The minimum sum of instance weight
(hessian) needed in a child. Specify a
value of 0 or higher. Default is 1.

maxDeltaStep Double The maximum delta step to allow for each
tree's weight estimation. Specify a value
of 0 or higher. Default is 0.

sampleSize Double The sub sample for is the ratio of the
training instance. Specify a value between
0.1 and 1.0. Default is 1.0.

eta Double The step size shrinkage used during the
update step to prevent overfitting. Specify
a value between 0 and 1. Default is 0.3.

gamma Double The minimum loss reduction required to
make a further partition on a leaf node of
the tree. Specify any number 0 or greater.
Default is 6.

colsSampleRatio Double The sub sample ratio of columns when
constructing each tree. Specify a value
between 0.01 and 1. Default is1.

432 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 275. xgboostasnode properties (continued)

xgboostasnode properties Data type Property description

colsSampleLevel Double The sub sample ratio of columns for
each split, in each level. Specify a value
between 0.01 and 1. Default is 1.

normalizeType string If the dart booster type is used, this dart
parameter and the following three dart
parameters are available. This parameter
sets the normalization algorithm. Specify
tree or forest. Default is tree.

sampleType string The sampling algorithm type. Specify
uniform or weighted. Default is
uniform.

rateDrop Double The dropout rate dart booster parameter.
Specify a value between 0.0 and 1.0.
Default is 0.0.

skipDrop Double The dart booster parameter for the
probability of skip dropout. Specify a value
between 0.0 and 1.0. Default is 0.0.

Chapter 20. Spark Node Properties 433

434 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Chapter 21. SuperNode properties

Properties that are specific to SuperNodes are described in the following tables. Note that common node
properties also apply to SuperNodes.

Table 276. Terminal supernode properties

Property name Property type/List of values Property description

execute_method Script

Normal

script string

SuperNode Parameters
You can use scripts to create or set SuperNode parameters using the general format:

mySuperNode.setParameterValue("minvalue", 30)

You can retrieve the parameter value with:

value mySuperNode.getParameterValue("minvalue")

Finding Existing SuperNodes
You can find SuperNodes in streams using the findByType() function:

source_supernode = modeler.script.stream().findByType("source_super", None)
process_supernode = modeler.script.stream().findByType("process_super", None)
terminal_supernode = modeler.script.stream().findByType("terminal_super",
None)

Setting Properties for Encapsulated Nodes
You can set properties for specific nodes encapsulated within a SuperNode by accessing the child
diagram within the SuperNode. For example, suppose you have a source SuperNode with an encapsulated
Variable File node to read in the data. You can pass the name of the file to read (specified using the
full_filename property) by accessing the child diagram and finding the relevant node as follows:

childDiagram = source_supernode.getChildDiagram()
varfilenode = childDiagram.findByType("variablefile", None)
varfilenode.setPropertyValue("full_filename", "c:/mydata.txt")

Creating SuperNodes
If you want to create a SuperNode and its content from scratch, you can do that in a similar way by
creating the SuperNode, accessing the child diagram, and creating the nodes you want. You must also
ensure that the nodes within the SuperNode diagram are also linked to the input- and/or output connector
nodes. For example, if you want to create a process SuperNode:

process_supernode = modeler.script.stream().createAt("process_super", "My
SuperNode", 200, 200)
childDiagram = process_supernode.getChildDiagram()
filternode = childDiagram.createAt("filter", "My Filter", 100, 100)

childDiagram.linkFromInputConnector(filternode)
childDiagram.linkToOutputConnector(filternode)

436 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Appendix A. Node names reference

This section provides a reference for the scripting names of the nodes in IBM SPSS Modeler.

Model Nugget Names
Model nuggets (also known as generated models) can be referenced by type, just like node and output
objects. The following tables list the model object reference names.

Note these names are used specifically to reference model nuggets in the Models palette (in the upper
right corner of the IBM SPSS Modeler window). To reference model nodes that have been added to a
stream for purposes of scoring, a different set of names prefixed with apply... are used.

Note: Under normal circumstances, referencing models by both name and type is recommended to avoid
confusion.

Table 277. Model Nugget Names (Modeling Palette)

Model name Model

anomalydetection Anomaly

apriori Apriori

autoclassifier Auto Classifier

autocluster Auto Cluster

autonumeric Auto Numeric

bayesnet Bayesian network

c50 C5.0

carma Carma

cart C&R Tree

chaid CHAID

coxreg Cox regression

decisionlist Decision List

discriminant Discriminant

factor PCA/Factor

featureselection Feature Selection

genlin Generalized linear regression

glmm GLMM

kmeans K-Means

knn k-nearest neighbor

kohonen Kohonen

linear Linear

logreg Logistic regression

neuralnetwork Neural Net

Table 277. Model Nugget Names (Modeling Palette) (continued)

Model name Model

quest QUEST

regression Linear regression

sequence Sequence

slrm Self-learning response model

statisticsmodel IBM SPSS Statistics model

svm Support vector machine

timeseries Time Series

twostep TwoStep

Table 278. Model Nugget Names (Database Modeling Palette)

Model name Model

db2imcluster IBM ISW Clustering

db2imlog IBM ISW Logistic Regression

db2imnb IBM ISW Naive Bayes

db2imreg IBM ISW Regression

db2imtree IBM ISW Decision Tree

msassoc MS Association Rules

msbayes MS Naive Bayes

mscluster MS Clustering

mslogistic MS Logistic Regression

msneuralnetwork MS Neural Network

msregression MS Linear Regression

mssequencecluster MS Sequence Clustering

mstimeseries MS Time Series

mstree MS Decision Tree

netezzabayes Netezza Bayes Net

netezzadectree Netezza Decision Tree

netezzadivcluster Netezza Divisive Clustering

netezzaglm Netezza Generalized Linear

netezzakmeans Netezza K-Means

netezzaknn Netezza KNN

netezzalineregression Netezza Linear Regression

netezzanaivebayes Netezza Naive Bayes

netezzapca Netezza PCA

netezzaregtree Netezza Regression Tree

438 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Table 278. Model Nugget Names (Database Modeling Palette) (continued)

Model name Model

netezzatimeseries Netezza Time Series

oraabn Oracle Adaptive Bayes

oraai Oracle AI

oradecisiontree Oracle Decision Tree

oraglm Oracle GLM

orakmeans Oracle k-Means

oranb Oracle Naive Bayes

oranmf Oracle NMF

oraocluster Oracle O-Cluster

orasvm Oracle SVM

Avoiding Duplicate Model Names
When using scripts to manipulate generated models, be aware that allowing duplicate model names can
result in ambiguous references. To avoid this, it is a good idea to require unique names for generated
models when scripting.

To set options for duplicate model names:

1. From the menus choose:

Tools > User Options
2. Click the Notifications tab.
3. Select Replace previous model to restrict duplicate naming for generated models.

The behavior of script execution can vary between SPSS Modeler and IBM SPSS Collaboration and
Deployment Services when there are ambiguous model references. The SPSS Modeler client includes the
option "Replace previous model", which automatically replaces models that have the same name (for
example, where a script iterates through a loop to produce a different model each time). However, this
option is not available when the same script is run in IBM SPSS Collaboration and Deployment Services.
You can avoid this situation either by renaming the model generated in each iteration to avoid ambiguous
references to models, or by clearing the current model (for example, adding a clear generated
palette statement) before the end of the loop.

Output type names
The following table lists all output object types and the nodes that create them.

Table 279. Output object types and the nodes that create them

Output object type Node

analysisoutput Analysis

collectionoutput Collection

dataauditoutput Data Audit

distributionoutput Distribution

evaluationoutput Evaluation

Appendix A. Node names reference 439

Table 279. Output object types and the nodes that create them (continued)

Output object type Node

histogramoutput Histogram

matrixoutput Matrix

meansoutput Means

multiplotoutput Multiplot

plotoutput Plot

qualityoutput Quality

reportdocumentoutput This object type is not from a node; it's the output created
by a project report

reportoutput Report

statisticsprocedureoutput Statistics Output

statisticsoutput Statistics

tableoutput Table

timeplotoutput Time Plot

weboutput Web

440 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Appendix B. Migrating from legacy scripting to
Python scripting

Legacy script migration overview
This section provides a summary of the differences between Python and legacy scripting in IBM SPSS
Modeler, and provides information about how to migrate your legacy scripts to Python scripts. In this
section you will find a list of standard SPSS Modeler legacy commands and the equivalent Python
commands.

General differences
Legacy scripting owes much of its design to OS command scripts. Legacy scripting is line oriented,
and although there are some block structures, for example if...then...else...endif and
for...endfor, indentation is generally not significant.

In Python scripting, indentation is significant and lines belonging to the same logical block must be
indented by the same level.

Note: You must take care when copying and pasting Python code. A line that is indented using tabs
might look the same in the editor as a line that is indented using spaces. However, the Python script will
generate an error because the lines are not considered as equally indented.

The scripting context
The scripting context defines the environment that the script is being executed in, for example the
stream or SuperNode that executes the script. In legacy scripting the context is implicit, which means, for
example, that any node references in a stream script are assumed to be within the stream that executes
the script.

In Python scripting, the scripting context is provided explicitly via the modeler.script module. For
example, a Python stream script can access the stream that executes the script with the following code:

s = modeler.script.stream()

Stream related functions can then be invoked through the returned object.

Commands versus functions
Legacy scripting is command oriented. This mean that each line of script typically starts with the
command to be run followed by the parameters, for example:

connect 'Type':typenode to :filternode
rename :derivenode as "Compute Total"

Python uses functions that are usually invoked through an object (a module, class or object) that defines
the function, for example:

stream = modeler.script.stream()
typenode = stream.findByType("type", "Type)
filternode = stream.findByType("filter", None)
stream.link(typenode, filternode)
derive.setLabel("Compute Total")

Literals and comments
Some literal and comment commands that are commonly used in IBM SPSS Modeler have equivalent
commands in Python scripting. This might help you to convert your existing SPSS Modeler Legacy scripts
to Python scripts for use in IBM SPSS Modeler 17.

Table 280. Legacy scripting to Python scripting mapping for literals and comments

Legacy scripting Python scripting

Integer, for example 4 Same

Float, for example 0.003 Same

Single quoted strings, for example ‘Hello’ Same

Note: String literals containing non-ASCII
characters must be prefixed by a u to ensure that
they are represented as Unicode.

Double quoted strings, for example “Hello
again”

Same

Note: String literals containing non-ASCII
characters must be prefixed by a u to ensure that
they are represented as Unicode.

Long strings, for example

“””This is a string
that spans multiple
lines”””

Same

Lists, for example [1 2 3] [1, 2, 3]

Variable reference, for example set x = 3 x = 3

Line continuation (\), for example

set x = [1 2 \
 3 4]

x = [1, 2,\
 3, 4]

Block comment, for example

/* This is a long comment
over a line. */

""" This is a long comment
over a line. """

Line comment, for example set x = 3 # make
x 3

x = 3 # make x 3

undef None

true True

false False

442 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Operators
Some operator commands that are commonly used in IBM SPSS Modeler have equivalent commands in
Python scripting. This might help you to convert your existing SPSS Modeler Legacy scripts to Python
scripts for use in IBM SPSS Modeler 17.

Table 281. Legacy scripting to Python scripting mapping for operators

Legacy scripting Python scripting

NUM1 + NUM2
LIST + ITEM
LIST1 + LIST2

NUM1 + NUM2
LIST.append(ITEM)
LIST1.extend(LIST2)

NUM1 – NUM2
LIST - ITEM

NUM1 – NUM2
LIST.remove(ITEM)

NUM1 * NUM2 NUM1 * NUM2

NUM1 / NUM2 NUM1 / NUM2

=
==

==

/=
/==

!=

X ** Y X ** Y

X < Y
X <= Y
X > Y
X >= Y

X < Y
X <= Y
X > Y
X >= Y

X div Y
X rem Y
X mod Y

X // Y
X % Y
X % Y

and
or
not(EXPR)

and
or
not EXPR

Appendix B. Migrating from legacy scripting to Python scripting 443

Conditionals and looping
Some conditional and looping commands that are commonly used in IBM SPSS Modeler have equivalent
commands in Python scripting. This might help you to convert your existing SPSS Modeler Legacy scripts
to Python scripts for use in IBM SPSS Modeler 17.

Table 282. Legacy scripting to Python scripting mapping for conditionals and looping

Legacy scripting Python scripting

 for VAR from INT1 to INT2
 …
endfor

for VAR in range(INT1, INT2):
 …

or

VAR = INT1
while VAR <= INT2:
 ...
 VAR += 1

for VAR in LIST
 …
endfor

for VAR in LIST:
 …

for VAR in_fields_to NODE
 …
endfor

for VAR in NODE.getInputDataModel():
 ...

for VAR in_fields_at NODE
 …
endfor

for VAR in NODE.getOutputDataModel():
 ...

if…then
 …
elseif…then
 …
else
 …
endif

if …:
 …
elif …:
 …
else:
 …

with TYPE OBJECT
 …
endwith

No equivalent

var VAR1 Variable declaration is not required

Variables
In legacy scripting, variables are declared before they are referenced, for example:

var mynode
set mynode = create typenode at 96 96

In Python scripting, variables are created when they are first referenced, for example:

mynode = stream.createAt("type", "Type", 96, 96)

444 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

In legacy scripting, references to variables must be explicitly removed using the ^ operator, for example:

var mynode
set mynode = create typenode at 96 96
set ^mynode.direction."Age" = Input

Like most scripting languages, this is not necessary is Python scripting, for example:

mynode = stream.createAt("type", "Type", 96, 96)
mynode.setKeyedPropertyValue("direction","Age","Input")

Node, output and model types
In legacy scripting, the different object types (node, output, and model) typically have the type appended
to the type of object. For example, the Derive node has the type derivenode:

set feature_name_node = create derivenode at 96 96

The IBM SPSS Modeler API in Python does not include the node suffix, so the Derive node has the type
derive, for example:

feature_name_node = stream.createAt("derive", "Feature", 96, 96)

The only difference in type names in legacy and Python scripting is the lack of the type suffix.

Property names
Property names are the same in both legacy and Python scripting. For example, in the Variable File node,
the property that defines the file location is full_filename in both scripting environments.

Node references
Many legacy scripts use an implicit search to find and access the node to be modified. For example,
the following commands search the current stream for a Type node with the label "Type", then set the
direction (or modeling role) of the "Age" field to Input and the "Drug" field to be Target, that is the value to
be predicted:

set 'Type':typenode.direction."Age" = Input
set 'Type':typenode.direction."Drug" = Target

In Python scripting, node objects have to be located explicitly before calling the function to set the
property value, for example:

typenode = stream.findByType("type", "Type")
typenode.setKeyedPropertyValue("direction", "Age", "Input")
typenode.setKeyedPropertyValue("direction", "Drug", "Target")

Note: In this case, "Target" must be in string quotes.

Python scripts can alternatively use the ModelingRole enumeration in the modeler.api package.

Although the Python scripting version can be more verbose, it leads to better runtime performance
because the search for the node is usually only done once. In the legacy scripting example, the search for
the node is done for each command.

Finding nodes by ID is also supported (the node ID is visible in the Annotations tab of the node dialog).
For example, in legacy scripting:

id65EMPB9VL87 is the ID of a Type node
set @id65EMPB9VL87.direction."Age" = Input

Appendix B. Migrating from legacy scripting to Python scripting 445

The following script shows the same example in Python scripting:

typenode = stream.findByID("id65EMPB9VL87")
typenode.setKeyedPropertyValue("direction", "Age", "Input")

Getting and setting properties
Legacy scripting uses the set command to assign a value. The term following the set command can be a
property definition. The following script shows two possible script formats for setting a property:

set <node reference>.<property> = <value>
set <node reference>.<keyed-property>.<key> = <value>

In Python scripting, the same result is achieved by using the functions setPropertyValue() and
setKeyedPropertyValue(), for example:

object.setPropertyValue(property, value)
object.setKeyedPropertyValue(keyed-property, key, value)

In legacy scripting, accessing property values can be achieved using the get command, for example:

var n v
set n = get node :filternode
set v = ^n.name

In Python scripting, the same result is achieved by using the function getPropertyValue(), for
example:

n = stream.findByType("filter", None)
v = n.getPropertyValue("name")

Editing streams
In legacy scripting, the create command is used to create a new node, for example:

var agg select
set agg = create aggregatenode at 96 96
set select = create selectnode at 164 96

In Python scripting, streams have various methods for creating nodes, for example:

stream = modeler.script.stream()
agg = stream.createAt("aggregate", "Aggregate", 96, 96)
select = stream.createAt("select", "Select", 164, 96)

In legacy scripting, the connect command is used to create links between nodes, for example:

connect ^agg to ^select

In Python scripting, the link method is used to create links between nodes, for example:

stream.link(agg, select)

In legacy scripting, the disconnect command is used to remove links between nodes, for example:

disconnect ^agg from ^select

In Python scripting, the unlink method is used to remove links between nodes, for example:

stream.unlink(agg, select)

446 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

In legacy scripting, the position command is used to position nodes on the stream canvas or between
other nodes, for example:

position ^agg at 256 256
position ^agg between ^myselect and ^mydistinct

In Python scripting, the same result is achieved by using two separate methods; setXYPosition and
setPositionBetween. For example:

agg.setXYPosition(256, 256)
agg.setPositionBetween(myselect, mydistinct)

Node operations
Some node operation commands that are commonly used in IBM SPSS Modeler have equivalent
commands in Python scripting. This might help you to convert your existing SPSS Modeler Legacy scripts
to Python scripts for use in IBM SPSS Modeler 17.

Table 283. Legacy scripting to Python scripting mapping for node operations

Legacy scripting Python scripting

create nodespec at x y stream.create(type, name)
stream.createAt(type, name, x, y)
stream.createBetween(type, name, preNode,
postNode)
stream.createModelApplier(model, name)

connect fromNode to toNode stream.link(fromNode, toNode)

delete node stream.delete(node)

disable node stream.setEnabled(node, False)

enable node stream.setEnabled(node, True)

disconnect fromNode from toNode stream.unlink(fromNode, toNode)
stream.disconnect(node)

duplicate node node.duplicate()

execute node stream.runSelected(nodes, results)
stream.runAll(results)

flush node node.flushCache()

position node at x y node.setXYPosition(x, y)

position node between node1 and node2 node.setPositionBetween(node1, node2)

rename node as name node.setLabel(name)

Looping
In legacy scripting, there are two main looping options that are supported:

• Counted loops, where an index variable moves between two integer bounds.
• Sequence loops that loop through a sequence of values, binding the current value to the loop variable.

Appendix B. Migrating from legacy scripting to Python scripting 447

The following script is an example of a counted loop in legacy scripting:

for i from 1 to 10
 println ^i
endfor

The following script is an example of a sequence loop in legacy scripting:

var items
set items = [a b c d]

for i in items
 println ^i
endfor

There are also other types of loops that can be used:

• Iterating through the models in the models palette, or through the outputs in the outputs palette.
• Iterating through the fields coming into or out of a node.

Python scripting also supports different types of loops. The following script is an example of a counted
loop in Python scripting:

i = 1
while i <= 10:
 print i
 i += 1

The following script is an example of a sequence loop in Python scripting:

items = ["a", "b", "c", "d"]
for i in items:
 print i

The sequence loop is very flexible, and when it is combined with IBM SPSS Modeler API methods it can
support the majority of legacy scripting use cases. The following example shows how to use a sequence
loop in Python scripting to iterate through the fields that come out of a node:

node = modeler.script.stream().findByType("filter", None)
for column in node.getOutputDataModel().columnIterator():
 print column.getColumnName()

Executing streams
During stream execution, model or output objects that are generated are added to one of the object
managers. In legacy scripting, the script must either locate the built objects from the object manager, or
access the most recently generated output from the node that generated the output.

Stream execution in Python is different, in that any model or output objects that are generated from the
execution are returned in a list that is passed to the execution function. This makes it simpler to access
the results of the stream execution.

Legacy scripting supports three stream execution commands:

• execute_all executes all executable terminal nodes in the stream.
• execute_script executes the stream script regardless of the setting of the script execution.
• execute node executes the specified node.

Python scripting supports a similar set of functions:

• stream.runAll(results-list) executes all executable terminal nodes in the stream.
• stream.runScript(results-list) executes the stream script regardless of the setting of the

script execution.

448 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

• stream.runSelected(node-array, results-list) executes the specified set of nodes in the
order that they are supplied.

• node.run(results-list) executes the specified node.

In legacy script, a stream execution can be terminated using the exit command with an optional integer
code, for example:

exit 1

In Python scripting, the same result can be achieved with the following script:

modeler.script.exit(1)

Accessing objects through the file system and repository
In legacy scripting, you can open an existing stream, model or output object using the open command, for
example:

var s
set s = open stream "c:/my streams/modeling.str"

In Python scripting, there is the TaskRunner class that is accessible from the session and can be used to
perform similar tasks, for example:

taskrunner = modeler.script.session().getTaskRunner()
s = taskrunner.openStreamFromFile("c:/my streams/modeling.str", True)

To save an object in legacy scripting, you can use the save command, for example:

save stream s as "c:/my streams/new_modeling.str"

The equivalent Python script approach would be using the TaskRunner class, for example:

taskrunner.saveStreamToFile(s, "c:/my streams/new_modeling.str")

IBM SPSS Collaboration and Deployment Services Repository based operations are supported in legacy
scripting through the retrieve and store commands, for example:

var s
set s = retrieve stream "/my repository folder/my_stream.str"
store stream ^s as "/my repository folder/my_stream_copy.str"

In Python scripting, the equivalent functionality would be accessed through the Repository object that is
associated with the session, for example:

session = modeler.script.session()
repo = session.getRepository()
s = repo.retrieveStream("/my repository folder/my_stream.str", None, None, True)
repo.storeStream(s, "/my repository folder/my_stream_copy.str", None)

Note: Repository access requires that the session has been configured with a valid repository connection.

Appendix B. Migrating from legacy scripting to Python scripting 449

Stream operations
Some stream operation commands that are commonly used in IBM SPSS Modeler have equivalent
commands in Python scripting. This might help you to convert your existing SPSS Modeler Legacy scripts
to Python scripts for use in IBM SPSS Modeler 17.

Table 284. Legacy scripting to Python scripting mapping for stream operations

Legacy scripting Python scripting

create stream DEFAULT_FILENAME taskrunner.createStream(name,
autoConnect, autoManage)

close stream stream.close()

clear stream stream.clear()

get stream stream No equivalent

load stream path No equivalent

open stream path taskrunner.openStreamFromFile(path,
autoManage)

save stream as path taskrunner.saveStreamToFile(stream,
path)

retreive stream path repository.retreiveStream(path,
version, label, autoManage)

store stream as path repository.storeStream(stream, path,
label)

Model operations
Some model operation commands that are commonly used in IBM SPSS Modeler have equivalent
commands in Python scripting. This might help you to convert your existing SPSS Modeler Legacy scripts
to Python scripts for use in IBM SPSS Modeler 17.

Table 285. Legacy scripting to Python scripting mapping for model operations

Legacy scripting Python scripting

open model path taskrunner.openModelFromFile(path,
autoManage)

save model as path taskrunner.saveModelToFile(model, path)

retrieve model path repository.retrieveModel(path, version,
label, autoManage)

store model as path repository.storeModel(model, path,
label)

450 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Document output operations
Some document output operation commands that are commonly used in IBM SPSS Modeler have
equivalent commands in Python scripting. This might help you to convert your existing SPSS Modeler
Legacy scripts to Python scripts for use in IBM SPSS Modeler 17.

Table 286. Legacy scripting to Python scripting mapping for document output operations

Legacy scripting Python scripting

open output path taskrunner.openDocumentFromFile(path,
autoManage)

save output as path taskrunner.saveDocumentToFile(output,
path)

retrieve output path repository.retrieveDocument(path,
version, label, autoManage)

store output as path repository.storeDocument(output, path,
label)

Other differences between legacy scripting and Python scripting
Legacy scripts provide support for manipulating IBM SPSS Modeler projects. Python scripting does not
currently support this.

Legacy scripting provides some support for loading state objects (combinations of streams and models).
State objects have been deprecated since IBM SPSS Modeler 8.0. Python scripting does not support state
objects.

Python scripting offers the following additional features that are not available in legacy scripting:

• Class and function definitions
• Error handling
• More sophisticated input/output support
• External and third party modules

Appendix B. Migrating from legacy scripting to Python scripting 451

452 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

454 Notices

http://www.ibm.com/legal/us/en/copytrade.shtml

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 455

456 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Index

A
accessing stream execution results

JSON content model 57
table content model 54
XML content model 55

accessing the results of stream execution
JSON content model 57
table content model 54
XML content model 55

adding attributes 24
Aggregate node

properties 119
aggregatenode properties 119
Analysis node

properties 371
analysisnode properties 371
Analytic Server source node

properties 86
anomaly detection models

node scripting properties 212, 323
anomalydetectionnode properties 212
Anonymize node

properties 147
anonymizenode properties 147
Append node

properties 119
appendnode properties 119
applyanomalydetectionnode properties 323
applyapriorinode properties 323
applyassociationrulesnode properties 324
applyautoclassifiernode properties 324
applyautoclusternode properties 326
applyautonumericnode properties 326
applybayesnetnode properties 326
applyc50node properties 327
applycarmanode properties 327
applycartnode properties 327
applychaidnode properties 328
applycoxregnode properties 328
applydecisionlistnode properties 329
applydiscriminantnode properties 329
applyextension properties 329
applyfactornode properties 331
applyfeatureselectionnode properties 331
applygeneralizedlinearnode properties 331
applygle properties 332
applyglmmnode properties 332
applygmm properties 333
applykmeansnode properties 333
applyknnnode properties 333
applykohonennode properties 333
applylinearasnode properties 334
applylinearnode properties 334
applylogregnode properties 334
applylsvmnode properties 335
applymslogisticnode properties 345

applymsneuralnetworknode properties 345
applymsregressionnode properties 345
applymssequenceclusternode properties 345
applymstimeseriesnode properties 345
applymstreenode properties 345
applynetezzabayesnode properties 369
applynetezzadectreenode properties 369
applynetezzadivclusternode properties 369
applynetezzakmeansnode properties 369
applynetezzaknnnode properties 369
applynetezzalineregressionnode properties 369
applynetezzanaivebayesnode properties 369
applynetezzapcanode properties 369
applynetezzaregtreenode properties 369
applyneuralnetnode properties 335
applyneuralnetworknode properties 335
applyocsvm properties 336
applyoraabnnode properties 354
applyoradecisiontreenode properties 354
applyorakmeansnode properties 354
applyoranbnode properties 354
applyoranmfnode properties 354
applyoraoclusternode properties 354
applyorasvmnode properties 354
applyquestnode properties 336
applyr properties 337
applyrandomtrees properties 337
applyregressionnode properties 338
applyselflearningnode properties 338
applysequencenode properties 338
applystpnode properties 339
applysvmnode properties 338
applytcmnode properties 339
applytimeseriesnode properties 340
applytreeas properties 340
applyts properties 339
applytwostepAS properties 341
applytwostepnode properties 340
applyxgboostlinearnode properties 341
applyxgboosttreenode properties 341
apriori models

node scripting properties 213, 323
apriorinode properties 213
arguments

command file 68
IBM SPSS Analytic Server Repository connection 68
IBM SPSS Collaboration and Deployment Services
Repository connection 67
server connection 66
system 64

AS Time Intervals node
properties 152

asexport properties 391
asimport properties 86
Association Rules node

properties 215
Association Rules node nugget

Index 457

Association Rules node nugget (continued)
properties 324

associationrulesnode properties 215
astimeintervalsnode properties 152
Auto Classifier models

node scripting properties 324
Auto Classifier node

node scripting properties 218
Auto Cluster models

node scripting properties 326
Auto Cluster node

node scripting properties 220
auto numeric models

node scripting properties 222
Auto Numeric models

node scripting properties 326
autoclassifiernode properties 218
autoclusternode properties 220
autodataprepnode properties 148
automatic data preparation

properties 148
autonumericnode properties 222

B
Balance node

properties 120
balancenode properties 120
bayesian network models

node scripting properties 224
Bayesian Network models

node scripting properties 326
bayesnet properties 224
Binning node

properties 152
binningnode properties 152
blocks of code 19
buildr properties 225

C
C&R tree models

node scripting properties 229, 327
C5.0 models

node scripting properties 226, 327
c50node properties 226
CARMA models

node scripting properties 228, 327
carmanode properties 228
cartnode properties 229
CHAID models

node scripting properties 232, 328
chaidnode properties 232
clear generated palette command 52
CLEM

scripting 1
cognosimport node properties 87
Collection node

properties 186
collectionnode properties 186
command line

list of arguments 64, 66–68
multiple arguments 68

command line (continued)
parameters 65
running IBM SPSS Modeler 63
scripting 52

conditional execution of streams 6, 9
coordinate system reprojection

properties 165
Cox regression models

node scripting properties 234, 328
coxregnode properties 234
CPLEX Optimization node

properties 121
cplexoptnode properties 121
creating a class 24
creating nodes 31, 33

D
Data Audit node

properties 372
Data Collection export node

properties 399
Data Collection source node

properties 92
dataauditnode properties 372
Database export node

properties 394
database modeling 343
Database node

properties 91
databaseexportnode properties 394
databasenode properties 91
datacollectionexportnode properties 399
datacollectionimportnode properties 92
decision list models

node scripting properties 237, 329
decisionlist properties 237
defining a class 24
defining attributes 25
defining methods 25
Derive node

properties 155
derive_stbnode

properties 124
derivenode properties 155
diagrams 27
Directed Web node

properties 208
directedwebnode properties 208
discriminant models

node scripting properties 238, 329
discriminantnode properties 238
Distinct node

properties 126
distinctnode properties 126
Distribution node

properties 187
distributionnode properties 187

E
E-Plot node

properties 205

458 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

encoded passwords
adding to scripts 52

Ensemble node
properties 159

ensemblenode properties 159
eplotnode properties 205
error checking

scripting 52
Evaluation node

properties 188
evaluationnode properties 188
examples 20
Excel export node

properties 400, 401
Excel source node

properties 96
excelexportnode properties 400, 401
excelimportnode properties 96
executing scripts 11
Executing streams 27
execution order

changing with scripts 49
export nodes

node scripting properties 391
exportModelToFile 40
Extension Export node

properties 400
Extension Import node

properties 97
Extension Model node

node scripting properties 240
Extension Output node

properties 374
Extension Transform node

properties 127
extensionexportnode properties 400
extensionimportnode properties 97
extensionmodelnode properties 240
extensionoutputnode properties 374
extensionprocessnode properties 127

F
factornode properties 243
feature selection models

node scripting properties 245, 331
Feature Selection models

applying 4
scripting 4

featureselectionnode properties 4, 245
field names

changing case 49
Field Reorder node

properties 165
fields

turning off in scripting 185
Filler node

properties 160
fillernode properties 160
Filter node

properties 161
filternode properties 161
finding nodes 29
Fixed File node

Fixed File node (continued)
properties 99

fixedfilenode properties 99
flags

combining multiple flags 68
command line arguments 63

Flat File node
properties 402

flatfilenode properties 402
for command 49
functions

comments 442
conditionals 444
document output operations 451
literals 442
looping 444
model operations 450
node operations 447
object references 442
operators 443
stream operations 450

G
Gaussian Mixture node

properties 413, 417
generalized linear models

node scripting properties 247, 331
generated keyword 52
generated models

scripting names 437, 439
genlinnode properties 247
Geospatial source node

properties 104
GLE models

node scripting properties 257, 332
gle properties 257
GLMM models

node scripting properties 252, 332
glmmnode properties 252
gmm properties 413, 417
graph nodes

scripting properties 185
Graphboard node

properties 190
graphboardnode properties 190
gsdata_import node properties 104

H
HDBSCAN node

properties 414
hdbscannode properties 414
hdbscannugget properties 341
hidden variables 25
Histogram node

properties 195
histogramnode properties 195
History node

properties 162
historynode properties 162

Index 459

I
IBM Cognos source node

properties 87
IBM Cognos TM1 source node

properties 107, 108
IBM SPSS Analytic Server Repository

command line arguments 68
IBM SPSS Collaboration and Deployment Services

Repository
command line arguments 67
scripting 49

IBM SPSS Modeler
running from command line 63

IBM SPSS Statistics export node
properties 411

IBM SPSS Statistics models
node scripting properties 410

IBM SPSS Statistics Output node
properties 411

IBM SPSS Statistics source node
properties 409

IBM SPSS Statistics Transform node
properties 409

identifiers 19
inheritance 25
interrupting scripts 11
Isotonic-AS node

properties 429
isotonicasnode properties 429
iteration key

looping in scripts 7
iteration variable

looping in scripts 8

J
JSON content model 57
JSON source node

properties 104
jsonimportnode properties 104
Jython 15

K
K-Means models

node scripting properties 264, 333
K-Means-AS models

node scripting properties 265, 429
KDE Modeling node

properties 415
KDE models

node scripting properties 341
KDE Simulation node

properties 375, 416
kdeapply properties 341
kdeexport properties 375, 416
kdemodel properties 415
kmeansasnode properties 265, 429
kmeansnode properties 264
KNN models

node scripting properties 333
knnnode properties 266

kohonen models
node scripting properties 268

Kohonen models
node scripting properties 333

kohonennode properties 268

L
linear models

node scripting properties 269, 334
linear properties 269
linear regression models

node scripting properties 289, 337, 338
linear support vector machine models

node scripting properties 278, 335
linear-AS models

node scripting properties 271, 334
linear-AS properties 271
lists 16
logistic regression models

node scripting properties 272, 334
logregnode properties 272
looping in streams 6, 7
loops

using in scripts 49
lowertoupper function 49
LSVM models

node scripting properties 278
lsvmnode properties 278

M
Map Visualization node

properties 196
mapvisualization properties 196
mathematical methods 21
Matrix node

properties 376
matrixnode properties 376
Means node

properties 378
meansnode properties 378
Merge node

properties 129
mergenode properties 129
Microsoft models

node scripting properties 343, 345
Migrating

accessing objects 449
clear streams, output, and models managers 34
commands 441
editing streams 446
executing streams 448
file system 449
functions 441
general differences 441
getting properties 446
looping 447
miscellaneous 451
model types 445
node references 445
node types 445
output types 445

460 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

Migrating (continued)
overview 441
property names 445
repository 449
scripting context 441
setting properties 446
variables 444

model nuggets
node scripting properties 323
scripting names 437, 439

model objects
scripting names 437, 439

modeling nodes
node scripting properties 211

models
scripting names 437, 439

modifying streams 31, 34
MS Decision Tree

node scripting properties 343, 345
MS Linear Regression

node scripting properties 343, 345
MS Logistic Regression

node scripting properties 343, 345
MS Neural Network

node scripting properties 343, 345
MS Sequence Clustering

node scripting properties 345
MS Time Series

node scripting properties 345
msassocnode properties 343
msbayesnode properties 343
msclusternode properties 343
mslogisticnode properties 343
msneuralnetworknode properties 343
msregressionnode properties 343
mssequenceclusternode properties 343
mstimeseriesnode properties 343
mstreenode properties 343
MultiLayerPerceptron-AS

node
properties 430

multilayerperceptronnode properties 430
Multiplot node

properties 200
multiplotnode properties 200
multiset command 71

N
nearest neighbor models

node scripting properties 266
Netezza Bayes Net models

node scripting properties 355, 369
Netezza Decision Tree models

node scripting properties 355, 369
Netezza Divisive Clustering models

node scripting properties 355, 369
Netezza Generalized Linear models

node scripting properties 355
Netezza K-Means models

node scripting properties 355, 369
Netezza KNN models

node scripting properties 355, 369
Netezza Linear Regression models

Netezza Linear Regression models (continued)
node scripting properties 355, 369

Netezza models
node scripting properties 355

Netezza Naive Bayes models
node scripting properties 355

Netezza Naive Bayesmodels
node scripting properties 369

Netezza PCA models
node scripting properties 355, 369

Netezza Regression Tree models
node scripting properties 355, 369

Netezza Time Series models
node scripting properties 355

netezzabayesnode properties 355
netezzadectreenode properties 355
netezzadivclusternode properties 355
netezzaglmnode properties 355
netezzakmeansnode properties 355
netezzaknnnode properties 355
netezzalineregressionnode properties 355
netezzanaivebayesnode properties 355
netezzapcanode properties 355
netezzaregtreenode properties 355
netezzatimeseriesnode properties 355
neural network models

node scripting properties 279, 335
neural networks

node scripting properties 282, 335
neuralnetnode properties 279
neuralnetworknode properties 282
node scripting properties

export nodes 391
model nuggets 323
modeling nodes 211

nodes
deleting 33
importing 33
information 35
linking nodes 31
looping through in scripts 49
names reference 437
replacing 33
unlinking nodes 31

non-ASCII characters 22
nuggets

node scripting properties 323
numericpredictornode properties 222

O
object oriented 23
ocsvmnode properties 418
One-Class SVM node

properties 418
operations 16
oraabnnode properties 347
oraainode properties 347
oraapriorinode properties 347
Oracle Adaptive Bayes models

node scripting properties 347, 354
Oracle AI models

node scripting properties 347
Oracle Apriori models

Index 461

Oracle Apriori models (continued)
node scripting properties 347, 354

Oracle Decision Tree models
node scripting properties 347, 354

Oracle Generalized Linear models
node scripting properties 347

Oracle KMeans models
node scripting properties 347, 354

Oracle MDL models
node scripting properties 347, 354

Oracle models
node scripting properties 347

Oracle Naive Bayes models
node scripting properties 347, 354

Oracle NMF models
node scripting properties 347, 354

Oracle O-Cluster
node scripting properties 347, 354

Oracle Support Vector Machines models
node scripting properties 347, 354

oradecisiontreenode properties 347
oraglmnode properties 347
orakmeansnode properties 347
oramdlnode properties 347
oranbnode properties 347
oranmfnode properties 347
oraoclusternode properties 347
orasvmnode properties 347
output nodes

scripting properties 371
output objects

scripting names 439
outputfilenode properties 402

P
parameters

scripting 15
SuperNodes 435

Partition node
properties 163

partitionnode properties 163
passing arguments 20
passwords

adding to scripts 52
encoded 66

PCA models
node scripting properties 243, 331

PCA/Factor models
node scripting properties 243, 331

Plot node
properties 201

plotnode properties 201
properties

common scripting 73
database modeling nodes 343
filter nodes 71
scripting 71, 73, 211, 323, 391
stream 75
SuperNodes 435

Python
scripting 15

Python models
Gaussian Mixture node scripting properties 333

Python models (continued)
node scripting properties 336, 341

Q
QUEST models

node scripting properties 284, 336
questnode properties 284

R
R Build node

node scripting properties 225
R Output node

properties 381
R Transform node

properties 132
Random Forest node

properties 420
Random Trees models

node scripting properties 287, 337
randomtrees properties 287
Reclassify node

properties 164
reclassifynode properties 164
referencing nodes

finding nodes 29
setting properties 30

regressionnode properties 289
remarks 19
Reorder node

properties 165
reordernode properties 165
Report node

properties 380
reportnode properties 380
Reprojection node

properties 165
reprojectnode properties 165
Restructure node

properties 166
restructurenode properties 166
retrieve command 49
RFM Aggregate node

properties 130
RFM Analysis node

properties 167
rfmaggregatenode properties 130
rfmanalysisnode properties 167
rfnode properties 420
routputnode properties 381
Rprocessnode properties 132

S
Sample node

properties 133
samplenode properties 133
SAS export node

properties 403
SAS source node

properties 104
sasexportnode properties 403

462 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

sasimportnode properties 104
scripting

abbreviations used 72
common properties 73
compatibility with earlier versions 52
conditional execution 6, 9
context 28
diagrams 27
error checking 52
executing 11
Feature Selection models 4
from the command line 52
graph nodes 185
in SuperNodes 5
interrupting 11
iteration key 7
iteration variable 8
legacy scripting 442–444, 447, 450, 451
output nodes 371
overview 1, 15
Python scripting 442–444, 447, 450, 451
selecting fields 9
standalone scripts 1, 27
stream execution order 49
streams 1, 27
SuperNode scripts 1, 27
SuperNode streams 27
syntax 15–17, 19–25
user interface 1, 3, 5
visual looping 6, 7

Scripting API
accessing generated objects 40
example 37
getting a directory 37
global values 46
handling errors 42
introduction 37
metadata 38
multiple streams 47
searching 37
session parameters 42
standalone scripts 47
stream parameters 42
SuperNode parameters 42

scripts
conditional execution 6, 9
importing from text files 1
iteration key 7
iteration variable 8
looping 6, 7
saving 1
selecting fields 9

security
encoded passwords 52, 66

Select node
properties 135

selectnode properties 135
Self-Learning Response models

node scripting properties 293, 338
sequence models

node scripting properties 291, 338
sequencenode properties 291
server

command line arguments 66

Set Globals node
properties 382

Set to Flag node
properties 168

setglobalsnode properties 382
setting properties 30
settoflagnode properties 168
Sim Eval node

properties 383
Sim Fit node

properties 384
Sim Gen node

properties 105
simevalnode properties 383
simfitnode properties 384
simgennode properties 105
Simulation Evaluation node

properties 383
Simulation Fit node

properties 384
Simulation Generate node

properties 105
slot parameters 5, 71, 73
SLRM models

node scripting properties 293, 338
slrmnode properties 293
SMOTE node

properties 422
smotenode properties 422
Sort node

properties 135
sortnode properties 135
source nodes

properties 79
Space-Time-Boxes node

properties 124, 136
Space-Time-Boxes node properties 124
spacetimeboxes properties 136
Spatio-Temporal Prediction

node
properties 294

standalone scripts 1, 3, 27
statements 19
Statistics node

properties 384
statisticsexportnode properties 411
statisticsimportnode properties 4, 409
statisticsmodelnode properties 410
statisticsnode properties 384
statisticsoutputnode properties 411
statisticstransformnode properties 409
store command 49
STP node

properties 294
STP node nugget

properties 339
stpnode properties 294
stream execution order

changing with scripts 49
stream.nodes property 49
Streaming Time Series models

node scripting properties 138
Streaming Time Series node

properties 144

Index 463

streamingtimeseries properties 138
streamingts properties 144
streams

conditional execution 6, 9
execution 27
looping 6, 7
modifying 31
multiset command 71
properties 75
scripting 1, 27

string functions 49
strings

changing case 49
structured properties 71
supernode 71
SuperNode

stream 27
SuperNodes

parameters 435
properties 435
scripting 435
scripts 1, 5, 27
setting properties within 435
streams 27

support vector machine models
node scripting properties 338

Support vector machine models
node scripting properties 300

SVM models
node scripting properties 300

svmnode properties 300
system

command line arguments 64

T
t-SNE node

properties 206, 423
table content model 54
Table node

properties 386
tablenode properties 386
tcm models

node scripting properties 339
tcmnode properties 301
Temporal Causal models

node scripting properties 301
Time Intervals node

properties 169
Time Plot node

properties 204
time series models

node scripting properties 307, 314, 340
Time Series models

node scripting properties 307, 339
timeintervalsnode properties 169
timeplotnode properties 204
timeseriesnode properties 314
tm1import node properties 108
tm1odataimport node properties 107
Transform node

properties 388
transformnode properties 388
Transpose node

Transpose node (continued)
properties 175

transposenode properties 175
traversing through nodes 34
Tree-AS models

node scripting properties 317, 340
treeas properties 317
ts properties 307
tsnenode properties 206, 423
TWC Import source node

properties 109
twcimport node properties 109
TwoStep AS models

node scripting properties 320, 341
TwoStep models

node scripting properties 319, 340
twostepAS properties 320
twostepnode properties 319
Type node

properties 176
typenode properties 4, 176

U
User Input node

properties 110
userinputnode properties 110

V
Variable File node

properties 111
variablefilenode properties 111
variables

scripting 15

W
Web node

properties 208
webnode properties 208

X
XGBoost Linear node

properties 424
XGBoost Tree node

properties 426
XGBoost-AS node

properties 431
xgboostasnode properties 431
xgboostlinearnode properties 424
xgboosttreenode properties 426
XML content model 55
XML export node

properties 408
XML source node

properties 116
xmlexportnode properties 408
xmlimportnode properties 116

464 IBM SPSS Modeler 18.6 Python Scripting and Automation Guide

IBM®

	Contents
	Chapter 1. Scripting and the Scripting Language
	Scripting overview
	Types of Scripts
	Stream Scripts
	Stream script example: Training a neural net
	Jython code size limits

	Standalone Scripts
	Standalone script example: Saving and loading a model
	Standalone script example: Generating a Feature Selection model

	SuperNode Scripts
	SuperNode Script Example

	Looping and conditional execution in streams
	Looping in streams
	Creating an iteration key for looping in streams
	Creating an iteration variable for looping in streams
	Selecting fields for iterations

	Conditional execution in streams

	Executing and interrupting scripts
	Find and Replace

	Chapter 2. The Scripting Language
	Scripting language overview
	Python and Jython
	Python Scripting
	Operations
	Lists
	Strings
	Remarks
	Statement Syntax
	Identifiers
	Blocks of Code
	Passing Arguments to a Script
	Examples
	Mathematical Methods
	Using Non-ASCII characters

	Object-Oriented Programming
	Defining a Class
	Creating a Class Instance
	Adding Attributes to a Class Instance
	Defining Class Attributes and Methods
	Hidden Variables
	Inheritance

	Chapter 3. Scripting in IBM SPSS Modeler
	Types of scripts
	Streams, SuperNode streams, and diagrams
	Streams
	SuperNode streams
	Diagrams

	Executing a stream
	The scripting context
	Referencing existing nodes
	Finding nodes
	Setting properties

	Creating nodes and modifying streams
	Creating nodes
	Linking and unlinking nodes
	Importing, replacing, and deleting nodes
	Traversing through nodes in a stream

	Clearing, or removing, items
	Getting information about nodes

	Chapter 4. The Scripting API
	Introduction to the Scripting API
	Example 1: searching for nodes using a custom filter
	Example 2: allowing users to obtain directory or file information based on their privileges
	Metadata: Information about data
	Accessing Generated Objects
	Handling errors
	Stream, Session, and SuperNode Parameters
	Global Values
	Working with Multiple Streams: Standalone Scripts

	Chapter 5. Scripting tips
	Modifying stream execution
	Looping through nodes
	Accessing Objects in the IBM SPSS Collaboration and Deployment Services Repository
	Generating an encoded password
	Script checking
	Scripting from the command line
	Compatibility with previous releases
	Accessing stream execution results
	Table content model
	XML Content Model
	JSON Content Model
	Column statistics content model and pairwise statistics content model

	Chapter 6. Command Line Arguments
	Invoking the software
	Using command line arguments
	System arguments
	Parameter arguments
	Server connection arguments
	IBM SPSS Collaboration and Deployment Services Repository Connection Arguments
	IBM SPSS Analytic Server connection arguments
	Combining Multiple Arguments

	Chapter 7. Properties Reference
	Properties reference overview
	Syntax for properties
	Structured properties
	Abbreviations

	Node and stream property examples

	Node properties overview
	Common Node Properties

	Chapter 8. Stream properties
	Chapter 9. Source Node Properties
	Source node common properties
	asimport Properties
	cognosimport Node Properties
	databasenode properties
	datacollectionimportnode Properties
	excelimportnode Properties
	extensionimportnode properties
	fixedfilenode Properties
	gsdata_import Node Properties
	jsonimportnode Properties
	sasimportnode Properties
	simgennode properties
	statisticsimportnode Properties
	tm1odataimport Node Properties
	tm1import Node Properties (deprecated)
	twcimport node properties
	userinputnode properties
	variablefilenode Properties
	xmlimportnode Properties

	Chapter 10. Record Operations Node Properties
	appendnode properties
	aggregatenode properties
	balancenode properties
	cplexoptnode properties
	derive_stbnode properties
	distinctnode properties
	extensionprocessnode properties
	mergenode properties
	rfmaggregatenode properties
	samplenode properties
	selectnode properties
	sortnode properties
	spacetimeboxes properties
	streamingtimeseries Properties

	Chapter 11. Field Operations Node Properties
	anonymizenode properties
	autodataprepnode properties
	astimeintervalsnode properties
	binningnode properties
	derivenode properties
	ensemblenode properties
	fillernode properties
	filternode properties
	historynode properties
	partitionnode properties
	reclassifynode properties
	reordernode properties
	reprojectnode properties
	restructurenode properties
	rfmanalysisnode properties
	settoflagnode properties
	statisticstransformnode properties
	timeintervalsnode properties (deprecated)
	transposenode properties
	typenode properties

	Chapter 12. Graph Node Properties
	Graph node common properties
	collectionnode Properties
	distributionnode Properties
	evaluationnode Properties
	graphboardnode Properties
	histogramnode Properties
	mapvisualization properties
	multiplotnode Properties
	plotnode Properties
	timeplotnode Properties
	eplotnode Properties
	tsnenode Properties
	webnode Properties

	Chapter 13. Modeling Node Properties
	Common modeling node properties
	anomalydetectionnode properties
	apriorinode properties
	associationrulesnode properties
	autoclassifiernode properties
	Setting Algorithm Properties

	autoclusternode properties
	autonumericnode properties
	bayesnetnode properties
	c50node properties
	carmanode properties
	cartnode properties
	chaidnode properties
	coxregnode properties
	decisionlistnode properties
	discriminantnode properties
	extensionmodelnode properties
	factornode properties
	featureselectionnode properties
	genlinnode properties
	glmmnode properties
	gle properties
	kmeansnode properties
	kmeansasnode properties
	knnnode properties
	kohonennode properties
	linearnode properties
	linearasnode properties
	logregnode properties
	lsvmnode properties
	neuralnetnode properties
	neuralnetworknode properties
	questnode properties
	randomtrees properties
	regressionnode properties
	sequencenode properties
	slrmnode properties
	statisticsmodelnode properties
	stpnode properties
	svmnode properties
	tcmnode Properties
	ts properties
	treeas properties
	twostepnode Properties
	twostepAS Properties

	Chapter 14. Model nugget node properties
	applyanomalydetectionnode Properties
	applyapriorinode Properties
	applyassociationrulesnode Properties
	applyautoclassifiernode Properties
	applyautoclusternode Properties
	applyautonumericnode Properties
	applybayesnetnode Properties
	applyc50node Properties
	applycarmanode Properties
	applycartnode Properties
	applychaidnode Properties
	applycoxregnode Properties
	applydecisionlistnode Properties
	applydiscriminantnode Properties
	applyextension properties
	applyfactornode Properties
	applyfeatureselectionnode Properties
	applygeneralizedlinearnode Properties
	applyglmmnode Properties
	applygle Properties
	applygmm properties
	applykmeansnode Properties
	applyknnnode Properties
	applykohonennode Properties
	applylinearnode Properties
	applylinearasnode Properties
	applylogregnode Properties
	applylsvmnode Properties
	applyneuralnetnode Properties
	applyneuralnetworknode properties
	applyocsvmnode properties
	applyquestnode Properties
	applyrandomtrees Properties
	applyregressionnode Properties
	applyselflearningnode properties
	applysequencenode Properties
	applysvmnode Properties
	applystpnode Properties
	applytcmnode Properties
	applyts Properties
	applytimeseriesnode Properties (deprecated)
	applytreeas Properties
	applytwostepnode Properties
	applytwostepAS Properties
	applyxgboosttreenode properties
	applyxgboostlinearnode properties
	hdbscannugget properties
	kdeapply properties

	Chapter 15. Database modeling node properties
	Node Properties for Microsoft Modeling
	Microsoft Modeling Node Properties
	Algorithm Parameters

	Microsoft Model Nugget Properties

	Node Properties for Oracle Modeling
	Oracle Modeling Node Properties
	Oracle Model Nugget Properties

	Node Properties for IBM Netezza Analytics Modeling
	Netezza Modeling Node Properties
	Netezza Model Nugget Properties

	Chapter 16. Output node properties
	analysisnode properties
	dataauditnode properties
	extensionoutputnode properties
	kdeexport properties
	matrixnode properties
	meansnode properties
	reportnode properties
	setglobalsnode properties
	simevalnode properties
	simfitnode properties
	statisticsnode properties
	statisticsoutputnode Properties
	tablenode properties
	transformnode properties

	Chapter 17. Export Node Properties
	Common Export Node Properties
	asexport Properties
	cognosexportnode Properties
	databaseexportnode properties
	datacollectionexportnode Properties
	excelexportnode Properties
	extensionexportnode properties
	jsonexportnode Properties
	outputfilenode Properties
	sasexportnode Properties
	statisticsexportnode Properties
	tm1odataexport Node Properties
	tm1export Node Properties (deprecated)
	xmlexportnode Properties

	Chapter 18. IBM SPSS Statistics Node Properties
	statisticsimportnode Properties
	statisticstransformnode properties
	statisticsmodelnode properties
	statisticsoutputnode Properties
	statisticsexportnode Properties

	Chapter 19. Python Node Properties
	gmm properties
	hdbscannode properties
	kdemodel properties
	kdeexport properties
	gmm properties
	ocsvmnode properties
	rfnode properties
	smotenode Properties
	tsnenode Properties
	xgboostlinearnode Properties
	xgboosttreenode Properties

	Chapter 20. Spark Node Properties
	isotonicasnode Properties
	kmeansasnode properties
	multilayerperceptronnode Properties
	xgboostasnode Properties

	Chapter 21. SuperNode properties
	Appendix A. Node names reference
	Model Nugget Names
	Avoiding Duplicate Model Names
	Output type names

	Appendix B. Migrating from legacy scripting to Python scripting
	Legacy script migration overview
	General differences
	The scripting context
	Commands versus functions
	Literals and comments
	Operators
	Conditionals and looping
	Variables
	Node, output and model types
	Property names
	Node references
	Getting and setting properties
	Editing streams
	Node operations

	Looping
	Executing streams
	Accessing objects through the file system and repository
	Stream operations
	Model operations
	Document output operations

	Other differences between legacy scripting and Python scripting

	Notices
	Trademarks
	Terms and conditions for product documentation

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

