
IBM Tivoli Workload Scheduler

Scheduling with the agent for z/OS
Version 8 Release 6

SC27-2771-01

���

IBM Tivoli Workload Scheduler

Scheduling with the agent for z/OS
Version 8 Release 6

SC27-2771-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 195.

This edition applies to version 9, release 2, modification level 0 of Tivoli Workload Scheduler (program number
5698-WSH) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2011, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this publication ix
What is new in this release ix
What is new in this publication ix
Who should read this publication ix
Publications ix
Accessibility x
Tivoli technical training. x
Support information x

Chapter 1. Overview 1

Chapter 2. Installing and configuring . . 3
Load the agent for z/OS software 4
Run the EELINST installation aid 6
Add SMF and JES event tracking exits 11

SMF exits 12
JES2 exits 12
Invoking the EELEXIT macro 13

Update SYS1.PARMLIB 15
Defining subsystems 15
Authorizing the load-module library 17
Updating SMF parameters 17
Updating z/OS dump options 19
Updating the z/OS link-library definition . . . 19
Starting the product automatically 19

Update RACF for the agent for z/OS started task . 20
Set up the SSL environment 21

Activating the new default security certificates . 21
Update SYS1.PROCLIB 23
Complete the installation 24

Starting the agent and checking the connection 25
Ensuring that all installation tasks are complete 25
Checking the message log 25
Verifying tracking events 26
Performing problem determination for tracking
events 27

Recommendations for allocating the job library data
set (EELJBLIB) 29
Customization parameters 29

Specifying runtime options for the event writer 29
Specifying the exit policy for the agent 30
Defining HTTP connection options 31
Specifying generic runtime options for the agent 34

Configuring the agent for z/OS exits 38
Configuring exit EELUX000 (start/stop) 38
Configuring exit EELUX002 (job-library-read) . . 39
Configuring exit EELUX004 (event filtering) . . 43

Running the agent in a sysplex environment . . . 44

Chapter 3. Using 47
Computer and workstation names of the agent . . 47
Listing the agents for z/OS 48
Defining jobs 48

Defining in the Dynamic Workload Console . . 49
Defining in composer 52

Defining the JCL 55
Submitting jobs 56
Using variables in your jobs 60

Variables resolved by Tivoli Workload Scheduler 60
Variables resolved by the agent for z/OS . . . 66

Managing job instances 86
Tracking jobs 86

Controlling how the event writer records job
completion codes for specific jobs 90

Viewing job logs. 91
Using system commands to control the agent . . . 91
Switching domain managers. 93

Chapter 4. Troubleshooting and
reference. 95
Understanding resynchronization messages. . . . 95
Component versions must be aligned for the full
current functionality 97
Saturation of DB2 transaction log halts processing of
jobs 97
Data areas 98
Messages 193

Notices 195
Trademarks 196

Index 199

© Copyright IBM Corp. 2011, 2012 iii

iv Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Figures

1. The role of the agent for z/OS. 1
2. The agent for z/OS in a SYSPLEX

configuration. 45
3. The General page of a new agent for z/OS

definition 50
4. JCL is by reference. 51

5. JCL is by definition. 52
6. The route followed by a job within the agent

for z/OS. 57
7. The route followed by a status event within

the agent for z/OS as it is returned by JES2 on
its way to Tivoli Workload Scheduler. 59

© Copyright IBM Corp. 2011, 2012 v

vi Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Tables

1. Checklist for installing the agent for z/OS 3
2. Sample library members for the agent for z/OS

data sets 5
3. Agent for z/OS libraries loaded by SMP/E 5
4. Sample jobs created by the installation aid 8
5. Data sets used with the agent for z/OS. . . . 8
6. List of sample exits for event tracking. . . . 12
7. Examples of MAXECSA storage values 16
8. Required data sets for the agent for z/OS 23
9. Optional data sets for the agent for z/OS 24

10. Events generated by the agent for z/OS. 26
11. Types of missing event and relative problem

determination actions 28

12. Supported variables in JSDL definitions 60
13. Properties for dynamic jobs on Tivoli

Workload Scheduler agent for z/OS 62
14. Symbols that mark the end of variables. 69
15. Predefined job stream-related variables 70
16. Predefined job-related variables 72
17. Predefined date-related variables 72
18. Predefined dynamic-format variables 73
19. Dynamic-format substitution results 76
20. Job events and statuses as mapped by the

involved components 87
21. Error codes returned after a job is submitted. 88

© Copyright IBM Corp. 2011, 2012 vii

|
||

viii Tivoli Workload Scheduler: Scheduling with the agent for z/OS

About this publication

This publication describes how to install, configure, use, and troubleshoot the
Tivoli Workload Scheduler distributed - Agent for z/OS.

What is new in this release
Learn what is new in this release.

For information about the new or changed functions in this release, see Tivoli
Workload Automation: Overview, section Summary of enhancements.

For information about the APARs that this release addresses, see the Tivoli
Workload Scheduler Release Notes at http://www-01.ibm.com/support/
docview.wss?rs=672&uid=swg27038323 and the Dynamic Workload Console
Release Notes at http://www-01.ibm.com/support/docview.wss?rs=672
&uid=swg27038328.

What is new in this publication
Learn the audience of this publication.

The following information has been added or changed in this publication:
v Added a description of the new and improved features, specifically:

– Definition of jobs by reference. See “Defining jobs” on page 48.
– Use of variables in the JCLs. See “Variables resolved by the agent for z/OS”

on page 66.
– Use of the JOBRC parameter in the JOB cards. See “Controlling how the event

writer records job completion codes for specific jobs” on page 90.
– Use of the job-library-read exit. See “Configuring exit EELUX002

(job-library-read)” on page 39.
v Added troubleshooting information. See Chapter 4, “Troubleshooting and

reference,” on page 95.
v Documented the new messages. These can be seen in Tivoli Workload Automation:

Messages and Codes.

Who should read this publication
Learn the audience of this publication.

This publication is intended for users who want to use the agent for z/OS to
schedule work from Tivoli Workload Scheduler on the JES2 subsystem of z/OS.

Publications
The Tivoli Workload Automation product is supported by a set of publications.

For a list of publications in the Tivoli Workload Automation product library, see
Publications under Reference in the product documentation.

© Copyright IBM Corp. 2011, 2012 ix

http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27038323
http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27038323
http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27038328
http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27038328

For a list of terms used in the Tivoli Workload Automation product, see Glossary
under Reference in the product documentation.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

With this product, you can use assistive technologies to hear and navigate the
interface. You can also use the keyboard instead of the mouse to operate all
features of the graphical user interface.

For full information with respect to the Dynamic Workload Console, see the
Accessibility Appendix in the IBM Tivoli Workload Scheduler User’s Guide and
Reference.

Tivoli technical training
Tivoli provides technical training.

For Tivoli technical training information, refer to the following IBM Tivoli
Education website:

http://www.ibm.com/software/tivoli/education

Support information
IBM provides several ways for you to obtain support when you encounter a
problem.

If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:
v Searching knowledge bases: You can search across a large collection of known

problems and workarounds, Technotes, and other information.
v Obtaining fixes: You can locate the latest fixes that are already available for your

product.
v Contacting IBM Software Support: If you still cannot solve your problem, and

you need to work with someone from IBM, you can use a variety of ways to
contact IBM Software Support.

For more information about these three ways of resolving problems, see the
appendix on support information in Tivoli Workload Scheduler: Troubleshooting Guide.

x Tivoli Workload Scheduler: Scheduling with the agent for z/OS

http://www.ibm.com/software/tivoli/education

Chapter 1. Overview

Use the agent for z/OS to schedule work from Tivoli Workload Scheduler on the
JES2 subsystem of z/OS.

You install and configure the agent for z/OS in the z/OS system. As soon as it is
configured, the agent automatically links with the dynamic workload broker
component of Tivoli Workload Scheduler (defined during the configuration
process) through the HTTP or HTTPS protocols.

The agent requires the installation of Tivoli Workload Scheduler version 8.6 in your
environment.

With the agent for z/OS you can define jobs and schedules on Tivoli Workload
Scheduler and submit a subset of the jobs to a z/OS system. You run the planning
tasks on Tivoli Workload Scheduler while the execution is demanded to the z/OS
system.

As the next figure shows, the agent for z/OS acts as a proxy between dynamic
workload broker, which is the Tivoli Workload Scheduler component that actually
submits workload, and JES, which is the component in the z/OS® system that
executes the workload. The agent passes the workload from Tivoli Workload
Scheduler to JES, and returns all updates about its execution back to Tivoli
Workload Scheduler in the form of events.

The agent for z/OS represents a lightweight end-to-end scheduling solution that
enables users to define and manage workload that is to be processed by JES2
entirely from Tivoli Workload Scheduler, without any need to define anything on
the z/OS side.

Tivoli Workload Scheduler

Dynamic

workload

broker

Agent for z/OS

z/OS system

Job
Entry
Subsystem

submit job submit job execute job

return eventreturn event

Figure 1. The role of the agent for z/OS.

© Copyright IBM Corp. 2011, 2012 1

The agent exploits the HTTP submission protocol to receive job submission
requests and to asynchronously send back job status notifications. When
configuring the agent, the installer is requested to specify the hostname of the
dynamic workload broker to which the agent is to connect.

The jobs submitted to an agent for z/OS are similar to other Tivoli Workload
Scheduler dynamic jobs. The job definition uses the XML syntax of the Job
Submission Description Language (JSDL), where the application name is JCL and
includes one of the following:
v The entire JCL definition of the task to be run by JES2. In this case, the JCL is

part of the job definition stored in the Tivoli Workload Scheduler database and is
sent to the agent with the rest of the job at submission time. This is called
submission by definition.

v The names of the data set and of the file containing the JCL definition in the
z/OS system where the agent runs. When the job is submitted, the agent uses
this information to track the JCL definition in the z/OS system. This is called
submission by reference.

You can use the following interfaces to define these jobs:
v The composer or the dynamic workload broker command lines
v Workload Designer of the Dynamic Workload Console
v The dynamic workload broker graphical user interface

The agent supports the scheduling of jobs, but not of started tasks, on the z/OS
system.

JCL tailoring (variable substitution in z/OS terms) is carried out before submitting
the JCL to JES2 using the variable values specified in the variables tables in Tivoli
Workload Scheduler.

You manage agent for z/OS jobs as you manage other Tivoli Workload Scheduler
jobs. Use the Dynamic Workload Console to see them in graphical or tabular
views, or in host-lists. You can also see the related job logs and carry out most
actions (such as rerun, cancel, but not kill) typically available for other jobs.

From the Dynamic Workload Console or the Tivoli Workload Scheduler command
line you can view the job log for as long as the job output is kept in the JES spool.

Compatibility issues between the agent for z/OS and the Tivoli
Workload Scheduler for z/OS trackers

The agent for z/OS and the Tivoli Workload Scheduler for z/OS trackers can
coexist as long as you run the standard Tivoli Workload Scheduler for z/OS
tracker exits. If you are concerned about such coexistence, you must not therefore
install any of the sample exits provided with the agent.

Coexistence with the Tivoli® Workload Scheduler for Applications
for z/OS gateway

The agent for z/OS and the gateway can coexist on the same system.

2 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Chapter 2. Installing and configuring

This chapter describes the tasks you need to complete to download, install, and
configure the agent for z/OS software on the target z/OS system.

You install and configure the agent for z/OS in the z/OS system. As soon as it is
configured, the agent automatically links with the dynamic workload broker
component of Tivoli Workload Scheduler (defined during the configuration
process) through the HTTP or HTTPS protocols.

Installation check-list

The following table summarizes the installation and setup tasks for the agent for
z/OS:

Table 1. Checklist for installing the agent for z/OS

Task Description

1 “Load the agent for z/OS software” on page 4

Run the following steps:

1. Run SMP/E to receive the agent for z/OS software.

2. Apply the agent for z/OS maintenance.

2 “Run the EELINST installation aid” on page 6

Run EELINST for every instance of the agent for z/OS that you want to create as
soon as the agent for z/OS software is loaded. It helps you to:

v Create the sample job JCL to generate tailored samples from the EELINST
dialog.

v Allocate data sets for the agent.

v Add SSL certificates.

v Define initialization statements creating members in the parameter library
(which is identified by the EELPARM DD statement in the agent for z/OS
started task).

3 Add SMF and JES event tracking exits
Note: Run this step only if you do not already have a Tivoli Workload Scheduler
for z/OS version 8.6 tracker running in the system. If you do have it, the exits
are already defined. If you run a Tivoli Workload Scheduler for z/OS version
prior to 8.6, make sure you apply the required compatibility PTFs on the
scheduler.

4 Update SYS1.PARMLIB

Run the following tasks if they apply to your installation:

v Define the agent for z/OS subsystem (IEFSSNnn).

v Authorize the agent for z/OS load module library (IEAAPFnn or PROgnn).

v Update dump-content definitions.

v Update the z/OS link-library definition (LNKLSTnn).

v Update SMF parameters (SMFPRMnn). Run this step only if you do not already
have a Tivoli Workload Scheduler for z/OS tracker running in the system.

v Choose whether to start the agent automatically (COMMNDnn).

5 “Update RACF for the agent for z/OS started task” on page 20

© Copyright IBM Corp. 2011, 2012 3

Table 1. Checklist for installing the agent for z/OS (continued)

Task Description

6 Set up the SSL environment

Do the following:

1. Create as many private keys, certificates, and trusted certification authority
(CA) chains as you plan to use in your network.

2. Specify the SSL keywords in the HTTPOPTS initialization statement.

7 Update SYS1.PROCLIB

Create a JCL procedure for the address space.

8 Complete the installation

1. IPL the system where you have installed the agent.

2. Verify the installation.

Load the agent for z/OS software
The first installation step is to use SMP/E to download the agent for z/OS
software from the distribution tape.

To load the agent for z/OS software on your z/OS system, process the software
distribution tape using the facilities of System Modification Program Extended
(SMP/E). This creates or updates the necessary software libraries on your system.

To download the agent software, you can use either:
v The SMP/E dialogs.
v The sample jobs that are provided in the distribution tape. Use them with the

SMP/E RECEIVE, APPLY, and ACCEPT commands. The SMP/E jobs assume
that all DDDEF entries that are required for SMP/E execution have been defined
in appropriate zones.

The next sections list and describe the samples provided to run the RECEIVE,
APPLY, and ACCEPT commands. See the Program Directory for further details.

Setting up the environment

You can use the sample library members EELALSMP and EELALLOC to create
and initialize the SMP/E environment and the agent for z/OS product libraries
that are needed to support the installation and continuing maintenance of the
agent.

The EELALSMP job initializes an SMP/E CSI, adding a global zone, and the agent
for z/OS FMID.

The EELALLOC job allocates all Tivoli target and distribution libraries.

Using the samples for RECEIVE, APPLY, and ACCEPT processing

The following table lists the sample library members that are included in the
distribution tape for your use:

4 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Table 2. Sample library members for the agent for z/OS data sets

Sample member Function

EELACPTE Use to run SMP/E ACCEPT processing for
the agent for z/OS data sets

EELALLOC Use to allocate all the agent for z/OS data
sets

EELAPPLE Use to run SMP/E APPLY processing for the
agent for z/OS data sets

EELDDDEF Use to set up DD definitions for all agent for
z/OS data sets

EELRECVE Use to run SMP/E RECEIVE processing for
the agent for z/OS data sets

You might need to change the distribution library and zone name to reflect those
defined in the agent for z/OS CSI.

See the program directory for further details.

Results

The following table describes the distribution and target libraries that are created
or updated by SMP/E.

Table 3. Agent for z/OS libraries loaded by SMP/E

SMP/E DD name

DescriptionDistribution Target

AEELCLIB SEELCLIB CLISTs

AEELDATA SEELDATA Default SSL certificates

AEELMAC0 SEELMAC0 Assembler macros

AEELMISC SEELMISC License information

AEELMOD0 (object) SEELLMD0 (load) Agent for z/OS modules

AEELMSG0 SEELMSG0 Messages

AEELPNL0 SEELPNL0 Panels for the EELINST
installation aid

AEELSAMP SEELSAMP Sample exits, programs, and
JCL

You should place the load modules in a separate library. Create the library before
you run the SMP/E jobs.

Alternatively, you can place the new load modules in one of your existing
load-module libraries, for example SYS1.LINKLIB. The remaining data sets loaded
by SMP/E are new data sets that you must create before running the SMP/E jobs.
The agent for z/OS program directory contains the JCL and instructions for
loading the software.

After you have loaded the agent for z/OS software, apply any recommended
maintenance described in the PSP bucket.

Chapter 2. Installing and configuring 5

Run the EELINST installation aid
EELINST is a CLIST-driven ISPF dialog that helps you setup an agent for z/OS
instance. Set EELINST up as soon as the agent for z/OS software is installed.

EELINST helps you with the installation by:
v Building the batch-job JCLs which are tailored to your requirements and that

you can use for a complete installation.
v Creating the data sets used for your agent for z/OS instance.
v Defining initialization statements in the parameter library (EELPARM).
v Loading the default SSL certificates on the RACF® keystore database.
v Listing the remaining manual steps required to complete the installation.

Setting up the EELINST installation aid

EELINST reads skeleton JCLs from the SEELSAMP library, tailors the JCLs, and then
writes the tailored JCLs to an output library that you specify. The components of
EELINST reside in these libraries:

SEELCLIB
CLIST to drive the dialog

SEELPNL0
EELINST panels

SEELSAMP
Sample JCL

To be able to run EELINST, allocate these libraries to the DD statements in your
TSO session:
v SEELCLIB to SYSPROC

v SEELPNL0 to ISPPLIB

v SEELSAMP to ISPSLIB

Running EELINST

To invoke EELINST, enter the EELINST TSO command from an ISPF environment.
This panel is displayed:

6 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

When you press ENTER, the following panel is displayed, with some of the fields
pre-filled with default values:

The length of the subsystem name can be at most 4 characters.

The length of the data set prefix can be at most 26 characters.

When you press ENTER, the following sample jobs are created in the Output dsn
name data set:

Welcome to the Tivoli Workload Scheduler distributed
Agent for z/OS Installation

The installation program can assist you with the following operations:

V Building a batch-job JCL that is tailored to your requirements and that can be
used for a complete installation.

V Creating the data sets used for your Agent for z/OS address space.

V Defining initialization statements in the parameters library (EELPARM).

V Loading the default SSL certificates on the RACF keystore database.

V Providing a list of all the other manual steps you must apply on the system to
complete the installation.

Press ENTER to continue the installation. Press PF3 to quit.

Create customized sample jobs 1/5

Job statement information:
//ZAGEINST JOB JOBNN___
__
__
__

Product libraries (Steplib is optional):
Steplib library ===> __
Message library ===> ZAGE.INST.SEELMSG0__________________________
Data library name ===> ZAGE.INST.SEELDATA__________________________

Agent for z/OS subsystem information:
Datasets prefix ===> TWSSSD_____________________
Subsystem name ===> ZAGE Subsystem name
Unit name ===> 3390___ Default unit name
Volume serial ===> EELVOL_ Default volume serial

Input library: specified in the logon procedure (ISPSLIB)
Output library:
Output dsn name ===> __

SYSOUT class ===> * SYSOUT class for reports

Press ENTER to continue, PF12 for previous panel, PF3 to quit.

Chapter 2. Installing and configuring 7

Table 4. Sample jobs created by the installation aid

Sample name Description

EELALLDS Allocates the data sets used for the agent for z/OS
started task

EELAGT Generates an agent for z/OS started task procedure
sample

EELAGTP Generates default parameters for the agent for z/OS
started task procedure sample

EELRCERT Copies default certificates for SSL communication (
EELCERCL member in library MISC) to RACF

EELRETWT Sample program to simulate abends, return codes, and
waits

EELSMF JCL to assemble and install the SMF exits

EELRMD A readme listing the successive manual steps

EELJES2 and EELJES2U JCLs to assemble and install JES exit7

EELJES21 and EELJES2V JCLs to assemble and install JES exit51

Then, the following panel is displayed:

After submitting EELALLDS, all the data sets for the new started task are available.
They are:

Table 5. Data sets used with the agent for z/OS.

Data set allocated by EELALLDS DD name Dataset description

- EELBRDS Internal reader.

dataset_prefix.subsystem_name.EELDUMP
dataset_prefix.subsystem_name.SYSDUMP

EELDUMP
SYSDUMP

Diagnostic data sets where
the agent for z/OS writes
debugging information
when validity checking
discovers internal error
conditions.

Create the data sets used for the Started task (EELALLDS) 2/5

The data sets in EELALLDS will be named:
DATASET PREFIX.SUBSYSTEM NAME.NAME

SUBMIT/EDIT JOB ===> E S to submit JOB, E to edit
N to skip to the next panel

Press ENTER to continue the installation. Press PF3 to quit.

8 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Table 5. Data sets used with the agent for z/OS. (continued)

Data set allocated by EELALLDS DD name Dataset description

dataset_prefix.subsystem_name.EV
dataset_prefix.subsystem_name.HT
dataset_prefix.subsystem_name.HTREF

EELEVDS
EELHTDS

EELHTREF

Event data sets containing
records that describe events
created by the job tracking
functions of the agent for
z/OS. EELHTDS records
events coming from dynamic
workload broker, while
EELEVDS records events
created by JES and SMF that
are to be transmitted to
dynamic workload broker.
EELHTREF is a service data
set used for jobs submitted
by reference or where the
JCL requires variable
resolution.

- EELJBLIB Job library data set for the
JCLs submitted by
reference. When the data
set name is not specified in
an agent for z/OS job
definition, the agent searches
EELJBLIB for the member
name with which the JCL
was saved.

- EELMLIB Messages library.

dataset_prefix.subsystem_name.MLOG EELMLOG Message log.

dataset_prefix.subsystem_name.PARM EELPARM Parameters library
containing initialization
statements that define
runtime options for the
agent for z/OS subsystem.

A sample copy of the agent started task (for example, AGT1) is inserted in the
output data set.

Check the job output to make sure this step has completed before you continue
with the following steps.

The next step inserts the default initialization statements in the parameter library
used by the agent started task.

The length of the member name in the EELPARM library can be at most 8
characters.

Define initialization statements in the parameters library 3/5

INITIALIZATION PARAMETERS ===> AGT1P___ Member in the EELPARM library
CREATE/EDIT PARAMETERS ===> E C to create, E to edit

Press ENTER to continue the installation. Press PF3 to quit.

Chapter 2. Installing and configuring 9

Select E to define the initialization statements with valid values at this time, or C
to just create the statements and leave their functioning definition for a later time
(this will require that you restart the agent). See “Customization parameters” on
page 29 for additional information on the initialization statements.

The next panel gives you the option to import the default SSL certificates into the
RACF keystore data set.

If in the same system you run also Tivoli Workload Scheduler for z/OS and the
related default SSL certificates, skip this step but configure the SSLKEYRING
parameter with the value already used for that scheduler. If you fail to do this, the
submission of EELCERT has no effect and returns an RC4 error code.

At the end, a panel that lists all the remaining steps you have to manually run on
your z/OS environment to complete the installation is displayed:

More: +
Run the EELRCERT job to import the default certificates to RACF 4/5

To use them, configure the HTTPOPTS initialization statement to activate the SSL
communication, setting parms TDWBSSL and/or SSL and add the following configurations:
SSLKEYRINGTYPE(SAF)
SSLKEYRING(EELRING)

Note: If you already run default certificates with Tivoli Workload
Scheduler for z/OS, skip this step and configure accordingly.

SUBMIT/EDIT JOB ===> N S to submit JOB, E to edit
N to skip to the next panel

10 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

The steps are described in the following sections.

Add SMF and JES event tracking exits
The agent for z/OS tracks the progress of jobs and started tasks through the z/OS
system by using JES2 and SMF exit points. Add these exits on the z/OS system
where you installed the agent, unless you already run a tracker of a supported
Tivoli Workload Scheduler for z/OS version (in this case the exits are already
installed).

Several sample event-tracking exits, that simplify the installation of event tracking,
are available in the SEELSAMP sample library. To assemble and install the exits,
you can use the sample JCL provided to install the exits as SMP/E usermods, or
you can assemble and link-edit the exits yourself. For JES exits, apply usermods in
the CSI where JES is included: this is the best method. It has the advantage that
SMP automatically reassembles the exits if maintenance is applied to the JES
control blocks that the agent for z/OS depends upon.

The sample exits all use the EELEXIT macro to create event-generating code. See
“Invoking the EELEXIT macro” on page 13 for more information.

The following table describes the samples that you can use to generate and install
the exits. The sample exit, skeleton JCL, and usermod entries identify the members
in the SEELSAMP library.

List of additional manual steps required to complete the installation 5/5

o Add SMF and JES event tracking exits.
Complete this step only if you do not already have a Tivoli Workload Scheduler for z/OS
tracker active on the z/OS system. In this case the exits are already defined.

o Update SYS1.PARMLIB.
- Define the Agent for z/OS subsystem (IEFSSNnn).
- Authorize the Agent for z/OS load module library (IEAAPFnn or PROgnn).
- Update dump-content definitions.
- Update the z/OS link-library definition (LNKLSTnn).
- Update SMF parameters (SMFPRMnn). Apply this change only if you do not already run

a Tivoli Workload Scheduler for z/OS tracker on the z/OS system.
- Choose whether to start the Agent for z/OS automatically (COMMNDnn).

o Set up the RACF environment.

o Set up the SSL environment.
- Create as many private keys, certificates, and trusted certification authority

(CA) chains as you plan to use in your network.
- Configure the scheduler, by specifying the HTTPOPTS statement for each

component of your network.

o Update SYS1.PROCLIB.
- Create a JCL procedure for the z/OS address space.

o Activate TCP/IP connections.
- Add TCP/IP network definitions. Define an IP address for the Agent for z/OS.
- Add TCP/IP initialization options. Include initialization statement options in
the parameters library for all the Agent for z/OS started tasks.

o Complete the installation.
- IPL each system where you have installed the Agent for z/OS.
- Verify the installation.

This information is also listed in the §EELRMD member of
the output data set

Press ENTER to complete, PF12 to return to the previous panel, PF3 to quit.

Chapter 2. Installing and configuring 11

Table 6. List of sample exits for event tracking

Exit name
Exit
type Sample exit

Sample JCL/
usermod Event supported

IEFACTRT SMF EELACTR1 EELSMF Job and step completion

IEFUJI SMF EELUJI1 EELSMF Job start

IEFU83 SMF EELU831 EELSMF Job Print end

EXIT7 JES2 EELXIT74 EELJES2/
EELJES2U

JCT I/O exit for JES2, purge

EXIT51 JES2 EELXIT51 EELJES21/
EELJES2V

JES2 QMOD phase change exit

The next two sections provide more details about the SMF and JES2 exits.

SMF exits
This section provides details about adding the SMF event tracking exits used by
the agent for z/OS.

You must tailor the sample JCL to the requirements of your installation. You can
copy any of the members from the SEELSAMP library to one of your own libraries
and manually tailor the JCL.

If you are unfamiliar with how to activate SMF exits, see “Updating SMF
parameters” on page 17 and the documentation for SMF.

JES2 exits
This section provides details about adding the JES2 event tracking exits used by
the agent for z/OS.

The EELSAMP sample library contains a number of members that you can use to
assemble and link-edit JES exits. EELJES2 and EELJES21 provide sample JCL to
assemble and link-edit the JES2 exits. However, you are encouraged to use
members EELJES2U and EELJES2V. These samples provide the JCL to install the
JES2 exits as SMP/E usermods. The usermods are defined so that both the JES and
the agent for z/OS target zones are informed of the dependencies. This ensures
that future maintenance to either component (JES2 or the agent for z/OS) will be
handled correctly.

The load modules of the JES2 exits, which are EXIT7 and EXIT51, are called
TWSEXIT7 and TWSXIT51, and their entry points are called TWSENTR7 and
TWSENT51, respectively.

The sample library member EELXIT74 contains the assembler source code of a JES2
JCT I/O exit, JESEXIT7. EELXIT74 is used for JES2. The agent for z/OS uses
JESEXIT7 to detect new jobs on the internal reader and also to detect output group
purge.

The sample library member EELXIT51 contains the assembler source code of the
JES2 QMOD Phase Change exit, JES2 EXIT51. The agent for z/OS uses JES2
EXIT51 to detect job errors occurring during the JES2 input phase.

Include these records in the JES2 initialization member:

12 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

JES2 Initialization Statements

Add the following records to the JES2 initialization member:
Load agent for z/OS exit mod */
EXIT(7) ROUTINES=TWSENTR7,STATUS=ENABLED /*
Define EXIT7 entry point */

And also:
LOAD(TWSXIT51) /*
Load agent for z/OS exit mod */
EXIT(51) ROUTINES=TWSENT51,STATUS=ENABLED /*
Define EXIT51 entry point */

To dynamically install the JES2 exits, use these commands when the modules are
available in the LNKLST:
$ADD LOADMOD(TWSEXIT7),STORAGE=PVT

$T EXIT(7),ROUTINES=TWSENTR7,
STATUS=ENABLED

$ADD LOADMOD(TWSXIT51),STORAGE=PVT

$T EXIT(51),ROUTINES=TWSENT51,
STATUS=ENABLED

To put a new version of an exit (that was previously installed) in place, use these
commands when the modules are available in the LNKLST:
$TLOADMOD(TWSEXIT7),REFRESH
$TLOADMOD(TWSXIT51),REFRESH

For more information about JES2 initialization statements, see JES2 Initialization and
Tuning Reference.

Invoking the EELEXIT macro
The sample event tracking exits shipped with the agent for z/OS are written in
assembler language. The event tracking code in these exits is generated by an
assembler macro called EELEXIT. The following sections describe how to invoke
the EELEXIT macro.

Invoking EELEXIT in SMF exits

EELEXIT establishes its own addressability in SMF exits. It saves and restores all
used registers. To do this, it expects Register 13 to point to a standard z/OS save
area.

There are two ways to invoke the EELEXIT macro in an SMF exit:
v Invoke EELEXIT with all registers unchanged since the exit was called (except

Register 15).
v Save all registers on entry to the exit and then invoke EELEXIT by specifying the

address of the initial save area.

In both cases, EELEXIT must be invoked in Supervisor state, PSW key 0.

Invoking EELEXIT in JES2 exits

In JES2 exits, EELEXIT must be invoked in Supervisor state, PSW key 1. EELEXIT
expects code addressability to be already established. It also expects registers to be
set up as follows:

Chapter 2. Installing and configuring 13

v EXIT7

R0 JCT read/write indicator (JES2 SP Version 3 and earlier); address of a
parameter list mapped by the JES2 $XPL macro (JES2 SP Version 4 and
later)

R1 Address of the JCT being read or written

R13 Address of the current PCE
v EXIT51

R1 Address of a parameter list mapped by the JES2 $XPL macro

Note that these register conventions are already set up when the exit is called. You
must invoke EELEXIT while these registers are unchanged.

If a shipped JES2 exit sample (or the EELEXIT macro) has been user–modified,
make sure that it does not prevent or filter the tracking of the agent for z/OS itself.

See the NOTES section of the EELEXIT prolog for information about the register
contents that are destroyed by EELEXIT in JES2 exits.

Macro invocation syntax for EELEXIT

EELEXIT produces event tracking exit code by generating assembler code to
perform in an SMF or JES2 exit.

Syntax

�� EXIT (exit name)
REG13 (address of save area)

�

�
YES

MAPMAC { NO }
NO

SETUID { YES }

��

Parameters

EXIT = exit name
A required keyword defining the name of the exit in which the macro is used.
The following names can be specified: IEFACTRT, IEFUJI, EXIT7, and EXIT51.
For exits IEFACTRT and IEFUJI, a warning message is issued if the name of
the current CSECT differs from the name specified by the EXIT keyword.

REG13 = address of save area
An optional keyword defining the address of the current-register save area
when the SMF or JES2 exit was called. The default for this keyword depends
on the name specified by the EXIT keyword. If the current exit is EXIT7, the
default is PCELPSV. In all other cases, the default is the second fullword in the
current save area (if the current save area is properly chained, and the previous
save area contains the registers at entry to the exit).

If the default does not apply, the REG13 keyword must be specified. Its value
must be a fullword pointing to the save area that was used to store all the
registers when the exit was entered.

MAPMAC = {YES|NO}
An optional keyword specifying whether the macro should generate the
required assembler mapping macros. The default is to generate these mapping

14 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

macros. The following mapping macros are required by EELEXIT code: CVT,
IEFJESCT, IEFJSSOB, and IEFJSSIB. The IEFACTRT exit also requires the
IEFJMR macro.

SETUID = {YES|NO}
An optional keyword specifying whether the macro should generate code to
place the current user ID in the JMRUSEID field when the IEFUJI exit is taken.
Specify YES to generate this code. If you specify NO, which is the default, the
JMRUSEID field is not updated. You are recommended to specify YES if you
use the current user ID to filter data set close events. You need these mapping
macros when you specify YES: IHAPSA, IHAASCB, IHAASXB, and IHAACEE.

Return codes

The following return codes can be generated at assembly time:
4 Input invalid, check for warning messages.
12 Unsupported exit specified for the EXIT keyword.

Messages

The following messages can be generated at assembly time:
v WARNING: EXIT NAME DIFFERS FROM CURRENT CSECT NAME
v WARNING: MAPMAC VALUE MAPMAC IS NOT RECOGNIZED
v EXIT NAME EXIT IS NOT SUPPORTED

Update SYS1.PARMLIB
The following sections describe the updates to SYS1.PARMLIB necessary for your
environment.

Defining subsystems
You must define the name of every new agent for z/OS subsystem in the active
subsystem-name-table member of SYS1.PARMLIB.

Consider the following when you define the subsystem name:
v The subsystem and the started task names for the agent for z/OS must be the

same.
v Agent for z/OS instances connected to the same dynamic workload broker

cannot have the same system-STC name identification.
v Because subsystem names on a given LPAR must be unique, and because all

agent for z/OS started tasks must have the same name as their associated
subsystems, all started tasks on any given LPAR must have unique names (that
is, every agent for z/OS instance inside a z/OS image must have a unique
Subsystem/STC name).

To define the subsystems, update the active IEFSSNnn member in SYS1.PARMLIB.
Include records as in the following example:
Subsystem definition record
SUBSYS SUBNAME(subsystem name) INITRTN(module name) INITPARM (’maxecsa,suffix’)

where:

subsystem name
The name assigned to an agent for z/OS subsystem. The name must be
from 2 to 4 characters. All the subsystem names, as defined in the

Chapter 2. Installing and configuring 15

SYS1.PARMLIB member IEFSSNnn, must be unique within a GRS complex.
Also, the subsystem names must be unique within your SYSPLEX, both
local and remote systems. The started task name used for an agent for
z/OS address space must exactly match the name of the associated
subsystem.

module name
The name of the subsystem initialization module, EELINITJ.

maxecsa
Defines the maximum amount of extended common service area (ECSA)
that is used to queue job tracking events. The value is expressed in
kilobytes (1 KB equals 1024 bytes). The default is 4, which means that a
maximum of 4 KB (4096 bytes) of ECSA storage is needed to queue job
tracking events. The maximum value allowed for MAXECSA is 2816.

suffix The module name suffix for the EELSSCM module that EELINITJ loads
into common storage. EELSSCM is the subsystem communication module.
The suffix must be a single character. Because the name of the module
shipped with the agent for z/OS is EELINITJ, specify J as the suffix value.
If you do not provide a suffix, EELINITJ attempts to load module name
EELSSCMJ. You can also specify a subsystem communication module name
in the SSCMNAME keyword of the TWSOPTS initialization statement to
load an updated version of the module before a scheduled IPL.

“Updating the z/OS link-library definition” on page 19 provides more information
about EELSSCM modules.

The next example illustrates a record you can include in the SYS1.PARMLIB
IEFSSNnn member:
/*Subsystem definition example*/
SUBSYS SUBNAME(ZAG3) INITRTN(eelinitj) INITPARM (’100,J’)

The record defines an agent for z/OS subsystem called ZAG3. Its initialization
module is EELINITJ. The amount of ECSA that is allocated, 101104 bytes, is
enough for 1136 job tracking events. Because suffix value J is specified, EELINITJ
loads module EELSSCMJ.

Calculating MAXECSA values

The agent for z/OS allocates ECSA storage for job tracking events in blocks of 1424
bytes. Each block is equivalent to 16 events. Every job creates a minimum of six
events.Table 7 gives examples of the storage needed for, the storage actually
allocated, and the events accommodated for several MAXECSA values.

If you want to calculate values that are not shown in the table for a given
MAXECSA value, use this method:
v Space requested = MAXECSA * 1024
v Blocks = space requested / 1424 (round down to a whole number)
v Space allocated = blocks * 1424
v Events accommodated = blocks * 16

Table 7. Examples of MAXECSA storage values

MAXECSA
value

Amount of MAXECSA
space requested

Blocks of ECSA space
allocated (bytes)

Number of events
accommodated

0 0 0 (0) 0

16 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Table 7. Examples of MAXECSA storage values (continued)

MAXECSA
value

Amount of MAXECSA
space requested

Blocks of ECSA space
allocated (bytes)

Number of events
accommodated

4 4096 2 (2848) 32

8 8192 5 (7120) 80

16 16384 11 (15664) 176

36 36864 25 (35600) 400

72 73728 51 (72624) 816

100 102400 71 (101104) 1136

200 204800 143 (203632) 2288

400 409600 287 (408688) 4592

500 512000 359 (511216) 5744

Important:

v Allocate enough ECSA storage so that job tracking events are not lost when the
event writer subtask of the agent for z/OS is not active. When the event writer
is active, the number of queued events in ECSA is almost always 0. Allocate
enough ECSA for the maximum amount of time you expect the event writer to
be inactive.
For example, after the IPL of a z/OS system, job tracking events can occur
before the agent for z/OS address space has become active. If you expect a
maximum of 50 events to occur during this time, you should set a MAXECSA
value of 8, as shown in the table. When the event writer becomes active, the
queued events are processed and removed from ECSA.
If events are lost, message EELZ035E is written in the message log.

v All ECSA storage is allocated above the 16MB line.

Authorizing the load-module library
This section explains how to activate the load-module library for the agent for
z/OS.

You must update the active authorized-program-facility member (IEAAPFnn, or
PROGnn) to authorize the load-module library. Each record, except the last, ends
with a comma. For the following example, assume that you have installed the
agent for z/OS load modules in the data set TWS.SEELLMD0 and that this data set
is on volume ABC123. To authorize this library, insert this record before the last
entry in the IEAAPFnn:
TWS.SEELLMD0 ABC123,

or update the PROGnn member.

Note that libraries that are defined in the IEAAPFnn or PROGnn member are
authorized only if they remain on the volume specified. If DFHSM is used in your
system, change DFHSM parameters so that the new authorized library is not
migrated by DFHSM.

Updating SMF parameters
Updating SMF parameters is necessary to activate the exits used by the agent for
z/OS for event tracking.

Chapter 2. Installing and configuring 17

The SMFPRMnn member defines parameters for the System Management Facilities
(SMF). You must verify that the active SMF parameter member, SMFPRMnn,
specifies that all SMF exits used by the agent for z/OS for event tracking are
activated, and that the required SMF records are being collected. If this is not the
case, you must update the active SMF parameter member. Event tracking requires
these SMF exits:
IEFACTRT

Job-end and step-end exit.
IEFUJI

Job initiation exit.
IEFU83

Record write exit. Used for job-print-end.

The agent for z/OS uses the following SMF record types:
6 For PRINT (A4) events, used for tracking work on PRINT workstations
26 For all job tracking
30 For all job tracking

Active exits are defined by the EXITS parameter of the SYS and SUBSYS keywords.
An example of these keywords is:
/*SYS and SUBSYS keywords*/
SYS(TYPE(6,26,30,60,62),EXITS(IEFACTRT,IEFUJI,IEFU83))
SUBSYS(STC,EXITS(IEFUJI,IEFACTRT,IEFU83))
SUBSYS(JES2,EXITS(IEFUJI,IEFACTRT,IEFU83))

Important:

v The JES2 parameter does not refer to JES itself, but to batch jobs handled by JES.
So do not suppress exit invocation. Ensure that you do not specify TYPE6=NO
and TYPE26=NO on the JOBCLASS and STCCLASS statements of the JES2
initialization parameters.

v You might find it useful during installation to code two SMFPRMnn members,
one with the exits active and the other with the exits inactive. You can then use
the SET SMF=nn z/OS command to switch your current SMF parameters to the
new member. By switching back, using the SET SMF=nn command, you avoid
the need to re-IPL, if you encounter a problem.

v Exits for SUBSYS STC are required only if you run also Tivoli Workload
Scheduler for z/OS in the same system. If you run only the agent for z/OS, line:
SUBSYS(STC,EXITS(IEFUJI,IEFACTRT,IEFU83))

is of no use.

Use the PROGnn parmlib member to specify installation exits and control their
use. Using PROGnn, you can associate multiple exit routines with installation exits
at IPL, or while the system is running. Consider using PROGnn in addition to
SMFPRMnn to specify exits, whether or not you want to take advantage of these
functions.

The following example shows how you can specify SMF exits in a PROGxx
parmlib member. If you specify this in SMFPRMnn:
SYS(...EXITS(IEFACTRT,IEFUJI,IEFU83))

you would add this to get the equivalent processing in PROGnn:
EXIT ADD EXITNAME(SYS.IEFACTRT) MODNAME(IEFACTRT)
EXIT ADD EXITNAME(SYS.IEFUJI) MODNAME(IEFUJI)
EXIT ADD EXITNAME(SYS.IEFU83) MODNAME(IEFU83)

18 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

When you associate new exit routines with SMF exits through PROGnn or the
SETPROG command, you must use the following naming conventions:
v For exits listed on the EXITS keyword of the SYS statement in SMFPRMnn, each

exit will have the name SYS.xxxx (where xxxx is one of the exits listed).
v For exits listed on the EXITS keyword of the SUBSYS statement of SMFPRMnn,

each exit will have the name SYSzzzzz.xxxx (where zzzz is the name of the
subsystem and xxxx is one of the exits listed).

If you define two members in SYS1.PARMLIB with two different names, for
example, PROG03 in which there is the statement EXIT ADD EXITNAME(SYS.1
EFACTRT) MODNAME(EQQACTR1), you can switch to the version EQQACTR1, without
the need to re-IPL, by issuing the command: /SET PROG=03.

For information about using PROGnn to control the use of exits and exit routines,
see IBM z/OS MVS Initialization and Tuning Reference.

Updating z/OS dump options
This section describes how to update the z/OS dump options for the agent for
z/OS.

The sample JCL procedure for an agent for z/OS address space includes a DD
statement and a dump data set is allocated by the EELRETWT sample created by
EELINST. SYSMDUMP is the dump format preferred by the service organization.

Ensure that the dump options for SYSMDUMP include RGN, LSQA, TRT, CSA,
and GRSQ on systems where an agent for z/OS address space will run. To display
the current SYSMDUMP options, issue the z/OS command DISPLAY
DUMP,OPTIONS. You can use the CHNGDUMP command to alter the
SYSMDUMP options. Note that this will only change the parameters until the next
IPL is performed.

To dump an agent for z/OS address space using the z/OS DUMP command, the
SDUMP options should specify RGN, LSQA, TRT, CSA, and GRSQ. Consider
defining these options as your system default.

Updating the z/OS link-library definition
This section documents what you should do to update the z/OS link-library
definition if you installed the agent for z/OS in a separate load-module library.

If you installed the agent for z/OS in a separate load-module library, you should
define this library in the active LNKLSTnn member.

If you installed load modules in the data set TWS.SEELLMD0 and this data set is
cataloged in the master catalog, insert this record before the last entry in the
LNKLSTnn member to add this library to the link library concatenation:
Adding LINKLIB
TWS.SEELLMD0

Starting the product automatically
The COMMNDnn member of SYS1.PARMLIB lists z/OS commands automatically
issued during system initialization. To avoid delays in starting the agent for z/OS
when the z/OS system is started, consider including the names of the agent for

Chapter 2. Installing and configuring 19

z/OS started task in this member. For information about how to include start
commands for an address space, see the IBM z/OS MVS Initialization and Tuning
Reference.

Update RACF for the agent for z/OS started task
This section describes how to define the agent for z/OS to your security system.

If your installation protects data and resources from unauthorized use, you must
define the agent for z/OS to your security system. This section assumes that the
Resource Access Control Facility (RACF) is installed and active on your z/OS
system. It describes the activities you must perform to define and enable the
security environment for the agent for z/OS.

RACF controls the interaction between users and resources. You define resources
and the level of access allowed by users to these resources in RACF profiles. A
user is an alphanumeric user ID that RACF associates with the user.

The agent for z/OS needs access to z/OS resources for the work it schedules. The
user ID associated with the agent can be obtained from:
v The agent for z/OS address space that accesses data sets used by the work it

schedules, and that submits work and issues JES commands.
v The USER parameter on the JOB card of a batch job to be submitted.

Controlling the user ID of the address space

Since the agent for z/OS runs as a started task, you must associate the cataloged
procedure name with a suitably authorized RACF user. The user ID must be
defined in the STARTED resource class.

Controlling the user ID of submitted jobs

The agent for z/OS can submit to JES two types of jobs:
v Normal production jobs, which are submitted from a Tivoli Workload Scheduler

plan.
v Ad-hoc jobs, which you can submit directly using the Dynamic Workload

Console or conman.

The agent submits production and ad-hoc jobs to the internal reader when all
prerequisites are fulfilled. You can determine the authority given to a job in the
following ways:
v You can submit work with the authority of the agent for z/OS address space.

The job is given the same authority as the agent for z/OS.
v You can include a password in the JCL to propagate the authority of a particular

user.

Protecting data sets

For basic security of data, you should restrict access to the following product data
sets:
v The internal reader (EELBRDS)
v The diagnostic data sets (EELDUMP and SYSDUMP)
v The event data sets (EELEVDS and EELHTDS)

20 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

v The service data set (EELHTREF)
v The message library (EELMLIB)
v The message log (EELMLOG)
v The parameter library (EELPARM)

Moreover, software support people must be able to debug problems and reorganize
files. You might give them alter access to all the product data sets.

Set up the SSL environment
This section describes how to set up SSL protection for the connection between
your agent for z/OS and Tivoli Workload Scheduler.

To provide SSL security for the HTTP connection between the agent for z/OS and
the dynamic workload broker of Tivoli Workload Scheduler, in the HTTPOPTS
initialization statement:
v Set the SSL and/or TDWBSSL keywords to Yes

v Provide values for the SSL-related keywords
v Select SSL-enabled ports for the two connecting counterparts in the

PORTNUMBER (for the agent) and TDWBPORTNUMBER (for dynamic
workload broker) keywords

Using security certificates

When you install the agent, the following default security certificates are
automatically stored in the SEELDATA library:

EELCERCL
The security certificate for the HTTP client (the dynamic workload broker).

EELCERSR
The security certificate for the HTTP server (the agent for z/OS).

Unless you already did so while running the EELINST installation aid (panel 4/5),
or unless you already use SSL with Tivoli Workload Scheduler for z/OS, you must
choose between using these default certificates or creating your own. In both cases,
you need to manually import them into your security system. If you are using
RACF, you are provided with the EELRCERT sample job that imports the
certificates. To run this job, ensure that you use the same user ID that RACF
associates with the agent for z/OS started task.

The EELRCERT job:
v Copies the EELCERCL and the EELCERSR certificates to temporary sequential

data sets.
v Imports EELCERCL and EELCERSR to RACF.
v Deletes the temporary sequential data sets.
v Creates the SAF key ring that is used to connect the imported certificates.
v Updates the RACF database with the new certificates and key ring.

Activating the new default security certificates
The default security certificates provided with the agent for z/OS software expire
on 10 February 2014. When you install the PTF UK83976 you are provided with
new certificates that you must activate to keep your HTTPS connections active.

Chapter 2. Installing and configuring 21

When you activate the new security certificates, the HTTPS connections established
through the EELRING key ring between the agent for z/OS and the dynamic
domain managers and master domain managers are kept active.

To activate the new certificates, ensure that the following conditions are met:
v You are already using the security certificates connected with the EELRING key

ring or you are planning to use them.
v The old security certificates have not expired.
v On the agent for z/OS, you have installed the PTF UK83976.
v On the domain managers, you have installed Tivoli Workload Scheduler V8.6 Fix

Pack 2.

Depending on your environment, activate the new default security certificates by
performing one of the following procedures:
v “Activating the new default security certificates if you are already using

EELRING”
v “Activating the new default security certificates if you are planning to use

EELRING” on page 23

Activating the new default security certificates if you are already
using EELRING
If you are already using the EELRING key ring to encrypt your connections,
activate the new security certificates by performing the following steps.
1. On the agent for z/OS, run the EELINST aid CLIST to create the sample JCLs

EELRCERA and EELRCERD.
2. As the user ID that RACF associates with the agent for z/OS started task, run

the EELRCERA JCL. The EELRING key ring is updated with the addition of
the EELCRCL1 certificate.
This certificate is used by the agent for z/OS as an additional security
certification authority; in this way the agent for z/OS is able to connect both
with the:
v Dynamic domain managers and master domain managers that use the old

certificates
v Dynamic domain managers and master domain managers where you are

activating the new certificates

Note: To work both with the new and old certificates, the agent for z/OS must
have the HTTPOPTS statement set to SSLAUTHMODE(CAONLY). Only when
all the components work with the new certificates you can set
SSLAUTHMODE(STRING) and SSLAUTHSTRING(ServerNew), which is the
new Common Name.

3. Before the old certificates expire, activate the new certificates on the dynamic
domain managers and master domain managers to which the agent for z/OS is
connected by performing the procedure about renewing the default certificates
described in the Tivoli Workload Scheduler V8.6 Fix Pack 2 Readme File.

4. Before the old certificates expire, on the agent for z/OS run the EELRCERD
JCL to change the public and private key by adding the EELCRSR1 certificate
and deleting the EELCERSR certificate. To run EELRCERD, ensure that you use
the same user ID that RACF associates with the agent for z/OS started task.
After performing this step, the agent for z/OS can no longer connect to the
dynamic domain managers and master domain managers that use the old
security certificates.

22 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Activating the new default security certificates if you are
planning to use EELRING
If you are planning to use EELRING key ring to encrypt your connections, activate
the new security certificates by performing the following steps.
1. Ensure that you activated the new certificates on all the dynamic domain

managers and master domain managers to which the agent for z/OS is going
to connect.

2. As the user ID that RACF associates with the agent for z/OS started task, on
the agent for z/OS run the EELRCERT JCL. The EELRING key ring is created.

3. Run the EELRCERA JCL to update the EELRING key ring with a new
certificate authority.

4. Run the EELRCERD JCL to make EELCRSR1 the public and private key used
by the agent for z/OS to connect through the new security certificates.

Update SYS1.PROCLIB
This section describes how to define a JCL procedure for the agent for z/OS
address space.

You must define a JCL procedure or batch job for the agent for z/OS address
space.

To help you do this, the EELINST installation aid generates the following members
in the output library that you specified in the Create customized sample jobs
dialog:

EELAGT
Sample started task procedure for the agent.

EELAGTP
Sample started task parameters for the agent.

These members contain started task JCL that is tailored with the values you
entered in the dialog. Tailor these members further, according to the data sets you
require. Alternatively, you can copy a member from the SEELSAMP library to one
of your own libraries, and tailor it manually.

If you create a new library for your agent for z/OS started-task procedures,
remember to specify the library in the JES PROCLIB concatenation. Then you must
restart JES to include the new library.

Required data sets

Include the following required datasets in your JCL procedure:

Table 8. Required data sets for the agent for z/OS

DD Name Defines

EELBRDS A JES internal-reader.

EELEVDS Event data set for the submit checkpointing
function and for the event writer task.

EELHTDS Event data set for storing events originated
by dynamic workload broker.

EELHTREF Service dataset used for processing JCLs by
reference and variable substitution.

Chapter 2. Installing and configuring 23

Table 8. Required data sets for the agent for z/OS (continued)

DD Name Defines

EELMLIB Message library.

EELMLOG Output message log.

EELPARM Parameter library.

Optional data sets

The following table shows the data sets that you can optionally include in your
JCL procedures. Specify these data sets only if you want to use the function with
which they are associated.

Table 9. Optional data sets for the agent for z/OS

DD Name Defines

EELDUMP Diagnostic dump output.

STDENV Contains environment variables. The
STDENV DD name can point to a sequential
DS or a PDS member (for example, a
member of the PARMLIB) in which you can
define environment variables to initialize
Language Environment®. STDENV must
have a F or FB format with a record length
equal or greater than 80. In this data
set/member you can put your environment
variables specifying VARNAME=value. On
each row you can specify only 1 variable,
characters after column 71 are ignored. If
you need more than 71 characters, you can
add any character in column 72 and
continue on the next row (the character in
column 72 is ignored).

STEPLIB Load-module library.

SYSMDUMP Dump data set.

Complete the installation
This section describes the final steps you need to follow to complete and verify the
installation of the agent.

When you have completed the installation tasks for the agent:
1. IPL each system where you have installed the agent.
2. Verify the installation.

To verify the agent, run these tasks:
1. Ensure that you have completed all the necessary installation tasks.
2. Start the agent and check the connection with dynamic workload broker.
3. Check the message log (EELMLOG).
4. Verify that tracking events are created in the event data set (EELEVDS).
5. Perform problem determination for tracking events if events are missing from

the event data set.

24 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Starting the agent and checking the connection
The first step to verify that the installation was successful is to start the agent and
check that it connects with the specified dynamic workload broker of Tivoli
Workload Scheduler.

To start the agent for z/OS, use the z/OS START command using the subsystem or
started task name you defined for the agent in the EELINST panels.

As the agent starts and successfully connects with dynamic workload broker, the
Agent open for ebusiness message is displayed on the z/OS console.

The first time that the agent starts and connects successfully with the dynamic
workload broker of which you provided hostname and port in the HTTOPTS
initialization statement, it is automatically defined in the Tivoli Workload
Scheduler database with workstation name:
subsystem name-system name

where:

subsystem name
Is the name of the z/OS started task that starts the agent.

system name
Is the name of the z/OS system.

You can now use this workstation name to design, submit, and monitor workload
for z/OS. For more details, see “Computer and workstation names of the agent”
on page 47.

Ensuring that all installation tasks are complete
Ensuring that all installation tasks are complete.

Ensure that you have performed all the installation tasks that are needed for your
agent for z/OS to run properly. That is, you should have:
v Followed the appropriate procedures for the agent for z/OS subsystem that you

are installing.
v Installed the required JES and SMF exits, and verified that they are active.
v Created a JCL procedure for the tracker.
v Allocated required data sets.
v Given the security access for the subsystem to access the data sets.
v Specified the initialization statements in the parameter library (EELPARM).

Checking the message log
This section describes how to verify the message log.

After starting the agent, check the message log:
v Check that the return code for all initialization options is 0 (message EELZ016I).
v Ensure that all required subtasks are active.

– The data-router and submit tasks are always started. You should see these
messages:

Chapter 2. Installing and configuring 25

EELZ005I SUBTASK DATA ROUTER IS BEING STARTED
EELF001I DATA ROUTER TASK INITIALIZATION IS COMPLETE

EELZ005I SUBTASK JOB SUBMIT IS BEING STARTED
EELSU01I THE SUBMIT TASK HAS STARTED

– Also, verify that the agent has started an event writer. You should see these
messages:
EELZ005I SUBTASK EVENT WRITER IS BEING STARTED
EELW065I EVENT WRITER STARTED

v Examine error messages.

Important: The first time the event writer is started, it formats the event data
set. Ignore the SD37 abend code that is issued during the formatting process.

v Check that your log is complete. To do so, issue a dummy MODIFY command
like this: F ssname,xx. Message EELZ049E is written to the log when the
command is processed. If this message is the last entry in the log, it means that
the log works properly.

Verifying tracking events
This section describes how to check that the agent is collecting tracking event
information and writing it to the event data set (EELEVDS).

Job tracking works correctly only if the agent for z/OS receives information about
all the status changes of the jobs it submitted. Job tracking gets this information
from SMF and JES exits. These exits gather the necessary information, and an exit
record is added to the event writer queue of the agent via ECSA buffers. The event
writer queue is active also when the agent is not active.

The event writer

The event writer removes the event from its queue and creates an event record that
is written to an event data set. The event writer also forwards the event if it has
been started with an event reader function.

The event data set

The event data set is needed to even out any difference in the rate that events are
being generated and processed, and to prevent events from being lost if the agent
for z/OS must be restarted. The first byte in an exit record is A. This byte is found
in position 21 of a standard event record, or position 47 of a continuation (type N)
event. Bytes 2 and 3 in the exit record define the event type. These event types are
generated by the agent for z/OS:

Table 10. Events generated by the agent for z/OS.

Event type Description Generated by ...

KJ1 Job submission event. A job has
been submitted to JES by the agent
for z/OS.

Agent

A1 Reader event. A job has entered the
JES system.

JES2 exits EXIT7 and EXIT51

A2 Job-start event. A job has started to
execute.

SMF exit IEFUJI

A3J Job-end event. A job has finished
executing.

SMF exit IEFACTRT

26 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Table 10. Events generated by the agent for z/OS. (continued)

Event type Description Generated by ...

A3P Job-termination event. A job has
been added to the JES output
queues.

JES2 exit EXIT7

A3S Job-step end event. A job step has
finished executing.

This event is generated only when
a step abends.

SMF exit IEFACTRT

A4 Print event. An output group has
been printed.

JES2 exit EXIT7

A5 Purge event. All output for a job
has been purged from the JES
system.

JES2 exit EXIT7

If any of these event types are not being created in the event data set (EELEVDS)
after the first submission, a problem must be corrected before the agent for z/OS is
started in production mode.

Perform these actions to verify that events are being created on your system:
1. Run a job from conman or the Dynamic Workload Console:

a. Submit a job like the following, ensuring that the output is written to a
non-held output class:
Test job
//VERIFY1 JOB STATEMENT PARAMETERS
//VERIFY EXEC PGM=IEBGENER
//*
//SYSPRINT DD DUMMY
//SYSUT2 DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT1 DD *

SAMPLE TEST OUTPUT STATEMENT 1
//*

b. Verify that the job has executed, printed, and purged.
c. Browse the EELEVDS data set using the ISPF/PDF browse facility. You

should find these events in the event data set:
v Type KJ1 event
v Type A1 event
v Type A2 event
v Type A3J event
v Type A3P event

Performing problem determination for tracking events
This section describes how to run problem determination for tracking events if
events are missing from the event data set.

Problem determination depends on which event is missing. In the following table,
the first column refers to the event type that is missing, and the second column
tells you what action to perform.

Chapter 2. Installing and configuring 27

Table 11. Types of missing event and relative problem determination actions

Type Problem determination actions

All 1. Verify in the EELMLOG data set that the event writer has started
successfully.

2. Verify that the definition of the EELEVDS ddname in the agent for z/OS
started-task procedure is correct (that is, events are written to the correct
data set).

3. Verify that the required exits have been installed.

4. Verify that the IEFSSNnn member of SYS1.PARMLIB has been updated
correctly, and that an IPL of the z/OS system has been performed since
the update.

KJ1 Verify that the agent for z/OS subsystem was correctly defined.

A1 If event A3P is also missing:

1. Verify that the agent for z/OS version of the JES2 exits 7 and 51 routines
have been correctly installed. Use the JES commands $T EXIT(7) and $T
EXIT(51) or $DMODULE(TWSEXIT7) and $DMODULE(TWSXIT51).

2. Verify that the JES2 initialization data set contains a LOAD statement
and an EXIT7 statement for the agent for z/OS version of the JES2 exit 7
(TWSEXIT7).

3. Verify that the exit has been added to a load module library reachable
by JES2 and that JES2 has been restarted since this was done.

If event A3P is present in the event data set, call an IBM® service
representative for programming assistance.

A2 1. Verify that the job for which no type 2 event was created has started to
execute. A type 2 event will not be created for a job that is flushed from
the system because of JCL errors.

2. Verify that the IEFUJI exit has been correctly installed:

a. Verify that the SMF parameter member SMFPRMnn in the
SYS1.PARMLIB data set specifies that the IEFUJI exit should be
called.

b. Verify that the IEFUJI exit has not been disabled by an operator
command.

c. Verify that the correct version of IEFUJI is active. If SYS1.PARMLIB
defines LPALIB as a concatenation of several libraries, z/OS uses the
first IEFUJI module found.

d. Verify that the library containing this module was updated by the
agent for z/OS version of IEFUJI and that z/OS has been IPLed
since the change was made.

A3J 1. Verify that the IEFACTRT exit has been correctly installed.

2. Verify that the SMF parameter member SMFPRMnn in the
SYS1.PARMLIB data set specifies that the IEFACTRT exit should be
called.

3. Verify that the IEFACTRT exit has not been disabled by an operator
command.

4. Verify that the correct version of IEFACTRT is active. If SYS1.PARMLIB
defines LPALIB as a concatenation of several libraries, z/OS uses the
first IEFACTRT module found.

5. Verify that this library was updated by the agent for z/OS version of
IEFACTRT and that z/OS has been IPLed since the change was made.

28 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Table 11. Types of missing event and relative problem determination actions (continued)

Type Problem determination actions

A3P If A1 events are also missing, follow the procedures described for A1 events.

If A1 events are not missing, call an IBM service representative for
programming assistance.

Recommendations for allocating the job library data set (EELJBLIB)
The job library data set contains the JCL for the jobs that the agent for z/OS will
submit. It is required by the agent. The data set is first allocated when you run the
EELINST installation aid.

If you subsequently need to allocate more job library data sets, give your
preference to PDSE data sets.

If you must allocate PDS data sets, allocate the job library data set with a only
primary space allocation. If a secondary allocation is defined and the library goes
into an extent when the agent is active, you must stop and restart the agent. Also,
do not compress members in this PDS. For example, do not use the ISPF PACK ON
command, because the agent does not use ISPF services to read it.

Customization parameters
The parameters necessary to customize the agent for z/OS are provided in the
form of initialization statements. This section documents all the initialization
statements required by the agent.

The initialization statements required to run your agent for z/OS started task are
created with working default values when you run the Define initialization
statements in the parameters library step of the EELINST installation aid. You
have the option at that time to leave the default values, and change them later, or
to change them directly before creating the related member in the parameters
library. To change their values at a later time, you have to edit the PARMLIB data
set of the agent, and restart the agent afterwards.

The agent requires the following initialization statements:

EWTROPTS
Defines runtime options for the event writer task.

EXITS Defines the exit policy for the agent.

HTTPOPTS
Defines options to connect with the dynamic workload broker.

TWSOPTS
Defines generic runtime options for the agent.

Specifying runtime options for the event writer
This section describes the EWTROPTS initialization statement.

Use the EWTROPTS initialization statement to specify runtime options for the
event writer task.

Chapter 2. Installing and configuring 29

EWTROPTS

�� EWTROPTS
LAST

RETCODE (HIGHEST) ��

Parameters

RETCODE = (LAST|HIGHEST)
Defines how the event writer creates a return code for the job-end (A3J) event
record. If you specify HIGHEST, the event writer creates an event record with
the highest return code of all the performed steps. If you specify LAST, the
event writer creates an event record with the return code of the last performed
step.

The default is LAST.

Important: On z/OS 1.13 and later, the JOBRC parameter can be added in the
JCL JOB card statements. If JOBRC is specified in the JCL JOB card with the
MAXRC or LASTRC values, the job completion code determined by RETCODE
is overriden by the JOBRC value. If JOBRC is specified with the STEP value, it
is ignored by the agent for z/OS, and the job completion code logged in the
event record is the one determined by the RETCODE value.

The keyword values are valid until you specify a different value and restart the
agent.

Specifying the exit policy for the agent
This section describes the EXITS initialization statement.

This statement defines exit options for the agent for z/OS. It applies to the
EELUX000, EELUX002, and EELUX004 exit programs used by the agent. You can
use the EXITS statement to stop the agent from attempting to load a particular exit
or to change the default name of the load module.

For more information about these exit programs, see “Configuring exit EELUX000
(start/stop)” on page 38, “Configuring exit EELUX002 (job-library-read)” on page
39, and “Configuring exit EELUX004 (event filtering)” on page 43.

EXITS

�� EXITS
YES

CALL00 (NO)
YES

CALL02 (NO)

�

�
YES

CALL04 (NO)
EELUX000

LOAD00 (module name)

�

�
EELUX002

LOAD02 (module name)
EELUX004

LOAD04 (module name)

��

30 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Parameters

CALL00 = (YES|NO)
Specifies whether exit EELUX000 should be loaded. The exit name is either
EELUX000 or its alternative as specified by the LOAD00 keyword.

The default is YES.

CALL02 = (YES|NO)
Specifies whether exit EELUX002 should be loaded. The exit name is either
EELUX002 or its alternative as specified by the LOAD02 keyword.

The default is YES.

CALL04 = (YES|NO)
Specifies whether exit EELUX004 should be loaded. The exit name is either
EELUX004 or its alternative as specified by the LOAD04 keyword.

The default is YES.

LOAD00 = (EELUX000|module name)
Specifies an alternative load module, which is called instead of the default exit
named EELUX000.

LOAD02 = (EELUX002|module name)
Specifies an alternative load module, which is called instead of the default exit
named EELUX002.

LOAD04 = (EELUX004|module name)
Specifies an alternative load module, which is called instead of the default exit
named EELUX004.

Defining HTTP connection options
This section describes the HTTPOPTS initialization statement.

This statement defines the connection details between the agent and dynamic
workload broker. Use it to specify:
v The hostname and port of the agent
v The hostname and port of the connecting counterpart
v SSL security options

HTTPOPTS

�� HTTPOPTS
15

CONNTIMEOUT (HTTP timeout interval)

�

�
IP address

HOSTNAME (hostname)
local hostname

�

�
1

JLOGTHREADNUM (number of threads)

�

Chapter 2. Installing and configuring 31

�
31114

PORTNUMBER (port number)

�

�
10

SRVTHREADNUM (number of threads)
NO

SSL (YES)

�

�
CAONLY

SSLAUTHMODE (STRING)
tws

SSLAUTHSTRING (SSL string)

�

�
SSLKEYRING (SSL key ring database filename)

�

�
SSLKEYRINGPSW (SSL key ring password filename)

�

�
SAF

SSLKEYRINGTYPE (USS)

�

�
TCPIP

TCPIPJOBNAME (TCPIP started task)

�

�
300

TCPIPTIMEOUT (TCPIP timeout interval)

�

�
'000.000.000.000'

TDWBHOSTNAME (dynamic workload broker host name)
dynamic workload broker IP address

�

�
31115 (no SSL) | 31116 (SSL)

TDWBPORTNUMBER (dynamic workload broker port number)

�

�
YES

TDWBSSL (NO)

��

Parameters

CONNTIMEOUT = (timeout interval|15)
The number of seconds that an HTTP connection waits before a timeout
occurs. Valid values are from 1 to 10000. The default is 15 seconds.

HOSTNAME = (hostname | IP address)
The local host name or IP address of the agent for z/OS used to communicate

32 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

with dynamic workload broker. It can be up to 52 alphanumeric characters.
The host name or IP address can be in IPV4 or IPV6 format. Enclose this value
in single quotation marks. The default is the IP address returned by TCP/IP.

JLOGTHREADNUM = (number of threads|1)
The number of threads used by the HTTP server task to manage the requests
concerning the job log. Valid values are from 1 to 100. The default is 1.

PORTNUMBER = (port|31114)
The port number on the agent for z/OS used to communicate with dynamic
workload broker. Valid values range from 0 to 65535. The default is 31114.

SSL = (Yes|No)
Specifies if SSL is configured on PORTNUMBER to protect inbound requests.
Set to Yes if you are using SSL to protect the agent for z/OS port. Set to No
otherwise. The default is No. If SSL is on, the SSLKEYRING parameter is
mandatory.

SSLAUTHMODE = (STRING|CAONLY)
The SSL authentication type. Valid values are:

CAONLY
The scheduler checks the validity of the certificate by verifying that a
recognized Certification Authority has issued the peer certificate. The
information contained in the certificate is not checked.

STRING
The scheduler checks the validity of the certificate as described in the
CAONLY option. It also verifies that the Common Name (CN) of the
Certificate Subject matches the string specified in the SSLAUTHSTRING
parameter.

The default is CAONLY.

SSLAUTHSTRING = (SSL string|tws)
The SSL string used to verify the validity of the certificate when you set
SSLAUTHMODE to STRING. The string can be up to 64 characters. The default is
tws.

SSLKEYRING = (SSL key ring database filename)

If SSLKEYRINGTYPE is SAF (System Authorization Facility), this parameter
specifies the SAF key ring used to connect the security certificates.

If SSLKEYRINGTYPE is USS (Unix System Services), this parameter specifies the
database containing keys and certificates. It consists of an SSL working
directory name and file name, in the format:
SSLworkdir/TWS.kbd

The parameter is case-sensitive.

SSLKEYRINGPSW = (SSL key ring password filename)
This parameter is required when you run SSL security and SSLKEYRINGTYPE is
USS. It specifies the file containing the key password. It consists of an SSL
working directory name and file name, in the format:
SSLworkdir/TWS.sth

Failure to provide an existing and correct filename results in an error message
and prevents the agent from starting. The parameter is case-sensitive.

Chapter 2. Installing and configuring 33

SSLKEYRINGTYPE = (USS | SAF)
Specifies if the key ring file is a key database USS file or a SAF key ring. If the
type is SAF, you can use the RACF command to manage SSL connections.

Important: If the type is USS, you must provide an SSL key ring password
filename for SSLKEYRINGPSW. Failure to do this will prevent the agent from
starting.

SRVTHREADNUM = (number of threads|10)
The number of threads that can be used by the HTTP server task to process
more requests sent by dynamic workload broker at the same time. Valid values
range from 2 to 100. The default is 10.

TCPIPJOBNAME = (TCPIP started task|TCPIP)
The name of the TCPIP started task running on the z/OS system. The default
name is TCPIP.

TCPIPTIMEOUT = (TCPIP timeout interval|300)
The number of seconds that an HTTP request waits for response before a
timeout occurs. Valid values are from 1 to 10000. the default is 300.

TDWBHOSTNAME = (dynamic workload broker host name|dynamic workload broker
IP address|'000.000.000.000')

The local host name or IP address of the dynamic workload broker to which
the agent for z/OS is to establish an HTTP connection. It can be up to 52
alphanumeric characters. The host name or IP address can be in IPV4 or IPV6
format. Enclose this value in single quotation marks. The parameter is
mandatory.

TDWBPORTNUMBER = (port|31115|31116)
The port number of the dynamic workload broker to which the agent for z/OS
is to establish the HTTP connection. Defaults are 31115 for non-SSL connections
and 31116 for SSL connections.

TDWBSSL = (Yes|No)
Specifies if the dynamic workload broker port defined by
TDWBPORTNUMBER is protected by SSL. The default is Yes.

Specifying generic runtime options for the agent
This section describes the TWSOPTS initialization statement.

This statement defines runtime options for the agent for z/OS.

TWSOPTS

�� TWSOPTS
REBUILD

BUILDSSX (MERGE)

�

�
IBM-037

CODEPAGE (host system codepage) �

�
EELSSCMJ PERMANENT

SSCMNAME (module name , TEMPORARY)

�

34 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

�
NO

VARSUB (SCAN)
YES

VARFAIL (& % ?)
�

�
NO

VARPROC (YES)

��

Parameters

BUILDSSX = (MERGE|REBUILD)
Defines if the subsystem communication vector table (CVT) extension for the
agent for z/OS, the SSX, should be rebuilt at a new level when the address
space is started. The SSX is created at subsystem initialization by the EELINITJ
module. If the EELINITJ module has since been updated, by maintenance or
because you are installing a new release or modification level of the agent for
z/OS, use the BUILDSSX keyword to avoid a z/OS IPL.

Specify MERGE when operational data, such as the event writer queue, should
be copied to the new SSX. This ensures that the new event writer queue is
primed with events queued to the old SSX block. Use this option when starting
an agent for z/OS address space after installing maintenance updates.

Specify REBUILD when you are migrating to, or falling back from, a new
release or modification level of the agent for z/OS. The event writer queue
from the old SSX will not be referenced in the new SSX. Ensure you also
identify the new subsystem communication module name by using the
SSCMNAME keyword.

The default is REBUILD.

Important:

v The PTF coverletter ++HOLD section identifies the service updates that require
the SSX be rebuilt.

v MERGE cannot be used when the old and new SSX blocks are built for
different FMIDs. Do not use MERGE when migrating to, or falling back
from, a new release or modification level of the agent for z/OS.

v If you specify BUILDSSX(REBUILD) to migrate to, or fallback from, a new
release or modification level of the agent for z/OS, ensure you also specify
the SSCMNAME keyword.

v The BUILDSSX parameter should be removed after the next IPL of the z/OS
system as it is no longer required.

CODEPAGE = (host system codepage|IBM–037)
The name of the host code page. This value is required because it is used by
the monitoring task to convert the monitoring data to be sent to the
monitoring agent. Provide a codepage from the following list of IBM–nnn
values, where nnn is the EBCDIC code page used for your z/OS system:

IBM–037
US, Portugal, Canada (French). This is the default.

IBM–273
Germany

Chapter 2. Installing and configuring 35

IBM–274
Belgium

IBM–277
Denmark - Norway

IBM–278
Sweden - Finland

IBM–280
Italy

IBM–284
Spain - Latin America

IBM–285
UK

IBM–297
France

IBM–424
Israel

IBM–500
International

IBM–838
Thai

IBM–933
Korea

IBM–935
China

IBM–937
Taiwan

IBM–939
Japan Extended

IBM–970
Latin 2

IBM–971
Iceland

IBM–975
Greece

IBM–1025
Cyrillic

IBM–1026
Latin 5 (Turkey)

IBM–1047
Open Systems

IBM–1112
Baltic

IBM–1122
Estonia

36 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

IBM–1388
China

The following is a list of the EBCDIC code pages for EURO support:

IBM–1140
Finland, Sweden

IBM–1141
Austria, Germany

IBM–1142
Denmark, Norway

IBM–1143
USA

IBM–1144
Italy

IBM–1145
Spain, spanish-speaking Latin America

IBM–1146
UK

IBM–1147
France

IBM–1148
Belgium, Switzerland

IBM–1149
Iceland

SSCMNAME = (module name|EELSSCMJ,PERMANENT|TEMPORARY)
The first keyword value defines the name of the subsystem communication
module to be used instead of EELSSCMJ that was loaded at IPL. The second
keyword value specifies how long the module should replace the one loaded at
IPL. Use this keyword to load an updated version of the module before a
scheduled IPL. The module you specify must reside in an APF-authorized
library defined by either the STEPLIB ddname or LNKLSTnn concatenation. If
SSCMNAME is not specified or specifies a module that cannot be located in an
authorized library, the agent for z/OS events will continue to be generated by
the EELSSCMJ module loaded at IPL.

Specify PERMANENT as the second keyword value to replace the subsystem
communication module loaded at IPL with the module identified in the first
keyword value. In this case the module specified must reside in an
APF-authorized library defined by the STEPLIB ddname. This is the default.

When TEMPORARY is specified or defaulted as the second keyword value, the
module you specify will generate job tracking events only while the agent for
z/OS address space is active. When the address space is stopped, events will
continue to be generated by the EELSSCMJ module loaded at IPL.

Important:

v The PTF cover letter ++HOLD section identifies service updates that require a
new subsystem communication module to be loaded.

v Ensure you specify this keyword when the BUILDSSX(REBUILD) option is
used to migrate to, or fallback from, a new release or modification level of
the agent for z/OS.

Chapter 2. Installing and configuring 37

v The SSCMNAME keyword should be removed after the next IPL as it is no
longer required.

VARSUB(YES|NO|SCAN)
This keyword specifies whether JCL variable substitution should be performed.
YES means that variable scanning will be performed for all jobs. NO means
that variable scanning will not occur. SCAN instructs the agent to search the
JCL for variables only if the //*%OPC SCAN directive is found in the JCL.

VARFAIL(&, %, ?)
This keyword specifies whether or not unresolved variables in the JCL would
cause a JCL error. You can use from one to three of the following characters, in
any order, to bypass substitution failure (&, %, ?).

If, for example, VARFAIL(&) is specified, the agent will not consider the failure
of a substitution of variables beginning with an & to be an error. Any
combination of the three types is allowed, for example, VARFAIL(&, %) or
VARFAIL(?), but at least one value must be specified while any repetition of
characters will be rejected.

If VARFAIL is not specified, then all the lack of substitution of variables will be
treated as errors, as previously.

VARPROC(YES|NO)
This keyword specifies whether or not online procedures should consider
variable substitution. If VARPROC(YES) is specified, variables in online
procedures will be resolved.

The default is NO.

Configuring the agent for z/OS exits
Exits EELUX000, EELUX002, and EELUX004 are called by the agent for z/OS. Your
own programs can use the information passed by the exits to perform a variety of
functions.

Each exit is loaded if the exit module exists, if the exit has not been disabled, and
if the exit has not been replaced by another exit name in the EXITS initialization
statement.

Exits are invoked using standard linkage conventions. When the exit is entered,
register 1 points to a parameter list. Each address in this list points to a parameter
that is passed to the exit.

The exits are entered with the RACF authority of the agent for z/OS subsystem.

Configuring exit EELUX000 (start/stop)
This section describes the agent for z/OS start/stop exit (EELUX000)

EELUX000 is called when the agent for z/OS is starting and when it is ending
normally. You can use this exit to allocate resources when the agent is started and
to release them when it is stopped. This avoids the extra overheads involved in
allocating and then releasing resources each time they are used.

The sample library SEELSAMP that was created during installation contains the
EELUX000 exit, which is a sample of start/stop exits.

38 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Installing the exit

The load module implementing the start/stop exit must be link-edited into an
APF-authorized library in the LNKLST concatenation or defined by the STEPLIB
DD statement in the agent for z/OS JCL procedure. If the load module performs
any input or output operations it must be link-edited with RMODE(24) according
to normal z/OS restrictions. Or it can be link-edited with RMODE(ANY).

The agent for z/OS invokes the exit in AMODE 31; the AMODE parameter
specified at link-edit time has no effect.

Interface to the exit

The start/stop exit is invoked in task mode, problem state, and key 8 and the
job-step task is APF-authorized. The active task runs with the same access
authority as the job-step task. The exit must restore this state before returning to its
caller.

Control is passed to the exit using the BAL instruction. The exit must return to its
caller using the address and addressing mode passed to it in general register 14.

The exit is entered in AMODE 31 but must switch to AMODE 24 before
performing any input or output operations, and then switch back to AMODE 31
before returning to the caller.

When the exit is entered, register 1 contains the address of the parameter list. Each
address in this list is used to locate the parameter value. These parameters are
passed to the exit:

EELUX000 parameters

ACTION DS CL8 (Start/stop action)
MCAUSERF DS A (User field)

ACTION has the value START when the exit is called during the startup of the
agent. MCAUSERF is zero for this initial call. Normally, this exit will perform exit
initialization functions for the start call when you start the agent. If the exit needs
to allocate storage that is used while the agent is active, you should update
MCAUSERF to address this storage.

ACTION has the value STOP when the exit is called during termination of the
agent. Normally, this exit performs exit termination functions for the stop call
when you stop the agent. If MCAUSERF is updated by the start call, the same
value is passed to the exit for the stop call.

Configuring exit EELUX002 (job-library-read)
Exit EELUX002 is invoked when a job by reference is selected for processing but
the job definition does not include the name of the data set where the JCL is
stored. By default, in this case the agent for z/OS searches the concatenation of
data sets assigned to the EELJBLIB ddname in the agent's JCL procedure. But if
you want the agent to search other data sets, use EELUX002 to perform this
function.

Also consider using EELUX002 to enhance performance if you have many large
partitioned data sets (PDS) concatenated to EELJBLIB. To find a member in the last
data set of the concatenation, the agent must read the directory of all preceding

Chapter 2. Installing and configuring 39

PDSs, which can present a significant overhead. Consider defining a PDS and a
corresponding ddname for each computer workstation.

The SEELSAMP member EELUX002 contains a sample job-library-read exit. This
sample searches a ddname named MYJOBLIB before searching EELJBLIB.

Installing the exit

The load module implementing the job-library-read exit must be link-edited into
an APF-authorized library in the LNKLST concatenation or defined by the
STEPLIB DD statement in the agent for z/OS JCL procedure.

Interface to the exit
The job-library-read exit is invoked in task mode, problem state, and key 8 and the
job-step task is APF-authorized. The active task runs with the same access
authority as the job-step task. The exit must restore this state before returning to its
caller.

Control is passed to the exit using the BAL instruction. The exit must return to its
caller using the address and addressing mode passed to it in general register 14.

If the exit abends, it is flagged as not executable; the agent for z/OS does not try to
call the exit again.

When the exit is entered, register 1 contains the address of the parameter list. Each
address in this list is used to locate the parameter value. These parameters are
passed to the exit:

EELUX002 parameters
TYPE DS CL1 (Constant = J)
FUNC DS CL1 (Constant = G)
JOBNAME DS CL8 (Job name)
IOAREA DS A (Address of I/O area)
IOAREAL DS F (Size of I/O area)
RETCODE DS X (Return code)
DATAL DS F (Amount of data returned)
ERRDATA DS CL78 (Error message returned)
ADID DS CL16 (Name of current application)
USRAREA DS A (User field, 0 at first call)
JCLUSER DS CL8 (Last user updating this job)
OPNUM DS F (Operation number)
IATIME DS CL10 (Occurrence input-arrival time, YYMMDDHHMM)
VAROCCP DS A (Address of occurrence data if operation is in CP)
VAROPRP DS A (Address of operation data if operation is in CP)
VARWSP DS A (Address of workstation data if operation is in CP)
MCAUSERF DS A (Address set by the user in the EELUX000 exit)
OCCPTR DS A (Address of occurrence data)
OPRPTR DS A (Address of operation data)
WSPTR DS A (Address of workstation data)
AUTHGROU DS CL8 (Authority group)
MEMPRO DS CL1 (Indicator of memory problems)
TASKPTR DS A (Address of TCB of caller task)
XINFO DS A (Extended information address)
XJNAMLEN DS F (Extended job name length)
USRFNR DS F (Number of user fields)
USRFAREA DS A (User fields area address)

JOBNAME
The name of the job that is to be submitted.

40 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

IOAREA
The address of a buffer that is allocated by the agent for z/OS, where JCL
records for the current job must be placed.

IOAREAL
The amount of space, in bytes, in the IOAREA buffer

RETCODE
Is set by the exit. These values are valid:

0 Normal return.

4 End of data reached for the current job.

16 The job could not be found in any input data set.

20 There is no JCL to be returned by the exit. The agent for z/OS
attempts to retrieve the JCL from EELJBLIB.

44 Not enough space. The amount of free space in the IOAREA buffer
(as determined by IOAREAL) is not enough to contain the next
block of data.

241 I/O error has occurred.

242 An open error has occurred. One or more input data sets could not
be opened.

The exit is called again to continue processing the same job when a return
code 0 or 44 is returned. All other return codes end processing of the
current job.

DATAL
The amount of data returned by the exit when the return code is 0 or 4.

ERRDATA
A user message area where you can describe a problem found in the exit.
The text is issued in message EELJ020 if return code 242 is set by the exit
or in message EELJ024 if return code 241 is set.

Note: If you modify the message library entry for EELJ020 or EELJ024 to
generate a WTO, you must ensure that no more than 70 characters of
message text are defined for each line. Reorganize the text, if required.
Also, ensure that ERRDATA itself does not exceed 70 characters.

ADID The name of the current application.

USRAREA
Is zero the first time the exit is called to retrieve a job. The exit can set this
parameter to any value. The agent for z/OS does not use or update this
parameter.

The exit should use the USRAREA parameter whenever it returns a return
code 0 or 44. Normally, the USRAREA parameter is used to contain the
address of a work area that the exit has performed a GETMAIN on. This
work area should contain enough information to enable the exit to
continue processing the same job.

JCLUSER
Is zero the first time the exit is called. The exit should set this parameter to
the name of the z/OS user that is used for authority checking when the
JCL contains automatic recovery statements.

Chapter 2. Installing and configuring 41

OPNUM
The operation number of the operation representing this job.

IATIME
The input-arrival time of the application occurrence that this job belongs
to.

MCAUSERF
A user field that lets you allocate resources in the start/stop exit,
EELUX000, that this exit can later use. For example, it is possible to open
files for JCL retrieval in the start type call to EELUX000 instead of opening
them each time EELUX002 is called. The agent does not use or update this
field. The MCAUSERF field is valid when the agent is active.

AUTHGROU
The name of the authority group.

MEMPRO
The indicator of memory problems.

TASKPTR
The address of the task control block of the caller task.

If the exit needs to access its own files, these files must be opened on the first call
for a job (USRAREA value=0) and closed in either of the following ways:
v Before returning control to the agent for the last time (before return code 4 is set)
v When an error occurs that does not allow the agent to acquire further memory,

the agent informs the exit by setting mempro to:

X'04' If the limit of 608 000 bytes is reached (EELJ025 issued)

X'08' If there is not enough storage available (EELJ021 issued)

When the EELUX002 exit is called to retrieve a job for the first time, the I/O area
is 32 000 bytes. If the exit has retrieved the entire job and it fits in the buffer space
available, the exit can update the I/O area, return the amount of data in the job,
and set a return code 4.

If the exit has not retrieved the entire job, it can update the I/O area, return the
amount of data in the job, and set a return code 0 to indicate that there is more
data to be returned. The next time the exit is called, the address and the size of the
I/O area will be updated because the I/O area is partly used by data from an
earlier call. The exit should continue this process until there is no more data to
return and then set a return code 4 to indicate that the entire job has been
retrieved.

Because the available space in the buffer is reduced for each call, it is possible that
the exit must set a return code 44 to indicate that the amount of free space is not
enough. When return code 44 is returned, the exit is called again with a job name
of eight equal signs (========). This is a reset call. The exit then prepares to
process the job from the beginning.

No data can be returned on the reset call. When the exit is called again after the
reset call, the I/O area is 32 000 bytes larger than before. This process of returning
a “not-enough-space” condition can be repeated up to 19 times for a job. This
means that the maximum buffer size that can be requested by the EELUX002 exit
is 608 000 bytes. This corresponds to a job of 7599 card images. When the 608 000
byte limit is reached, the agent issues message EELJ025, and the exit is called a
20th time if MEMPRO is set to 4.

42 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

The exit can also get more buffer space by using all available space in the current
buffer. When this happens and return code 0 is set, the exit is called again with
32 000 bytes free in the buffer. The reset call is not used in this case; the exit
should continue processing the current job normally. Extending the buffer in this
manner can be continued to a maximum buffer size of 608 000 bytes.

Configuring exit EELUX004 (event filtering)
This section describes the event filtering exit (EELUX004)

EELUX004 is called when the agent for z/OS event writer is about to write an
event to the event data set. In this exit, you can choose to discard events created
by JES and SMF exits.

This exit is commonly used to filter the events created by nonproduction work. If
you run a significant number of test jobs and other work, and your job naming
standards let you do so, consider using EELUX004 to filter the nonproduction
work. The sample library SEELSAMP, that was created during installation, contains
the EELUX004 exit, which is a sample of event filtering exits.

Installing the exit

The load module implementing the event filtering exit must be link-edited into an
APF-authorized library in the LNKLST concatenation or defined by the STEPLIB
DD statement in the agent for z/OS JCL procedure. The load module should be
link-edited with RMODE(24) according to normal z/OS restrictions.

The agent for z/OS invokes the exit in AMODE 24; the AMODE parameter
specified at link-edit time has no effect.

Interface to the exit

The event filtering exit is invoked in task mode, problem state, and key 8 and the
job-step task is APF-authorized. The active task runs with the same access
authority as the job-step task. The exit must restore this state before returning to its
caller.

Control is passed to the exit using the BAL instruction. The exit must return to its
caller using the address and addressing mode passed to it in general register 14.

If the exit abends, it is flagged as not executable; the agent does not try to call the
exit again.

When the exit is entered, register 1 contains the address of the parameter list. Each
address in this list is used to locate the parameter value. These parameters are
passed to the exit:

EELUX004 parameters

JOBNAME DS CL8 (Name of current job)
RETCODE DS F (Return code)
EXR DS CL80 (Exit record)

where:

Chapter 2. Installing and configuring 43

JOBNAME
The name of the job for which a job tracking event has been recognized
and for which an event record is about to be written to the event data set.

RETCODE
Is set by the exit. The following values are recognized by the job
completion checker:

0 Normal return. The event writer continues normal processing; the
event is written to the event data set.

8 This is not a scheduler event. The event is not written to the event
data set. However, if the event is a reader event (type 1) and the
job was held by a scheduler job tracking exit, the job is released
from hold by the event writer.

EXR The exit record describing the job tracking event. This record is built by the
SMF or JES exit that recognized the event. The job number offset,
EXRJOBID, in the exit record contains JOB as the first three characters if
the event is created for a job.

Running the agent in a sysplex environment
This section documents how you can run the agent for z/OS in a z/OS sysplex.

You can run the agent for z/OS in a z/OS sysplex with the following
recommendations:
v There should be at least one agent for z/OS instance installed in each image of

the sysplex.
v The z/OS sysplex should be connected to one dynamic workload broker only,

although the same dynamic workload broker can be connected to more than one
sysplex or system.

The next figure gives a representation of four systems running in a sysplex
environment, connected using cross-system coupling facility (XCF) communication
links, and linked to a dynamic workload broker instance.

44 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Routing a job to another system through NJE (Network Job Entry) is not supported
with the agent for z/OS, because the possible variation of its job ID and JES reader
date and time make tracking unreliable.

System A

System C System D

System B

Agent for z/OS

EW EW

XCF XCF

EW

XCF XCF

EW

Event
dataset

D

Event
dataset

C Key:

XCF

EW

Cross-system coupling facility

Event writer

XCF communication link

Event
dataset

A

Event
dataset

B

Agent for z/OS

Agent for z/OS

Agent for z/OS

z/OS sysplex

Tivoli Workload Scheduler

Dynamic
Workload
Broker

Tivoli
Dynamic
Workload
Console

Figure 2. The agent for z/OS in a SYSPLEX configuration.

Chapter 2. Installing and configuring 45

46 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Chapter 3. Using

Computer and workstation names of the agent
The first time the agent for z/OS connects with Tivoli Workload Scheduler, it is
automatically given a computer name.

The first time the agent for z/OS connects with the Tivoli dynamic workload
broker component of Tivoli Workload Scheduler, it is assigned a computer name
which is used to identify the workstation in Tivoli Workload Scheduler.

The assigned computer name is:
subsystem name_system name

where:

subsystem name
is the name of the z/OS started task that starts the agent.

system name
is the name of the z/OS system

The subsystem and system names are joined with the underscore (_) character.

For example, TDA1_ZOS10B1 is the computer name of an agent that is started by the
TDA1 started task in system ZOS10B1.

If either system or subsystem names contain any of the special characters
represented by X'5B', X'7B', or X'7C' ($, #, or @, respectively, in the US EBCDIC
037 codepage, but possibly displayed as other special characters in other EBCDIC
codepages), the special characters are replaced with underscores (_) when the
computer name is composed. For example, if the subsystem name is ZAG5 and the
z/OS system name is ZSY$1 (in the IBM 037 codepage), the computer name
assigned to this particular agent in Tivoli Workload Scheduler is ZAG5_ZSY_1.

The name is stored in the databases of Tivoli Workload Scheduler and of dynamic
workload broker. It is used to identify an agent for z/OS in the following
interfaces:
v As the workstation name in the composer and conman command lines and in

the Dynamic Workload Console windows
v As the computer name in the command line and graphical user interfaces of

Tivoli dynamic workload broker

This name is the visible part of a longer identification label assigned to the agent
upon installation. An internal Id is kept to track the agent in the z/OS system and
in Tivoli Workload Scheduler.

You can change the workstation name using the composer rename command or
Dynamic Workload Console and use the new name to address the agent
throughout the Tivoli Workload Scheduler interfaces. This does not apply to the
Tivoli dynamic workload broker interfaces where the computer name is used
instead.

© Copyright IBM Corp. 2011, 2012 47

Listing the agents for z/OS
In the Dynamic Workload Console and in composer, the agents for z/OS are listed
as workstations of type agent.

Follow the normal processes to list your agents:
v In the Dynamic Workload Console, select Scheduling Environment→Design→List

Workstations

v In composer, run the composer list ws command

To determine which of your workstations is a agent for z/OS, or to filter your list,
look at the operating system type which in their case is listed as:
v z/OS in the Dynamic Workload Console
v Z in composer

In composer, to see the OS type column in the output of the list command,
remember to set:
MAESTROCOLUMNS=120

before running the command.

For example, the list of workstations obtained by running:
composer list ws=@

on this domain, shows that workstations MAT229 and MAT229_1 are agents for z/OS.
WorkstationName Type Domain OSType Ignored Updated By Updated On Locked By Locked On
--------------- ------ -------- ------ ------- ---------- ----------- --------- ---------
RAL15062 manager MASTERDM W masterad 09/28/2010 - -
RAL15062_1 agent - W ResourceAdvisorA 10/04/2010 - -
RAL15062_DWB broker MASTERDM O masterad 09/28/2010 - -
MAT229 agent - Z ResourceAdvisorA 10/01/2010 - -
MAT229_1 agent - Z ResourceAdvisorA 10/01/2010 - -
AWSBIA291I Total objects: 5

Defining jobs
Like you do for all other Tivoli Workload Scheduler jobs, you can define jobs for
an agent for z/OS from either the composer command line or from the Dynamic
Workload Console.

Because all agent for z/OS jobs are submitted through dynamic workload broker,
the task section of their job definitions is laid out in the JSDL XML language. If
you define the job through the Dynamic Workload Console, the information you
provide in the input panels is made into JSDL automatically.

The following characteristics qualify a job as an agent for z/OS job:
v The executing workstation is a agent for z/OS.
v In the JSDL definition in composer, the application keyword has name jcl. In

the Dynamic Workload Console, the job definition type is z/OS.
v The job definition in JSDL either includes the JCL that is to be run by JES2 or

points to its location (data set and member names) in the z/OS system. In the
first case, the JCL is said to be submitted by definition, otherwise it is said to
be submitted by reference.

While the JCLs specified by definition are part of the agent for z/OS jobs and as
such are stored in the Tivoli Workload Scheduler database, the JCLs specified by

48 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

reference are stored in data sets in the z/OS system hosting the agent and are
retrieved at submission time using the coordinates provided in the corresponding
jobs.

Defining in the Dynamic Workload Console
The easiest way to define an agent for z/OS job is with the Dynamic Workload
Console.

To create a job definition:
1. From the navigation toolbar, click Administration>Workload Design>Manage

Workload Definitions.
2. Select an engine name, enter your credentials if required, and click Go.
3. In the Working List toolbar of the pop-up window that opens, click New>Job

Definition>Native>z/OS.
The Properties window for the job opens.

4. Under the General tab:
a. Enter:

v The job name.
v The name of the agent for z/OS workstation.
v Optionally, a return code mapping expression. Define which return codes

qualify the job as having completed successfully. Enter a logical
expression that defines the success condition. Use the following syntax:
(RC <operator> <operand>) where:

RC The instruction keyword

Operator
The comparison operator. Allowed operators are comparison
operators (=, != or <>, >, >=, <, <=) that can be combined with
logical operators (AND, OR, NOT).

Operand
Any integer between -2147483647 and 2147483647.

v Optionally, a description.
b. Select the Variable resolution at runtime checkbox, if the JCL (either by

reference or by definition) includes variables that need to be resolved by the
agent before it is passed to JES.

The next figure shows the General page with the definition of a job of type
z/OS.

Chapter 3. Using the agent for z/OS 49

5. Optionally, enter additional choices in the Affinity and Recovery options pages.

Defining the JCL by reference

If you are defining a job that only needs to point to the location of the JCL you
intend to submit to JES, in the z/OS page, select the by reference button and enter:
v The name of the data set where the JCL is stored. This name can be up to 44

characters long and is optional. If the data set name is not specified, the agent
for z/OS will search for the member name in the data set concatenation library
declared for the agent at installation time.

v The name of the JCL member in the data set. This name can be up to 8
characters long and is required.

The next figure shows the z/OS page where the by reference option is selected:

Figure 3. The General page of a new agent for z/OS definition

50 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Defining the JCL by definition

To add the entire JCL to the job definition, in the z/OS page select the by
definition button and write the JCL statement in the JCL definition box.

The next figure shows the z/OS page where the by definition option is selected:

Figure 4. JCL is by reference.

Chapter 3. Using the agent for z/OS 51

Defining in composer
You can also use the composer command line to define jobs for the agent for z/OS.

The JSDL tagging changes depending on whether in the job the JCL destined for
JES is defined by reference or by definition.

Defining jobs that point to the JCL location in z/OS

The following example shows the definition of a job named JCLJOBREF.

The workstation is an agent for z/OS named ZAGE_ZOS1092.

The JSDL coding points to the JCL location in the z/OS system.
ZAGE_ZOS1092#JCLJOBREF
TASK
<?xml version="1.0" encoding="UTF-8"?>
<jmgr:submitJobFromJSDL xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jmgr="http://www.ibm.com/xmlns/prod/scheduling/1.0/JobManager"
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdljcl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdljcl"
xmlns:sdo="http://www.eclipse.org/emf/2003/SDO">
<jmgr:JobDefinitionDocument>
<jsdl:jobDefinition name="JCL">
<jsdl:application name="jcl">
<jsdljcl:jcl xsi:type="sdo:EDataObjectAnyType">
<jsdljcl:JCLParameters xsi:type="sdo:EDataObjectAnyType">
<jsdljcl:jcl xsi:type="sdo:EDataObjectAnyType">
<jsdljcl:byRefOrByDef xsi:type="sdo:EDataObjectAnyType">
<jsdljcl:byReference xsi:type="sdo:EDataObjectAnyType">
<jsdljcl:dataset xsi:type="sdo:EDataObjectAnyType">TWSTST.TWSA.JOBLIB</jsdljcl:dataset>
<jsdljcl:member xsi:type="sdo:EDataObjectAnyType">JOB1</jsdljcl:member>
</jsdljcl:byReference>
</jsdljcl:byRefOrByDef>
</jsdljcl:jcl>

Figure 5. JCL is by definition.

52 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

</jsdljcl:JCLParameters>
<jsdljcl:JOBParameters xsi:type="sdo:EDataObjectAnyType">
<jsdljcl:jobStreamName xsi:type="sdo:EDataObjectAnyType">JOBS</jsdljcl:jobStreamName>
<jsdljcl:inputArrival xsi:type="sdo:EDataObjectAnyType">201206131200
</jsdljcl:inputArrival>

</jsdljcl:JOBParameters>
</jsdljcl:jcl>
</jsdl:application>
<jsdl:resources/>
</jsdl:jobDefinition>
</jmgr:JobDefinitionDocument>
<jmgr:Alias>ZA86_ZOS1354#JOBS.PROVA.JNUM-622656411</jmgr:Alias>
<jmgr:JobId>5e2efa42-1dab-31eb-a8f1-6aaa413a4cec</jmgr:JobId>
<jmgr:ClientNotifyURI>https://ts6087.enervt.com:31116/JobManagerRESTWeb/JobScheduler/job
</jmgr:ClientNotifyURI>

<jmgr:ClientNotifyURI>https:/ts6087.enervt.com:31116/JobManagerRESTWeb/JobScheduler/job
</jmgr:ClientNotifyURI>

</jmgr:submitJobFromJSDL>

Note the following keywords:

<jsdl:application name="jcl">
Specifies that the job is an agent for z/OS job.

<jsdljcl:byReference>
Specifies that the JCL that will be run by JES resides in the z/OS system
and only the coordinates of its location are specified here.

<jsdljcl:dataset xsi:type="sdo:EDataObjectAnyType">...</jsdljcl:dataset>
Specifies the name of the data set where the JCL is stored. This name can
be up to 44 characters long and is optional. If the data set name is not
specified, the agent for z/OS will search for the member name in the data
set concatenation library declared for the agent at installation time.

Important: Write the keyword also when you do not provide a data set
name. The element must be present regardless of whether there is a value
or not.

<jsdljcl:member xsi:type="sdo:EDataObjectAnyType">...</jsdljcl:member>
Specifies the name of the JCL member in the data set. This name can be up
to 8 characters long and is required.

<jsdljcl:JOBParameters>
In this section you are required to provide the:
v job stream name
v input arrival time

Defining jobs that include the JCL definition

The following example shows the definition of a job named JCLJOB.

The workstation is an agent for z/OS named ZAGE_ZOS1092.

The JCL statement is embedded in the JSDL definition.
ZAGE_ZOS1092#JCLJOB
TASK
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdljcl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdljcl">
<jsdl:application name="jcl">
<jsdljcl:jcl>
<jsdljcl:JCLParameters>
<jsdljcl:jcl>
<jsdljcl:byRefOrByDef>
<jsdljcl:byDefinition>
<jsdljcl:jclDefinition>

/NORMAL JOB,’TWS JOB’,CLASS=A,MSGCLASS=A,

Chapter 3. Using the agent for z/OS 53

//MSGLEVEL=(1,1)
//*
//STEP1 EXEC PGM=IEFBR14

</jsdljcl:jclDefinition>
</jsdljcl:byDefinition>
</jsdljcl:byRefOrByDef>
</jsdljcl:jcl>
</jsdljcl:JCLParameters>
<jsdljcl:JOBParameters>
<jsdljcl:jobStreamName>${tws.jobstream.name}</jsdljcl:jobStreamName>
<jsdljcl:inputArrival>${tws.job.ia}</jsdljcl:inputArrival>
</jsdljcl:JOBParameters>
</jsdljcl:jcl>
</jsdl:application>
</jsdl:jobDefinition>
DESCRIPTION "Sample JCL Job Definition"

Note the following keywords:

<jsdl:application name="jcl">
Specifies that the job is an agent for z/OS job.

<jsdljcl:byDefinition>
Specifies that the JCL that will be run by JES is defined within the JSDL.

<jsdljcl:jclDefinition>
Contains the entire JCL definition.

<jsdljcl:JOBParameters>
In this section you are required to provide the:
v job stream name
v input arrival time

In this particular example, the actual values are replaced by Tivoli
Workload Scheduler variables. They will be resolved by dynamic workload
broker at submission time.

Specifying that the JCL contains variables that must be resolved
at runtime

If the JCL, without regard to whether it is included in the job definition or is
referenced by its location in z/OS, includes variables that will be resolved at
runtime by the agent, it must be declared in the jobDefinition section of the JSDL
definition.

The following example is the definition shown in “Defining jobs that include the
JCL definition” on page 53 with the addition of the keyword that specifies that
there are variables to be resolved at runtime:
ZAGE_ZOS1092#JCLJOB
TASK
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdljcl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdljcl"
XMLSchema:text="resolveVariableTable" name="jcl">
<jsdl:application name="jcl">
<jsdljcl:jcl>
<jsdljcl:JCLParameters>
<jsdljcl:jcl>
<jsdljcl:byRefOrByDef>
<jsdljcl:byDefinition>
<jsdljcl:jclDefinition>

/NORMAL JOB,’TWS JOB’,CLASS=A,MSGCLASS=A,
//MSGLEVEL=(1,1)
//*
//STEP1 EXEC PGM=&MODULE

</jsdljcl:jclDefinition>
</jsdljcl:byDefinition>
</jsdljcl:byRefOrByDef>
</jsdljcl:jcl>

54 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

</jsdljcl:JCLParameters>
<jsdljcl:JOBParameters>
<jsdljcl:jobStreamName>${tws.jobstream.name}</jsdljcl:jobStreamName>
<jsdljcl:inputArrival>${tws.job.ia}</jsdljcl:inputArrival>
</jsdljcl:JOBParameters>
</jsdljcl:jcl>
</jsdl:application>
</jsdl:jobDefinition>
DESCRIPTION "Sample JCL Job Definition"

where:

XMLSchema:text="resolveVariableTable"
Specifies that there are variables in the JCL that need to be resolved at
runtime. When you submit the job to the agent for z/OS, the definition is
transmitted to the agent, together with the table that contains the variable
and the corresponding value, where it is processed before being passed on
to JES.

Attention: Do not misuse this keyword. If there is no correspondence
between the keyword and the presence or absence of variables, the job will
fail.

Defining the JCL
How to define the JCL.

When you define the JCLs in the Dynamic Workload Console or in the composer
command line, it is important to remember that:
v In the JOB card the programmer name can have a maximum length of 19

characters, instead of 20, since the last character (HEX '30x') is reserved for
internal use. The job is not processed if the agent detects a longer programmer
name and an error message is issued.

v The name of the JCL must conform to the following syntax rules. It must:
– Start from column 3.
– Have length from 1 to 8 alphanumeric (capital A to Z, numbers 0 to 9) or

national ($, #, @) characters.

Note: The system recognizes the following hexadecimal representations
of the U.S. National characters in EBCDIC format:
- $ (dollar) as X’5B’

- # (number) as X’7B’

- @ (at) as X’7C’

In countries other than the U.S., the U.S. National
characters represented on terminal keyboards might generate a
different hexadecimal representation and cause an error.

For example, in some countries the $ character may generate X’4A’. This
implies that, depending on the codepage specified with the CODEPAGE
parameter of the TWSOPTS initialization statement for the agent, you must
use whatever characters correspond to hex X’7C’, X’5B’, and X’7B’ in
EBCDIC format. For example, if IBM_280 is specified as the system codepage
in TWSOPTS, then within the job name you can use the £ (pound) character
which is coded as hex X’7B’.

– Start with a letter or national character, but not with a number.
– Be followed by at least one blank.

Chapter 3. Using the agent for z/OS 55

Submitting jobs
All agent for z/OS jobs can be either part of a job stream and be submitted in a
plan, or be submitted at any time using the conman submit commands or proper
Dynamic Workload Console panels.

Submit agent for z/OS jobs just as you submit all other Tivoli Workload Scheduler
jobs.

When you submit a job of type JCL through a production plan, or more specifically
from a conman command line or the Submit windows of the Dynamic Workload
Console, the job is processed by dynamic workload broker and dispatched to the
agent for z/OS specified in the job definition.

The agent receives the job submission requests. The job submission requests
include either the body of the JCL to be passed on to JES2 for execution, or a
reference to a member of a partitioned data set that includes the JCL. If the
reference names only the member, but not the data set, the agent will search the
member name in the data set concatenation library declared for the agent at
installation time (which defaults to EELJBLIB).

If variable substitution is requested in the JCL, the variable tables that include the
variables featured in the JCL (and the respective values) are sent with the
submission request to the agent.

Upon receiving a job submission request, the HT task briefly stores the job in the
HTREF service database, that is part of the agent for z/OS. When the request
involves a JCL by reference or variable substitution, the referenced JCL is fetched
or the variables are resolved inside of HTREF. A failover mechanism on the agent
keeps track of the jobs that are not processed if for some reason the agent should
become unlinked or fail, and picks up the submission thread as soon as the
communication between Tivoli Workload Scheduler and the agent has restarted.
See “Understanding resynchronization messages” on page 95 for details on this
process.

The following figure tracks the route followed by a job as it arrives to the agent for
z/OS and is passed on to JES2 for processing.

56 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

When the JCL arrives at the submit task, the job is submitted to JES via the
EELBRDS data set. The EELBRDS data set is used to allocate a JES internal reader.

Job submitted by Tivoli
Workload Scheduler
(DWB)

HTTP server

HT task

HTDS

Data
router
queue

Data router
task

Submit
queue

Submit
task

Job Entry
Subsystem
(JES)

Subsystem
interface
(SSI)

Common
Storage
Area
(CSA)

Agent for z/OS

z/OS system

EVDS

EW
Queue

HTREF

JCL retrieval
and

variable
substitution

EELJBLIB
...

Figure 6. The route followed by a job within the agent for z/OS.

Chapter 3. Using the agent for z/OS 57

Note that the JCLs coming from Tivoli Workload Scheduler are stored on disk
(HTDS). This guarantees that, if the agent is interrupted, the jobs are not lost, but
sent to JES when the agent resumes.

After the JCL is added to the EELBRDS data set, the event data set (EVDS) is
updated with the new job state and an update is also sent to dynamic workload
broker through the z/OS subsystem interface (SSI).

After a job is processed, its status is sent back to Tivoli Workload Scheduler as an
event.

The next figure tracks the route followed by the events related to the statuses of
submitted jobs as they are returned by JES2, processed by the agent for z/OS, and
sent back to Tivoli Workload Scheduler.

58 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Job Entry
Subsystem
(JES)

System
Management
Facility
(SMF)

Event
Writer
Queue

z/OS system

Agent for z/OS

Event
Writer
Task

Event
Data
Set

Data
Router
Queue

Data
Router
Task

HTT
Queue

HT task

HTTP client

Events sent back to
Tivoli Workload Scheduler

(EVDS)

Common
Storage
Area
(CSA)

Subsystem
Interface
(SSI)

Figure 7. The route followed by a status event within the agent for z/OS as it is returned by JES2 on its way to Tivoli
Workload Scheduler.

Chapter 3. Using the agent for z/OS 59

The agent uses the normal tracking mechanism based on SMF and JES exits to
track the status of all the jobs in the system and to send them back to the dynamic
workload broker.

Note that the events are stored in the event writer queue in CSA and also in the
event data set (EVDS) on disk. This guarantees that, if the agent is interrupted,
they are not lost, but sent to Tivoli Workload Scheduler when the agent resumes.

Back in Tivoli Workload Scheduler, the events filter component of dynamic
workload broker receives all the events coming from the agent for z/OS and
matches them against a job table. If there is a match, the event is processed,
otherwise it is discarded.

The Output manager handles job log requests from Tivoli Workload Scheduler by
getting the job output from the JES spool (if still available).

When a job submission request is received by an agent for z/OS in a sysplex
environment, the agent executes the job, but the job can be routed by JES to any
other node of the sysplex where another agent tracks it and sends the event back
to Tivoli Workload Scheduler that checks if the event is related to one of the jobs
submitted and if this is the case updates its status.

The use of NJE (Network Job Entry) with the agent for z/OS is not supported
because it can result in faulty tracking of a job state.

Using variables in your jobs
You can include variables in your job definition.

The variables are resolved at submission time. They can be grouped into two types
depending on where they are resolved:
v Variables that are resolved by Tivoli Workload Scheduler at a Tivoli dynamic

workload broker level before the job is submitted to the agent for z/OS. They
must be placed in the JSDL portion of the job definition.
You can also pass properties variables or job output between 2 jobs in the same
job stream instance. For more information about which properties you can use as
variables or how you can pass the job output, see “Variables passing between
jobs in the same job stream instance” on page 62.

v Variables that are resolved by the agent for z/OS before it submits the JCL to
JES. They must be placed in the JCL embedded or referenced in the job
definition.

Variables resolved by Tivoli Workload Scheduler
The variables are assigned their values by means of Tivoli dynamic workload
broker at job submission time before the job is passed to the agent for z/OS.

The following variables are supported:

Table 12. Supported variables in JSDL definitions

Variable name Description

tws.host.workstation Name of the host workstation

tws.job.date Date of the submitted job.

60 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

|
|
|
|

Table 12. Supported variables in JSDL definitions (continued)

Variable name Description

tws.job.fqname Fully qualified name of the job
(UNISON_JOB)

tws.job.ia Input arrival time of the job

tws.job.interactive Job is interactive. Values can be true or
false. Applies only to backward-compatible
jobs.

tws.job.logon Credentials of the user who runs the job
(LOGIN). Applies only to
backward-compatible jobs.

tws.job.name Name of the submitted job

tws.job.num Number of the submitted job.

tws.job.priority Priority of the submitted job

tws.job.promoted Job is promoted. Values can be YES or No.
For more information about promotion for
dynamic jobs, see the section about
promoting jobs scheduled on dynamic pools
in Scheduling Workload Dynamically.

tws.job.recnum Record number of the job.

tws.job.resourcesForPromoted Quantity of the required logical resources
assigned on a dynamic pool to a promoted
job. Values can be 1 if the job is promoted or
10 if the job is not promoted. For more
information about promotion for dynamic
jobs, see the section about promoting jobs
scheduled on dynamic pools in Scheduling
Workload Dynamically.

tws.job.workstation Name of the workstation on which the job is
defined

tws.jobstream.id ID of the job stream that includes the job
(UNISON_SCHED)

tws.jobstream.name Name of the job stream that includes the job
(UNISON_SCHED)

tws.jobstream.workstation Name of the workstation on which the job
stream that includes the job is defined

tws.master.workstation Name of the master domain manager
(UNISON_MASTER)

tws.plan.date Start date of the production plan
(UNISON_SCHED_DATE)

tws.plan.date.epoch Start date of the production plan, in epoch
format (UNISON_SCHED_EPOCH)

tws.plan.runnumber Run number of the production plan
(UNISON_RUN)

When you include any of these variables in the job definition in composer, put the
$ (dollar) sign before the variable and write the variable within braces; for
example, ${tws.master.workstation}.

Chapter 3. Using the agent for z/OS 61

Variables passing between jobs in the same job stream instance
In many scenarios the job output or a job property of the first job in a job stream
can be the input for the execution of the successive jobs in the same job stream
instance. This is valid also for JOBS job stream.

In the scenario, you have JobA and JobB in the same job stream instance, and JobA
passes some variables values to the JobB at execution time. You can pass the
following variables from JobA to JobB:
v JobA exports some properties and JobB references these properties in its

definition as variables in a predefined format. At execution time the JobB
variables are automatically resolved. The job properties that you can export
depend on the job type you are defining. See “Passing job properties from one
job to another in the same job stream instance.”

v JobA exports its standard output value and JobB references this standard output
as property in JobB definition as variable. At execution time the JobB variable is
automatically resolved. See “Passing job standard output from one job to
another in the same job stream instance” on page 64.

v JobA exports its standard output value and JobB references this standard output
as its standard input value. This option is valid only for executable jobs. See
“Passing job standard output from one job to another as standard input in the
same job stream instance” on page 65.

Note: The USERJOBS job stream created by Tivoli Workload Scheduler processes,
does not support the variables passing between jobs that belong to it.

Passing job properties from one job to another in the same job stream instance:

You can export some job properties from one job on Tivoli Workload Scheduler
agent for z/OS to another in the same job stream instance

You can export some job properties from one job on Tivoli Workload Scheduler
agent for z/OS to another in the same job stream instance. To add a job property
within another job definition, that it is resolved locally on the agent at run time,
use the following syntax:
${job:<JOB_NAME>.<property_name>}

where <JOB_NAME> is the name value or the alias name value of the job from
which you are exporting the property values and <property_name> is the property
that you are referring to. The <property_name> value is case insensitive.

Table 13 shows the list of properties that you can pass from dynamic job on Tivoli
Workload Scheduler agent for z/OS to another job and indicate the mapping
between the Extra information properties of the job and the properties that you
can use.

Table 13. Properties for dynamic jobs on Tivoli Workload Scheduler agent for z/OS

Dynamic job on Tivoli Workload
Scheduler agent for z/OS properties

that can be pass in another job
definition

Dynamic job on Tivoli Workload
Scheduler agent for z/OS Extra

Information properties

${job:<JOB_NAME>.zAgentJESId} JES Id

${job:<JOB_NAME>.zAgentJobName} Job Name

${job:<JOB_NAME>.zAgentStartReaderTime} Start Reader Time

62 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|

|

|
|
|

|
|
|
|

||

|
|
|
|

|
|
|

||

||

||
|

Example

The following example demonstrates how variables can be passed from job that
run on Tivoli Workload Scheduler agent for z/OS to another executable job that
run in the same job stream instance. The WIN92MAS#JS_PROP job stream contains
ZSPD_ZOS1274#DDRIVEN_JOB used with alias JOBA and NC112016#JOBB jobs. The
NC112016#JOBB executable job references the following properties of the JOBA job
that is defined on Tivoli Workload Scheduler agent for z/OS:
v zAgentJESId

v zAgentJobName

v JOBA.zAgentStartReaderTime

The database definitions:
SCHEDULE WIN92MAS#JS_PROP
:
ZSPD_ZOS1274#DDRIVEN_JOB AS JOBA
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl" xmlns:
jsdljcl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdljcl" name="JCL">

<jsdl:application name="jcl">
<jsdljcl:jcl>
<jsdljcl:JCLParameters>
<jsdljcl:jcl>
<jsdljcl:byRefOrByDef>
<jsdljcl:byDefinition>
<jsdljcl:jclDefinition>//JOB JOB

//S1 EXEC PGM=IEFBR14</jsdljcl:jclDefinition>
</jsdljcl:byDefinition>
</jsdljcl:byRefOrByDef>
</jsdljcl:jcl>
</jsdljcl:JCLParameters>
<jsdljcl:JOBParameters>
<jsdljcl:jobStreamName>${tws.jobstream.name}</jsdljcl:jobStreamName>
<jsdljcl:inputArrival>${tws.job.ia}</jsdljcl:inputArrival>
</jsdljcl:JOBParameters>
</jsdljcl:jcl>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Added by composer for job stream: WIN92MAS#JS_PROP."
RECOVERY STOP

NC112016#JOBB
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:XMLSchema="http://www.w3.org/2001/XMLSchema" xmlns:
jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl" xmlns:
jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle" XMLSchema:
text="resolveVariableTable" name="executable">

<jsdl:application name="executable">
<jsdle:executable interactive="false">

<jsdle:script>
echo JES Id = ${job:JOBA.zAgentJESId}
echo Job Name = ${job:JOBA.zAgentJobName}
echo Start Reader Time = ${job:JOBA.zAgentStartReaderTime}
</jsdle:script>

</jsdle:executable>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Added by composer for job stream: WIN92MAS#JS_PROP."
RECOVERY STOP
FOLLOWS JOBA

Chapter 3. Using the agent for z/OS 63

|

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Passing job standard output from one job to another in the same job stream
instance:
You can export the job standard output from a dynamic job to another in the same
job stream instance.

To add a job standard output within another job definition, that it is resolved
locally on the agent at runtime, use the following syntax:
${job:<JOB_NAME>.stdlist}

where <JOB_NAME> is the name value or the alias name value of the job from
which you are exporting the job standard output.

Example

The following example demonstrates how variables can be passed from job that
run on Tivoli Workload Scheduler agent for z/OS to another executable job that
run in the same job stream instance. The WIN92MAS#JS_PROP job stream contains
ZSPD_ZOS1274#DDRIVEN_JOB used with alias JOBA and NC112019#JOBD jobs. The
NC112019#JOBD executable job references the JOBA standard output. The database
definitions:
SCHEDULE WIN92MAS#JS_PROP
:
ZSPD_ZOS1274#DDRIVEN_JOB AS JOBA
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl" xmlns:
jsdljcl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdljcl" name="JCL">

<jsdl:application name="jcl">
<jsdljcl:jcl>
<jsdljcl:JCLParameters>
<jsdljcl:jcl>
<jsdljcl:byRefOrByDef>
<jsdljcl:byDefinition>
<jsdljcl:jclDefinition>//JOB JOB

//S1 EXEC PGM=IEFBR14</jsdljcl:jclDefinition>
</jsdljcl:byDefinition>
</jsdljcl:byRefOrByDef>
</jsdljcl:jcl>
</jsdljcl:JCLParameters>
<jsdljcl:JOBParameters>
<jsdljcl:jobStreamName>${tws.jobstream.name}</jsdljcl:jobStreamName>
<jsdljcl:inputArrival>${tws.job.ia}</jsdljcl:inputArrival>
</jsdljcl:JOBParameters>
</jsdljcl:jcl>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Added by composer for job stream: WIN92MAS#JS_PROP."
RECOVERY STOP

NC112019#JOBD
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl" xmlns:
jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle" name="executable">

<jsdl:application name="executable">
<jsdle:executable interactive="false">

<jsdle:script>echo "stdlist: ${job:JOBA.stdlist}"</jsdle:script>
</jsdle:executable>

</jsdl:application>
</jsdl:jobDefinition>

64 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

|
|
|
|

|
|

|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DESCRIPTION "Added by composer for job stream: WIN92MAS#JS_PROP."
RECOVERY STOP
FOLLOWS JOBA
END

Passing job standard output from one job to another as standard input in the
same job stream instance:
You can export the job standard output from a dynamic job to another job as
standard input in the same job stream instance.

To add a job standard output within another job definition, that it is resolved
locally on the agent at runtime, use the following syntax:
${job:<JOB_NAME>.stduri}

where <JOB_NAME> is the name value or alias name value of the job from which
you are exporting the job standard output.

Example

The following example demonstrates how variables can be passed from job that
run on Tivoli Workload Scheduler agent for z/OS to another executable job that
run in the same job stream instance. The WIN92MAS#JS_PROP job stream contains
ZSPD_ZOS1274#DDRIVEN_JOB used with alias JOBA and NC112019#JOBC jobs. The
NC112019#JOBC executable job references the JOBA standard output. The database
definitions:
SCHEDULE WIN92MAS#JS_PROP
:
ZSPD_ZOS1274#DDRIVEN_JOB AS JOBA
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl" xmlns:
jsdljcl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdljcl" name="JCL">

<jsdl:application name="jcl">
<jsdljcl:jcl>
<jsdljcl:JCLParameters>
<jsdljcl:jcl>
<jsdljcl:byRefOrByDef>
<jsdljcl:byDefinition>
<jsdljcl:jclDefinition>//JOB JOB

//S1 EXEC PGM=IEFBR14</jsdljcl:jclDefinition>
</jsdljcl:byDefinition>
</jsdljcl:byRefOrByDef>
</jsdljcl:jcl>
</jsdljcl:JCLParameters>
<jsdljcl:JOBParameters>
<jsdljcl:jobStreamName>${tws.jobstream.name}</jsdljcl:jobStreamName>
<jsdljcl:inputArrival>${tws.job.ia}</jsdljcl:inputArrival>
</jsdljcl:JOBParameters>
</jsdljcl:jcl>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Added by composer for job stream: WIN92MAS#JS_PROP."
RECOVERY STOP

NC112019#JOBC
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:XMLSchema="http://www.w3.org/2001/XMLSchema" xmlns:
jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl" xmlns:
jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle" XMLSchema:text="resolveVariableTable"

name="executable">
<jsdl:application name="executable">

Chapter 3. Using the agent for z/OS 65

|
|
|
|

|
|
|
|

|
|

|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<jsdle:executable input="${job:JOBA.stduri}" interactive="false" path="cat"/>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Added by composer for job stream: WIN92MAS#JS_PROP."
RECOVERY STOP
FOLLOWS JOBA
END

Variables resolved by the agent for z/OS
These variables are resolved by the agent for z/OS in the JCL before the JCL is
passed on to JES for execution.

The following types of variables are supported:
v User-defined
v Predefined
v JCL tailoring directives

Configuring the agent to run variable substitution
To be able to run this type of variable substitution, you must configure some
keywords of the TWSOPTS statement.

To be able to run this type of variable substitution, take one of the following
actions:
v Set the VARSUB keyword of the TWSOPTS statement to YES. This means that

variable substitution occurs from the beginning of the JCL for all the jobs
defined to run on the agent for z/OS.

v Set the VARSUB keyword of the TWSOPTS statement to SCAN and specify the
directive //*%OPC SCAN in your job. Substitution in the job starts where the
SCAN directive is found.

If you want to bypass variable substitution errors, then set the VARFAIL keyword.
If you want to apply variable substitution also to inline procedures, then use the
VARPROC statement. See the TWSOPTS configuration statement for details.

Coding variables in JCL
Coding variables in JCL follows certain rules.

Variable names, either user-defined or supplied with the product, can be of up to 8
alphanumeric characters, the first of which must be alphabetic. Variable values can
be of up to 44 alphanumeric characters.

When using a variable in a job, precede it with an ampersand (&), a percent sign
(%), or a question mark (?). The symbol preceding the variable determines how the
variable is resolved:

Ampersand (&)

These variables are substituted from left to right within the line.
Ampersand variables correspond to the standard variables in z/OS JCL
procedures and behave accordingly. Refer to JCL Reference.

If an &-variable is immediately followed by a % variable (that is, there is
no intervening termination character), a compound variable is formed. See
Compound variables. A compound variable is also formed if an &-variable
immediately follows a ?-variable.

66 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

|
|
|
|
|
|
|

|

Any string that begins with && is not substituted. This is because the
double ampersand within JCL is usually used to denote a temporary data
set. Any such strings are unaffected by the variable substitution.

Percent sign (%)
These variables can be used to form simple variables and compound
variables.

Simple variables
If the variable is preceded by a % and ended by a period or any
termination character other than %, a value is assigned to the
variable, and substitution, for this variable, completes.

Compound variables

Using JCL substitution, you can form compound variables. A
compound variable is made up of a concatenation of:
v A variable (of any type) followed by a percent variable with no

intervening periods or other termination symbols
v A question mark variable followed by an ampersand variable

with no intervening periods or other termination symbols

The values of the percent variables making up a compound
variable are not substituted directly. Instead, these values are used
to form new variables, which have their own values assigned.
These variables are resolved in a series of passes. The individual
variables making up the compound variable are resolved, moving
from right to left.

For example, consider the following line of JCL from a job:
//STEPLIB DD DSN=MY.&DATA%SET,DISP=OLD

Assume that SET has been given a value of LIB. After the first pass,
the variable DATA%SET becomes variable DATALIB because the
right-most percent variable is resolved on the first pass. This first
pass has now formed a new variable, DATALIB, which the agent will
try to resolve on its next pass across this line of JCL.

Compound variables can be made up of a sequence of many
%-variables. Consider the following:
//DDNAME1 DD DSN=MY.%VAR1%VAR2%VAR3....DATA,DISP=OLD

Assume that VAR3 has value SIX and VAR2SIX has value JUNE. On
the first pass over this line of JCL, the variable
%VAR1%VAR2%VAR3....DATA becomes %VAR1%VAR2SIX...DATA. On the
second pass, the variable %VAR1%VAR2SIX. becomes
%VAR1JUNE..DATA. The value assigned to %VAR1JUNE. determines the
final value that is substituted.

At every substitution, a period was discarded when the variable
was substituted. You must specify the correct number of periods to
ensure that the substitution is performed correctly. In the preceding
example, an extra period was required to denote the beginning of
the second-level data set qualifier.

In the next example, you need only one parenthesis to complete
the compound variable. This is because the parenthesis is not
discarded at substitution.
//DDNAME1 DD DSN=MY.%VAR1%VAR2%VAR3(MEMBER),DISP=OLD

Chapter 3. Using the agent for z/OS 67

Question mark (?)

Question mark variables are positional; that is, you can specify in which
column on the line the variable value should begin when the variable is
substituted. The position at which the value is placed is specified in the job
where the variable is used. For example:
?VAR1.

will cause the value of VAR1 to be placed on the line and column that the
variable appears on.
?nnVAR1.

will cause the value of VAR1 to be placed on the line that the variable
appears on, starting at the column number specified by nn.

More than one ?-variable can appear on a JCL line. The positions of the
variables themselves have no influence on the positions of the variable
values. These positions are decided by the column number specified for
the variable. For example:

where VAR1 is APRIL and VAR2 is MAY (the scale line has been included
only for example purposes), the result after variable substitution would be:

The value of ?-variables is evaluated in the same way as for &- and
%-variables, and in the same sequence. However, ?-variables are
substituted only after all percent and ampersand variables have been
substituted. This is because the value of the ?-variable can be placed only
in areas of the line that are blank. The agent can only know which areas of
a line will be blank after ampersand and percent substitution has occurred.

Tabular variables cannot overlap. That is, the values of two different
variables cannot be defined to occupy the same space on a line. The space
that the variables themselves originally take up is ignored when
substitution occurs. For example:

where VAR1 is APRIL and VAR2 is MAY, the substitution would be invalid
because the two variables are attempting to use columns 21, 22, and 23.

The agent changes the space occupied by the variable to spaces, if it is not
covered by the substituted value. For example:

VAR1 is APRIL. After substitution, the line becomes:

//SYSIN DD *
....+....1....+....2....+....3....+....4....+....5....+....6....+....7..

?20VAR1.?9VAR2.

//SYSIN DD *
....+....1....+....2....+....3....+....4....+....5....+....6....+....7..

MAY APRIL

//SYSIN DD *
....+....1....+....2....+....3....+....4....+....5....+....6....+....7..

?20VAR1.?21VAR2.
/*

//SYSIN DD *
....+....1....+....2....+....3....+....4....+....5....+....6....+....7..
THIS IS?40VAR1. THE STANDARD DATA. IS A WET MONTH.

68 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

The agent has changed the space occupied by the variable to spaces. The
other data in the line does not move.

Note: Predefined variables do not have an implied position. When these
variables are specified as tabular variables, you must include the column
number. For example, ?OADID will not be accepted; however, ?20OADID is
valid: the application ID is substituted at column 20.

You can use a variable repeatedly within the job using different prefix symbols.

An ampersand or percent variable can be assigned a value that is itself a variable.

A period denotes the end of a variable name. To maintain compatibility with
variable substitution within z/OS JCL procedures, the agent for z/OS will assume
that a variable has ended (even if the completing period is missing) if the variable
is followed by one of the symbols listed in the following table.

Table 14. Symbols that mark the end of variables.

Symbol Description

, Comma

/ Forward slash

' Single quote

(Left parenthesis

) Right parenthesis

* Asterisk

+ Plus sign

- Dash

= Equals sign

Blank (�)

For example, if LIBRARY is given the value LINKLIB for the following statement:
//STEPLIB DD DSN=MY.&LIBRARY.(HDEAQ03),DISP=SHR

or the following statement (without the completing period):
//STEPLIB DD DSN=MY.&LIBRARY(HDEAQ03),DISP=SHR

The JCL line becomes as follows:
//STEPLIB DD DSN=MY.LINKLIB(HDEAQ03),DISP=SHR

The product assumes that the variable LIBRARY ends when it detects the left
parenthesis '('.

The completing period is discarded when a variable is substituted. Other
termination symbols are left in place.

User-defined variables
You can add your own defined variables in the JCLs.

//SYSIN DD *
....+....1....+....2....+....3....+....4....+....5....+....6....+....7..
THIS IS THE STANDARD DATA. APRIL IS A WET MONTH.

Chapter 3. Using the agent for z/OS 69

The names of user-defined variables can be of up to 8 alphanumeric characters, the
first of which must be alphabetic. A longer name is taken as not valid and the
variable is not processed. An error is recorded in EELMLOG.

Variable values can be of up to 44 alphanumeric characters. Longer values are
truncated to 44 characters.

To define these variables, use the variable table definition in the Dynamic
Workload Console. To define a variable table and to add variables:
1. From the navigation toolbar, click Administration>Workload Design>Manage

Workload Definitions.
2. Select the Tivoli Workload Scheduler engine when prompted, and provide a

valid userid and password if required.
3. Select New or Search and then Variable table.

Alternatively, you can use the composer vartable command.

Variable tables can be assigned at run cycle, job stream, and workstation level.

The variables (and the values) included in a JCL are forwarded to the agent for
z/OS at submission time in a single table. If the scheduler finds that the same
variable name is present in more than one of the tables associated with the JCL, it
picks the first value according to this sequence:
1. Run cycle
2. Job stream
3. Workstation

Note: The agent does not process variables defined in the global (default) variable
table.

Predefined variables
Predefined variables are supplied with Tivoli Workload Scheduler for use with the
agent for z/OS.

The agent never tries to read variable definitions for these variables from a variable
table. The variables can be of the following types:
v Job stream-related
v Job-related
v Date-related
v Dynamic-format
v Temporary

Job stream-related variables:

These variables are related to information about the job stream instance.

Predefined job stream-related variables are listed in the following table:

Table 15. Predefined job stream-related variables

Variable name
Length (in
bytes) Description

OADID 16 Job stream name.

ODAY 1 Job stream instance input arrival day of the week (1-7); 1
represents Mon., 7 represents Sun.

70 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Table 15. Predefined job stream-related variables (continued)

Variable name
Length (in
bytes) Description

ODD 2 Job stream instance input arrival day of month, in DD
format.

ODDD 3 Job stream instance input arrival day of the year, in DDD
format.

ODMY1 6 Job stream instance input arrival date in DDMMYY
format.

ODMY2 8 Job stream instance input arrival date in DD/MM/YY
format.

OHH 2 Job stream instance input arrival hour in HH format.

OHHMM 4 Job stream instance input arrival hour and minute in
HHMM format.

OMM 2 Job stream instance input arrival month in MM format.

OMMYY 4 Job stream instance input arrival month and year in
MMYY format.

OWW 2 Job stream instance input arrival week of the year in WW
format.

OWWD 3 Job stream instance input arrival week, and day within
week, in WWD format, where WW is the week number
within the year, and D is the day within the week.

OWWLAST 1 A value, Y (yes) or N (no), that indicates whether the job
stream instance input arrival date is in the last week of
the month.

OWWMONTH 1 A value between 1 and 6 that indicates the job stream
instance input arrival week-in-month, where each new
week begins on a Monday. For example, consider these
occurrence input arrival dates for the month of March in
1997:

Date OWWMONTH
Saturday 1st

1
Monday 3rd

2
Monday 31

6

OYMD 8 Job stream instance input arrival date in YYYYMMDD
format.

OYM 6 Job stream instance input arrival month within year in
YYYYMM format.

OYMD1 6 Job stream instance input arrival date in YYMMDD
format.

OYMD2 8 Job stream instance input arrival date in YY/MM/DD
format.

OYMD3 10 Job stream instance input arrival date in YYYY/MM/DD
format.

OYY 2 Job stream instance input arrival year in YY format.

OYYDDD 5 Job stream instance input arrival date as a Julian date in
YYDDD format.

Chapter 3. Using the agent for z/OS 71

Table 15. Predefined job stream-related variables (continued)

Variable name
Length (in
bytes) Description

OYYMM 4 Job stream instance input arrival month within year in
YYMM format.

OYYYY 4 Job stream instance input arrival year in YYYY format, for
example, 1997.

Job-related variables:

These variables are related to information about the job instance.

Predefined job-related variables are listed in the following table:

Table 16. Predefined job-related variables

Variable name
Length (in
bytes) Description

OSSID 16 Subsystem name of the agent for z/OS.

Date-related variables:

These variables are related to the current date and time; that is, the time and date
on which the job was submitted.

Predefined date-related variables are listed in the following table:

Table 17. Predefined date-related variables

Variable name
Length (in
bytes) Description

CDAY 1 Current day of the week; 1 represents Monday, 7
represents Sunday.

CDD 2 Current day of month in DD format.

CDDD 3 Day number in the current year.

CDDMMYY 6 Current date in DDMMYY format.

CHH 2 Current time in HH format.

CHHMM 4 Current hour and minute in HHMM format.

CHHMMSS 6 Current hour, minute, and second in HHMMSS format.

CHHMMSSX 8 Current hour, minute, second, and hundredths of
seconds in HHMMSSXX format.

CMM 2 Current month in MM format.

CMMYY 4 Current month within year in MMYY format.

CWW 2 Week number in the current year.

CWWD 3 Current day within week in WWD format, where WW
is the week number within the year, and D is the day
within the week.

CYMD 8 Current date in YYYYMMDD format.

CYY 2 Current year in YY format.

CYYDDD 5 Current Julian date in YYDDD format.

72 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Table 17. Predefined date-related variables (continued)

Variable name
Length (in
bytes) Description

CYYMM 4 Current month within year in YYMM format.

CYYMMDD 6 Current date in YYMMDD format.

CYYYY 4 Current year in YYYY format, for example, 1997.

CYYYYMM 6 Current month within year in YYYYMM format.

Dynamic-format variables:

Predefined dynamic-format variables are time-and-date-related.

You define the format you require for these variables using the SETFORM
directive. For example, if you want to substitute the occurrence input arrival date
with the format MM:DD:YY, you define the dynamic variable OCDATE as follows:
//*%OPC SETFORM OCDATE=(MM:DD:YY)

When you have defined the format of a dynamic-format variable by using the
SETFORM directive, you can use a different format later in the job by redefining
the same variable with another SETFORM directive.

The following table lists these variables.

Table 18. Predefined dynamic-format variables

Variable name Description

CDATE Current date.

CTIME Current time.

OCDATE Job stream instance input arrival date.

OCTIME Job stream instance input arrival time (hours and minutes).

OPIADATE Job instance input arrival date (if blank, this takes the value of the
job stream instance input arrival date).

OPIATIME Job instance input arrival time (if blank, this takes the value of the
job stream instance input arrival time).

Temporary variables:

You can create temporary variables using the SETVAR directive.

You can create temporary variables using one of the following:
v An arithmetic expression on the date-related or time-related variables.
v A substring of another variable.
v The result of an arithmetic addition or subtraction.
v Concatenated strings or variables set to an alphanumeric value.

For example, you might want to refer to the first workday of the next week after
the job stream input arrival date in the format YY/MM/DD. You do this by
creating a temporary variable from the supplied variable, OYMD2, using the
SETVAR directive. The temporary variable is assigned the value (date) of the first
workday after the job stream input arrival date like this:

Chapter 3. Using the agent for z/OS 73

Example
//*%OPC SCAN
//*%OPC SETVAR TVAR=(OYMD2+1WK)

If the job stream input arrival date is 12/07/20, and the first working day of the
following week Monday 12/07/27, TVAR will be assigned the value 12/07/27. You
can now refer to TVAR as a normal variable through the rest of the job: you can
also give it a new value later in the job.

For details, see “SETVAR directive” on page 77.

JCL tailoring directives
The agent for z/OS uses special comment statements, called directives, to manage
the inclusion and exclusion of lines and to control aspects of variable substitution.

The directives are:
v SCAN
v SETFORM
v SETVAR
v BEGIN and END
v FETCH

The general syntax of the directives is:
v Each directive must begin on a new 80-byte line.
v All directives begin with //*%OPC in columns 1 to 7 followed by at least one

space.
v Directive parameters can be coded in any order.
v Directive parameters can occur more than once in the same directive.
v Directive parameters are separated by commas with no embedded blanks

between parameters on the same line.
v If more than one parameter value is specified, parentheses are required.
v A directive specification cannot exceed 71 characters. It can be continued on a

new line if the directive is split by a comma after a complete or partial
parameter.

v Positions 72 to 80 are ignored.
v Each continuation line must begin with //*%OPC in columns 1 to 7 followed by a

least one space.
v After a directive is successfully executed, the //*%OPC string is changed to

//*>OPC.

If a line begins with //*%OPC and none of the known directives is found, the job
substitution routines of the agent treat any other directives that it finds as
“unknown,” and will take no action.

Note: If you set VARSUB(SCAN) in the TWSOPTS statement, the SCAN directive
must be present in the JCL in order to process all the subsequent directives.

SCAN directive:
Purpose

If the VARSUB keyword of the TWSOPTS statement is set to SCAN, this directive,
when found in the JCL , informs the agent for z/OS that variable substitution

74 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

should start from this line. This applies also for processing the directives, meaning
that the processing of the directives starts from the line where SCAN is specified.

Syntax

�� //*%OPC SCAN ��

Usage Notes

The SCAN directive is honored only if the VARSUB parameter of the TWSOPTS
statement is set to SCAN.

Assuming that VARSUB(SCAN) is specified, in the following example, MODULE will
not be substituted because it is before the SCAN directive. The variable LIBRARY,
occurring after the SCAN directive, is substituted.

Example
//OPSTATUS JOB (ACCOUNT),’Set completed’,CLASS=A
//STEP1 EXEC PGM=&MODULE.
//*%OPC SCAN
//STEPLIB DD DSN=TWS.LOAD.&LIBRARY.,DISP=SHR
//EELMLIB DD DSN=TWS.MESSAGE.LIBRARY,DISP=SHR
//EELMLOG DD SYSOUT=A
//SYSIN DD *
/*

SETFORM directive:
Purpose

This directive defines the format of dynamic-format supplied variables. After the
agent processes the SETFORM directive, you can refer to the variable and perform
arithmetic calculations using the variable. You can redefine the variable many
times within the job, if you need to.

Syntax

�� //*%OPC SETFORM dynamic-variable-name =(format) ��

Parameters

dynamic-variable-name=(format expression)
The dynamic variable uses the format defined in the format expression.

Usage Notes

The dynamic variable name must be one of the predefined dynamic variables (see
“Dynamic-format variables” on page 73).

The format expression can contain a combination of time-related keywords,
date-related keywords, and delimiters.

The date-related keywords are:

CC Represents the century. This is used in combination with YY to define the
format of a full year, such as 2012.

Chapter 3. Using the agent for z/OS 75

YY Represents the last two figures in the year.

MM Represents the month.

DDD Represents day-in-year. This is substituted before DD: the character string
DDDDDD is understood as two DDD keywords, not three DD keywords.

DD Represents the day in the month.

The time-related keywords are:

HH Represents the hour.

MM Represents the minutes.

Any other characters in the format expression are regarded as delimiters. These
delimiters can be alphabetic, numeric, or any symbol except the variable
substitution characters &, %, ?, =, and the parentheses ().

For the time-related dynamic variables, OCTIME, OPIATIME, and CTIME, only HH
and MM are recognized. YY, for example, is not substituted. MM is substituted by the
minutes part of the time.

For date-related dynamic variables, only CCYY, YY, MM, DD, and DDD are recognized.
CC without YY is not recognized. HH is not substituted. MM is substituted by the
month part of the date.

You can use more than one delimiter between keywords.

For example, MM//DD-- YY is a valid format expression.

Delimiters are optional; that is, you can define consecutive keywords with no
delimiters, such as DDMMYY.

In the following examples, assume that the occurrence input arrival time is at 4:10
PM on December 31st 2012.

Example
//*%OPC SCAN
//*%OPC SETFORM OCDATE=(YY/MM/DDD)

The resulting &OCDATE variable would be: 12/12/365

The examples in Table 19 use the same occurrence input arrival date.

Table 19. Dynamic-format substitution results

Dynamic format
variable Format expression Result

OCDATE YY-MM-DDABC 12-12-31ABC

OCTIME HH MM 16 10 (Note the MM substitutes as minutes
for time variables and substitutes as month
for date variables.)

OCDATE DDDDD 36531. DDD is the 365th day of the year,
and DD is the day of the month.

OCDATE DDDD 365D. DDD is the 365th day of the year, but
no match was found for the last D.

76 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Table 19. Dynamic-format substitution results (continued)

Dynamic format
variable Format expression Result

OCDATE YYMMHHMMSS 1212HH12SS. This is a date variable, so HH
is not substituted.

SETVAR directive:
Purpose

This directive creates a temporary variable using one of the following:
v An arithmetic expression together with supplied date or time variables.
v A substring of another variable.
v The result of an arithmetic addition or subtraction.
v Concatenated strings or variables set to an alphanumeric value.

After the agent for z/OS processes the SETVAR directive, you can use the
temporary variable in the same way as you use other variables. You can redefine a
temporary variable later in the job.

Syntax

�� //*%OPC SETVAR �

�

�

Tname= (date time variable +/- nnnTT1 nnnTT2 nnnTT3)
Tname= SUBSTR (variable , n , length)
Tname= (numeric value / 'alphanumeric value')
Tname= (variable1 +/- variable2)

Tname= (' concatenation item ')

��

Parameters

Tname=(date time variable +/- nnnTT1 nnnTT2 nnnTT3)

Tname
The name of the temporary variable, beginning with the letter T.

date time variable
One of the following defined formats:
Date formats:

ODMY1, ODMY2, OYMD, OYMD1, OYMD2, OYMD3,
CDDMMYY, CYMD, CYYMMDD, OCDATE, CDATE

Day-in-year formats:
ODDD, OYYDDD, OLYYDDD, CDDD, CYYDDD

Day-in-month formats:
ODD, CDD

Day-in-week formats:
OWWD, CWWD

Day-of-week formats:
ODAY, CDAY

Week formats:
OWW, CWW

Chapter 3. Using the agent for z/OS 77

Month formats:
OMM, OMMYY, OYM, OYYMM, CMM, CMMYY,
CYYMM, CYYYYMM

Year formats:
OYY, OYYYY, CYY, CYYYY

Time formats:
OHHMM, CHHMM, CHHMMSSX, CTIME, OCTIME

Hour formats:
OHH, OLHH, CHH, CYYY

nnn A number in the range 0 to 999.

TT1 The first possible type. You can specify the following values:
For date-related variables

CD Calendar days.
WK Weeks. Weeks are converted to days before the

calculation is performed.
MO Months. Performing calculation on the month

portion affects only the month, and possibly the
year. The calculation always generates valid results,
handling actual months durations and leap years.
For example, adding one month to 080131 gives
080229 (considering the leap year).

YR Years.
For time-related variables

HH Hours.
MM Minutes.
SS Seconds.

TT2 The second possible type, valid only for time-related variables. You
can specify the following values:
MM Minutes.
SS Seconds.

TT3 The third possible type, valid only for time-related variables. You
can specify only the value SS (seconds).

You can use the format nnnTT1 nnnTT2 nnnTT3 only for time-related
variables, to add or subtract hours, minutes, and seconds to or from a
given time. Specify this triple format only if you want to specify hours,
minutes, and seconds.

Using duplicated types, as for example in 6HH, 5MM, 7MM, is not
allowed.

variable
The name of the source string variable. Use an existing variable name
properly defined and accessible. You can specify any supplied or
user-defined variable. The length of the variable that is replaced is limited
to the remaining JCL row length that is not used by the statement.

n An integer in the range 1 to 60. It defines the starting position, in variable,
of the substring variable. If it exceeds the length of variable, the resulting
substring is padded with blank.

length An integer in the range 1 to 60. It defines the length of the substring
variable. If it exceeds the length of variable, the resulting substring is
padded with blank.

78 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

numeric value
An integer in the range 0 to 99999, defining the value of the temporary
variable.

alphanumeric value
String of alphanumeric characters, defining the value of the temporary
variable. Enclose the string in single quotes. It can be up to 48 characters.

If the length of the whole statement in the JCL reaches column 72, an error
message is issued.

variable1
An integer in the range 0 to 99999, defining the first operand of an
arithmetic addition or subtraction, whose result defines the value of the
temporary variable. The arithmetic expression cannot include blank
characters.

variable2
An integer in the range 0 to 99999, defining the first operand of an
arithmetic addition or subtraction, whose result defines the value of the
temporary variable. The arithmetic expression cannot include blank
characters.

concatenation item
One of the following:
v A variable previously set to an alphanumeric value.
v A string of alphanumeric characters.

Enclose the item list in single quotes. The result cannot exceed 48
characters.

Usage Notes

These examples show how to use temporary variables created through SETVAR:

Example 1 (with an arithmetic expression)

If the occurrence input arrival date is 12/12/26, the expression is substituted as
follows:
TVAR=(360+4)
TVAR=364

If the occurrence input arrival date is 12/12/30, the expression is substituted as
follows:
TVAR=(364+4)
TVAR=003

Example 2 (with dynamic-format variable)
//*%OPC SCAN
//*%OPC SETFORM CDATE=(ACCURATE DATE CCYY MM DD)
//*%OPC SETVAR TDATE=(CDATE + 1CD)

If the occurrence input arrival date is 12/12/26, the expressions are substituted as
follows:
CDATE = ’ACCURATE DATE 2012 12 26’
TDATE = ’ACCURATE DATE 2012 12 27’

If the expression includes dynamic-format supplied variables containing the first or
the last day in the month or in the year of the job stream instance IA, the

Chapter 3. Using the agent for z/OS 79

calculated date must fall within the range of four years earlier and seven years
later than the current year. If the current year is 2012, the resulting date of the
temporary variable must be later than 07/12/31 and earlier than 20/01/01.

Example 3 (SUBSTR usage)

v Using a variable defined in a JCL variable table:
//*%OPC SETVAR TVAR=SUBSTR(&VAR1,2,4)

VAR1 is a variable defined in a JCL variable table.
TVAR is a substring of VAR1 value, starting from position 2 for a length of 4
characters.

v Using a predefined variable:
//*%OPC SETFORM OCDATE=(YYMMDD)
//*%OPC SETVAR TVAR1=(’&OCDATE’)
//*%OPC SETVAR TVAR2=SUBSTR(&TVAR1,3,2)
//*%OPC SETVAR TVAR3=(OCDATE + 1MO)
//*%OPC SETVAR TVAR4=SUBSTR(&TVAR3,3,2)

If the occurrence input arrival date is 08/06/16, the expressions are substituted
as follows:
TVAR1 = 080616
TVAR2 = 06
TVAR3 = 080716
TVAR4 = 07

In fact the SUBSTR parameter identifies a substring of TVAR1 and TVAR3 values,
starting from position 3 for a length of 2 characters. According to the format set
by the SETFORM directive, it identifies the MM part of the date value.

Example 4 (arithmetic with temporary variables)
//*%OPC SETVAR TX=(1)
//*%OPC SETVAR TY=(2)
//*%OPC SETVAR TZ=(&TX+&TY)

TZ is a temporary variable set to the result of the arithmetic addition.

Example 5 (concatenating temporary variables)
//*%OPC SETVAR T001=(’STRING1’)
//*%OPC SETVAR T002=(’STRING2’)
//*%OPC SETVAR T003=(’&T001 &T002 CONCATENATED STRINGS’)

T003 is a temporary variable set to the following value: STRING1 STRING2
CONCATENATED STRINGS

BEGIN and END directives:
Purpose

These directives, used in pairs, denote the following, depending on the value of
the ACTION keyword:
v The start and end of the variable substitution action performed by the agent
v The start and end of the lines to be included in the tailored job
v The start and end of the lines to be excluded from the tailored job

Syntax

80 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

�� //*%OPC BEGIN �

�

.,

ACTION= EXCLUDE
INCLUDE
NOSCAN
.,

COMP= ((comparison expression))

��

�� //*%OPC END ACTION= EXCLUDE
INCLUDE
NOSCAN

��

Parameters

ACTION=(EXCLUDE|INCLUDE|NOSCAN)
Specifies which BEGIN/END action is required.

EXCLUDE
This specifies that the lines following this BEGIN directive up to
the next END ACTION=EXCLUDE directive should be excluded
from the job that is submitted for this operation.

INCLUDE
This specifies that the lines following this BEGIN directive up to
the next END ACTION=INCLUDE directive should be included as
part of the job that is submitted for this operation.

NOSCAN
This specifies that any variables following this BEGIN directive up
to the next END ACTION=NOSCAN directive should not be
substituted.

COMP=((comparison expression), (comparison expression),...)
Specifies comparison expressions that are used to decide whether the
BEGIN directive should be acted on. If the comparison expression is true,
the BEGIN directive is honored. For details on defining comparison
expressions, see “The COMP keyword on BEGIN and FETCH directives”
on page 83.

Usage Notes

In a job, every BEGIN directive must have a matching END directive specifying
the same ACTION. For example, the directive:
//*%OPC BEGIN ACTION=EXCLUDE

requires the following matching END directive:
//*%OPC END ACTION=EXCLUDE

If the agent detects an unpaired BEGIN or END, the processing ends in error. Even
a BEGIN statement that is not honored because its comparison expression is not
true requires a matching END statement.

Only the following directives can lie within the domain of a BEGIN
ACTION=NOSCAN directive and an END ACTION=NOSCAN directive:

SETFORM
SETVAR

Chapter 3. Using the agent for z/OS 81

When these directives are in the range of a NOSCAN directive, they are always
acted upon even if there is a comparison condition that is false.

BEGIN and END directives that specify ACTION=INCLUDE or
ACTION=EXCLUDE cannot be nested and cannot overlap. They can, however,
completely contain a nested NOSCAN domain.

Consider the following examples:

Example 1
//*%OPC SCAN
//*%OPC BEGIN ACTION=INCLUDE �1�
//DDNAME1 DD DSN=&HIONE..&DATASET1,DISP=SHR �2�
//DDNAME2 DD DSN=&HIONE..&DATASET2,DISP=SHR �3�
//*%OPC END ACTION=INCLUDE �4�

Example 1 is valid. Lines �2� and �3� will be included in the job for the operation.

Example 2
//*%OPC SCAN �1�
//*%OPC BEGIN ACTION=EXCLUDE �2�
//EXEC PGM=MYPROG �3�
//*%OPC BEGIN ACTION=INCLUDE �4�
//DDNAME1 DD DSN=&HIONE..&DATASET1,DISP=SHR �5�
//SYSOUT DD SYSOUT=A �6�
//*%OPC END ACTION=EXCLUDE �7�
//DDNAME2 DD DSN=&HIONE..&DATASET2,DISP=SHR �8�
//*%OPC END ACTION=INCLUDE �9�

Example 2 is invalid. An EXCLUDE action (lines �2� and �7�) overlaps an
INCLUDE action (lines �4� and �9�). An error message will be issued.

Example 3
//*%OPC SCAN �1�
//*%OPC BEGIN ACTION=INCLUDE �2�
//EXEC PGM=MYPROG �3�
//*%OPC BEGIN ACTION=NOSCAN �4�
//DDNAME1 DD DSN=&HIONE..&DATASET1,DISP=SHR �5�
//SYSOUT DD SYSOUT=A �6�
//*%OPC END ACTION=NOSCAN �7�
//DDNAME2 DD DSN=&HIONE..&DATASET2,DISP=SHR �8�
//*%OPC END ACTION=INCLUDE �9�

Example 3 is valid. The NOSCAN domain defined by lines �4� and �7� is
completely contained within the BEGIN and END ACTION=INCLUDE (lines �2�
and �9�).

Note also that the variable HIONE on line �8� will be substituted, but the variable
HIONE on line �5� will not be substituted because it is within a NOSCAN domain.

FETCH directive:
Purpose

This directive lets you include lines, fetched from a partitioned data set member or
supplied by an exit, in your job.

82 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Syntax

�� //*%OPC FETCH �

�

.,

MEMBER= member name
.,

COMP= ((comparison expression))

��

Parameters

MEMBER=(member name)
Specifies the member name of a partitioned data set allocated to ddname
EELJBLIB. The lines in this member are included immediately after the
FETCH directive.

COMP=((comparison expression), (comparison expression),...)
Specifies comparison expressions used to decide whether the FETCH
directive should be acted on. If the comparison expression is true, the
FETCH directive is honored. For details on defining comparison
expressions, see “The COMP keyword on BEGIN and FETCH directives.”

Usage Notes

The FETCH directive is used to include lines from other partitioned data sets or as
supplied by an exit. Lines included by a FETCH directive cannot contain another
FETCH directive. BEGIN and END directives with action INCLUDE or EXCLUDE
cannot be included in lines inserted by a FETCH directive.

Predefined variables can be used to represent the values of any keywords, but not
the keywords themselves. A FETCH directive cannot lie between a BEGIN/END
directive pair that specifies ACTION=INCLUDE or ACTION=EXCLUDE.

Example
//*%OPC SCAN
//*%OPC FETCH,
//*%OPC MEMBER=JCL1,
//*%OPC COMP=(&DAY..EQ.1)

The COMP keyword on BEGIN and FETCH directives:
Purpose

A comparison expression lets you specify conditions when BEGIN and FETCH
directives will be honored.

Syntax

�� � �

.,
.,

COMP= ((expression1 .EQ. (expression2)))
.NE.
.GE.
.GT.
.LE.
.LT.

��

Chapter 3. Using the agent for z/OS 83

Parameters

expression1
This specifies a string made up of &-variables and alphanumeric literals.
Any global search characters it contains are treated as literals. The value of
expression1, arrived at by resolving any variables specified, will be tested
against the values given by expression2.

.Operators.
These values are operators that specify which comparison should be made
between expression1 and any expression2 values.

.EQ. Expression1 must equal one of the expression2 values for the
expression to be true.

.NE. All expression2 values must not equal the expression1 value for the
expression to be true.

.GT. Expression1 must be greater than the expression2 value for the
expression to be true.

.GE. Expression1 must be greater than or equal to the expression2 value
for the expression to be true.

.LT. Expression1 must be less than the expression2 value for the
expression to be true.

.LE. Expression1 must be less than or equal to the expression2 value for
the expression to be true.

expression2
This parameter can be made up of &-variables, literals, or, if .EQ. or .NE.
operators are specified, one of the two global search characters, % and *.

The length of the resolved value cannot exceed 44 characters. The % global
search character represents any single alphanumeric character. The * global
search character represents any alphanumeric string, including a null
string.

If GT, GE, LT, or LE is specified:
v Multiple values of expression2 are not supported.
v Global search characters are not supported.
v If the strings on both sides of the operators are of different lengths, the

comparison is made using the shorter string.

Note: The % symbol does not signify a % predefined variable within a
COMP keyword. The %- and ?-variables are not valid within a COMP
statement.

Usage Notes

The COMP expression cannot exceed 256 characters unresolved, and cannot be
more than 1024 characters after substitution; expression2 can be any predefined or
user-defined &-variable. Neither expression1 nor expression2 can have embedded
blanks.

Consider the following examples:

Example 1
//*%OPC FETCH,
//*%OPC MEMBER=MYJCL,
//*%OPC COMP=(&APPL..EQ.(APPL1,APPL2,APPL3))

84 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

If &APPL. is equal to APPL1 or APPL2 or APPL3, the expression is true, and the
FETCH directive will be honored.

Note the two periods following &APPL.. The first signifies the end of the variable
APPL; the second signifies the start of the comparison operator EQ.

Example 2
//*%OPC FETCH,
//*%OPC MEMBER=MYJCL,
//*%OPC COMP=(&DAY..NE.(1,3,5))

In example 2, if &DAY is not equal to 1 or 3 or 5, the expression is true, and the
FETCH directive will be honored. If DAY had been equal to any one of the
comparison values, the expression would have been false.

For the COMP keyword to be true, all the comparison expressions that it consists
of must be true. This is shown in the following example:

Example 3
//*%OPC BEGIN ACTION=INCLUDE,
//*%OPC COMP=((&APPL..EQ.(APPL1,APPL2,APPL3)),
//*%OPC (&DAY..NE.(1,3,5)))

.

.

.
//*%OPC END ACTION=INCLUDE

For the COMP statement in example 3 to be true, the expressions
(&APPL..EQ.(APPL1,APPL2,APPL3)) and (&DAY..NE.(1,3,5)) must both be true.

The expression2 values that you specify can be made up of &-variables,
alphanumeric literals, and the * and % global search characters. National
characters, left and right parentheses; (and), and blanks are not allowed; if they
are specified, the results are unpredictable. The * global search character represents
a character string of any length; the % global search character represents exactly 1
character. If variables and global search characters are combined, the variables are
resolved before any comparisons are made using the global search characters.

Example 4
//*%OPC BEGIN ACTION=INCLUDE,
//*%OPC COMP=(&MYVAR..EQ.(TSO199,TSO2%%.,&VALUE1.*))

.

.

.
//*%OPC END ACTION=INCLUDE

In example 4, the variable &MYVAR must have one of the following values for the
comparison expression to be true:
v TSO199
v TSO2 followed by any 2 alphanumeric characters except blanks
v The value of variable &VALUE1 followed by an alphanumeric string of any length,

including length 0.

Example 5

Chapter 3. Using the agent for z/OS 85

//*%OPC BEGIN ACTION=EXCLUDE,
//*%OPC COMP=(&CYYMMDD..GE.120101)

.

.

.
//*%OPC END ACTION=EXCLUDE

Note that COMP statements can give unexpected results with some of the date
formats of the predefined variables. When date variables are substituted, they are
compared as numerals, not as dates.

In example 5, &CYYMMDD is the current date and 120101 represents 1 January 2012. If
the value of expression1 is greater than 120101, the comparison expression is true.

Managing job instances
You manage jobs submitted to an agent for z/OS with the same commands
available for all Tivoli Workload Scheduler jobs.

Use the conman command line or the Dynamic Workload Console to manage the
job instances. Most of the job management commands and actions of Tivoli
Workload Scheduler apply also to agent for z/OS job instances, but not all. The
following sections list what you can and cannot do.

Commands and Actions you can run

All except for killing job instances.

Commands and Actions you cannot run

You cannot run the kill command on job instances.

This restrains the use of the maxdur job stream keyword on agent for z/OS jobs.
That is, if in a job stream you specify the maxdur keyword with the onmaxdur kill
argument, the job is not killed if it exceeds the time limit, in spite of the fact that
the MaxDurationExceeded and KillSubmitted flags are reported by the conman
showjobs command. In the area of event-driven workload automation, the
MaxDurationExceeded event is generated; it can be used to trigger a number of
actions, but not the KillJob action.

Tracking jobs
The agent uses the JES/SMF exits to track the status changes for all the jobs
submitted through it.

Job states

The status events related to the jobs submitted via the agent for z/OS are generally
issued by JES and SMF and intercepted by the agent for z/OS. The agent then
forwards them to dynamic workload broker in an XML message. The job states are
reported on the Dynamic Workload Console and on the conman command line.

The following table summarizes the states a job undergoes, from submission to
completion, and maps the corresponding status names as they are reported by
JES/SMF, the agent for z/OS, and on the user interfaces.

86 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Table 20. Job events and statuses as mapped by the involved components

Event description

Agent
internal

event

Status name as passed by
the agent for z/OS to

dynamic workload
broker in XML

Status name as
displayed by the

Dynamic Workload
Console and conman Other details

The agent has found
an error in the JCL
included in the job

and stops processing
it.

IJ0 - FAIL This event is generated
by the agent for z/OS
when dynamic
workload broker
submits the job.

Job JCL. A job has
been submitted.

The job has been
submitted by

dynamic workload
broker and the JCL
has been placed in

the JES internal
reader by the agent

for z/OS. The job has
not yet been

submitted by JES, but
the IDs assigned to
the job by dynamic

workload broker and
by JES have been
mapped together.

KJ1 INFO BOUND This event is generated
by the agent for z/OS
after copying the JCL in
the JES internal reader.

Reader event: a job
has entered the JES

system.

A1 SUBMITTED WAIT This event is generated
by JES on the system
hosting the agent for
z/OS and sent to
dynamic workload
broker by the agent for
z/OS.

Job-start event: a job
has started to

execute.

A2 EXECUTING EXEC This event is generated
by SMF on the system
where the job is
submitted and sent to
dynamic workload
broker by the agent for
z/OS.

Step-end event: a job
step has finished

executing.

A3S EXECUTING EXEC The event is generated
on the system where the
job is submitted but is
discarded unless there is
a step ABEND.

Job-end event: a job
has finished
executing.

A3J SUCCEEDED
EXECUTION or FAILED

EXECUTION

SUCC or ABEND This event is generated
by SMF on the system
where the job is
submitted and sent to
dynamic workload
broker by the agent for
z/OS.

Chapter 3. Using the agent for z/OS 87

Table 20. Job events and statuses as mapped by the involved components (continued)

Event description

Agent
internal

event

Status name as passed by
the agent for z/OS to

dynamic workload
broker in XML

Status name as
displayed by the

Dynamic Workload
Console and conman Other details

Job-termination
event: a job has been

added to the JES
output queues.

A3P SUCCEEDED
EXECUTION or FAILED

EXECUTION

SUCC or ABEND This event is generated
by JES on the system
where the job is
submitted and sent to
dynamic workload
broker by the agent for
z/OS.

Job Print end A4 - - Optional event that
depends on the JCL
content.

The event is recorded in
the event data set
(EELEVDS) but is not
forwarded to dynamic
workload broker.

Job is purged A5 - - Optional event that
depends on the JCL
content.

The event is recorded in
the event data set
(EELEVDS) but is not
forwarded to dynamic
workload broker.

JCL errors

The agent parses the JCL sent by dynamic workload broker before it submits it to
JES. If it finds a syntax error in the JCL, it stops the submission process and
records the error message in the job log.

Job error codes

Return codes other than zero after a job is submitted are to be considered errors.
The return code is sent back to dynamic workload broker by the agent for z/OS
via HTTP in an XML POST together with the job ID and name. The z/OS error
code is mapped to a numeric code which is displayed in conman or in the
Dynamic Workload Console. The following table lists the error codes that can be
returned after a job is submitted and their mapping on z/OS and on Tivoli
Workload Scheduler.

Table 21. Error codes returned after a job is submitted.

Return code mapped on
Tivoli Workload Scheduler Error description

Displayed as job extended
property on conman or the

Dynamic Workload Console

1nnnn (nnnn is xxx converted
to decimal digits)

System abend error codes in
hexadecimal notation.

Sxxx

2nnnn (nnnn is xxx converted
to decimal digits)

User abend error codes in
hexadecimal notation.

Uxxx

88 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Table 21. Error codes returned after a job is submitted. (continued)

Return code mapped on
Tivoli Workload Scheduler Error description

Displayed as job extended
property on conman or the

Dynamic Workload Console

30007 A JCL error occurred
immediately; that is, the
error was detected before the
job began. This code is also
possible when both the
job-start event (type A2) and
the job-end event (type A3J)
are missing.

JCLI

30020 A failure occurred when the
agent attempted to submit a
job. The operation should be
marked as ended-in-error.

OSUB

30021 A failure occurred when the
agent attempted to retrieve
the JCL for a job.

OSUF

30026 The job was canceled by the
operator or by a TSO user
before execution. This code is
also possible if the
job-termination event (type
A3P) is missing.

CAN

30027 The completion code is
unknown. The job has
ended, but no completion
code is available. This code
is also possible if the job-end
event (type A3J) is missing.

CCUN

30029 A JCL error was recognized
after the job began to
execute, or a JCL error was
recognized after syntax
checking in the internal
reader.

JCL

90000 User-defined error codes in
hexadecimal notation.

xxxx

The event data sets

The agent uses the EELHTDS and EELEVDS event data sets which contain the
records that describe the events created by its job tracking functions. An
event-writer task writes and reads records to and from these data sets.

EELHTDS records the events originated by dynamic workload broker and related
to the submission of workload.

EELEVDS records the events originated by JES and SMF that are related to job
execution and that are to be sent back to dynamic workload broker .

Another data set named EELHTREF is used as a service data set to briefly store
the jobs sent within the submission requests coming from Tivoli Workload

Chapter 3. Using the agent for z/OS 89

Scheduler. If the jobs call for the retrieval of a JCL stored in the z/OS system, or
require variable substitution, these actions are performed here.

Because the event data sets provide a record of each event, events will not be lost
if the agent or an event processing component must be restarted. The submit
checkpointing process ensures that submit requests are synchronized with dynamic
workload broker, thereby preventing lost requests caused by communication
failures.

Important: The data sets are formatted the first time they are used. If for some
reason you format one of the data sets again, this results in the loss of all the
events queued on all data sets.

Controlling how the event writer records job completion
codes for specific jobs

On z/OS 1.13 and later, you can specify the JOBRC parameter in the JOB card
statements of specific jobs to predefine how their completion codes are recorded in
the EELEVDS event data set.

For all the jobs submitted to JES by the agent for z/OS, the RETCODE keyword of
the EWTROPTS initialization statement defines which completion code the event
writer records in the EELEVDS event data set for the job-end (A3J) event record,
choosing from the codes returned by the job steps. The default choice for
RETCODE is to set the job completion code to the return code of the last step;
alternately, you can set it to choose the highest return code of any step.

For particular jobs of your choice, you can override the setting of RETCODE by
specifying the JOBRC parameter in the JOB statement of the JCL. Typically, you
use JOBRC to reverse for a specific job the setting defined in EWTROPTS
RETCODE, which applies generally to all the workload submitted to JES by the
agent for z/OS.

JOBRC

��
MAXRC

JOBRC (LASTRC) ��

Parameters

MAXRC
The job completion code is set to the highest return code of any step in the job,
or if the completion of the job fails because of an ABEND, the job completion
code is set to the last ABEND code. This is the default parameter.

LASTRC
The job completion code is set to the return code or ABEND code of the last
step that is executed in the job.

Example

The EWTROPTS initialization statement of your agent for z/OS is set with
RETCODE=HIGHEST, whereby for all jobs submitted to JES by the agent, the job
completion code returned by the event writer is the highest return code of all the
performed steps.

90 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

For the ACCT1254JCL multistep job, however, you want the event writer to pick
the return code of the last step completed or ABENDED. You therefore write
JOBRC=LASTRC in the JOB statement of ACCT1254JCL.

Viewing job logs
Viewing the logs of jobs submitted through the agent for z/OS.

You can view the logs of jobs submitted through the agent for z/OS on the
Dynamic Workload Console or on the conman command line.

The procedure to do this is standard to all Tivoli Workload Scheduler jobs:
v On the Dynamic Workload Console click System Status and Health →Workload

Monitoring →Monitor Jobs and proceed from there to the point of clicking the
Job Log... button on a selected job instance.

v From the Tivoli Workload Scheduler command line run conman showjobs.

As you follow either of these procedures, the logs are retrieved from the z/OS
system and displayed. The logs are available only for jobs that have completed.

The logs are available for your viewing until they are purged by JES. After that
time they are no longer available.

Using system commands to control the agent
You can use z/OS system commands to start, stop, cancel, or modify the agent for
z/OS.

Use the following operator commands to control the agent:

S START

P STOP

C CANCEL

F MODIFY

You can enter these commands from a Multiple Console Support (MCS) console or
from a program such as the Spool Display and Search Facility (SDSF). In both
cases, the terminal or console operator must have the required authority to enter
operator commands.

Starting the agent

To start the agent for z/OS, enter the following z/OS operator command:
/S procname

where procname is the agent for z/OS JCL or started task procedure name.

If the agent is to run as a batch job, do not start it with an operator command.
Instead, submit a batch job with the same name as the agent for z/OS subsystem.
JES starts this job in the same manner as any ordinary job.

Because the agent for z/OS uses JES exits, among other things, to track the
progress of z/OS jobs, it does not start before JES is active.

Chapter 3. Using the agent for z/OS 91

Stopping the agent

To stop the agent for z/OS, enter the following z/OS operator command:
/P procname

where procname is the agent for z/OS JCL procedure name.

Cancelling the agent

If the agent for z/OS is still active 5 minutes after you enter the STOP operator
command, you must cancel it.

To cancel the agent for z/OS, enter the following z/OS operator command:
/C procname

where procname is the agent for z/OS JCL procedure name.

If the STOP command is ineffective and you have no earlier documentation of the
problem, cancel the agent adding the DUMP option so that the problem can be
identified. Enter:
/C procname,DUMP

This causes the agent for z/OS to end with a dump on the SYSMDUMP file (if the
ddname is in the started-task JCL).

Modifying the agent

Use the MODIFY command to start or stop one of the following agent for z/OS
subtasks:
v Data router
v Event writer
v Submit

and to list the status of the subtasks.

The syntax of the MODIFY command is:
/F procname,modifyoption

where:
v procname is the agent for z/OS JCL procedure name.
v modifyoption can be:

STATUS, SUBTASK
Lists all subtasks with their statuses. The status can be ACTIVE or
INACTIVE.

S=subtask
Starts the specified subtask.

P=subtask
Stops the specified subtask.

subtask is one of the following agent for z/OS subtasks:

DRT Data router

EWTR
Event writer

92 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

SUB Submit

Note that stopping the Event Writer puts the agent for z/OS in OFFLINE status
(shown as UNAVAILABLE by dynamic workload broker). Jobs submitted while the
agent is OFFLINE are shown in the READY status. Jobs that were submitted but
not yet run when the agent went OFFLINE are placed in the WAIT status and
moved to FAIL when the timeout configured for dynamic workload broker expires.

You can only start a task that has stopped earlier in the current session. If you
attempt to start a started subtask or stop a stopped subtask, error message
EELZ049W is issued, and no action is taken.

Switching domain managers
This section describes the mechanism that keeps the agent for z/OS connected to
your Tivoli Workload Scheduler network when you switch to a backup manager.

Understanding how the agent responds to a domain manager
switch

Whenever you change the domain manager (or master) associated with the
dynamic workload broker instance to which the agent for z/OS is connected, the
link between the agent and its dynamic workload broker counterpart is
interrupted. The HTTP client of the agent for z/OS is designed to search the next
available dynamic workload broker instance (that is, the one running in the newly
activated domain manager) and to establish a connection as soon as it
acknowledges the interruption.

Following its initialization, the agent for z/OS pings the dynamic workload broker
at regular intervals. Each ping is an HTTP post request where the agent sends its
identification and other attributes as a dynamic workload broker resource. After
the dynamic workload broker accepts and processes the HTTP request, it responds
by sending the list of currently defined backup dynamic workload broker
instances. This list is based on the list of Tivoli Workload Scheduler agents defined
as backup domain managers.

After the first successful ping, the agent for z/OS has the list of all the backup
dynamic workload broker instances available in the Tivoli Workload Scheduler
network. This list is refreshed at each following ping request. If the agent cannot
successfully ping the target dynamic workload broker when it is started, then no
list of backups is available at all and no switch to a backup dynamic workload
broker can occur.

When a network error occurs while the agent for z/OS is issuing a request to the
current dynamic workload broker, an offline event is generated that triggers the
mechanism by which the HTTP client located in the agent for z/OS pings the next
dynamic workload broker present in the list.
v If this dynamic workload broker instance is available, and a connection is

established, it becomes the new target dynamic workload broker that the agent
for z/OS interacts with. The new dynamic workload broker also provides an
updated list of backup dynamic workload broker instances.

v If the instance is unavailable, the HTTP client pings the next instance in the list,
and so on. After trying the last instance without success, it starts over from the
first. This process goes on until one of the dynamic workload brokers is pinged
successfully.

Chapter 3. Using the agent for z/OS 93

Stopping and restarting the agent after the primary dynamic
workload broker has changed

From the first time the connection with the dynamic workload broker is
established, the list of backup instances is stored in the agent memory for the
duration of the agent runtime. It is lost when you stop the agent. When you stop
and restart the agent, the agent pings the original dynamic workload broker
instance specified in its configuration parameters. If this instance is unavailable
because you have operated a switch or because it has gone down in the meantime,
the agent cannot connect with a backup instance since it has no list yet. So, if you
do stop and restart the agent after the primary dynamic workload broker has
changed, remember to update the agent configuration with the TDWBHOSTNAME and
TDWBPORT values of the new primary dynamic workload broker. After connecting
with the new dynamic workload broker, the agent will be sent the list again.

94 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Chapter 4. Troubleshooting and reference

This chapter documents potential problems and reference information.

Understanding resynchronization messages
This section describes the informational messages issued by the agent for z/OS as
it synchronizes job submission again with dynamic workload broker following a
restart.

Resynchronization overview

The first task the agent for z/OS is called to attempt when it restarts after a
planned or involuntary stop, is to synchronize correctly with dynamic workload
broker so that there is no loss of information regarding the workload that was
being handled by the agent at the time of arrest.

As described in “Tracking jobs” on page 86, the information about the workload
assigned to the agent is in term of events that record the work yet to be submitted
and the outcome of the already processed work. During normal processing, the
agent uses three event data sets to handle these events. The same data sets are also
used for recovery purposes after a restart. They are (as known by their DD name
within the agent for z/OS started task):

EELEVDS
Stores the events that track the complete life of a submitted job
(submission, execution, outcome).

After a stop/restart, the agent searches this data set for the latest emitted
events to send them to dynamic workload broker again.

EELHTREF
Stores the job submission requests received from dynamic workload broker.
Contains information in terms of type of submission (by reference or by
definition), the JCL or its location, the variable table when applicable. As
soon as a request stored in EELHTREF has been thoroughly processed (the
job has been queued to the submit task), it is flagged as completed.

After a stop/restart, the agent searches this data set for incomplete
requests and processes them again.

EELHTDS
Stores the JCLs queued to the submit task.

After a stop/restart, the agent searches this data set for queued but not yet
submitted JCLs in order to queue them again and complete their
processing.

The resynchronization messages

After a stop/restart, the agent issues a number of information messages that
describe the actions it is taking to resynchronize. While no user response is
requested, they are documented here to help you follow the resynchronization
process.

© Copyright IBM Corp. 2011, 2012 95

EELHT28I
EELHTDS REPROCESSING CAUSED RESUBMISSION OF FOLLOWING EVENT:
SSEQ: SEQ RECORD: REC CYCLE: CYC JOBALIAS:
JOBALIA1
JOBALIA2
Explanation: While reprocessing the EELHTDS data set
(recovery data set for pending submissions)after a restart, the agent
found in pending status the job identified by the alias indicated by
JOBALIA1 and JOBALIA2.
The EELHTDS record where the job was found is identified by
the REC record number and the CYC write cycle.
System action: The agent sends the job to the submit task again.

EELHT36I
INFORMATION ABOUT RESTART PROCESSING OF EELHTDS DATA SET FOLLOWS:
HTDS NEXT TO WRITE : REC INREC CYC INCYC
HTDS RESEND START POSITION: REC STREC CYC STCYC
HTDS RESEND STOP POSITION : REC CUREC CYC CUCYC
HTDS LAST SUBMIT DONE : REC LSREC CYC LSCYC SSEQ: LSSS
Explanation: At start up the agent reprocesses the EELHTDS
data set (recovery data set for pending submissions) to find the
jobs that need to be submitted again
because their submission was left pending.
Before the jobs are processed again, the following information is provided:
• The EELHTDS position where the next record will be written, identified

by record number INREC and write cycle INCYC.

• The EELHTDS range that will be analyzed, identified by:
• start position: record number STREC, write cycle STCYC
• end position: record number CUREC, write cycle CUCYC.

• The last submission made by the agent before the restart,
identified by sequence number LSSS and the related record in
EELHTDS having record number LSREC and write cycle LSCYC.

System action: Processing continues.

EELHT37I
INFORMATION ABOUT RESTART PROCESSING OF EELHTREF DATA SET FOLLOWS:
HTREF NEXT TO WRITE : REC INREC CYC INCYC
HTREF START POSITION : REC STREC CYC STCYC
HTREF LAST POSITION : REC LAREC CYC LACYC
HTDS LAST SUBMIT STORED: REC HTREC CYC HTCYC SSEQ: HTSS
Explanation: At start up the agent reprocesses the EELHTREF
data set (recovery data set for pending requests) to find the
jobs that need to be processed again as they were left pending.
Before the jobs are processed again, the following information is provided:
• The EELHTREF position where the next record will be written, identified

by record number INREC and write cycle INCYC.

• The EELHTREF range that will be analyzed, identified by:
• start position: record number STREC, write cycle STCYC
• end position: record number LAREC, write cycle LACYC.

• The last submission recorded in EELHTDS by the agent before the restart,
identified by sequence number HTSS and the related record in
EELHTDS having record number HTREC and write cycle HTCYC.

System action: Processing continues.

EELHT38I
EELHTREF REPROCESSING RECOVERED FOLLOWING EVENT:
JOBALIA1
JOBALIA2
Explanation: At start up the agent reprocesses the EELHTREF
data set (recovery data set for pending requests) to find the
jobs that need to be submitted again as they were left pending.
This message is issued for each reprocessed job identified by
the alias indicated by JOBALIA1 and JOBALIA2.
System action: Processing continues.

96 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

EELHT42I
THE HTTP SERVER FINISHED THE SYNCHRONIZATION WITH THE SUBMIT TASK.
NUM SUBMISSION EVENTS HAVE BEEN REPROCESSED.
Explanation: At start up the agent reprocesses the EELHTDS
data set (recovery data set for pending submissions) to find the
jobs that need to be submitted again because their submission
was left pending. During the process, message EELHT28I is issued
for each resubmitted job. At the end of the process, message
EELHT42I is issued to communicate the total number of reprocessed
events NUM.
Note that it can happen that the number of issued EELHT28I messages
is lower than NUM. This occurs when incomplete events are found
(as reported by message EELHT35W) and therefore cannot be submitted.
System action: None.

EELHT44I
THE HTTP SERVER STARTED THE EELHTREF DATA SET PROCESSING.
Explanation: At start up the agent checks the EELHTREF
data set (recovery data set for pending requests) to find any
pending job submissions that need to be processed.
System action: The agent processes the EELHTREF data set.

EELHT45I
THE HTTP SERVER ENDED THE EELHTREF DATA SET PROCESSING.
NUM SUBMISSION EVENTS HAVE BEEN REPROCESSED.
Explanation: At start up the agent checks the EELHTREF
data set (recovery data set for pending requests) to find any
pending job submissions that need to be processed.
System action: None.

Component versions must be aligned for the full current functionality
To be able to fully exploit the latest features of the agent for z/OS, make sure that
the versions of all components are aligned.

To be able to use the complete functionality currently available in the agent for
z/OS, the versions of the agent and of the Tivoli dynamic workload broker to
which it is attached (be it on a dynamic domain manager or a master domain
manager) must be concurrent.

Specifically, if you connect the agent for z/OS version 8.6.0.2 with a dynamic
domain manager or a master domain manager version 8.6 or 8.6.0.1, you cannot
define jobs by reference or use variable substitution in the JCLs.

If you do, upon submission the jobs will terminate in error and in some cases will
hang indefinitely without issuing an error code.

Saturation of DB2 transaction log halts processing of jobs
Processing of agent for z/OS jobs terminates when the DB2 transaction log fills up.

If the DB2 transaction log becomes full while a job is running, processing of the job
is interrupted and the connection between the agent and the dynamic workload
broker is stopped. Any agent for z/OS jobs that are yet to run hang idle and, in
the particular case that the submitted plan contains only agent for z/OS jobs, it
stops altogether.

Look for the following messages to be sure that a saturated DB2 transaction log is
the problem:

Chapter 4. Troubleshooting and reference 97

In the EELMLOG on z/OS:
EELHT15E THE HTTP CLIENT FAILED TO PROCESS A REQUEST FOR BROKER
EELHT43I HTTP RESPONSE MESSAGE WITH CODE RDBMS_TRANSPORT_PROBLEM

On Tivoli Workload Scheduler

1. From BATCHMAN (occurs on the running job when the transaction log
becomes full):
job_name has failed with the error: An error occurred reading the
job from the job table

job_name has failed with the error: AWKJDB801E An internal error has
been found while accessing the database. The internal error message is:
"Not enough storage is available in the application heap to process"

AWSBHT032I Workstation broker_workstation_name is now inactive,
no jobs will be scheduled.

2. From MAILMAN (reporting that the agent and the dynamic workload
broker are unlinking):
AWSBCV082I Workstation broker_workstation_name, message: AWSDEB014I
Connection timed out
AWSBCV027I Unlinking from broker_workstation_name

3. From BATCHMAN (after dynamic workload broker has unlinked and
job submission to the agent has stopped):
AWSBDY103I Received command MY:UNLINK for run number 42 for
workstation broker_workstation_name from workstation
workstation_name

Workstation broker_workstation_name State is being changed: UNSETTING:
LINKED=TCP AWSBHT032I Workstation broker_workstation_name is now
inactive, no jobs will be scheduled.

4. In the SystemOut.log file:
AWSJDB801E An internal error has been found while accessing the
database.The internal error message is: "Not enough storage is
available in the application heap to process the statement..
SQLCODE=-954, SQLSTATE=57011, DRIVER=3.61.75".

In the db2diag.log file of the DB2 server:
MESSAGE : ZRC=0x85100009=-2062548983=SQLP_NOSPACE

"Log File has reached its saturation point"
DIA8309C Log file was full.

RETCODE : ZRC=0x8B0F0001=-1961951231=SQLO_NOMEM_APPH
"No memory available in ’Application Heap’"
DIA8301C No memory available in the application heap.

The saturation of the DB2 server transaction log is due to the fact that the log size
is insufficient because of its default settings. To prevent it from becoming saturated
in the future, change the DB2 configuration settings to at least the following
values:
Log file size (4KB) (LOGFILSIZ) = 10000
Number of primary log files (LOGPRIMARY) = 80
Number of secondary log files (LOGSECOND) = 40

See the DB2 documentation for further information.

Data areas
Provides graphic representation of the data areas used by the agent for z/OS.

98 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

The next sections provide graphic representation of the data areas used by the
agent for z/OS.

Data areas appear alphabetically, by name of the mapping macro. The data areas in
this publication are not intended to be used as a customer user interface, but
knowing their layout can be useful for debugging The areas are product sensitive
and can be changed at any time during the current release without documentation
updates to this publication.

The data area map

Each data area is described field by field. These field descriptions are taken directly
from the system code.

For each field in the data area, the table provides the following information:

Offsets
The address of the field, shown in both decimal and hexadecimal
(hexadecimal address in parentheses), relative to the beginning of the data
area.

Type The kind of program data defined for this field, such as CHARACTER,
SIGNED, UNSIGNED.

Len Size of the field in bytes (decimal).

Name The name of the field, bit, or mask.

Bit or mask names are preceded by a description of the bit position and
values, as follows:
1... Refers to bit 0.
.... ..11 Refers to bits 6 and 7.
...1 Refers to bit 3.
11.. 1111 Refers to bits 0, 1, 4, 5, 6, and 7.

Description
A description of the purpose or meaning of the field, bit, or mask.

The cross-reference table

For each data area with more than 40 fields, a cross-reference table shows the
following:
v Hex Offset: The hexadecimal offset of the field into the data area (for bits, the

hexadecimal offset of the field containing the bit).
v Hex Value: Hex values are shown only for bits. The Hex value shown implies

the position of the bit in the field containing the bit.

DQE - Data queue element

Name : DCLDQE
Function:

This segment maps queue elements for several Tivoli Workload Scheduler
queues. The mapping of the DQEDATA field varies depending on the
value of DQETYPE. If data buffers are used (indicated by
dqebptr ^= 0), they are always allocated in subpool 2 by queue adders,
and are freed when no longer needed by queue servers.

Chapter 4. Troubleshooting and reference 99

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 152 dqe data router q
element

0 (0) CHARACTER 4 dqedesc block descriptor,
DQE

4 (4) CHARACTER 2 dqever version number,
01

6 (6) BITSTRING 2 * reserved flags

8 (8) CHARACTER 3 dqetype data type

11 (B) BITSTRING 1 dqeflags flags

1... dqeflres reset seqds

.1.. * free

..1. dqenckpt do not chkpt this
submit

...1 * free

.... 1... * free

.... .1.. * free

.... ..1. * free

.... ...1 * free on=used

12 (C) ADDRESS 4 * free

16 (10) ADDRESS 4 dqebptr external data
buffer ptr

20 (14) SIGNED 4 dqeblen size of external
buffer

24 (18) CHARACTER 8 dqedest destination id

32 (20) SIGNED 4 dqermax max # of recs per
cyc in eds
Note: the
EELHTDS record
number and write
cycle are stored in
EELEVDS header

36 (24) SIGNED 4 dqeevtr used in SUTOP to
pass htds rec

40 (28) SIGNED 4 dqeevtc used in SUTOP to
pass htds cyc

44 (2C) CHARACTER 100 dqedata local data buffer

144 (90) SIGNED 4 dqeadder Additional recs w
buffer

148 (94) BITSTRING 1 * free

149 (95) CHARACTER 1 * reserved

150 (96) UNSIGNED 2 dqeevts used in SUTOP to
pass sseq

152 (98) CHARACTER dqeend end of dqe

100 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 100 dqeevt event data buffer
mapping

0 (0) SIGNED 2 dqennum tws node number

2 (2) SIGNED 2 dqerdrn event reader
number in node

4 (4) CHARACTER 8 dqepos event ds position

4 (4) SIGNED 4 dqecyc write cycle
number

8 (8) SIGNED 4 dqerec record number in
cycle

12 (C) CHARACTER 8 * free

20 (14) CHARACTER 80 dqeexr exit record, see
dclexr

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 6 dqeclj a DASD tracker
needs

0 (0) CHARACTER 5 dqecljob clnjob prefix

5 (5) CHARACTER 1 dqedsclas datastore class if
JCC

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 20 dqerfw rfw data

0 (0) CHARACTER 8 dqerfwdest destination name

8 (8) CHARACTER 8 dqeedp edp information

8 (8) SIGNED 4 dqeedpwcy write cycle
number

12 (C) SIGNED 4 dqeedprec record # of last
record

16 (10) SIGNED 4 dqerfwnnum node number

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 48 dqerel release job
mapping

0 (0) CHARACTER 8 dqerjbnm job name

8 (8) CHARACTER 8 dqerjbid job number

16 (10) CHARACTER 8 dqercnje current nje node

24 (18) CHARACTER 8 dqeronje origin nje node

32 (20) UNSIGNED 2 dqeaseq submit sequence #

34 (22) CHARACTER 4 dqeawsid work station id

Chapter 4. Troubleshooting and reference 101

Offsets

38 (26) UNSIGNED 2 * reserved

40 (28) SIGNED 4 dqerojid original job
number

44 (2C) CHARACTER 4 dqeassnam controller
subsystem name

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 100 dqesub submit data
mapping

0 (0) CHARACTER 46 * reserved - do not
use

46 (2E) CHARACTER 50 dqesubesp DQESUBESP
MUST BE
MAXIMUM 50
CHARS TO BE
FIT IN ESP DATA

46 (2E) BITSTRING 1 dqesubFLA DQE submit flags

1... dqeERRO dqe in error

.1.. dqeUSED dqe used

..11 1111 * free

47 (2F) CHARACTER 5 * free

52 (34) CHARACTER 8 dqetso Tso user id or
blank

60 (3C) CHARACTER 4 dqewsid work station id

64 (40) CHARACTER 4 dqessnam controller
subsystem name

68 (44) CHARACTER 8 dqejobn job/STC name

76 (4C) CHARACTER 8 dqejid job# of last
subbed job

84 (54) CHARACTER 1 dqeSubType J, C, D, or O

85 (55) CHARACTER 1 * free

86 (56) UNSIGNED 2 dqesseq submit sseq (J1)

88 (58) SIGNED 4 dqerecsub record in HTDS

92 (5C) SIGNED 4 dqecycsub cycle in HTDS

96 (60) CHARACTER 4 * reserved - do not
use

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 28 dqersseq sseq# sync request
(J0)

0 (0) CHARACTER 4 dqerwsid work station id

4 (4) CHARACTER 8 dqecreat request evt
creation time

102 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

4 (4) SIGNED 4 dqedate date format
(00yydddf)

8 (8) SIGNED 4 dqetime time format
(secs*100)

12 (C) CHARACTER 4 dqerssnam controller
subsystem name

16 (10) UNSIGNED 1 * free

17 (11) BITSTRING 1 dqerflg1 flagbyte byte 1

1... dqerask req for curr evds
sseq#

.1.. dqercold cold start the ws

..1. dqerdlte remove the ws
from evds

...1 dqerset req to set evds to
wseq#

.... 1... dqeinit Initialization
event

.... .111 * reserved

18 (12) UNSIGNED 2 dqewseq Actual WS submit
sseq (J0)

20 (14) CHARACTER 8 dqeJdest dqedest

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 18 dqecmini initialize CM for
oper

0 (0) CHARACTER 8 dqecmjob job/STC name

8 (8) SIGNED 4 dqecmocc occurrence
number

12 (C) SIGNED 4 dqecmopr operation number

16 (10) CHARACTER 2 dqecmrt TASK ID
requestor : EM =
Event Manager ;
AR = Automatic
Recovery ; GS =
General Service

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 100 dqerfp RODM request
for parms

0 (0) CHARACTER 8 dqerfpd requestor
destination

8 (8) CHARACTER 92 * reserved

Chapter 4. Troubleshooting and reference 103

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 100 dqersl RODM subsystem
lost

0 (0) CHARACTER 8 dqersldn requestor
destination

8 (8) CHARACTER 4 dqerslssn subsystem name

12 (C) CHARACTER 88 * reserved

Dynamic Critical Path:
dqedata containing data sent to critical path handler
when an MCP action is performed on a critical predecessor
and the dataspace has to be updated consequently

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 100 dqecrt Crit Path recalc

0 (0) CHARACTER 4 dqews workstation name

4 (4) CHARACTER 1 dqestatus operation status

5 (5) CHARACTER 1 dqeexstat oper extended
status

6 (6) BITSTRING 1 dqeflags2 flags

1... dqenoped noped operation

.1.. dqemanheld oper manually
held

..1. dqemheldch first dqe of a seq

...1 dqenopch last dqe of a seq

.... 1... dqetmdch time dep chg

.... .1.. dqetmdep time dep

.... ..1. dqeopiach oper ia changed

.... ...1 * free

7 (7) BITSTRING 1 dqefla8gs3 free

1... dqeisfirst first dqe of a seq

.1.. dqeisfirst add job to
dataspace

..1. dqeislast last dqe of a seq

...1 1111 * free

8 (8) CHARACTER 8 dqejobname job name

16 (10) SIGNED 4 dqejobenix job table entry
index

20 (14) CHARACTER 1 dqejobprty job priority

104 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

21 (15) CHARACTER 1 dqereqtype MCP request type
S - status change
A - Add
operation/dep D -
Delete (oper, dep)
M - Modify P -
Critical indicat

22 (16) CHARACTER 2 * free

24 (18) SIGNED 4 dqeindpred pred j table entry
ix

28 (1C) CHARACTER 1 dqeoldstat operation old
status

29 (1D) CHARACTER 1 dqecritind critical indicator

30 (1E) CHARACTER 10 dqeinparr input arrival time

30 (1E) CHARACTER 6 dqeinparrd date

36 (24) CHARACTER 4 dqeinparrt time

40 (28) CHARACTER 2 * free

42 (2A) CHARACTER 10 dqedeadl deadline

42 (2A) CHARACTER 6 dqedeadld date

48 (30) CHARACTER 4 dqedeadlt time

52 (34) CHARACTER 2 * free

54 (36) CHARACTER 10 dqeastart actual start time

54 (36) CHARACTER 6 dqeastartd date

60 (3C) SIGNED 4 dqeastartt time

64 (40) CHARACTER 2 * free

66 (42) CHARACTER 10 dqeaend actual end time

66 (42) CHARACTER 6 dqeaendd date

72 (48) SIGNED 4 dqeaendt time

76 (4C) SIGNED 4 dqeduration duration

80 (50) SIGNED 4 dqeactdur actual duration

84 (54) CHARACTER 4 dqeoprkey operation index

84 (54) UNSIGNED 3 dqeoccidx occ number

87 (57) UNSIGNED 1 dqeopridx oper number

88 (58) CHARACTER 4 dqeerrcode job error code

92 (5C) CHARACTER 4 dqeprekey pred oper index

92 (5C) UNSIGNED 3 dqepoccidx occ number

95 (5F) UNSIGNED 1 dqepopridx oper number

96 (60) CHARACTER 4 * free

External buffer for dqecrt
It contains WLM data: Policy and Service Class

Chapter 4. Troubleshooting and reference 105

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 40 dqecrtBUF DQE Type CRT

0 (0) CHARACTER 1 dqewlmpol WLM policy
$CRFA

1 (1) CHARACTER 5 * free

6 (6) CHARACTER 8 dqewlmclass WLM Service
Class

14 (E) CHARACTER 10 dqelstart latest start

14 (E) CHARACTER 6 dqelstartd latest start date

20 (14) SIGNED 4 dqelstartt ltst start time

24 (18) CHARACTER 16 dqeopIA operation IA

24 (18) CHARACTER 6 dqeopIAD date

30 (1E) CHARACTER 4 dqeopIAT time

34 (22) CHARACTER 6 *

Dynamic Critical Path:
dqedata containing data sent to critical path handler
when a status change (EM) occurs or when the job is late or
long running (WA)

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 100 dqecr1 Crit Path recalc

0 (0) CHARACTER 1 dqestatu1 operation status

1 (1) CHARACTER 1 dqeexstat1 oper extended
status

2 (2) CHARACTER 2 * free

4 (4) SIGNED 4 dqejobeni1 job table entry
index

8 (8) CHARACTER 1 dqereqtyp1 MCP request type
S - status change
L - Late R - Long
Running

9 (9) CHARACTER 1 dqeoldsta1 operation old
status

10 (A) BITSTRING 1 dqeflags4 flags

1... dqeurgch1 doa urgent queue
chng

.1.. dqedoaur1 doa urgent queue
flag

..1. dqewlmpro1 WLM promotion
flag

...1 1111 * free

11 (B) CHARACTER 3 * free

106 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

14 (E) CHARACTER 10 dqeastar1 actual start time

14 (E) CHARACTER 6 dqeastar1d date

20 (14) SIGNED 4 dqeastar1t time

24 (18) CHARACTER 2 * free

26 (1A) CHARACTER 10 dqeaen1 actual end time

26 (1A) CHARACTER 6 dqeaen1d date

32 (20) SIGNED 4 dqeaen1t time

36 (24) SIGNED 4 dqeactdu1 actual duration

40 (28) CHARACTER 4 dqeoprke1 operation index

40 (28) UNSIGNED 3 dqeoccid1 occ number

43 (2B) UNSIGNED 1 dqeoprid1 oper number

44 (2C) CHARACTER 4 dqeerrcod1 job error code

48 (30) CHARACTER 52 * free

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 100 dqearc DQE Type TWS Data
Sto D90C

0 (0) CHARACTER 4 dqearctyp Service Required:
D90C LOG = get
MVS™ JobLog D90C
SLO = get Struct. Log
D90A OPI = ask
Oper_info D90A
SDEL= start delete
D90A of old entries
D90A

common part

4 (4) CHARACTER 24 dqearcJRkey Job Log retrieval key
D90C

4 (4) CHARACTER 8 dqearcJobId Job Log Id D90C

12 (C) CHARACTER 8 dqearcJobNa Job Log Name D90C

20 (14) SIGNED 4 dqearcRdrD Job Start Rdr Date
D90C

24 (18) SIGNED 4 dqearcRdrT Job Start Rdr Time
D90C

28 (1C) CHARACTER 8 dqearcdest output DEST D90C

36 (24) CHARACTER 16 dqearcADID Application Name
D90C

52 (34) CHARACTER 10 dqearcIA IA Date and Time
D90C

52 (34) CHARACTER 6 dqearcIADate IA Date D90C

58 (3A) CHARACTER 4 dqearcIATime IA Time D90C

62 (3E) CHARACTER 9 dqearcOPkey Operation VSAM key
D90C

Chapter 4. Troubleshooting and reference 107

Offsets

62 (3E) CHARACTER 8 dqearcOCC OCC token D90C

70 (46) UNSIGNED 1 dqearcOPR Opr num D54A

71 (47) CHARACTER 2 dqearccaller EM=Event manager
D90A WA=WorkStat.
Analyzer D90A
AR=Automatic
Recover D90A
GS=General Server
D90A

OPI type only

73 (49) CHARACTER 1 dqearcfla1 flags (Ask Oper_Info)

1... ARC_PSUpost 1 = post PSU D90A

.1.. ARC_CleanUp 1 = Stand Alone
CLNUP

..1. ARC_SL 1 = StepList required

...1 ARC_DS 1 = DSList required

.... 1... ARC_ExpJCL 1 = use expanded
JCL

.... .1.. ARC_BestStep 1 = start from BSTEP

.... ..1. ARC_noask 1 = cp14nostr ON

.... ...1 ARC_AskSimGDG 1 = GDG sim
required

74 (4A) CHARACTER 8 * free

82 (52) CHARACTER 8 dqearcUSER original job userid

Clean Up only

90 (5A) CHARACTER 8 dqearcEXdest execution destination

AR restart only

98 (62) UNSIGNED 1 dqearcopiRet retry counter

99 (63) UNSIGNED 1 dqearcARste AR restart step 01A
(currently not used)

AR restart only
structure mapped into DQEARC buffer:

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 16 dqearcBUF DQE Type TWS
Data Sto

0 (0) CHARACTER 8 dqearcSTEPN Stepname (AR)

8 (8) CHARACTER 8 dqearcPSTEPN Proc Step Name
(AR)

Note: For the dqearc SDEL type the information are all contained in the buffer pointed by dqebptr: dqebptr-> CP16
record layout

108 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 100 dqePSU DQE Type TWS
Data Sto

0 (0) CHARACTER 4 dqePSUtyp Service Required:
APL = Apply
logic A CLN =
Stand Alone CLN
REM = resume
suspended DEL =
delete request

-- D90A - common part D90A ------------------------------------
------------------------D90A

4 (4) CHARACTER 45 dqePSUcommon D90A

4 (4) CHARACTER 2 dqePSUcaller FL=Fetch JobLog
D90A GS=General
Server D90A
EM=Event
manager D90A

6 (6) CHARACTER 8 dqePSUJobNa Job Name D90A

14 (E) CHARACTER 9 dqePSUOPkey Operation VSAM
key D90A

14 (E) CHARACTER 8 dqePSUOCC Occ token D90A

22 (16) UNSIGNED 1 dqePSUOPR Opr num D90A

23 (17) CHARACTER 16 dqePSUADID Application Name
D90A

39 (27) CHARACTER 10 dqePSUIA IA Date and Time
D90A

39 (27) CHARACTER 6 dqePSUIADate IA Date D90A

45 (2D) CHARACTER 4 dqePSUIATime IA Time D90A

-- D90A - GS only D90A -- ----------D90A

49 (31) CHARACTER 8 dqePSUuser TSO userid D90A

57 (39) CHARACTER 4 dqePSUtoken GS request token
D90A

------------------------------------ D90A - FL for AR only D90A ----------------- --------D90A

61 (3D) CHARACTER 8 dqeStepname AR restart step
D90A

69 (45) CHARACTER 8 dqePStepName AR restart proc
step D90A

----------------------------- D90A - CLN type only -D90A ------------------- ---------------------------D90A

77 (4D) CHARACTER 8 dqePSUexdest execution DEST
D90A

-- D90A - APL type only -D90A --------------------- ---------D90A

85 (55) CHARACTER 1 dqePSUfla1 D90A

1... PSU_ExpJCL 1 = use expanded
JCL D90A

.1.. PSU_Suspend 1 = suspend DQE
D90A

Chapter 4. Troubleshooting and reference 109

Offsets

..1. PSU_Operinfo 1 = SL from
buffer D90A

...1 PSU_UserSys 1 = add usersys
DD

.... 1... PSU_SimGDG 1 = simulate GDG

.... .1.. PSU_Root 1 = GDG root list

.... ..1. PSU_BestStep 1 = start from
BSTEP

.... ...1 PSU_AskSimGDG 1 = req simulation

2 char(2), free 2 dqePSULen,

86 (56) UNSIGNED 2 PSU_SLlen SL length

88 (58) UNSIGNED 3 PSU_DSlen DL length

91 (5B) UNSIGNED 3 PSU_GDGlen Sim. GDG info

94 (5E) UNSIGNED 2 PSU_Rootlen Root len

96 (60) SIGNED 4 PSU_JCLlen JCL length D90A

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 80 dqeWLM sub WLM reset
request D63A

0 (0) CHARACTER 8 dqetsoW Tso user id or
blank D63A

8 (8) CHARACTER 8 dqejobnW job/STC name
D63A

16 (10) CHARACTER 8 dqeSVCnW WLM Hi perf
service class

24 (18) CHARACTER 4 dqewsidW work station id
D63A

28 (1C) CHARACTER 16 dqeadidW application ID
D63A

44 (2C) CHARACTER 10 dqeociaW occurrence input
arrival

44 (2C) CHARACTER 6 dqeociaD occurence IA date
D63A

50 (32) CHARACTER 4 dqeociaT occurence IA time
D63A

54 (36) SIGNED 2 dqeopnumW operation number
D63A

56 (38) CHARACTER 4 dqessnamW controller
subsystem name

60 (3C) UNSIGNED 2 * free

2 dqejidW char(8) , job of last subbed job 2 char(2) , reserved D63D

62 (3E) SIGNED 2 dqeasidW job asid D63A

2 dqetoken_fullW , operation token D63d 3 dqetoken_preW char(4), operation token prefix 3 dqetokenW unsigned
bin(32), operation token 2 dqeaccmpW ptr(31) , acc meth parms Q0A 2 dqenetidW char(8) , APPC netid (final dest) 2

dqenetLUW char(8) ; APPC netLU (final dest)

110 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

64 (40) SIGNED 4 dqeretcW WLM promot
request RC

68 (44) SIGNED 2 dqersncW WLM promot
request RSN

70 (46) CHARACTER 10 * reserved D63A

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 8 dqeTcpIp tcpip evt mapping

0 (0) ADDRESS 4 dqeSocketIdPtr

4 (4) CHARACTER 4 dqeSocketDomain

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 18 dqeConfFile Conf File
mapping

0 (0) CHARACTER 1 dqeRequestType

1 (1) CHARACTER 3 *

4 (4) CHARACTER 4 dqeRequestCRC

8 (8) CHARACTER 8 dqeCRCOwnerDest

16 (10) SIGNED 2 dqeDtbDestIndex

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 44 dqeHTTPaction HTTP Joblog
retrieval Kill
Query job status

0 (0) CHARACTER 8 dqeHTocctoken HTTP occurence
token

8 (8) CHARACTER 8 dqeHTsubtoken HTTP submission
token

16 (10) CHARACTER 8 dqeHTjobname HTTP job name

24 (18) CHARACTER 4 dqeHTwsname HTTP ws name

28 (1C) CHARACTER 4 dqeHTssname HTTP subsystem
name

32 (20) SIGNED 2 dqeHTopnum HTTP operation
number

34 (22) SIGNED 2 * reserved

36 (24) CHARACTER 8 dqeHTuser HTTP joblog req
user

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 100 dqeHTnotify HTTP notify

Chapter 4. Troubleshooting and reference 111

Offsets

0 (0) CHARACTER 56 dqeHNalias alias

56 (38) CHARACTER 8 dqeHNjobid job number

64 (40) CHARACTER 4 dqeHNerrc error code (stat E)

68 (44) CHARACTER 6 dqeHNstartd start date

74 (4A) CHARACTER 6 dqeHNendd end date

80 (50) SIGNED 4 dqeHNstartt start time

84 (54) SIGNED 4 dqeHNendt end time

88 (58) CHARACTER 8 dqeHNxdtoken XD99 key

96 (60) CHARACTER 1 dqeHNstatus status (S/C/E)

97 (61) CHARACTER 3 * free

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 100 dqeHTinfo HTTP bind
info/failed

0 (0) CHARACTER 56 dqeHIalias alias

56 (38) CHARACTER 8 dqeHIjobname matched jobname

64 (40) CHARACTER 10 dqeHIia matched ia

64 (40) CHARACTER 6 dqeHIiad ..IA date

70 (46) CHARACTER 4 dqeHIiat ..IA time

74 (4A) CHARACTER 1 dqeHItype I=info, F=failed

75 (4B) CHARACTER 1 * free

76 (4C) CHARACTER 8 dqeHIxdtoken XD99 key

84 (54) CHARACTER 4 dqeHIwsname matched ws name

88 (58) CHARACTER 12 * free

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 100 dqeHTsubscr HTTP subscribe

0 (0) CHARACTER 35 dqeHSrkeyz remote job key

0 (0) CHARACTER 16 dqeHSadid ..remote
adid/jsname
(D/Z)

16 (10) CHARACTER 16 dqeHSjsws ..remote jsws (D)

32 (20) CHARACTER 3 dqeHSopno ..remote opno (Z)

35 (23) CHARACTER 1 dqeHSflags flags

1... dqeHSzos ..ON: remote eng
type is Z

.111 1111 * ..free

36 (24) CHARACTER 2 * free

38 (26) CHARACTER 10 dqeHSia IA for match

38 (26) CHARACTER 6 dqeHSiad ..IA date

112 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

44 (2C) CHARACTER 4 dqeHSiat ..IA time

48 (30) CHARACTER 52 dqeHSalias data for alias

48 (30) CHARACTER 8 dqeHSocctoken ..occurence token

56 (38) CHARACTER 8 dqeHSsubtoken ..submission
token

64 (40) CHARACTER 8 dqeHSjobname ..job name

72 (48) CHARACTER 4 dqeHSwsname ..ws name

76 (4C) CHARACTER 4 dqeHSssname ..subsystem name

80 (50) SIGNED 2 dqeHSopnum ..operation
number

82 (52) CHARACTER 18 * free

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 40 dqeHSbuff DQE Type HTS

0 (0) CHARACTER 40 dqeHSrjobnm remote jobname

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 24 dqeJKJes

0 (0) CHARACTER 8 dqeJKJJobName

8 (8) CHARACTER 8 dqeJKJJobId

16 (10) SIGNED 4 dqeJKJRdrDate

20 (14) SIGNED 4 dqeJKJRdrTime

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 56 dqeJKBroker

0 (0) CHARACTER 56 dqeJKBJobId

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 8 dqeJAlias

0 (0) SIGNED 4 dqeJALength

4 (4) ADDRESS 4 dqeJAptr

Cross reference

Name Hex Offset Hex Value Level

ARC_AskSimGDG 49 01 3

ARC_BestStep 49 04 3

ARC_CleanUp 49 40 3

Chapter 4. Troubleshooting and reference 113

Name Hex Offset Hex Value Level

ARC_DS 49 10 3

ARC_ExpJCL 49 08 3

ARC_noask 49 02 3

ARC_PSUpost 49 80 3

ARC_SL 49 20 3

dqe 0 1

dqeactdur 50 2

dqeactdu1 24 2

dqeadder 90 2

dqeaddjob 7 40 3

dqeadidW 1C 2

dqeaend 42 2

dqeaendd 42 3

dqeaendt 48 3

dqeaen1 1A 2

dqeaen1d 1A 3

dqeaen1t 20 3

dqearc 0 1

dqearcADID 24 2

dqearcARste 63 2

dqearcBUF 0 1

dqearccaller 47 2

dqearcdest 1C 2

dqearcEXdest 5A 2

dqearcfla1 49 2

dqearcIA 34 2

dqearcIADate 34 3

dqearcIATime 3A 3

dqearcJobId 4 3

dqearcJobNa C 3

dqearcJRkey 4 2

dqearcOCC 3E 3

dqearcopiRet 62 2

dqearcOPkey 3E 2

dqearcOPR 46 3

dqearcPSTEPN 8 2

dqearcRdrD 14 3

dqearcRdrT 18 3

dqearcSTEPN 0 2

dqearctyp 0 2

dqearcUSER 52 2

114 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

dqeaseq 20 2

dqeasidW 3E 2

dqeassnam 2C 2

dqeastart 36 2

dqeastartd 36 3

dqeastartt 3C 3

dqeastar1 E 2

dqeastar1d E 3

dqeastar1t 14 3

dqeawsid 22 2

dqeblen 14 2

dqebptr 10 2

dqeclj 0 1

dqecljob 0 2

dqecmini 0 1

dqecmjob 0 2

dqecmocc 8 2

dqecmopr C 2

dqecmrt 10 2

dqeConfFile 0 1

dqeCRCOwnerDest 8 2

dqecreat 4 2

dqecritind 1D 2

dqecrt 0 1

dqecrtBUF 0 1

dqecr1 0 1

dqecyc 4 3

dqecycsub 5C 3

dqedata 2C 2

dqedate 4 3

dqedeadl 2A 2

dqedeadld 2A 3

dqedeadlt 30 3

dqedesc 0 2

dqedest 18 2

dqedoaur1 A 40 3

dqedsclas 5 2

dqeDtbDestIndex 10 2

dqeduration 4C 2

dqeedp 8 2

dqeedprec C 3

Chapter 4. Troubleshooting and reference 115

Name Hex Offset Hex Value Level

dqeedpwcy 8 3

dqeend 98 2

dqeerrcode 58 2

dqeerrcod1 2C 2

dqeERRO 2E 80 4

dqeevt 0 1

dqeevtc 28 2

dqeevtr 24 2

dqeevts 96 2

dqeexr 14 2

dqeexstat 5 2

dqeexstat1 1 2

dqeflags B 2

dqeflags2 6 2

dqeflags3 7 2

dqeflags4 A 2

dqeflres B 80 3

dqeHIalias 0 2

dqeHIia 40 2

dqeHIiad 40 3

dqeHIiat 46 3

dqeHIjobname 38 2

dqeHItype 4A 2

dqeHIwsname 54 2

dqeHIxdtoken 4C 2

dqeHNalias 0 2

dqeHNendd 4A 2

dqeHNendt 54 2

dqeHNerrc 40 2

dqeHNjobid 38 2

dqeHNstartd 44 2

dqeHNstartt 50 2

dqeHNstatus 60 2

dqeHNxdtoken 58 2

dqeHSadid 0 3

dqeHSalias 30 2

dqeHSbuff 0 1

dqeHSflags 23 2

dqeHSia 26 2

dqeHSiad 26 3

dqeHSiat 2C 3

116 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

dqeHSjobname 40 3

dqeHSjsws 10 3

dqeHSocctoken 30 3

dqeHSopno 20 3

dqeHSopnum 50 3

dqeHSrjobnm 0 2

dqeHSrkeyz 0 2

dqeHSssname 4C 3

dqeHSsubtoken 38 3

dqeHSwsname 48 3

dqeHSzos 23 80 3

dqeHTinfo 0 1

dqeHTjobname 10 2

dqeHTnotify 0 1

dqeHTocctoken 0 2

dqeHTopnum 20 2

dqeHTssname 1C 2

dqeHTsubscr 0 1

dqeHTsubtoken 8 2

dqeHTTPaction 0 1

dqeHTuser 24 2

dqeHTwsname 18 2

dqeindpred 18 2

dqeinit 11 08 3

dqeinparr 1E 2

dqeinparrd 1E 3

dqeinparrt 24 3

dqeisfirst 7 80 3

dqeislast 7 20 3

dqeJALength 0 2

dqeJAlias 0 1

dqeJAptr 4 2

dqeJdest 14 2

dqejid 4C 3

dqeJKBJobId 0 2

dqeJKBroker 0 1

dqeJKJes 0 1

dqeJKJJobId 8 2

dqeJKJJobName 0 2

dqeJKJRdrDate 10 2

dqeJKJRdrTime 14 2

Chapter 4. Troubleshooting and reference 117

Name Hex Offset Hex Value Level

dqejobenix 10 2

dqejobeni1 4 2

dqejobn 44 3

dqejobname 8 2

dqejobnW 8 2

dqejobprty 14 2

dqelstart E 2

dqelstartd E 3

dqelstartt 14 3

dqemanheld 6 40 3

dqemheldch 6 20 3

dqenckpt B 20 3

dqennum 0 2

dqenopch 6 10 3

dqenoped 6 80 3

dqeoccidx 54 3

dqeoccid1 28 3

dqeociaD 2C 3

dqeociaT 32 3

dqeociaW 2C 2

dqeoldstat 1C 2

dqeoldsta1 9 2

dqeopIA 18 2

dqeopiach 6 02 3

dqeopIAD 18 3

dqeopIAT 1E 3

dqeopnumW 36 2

dqeopridx 57 3

dqeoprid1 2B 3

dqeoprkey 54 2

dqeoprke1 28 2

dqepoccidx 5C 3

dqepopridx 5F 3

dqepos 4 2

dqeprekey 5C 2

dqePStepName 45 2

dqePSU 0 1

dqePSUADID 17 3

dqePSUcaller 4 3

dqePSUcommon 4 2

dqePSUexdest 4D 2

118 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

dqePSUfla1 55 2

dqePSUIA 27 3

dqePSUIADate 27 4

dqePSUIATime 2D 4

dqePSUJobNa 6 3

dqePSUOCC E 4

dqePSUOPkey E 3

dqePSUOPR 16 4

dqePSUtoken 39 2

dqePSUtyp 0 2

dqePSUuser 31 2

dqerask 11 80 3

dqercnje 10 2

dqercold 11 40 3

dqerdlte 11 20 3

dqerdrn 2 2

dqerec 8 3

dqerecsub 58 3

dqerel 0 1

dqereqtype 15 2

dqereqtyp1 8 2

dqeRequestCRC 4 2

dqeRequestType 0 2

dqeretcW 40 2

dqerflg1 11 2

dqerfp 0 1

dqerfpd 0 2

dqerfw 0 1

dqerfwdest 0 2

dqerfwnnum 10 2

dqerjbid 8 2

dqerjbnm 0 2

dqermax 20 2

dqerojid 28 2

dqeronje 18 2

dqerset 11 10 3

dqersl 0 1

dqersldn 0 2

dqerslssn 8 2

dqersncW 44 2

dqersseq 0 1

Chapter 4. Troubleshooting and reference 119

Name Hex Offset Hex Value Level

dqerssnam C 2

dqerwsid 0 2

dqeSocketDomain 4 2

dqeSocketIdPtr 0 2

dqesseq 56 3

dqessnam 40 3

dqessnamW 38 2

dqestatus 4 2

dqestatu1 0 2

dqeStepname 3D 2

dqesub 0 1

dqesubesp 2E 2

dqesubFLA 2E 3

dqeSubType 54 3

dqeSVCnW 10 2

dqeTcpIp 0 1

dqetime 8 3

dqetmdch 6 08 3

dqetmdep 6 04 3

dqetso 34 3

dqetsoW 0 2

dqetype 8 2

dqeurgch1 A 80 3

dqeUSED 2E 40 4

dqever 4 2

dqeWLM 0 1

dqewlmclass 6 2

dqewlmpol 0 2

dqewlmpro1 A 20 3

dqews 0 2

dqewseq 12 2

dqewsid 3C 3

dqewsidW 18 2

PSU_AskSimGDG 55 01 3

PSU_BestStep 55 02 3

PSU_DSlen 58 2

PSU_ExpJCL 55 80 3

PSU_GDGlen 5B 2

PSU_JCLlen 60 2

PSU_Operinfo 55 20 3

PSU_Root 55 04 3

120 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

PSU_Rootlen 5E 2

PSU_SimGDG 55 08 3

PSU_SLlen 56 2

PSU_Suspend 55 40 3

PSU_UserSys 55 10 3

ESP - map of event record in the HTDS

Name : DCLESP

Function:
Allows for continuation of events passed to the Data Router via the Event
Writer queue and the event data set. This mapping should be used only
when more than 80 bytes should be propagated using the above. The ESP
is transformed into a DQE, using the ESP_dqetype as the DQE type, the
data in the type F ESP as the DQE internal buffer,and the remainder of
ESP data as the DQE external buffer. The subpool of the allocated
external buffer should be indicated in the ESP_sp. The EW will freemain
this area.
Zeroes yields SP0.
Use only key 0 storage.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 80 ESP ESP head or
continuation

0 (0) CHARACTER 1 ESP_exrtyp event type = N

1 (1) CHARACTER 1 ESP_type type of ESP F =
first / head ESP
N = continued
ESP

2 (2) CHARACTER 1 ESP_syst contained event
type ! blank ===
above MUST
match DCLEXR
==

3 (3) CHARACTER 3 ESP_dqetype actual contained
event type

6 (6) SIGNED 2 ESP_seqF ESP F-type
sequence number

8 (8) SIGNED 4 ESP_seqN ESP N-type
sequence number

12 (C) SIGNED 4 ESP_seqT ESP seq totals

16 (10) ADDRESS 4 ESP_extptr address of data
buffer ! NULL

20 (14) SIGNED 4 ESP_datasize Total size in
buffer when ESP
on WRTQ, and
for F-type. Data
size for N-types.

Chapter 4. Troubleshooting and reference 121

Offsets

24 (18) UNSIGNED 1 ESP_sp subpool number
for ext buffer

25 (19) CHARACTER 1 ESP_flags a flag byte

1... ESP_app APP extension
buffer

.111 1111 * reserved

26 (1A) CHARACTER 50 ESP_data actual event data

76 (4C) CHARACTER 4 ESP_id event
identification (offs
76)

80 (50) CHARACTER ESP_xdata0 eXtended data
portion plachold

Cross reference

Name Hex Offset Hex Value Level

ESP 0 1

ESP_app 19 80 3

ESP_data 1A 2

ESP_datasize 14 2

ESP_dqetype 3 2

ESP_exrtyp 0 2

ESP_extptr 10 2

ESP_flags 19 2

ESP_id 4C 2

ESP_seqF 6 2

ESP_seqN 8 2

ESP_seqT C 2

ESP_sp 18 2

ESP_syst 2 2

ESP_type 1 2

ESP_xdata0 50 2

EVT - Map of record layout in event data sets

Name : DCLEVT

Function:
This segment describes the record layout in the event data sets.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 820 evt event record

0 (0) CHARACTER 20 evtkey event record key

122 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

0 (0) SIGNED 4 evtrec for header = 0 rec
number for
non-header

4 (4) SIGNED 4 evtlrrec latest record
number = 0 for
non-header

8 (8) SIGNED 4 evtlrcyc latest cycle for
header

8 (8) SIGNED 4 evtcyc write cycle for
non-header

12 (C) SIGNED 4 evtmax max rcds excl hdr
= 0 for
non-header

16 (10) SIGNED 4 evttrcap track capacity in
rcds = 0 for
non-header

20 (14) CHARACTER 80 evtexr (10) exit record (see
dclexr)

20 (14) CHARACTER 80 evtsur not used

20 (14) CHARACTER 80 evtrel not used

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE * * evds header
record data

0 (0) CHARACTER 16 evtckpte (*) checkpoint entry

0 (0) BITSTRING 1 * free

1 (1) UNSIGNED 1 * free

2 (2) CHARACTER 4 evtwsnm workstation name

6 (6) UNSIGNED 2 evtsseq current submit
seq

8 (8) SIGNED 4 evtchkrec latest submit
record num

12 (C) SIGNED 4 evtchkcyc latest submit cycle
num

Cross reference

Name Hex Offset Hex Value Level

evt 0 1

evtchkcyc C 3

evtchkrec 8 3

evtckpte 0 2

evtcyc 8 4

evtexr 14 2

evtkey 0 2

Chapter 4. Troubleshooting and reference 123

Name Hex Offset Hex Value Level

evtlrcyc 8 3

evtlrrec 4 3

evtmax C 3

evtrec 0 3

evtrel 14 4

evtsseq 6 3

evtsur 14 3

evttrcap 10 3

evtwsnm 2 3

EXI - Ix event definition

Name : DCLEXI

Function:
This segment declares an initialization event. This event contains
information about an initiated operation. Initialization events are
created by the SUBMIT task and added to the Event Writer
queue. Note that the beginning of exi
must be mapped as exr.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 80 exi initialization
event

0 (0) CHARACTER 1 exievtyp event type = I

1 (1) CHARACTER 3 exitype type of initiated
process J0 =
submit seq event
J1 = jcl submit J2
= jcl started task
J3 = jcl for clean
up D90A J4 = jcl
submit SE failure
$CCUA WTO=
WTO message
REL= job release
OSI= OSI type
submit WLM=
WLM job
promotion

4 (4) CHARACTER 4 exiwsid work station id

8 (8) CHARACTER 16 * exiadid

8 (8) CHARACTER 16 exiJ4schenv Se name (J4)

8 (8) CHARACTER 8 exircre Request create
time (J0)

8 (8) SIGNED 4 exircred date (format:
00YYDDDF)

124 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

12 (C) SIGNED 4 exircret time (format:
secs*100)

16 (10) CHARACTER 8 exiocctok

16 (10) UNSIGNED 2 exiwseq submit seq from
ws (IJ0)

24 (18) CHARACTER 10 *

24 (18) SIGNED 4 exierec current evds rec
(IJ0)

28 (1C) SIGNED 4 exiecyc current evds cyc
(IJ0)

32 (20) SIGNED 2 *

34 (22) SIGNED 2 exiopnum operation number

36 (24) SIGNED 4 exiWLMrc WLM promotion
request RC

36 (24) BITSTRING 4 exiflags flag area P10A

36 (24) BITSTRING 1 exiflag1 flag byte 1 P10C

1... exifail init of process
failed P10C

.1.. exisfail submit fail

..1. exinoedp no edp updates
for this ev31CLVA

...1 exiWLMah on= job already
Hi perfo D52A

.... 1... exiSEund on=SE not
defined

.... .1.. exiSEnoAva on=SE not
available

.... ..1. exiSEnoJPL on=SE not avail at
JPLEX 31Clevel
only

.... ...1 exiinit J0 related to
initialization

37 (25) BITSTRING 1 exiflag2 flag byte 2 P10C

1... exi2fail init of process
failed P10C

.1.. exi2plte possible late I
event P10C

..1. exi2bad the STC funct not
active P10C

...1 exi2njss not JES managed
subsyst P10C

.... 1... exi2fjes STC fail JES input
servic31CP10C

.... .1.. exi2ncf NCF destination
not valid31CP10C

.... ..11 * reserved P10C

38 (26) BITSTRING 1 exiflag3 flag byte 3 P10C

Chapter 4. Troubleshooting and reference 125

Offsets

1... exi3oos submit
out-of-sequence

.1.. exi3nckp checkpoint not
active

..1. exi31st 1st time switch

...1 exi3misr seq request
mismatch

.... 1... exi3allok submit seq WA
vs. SU okay

.... .1.. * reserved

.... ..1. exi3badj0 bad J0 event (or
cp)

.... ...1 exi3rdop error read cp oper

39 (27) BITSTRING 1 exiflag4 flag byte 4 P10C

1... exi4rdjn error read cp jnt

.1.. exi4nsub sub04 is blank!

..1. exi4job jes04 is blank!

...1 * reserved

.... 1... exi4nsop cplsubop is of..!!?

.... .11. * reserved

.... ...1 exi4succ successful submit

40 (28) CHARACTER 8 exijobn job/STC name

40 (28) UNSIGNED 2 exiwork current catchup
value(J0)

42 (2A) UNSIGNED 2 * free

44 (2C) UNSIGNED 2 exiedoa current doa value
(J0)

46 (2E) UNSIGNED 2 exijasid job/STC asid
D52C9TA

48 (30) CHARACTER 8 exijobid job/STC number
(J1,J2,J3)

48 (30) CHARACTER 8 exiWLMCls WLM class (WLM
only)

48 (30) CHARACTER 8 exiJ4dest tracker dest (J4)

48 (30) CHARACTER 1 exievlog reserved (WLM)
32C

49 (31) CHARACTER 7 * reserved (WLM)

56 (38) SIGNED 2 exigmtof gmt offset in
minutes

58 (3A) SIGNED 2 exiWLMrsn WLM promotion
request rsn
code31A

58 (3A) CHARACTER 1 exiVirt Virtual WS
support: Y/N

59 (3B) CHARACTER 1 *

126 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

60 (3C) CHARACTER 8 exicreat event record
creation time
word bndry

60 (3C) SIGNED 4 exidate date format
(00yydddf)

64 (40) SIGNED 4 exitime time format
(secs*100)

68 (44) CHARACTER 4 exissnm DQE originating
TWS subsys name

72 (48) UNSIGNED 2 exieseq current evds seq
(IJ0)

74 (4A) UNSIGNED 2 * free

76 (4C) CHARACTER 4 exiid event id EELx

Cross reference

Name Hex Offset Hex Value Level

exi 0 1

exicreat 3C 2

exidate 3C 3

exiecyc 1C 3

exiedoa 2C 3

exierec 18 3

exieseq 48 2

exievlog 30 5

exievtyp 0 2

exifail 24 80 5

exiflags 24 3

exiflag1 24 4

exiflag2 25 4

exiflag3 26 4

exiflag4 27 4

exigmtof 38 2

exiid 4C 2

exiinit 24 01 5

exijasid 2E 3

exijobid 30 2

exijobn 28 2

exiJ4dest 30 4

exiJ4schenv 8 3

exinoedp 24 20 5

exiocctok 10 4

exiopnum 22 2

Chapter 4. Troubleshooting and reference 127

Name Hex Offset Hex Value Level

exircre 8 4

exircred 8 5

exircret C 5

exiSEnoAva 24 04 5

exiSEnoJPL 24 02 5

exiSEund 24 08 5

exisfail 24 40 5

exissnm 44 2

exitime 40 3

exitype 1 2

exiVirt 3A 3

exiWLMah 24 10 5

exiWLMCls 30 3

exiWLMrc 24 2

exiWLMrsn 3A 2

exiwork 28 3

exiwseq 10 5

exiwsid 4 2

exi2bad 25 20 5

exi2fail 25 80 5

exi2fjes 25 08 5

exi2ncf 25 04 5

exi2njss 25 10 5

exi2plte 25 40 5

exi3allok 26 08 5

exi3badj0 26 02 5

exi3misr 26 10 5

exi3nckp 26 40 5

exi3oos 26 80 5

exi3rdop 26 01 5

exi31st 26 20 5

exi4job 27 20 5

exi4nsop 27 08 5

exi4nsub 27 40 5

exi4rdjn 27 80 5

exi4succ 27 01 5

EXK - Kx event definition

Name : DCLEXK

Function:

128 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

This segment declares an initialization event. This event contains
information about an initiated operation. Initialization events are
created by the SUBMIT task and added to the Event Writer
queue. Note that the beginning of exk
must be mapped as exr.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 80 exk initialization
event

0 (0) CHARACTER 1 exkevtyp event type = K

1 (1) CHARACTER 2 exktype type of initiated
process J1= jcl
submit

3 (3) CHARACTER 1 * free

4 (4) SIGNED 4 exkJKJJobIdN JES Job Id (only
number)

8 (8) CHARACTER 36 exkJKBJobId Broker Job Key

44 (2C) CHARACTER 8 exkJobname Jobname

52 (34) SIGNED 4 exkdate 00YYDDDF
exkdate

56 (38) SIGNED 4 exktime time format
(secs*100)exktime

60 (3C) CHARACTER 4 exkssname origi subsys

64 (40) BITSTRING 2 exkflags

64 (40) BITSTRING 1 exkflags1

1... exkfail init of process
failed

.1.. exkSEnoAva on=SE not
available

..1. exkSEnoJPL on=SE not avail at
JPLEX

...1 exkSEund on=SE not
defined

.... 1... exk2fail init of process
failed

.... .1.. exk2plte possible late I
event

.... ..1. exk2bad the STC funct not
active

.... ...1 exk2njss not JES managed
subsyst

65 (41) BITSTRING 1 exkflags2

1... exk2fjes STC fail JES input
servic

.1.. exk3nckp checkpoint not
active

..1. exk3oos submit
out-of-sequence

Chapter 4. Troubleshooting and reference 129

Offsets

...1 1111 * free

66 (42) BITSTRING 1 exkreason free

1... exkJCLRopen open joblib failure

.1.. exkJCLRdyn dynalloc failure

..1. exkJCLRjnMISS missing jobname

...1 exkJCLRjnINVA invalid jobname

.... 1... exkJCLRstor storage problems

.... .1.. exkOJCV variable sub error

.... ..1. exknoJCL JCL not found

.... ...1 * free

67 (43) BITSTRING 1 * free

68 (44) SIGNED 4 * free

72 (48) SIGNED 2 exkgmtof gmt offset in
minutes

74 (4A) UNSIGNED 2 exksseq current submit
seq

76 (4C) CHARACTER 4 exkid event id EELx

Cross reference

Name Hex Offset Hex Value Level

exk 0 1

exkdate 34 2

exkevtyp 0 2

exkfail 40 80 4

exkflags 40 2

exkflags1 40 3

exkflags2 41 3

exkgmtof 48 2

exkid 4C 2

exkJCLRdyn 42 40 3

exkJCLRjnINVA 42 10 3

exkJCLRjnMISS 42 20 3

exkJCLRopen 42 80 3

exkJCLRstor 42 08 3

exkJKBJobId 8 2

exkJKJJobIdN 4 2

exkJobname 2C 2

exknoJCL 42 02 3

exkOJCV 42 04 3

exkreason 42 2

exkSEnoAva 40 40 4

130 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

exkSEnoJPL 40 20 4

exkSEund 40 10 4

exksseq 4A 2

exkssname 3C 2

exktime 38 2

exktype 1 2

exk2bad 40 02 4

exk2fail 40 08 4

exk2fjes 41 80 4

exk2njss 40 01 4

exk2plte 40 04 4

exk3nckp 41 40 4

exk3oos 41 20 4

EXR - Exit record

Name : DCLEXR

Function:
This segment declares an exit record. Exit records are built by SMF and
JES exits, passed to the event writer via CSA buffers, and are written
to an event data set as part of an event record by the event writer.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 80 exr exit record

0 (0) CHARACTER 2 exrtype record type

0 (0) CHARACTER 1 exrsyst system type A!B

1 (1) CHARACTER 1 exrevtyp event type
1!2!3!4!5!6

2 (2) CHARACTER 1 exrstype event subtype
(only type3)

3 (3) BITSTRING 1 exrflags exit flags

1... exrretry retry release
command

.1.. exropcho this job is in hold

..1. exroheld job was held by
tws

...1 exrjkill job killed by jes in
rdr

.... 1... exrjccec error code from
jcc

.... .1.. exrjccch checked by jcc

.... ..1. exrjccer error in jcc

Chapter 4. Troubleshooting and reference 131

Offsets

.... ...1 exrrlast retcode(last)
active

4 (4) BITSTRING 1 exrtermf termination flags

1... exrjcset exrjcout is valid

.1.. exrjcout job has jcc sysout

..1. * free D90C

...1 exrmchld 1= msgclass is
held

.... 1... exrcmreq 1= requeue msg
class

.... .1.. * free D90C

.... ..1. exrjbtab 0=normal,
1=abend (job)

.... ..1. exrabend 0=normal,
1=abend (step)

.... ...1 exrflush 0=normal,
1=flushed step

5 (5) BITSTRING 1 exrerror job error switch
lcterror

1... exrfail job failed

.1.. exrJQA ON= is a JQA

..1. exrZ2level

...1 exrR4level

.... 1... * alloc but not
unalloc done

.... .1.. exrcfal job failed on cond
codes

.... ..1. exrjcjob JCJOB processed
ok D54A

.... ...1 exrlastfl last step flushed
$BGIA

6 (6) SIGNED 2 exrgmtof gmt offset in
minutes

8 (8) CHARACTER 8 exrjobn job name

16 (10) CHARACTER 8 exrjobid job number

24 (18) CHARACTER 8 exrcreat event creation
time

24 (18) SIGNED 4 exrdate date format
(00yydddf)

28 (1C) SIGNED 4 exrtime time format
(secs*100)

32 (20) CHARACTER 8 exrjsrdr jes reader date
and time

32 (20) SIGNED 4 exrrdate date format
(00yydddf)

132 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

36 (24) SIGNED 4 exrrtime time format
(secs*100)

40 (28) SIGNED 4 exrsdate operation start
date

44 (2C) SIGNED 4 exrstime operation start
time

48 (30) SIGNED 4 exredate operation end
date

52 (34) SIGNED 4 exretime operation end
time

52 (34) SIGNED 4 exrorgid nje origin job
number

56 (38) CHARACTER 8 exrstepn job step name

56 (38) CHARACTER 8 exronje name of orig nje
nod

56 (38) CHARACTER 1 exrclass printout class

57 (39) CHARACTER 1 * reserved

58 (3A) SIGNED 2 exrasid job asid

60 (3C) SIGNED 4 exrexeid NJE execution
jobn

64 (40) CHARACTER 8 exrpstep procedure step
name

64 (40) CHARACTER 8 exrnnje this/next nje node

64 (40) CHARACTER 8 exrform form number

72 (48) SIGNED 2 exrcode completion/
condition code

74 (4A) CHARACTER 1 exrindic status indicators

1... exrjesv4 jes sp4 or
above1/3P/

.1.. exrspun spun off ds rcd

..1. exrterm oper terminated
datagroup

...1 exrinter oper interrupted
-:-

.... 1... exrrstrt oper restarted -:-

.... .1.. exrndest not final
f/$sysmsgs 3P

.... ..1. exrnods4 no $sysmsgs
found 3P

.... ...1 exrsuspd suspended

75 (4B) UNSIGNED 1 exrstpnr step number

75 (4B) BITSTRING 1 exrpurge job purge bits

111. * not used

...1 exrSDEP SDEP filter used

.... 1... exrlastab last step abended

Chapter 4. Troubleshooting and reference 133

Offsets

.... .1.. exrstall stepevents(all)

.... ..1. exrstnz stepevents(no)
flag

.... ...1 exropcan cancelled by oper

76 (4C) CHARACTER 4 exropcid tws identifier

Cross reference

Name Hex Offset Hex Value Level

exr 0 1

exrabend 4 02 4

exrasid 3A 4

exrcfal 5 04 3

exrclass 38 4

exrcmreq 4 08 3

exrcode 48 2

exrcreat 18 2

exrdate 18 3

exredate 30 2

exrerror 5 2

exretime 34 2

exrevtyp 1 3

exrexeid 3C 4

exrfail 5 80 3

exrflags 3 2

exrflush 4 01 3

exrform 40 4

exrgmtof 6 2

exrindic 4A 2

exrinter 4A 10 3

exrjbtab 4 02 3

exrjccch 3 04 3

exrjccec 3 08 3

exrjccer 3 02 3

exrjcjob 5 02 3

exrjcout 4 40 3

exrjcset 4 80 3

exrjesv4 4A 80 3

exrjkill 3 10 3

exrjobid 10 2

exrjobn 8 2

134 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

exrJQA 5 40 3

exrjsrdr 20 2

exrlastab 4B 08 4

exrlastfl 5 01 3

exrmchld 4 10 3

exrndest 4A 04 3

exrnnje 40 3

exrnods4 4A 02 3

exroheld 3 20 3

exronje 38 3

exropcan 4B 01 4

exropcho 3 40 3

exropcid 4C 2

exrorgid 34 3

exrpstep 40 2

exrpurge 4B 3

exrrdate 20 3

exrretry 3 80 3

exrrlast 3 01 3

exrrstrt 4A 08 3

exrrtime 24 3

exrR4level 5 10 3

exrsdate 28 2

exrSDEP 4B 10 4

exrspun 4A 40 3

exrstall 4B 04 4

exrstepn 38 2

exrstime 2C 2

exrstnz 4B 02 4

exrstpnr 4B 2

exrstype 2 2

exrsuspd 4A 01 3

exrsyst 0 3

exrterm 4A 20 3

exrtermf 4 2

exrtime 1C 3

exrtype 0 2

exrZ2level 5 20 3

Chapter 4. Troubleshooting and reference 135

HTI - HTTP Interface from C side to PLX side (EELHTCEC
module)

Name : DCLHTI

Function:
The array contains information for the PLX inteface
implemented in the EELHTCEC module.

Offsets

Dec Hex Type Len Name (Dim)

0 (0) STRUCTURE 168 htiSubmitJob

0 (0) CHARACTER 16 htiOccName

16 (10) CHARACTER 10 htiOccIA

26 (1A) CHARACTER 1 htiSubtype

27 (1B) CHARACTER 1 htiReprocess

28 (1C) SIGNED 4 htijclNrec

32 (20) ADDRESS 4 htijclPtr

36 (24) CHARACTER 36 htibrokerKey

36 (24) CHARACTER 36 htibrokerKeyId

72 (48) CHARACTER 8 htialias

72 (48) SIGNED 4 htialiasLength

76 (4C) ADDRESS 4 htialiasPtr

80 (50) CHARACTER 8 htioutput

80 (50) SIGNED 4 htioutputLength

84 (54) ADDRESS 4 htioutputPtr

88 (58) CHARACTER 52 htiREFinfo

88 (58) CHARACTER 44 htiREFdsname

132 (88) CHARACTER 8 htiREFmember

140 (8C) CHARACTER 8 htiPosition

140 (8C) SIGNED 4 htiwcycle

144 (90) SIGNED 4 htirecnum

148 (94) SIGNED 4 htiThreadnum

152 (98) ADDRESS 4 htiVARTABptr

156 (9C) CHARACTER 12 htiVARIA

--
Checkpoint update (UPCP) ==> zHTTPDqe.h eventTypeUpdCP
--

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 8 htiUpdChkPt

0 (0) SIGNED 4 htiUpdcyc write cycle
number

136 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

4 (4) SIGNED 4 htiUpdrrec record number in
cycle

--
Joblog request (JLGT) ==> zHTTPDqe.h eventTypeGetJoblog
Each JL record has 133 chars
htiStageArea is 150 records long
--

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 32 htiJlRequest

0 (0) CHARACTER 8 htiJLJobname name of the JES
job

8 (8) CHARACTER 8 htiJLJESid ID of the JES job

16 (10) SIGNED 4 htiFirstRec num of the first
requested rec
(>=1)

20 (14) SIGNED 4 htiNumOfRecs num of the
requested recs

24 (18) ADDRESS 4 htiStageArea stage JL area (150
records long)

28 (1C) CHARACTER 1 htiIsComplete 'Y': JL retrieved
up to the end; 'N':
otherwise

29 (1D) CHARACTER 3 htiJLfiller free

Cross reference

Name Hex Offset Hex Value Level

htialias 48 2

htialiasLength 48 3

htialiasPtr 4C 3

htibrokerKey 24 2

htibrokerKeyId 24 3

htiFirstRec 10 2

htiIsComplete 1C 2

htijclNrec 1C 2

htijclPtr 20 2

htiJLfiller 1D 2

htiJLJESid 8 2

htiJLJobname 0 2

htiJlRequest 0 1

htiNumOfRecs 14 2

htiOccIA 10 2

Chapter 4. Troubleshooting and reference 137

Name Hex Offset Hex Value Level

htiOccName 0 2

htioutput 50 2

htioutputLength 50 3

htioutputPtr 54 3

htiPosition 8C 2

htirecnum 90 3

htiREFdsname 58 3

htiREFinfo 58 2

htiREFmember 84 3

htiReprocess 1B 2

htiStageArea 18 2

htiSubmitJob 0 1

htiSubtype 1A 2

htiThreadnum 94 2

htiUpdChkPt 0 1

htiUpdcyc 0 2

htiUpdrrec 4 2

htiVARIA 9C 2

htiVARTABptr 98 2

htiwcycle 8C 3

HTSA - HTTP server task parameter area

Name : DCLHTSA

Function:
This control block is built, initialized, and freed by the
HTTP server task PLX mainline module.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 584 htsa

0 (0) CHARACTER 456 htsaComm

0 (0) CHARACTER 4 htsadesc block descriptor =
'HTSA'

4 (4) CHARACTER 2 htsaver block mapping
version

6 (6) BITSTRING 2 htsaflags

1... htsassl

8 (8) ADDRESS 4 htsamcap mca address

12 (C ADDRESS 4 htsastopecbptr pointer to stop
ecb

16 (10) SIGNED 4 htsaPortNum Local port
number of server

138 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

20 (14) ADDRESS 4 htsaSyncecbptr ptr to Cli to Serv
Sync ecb

24 (18) SIGNED 4 htsaTCPtime time out for recv

28 (1C) CHARACTER 8 htsacodep code page

36 (24) CHARACTER 9 htsatcpjn tcpip job name

45 (2D) CHARACTER 1 * free

46 (2E) CHARACTER 1 htsasslamod ssl auth mode

47 (2F) CHARACTER 1 htsasslktyp ssl key ring type

48 (30) CHARACTER 53 htsahostn local hostname
used

101 (65) CHARACTER 3 * free

104 (68) CHARACTER 65 htsaSSLastr SSL authorization
string

169 (A9) CHARACTER 3 * free

172 (AC) CHARACTER 121 htsaSSLkrnm SSL key ring
name

293 (125) CHARACTER 3 * free

296 (128) CHARACTER 121 htsaSSLkrpw SSL key password

417 (1A1) CHARACTER 27 * free

444 (1BC) ADDRESS 4 htsaIDMvsPtr ID pointer

448 (1C0) ADDRESS 4 htsadiafp DIAGNOSE flags
address

452 (1C4) ADDRESS 4 htsadiadp DIAGNOSE data
address

456 (1C8) SIGNED 4 htsaproto 0 HTTP 1 HTTPS

460 (1CC) ADDRESS 4 htsaioc pointer to ioc
HTDS

464 (1D0) SIGNED 4 htsannum entry in EDP table

468 (1D4) SIGNED 4 htsatnum num of threads
for server

472 (1D8) SIGNED 4 htsahtsnum number of hts
entries

476 (1DC) ADDRESS 4 htsahtsptr hts address

480 (1E0) CHARACTER 8 htsasyslvl system level

488 (1E8) ADDRESS 4 htsaiocHTREF pointer to ioc
HTREF

492 (1EC) ADDRESS 4 htsaJlibDCB pointer to JBLIB
dcb

496 (1F0) ADDRESS 4 htsaJBuf JBLIB buffer

500 (1F4) CHARACTER 1 htsaVARSUB Y: varsub needed
N: varsub not
needed

501 (1F5) CHARACTER 3 * free

504 (1F8) SIGNED 4 htsarecconf HTREF recovery
usage

Chapter 4. Troubleshooting and reference 139

Offsets

508 (1FC) SIGNED 4 htsacycconf HTREF recovery
usage

512 (200) UNSIGNED 2 htsasseqconf HTREF recovery
usage

514 (202) CHARACTER 54 * free

568 (238) SIGNED 4 * free

572 (23C) SIGNED 4 * free

576 (240) CHARACTER 8 * free

584 (248) CHARACTER htsaend end of htsa

Cross reference

Name Hex Offset Hex Value Level

htsa 0 1

htsacodep 1C 3

htsaComm 0 2

htsacycconf 1FC 2

htsadesc 0 3

htsadiadp 1C4 3

htsadiafp 1C0 3

htsaend 248 2

htsaflags 6 3

htsahostn 30 3

htsahtsnum 1D8 2

htsahtsptr 1DC 2

htsaIDMvsPtr 1BC 3

htsaioc 1CC 2

htsaiocHTREF 1E8 2

htsaJBuf 1F0 2

htsaJlibDCB 1EC 2

htsamcap 8 3

htsannum 1D0 2

htsaPortNum 10 3

htsaproto 1C8 2

htsarecconf 1F8 2

htsasseqconf 200 2

htsassl 6 80 4

htsasslamod 2E 3

htsaSSLastr 68 3

htsaSSLkrnm AC 3

htsaSSLkrpw 128 3

htsasslktyp 2F 3

140 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

htsastopecbptr C 3

htsaSyncecbptr 14 3

htsasyslvl 1E0 2

htsatcpjn 24 3

htsaTCPtime 18 3

htsatnum 1D4 2

htsaVARSUB 1F4 2

htsaver 4 3

JCFB - JS interface feedback information

Name : DCLJCFB

Function:
This block is always passed back to caller when retrieving data
through the JS interface through the GET routine.
Offsets to data are only set when passing data through GS.
NOTE: It is the caller's responsibility to freemain the storage
pointed to by jcfdatp.
The amount of storage is in jcfstg, and the subpool number is in jcfsubp.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 88 jcf feedback area for
js interf

0 (0) CHARACTER 4 jcfdesc descriptor always
'JCF '

4 (4) CHARACTER 2 jcfvers block version

6 (6) CHARACTER 8 jcfdtype data type that
datp points t see
dclcjrq

14 (E) BITSTRING 1 jcfflags processing flags

1... jcfjcl jcl indicator

.111 1111 * reserved

15 (F) CHARACTER 1 * not used

16 (10) ADDRESS 4 jcfbufp pointer to jcl
record in buf

20 (14) ADDRESS 4 jcfdatp pointer to data

24 (18) SIGNED 4 jcfdato offset to data (JS
record,Variables..)

28 (1C) SIGNED 4 jcfstg amount of storage
pointed to by
jcfdatp

32 (20) SIGNED 4 jcfsubp subpool in which
stg pointed to by
jcfdatp is
getmained

Chapter 4. Troubleshooting and reference 141

Offsets

36 (24) SIGNED 4 jcflino offset to js data
lines

36 (24) SIGNED 4 jcfsvaro offset to prompt
vars

40 (28) ADDRESS 4 jcflinp addr to js data
lines

40 (28) ADDRESS 4 jcfsvarp addr to prompt
vars entry

44 (2C) SIGNED 4 jcflin number of js data
lines

44 (2C) SIGNED 4 jcfvars number of
prompt vars

48 (30) CHARACTER 8 jcfjfrom where jcl retrived
ux002name,js,
library

56 (38) CHARACTER 8 jcfjmem jcl member name
if jcfjfrom =
library name else
blank

64 (40) CHARACTER 8 * reserved

72 (48) CHARACTER 1 jcfvstat var subst. status
V or ' '

73 (49) CHARACTER 15 * reserved

Cross reference

Name Hex Offset Hex Value Level

jcf 0 1

jcflin 2C 2

jcfvars 2C 3

jcfbufp 10 2

jcfdato 18 2

jcfdatp 14 2

jcfdesc 0 2

jcfdtype 6 2

jcfflags E 2

jcfjcl E 80 3

jcfjfrom 30 2

jcfjmem 38 2

jcflino 24 2

jcflinp 28 2

jcfstg 1C 2

jcfsubp 20 2

jcfsvaro 24 3

jcfsvarp 28 3

142 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

jcfvers 4 2

jcfvstat 48 2

JCL - LAYOUT

Name : DCLJCL

Function:
JCLTWS jcl layout
REFTWS jcl layout

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE * JCLTWS

0 (0) CHARACTER 136 JCLBDY FIXED PART OF JCL
RECORD

0 (0) CHARACTER 28 JCLKEY

0 (0) CHARACTER 16 JCLADID APPLICATION
NAME

16 (10) CHARACTER 10 JCLIA OCC INPUT
ARRIVAL
DATE+TIME

16 (10) CHARACTER 6 JCLIAT1 DATE

22 (16) CHARACTER 4 JCLIAT2 TIME

26 (1A) SIGNED 2 JCLOPNUM OPERATION
NUMBER

28 (1C) CHARACTER 4 JCLEYE EYE CATCHER

32 (20) UNSIGNED 1 JCLVERS VERSION NUMBER

33 (21) CHARACTER 1 * free

34 (22) CHARACTER 8 JCLJOBNM JOBNAME

42 (2A) CHARACTER 12 JCLVARIA VAR IA from HTI

54 (36) CHARACTER 2 * free

===
- 3 JCLWSN CHAR(4), WORK STATION NAME
- 3 JCLUPDAT, LAST UPDATE, DATE+TIME
- 4 JCLUPDT1 CHAR(6), DATE
- 4 JCLUPDT2 CHAR(4), TIME
===

56 (38) CHARACTER 8 JCLUSER LAST UPDATE,
USERID

64 (40) CHARACTER 1 JCLUPTYP UPDATE TYPE: not
used

65 (41) CHARACTER 1 JCLSTAT OP. STATUS: not
used

66 (42) UNSIGNED 2 JCLLINES NO OF LINES IN
RECORD

68 (44) CHARACTER 1 JCLFLAGS FLAGBYTE

Chapter 4. Troubleshooting and reference 143

Offsets

1... JCLJSFND ON = JCL READ
FROM JS

.1.. JCLEDITD ONCE BEEN
EDITED

..1. JCLJDIRNOP ON = NOP directive
set

...1 1111 * NOT USED

69 (45) CHARACTER 1 * FREE

70 (46) SIGNED 2 JCLVLINE NUMBER OF
VARIABLES

72 (48) SIGNED 4 JCLSUBP SUBPOOL FOR
FREEMAIN

76 (4C) UNSIGNED 2 JCLALIASLEN Alias name length

78 (4E) CHARACTER 2 JCLRES4 FREE

80 (50) CHARACTER 56 JCLBROKERKEYID Broker key identifier

136 (88) CHARACTER * JCLVARDATA Variable data

==
JCL stream records
==

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 80 JCLTAB(*)

0 (0) CHARACTER 80 JCLREC

0 (0) CHARACTER 72 JCLTEXT COL 1-72 OF THE
JCL RECORD

72 (48) CHARACTER 8 JCLLNNO COL 73-80 OF
THE JCL
RECORD

==
JCL Variables
==

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 80 JCLVTAB(*)

0 (0) CHARACTER 80 JCLV

0 (0) CHARACTER 8 CLVNAME VARIABLE
NAME

8 (8) CHARACTER 16 JCLVTNAM VARIABLE
TABLE NAME

24 (18) CHARACTER 1 JCLVTYPE P = PROMPT, Y=
SETUP,N=SUB

144 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

25 (19) CHARACTER 1 JCLVSET E(XIT),
D(EFAULT),
P(REP), VAR

26 (1A) CHARACTER 8 JCLVUSER USER ID

26 (1A) CHARACTER 8 JCLVEXIT EXIT NAME

26 (1A) CHARACTER 8 JCLVSNAM SETTING
VARIABLE
NAME

34 (22) CHARACTER 44 JCLVVAL VARIABLE
VALUE SET

78 (4E) SIGNED 2 JCLVLGT LENGTH OF
VALUE

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE * REFTWS

0 (0) CHARACTER 188 REFBDY

COMMON LAYOUT WITH TWSJCL:

0 (0) CHARACTER 28 REFKEY

0 (0) CHARACTER 16 REFADID ADID

16 (10) CHARACTER 10 REFIA IA

16 (10) CHARACTER 6 REFIAT1

22 (16) CHARACTER 4 REFIAT2

26 (1A) SIGNED 2 REFOPNUM ALWAYS 1

28 (1C) CHARACTER 4 REFEYE 'REF '

32 (20) UNSIGNED 1 REFVERS '01'

33 (21) CHARACTER 1 *

34 (22) CHARACTER 8 REFJOBNM

42 (2A) CHARACTER 12 REFVARIA VAR IA from HTI

54 (36) CHARACTER 2 * free

- 3 REFWSN CHAR(4), é WORK STATION NAME
- 3 REFUPDAT, é LAST UPDATE, DATE+TIME
- 4 REFUPDT1 CHAR(6), DATE
- 4 REFUPDT2 CHAR(4), TIME

56 (38) CHARACTER 8 REFUSER LAST UPDATE,
USERID

64 (40) CHARACTER 1 REFUPTYP UPDATE TYPE: NOT
USED

65 (41) CHARACTER 1 REFSTAT OP. STATUS: NOT
USED

66 (42) UNSIGNED 2 REFLINES NO OF LINES IN
RECORD

68 (44) CHARACTER 1 REFFLAGS FLAGBYTE

Chapter 4. Troubleshooting and reference 145

Offsets

69 (45) CHARACTER 1 * FREE

70 (46) SIGNED 2 REFVLINE NUMBER OF
VARIABLES

72 (48) SIGNED 4 REFSUBP SUBPOOL FOR
FREEMAIN

76 (4C) UNSIGNED 2 REFALIASLEN ALIAS NAME
LENGTH

78 (4E) CHARACTER 2 REFRES4 FREE

80 (50) CHARACTER 56 REFBROKERKEYID BROKER KEY
IDENTIFIER

ADDITIONAL DATA ONLY FOR BYREF:

136 (88) CHARACTER 44 REFDSNAME DATA SET NAME

180 (B4) CHARACTER 8 REFMEMBER MEMBER NAME

188 (BC) CHARACTER * REFVARDATA

JCL VARIABLES

Offsets

Dec Hex Type Len Name (Dim)

0 (0) STRUCTURE 80 REFVTAB(*)

0 (0) CHARACTER 80 REFV

0 (0) CHARACTER 8 REFVNAME

8 (8) CHARACTER 16 REFVTNAM

24 (18) CHARACTER 1 REFVTYPE

25 (19) CHARACTER 1 REFVSET

26 (1A) CHARACTER 8 REFVUSER

26 (1A) CHARACTER 8 REFVEXIT

26 (1A) CHARACTER 8 REFVSNAM

34 (22) CHARACTER 44 REFVVAL

78 (4E) SIGNED 2 REFVLGT

Cross reference

Name Hex Offset Hex Value Level

JCLADID 0 4

JCLALIASLEN 4C 3

JCLBDY 0 2

JCLBROKERKEYID 50 3

JCLEDITD 44 40 4

JCLEYE 1C 3

146 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

JCLFLAGS 44 3

JCLIA 10 4

JCLIAT1 10 5

JCLIAT2 16 5

JCLJDIRNOP 44 20 4

JCLJOBNM 22 3

JCLJSFND 44 80 4

JCLKEY 0 3

JCLLINES 42 3

JCLLNNO 48 3

JCLOPNUM 1A 4

JCLREC 0 2

JCLRES4 4E 3

JCLSTAT 41 3

JCLSUBP 48 3

JCLTAB 0 1

JCLTEXT 0 3

JCLTWS 0 1

JCLUPTYP 40 3

JCLUSER 38 3

JCLV 0 2

JCLVARDATA 88 2

JCLVARIA 2A 3

JCLVERS 20 3

JCLVEXIT 1A 4

JCLVLGT 4E 3

JCLVLINE 46 3

JCLVNAME 0 3

JCLVSET 19 3

JCLVSNAM 1A 5

JCLVTAB 0 1

JCLVTNAM 8 3

JCLVTYPE 18 3

JCLVUSER 1A 3

JCLVVAL 22 3

REFADID 0 4

REFALIASLEN 4C 3

REFBDY 0 2

REFBROKERKEYID 50 3

REFDSNAME 88 3

REFEYE 1C 3

Chapter 4. Troubleshooting and reference 147

Name Hex Offset Hex Value Level

REFFLAGS 44 3

REFIA 10 4

REFIAT1 10 5

REFIAT2 16 5

REFJOBNM 22 3

REFKEY 0 3

REFLINES 42 3

REFMEMBER B4 3

REFOPNUM 1A 4

REFRES4 4E 3

REFSTAT 41 3

REFSUBP 48 3

REFTWS 0 1

REFUPTYP 40 3

REFUSER 38 3

REFV 0 2

REFVARDATA BC 2

REFVARIA 2A 3

REFVERS 20 3

REFVEXIT 1A 4

REFVLGT 4E 3

REFVLINE 46 3

REFVNAME 0 3

REFVSET 19 3

REFVSNAM 1A 5

REFVTAB 0 1

REFVTNAM 8 3

REFVTYPE 18 3

REFVUSER 1A 3

REFVVAL 22 3

JCL1 - JCL used for VARSUB

Name : DCLJCL1

Function:
JCLREC jcl layout

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE * JCLREC

0 (0) CHARACTER 80 JCLBDY FIXED PART OF
JCL RECORD

148 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

0 (0) CHARACTER 28 JCLKEY

0 (0) CHARACTER 16 JCLADID APPLICATION
NAME

16 (10) CHARACTER 10 JCLIA OCC INPUT
ARRIVAL
DATE+TIME

16 (10) CHARACTER 6 JCLIAT1 DATE

22 (16) CHARACTER 4 JCLIAT2 TIME

26 (1A) SIGNED 2 JCLOPNUM OPERATION
NUMBER

28 (1C) CHARACTER 4 JCLEYE EYE CATCHER

32 (20) UNSIGNED 1 JCLVERS VERSION
NUMBER

33 (21) CHARACTER 1 * FREE

34 (22) CHARACTER 8 JCLJOBNM JOBNAME

42 (2A) CHARACTER 4 JCLWSN WORK STATION
NAME

46 (2E) CHARACTER 10 JCLUPDAT LAST UPDATE,
DATE+TIME

46 (2E) CHARACTER 6 JCLUPDT1 DATE

52 (34) CHARACTER 4 JCLUPDT2 TIME

56 (38) CHARACTER 8 JCLUSER LAST UPDATE,
USERID

64 (40) CHARACTER 1 JCLUPTYP UPDATING
FUNCTION: L:
LTP W: WSD R:
READY LIST M:
MCP

65 (41) CHARACTER 1 JCLSTAT OP. STATUS:
S:SUB;:ED;
V:SAVED;
T:TSAVED;

66 (42) UNSIGNED 2 JCLLINES NO OF LINES IN
RECORD

68 (44) CHARACTER 1 JCLFLAGS FLAGBYTE

1... JCLJSFND ON = JCL READ
FROM JS

.1.. JCLEDITD ONCE BEEN
EDITED

..1. JCLJDIRNOP ON = NOP
directive set

...1 1111 * NOT USED

69 (45) CHARACTER 1 * FREE JCLC

70 (46) SIGNED 2 JCLVLINE NUMBER OF
VARIABLES JCLA

72 (48) SIGNED 4 JCLSUBP SUBPOOL FOR
FREEMAIN

Chapter 4. Troubleshooting and reference 149

Offsets

76 (4C) CHARACTER 4 JCLRES4 FREE

80 (50) CHARACTER 80 JCLTAB (*) JCL RECORDS

80 (50) CHARACTER 72 JCLTEXT COL 1-72 OF THE
JCL RECORD

152 (98) CHARACTER 8 JCLLNNO COL 73-80 OF
THE JCL
RECORD

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 80 JCLVTAB (*)

0 (0) CHARACTER 80 JCLV

0 (0) CHARACTER 8 JCLVNAME VARIABLE
NAME

8 (8) CHARACTER 16 JCLVTNAM VARIABLE
TABLE NAME

24 (18) CHARACTER 1 JCLVTYPE P = PROMPT, Y=
SETUP,N=SUB

25 (19) CHARACTER 1 JCLVSET E(XIT),
D(EFAULT),
P(REP), VAR

26 (1A) CHARACTER 8 JCLVUSER USER ID

26 (1A) CHARACTER 8 JCLVEXIT EXIT NAME

26 (1A) CHARACTER 8 JCLVSNAM SETTING
VARIABLE
NAME

34 (22) CHARACTER 44 JCLVVAL VARIABLE
VALUE SET

78 (4E) SIGNED 2 JCLVLGT LENGTH OF
VALUE

Cross reference

Name Hex Offset Hex Value Level

JCLADID 0 4

JCLBDY 0 2

JCLEDITD 44 40 4

JCLEYE 1C 3

JCLFLAGS 44 3

JCLIA 10 4

JCLIAT1 10 5

JCLIAT2 16 5

JCLJDIRNOP 44 20 4

JCLJOBNM 22 3

JCLJSFND 44 80 4

150 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

JCLKEY 0 3

JCLLINES 42 3

JCLLNNO 98 3

JCLOPNUM 1A 4

JCLREC 0 1

JCLRES4 4C 3

JCLSTAT 41 3

JCLSUBP 48 3

JCLTAB 50 2

JCLTEXT 50 3

JCLUPDAT 2E 3

JCLUPDT1 2E 4

JCLUPDT2 34 4

JCLUPTYP 40 3

JCLUSER 38 3

JCLV 0 2

JCLVERS 20 3

JCLVEXIT 1A 4

JCLVLGT 4E 3

JCLVLINE 46 3

JCLVNAME 0 3

JCLVSET 19 3

JCLVSNAM 1A 5

JCLVTAB 0 1

JCLVTNAM 8 3

JCLVTYPE 18 3

JCLVUSER 1A 3

JCLVVAL 22 3

JCLWSN 2A 3

JDA - Predefined OPC/ESA variables

Name : DCLJDA

Function:
This block describes the mapping and addressing of variable values defined
by the dcljdav block.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 12 jdat variable data

0 (0) ADDRESS 4 jdatdavp pointer to jdav
table

Chapter 4. Troubleshooting and reference 151

Offsets

4 (4) SIGNED 4 jdatnum number of
variables

8 (8) SIGNED 4 jdatsize total size of
varible entrie

12 (C) CHARACTER jdattab end of table
header

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 21 jdae variable table
entry

0 (0) CHARACTER 8 jdaevar variable name

8 (8) SIGNED 4 jdaevsz size of variable
name

12 (C) SIGNED 4 jdaevao offset to value
based jdatda

16 (10) SIGNED 4 jdaesiz size of variable
value

20 (14) BITSTRING 1 jdaeflgs additional flags

1... jdaesetp setup avail on Yes

.1.. jdaejett Job using vars is
ETT

..11 1111 * reserved

--
This block contains the values of all predefined jcl variables.

These variables do not have to be defined in user-defined
jcl variable tables.

Note:
If variables are added or removed from the jdav block then

the jdavnum value must be updated accordingly.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 479 jdav

0 (0) CHARACTER 4 jdavdesc descriptor always
'JDAV'

4 (4) CHARACTER 2 jdavvers block version

6 (6) CHARACTER 6 oymd1 occ ia yymmdd

12 (C) CHARACTER 8 oymd2 occ ia yy/mm/dd

20 (14) CHARACTER 10 oymd3 occ ia
yyyy/mm/dd

30 (1E) CHARACTER 6 odmy1 occ ia ddmmyy

36 (24) CHARACTER 8 odmy2 occ ia dd/mm/yy

44 (2C) CHARACTER 6 oym occ ia yyyymm

50 (32) CHARACTER 8 oymd occ ia yyyymmdd

152 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

58 (3A) CHARACTER 5 oyyddd occ ia yyddd

63 (3F) CHARACTER 3 owwd occ week day
within week

66 (42) CHARACTER 4 oyymm occ ia date yymm

70 (46) CHARACTER 4 ommyy occ ia date mmyy

74 (4A) CHARACTER 2 oyy occ ia year

76 (4C) CHARACTER 4 oyyyy occ ia year

80 (50) CHARACTER 2 omm occ ia month

82 (52) CHARACTER 2 odd occ ia day within
month

84 (54) CHARACTER 2 ohh occ ia hour

86 (56) CHARACTER 4 ohhmm occ ia hour
minute

90 (5A) CHARACTER 4 ossid Subsystem name

94 (5E) CHARACTER 54 oxjobnam Extended Job
Name

148 (94) CHARACTER 3 oopno Oper number

151 (97) CHARACTER 1 oday Occ ia day in
week 1=monday

152 (98) CHARACTER 16 oadid Occ application id

168 (A8) CHARACTER 4 olhhmm latest start hour
minute

172 (AC) CHARACTER 2 olhh latest start hour

174 (AE) CHARACTER 2 olmm latest start month

176 (B0) CHARACTER 6 olymd latest start
yymmdd

182 (B6) CHARACTER 4 olmd latest start mmdd

186 (BA) CHARACTER 2 oldd latest start dd
(day in mon)

188 (BC) CHARACTER 1 olday latest start day of
wk(1-7)

189 (BD) CHARACTER 2 olwk latest start week
of year

191 (BF) CHARACTER 5 olyyddd latest start yyddd

196 (C4) CHARACTER 6 cyymmdd current date
yymmdd

202 (CA) CHARACTER 6 cddmmyy current date
ddmmyy

208 (D0) CHARACTER 6 cyyyymm current date year
month

214 (D6) CHARACTER 5 cyyddd current date year
day number

219 (DB) CHARACTER 4 cyymm current date year
month

223 (DF) CHARACTER 4 cmmyy current date
month year

Chapter 4. Troubleshooting and reference 153

Offsets

227 (E3) CHARACTER 2 cyy current date year

229 (E5) CHARACTER 4 cyyyy current date year

233 (E9) CHARACTER 2 cmm current month

235 (EB) CHARACTER 2 cdd current day
within month

237 (ED) CHARACTER 3 cwwd current week, day
in week

240 (F0) CHARACTER 8 cymd current date,
yyyymmdd

248 (F8) CHARACTER 1 cday current day in
week,1=monday

249 (F9) CHARACTER 2 chh current hour of
day

251 (FB) CHARACTER 4 chhmm current hour and
minute

255 (FF) CHARACTER 3 cddd current day
within year

258 (102) CHARACTER 2 cww current week in
year

260 (104) CHARACTER 8 chhmmssx current time
HHMMSSxx

268 (10C) CHARACTER 1 cfreeday cur time freeday
Y!N AGLA

269 (10D) CHARACTER 3 oddd occ ia day within
year

272 (110) CHARACTER 2 oww occ ia week in
year

274 (112) CHARACTER 16 oadowner ad owner

290 (122) CHARACTER 1 ofreeday occ ia is freeday
Y!N

291 (123) CHARACTER 8 ojobname jobname

299 (12B) CHARACTER 8 oaugroup authority group

307 (133) CHARACTER 16 ocalid calendar name

323 (143) CHARACTER 1 owwmonth week number in
ia month

324 (144) CHARACTER 1 owwlast last week in
month = Y else N

325 (145) CHARACTER 6 chhmmss current time
HHMMSS $CBPA

331 (14B) CHARACTER 44 oettcrit ETT criteria

375 (177) CHARACTER 1 oetttyp ETT type J or R

376 (178) CHARACTER 8 oettjob ETT job name

384 (180) CHARACTER 8 oettjid ETT job id

392 (188) CHARACTER 35 oettgroot ETT gdg root

427 (1AB) CHARACTER 44 oettevnam ETT full event
name

154 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

471 (1D7) CHARACTER 8 oettggen ETT gdg
generation

479 (1DF) CHARACTER jdavend end label of block

Cross reference

Name Hex Offset Hex Value Level

cday F8 2

cdd EB 2

cddd FF 2

cddmmyy CA 2

cfreeday 10C 2

chh F9 2

chhmm FB 2

chhmmss 145 2

chhmmssx 104 2

cmm E9 2

cmmyy DF 2

cww 102 2

cwwd ED 2

cymd F0 2

cyy E3 2

cyyddd D6 2

cyymm DB 2

cyymmdd C4 2

cyyyy E5 2

cyyyymm D0 2

jdae 0 1

jdaeflgs 14 2

jdaejett 14 40 3

jdaesetp 14 80 3

jdaesiz 10 2

jdaevao C 2

jdaevar 0 2

jdaevsz 8 2

jdat 0 1

jdatdavp 0 2

jdatnum 4 2

jdatsize 8 2

jdattab C 2

jdav 0 1

Chapter 4. Troubleshooting and reference 155

Name Hex Offset Hex Value Level

jdavdesc 0 2

jdavend 1DF 2

jdavvers 4 2

oadid 98 2

oadowner 112 2

oaugroup 12B 2

ocalid 133 2

oday 97 2

odd 52 2

oddd 10D 2

odmy1 1E 2

odmy2 24 2

oettcrit 14B 2

oettevnam 1AB 2

oettggen 1D7 2

oettgroot 188 2

oettjid 180 2

oettjob 178 2

oetttyp 177 2

ofreeday 122 2

ohh 54 2

ohhmm 56 2

ojobname 123 2

olday BC 2

oldd BA 2

olhh AC 2

olhhmm A8 2

olmd B6 2

olmm AE 2

olwk BD 2

olymd B0 2

olyyddd BF 2

omm 50 2

ommyy 46 2

oopno 94 2

ossid 5A 2

oww 110 2

owwd 3F 2

owwlast 144 2

owwmonth 143 2

oxjobnam 5E 2

156 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

oym 2C 2

oymd 32 2

oymd1 6 2

oymd2 C 2

oymd3 14 2

oyy 4A 2

oyyddd 3A 2

oyymm 42 2

oyyyy 4C 2

JDT - SETVAR defined temporary variables

Name : DCLJDT

Function:
This block describes the temp variables defined by the SETVAR directive.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE * jdt

0 (0) CHARACTER 20 JdtHead fixed part of JDT

0 (0) CHARACTER 4 Jdteye descriptor always
'JDT '

4 (4) CHARACTER 2 Jdtvers block version

6 (6) CHARACTER 1 JdtWarnMsg Y= issue "not ref"
messages N= do
not issue message

7 (7) CHARACTER 1 * not used

8 (8) SIGNED 4 Jdtvars of variables in
table

12 (C) SIGNED 4 Jdtmax max of variables
allowed

16 (10) ADDRESS 4 Jdtnxtp address of next
JDT ! 0

20 (14) CHARACTER * JdtVarTab Variable part of
JDU

20 (14) CHARACTER 64 JdtVariables (*) Address of
variables

20 (14) CHARACTER 4 JdtFlags flags

20 (14) CHARACTER 1 JdtUsed Y = variavle was
referenced

21 (15) CHARACTER 1 JdtPhase U = SETUP, S =
SUBMIT

22 (16) CHARACTER 2 * Y = variavle was
referenced

Chapter 4. Troubleshooting and reference 157

Offsets

24 (18) SIGNED 4 JdtVarL length of total
string that is to be
substistuted

28 (1C) CHARACTER 48 JdtValue edit value to be
used at
substitution of
this var.

76 (4C) CHARACTER 8 JdtVname name of variable

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 64 JdtSvar mask for JDT
substitution

0 (0) CHARACTER 4 * NOTE: This mask
must much one
single entry in
JdtVariables

0 (0) CHARACTER 1 JdtSused var used in phase

1 (1) CHARACTER 1 JdtSPhase current phase

2 (2) CHARACTER 2 *

4 (4) SIGNED 4 JdtSvarL value length

8 (8) CHARACTER 48 JdtSValue substitution value

56 (38) CHARACTER 8 JdtSVname name of variable

Cross reference

Name Hex Offset Hex Value Level

jdt 0 1

Jdtmax C 3

Jdtvars 8 3

Jdteye 0 3

JdtFlags 14 4

JdtHead 0 2

Jdtnxtp 10 3

JdtPhase 15 5

JdtSPhase 1 3

JdtSused 0 3

JdtSValue 8 2

JdtSvar 0 1

JdtSvarL 4 2

JdtSVname 38 2

JdtUsed 14 5

JdtValue 1C 4

JdtVariables 14 3

158 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

JdtVarL 18 4

JdtVarTab 14 2

Jdtvers 4 3

JdtVname 4C 4

JdtWarnMsg 6 3

JDU - Redefined OPC/ESA date and time variables

Name : DCLJDU

Function:
This block describes the contents and the format of OPC predefined
variables as redefined by the SETFORM OPC statement in the JCL.
NOTE: The JDU and JDUV controlblocks are in contigious storage
JudCurr, JduOcc, JduOccl variables are initialized when the Jdu cbs
are created. The values are picked up from predefined Occ and
Current date /time variables

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 1192 jdu

0 (0) CHARACTER 168 JduHead fixed part of JDU

0 (0) CHARACTER 4 Jdueye descriptor always
'JDU '

4 (4) CHARACTER 2 Jduvers block version

6 (6) CHARACTER 2 * not used

8 (8) SIGNED 4 JduTotsize total size for JDU*
blocks

12 (C) CHARACTER 8 JduCurrYmd current date
YYYYMMDD

20 (14) CHARACTER 5 JduCurrJulian current julian date
YYDDD

25 (19) CHARACTER 6 JduCurrTime current time
HHMMSS

31 (1F) CHARACTER 5 JduOlJulian oper latest start
julian

36 (24) CHARACTER 8 JduOlYmd oper latest start
YYMMDD

44 (2C) CHARACTER 4 JduOlTime oper latest start
HHMM

48 (30) CHARACTER 8 JduOiDate oper ia date
YYYYMMDD

56 (38) CHARACTER 5 JduOiJulian oper ia julian date
YYDDD

61 (3D) CHARACTER 4 JduOiTime oper ia time
HHMM

Chapter 4. Troubleshooting and reference 159

Offsets

65 (41) CHARACTER 8 JduOccYmd occ ia date
YYYYMMDD

73 (49) CHARACTER 5 JduOccJulian occ ia julian date
YYDDD

78 (4E) CHARACTER 4 JduOccTime occ ia time
HHMM

82 (52) CHARACTER 8 JduOccLw occ last work day
in month

90 (5A) CHARACTER 5 JduOccLwJulian occ last work day
JULIAN

95 (5F) CHARACTER 8 JduOccLc occ last cal day in
month

103 (67) CHARACTER 5 JduOccLcJulian occ last cal day
JULIAN

108 (6C) CHARACTER 8 JduOccFc occ first cal day in
month

116 (74) CHARACTER 5 JduOccFcJulian occ first cal day
JULIAN

121 (79) CHARACTER 8 JduOccFw occ first work day
in month

129 (81) CHARACTER 5 JduOccFwJulian occ first work day
JULIAN

134 (86) CHARACTER 8 JduOccFwYear occ first work day
in year

142 (8E) CHARACTER 5 JduOccFwJulianYr occ first work day
JULIAN

147 (93) CHARACTER 8 JduOccLwYear occ last work day
in year

155 (9B) CHARACTER 5 JduOccLwJulianYr occ last work day
JULIAN

160 (A0) CHARACTER 8 * spare

168 (A8) CHARACTER 1024 JduVarTab Variable part of
JDU

168 (A8) CHARACTER 64 JduVariables (16) Address of
variables

168 (A8) SIGNED 4 JduOffset offset to variable
from

172 (AC) SIGNED 4 JduVarL length of total
string that is to be
substistuted

176 (B0) CHARACTER 47 JduValue edit value to be
used at
substitution of
this var.

223 (DF) CHARACTER 1 JduVflags processing flags

1... JduvSetup 1= variable aval.
at setup

.111 1111 * not used

160 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

224 (E0) CHARACTER 8 JduVname name of variable

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 942 jduv description of a
varible

0 (0) CHARACTER 46 JduvHead fixed part of
description

0 (0) SIGNED 2 Jduv number of values
in table

2 (2) CHARACTER 2 JduvFormat 'DA' = Date
related 'TI' = Time
format

4 (4) CHARACTER 40 JduvSdelim string before
date/time

44 (2C) SIGNED 2 JduvSdelimL length of delim
before strg

46 (2E) CHARACTER 56 JduvDesc (16) Description

46 (2E) CHARACTER 4 JduvType Keyword type
(MM,DD,CC,YY,
CCYY,HH,SS)

50 (32) SIGNED 2 JduvStart Start position in
string

52 (34) SIGNED 2 JduvEnd End position in
string

54 (36) CHARACTER 4 JduvVal Value for this
type 1993,10bb
and so on

58 (3A) SIGNED 2 JduvValL Length of value

60 (3C) CHARACTER 40 JduvDelim Delimiter after
this one

100 (64) SIGNED 2 JduvDelimL length of
delimiter

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 64 JduSvariable Used to conform
with other
methods for
addressing vars to
be subst. in
JHSLN/JHTRN
NOTE: This
mapping must
map a single
entry in JduVartab

0 (0) SIGNED 4 JduSOffset offset to variable
from

Chapter 4. Troubleshooting and reference 161

Offsets

4 (4) SIGNED 4 JduSVarL length of total
string that is to be
substistuted

8 (8) CHARACTER 47 JduSValue edit value to be
used at
substitution of
this var.

55 (37) CHARACTER 1 JduSFlags processing flags

1... JdusSetup 1= variable avail.
art setup

.111 1111 * not used

56 (38) CHARACTER 8 JduSVname name of variable

Cross reference

Name Hex Offset Hex Value Level

jdu 0 1

JduCurrJulian 14 3

JduCurrTime 19 3

JduCurrYmd C 3

Jdueye 0 3

JduHead 0 2

JduOccFc 6C 3

JduOccFcJulian 74 3

JduOccFw 79 3

JduOccFwJulian 81 3

JduOccFwJulianYr 8E 3

JduOccFwYear 86 3

JduOccJulian 49 3

JduOccLc 5F 3

JduOccLcJulian 67 3

JduOccLw 52 3

JduOccLwJulian 5A 3

JduOccLwJulianYr 9B 3

JduOccLwYear 93 3

JduOccTime 4E 3

JduOccYmd 41 3

JduOffset A8 4

JduOiDate 30 3

JduOiJulian 38 3

JduOiTime 3D 3

JduOlJulian 1F 3

JduOlTime 2C 3

162 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

JduOlYmd 24 3

JduSFlags 37 2

JduSOffset 0 2

JdusSetup 37 80 3

JduSValue 8 2

JduSvariable 0 1

JduSVarL 4 2

JduSVname 38 2

JduTotsize 8 3

jduv 0 1

Jduv 0 3

JduValue B0 4

JduVariables A8 3

JduVarL AC 4

JduVarTab A8 2

JduvDelim 3C 3

JduvDelimL 64 3

JduvDesc 2E 2

JduvEnd 34 3

Jduvers 4 3

JduVflags DF 4

JduvFormat 2 3

JduvHead 0 2

JduVname E0 4

JduvSdelim 4 3

JduvSdelimL 2C 3

JduvSetup DF 80 5

JduvStart 32 3

JduvType 2E 3

JduvVal 36 3

JduvValL 3A 3

JHS - Shared parameters for JHSET and JHUTL

Name : DCLJHS

Function:
This block contains parameters used by both JHSET and JHUTL.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 212 JHSETcom

Chapter 4. Troubleshooting and reference 163

Offsets

0 (0) CHARACTER 60 wformat format string in
local

60 (3C) CHARACTER 16 Wcalendar occurrence
calendar name

2 HCPAREA char(length(HCPrm)), parameter area

76 (4C) CHARACTER 6 occia_base ia date (from
OYMD1)

82 (52) CHARACTER 6 olate_base latest start (from
OLYMD)

88 (58) CHARACTER 6 cdate_base current d. base
(from
CYYMMDD)

94 (5E) CHARACTER 6 occia_baset ia time (from
OHHMM)

100 (64) CHARACTER 6 olate_baset latest start
time(from
OLHHMM)

106 (6A) CHARACTER 8 ctime_baset current time (from
HHMMSSXX)

114 (72) CHARACTER 8 varname variable name

122 (7A) CHARACTER 3 number number to
add/subtract
(date)

125 (7D) CHARACTER 3 * free

128 (80) SIGNED 4 seconds sec*100 to
add/subtract
(time)

132 (84) CHARACTER 2 Ctype type to
add/subtract

134 (86) CHARACTER 6 fase = parm phase

140 (8C) SIGNED 4 signpos position of sign

144 (90) SIGNED 4 var 1st pos for
category

148 (94) SIGNED 4 var_end last pos for
category

152 (98) SIGNED 4 digit 1st pos of digits

156 (9C) SIGNED 4 digit_end last pos of digits

160 (A0) SIGNED 4 type_start 1st pos for type
(wd,cd....)

164 (A4) SIGNED 4 var_cat variable category

168 (A8) SIGNED 4 i

172 (AC) SIGNED 4 j

176 (B0) SIGNED 4 k

180 (B4) SIGNED 4 x

184 (B8) SIGNED 4 j1 loop indexes

188 (BC) SIGNED 4 rc local return code

164 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

192 (C0) SIGNED 4 currvar work index

196 (C4) SIGNED 4 currJdt current JDt entry

200 (C8) ADDRESS 4 wtubptr = tubptr

204 (CC) ADDRESS 4 wjduvptr = jduvptr $CQOC

208 (D0) ADDRESS 4 wjdtptr = jdtptr $CQOA

Cross reference

Name Hex Offset Hex Value Level

cdate_base 58 2

ctime_baset 6A 2

Ctype 84 2

currJdt C4 2

currvar C0 2

digit 98 2

digit_end 9C 2

fase 86 2

i A8 2

j AC 2

JHSETcom 0 1

j1 B8 2

k B0 2

number 7A 2

occia_base 4C 2

occia_baset 5E 2

olate_base 52 2

olate_baset 64 2

rc BC 2

seconds 80 2

signpos 8C 2

type_start A0 2

var 90 2

var_cat A4 2

var_end 94 2

varname 72 2

Wcalendar 3C 2

wformat 0 2

wjdtptr D0 2

wjduvptr CC 2

wtubptr C8 2

x B4 2

Chapter 4. Troubleshooting and reference 165

JV - JCL Variable table layout

Name : DCLJV

Function:
JV layout.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE * jv jcl variable table

0 (0) CHARACTER 98 jvcommon identifier

0 (0) CHARACTER 2 * reserved for vsam
mods/02

2 (2) CHARACTER 23 jvkey key of record
table

2 (2) CHARACTER 16 jvtable jcl variable table
id

18 (12) CHARACTER 7 * always blank

25 (19) CHARACTER 1 * not used

26 (1A) CHARACTER 8 jvlu last updating user

34 (22) CHARACTER 4 jvlt last update time
hhmm

38 (26) CHARACTER 6 jvld last update date
yymmdd

44 (2C) CHARACTER 24 jvdes table description

68 (44) SIGNED 2 jvvar number of vars in
table

70 (46) CHARACTER 16 jvown owner id

86 (56) CHARACTER 2 * not used

88 (58) CHARACTER 8 jvluts last update
timestamp

96 (60) CHARACTER 2 * not used

98 (62) CHARACTER * jvarsect variable part of
table

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 476 jvtab jcl var table, var
part

0 (0) CHARACTER 8 jvvar jcl variable name

8 (8) CHARACTER 44 jvdfl jcl variable def
value

52 (34) CHARACTER 1 jvuc Y = uppercase,
N=mixed

53 (35) CHARACTER 1 jvstp prompt / setup /
submit

54 (36) SIGNED 2 jvlg value length

56 (38) CHARACTER 7 jvtyp verification type

166 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

63 (3F) CHARACTER 8 jvex substitution exit
name

71 (47) CHARACTER 1 jvinp input required

72 (48) SIGNED 2 jvpos replace position
jcl data

74 (4A) CHARACTER 1 jvnum numeric

75 (4B) CHARACTER 2 jvcmp comparison
operator

77 (4D) CHARACTER 44 jvpat validation pattern

121 (79) CHARACTER 102 jvvld valid values

121 (79) CHARACTER 51 jvvld1 first line

172 (AC) CHARACTER 51 jvvld2 second line

223 (DF) CHARACTER 204 jvtxt dialog text

427 (1AB) CHARACTER 20 jvtdes description

447 (1BF) CHARACTER 1 * reserved

448 (1C0) SIGNED 2 jvnrp number of dep
values

450 (1C2) CHARACTER 8 jvind independent
variable name

458 (1CA) CHARACTER 2 jvvers version number

460 (1CC) CHARACTER 2 jvsubs substring start
posVJA

462 (1CE) CHARACTER 2 jvsubl substring length

464 (1D0) CHARACTER 12 * reserved

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 88 jvd dependencies

0 (0) CHARACTER 44 jvdiv value of setting
variable

44 (2C) CHARACTER 44 jvddv dependent
variable value

Cross reference

Name Hex Offset Hex Value Level

jv 0 1

jvvar 44 3

jvarsect 62 2

jvcmp 4B 2

jvcommon 0 2

jvd 0 1

jvddv 2C 2

jvdes 2C 3

Chapter 4. Troubleshooting and reference 167

Name Hex Offset Hex Value Level

jvdfl 8 2

jvdiv 0 2

jvex 3F 2

jvind 1C2 2

jvinp 47 2

jvkey 2 3

jvld 26 3

jvlg 36 2

jvlt 22 3

jvlu 1A 3

jvluts 58 3

jvnrp 1C0 2

jvnum 4A 2

jvown 46 3

jvpat 4D 2

jvpos 48 2

jvstp 35 2

jvsubl 1CE 2

jvsubs 1CC 2

jvtab 0 1

jvtable 2 4

jvtdes 1AB 2

jvtxt DF 2

jvtyp 38 2

jvuc 34 2

jvvar 0 2

jvvers 1CA 2

jvvld 79 2

jvvld1 79 3

jvvld2 AC 3

MCA - TWS/ESA common area

Name : DCLMCA

Function:
This segment declares the TWS/ESA common area.
Most TWS/ESA control blocks can be reached via the MCA.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 392 mca TWS/ESA
communication area

168 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

0 (0) CHARACTER 4 mcadesc block descriptor =
'MCA '

4 (4) CHARACTER 10 mcalevel MCA block code
level

4 (4) CHARACTER 2 mcaver block mapping
version

6 (6) CHARACTER 8 mcafmid TWS/ESA tracker
fmid

14 (E) BITSTRING 2 mcaflags mca options

1... mcatso 1: tso user built mca

.1.. mcaasxb 1: asxb was
modified

..1. mcaacee 1: acee built

...1 mcaracf 1: subres profiles

.... 1... mcaesa : active on mvs/esa

.... .1.. mcasp4 1: mvs/sp 4.1 or
later

.... ..1. mcamlog 1: msg log is
reserved

.... ...1 mca313 1: mvs/sp 3.1.3 or
later

15 (F) 1... mcaqfcan 1: ss cancld due to
qfull

.1.. mcanoprm 1: do not open
parmlib

..1. mcaedpw 1: waiting for edp

...1 mcasp422 1: mvs/sp 4.2.2 or
later

.... 1... mcapace 1: event inflow
paced

.... .1.. mcaupace 1: emgr ask for
resume

.... ..1. mcartrq 1: queue to DRTQ

.... ...1 mcatcpr 1: ta task restarting

--
TWS/ESA control block addresses follow
--

16 (10) ADDRESS 4 mcaascb eqqmajor ascb
address

20 (14) ADDRESS 4 mcamtcb eqqmajor tcb
address

24 (18) ADDRESS 4 mcaopts addr of options
block

28 (1C) ADDRESS 4 mcaftab file table address

32 (20) ADDRESS 4 mcastemj addr 1st major
subtask

Chapter 4. Troubleshooting and reference 169

Offsets

36 (24) ADDRESS 4 mcastenm addr 1st nmm
subtask

40 (28) ADDRESS 4 mcastegs addr 1st genserv
subtask

44 (2C) ADDRESS 4 mcaopecb addr of oper cmd
ecb

48 (30) ADDRESS 4 mcassvt addr of tws ssvt

52 (34) ADDRESS 4 mcassct addr of tws ssct

56 (38) ADDRESS 4 mcatsob addr of tso table
block

60 (3C) ADDRESS 4 mcanmmb addr of nmm
parameters

64 (40) ADDRESS 4 mcaedpb addr of edp block

68 (44) ADDRESS 4 mcaprip addr of pri block

72 (48) ADDRESS 4 mcasrap addr of serv routn
array

76 (4C) ADDRESS 4 mcasure addr of su/re table

80 (50) ADDRESS 4 mcanabb addr of vtam i/o
params

84 (54) ADDRESS 4 mcadiap addr of diagnose
options

88 (58) ADDRESS 4 mcacpnq addr of cp enq
statistics

92 (5C) ADDRESS 4 mcatmlog tcb addr of mlog
reserver

96 (60) ADDRESS 4 mcajancp js interface anchor
block

100 (64) ADDRESS 4 mcaxsip XCF system info cb

104 (68) ADDRESS 4 mcaqfecb addr to q full ecb

108 (6C) ADDRESS 4 mcaasip APPC system info
cb

112 (70) ADDRESS 4 mcaSyncEcbPtr HT Client to Server
Sync

116 (74) ADDRESS 4 mcaTSRAp addr of Topology
parsing

120 (78) ADDRESS 4 mcaFSRAp addr of Data Store
service routines

124 (7C) ADDRESS 4 mcasub addr of sub parm
area

128 (80) ADDRESS 4 mcassxp SSX block address

132 (84) ADDRESS 4 mcarsip RODM system info
cb

136 (88) ADDRESS 4 mcajltbl mca job log table
ptr

140 (8C) ADDRESS 4 mcarodmopt RODM options table

144 (90) ADDRESS 4 mcahcm HCMain address

170 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

148 (94) ADDRESS 4 mcaID Local Id event area

152 (98) ADDRESS 4 mcaJopts address of JOBOPTS
parms

156 (9C) ADDRESS 4 mcaanmmp always nmmpointer

160 (A0) ADDRESS 4 mcaqueptr current queue elem
ptr

--
TWS/ESA service routine addresses follow
--

164 (A4) ADDRESS 4 mcamsgx message routine
address

168 (A8) ADDRESS 4 mcaseqx seq i/o service
routine

172 (AC) ADDRESS 4 mcapdsx pds i/o service
routine

176 (B0) ADDRESS 4 mcaprmx param member
parse rtn

180 (B4) ADDRESS 4 mcaquex queue server routine

184 (B8) ADDRESS 4 mcanowx current time routine

188 (BC) ADDRESS 4 mcavsam addr vsam file
handler

192 (C0) ADDRESS 4 mcavsamb addr bex vsam file
handler

196 (C4) ADDRESS 4 mcasubx addr job submit
routine

200 (C8) ADDRESS 4 mcarelx addr job release
routine

204 (CC) ADDRESS 4 mcaevhx addr of event
handler

208 (D0) ADDRESS 4 mcamcpx addr of modify curr
plan

212 (D4) ADDRESS 4 mcabexp bex services address

216 (D8) ADDRESS 4 mcaaidx ZNOWX format
clone address

220 (DC) ADDRESS 4 mcalvck level check routine
adress

224 (E0) ADDRESS 4 mcaznqd ZNQDX lock
dsname

228 (E4) ADDRESS 4 mcaettp ETT info for CP04

232 (E8) ADDRESS 4 mcaIDecb EW ID event ECB

--
miscellaneous Tivoli Workload Sscheduler constants
--

236 (EC) SIGNED 2 mcansubs number of subsys
subtasks

238 (EE) SIGNED 2 mcagmtof gmt offset, minutes

240 (F0) SIGNED 2 mcaracrtrc racroute trace level

Chapter 4. Troubleshooting and reference 171

Offsets

242 (F2) BITSTRING 2 mcaDSTORE Data Store task
status

1... DBAReady Data base init OK

.1.. DBAFail Data base ended

..1. JQUReady Jes queue init OK

...1 JQUFail Jes queue ended

.... 1... mcaRefrCP

242 (F2) BITSTRING 1 *

243 (F3)1.. Fprocin

.... ..1. Fmethod Data Store method
trace

.... ...1 FParser Data Store parser
trace

244 (F4) SIGNED 4 mcagmtSEC gmt offset, seconds

248 (F8) CHARACTER 1 mcajes primary jes, A=js2,
B=js3

249 (F9) CHARACTER 1 mcacjes jes command 1st
character

250 (FA) CHARACTER 4 mcassnm TWS/ESA
subsystem name

254 (FE) CHARACTER 8 mcamajnm TWS/ESA major
enq name

262 (106) CHARACTER 8 mcaclass racf resource class
name

270 (10E) CHARACTER 8 mcanjenm nje node name

278 (116) CHARACTER 4 mcaqfqn name of full queue

282 (11A) CHARACTER 8 mcanvid Netview Receiver
ID

290 (122) CHARACTER 1 mcadsclas JES class for
Datastore

291 (123) CHARACTER 1 mcaSPIN Y = SPIN available;
N = SPIN not
available to server
block

292 (124) ADDRESS 4 mcaphbp

296 (128) CHARACTER 5 mcaclnjob clean up job name

301 (12D) CHARACTER 1 mcaddrspc address space type:
O =
controller/tracker; S
= server; D = data
store; B = batch; T =
Trial EQQDTTOP; L
= Batch Loader

302 (12E) CHARACTER 8 MCAJesfmid JES fmid

310 (136) CHARACTER 1 MCAtraces

1... MCAzzSPIN SPIN traces

.111 1111 *

172 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

311 (137) CHARACTER 1 mcallopt LISTLOG option
A!F!N

312 (138) BITSTRING 6 mcasubrs protected
subresources

1... mcaadnm ada.adname is a
resource

.1.. mcaadow ado.owner is a
resource

..1. mcaadgr adg.group is a
resource

...1 mcaadjb adj.jobname is a
resource

.... 1... mcacpad cpa.adname is a
resource

.... .1.. mcacpow cpo.owner is a
resource

.... ..1. mcacpgr cpg.group is a
resource

.... ...1 mcacpjb cpj.jobname is a
resource

313 (139) 1... mcacpws cpw.wsname is a
resource

.1.. mcajcad jsa.adname is a
resource

..1. mcajcjb jsj.jobname is a
resource

...1 mcajcws jsw.wsname is a
resource

.... 1... mcajcow jso.owner is a
resource

.... .1.. mcajcgr jsg.group is a
resource

.... ..1. mcaltad lta.adname is a
resource

.... ...1 mcaltow lto.owner is a
resource

314 (13A) 1... mcaoiad oia.adname is a
resource

.1.. mcawsws wsw.wsname is a
resource

..1. mcarlad rla.adname is a
resource

...1 mcarlow rlo.owner is a
resource

.... 1... mcarlgr rlg.group is a
resource

.... .1.. mcarlws rlw.wsname is a
resource

Chapter 4. Troubleshooting and reference 173

Offsets

.... ..1. mcaclcn clc.calname is a
resource

.... ...1 mcaprpn prp.pername is a
resource

315 (13B) 1... mcaetnm ete.name is a
resource

.1.. mcaetad eta.name is a
resource

..1. mcasrnm srs.name is a
resource

...1 mcavjvo jv.owner is a
resource

.... 1... mcavjvn jv.tabname is a
resource

.... .1.. mcacpwo cpz.wsname is a res

.... ..1. mcacpgd cpd.OCCgrp is a res

.... ...1 mcaltgd ltd.OCCgrp is a res

316 (13C) 1... mcaadgd add.adgrp is a res

.1.. mcarlwst rl.wsstat is a res

..1. mcardrn rdr.name is a res

...1 mcaadex ade.extname is a res

.... 1... mcacpex cpe.extname is a res

.... .1.. mcaadse ad.secelem is a res

.... ..1. mcacpse cp.secelem is a res

.... ...1 mcadbrp rp.reptype is a res

317 (13D) 1... mcaADinuse AD used by batch

.1.. mcaADVERrun AD VER done

..1. mcapif

...1 1111 *

318 (13E) BITSTRING 2 mcaflags2 flags

1... mcasp52 1: mvs/sp 5.2 or
later

.1.. mcasymb 1: perform symbol
subst

..1. mcaux002 exit2 invoked

...1 mcawaenq deq after abend?

.... 1... mcadbg for debug purpose

.... .1.. mcajtblock ON: JTB is locked

.... ..1. mcaTWSCntlStart On at controller
StartUp

.... ...1 mcaBulkDiscovery bulc disc is already
running

319 (13F) 1... mcalock2b

174 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

.1.. mcastopc On = stop command
issued

..11 1111 * free

320 (140) ADDRESS 4 mcatplgyp Topology CB
address

324 (144) ADDRESS 4 mcaSCLIBdcb sclib dcb ptr

324 (144) SIGNED 4 mcaHTDSlastrec

328 (148) ADDRESS 4 mcaCtoken token for C
environment

328 (148) SIGNED 4 mcaHTDSlastcyc

332 (14C) SIGNED 4 mcauserf reserved for tws
exits

336 (150) SIGNED 2 mcaquelen QUEUELEN
changed value

338 (152) BITSTRING 2 mcaperf Performance flags

1... mcaexiDB EXIT debug

.1.. mcajclDB JCL debug

..1. mcaE105 E105 msg flag

...1 mcaZ308 Z308 msg flag

.... 1... mcan069 N069 msg flag

338 (152) BITSTRING 1 * free

340 (154) SIGNED 2 mcaTimeSta stats msg interval
time

342 (156) SIGNED 2 mcablrc BL rc with
EQQY221E

344 (158) ADDRESS 4 MCADBGp

348 (15C) ADDRESS 4 mcamlogd mlog dsname
address

--
2 mcafarb ptr(31) , farb ptr
2 lockrc bin(31) ,
--

352 (160) UNSIGNED 2 mcaHT_evtsseq

354 (162) UNSIGNED 2 *

356 (164) SIGNED 4 mcaHT_evtchkcyc

360 (168) CHARACTER 4 mcaFINDmem

360 (168) BITSTRING 3 mcaTTR

363 (16B) BITSTRING 1 mcaconc

364 (16C) SIGNED 4 mcaENFTOK57 ENFREQ 57 dtoken

364 (16C) SIGNED 4 mcaHTDSespN

368 (170) SIGNED 4 mcaWLMQsz WLM query size

368 (170) SIGNED 4 mcaHTDSespT

372 (174) SIGNED 4 mcaENFTOK41 ENFREQ 41 dtoken

Chapter 4. Troubleshooting and reference 175

Offsets

376 (178) ADDRESS 4 mcamsgh bufmsg routine
address

380 (17C) ADDRESS 4 mcaEXTp address of extended
MCA

384 (180) SIGNED 4 mcaENFTOK53 ENFREQ 53 dtoken

388 (184) ADDRESS 4 mcaux014 address of eqqux014

392 (188) CHARACTER mcaend end of mca

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 324 mcaEXT extended MCA

0 (0) ADDRESS 4 mcaANCQp adress of mcaFLque

4 (4) CHARACTER 8 mcaSYSNAME &SYSNAME

12 (C) ADDRESS 4 mcajtab address of
EQQZJTAB

16 (10) ADDRESS 4 mcadsiox address of
EQQDSIOX

20 (14) ADDRESS 4 mcadsini address of
EQQDSINI

24 (18) ADDRESS 4 mcajtbp ptr to JTB

28 (1C) ADDRESS 4 mcaX14tabp exit14 tabptr

32 (20) SIGNED 4 mcaX14numr exit14 numrow

36 (24) SIGNED 4 mcaX14rsiz exit14 recsize

40 (28) ADDRESS 4 mcaDSViewp ptr to DSV
command area

44 (2C) CHARACTER 8 mcaoptmem options member

52 (34) ADDRESS 4 mcadtbaux pointer to refresh
dest

56 (38) SIGNED 4 mcaavildst destination slots
available for refresh

60 (3C) ADDRESS 4 mcahtca pointer to htca

64 (40) SIGNED 4 mcahtcauxn len of aux htc

68 (44) ADDRESS 4 mcahtcaux pointer to auxiliary
htc

72 (48) SIGNED 4 mcahtsauxn len of aux hts

76 (4C) ADDRESS 4 mcahtsaux pointer to auxiliary
hts

80 (50) ADDRESS 4 mcahtsa pointer to htsa

84 (54) ADDRESS 4 mcahtcp ptr to HTC block

88 (58) SIGNED 4 mcahtcl length of HTC block

92 (5C) ADDRESS 4 mcahtsp ptr to HTS block

96 (60) SIGNED 4 mcahtsl length of HTS block

100 (64) CHARACTER 2 * free

102 (66) UNSIGNED 4 mcasseqconf last sseq confirmed

176 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

104 (68) SIGNED 4 mcarecconf last HTDS record
confirmed

108 (6C) SIGNED 4 mcacycconf last HTDS cycle
confirmed

112 (70) ADDRESS 4 *(52) free

320 (140) ADDRESS 4 mcaHTdbfP free

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 12 mcaFLque

0 (0) ADDRESS 4 mcaANCQp1 floptmsgqu1

4 (4) ADDRESS 4 mcaANCQp2 floptmsgqu2

8 (8) ADDRESS 4 mcaANCQpT floptmsgqut

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 28 mcaDSView

0 (0) CHARACTER 16 mcaDSV_AD adid

16 (10) CHARACTER 10 mcaDSV_IA ia

26 (1A) SIGNED 2 mcaDSV_OP opnum

Offsets

Dec Hex Type Len Name (Dim)

0 (0) STRUCTURE * mcaHTpage

0 (0) CHARACTER 12 mcaHTfix

0 (0) ADDRESS 4 mcaHTnext

4 (4) ADDRESS 4 mcaHTtot

8 (8) SIGNED 4 mcaHToff

12 (C) CHARACTER * mcaHTend

Cross reference

Name Hex Offset Hex Value Level

DBAFail F2 40 3

DBAReady F2 80 3

Fmethod F3 02 3

FParser F3 01 3

Fprocin F3 04 3

JQUFail F2 10 3

JQUReady F2 20 3

mca 0 1

mcaacee E 20 3

Chapter 4. Troubleshooting and reference 177

Name Hex Offset Hex Value Level

mcaadex 13C 10 3

mcaadgd 13C 80 3

mcaadgr 138 20 3

mcaADinuse 13D 80 3

mcaadjb 138 10 3

mcaadnm 138 80 3

mcaadow 138 40 3

mcaadse 13C 04 3

mcaADVERrun 13D 40 3

mcaaidx D8 2

mcaANCQp 0 2

mcaANCQpT 8 2

mcaANCQp1 0 2

mcaANCQp2 4 2

mcaanmmp 9C 2

mcaascb 10 2

mcaasip 6C 2

mcaasxb E 40 3

mcaavildst 38 2

mcabexp D4 2

mcablrc 156 2

mcaBulkDiscoveryRunning 13E 01 3

mcacjes F9 2

mcaclass 106 2

mcaclcn 13A 02 3

mcaclnjob 128 2

mcaconc 16B 3

mcacpad 138 08 3

mcacpex 13C 08 3

mcacpgd 13B 02 3

mcacpgr 138 02 3

mcacpjb 138 01 3

mcacpnq 58 2

mcacpow 138 04 3

mcacpse 13C 02 3

mcacpwo 13B 04 3

mcacpws 139 80 3

mcaCtoken 148 2

mcacycconf 6C 2

mcadbg 13E 08 3

MCADBGp 158 2

178 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

mcadbrp 13C 01 3

mcaddrspc 12D 2

mcadesc 0 2

mcadiap 54 2

mcadsclas 122 2

mcadsini 14 2

mcadsiox 10 2

mcaDSTORE F2 2

mcaDSV_AD 0 2

mcaDSV_IA 10 2

mcaDSV_OP 1A 2

mcaDSView 0 1

mcaDSViewp 28 2

mcadtbaux 34 2

mcaedpb 40 2

mcaedpw F 20 3

mcaend 188 2

mcaENFTOK41 174 2

mcaENFTOK53 180 2

mcaENFTOK57 16C 2

mcaesa E 08 3

mcaetad 13B 40 3

mcaetnm 13B 80 3

mcaettp E4 2

mcaevhx CC 2

mcaexiDB 152 80 3

mcaEXT 0 1

mcaEXTp 17C 2

mcaE105 152 20 3

mcaFINDmem 168 2

mcaflags E 2

mcaflags2 13E 2

mcaFLque 0 1

mcafmid 6 3

mcaFSRAp 78 2

mcaftab 1C 2

mcagmtof EE 2

mcagmtSEC F4 2

mcahcm 90 2

mcaHT_evtchkcyc 164 2

mcaHT_evtsseq 160 2

Chapter 4. Troubleshooting and reference 179

Name Hex Offset Hex Value Level

mcahtca 3C 2

mcahtcaux 44 2

mcahtcauxn 40 2

mcahtcl 58 2

mcahtcp 54 2

mcaHTdbfP 140 2

mcaHTDSespN 16C 3

mcaHTDSespT 170 3

mcaHTDSlastcyc 148 3

mcaHTDSlastrec 144 3

mcaHTend C 2

mcaHTfix 0 2

mcaHTnext 0 3

mcaHToff 8 3

mcaHTpage 0 1

mcahtsa 50 2

mcahtsaux 4C 2

mcahtsauxn 48 2

mcahtsl 60 2

mcahtsp 5C 2

mcaHTtot 4 3

mcaID 94 2

mcaIDecb E8 2

mcajancp 60 2

mcajcad 139 40 3

mcajcgr 139 04 3

mcajcjb 139 20 3

mcajclDB 152 40 3

mcajcow 139 08 3

mcajcws 139 10 3

mcajes F8 2

MCAJesfmid 12E 2

mcajltbl 88 2

mcaJopts 98 2

mcajtab C 2

mcajtblock 13E 04 3

mcajtbp 18 2

mcalevel 4 2

mcallopt 137 2

mcalock2b 13F 80 3

mcaltad 139 02 3

180 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

mcaltgd 13B 01 3

mcaltow 139 01 3

mcalvck DC 2

mcamajnm FE 2

mcamcpx D0 2

mcamlog E 02 3

mcamlogd 15C 2

mcamsgh 178 2

mcamsgx A4 2

mcamtcb 14 2

mcanabb 50 2

mcanjenm 10E 2

mcanmmb 3C 2

mcanoprm F 40 3

mcanowx B8 2

mcansubs EC 2

mcanvid 11A 2

mcan069 152 08 3

mcaoiad 13A 80 3

mcaopecb 2C 2

mcaoptmem 2C 2

mcaopts 18 2

mcapace F 08 3

mcapdsx AC 2

mcaperf 152 2

mcaphbp 124 2

mcapif 13D 20 3

mcaprip 44 2

mcaprmx B0 2

mcaprpn 13A 01 3

mcaqfcan F 80 3

mcaqfecb 68 2

mcaqfqn 116 2

mcaquelen 150 2

mcaqueptr A0 2

mcaquex B4 2

mcaracf E 10 3

mcaracrtrc F0 2

mcardrn 13C 20 3

mcarecconf 68 2

mcaRefrCP F2 08 3

Chapter 4. Troubleshooting and reference 181

Name Hex Offset Hex Value Level

mcarelx C8 2

mcarlad 13A 20 3

mcarlgr 13A 08 3

mcarlow 13A 10 3

mcarlws 13A 04 3

mcarlwst 13C 40 3

mcarodmopt 8C 2

mcarsip 84 2

mcartrq F 02 3

mcaSCLIBdcb 144 2

mcaseqx A8 2

mcaSPIN 123 2

mcasp4 E 04 3

mcasp422 F 10 3

mcasp52 13E 80 3

mcasrap 48 2

mcasrnm 13B 20 3

mcassct 34 2

mcasseqconf 66 2

mcassnm FA 2

mcassvt 30 2

mcassxp 80 2

mcastegs 28 2

mcastemj 20 2

mcastenm 24 2

mcastopc 13F 40 3

mcasub 7C 2

mcasubrs 138 2

mcasubx C4 2

mcasure 4C 2

mcasymb 13E 40 3

mcaSyncEcbPtr 70 2

mcaSYSNAME 4 2

mcatcpr F 01 3

mcaTimeSta 154 2

mcatmlog 5C 2

mcatplgyp 140 2

MCAtraces 136 2

mcatso E 80 3

mcatsob 38 2

mcaTSRAp 74 2

182 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

mcaTTR 168 3

mcaTWSCntlStart 13E 02 3

mcaupace F 04 3

mcauserf 14C 2

mcaux002 13E 20 3

mcaux014 184 2

mcaver 4 3

mcavjvn 13B 08 3

mcavjvo 13B 10 3

mcavsam BC 2

mcavsamb C0 2

mcawaenq 13E 10 3

mcaWLMQsz 170 2

mcawsws 13A 40 3

mcaxsip 64 2

mcaX14numr 20 2

mcaX14rsiz 24 2

mcaX14tabp 1C 2

mcaznqd E0 2

MCAzzSPIN 136 80 3

mcaZ308 152 10 3

mca313 E 01 3

TJCB - Tailoring JCL control block

Name : DCLTJCB

Function:
This is the js handler tailoring jcl control block. It holds
information about all imbedded jcl.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 92 tjcb tailoring jcl
control block

0 (0) CHARACTER 4 tjcbdesc descriptor always
'tjcb'

4 (4) CHARACTER 2 tjcbvers block version

6 (6) CHARACTER 2 * not used

8 (8) SIGNED 4 tjcblin number of lines in
this jcl block

12 (C) SIGNED 4 tjcbclin current jcl line
being proc

Chapter 4. Troubleshooting and reference 183

Offsets

16 (10) ADDRESS 4 tjcbtubp pointer to tub
block

20 (14) ADDRESS 4 tjcbstgp pointer to storage
allocated for jcl ,
or null if it is the
first tjcb in chain,
it also points to
the common part
of jcl record

24 (18) SIGNED 4 tjcbofst from start of
orig/fetched JCL
(the value is
number of lines)

28 (1C) ADDRESS 4 tjcbexpp pointer to
expansion work
area

32 (20) SIGNED 4 tjcbexps size of exp. work
area

36 (24) SIGNED 4 tjcbamnt amount of storage
getmained for jcl
pointed to by this
tjcb

40 (28) ADDRESS 4 tjcbjclp pointer to first jcl
line

44 (2C) ADDRESS 4 tjcbnxtp pointer to next
tjcb block

48 (30) ADDRESS 4 tjcbprep pointer to
previous tjcb
block

52 (34) SIGNED 4 tjcbnslv nesting level of
current tjcb

56 (38) CHARACTER 1 tjcbtype type of data
pointed to block
J= original JCL
M= fetched
nominated
member X=
fetched by user
exit

57 (39) CHARACTER 1 tjcbactn action Y= include
JCL N= not
included /
exclude

58 (3A) CHARACTER 8 tjcblib ddname of jcl
library

66 (42) CHARACTER 8 tjcbmem member of jcl
library

74 (4A) CHARACTER 8 tjcbusrx user exit name

82 (52) CHARACTER 1 tjcbfin data for this block
processed

184 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

83 (53) CHARACTER 1 tjcbstrm JCL stream
switches at start
of JCL governed
by this tjcb values
as in prsbsw1

84 (54) CHARACTER 4 tjcbint directive
introducing block
command,main
keyword,domain

88 (58) CHARACTER 1 tjcbstsa saved values for
stream sw

89 (59) CHARACTER 3 * reserved values as
in prsk $LBC

92 (5C) CHARACTER tjcbend end label of block

Cross reference

Name Hex Offset Hex Value Level

tjcb 0 1

tjcbclin C 2

tjcblin 8 2

tjcbactn 39 2

tjcbamnt 24 2

tjcbdesc 0 2

tjcbend 5C 2

tjcbexpp 1C 2

tjcbexps 20 2

tjcbfin 52 2

tjcbint 54 2

tjcbjclp 28 2

tjcblib 3A 2

tjcbmem 42 2

tjcbnslv 34 2

tjcbnxtp 2C 2

tjcbofst 18 2

tjcbprep 30 2

tjcbstgp 14 2

tjcbstrm 53 2

tjcbstsa 58 2

tjcbtubp 10 2

tjcbtype 38 2

tjcbusrx 4A 2

tjcbvers 4 2

Chapter 4. Troubleshooting and reference 185

TUB - Tailoring JCL control block

Name : DCLTUB

Function:
This is the js handler tailoring jcl control block.
It holds information about all imbedded jcl.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 800 tub tailoring user
block

0 (0) CHARACTER 4 tubdesc descriptor always
'TUB '

4 (4) CHARACTER 2 tubvers block version

6 (6) CHARACTER 8 tuboreqd original data type

14 (E) CHARACTER 8 tubident tailoring identifier

14 (E) CHARACTER 8 tubuser ..tso; userid

22 (16) CHARACTER 28 tubopid operation
identifier

22 (16) CHARACTER 16 tubadid ..application; id

38 (26) CHARACTER 6 tubadiad ..input; arrival
day

44 (2C) CHARACTER 4 tubadiat ..input; arrival
time

48 (30) SIGNED 2 tubopno ..operation;
number

50 (32) CHARACTER 1 tubSimulate time simulation Y
or N

51 (33) CHARACTER 1 * not used

52 (34) ADDRESS 4 tubocp addr of PIF
format CP occ

56 (38) ADDRESS 4 tubopp addr of PIF
format CP opr

60 (3C) ADDRESS 4 tubwsp address of PIF
format CP WS

64 (40) SIGNED 4 tubocl length of PIF
format CP occ

68 (44) SIGNED 4 tubopl length of PIF
format CP opr

72 (48) SIGNED 4 tubwsl length of PIF
format CP WS

76 (4C) ADDRESS 4 tubdcbp current jcl library
dcb

80 (50) ADDRESS 4 tubbufp address of jblib
buffer

84 (54) SIGNED 4 tubasubp subpool for
subseq allocs

186 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

88 (58) ADDRESS 4 tubworkp ptr to tailoring
work area

92 (5C) ADDRESS 4 tubmcap pointer to mca

96 (60) SIGNED 4 tubworkl length of tail
work area

100 (64) ADDRESS 4 tubjcbcu current tjcb

104 (68) ADDRESS 4 tubjcbfp pointer to first
tjcb

108 (6C) ADDRESS 4 tubjcblp pointer to last tjcb

112 (70) ADDRESS 4 tubjvptr pointer to jv
record buffer

116 (74) ADDRESS 4 tubdatp pointer predef
variables and
their values

120 (78) ADDRESS 4 tubtvp pointer to jcl vars
found when
searching jcl

124 (7C) SIGNED 4 tubtvarl length of
allocated var stg

128 (80) CHARACTER 2 tubtask current task
(GS,WA)

130 (82) CHARACTER 8 tubjclib current jcl library

138 (8A) CHARACTER 1 tuballv Y= variable proc.
complete

139 (8B) CHARACTER 1 * not used

140 (8C) CHARACTER 16 tubjvtab occurrence
variable table

156 (9C) CHARACTER 16 tubsearch (16) current table
search order

412 (19C) CHARACTER 16 tubTabName (16) table names array
$CXWC

668 (29C) ADDRESS 4 tubTabNameP (16) table ptrs array
$CXWA

732 (2DC) CHARACTER 8 tubfoot current footprint

740 (2E4) CHARACTER 2 tubdlm current dlm

742 (2E6) CHARACTER 1 * reserved

743 (2E7) BITSTRING 1 tubflags flag byte

1... tubosi osi operation JCL

.1.. tubboj osi operation JCL

..11 1111 * reserved

744 (2E8) SIGNED 4 tubosi number of lines
inserted

748 (2EC) ADDRESS 4 tubjcfp pointer to
feedback area

752 (2F0) ADDRESS 4 tubjdup addr of user
SETFORM date
dates

Chapter 4. Troubleshooting and reference 187

Offsets

756 (2F4) ADDRESS 4 tubtvsp addr of SAVEVAR
variable in stg

760 (2F8) ADDRESS 4 tubjdtp addr of SETVAR
variables

764 (2FC) ADDRESS 4 tubysimp addr of
simulation parms

768 (300) ADDRESS 4 tuboca addr of PIF
format occ
alwaysOEA

772 (304) ADDRESS 4 tubopa addr of PIF
format opr
alwaysOEA

776 (308) ADDRESS 4 tubwsa address of PIF
format ws
alw.OEA

780 (30C) ADDRESS 4 tubxinfp Extended Job Info
addr.

784 (310) ADDRESS 4 tubDOA DOA address
needed to $CAEC
check
DOAPSUJCL
$CAEA

788 (314) ADDRESS 4 tubcp3c CP occurrence

792 (318) ADDRESS 4 tubcp3p CP operation
record

796 (31C) ADDRESS 4 tubcp3r CP op record user
fields

800 (320) CHARACTER tubend end of tub block

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 200 tubxinf

0 (0) CHARACTER 54 tubxjnm

54 (36) CHARACTER 146 *

Cross reference

Name Hex Offset Hex Value Level

tub 0 1

tubosi 2E8 2

tubadiad 26 3

tubadiat 2C 3

tubadid 16 3

tuballv 8A 2

tubasubp 54 2

tubboj 2E7 40 3

188 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

tubbufp 50 2

tubcp3c 314 2

tubcp3p 318 2

tubcp3r 31C 2

tubdatp 74 2

tubdcbp 4C 2

tubdesc 0 2

tubdlm 2E4 2

tubDOA 310 2

tubend 320 2

tubflags 2E7 2

tubfoot 2DC 2

tubident E 2

tubjcbcu 64 2

tubjcbfp 68 2

tubjcblp 6C 2

tubjcfp 2EC 2

tubjclib 82 2

tubjdtp 2F8 2

tubjdup 2F0 2

tubjvptr 70 2

tubjvtab 8C 2

tubmcap 5C 2

tuboca 300 2

tubocl 40 2

tubocp 34 2

tubopa 304 2

tubopid 16 2

tubopl 44 2

tubopno 30 3

tubopp 38 2

tuboreqd 6 2

tubosi 2E7 80 3

tubsearch 9C 2

tubSimulate 32 2

tubTabName 19C 2

tubTabNameP 29C 2

tubtask 80 2

tubtvarl 7C 2

tubtvp 78 2

tubtvsp 2F4 2

Chapter 4. Troubleshooting and reference 189

Name Hex Offset Hex Value Level

tubuser E 3

tubvers 4 2

tubworkl 60 2

tubworkp 58 2

tubwsa 308 2

tubwsl 48 2

tubwsp 3C 2

tubxinf 0 1

tubxinfp 30C 2

tubxjnm 0 2

tubysimp 2FC 2

TV - JCL variable table record description

Name : DCLTV

Function:
Defines the layout of each non-preset variable encountered

in the jobstream. The information in the main section of the
record and the dependency information are taken unaltered
from the corresponding variable description in the JCL variable
type 3 table record.

NOTE: This block is expanded by getmains to the next multiple
of 32K whenever there is insufficient space for the next entry.
Current address and getmained length are held in tub.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 16 tv JCL variable table

0 (0) CHARACTER 4 tveye descriptor always
'tvar'

4 (4) CHARACTER 2 tvvers block version

6 (6) CHARACTER 2 * not used

8 (8) SIGNED 4 tvvars number of
variables in
storage

12 (C) SIGNED 4 tvnoff offset to next free
byte

16 (10) CHARACTER tvdata variable part of
table

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 552 tvtab

0 (0) CHARACTER 88 tvrun tailoring run-time
info

190 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Offsets

0 (0) CHARACTER 16 tvtable source table name

16 (10) CHARACTER 8 tvasusr assigned by
USER/EXIT/VAR

24 (18) CHARACTER 44 tvasg value assigned

68 (44) CHARACTER 16 tvfrst first occurrence

68 (44) SIGNED 4 tvotjcb address of source
tjcb

72 (48) SIGNED 4 tvoline JCL line within
tjcb scope

76 (4C) SIGNED 2 tvovnr seq of
identification in
line

78 (4E) CHARACTER 6 * reserved

84 (54) CHARACTER 1 tvasgtyp type of
assignment
P/E/V/D

85 (55) CHARACTER 1 tvset Y(es) ! N(o) !
D(elayed)

86 (56) CHARACTER 1 tvusg type of usage % /
& /

87 (57) CHARACTER 1 * reserved

88 (58) CHARACTER 464 tvfxd unchanged from
VSAM

88 (58) CHARACTER 8 tvvar JCL variable name

96 (60) CHARACTER 44 tvdfl JCL variable
default value

140 (8C) CHARACTER 1 tvuc uppercae Y/N

141 (8D) CHARACTER 1 tvstp prompt / setup /
submit

142 (8E) SIGNED 2 tvlg value length

144 (90) CHARACTER 7 tvtyp verification type

151 (97) CHARACTER 8 tvex substitution exit
name

159 (9F) CHARACTER 1 tvinp input required

160 (A0) SIGNED 2 tvpos replace position
JCL data

162 (A2) CHARACTER 1 tvnum numeric

163 (A3) CHARACTER 2 tvcmp comparison
operator

165 (A5) CHARACTER 44 tvpat validation pattern

209 (D1) CHARACTER 102 tvvld valid values

311 (137) CHARACTER 204 tvtxt dialog text

515 (203) CHARACTER 20 tvdes description

535 (217) CHARACTER 1 * reserved

536 (218) SIGNED 2 tvnrp number of
dependent values

Chapter 4. Troubleshooting and reference 191

Offsets

538 (21A) CHARACTER 8 tvind independent
variable name

546 (222) CHARACTER 2 * reserved

548 (224) CHARACTER 2 tvsubs substring start
pos

550 (226) CHARACTER 2 tvsubl substring length

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 88 tvd(*)

0 (0) CHARACTER 44 tvdiv value of
independent

44 (2C) CHARACTER 44 tvddv value of
dependent

Cross reference

Name Hex Offset Hex Value Level

tv 0 1

tvvars 8 2

tvasg 18 3

tvasgtyp 54 3

tvasusr 10 3

tvcmp A3 3

tvd 0 1

tvdata 10 2

tvddv 2C 2

tvdes 203 3

tvdfl 60 3

tvdiv 0 2

tvex 97 3

tveye 0 2

tvfrst 44 3

tvfxd 58 2

tvind 21A 3

tvinp 9F 3

tvlg 8E 3

tvnoff C 2

tvnrp 218 3

tvnum A2 3

tvoline 48 4

tvotjcb 44 4

192 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Name Hex Offset Hex Value Level

tvovnr 4C 4

tvpat A5 3

tvpos A0 3

tvrun 0 2

tvset 55 3

tvstp 8D 3

tvsubl 226 3

tvsubs 224 3

tvtab 0 1

tvtable 0 3

tvtxt 137 3

tvtyp 90 3

tvuc 8C 3

tvusg 56 3

tvvar 58 3

tvvers 4 2

tvvld D1 3

Messages
Messages issued by the agent for z/OS.

All messages issued by the agent for z/OS are described in Tivoli Workload
Automation: Messages and Codes.

Chapter 4. Troubleshooting and reference 193

194 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2011, 2012 195

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at http://www.ibm.com/legal/
copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

196 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 197

198 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

Index

A
accessibility x
agent for z/OS

address space
batch job definition 23
JCL procedure definition 23

data sets
diagnostic 8
event 8
message library 8
message log 8
parameter library 8

default initialization statements 9
download 4
hostname and port specification 31
libraries 5
runtime options 34
STC name 15
subsystem name 15
workstation name 25

agent for z/OS exits 38
agent for z/OS job 48
agent for z/OS optional datasets 24
agent for z/OS required datasets 23
agent for z/OS workstation 48, 49
agent restart 95
application keyword 48

B
backup domain managers 93
BEGIN JCL directive 80

C
cancel 2
CANCEL command 92
cancelling the agent 92
CDATE, JCL variable 73
CDAY, JCL variable 72
CDD, JCL variable 72
CDDD, JCL variable 72
CDDMMYY, JCL variable 72
CHH, JCL variable 72
CHHMM, JCL variable 72
CHHMMSS, JCL variable 72
CHHMMSSX, JCL variable 72
CMM, JCL variable 72
CMMYY, JCL variable 72
codepage definition 34
CODEPAGE parameter 55
coding JCL variables 66
commands

unavailable 86
COMP keyword on JCL directives 83
compound variables 67
computer name 47
conman commands 86
connection options 29

considerations when allocating
job library (EELJBLIB) 29

conventions used in publications ix
CTIME, JCL variable 73
CWW, JCL variable 72
CWWD, JCL variable 72
CYMD, JCL variable 72
CYY, JCL variable 72
CYYDDD, JCL variable 72
CYYMM, JCL variable 73
CYYMMDD, JCL variable 73
CYYYY, JCL variable 73
CYYYYMM, JCL variable 73

D
data areas

DCLDQE 99
DCLESP 121
DCLEVT 122
DCLEXI 124
DCLEXK 128
DCLEXR 131
DCLHTI 136
DCLHTSA 138
DCLJCFB 141
DCLJCL 143
DCLJCL1 148
DCLJDA 151
DCLJDT 157
DCLJDU 159
DCLJHS 163
DCLJV 166
DCLMCA 168
DCLTJCB 183
DCLTUB 186
DCLTV 190

data router subtask 92
DB2 transaction log full 97
default variable table 70
directives 74
dump options 19
dynamic workload broker 56

changing 93
hostname and port specification 31
synchronizing with 95
updating 94

dynamic workload brokerbackup
instances 93

Dynamic Workload Console
accessibility x

E
EBCDIC format 55
ECSA storage 16
education x
EELBRDS data set 57
EELEVDS 89, 90, 95
EELEXIT macro 11

EELHTDS 89, 95
EELHTREF 56, 89, 95
EELINST

data set creation 8
libraries 6
sample JCL 6
sample job creation 7
starting 6

EELJBLIB 56
EELJBLIB (job library data set)

considerations when allocating 29
EELUX002 (job-library-read exit) 39
END JCL directive 80
event data set 26
event data sets 89, 95
event filtering exit 43
event writer 26

runtime options 29
event writer subtask 92
event writer task 60
event-writer 90
events

troubleshooting 27
events generated 26
EWTROPTS 29
exit policy 29
exit51 12
exits

event filtering 43
job library read (EELUX002) 39
SMF

job initiation 18
job-end and step-end 18
record write 18

start/stop 38

F
Failover mechanism 56
FETCH JCL directive 82

G
global variable table 70
glossary ix

H
HTTP

connection options 31
HTTP client 93
HTTPOPTS 21, 31
HTTPOPTS initialization statement 25

SSLKEYRING 10
HTTPS

activating new default security
certificates 22

© Copyright IBM Corp. 2011, 2012 199

I
IEFACTRT 18
IEFU83 18
IEFUJI 18
in conman 87
initialization statements 29

event writer 29
exit policy 30
HTTP options 31
runtime options 34

J
JCL

data set 52
definition 2
definition rules 55
location in z/OS 52
member 52
name rules 55
national characters 55
programmer name 55
statement 53
tailoring 2
variable substitution

syntax 66
JCL error 89
JCL errors 88
JCL tailoring directives 74
JES

internal reader 87
JES2 exits

entry points 12
installation commands 13
load modules 12

jesexit7 12
job

definition interfaces 2
definition type 48
log 2
resiliency 58
status event 58
submission 56

job canceled 89
job completion codes 90
job definition

by JCL definition 53
by JCL reference 52
composer 52

example 52, 53, 54
Dynamic Workload Console 49
example

Dynamic Workload Console 49
JSDL 48
variable resolution 54

job error codes 88
job hangs 97
job instance management 86
job library data set (EELJBLIB)

considerations when allocating 29
job log requests 60
job logs

viewing
in conman 91
in Dynamic Workload Console 91

job print event 88

job purged event 88
job return codes 88
job state

in Dynamic Workload Console 87
job state description 86
JOB statement 90
job submission events 26
job submission flow 56
job variables

definition
in JCL 60
in JSDL 60

job-end event 87
job-end events 26
job-library-read exit (EELUX002) 39
job-start event 87
job-start events 26
job-step end events 26
job-termination event 88
job-termination events 26
JOBRC 30, 90
JSDL 2

K
kill 2, 86
kill job 86

L
link library 19
listing agent for z/OS workstations 48

M
managing job instances 86
maxdur, job stream keyword 86
maxecsa 16
MODIFY command 92
modifying the agent 92

N
national characters 55
network job entry 45
NJE 45, 60

O
OADID, JCL variable 70
OCDATE, JCL variable 73
OCTIME, JCL variable 73
ODAY, JCL variable 70
ODD, JCL variable 71
ODDD, JCL variable 71
ODMY1, JCL variable 71
ODMY2, JCL variable 71
OHH, JCL variable 71
OHHMM, JCL variable 71
OMM, JCL variable 71
OMMYY, JCL variable 71
OPIADATE, JCL variable 73
OPIATIME, JCL variable 73
OS type 48
OSSID, JCL variable 72

output manager 60
OWW, JCL variable 71
OWWD, JCL variable 71
OWWLAST, JCL variable 71
OWWMONTH, JCL variable 71
OYM, JCL variable 71
OYMD, JCL variable 71
OYMD1, JCL variable 71
OYMD2, JCL variable 71
OYMD3, JCL variable 71
OYY, JCL variable 71
OYYDDD, JCL variable 71
OYYMM, JCL variable 72
OYYYY, JCL variable 72

P
plan interruption 97
print events 26
product version 97
programmer name length 55
publications ix
purge events 26

R
RACF 20

data set protection 20
reader event 87
reader events 26
rerun 2
resynchronization messages 95
runtime options 29

S
sample exits 11

JCT I/O exit for JES2, purge 11
JES2 QMOD phase change 11
job and step completion 11
job print end 11
job start 11

sample started task
parameters 23
procedure 23

SCAN JCL directive 74
security

activating new default certificates 22
renewing default certificates 22

SETFORM JCL directive 75
SETVAR JCL directive 77
showjobs 91
simple variables 67
SMF exits 18
SMP/E 4
special characters 55
SSL 21

importing default certificates 10
security certificates 21

SSL security options 31
START command 91
START subtask 92
start/stop exit 38
started tasks 2
starting the agent 91
step-end event 87

200 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

STOP command 92
STOP subtask 92
stopping and restarting the agent 94
stopping the agent 92
submission error 89
submit subtask 92
submit task 56
subsystem definition

example 16
record 15

subsystem name 16, 47
subtasks

data router 92
event writer 92
submit 92

switching domain managers 93
sysplex 44
SYSPLEX 60
system abend 88
system commands 91
system name 47

T
TDWBHOSTNAME 94
TDWBPORT 94
technical training x
Tivoli technical training x
Tivoli Workload Scheduler for z/OS 2

SSL 21
SUBSYS STC 18

Tivoli Workload Scheduler variables 60
tracker

exits 2
training

technical x
TWSOPTS 34

codepage 55

U
updating agent configuration 94
user abend 88

V
variable resolution 60
variable table

default 70
global 70

variables
in JCL 66
predefined in JCL 70

date-related 72
dynamic-format 73
job stream-related 70
job-related 72
temporary 73

user-defined in JCL 70
VARSUB keyword of TWSOPTS 66

W
workstation name 47

changing 47

workstation type 48

Z
z/OS 48
z/OS commands 91
z/OS internal event 87

Index 201

202 Tivoli Workload Scheduler: Scheduling with the agent for z/OS

����

Product Number: 5698-WSH

Printed in USA

SC27-2771-01

	Contents
	Figures
	Tables
	About this publication
	What is new in this release
	What is new in this publication
	Who should read this publication
	Publications
	Accessibility
	Tivoli technical training
	Support information

	Chapter 1. Overview
	Chapter 2. Installing and configuring
	Load the agent for z/OS software
	Run the EELINST installation aid
	Add SMF and JES event tracking exits
	SMF exits
	JES2 exits
	Invoking the EELEXIT macro

	Update SYS1.PARMLIB
	Defining subsystems
	Authorizing the load-module library
	Updating SMF parameters
	Updating z/OS dump options
	Updating the z/OS link-library definition
	Starting the product automatically

	Update RACF for the agent for z/OS started task
	Set up the SSL environment
	Activating the new default security certificates
	Activating the new default security certificates if you are already using EELRING
	Activating the new default security certificates if you are planning to use EELRING

	Update SYS1.PROCLIB
	Complete the installation
	Starting the agent and checking the connection
	Ensuring that all installation tasks are complete
	Checking the message log
	Verifying tracking events
	Performing problem determination for tracking events

	Recommendations for allocating the job library data set (EELJBLIB)
	Customization parameters
	Specifying runtime options for the event writer
	Specifying the exit policy for the agent
	Defining HTTP connection options
	Specifying generic runtime options for the agent

	Configuring the agent for z/OS exits
	Configuring exit EELUX000 (start/stop)
	Configuring exit EELUX002 (job-library-read)
	Interface to the exit

	Configuring exit EELUX004 (event filtering)

	Running the agent in a sysplex environment

	Chapter 3. Using
	Computer and workstation names of the agent
	Listing the agents for z/OS
	Defining jobs
	Defining in the Dynamic Workload Console
	Defining in composer

	Defining the JCL
	Submitting jobs
	Using variables in your jobs
	Variables resolved by Tivoli Workload Scheduler
	Variables passing between jobs in the same job stream instance

	Variables resolved by the agent for z/OS
	Configuring the agent to run variable substitution
	Coding variables in JCL
	User-defined variables
	Predefined variables
	JCL tailoring directives

	Managing job instances
	Tracking jobs
	Controlling how the event writer records job completion codes for specific jobs

	Viewing job logs
	Using system commands to control the agent
	Switching domain managers

	Chapter 4. Troubleshooting and reference
	Understanding resynchronization messages
	Component versions must be aligned for the full current functionality
	Saturation of DB2 transaction log halts processing of jobs
	Data areas
	Messages

	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

