
IBM SPSS Modeler 18.6 Python Scripting
API Reference Guide

IBM

Note

Before you use this information and the product it supports, read the information in “Notices” on page
109.

Product Information

This edition applies to version 18, release 4, modification 0 of IBM® SPSS® Modeler and to all subsequent releases and
modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation .
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Chapter 1. General Classes... 1
enum Objects..1
ModelerException Objects... 1
VersionInfo Objects.. 1

Chapter 2. Content Management.. 3
ColumnStatsContentModel Objects..3
ContentModel Objects.. 3
JSONContentModel Objects... 3
PairwiseStatsContentModel Objects... 4
StatisticType Objects..5
TableContentModel Objects... 6
XMLContentModel Objects... 6

Chapter 3. Core Objects.. 9
ASCredentialDescriptor Objects.. 9
ApplicationData Objects... 9
ContentFormat Objects..9
ContentContainer Objects... 10
ContentContainerProvider Objects... 11
ContentProvider Objects... 11
CredentialDescriptor Objects.. 13
FileFormat Objects.. 13
IncompatibleServerException Objects...15
InvalidPropertyException Objects... 16
ModelFieldRole Objects... 16
ObjectCreationException Objects..17
ObjectLockedException Objects.. 17
OwnerException Objects... 17
ParameterDefinition Objects.. 18
ParameterProvider Objects...19
ParameterStorage Objects... 20
ParameterType Objects..21
PropertiedObject Objects... 21
RepositoryConnectionDescriptor Objects.. 23
RepositoryConnectionDescriptor2 Objects.. 24
RepositoryConnectionDescriptor3 Objects.. 24
ServerConnectionDescriptor Objects... 24
ServerConnectionException Objects... 24
ServerVersionInfo Objects...25
StructureAttributeType Objects..25
StructuredValue Objects... 26
SystemServerConnectionDescriptor Objects..26

Chapter 4. Data and Metadata... 27
Column Objects... 27
ColumnCountException Objects.. 28
ColumnGroup Objects.. 29
ColumnGroupType Objects... 29
DataModel Objects...30

 iii

DataModelException Objects...33
DataModelFactory Objects... 33
ExtendedMeasure Objects... 39
ExtendedStorage Objects... 39
GeoType Objects...39
GeometryType Objects..40
GlobalValues Objects..40
GlobalValues.Type Objects...40
InvalidColumnExceptionValues Objects...41
ListStorage Objects.. 41
MeasureType Objects.. 41
MissingValueDefinition Objects..42
ModelOutputMetadata Objects.. 42
ModelingRole Objects..43
RowSet Objects... 43
StorageType Objects.. 44
UnknownColumnException Objects..45

Chapter 5. Expressions.. 47
Expression Objects.. 47
Parser Objects... 47
ParserException Objects... 47

Chapter 6. Model information.. 49
CompositeModelDetail Objects.. 49
ModelDetail Objects.. 49
ModelType Objects...51
PMMLModelType Objects..51

Chapter 7. Server resources.. 53
ServerDatabaseConnection Objects... 53
ServerFile Objects.. 54
ServerFileSystem Objects... 54
ServerResourceException Objects..56

Chapter 8. Server resources.. 57
LocaleInfo Objects.. 57
Repository Objects.. 57
Session Objects...60
SessionException Objects... 67
SystemSession Objects..67
UIResources Objects.. 67

Chapter 9. Tasks and execution... 69
ExecutionFeedbackEvent Objects..69
ExecutionFeedbackListener Objects... 70
ExecutionHandle Objects... 71
ExecutionState Objects... 71
ExecutionStateEvent Objects.. 72
ExecutionStateListener Objects..72
Task Objects..73
TaskFactory Objects.. 73
TaskRunner Objects.. 76

Chapter 10. Streams and SuperNodes... 83
BuiltObject Objects.. 83

iv

CFNode Objects... 83
CompositeModelApplier Objects.. 83
CompositeModelBuilder Objects.. 84
CompositeModelOutput Objects.. 84
CompositeModelOwner Objects.. 84
CompositeModelResults Objects.. 85
SuperNode Objects...86
SuperNodeDiagram Objects... 86
SuperNodeType Objects..88
DataReader Objects.. 89
DataTransformer Objects... 89
DataWriter Objects.. 89
DiagramConnector Objects... 89
DocumentBuilder Objects... 89
DocumentOutput Objects... 89
DocumentOutputType Objects...90
ExportFormatException Objects.. 91
GraphBuilder Objects..91
GraphOutput Objects.. 91
InitialNode Objects.. 91
ProcessNode Objects.. 91
InvalidEditException Objects.. 91
ModelApplier Objects..92
ModelBuilder Objects..92
ModelOutput Objects.. 92
ModelOutputType Objects... 93
ObjectBuilder Objects..95
Node Objects..95
Diagram Objects...97
NodeFilter Objects.. 103
Stream Objects...104
PublishedImage Objects... 105
ReportBuilder Objects... 106
ReportOutput Objects..106
RowSetBuilder Objects... 106
RowSetOutput Objects..106
TerminalNode Objects..106
Updatable Objects.. 106
Updater Objects...107

Notices..109
Trademarks.. 110
Terms and conditions for product documentation... 110

Index.. 113

 v

vi

Chapter 1. General Classes

This provides general classes used by other parts of the API.

enum Objects
This class provides the basis for all enumerated classes in the Modeler API. Note that enum names are
not case-sensitive.

e.equals(object) : boolean

object (Object): the other object.

Returns True if the supplied object is equal to this object.

e.getName() : string

Returns the name of the enumeration. Same as toString().

e.hashCode() : int

Returns the hash code for this object.

e.isUnknown() : boolean

Returns True if this enumeration value represents an unknown or undefined object or False otherwise.
An enumeration may contain at most one value that represents an unknown or undefined value.

e.toString() : string

Returns the name of the enumeration. Same as getName().

ModelerException Objects
A generic Predictive Server exception.

VersionInfo Objects
Default Modeler API version information. The version information is made up of the major version, minor
version and patch version. A change in the major version number indicates significant extensions to the
functionality; a change in the minor version number indicates small extensions or refinements to the
functionality; a change in the patch version number indicates a bug-fix release and that the documented
functionality has not changed.

Constants:

MAJOR_VERSION (int) :
MINOR_VERSION (int) :
RELEASE_VERSION (int) :

getBuildDate() : Date

Returns the build date and time. If the build time is not available then Noneis returned.

getBuildVersion() : string

Returns the build version of this library. If the build version is not available then the empty string is
returned.

getCopyright() : string

Returns the copyright message.

getMajorVersion() : int

Returns the major version number.

getMinorVersion() : int

Returns the minor version number.

getName() : string

Returns the name of the library.

getPatchVersion() : int

Returns the patch version number.

2 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Chapter 2. Content Management

This provides classes used for accessing content generated during stream execution.

ColumnStatsContentModel Objects
Subclass of ContentModel.

An interface that provides a mechanism for accessing column/univariate statistics from nodes which can
produce them.

c.getAvailableColumns() : List

Returns the names of the columns that can be queried.

c.getAvailableStatistics() : List

Returns the statistics which have been computed. Note that not all columns may have values for all
available statistics.

c.getStatistic(column, statistic) : Number

column (string) : the column

statistic (StatisticType) : the statistic

Returns the value of the statistic for the specified.

ContentModel Objects
An interface that provides a mechanism for accessing the content of a ContentContainer in a
structured way.

c.getContainerName() : string

Returns the name of the container that this content model is associated with.

c.reset()

Flushes any internal storage associated with this content model.

JSONContentModel Objects
Subclass of ContentModel.

An interface that provides a mechanism for accessing the JSON content of a ContentContainer.
Content is accessed using lists of strings or integers. Strings are used to access named children in the
JSON object while integers are used to access specific values in JSON arrays.

j.getChildValuesAt(path, artifact) : Map

path (List) : the path to the required object

artifact (JSONArtifact) : the starting artifact or None

Returns the child values of the specified path if the path leads to a JSON object or None otherwise. The
keys in the table are strings while the associated value may be a literal string, integer, real or boolean, or a
JSON artifact (either a JSON object or a JSON array).

Exceptions:

Exception : if there is an error parsing the JSON or when accessing specific content.

j.getChildrenAt(path, artifact) : List

path (List) : the path to the required object

artifact (JSONArtifact) : the starting artifact or None

Returns the list of objects at the specified path if the path leads to a JSON array or None otherwise. The
returned values may be a literal string, integer, real or boolean, or a JSON artifact (either a JSON object or
a JSON array).

Exceptions:

Exception : if there is an error parsing the JSON or when accessing specific content.

j.getJSONAsString() : string

Returns the JSON content as a string.

j.getObjectAt(path, artifact) : object

path (List) : the path to the required object

artifact (JSONArtifact) : the starting artifact or None

Returns the object at the specified path. The supplied root artifact may be None in which case the root of
the content is used. The returned value may be a literal string, integer, real or boolean, or a JSON artifact
(either a JSON object or a JSON array).

Exceptions:

Exception : if there is an error parsing the JSON or when accessing specific content

PairwiseStatsContentModel Objects
Subclass of ContentModel.

An interface that provides a mechanism for accessing correlations between columns.

p.getAvailablePrimaryColumns() : List

Returns the names of the primary columns that can be queried. If the statistics are comparing values
within a column then only a single primary column will be returned.

p.getAvailablePrimaryValues() : List

Returns the values of the primary column that can be queried.

p.getAvailableSecondaryColumns() : List

Returns the names of the secondary columns that can be queried.

p.getAvailableStatistics() : List

Returns the statistics which have been computed. Note that not all column pairs may have values for all
available statistics.

p.getStatistic(primaryColumn, secondaryColumn, statistic) : Number

primaryColumn (string) : the primary column

secondaryColumn (string) : the secondary column

4 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

statistic (StatisticType) : the statistic

Returns the value of the statistic for the specified pair of columns. Note that the method always returns
null if the primary and secondary columns are the same.

p.getStatistic(primaryColumn, primaryValue, secondaryColumn, statistic) : Number

primaryColumn (string) : the primary column

primaryValue (object) : the primary column value

secondaryColumn (string) : the secondary column

statistic (StatisticType) : the statistic

Returns the value of the statistic for the specified value in the primary column associated with the
secondary column. Note that the method always returns null if the primary and secondary columns are
the same.

StatisticType Objects
Defines the statistics that can be computed either for a single column or for combinations of columns/
column values.

Constants:

Count (StatisticType) : Represents the number of non-null values.

Covariance (StatisticType) : Represents the covariance between 2 columns.

FTest (StatisticType) : Represents the F-test.

Kurtosis (StatisticType) : Represents the kurtosis.

KurtosisStandardError (StatisticType) : Represents the standard error of the kurtosis.

Max (StatisticType) : Represents the maximum value.

Mean (StatisticType) : Represents the mean value.

MeanStandardError (StatisticType) : Represents the standard error of the mean value.

Median (StatisticType) : Represents the median (middle) value.

Min (StatisticType) : Represents the minimum value.

Mode (StatisticType) : Represents the modal (most common) value.

Pearson (StatisticType) : Represents the Pearson correlation between 2 columns.

Range (StatisticType) : Represents the range value.

Skewness (StatisticType) : Represents the skewness.

SkewnessStandardError (StatisticType) : Represents the standard error of the skewness.

StandardDeviation (StatisticType) : Represents the standard deviation.

StandardErrorOfMean (StatisticType) : Represents the standard error of the mean.

Sum (StatisticType) : Represents the sum of values.

TTest (StatisticType) : Represents the t-test.

UniqueCount (StatisticType) : Represents the number of distinct values.

ValidCount (StatisticType) : Represents the number of valid values.

Variance (StatisticType) : Represents the variance.

s.isPairwise() : boolean

Chapter 2. Content Management 5

Returns whether the statistic is only appropriate when comparing more than one value.

valueOf(name) : StatisticType

name (string) :

values() : StatisticType[]

TableContentModel Objects
Subclass of ContentModel.

An interface that provides a mechanism for accessing the tabular content of a ContentContainer.
Values are arranged in rows and named columns where values in a particular column have the same
storage type.

t.getColumnCount() : int

Returns the number of columns in this content model..

t.getColumnName(columnIndex) : string

columnIndex (int) : the column index

Returns the name of a specified column in this content model. Returns the empty string if the column
does not have a name. The column index must be in the range: 0 <= index < getColumnCount()>.

Exceptions:

IndexOutOfBoundsException: unless the column index is in range

t.getRowCount() : int

Returns the number of rows in this content model.

t.getStorageType(columnIndex) : StorageType

columnIndex (int) : the column index

Returns the storage type of objects in a specified column of this content model. The column index must
be in the range: 0 <= index < getColumnCount()>.

Exceptions:

IndexOutOfBoundsException: unless the column index is in range

t.getValueAt(rowIndex, columnIndex) : object

rowIndex (int) : the row index

columnIndex (int) : the column index

Returns the value from a specified row and column in this content model. The row and column
indexes must be in the range: 0 <= rowIndex < getRowCount() && 0 <=columnIndex><
getColumnCount(). The returned value will either be None or an instance of the class returned by
getColumnClass for the same column index.

Exceptions:

IndexOutOfBoundsException: unless the column indexes are in range

XMLContentModel Objects
Subclass of ContentModel.

6 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

An interface that provides a mechanism for accessing the XML content of a ContentContainer. Content
is accessed using XPath syntax without having to configure the additional parsers although callers can
access the underlying XML text if they prefer to use a different mechanism.

x.getBooleanValue(xpath) : boolean

xpath (string) : the XPath expression

Returns the boolean result of evaluating the specified path expression.

Exceptions:

Exception :

x.getNumericValue(xpath) : Number

xpath (string) : the XPath expression

Returns the result of evaluating the path with return type of numeric. For example, count the number of
elements that match the path expression.

Exceptions:

Exception :

x.getStringValue(xpath, attribute) : string

xpath (string) : the XPath expression

attribute (string) : the name of the attribute to be returned or None if the XML node value is to be
returned

Evaluates the XPath expression to an XML node and returns either the value of the specified attribute in
that node if the attribute name is a non-zero length string or the node value otherwise.

Exceptions:

Exception :

x.getStringValues(xpath, attribute) : List

xpath (string) : the XPath expression

attribute (string) : the name of the attribute to be returned or None if the XML node value is to be
returned

Evaluates the XPath expression to a collection of XML nodes and returns a list containing either the value
of the specified attribute in that node if the attribute name is a non-zero length string or the node value
otherwise.

Exceptions:

Exception :

x.getValuesList(xpath, attributes, includeValue) : List

xpath (string) : the XPath expression

attributes (List) : the list of attribute names whose values are to be returned in each sublist

includeValue (boolean) : whether the XML node value should be included at the end of each sublist

Evaluates the XPath expression to obtain a list of XML nodes and returns a list of lists where each sublist
contains the specified values from a particular node. The values of the named attributes are added to
each sublist and the node value is added to the end of the sublist if the includeValue flag is set to
True.

Exceptions:

Chapter 2. Content Management 7

Exception :

x.getValuesMap(xpath, keyAttribute, attributes, includeValue) : Map

xpath (string) : the XPath expression

keyAttribute (string) :

attributes (List) : the list of attribute names whose values are to be returned in each table entry list

includeValue (boolean) : whether the XML node value should be included at the end of each table
entry list

Evaluates the XPath expression to obtain a list of XML nodes and returns a hash table of the specified
attributes. The key for each entry is either the value of the specified key attribute in that node if the key
attribute name is a non-zero length string or the node value otherwise. The value for each entry in the
table is a list containing the specified values from the key node. The node value is added to the end of
each list if the includeValue flag is set to True.

Exceptions:

Exception :

x.getXMLAsString() : string

Returns the XML as a string.

x.isNamespaceAware() : boolean

Returns True if the content model is aware of XML namespaces when parsing XML documents. The
default value is False.

x.setNamespaceAware(isAware)

isAware (boolean) : whether the content model should be namespace aware

Sets whether the content model is aware of XML namespaces when parsing XML documents. Moidyfing
this value can affect the syntax that should be used in XPath expressions. By default, XML content models
are not namespace aware. When the value is changed, reset() is called to ensure that all internal
storage is flushed to ensure any documents are re-parsed with the new setting.

8 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Chapter 3. Core Objects

This provides the base objects used by other parts of the API.

ASCredentialDescriptor Objects
Define credential to log in the Analytic Server

a.getPassword() : string

Get password

a.getUserName() : string

Get user name

ApplicationData Objects
Some features of the Modeler API include information such as the name and version of the application
that built them. This supports the ability to brand the Modeler API. By changing this information held
by the SessionFactory, an application can modify the apparent source of an attribute. Note however
that this does not affect "internal" version information associated with some Modeler API features (e.g.,
persistence).

a.getApplicationName() : string

Returns the name of the application e.g., "Predictive Server API".

a.getApplicationVersion() : string

Returns the version of the application e.g., "16.0.0".

a.getCopyright() : string

Returns the application copyright information e.g., "Copyright (c) 2004-2013, IBM Corp.".

a.getVendorName() : string

Returns the name of the vendor e.g., "IBM Corp.".

ContentFormat Objects
Subclass of Enum.

Enumerates the valid content formats for content containers.

Constants:

BINARY (ContentFormat) : Indicates that the format is binary.

UTF8 (ContentFormat) : Indicates that the format is UTF8.

getEnum(name) : ContentFormat

name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

getValues() : ContentFormat[]

Returns an array containing all the valid values for this enumeration class.

ContentContainer Objects
Defines the functionality associated with a content container. A content container is used to hold objects
(typically generated as a result of executing a stream) which are stored as part of a node or output object.

c.getContent() : object

Returns the content. The return value will either be a string if the content format is
ContentFormat.UTF8 or a byte array if the content format is ContentFormat.BINARY. An empty
container will return None.

c.getContentAsBinary() : byte[]

Returns the binary content if the content format is ContentFormat.BINARY or None otherwise.

c.getContentAsUTF8() : string

Returns the UTF8 content if the content format is ContentFormat.UTF8 or None otherwise.

c.getContentFormat() : ContentFormat

Returns the format used to store the component's content. An empty container will return None.

c.getName() : string

Returns the name of this container.

c.getTypeID() : string

Returns the ID of the container type declaration.

c.isEmpty() : boolean

Returns true if this container is empty; that is, it has no content associated with it.

c.readContainer(inputStream, contentFormat)

inputStream (InputStream) :

contentFormat (ContentFormat) : the content format to be used for storing the input

Reads the container from the specified input stream. The input stream is read as a byte array. If the
content format is ContentFormat.BINARY then the byte array is stored as-is. If the content format is
ContentFormat.UTF8 then the byte array is encoded as a UTF-8 string.

Exceptions:

java.io.IOException : if the implementing code throws an IOException.

c.writeContainer(outputStream)

outputStream (OutputStream) : the output stream

Writes the container to the specified output stream.

Exceptions:

java.io.IOException : if the implementing code throws an IOException.

10 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

ContentContainerProvider Objects
An interface that provides the basic mechanism for accessing and updating generated objects.

c.getContainerTagIterator() : Iterator

Returns an iterator for the container tags where each tag is a string.

c.getContainerTags() : List[]

Returns a list of the container tags.

c.getContainerTypeID(tag) : string

tag (string) : the container tag

Returns the type ID associated with the container tag or None if the container is unknown or has no type
ID.

c.getContentContainer(tag) : ContentContainer

tag (string) : the container tag

Returns the container associated with the supplied tag or None.

c.getContentModel(tag) : ContentModel

tag (string) : the content model tag

Returns the content model associated with the content tags or None if content model tag is unknown.

c.getContentModelTags() : List

Returns a list of the content models supported by this object.

c.putContentContainer(tag, container)

tag (string) : the container tag

container (ContentContainer) : the container or None.

Adds or updates the container component with the supplied tag.

ContentProvider Objects
Stores and retrieves content for an application. Content is identified using tags defined by the application.
It is the application's responsibility to ensure that tags are unique, and a class-like naming schme is
recommended, e.g. x.y.z....

c.getContent(tag) : Object

tag (string) : the content tag

Returns the content identified by the specified tag or None if the tag is unknown to this provider. The type
of the result is determined by the content format.

c.getContentAsBinary(tag) : byte[]

tag (string) : the content tag

Chapter 3. Core Objects 11

Returns the binary content identified by the specified tag or None if the tag is unknown to this provider or
the content does not have binary format.

c.getContentAsUTF8(tag) : string

tag (string) : the content tag

Returns the string content identified by the specified tag or None if the tag is unknown to this provider or
the content does not have string format.

c.getContentFormat(tag) : ContentFormat

tag (string) : the content tag

Returns the format of the content identfied by the specified tag or None if the tag is unknown to this
provider. The format determines the content type.

c.getContentTagIterator() : Iterator

Returns an iterator over the content tags known to this provider.

c.isContentCurrent(tag) : boolean

tag (string) : the content tag

Returns True if the specified content is considered current (up-to-date) with respect to its context, e.g.
its containing stream. Returns False if the content tag is unknown to this provider, or as a hint that the
content may be stale.

c.putContent(tag, format, content)

tag (string) : the content tag

format (ContentFormat) : the content format

content (Object) : the content

Stores content in this provider with the specified tag and format. The content must not be None and its
type must be compatible with the format. Any existing content with the same tag is replaced.

c.putContentAsBinary(tag, content)

tag (string) : the content tag

content (byte[]) : the content

Stores binary content in this provider under the specified tag. The content must not be None.

c.putContentAsUTF8(tag, content)

tag (string) : the content tag

content (string) : the content

Stores string content in this provider under the specified tag. The content must not be None.

c.removeContent(tag)

tag (string) : the content tag

Removes any content stored by this provider under the specified tag.

12 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

CredentialDescriptor Objects
This defines the credentials to log into DataBase.

c.getDefinitionName() : string

Returns the credential definition name.

c.getDomain() : string

Returns the domain associated with this credential.

c.getPassword() : string

Returns the password.

c.getUserName() : string

Returns the user name.

FileFormat Objects
Subclass of Enum.

This class defines constants for the different file formats supported by objects in the Modeler API.

Constants:

BITMAP (FileFormat) : Identifier for bitmap image format.

COGNOS_ACTIVE_REPORT (FileFormat) : Identifier for Cognos Active Report format.

COMMA_DELIMITED (FileFormat) : Identifier for comma-delimited text.

COMPOSITE_PROCESSOR (FileFormat) : Identifier for the native SuperNode format.

DOCUMENT_OUTPUT (FileFormat) : Identifier for the native DocumentOutput format.

EMF (FileFormat) : Identifier for Enhanced Metafile format.

EPS (FileFormat) : Identifier for Encapsulated PostScript format.

EXTERNAL_MODULE_SPECIFICATION (FileFormat) : Identifier for the native external module
specification format.

HTML (FileFormat) : Identifier for HTML format.

HTMLC (FileFormat) : Identifier for HTMLC format.

JAR (FileFormat) : Identifier for JAR (Java archive) format.

JPEG (FileFormat) : Identifier for JPEG image format.

MODEL_OUTPUT (FileFormat) : Identifier for the native ModelOutput format.

MODEL_OUTPUT_SET (FileFormat) : Identifier for the native ModelOutput set format.

MS_EXCEL (FileFormat) : Identifier for MS Excel format.

MS_EXCEL2007 (FileFormat) : Identifier for MS Excel 2007 format.

MS_EXCEL2007_M (FileFormat) : Identifier for MS Excel 2007 macro-enabled format.

MS_POWERPOINT (FileFormat) : Identifier for MS PowerPoint format.

MS_POWERPOINT2007 (FileFormat) : Identifier for MS PowerPoint 2007 format.

MS_WORD (FileFormat) : Identifier for MS Word format.

MS_WORD2007 (FileFormat) : Identifier for MS Word 2007 format.

Chapter 3. Core Objects 13

PASW_RULE (FileFormat) : Identifier for PASW RULE format.

PDF (FileFormat) : Identifier for PDF format.

PLAIN_TEXT (FileFormat) : Identifier for plain text format.

PNG (FileFormat) : Identifier for PNG image format.

PROCESSOR (FileFormat) : Identifier for the native Node format.

PROCESSOR_STREAM (FileFormat) : Identifier for the native Stream format.

PROJECT (FileFormat) : Identifier for the native Project format.

PUBLISHED_IMAGE (FileFormat) : Identifier for the native image format produced by a Publisher
node.

PUBLISHED_PARAMETERS (FileFormat) : Identifier for the native image parameter format produced
by a Publisher node.

RTF (FileFormat) : Identifier for Rich Text Format.

SPSS_APPLICATION_VIEW (FileFormat) : Identifier for SPSS application view format.

SPSS_DATA (FileFormat) : Identifier for SPSS .sav data format.

SPSS_DATA_PROVIDER (FileFormat) : Identifier for SPSS data provider format.

SPSS_SCENARIO (FileFormat) : Identifier for SPSS scenario format.

SPSS_SCENARIO_TEMPLATE (FileFormat) : Identifier for SPSS scenario template format.

SPSS_WEB_REPORT (FileFormat) : Identifier for SPSS Web Report format.

SPV (FileFormat) : Identifier for SPV format.

SPW (FileFormat) : Identifier for SPW format.

STATE (FileFormat) : Identifier for the native combined ModelOutput and Stream format.

TAB_DELIMITED (FileFormat) : Identifier for tab-delimited text.

TIFF (FileFormat) : Identifier for TIFF format.

UNKNOWN (FileFormat) : Identifier for an unknown file format.

VIZ (FileFormat) : Identifier for VIZ format.

VIZML (FileFormat) : Identifier for VIZML format.

XML (FileFormat) : Identifier for XML format.

ZIP (FileFormat) : Identifier for Zip (compressed archive) format.

f.equals(object) : boolean

object (Object) :

Returns True if the supplied object is equal to this. Two file formats are considered equal if the names are
equal ignoring the case of the name.

f.getDefaultExtension() : string

Returns the default file extension for this file format or an empty string if no file extensions are defined for
this file format. The file extension includes the leading ".".

getEnum(name) : FileFormat

name (string) : the enumeration name

14 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.
The lookup is not case-sensitive.

f.getExtensionAt(index) : string

index (int) : the file extension index

Returns the file extansion at the supplied index. The first (0'th) extension is assumed to be the default
extension. The file extension includes the leading ".".

f.getExtensionCount() : int

Returns the number of file extensions associated with this file format.

f.getFileFilterPattern() : string

Returns a file filter pattern suitable for use with a file chooser dialog that includes all the file extensions
associated with this file type. An empty string is returned if no file extensions are defined for this file type.

getFileFormatForExtension(extension) : FileFormat

extension (string) : the file extension

Returns the default file format for the supplied extension or None if no matching file format can be found.
The extension search is not case-sensitive.

getFileFormatForMIMEType(mimeType) : FileFormat

mimeType (string) : the mime type to be searched for

Returns the file format for the supplied MIME type or None if no matching file format can be found.

getFileFormatsForExtension(extension) : List

extension (string) : the file extension

Returns a list of all file formats with the supplied extension. The extension search is not case-sensitive.

f.getMIMEType() : string

Returns the MIME type associated with this file format or an empty string if no MIME type has been
defined.

getValues() : FileFormat[]

Returns an array containing all the valid values for this enumeration class.

f.isUnknown() : boolean

Returns True if this value is UNKNOWN.

f.isValidExtension(extension) : boolean

extension (string) : the file extension

Returns True if the supplied extension is valid for this file format or False otherwise. None values and
the empty string always return False.

IncompatibleServerException Objects
Subclass of ServerConnectionException.

An exception thrown while attempting to connect to an incompatible server version.

Chapter 3. Core Objects 15

A message string is always created for this exception.

i.getServerMajorVersion() : int

Returns the major version returned by the server being connected to.

i.getServerMinorVersion() : int

Returns the minor version returned by the server being connected to.

i.getServerPatchVersion() : int

Returns the patch version returned by the server being connected to.

InvalidPropertyException Objects
Subclass of ModelerException.

An exception thrown when an invalid property is accessed or an invalid value is supplied for a property.

A message string is always created for this exception.

i.getProperty() : string

Returns the property name.

i.getValue() : Object

Returns the value being assigned or None.

ModelFieldRole Objects
Subclass of Enum.

This class enumerates the valid model output roles.

Constants:

ADJUSTED_PROBABILITY (ModelFieldRole) : Indicates a field containing the adjusted probability
of the target value.

ENTITY_AFFINITY (ModelFieldRole) : Indicates a field containing the affinity or distance of the
value from the entity.

ENTITY_ID (ModelFieldRole) : Indicates a field containing the entity ID associated with the cluster,
tree node, neuron or rule.

LOWER_CONFIDENCE_LIMIT (ModelFieldRole) : Indicates a field containing the lower confidence
limit of a numeric prediction.

PREDICTED_DISPLAY_VALUE (ModelFieldRole) : Indicates a field containing a displayed-friendly
representation of the predicted value.

PREDICTED_VALUE (ModelFieldRole) : Indicates a field containing the predicted value.

PROBABILITY (ModelFieldRole) : Indicates a field containing the probability of the target value.

PRODICTED_SEQUENCE (ModelFieldRole) : Indicates a field containing the predicted sequence.

PRODICTED_SEQUENCE_PROBABILITY (ModelFieldRole) : Indicates a field containing the
probability associated with the predicted sequence.

PROPENSITY (ModelFieldRole) : Indicates a field containing the propensity of the prediction.

RESIDUAL (ModelFieldRole) : Indicates a field containing the residual of the predicted numeric
value.

16 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

STANDARD_DEVIATION (ModelFieldRole) : Indicates a field containing the standard deviation of
the target value.

STANDARD_ERROR (ModelFieldRole) : Indicates a field containing the standard error of the
predicted numeric value.

SUPPLEMENTARY (ModelFieldRole) : Indicates a field containing some additional information about
the value that cannot be categorized into one of the other model field roles.

SUPPORT (ModelFieldRole) : Indicates a field containing the support associated with an association
model rule.

UNKNOWN (ModelFieldRole) : Indicates that the role cannot be determined.

UPPER_CONFIDENCE_LIMIT (ModelFieldRole) : Indicates a field containing the upper confidence
limit of a numeric prediction.

VALUE (ModelFieldRole) : Indicates a field containing the model output value for non-predictive
models.

VARIANCE (ModelFieldRole) : Indicates a field containing the variance of the target value.

getEnum(name) : ModelFieldRole

name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

getValues() : ModelFieldRole[]

Returns an array containing all the valid values for this enumeration class.

m.isUnknown() : boolean

Returns True if this value is UNKNOWN.

ObjectCreationException Objects
Subclass of ModelerException.

An exception thrown when an instance of an object cannot be created.

No message string is set for this exception.

ObjectLockedException Objects
Subclass of ModelerException.

An exception thrown when an attempt is made to lock or modify an object that is already locked. Locking
an object prevents an updates to that object while the lock is in effect. A Stream and all its Nodes are
locked by the Session during execution.

No message string is set for this exception.

o.getObject() : Object

Returns the object.

OwnerException Objects
Subclass of ModelerException.

An exception thrown when an object owner requires an owned object.

Chapter 3. Core Objects 17

No message string is set for this exception.

o.getOwner() : Object

Returns the object owner.

o.getUnownedObject() : Object

Returns the object that is not owned by the owner.

ParameterDefinition Objects
Describes a parameter which affects the behaviour of some Modeler API objects. A parameter definition
is obtained from a ParameterProvider. The parameter name is unique within the provider.

Parameters are modified through the provider. A ParameterDefinition instance may be a snapshot
of a parameter definition at the time it was obtained from the provider and need not reflect subsequent
modifications.

p.getFalseFlag() : Object

Returns the false indicator for this flag parameter. Returns None if the parameter type is other than
ParameterType.FLAG or if no false value has been declared for the flag.

p.getLowerBound() : Object

Returns a lower bound on the valid values of this parameter. Returns None if the parameter type is other
than ParameterType.RANGE or if no lower bound has been declared for the range.

p.getParameterLabel() : string

Returns a label for this parameter. The default label is the empty string.

p.getParameterName() : string

Returns the name of this parameter. The name is unique within the parameter provider.

p.getParameterStorage() : ParameterStorage

Returns the storage type of this parameter.

p.getParameterType() : ParameterType

Returns the measure of this parameter.

p.getParameterValue() : Object

Returns the value of this parameter.

p.getSetValues() : Object[]

Returns the valid values of this parameter. Returns None if the parameter type is other than
ParameterType.SET or if no values have been declared for the set.

p.getTrueFlag() : Object

Returns the true indicator for this flag parameter. Returns None if the parameter type is other than
ParameterType.FLAG or if no true value has been declared for the flag.

p.getUpperBound() : Object

18 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Returns an upper bound on the valid values of this parameter. Returns None if the parameter type is other
than ParameterType.RANGE or if no upper bound has been declared for the range.

p.isValidValue(value) : boolean

value (Object) : the value

Returns True if the specified value is valid for this parameter. The value must be compatible with the
parameter storage type and with the parameter values when they are specified.

ParameterProvider Objects
Identifies objects that contain parameters. Parameters do not control the behaviour of the implementing
class directly but provide a look-up mechanism for values that may affect the behaviour of other objects.

p.getParameterDefinition(parameterName) : ParameterDefinition

parameterName (string) : the parameter name

Returns the parameter definition for the parameter with the specified name or None if no such parameter
exists in this provider. The result may be a snapshot of the definition at the time the method was called
and need not reflect any subsequent modifications made to the parameter through this provider.

p.getParameterLabel(parameterName) : string

parameterName (string) : the parameter name

Returns the label of the named parameter or None if no such parameter exists.

p.getParameterStorage(parameterName) : ParameterStorage

parameterName (string) : the parameter name

Returns the storage of the named parameter or None if no such parameter exists.

p.getParameterType(parameterName) : ParameterType

parameterName (string) : the parameter name

Returns the type of the named parameter or None if no such parameter exists.

p.getParameterValue(parameterName) : Object

parameterName (string) : the parameter name

Returns the value of the named parameter or None if no such parameter exists.

p.parameterIterator() : Iterator

Returns an iterator of parameter names for this object.

p.setParameterLabel(parameterName, label)

parameterName (string) : the parameter name

label (string) : the parameter label

Sets the label of the named parameter.

Exceptions:

ObjectLockedException : if the parameter provider is locked

p.setParameterStorage(parameterName, storage)

Chapter 3. Core Objects 19

parameterName (string) : the parameter name

storage (ParameterStorage) : the parameter storage

Sets the storage of the named parameter.

Exceptions:

ObjectLockedException : if the parameter provider is locked

p.setParameterType(parameterName, type)

parameterName (string) : the parameter name

type (ParameterType) : the parameter type

Sets the type of the named parameter.

Exceptions:

ObjectLockedException : if the parameter provider is locked

p.setParameterValue(parameterName, value)

parameterName (string) : the parameter name

value (Object) : the parameter value

Sets the value of the named parameter.

Exceptions:

ObjectLockedException : if the parameter provider is locked

ParameterStorage Objects
Subclass of Enum.

This class enumerates the valid storage types for columns in a DataModel or parameters.

Constants:

DATE (ParameterStorage) : Indicates that the storage type is a date type.

INTEGER (ParameterStorage) : Indicates that the storage type is an integer.

REAL (ParameterStorage) : Indicates that the storage type is a floating point number.

STRING (ParameterStorage) : Indicates that the storage type is a string.

TIME (ParameterStorage) : Indicates that the storage type is a time type.

TIMESTAMP (ParameterStorage) : Indicates that the storage type is a combined time and date type.

UNKNOWN (ParameterStorage) : Indicates that the storage type is unknown.

getEnum(name) : ParameterStorage

name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

p.getStorageClass() : Class

Returns the Java class that parameter values with this storage will be returned as.

getValues() : ParameterStorage[]

Returns an array containing all the valid values for this enumeration class.

20 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

ParameterType Objects
Subclass of Enum.

This class enumerates the valid types of parameter support by a ParameterProvider.

Constants:

FLAG (ParameterType) : Indicates that the parameter value is one of two values.

RANGE (ParameterType) : Indicates that the parameter value lies between two points on a scale.

SET (ParameterType) : Indicates that the parameter value is one of a (small) set of discrete values.

TYPELESS (ParameterType) : Indicates that the parameter can have any value compatible with its
storage.

getEnum(name) : ParameterType

name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

getValues() : ParameterType[]

Returns an array containing all the valid values for this enumeration class.

PropertiedObject Objects
This encapsulates the functionality of objects that contain settable properties. Properties are split into
two sub-groups:

• Simple properties: these are basic name/value pairs
• Keyed properties: these are properties associated with specific objects

An example of a simple property is a Boolean value that specifies to a data file reader whether column
names are included in the first line of a file:

myDataReader.setPropertyValue("read_field_names", Boolean.TRUE);

An example of a keyed property is used in an object that allows fields or columns to be removed from
the data model. Here the setting is made up of both the property name and the key which is the column
name:

// Remove "DateOfBirth" column
myColumnFilter.setKeyedPropertyValue("include", "DateOfBirth", Boolean.FALSE);

Finally note that properties which correspond with Enum values must be converted to strings by calling
getName() before being passed to one of the setter methods:

typeProcessor.setKeyedPropertyValue("role", "Drug", ModelingRole.OUT.getName());

Similarly, the getter methods will return Strings which can then be converted to the appropriate Enum
value:

String value = (String) typeProcessor.getKeyedPropertyValue("role", "Drug");
ModelingRole role = ModelingRole.getValue(value);

p.getKeyedPropertyKeys(propertyName) : List

propertyName (string) : the property name

Chapter 3. Core Objects 21

Returns the keys currently defined for the supplied keyed property name.

p.getKeyedPropertyValue(propertyName, keyName) : Object

propertyName (string) : the property name

keyName (string) : the key name

Returns the value of the named property and key or None if no such property or key exists.

p.getLabel() : string

Returns the object's display label. The label is the value of the property "custom_name" if that is a non-
empty string and the "use_custom_name" property is not set; otherwise, it is the value of getName().

p.getName() : string

Returns the object's name.

p.getPropertyValue(propertyName) : Object

propertyName (string) : the property name

Returns the value of the named property or None if no such property exists.

p.getSavedByVersion() : double

Return the object's saved by version.

Exceptions:

Exception : if the information cannot be accessed for some reason

p.isKeyedProperty(propertyName) : boolean

propertyName (string) : the property name

Returns True if the supplied property name is a keyed property.

p.isServerConnectionRequiredProperty(propertyName) : boolean

propertyName (string) : the property name

Returns True if the supplied property name should only be set if there is a valid server connection.

p.propertyIterator() : Iterator

Returns an iterator of property names for this object.

p.setKeyedPropertyValue(propertyName, keyName, value)

propertyName (string) : the property name

keyName (string) : the key name

value (Object) : the property value

Sets the value of the named property and key.

Exceptions:

ObjectLockedException : if the propertied object is locked

22 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

InvalidPropertyException : if the property name is unknown or the supplied value is not valid for
the property

p.setLabel(label)

label (string) : the object's display label

Sets the object's display label. If the new label is a non-empty string it is assigned to the property
"custom_name", and False is assigned to the property "use_custom_name" so that the specified
label takes precedence; otherwise, an empty string is assigned to the property "custom_name", and
True is assigned to the property .

p.setPropertyValue(propertyName, value)

propertyName (string) : the property name

value (Object) : the property value

Sets the value of the named property.

Exceptions:

ObjectLockedException : if the propertied object is locked

InvalidPropertyException : if the property name is unknown or the supplied value is not valid for
the property

p.setPropertyValues(properties)

properties (Map) : the property/value pairs to be assigned

Sets the values of the named properties. Each entry in the Map consists of a key representing the property
name and the value which should be assigned to that property.

Exceptions:

ObjectLockedException : if the propertied object is locked

InvalidPropertyException : if one of the property names is unknown or one the supplied values is
not valid for that property

p.setPropertyValuesFrom(otherObject)

otherObject (PropertiedObject) : the other object whose properties are to be copied

Sets the values of the properties that are in both this object and the supplied other object.

Exceptions:

ObjectLockedException : if the propertied object is locked

RepositoryConnectionDescriptor Objects
Defines the basic data elements required to connect to a content repository.

r.getDomainName() : string

Returns the domain name to be used when logging into the content repository (if applicable) or the empty
string.

r.getHostName() : string

Returns the host name or IP address of the content repository machine.

r.getPassword() : string

Chapter 3. Core Objects 23

Returns the user's password in plain text. An empty string indicates that there is no password.

r.getPortNumber() : int

Returns the port number which the content repository is listening on.

r.getUseSSL() : boolean

Returns True if the connection should use a secure socket.

r.getUserName() : string

Returns the user's login name.

RepositoryConnectionDescriptor2 Objects
Subclass of RepositoryConnectionDescriptor.

Extends the repository connection details for applications which are aware of PASW platform services.

r.getSsoToken() : Object

Returns the SSO security token or None if there is no token.

r.getSubject() : Object

Returns the platform security subject or None if there is no subject.

RepositoryConnectionDescriptor3 Objects
Subclass of RepositoryConnectionDescriptor2.

r.getContextRoot() : string

Return the context root of the content repository service.

ServerConnectionDescriptor Objects
Subclass of SystemServerConnectionDescriptor.

Defines the basic data elements required to connect to a remote server.

s.getPassword() : string

Returns the user's password in plain text. An empty string indicates that there is no password.

s.isSSOConnect() : boolean

Returns True if the connection should use SSO.

s.isUseSSL() : boolean

Returns True if the connection should use SSL.

ServerConnectionException Objects
Subclass of ModelerException.

An exception thrown while connecting or using a ServerConnectionDescriptor.

A message string is always created for this exception.

24 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

ServerVersionInfo Objects
Version information for a connected server.

A server version has four components, in decreasing order of priority:

• major
• minor
• release
• fix pack

s.getServerVersionFixPack() : int

Returns the server fix pack number.

s.getServerVersionMajor() : int

Returns the server major version number.

s.getServerVersionMinor() : int

Returns the server minor version number.

s.getServerVersionRelease() : int

Returns the server release number.

StructureAttributeType Objects
Subclass of Enum.

This class enumerates the valid types of attribute supported by a ParameterProvider.

Constants:

BOOLEAN (StructureAttributeType) :

DATE (StructureAttributeType) :

DOUBLE (StructureAttributeType) :

INTEGER (StructureAttributeType) :

STRING (StructureAttributeType) :

getEnum(name) : StructureAttributeType

name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

s.getStorageClass() : Class

Returns the basic Java class used to represent this attribute's value. One of:

• string
• int
• float
• boolean
• Date

getValues() : StructureAttributeType[]

Chapter 3. Core Objects 25

Returns an array containing all the valid values for this enumeration class.

StructuredValue Objects
This interface defines a structured value. A structured value consists of a number of simple attributes.

s.changeAttributeValue(index, value) : StructuredValue

index (int) : the index

value (Object) : the new value

Returns a new structured value with the attribute value at the specified index changed to the new value.
An attribute value cannot be None -- if the supplied value is None, it will be ignored.

s.getAttributeCount() : int

Returns the number of attribute values in the structure.

s.getAttributeValue(index) : Object

index (int) : the index

Returns the attribute value at the specified index.

SystemServerConnectionDescriptor Objects
Defines the basic data elements that describes a server connection. Note that for security reasons, the
user's password is not accessible through this interface.

s.getDataDirectory() : string

Returns the data directory for this connection descriptor.

s.getDomainName() : string

Returns the domain name to be used when logging into the server (if applicable) or the empty string.

s.getHostName() : string

Returns the host name or IP address of the server machine.

s.getPortNumber() : int

Returns the port number which the server is listening on.

s.getServerMajorVersion() : int

Returns the major version of server required by this descriptor.

s.getServerMinorVersion() : int

Returns the minor version of server required by this descriptor.

s.getServerPatchVersion() : int

Returns the patch version of server required by this descriptor.

s.getUserName() : string

Returns the user's login name.

26 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Chapter 4. Data and Metadata

This provides support for metadata such as the names, values and types of data.

Column Objects
This defines the properties of a set of columns. Applications that wish to construct Column instances
must do so using the DataModelFactory rather than implementing the interface directly.

c.getColumnLabel() : string

Returns the label of the column or an empty string if there is no label associated with the column.

c.getColumnName() : string

Returns the name of the column.

c.getFalseFlag() : Object

Returns the "false" indicator value for the column, or None if either the value is not known or the column
is not a flag.

c.getLowerBound() : Object

Returns the lower bound value for the values in the column, or None if either the value is not known or the
column is not continuous.

c.getMeasureType() : MeasureType

Returns the measure type for the column.

c.getMissingValueDefinition() : MissingValueDefinition

Returns the missing value definition for the column or None.

c.getModelOutputMetadata() : ModelOutputMetadata

Returns the model output column role for the column if it is a model output column or None.

c.getModelingRole() : ModelingRole

Returns the modeling role for the column.

c.getSetValues() : Object[]

Returns an array of valid values for the column, or None if either the values are not known or the column is
not a set.

c.getStorageType() : StorageType

Returns the storage type for the column.

c.getTrueFlag() : Object

Returns the "true" indicator value for the column, or None if either the value is not known or the column is
not a flag.

c.getUpperBound() : Object

Returns the upper bound value for the values in the column, or None if either the value is not known or the
column is not continuous.

c.getValueLabel(value) : string

value (Object) : the value

Returns the label for the value in the column or an empty string if there is no label associated with the
value.

c.hasMissingValueDefinition() : boolean

Returns True if the column has a missing value definition.

c.isMeasureDiscrete() : boolean

Returns True if the column is discrete. Columns that are either a set or a flag are considered discrete.

c.isModelOutputColumn() : boolean

Returns True if this is a model output column.

c.isStorageDatetime() : boolean

Returns True if the column's storage is a time, date or timestamp value.

c.isStorageNumeric() : boolean

Returns True if the column's storage is an integer or a real number.

c.isValidValue(value) : boolean

value (Object) : the value

Returns True if the specified value is valid for this storage and valid when the valid column values are
known.

d.getExtendedMeasure(name) : ExtendedMeasure

name (string) : the column name

Returns additional metadata that is specific for this field. For example, geospatial fields may return a
geospatial-specific descriptor that defines the metadata necessary for the correct interpretation of the
values.

Exceptions:

DataModelException : if the named column does not exist

d.getExtendedStorage(name) : ExtendedStorage

name (string) : the field name

Returns additional metadata for this field's storage or None if no additional storage metadata is defined.

d.isList(name) : boolean

name (string) :

Returns True if this field is a list field.

ColumnCountException Objects
Subclass of DataModelException.

28 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

A ColumnCountException is thrown when the number of columns in the data did not match the
number of columns specified in the data model.

No message string is set for this exception.

c.getValues() : List

Returns the list of values that were being converted.

ColumnGroup Objects
This defines the properties of a column group. A column group is typically used to identify related
columns e.g. that represent a multi response set.

c.getColumnGroupLabel() : string

Returns the label of the column group or an empty string if there is no label associated with the column
group.

c.getColumnGroupName() : string

Returns the name of the column group.

c.getColumnGroupType() : ColumnGroupType

Returns the type of column group.

c.getColumnNames() : List

Returns the list of column names in this group. The list is a copy of the list in the group and can be
modified without affecting the group definition.

c.getCountedValue() : string

Returns the counted value for this column group. The counted value only has meaning for multi dichotomy
sets and represents the "true" or "selected" value of the column. Note that the value is represented as
a string even if the columns named by the column group have storage other than string and it is the
responsibility of the calling application to convert the string representation into a valid value.

ColumnGroupType Objects
Subclass of Enum.

This class enumerates the valid types for a ColumnGroup.

Constants:

• GENERAL (ColumnGroupType) : Indicates that the there are no special semantics associated with
this column group.

• MULTI_CATEGORY_SET (ColumnGroupType) : Indicates that this column group represents a multi
category set.

• MULTI_DICHOTOMY_SET (ColumnGroupType) : Indicates that this column group represents a
multi dichotomy set.

• SPLIT_GROUP (ColumnGroupType) : A group representing the split fields. Ideally the application
will keep the fields in the split group consistent with the fields whose role is "split". However,
components will use the group to determine the order for the split fields and will typically ignore the
"split" role. There should be at most one split group in the data model.

getEnum(name) : ColumnGroupType

Chapter 4. Data and Metadata 29

name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

getValues() : ColumnGroupType[]

Returns an array containing all the valid values for this enumeration class.

DataModel Objects
This defines the properties of a set of columns. Applications that wish to construct data model instances
must do so using the DataModelFactory rather than implementing the interface directly.

d.columnGroupIterator() : Iterator

Returns an iterator that returns each column group in turn.

d.columnIterator() : Iterator

Returns an iterator that returns each column in the "natural" insert order. The iterator returns instances of
Column.

d.contains(name) : boolean

name (string) : the column name

Returns True if a column with the supplied name exists in this DataModel, False otherwise.

d.getColumn(name) : Column
name (string) :

Returns the column with the specified name.

Exceptions:

DataModelException : if the named column does not exist

d.getColumnCount() : int

Returns the number of columns in this set.

d.getColumnGroup(name) : ColumnGroup
name (string) :

Returns the named column group or None if no such column group exists.

d.getColumnGroupCount() : int

Returns the number of column groups in this data model.

d.getColumnLabel(name) : string

name (string) : the column name

Returns the label of the named column or an empty string if there is no label associated with the column.

Exceptions:

DataModelException : if the named column does not exist

d.getFalseFlag(name) : Object

name (string) : the column name

30 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Returns the "false" indicator value for the column, or None if either the value is not known or the column
is not a flag.

Exceptions:

DataModelException : if the named column does not exist

d.getLowerBound(name) : Object

name (string) : the column name

Returns the lower bound value for the values in the named column, or None if either the value is not
known or the column is not continuous.

Exceptions:

DataModelException : if the named column does not exist

d.getMeasureType(name) : MeasureType

name (string) : the column name

Returns the measure type for values in the named column.

Exceptions:

DataModelException : if the named column does not exist

d.getMissingValueDefinition(name) : MissingValueDefinition

name (string) : the column name

Returns the missing value definition for the column or None.

Exceptions:

DataModelException : if the named column does not exist

d.getModelingRole(name) : ModelingRole

name (string) : the column name

Returns the modeling role for the named column.

Exceptions:

DataModelException : if the named column does not exist

d.getSetValues(name) : Object[]

name (string) : the column name

Returns an array of valid values for the column, or None if either the values are not known or the column is
not a set.

Exceptions:

DataModelException : if the named column does not exist

d.getStorageType(name) : StorageType

name (string) : the column name

Returns the storage type for values in the named column.

Exceptions:

Chapter 4. Data and Metadata 31

DataModelException : if the named column does not exist

d.getTrueFlag(name) : Object

name (string) : the column name

Returns the "true" indicator value for the column, or None if either the value is not known or the column is
not a flag.

Exceptions:

DataModelException : if the named column does not exist

d.getUpperBound(name) : Object

name (string) : the column name

Returns the upper bound value for the values in the named column, or None if either the value is not
known or the column is not continuous.

Exceptions:

DataModelException : if the named column does not exist

d.getValueLabel(name, value) : string

name (string) : the column name

value (Object) : the value

Returns the label for the value in the named column or an empty string if there is no label associated with
the value.

Exceptions:

DataModelException : if the named column does not exist

d.hasMissingValueDefinition(name) : boolean

name (string) : the column name

Returns True if the column has a missing value definition.

Exceptions:

DataModelException : if the named column does not exist

d.isMeasureDiscrete(name) : boolean

name (string) : the column name

Returns True if the column is discrete. Columns that are either a set or a flag are considered discrete.

Exceptions:

DataModelException : if the named column does not exist

d.isModelOutputColumn(name) : boolean

name (string) : the column name

Returns True if this is a model output column.

Exceptions:

DataModelException : if the named column does not exist

d.isStorageDatetime(name) : boolean

32 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

name (string) : the column name

Returns True if the column's storage is a time, date or timestamp value.

Exceptions:

DataModelException : if the named column does not exist

d.isStorageNumeric(name) : boolean

name (string) : the column name

Returns True if the column's storage is an integer or a real number.

Exceptions:

DataModelException : if the named column does not exist

d.isValidValue(name, value) : boolean

name (string) : the column name

value (Object) : the value

Returns True if the specified value is valid for this storage and valid when the valid column values are
known.

Exceptions:

DataModelException : if the named column does not exist

d.nameIterator() : Iterator

Returns an iterator that returns the name of each column in the "natural" insert order.

d.toArray() : Column[]

Returns the data model as an array of columns. The columns are ordered in their natural/insert order.

DataModelException Objects
Subclass of ModelerException.

An exception thrown when there is a mismatch between physical set of data and its expected data model.

No message string is set for this exception.

d.getDataModel() : DataModel

Returns the data model that was being used to convert the values.

DataModelFactory Objects
A factory class that creates and manipulates instances of Column and DataModel.

d.createCollectionType(valueMeasure) : CollectionType

valueMeasure(MeasureType) : the measure that should be applied to each value in the list.

Creates a new CollectionType object. The definition specifies the measurement associated
with individual values in the list. The storage cannot be either MeasureType.COLLECTION or
MeasureType.GEOSPATIAL, and should also be consistent with the storage type associated with the
simple values in the list column that this metadata is to be associated with.

d.createColumn(name, label, storageType, measureType, modelingRole) : Column

Chapter 4. Data and Metadata 33

name (string) : the column name

label (string) : the column label (may be None)

storageType (StorageType) : the storage definition

measureType (MeasureType) : the measure definition (may be None)

modelingRole (ModelingRole) : the model role definition for each column (may be None)

Returns a Column with the supplied attributes.

d.createColumn(name, label, extendedStorage) : Column

name (string) : the column name

label (string) : the column label (may be None)

extendedStorage (ExtendedStorage) : the extended storage definition

Returns a Column with the supplied attributes. The measure type is set to MeasureType.TYPELESS.

d.createColumn(name, label, extendedStorage, extendedMeasure) : Column

name (string) : the column name

label (string) : the column label (may be None)

extendedStorage (ExtendedStorage) : the extended storage definition

extendedMeasure (ExtendedMeasure) : the extended measure definition

Returns a Column with the supplied attributes. The measure type is set to MeasureType.TYPELESS.

d.createColumn(name, label, sourceColumn) : Column

name (string) : the column name

label (string) : the column label (may be None)

sourceColumn (Column) : the source column

Returns a Column with the specified name and labels but with all other attributes the same as source
column.

Exceptions:

DataModelException : if the source column was not created by the DataModelFactory.

d.createDataModel() : DataModel

Returns an empty DataModel.

d.createFlagColumn(name, label, storageType, falseValue, trueValue) : Column

name (string) : the column name

label (string) : the column label (may be None)

storageType (StorageType) : the storage definition

falseValue (object) : the false value

trueValue (object) : the true value

Returns a Column with the supplied attributes.

d.createGeoType(geometryType, coordinates, wellKnownID, coordinateSystemName) : GeoType

geometryType (GeometryType) : the type of geometry object

34 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

coordinates (int) : a positive integer representing the number

WellKnownID (int) : the “well-known ID” of the coordinate system or 0 if this is not known

coordinateSystemName (string) : the name of the coordinate system or the empty string if this is
not known.

Creates a new GeoType object. The definition specifies the type of geometry object, the number of
coordinates (typically 2 or 3) required to represent the geometry object, and the“well-known ID” and/or
the coordinate system name.

d.createListStorage(depth, valueType) : ListStorage

depth (int) : how deeply nested the simple values are in the list

valueType (StorageType) : the type of the simple values

Creates a new ListStorage object. The definition specifies the depth of the list starting at 0 for a
list of simple values, and the basic storage of the underlying values. The storage cannot be either
StorageType.UNKNOWN or StorageType.LIST.

d.createModelOutputColumn(prefix, basename, storageType, measureType, modelOutputMetadata) :
Column

prefix (string) : the column prefix (may not contain "-" characters)

basename (string) : the column base name

storageType (StorageType) : the storage type

measureType (MeasureType) : the measure type

modelOutputMetadata (ModelOutputMetadata) : the model output metadata

Returns a new Column with the specified type metadata and associated model output metadata.

Exceptions:

DataModelException : if the prefix is invalid

d.createModelOutputColumn(prefix, basename, sourceColumn, modelOutputMetadata) : Column

prefix (string) : the column prefix (may not contain "-" characters)

basename (string) : the column base name

sourceColumn (Column) : the source column specifying the column type

modelOutputMetadata (ModelOutputMetadata) : the model output metadata

Returns a new Column with the same type metadata as the source column along with the associated
model output metadata.

Exceptions:

DataModelException : if the source column was not created by the DataModelFactory or the prefix
is invalid.

d.createModelOutputMetadata(modelFieldRole, targetColumn, value, group, tag) :
ModelOutputMetadata

modelFieldRole (ModelFieldRole) : the mode column role

targetColumn (string) : the target column (may be None)

value (object) : the specific value associated with this column (may be None). If supplied, this must be an
instance of string, int, or float.

group (List) : the column group definition (may be None). If supplied this must be a list on int values
which are >= 1.

Chapter 4. Data and Metadata 35

tag (string) : the tag (may be None)

Returns a new model output metadata object with the specified attributes.

d.createRangeColumn(name, label, storageType, lowerBound, upperBound) : Column

name (string) : the column name

label (string) : the column label (may be None)

storageType (StorageType) : the storage definition

lowerBound (object) : the lower range bound

upperBound (object) : the upper range bound

Returns a Column with the supplied attributes.

d.createSetColumn(name, label, storageType, values) : Column

name (string) : the column name

label (string) : the column label (may be None)

storageType (StorageType) : the storage definition

values (object[]) : the valid values for the column

Returns a Column with the supplied attributes.

d.dataModelToXML(dataModel) : string

dataModel (DataModel) : the data model

Returns an XML format string containing the supplied data model in a serializable format. The data model
can be recreated by calling xmlToDataModel.

Exceptions:

DataModelException : if the data model XML cannot be created

d.extendDataModel(column, initialDataModel) : DataModel

column (Column) : the column

initialDataModel (DataModel) :

Returns a DataModel consisting of the column appended to the supplied data model. The supplied array
must not contain None values.

Exceptions:

com.spss.psapi.data.DataModelException : if the column was not created by the
DataModelFactory.

d.extendDataModel(addition, initialDataModel) : DataModel

addition (DataModel) : the data model to be appended

initialDataModel (DataModel) :

Returns a DataModel consisting of the initial data model with the additions appended.

Exceptions:

com.spss.psapi.data.DataModelException : if the data models were not created by the
DataModelFactory.

d.extendDataModel(columns, initialDataModel) : DataModel

36 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

columns (Column[]) : the columns

initialDataModel (DataModel) :

Returns a DataModel consisting of the columns appended to the supplied data model. The supplied
array must not contain None values.

Exceptions:

com.spss.psapi.data.DataModelException : if the columns array contains None values.

d.extractDataModel(names, initialDataModel) : DataModel

names (string[]) : the column names

initialDataModel (DataModel) : the source data model

Returns a DataModel consisting of the named columns extracted from the source data model. If the
source data model does not include a specified column name, that column will be ignored.

Exceptions:

com.spss.psapi.data.DataModelException : if the array contains None values.

d.extractDataModel(storageTypes, initialDataModel) : DataModel

storageTypes (StorageType[]) : the storage types

initialDataModel (DataModel) : the source data model

Returns a DataModel consisting of columns in the source data model that have the supplied storage
type(s).

Exceptions:

com.spss.psapi.data.DataModelException : if the array contains None values.

d.extractDataModel(measureTypes, initialDataModel) : DataModel

measureTypes (MeasureType[]) : the measure types

initialDataModel (DataModel) : the source data model

Returns a DataModel consisting of columns in the source data model that have the supplied measure
type(s).

Exceptions:

com.spss.psapi.data.DataModelException : if the array contains None values.

d.extractDataModel(modelingRoles, initialDataModel) : DataModel

modelingRoles (ModelingRole[]) : the modeling roles types

initialDataModel (DataModel) : the source data model

Returns a DataModel consisting of columns in the source data model that have the supplied modeling
role(s).

Exceptions:

com.spss.psapi.data.DataModelException : if the array contains None values.

d.modifyColumns(modifiedColumns) : DataModel

modifiedColumns (Collection) : the columns to be modified

Creates and returns a new data model based on this data model with the specified columns modified.
The supplied columns will be used to replace any existing column with the same name meaning that this

Chapter 4. Data and Metadata 37

method cannot be used to change the name of columns in the data model. If a supplied column name
does not match an existing column, it will be ignored.

d.removeColumns(columnNames) : DataModel

columnNames (Collection) :

Creates and returns a new data model based on this data model with the specified columns modified.
The supplied columns will be used to replace any existing column with the same name meaning that this
method cannot be used to change the name of columns in the data model. If a supplied column does not
match an existing column, it will be added to the end of the data model.

Exceptions:

DataModelException : if the modified columns are invalid

d.removeFromDataModel(names, initialDataModel) : DataModel

names (string[]) : the column names

initialDataModel (DataModel) : the source data model

Returns a DataModel consisting of the source data model with the named columns removed.

Exceptions:

com.spss.psapi.data.DataModelException : if the array contains None values.

d.removeFromDataModel(storageTypes, initialDataModel) : DataModel

storageTypes (StorageType[]) : the storage types

initialDataModel (DataModel) : the source data model

Returns a DataModel consisting of the source data model with columns of the supplied storage type(s)
removed.

Exceptions:

com.spss.psapi.data.DataModelException : if the array contains None values.

d.removeFromDataModel(measureTypes, initialDataModel) : DataModel

measureTypes (MeasureType[]) : the measure types

initialDataModel (DataModel) : the source data model

Returns a DataModel consisting of the source data model with columns of the supplied measure type(s)
removed.

Exceptions:

com.spss.psapi.data.DataModelException : if the array contains None values.

d.removeFromDataModel(modelingRoles, initialDataModel) : DataModel

modelingRoles (ModelingRole[]) : the modeling roles types

initialDataModel (DataModel) : the source data model

Returns a DataModel consisting of the source data model with columns of the supplied modeling roles(s)
removed.

Exceptions:

com.spss.psapi.data.DataModelException : if the array contains None values.

d.renameColumns(modifiedNames) : DataModel

38 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

modifiedNames (Map) : a map containing the original column names as the key and the new name as
the associated value

Creates and returns a new data model based on this data model with the specified columns renamed. If
the map contains keys that do not correspond to columns in the data model, the key will be ignored.

Exceptions:

DataModelException : if the new column names are invalid, for example cause the data model to have
duplicate names.

d.toDataModel(columns) : DataModel

columns (Column[]) : Returns a DataModel containing the supplied columns. The columns are
inserted in array order.

Exceptions:

DataModelException : if the source columns are not the system defined implementation

d.xmlToDataModel(xml) : DataModel

xml (string) : the data model XML

Returns a DataModel defined by the supplied XML string. It is assumed the string was generated by
calling dataModelToXML.

Exceptions:

DataModelException : if the data model cannot be recreated

ExtendedMeasure Objects
This is an empty marker interface which identifies classes that provide extended measure metadata.

ExtendedStorage Objects
This is an empty marker interface which identifies classes that provide extended storage metadata.

GeoType Objects
Subclass of ExtendedMeasure.

Defines the different categories of geo objects.

g.getCoordinates() : int

Returns a positive integer, usually 2 or 3, which is the number of coordinates that define a point.

g.getCsname() : string

Returns a string containing the name of the coordinate system if the “well-known ID” is >= 0 or None.

g.getGeometryType() : GeometryType

Returns the type of object represented by this definition.

g.getWkid() : int

Returns an integer representing the “well-known ID” of the coordinate system or -1. If the attribute is -1,
then the coordinate system is assumed to be a non-standard one.

g.getWkt() : string

Chapter 4. Data and Metadata 39

Returns a string containing the “well-known text” for the coordinate system corresponding to the “well-
known ID”.

g.isProjected() : boolean

For valid “well-known ID” values, this indicates whether the coordinate system is projected or geographic.

GeometryType Objects
Defines the different categories of geo objects.

Constants:

LineString (GeometryType) : Defines that the values describe lines.

MultiLineString (GeometryType) : Defines that the values describe multiple lines.

MultiPoint (GeometryType) : Defines that the values describe multiple points.

MultiPolygon (GeometryType) : Defines that the values describe multiple polygons.

Point (GeometryType) : Defines that the values describe points.

Polygon (GeometryType) : Defines that the values describe polygons.

g.getDepth() : int

Returns the list depth that this geometry type uses.

valueOf(name) : GeometryType

name(string) :

values() : GeometryType{[]

GlobalValues Objects
This defines the set of global values which are usually computed by a stream via a "setglobals" node.

g.fieldNameIterator() : Iterator

Returns an iterator for each field name with at least one global value.

g.getValue(type, fieldName) : Object

type (GlobalValues.Type) : the type of value

fieldName (string) : the field name

Returns the global value for the specified type and field name or None if no value can be located. The
returned value is generally expected to be a number although future functionality may return different
value types.

g.getValues(fieldName) : Map
fieldName (string) :

Returns a map containing the known entries for the specified field name or None of no entries for the field
exist.

GlobalValues.Type Objects
This defines the set of global value types than can be accessed from the global values table.

40 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Constants:

• MAX (GlobalValues.Type) :
• MEAN (GlobalValues.Type) :
• MIN (GlobalValues.Type) :
• STDDEV (GlobalValues.Type) :
• SUM (GlobalValues.Type) :

g.getFunctionName() : string
valueOf(name) : GlobalValues.Type
name (string) :
values() : GlobalValues.Type[]

InvalidColumnExceptionValues Objects
Subclass of DataModelException.

An InvalidColumnValueException is thrown when the value supplied for a column is not consistent
with its storage type.

No message string is set for this exception.

i.getColumnName() : string

Returns the name of the unknown column.

i.getValue() : Object

Returns the invalid value.

ListStorage Objects
Subclass of ExtendedStorage.

Defines the storage metadata associated with lists

l.getDepth() : int

Returns the depth of the list. A list consisting of simple values has a depth of 0.

l.getValueStorage() : StorageType

Returns the simple storage of the values held in the list. The return value will not be Storage.UNKNOWN
or Storage.LIST.

MeasureType Objects
Subclass of Enum.

This class enumerates the valid measures for columns in a DataModel.

Constants:

• AUTOMATIC (MeasureType) : Indicates that the column value will be auto-selected as RANGE or
DISCRETE according to its storage.

• COLLECTION (MeasureType) : Indicates that the column value should be interpreted as a
collection of values.

• DISCRETE (MeasureType) : Indicates that the column value is like SET but can be treated as FLAG
if there are only two values.

• FLAG (MeasureType) : Indicates that the column value is one of two values.

Chapter 4. Data and Metadata 41

• GEOSPATIAL (MeasureType) : Indicates that the column value should be interpreted as a
geospatial value.

• ORDERED_SET (MeasureType) : Indicates that the column value is like SET but with an implied
order on the values.

• RANGE (MeasureType) : Indicates that the column value lies between two points on a scale.
• SET (MeasureType) : Indicates that the column value is one of a (small) set of discrete values.
• TYPELESS (MeasureType) : Indicates that the column can have any value compatible with its

storage.

getEnum(name) : MeasureType

name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

getValues() : MeasureType[]

Returns an array containing all the valid values for this enumeration class.

MissingValueDefinition Objects
This defines the attributes associated with missing values.

m.getValueCount() : int

Returns the number of values specified as missing in this definition, excluding None and whitespace
values. The result is the length of the list returned by getValues.

m.getValues() : List

Returns the list of values specified as missing in this definition. The list cannot be modified; the mutator
methods on the list throw UnsupportedOperationException.

m.isEnabled() : boolean

Returns True if this definition is enabled. A definition which is not enabled recognizes no values as
missing.

m.isNullIncluded() : boolean

Returns True if the None value is recognized as missing by this definition.

m.isWhitespaceIncluded() : boolean

Returns True if whitespace values are recognized as missing by this definition.

ModelOutputMetadata Objects
This defines the metadata associated with a Column generated by a model.

Constants:

• ADJUSTED (string) : Used by binary classifiers as the tag value indicating that the column indicates
adjusted propensity.

• RAW (string) : Used by binary classifiers as the tag value indicating that the column indicates raw
propensity.

• X (string) : Used by Kohonen models as the tag value indicating the X component of the cluster id.

42 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

• Y (string) : Used by Kohonen models as the tag value indicating the Y component of the cluster id.

m.getRole() : ModelFieldRole

Returns the model output column role for the column if it is a model output column or None.

m.getTag() : string

Returns the tag associated with this model output column or None if the column is not a model output
column or the tag has not been defined.

m.getTargetColumn() : string

Returns the target column name associated with this model output column or None if the column is not a
model output column or the target column has not been defined.

m.getValue() : Object

Returns the value associated with this model output column or None if the column is not a model output
column or no value has been defined. The value is typically used in combination with the target column
e.g. when a model can generate probabilities for each value specified by the target field.

ModelingRole Objects
Subclass of Enum.

This class enumerates the valid modeling roles for columns in a DataModel.

Constants:

• BOTH (ModelingRole) : Indicates that this column can be either an antecendent or a consequent.
• FREQ_WEIGHT (ModelingRole) : Indicates that this column is used to be as frequency weight but

won't be showed for user
• IN (ModelingRole) : Indicates that this column is a predictor or an antecendent.
• NONE (ModelingRole) : Indicates that this column is not used directly during modeling.
• OUT (ModelingRole) : Indicates that this column is predicted or a consequent.
• PARTITION (ModelingRole) : Indicates that this column is used to identify the data partition.
• RECORD_ID (ModelingRole) : Indicates that this column is used to indentify the record id.
• SPLIT (ModelingRole) : Indicates that this column is used to split the data.

getEnum(name) : ModelingRole

name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

getValues() : ModelingRole[]

Returns an array containing all the valid values for this enumeration class.

RowSet Objects
This defines the properties of a tabular dataset.

r.getColumnClass(columnIndex) : Class

columnIndex (int) : the column index

Chapter 4. Data and Metadata 43

Returns the class of objects in a specified column of this dataset. The column index must be in the range:

0 <= index < getColumnCount()

Exceptions:

IndexOutOfBoundsException : unless the column index is in range

r.getColumnCount() : int

Returns the number of columns in this dataset.

r.getColumnName(columnIndex) : string

columnIndex (int) : the column index

Returns the name of a specified column in this dataset. Returns the empty string if the column does not
have a name. The column index must be in the range:

0 <= index < getColumnCount()

Exceptions:

IndexOutOfBoundsException : unless the column index is in range

r.getRowCount() : int

Returns the number of rows in this dataset.

r.getValueAt(rowIndex, columnIndex) : Object

rowIndex (int) : the row index

columnIndex (int) : the column index

Returns the value from a specified row and column in this dataset. The row and column indexes must be
in the range:

0 <= rowIndex < getRowCount() && 0 <= columnIndex < getColumnCount()

The returned value will either be None or an instance of the class returned by getColumnClass for the
same column index.

Exceptions:

IndexOutOfBoundsException : unless the row and column indexes are in range

StorageType Objects
Subclass of Enum.

This class enumerates the valid storage types for columns in a DataModel or parameters.

Constants:

• DATE (StorageType) : Indicates that the storage type is a date type.
• INTEGER (StorageType) : Indicates that the storage type is an integer.
• LIST (StorageType) : Indicates that the storage type is a list of primitive values.
• REAL (StorageType) : Indicates that the storage type is a floating point number.
• STRING (StorageType) : Indicates that the storage type is a string.
• TIME (StorageType) : Indicates that the storage type is a time type.
• TIMESTAMP (StorageType) : Indicates that the storage type is a combined time and date type.

44 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

• UNKNOWN (StorageType) : Indicates that the storage type is unknown.

getEnum(name) : StorageType

name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

getValues() : StorageType[]

Returns an array containing all the valid values for this enumeration class.

UnknownColumnException Objects
Subclass of DataModelException.

An UnknownColumnException is thrown when a column name is used that does not exist in the data
model.

No message string is set for this exception.

u.getColumnName() : string

Returns the name of the unknown column.

Chapter 4. Data and Metadata 45

46 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Chapter 5. Expressions

This provides support for for parsing CLEM expressions.

Expression Objects
This interface encapsulates details of a CLEM expression.

e.getReferencedFields() : set

Returns the Set of field names referenced by the expression.

e.getStorageType() : StorageType

Returns the StorageType of the expression.

Parser Objects
This interface encapsulates the functionality for parsing CLEM expressions.

p.parseExpression(expressionString, dataModel) : Expression

expressionString (string) : - the string to parse

dataModel (DataModel) : - the data model

Attempts to parse the string argument to an Expression. Parsing checks for syntax, lexical and
semantic errors. The dataModel argument is used to check for fields referenced in the expression. Parsing
using this method will fail if the string contains reference to Node or Stream related functions and
values such as GlobalValues, Parameters and database functions.

Exceptions

ParserException: - if the string does not contain a parsable Expression.

ParserException Objects
Subclass of ModelerException.

A ParserException is thrown to indicate that an attempt to parse a string to an Expression failed.
Parsing can fail due to syntax, lexical or semantic errors.

p.getEndPosition() : int

Returns the end position in the parsed string of the text relating to the error. Returns -1 if start position
is not valid.

p.getStartPosition() : int

Returns the start position in the parsed string of the text relating to the error. Returns -1 if start position
is not valid.

48 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Chapter 6. Model information

This provides support for accessing information about data mining models.

CompositeModelDetail Objects
Subclass of ModelDetail.

This interface encapsulates the representation detail of a composite model.

c.canUseMultipleModels() : boolean

Returns True if multiple models can be used by the composite model.

c.getIndividualModelResults() : Iterator

Returns the individual model results of this composite model.

ModelDetail Objects
This interface encapsulates the representation detail of a data mining model.

m.getAlgorithmName() : string

Returns the name of the model builder algorithm.

m.getApplicationName() : string

Returns the name of the model builder application.

m.getApplicationVersion() : string

Returns the version of the model builder application.

m.getBuildDate() : Date

Returns the date this model was built.

m.getCopyright() : string

Returns the model copyright.

m.getInputDataModel() : DataModel

Returns the input data model required by the model. Note that the ModelingRole for each field in the
input data model is ModelingRole.IN, even for fields that had been specified as ModelingRole.BOTH
for association or sequence models.

m.getModelID() : string

Returns the model ID. For models within a composite model, it is assumed that each model has a unique
ID.

m.getModelType() : ModelType

Returns the type of the model.

m.getOutputDataModel() : DataModel

Returns the output data model produced by the model. Note that the ModelingRole for each
field in the output data model is ModelingRole.OUT, even for fields that had been specified as
ModelingRole.BOTH for association or sequence models.

It is also important to note that this is not same as the output column set produced by the
ModelApplier that applies the model to data. The transformer output column set will usually include
additional fields from the input and may include property settings that modify the number or type of
outputs produced (for example, a transformer that applies a clustering model may produce the cluster ID
as an integer or a string depending on the property settings).

m.getPMMLModelType() : PMMLModelType

For a model which is represented internally using PMML (one for which isPMMLModel() returns True) this
returns the PMML model type from the underlying PMML that was generated by the modeling algorithm.
For a model which is not represented using PMML this returns None.

m.getPMMLText() : string

For a model which is represented internally using PMML (one for which isPMMLModel() returns True)
this returns a string representing the PMML generated from the model building algorithm. For non-
PMML models this returns None. When this returns None you may be able to obtain an alternative
representation of the model as PMML using the export function: TaskRunner.exportModelToFile().

m.getSplitColumnNames() : List

Returns the list of split column names if this is a split model or None for non-split models.

m.getSplitModelCount() : int

Returns the number of split models if this is a split model or 0 otherwise.

m.getSplitModelKey(index) : List

index (int) : the model index

Returns the values of the split fields at the specified index for split models or None for non-split models.
When present, the values are in the order specified by the split output columns.

m.getSplitModelPMMLText(index) : string

index (int) : the model index

Returns the PMML representation of the split model at the specified index for split models or None for
non-split models or if the split model is not represented as PMML.

m.getUserName() : string

Returns the name of the account used to build the model.

m.isOutputColumnAuxiliary(name) : boolean

name (string) : the column name

Returns True if the supplied column name is an auxiliary column in the output data model or False. An
auxiliary output column is a column that provides additional information about the output of the model,
for example, the confidence of the prediction or distance from the cluster center.

m.isPMMLModel() : boolean

Returns True if this model is represented using PMML, or False otherwise.

m.isSplitModel() : boolean

50 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Returns True if this model is a split model, False otherwise.

ModelType Objects
Subclass of Enum.

This class enumerates the valid model types. These are largely based on the JDM 1.1 and draft JDM 2.0
data mining functions definition.

Constants:

• ANOMALY_DETECTION (ModelType) : Indicates an anomaly detection model.
• APPROXIMATION (ModelType) : Indicates that the model predicts a continuous value.
• ASSOCIATION (ModelType) : Indicates that the model identifies frequently occurring sets of items.
• ATTRIBUTE_IMPORTANCE (ModelType) : Indicates an attribute importance model.
• CATEGORIZE (ModelType) : Indicates a text categorize model.
• CLASSIFICATION (ModelType) : Indicates that the model predicts a discrete value.
• CLUSTERING (ModelType) : Indicates that the model groups similar rows of data together.
• CONCEPT_EXTRACTION (ModelType) : Indicates that the model identifies concepts from textual

data.
• REDUCTION (ModelType) : Indicates that the model reduces the complexity of data.
• SEQUENCE (ModelType) : Indicates that the model identifies frequently occurring sequences of

events.
• SUPERVISED_MULTITARGET (ModelType) : Indicates a supervised multi-target model.
• SURVIVAL_ANALYSIS (ModelType) : Indicates a survival analysis model.
• TIME_SERIES (ModelType) : Indicates a time series model.
• UNKNOWN (ModelType) : Indicates that the model type cannot be determined. This value should

never be returned for any built-in model.

getEnum(name) : ModelType

name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

getValues() : ModelType[]

Returns an array containing all the valid values for this enumeration class.

m.isUnknown() : boolean

Returns True if this value is ModelType.UNKNOWN.

PMMLModelType Objects
Subclass of Enum.

Enumerates the model types specified by PMML 4.0.

Constants:

• ASSOCIATION (PMMLModelType) : PMML AssociationModel
• CLUSTERING (PMMLModelType) : PMML ClusteringModel
• GENERAL_REGRESSION (PMMLModelType) : PMML GeneralRegressionModel
• MINING (PMMLModelType) : PMML MiningModel
• NAIVE_BAYES (PMMLModelType) : PMML NaiveBayesModel

Chapter 6. Model information 51

• NEURAL_NETWORK (PMMLModelType) : PMML NeuralNetwork
• REGRESSION (PMMLModelType) : PMML RegressionModel
• RULE_SET (PMMLModelType) : PMML RuleSetModel
• SEQUENCE (PMMLModelType) : PMML SequenceModel
• SUPPORT_VECTOR_MACHINE (PMMLModelType) : PMML SupportVectorMachineModel
• TEXT (PMMLModelType) : PMML TextModel
• TIME_SERIES (PMMLModelType) : PMML TimeSeriesModel
• TREE (PMMLModelType) : PMML TreeModel

getEnum(name) : PMMLModelType

name (string) : the PMML model type name

Returns the PMMLModelType corresponding to the specified PMML model type name, or None if there is
no such model type. The name must be one specified by PMML 4.0.

getValues() : PMMLModelType[]

Returns an array containing all the valid values for this enumeration class.

p.isUnknown() : boolean

Returns False always. All the values in this class represent known model types; there is no "unknown".

52 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Chapter 7. Server resources

This provides access to server-side resources such as the server file system and database connections.

ServerDatabaseConnection Objects
This encapsulates the functionality of an object that represents a connection to a database.

s.dropTable(tableName)
tableName (string) :
s.getDBQueryColumns(queryText) : RowSet

queryText (string) : the text of the query

Returns a list of the columns returned by a specified database query. The list is returned in the form of a
dataset where the first column contains the column name as a string.

Exceptions:

ServerResourceException : if the server resource cannot be accessed

s.getDBTableColumns(catalogName, schemaName, tableName) : RowSet

catalogName (string) : the catalog name

schemaName (string) : the schema name

tableName (string) : the base table name

Returns a list of the columns in a specified database table. The list is returned in the form of a
dataset where the first column contains the column name as a string and the second column contains
StorageType constants that provide the closest match for the storage types for the columns in the
database table.

Exceptions:

ServerResourceException : if the server resource cannot be accessed

s.getDBTables(catalogName, schemaName, tableName, includeUserTables, includeSystemTables,
includeViews,
includeSynonyms) : RowSet

catalogName (string) : pattern for the catalog name

schemaName (string) : pattern for the schema name

tableName (string) : pattern for the table name

includeUserTables (boolean) : indicates whether user tables should be included

includeSystemTables (boolean) : indicates whether system tables should be included

includeViews (boolean) : indicates whether views should be included

includeSynonyms (boolean) : indicates whether synonyms should be included

Returns a summary of the tables available on this database connection which match the specified
arguments. The summary is returned in the form of a dataset with at least two columns, of which the
first two columns are the schema name and table name, both as strings.

Exceptions:

ServerResourceException : if the server resource cannot be accessed

s.isDBTableVisible(catalogName, schemaName, tableName) : boolean

catalogName (string) : the catalog name

schemaName (string) : the schema name

tableName (string) : the table name

Returns True if the specified table is visible to this connection.

Exceptions:

ServerResourceException : if the server resource cannot be accessed

ServerFile Objects
This encapsulates the representation of a file on the server file system. A server file always uses / to
separate directory paths since this is valid for both UNIX and Windows file systems.

s.getName() : string

Returns the name of the file.

s.getParent() : string

Returns the pathname of the parent directory.

s.getParentServerFile() : ServerFile

Returns a file representing the parent directory.

s.getPath() : string

Returns the pathname of the file.

s.isAbsolute() : boolean

Returns whether the pathname is absolute.

s.isDirectory() : boolean

Returns whether this file is a directory.

ServerFileSystem Objects
This encapsulates the functionality for representing the file system on the data mining server's host.

s.createTemporaryFile(name) : ServerFile

name (string) : the suggested name of the new file

Creates a new file with a unique name in the server's temporary file space. The file is empty and can be
written by the creator. The specified name will be used as the starting point for generating a unique name
for the file, and if the name has an extension it will be left unchanged. The file must be deleted when it is
no longer needed.

Exceptions:

ServerResourceException : if the file cannot be created for any reason

s.deleteFile(file)

file (ServerFile) : the file to delete

Deletes the specified file from this file system. The caller must have permission to delete the file.

54 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Calling this method has the same effect as creating and running a delete file task.

Exceptions:

ServerResourceException : if the file cannot be deleted

s.directoryOrFileExists(path, isDirectory) : boolean

path (ServerFile) : Pathname to check

isDirectory (boolean) : Set to True if the path to be tested should be a directory

Returns whether a directory or file exists.

Exceptions:

ServerResourceException : if the server file system cannot be accessed

s.exists(file) : boolean
file (ServerFile) :

Returns whether a file exists.

Exceptions:

ServerResourceException : if the server file system cannot be accessed

s.getAbsolutePath(file) : string

file (ServerFile) : a ServerFile object

Returns the absolute pathname or None if the absolute path cannot be determined.

Exceptions:

ServerResourceException : if the server file system cannot be accessed

s.getAbsoluteServerFile(file) : ServerFile

file (ServerFile) : a ServerFile object

Returns a file representing the absolute pathname or None if the absolute path cannot be determined.

Exceptions:

ServerResourceException : if the server file system cannot be accessed

s.getChild(parent, filename) : ServerFile

parent (ServerFile) : a ServerFile object representing a directory or special folder

filename (string) : a name of a file or folder which exists in parent

Returns the named child in the supplied parent.

Exceptions:

ServerResourceException : if the server file system cannot be accessed

s.getDefaultDirectory() : ServerFile

Returns the server's default directory.

Exceptions:

ServerResourceException : if the server file system cannot be accessed

s.getFiles(directory) : ServerFile[]

directory (ServerFile) : the directory

Chapter 7. Server resources 55

Returns the list of files in the specified directory of the file system.

Exceptions:

ServerResourceException : if the server file system cannot be accessed

s.getParentDirectory(file) : ServerFile

file (ServerFile) : a ServerFile object

Returns the parent directory of a file in the file system.

s.getPathSeparator() : string

Returns a string version of the path separator character.

s.getPathSeparatorChar() : char

Returns the path separator character for this file system. On Windows, this is ; and on UNIX, this is :.

s.getRoots() : ServerFile[]

Returns the roots of the file system.

Exceptions:

ServerResourceException : if the server file system cannot be accessed

s.getSeparator() : string

Returns a string version of the separator character.

s.getSeparatorChar() : char

Returns the separator character for this file system. On Windows, this is \ and on UNIX, this is /.

s.getServerFile(filename) : ServerFile

filename (string) : a name of a file or folder

Returns a server file for the corresponding file name.

s.getSize(file) : long

file (ServerFile) : the file

Returns the size, in bytes, of the specified file in this file system. Returns 0 if the file does not exist or is
not accessible, or -1 if the file is accessible but the server does not support the file size operation. The
result is undefined when the file denotes a directory.

Exceptions:

ServerResourceException : if the file system cannot be accessed

ServerResourceException Objects
Subclass of ModelerException.

An exception thrown while accessing a server resource.

A message string is always created for this exception.

56 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Chapter 8. Server resources

This provides support for the construction and use of data mining sessions.

LocaleInfo Objects
This interface defines locale-sensitive information associated with a Session.

l.getLocale() : Locale

Returns the locale associated with this locale information object.

l.getLocalizedProcessorDescription(nodeType) : string

nodeType (string) : the node type

Returns a locale-sensitive string describing the supplied node type name or None if a description cannot
be found.

l.getLocalizedProcessorName(nodeType) : string

nodeType (string) : the node type name

Returns a locale-sensitive string representing the supplied node type name or None if a name cannot be
found.

Repository Objects
This defines the basic functionality for a content repository. Unlike the file persistence tasks defined by
TaskFactory, these are executed synchronously through the repository object rather than indirectly via
the Session.

r.createFolder(parentFolder, newFolder) : string

parentFolder (string) : the path to the parent folder

newFolder (string) : the new folder name

Creates a new folder with the specified name.

Exceptions:

SessionException : if the folder cannot be created

r.createRetrieveURI(path, version, label) : URI

path (string) : the full path to the object to be retrieved

version (string) : the version marker or None

label (string) : the label or None

A utility function to create a repository URI that is valid for retrieving an object from the specified location.
Either a version or label may be specified if a specific version is required. If both are None then the
LATEST version will be returned.

Exceptions:

URISyntaxException : if the method cannot construct a valid URI

r.createStoreURI(path, label) : URI

path (string) : the full path to the store location

label (string) : the label to be applied to the object or None

A utility function to create a repository URI that is valid for storing an object at the specified location and
with an optional label to be applied to the object when it is stored.

Exceptions:

URISyntaxException : if the method cannot construct a valid URI

r.deleteFolder(folder)

folder (string) : the folder to be deleted

Deletes the specified folder and any content within it.

Exceptions:

SessionException : if the folder cannot be deleted

r.getRepositoryHandle() : Object

Returns the underlying repository handle. The handle will be an instance of the Java class
com.spss.repository.client.application.Repository.

r.renameFolder(folder, newName)

folder (string) : the path of the folder to be renamed

newName (string) : the new folder name

Renames the specified folder.

Exceptions:

SessionException : if the folder cannot be renamed

r.retrieveDocument(path, version, label, autoManage) : DocumentOutput

path (string) : the full path to the object

version (string) : the version marker or None

label (string) : the label or None

autoManage (boolean) : whether the document should be added to the output manager

Retrieves an output document (in COU format) from the specified path. Either a version or label may be
specified if a specific version is required. If both are None then the LATEST version is returned. Code
that needs to open documents privately without having them made visible to the user should set the
autoManage flag to False.

Exceptions:

URISyntaxException : if the method cannot construct a valid URI

SessionException : if the document output cannot be retrieved for some reason

r.retrieveModel(path, version, label, autoManage) : ModelOutput

path (string) : the full path to the object

version (string) : the version marker or None

label (string) : the label or None

autoManage (boolean) : whether the model should be added to the model manager

58 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Retrieves a model output from the specified path. Either a version or label may be specified if a specific
version is required. If both are None then the LATEST version is returned. Code that needs to open models
privately without having them made visible to the user should set the autoManage flag to False.

Exceptions:

URISyntaxException : if the method cannot construct a valid URI

SessionException : if the model output cannot be retrieved for some reason

r.retrieveProcessor(path, version, label, diagram) : Node

path (string) : the full path to the object

version (string) : the version marker or None

label (string) : the label or None

diagram (Diagram) : the diagram that the node should be added to

Retrieves a node from the specified path and inserts it into the supplied diagram. Either a version or label
may be specified if a specific version is required. If both are None then the LATEST version is returned.

Exceptions:

URISyntaxException : if the method cannot construct a valid URI

SessionException : if the node cannot be retrieved for some reason

r.retrieveStream(path, version, label, autoManage) : Stream

path (string) : the full path to the object

version (string) : the version marker or None

label (string) : the label or None

autoManage (boolean) : whether the stream should be added to the stream manager

Retrieves a stream from the specified path. Either a version or label may be specified if a specific version
is required. If both are None then the LATEST version is returned. Code that needs to open streams
privately without having them made visible to the user should set the autoManage flag to False.

Exceptions:

URISyntaxException : if the method cannot construct a valid URI

SessionException : if the stream cannot be retrieved for some reason

r.storeDocument(documentOutput, path, label) : string

documentOutput (DocumentOutput) : the document output to be stored

path (string) : the path

label (string) : the label or None

Stores a document output to the specified location. If the label is provided then it is applied to the new
version.

Exceptions:

URISyntaxException : if the method cannot construct a valid URI

SessionException : if the document output cannot be stored for some reason

r.storeModel(modelOutput, path, label) : string

modelOutput (ModelOutput) : the model output to be stored

path (string) : the path

Chapter 8. Server resources 59

label (string) : the label or None

Stores a model output to the specified location. If the label is provided then it is applied to the new
version.

Exceptions:

URISyntaxException : if the method cannot construct a valid URI

SessionException : if the model output cannot be stored for some reason

r.storeProcessor(node, path, label) : string

node (Node) : the node to be stored

path (string) : the path

label (string) : the label or None

Stores a node to the specified location. If the label is provided then it is applied to the new version.

Exceptions:

URISyntaxException : if the method cannot construct a valid URI

SessionException : if the node cannot be stored for some reason

r.storeStream(stream, path, label) : string

stream (Stream) : the stream to be stored

path (string) : the path

label (string) : the label or None

Stores a stream to the specified location. If the label is provided then it is applied to the new version.

Exceptions:

URISyntaxException : if the method cannot construct a valid URI

SessionException : if the stream cannot be stored for some reason

Session Objects
Subclass of SystemSession.

A session is the main interface through which users of the Modeler API access the API features. Each
session has its own connection to a data mining server.

A data mining server is typically a remote server identified by a ServerConnectionDescriptor. From
Modeler API 2.0 a server can also be a local server instance spawned as a child process of the Modeler
API host process (see connect()). This local server mode requires a local server installation, such as a
Modeler client installation, on the local machine. The installation directory is located through the system
property

com.spss.psapi.session.serverInstallationDirectory

This property must point to a valid installation directory and must be set before the session factory is
instantiated otherwise connections to the local server will fail.

s.close()

Closes this session. This automatically interrupts any task currently running, closes any current Stream
and invalidates any other objects created by this session.

s.connect(serverDescriptor)

60 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

serverDescriptor (ServerConnectionDescriptor) : identifies a remote data mining server

Connects this session to the remote server identified by the specified server descriptor.

Exceptions:

ServerConnectionException : if a connection to the server cannot be established or if the Session
already has a connection

s.connect()

Connects this session to a local server instance. Spawns a new local server process.

Exceptions:

ServerConnectionException : if a local server instance cannot be created or if the session already
has a connection

s.connect(stream)

stream (Stream) : the stream to be connected

Connects the stream to the session's server.

Exceptions:

ServerConnectionException : if the Session is not connected or if the stream is already connected

OwnerException : if the stream was not created by this session

s.createServerDatabaseConnection(datasourceName, credentialName, catalogName) :
 ServerDatabaseConnection

datasourceName (string) : the datasource name

credentialName (string) : the stored credential name

catalogName (string) : the catalog name

Creates a ServerDatabaseConnection. The datasource name must visible to the data mining server.

Exceptions:

ServerConnectionException : if the session is not connected to a server

ServerResourceException : if the connection task fails.

s.createServerDatabaseConnection(datasourceName, userName, password, catalogName) :
 ServerDatabaseConnection

datasourceName (string) : the datasource name

userName (string) : the user name

password (string) : the password

catalogName (string) : the catalog name

Creates a ServerDatabaseConnection. The datasource name must visible to the data mining server.

Exceptions:

ServerConnectionException : if the session is not connected to a server

ServerResourceException : if the connection task fails.

s.getASCredentialDescriptor() : ASCredentialDescriptor

Chapter 8. Server resources 61

Returns the credential descriptor used to log in to the Analytic Server.

s.getAttribute(name) : Object

name (string) : an attribute name

Returns the value of the specified attribute in this session, or None if there is no such attribute. Attributes
are created by the application, not by the Modeler API.

s.getAttributeNames() : Collection

Returns the names of the attributes defined in this session.

s.getParameters() : ParameterProvider

Returns the parameter provider for this session. The parameter provider provides access to session
parameters.

s.getParser() : Parser

Returns the shared parser for this session.

s.getRepository() : Repository

Returns the repository object that provides simple mechanisms for storing and retrieving objects.

s.getRepositoryConnectionDescriptor() : RepositoryConnectionDescriptor

Returns the repository connection descriptor.

s.getServerConnectionDescriptor() : ServerConnectionDescriptor

Returns the ServerConnectionDescriptor used to connect this session to a remote server. Returns
None if the session is connected to a local server or has not yet been connected.

s.getServerDataSourceNames() : RowSet

Returns a row set that lists the available system DSNs visible on the data mining server host. The list is
returned in the form of a row set where the first column contains the data source name as a string and the
second column contains a string description.

Exceptions:

ServerConnectionException : if the session is not connected to a server

ServerResourceException : if access to the server data sources was denied

s.getServerFileSystem() : ServerFileSystem

Returns the server file system.

Exceptions:

ServerConnectionException : if the session is not connected to a server

ServerResourceException : if access to the server file system was denied

s.getServerVersionInfo() : ServerVersionInfo

Returns information about the connected server version or None if the session is not connected.

s.getTaskFactory() : TaskFactory

62 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Returns the TaskFactory for this session.

s.getTaskRunner() : TaskRunner

Returns the TaskRunner for this session.

s.getUIResources() : UIResources

Returns the interface that provides access to UI-related resources.

s.interrupt()

Interrupts any synchronous task which is currently executing. The call returns immediately while the task
is interrupted. It has no effect if the session is not busy.

This method may be called from any thread.

s.isBusy() : boolean

Returns True if this session is currently executing a synchronous task (even if the task is in the process of
being interrupted).

This method may be called from any thread.

s.isClosed() : boolean

Returns True if this has been closed.

s.isConnected() : boolean

Returns True if this session has a server connection.

s.isValidASCredentialDescriptor(asConnectionDescriptor) : boolean

asConnectionDescriptor (ASCredentialDescriptor) : the credential descriptor

Check whether the credential descriptor is a valid.

s.isValidRepositoryConnectionDescriptor(descriptor) : boolean

descriptor (RepositoryConnectionDescriptor) : the repository connection descriptor

Returns True if the supplied repository connection descriptor is valid i.e. can connect to a content
repository.

s.publish(node) : ExecutionHandle

node (DataWriter) : the DataWriter to be published

Executes the specified DataWriter in publish mode to obtain a PublishedImage. This overrides the
execution mode set in the node and retrieves the published image from the server on completion.
Execution is synchronous. The result is an ExecutionHandle which can be used to determine the exit
status of the task and, if the task completes successfully, to obtain the result of the task which is a
PublishedImage.

Exceptions:

OwnerException : if the node was not created by this session

ObjectLockedException : if the node or its containing stream is locked

ServerConnectionException : if the stream is not connected to a server

Chapter 8. Server resources 63

SessionException : if the session is already running another task, or cannot execute the task for
some other reason, or if execution completes in a state other than SUCCESS

s.publish(node, inline) : ExecutionHandle

node (TerminalNode) : the TerminalNode to be published. Must be a DataWriter if not
publishing inline

inline (boolean) : True to prepare the image for inline scoring

Executes the specified node in publish mode to obtain a PublishedImage ready for inline scoring.

If inline is False, this is equivalent to calling publish(DataWriter) and the node must be a data
writer. Otherwise, the node may be any terminal node and the stream is modified in place to replace the
input and output nodes with ones suitable for inline scoring.

Execution is synchronous. The result is an ExecutionHandle which can be used to determine the exit
status of the publishing task and, if the task completes successfully, to obtain the result of the task which
is a PublishedImage.

Exceptions:

OwnerException : if the node was not created by this session

ObjectLockedException : if the node or its containing stream is locked

ServerConnectionException : if the stream is not connected to a server

SessionException : if the session is already running another task, or cannot execute the task for
some other reason, or if the stream cannot be prepared for inline scoring, or if execution completes in a
state other than SUCCESS

s.removeAttribute(name)

name (string) : an attribute name

Deletes the specified attribute from this session. If there is no such attribute, the call has no effect.

s.run(stream, results) : ExecutionHandle

stream (Stream) : the Stream to be executed

results (Collection) : an empty collection that will contain any built objects once execution has
completed

Executes the supplied stream synchronously and waits for it to complete. Returns an ExecutionHandle
which can be used to access the exit status and any result from the task.

Exceptions:

OwnerException : if the stream was not created by this session

ObjectLockedException : if the stream is locked

ServerConnectionException : if the stream is not connected to a server

SessionException : if the session is already running another task, cannot execute the task or if
execution completes in a state other than SUCCESS

s.run(nodes, results) : ExecutionHandle

nodes (Node[]) : the array of Node objects to be executed

results (Collection) : an empty collection that will contain any built objects once execution has
completed

64 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Executes the supplied array of nodes synchronously and waits for them to complete. There must be at
least one node in the array. Returns an ExecutionHandle which can be used to access the exit status
and any result from the task.

Exceptions:

OwnerException : if the nodes' stream was not created by this session or the nodes are not all owned
by the same stream

ObjectLockedException : if the nodes' owner stream is locked

ServerConnectionException : if the nodes' stream is not connected to a server

SessionException : if the session is already running another task, cannot execute the task or if
execution completes in a state other than SUCCESS

IllegalArgumentException : if the array is empty

s.runTask(task) : ExecutionHandle

task (Task) : the Task to be executed

Executes the supplied task synchronously and waits for it to complete. Returns an ExecutionHandle
which can be used to access the exit status and any result from the task.

Exceptions:

OwnerException : if the task was not created by this session's TaskFactory

ObjectLockedException : if the task is already executing or any object referenced by the task is
locked for updating

SessionException : if the session cannot execute the task or if execution completes in a state other
than SUCCESS

s.setASCredentialDescriptor(asConnectionDescriptor)

asConnectionDescriptor (ASCredentialDescriptor) : the credential descriptor

Sets the credential descriptor used to log in Analytic Server.

s.setAttribute(name, value)

name (string) : an attribute name

value (Object) : the attribute value

Assigns a value to the specified attribute in this session. If the attribute already has a value, it is replaced.
If the value is None, the attribute is deleted from the session.

s.setRepositoryConnectionDescriptor(descriptor)

descriptor (RepositoryConnectionDescriptor) : the new repository connection descriptor

Sets the repository connection descriptor to be used when a connection to a content repository is
required. Any existing connection is closed although a new connection will not be created until it is
required.

s.spawn(stream, results) : ExecutionHandle

stream (Stream) : the Stream to be executed

results (Collection) : an empty collection that will contain any built objects once execution has
completed

Executes the supplied stream asynchronously. Returns an ExecutionHandle which can be used to
monitor and control the progress of the task.

Chapter 8. Server resources 65

Exceptions:

OwnerException : if the stream was not created by this session

ObjectLockedException : if the stream is locked

ServerConnectionException : if the stream is not connected to a server

s.spawn(nodes, builtObjects) : ExecutionHandle

nodes (Node[]) : the array of Node objects to be executed

builtObjects (Collection) : an empty collection that will be populated by built objects created by
the execution

Executes the supplied array of nodes asynchronously. Returns an ExecutionHandle which can be used
to monitor and control the progress of the task. There must be at least one node in the array.

Exceptions:

OwnerException : if the nodes' stream was not created by this session or the nodes are not all owned
by the same stream

ObjectLockedException : if the nodes' stream is locked

ServerConnectionException : if the nodes' stream is not connected to a server

IllegalArgumentException : if the array is empty

s.spawnPublish(node) : ExecutionHandle

node (DataWriter) : the DataWriter to be published

Executes the specified DataWriter asynchronously in publish mode to obtain a PublishedImage. This
overrides the execution mode set in the node and retrieves the published image from the server on
completion. Returns an ExecutionHandle which can be used to monitor and control the progress of the
publishing task and, if it completes successfully, to obtain the task result which is a PublishedImage.

Exceptions:

OwnerException : if the node was not created by this session

ObjectLockedException : if the node or its containing stream is locked

ServerConnectionException : if the stream is not connected to a server

s.spawnPublish(node, inline) : ExecutionHandle

node (TerminalNode) : the TerminalNode to be published. Must be a DataWriter if not
publishing inline

inline (boolean) : True to prepare the image for inline scoring

Executes the specified node asynchronously in publish mode to obtain a PublishedImage ready for
inline scoring.

If inline is False, this is equivalent to calling publish(DataWriter) and the node must be a data
writer. Otherwise, the node may be any terminal node and the stream is modified in place to replace the
input and output nodes with ones suitable for inline scoring.

Returns an ExecutionHandle which can be used to monitor and control the progress of the publishing
task and, if it completes successfully, to obtain the task result which is a PublishedImage.

Exceptions:

OwnerException : if the node was not created by this session

ObjectLockedException : if the node or its containing stream is locked

ServerConnectionException : if the stream is not connected to a server

66 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

SessionException : if the stream cannot be prepared for inline scoring

s.spawnTask(task) : ExecutionHandle

task (Task) : the Task to be executed

Executes the supplied task asynchronously. Returns an ExecutionHandle which can be used to monitor
and control the progress of the task.

Exceptions:

OwnerException : if the task was not created by this session's TaskFactory

ObjectLockedException : if the task is already executing or any object referenced by the task is
locked for updating

s.waitForAllTasksToFinish()

Waits for all tasks in progress on this session to complete.

SessionException Objects
Subclass of ModelerException.

An exception thrown while creating a Session or performing a task within a Session.

A message string is always created for this exception.

SystemSession Objects
Defines the functionality of a system session. Sessions define the basic context that other operations
work within.

s.getLocale() : Locale

Returns the locale specified for this session.

s.getLocaleInfo() : LocaleInfo

Returns the LocaleInfo for this session.

s.isLocalSession() : boolean

Returns True if the session is connected to a local or desktop execution engine, False otherwise.

UIResources Objects
This interface provides access to UI-related resources.

u.getBaseProcessorIcon(nodeType) : ImageIcon

nodeType (string) : the node type

Returns the base icon used to represent this node type or None. The base icon does not include any
background.

u.getProcessorIcon(nodeType) : ImageIcon

nodeType (string) : the node type

Returns the default icon used to represent this node type or None.

Chapter 8. Server resources 67

68 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Chapter 9. Tasks and execution

This provides objects that create and represent data mining tasks.

ExecutionFeedbackEvent Objects
Feedback received from an execution task. Feedback is only received from tasks executing a Node or
Stream.

Constants:

• MESSAGE_ID_EXECUTION_STARTED (int) : Message ID: execution started.
• MESSAGE_ID_EXECUTION_STOPPED (int) : Message ID: execution stopped.
• MESSAGE_ID_INTERRUPTED (int) : Message ID: interrupted.
• MESSAGE_ID_OPTIMIZATION_STARTED (int) : Message ID: optimization started.
• MESSAGE_ID_OPTIMIZATION_STOPPED (int) : Message ID: optimization stopped.
• MESSAGE_ID_OTHER (int) : Message ID: other.
• MESSAGE_ID_PREPARATION_STARTED (int) : Message ID: preparation started.
• MESSAGE_ID_PREPARATION_STOPPED (int) : Message ID: preparation stopped.
• MESSAGE_ID_PROCESS_EXECUTION_STARTED (int) : Message ID: external process execution

started.
• MESSAGE_ID_PROCESS_EXECUTION_STOPPED (int) : Message ID: external process execution

stopped.
• MESSAGE_ID_SQL_EXECUTION_STARTED (int) : Message ID: SQL execution started.
• MESSAGE_ID_SQL_EXECUTION_STOPPED (int) : Message ID: SQL execution stopped.
• SEVERITY_ERROR (int) : Severity level: error.
• SEVERITY_INFORMATION (int) : Severity level: information.
• SEVERITY_WARNING (int) : Severity level: warning.
• TYPE_DIAGNOSTIC (int) : Event type: diagnostic message.
• TYPE_PROGRESS (int) : Event type: percentage progress.
• TYPE_RECORD_COUNT (int) : Event type: record count.

createExecutionFeedbackEvent(handle, type, severity, message) : ExecutionFeedbackEvent

handle (ExecutionHandle) : the ExecutionHandle which originated the event

type (int) : the type of event

severity (int) : the severity level of the event

message (string) : the message associated with the event

Creates a new execution feedback event. getMessageId() returns MESSAGE_ID_OTHER.

createExecutionFeedbackEvent(handle, type, severity, messageId, message) :
ExecutionFeedbackEvent

handle (ExecutionHandle) : the ExecutionHandle which originated the event

type (int) : the type of event

severity (int) : the severity level of the event

messageId (int) : the message ID associated with the event

message (string) : the message associated with the event

Creates a new execution feedback event. If the value of messageId is not recognised, getMessageId()
returns MESSAGE_ID_OTHER.

e.getExecutionHandle() : ExecutionHandle

Returns the ExecutionHandle that raised the event. This is the source of the event cast to type
ExecutionHandle.

e.getMessage() : string

Returns the message associated with this event.

For an event of type TYPE_DIAGNOSTIC the result is the diagnostic message localized for the session.

For an event of type TYPE_RECORD_COUNT the result consists of two decimal integers separated by a
space, representing, respectively, the number of records read and written. For example:

"15000 0"

(15000 records read, none written).

For an event of type TYPE_PROGRESS the result consists of a single floating point number in the range

0.0 <= n <= 100.0

representing (an estimate of) the percentage of work completed. For example:

"26.3"

(26.3% completed).

e.getMessageId() : int

Returns the message ID associated with this event. This is one of the MESSAGE_ID_ constants.

e.getSeverity() : int

Returns the severity level of this event. The result is one of the SEVERITY_ constants declared above.
The severity levels SEVERITY_WARNING and SEVERITY_ERROR are associated with the event type
TYPE_DIAGNOSTIC and indicate a warning or error condition on the server. An error event ultimately
causes execution to fail.

e.getType() : int

Returns the type of feedback represented by this event. The result is one of the TYPE_ constants declared
above.

ExecutionFeedbackListener Objects
Subclass of EventListener.

Listener for ExecutionFeedbackEvent.

e.executionFeedback(event)
event (ExecutionFeedbackEvent) :

Called when execution feedback is produced.

70 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

ExecutionHandle Objects
Monitors and controls execution of a Task by a Session. A new handle is created for each execution.

e.getErrorMessage() : string

Returns an error message if execution terminated with an error and a message is available; returns None
otherwise.

e.getExecutionState() : ExecutionState

Returns the latest ExecutionState of the associated task.

e.getExitCode() : int

Returns the exit code from executing the task. Typically this is either 0 to indicate success or 1 to indicate
failure although some tasks may use different conventions. The result of querying the exit code before the
task has finished executing is undefined.

e.getResult() : Object

Returns the result of the task if execution terminated with success and the task produced a result.
Returns None if the task is still executing, or if it terminated in a state other than SUCCESS, or if it did not
return a result.

e.getTask() : Task

Returns the Task being executed.

e.terminate() : ExecutionState

Terminates execution of the associated task and returns its final ExecutionState. The call blocks until
the task has finished. The return value may not be TERMINATED if execution had completed before the
termination request was sent.

e.terminate(milliseconds) : ExecutionState

milliseconds (long) : the maximum time to wait for the task to complete

Terminates execution of the associated task, waits until the task has finished or until the specified
timeout has expired (whichever is sooner) and returns the execution state of the task. The result may not
be TERMINATED if execution had completed before the termination request was sent or if execution had
not completed before the timeout expired. A timeout of 0 or less means to wait forever.

e.waitForCompletion() : ExecutionState

Waits until the associated task has finished executing and returns its final ExecutionState.

e.waitForCompletion(milliseconds) : ExecutionState

milliseconds (long) : the maximum time to wait for completion

Waits until the associated task has finished executing, or until the specified timeout has expired
(whichever is sooner) and returns the ExecutionState of the task. A timeout of 0 or less means to
wait forever.

ExecutionState Objects
Subclass of Enum.

This class enumerates the task execution states.

Chapter 9. Tasks and execution 71

Constants:

• ERROR (ExecutionState) : The task has completed with an error.
• EXECUTING (ExecutionState) : The task is still executing.
• SUBMITTED (ExecutionState) : The task has been submitted for execution but not yet started.
• SUCCESS (ExecutionState) : The task has completed successfully.
• TERMINATED (ExecutionState) : The task has completed prematurely as the result of a terminate

request.
• TERMINATING (ExecutionState) : A terminate request has been issued but the task has not yet

completed.

getEnum(name) : ExecutionState

name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

getValues() : ExecutionState[]

Returns an array containing all the valid values for this enumeration class.

e.isCompletedState() : boolean

Returns True if this state represents a task that is no longer executing. This true for SUCCESS,
TERMINATED and ERROR states.

ExecutionStateEvent Objects
Indicates a state change in a task. An event is fired when a task moves into a new state, and the new state
is obtained from the event by calling getExecutionState.

createExecutionStateEvent(handle, state) : ExecutionStateEvent

handle (ExecutionHandle) : the ExecutionHandle for the event

state (ExecutionState) : the new execution state.

Creates a new execution state event.

e.getExecutionHandle() : ExecutionHandle

Returns the ExecutionHandle that raised the event.

e.getExecutionState() : ExecutionState

Returns the new execution state which caused this event to be raised. The return value is one of the
constants defined by ExecutionState.

Note: This may not correspond with the state that the task is now in since a subsequent state change may
have occurred.

ExecutionStateListener Objects
Subclass of EventListener.

Listener for ExecutionStateEvent.

e.executionStateChanged(event)
event (ExecutionStateEvent) :

Called when the execution state changes.

72 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Task Objects
A Task represents an operation that can be performed by the Modeler API.

t.getResult() : Object

Returns any object produced as a result of executing the task. This may be None if the task has not been
executed yet, or there was an error during execution or if the task does not produce a result.

TaskFactory Objects
The TaskFactory is used to create instances of Task. A task can be executed synchronously or
asynchronously by the Session. Session-owned objects that are passed to TaskFactory methods must
be executed by the session that owns them.

t.createDeleteFileTask(filePath) : Task

filePath (string) :- The path of file on server.

Create a task that delete the file using the specified file path.

t.createDownloadFileTask(path, outputStream) : Task

path (string) : the path of the remote file on server

outputStream (OutputStream) : the output stream

Creates a task that copies the content of a file on server to the specified output stream. The task will fail if
the file cannot be read.

t.createDropTableTask(conn, tableName) : Task

conn (ServerDatabaseConnection) : - The ServerDatabaseConnection used for connect to
the database.

tableName (string) : - The name of the table which you want to delete.

Create a task that drop the table using the specified table name.

t.createExportDocumentTask(document, outputStream, fileFormat) : Task

document (DocumentOutput) : the DocumentOutput object

outputStream (OutputStream) : the output stream

fileFormat (FileFormat) : the FileFormat to be used

Creates a task that exports a DocumentOutput object to an output stream using the specified
FileFormat name. Calling getResult() on the completed task returns None.

Exceptions:

OwnerException : if the output is not owned by the same session that owns the task factory

ExportFormatException : if the document does not support the export format

t.createExportModelTask(model, outputStream, fileFormat) : Task

model (ModelOutput) : the ModelOutput object

outputStream (OutputStream) : the output stream

fileFormat (FileFormat) : the FileFormat to be used

Creates a task that exports a ModelOutput object to an output stream using the specified FileFormat
name. Calling getResult() on the completed task returns None.

Chapter 9. Tasks and execution 73

Exceptions:

OwnerException : if the output is not owned by the same session that owns the task factory

ExportFormatException : if the model does not support the export format

t.createExportModelTask(modelApplier, outputStream, fileFormat) : Task

modelApplier (Node) : the Node object

outputStream (OutputStream) : the output stream

fileFormat (FileFormat) : the FileFormat to be used

Creates a task that exports a Node to an output stream using the specified FileFormat name. Calling
getResult() on the completed task returns None.

Exceptions:

OwnerException : if the output is not owned by the same session that owns the task factory

ExportFormatException : if the model does not support the export format

t.createExportStreamTask(stream, outputStream, fileFormat) : Task

stream (Stream) : the stream to be exported

outputStream (OutputStream) : the output stream

fileFormat (FileFormat) : the export file format

Creates a task that export a stream description to an output stream using specified file format.

Exceptions:

OwnerException : if the node is not owned by the same session that owns the task factory

ExportFormatException : if the stream does not support the export format

t.createImportPMMLModelTask(inputStream) : Task

inputStream (InputStream) : the input stream

Creates a task that imports a ModelOutput object from an input stream. Calling getResult() on the
completed task returns an instance of ModelOutput.

t.createOpenDocumentTask(inputStream) : Task

inputStream (InputStream) : the input stream

Creates a task that reads a DocumentOutput object from an input stream. Calling getResult() on
the completed task returns an instance of DocumentOutput. The document is not added to the output
manager.

t.createOpenDocumentTask(inputStream, autoManage) : Task

inputStream (InputStream) : the input stream

autoManage (boolean) : whether the document should be added to the output manager

Creates a task that reads a DocumentOutput object from an input stream. Calling getResult() on the
completed task returns an instance of DocumentOutput. Code that needs to open documents privately
without having them made visible to the user should set the autoManage flag to False.

t.createOpenModelTask(inputStream) : Task

inputStream (InputStream) : the input stream

74 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Creates a task that reads a ModelOutput object from an input stream. Calling getResult() on the
completed task returns an instance of ModelOutput. The model is not added to the model manager.

t.createOpenModelTask(inputStream, autoManage) : Task

inputStream (InputStream) : the input stream

autoManage (boolean) : whether the model should be added to the model manager

Creates a task that reads a ModelOutput object from an input stream. Calling getResult() on the
completed task returns an instance of ModelOutput. Code that needs to open models privately without
having them made visible to the user should set the autoManage flag to False.

t.createOpenProcessorTask(inputStream, stream) : Task

inputStream (InputStream) : the input stream

stream (Stream) : the Stream

Creates a task that reads a Node object from an input stream and inserts it into the supplied Stream.
Calling getResult() on the completed task returns an instance of Node.

Exceptions:

OwnerException : if the stream is not owned by the same session that owns the task factory

t.createOpenStreamTask(inputStream) : Task

inputStream (InputStream) : the input stream

Creates a task that reads a Stream object from an input stream. Calling getResult() on the completed
task returns an instance of Stream.

t.createOpenStreamTask(inputStream, autoManage) : Task

inputStream (InputStream) : the input stream

autoManage (boolean) : whether the opened stream should be added to the stream manager

Creates a task that reads a Stream object from an input stream. Calling getResult() on the completed
task returns an instance of Stream. Code that needs to open streams privately without having them made
visible to the user should set the autoManage flag to False.

t.createSaveDocumentTask(document, outputStream) : Task

document (DocumentOutput) : the DocumentOutput object

outputStream (OutputStream) : the output stream

Creates a task that saves a DocumentOutput object to an output stream. Calling getResult() on the
completed task returns None.

Exceptions:

OwnerException : if the document output is not owned by the same session that owns the task factory

t.createSaveModelTask(model, outputStream) : Task

model (ModelOutput) : the ModelOutput object

outputStream (OutputStream) : the output stream

Creates a task that saves a ModelOutput object to an output stream. Calling getResult() on the
completed task returns None.

Exceptions:

Chapter 9. Tasks and execution 75

OwnerException : if the model output is not owned by the same session that owns the task factory

t.createSaveProcessorTask(node, outputStream) : Task

node (Node) : the Node object

outputStream (OutputStream) : the output stream

Creates a task that saves a Node object to an output stream. Calling getResult() on the completed task
returns None.

Exceptions:

OwnerException : if the node is not owned by the same session that owns the task factory

t.createSaveStreamTask(stream, outputStream) : Task

stream (Stream) : the Stream object

outputStream (OutputStream) : the output stream

Creates a task that saves a Stream object to an output stream. Calling getResult() on the completed
task returns None.

Exceptions:

OwnerException : if the stream is not owned by the same session that owns the task factory

t.createUpdatePMMLModelTask(modelOutput, inputStream) : Task
modelOutput (ModelOutput) :
inputStream (InputStream) :

Creates a task that updates the ModelOutput object with PMML read from an input stream. The task will
fail if the ModelOutput is not based on a PMML model or the ModelOutput and the PMML algorithms
are not the same.

Exceptions:

OwnerException : if the model output is not owned by the same session that owns the task factory

t.createUploadFileTask(path, inputStream) : Task

path (string) : the path of the remote file on server

inputStream (InputStream) : the input stream

Creates a task that copies the content of the specified input stream to a file on server, replacing any
existing file content. The task will fail if the file cannot be written.

TaskRunner Objects
The TaskRunner provides a convenient way of creating and running tasks synchronously.

t.createStream(name, autoConnect, autoManage) : Stream
name (string) : the object's name

autoConnect (boolean) : whether the stream should be auto-connected to the server

autoManage (boolean) : whether the stream should be added to the stream manager

Creates and returns a new Stream. Note that code that needs to create streams privately without having
them made visible to the user should set the autoManage flag to False.

Exceptions:

ServerConnectionException : if the Session is already connected and the auto-connect flag is True
but a new connection could not be created for the stream

76 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

t.exportDocumentToFile(documentOutput, filename, fileFormat)
documentOutput (DocumentOutput) : the document to be exported

filename (string) : the exported file path

fileFormat (FileFormat) : the export file format

Exports the stream description to a file using the specified file format.

Exceptions:

OwnerException : if the document is not owned by the task runner session

SessionException : if the document cannot be exported for some reason

ExportFormatException : if the document does not support the export format

t.exportModelSummaryToFile(modelOutput, filename, fileFormat)
modelOutput (ModelOutput) : the model to be exported

filename (string) : the exported file path

fileFormat (FileFormat) : the export file format which is either FileFormat.PLAIN_TEXT or
FileFormat.HTML.

Exports the model summary to a file using the specified file format. Model summaries can only be
exported as text or HTML.

Exceptions:

OwnerException : if the model is not owned by the task runner session

SessionException : if the model cannot be exported for some reason

ExportFormatException : if the model does not support the export format

t.exportModelSummaryToFile(node, filename, fileFormat)
modelOutput (Node) : the model applier node to be exported

filename (string) : the exported file path

fileFormat (FileFormat) : the export file format which is either FileFormat.PLAIN_TEXT or
FileFormat.HTML.

Exports the model summary in the supplied node to a file using the specified file format. Model
summaries can only be exported as text or HTML.

Exceptions:

OwnerException : if the model is not owned by the task runner session

SessionException : if the model cannot be exported for some reason

ExportFormatException : if the model does not support the export format

t.exportModelToFile(modelOutput, filename, fileFormat)
modelOutput (ModelOutput) : the model to be exported

filename (string) : the exported file path

fileFormat (FileFormat) : the export file format

Exports the model to a file using the specified file format.

Exceptions:

OwnerException : if the model is not owned by the task runner session

Chapter 9. Tasks and execution 77

SessionException : if the model cannot be exported for some reason

ExportFormatException : if the model does not support the export format

t.exportModelToFile(node, filename, fileFormat)
modelOutput (Node) : the model applier node to be exported

filename (string) : the exported file path

fileFormat (FileFormat) : the export file format

Exports the model in the supplied node to a file using the specified file format.

Exceptions:

OwnerException : if the model is not owned by the task runner session

SessionException : if the model cannot be exported for some reason

ExportFormatException : if the model does not support the export format

t.exportOutputToFile(object, filename, fileFormat, options)
object (PropertiedObject) : the object with the output content

filename (string) : the file name where the output should be exported to

fileFormat (FileFormat) : the file format

options (Map) : either None or a hash table of attribute values

Exports the output content from the supplied object to the specified file and format. The following
document formats are supported:

• FileFormat.PLAIN_TEXT

• FileFormat.HTML

• FileFormat.RTF

• FileFormat.SPV

• FileFormat.SPW

• FileFormat.SPSS_WEB_REPORT

• FileFormat.COGNOS_ACTIVE_REPORT

• FileFormat.PDF

• FileFormat.MS_EXCEL

• FileFormat.MS_EXCEL2007

• FileFormat.MS_EXCEL2007_M

• FileFormat.MS_POWERPOINT

The following image formats are supported:

• FileFormat.BITMAP

78 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

• FileFormat.PNG

• FileFormat.JPEG

• FileFormat.TIFF

If options are supplied, the value is a table of attribute/value pairs. For document exports, the options
are:

• alternate_log_file_location (string): the location of the log file if this is to be expored
separately

• custom_report_title (string): a custom title for a web report
• excel_location_option ("AddColumns", "AddRows", "OverwriteAtCellRef"): where the content

should be exported to in Excel
• excel_operation_option ("CreateWorkbook", "CreateWorksheet", "ModifyWorksheet"): how the

content should be exported to Excel
• excel_sheetname (string): the Excel sheet name
• excel_starting_cell_ref (string): the Excel starting cell references
• export_html_headers (Boolean): whether to export HTML headers
• export_image_maps (Boolean): whether to create image maps
• export_images (Boolean): whether images should be exported separately for formats that don't

support images
• html_with_style (Boolean): whether style information should be saved
• include_footnotes_and_captions (Boolean): whether footnotes and captions should be included
• interactive_layer (Boolean): whether an interactive layer should be included in formats that

support them
• is_logs_excluded (Boolean): whether exclude logs
• is_notes_excluded (Boolean): whether to exclude notes
• is_text_excluded (Boolean): whether to exclude text content
• javascript_file_name (string): for interactive output, the location of the JavaScript file if separate
• model_view_option ("MVExportAll", "MVExportVisible", "MVPrintSetting"): which model views should

be exported
• page_break_between_table (Boolean): whether to create a page break between tables
• page_setup (Map): the page setup settings (see below)
• pdf_embed_bookmarks (Boolean): whether to embed bookmarks in PDF document
• pdf_embed_fonts (Boolean): whether to embed fonts in the PDF document
• pivot_table_option ("PTExportAllLayers", "PTExportVisibleLayers", "PTUsePrintLayerSetting"): how

pivot tables should be handled
• ppt_use_viewer_outlines (Boolean): whether to use viewer outlines in the PowerPoint
• preserve_break_points (Boolean): whether to preserve break points
• table_style (string): the name of the table style
• text_encoding ("utf8", "utf16"): what text encoding to use in text files
• text_doc_option ("TxtUseSpaces", "TxtUseTabs"): whether to uses spaces or tabs in text files
• text_width_autofit (Boolean): whether to make table columns fit the content in text files
• txt_column_width (integer): if table columns are not fitted to their content in text files, defines the

column width
• col_txt_border_character (character): the table column character when exporting to a text file
• row_txt_border_character (character): the table column character when exporting to a text file

Chapter 9. Tasks and execution 79

• viewer_doc_name (string): the name of the document which should be displayed in the viewer
• wide_tables_option ("WT_Extend", "WT_Shrink", "WT_Wrap"): defines how wide tables should be

handled

For graph exports, the options are:

• bmp_compress_image (Boolean): whether to compress bitmap images
• graph_image_size (integer): how much to scale the exported image as a percentage of the original
• graph_invert_colors (Boolean): whether to invert the colors
• graph_type ("BMP", "JPG", "PNG", "TIF"): defines the graph type to be used when exporting images

separately from the non-image content
• model_view_option ("MVExportAll", "MVExportVisible", "MVPrintSetting"): which model views should

be exported
• png_color_depth ("BlackWhite", "Grays", "SixteenColors", "TrueColor24", "TrueColor36",

"TwoFiftySixColors"): the color depth when exporting to PNG
• tiff_color_space ("CMYK", "RGB"): the color space when exporting to TIF
• tiff_compress_image (Boolean): whether to compress TIF images

For the page_setup, the options are:

• height (Double): the page height
• width (Double): the page width
• bottom_margin (Double): the bottom margin
• left_margin (Double): the left margin
• right_margin (Double): the right margin
• top_margin (Double): the top margin
• orientation (Integer): 0 for portrait, 1 for landscape
• units ("Centimeters", "Millimeters", "Inches", "PrintPoints"): the units that the margin and dimension

values represent

Exceptions:

OwnerException : if the object is not owned by the current session

ExportFormatException : if the export format is not supported

SessionException : if some other error occurs

t.exportStreamToFile(stream, filename, fileFormat)
stream (Stream) : the stream to be exported

filename (string) : the exported file path

fileFormat (FileFormat) : the export file format

Exports the stream description to a file using the specified file format.

Exceptions:

OwnerException : if the stream is not owned by the task runner session

SessionException : if the stream cannot be exported for some reason

ExportFormatException : if the stream does not support the export format

t.insertNodeFromFile(filename, diagram) : Node
filename (string) : the file path

diagram (Diagram) : the diagram that the node should be inserted into

80 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Reads and returns a node from the specified file, inserting it into the supplied diagram. Note that this can
be used to read both Node and SuperNode objects.

Exceptions:

OwnerException : if the diagram is not owned by the task runner session

SessionException : if the node cannot be loaded for some reason

ObjectLockedException : if the stream that the node is being added to is locked

t.openDocumentFromFile(filename, autoManage) : DocumentOutput
filename (string) : the document file path

autoManage (boolean) : whether the document should be added to the output manager

Reads and returns a document from the specified file.

Exceptions:

SessionException : if the document cannot be loaded for some reason

t.openModelFromFile(filename, autoManage) : ModelOutput
filename (string) : the model file path

autoManage (boolean) : whether the model should be added to the model manager

Reads and returns a model from the specified file.

Exceptions:

SessionException : if the model cannot be loaded for some reason

t.openStreamFromFile(filename, autoManage) : Stream
filename (string) : the stream file path

autoManage (boolean) : whether the stream should be added to the stream manager

Reads and returns a stream from the specified file.

Exceptions:

SessionException : if the stream cannot be loaded for some reason

t.saveDocumentToFile(documentOutput, filename)
documentOutput (DocumentOutput) : the document to be saved

filename (string) : the document file path

Saves the document to the specified file location.

Exceptions:

OwnerException : if the document is not owned by the task runner session

SessionException : if the document cannot be saved for some reason

t.saveModelToFile(modelOutput, filename)
modelOutput (ModelOutput) : the model to be saved

filename (string) : the model file path

Saves the model to the specified file location.

Exceptions:

Chapter 9. Tasks and execution 81

OwnerException : if the model is not owned by the task runner session

SessionException : if the model cannot be saved for some reason

t.saveNodeToFile(node, filename)
node (Node) : the node to be saved

filename (string) : the node file path

Saves the model to the specified file location.

Exceptions:

OwnerException : if the node is not owned by the task runner session

SessionException : if the node cannot be saved for some reason

t.saveStreamToFile(stream, filename)
stream (Stream) : the stream to be saved

filename (string) : the stream file path

Saves the stream to the specified file location.

Exceptions:

OwnerException : if the stream is not owned by the task runner session

SessionException : if the stream cannot be saved for some reason

82 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Chapter 10. Streams and SuperNodes

This provides objects that perform data processing and model building.

BuiltObject Objects
Subclass of PropertiedObject.

This encapsulates the concrete results of executing ObjectBuilder nodes.

b.close()

Closes this built object and releases its external resources. Closing an object which is already closed has
no effect, otherwise the behaviour of a method applied to a closed object is undefined except where
stated.

b.getBuilderProcessorID() : string

Returns the ID of the object builder node that built this object. The empty string is returned if this
information is not available.

b.getBuilderStreamID() : string

Returns the temporary session ID of the stream containing the object builder node that built this object.
If the stream is closed and subsequently re-opened, the re-opened stream's ID will be different from the
value returned here.

The empty string is returned if this information is not available.

b.getID() : string

Returns the temporary session ID of this object. A new ID is allocated each time a new built object is
created or opened and the ID is not persisted. This means that if the same object is re-opened multiple
times, each object will include a different ID.

b.isClosed() : boolean

Returns True if this object has been closed.

b.isExportable(fileFormat) : boolean

fileFormat (FileFormat) : the FileFormat

Returns True if this object can be exported using the supplied FileFormat or False otherwise.

CFNode Objects
Subclass of Node.

This identifies Node objects that are implemented via the Component Framework.

c.getFeature() : Object

Return the underlying CF feature of the CF node.

CompositeModelApplier Objects
Subclass of ModelApplier, CompositeModelOwner.

This encapsulates the auto-model applier nodes ModelApplier that can ensemble the scores from
multiple models into a single score.

CompositeModelBuilder Objects
Subclass of ModelBuilder.

This encapsulates the auto-model builder nodes ModelBuilder that can build and evaluate multiple
models using different modeling algorithms and settings.

c.getAllModelAlgorithms() : List

Returns the model builder node ids that are available in this CompositeModelBuilder.

c.isAlgorithmEnabled(modelBuilderId) : boolean

modelBuilderId (string) : build model id

Returns whether the supplied algorithm is enabled. If the supplied algorithm ID is not one of the
algorithms available for this model builder, the method returns False. An algorithm may be enabled
in the model builder, but invalid due to other settings (see isAlgorithmInvalid(String)).

c.isAlgorithmInvalid(algorithmID) : boolean
algorithmID (string) :

Returns whether the supplied algorithm is invalid. An algorithm may be enabled (see
isAlgorithmEnabled(String)) in this model builder, but be invalid due to other settings. For
instance, the target measure may not be valid for the algorithm. If the algorithm is invalidated in this
way it will not be built, even if it is enabled.

c.setAlgorithmEnabled(modelBuilderId, value)

modelBuilderId (string) : build model id

value (boolean) : the enabled value

Sets whether the supplied algorithm is enabled. If the supplied algorithm ID is not one of the algorithms
available for this model builder, the method call will have no effect.

CompositeModelOutput Objects
Subclass of ModelOutput, CompositeModelOwner.

This encapsulates the concrete results of executing ModelBuilder nodes or by opening or importing
Composite models. This will be the results of the auto models.

c.getModelDetail() : CompositeModelDetail

Returns the underlying composite model representation.

CompositeModelOwner Objects
This encapsulates objects that own auto-built models. These models can be ensembled and the scores
from multiple models combined into a single score.

c.getCompositeModelDetail() : CompositeModelDetail

Returns the underlying composite model representation.

c.getModelResult(resultId) : CompositeModelResult
resultId (string) :

84 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Returns the model results for the specified ID or None if no such model result exists.

c.getModelResultIDs() : List

Returns the list of model result IDs. The result ID is the same as the name of the individual composite
model result.

c.isModelResultUsed(resultId) : boolean
resultId (string) :

Returns whether the specified model result ID is enabled/active.

c.removeModelResults(resultIds)

resultIds (List) : the list of result IDs to be removed

Permanently removes the supplied model results from this composite model object owner.

c.setModelResultUsed(resultId, value)

resultId (string) : the result ID

value (boolean) : True if the model should be enabled, False if not

Sets whether the specified model result ID is active. Note that supplying model results that have
previously been removed will have no effect i.e. they will not be re-added into the composite model
object owner.

CompositeModelResults Objects
This encapsulates the concrete results for the individual models forming the Composite Model.

c.getModelMeasureLabel(measure) : string

measure (string) : the evaluation measure name

Returns a descriptive label for the specified evaluation measure or None if the measure is not valid for this
result.

c.getModelMeasurePartitionCount() : int

Returns the number of partitions for which evaluation measures exist. Partitions (where they exist) are
numbered: 0=Training, 1=Testing, 2=Validation.

c.getModelMeasureType(measure) : StorageType

measure (string) : the evaluation measure name

Returns the data type of the specified evaluation measure or None if the measure is not valid for this
result.

c.getModelMeasureValue(measure, partition) : Object

measure (string) : the evaluation measure name

partition (int) : the partition index

Returns the value of the specified evaluation measure in the specified partition, or None if either the
measure or the partition is not valid for this result.

c.getModelMeasures() : List

Chapter 10. Streams and SuperNodes 85

Returns the list of measures used to evaluate this model result.

c.getModelName() : string

Returns the name of this model result. The model name is expected to be unique within a set of
composite model result objects.

c.getModelOutput() : ModelOutput

Returns the model output of the composite model result.

c.isUsed() : boolean

Returns True if this composite model result is used.

SuperNode Objects
Subclass of Node, ParameterProvider.

This encapsulates the functionality of any SuperNode whose behaviour is determined by its constituent
nodes.

s.getChildDiagram() : SuperNodeDiagram

Returns the diagram containing the nodes encapsulated by this SuperNode.

s.getCompositeProcessorType() : SuperNodeType

Returns the type of this SuperNode.

s.isPasswordNeeded() : boolean

If the SuperNode is not locked or a password has been entered then return False, otherwise return
True.

s.setCompositeProcessorType(type)

type (SuperNodeType) : the SuperNode type

Sets the type of this SuperNode.

Exceptions:

ObjectLockedException : if the diagram is currently locked

s.verifyPassword(password) : boolean

password (string) : the password to be tested

Check whether the supplied password is valid or not.

SuperNodeDiagram Objects
Subclass of Diagram.

This is the diagram used by SuperNode objects to store nodes. It allows connections between the two
pseudo nodes, (the input connector and output connector) and other nodes in the diagram to be edited.

s.disconnectInputConnector()

Removes any direct links between the diagram's input connector and other nodes in the diagram. If the
SuperNode is an initial node and therefore doesn't have an input connector, this method does nothing.

86 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Exceptions:

ObjectLockedException : if the diagram is currently locked

s.disconnectOutputConnector()

Removes any direct links between the diagram's output connector and other nodes in the diagram. If the
SuperNode is an terminal node and therefore doesn't have an input connector, this method does nothing.

Exceptions:

ObjectLockedException : if the diagram is currently locked

s.getInputConnector() : Node

Returns the input connector from this diagram, or None if the diagram belongs to an initial node and has
no input connector.

s.getOutputConnector() : Node

Returns the output connector from this diagram, or None if the diagram belongs to a terminal node and
has no output connector.

s.linkFromInputConnector(node)
node (Node) :

Creates a link from the input connector to the supplied node.

Exceptions:

OwnerException : if any objects in the path are not owned by this diagram

ObjectLockedException : if the diagram is currently locked

InvalidEditException : if the connection would be invalid

s.linkToOutputConnector(node)
node (Node) :

Creates a link from the supplied node to the output connector.

Exceptions:

OwnerException : if any objects in the path are not owned by this diagram

ObjectLockedException : if the diagram is currently locked

InvalidEditException : if the connection would be invalid

s.runAll(results) : ExecutionHandle

results (Collection) : an empty collection that will contain any built objects once execution has
completed

Executes the executable nodes within this sub-stream synchronously and waits for it to complete.
Returns an ExecutionHandle which can be used to access the exit status and any result from the
task.

Note that this should only be called on a terminal SuperNode.

Exceptions:

OwnerException : if the stream was not created by this session

ObjectLockedException : if the stream is locked

ServerConnectionException : if the stream is not connected to a server

Chapter 10. Streams and SuperNodes 87

SessionException : if the session is already running another task, cannot execute the task or if
execution completes in a state other than SUCCESS

s.runSelected(nodes, results) : ExecutionHandle

nodes (Node[]) : the array of Node objects to be executed

results (Collection) : an empty collection that will contain any built objects once execution has
completed

Executes the supplied array of nodes synchronously and waits for them to complete. There must be at
least one node in the array. Returns an ExecutionHandle which can be used to access the exit status
and any result from the task.

Note that this should only be called on a terminal SuperNode.

Exceptions:

OwnerException : if the nodes are not all owned by this stream

ObjectLockedException : if the stream is locked

ServerConnectionException : if the stream is not connected to a server

SessionException : if the session is already running a stream, another task, cannot execute the task
or if execution completes in a state other than SUCCESS

IllegalArgumentException : if the array is empty

s.unlinkFromInputConnector(node)
node (Node) :

Removes any direct link from the input connector to the supplied node.

Exceptions:

OwnerException : if any objects in the path are not owned by this diagram

ObjectLockedException : if the diagram is currently locked

InvalidEditException : if the connection would be invalid

s.unlinkToOutputConnector(node)
node (Node) :

Removes any direct link from the supplied node to the output connector.

Exceptions:

OwnerException : if any objects in the path are not owned by this diagram

ObjectLockedException : if the diagram is currently locked

InvalidEditException : if the connection would be invalid

SuperNodeType Objects
Subclass of Enum.

This class enumerates the types of SuperNodes.

Constants:

• INITIAL (SuperNodeType) : Represents a SuperNode that begins a sequence of nodes.
• PROCESS (SuperNodeType) : Represents a SuperNode that allows data to flow through it.
• TERMINAL (SuperNodeType) : Represents a SuperNode that ends a sequence of nodes.

getEnum(name) : SuperNodeType

88 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

getValues() : SuperNodeType[]

Returns an array containing all the valid values for this enumeration class.

DataReader Objects
Subclass of InitialNode.

This encapsulates the functionality of a data node that reads records e.g. from a file or database table.

DataTransformer Objects
Subclass of ProcessNode.

This encapsulates the functionality of a standard inline data node.

DataWriter Objects
Subclass of TerminalNode.

This encapsulates the functionality of a node that writes records e.g. to a file or database table.

d.getExportDataModel() : DataModel

Returns the DataModel being exported by this node.

DiagramConnector Objects
Subclass of ProcessNode.

A node which provides a connection point between a SuperNodeDiagram and its containing diagram. A
connector routes data between diagrams.

DocumentBuilder Objects
Subclass of ObjectBuilder.

This encapsulates the functionality of a node that builds a viewable output object such as a table, graph or
report.

DocumentOutput Objects
Subclass of BuiltObject.

This encapsulates the concrete results of executing DocumentBuilder nodes that produce generic
document-type outputs.

d.getDocumentOutputType() : DocumentOutputType

Returns the DocumentOutputType of this output. The returned value corresponds with one of the
output-type constants defined by DocumentOutputType.

d.getTypeName() : string

Returns the name of this type of output object.

Chapter 10. Streams and SuperNodes 89

DocumentOutputType Objects
Subclass of Enum.

This class enumerates the types of document outputs that are generated by the different NodeType that
are DocumentBuilders or which can be imported.

Constants:

• ANALYSIS (DocumentOutputType) :
• COLLECTION (DocumentOutputType) :
• CUSTOM_TABLE (DocumentOutputType) :
• DATA_AUDIT (DocumentOutputType) :
• DISTRIBUTION (DocumentOutputType) :
• ENSEMBLE (DocumentOutputType) :
• EVALUATION (DocumentOutputType) :
• GRAPH_BOARD (DocumentOutputType) :
• HISTOGRAM (DocumentOutputType) :
• MATRIX (DocumentOutputType) :
• MEANS (DocumentOutputType) :
• MULTI_PLOT (DocumentOutputType) :
• QUALITY (DocumentOutputType) :
• REPORT (DocumentOutputType) :
• REPORT_DOCUMENT (DocumentOutputType) :
• SCATTER_PLOT (DocumentOutputType) :
• SPSS_PROCEDURE (DocumentOutputType) :
• STATISTICS (DocumentOutputType) :
• TABLE (DocumentOutputType) :
• TIME_PLOT (DocumentOutputType) :
• TRANSFORM (DocumentOutputType) :
• UNKNOWN (DocumentOutputType) : Represents a document output object whose type cannot be

determined.
• WEB (DocumentOutputType) :

addDocumentOutputType(identifier) : DocumentOutputType
identifier (string) :

Adds a the type with the supplied name. Returns the new type or None if a type with the supplied name
already exists. This method is for system use only and is only public as an implementation detail.

getEnum(name) : DocumentOutputType

name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

getValues() : DocumentOutputType[]

Returns an array containing all the valid values for this enumeration class.

d.isUnknown() : boolean

90 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Returns True if this value is UNKNOWN.

removeDocumentOutputType(identifier)

identifier (string) : the type to be removed

Removes the specified type. The type should have been created with addDocumentOutputType(). This
method is for system use only and is only public as an implementation detail.

ExportFormatException Objects
Subclass of ModelerException.

Indicates that an attempt was made to export a built object using an unsupported file format.

No message string is set for this exception.

e.getFileFormat() : FileFormat

Returns the unsupported export format.

e.getObject() : BuiltObject

Returns the built object.

GraphBuilder Objects
Subclass of DocumentBuilder.

This encapsulates the functionality of a node that builds a graph output.

g.getGraphOutput() : GraphOutput

Returns the most recent GraphOutput produced by this node, or None if this GraphBuilder has either
not be executed before or failed to produce an object during the most recent execution.

GraphOutput Objects
Subclass of DocumentOutput.

This encapsulates the concrete results of executing DocumentBuilder nodes that produce objects that
are based on graphs.

InitialNode Objects
Subclass of Node.

This encapsulates the functionality of any node that begins a sequence of nodes. These typically import
data from a data source such as a database or file.

ProcessNode Objects
Subclass of Node.

This encapsulates the functionality of any node that allows data to flow through it i.e., a Node that is
neither a InitialNode nor a TerminalNode.

InvalidEditException Objects
Subclass of ModelerException.

An exception thrown when an invalid attempt is made to edit the links between two or more nodes.

Chapter 10. Streams and SuperNodes 91

No message string is set for this exception.

i.getProcessorDiagram() : Diagram

Returns the Diagram that generated the exception.

i.getProcessorStream() : Stream

Returns the Stream that generated the exception.

ModelApplier Objects
Subclass of ProcessNode.

This encapsulates the functionality of an inline node that applies models.

m.getBuilderProcessorID() : string

Returns the ID of the model builder node that built the underlying model. The empty string is returned if
this information is not available.

m.getBuilderStreamID() : string

Returns the ID of the stream of the model builder node that built the underlying model. The empty string
is returned if this information is not available.

m.getLocalizedAlgorithmName() : string

Returns the localized algorithm name.

m.getModelDetail() : ModelDetail

Returns the underlying model representation.

ModelBuilder Objects
Subclass of ObjectBuilder.

This encapsulates the functionality of a node that builds a model output object.

m.getModelOutputType() : ModelOutputType

Returns the type of ModelOutput that is produced by this type of model builder. The returned value
corresponds to one of the model-type constants defined by ModelOutputType.

ModelOutput Objects
Subclass of BuiltObject.

This encapsulates the concrete results of executing ModelBuilder nodes or by opening or importing
models.

m.getLocalizedAlgorithmName() : string

Returns the localized algorithm name.

m.getModelApplierID() : string

92 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Returns the ID of ModelApplier that corresponds with this model output or None if this model output
cannot be applied directly to data.

m.getModelDetail() : ModelDetail

Returns the underlying model representation.

m.getModelOutputType() : ModelOutputType

Returns the ModelOutputType of this model output. The returned value corresponds with one of the
model-type constants defined by ModelOutputType.

m.getTypeName() : string

Returns the name of this type of output object.

ModelOutputType Objects
Subclass of Enum.

This class enumerates the types of model outputs that are generated by the different NodeType that are
ModelBuilders or which can be imported.

Constants:

• ANOMALY_DETECTION (ModelOutputType) :
• APRIORI (ModelOutputType) :
• ASSOCIATION (ModelOutputType) :
• AUTO_CLUSTER (ModelOutputType) :
• BACK_PROPAGATION (ModelOutputType) :
• BINARY_CLASSIFIER (ModelOutputType) :
• C50 (ModelOutputType) :
• C5_SPLIT (ModelOutputType) :
• CARMA (ModelOutputType) :
• CART (ModelOutputType) :
• CART_SPLIT (ModelOutputType) :
• CATEGORIZE (ModelOutputType) :
• CHAID (ModelOutputType) :
• CHAID_SPLIT (ModelOutputType) :
• DB2IM_ASSOCIATION (ModelOutputType) :
• DB2IM_CLUSTER (ModelOutputType) :
• DB2IM_LOGISTIC (ModelOutputType) :
• DB2IM_NAIVE_BAYES (ModelOutputType) :
• DB2IM_REGRESSION (ModelOutputType) :
• DB2IM_SEQUENCE (ModelOutputType) :
• DB2IM_TIME_SERIES (ModelOutputType) :
• DB2IM_TREE (ModelOutputType) :
• DECISION_LIST (ModelOutputType) :
• DECISION_LIST_SPLIT (ModelOutputType) :
• FACTOR (ModelOutputType) :
• FEATURE_SELECTION (ModelOutputType) :

Chapter 10. Streams and SuperNodes 93

• KMEANS (ModelOutputType) :
• KOHONEN (ModelOutputType) :
• LINEAR_REGRESSION (ModelOutputType) :
• LINEAR_REGRESSION_SPLIT (ModelOutputType) :
• LOGISTIC_REGRESSION (ModelOutputType) :
• LOGISTIC_SPLIT (ModelOutputType) :
• MS_ASSOCIATION (ModelOutputType) :
• MS_CLUSTERING (ModelOutputType) :
• MS_LOGISTIC (ModelOutputType) :
• MS_NAIVE_BAYES (ModelOutputType) :
• MS_NEURAL_NETWORK (ModelOutputType) :
• MS_REGRESSION (ModelOutputType) :
• MS_SEQUENCE_CLUSTERING (ModelOutputType) :
• MS_TIME_SERIES (ModelOutputType) :
• MS_TREE (ModelOutputType) :
• NET_SPLIT (ModelOutputType) :
• NUMERIC_PREDICTOR (ModelOutputType) :
• ORACLE_ADAPTIVE_BAYES (ModelOutputType) :
• ORACLE_AI (ModelOutputType) :
• ORACLE_DECISION_TREE (ModelOutputType) :
• ORACLE_GLM (ModelOutputType) :
• ORACLE_KMEANS (ModelOutputType) :
• ORACLE_NAIVE_BAYES (ModelOutputType) :
• ORACLE_NMF (ModelOutputType) :
• ORACLE_OCLUSTER (ModelOutputType) :
• ORACLE_SVM (ModelOutputType) :
• QUEST (ModelOutputType) :
• QUEST_SPLIT (ModelOutputType) :
• RULE (ModelOutputType) :
• SEQUENCE (ModelOutputType) :
• SPSS_MODEL (ModelOutputType) :
• TEXT_EXTRACTION (ModelOutputType) :
• TIME_SERIES (ModelOutputType) :
• TWOSTEP (ModelOutputType) :
• UNKNOWN (ModelOutputType) : Represents a model output object whose type cannot be

determined.

addModelOutputType(identifier) : ModelOutputType
identifier (string) :

Adds a type with the supplied name. Returns the new type or None if a type with the supplied name
already exists. This method is for system use only and is only public as an implementation detail.

94 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

getEnum(name) : ModelOutputType
name (string) : the enumeration name

Returns the enumeration with the supplied name or None if no enumeration exists for the supplied name.

getValues() : ModelOutputType[]
Returns an array containing all the valid values for this enumeration class.

m.isUnknown() : boolean
Returns True if this value is UNKNOWN.

removeModelOutputType(identifier)
identifier (string) : the type to be removed.

Removes the specified type. The type should have been created with addModelOutputType(). This
method is for system use only and is only public as an implementation detail.

ObjectBuilder Objects
Subclass of TerminalNode.

This encapsulates the functionality of a node that builds an output object such as a model or graph.

o.getBuiltObject() : BuiltObject

Returns the most recent BuiltObject produced by this node, or None if this ObjectBuilder has either
not be executed before or failed to produce an object during the most recent execution.

Node Objects
Subclass of PropertiedObject, ContentContainerProvider.

This is the base interface for all nodes.

n.flushCache()

Flushes the cache of this object. Has no effect if the cache is not enabled or is not full.

n.getID() : string

Returns the ID of this object. A new ID is created each time a new node is created. The ID is persisted
with the node when it is saved as part of a stream so that when the stream is opened, the node IDs are
preserved. However, if a saved node is inserted into a stream, the insert node is considered to be a new
object and will be allocated a new ID.

n.getInputDataModel() : DataModel

Returns the DataModel coming into this node.

n.getOutputDataModel() : DataModel

Returns the DataModel output by this node.

n.getProcessorDiagram() : Diagram

Chapter 10. Streams and SuperNodes 95

Returns the Diagram that owns this node.

n.getProcessorStream() : Stream

Returns the Stream that owns this node.

n.getTypeName() : string

Returns the name of this type of node.

n.getXPosition() : int

Returns the x position offset of the node in the Diagram.

n.getYPosition() : int

Returns the y position offset of the node in the Diagram.

n.isCacheEnabled() : boolean

Returns True if the cache is enabled, False otherwise.

n.isCacheFull() : boolean

Returns True if the cache is full, False otherwise.

n.isInitial() : boolean

Returns True if this is an initial node i.e. one that occurs at the start of a stream.

n.isInline() : boolean

Returns True if this is an in-line node i.e. one that occurs mid-stream.

n.isTerminal() : boolean

Returns True if this is a terminal node i.e. one that occurs at the end of a stream.

n.run(results) : ExecutionHandle
results (Collection) :

Executes this node synchronously and waits for execution to complete. Returns an ExecutionHandle
which can be used to access the exit status and any result from the task. Equivalent to calling:

node.getProcessorStream().runSelected(new Processor[] {node}, results);

Exceptions:

OwnerException : if there is inconsistent ownership

ObjectLockedException : if the owner stream is locked for some reason (for example, it is already
executing)

ServerConnectionException : if the connection to the server cannot be established

SessionException : if some other exception occurs

n.setCacheEnabled(val)
val (boolean) :

96 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Enables or disables the cache for this object. If the cache is full and the caching becomes disabled, the
cache is flushed.

n.setPositionBetween(source, target)

source (Node) : the predecessor

target (Node) : the successor

Sets the position of the node in the Diagram so it is positioned between the supplied nodes.

n.setXYPosition(x, y)

x (int) : the x offset

y (int) : the y offset

Sets the position of the node in the Diagram.

Diagram Objects
This is the container used to assemble Node objects into a connected flow or well-formed sequence of
nodes.

d.clear()

Deletes all nodes from this diagram.

Exceptions:

ObjectLockedException : if the diagram is currently locked

d.create(nodeType, name) : Node

nodeType (string) : the node type name

name (string) : the object's name

Creates a Node of the specified type and adds it to this diagram.

Exceptions:

ObjectCreationException : if the node cannot be created for some reason

ObjectLockedException : if the node cannot be added to the stream

d.createAt(nodeType, name, x, y) : Node

nodeType (string) : the node type name

name (string) : the object's name

x (int) : the x location

y (int) : the y location

Creates a Node of the specified type and adds it to this diagram at the specified location. If either x < 0 or
y < 0, the location is not set.

Exceptions:

ObjectCreationException : if the node cannot be created for some reason

ObjectLockedException : if the node cannot be added to the stream

d.createModelApplier(modelOutput, name) : Node

modelOutput (ModelOutput) : the model output object

Chapter 10. Streams and SuperNodes 97

name (string) : the new object's name

Creates a ModelApplier derived from the supplied model output object.

Exceptions:

ObjectCreationException : if the node cannot be created for some reason

ObjectLockedException : if the node cannot be added to the stream

d.delete(node)

node (Node) : the node to be removed

Deletes the specified node from this diagram. The node must be owned to this diagram.

Exceptions:

OwnerException : if the node is not owned by this diagram

ObjectLockedException : if the diagram is currently locked

d.deleteAll(nodes)

nodes (Collection) : the collection of nodes to be removed

Deletes all the specified nodes from this diagram. All nodes in the collection must belong to this diagram.

Exceptions:

OwnerException : if any node parameters are not owned by this diagram

ObjectLockedException : if the diagram is currently locked

ClassCastException : if any item in the collection is not of type Node

d.disconnect(node)

node (Node) : the node to be disconnected

Removes any links between the supplied node and any other nodes in this diagram.

Exceptions:

OwnerException : if any objects in the path are not owned by this diagram

ObjectLockedException : if the diagram is currently locked

d.findAll(type, label) : Collection

type (string) : the node type

label (string) : the node label

Returns a list of all nodes with the specified type and name. Either the type or name may be None in
which case the other parameter is used.

d.findAll(filter, recursive) : Collection

filter (NodeFilter) : the node filter

recursive (boolean) : if True then composite nodes should be recursively searched

Returns a collection of all nodes accepted by the specified filter. If the recursive flag is True then any
SuperNodes within this diagram are also searched.

d.findByID(id) : Node

id (string) : the node ID

98 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Returns the node with the supplied ID or None if no such node exists. The search is limited to the current
diagram.

d.findByType(type, label) : Node

type (string) : the node type

label (string) : the node label

Returns the node with the supplied type and/or label. Either the type or name may be None in which case
the other parameter is used. If multiple nodes match then an arbitrary one is chosen and returned. If no
nodes match then the return value is None.

d.findDownstream(fromNodes) : List

fromNodes (List) : the start point of the search

Searches from the supplied list of nodes and returns the set of nodes downstream of the supplied nodes.
The returned list includes the originally supplied nodes.

d.findUpstream(fromNodes) : List

fromNodes (List) : the start point of the search

Searches from the supplied list of nodes and returns the set of nodes upstream of the supplied nodes.
The returned list includes the originally supplied nodes.

d.flushCaches()

Flushes the caches of any cache-enabled Node objects in the diagram. Has no effect if caches are not
enabled or are not full.

d.insert(source, nodes, newIDs) : List

source (Diagram) : the diagram that owns the nodes to be inserted

nodes (List) : the nodes to be copied

newIDs (boolean) : True if new IDs should be generated for each node or False if the existing IDs
should be re-used

Inserts copies of the nodes in the supplied list. It is assumed that all nodes in the supplied list are
contained within the specified diagram. The new IDs flag indicates whether new IDs should be generated
for each node, or whether the existing ID should be copied across. It is assumed that all nodes in a
diagram have a unique ID so this flag must be set True if the source diagram is the same as this diagram.
The method returns the list of newly inserted nodes where the order of the nodes is undefined (i.e. the
ordering is not necessarily the same as the order of nodes in the input list).

Exceptions:

ObjectLockedException : if the diagram has been locked because of another operation

InvalidEditException : if the edit would be invalid

d.isEnabled(node) : boolean

node (Node) : the node

Returns True if the supplied node is enabled.

Exceptions:

OwnerException : if the node is not owned by this diagram

d.isOwner(node) : boolean

Chapter 10. Streams and SuperNodes 99

node (Node) : the node

Returns True if the node is owned by this diagram.

d.isValidLink(source, target) : boolean

source (Node) : the source node

target (Node) : the target node

Returns True if it would be valid to create a link between the specified source and target nodes. This
checks that both objects belong to this diagram, that the source can supply a link and the target can
receive a link, and that creating such a link will not cause a circularity in the diagram.

Exceptions:

OwnerException : if the source or target node are not owned by this diagram

d.iterator() : Iterator

Returns an iterator over the Node objects contained in this diagram. The behaviour of the iterator if the
diagram is modified between calls of next() is undefined.

Note: The iterator returns "top-level" nodes and does not recursively descend into any composite nodes.

d.link(source, target)

source (Node) : the source node

target (Node) : the target node

Creates a new link between the source and the target.

Exceptions:

OwnerException : if any node parameters are not owned by this diagram

ObjectLockedException : if the diagram is currently locked

InvalidEditException : if the connection would be invalid

d.link(source, targets)

source (Node) : the source node

targets (List) : the list of target nodes

Creates new links between the source and each target node in the supplied list.

Exceptions:

OwnerException : if any node parameters are not owned by this diagram

ObjectLockedException : if the diagram is currently locked

InvalidEditException : if a connection would be invalid

ClassCastException : if targets does not contain instances of Node

d.linkBetween(inserted, source, target)

inserted (Node) : the node to be inserted

source (Node) : the source node

target (Node) : the target node

Connects a Node between two other instances and sets the position of the inserted node to be between
those. Any direct link between the source and target is removed first. If any link would be invalid (the

100 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

source is a terminal node, the target is a source node or the target cannot accept any more links), a
ModelerException is thrown and no changes are made to the diagram.

Exceptions:

OwnerException : if any of the nodes are not owned by the diagram

ObjectLockedException : if the diagram has been locked because of another operation

InvalidEditException : if the edit is invalid e.g., the target already has the maximum number of
input connections

d.linkPath(path)

path (List) : the set of Node instances

Creates a new path between Node instances. The first node is linked to the second, the second is
linked to the third etc. If any link would be invalid (for example, the nodes are already linked, the
source is a terminal node, the target is a source node or the target cannot accept any more links), a
ModelerException is thrown and no changes are made to the diagram.

Exceptions:

OwnerException : if any objects in the path are not owned by this diagram

ObjectLockedException : if the diagram is currently locked

InvalidEditException : if a link between two adjacent nodes in the path cannot be created.

d.linkUpdater(updater, updatable)

updater (Node) : the updater node

updatable (Node) : the updatable node

Creates a new update link between the updater and the updatable. It is expected that updater
implements the Updater interface while the updatable implements the Updatable interface.

Exceptions:

OwnerException : if any node parameters are not owned by this diagram

ObjectLockedException : if the diagram is currently locked

InvalidEditException : if the connection would be invalid

d.predecessorAt(node, index) : Node

node (Node) : the node

index (int) : which predecessor to return

Returns the specified immediate predecessor of the supplied node or None if the index is out of bounds.

Exceptions:

OwnerException : if the node is not owned by this diagram

d.predecessorCount(node) : int

node (Node) : the node

Returns the number of immediate predecessors of the supplied node.

Exceptions:

OwnerException : if the node is not owned by this diagram

d.predecessors(node) : List

Chapter 10. Streams and SuperNodes 101

node (Node) : the node

Returns the immediate predecessors of the supplied node.

Exceptions:

OwnerException : if the node is not owned by this diagram

d.replace(originalNode, replacementNode, discardOriginal)

originalNode (Node) : the node to be replaced

replacementNode (Node) : the new node

discardOriginal (boolean) : if True, the id of the original node is assigned to the new node and
the original node is automatically deleted from the diagram. If False, the original node is retained and
the replacement node id is unchanged

Replaces the specified node from this diagram. The both nodes must be owned by this diagram.

Exceptions:

OwnerException : if any node is not owned by this diagram

ObjectLockedException : if the diagram is currently locked

InvalidEditException : is the link operation is invalid

d.setEnabled(node, enabled)

node (Node) : the node

enabled (boolean) : whether the node should be enabled

Sets the enabled state of the supplied node.

Exceptions:

OwnerException : if the node is not owned by this diagram

d.size() : int

Returns the number of Node objects contained in this diagram.

d.successorAt(node, index) : Node

node (Node) : the successor

index (int) : which successor to return

Returns the specified immediate successor of the supplied node or None if the index is out of bounds.

Exceptions:

OwnerException : if the node is not owned by this diagram

d.successorCount(node) : int

node (Node) : the node

Returns the number of immediate successors of the supplied node.

Exceptions:

OwnerException : if the node is not owned by this diagram

d.successors(node) : List

node (Node) : the node

102 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Returns the immediate successors of the supplied node.

Exceptions:

OwnerException : if the node is not owned by this diagram

d.unlink(source, target)

source (Node) : the source node

target (Node) : the target node

Removes any direct link between the source and the target.

Exceptions:

OwnerException : if any node parameters are not owned by this diagram

ObjectLockedException : if the diagram is currently locked

d.unlink(source, targets)

source (Node) : the source node

targets (List) : the list of target nodes

Removes any direct links between the source and each object in the targets list.

Exceptions:

OwnerException : if any node parameters are not owned by this diagram

ObjectLockedException : if the diagram is currently locked

ClassCastException : if targets does not contain instances of Node

d.unlinkPath(path)

path (List) : the list of Node instances

Removes any path that exists between Node instances. If no link exists between two adjacent nodes in
the path, these are silently ignored i.e., no exception will be thrown.

Exceptions:

ObjectLockedException : if the diagram is currently locked

OwnerException : if any objects in the path are not owned by this diagram

d.unlinkUpdater(updater, updatable)

updater (Node) : the updater node

updatable (Node) : the target node

Removes any update link between the updater and the updatable. It is expected that updater implements
the Updater interface while the updatable implements the Updatable interface.

Exceptions:

OwnerException : if any node parameters are not owned by this diagram

ObjectLockedException : if the diagram is currently locked

NodeFilter Objects
This is used to define arbitrary criteria for filtering nodes e.g. during searches.

n.accept(node) : boolean

Chapter 10. Streams and SuperNodes 103

node (Node) : the node

Returns True if the node should be included by the filter.

Stream Objects
Subclass of Diagram, PropertiedObject, ParameterProvider.

This is the top-level container used to assemble Node objects into a connected "flow". It also provides the
environment for setting which may be used to modify node behaviour.

s.close()

Closes the current stream. If the stream is already closed, this method does nothing. No further
operations can be applied to a closed stream.

s.getContentProvider() : ContentProvider

Returns the ContentProvider for this stream. The content provider manages additional content on
behalf of applications.

s.getGlobalValues() : GlobalValues

Returns the global values computed for this stream. Global values are constructed and updated by
executing a Set Globals node.

s.getID() : string

Returns the temporary session ID of this object. A new ID is allocated each time a new stream is created
or opened and the ID is not persisted when the stream is saved. This means that if the same persisted
object is re-opened multiple times, each object will have a different ID.

s.getServerConnectionDescriptor() : ServerConnectionDescriptor

Returns the ServerConnectionDescriptor used to connect this stream to a server or None if the
stream has not yet been connected or if the owner session was not created using SessionFactory.

s.isClosed() : boolean

Returns True if the stream has been closed, False otherwise.

s.isConnected() : boolean

Returns True if this has a server connection.

s.isExportable(format) : boolean
format (FileFormat) :

Returns True if this stream can be exported using the supplied FileFormat or False otherwise.

s.runAll(results) : ExecutionHandle

results (Collection) : an empty collection that will contain any built objects once execution has
completed

Executes the stream synchronously and waits for it to complete. Returns an ExecutionHandle which
can be used to access the exit status and any result from the task.

Exceptions:

OwnerException : if the stream was not created by this session

ObjectLockedException : if the stream is locked

104 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

ServerConnectionException : if the stream is not connected to a server

SessionException : if the session is already running another task, cannot execute the task or if
execution completes in a state other than SUCCESS

s.runScript(results) : ExecutionHandle

results (Collection) : an empty collection that will contain any built objects once execution has
completed

Executes the stream script synchronously and waits for it to complete. The stream script is always run
regardless of whether script execution is set as the default behaviour. Returns an ExecutionHandle
which can be used to access the exit status and any result from the task.

Exceptions:

OwnerException : if the stream was not created by this session

ObjectLockedException : if the stream is locked

ServerConnectionException : if the stream is not connected to a server

SessionException : if the session is already running another task, cannot execute the task or if
execution completes in a state other than SUCCESS

s.runSelected(nodes, results) : ExecutionHandle

nodes (Node[]) : the array of Node objects to be executed

results (Collection) : an empty collection that will contain any built objects once execution has
completed

Executes the supplied array of nodes synchronously and waits for them to complete. There must be at
least one node in the array. Returns an ExecutionHandle which can be used to access the exit status
and any result from the task.

Exceptions:

OwnerException : if the nodes are not all owned by this stream

ObjectLockedException : if the stream is locked

ServerConnectionException : if the stream is not connected to a server

SessionException : if the session is already running a stream, another task, cannot execute the task
or if execution completes in a state other than SUCCESS

IllegalArgumentException : if the array is empty

PublishedImage Objects
The result of publishing a DataWriter.

p.getImageContent() : byte[]

Returns the contents of the image file.

p.getMetadataContent() : byte[]

Returns the contents of the metadata file, or None if there is no metadata file.

p.getOutputDataModel() : DataModel

Chapter 10. Streams and SuperNodes 105

Returns a data model which describes the fields exported by the image. This is the server-side data model
and differs from the export data model of the published node in that fields typically have known storage
but default measure.

p.getParameterContent() : byte[]

Returns the contents of the parameter file.

ReportBuilder Objects
Subclass of DocumentBuilder.

This encapsulates the functionality of a node that builds a report.

r.getReportOutput() : ReportOutput

Returns the most recent ReportOutput produced by this node, or None if this ReportBuilder has
either not be executed before or failed to produce an object during the most recent execution.

ReportOutput Objects
Subclass of DocumentOutput.

This encapsulates the concrete results of executing DocumentBuilder nodes that produce report-type
outputs such as quality reports.

RowSetBuilder Objects
Subclass of DocumentBuilder.

This encapsulates the functionality of a node that builds an output based on a RowSet.

r.getRowSetOutput() : RowSetOutput

Returns the most recent RowSetOutput produced by this node, or None if this RowSetBuilder has
either not be executed before or failed to produce an object during the most recent execution.

RowSetOutput Objects
Subclass of DocumentOutput.

This encapsulates the concrete results of executing DocumentBuilder nodes that produce objects that
are based on underlying RowSet such as tables and matrices.

r.getRowSet() : RowSet

Returns the RowSet underlying this output object.

TerminalNode Objects
Subclass of Node.

This encapsulates the functionality of any node that terminates a particular sequence of nodes.

Updatable Objects
Subclass of Node.

106 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

This represents Node objects that can be updated by Updating objects. Updating can happen either by
modifying the contents of an updatable object, or by replacing it in the stream. An updatable object can
only be associated with one updater at a time.

u.getUpdater() : Node

Returns the Node that is updating this one or None if there is no updater.

u.getUpdaterID() : string

Returns the id of the node that is updating this one or the empty string if there is no updater.

u.isUpdatingEnabled() : boolean

Returns True if this node can be updated by an updater. This value can be set or returned regardless of
whether an updater has been specified.

u.setUpdatingEnabled(canUpdate)
canUpdate (boolean) :

Sets whether this node can be updated by any associated updater.

Updater Objects
Subclass of Node.

This represents Node objects that update Updatable objects. Updating can happen either by modifying
the contents of an updatable object, or by replacing it in the stream. An updater can have multiple
updatable objects associated with it.

u.getUpdatableCount() : int

Returns the number of Updatable nodes that this is updating.

u.getUpdatables() : Iterator

Returns an iterator for the Updatable nodes that this is updating.

Chapter 10. Streams and SuperNodes 107

108 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

110 Notices

http://www.ibm.com/legal/us/en/copytrade.shtml

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 111

112 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

Index

A
ApplicationData Objects 9
ASCredentialDescriptor Objects 9

B
BuiltObject Objects 83

C
CFNode Objects 83
Column Objects 27
ColumnCountException Objects 28
ColumnGroup Objects 29
ColumnGroupType Objects 29
ColumnStatsContentModel Objects 3
CompositeModelApplier Objects 83
CompositeModelBuilder Objects 84
CompositeModelDetail Objects 49
CompositeModelOutput Objects 84
CompositeModelOwner Objects 84
CompositeModelResults Objects 85
ContentContainer Objects 10
ContentContainerProvider Objects 11
ContentFormat Objects 9
ContentModel Objects 3
ContentProvider Objects 11
CredentialDescriptor Objects 13

D
Data and metadata 27
DataModel Objects 30
DataModelException Objects 33
DataModelFactory Objects 33
DataReader Objects 89
DataTransformer Objects 89
DataWriter Objects 89
Diagram Objects 97
DiagramConnector Objects 89
DocumentBuilder Objects 89
DocumentOutput Objects 89
DocumentOutputType Objects 90

E
enum Objects 1
ExecutionFeedbackEvent Objects 69
ExecutionFeedbackListener Objects 70
ExecutionHandle Objects 71
ExecutionState Objects 71
ExecutionStateEvent Objects 72
ExecutionStateListener Objects 72
ExportFormatException Objects 91
exportModelToFile 76

Expression Objects 47
expressions 47
ExtendedMeasure Objects 39
ExtendedStorage Objects 39

F
FileFormat Objects 13

G
GeometryType Objects 40
GeoType Objects 39
GlobalValues Objects 40
GlobalValues.Type Objects 40
GraphBuilder Objects 91
GraphOutput Objects 91

I
IBM SPSS Modeler Python Scripting 1, 3–6, 9–11, 13,
15–21, 23–30, 33, 39–45, 47, 49, 51, 53, 54, 56, 57, 60,
67, 69–73, 76, 83–86, 88–93, 95, 97, 103–107
IncompatibleServerException Objects 15
InitialNode Objects 91
InvalidColumnExceptionValues Objects 41
InvalidEditException Objects 91
InvalidPropertyException Objects 16

J
JSONContentModel Objects 3
Jython scripting 1, 3–6, 9–11, 13, 15–21, 23–30, 33,
39–45, 47, 49, 51, 53, 54, 56, 57, 60, 67, 69–73, 76, 83–86,
88–93, 95, 97, 103–107

L
ListStorage Objects 41
LocaleInfo Objects 57

M
MeasureType Objects 41
MissingValueDefinition Objects 42
model information 49
ModelApplier Objects 92
ModelBuilder Objects 92
ModelDetail Objects 49
ModelerException Objects 1
ModelFieldRole Objects 16
ModelingRole Objects 43
ModelOutput Objects 92
ModelOutputMetadata Objects 42
ModelOutputType Objects 93
ModelType Objects 51

Index 113

N
Node Objects 95
NodeFilter Objects 103

O
ObjectBuilder Objects 95
ObjectCreationException Objects 17
ObjectLockedException Objects 17
OwnerException Objects 17

P
PairwiseStatsContentModel Objects 4
ParameterDefinition Objects 18
ParameterProvider Objects 19
ParameterStorage Objects 20
ParameterType Objects 21
Parser Objects 47
ParserException Objects 47
PMMLModelType Objects 51
ProcessNode Objects 91
PropertiedObject Objects 21
PublishedImage Objects 105
Python scripting 1, 3–6, 9–11, 13, 15–21, 23–30, 33,
39–45, 47, 49, 51, 53, 54, 56, 57, 60, 67, 69–73, 76, 83–86,
88–93, 95, 97, 103–107

R
ReportBuilder Objects 106
ReportOutput Objects 106
Repository Objects 57
RepositoryConnectionDescriptor Objects 23
RepositoryConnectionDescriptor2 Objects 24
RepositoryConnectionDescriptor3 Objects 24
RowSet Objects 43
RowSetBuilder Objects 106
RowSetOutput Objects 106

S
Server resources 53
ServerConnectionDescriptor Objects 24
ServerConnectionException Objects 24
ServerDatabaseConnection Objects 53
ServerFile Objects 54
ServerFileSystem Objects 54
ServerResourceException Objects 56
ServerVersionInfo Objects 25
Session Objects 60
SessionException Objects 67
Sessions 57
StatisticType Objects 5
StorageType Objects 44
Stream Objects 104
Streams and supernodes 83
StructureAtttributeType Objects 25
StructuredValue Objects 26
SuperNode Objects 86
SuperNodeDiagram Objects 86
SuperNodeType Objects 88

SystemServerConnectionDescriptor Objects 26
SystemSession Objects 67

T
TableContentModel Objects 6
Task Objects 73
TaskFactory Objects 73
TaskRunner Objects 76
Tasks and execution 69
TerminalNode Objects 106

U
UIResources Objects 67
UnknownColumnException Objects 45
Updatable Objects 106
Updater Objects 107

V
VersionInfo Objects 1

X
XMLContentModel Objects 6

114 IBM SPSS Modeler 18.6 Python Scripting API Reference Guide

IBM®

	Contents
	Chapter 1. General Classes
	enum Objects
	ModelerException Objects
	VersionInfo Objects

	Chapter 2. Content Management
	ColumnStatsContentModel Objects
	ContentModel Objects
	JSONContentModel Objects
	PairwiseStatsContentModel Objects
	StatisticType Objects
	TableContentModel Objects
	XMLContentModel Objects

	Chapter 3. Core Objects
	ASCredentialDescriptor Objects
	ApplicationData Objects
	ContentFormat Objects
	ContentContainer Objects
	ContentContainerProvider Objects
	ContentProvider Objects
	CredentialDescriptor Objects
	FileFormat Objects
	IncompatibleServerException Objects
	InvalidPropertyException Objects
	ModelFieldRole Objects
	ObjectCreationException Objects
	ObjectLockedException Objects
	OwnerException Objects
	ParameterDefinition Objects
	ParameterProvider Objects
	ParameterStorage Objects
	ParameterType Objects
	PropertiedObject Objects
	RepositoryConnectionDescriptor Objects
	RepositoryConnectionDescriptor2 Objects
	RepositoryConnectionDescriptor3 Objects
	ServerConnectionDescriptor Objects
	ServerConnectionException Objects
	ServerVersionInfo Objects
	StructureAttributeType Objects
	StructuredValue Objects
	SystemServerConnectionDescriptor Objects

	Chapter 4. Data and Metadata
	Column Objects
	ColumnCountException Objects
	ColumnGroup Objects
	ColumnGroupType Objects
	DataModel Objects
	DataModelException Objects
	DataModelFactory Objects
	ExtendedMeasure Objects
	ExtendedStorage Objects
	GeoType Objects
	GeometryType Objects
	GlobalValues Objects
	GlobalValues.Type Objects
	InvalidColumnExceptionValues Objects
	ListStorage Objects
	MeasureType Objects
	MissingValueDefinition Objects
	ModelOutputMetadata Objects
	ModelingRole Objects
	RowSet Objects
	StorageType Objects
	UnknownColumnException Objects

	Chapter 5. Expressions
	Expression Objects
	Parser Objects
	ParserException Objects

	Chapter 6. Model information
	CompositeModelDetail Objects
	ModelDetail Objects
	ModelType Objects
	PMMLModelType Objects

	Chapter 7. Server resources
	ServerDatabaseConnection Objects
	ServerFile Objects
	ServerFileSystem Objects
	ServerResourceException Objects

	Chapter 8. Server resources
	LocaleInfo Objects
	Repository Objects
	Session Objects
	SessionException Objects
	SystemSession Objects
	UIResources Objects

	Chapter 9. Tasks and execution
	ExecutionFeedbackEvent Objects
	ExecutionFeedbackListener Objects
	ExecutionHandle Objects
	ExecutionState Objects
	ExecutionStateEvent Objects
	ExecutionStateListener Objects
	Task Objects
	TaskFactory Objects
	TaskRunner Objects

	Chapter 10. Streams and SuperNodes
	BuiltObject Objects
	CFNode Objects
	CompositeModelApplier Objects
	CompositeModelBuilder Objects
	CompositeModelOutput Objects
	CompositeModelOwner Objects
	CompositeModelResults Objects
	SuperNode Objects
	SuperNodeDiagram Objects
	SuperNodeType Objects
	DataReader Objects
	DataTransformer Objects
	DataWriter Objects
	DiagramConnector Objects
	DocumentBuilder Objects
	DocumentOutput Objects
	DocumentOutputType Objects
	ExportFormatException Objects
	GraphBuilder Objects
	GraphOutput Objects
	InitialNode Objects
	ProcessNode Objects
	InvalidEditException Objects
	ModelApplier Objects
	ModelBuilder Objects
	ModelOutput Objects
	ModelOutputType Objects
	ObjectBuilder Objects
	Node Objects
	Diagram Objects
	NodeFilter Objects
	Stream Objects
	PublishedImage Objects
	ReportBuilder Objects
	ReportOutput Objects
	RowSetBuilder Objects
	RowSetOutput Objects
	TerminalNode Objects
	Updatable Objects
	Updater Objects

	Notices
	Trademarks
	Terms and conditions for product documentation

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X

