
Network Manager IP Edition
4.2

Reference

IBM

2021-4213-01

Note

Before using this information and the product it supports, read the information in “Notices” on page
995.

This edition applies to version 4.2 of IBM Tivoli Network Manager IP Edition (product number 5724-S45) and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2006, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this publication...xix
Publications... xix
Accessibility..xx
Tivoli technical training... xxi
Support and community information... xxii

Part 1. Languages..1

Chapter 1. Object Query Language..3
Conventions and sample databases.. 3
Features of OQL.. 4

General rules of OQL...4
Quotes in OQL... 5
OQL punctuation... 5
Logical operators of OQL...5
Precedence and association of operators.. 6
Use of regular expressions... 6
Key differences between OQL and SQL..8

Database and table creation.. 8
Datatypes.. 8
Column constraints... 9
Examples of database and table creation..10

Inserting data into a table..12
Example of inserting data into a database...12

Selecting data from a table.. 14
Counting rows in a table...15
Conditional tests in OQL...16

Examples of the like operator..16
Example use of the and Operator...17
Example use of the or operator.. 18
Example selection based on part of an object...18

Use of select to perform subqueries ... 18
Example of using subqueries to search a list...19
Examples of selecting based on part of a list...20

Selection of data into another table.. 20
Examples of using any, *, and all to perform table joins..21

Updates to records in tables.. 22
Examples of updating a list.. 23
Example of updating an object...23

Database and table listings..24
Deletion of a record from a database table... 25
Deletion of a database or table..25
The eval statement...26

Scope of the eval statement...27
Quotation marks in eval statements.. 27
Single straight back quotes ... 28
Examples of the eval statement... 28
Character escape sequences... 29
Multibyte data type... 29
Eval statement keywords... 29

 iii

Chapter 2. Stitchers and stitcher language...35
Stitcher formats..35
Stitcher structure... 36

Stitcher triggers ..36
Stitcher rules...36

Stitcher language..36
Stitcher text file structure...36
Stitcher trigger conditions.. 37
Stitcher rules...41
Stitcher language building blocks.. 103
Stitcher language comments... 104
Precedence and association of operators..104
OQL quotes in the stitcher language..105

Domain-specific stitchers.. 105

Chapter 3. Syntax for poll definition expressions...107
eval statement syntax in threshold expressions...107

SNMP variables...107
Network entity variables.. 108
Poll policy variables.. 109
Poll definition variables.. 109

Operators in threshold expressions.. 110

Chapter 4. AOC files...113
Device class hierarchy..113

EndNode class.. 114
InferredDevice class...114
NetworkDevice class.. 114

AOC syntax... 114
Components of an AOC file.. 115

Part 2. Perl API reference.. 117

Chapter 5. Perl API overview...119
RIV module...119

RIV Agent module...121
RIV App module..124
RIV OQL module... 125
RIV Param module..126
RIV Record module...127
RIV RecordCache module.. 128
RIV SnmpAccess module... 129

NCP modules..131
NCP DBI_Factory module overview...131
NCP Domain module overview...132

Synchronize with message broker...133
Install Perl API... 133
Perl builds...133
Obtain SNMP device information...134
Perl API modules ref page syntax..134

Chapter 6. Writing discovery agents... 135
Before writing a discovery agent... 135
Writing a discovery agent...135
Example discovery agents... 139

Discovery agent skeleton... 139

iv

Network entity discovery agent example.. 141
IP routing discovery agent example...141

Prototype agent def file template..145
Threads in discovery agents.. 147

Threads example.. 147
Default number of threads... 148

Chapter 7. Accessing component databases..149
Object Query Language..149
Differences between OQL and SQL..149
Actions performed on component databases...149
Example Perl scripts that operate on component databases...150

The oql_example.pl example script... 150
OQL example script.. 151

Chapter 8. Performing SNMP queries... 153
Use get methods to obtain SNMP device information.. 153
Make synchronous and asynchronous SNMP get requests.. 153
Example SNMP GET access script... 154

Declare Perl API modules.. 154
Create and initialize a RIV::Param object.. 155
Create and initialize a RIV::App object.. 155
Create and initialize RIV::SnmpAccess object...156
Check the device IP address and node name..156
Determine which SNMP GET requests to run.. 157
Perform asynchronous SNMP GET requests..157
Perform synchronous SNMP GET requests..158
Print the SNMP varops..159

Chapter 9. Writing and integrating Perl applications with third-party products....................................161
Listeners... 161
Example Listener script... 161

Declare Perl API modules.. 161
Create and initialize a RIV::Param object for Listener...162
Create and initialize a RIV::App object for Listener...162
Bind the RIV::App object to the message broker subject for Listener..162
Write database records to a log file for Listener..163
Send database records to different applications for Listener... 163

Chapter 10. RIV Modules Reference...165
RIV module reference.. 165

RIV module synopsis.. 165
AddIoHandle...166
AddSubject..167
AddTimer.. 168
DebugLevel... 169
DecryptPassword..169
EncryptPassword..170
Latency..170
MessageLevel..171
PostInput.. 172
PublishMessage..172
PublishMessage..173
RemoveIoHandle.. 174
RemoveSubject...175
RetryLimit..175
RIV::FetchRow..176
RIV::GetInput..177

 v

RIV::GetResult.. 178
RIV::GetResultSet... 180
RIV::InputFilter...180
RIV::InputQueueLength... 181
RIV::IsIpNotLoopBackOrMulticast.. 182
RIV::IsIpValid..183
RIV::IsIpv4Valid... 183
RIV::IsIpv6Valid... 184
RIV::ReadDir... 185
RIV::RivDebug...185
RIV::RivError... 186
RIV::RivMessage...187

RIV::Agent module reference.. 187
RIV::Agent module synopsis.. 188
RIV::Agent Constructor.. 188
ExtGetTelnet... 189
GetDNSAllIpAddrs..190
GetDNSAllNames..191
GetDNSFirstIpAddr...192
GetDNSFirstName.. 192
GetIpArp... 193
GetMacArp.. 194
GetMultTelnet... 194
GetPingIP..195
GetPingList..196
GetPingSubnet..197
GetTelnet...197
GetTelnetCols... 198
GetTraceRoute.. 199
GetXMLRPCData... 200
GetXMLRPCEntityData..200
LockThreads..201
PingIP..202
PingList..202
PingSubnet..203
SendNEToDisco.. 204
SendNEToNextPhase..204
SnmpGet... 208
SnmpGetBulk..208
SnmpGetNext... 210
UnLockThreads... 210

RIV::App module reference... 211
RIV::App module synopsis... 211
RIV::App Constructor..212

RIV::OQL module reference...212
RIV::OQL module synopsis...213
RIV::OQL Constructor... 214
Close..215
CreateDB...215
CreateTable... 216
Delete..217
Insert...218
Print...219
Query..219
QueryGetResult..220
QueryGetResults..221
Select.. 221
Send.. 223

vi

Update...223
RIV::Param module reference... 224

RIV::Param module synopsis... 225
RIV::Param Constructor... 225
CommandName..229
DomainName.. 229
Usage.. 230

RIV::Record module reference.. 231
RIV::Record module synopsis.. 231
RIV::Record Constructor.. 232
AddLocalNeighbour.. 232
AddLocalNeighbourTag.. 233
AddRemoteNeighbour..234
AddRemoteNeighbourTag.. 234
GetLocalNeighbours... 235
GetRemoteNeighbours...235
Print...236

RIV::RecordCache module reference.. 236
RIV::RecordCache module synopsis.. 237
RIV::RecordCache Constructor.. 237
CacheRecord...238
GetRecord... 238
GetRecords... 239

RIV::SnmpAccess module reference...240
RIV::SnmpAccess module synopsis...240
RIV::SnmpAccess Constructor... 241
ASN1ToOid..241
AsyncSnmpGet... 242
AsyncSnmpGetBulk..243
AsyncSnmpGetNext..245
GetMibHash.. 246
MaxAsyncConcurrent... 246
OidToASN1..247
SnmpGet... 247
SnmpGetBulk..248
SnmpGetNext... 249
SnmpWalk... 250
SplitOidAndIndex... 251

Chapter 11. NCP Modules Reference..253
NCP::DBI_Factory module reference.. 253

NCP::DBI_Factory module synopsis.. 253
createDbHandle..255
describeTable..259
execute_insert_auto_inc.. 260
extractCmdLineOptions..261
extractHashRefOptions.. 263
finish..265
insert_auto_inc_row...265
insert_row...266
prepare_insert_auto_inc.. 268
schema..269
setLogHandle..270
setLogLevel... 271
tables.. 272
timeStamp.. 273
toUpper... 274

NCP::Domain Reference.. 276

 vii

NCP::Domain module synopsis.. 276
NCP::Domain Constructor.. 277
clone..278
create.. 279
drop... 281
id..282
name... 283
setLogHandle..284
setLogLevel... 285
summary... 287

Part 3. Database reference.. 289

Chapter 12. Discovery databases... 291
Discovery engine database ... 291

disco.agents table...291
disco.config table..293
disco.convergedTopologies table...302
disco.dynamicConfigFiles table..302
disco.events table...303
disco.filterCustomTags table.. 304
disco.ipCustomTags table...304
disco.managedProcesses table..305
disco.NATStatus table.. 305
disco.profilingData table.. 306
disco.status table... 307
disco.tempData table... 310
Example configuration of the disco.agents table.. 310
Example configuration of the disco.config table..311
Example configuration of the disco.managedProcesses table... 311

Discovery scope database .. 312
disco.scope database schema... 312
Example scope database configuration...319

Access databases...322
snmpStack database ... 322
telnetStack database ...326

Process management databases...328
Configuring the data flow: starting stitchers on-demand..328
agents database schema..328
Stitchers database schema.. 331

Subprocess databases...332
finders database schema... 332
CollectorDetails database schema.. 336
Details database schema .. 339

Finders databases..341
collectorFinder database ...342
dbEntryFinder database...344
fileFinder database .. 346
pingFinder database .. 347

Helper Server databases..350
ARPhelper database... 351
DNSHelper database.. 353
PingHelper database.. 357
snmpHelper database.. 361
snmpFilter database...367
TelnetHelper database... 367
XmlRpcHelper database...372

viii

Tracking discovery databases..374
translations database...374
instrumentation database schema.. 378
workingEntities database...381

dbModel database..384
dbModel.access table...384
dbModel.entityDetails table... 386
dbModel.entityMap table... 386

Working topology databases... 387
fullTopology database schema...387
dNCIM schema... 388

rediscoveryStore database.. 388
rediscoveryStore.dataLibrary table..389
rediscoveryStore.rediscoveredEntities table...389

Topology manager databases..389
ncimCache database.. 389
model database schema.. 406

Failover database... 410
Ignored cached data...410
The failover database schema .. 410
Example failover database configuration.. 412

Agent Template database.. 413
Discovery agent despatch table... 413
Discovery agent returns table.. 414

Chapter 13. Polling databases.. 417
NCMONITOR databases...417

SNMP tables for polling in the ncmonitor database.. 417
Ping polling status tables... 420

NCPOLLDATA database..428
The NCPOLLDATA database... 428
NCPOLLDATA queries... 430

OQL databases... 434
config database.. 434
profiling database... 439

Chapter 14. Event enrichment databases.. 443
ncp_g_event... 443

The config database schema..443
ncp_g_event plug-ins...448

RCA plug-in... 448
SAE plug-in database... 451
Plug-in database tables..452

Chapter 15. ncp_class... 455
class.activeClasses table... 455
class.staticClasses table..456
class.classIds table..456

Chapter 16. ncp_ctrl.. 459
The services.config Table...459
The services.inTray Table...459
The services.slaveCtrl Table.. 461
The services.unControlled Table... 462
The services.unManaged Table... 462

Chapter 17. ncp_trapMux..465
trapMux.command table..465

 ix

trapMux.config table.. 465
trapMux.sinkHosts table.. 465

Chapter 18. ncp_virtualdomain...467
config database schema.. 467
state database schema..468
Example Virtual Domain configuration..470

Chapter 19. NCIM topology database...473

Chapter 20. About NCIM... 475
Tasks...475
Architecture..475
Properties... 477
Topology data...477

Domains and entities..478
Relationships.. 489

NCIM cache files.. 492
SQL files for the NCIM schema.. 492

Chapter 21. Topology database queries... 495
Logging in to NCIM... 495
Formatting used in the SQL queries.. 495
Techniques used in the SQL queries..495

Choice of driving table.. 496
Aliasing..496
Table joins... 496

Use of specific fields and tables in queries... 497
mainNodeEntityId field.. 497
entityType field... 497
Protocol endpoint tables.. 497

Queries for domain information...498
List all main nodes in a domain.. 498
Count the number of entities in a domain..499

Queries for main node information..501
List all devices with class name and system object identifier...501
List all IP addresses on all main node devices.. 503

Queries for containment information.. 505
List all components on a device... 505
List all components on a device and show component type...507
Display the number of cards on each device... 508
Find all devices containing Three-Port Gigabit Ethernet cards ..509
Find entities within all cards.. 511

Queries for port and interface information..513
List all interfaces on all devices... 513
List all interfaces with specific attributes.. 515
List all interfaces on all devices with interface type..516
List all IP addresses and the interfaces that implement them... 519

Queries for connectivity information... 521
Types of connectivity..522
Hierarchy modeling.. 522
Find devices connected to a named device... 523
Find all devices connected to a named device together with connecting interfaces.................525
Identify all connections between routers..527

Queries for LTE information... 529
Find specific LTE entity types... 529

Queries for MPLS TE information...531
List all TE tunnels..531

x

Show interfaces utilized by TE tunnels.. 532
Show Traffic Engineered tunnel configuration...532
List supporting routers for a TE tunnel.. 533
Show performance data for a TE tunnel.. 534

Queries for RAN information..534
Find specific RAN entity types... 534
Retrieve RAN connectivity..536
Find RAN containment..542
Find RAN dependencies... 544

Queries for hosted services... 546
Find all chassis devices hosting OSPF services...546

Queries for collection information...547
Show all PIM adjacencies...547
Show PIM adjacencies for a device..547
Find PIM enabled routers...547
Find all devices in each subnet.. 548
Find all devices in a given VPN... 549

Queries for mapping and enumeration information..550
Identify all the device hardware manufacturers listed in the database..................................... 550
Show all the entity types defined in the database...552

Chapter 22. NCIM schemas.. 555
Core schema...555
Data schema...558

BGP... 558
Collections.. 559
Containment... 561
Endpoints.. 562
Geographical location...564
IP endpoints..565
LTE...566
MPLS TE.. 578
MPLS VPNs..579
OSPF..580
Services...581
UMTS and GSM... 582
VLANs..588

Chapter 23. Data dictionary.. 591
Core tables... 591

aggregatedLink... 592
aggregationDomain.. 592
CIDRinfo..592
classMembers...594
collects..595
connectActions... 595
connects..596
connectSpeeds... 597
contains...598
dependency.. 599
deviceFunction..599
discoverySource... 600
domainMembers...601
domainMgr.. 602
entityActions...603
entityClass.. 604
entityData... 605
entityDetails..607

 xi

entityNameCache... 607
entityType... 608
enumerations..609
hostedService... 611
manager.. 612
mappings.. 612
networkPipe..613
notes... 614
pipeComposition...614
probeTooltip..615
protocolEndPoint.. 617
topologyLinks..618

Core views.. 619
discoveryOverview..619
entity... 620
interfaceDomain... 622
interfaces.. 622
mainNodeDetails.. 625
interfaceDomain... 629

Entity attribute tables.. 630
aggregationGroup... 630
antennaFunction...631
atmEndPoint... 632
bgpAutonomousSystem... 633
bgpCluster...634
bgpEndPoint..634
bgpNetwork.. 637
bgpRouteAttribute.. 637
bgpService.. 639
computerSystem.. 640
controlPlaneViewCollection... 647
cpu...647
discoveryAttributes.. 648
domainSummary.. 648
eirFunction.. 649
emsSystem... 650
enbFunction.. 651
eUtranCell... 653
eUtranSector...655
frameRelayEndPoint...656
genericCollection..656
genericRange.. 657
geographicLocation.. 657
geographicRegion... 659
globalVlan... 659
gnbFunction.. 659
hsrpGroup... 662
hssFunction...662
igmpEndPoint..664
igmpGroup.. 665
igmpService.. 666
ipConnection...666
ipEndPoint...666
ipMRouteDownstream..668
ipMRouteEndPoint.. 669
ipMRouteGroup...670
ipMRouteMdt.. 671
ipMRouteService...671

xii

ipMRouteSource... 671
ipMRouteUpstream...672
ipPath.. 674
itnmService... 674
lagEndPoint...675
lingerTime... 676
localVlan... 676
lteInterface... 677
ltePool... 679
managedStatus...680
mmeFunction..681
mplsTEService.. 683
mplsTETunnel... 683
mplsTETunnelEndPoint.. 685
mplsTETunnelResource..685
mplsLSP.. 686
multiplexer..686
netcoolAsmsRunning..686
networkInterface..687
networkServiceEntityEndPoint...690
networkVpn...691
nrCellCU.. 691
nrCellDU..693
operatingSystem...695
ospfArea..699
ospfEndPoint...700
ospfNetworkLSA... 701
ospfRoutingDomain.. 701
ospfService... 701
pcrfFunction..702
pgwFunction... 704
physicalBackplane..705
physicalCard... 706
physicalChassis.. 710
physicalConnector.. 714
physicalFan... 716
physicalOther..718
physicalPowerSupply... 719
physicalSensor..721
physicalSlot...724
pimEndpoint... 726
pimNetwork.. 727
pimService.. 727
plmn.. 728
portEndPoint...728
probe...729
probeCollection.. 731
probeEndPoint.. 731
probeService...732
ranBaseStation... 732
ranBaseStationController...733
ranCircuitSwitchedCore..734
ranGGSN... 734
ranGSMCell... 735
ranLocationArea..736
ranMediaGateway...736
ranMobileSwitchingCentre... 737
ranMSS.. 737

 xiii

ranNodeB.. 738
ranNodeBLocalCell... 738
ranPacketControlUnit... 739
ranPacketSwitchedCore... 739
ranRadioCore.. 740
ranRadioNetworkController... 740
ranRoutingArea...741
ranSector...742
ranSGSN..742
ranTransceiver.. 743
ranUtranCell..743
rtExportList... 744
rtImportList...744
sgwFunction..744
snmpSystem... 746
subnet... 746
trackingArea..747
transmissionTp..747
userPlaneViewCollection..748
vlanTrunkEndPoint..748
vpnRouteForwarding.. 749
vpwsEndPoint... 749
vtpDomain...750
wlan...750
wlanAccessPoint...751
wlanChannel... 752
wlanDot11Interface... 752
wlanService...753
wlanSpec...754

Entity attribute views... 754
backplane..754
chassis.. 755
fan... 759
interface.. 761
module.. 764
other..766
psu...768
sensor..769
slot.. 772
sourceEms.. 773

Common Data Model views... 775

Chapter 24. Topology API reference...779
Overview of the Topology API..779
Retrieving device data..779

For all chassis devices.. 779
For chassis devices in specified classes.. 780
For chassis devices within a specified network view.. 781
For chassis devices within specified domains... 782
For a limited set of chassis devices..783
Example JSON output for chassis devices...784

Retrieving domain data.. 787
Example output for domains.. 787

Retrieving class data.. 789
Example output for classes.. 790

Part 4. Discovery reference.. 793

xiv

Chapter 25. Discovery process..795
Discovery subprocesses.. 795
Discovery timing...796
Discovery stages and phases...797

Data processing stage.. 797
Data collection stage.. 797
Advantages of staged discovery...799
Criteria for multiphasing...800
Managing the phases..800

Discovery cycles...800
Discovering device existence... 801
Discovering device details (standard).. 801
Discovering device details (context-sensitive).. 802
Discovering associated device addresses... 803
Discovering device connectivity... 804
Creating the topology... 805

Advanced discovery configuration options... 807
Configurable discovery data flow...807
Partial matching..807

Discovery process with EMS integration... 807
Discovering device existence with collectors.. 808
Discovering basic device information.. 809
Discovering detailed device information..809

Rediscovery.. 811
Full and partial rediscovery.. 811
Rediscovery completion... 812

Chapter 26. Discovery agents... 815
Agents...815

Details agent... 815
Associated Address (AssocAddress) agent... 816
Interface data retrieved by agents...816
Discovery agent definition file keywords... 816

Types of agents.. 821
Discovery agents that discover connectivity among Ethernet switches.....................................821
Connectivity at the layer 3 network layer.. 826
Topology data stored in an EMS... 830
Discovering connectivity among ATM devices... 831
Agents for discovering MPLS devices...832
Multicast agents..833
Discovering NAT gateways... 834
Discovering containment information..834
Discovery agents for wireless networks.. 837
Discovery agents on other protocols..837
Context-sensitive discovery agents... 839
Task-specific discovery agents...840
Discovery agents for IPv6...845
Service Level Agreement agents.. 846

Guidance for selecting agents... 846
Which IP layer agents to use..846
Which standard agents to use.. 847
Which specialized agents to run...847
Suggested agents for a layer 3 discovery.. 848
Suggested agents for a layer 2 discovery.. 848

Chapter 27. Helper System... 849
Helpers... 849

 xv

Helper System operation... 850
Dynamic timeouts.. 850

Chapter 28. Discovery stitchers.. 851
Main discovery stitchers.. 851
DNCIM stitchers... 871
Cross-domain stitchers..881

Part 5. Administrative reference.. 885

Chapter 29. Script reference... 887
Administration scripts..887

AddNode.pl... 887
domain_create.pl..888
domain_drop.pl...890
inject_fake_events.pl..891
itnm_pathTool.pl...894
ITListener.pl.. 895
list_applied_updates.pl..896
ManageNode.pl...898
ncp_password_update.pl... 899
ncp_scan_storm_diagnostic_dir.pl...900
read_ncp_cfg.pl.. 901
RemoveNode.pl.. 902
set_db_details.pl.. 903
UnmanageNode.pl.. 904
update_db_schemas.pl...905

Database scripts...907
catalog_db2_database...907
configTCR.. 907
create_all_schemas..908
create_db2_database...909
create_oracle_database... 910
create_oracle_ncadmin_user...910
drop_db2_database..911
drop_oracle_database.. 912
populate_db2_database...912
populate_oracle_database... 913
restrict_oracle_privileges.sh.. 913
uncatalog_db2_database...914

Discovery scripts.. 914
audit.pl.. 914
BuildSeedList.pl..915
discoAgentsUsed.pl..916
disco_profiling_data.pl...917
itnmMetaDiscoAudit.pl...920
itnm_disco.pl.. 923
listEntities.pl... 923
restart_disco_process.pl.. 924
scheduleDiscovery.pl..925

Example scripts..926
oql_example.pl... 926
snmp_example.pl..927

Network Manager process management scripts...927
create_all_control...927
register_all_agents... 928
setup_run_as* scripts...928

xvi

setup_run_storm_as_non_root.sh...930
Polling scripts... 931

get_policies.pl.. 931
itnm_poller.pl..932
ncp_ping_poller_snapshot.pl...936
ncp_polling_exceptions.pl... 937
ncp_upload_expected_ips.pl... 938

SQL scripts..939
create_itnm_triggers.sql.. 939
create_sae_automation.sql.. 940
drop_itnm_triggers.sql... 940
drop_sae_automation.sql...941

Troubleshooting scripts... 941
GetDiscoCache.pl... 941
ncp_db_access.pl..943
ncp_storm_validate.sh... 943
ncp_validate_ncim_tables.pl..948
PrintCacheFile.pl...949
snmp_walk.pl..949

Upgrade and backup scripts.. 951
ITNMDataExport.pl...951
ITNMDataImport.pl.. 952
ITNMExportNetworkViews.pl...953
ncp_ncim_diff.pl... 954
nmExport.. 956
nmGuiExport...957
nmGuiImport ... 958
nmImport ...959

Chapter 30. Web Applications...961
Web application configuration files... 961

Topoviz configuration files..961
WebTools configuration files.. 961
Structure Browser configuration files.. 963

URL parameters..963
Hop View URL parameters... 964
MIB Browser URL Reference..967
MIB Grapher URL Reference.. 968
Network Views URL parameters.. 969
Top Performers URL parameters...969
Structure Browser URL reference.. 971
Web Tools URL reference... 972
Path Views URL parameters... 972

Cisco and Juniper WebTools commands... 973
Cisco information tools...973
Cisco diagnostic tools...975
Juniper information tools... 976
Juniper diagnostic tools... 977

Chapter 31. Report reference..979
Network Manager data model... 979
Asset reports.. 979

Card Detail by Device Type report..980
Discovery report... 980
Interface Availability report... 980
IP Addressing Summary report..981
Operating System by Device report... 981

Context reports.. 981

 xvii

Bandwidth In Utilization report..981
IfInDiscards report... 982
Memory usage report... 982
CPU Usage report... 982

Monitoring reports..983
Monitoring Device Details report..983
Monitoring Policy Details report...983
Monitoring Summary report... 984

Network Technology reports..984
BGP Details report.. 984
BGP Summary report..984
LTE Interfaces report..985
MPLS VPN Details report.. 985
MPLS VPN Summary report..985
VLAN Details report.. 986

Network Views reports...986
Monitored Network Views report... 986

Path Views reports... 986
IP Path Summary report...987
IP Routing Info report...987
MPLS TE Path Summary report.. 987
MPLS TE Routing Info report.. 988

Performance reports.. 988
Bandwidth Top N report... 988
Bandwidth Utilization report.. 988
Composite Trending report.. 989
Device Availability Summarization... 989
Device Summarization report...989
Historical SNMP Top or Bottom N report... 990
Historical SNMP Trend Analysis report.. 990
Historical SNMP Trend Quick View report..990
Interface Availability Summarization report..991
Interface Summarization report...991
System Availability Summary report..991

Troubleshooting reports.. 992
Connected Interface Duplex Mismatch report.. 992
Devices Pending Delete on Next Discovery report.. 992
Devices with no SNMP Access report.. 993
Devices with Unclassified SNMP Object IDs report...993
Devices with Unknown SNMP Object IDs report... 994

Utility reports..994
Discovered Nodes and Interfaces Flat File List report.. 994

Notices..995
Trademarks.. 996

xviii

About this publication

The IBM Tivoli Network Manager Reference contains reference information including the system
languages, databases, and Perl API used by Network Manager. This publication is for advanced users who
need to customize the operation of Network Manager.

Publications
This section lists publications in the Network Manager library and related documents. The section also
describes how to access IBM publications online and how to order publications.

Your Network Manager library
The following documents are available in the Network Manager library:

• The IBM Tivoli Network Manager IP Edition Release Notes give important and late-breaking information
about Network Manager. This publication is for deployers and administrators, and should be read first.

• The IBM Tivoli Network Manager IP Edition Installation and Configuration Guidedescribes how to install
Network Manager. It also describes necessary and optional post-installation configuration tasks. This
publication is for administrators who need to install and set up Network Manager.

• The IBM Tivoli Network Manager IP Edition Administration Guide describes administration tasks such as
how to start and stop the product, discover the network, poll the network, manage events, administer
processes, and query databases. This publication is for administrators who are responsible for the
maintenance and availability of Network Manager.

• The IBM Tivoli Network Manager Reference contains reference information including the system
languages, databases, and Perl API used by Network Manager. This publication is for advanced users
who need to customize the operation of Network Manager.

Prerequisite publications
To use the information in this publication effectively, you must have some prerequisite knowledge, which
you can obtain from the following publications:

• IBM Tivoli Netcool/OMNIbus Installation and Deployment Guide

Includes installation and upgrade procedures and describes how to configure security and component
communications. The publication also includes examples of Tivoli Netcool/OMNIbus architectures and
describes how to implement them.

• IBM Tivoli Netcool/OMNIbus User's Guide

Provides an overview of the desktop tools and describes the operator tasks related to event
management using these tools.

• IBM Tivoli Netcool/OMNIbus Administration Guide

Describes how to perform administrative tasks using the Tivoli Netcool/OMNIbus Administrator GUI,
command-line tools, and process control. The publication also contains descriptions and examples of
ObjectServer SQL syntax and automations.

• IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide

Contains introductory and reference information about probes and gateways, including probe rules file
syntax and gateway commands.

• IBM Tivoli Netcool/OMNIbus Web GUI Administration and User's Guide

Describes how to perform administrative and event visualization tasks using the Tivoli Netcool/
OMNIbus Web GUI.

© Copyright IBM Corp. 2006, 2021 xix

Accessing terminology online
The IBM Terminology Web site consolidates the terminology from IBM product libraries in one convenient
location. You can access the Terminology Web site at the following Web address:

http://www.ibm.com/software/globalization/terminology

Accessing publications online
IBM posts publications for this and all other products, as they become available and whenever they are
updated, to the IBM Knowledge Center Web site at:

http://www.ibm.com/support/knowledgecenter/

Network Manager documentation is located under the Cloud & Smarter Infrastructure node on that Web
site.

Note: If you print PDF documents on other than letter-sized paper, set the option in the File > Print
window that allows your PDF reading application to print letter-sized pages on your local paper.

Ordering publications
You can order many IBM publications online at the following Web site:

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:

• In the United States: 800-879-2755
• In Canada: 800-426-4968

In other countries, contact your software account representative to order IBM publications. To locate the
telephone number of your local representative, perform the following steps:

1. Go to the following Web site:

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
2. Select your country from the list and click Go. The Welcome to the IBM Publications Center page is

displayed for your country.
3. On the left side of the page, click About this site to see an information page that includes the

telephone number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted mobility or limited vision, to
use software products successfully.

Accessibility features
Network Manager includes the following major accessibility features:

• Operations that use a screen reader.

Network Manager uses IBM Installation Manager to install the product. You can read about the
accessibility features for IBM Installation Manager at https://www.ibm.com/support/knowledgecenter/
SSDV2W/im_family_welcome.html.

Network Manager uses the latest W3C Standard, http://www.w3.org/TR/wai-aria/, to ensure compliance
to http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-
section-508-standards/section-508-standards), and http://www.w3.org/TR/WCAG20/. To take advantage
of accessibility features, use the latest release of your screen reader in combination with the latest web
browser that is supported by this product.

xx About this publication

http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/support/knowledgecenter/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
https://www.ibm.com/support/knowledgecenter/SSDV2W/im_family_welcome.html
https://www.ibm.com/support/knowledgecenter/SSDV2W/im_family_welcome.html
http://www.w3.org/TR/wai-aria/
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.w3.org/TR/WCAG20/

The Network Manager online product documentation in IBM Knowledge Center is enabled for
accessibility. The accessibility features of IBM Knowledge Center are described at https://www.ibm.com/
support/knowledgecenter/v1/content/about/releasenotes.html#accessibility.

Keyboard navigation
This product uses standard navigation keys.

Interface information
Network Manager provides the following features suitable for low vision users:

• All non-text content used in the GUI has associated alternative text.
• Low-vision users can adjust the system display settings, including high contrast mode, and can control

the font sizes using the browser settings.
• Color is not used as the only visual means of conveying information, indicating an action, prompting a

response, or distinguishing a visual element.

Network Manager provides the following features suitable for photosensitive epileptic users:

• The Network Manager user interfaces do not have content that flashes more than two times in any one
second period.

The Network Manager web user interface includes WAI-ARIA navigational landmarks that you can use to
quickly navigate to functional areas in the application.

Extra steps to configure Internet Explorer for accessibility
If you are using Internet Explorer as your web browser, you might need to perform extra configuration
steps to enable accessibility features.

To enable high contrast mode, complete the following steps:

1. Click Tools > Internet Options > Accessibility.
2. Select all the check boxes in the Formatting section.

If clicking View > Text Size > Largest does not increase the font size, click Ctrl + and Ctrl -.

Related accessibility information
In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

IBM and accessibility
For more information about the commitment that IBM has to accessibility, see https://www.ibm.com/able.

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli Education Web site:

https://www.ibm.com/training/search?query=tivoli

About this publication xxi

https://www.ibm.com/support/knowledgecenter/v1/content/about/releasenotes.html#accessibility
https://www.ibm.com/support/knowledgecenter/v1/content/about/releasenotes.html#accessibility
https://www.ibm.com/able
https://www.ibm.com/training/search?query=tivoli

Support and community information
Use IBM Support, Service Management Connect, and Tivoli user groups to connect with IBM and get the
help and information you need.

IBM Support
If you have a problem with your IBM software, you want to resolve it quickly. IBM provides the following
ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at https://www.ibm.com/support/home/ and follow the
instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability workbench that helps you
resolve questions and problems with IBM software products. The ISA provides quick access to
support-related information and serviceability tools for problem determination. To install the ISA
software, go to https://www.ibm.com/support/knowledgecenter/SSLLVC/welcome/isa_welcome.html

xxii IBM Tivoli Network Manager IP Edition: Reference

https://www.ibm.com/support/home/
https://www.ibm.com/support/knowledgecenter/SSLLVC/welcome/isa_welcome.html

Part 1. Languages
Network Manager uses different languages, such as the Object Query Language, stitcher language, and
the syntax of the AOC files.

© Copyright IBM Corp. 2006, 2021 1

2 IBM Tivoli Network Manager IP Edition: Reference

Chapter 1. Object Query Language
Object Query Language (OQL) is a version of the Structured Query Language (SQL) that has been designed
for use in Network Manager. The components create and interact with their databases using OQL.

Use OQL to create new databases or insert data into existing databases (to configure the operation of
Network Manager components) by amending the component schema files. You can also issue OQL
statements using the OQL Service Provider, for example, to create or modify databases, insert data into
databases and retrieve data.

For more information about the OQL schema used by Network Manager, see the IBM Tivoli Network
Manager Reference.

The OQL Service Provider is described in the IBM Tivoli Network Manager IP Edition Administration Guide.

Conventions and sample databases
To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Conventions
The following conventions have been used to explain the OQL syntax:

• OQL keywords and their required punctuation are shown in bold in examples.
• Parameters are shown in italics.
• Optional parameters are shown enclosed by square brackets [].
• OQL commands are terminated with a semicolon.
• An ellipsis (...) following a list of parameters indicates that you can continue the list if necessary.
• OQL Service Provider command lines are shown with the example command line prompt |
phoenix:1.> followed by relevant sample output.

• The system name within the prompt appears as phoenix within this manual. This is replaced by an
appropriate value for your system, such as the host name.

Sample databases
The following tables contain data in the staff databases.

Table 1. Data in the staff.managers database table

EmployeeID Name Department Gender Age

1 Matt Development M 28

2 Irene Customer Services F 52

3 Ernie Sales M 23

4 Paul Marketing M 26

5 Jim Support M 27

© Copyright IBM Corp. 2006, 2021 3

Table 2. Data in the staff.employees database table

EmployeeID Name Skills Gender Age

6 Paul HTML, C++, Java™ M 26

7 Carl Perl M 32

8 Rob UNIX, Perl M 23

9 Sarah Java, C++ F 24

10 Lisa UNIX, HTML F 25

Table 3. Data in the staff.contractors database table

EmployeeID Name Gender Age ExtraInfo

11 James M 22 ContractLength = 6 months; Department =
Marketing;

12 Karen F 25 ContractLength = 5 months; Department = Sales;

13 Jane F 26 ContractLength = 7 months; Department =
Development;

14 Richard M 23 ContractLength = 1 month; Department =
Operations;

15 Glenn M 28 ContractLength = 2 months; Department =
Operations;

Features of OQL
The following topics describe the features of Object Query Language (OQL).

Related reference
Stitcher language comments
Comments are introduced by -- or //. If a comment requires a carriage return, the characters on the next
line must also be commented out.

General rules of OQL
OQL has rules that must be applied to all statements.

The following rules apply to OQL statements:

• All complete statements must be terminated by a semi-colon.
• A list of entries in OQL is usually separated by commas but not terminated by a comma.
• Strings of text are enclosed by matching quotation marks. The rules for quotation mark usage are

described below.

4 IBM Tivoli Network Manager IP Edition: Reference

Quotes in OQL
In OQL the TEXT datatype must be enclosed by matching quotation marks (either single or double
quotes).

The following example is a standard OQL insert into the CTRL services.inTray table, showing values of the
TEXT data type enclosed in double quotes, an integer value that is not enclosed in any quotation marks,
and a LIST OF TYPE TEXT that is enclosed in square brackets. The comma separated data within the list is
enclosed in double quotes.

insert into services.inTray
(
 serviceName, binaryName, servicePath, domainName, argList, retryCount
)
values
(
 "ncp_disco", "ncp_disco", "/opt/netcool/precision/Solaris2/bin", "MYDOMAIN",
 ["-domain" , "NCOMS" , "-latency" , "60000"], 5
);

Related reference
Stitcher language building blocks
To construct statements in the stitcher language, use the programming constructs, relational operators,
and datatypes.

OQL punctuation
OQL has a set of punctuation marks that you use to structure OQL statements.

The following table describes the punctuation used in the OQL syntax.

Table 4. Punctuation used in the OQL syntax

Symbol Meaning

- Subtraction, negative.

+ Addition, positive.

* Multiplication or a wild card that matches any characters within its expression.

(Encloses items in a list, for example, preceding the insert into statement.

) Encloses items in a list, for example, following the insert into statement.

, Separates entries in a list.

[] Encloses items of the list datatype.

{ } Encloses items of the object datatype.

. Separates database, table and column names.

; Terminates OQL statements.

~ Matches regular expressions.

-> Retrieves a sub value of an object.

Logical operators of OQL
These logical operators are used for OQL: AND and OR.

The following table describes the logical operators to use in OQL.

Chapter 1. Object Query Language 5

Table 5. Logical operators of OQL

Keyword Brief description

AND Combines search conditions, all of which must be true for the condition to be
passed.

OR Combines search conditions, one of which must be true for the condition to be
passed.

Precedence and association of operators
The rules for precedence and association of operators determine the grouping of operators with
operands, and indicate the order in which the operators in an expression are executed.

For complex expressions, use parentheses to avoid ambiguity.

The following table describes the operators.

Table 6. OQL operators in order of decreasing precedence

Operator Description Associativity Precedence

- Negative sign Non-associative 1 (highest)

* Multiplication Left 2

/ Division Left 2

OR Logical OR Left 3

AND Logical AND Left 4

NOT Logical NOT Left 5

= Equal to Left 6

<> Not equal to Left 6

< Less than Left 6

> Greater than Left 6

<= Less than or equal to Left 6

>= Greater than or equal to Left 6

+ Addition Left 7

- Subtraction Left 7 (lowest)

Use of regular expressions
You can use regular expressions in OQL and in stitcher language code. Regular expressions are
particularly useful for defining filters.

Regular expressions contain a series of characters that define a pattern of text to be matched—to make a
filter more specialized, or general. For example, the regular expression ^AL[.]* searches for all items
beginning with AL. The filter condition EntityName Like ^..N[.]* filters for all devices which have an
N as the third letter of their name, and EntityName Like [.]*G filters for all devices whose name
ends with the letter G. The following table describes the most common characters used in regular
expressions.

6 IBM Tivoli Network Manager IP Edition: Reference

Table 7. Regular expression characters

Character Description Example

\ The backslash (or escape
character) quotes the character
after it, both special and ordinary.

Use the backslash to specify a .
(normally a special character) in
a file name, for example. To
select all .sys files you would
state, ^*\.sys$, where the
backslash specifies that the dot
following it is actually a real dot,
not just a character representing
any single character.

. The dot represents any single
character.

A dot can be anything. If you
want to select five letter device
names that begin with T and end
with R, you would state, ^T...R
$, where the three dots in the
middle mean that the three
middle letters of the word can be
any letter.

* Like the dot, an asterisk can
represent any character.
However, whereas the dot can
only represent a single character,
the asterisk represents anywhere
from zero to an infinite amount of
characters.

., returns strings beginning
with any combination and any
amount of characters (the first
asterisk), and can end with any
combination and any amount of
characters (the last asterisk).
This selects every single string
available.

$ The dollar sign at the end of a
regular expression signifies the
end of a line, and, therefore, any
character immediately before it
must be located at the end of the
string. Anywhere else in a regular
expression, it matches itself.

[.]*G$ selects every string
which ends in G, regardless of the
number of characters or types of
characters in the string.

^ A hat (circumflex) at the
beginning of a regular expression
means that it is the beginning of a
line, and any characters
immediately following it must be
located at the very beginning of
the string. Anywhere else in a
regular expression, it matches
itself.

^AL[.]* returns strings
beginning with AL. ^..N[.]*
returns strings beginning (^) with
any two characters and the third
character is an N.

[set] A set of characters in square
parentheses matches any single
character from a set.

^[abc].[def]$ selects all
three character strings that begin
with either a or b or c and end in
either d or e or f.

Chapter 1. Object Query Language 7

Key differences between OQL and SQL
OQL differs from SQL in several ways.

• OQL supports object referencing within tables. Objects can be nested within objects.
• Not all SQL keywords are supported within OQL. Keywords that are not relevant to Network Manager

have been removed from the syntax.
• OQL can perform mathematical computations within OQL statements.

Database and table creation
You can create databases and tables with the create command.

You can issue the create command to create a database.

create database database_name ;

You can issue the create command to create a table. When you create a table, you must define all the
columns of the table as well as a datatype, such as text or integer, and if applicable, the column
constraints and any default values.

create table database_name.table_name
(
 column_name [constraints] [default default] ,
 [column_name [constraints] [default default] ,]
 [additional_columns]
 [unique (column_name) ,]
 [counter (column_name) ,]
 [timestamp (column_name)]
);

The entries within the brackets are separated by commas, although the last entry is not terminated by a
comma.

The following topics describe how to use the create command.

Datatypes
All columns must have an associated datatype that indicates the acceptable input for that column.

The following table describes the datatypes that are used in OQL:

Table 8. Datatypes of OQL

Datatype Description

TEXT Holds plain text.

INT Holds integer values.

UINT Holds a 32-bit unsigned integer value.

FLOAT Holds decimal values.

LONG64 Holds a 64-bit numerical value.

ULONG64 Holds a 64-bit unsigned numerical value.

DATA Holds opaque data, typically of the binary format.

LIST TYPE datatype Holds a list of particular datatypes. The list is enclosed in square
brackets, [].

OBJECT TYPE datatype Holds objects of particular datatypes. The object is enclosed in curly
braces, {}. Objects hold a list of varbinds (name/value pairs).

TIME Holds information pertaining to time.

8 IBM Tivoli Network Manager IP Edition: Reference

Objects and varbinds
An object is a comma-separated list of varbinds enclosed by curly braces, whereas a varbind is a name/
value pair, for example, ifIndex=20 or ifDescr="utp10/100".

You can perform operations on one of the varbinds in an object using the -> symbol.

Related reference
Example selection based on part of an object
Use this example to orient yourself when retrieving records from tables based on criteria that apply to
parts of a table row.
Example of updating an object
Use this example to learn how to use the update keyword in an object.

External datatypes
It is possible to define additional datatypes that map integers to the possible values of a column; these
datatypes are called external datatypes, because they are defined externally to the present schema.

Syntax
In order to use a datatype that has been defined in a previously loaded schema, the current schema must
contain a statement of the following structure.

data type datatype is external datatype ;

Examples
The following examples show the datatype declaration.

data type boolean is external boolean
data type entityTypes is external entityTypes

After you have made these declarations you can use the datatypes boolean and entityTypes in the
current schema, provided that they have also been defined in a previously loaded schema.

Column constraints
Column constraints are restrictions on the data that can be inserted into a given column.

The following table describes the column constraints. Any of these constraints can be applied to any
column.

Table 9. Column constraints

Constraint Description

NOT NULL Indicates that the column must be assigned a value.

NULL is not the same as zero or white space.

Chapter 1. Object Query Language 9

Table 9. Column constraints (continued)

Constraint Description

PRIMARY KEY Denotes that the column is a primary key for the table. The primary keys can be
used to join related tables in a multiple table query.

The combination of data in the PRIMARY KEY columns of a given table must be
unique, although the data in each individual column does not necessarily have
to be unique. For example, the primary key might comprise the multiple fields
of forename, surname, and age.

The primary key is internally indexed and so provides faster query times, but
slower insert and delete times. Unique and indexed fields are also internally
indexed.

List and object fields cannot be indexed, thus they cannot be set as primary
keys, unique fields, nor as part of an index definition.

If multiple constraints are specified for a single column, NOT NULL must be specified before PRIMARY
KEY.

Default values
A default value can be applied to a column when it is created with the default keyword. If an explicit value
is not provided for that column when data is inserted, the specified default value is used.

Unique
The optional unique column constraint ensures that all entries in the specified column are unique.

The unique column is internally indexed and so provides faster query times, but slower insert and delete
times.

List and object fields cannot be indexed, thus they cannot be set as unique fields, nor as part of an index
definition.

Counter
The optional counter column constraint delegates the responsibility of counting duplicate records to the
specified column.

If you attempt to insert a duplicate record into the table, the insertion of the duplicate entry is suppressed
and the value of the specified column is incremented in the record that already exists.

Timestamp
The optional timestamp column constraint stores the date and time information for the creation of the
record in the specified column of the database table.

The timestamp properties are:

• Format: YYYY-MM-DD HH:MM:SS.nnnnn....
• Range: 0001-01-01 00:00:00.......to 9999-12-31 23:59:59.999999.......

Examples of database and table creation
The following examples use the create keyword to create the sample staff database and define the
tables.

These example OQL statements illustrate the use of the column constraints and the default keyword.

10 IBM Tivoli Network Manager IP Edition: Reference

Example 1
create database staff; // creates the staff database

The following insert defines the managers table.

create table staff.managers
(
 EmployeeID int NOT NULL PRIMARY KEY,
 Name text NOT NULL,
 Department text default "Sales",
 Gender text,
 Age int,
 unique (EmployeeID) // indicates that the data in the
 // EmployeeID column must be unique.
);

For the managers table:

• The EmployeeID and Name columns cannot be NULL.
• The EmployeeID column is the primary key and must be unique.
• If no value is inserted into the Department column for a given record it takes the value "Sales".

Example 2
The following insert creates the staff.employees table.

create table staff.employees
(
 EmployeeID int NOT NULL PRIMARY KEY,
 Name text NOT NULL,
 Skills list type text,
 Gender text,
 Age int // There is no comma here because this
 // is the last entry.
);

For the staff.employees table:

• The EmployeeID and Name columns cannot be NULL.
• The Skills column is a list of text strings.

Example 3
The following insert creates the staff.contractors table.

create table staff.contractors
(
 EmployeeID int NOT NULL PRIMARY KEY,
 Name text NOT NULL,
 Gender text,
 Age int,
 ExtraInfo object type vblist,
 volatile
);

For the staff.contractors table:

• The ExtraInfo column contains a list of varbinds.

Chapter 1. Object Query Language 11

Inserting data into a table
Use the insert keyword to insert data into a table.

Example
The following example shows how to use the insert keyword:

insert into database_name.table_name
(
 column
 [, column]
 [, column]
 [...]
)
values
(
 data
 [, data]
 [, data]
 [...]
);

Each data value is inserted into the corresponding column name, so the number of data values (and the
data types) must correspond with the number of column names specified. Although it is not good
practice, it is acceptable to omit the list of column names. If you choose to omit the column names, the
first value specified after the values keyword is inserted into the first column of the database, the second
value into the second column, and so on. Additionally, if you omit the column names, the number of
values must correspond to the number of columns in the database, so you must either insert a value into
each database column or explicitly specify NULL for columns into which you do not wish to insert a value.

The following topics provide further examples of the insert keyword.

Example of inserting data into a database
Use this example to orient yourself when you insert data into your own databases.

The population of the sample databases with data is shown in the following examples, which highlight
some of the different valid forms of the insert statement.

The following example specifies all the column names.

insert into staff.managers
(
 EmployeeID, Name, Department, Gender, Age
)
values
(
 1, "Matt", "Development", "M", 28
);

The following example does not specify column names, but is still a valid insert because a value has been
specified for each column of the database.

insert into staff.managers
values
(
 2, "Janet", "Customer Services", "F", 27
 // no column names are specified, so the values are inserted
 // into the columns in order.
);

The following example specifies no value for the Department column, which is populated with the
default value instead:

insert into staff.managers
(
 EmployeeID, Name, Gender, Age
)

12 IBM Tivoli Network Manager IP Edition: Reference

values
(
 3, "Phil", "M", 25
 // No value for Department has been specified. The column
 // therefore takes the default value "Sales" that was specified
 // when the table was created.
);

Related reference
Conventions and sample databases
To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Example of an invalid insert
Use this example to troubleshoot problems and errors if any occur when you insert data into your
databases.

Since staff.managers is unique on the EmployeeID column, the following insert is invalid, and
therefore rejected, because there is already a record with EmployeeID=3.

insert into staff.managers
(
 EmployeeID, Name, Department, Gender, Age
)
values
(
 3, "John", "Marketing", "M", 26
);

Related reference
Conventions and sample databases
To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Example list and object datatypes
Use this example to orient yourself when using list and object datatypes.

The following example is an insert into the staff.employees table, where the Skills column has been
defined as list type text.

insert into staff.employees
(
 EmployeeID, Name, Skills, Gender, Age
)
values
(
 6, "Matt", ["HTML", "C++", "Java"], "M", 24
);

The following example is an insert into the staff.contractors table, where the ExtraInfo column
has been defined as object type vblist:

insert into staff.contractors
(
 EmployeeID, Name, Gender, Age, ExtraInfo
)
values
(
 11, "James", "M", 22, { ContractLength=6, Department="Marketing" }
);

Related reference
Conventions and sample databases

Chapter 1. Object Query Language 13

To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Selecting data from a table
You can query the data in a table using the select keyword. Use these examples to help you use the
select keyword.

“Syntax” on page 14
“Example 1” on page 14
“Example 2” on page 14
“Example 3” on page 15
“Example 4” on page 15

Syntax
The following syntax shows how to use the select keyword to retrieve data from a table.

select comma_separated_column_list_or_wildcard
from database_name.table_name
[where conditional_test]
[order by field_name [asc|desc]];

The * symbol can be used as a wildcard in a select statement to return all the columns of the table.
Alternatively a comma-separated list of columns can be specified.

If you specify an order by clause, then results are returned in ascending order by default. NULL values
are returned first when the results are in ascending order. Ordering of results in descending order is the
exact opposite of the ordering of results in ascending order.

Example 1
The following example shows how to use the select statement within the OQL Service Provider to query
the staff.managers table (the following example output is abbreviated).

|phoenix:1.> select * from staff.managers;
|phoenix:2.> go
.....
{
 EmployeeID=1;
 Name='Matt';
 Department='Development';
 Gender='M';
 Age=28;
}
{
 EmployeeID=2;
....
....
}
(5 record(s) : Transaction complete)

Example 2
The following example shows a select statement that retrieves only specific fields from the
staff.managers table.

|phoenix:1.> select Name, Gender from staff.managers;
|phoenix:2.> go
.....
{
 Name='Matt';
 Gender='M';
}
{
 Name='Irene';
 Gender='F';

14 IBM Tivoli Network Manager IP Edition: Reference

}
{
 Name='Ernie';
....
....
}
(5 record(s) : Transaction complete)

Example 3
The following example uses a where clause to restrict the results.

|phoenix:1.> select EmployeeID, Name from staff.managers
|phoenix:2.> where Department = "Marketing";
|phoenix:3.> go
.
{
 EmployeeID=4;
 Name='John';
}
(1 record(s) : Transaction complete)

Example 4
The following example shows how to use a select DISTINCT keyword to retrieve a single row for each
type of data; for example a single row for each department.

|phoenix:1.> select DISTINCT Department from staff.managers
|phoenix:2.> go
.
{
 Department='Development';
}
{
 Department='Marketing';
}
{
 Department='Sales';
}
(3 record(s) : Transaction complete)

Counting rows in a table
You can count the number of rows in a table using the select keyword.

Syntax
The following syntax shows how to use the select keyword to count the number of rows in a table.

select count(*)
from database_name.table_name
[where conditional_test]

Example 1

The following example shows how to use the select statement within the OQL Service Provider to count
the number of rows in the staff.managers table.

|phoenix:1.> select count(*) from staff.managers;
|phoenix:2.> go
.....
{
 Count=5;
}
(1 record(s) : Transaction complete)

Chapter 1. Object Query Language 15

Conditional tests in OQL
Use comparison operators in OQL, for example in a select where statement, to perform conditional
tests.

The following table describes the comparison operators that you can use.

Table 10. Comparison operators in OQL

Symbol Description

= Equal to.

<> Not equal to.

< Less than.

> Greater than.

<= Less than or equal to.

>= Greater than or equal to.

like Compares for similarity using UNIX-style regular expressions. The like
operator is more powerful than the traditional SQL implementations
that use the more limited token matching for comparison.

in Searches for the presence of a record within a specified table (using a
subquery).

The in operator can also be used to determine whether a specified value
is contained in a list field.

is null Tests whether the specified column is null (that is, has not been
assigned a value).

is not null Tests whether the specified column is not null (that is, has been
assigned a value).

Examples of the like operator
Use these examples to help you use the like operator in search criteria.

• “Example 1” on page 16
• “Example 2” on page 17
• “Example 3” on page 17

Example 1
The following example query identifies the records in the employees table that contain the lowercase
letter r in the Name column.

|phoenix:1.> select Name from staff.employees
|phoenix:2.> where Name like ".*[r].*";
|phoenix:3.> go
..
{
 Name='Carl';
}
{
 Name='Sarah';
}
(2 record(s) : Transaction complete)

16 IBM Tivoli Network Manager IP Edition: Reference

Example 2
The following example query identifies the records in the employees table for which the Name column
begins with an uppercase C or upper R.

|phoenix:1.> select Name from staff.employees
|phoenix:2.> where Name like "^[CR]";
|phoenix:3.> go
..
{
 Name='Carl';
}
{
 Name='Rob';
}
(2 record(s) : Transaction complete)

Example 3
The following example query would return the complete records of all employees listed in the
contractors table whose name begins with an uppercase letter J.

|phoenix:1.> select EmployeeID, Name from staff.contractors
|phoenix:2.> where Name like "J";
|phoenix:3.> go
..
{
 EmployeeID=11;
 Name='James';
}
{
 EmployeeID=13;
 Name='Jane';
}
(2 record(s) : Transaction complete)

Related reference
Conventions and sample databases
To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Example use of the and Operator
Use this example to help you use the conjunctive operator, and combine two search conditions.

The following example shows how to use the and operator to combine two search conditions.

|phoenix:1.> select Name, Gender from staff.managers
|phoenix:2.> where Gender <> "M" and Gender <> "Male";
|phoenix:3.> go
.
{
 Name='Janet';
 Gender='F';
}
(1 record(s) : Transaction complete)

Related reference
Conventions and sample databases

Chapter 1. Object Query Language 17

To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Example use of the or operator
Use this example to help you use the or operator to combine two search conditions.

The following example shows how to use the or operator to combine two search conditions.

|phoenix:1.> select Name, Age from staff.employees
|phoenix:2.> where Name="Carl" or Name="Matt";
|phoenix:3.> go
..
{
 Name='Matt';
 Age=24;
}
{
 Name='Carl';
 Age=28;
}
(2 record(s) : Transaction complete)

Related reference
Conventions and sample databases
To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Example selection based on part of an object
Use this example to orient yourself when retrieving records from tables based on criteria that apply to
parts of a table row.

The following example retrieves records from the staff.contractors table where
Department="Operations" within the ExtraInfo column.

|phoenix:1.> select Name, Age from staff.employees
|phoenix:2.> where ExtraInfo->Department="Operations";
|phoenix:3.> go
..
{
 Name='Richard';
 Age=23;
}
{
 Name='Glenn';
 Age=28;
}
(2 record(s) : Transaction complete)

Related reference
Conventions and sample databases
To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Use of select to perform subqueries
Subqueries are queries that are embedded within queries using double brackets [[]]. Any valid query can
be embedded within the double brackets.

Example 1
The following example retrieves the Name and Age columns from any record in the staff.employees
table whose Name also exists in the Name column of the staff.managers table.

|phoenix:1.> select Name, Age from staff.employees
|phoenix:2.> where Name in

18 IBM Tivoli Network Manager IP Edition: Reference

|phoenix:3.> ((select Name from staff.managers));
|phoenix:4.> go
..
{
 Name='Matt';
 Age=24;
}
{
 Name='Rob';
 Age=23;
}
(2 record(s) : Transaction complete)

Example 2
The following example retrieves the Name and Age columns of the managers table where the value of the
staff.managers.Age column matches one of the staff.employees.Age columns and is greater
than 25.

|phoenix:1.> select Name, Age from staff.managers
|phoenix:2.> where Age in
|phoenix:3.> (
|phoenix:4.> (
|phoenix:5.> select Age from staff.employees
|phoenix:6.> where Age > 25
|phoenix:7.>)
|phoenix:8.>);
|phoenix:9.> go
.
{
 Name='Matt';
 Age=28;
}
(1 record(s) : Transaction complete)

The query returns only one record. Although two records from the managers table have ages that match
the employees table, only one of the matches is also over 25.

Related reference
Conventions and sample databases
To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Example of using subqueries to search a list
Use this example to help you use a subquery to search a list for information.

The following example uses a subquery to search a list, the Skills column of the staff.employees
table. The name of the field to be searched is enclosed in parentheses.

|phoenix:1.> select Name, Skills from staff.employees
|phoenix:2.> where ("C++" in (Skills));
|phoenix:3.> go
..
{
 Name='Matt';
 Skills=['HTML','C++','Java'];
}
{
 Name='Sarah';
 Skills=['Java','C++'];
}
(2 record(s) : Transaction complete)

Related reference
Conventions and sample databases

Chapter 1. Object Query Language 19

To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Examples of selecting based on part of a list
You can use these list operators and a conditional test to select records based on part of a list: all, *, any.
The list operators can only be used at the end of an object definition.

The list operators all and * return records where the conditional test is true for all items in a list. A query
using the keyword any returns records where the conditional test is true for any of the items in the list.

The list operators can also be used in table joins.

Example 1
The following example retrieves all the records that contain "C++" anywhere in the list of Skills.

|phoenix:1.> select Name, Skills from staff.employees
|phoenix:2.> where Skills (any) = "C++";
|phoenix:3.> go
..
{
 Name='Matt';
 Skills=['HTML','C++','Java'];
}
{
 Name='Sarah';
 Skills=['Java','C++'];
}
(2 record(s) : Transaction complete)

Example 2
The following example returns the records that contain only "Perl" in the list of Skills.

|phoenix:1.> select Name, Skills from staff.employees
|phoenix:2.> where Skills (*) = "Perl";
|phoenix:3.> go
.
{
 Name='Carl';
 Skills=['Perl'];
}
(1 record(s) : Transaction complete)

Related reference
Conventions and sample databases
To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.
Examples of using any, *, and all to perform table joins
Use these examples to learn how to use the operators to perform table joins.

Selection of data into another table
The select into statement retrieves data from one table and inserts it into another. The select into
command does not delete the existing record.

Syntax
The following syntax shows how to use the select into statement.

select column_or_wildcard [, column ...]
into destination_database_name.destination_table_name

20 IBM Tivoli Network Manager IP Edition: Reference

from source_database_name.source_table_name
[where conditional_test] ;

The columns selected from the source table are inserted into the destination table in order, regardless of
the column names and structure of the destination table. Omitting the optional where condition selects all
the records from the source table.

If you use a wildcard, all the columns from the source table are selected and inserted in order into the
destination table. Any null columns in the source table are skipped in both the source and destination
tables, for example, if the fourth column of the source table is null, the fourth column in the destination
table is skipped.

If you specify a list of columns to select from the source table, they are inserted into the destination table
in the order in which they are specified (even if the order in which they are specified is not the order in
which they exist in the source table).

Example 1
The following example selects the values of the Age and Gender columns of the staff.managers table
and inserts the values into the first two columns of the staff.employees table.

select Age, Gender into staff.employees from staff.managers;

Example 2
The following example selects EmployeeID and Name from any record in the staff.employees table
for which Name="Carl" and inserts the values into the first two columns of the staff.managers table.

|phoenix:1.> select EmployeeID, Name
|phoenix:2.> into staff.managers from staff.employees
|phoenix:3.> where Name="Carl";
|phoenix:4.> go

Examples of using any, *, and all to perform table joins
Use these examples to learn how to use the operators to perform table joins.

Matching every entry in multiple lists
The following example returns only records where every entry in db.table1.m_List is equal to every
entry in db.table2.m_OtherList. For example, if m_List = [1, 1, 1] and m_OtherList =
[1, 1] they match, but if m_List = [1, 2, 1] and m_OtherList = [1, 1], they do not
match.

|phoenix:1.> select * from db.table1 , db.table2
|phoenix:2.> where (db.table1.m_List(*) = db.table2.m_OtherList(*);
|phoenix:3.> go

Matching any entry in multiple lists
The following example returns any record where any item in db.table1.m_List matches any item in
db.table2.m_OtherList. For example, if m_List = [1, 2, 3] and m_OtherList = [3, 4]
they match because 3 is in both lists. However, if m_List = [1, 2, 3] and m_OtherList = [4,
5] they do not match.

|phoenix:1.> select * from db.table1 , db.table2
|phoenix:2.> where (db.table1.m_List(any) = db.table2.m_OtherList(any);
|phoenix:3.> go

Chapter 1. Object Query Language 21

Matching all the entries in one list with any entry in another list
The following example returns any record where all the entries in db.table1.m_List match any of the
entries in db.table2.m_OtherList. For example, if m_List = [1, 2, 3] and m_OtherList =
[3, 1, 2, 4] they match, because all the entries in m_List match an entry in m_OtherList.
However, if m_List = [1, 2, 3] and m_OtherList = [3, 2, 4] then they do not match
because not all the entries in m_List have a match in m_OtherList.

|phoenix:1.> select * from db.table1 , db.table2
|phoenix:2.> where (db.table1.m_List(*) = db.table2.m_OtherList(any);
|phoenix:3.> go

Matching any entries in one list with all the entries in the second list
The following example returns any record where any of the entries in db.table1.m_List match all of
the entries in db.table2.m_OtherList. For example, if m_List = [1, 2, 3] and m_OtherList
= [2, 2] they match because one of the entries in m_List matches all the entries in m_OtherList.
However, if m_List = [1, 2, 3] and m_OtherList = [1, 2, 3] they do not match, because
there is no entry in m_List that is equal to every entry in m_OtherList.

|phoenix:1.> select * from db.table1 , db.table2
|phoenix:2.> where (db.table1.m_List(any) = db.table2.m_OtherList(*);
|phoenix:3.> go

Related reference
Conventions and sample databases
To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Updates to records in tables
Use the update keyword to update an existing record in a table.

Syntax
The following syntax shows how to use the update keyword.

update database_name.table_name
set column = value
 [, column = value ...]
[where conditional_test] ;

If the update statement is used without a where condition, all records are updated.

Example
The following example updates the Age column of the staff.managers table for any records where
Name="John".

|phoenix:1.> update staff.managers
|phoenix:2.> set Age=27
|phoenix:3.> where Name="John";
|phoenix:4.> go

The following topics provide additional examples of the update statement.

Related reference
Conventions and sample databases

22 IBM Tivoli Network Manager IP Edition: Reference

To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Examples of updating a list
Use these examples to learn how to use the update keyword in a list.

It is possible to update a single item within the list. To do this, reference the item using an integer that
indicates its position in the list, where 0 is the first item.

Example 1
The following example updates the Age and Skills columns of the staff.employees table where
Name="Lisa". The following example updates a column of datatype LIST by updating the entire list.

|phoenix:1.> update staff.employees
|phoenix:2.> set Age=26, Skills=["UNIX", "HTML", "C"]
|phoenix:3.> where Name="Lisa";
|phoenix:4.> go

Example 2
The following example updates the Skills column, modifying any existing list where "C" is the third
item and changing that item in the list to "C++".

|phoenix:1.> update staff.employees
|phoenix:2.> set Skills(2)=["C++"]
|phoenix:3.> where Skills(2)="C";
|phoenix:4.> go

Related reference
Conventions and sample databases
To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Example of updating an object
Use this example to learn how to use the update keyword in an object.

The following example updates part of an object, referencing the varbind to be updated using the ->
symbol.

|phoenix:1.> update staff.contractors
|phoenix:2.> set ExtraInfo->ContractLength=2
|phoenix:3.> where ExtraInfo->ContractLength=1;
|phoenix:4.> go

ContractLength is updated to 2 in any records where the ContractLength within the ExtraInfo
field was set to 1.

Related reference
Conventions and sample databases

Chapter 1. Object Query Language 23

To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Database and table listings
Use the show keyword to list the databases, columns, or tables or the current service.

Syntax
The following syntax shows how to use the show keyword.

show databases ;
show tables from database_name ;
show table database_name.table_name ;

Example 1
The following example shows all the databases of the current service.

|phoenix:1.> show databases;
|phoenix:2.> go
.
{
 databases = ['staff']
}
(1 Record(s) : Transaction complete)

Example 2
The following example shows all the tables from the staff database.

|phoenix:1.> show tables from staff;
|phoenix:2.> go
.
{
 tables = ['managers', 'employees', 'contractors']
}
(1 Record(s) : Transaction complete)

Example 3
The following example shows the full schema of the staff.managers table.

|phoenix:1.> show table staff.managers;
|phoenix:2.> go
.....
{
 schema = {
 EmployeeID = {
 DataType = 'text';
 NotNull = 'Y';
 PrimaryKey = 'Y';
 Indexed = 'N';
 Unique = 'Y';
 }
 Name = {
 Datatype = 'text';
.....
.....
 };
}
(5 Record(s) : Transaction complete)

Related reference
Conventions and sample databases

24 IBM Tivoli Network Manager IP Edition: Reference

To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Deletion of a record from a database table
You can delete a record from a table using the delete command.

Syntax
The following syntax shows how to use the delete command.

delete from database_name.table_name
[where conditional_test] ;

Attention: Although the where condition is optional, omitting it deletes all the records in the table.

Basic example
The following example deletes all records from the staff.contractors table where Name="James".

|phoenix:1.> delete from staff.contractors
|phoenix:2.> where Name="James";
|phoenix:3.> go

Example of deleting part of an object or list
The following example removes records based on part of the contents of an object.

|phoenix:1.> delete from staff.contractors // Delete records where
|phoenix:2.> where ExtraInfo->Department="Marketing";// the Department
|phoenix:3.> go // in ExtraInfo is Marketing.

The following example removes records based on part of the contents of a list.

|phoenix:1.> delete from staff.employees
|phoenix:2.> where Skills(0)="Perl"; // Delete records where "Perl"
|phoenix:3.> go // is the first list item.

The following example removes records based on the entire contents of a list.

|phoenix:1.> delete from staff.employees
|phoenix:2.> where Skills=["HTML", "C++", "Java"];
|phoenix:3.> go

Related reference
Conventions and sample databases
To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

Deletion of a database or table
You can delete a database or table using the drop command.

Syntax
The following syntax shows how to use the drop command

drop table database_name.table_name ;
drop database database_name ;

Chapter 1. Object Query Language 25

Example
The following example deletes the entire staff.managers table.

|phoenix:1.> drop table staff.managers;
|phoenix:2.> go

The following example deletes the entire staff database.

|phoenix:1.> drop database staff;
|phoenix:2.> go

Related reference
Conventions and sample databases
To illustrate the OQL keywords in use, a sample database has been used, the staff database, which
contains three tables: managers, employees, and contractors.

The eval statement
The eval statement is used to evaluate the value of a variable or a column within a record, and if
necessary, convert it into another data type.

In stitchers, eval statements are used in combination with OQL to extract values from records in one
database and insert those values into another database. The eval statement is used to evaluate specified
fields within database records and assign those fields to variables or other database columns, if
necessary.

Syntax
The evaluation declaration evaluates a given variable or database record and extracts it to a specified data
type.

eval (datatype , string_or_database_column)

Where

• The first argument supplied to the eval statement is the data type into which the second argument is
converted. The data type can be any of the OQL data types, such as text, int, list type text, or object type
vblist. You can also use the multibyte data type to indicate data that might contain multibyte data.
The multibyte data type is only available for use in eval statements and is not an OQL data type.

• The second argument is the expression that is to be evaluated, which can include:

– Variable references, that are preceded by a dollar sign. You can reference global variables like
$HOSTNAME, product-specific-defined variables such as $BaseEntity, and all the environment
variables of the shell within which the Network Manager processes are running, for example, the
installation directory.

– References to database columns known to the current scope or outside the current scope that are
preceded by the appropriate number of ampersands. If the database column refers to an object, an
entry within the object can be extracted using the target identifier ->.

– A manipulative statement that can be used to modify complex data types (such as lists or objects),
concatenate two items together, delete items from a list, and perform other functions.

– A special expression using the THIS keyword to move in and out of the data containment model.
– Combinations of multiple evaluation expressions.

26 IBM Tivoli Network Manager IP Edition: Reference

Example

The example shows an eval statement which uses OQL.

m_CompareDb = eval(text, '&m_Creator')
insert into kernel.activeModel values (eval(text, "$RECORD"))
delete from kernel.activeModel where (ObjectId=eval (text, "&ObjectId"))

Scope of the eval statement
The concept of scope is used throughout the stitcher language to refer to database records from within
nested programming loops enclosed in curly braces { }.

The database records that are known within any given scope are said to be local to that scope. The eval
statement uses a system of ampersands to refer either to these local records or to those records that are
outside the current scope. The only restriction on references to records outside of the present scope is
that you cannot reference database records known to scopes that are nested within the present scope.

Example
The following example shows three nested scopes:

{
 Start of the first scope (SCOPE1)

 {
 Start of the second scope (SCOPE2)

 {
 Start of third scope (SCOPE3)

 End of third scope (SCOPE3)
 }

 End of the second scope (SCOPE2)
 }

 End of the first scope (SCOPE1)
}

Where:

• An eval statement within scope3 that refers to the EntityName column in a local database record
would refer to it as &EntityName.

• An eval statement within scope3 that refers to the EntityName column in a record held in scope2
would refer to it as &&EntityName.

• An eval statement within scope3 that refers to the EntityName column in a record held in scope1
would refer to it as &&&EntityName.

• It would not be possible to refer to any record held in scope3 from scope2, but scope3 could refer to
any record held in scope1 or scope2 using the appropriate number of ampersands.

Quotation marks in eval statements
You must use matching quotation marks in eval statements to enclose the variable or database column
that you want to be evaluated.

If the eval statement is embedded within a set of quotation marks (in either OQL or the stitcher
language), the quotation marks enclosing the variable or database column must be of the alternate type
to the quotation marks in which the eval statement is enclosed. For example, if the eval statement is
enclosed in single quotation marks (' ') then the variable or database column must be enclosed in double
quotation marks (" "'). By default, when the eval statement does not occur within an embedded
fragment, double quotation marks (" ") are used to enclose the variable or database column to be
evaluated.

Chapter 1. Object Query Language 27

Single straight back quotes
You must use single straight back quotes (") in eval statements to enclose values that are not to be
evaluated.

For example, this type of quote is used with the CAT keyword to enclose text strings that are to be
concatenated but not evaluated. In the following example, the strings [[and]] are included in the
concatenated output but not evaluated.

eval(text, 'CAT(&m_Name,‘[[‘,&m_LocalNbr->m_IfIndex,‘]]‘)')

Related reference
Use of the CAT keyword to concatenate lists
Use the CAT keyword to concatenate data in an eval statement.

Examples of the eval statement
Use these examples to learn how to use the eval statement.

Example 1
The following example evaluates the contents of the m_Creator database column (held one level of
scope away from the current scope) and inserts the value into myVariable, a previously declared
variable of type text.

myVariable = eval(text , '&m_Creator')

Example 2
The following example declares an integer variable called portNum and assigns to it the value extracted
from m_LocalNbrPort held within an object called m_LocalNbr that is known two levels away from the
present scope. m_LocalNbrPort is extracted from the object using the target identifier.

int portNum = eval(int, "&&m_LocalNbr->m_LocalNbrPort")

Example 3
The following example shows an eval statement in the stitcher language within two foreach loops.

foreach(connected)
 {
 foreach(uniqueConnector)
 {
 ExecuteOQL
 (
 "update tempFull.connected
 set m_RelatedTo = eval(text, '&m_NbrName')
 where m_Name = eval(text, '&&m_RelatedTo')
);"
);
 }
 }

Where:

• Each of the foreach loops in the above example specifies a variable of type RecordList that has
already been assigned the results of an OQL query. The first loop repeats everything within its curly
braces for each record in the RecordList variable connected. Nested within the
foreach(connected){ } loop is a second loop, that repeats everything within its curly braces for
each record in the RecordList variable uniqueConnector.

• The ExecuteOQL statement that is nested inside both loops updates the tempFull.connected
database using an eval statement to extract columns from the records held in the two variables:

28 IBM Tivoli Network Manager IP Edition: Reference

– The statement eval(text,'&m_NbrName') refers to the m_NbrName column contained within the
local scope, that is, held in the uniqueConnector variable.

– The statement eval(text,'&&m_RelatedTo') refers to the m_RelatedTo column contained one
level away from the local scope, that is, held in the connected variable.

Character escape sequences
You must escape characters that would otherwise have special meaning in an eval statement using a
double-backslash (\\).

The following example shows how to escape the comma, dollar, ampersand, and opening and closing
brackets.

\\, -- Escapes the comma.
\\$ -- Escapes the dollar.
\\& -- Escapes the ampersand.
\\(-- Escapes the opening parenthesis.
\\) -- Escapes the closing parenthesis.

Multibyte data type
The multibyte data type is used to flag data that might be in multibyte form.

Using the multibyte data type in an eval statement

The following example can be used where m_SysLocation might contain multibyte data.

eval(multibyte, '&m-ExtraInfo->m_SysLocation')

Using the multibyte data type in a configuration file

The following example can be used in a configuration file such as ModelNcimDb.cfg.

"eval(multibyte, 'LOOKUP(`m_DisplayLabel`, &ExtraInfo, &EntityName)')",

Eval statement keywords
Use keywords to perform complex operations within eval statements.

The following table describes the keywords that you can use to perform operations.

Table 11. Table of valid eval statement keywords

Keyword Synopsis of Keyword Function

APPEND Appends data to a list or object.

APPENDUNIQUE Appends data to a list or object only if it does not already exist within the list.

CAT Concatenates a series of items together.

DELETE Deletes an item from a list.

FIRSTVALID Processes a list of possible answers and takes the first valid answer; that is, the first
answer that is not null.

LENGTH Indicates the length of a list or the number of items it holds.

LOOKUP Allows the use of lookup tables and enables the use of a default human-readable
return value in the event of a lookup failure.

IPTOLONG Converts an IPv4 address into a 32 bit integer.

LONGTOIP Converts a 32 bit integer into an IPv4 address.

Chapter 1. Object Query Language 29

Table 11. Table of valid eval statement keywords (continued)

Keyword Synopsis of Keyword Function

REGEXPMATCH Return the value of the first set of parenthesis in a expression.

TIMESTAMP Generates a human readable timestamp from a 32 bit integer.

The following topics describe how to use the eval statement keywords.

Use of the CAT keyword to concatenate lists
Use the CAT keyword to concatenate data in an eval statement.

Syntax
The following syntax shows how to use the CAT keyword.

CAT(comma separated list of items to be concatenated)

Any of the following items can be concatenated together:

• A reference to a database record (preceded by the appropriate number of ampersands).
• A reference to a system or Network Manager variable.
• A text string enclosed within single straight back quotes, for example, ‘item‘.

Example 1

The following example shows how to format the list of items to be concatenated:

eval(text, 'CAT(‘UNCONNECTED_NODES / ‘,&m_Subnet,‘ / ‘,&m_SubnetMask)')

If m_Subnet='172.16.2.0' and m_SubnetMask='255.255.255.0', the above syntax would
evaluate to the following text string:

UNCONNECTED_NODES / 172.16.2.0 / 255.255.255.0

Example 2

In the following example, the target identifier extracts the value of a varbind within an object.

eval(text, 'CAT(&m_Name,‘[‘,&m_LocalNbr->m_IfIndex,‘]‘)')

If the value specified for m_Name is 172.16.1.239 and the value specified for m_IfIndex is 63, the
result is the following string.

172.16.1.239[63]

Use of the DELETE statement to delete data from a list
The DELETE statement removes items from a list.

Syntax
The following syntax shows how to use the DELETE statement.

DELETE(List or reference to a column of type list ,
 List or reference to a column of type list)

30 IBM Tivoli Network Manager IP Edition: Reference

Example

In the following example, the output would be the result of removing all items in the MyEmployees list
from the AllEmployees list. The MyEmployees list is a subset of the AllEmployees list.

eval(list type text, 'DELETE(&AllEmployees , &MyEmployees)'

Use of the FIRSTVALID keyword to process a list of possible answers
Use the FIRSTVALID keyword to process a list of possible answers.

Syntax
The following syntax shows how to use the FIRSTVALID keyword.

FIRSTVALID(comma separated list of possible answers)

Example

The following example shows how to process a list of possible answers and retrieve the first non-null
value as an answer.

Note: You can nest the LOOKUP eval keyword within the FIRSTVALID keyword, as shown in the following
example.

model = eval(text, ''FIRSTVALID(&m_ExtraInfo->physicalChassis-
>model ,&m_ExtraInfo->m_ModelName, &m_ExtraInfo->m_EntPhysModelName,
LOOKUP(&m_ExtraInfo->m_EntVendorType, &&entPhysicalVendorType))')

Assign a value for the model field within the DNCIM physicalChassis table by looking for the first non-null
value from the following items in the record. Process these in order and use the first non null value that is
encountered:

• m_ExtraInfo->physicalChassis->model
• m_ExtraInfo->m_ModelName
• m_ExtraInfo->m_EntPhysModelName
• m_ExtraInfo->m_EntVendorType, using the ncim enumerations to find the vendor mapped to.

Use of the LENGTH keyword to find the number of items in a list
The LENGTH keyword returns the number of items in the specified list.

The following example would return the number of items in theAllEmployees list.

eval(int, 'LENGTH(&AllEmployees)'

Use of the LOOKUP keyword to enable lookup tables
The LOOKUP keyword allows the use of lookup tables and enables the use of a default human-readable
return value in the event of a lookup failure.

Example 1

The following example describes a lookup operation on the ifAdminStatus MIB variable, in which
ifAdminStatus strings are mapped to their enumerated values.

{
 ifAdminStatus =
 {
 up = 1,
 down = 2,

Chapter 1. Object Query Language 31

 testing = 3
 }
}

Example 2

The following eval clause performs a lookup of the enumerated value of the string up within this record
and returns a value of 1. The default return value in the event of a lookup failure is NULL.

eval(text, 'LOOKUP(’up’,&ifAdminStatus)'

Example 3

In this clause, no default human-readable return value in the event of a lookup failure has been provided.
This is therefore equivalent to the eval clause shown below:

eval(text, (’&ifAdminStatus->up’)

Example 4

The following eval clause performs a lookup of the enumerated value of the string dummy within this
record and provides the option of a default human-readable return value. The string dummy does not exist
in the record and therefore this clause returns the defined human-readable return value of unknown.

eval(text, 'LOOKUP(’dummy’,&ifAdminStatus, ’unknown’)'

Use of the IPTOLONG keyword to convert between IPv4 addresses and
integers
The IPTOLONG keyword provides a mechanism to convert an IPv4 address into a 32 bit integer.

Example

The following example converts the 1.2.3.4 IP Address into number 16909060.

int ipNumber = eval(int, 'IPTOLONG(`1.2.3.4`)')

To convert in the opposite direction, you need the LONGTOIP keyword. The LONGTOIP keyword provides a
mechanism to convert a 32 bit integer into an IPv4 address.

The following example would convert the number 16909060 into IP Address 1.2.3.4.

text ipAddress = eval(text, 'LONGTOIP(16909060)')

Use of the LONGTOIP keyword
The LONGTOIP keyword provides a mechanism to convert a 32 bit integer into an IPv4 address.

Example

The following example converts the number 16909060 into IP Address 1.2.3.4.

text ipAddress = eval(text, 'LONGTOIP(16909060)')

32 IBM Tivoli Network Manager IP Edition: Reference

Use of the REGEXPMATCH keyword
The REGEXPMATCH keyword provides a mechanism to perform regular expression matching in order to
extract string or numerical data from variables.

Example

The following example retrieves an interface entry value from the variable &LocalPriObj.

int ifEntry1 = eval(int,'REGEXPMATCH(&LocalPriObj, `^ifEntry\.(\d+)$`)')

If the variable &LocalPriObj contains the value ifEntry99, then the above REGEXPMATCH operation
returns the value 99.

Use of the TIMESTAMP keyword
The TIMESTAMP keyword generates a human-readable timestamp from a 32 bit integer containing the
UNIX time.

Example

The following example would display the current time in the format YYYY-MM-DD HH:MM:SS (for
example, 2007-05-24 15:45:19).

text timeStamp = eval(text,'TIMESTAMP($TIME, `%a %b %d %H:%M:%S %Y`)')

This timestamp is the result of the example: Thursday, May 24 15:45:19 2007

Chapter 1. Object Query Language 33

34 IBM Tivoli Network Manager IP Edition: Reference

Chapter 2. Stitchers and stitcher language
Stitchers are pieces of code that are used by different Network Manager processes. They take information
from one database, process it, and place the information in its new form in another database, or send the
information to another process.

Stitchers are used by the following Network Manager processes:
Discovery, ncp_disco

The Discovery engine uses stitchers to move information between databases and to build network
topology. You can change or add new stitchers to meet custom discovery requirements; for example,
to add and remove devices, or to configure nonstandard configurations, such as non-standard naming
of interfaces.Discovery stitchers are stored in the following locations:

• Text-based discovery stitchers (text files with a .stch extension): $NCHOME/precision/disco/
stitchers/

• Precompiled discovery stitchers : $NCHOME/precision/platform/platform/lib/, where
platform is the operating system on which Network Manager is running.

• dNCIM stitchers: $NCHOME/precision/disco/stitchers/DNCIM

For more information on the discovery stitchers, see the IBM Tivoli Network Manager IP Edition
Administration Guide.

Event Gateway, ncp_g_event
The Event Gateway uses stitchers to match events to an entity, perform a topology lookup, and then
use the topology data retrieved to enrich the event data..

Event Gateway stitchers are stored in the following location: $NCHOME/precision/eventGateway/
stitchers/.

For more information on the Event Gateway stitchers, see the IBM Tivoli Network Manager IP Edition
Administration Guide.

Root-cause analysis plug-in to the Event Gateway
The RCA plug-in uses stitchers to perform root-cause analysis on events passed from the Event
Gateway.

RCA plug-in stitchers are stored in the following location: $NCHOME/precision/eventGateway/
stitchers/RCA.

For more information on the RCA stitchers, see the IBM Tivoli Network Manager IP Edition
Administration Guide.

Related reference
Discovery stitchers
Stitchers are processes that transfer, manipulate, and distribute data between databases. The discovery
stitchers also process the information collected by the agents and using this information to create the
network topology.

Stitcher formats
Stitchers have two formats, text-based or precompiled.

Text-based stitchers
Text-based stitchers are defined in a plain text file using the stitcher language. The text file defines the
processing that the stitcher performs and the reasons why the stitcher is triggered. A text-based
stitcher can invoke any other stitcher regardless of whether it is precompiled or text-based

© Copyright IBM Corp. 2006, 2021 35

Precompiled stitchers

Precompiled stitchers are written in C++ and are shipped with Network Manager. The precompiled
stitchers are designed for computationally intensive operations that they can handle more efficiently
than the text-based stitchers.

The precompiled stitchers are controlled by a text-based stitcher, which contains the stitcher trigger
conditions. When the text-based stitcher is executed, it calls and executes the precompiled stitcher.

Stitcher structure
Each stitcher consists of two main sections, the stitcher triggers and stitcher rules.

The following topics describe each of the sections of a stitcher.

Stitcher triggers
A stitcher trigger specifies the actions or conditions that cause the stitcher to run.

Stitchers can be triggered by any of the following conditions:

• The completion of other processes (for example, finders, agents, and other stitchers).
• The insertion of data into a specified database table.
• The end of a specified discovery cycle phase.

Stitchers can also act:

• According to a preconfigured time frequency.
• When asked to do so, that is, on-demand.

You can retrieve stitcher trigger information for the discovery stitchers by performing an OQL query on the
stitchers.triggers table in DISCO. This table is created and updated by a periodic scan that DISCO
performs on the stitcher files in the $NCHOME/precision/disco/stitchers directory.

You can run a specific stitcher by entering the stitcher name in the only field of the stitchers.actions
table, whereupon DISCO will attempt to execute the specified stitcher. For example, if you update the
stitchers.actions table value with 'Restitcher', then DISCO will attempt to restitch the topology. You
can use this functionality to propagate any modifications throughout the topology.

Stitcher rules
Stitcher rules, written in the stitcher language, define the processing that the stitcher conducts. Stitcher
language commands allow the stitchers to make OQL statements to retrieve information from a database
and manipulate it. The end result is the distribution of processed information into the appropriate final
destination table.

Stitcher language
The stitcher language is used to write the stitcher rules. The rules of a stitcher are written in a stitcher text
file; each stitcher has a text file. The stitcher text file also contains the stitcher trigger conditions.

The following topics describe the stitcher language.

Stitcher text file structure
All discovery stitchers have a text file associated with them. The stitcher text files consist of a series of
structural statements that enclose the stitcher rules (the actual processing) and the trigger conditions.

The discovery stitcher text files are located under $NCHOME/precision/disco/stitchers. The
structure of a stitcher text file depends on the type of stitcher (that is, compiled or text-based discovery
stitcher).

The following topics describe the text file structure of precompiled and text-based discovery stitchers.

36 IBM Tivoli Network Manager IP Edition: Reference

Related reference
Stitcher rules
The stitcher rules are specified within the StitcherRules{} section of a stitcher. Stitcher rules
determine how a stitcher functions.

Structure of precompiled stitchers
The precompiled stitchers are identified as such in the text file with the CompiledStitcher{}
statement, which encloses the trigger conditions.

The following syntax shows the full structure of a precompiled stitcher.

!CompiledStitcher
{
 StitcherTrigger
 {
 List of stitcher trigger conditions
 }
}

Structure of text-based stitchers
Text-based discovery stitchers are identified as such in the text file with the UserDefinedStitcher{}
statement, which encloses the trigger conditions and the stitcher rules. Stitcher rules carry out the actual
stitcher processing.

The following syntax shows the full structure of a text-based discovery stitcher.

UserDefinedStitcher
{
 StitcherTrigger
 {
 List of stitcher trigger conditions
 }
 StitcherRules
 {
 List of stitcher rules
 }
}

Stitcher trigger conditions
The stitcher trigger conditions are specified within the StitcherTrigger{ } section of a stitcher. They
specify the conditions that must be met for the stitcher to be executed. 'Triggers' can be used to set off
stitchers based on an occurrence. The type of trigger defines which occurrence activates the trigger.

It is possible to enclose multiple stitcher triggers within the StitcherTrigger{} section, each of which
must be terminated by a semicolon.

Table 12 on page 37 lists the triggers that can be specified.

Table 12. Triggers and trigger types

Trigger name Trigger type

ActOnDemand On Demand

ActOnEvent On Event

ActOnTableDelete On Table Action

ActOnTableInsert On Table Action

ActOnTableUpdate On Table Action

ActOnTimedTrigger On Timer

DiscoRequiresAgents On Completion

Chapter 2. Stitchers and stitcher language 37

Table 12. Triggers and trigger types (continued)

Trigger name Trigger type

DiscoRequiresLastPhase On Completion

DiscoRequiresPhase On Completion

RequiresStitchers On Completion

ActOnDemand();
Use the ActOnDemand(); stitcher trigger condition to have the stitcher start when it is invoked by the
user, or by another stitcher.

No input is required. The following syntax shows how to use the ActOnDemand(); stitcher trigger
condition.

 StitcherTrigger
 {
 ActOnDemand();
 }

ActOnEvent()
Use the ActOnEvent(); stitcher trigger condition to start the stitcher when an event any of the specified
event states is received from Tivoli Netcool/OMNIbus.

Syntax
The following syntax shows how to use the ActOnEvent(); stitcher trigger condition.

 StitcherTrigger
 {
 ActOnEvent(("event_state", "event_state");
 }

Example of event states include Deleted, Occurred, and Reawakened. For a complete list of event states,
see the IBM Tivoli Network Manager IP Edition Administration Guide.

ActOnTableDelete()
Use the ActOnTableDelete(); stitcher trigger condition to specify that the stitcher starts every time a
row is deleted from the specified database table.

The following syntax shows how to use the ActOnTableDelete(); stitcher trigger condition.

 StitcherTrigger
 {
 ActOnTableDelete("database_name", "table_name");
 }

ActOnTableInsert();
Use the ActOnTableInsert(); stitcher trigger condition to specify that the stitcher starts every time
data is inserted into the specified database table.

The following syntax shows how to use the ActOnTableInsert(); stitcher trigger condition.

 StitcherTrigger
 {
 ActOnTableInsert("database_name", "table_name");
 }

38 IBM Tivoli Network Manager IP Edition: Reference

ActOnTableUpdate()
Use the ActOnTableUpdate(); stitcher trigger condition to specify that the stitcher starts every time a
row is updated in the specified database table.

The following syntax shows how to use the ActOnTableUpdate(); stitcher trigger condition.

 StitcherTrigger
 {
 ActOnTableUpdate("database_name", "table_name");
 }

ActOnTimedTrigger();
Use the ActOnTimedTrigger(); stitcher trigger condition to start the stitcher based on a frequency,
which is evaluated relative to the time DISCO started.

Syntax
The following syntax shows how to use the ActOnTimedTrigger(); stitcher trigger condition.

 StitcherTrigger
 {
 ActOnTimedTrigger((frequency_attribute) values (value););
 }

Frequency attributes
The following table lists the frequency attributes of the ActOnTimedTrigger(); stitcher trigger
condition.

Table 13. Frequency attributes of the ActOnTimedTrigger(); stitcher trigger condition

Attribute Description Value passed to attribute

m_DayOfWeek Specifies that the stitcher is
to be executed on a certain
day every week.

Integer representing the day, where Sunday
equals 0 and Saturday equals 6.

m_DayOfMonth Specifies a specific day of
the month for the stitcher to
run.

Integer from 1 to 31 representing the day of the
month on which to run the stitcher. If you specify
31 and the present month only has 28, 29 or 30
days, the timer automatically defaults to the last
day of the month.

m_TimeOfDay Specifies a specific time of
day for the stitcher to run.

An integer for the time of day in 24 hour format,
for example, 2pm is indicated as 1400.

m_Interval Specifies a specific time
interval in hours during
which the stitcher runs.

An integer representing the hours during the day
when the stitcher runs.

Note: This value also determines the time that
elapses before the stitcher is first run.

m_IntervalSeconds Specifies a specific time
interval in seconds during
which the stitcher runs.

An integer representing the interval in seconds
when the stitcher runs.

Note: This value also determines the time that
elapses before the stitcher is first run.

It is possible to combine either the weekly (m_DayOfWeek) or monthly (m_DayOfMonth) time interval
options with the time of day (m_TimeOfDay) option to specify exactly when you want the stitcher to

Chapter 2. Stitchers and stitcher language 39

execute. However, it is not possible to combine any of the configuration options with the m_Interval or
m_IntervalSeconds options, which take precedence over any other attribute.

DiscoRequiresAgents();
Use the DiscoRequiresAgents(); stitcher trigger condition if you want the stitcher to start only when
operations for the specified discovery agents are completed.

The following syntax shows how to use the DiscoRequiresAgents(); stitcher trigger condition. The
name of each agent must be enclosed in double quotes. If multiple agents are specified the list must be
separated by commas.

 StitcherTrigger
 {
 DiscoRequiresAgents("Discovery_agent");
 }

DiscoRequiresLastPhase();
Use the DiscoRequiresLastPhase(); stitcher trigger condition to have the stitcher start only on
completion of the last discovery cycle phase.

The following syntax shows how to use the DiscoRequiresLastPhase(); stitcher trigger condition. No
input is required.

 StitcherTrigger
 {
 DiscoRequiresLastPhase();
 }

DiscoRequiresPhase();
Use the DiscoRequiresPhase(); stitcher trigger condition to have the stitcher start only on
completion of a specified discovery phase.

The following syntax shows how to use the DiscoRequiresPhase(); stitcher trigger condition.

 StitcherTrigger
 {
 DiscoRequiresPhase(Integer_indicating_discovery_phase);
 }

RequiresStitchers();
Use the RequiresStitchers(); stitcher trigger condition to have the stitcher start when a specified
stitcher or stitchers have completed their operation.

The following syntax shows how to use the RequiresStitchers(); stitcher trigger condition. The
name of each stitcher must be enclosed in double quotes. If multiple stitchers are specified the list must
be separated by commas.

 StitcherTrigger
 {
 RequiresStitcher("Stitcher");
 }

Examples of timed triggers
Use these examples to orient yourself when you configure triggers to run stitchers at predetermined
times.

A stitcher can only contain one ActOnTimedTrigger trigger, that is, only one trigger activated according
to a frequency. So, for example, if you want to set a trigger so that a specific stitcher action is performed

40 IBM Tivoli Network Manager IP Edition: Reference

on two days in a week such as Monday and Thursday, you need to define two stitchers and place an
ActOnTimedTrigger trigger in each.

Example 1
In the following example, the stitcher is configured to run every 60 hours.

 StitcherTrigger
 {
 ActOnTimedTrigger
 (
 (m_Interval) values (60);
);
 }

Example 2
In the following example, the stitcher is configured to execute every Monday at 3:15 pm.

 StitcherTrigger
 {
 ActOnTimedTrigger
 (
 (m_DayOfWeek, m_TimeOfDay) values (1, 1515);
);
 }

Stitcher rules
The stitcher rules are specified within the StitcherRules{} section of a stitcher. Stitcher rules
determine how a stitcher functions.

The following topics describe the processing that takes place within the curly braces of the
StitcherRules{} section of the text-based stitchers. The stitcher rules are separated by spaces.

Related reference
Stitcher text file structure
All discovery stitchers have a text file associated with them. The stitcher text files consist of a series of
structural statements that enclose the stitcher rules (the actual processing) and the trigger conditions.
Stitcher language building blocks
To construct statements in the stitcher language, use the programming constructs, relational operators,
and datatypes.

Variables in the stitcher rules
Before you can use variables, you must first declare the variables in the stitcher rules.

The declaration is in the following format.

datatype name = initial_value ;

You can declare variables anywhere within the StitcherRules{}. Although variables must be assigned
an initial value, it can be NULL. After a variable has been declared it can be used throughout the current
stitcher, but can only accept values of the appropriate datatype. Some examples of variable declaration
are shown below.

The following example declares an integer variable called router and assigns to it an initial value of 0.

int router = 0;

After a variable has been created, its value can be updated at any time. It is also possible to assign the
result of an eval statement or a calculation to a variable.

Chapter 2. Stitchers and stitcher language 41

Example

The following example declares a text variable called router2 and assigns to it the string "upper".

text router2 = "upper";

Related reference
Precedence and association of operators
The rules for precedence and association of operators determine the grouping of operators with
operands, and indicate the order in which the operators in an expression are executed.

The RecordList and Record datatypes
Variables of the RecordList and Record datatypes are used to store retrieved OQL records in a variable.

A variable with one of these datatypes is defined, like a text or integer variable, by specifying the datatype
and variable name and assigning a value to the variable. The results of an OQL query can be assigned to
the variable using the RetrieveOQL(); rule, which contains an OQL query enclosed in double quotes.

Example of RecordList

The following example declares a variable called discoRes, specifies the datatype for the variable as
RecordList, and assigns the results of a query on the disco.status database table to discoRes.

RecordList discoRes=RetrieveOQL // Declares discoRes to be a
 (// RecordList variable and
 "select m_DiscoveryMode // assigns the results of the
 from disco.status;" // query to discoRes.
);

Example of Record

The Record datatype is used in the same way, but variables of the Record datatype only hold one record.

The following example shows the Record datatype in use.

Record newEntity = GetInScopeRecord();

Related reference
RetrieveOQL()
The RetrieveOQL(); stitcher rule executes an OQL query that is expected to return data, against the
current process. An optional record can be passed in to be added to the scope of the OQL query.
GetRecordFromScope()
The GetRecordFromScope(); rule retrieves a record from the specified scope (for example, for use
when nested within a foreach loop).

Variable declaration and use
Variables of the Record and RecordList types do not have to be declared on the same line as the
assignment of the output from stitcher rules like RetrieveOQL();.

As long as the variable has previously been declared it can be assigned the output from a
RetrieveOQL(); rule. The following example is also a valid use of the Record datatype.

Record newEntity = NULL;
newEntity = GetInScopeRecord();

Accessing fields in records
You can access fields within a named record by using the @ character.

Accessing fields within a named record
The @ character allows top-level fields to be set, and can be used to retrieve nested fields.

42 IBM Tivoli Network Manager IP Edition: Reference

Note: The @ character does not apply to in-scope records.

Retrieving data from a record

Record inScopeCopy = GetInScopeRecord();

Retrieving a field

int i = @inScopeCopy.integerMemberField;

Retrieving a nested field

text nested = @inScopeRecordCopy.ExtraInfo.ExampleSubfield;

Writing data to a record

The following examples write data to a record:

Record newRec;
@newRec.intField = i;
@newRec.anotherIntField = eval(int, '$i');
@newRec.textField = "constant string";

The following example extracts the field name from another variable and then writes the data to a record:

text myField = "customField";
@newRec.eval(text, '$myField') = "customValue";"

Writing nested objects and lists

Record newRec;
@newRec.m_ExtraInfo->m_NestedObject = eval(text, '$internetNodeIP');
@newRec.m_ExtraInfo->m_NestedList(2) = eval(text, '$internetNodeIP');
@newRec.m_ExtraInfo->m_DeeperNest->m_VeryNestedList(0) =
 eval(text, '$internetNodeIP');

The above code builds a record like the following example:

 m_ExtraInfo={
 m_NestedObject='99.99.99.99';
 m_NestedList=['','','99.99.99.99'];
 m_DeeperNest={
 m_VeryNestedList=['99.99.99.99']
 }
 }

Looping within the stitcher rules
The stitcher language relational operators can be used to compare variables and perform conditional
tests.

You use the relationship operators for variable comparison and conditional tests in conjunction with the
stitcher language programming constructs such as for, foreach, while and if. These constructs can
be nested within each other.

Related reference
Stitcher language building blocks

Chapter 2. Stitchers and stitcher language 43

To construct statements in the stitcher language, use the programming constructs, relational operators,
and datatypes.

The for loop
The for loop is used to repeat a set of rules a given number of times.

The for loop takes the following format.

for(variable_assignment ; conditional_test ; change_to_variable)
 {
 List of stitcher rules to execute
 }

The process flow of the for loop is as follows:

1. On the first loop, the variable_assignment assigns a value to a previously declared variable.
2. The conditional_test is evaluated.
3. If the test evaluates true:

• The stitcher rules within the curly braces are executed.
• The change_to_variable is performed.
• The loop returns to step 2.

4. When the conditional_test evaluates false, the loop terminates.

Example

The following example shows a for loop. This loop repeats until variable1 is no longer less than
variable2 (variable1 is increased by 1 on each complete loop).

int variable1 = 0; // Declares variable1 as an integer.

for(variable1 = 0 ; variable1 < variable2 ; variable1 = variable1 + 1)
 {
 List of stitcher rules to execute
 }

Related reference
Stitcher language building blocks
To construct statements in the stitcher language, use the programming constructs, relational operators,
and datatypes.

The while Loop
The while loop is used to execute a series of instructions while a specified condition remains true.

The while loop takes the following format.

while(conditional_test)
 {
 List of stitcher rules to execute
 }

The while loop repeats as long as the conditional test evaluates to true.

The conditional_test can contain boolean expressions containing AND and OR.

An example while loop is shown below.

while(count < numberOfLayers)
 {
 List of stitcher rules to execute
 }

The above loop repeats as long as the value of the count variable is less than the value of
numberOfLayers.

44 IBM Tivoli Network Manager IP Edition: Reference

Related reference
Stitcher language building blocks
To construct statements in the stitcher language, use the programming constructs, relational operators,
and datatypes.

The if statement
The if statement performs an action if a particular condition is satisfied.

The if statement takes the following format.

if(conditional_test)
 {
 List of stitcher rules to execute if the condition is TRUE
 }

The list of stitcher rules are executed if the conditional test is satisfied. It is also possible to specify a list
of stitcher rules to execute if the condition is not satisfied, as shown below.

if(conditional_test)
 {
 List of stitcher rules to execute if the condition is TRUE
 }
else
 {
 List of stitcher rules to execute if the condition is FALSE
 }

Note that the if statement also supports the following:

• The if statement also supports else if clauses.
• The conditional_test can contain boolean expressions containing AND and OR.

Example

The following example shows the if statement in use. If myVariable is equal to 1, the first OQL
statement is executed, otherwise the second OQL statement is executed.

if(myvariable == 1)
 {
 ExecuteOQL
 (
 "insert into database.table
 (m_Name,
 m_BaseName)
 values
 ("Agent",
 ("BaseName");"
);
 }
else
 {
 ExecuteOQL
 (
 "insert into another.table
 (m_Name,
 m_BaseName)
 values
 ("Agent", "BaseName");"
);
 }

Related reference
Stitcher language building blocks

Chapter 2. Stitchers and stitcher language 45

To construct statements in the stitcher language, use the programming constructs, relational operators,
and datatypes.

The foreach Loop
The foreach loop performs an action on every record stored in a variable of type RecordList.

The foreach loop has the following syntax.

foreach(variable of type RecordList)
 {
 List of stitcher rules to execute
 }

Example

The following example shows how the foreach loop repeats the list of stitcher rules for every record in
the list.

foreach(remoteNames)
 {
 ExecuteOQL
 (
 "insert into CDPLayer.entityByNeighbor
 (
 m_Name, m_NbrName, m_NbrType
)
 values
 (
 eval(text, '&m_LocalName'),
 eval(text, '&m_Name'),
 eval(int, '$RemoteNeighbor')
);"
);
 }

The example assumes that a variable called remoteNames has already been defined and a list of OQL
records has been assigned to it. The foreach loop executes the specified OQL insert for every record in
the list, extracting the values to insert from the records using eval statements.

Related reference
Stitcher language building blocks
To construct statements in the stitcher language, use the programming constructs, relational operators,
and datatypes.

List of stitcher rules
Use this list of stitcher rules for reference when you define the rules that you require.

The concept of scope is important in the stitcher rules. The ampersand (&) syntax element is used to
retrieve data from the current in-scope record. This scope can be nested; use multiple ampersansds, for
example &&, to access nested scopes.

General stitcher rules
Use these stitcher rules for reference when you define generic rules for any type of stitcher.

CommitSQLTransaction()
The CommitSQLTransaction(); rule commits a transaction in a specified database.

Syntax
The CommitSQLTransaction(); statement uses following syntax.

CommitSQLTransaction(database identifier);

46 IBM Tivoli Network Manager IP Edition: Reference

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 14. Arguments of CommitSQLTransaction()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

database
identifier

Specifies the database on which
the commit transaction is to be
performed; for example, DNCIM,
NCIM, NCMONITOR.

No No No

Example

The following example shows how the rule is used.

StartSQLTransaction("DNCIM");
 text entityName = NULL;
 foreach(entityNames)
 {
 entityName = eval(text,'&m_Name');
 ExecuteStitcher('PopulateDNCIMObject', entityName, domainId,
dynamicDiscoNode);
 }
 delete(entityNames);
CommitSQLTransaction("DNCIM");

Related reference
StartSQLTransaction()
The CommitSQLTransaction(); rule starts a commit transaction in a specified database.
RollbackSQLTransaction()
The RollbackSQLTransaction(); rule rolls back a transaction in a specified database.

delete()
The delete rule removes lists and records that have been created and are no longer needed.

Syntax
The following syntax shows how to use the delete rule.

delete(variable of type Record or RecordList);

Tip: Delete lists after they are no longer needed to release memory.

Example

Some examples are shown below.

delete(notIpSwitchNbrs);
delete(ethernetSwitches);

Related reference
Stitcher language building blocks
To construct statements in the stitcher language, use the programming constructs, relational operators,
and datatypes.

ExecEvalOnRecord()
The ExecEvalOnRecord(); rule executes the supplied eval statement on the named record.

Chapter 2. Stitchers and stitcher language 47

Syntax
The ExecEvalOnRecord(); statement uses following syntax.

ExecEvalOnRecord(record, eval clause);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 15. Arguments of ExecEvalOnRecord()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

record Typically retrieved from a
database or passed in to the
stitcher as an argument.

No Yes No

eval clause Defines the type and name of the
field to extract.

No No Yes

Example

The following example shows how a text variable called name is assigned the evaluation of the
EntityName field of the currentRec variable.

text name=ExecEvalOnRecord(currentRec , eval(text, '&EntityName');

ExecuteOQL()
The ExecuteOQL(); rule tells the stitcher to execute an OQL statement on the databases of the current
service. For example, if this rule is run from a discovery stitcher, then the current service is the Discovery
engine, ncp_disco.

Syntax
The ExecuteOQL(); statement uses following syntax.

ExecuteOQL(oql string, [optional record]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 16. Arguments of ExecuteOQL()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

oql string The OQL command to execute.
This can reference members of
the optional record, if present.

Note: OQL queries must not be
terminated with a semi-colon.

Yes Yes Only within the
OQL string.

optional
record

An optional record that can be
passed in to be added to the
scope of the OQL query.

No Yes No

48 IBM Tivoli Network Manager IP Edition: Reference

Example

The following example shows how the ExecuteOQL() rule is used to delete all the records in the
finders.pending table.

text oqlDelete = "delete * from finders.pending;";
ExecuteOQL(oqlDelete);

In the following example, the optional record is added to the symbol table used for the OQL statement,
and can be accessed within the OQL statement using a single ampersand. Here the record myRecord
contains the field m_TableName.

text oqlDelete = "delete * from finders.pending;";
ExecuteOQL("delete from eval(int, &m_TableName);", myRecord);

ExecuteSQL()
The ExecuteSQL(); rule executes a prepared SQL query.

Syntax
The ExecuteSQL(); statement uses following syntax.

ExecuteSQL (sql data, [optional variable list]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 17. Arguments of ExecuteSQL()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

sql data The prepared SQL command to
execute. The prepared SQL
command is presented as an
SQLData variable.

Note: SQL queries must not be
terminated with a semi-colon.

Yes Yes Yes

optional
variable
list

An optional comma-separated
list of variables to be used if
placeholders (marked by a
question mark symbol, ?) are
used in the sql data argument.

Yes Yes Yes

Example

The following example shows how the ExecuteSQL() rule is used to execute an SQL statement that was
prepared earlier.

SQLData myData = PrepareSQL(
 "insert into entityNameCache
 (
 entityName,
 domainMgrId
)
 values
 (
 ?,
 ?
);"
 , "NCIM" ,
 eval(text,'$entityName'),

Chapter 2. Stitchers and stitcher language 49

 eval(int,'$domainId')
);

ExecuteSQL (myData);

ExecuteStitcher()
The ExecuteStitcher(); function runs the specified stitcher.

Syntax
After the invoked stitcher has completed, control is passed back to the original stitcher and the remaining
stitcher rules are run in sequence. The following syntax shows how to use the ExecuteStitcher()
function.

ExecuteStitcher('stitcher name', [optional variable list]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 18. Arguments of ExecuteStitcher()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

stitcher
name

The name of the stitcher to call. Yes No No

optional
variable
list

An optional comma-separated
list of variables to be passed to
the stitcher.

Yes Yes Yes

No arguments passed

The following example runs the ProcessAffectedRemoteSwitches.stch stitcher without passing
any arguments.

ExecuteStitcher('ProcessAffectedRemoteSwitches');

Passing two variables

The following example executes the SwitchFdbToConnections.stch stitcher and passes two
variables to the stitcher.

ExecuteStitcher('SwitchFdbToConnections' , 'agent1' , 'agent2');

Use of eval statement in the argument list

The following example executes the IsInScope.stch stitcher to determine whether an entity is within
the scope of discovery, that is, within the scope defined in the scope.zones table. The entity is defined
using an IP address and a netmask and the IP address is calculated by using an eval statement to
evaluate the value of the $testIp variable.

ExecuteStitcher('IsInScope' , eval(text,'$testIp') , netMask, 1);

Returning an argument

The following example shows how the ExecuteStitcher() call can return an argument. The called
stitcher must use the SetReturnValue() rule to return the argument.

50 IBM Tivoli Network Manager IP Edition: Reference

In the DetailsRetProcessing.stch stitcher:

...
toBeDetected = ExecuteStitcher('DetectionFilter', protocol);

In the DetectionFilter.stch stitcher:

...
SetReturnValue(toBeDetected);

Extraction of variable passed to a stitcher

The stitcher invoked using the ExecuteStitcher(); rule can extract the variables that have been
passed to it by evaluating the special variable ARG_N using an eval statement, where N is the number of
the variable (for example, ARG_1 represents the first variable passed to the stitcher, ARG_2 represents
the second variable, and so on).

ExecuteStitcherOnTimer
The ExecuteStitcherOnTimer(); function runs the specified stitcher after a delay.

Syntax
When a stitcher calls the another stitcher using the ExecuteStitcherOnTimer(); function, the first
stitcher continues to run. The ncp_disco process starts the second stitcher after the specified delay. The
second stitcher only uses the arguments that you explicitly pass to it in the function.

The ExecuteStitcherOnTimer(); function uses the same syntax as the ExecuteStitcher();
function.

The following syntax shows how to use the ExecuteStitcherOnTimer() function.

ExecuteStitcherOnTimer('stitcher name', [optional variable list], AtTime
((m_IntervalSeconds) values (seconds);););

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 19. Arguments of ExecuteStitcherOnTimer()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

stitcher
name

The name of the stitcher to call. Yes No No

optional
variable
list

An optional comma-separated
list of variables to be passed to
the stitcher.

Yes Yes Yes

AtTime Specifies the number of seconds
to wait before calling the stitcher.

Yes Yes Yes

Example: Calling a stitcher with a delay

The following example executes the TestStitcher.stch stitcher after 12 seconds. The example also
passes a single argument to the stitcher, domain, which has been defined as NCOMS.

text domain = "NCOMS";

ExecuteStitcherOnTimer("TestStitcher", domain)
AtTime
(

Chapter 2. Stitchers and stitcher language 51

(m_IntervalSeconds) values (12) ;
) ;

FetchLastInsertedIdForSQL()
The FetchLastInsertedIdForSQL(); rule retrieves the last inserted unique key caused by an SQL
data object. This is useful when you are inserting into a table with automatically incrementing IDs, such as
the entityNameCache table. When an insert is made the FetchLastInsertedIdForSQL(); rule can
be used to retrieve the automatically incremented id that was applied to that insert. This rule is used
together with the PrepareSQLAutoColumn(); rule.

Syntax
The SQL data object is enclosed in brackets, as shown in the following syntax.

intVariable = FetchLastInsertedIdForSQL(SQL data object);

Example

The following example shows how the FetchLastInsertedIdForSQL() rule is used to retrieve the last
inserted unique key caused by an SQL data object.

// We need to populate the entityNameCache
// entityId will be auto populated.
SQLData myData = PrepareSQLAutoColumn(
 "insert into entityNameCache
 (
 entityName,
 domainMgrId
)
 values
 (
 ?,
 ?
);"
 , "NCIM" ,
 eval(text,'$entityName'),
 eval(int,'$domainId')
);

ExecuteSQL(myData);
entityId = FetchLastInsertedIdForSQL(myData);
delete(myData);

GetInScopeRecord()
The GetInScopeRecord(); rule retrieves the record currently in scope. Using this rule is equivalent to
running the rule GetRecordFromScope () with a depth argument of 0, that is, GetRecordFromScope
(0).

The rule requires no input. The results are to be assigned to a variable of type Record. The following
syntax shows how to use GetInScopeRecord();.

GetInScopeRecord();

Related reference
GetRecordFromScope()

52 IBM Tivoli Network Manager IP Edition: Reference

The GetRecordFromScope(); rule retrieves a record from the specified scope (for example, for use
when nested within a foreach loop).

GetRecordFromScope()
The GetRecordFromScope(); rule retrieves a record from the specified scope (for example, for use
when nested within a foreach loop).

Syntax
The GetRecordFromScope(); statement uses following syntax.

GetRecordFromScope (depth);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 20. Arguments of GetRecordFromScope()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

depth Numbers greater than 0 can be
used to extract a record from a
deeper nested scope, in the same
way that multiple ampersands
can be used.

Yes No No

Example

Records that are in scope can be accessed using ampersands, as shown in this example.

RecordList myList = list;

text currentRecordName = "";

// Upon each iteration through this loop, one record is in scope
foreach (myList)
{
 currentRecordName = eval(text, '&Name')
}

The entire record can be retrieved from the same scope using the GetRecordFromScope() stitcher rule,
as shown in this example.

RecordList myList = <whatever>;

Record currentRecord = NULL;

// Upon each iteration through this loop, one record is in scope
foreach (myList)
{
 # depth 0 means the record in the nearest scope
 currentRecord = GetRecordFromScope(0);
}

Related reference
The RecordList and Record datatypes
Variables of the RecordList and Record datatypes are used to store retrieved OQL records in a variable.
GetInScopeRecord()

Chapter 2. Stitchers and stitcher language 53

The GetInScopeRecord(); rule retrieves the record currently in scope. Using this rule is equivalent to
running the rule GetRecordFromScope () with a depth argument of 0, that is, GetRecordFromScope
(0).

IsInSubnet()
The IsInSubnet(); rule determines whether a specified IP address is in a given subnet, based on the
subnet mask.

Syntax
The IsInSubnet(); statement uses following syntax.

IsInSubnet(ip , subnet , mask);

The rule returns an integer where 0 indicates that the IP address is not in the subnet and 1 indicates that
the IP address is in the subnet.

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 21. Arguments of ExecuteSQL()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

ip Textual IP address (dot notation
for IPv4; colon notation for IPv6).

Yes Yes No

subnet Textual subnet (dot notation for
IPv4; colon notation for IPv6).

Yes Yes No

mask This argument can be specified
as a string in the same format as
the subnet/IP or as a numerical
integer mask.

Yes Yes No

Example

The following example shows how the ExecuteSQL() rule is used to test whether an IPv4 address
passed as an argument is within the scope of a specified Class C subnet.

int inScope = 0;
text ip = eval(text, '$ARG_2');
inScope = IsInSubnet(ip, "10.10.10.0", 24)

IsRecordInFilter()
The IsRecordInFilter() rule applies the specified filter string to the specified record and returns the
following value: 1 if the record passes the filter, 0 if the record does not pass the filter. This technique can
be used whenever you need to determine if a record passes a given set of criteria. The technique is used
in the discovery process to test whether specific network entities match a given filter entities at various
points in the discovery.

Syntax
The IsRecordInFilter(); statement uses the following syntax.

IsRecordInFilter (filter string, record);

54 IBM Tivoli Network Manager IP Edition: Reference

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 22. Arguments of IsRecordInFilter()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

filter
string

Filter used to test the record No Yes No

record Record to test No Yes No

Example

The following example shows how the IsRecordInFilter() rule is used in the discovery process to
check whether the Object ID of a specified Cisco entity adheres to a specified format and whether the
entity contains an experimental Cisco IOS.

Filter to determine if a given record is a cisco device with
an experimental IOS
deviceRec could be anything but for example contains
#
 { EntityName='bristol-cs55-catos';
 Address=['','00:02:BA:6D:F3:FF','172.20.72.2'];
 Description='Cisco Systems WS-C5000 Cisco Catalyst Operating
 System Software, Version 5.2(4)
 Copyright (c) 1995-2000 by Cisco Systems';
 EntityType=1;
 EntityOID='.1.3.6.1.4.1.9.5.7';
 IsActive=1;
 Status=1;
)

int filterResult = IsRecordInFilter('EntityOID LIKE "^1.3.6.1.4.1.9.*" AND
Description LIKE ".*Experimental Release.*" ' , deviceRec);

Log()
The Log(); rule prints a message to the .log log file at the given message level if appropriate to the
current message level. This rule also prints to the .trace file if running at debug level 4.

Syntax
The Log(); statement uses following syntax.

Log(level, symbol, [optional symbol list]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 23. Arguments of Log()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

level Message level to log the message
at. Can be one of the following:

• debug
• info
• warn
• error

Yes Not for the level No

Chapter 2. Stitchers and stitcher language 55

Table 23. Arguments of Log() (continued)

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

symbol Main part of the message to print
out.

Yes Not for the level No

[optional
symbol list]

If supplied, these will be
appended in order to the string in
the output.

Yes Not for the level No

Example

The following examples shows how the rule is used.

Log("debug", "Subnet Name : ", subnetName);

Log("warn", "The topology entity for the topology type you are trying to insert
into doesn't exist. Connection rejected for topology type: ", topologyType

Related reference
Print()
The Print() rule sends information to the standard output, but differs from PrintRecord() in that the
information to be printed must be specified.

MatchPattern()
The MatchPattern() rule performs string extraction based on regular expressions. The rule determines
how many times a regular expression pattern was found in a target string. The rule also enables you to
create variables based on subpatterns found in the target string.

Syntax
The MatchPattern(); statement uses following syntax.

MatchPattern(input string,regular expression);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 24. Arguments of MatchPattern()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

input string Search for the given pattern
within this string.

Yes Yes Yes

regular
expression

The regular expression pattern to
try to match to the input string.

Yes Yes Yes

Example 1

The following example shows a use of the MatchPattern() rule when both the target string and the
pattern string are defined strings: The following example returns the value 3 as the pattern was matched
three times.

int count=MatchPattern("Hello Hello Hello","Hello");

56 IBM Tivoli Network Manager IP Edition: Reference

Example 2

The following example shows a use of the MatchPattern() rule when both the target string and the
pattern string are variables: The following example also returns the value 3.

text target="Hello Hello Hello";
text pattern="Hello";
int count=MatchPattern(target,pattern);

Example 3

The following example shows an eval statement used to match a pattern against an m_Description field in
the in scope record.

text pattern='[[:space:]]+OS([^[:space:]]+)[[:space:]]+';
int count=MatchPattern(eval(text,'&m_Description'),pattern);

Example 4

The following example shows how to extract an interface index from an input string.

Extract an ifIndex from an input string in a known format
text input = "ifEntry.12";

The input must start with "ifEntry", followed by a single '.' followed
by one or more numbers. The numbers are extracted and saved by virtue
of being within round brackets
text pattern = "^ifEntry\.(\d+)";

return the number of times the pattern was found in the input string
int patternMatchCount = MatchPattern(input, pattern);

In this example, we only recognise a match if we matched once on the entire field
REGEX0 conatins the section of the input that was matched to the whole pattern
if (patternMatchCount == 1 AND REGEX0 == input)
{
 # REGEX1 contains the first match from within round brackets. If multiple
 # parts of the pattern were extracted with multiple pairs of round brackets,
 # they would be stored in symbols REGEX2, REGEX3,... etc
 int ifIndex = eval(int, '$REGEX1');
}

String extraction
The MatchPattern() rule can also extract text from the target string by creating variables based on
sub-patterns found in the target string.

These variables take the name REGEXN, where N is a number which identifies the variable.

Example

The following example shows how variables are assigned.

[1]text target="Testing Testing One 2 Three";
[2]text pattern="([^[:space:]]+)[[:space:]]+([^[:space:]]+)[[:space:]]+
 ([^[:space:]]+)[[:space:]]+([[:digit:]]+)[[:space:]]+([^[:space:]]+).*";
[3]int count=MatchPattern(target,pattern);
[4]while(count > 0)
[5] {
[6] Print("Count ", count);
[7] Print("Match ", REGEX0);
[8] Print("SubMatch1 ", REGEX1);
[9] Print("SubMatch2 ", REGEX2);
[10] Print("SubMatch3 ", REGEX3);
[11] Print("SubMatch4 ", REGEX4);
[12] Print("SubMatch5 ", REGEX5);
[13]
[14]

Chapter 2. Stitchers and stitcher language 57

[15] count = count - 1;
 }

The round brackets in the pattern string defined in line 2 identify a subpattern to be extracted and placed
within a REGEX variable. In this example there is one match only; hence there is one variable (REGEX0),
which matches the full pattern, and five sub-matches, (REGEX1 to REGEX5), set as shown in the following
table.

Table 25. Extraction of variables based on sub-patterns

Variable Value Type

REGEX0 Testing Testing One 2 Three Match

REGEX1 Testing Sub-match

REGEX2 Testing Sub-match

REGEX3 One Sub-match

REGEX4 2 Sub-match

REGEX5 Three Sub-match

If more than one match is found, more REGEX variables are created.

For example, if there were three matches, then 18 REGEX variables would be created. In this case, the
variables REGEX0, REGEX6, and REGEX12 would correspond to the full matching pattern, while variables
REGEX1-5, REGEX7-11, and REGEX13-18 would correspond to the subpatterns within each full match.

Note: If you run the MatchPattern() rule a second time, then it overwrites previous values held in the
REGEX variables. It is recommended that you store any extracted data prior to running the
MatchPattern() rule a second time.

Example of pseudowire
Use this realistic example based on data received from an MPLS agent for a real-life example of a
pseudowire data string.

Assume that the following pseudowire data string is retrieved from the agent.

Layer-2 VPN Statistics:
 Instance: vpls1

 Local interface: fe-1/3/0.0, Index: 71
 Multicast packets: 375747
 Multicast bytes : 34780885
 Flooded packets : 96012
 Flooded bytes : 9213657

 Local interface: vt-1/2/0.32768, Index: 72
 Remote PE: 10.1.230.4
 Multicast packets: 174307
 Multicast bytes : 14449864
 Flooded packets : 615013
 Flooded bytes : 50990719

 Instance: vpls1

 Local interface: fe-1/3/0.0, Index: 71
 Multicast packets: 375747
 Multicast bytes : 34780885
 Flooded packets : 96012
 Flooded bytes : 9213657

 Local interface: vt-1/2/0.32768, Index: 72
 Remote PE: 10.1.230.4
 Multicast packets: 174307
 Multicast bytes : 14449864
 Flooded packets : 615013
 Flooded bytes : 50990719

58 IBM Tivoli Network Manager IP Edition: Reference

You can extract the data from this string by writing a stitcher which incorporates code with the
MatchPattern() rule.

[1]text pattern=
 "Instance:[[:space:]]+([^[:space:]]+)[[:space:]]*[\n\r][[:space:]]
 *[\n\r][[:space:]]*Localinterface:[[:space:]]+([^,]+),[[:space:]]
 +Index:[[:space:]]+([[:digit:]]+)[[:space:]]*[\n\r][[:space:]]*
 Multicast packets[[:space:]]*:[[:space:]]+[[:digit:]]+[[:space:]]*
 [\n\r][[:space:]]*Multicast bytes[[:space:]]*:[[:space:]]+[[:digit:]]
 +[[:space:]]*[\n\r][[:space:]]*Flooded packets[[:space:]]*:[[:space:]]
 +[[:digit:]]+[[:space:]]*[\n\r][[:space:]]*Flooded bytes[[:space:]]*:
 [[:space:]]+[[:digit:]]+[[:space:]]*[\n\r][[:space:]]*[\n\r]
 [[:space:]]*Local interface:[[:space:]]+([^,]+),[[:space:]]+Index:
 [[:space:]]+([[:digit:]]+)[[:space:]]*[\n\r][[:space:]]*Remote PE:
 [[:space:]]+([^ \t\n\r]+)[[:space:]]*[\n\r].*";
[2]int count = MatchPattern(eval (text,$target), pattern);
[3]while(count > 0)
[4] {
[5] Print("Count ", count);
[6] Print("Match ", REGEX0);
[7] Print("SubMatch 1 ", REGEX1);
[8] Print("SubMatch 2 ", REGEX2);
[9] Print("SubMatch 3 ", REGEX3);
[10] Print("SubMatch 4 ", REGEX4);
[11] Print("SubMatch 5 ", REGEX5);
[12] Print("SubMatch 6 ", REGEX6);
[13]
[14] count = count - 1;
[15] }

In line 2 of this example, $target is the pseudowire data string received from the MPLS stitcher.

MergeEntities()
The MergeEntities(); rule merges two variables of type Record into a single record, leaving the
original records unchanged. If the same field exists in both records, then the precedence flag
indicates which will be used.

Syntax
The MergeEntities(); statement uses following syntax.

MergeEntities(lhs record , rhs record , precedence flag);

The output of the rule can be assigned to a variable of type Record.

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 26. Arguments of ExecuteSQL()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

lhs record One record to merge. No Yes No

rhs record Another record to merge. No Yes No

precedence
flag

A boolean value. If 0, then rhs
record takes precedence. If 1,
then lhs record takes
precedence.

No Yes No

This examples merges two entity records, giving precedence to the right-hand side (rhs) entity.

int oldIsMaster = 0;
Record oldEntity = value1;
Record newEntity = value2;
Record mergedRecord = MergeEntities(newEntity, oldEntity, oldIsMaster);

Chapter 2. Stitchers and stitcher language 59

PrepareSQL()
The PrepareSQL(); rule prepares an SQL statement for execution.

Syntax
The PrepareSQL(); statement uses the following syntax.

PrepareSQL (sql string, database id, [optional variable list]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 27. Arguments of PrepareSQL()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

sql data The prepared SQL command to
execute. The prepared SQL
command is presented as an
SQLData variable.

Note: SQL queries must not be
terminated with a semi-colon.

Yes Yes Yes

database id The database ID, as specified in
the DbLogins.cfg file, used to
identify the database schema
that contains the required table.

Yes Yes Yes

optional
variable
list

An optional comma-separated
list of variables to be used if
placeholders (marked by a
question mark symbol, ?) are
used in the sql data argument.

Yes Yes Yes

Example

The following example shows how the PrepareSQL() rule is used to prepare an SQL statement for
execution.

SQLData myData = PrepareSQL(
 "insert into entityNameCache
 (
 entityName,
 domainMgrId
)
 values
 (
 ?,
 ?
);"
 , "NCIM" ,
 eval(text,'$entityName'),
 eval(int,'$domainId')
);

ExecuteSQL (myData);

PrepareSQLAutoColumn()
The PrepareSQLAutoColumn(); rule prepares an SQL statement for execution and notifies the system
of a column which will be automatically incremented as a result of this operation. This enables the

60 IBM Tivoli Network Manager IP Edition: Reference

automatically incremented column to be retrieved later using the FetchLastInsertedIdForSQL();
rule.

Syntax
The PrepareSQLAutoColumn(); statement uses the following syntax.

PrepareSQLAutoColumn (sql string, auto-incrementing column name, database id,
[optional variable list]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 28. Arguments of PrepareSQLAutoColumn()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

sql data The prepared SQL command to
execute. The prepared SQL
command is presented as an
SQLData variable. This command
can contain placeholders
(marked by a question mark
symbol, ?).

Note: SQL queries must not be
terminated with a semi-colon.

Yes Yes Yes

auto-
incrementing
column name

Name of the field in the table that
is set to automatically increment
upon insert.

Yes Yes Yes

database id The database ID, as specified in
the DbLogins.cfg file, used to
identify the database schema
that contains the required table.

Yes Yes Yes

optional
variable
list

An optional comma-separated
list of variables to be used if
placeholders (marked by a
question mark symbol, ?) are
used in the sql data argument.

Yes Yes Yes

Example

The following example shows how the PrepareSQLAutoColumn() rule is used to prepare an SQL
statement for execution. An insert is performed into the entityNameCache table. This insert automatically
increments the field entityId, which is then retrieved using the FetchLastInsertedIdForSQL(); rule.

SQLData myData = PrepareSQLAutoColumn(
 "insert into entityNameCache
 (
 entityName,
 domainMgrId
)
 values
 (
 ?,
 ?
);"
 ,"entityId"
 ,"NCIM",
 eval(text,'$entityName'),

Chapter 2. Stitchers and stitcher language 61

 eval(int,'$domainId')
);

ExecuteSQL (myData);
entityId = FetchLastInsertedIdForSQL(myData);
delete(myData);

Print()
The Print() rule sends information to the standard output, but differs from PrintRecord() in that the
information to be printed must be specified.

Syntax
The Print(); statement uses following syntax.

Print (string, [optional list of variables]);

At least two comma-separated arguments must be specified within the parentheses of Print(). The
arguments can be any of the following: a list of strings enclosed in quotation marks (which may be empty),
a string that is not enclosed in quotation marks (which may be a symbol definition name or may be NULL),
an integer, or an eval statement.

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 29. Arguments of Print()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

string Main part of the message to print
out.

Yes No No

optional
list of
variables

If supplied, these variables will
be appended to string in the
output.

Yes Yes Yes

Example

An example of the Print() rule that prints the current time to the standard output is shown below.

Print ("CPU time:", eval (text, "$TIME"));

This example prints out stitcher start time.

text timeString = eval(text, $FTIME);
Print("This sticher is starting at time ", timeString);

Related reference
Log()
The Log(); rule prints a message to the .log log file at the given message level if appropriate to the
current message level. This rule also prints to the .trace file if running at debug level 4.

PrintRecord()
The PrintRecord(); stitcher rule prints the entire record currently in scope to standard output. This
can be used for debugging purposes.

62 IBM Tivoli Network Manager IP Edition: Reference

Syntax
The PrintRecord(); statement uses following syntax.

PrintRecord ([optional string], record);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 30. Arguments of PrintRecord()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

optional
string

An optional message to
preappend to the record in the
output.

Yes No No

record The record to print. No Yes No

Example

In the following example, PrintRecord() is used to print the records within a variable of datatype
RecordList called snmpResults.

foreach(snmpResults)
 {
 PrintRecord(snmpResults);
 }

Example

In the following example, PrintRecord() is used to print a record with preappended text.

Record forOutput = record1;
PrintRecord("My record looks like this: ", forOutput);

RaiseEvent()
The RaiseEvent(); rule uses the standard Network Manager alerts library to raise an event and send it
to the Tivoli Netcool/OMNIbus Object Server using the Probe for Tivoli Netcool/OMNIbus,
nco_p_ncpmonitor.

Syntax
The RaiseEvent(); statement uses following syntax.

RaiseEvent (event name,
 severity,
 type,
 entity name,
 description
 [, optional record with extra info]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Chapter 2. Stitchers and stitcher language 63

Table 31. Arguments of RaiseEvent()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

event name A string value that will be
available in the probe rules as the
EventName field, and that by
default populates the
alerts.status EventId field.

Yes Yes Yes

severity An integer value that will be
available in the probe rules as the
Severity field, and that by default
populates the alerts.status
Severity field.

Yes Yes Yes

type An integer value that is restricted
to the following values:

• 1 (Problem)
• 2 (Resolution)
• 13 (Information)

This value will be available in the
probe rules as the
ExtraInfo_EVENTTYPE field, and
that by default populates the
alerts.status Type field.

Yes Yes Yes

entity name A string value that will be
available in the probe rules as the
EntityName field, and that by
default populates the
alerts.status Node field.

Yes Yes Yes

description A string value that will be
available in the probe rules as the
Description field, and that by
default populates the
alerts.status Summary field.

Yes Yes Yes

optional
record with
extra info

All fields from this record will be
available in the probe rules as
part of the ExtraInfo field.

No Yes No

Example

The following example shows how the RaiseEvent() rule is used to raise an event.

int eventSeverity = 1;
int eventType = 13; // Information

text eventDescription = "My big old test event";
text eventName = "CustomEvent";
text entityName = "SomeEntity";

Record extraInfo;
@extraInfo.ALERTGROUP = "ITNM Status";

RaiseEvent(eventName,
 eventSeverity,
 eventType,
 entityName,

64 IBM Tivoli Network Manager IP Edition: Reference

 eventDescription,
 extraInfo);

RetrieveOQL()
The RetrieveOQL(); stitcher rule executes an OQL query that is expected to return data, against the
current process. An optional record can be passed in to be added to the scope of the OQL query.

Syntax
The RetrieveOQL(); statement uses following syntax.

RetrieveOQL(oql string [, optional record]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 32. Arguments of ExecuteSQL()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

oql string OQL command to execute. This
can reference members of the
optional record, if present.

Note: OQL queries must not be
terminated with a semi-colon.

Yes Yes Yes

optional
record

If present, this will be added so
that it can be dereferenced in the
OQL string.

No Yes No

Example

The following example shows the results of a query on the finders.returns table being assigned to a
previously declared variable of datatype RecordList called devicesFound.

devicesFound = RetrieveOQL("select m_Name from finders.returns;");

Example

The following example shows the results of a query on the disco.agents table and displays each record
retrieved using a foreach loop.

RecordList results = RetrieveOQL("select * from disco.agents;")

foreach (results)
{
 Record current = GetInScopeRecord();
}

Related reference
The RecordList and Record datatypes

Chapter 2. Stitchers and stitcher language 65

Variables of the RecordList and Record datatypes are used to store retrieved OQL records in a variable.

RetrieveOQLFromService()
The RetrieveOQLFromService(); rule issues an OQL query on the databases of the specified service.
An optional record can be passed in to be added to the scope of the OQL query. The results can be
assigned to a variable of the type RecordList.

Syntax
RetrieveOQLFromService(oql string, service name [,optional record]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 33. Arguments of RetrieveOQLFromService()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

oql string OQL command to execute. This
can reference members of the
optional record argument, if
present.

Note: OQL queries must not be
terminated with a semi-colon.

Yes No Yes

service name Name of the process to retrieve
results from. Available strings
can be found by running the
command ncp_oql -options.

Yes No No

optional
record

If present, this is added so that it
can be dereferenced in the oql
string argument.

No Yes No

Example

The following example shows the results of a query on the model.config table from the service Model
being assigned to a previously declared variable of datatype RecordList called configData.

configData = RetrieveOQLFromService(
 "select * from model.config;",
 "Model"
);

Example

The following example shows the results of a query on the services.unManaged table from the service
Ctrl.

RecordList results = RetrieveOQLFromService("select * from services.unManaged;",
"Ctrl")

for (results)
{
 Record current = GetInScopeRecord();
}

66 IBM Tivoli Network Manager IP Edition: Reference

RetrieveSingleOQL()
RetrieveSingleOQL(); rule is a version of the RetrieveOQL(); rule that returns only the first result
of the OQL query, regardless of how many records are returned.An optional record can be passed in to be
added to the scope of the OQL query.

Syntax
The RetrieveSingleOQL(); statement uses following syntax.

RetrieveSingleOQL(oql string [, optional record]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 34. Arguments of RetrieveSingleOQL()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

oql string OQL command to execute. This
can reference members of the
optional record, if present.

Note: OQL queries must not be
terminated with a semi-colon.

Yes Yes Yes

optional
record

If present, this is added so that it
can be dereferenced in the OQL
string.

No Yes No

Example

The following example shows how the RetrieveSingleOQL() rule is used to return only the first result
of the OQL query.

Record singleRow = RetrieveSingleOQL("select * from disco.config;")

RollbackSQLTransaction()
The RollbackSQLTransaction(); rule rolls back a transaction in a specified database.

Syntax
The RollbackSQLTransaction(); statement uses following syntax.

RollbackSQLTransaction(database identifier);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 35. Arguments of RollbackSQLTransaction()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

database
identifier

Specifies the database on which
the rollback transaction is to be
performed; for example, DNCIM,
NCIM, NCMONITOR.

No No No

Chapter 2. Stitchers and stitcher language 67

Example

The following example shows how the rule is used.

StartSQLTransaction("DNCIM");
 text entityName = NULL;
 foreach(entityNames)
 {
 entityName = eval(text,'&m_Name');
 ExecuteStitcher('PopulateDNCIMObject', entityName, domainId,
dynamicDiscoNode);
 }
 delete(entityNames);
RollbackSQLTransaction("DNCIM");

Related reference
CommitSQLTransaction()
The CommitSQLTransaction(); rule commits a transaction in a specified database.
StartSQLTransaction()
The CommitSQLTransaction(); rule starts a commit transaction in a specified database.

SendOQLtoService()
The SendOQLToService(); rule executes an OQL query, which is not expected to return data, against
another process.

Syntax
The SendOQLToService(); statement uses following syntax.

SendOQLToService(service name, oql string);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 36. Arguments of SendOQLToService()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

service name Name of the process to send
results to. Available strings can
be found by running the
command ncp_oql -options.

Yes No No

oql string OQL command to execute. This
can reference members of the
optional record, if present.

Note: OQL queries must not be
terminated with a semi-colon.

Yes No Yes

Example

The following example shows how the rule is used to perform an insert into the ncp_ctrl
services.unmanaged table.

SendOQLToService(
 "Ctrl",
 "insert into services.unManaged(serviceName, servicePath, argList)
 values
 ("ping", "/usr/sbin/", ['1,2,3,4']);");
);

68 IBM Tivoli Network Manager IP Edition: Reference

Example

The following example shows how the rule is used to perform an update operation.

SendOQLToService("Model",
 "update model.config set DiscoveryUpdateMode = eval(int '$isRediscovery');");

SendAllOQLToService()
The SendAllOQLToService(); stitcher rule sends all the records in a variable of type RecordList to
another service. Use this rule to more efficiently send a batch of OQL instructions over the network rather
than several individual OQL requests.

Example
The SendAllOQLToService(); statement uses following syntax.

SendAllOQLToService(service_name,variable,oql string,test stitcher);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 37. Arguments of SendAllOQLToService()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

service name Name of the process to send
results to. Available strings can
be found by running the
command ncp_oql -options.

Yes No No

variable Variable to send the records
from.

No Yes No

oql string OQL command to execute. This
can reference members of the
optional record, if present.

Note: OQL queries must not be
terminated with a semi-colon.

Yes No Yes

test
stitcher

Stitcher to invoke for each record
inserted.

Yes No No

Example

In the following example, SomeScript.pl is a script that you want to run against multiple entities.
ScriptDataFilter is a stitcher that verifies that the arguments are correct.

SendAllOQLToService(
 "Ctrl", // Send OQL to this service
 scriptTargets, // Send the records from this variable

 "insert into services.unManaged
 (serviceName, servicePath, argList, logFile)
 values
 ('SomeScript.pl', '$NCHOME/precision/scripts/perl/scripts',
eval(list type text, '$scriptTargetArgList') , 'someScript.log');",

 "ScriptDataFilter" // Invoke this stitcher for each record
);

Chapter 2. Stitchers and stitcher language 69

SetReturnValue()
The SetReturnValue(); sets a return value for a stitcher.

Syntax
The SetReturnValue(); statement uses the following syntax.

SetReturnValue(return value);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 38. Arguments of SetReturnValue()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

return value The value to return from the
stitcher.

Yes Yes Yes

Example

The following example shows how the SetReturnValue() rule is used to return a value.

text entityName = "router 1";
SetReturnValue(entityName);

StandardiseIPv6()
The StandardiseIPv6(); stitcher rule converts a textual (colon-notation) IPv6 address into standard
notation. This includes, for example, stripping the longest string of zeroes down to '::'.

Syntax
The StandardiseIPv6(); statement uses the following syntax.

StandardiseIPv6 (ipv6 string);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 39. Arguments of StandardiseIPv6()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

ipv6 string Textual (colon-notation) IPv6
address

Yes Yes No

Example

The following example shows how the StandardiseIPv6() rule is used to convert a textual (colon-
notation) IPv6 address into standard notation.

text ipAddress = eval(text, '&m_UniqueIPv6Address');
ipAddress = StandardiseIPv6(ipAddress);

70 IBM Tivoli Network Manager IP Edition: Reference

StartSQLTransaction()
The CommitSQLTransaction(); rule starts a commit transaction in a specified database.

Syntax
The StartSQLTransaction(); statement uses following syntax.

StartSQLTransaction(database identifier);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 40. Arguments of StartSQLTransaction()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

database
identifier

Specifies the database on which
the commit transaction is to be
performed; for example, DNCIM,
NCIM, NCMONITOR.

No No No

Example

The following example shows how the rule is used.

StartSQLTransaction("DNCIM");
 text entityName = NULL;
 foreach(entityNames)
 {
 entityName = eval(text,'&m_Name');
 ExecuteStitcher('PopulateDNCIMObject', entityName, domainId,
dynamicDiscoNode);
 }
 delete(entityNames);
CommitSQLTransaction("DNCIM");

Related reference
CommitSQLTransaction()
The CommitSQLTransaction(); rule commits a transaction in a specified database.
RollbackSQLTransaction()
The RollbackSQLTransaction(); rule rolls back a transaction in a specified database.

StitcherTimeCheck()
The StitcherTimeCheck(); stitcher rule prints a message to stdout. From version 3.8 onwards, this
message appears in the .trace log file.

Syntax
The StitcherTimeCheck(); statement uses the following syntax.

StitcherTimeCheck (finished item, started item, [optional percentage complete]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Chapter 2. Stitchers and stitcher language 71

Table 41. Arguments of StitcherTimeCheck()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

finished
item

A string describing the item of
processing that has been
completed.

Yes No No

started item A string describing the item of
processing that has been started.

Yes No No

optional
percentage
complete

An integer indicating the what
percentage of processing of has
completed.

Yes No No

Example

The following example shows how the StitcherTimeCheck() rule is used to indicate that the working
entities database table has been populated, containment is being built, and the overall process is 20%
complete.

.
StitcherTimeCheck('Working Entities Table Population', 'Containment Building', 20)

Discovery stitcher rules
Use these stitcher rules for reference when you are working with discovery stitchers.

AnalyzeSQLStats()
The AnalyzeSQLStats(); stitcher rule analyzes an SQLite database or a single specified table in that
database and ensures that SQLite has up-to-date statistics on its database tables from which it can make
efficient SQL query plans. This ensures that any subsequent SQL select queries made using the data in
the tables are efficient.

In version 4.2 the only database that uses the SQLite database platform is the embedded relational
database, known as Discovery NCIM (DNCIM). The AnalyzeSQLStats(); rule is called from within the
DNCIM stitchers, once most of the DNCIM data has been inserted, but before discovery postprocessing
takes place. Note that if the database platform is something other than SQLite then this stitcher rule does
nothing.

Syntax
The AnalyzeSQLStats(); statement uses the following syntax.

AnalyzeSQLStats (DNCIM , database name or table name);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 42. Arguments of AnalyzeSQLStats();

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

database
name or
table name

Name of database or database
table to analyze.

Yes No No

72 IBM Tivoli Network Manager IP Edition: Reference

Example

The following examples shows how the AnalyzeSQLStats(); rule is used in different discovery
stitchers:

Table 43. Examples of use of the AnalyzeSQLStats(); stitcher rule

Stitcher Sample code Description

PopulateDNCIM.stch AnalyzeSQLStats('DNCIM','d
ncim');

Performs analysis of the entire
DNCIM database.

PopulateDNCIM_BGPTopology.stch AnalyzeSQLStats('DNCIM',
'bgpService');

Performs analysis of the DNCIM
table bgpService only.

AnalyzeSQLStats('DNCIM',
'bgpEndPoint');

Performs analysis of the DNCIM
table bgpEndPoint only.

DiscoReadConfig()
The DiscoReadConfig rule tells the Discovery Engine, ncp_disco, to reread its configuration files.

Syntax
By default this rule is used in the FullDiscovery stitcher, although it can be defined in any stitcher. This rule
instructs the Discovery Engine, ncp_disco, to reread its configuration files whenever you launch a full
discovery. The rule determines which configuration files to update by reading the records in the Discovery
engine database table disco.dynamicConfigFiles. For more information on the disco.dynamicConfigFiles
database table, see the IBM Tivoli Network Manager IP Edition Administration Guide.

The following syntax shows how to use the DiscoReadConfig rule.

DiscoReadConfig();

Related reference
disco.dynamicConfigFiles table
The dynamicConfigFiles table stores the names of configuration files that must be reread each time a full
discovery is launched.

DncimRecordsDone()
The DncimRecordsDone(); rule notifies the discovery that a RecordToDNCIMDb() rule session has
completed and instructs the discovery to commit any outstanding SQL actions.

Syntax
The DncimRecordsDone(); statement uses following syntax.

DncimRecordsDone();

Arguments
This stitcher rule takes no arguments.

Example

The following example shows how the rule is used to perform an insert into the ncp_ctrl
services.unmanaged table.

// Add custom data from ModelNcimDb.cfg
 RecordToDncimDb();

// Finish the record to dncim transaction
 DncimRecordsDone();

Chapter 2. Stitchers and stitcher language 73

Related reference
RecordToDncimDb()
The RecordToDncimDb(); takes a record and passes it through the mappings in the ModelNcimDb.cfg
and DbEntityDetails.cfg configuration files. These mappings are used to populate multiple dNCIM tables
and create new objects.

DiscoRefresh()
The DiscoRefresh(); stitcher rule sends a refresh message to the Helper server, finders, or agents
connected to the discovery process. The effect of the refresh message will vary depending on the process
and the arguments.

Syntax
The DiscoRefresh(); statement uses the following syntax.

DiscoRefresh (application name , optional arguments);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 44. Arguments of DiscoRefresh();

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

application
name

The name of the application to
refresh. This can be one of the
following:

• Helper
• PingFinder
• FileFinder
• DBEntryFinder
• CollectorFinder
• Name of any discovery agent

Yes No No

optional
arguments

Application-specific arguments
to refresh. For example, for the
Ping finder, it is possible to
refresh the scope. For the Helper
server, it is possible to refresh a
specific helper, such as the
SnmpHelper. For more
information, see the Example
section.

Yes Yes Yes

Applications
This section provides examples showing how to refresh the following applications:

• Helper server
• Finders
• Agents

74 IBM Tivoli Network Manager IP Edition: Reference

Helper server
The Helper server can store data from helper requests. Consequently, if multiple agents request the same
data, the data is retrieved from the device once only. By refreshing the Helper server, you are deleting
existing stored Helper server data. You can refresh Helper server data at the following levels:

• Delete all stored data.
• Delete all stored data for a specific helper; for example, the SNMP helper.
• Delete all stored data for a specific device with a specific helper.

Examples of each of these refresh levels are provided below.

Example: refreshing the Helper server

The following example shows how the DiscoRefresh(); rule can be used to refresh the Helper server.
This causes the helper server to delete any stored entity data.

Refresh all the helper server stored helper data.
 DiscoRefresh('Helper');

Example: refreshing stored helper server data for specific helpers

The following example shows how the DiscoRefresh(); rule can be used to refresh stored helper
server data for specific helpers, by providing the name of the helper to be refreshed.

DiscoRefresh('Helper','SnmpHelper');
DiscoRefresh('Helper','TelnetHelper');
DiscoRefresh('Helper','DNSHelper');
DiscoRefresh('Helper','ARPHelper');
DiscoRefresh('Helper','PingHelper');
DiscoRefresh('Helper','XmlRpcHelper');

Example: removing stored Helper server data for a specific device with a specific helper

The following example shows how the DiscoRefresh(); rule can be used to specify a specific filter to
use to remove stored Helper server data for a specific device with a specific helper. This action is usually
based on the m_HostIp field. For more information, see $NCHOME/etc/precision/
DiscoHelperServerSchema.cfg configuration file.

DiscoRefresh('Helper','SnmpHelper','m_HostIp', '1.2.3.4');

Finders
The following examples show how the DiscoRefresh(); rule can be used with finders.

Example: refreshing the finders

The following example shows how the DiscoRefresh(); rule can be used to refresh the finders. If only
the finder name is provided then this results in the finder rereading its configuration and sending any
resulting finder inserts. This is commonly used to tell the Ping or File finder to reread its seed
configuration and process the IP addresses found.

DiscoRefresh('PingFinder');
DiscoRefresh('FileFinder');
DiscoRefresh('CollectorFinder');

Example: rereading the scope setting

The following example shows how the DiscoRefresh(); rule can be used to reread the scope setting.

DiscoRefresh('PingFinder','scope');

Chapter 2. Stitchers and stitcher language 75

Example: requesting the refresh of a particular subnet

The following example shows how the DiscoRefresh(); rule can be used to request the refresh of a
particular subnet.

DiscoRefresh('PingFinder','1.2.3.0','255.255.255.0');

Example: refreshing the Collector finder

The following example shows how the DiscoRefresh(); rule can be used to refresh the Collector
finder. In this example, a request is sent to the Collector finder to refresh a given EMS host.

DiscoRefresh('CollectorFinder', '1.2.3.4');

Example: doing a partial discovery refresh every ten minutes

The following example shows how a timed stitcher can be used together with the DiscoRefresh(); rule
acting on the Database finder to do a partial discovery refresh every ten minutes.

Note: For the Database finder, the optional arguments that can be included within the
DiscoRefresh(); rule are as follows. In each of these cases, the queries and trigger types are defined
in the DiscoDBEntryFinderQueries.cfg configuration file.

• If no optional arguments value is specified, then run queries associated with trigger type 1.
• PARTIAL: run queries associated with trigger type 2.
• FORCED: run queries associated with trigger type 3.

UserDefinedStitcher
{
 StitcherTrigger
 {
 // Activate every minute
 ActOnTimedTrigger((m_IntervalSeconds) values (60) ;);
 }

 StitcherRules
 {
 RecordList discoStatus = RetrieveOQL(
 "select * from disco.status;"
);

 int phase = -1;

 foreach(discoStatus)
 {
 phase = eval(int, '&m_Phase');
 }
 delete(discoStatus);

 if(phase >= 0 AND phase <= 1)
 {
 DiscoRefresh
 (
 "DBEntryFinder", "PARTIAL"
);
 }
 }
}

Agents
The following example shows how the DiscoRefresh(); rule can be used with finders.

Example: having an agent reread discovery scope

The agents have very little state as they process each entity on a case by case basis. As a result the
agents rarely need to be refreshed, with the exception of agents which require knowledge of discovery
scope in order to function. An example of such an agent is the IpRoutingTable agent, which uses the

76 IBM Tivoli Network Manager IP Edition: Reference

discovery scope to determine which sections of a potentially huge routing table to attempt to download.
The following example shows how the DiscoRefresh(); rule can be used to refresh the IpRoutingTable
agent, by having the agent reread the discovery scope.

DiscoRefresh('IpRoutingTable', 'scope');

DiscoRetrieveClass()
The DiscoRetrieveClass(); stitcher rule is used to retrieve the class of a discovered device during
the discovery process, so that users can determine device type while the discovery is still running.

This rule is used at the following points in the discovery process:

• During the data collection stage the rule is used by the AssocAddressRetProcessing.stch stitcher. This
stitcher uses the output from this rule to update the AssocAddress returns table with class information.
This provides the information needed to display device type while discovery is still running.

• During the data processing stage the rule is used by the AddClass stitcher to set the class of the chassis
objects.

Syntax
The DiscoRetrieveClass(); statement uses the following syntax.

DiscoRetrieveClass (record position , source format);

The information in the output class record is class ID, class name, and the name of the visual icon used to
represent the class.

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 45. Arguments of DiscoRefresh()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

record
position

Position in the record stack from
which to extract the record. This
is equivalent to what you would
retrieve using an eval statement
with a single ampersand.

Yes No No

source
format

The source format of the class
data. Possible values include
workingEntities and ncim. The
DiscoRetrieveClass(); rule
translates the data from the
source format into the format
expected by the AOC files.

Yes No No

Example: Helper server

The following example shows how the DiscoRetrieveClass(); rule can be used to retrieve class data
and load it into a variable.

Record classRec = NULL;
classRec = DiscoRetrieveClass(0, "workingEntities");

Chapter 2. Stitchers and stitcher language 77

DiscoSendOQLToFinder()
The DiscoSendOQLToFinder(); stitcher rule sends OQL results to the finder subprocess from the
discovery. This is commnly used as part of the feedback process, where the ping finder is seeded with
subnets and IP addresses discovered during the course of the network discovery.

Syntax
The DiscoSendOQLToFinder(); statement uses the following syntax.

DiscoSendOQLToFinder (finder name , oql string);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 46. Arguments of DiscoSendOQLToFinder();

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

finder name The name of the finder to send
the OQL results to. This can take
one of the following values:

• PingFinder
• FileFinder
• CollectorFinder

Yes No No

oql string The OQL string to send to the
finder.

Yes Yes Yes

Example

The following example shows how the DiscoSendOQLToFinder(); rule is used to seed the ping finder
with a newly discovered subnet on which to perform a ping sweep.

Seed the ping finder with a newly discovered subnet to ping sweep
DiscoSendOQLToFinder
(
 "PingFinder",
 "insert into pingFinder.pingRules
 (
 m_Address,
 m_RequestType,
 m_NetMask,
 m_Protocol
)
 values
 (
 eval(text, '&m_LocalNbr->m_Subnet'),
 eval(int, '$PingSubnet'),
 eval(text, '&m_LocalNbr->m_SubnetMask'),
 eval(int, '$protocol')
);"
);

DncimUpdate()
The DncimUpdate(); rule updates a record in a specified table in the dNCIM database and sets a flag so
that the updated row will be broadcast in the next call to the BroadcastToModel(); rule. The
DncimUpdate(); rule can also be called omitting the optional record to force a broadcast of the row
even if no other changes are made. This is useful when a row has been removed as part of a cascaded
delete.

78 IBM Tivoli Network Manager IP Edition: Reference

Syntax
The DncimUpdate(); statement uses the following syntax.

DncimUpdate (entityId, tableName [, optional record]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 47. Arguments of DncimUpdate();

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

entityId Integer identifying the entity
related to the update operation.

Yes No No

tableName Name of the table in the dNCIM
database schema to update with
the contents of the record.

optional
record

Updates to apply to the row in
the tableName table, if supplied.

Yes No No

Example

The following example updates the displayLabel field of the entityData table.

Record serviceLabelUpdate;
 @serviceLabelUpdate.displayLabel = serviceLabel;

 DncimUpdate(ospfServiceEntityId, "entityData", serviceLabelUpdate);

Example

The following example performs no update, but forces the collection to be broadcast in the next call to the
BroadcastToModel(); rule.

 DncimUpdate(entityId, "collects");

Returns
This rule does not return any values.

EnumerationLookup()
The EnumerationLookup(); rule retrieves a value from the DNCIM enumeration table. The data in the
enumeration table is downloaded when the Discovery engine, ncp_disco, is first started and then
accessed directly by the rule, thereby enabling fast data retrieval.

The enumerations available for lookup are determined by the entry in the dbModel.access table within the
ModelNcimDb.cfg configuration file; for example:

insert into dbModel.access
(
 EnumGroupFilter,
 TransactionLength,
 WebTopDataSource
)
values
(
 "enumGroup in ('ASN' , 'sysServices', 'ifAdminStatus', 'ifOperStatus',
'sysServices', 'ifType', 'ifOperStatusToOperationalStatus',
'entPhysicalClass', 'cefcFRUPowerAdminStatus', 'cefcFRUPowerOperStatus',
'TruthValue','TruthValueString', 'entSensorType', 'entSensorScale',
'entSensorStatus', 'cefcModuleAdminStatus', 'cefcModuleOperStatus', 'ipForwarding',

Chapter 2. Stitchers and stitcher language 79

'cefcPowerRedundancyMode', 'EntityType', 'ospfIfState', 'ospfIfType',
'dot3StatsDuplexStatus', 'accessProtocol', 'cdmDuplex', 'OperationalStatusEnum')",
 0,
 "NCOMS"
);

Syntax
The EnumerationLookup(); statement uses the following syntax.

EnumerationLookup (evalClause]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 48. Arguments of EnumerationLookup();

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

evalClause Defines the details for the lookup
eval statement.

Yes For the first
argument.

No

The full definition of evalClause is as follows:

resultStr = EnumerationLookup(eval(text, 'LOOKUP($key, &&enum _group
[, optional_default])'));

Where:

• key is the value to use to perform the enumeration string lookup operation.
• enum _group is the name of enumeration group to look in.
• optional_default is the value to use if the lookup operation returns null.

Example

The following examples show how to use this rule.

text protocol = NULL;
protocol = EnumerationLookup(eval(text, 'LOOKUP(&m_LocalNbr->m_Protocol,
&&accessProtocol, `IPv4`)'));

int keyVal = 1; text truthStr = NULL; truthStr =
EnumerationLookup(eval(text, 'LOOKUP($keyVal, &&TruthValueString)'));

int ifType = 6; text ifTypeString = NULL; ifTypeString =
EnumerationLookup(eval(text, 'LOOKUP($ifType, &&ifType)'));

Note: This rule does not use the standard record stack. Normally the ampersand sign & accesses the
record at the top of the stack, double ampersand && the second from top, triple ampersand &&& the
third, and so on. With this rule the record stack used only contains two records; therefore, the ampersand
& refers to the record on the top of the normal stack as before, but double ampersand && refers to the
record containing the static enumeration data downloaded when discovery was first started.

Returns
This rule returns the text string relating to the desired enumeration.

80 IBM Tivoli Network Manager IP Edition: Reference

RecordToDncimDb()
The RecordToDncimDb(); takes a record and passes it through the mappings in the ModelNcimDb.cfg
and DbEntityDetails.cfg configuration files. These mappings are used to populate multiple dNCIM tables
and create new objects.

Syntax
The RecordToDncimDb(); statement uses the following syntax.

RecordToDncimDb ([optional record]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 49. Arguments of RecordToDncimDb();

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

optional
record

A record of custom data retrieved
from a custom agent or collector.
If present, this record is passed
to custom DNCIM tables using
the mappings defined in the
ModelNcimDb.cfg and
DbEntityDetails.cfg configuration
files. If no record is passed in as
an argument then the record on
the top of the stack (i.e,. the
record currently in scope), is
used.

No Yes No

Related reference
DncimRecordsDone()
The DncimRecordsDone(); rule notifies the discovery that a RecordToDNCIMDb() rule session has
completed and instructs the discovery to commit any outstanding SQL actions.

StitcherProfiling()
The StitcherProfiling(); stitcher rule sets the discovery process to log the time each stitcher takes
to complete and the number of executions for each stitcher during a discovery cycle. The logging results
help diagnose discovery issues. This rule is set in the FinalPhase stitcher.

Syntax
The StitcherProfiling(); statement uses the following syntax:

StitcherProfiling (profile action, [optional additional variable]);

The information in the output provides the name of the stitcher, the number of times it ran, and the total
run time in seconds.

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Chapter 2. Stitchers and stitcher language 81

Table 50. Arguments of StitcherProfiling();

Argument Description Accepts constants Accepts variables
Accepts eval
clauses

profile action Can take the
following values:

• LOG: Triggers the
logging of the
time each
stitcher takes to
complete.

• RESET: Resets
the data logged
using the LOG
option to zero.
The data is not
accumulated and
the collection
starts again at
the next
discovery.

• SIZE: Logs the
current size of
the process.

Yes No No

[optional
additional
variable]

Dependent on the
profile action:

• For LOG: A
stitcher name
can be supplied
to log profiling
data for a single
stitcher.

• For RESET: A
stitcher name
can be supplied
to reset the log
for a single
stitcher.

• For SIZE: An
optional tag to
include in the log
message.

Yes No No

The following examples show how to set the StitcherProfiling(); rule in different ways.

To use the rule to trigger the logging of profiling data on all stitchers:

StitcherProfiling('LOG');

To use the rule to reset the profiling data on all stitchers to zero, ready to log data only for the next
discovery:

StitcherProfiling('RESET');

82 IBM Tivoli Network Manager IP Edition: Reference

To use the rule to log profiling data only for a specific stitcher (using an additional optional argument):

StitcherProfiling('LOG', 'RecreateAndSendTopology');

To use the rule to log the current size of the process:

StitcherProfiling('SIZE');

To use the rule to log the current size of the process, and include an additional tag to add to the end of the
log message:

StitcherProfiling('SIZE', 'before building the layers');

Event Gateway stitcher rules
Use these stitcher rules for reference when you are working with Event Gateway stitchers. These rules are
only available within the Event Gateway, ncp_g_event and its plugins.

GwCollects()
The GwCollects(); rule retrieves a list of entities directly collected by a specified entity. This data is
retrieved from the NCIM cache table, ncimCache.collects.

Syntax
The GwCollects(); statement uses following syntax.

GwCollects (entityId or entityName);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 51. Arguments of GwCollects()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

entityId or
entityName

Instructs the rule to return
entities collected by this entity.

Yes Yes Yes

Example

The following example finds all entities collected by the specified entity and then prints out the results.

int entityId = eval(int, '&NmosEntityId');

Find all entities collected by the given entityId...
RecordList collectedEntities = GwCollects(entityId);

...and iterate through the returned results
Record collectsRow;
foreach (collectedEntities)
{
 collectsRow = GetInScopeRecord();
 PrintRecord(collectsRow);
}

Returns
This rule returns a list of records. Each record contains information about a single collected entity, as
contained in the ncimCache.collects table.

The following snippet shows an example of the results returned by this rule.

Chapter 2. Stitchers and stitcher language 83

{
 ENTITYNAME='IGMP_ENDPOINT_istanbul-asbr-cr26.tk.eu.test.lab[Fa0/0]';
 SEQUENCE=NULL;
},
{
 ENTITYNAME='IGMP_ENDPOINT_pe6-cr38.core.eu.test.lab[Vl1]';
 SEQUENCE=NULL;
}

For more information on the NCIM cache tables see the IBM Tivoli Network Manager Reference.

Related reference
ncimCache database
This database stores topology updates from DNCIM.

GwConnects()
The GwConnects(); rule retrieves a list of entities directly connected to a specified entity. This data is
retrieved from the NCIM cache table, ncimCache.connects. A limitation on this rule is that it does not
retrieve connections to contained entities. For example, if the entity passed to the rule represents a
chassis, connections to interfaces within that chassis will not be returned.

Syntax
The GwConnects(); statement uses following syntax.

GwConnects (entityId or entityName, [optional topology name]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 52. Arguments of GwConnects()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

entityId or
entityName

Instructs the rule to return
entities connected to this entity.

Yes Yes Yes

optional
topology
name

Name of a topology as specified
in the entityData table.

Yes No No

Example

The following example finds all connections to a specified entity and then prints out all of the results.

text entityName = eval(text, '&EntityName');

Find all connections to the given entityName...
RecordList connectedEntities = GwConnects(entityName);

...and iterate through the returned results
Record singleConnection;
foreach (connectedEntities)
{
 singleConnection = GetInScopeRecord();
 PrintRecord(singleConnection);
}

84 IBM Tivoli Network Manager IP Edition: Reference

Example

The following example finds all connections to a specified entity within a specific topology.

Find all connections to the given entityName within a specific topology
RecordList specificConnectedEntities = NULL;
specificConnectedEntities = GwConnects(entityName, 'RouterLinksTopology');

Returns
This rule returns a list of records. Each record contains information about a single connected entity, as
contained in the ncimCache.connects table.

The following snippet shows an example of the results returned by this rule.

{
 TOPOENTITYNAME='RouterLinksTopology';
 UNIDIRECTIONAL=0;
 ENTITYNAME='freddy[0 [1]]';
},
{
 TOPOENTITYNAME='RelatedToTopology';
 UNIDIRECTIONAL=0;
 ENTITYNAME='bob[0 [1]]';
}

For more information on the NCIM cache tables see the IBM Tivoli Network Manager Reference.

Related reference
ncimCache database
This database stores topology updates from DNCIM.

GwContains()
The GwContains(); rule retrieves a list of entities directly contained by a specified entity. This data is
retrieved from the NCIM cache table, ncimCache.contains. No recursion is performed. For example, if
a chassis contains some cards, and those cards contain interfaces, the result of running this rule against
the chassis will be a list of cards.

Syntax
The GwContains(); statement uses following syntax.

GwContains (entityId or entityName);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 53. Arguments of GwContains()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

entityId or
entityName

Instructs the rule to return
entities contained within this
entity.

Yes Yes Yes

Example

The following example retrieves a list of entities directly contained by a specified entity and then prints
out all of the results.

text entityName = eval(int, '&EntityName');

Find all entities contained by the given entityName...
RecordList containedEntities = GwContains(entityName);

Chapter 2. Stitchers and stitcher language 85

...and iterate through the returned results
Record containsRow;
foreach (containedEntities)
{
 containsRow = GetInScopeRecord();
 PrintRecord(containsRow);
}

Returns
This rule returns a list of records. Each record contains information about a single contained entity, as
contained in the ncimCache.contains table.

The following snippet shows an example of the results returned by this rule.

{
 ENTITYNAME='ny-p2-cr28.na.test.lab[Fa1/7]';
 UPWARDCONNECTION=1;
},
{
 ENTITYNAME='ny-p2-cr28.na.test.lab[Fa1/8]';
 UPWARDCONNECTION=1;
},
{
 ENTITYNAME='ny-p2-cr28.na.test.lab[Fa1/12]';
 UPWARDCONNECTION=1;
}

For more information on the NCIM cache tables see the IBM Tivoli Network Manager Reference.

Related reference
ncimCache database
This database stores topology updates from DNCIM.

GwDependency()
The GwDependency(); rule retrieves a list of dependencies upon a specified entity. This data is retrieved
from the NCIM cache table, ncimCache.dependency.

Syntax
The GwDependency(); statement uses following syntax.

GwDependency (entityId or entityName, [optional dependency identifier]);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 54. Arguments of GwDependency()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

entityId or
entityName

Instructs the rule to return
entities dependent upon this
entity.

Yes Yes Yes

optional
dependency
identifier

Instructs the rule to only retrieve
this type of dependency.

Yes No No

86 IBM Tivoli Network Manager IP Edition: Reference

Example

The following example finds all dependent entities and then prints out all of the results.

int entityId = eval(text, '&NmosEntityId');
Find all depencies on the given entityName...
RecordList dependentEntities = GwDependency(entityId);

...and iterate through the returned results
Record singleDependent;
foreach (dependentEntities)
{
 singleDependent = GetInScopeRecord();
 PrintRecord(singleDependent);
}

Example

The following example finds all dependent entities of a specific type.

Find all dependents of a specific type
RecordList specificDependents = GwDependency(entityId , 1);

Returns
This rule returns a list of records. Each record contains information about a single dependent entity, as
contained in the ncimCache.dependency table.

The following snippet shows an example of the results returned by this rule.

{
 DEPENDENCYTYPE=1;
 ENTITYNAME='IPMRoute_UpstreamRoute_core2-cs35.core.eu6.test.lab_
 (0.0.0.0,239.255.255.255)';
},
{
 DEPENDENCYTYPE=1;
 ENTITYNAME='IPMRoute_UpstreamRoute_istanbul-asbr-cr26.tk.eu.test.lab
 [Fa0/1]_(0.0.0.0,239.255.255.255)';
},
{
 DEPENDENCYTYPE=1;
 ENTITYNAME='IPMRoute_DownstreamRoute_istanbul-asbr-cr26.tk.eu.test.lab
 [Fa0/0]_(0.0.0.0,239.255.255.255)_239.255.255.255';
}

For more information on the NCIM cache tables see the IBM Tivoli Network Manager Reference.

Related reference
ncimCache database
This database stores topology updates from DNCIM.

GwEnrichEvent()
The GwEnrichEvent(); updates fields in an event. Any data can be added to an event using this rule;
however, the only fields which are permitted to update the ObjectServer alerts.status table are those
fields that are listed in the outgoing field filter, as defined in the in the FieldFilter section of the nco2ncp
table within the EventGatewaySchema.cfg configuration file.

Syntax
The GwEnrichEvent(); statement uses the following syntax.

GwEnrichEvent ([optional serial number], enrichedFields);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Chapter 2. Stitchers and stitcher language 87

Table 55. Arguments of GwEnrichEvent()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

optional serial
number

Identifies the event to be
updated. If no serial number
is supplied, it is assumed that
the current top-level in-scope
event is being updated. If
iterating through a loop (for
example, the contents of a
RecordList), the event is still
the top-level event that was
in-scope at the start of the
stitcher, and not the current
in-scope record within the
loop.

Note: The Event Gateway
stitchers always have the
event as the top-level in-
scope record.

Yes Yes Yes

enrichedFields Record listing the fields to use
to enrich the event. These
fields are added to the event
or update existing fields in the
event.

Yes Yes Yes

Returns
This stitcher does not return any values.

Updating the current in-scope event
The following example shows how the GwEnrichEvent(); rule is used to update the current in-scope
record.

Both fields specified as part of the enrichment record are added to the current in-scope record. However,
only the MyCustomField column of the alerts.status table is actually updated in the ObjectServer because
the FieldUsedByRca field is not listed as a permitted field in the outgoing field filter.

// define the fields to add or update
Record enrichment;
@enrichment.MyCustomfield = "any value I choose for this text field";
@enrichment.FieldUsedByRca = 59;

GwEnrichEvent(enrichment);

Updating an event with a specified serial number
The following example shows how the GwEnrichEvent(); rule is used to update an event with a
specified serial number. This example works exactly as the previous example, except that the top-level in-
scope record is modified if and only if it has a serial number of 345. If the event does not have serial
number 345, then the alerts.status table is updated for that seial number, but the in-scope record
remains unaltered.

// define the fields to add or update
Record enrichment;
@enrichment.MyCustomfield = "any value I choose for this text field";
@enrichment.FieldUsedByRca = 59;

88 IBM Tivoli Network Manager IP Edition: Reference

GwEnrichEvent(345, enrichment);

GwEntityData()
The GwEntityData(); rule provides a simplified way of looking up topology data in NCIM cache. This
rule performs topology lookups in the ncimCache.entityData table.

Syntax
The GwEntityData(); statement uses the following syntax.

GwEntityData (entity ID or entity name);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 56. Arguments of GwEntityData()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

entity ID The integer entity ID is matched
against the ENTITYID field in the
ncimCache.entityData table.

Yes Yes Yes

entity name The text entity name is matched
against the ENTITYNAME field in
the ncimCache.entityData table.

Yes Yes Yes

For more information on the ncimCache tables, see section NCIM cache in the IBM Tivoli Network Manager
Reference.

Returns
The GwEntityData(); statement returns a row from the ncimCache.entityData table if a result was
found.

Performing a lookup based on the value of in-scope data
The following example shows how the GwEntityData(); rule is used to perform a topology lookup in
NCIM cache based on the value of in-scope data.

In this example the nmosEntityId variable is loaded with the value of a field from an in-scope event. The
GwEntityData() rule then uses the value of the nmosEntityId to perform a topology lookup and load
the results of the lookup into the entity record.

int nmosEntityId = eval(int, '&NmosEntityId');
Record entity = GwEntityData(nmosEntityId);

Performing a lookup based on a supplied string
The following example shows how the GwEntityData(); rule is used to perform a topology lookup in
NCIM cache based on the value of a supplied string.

In this example the GwEntityData() rule uses the value of a supplied string to perform a topology
lookup and load the results of the lookup into the entity record.

entity = GwEntityData("device_name[0 [1]]");

Chapter 2. Stitchers and stitcher language 89

GwHostedService()
The GwHostedService(); rule retrieves a list of entities directly connected to a specified entity. This
data is retrieved from the NCIM cache table, ncimCache.hostedService.

Syntax
The GwHostedService(); statement uses following syntax.

GwHostedService (entityId or entityName);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 57. Arguments of GwHostedService()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

entityId or
entityName

Instructs the rule to return
services hosted by this entity.

Yes Yes Yes

Example

The following example services hosted by a specified entity and then prints out the results.

text entityName = eval(int, '&EntityName');

Find all services hosted by the given entityName...
RecordList hostedServices = GwHostedService(entityName);

...and iterate through the returned results
Record hostedServiceRow;
foreach (hostedServices)
{
 hostedServiceRow = GetInScopeRecord();
 PrintRecord(hostedServiceRow);
}

Returns
This rule returns a list of records. Each record contains information about a single hosted service, as
contained in the ncimCache.hostedService table.

The following snippet shows an example of the results returned by this rule.

{
 ENTITYNAME='PIM_SERVICE_salida-abr-cr36.na.test.lab';
},
{
 ENTITYNAME='IPMRoute_Service_salida-abr-cr36.na.test.lab';
}

For more information on the NCIM cache tables see the IBM Tivoli Network Manager Reference.

Related reference
ncimCache database

90 IBM Tivoli Network Manager IP Edition: Reference

This database stores topology updates from DNCIM.

GwIpLookup()
The GwIpLookup(); rule allows rapid and efficient topology lookups for the entity that implements a
given IP address or DNS name. This entity is often an interface, but, if no SNMP access is available to a
device, it could be the related chassis.

Syntax
The GwIpLookup(); statement uses the following syntax.

GwIpLookup (IP address or DNS name);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 58. Arguments of GwIpLookup()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

IP address Textual IP address. This value is
matched against the relevant
field in the ncimCache.entityData
table.

Yes Yes Yes

DNS name Textual DNS name. This value is
matched against the relevant
field in the ncimCache.entityData
table.

Yes Yes Yes

For more information on the ncimCache tables, see section NCIM cache in the IBM Tivoli Network Manager
Reference.

Returns
The GwIpLookup(); statement returns a row from the ncimCache.entityData table if a result was found.

Performing a lookup based on a DNS name
The following example shows how the GwIpLookup(); rule is used to perform a topology lookup in
NCIM cache based on the value of a supplied DNS name.

In this example the GwIpLookup() rule uses the value of a supplied DNS name to perform a topology
lookup and load the results of the lookup into the entity record.

text dnsName = "anydevice.com";
implementingEntity = GwIpLookup(dnsName);

Performing a lookup based on an IP address
The following example shows how the GwIpLookup(); rule is used to perform a topology lookup in
NCIM cache based on the value of a supplied IP address.

In this example the GwIpLookup() rule uses the value of a supplied IP address to perform a topology
lookup and load the results of the lookup into the entity record.

Record implementingEntity = GwIpLookup("9.196.131.49");

Chapter 2. Stitchers and stitcher language 91

GwIpLookupUsing()
The GwIpLookupUsing(); rule performs the same operation as the GwIpLookup() rule, except that a
field within the current top-level in-scope event is used to perform the lookup.

Syntax
The GwIpLookupUsing(); statement uses following syntax.

GwConnects (event field name);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 59. Arguments of GwIpLookupUsing()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

event field
name

Instructs the rule to extract the
value of this field from the
current event, and use it to look
for the entity in the topology.

Yes Yes Yes

Example

The following example looks up an entity based on a supplied event field name.

Record implementingEntity= GwIpLookupUsing("LocalNodeAlias");

GwMainNodeLookup()
The GwMainNodeLookup(); rule performs topology lookups for main nodes, based on a limited number
of fields.

This rule performs topology lookups for main nodes, based on the following fields:

• IP address (as listed in the ipEndPoint table)
• entityName (as given in the entityData table)
• DNS name (as given in the ipEndPoint table)
• sysName (as given in the chassis table)
• entityId (as given in the entityData table)

The rule returns the row from the ncimCache.entityData table if a result was found.

Syntax
The GwMainNodeLookup(); statement uses following syntax.

GwMainNodeLookup (identifier);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

92 IBM Tivoli Network Manager IP Edition: Reference

Table 60. Arguments of GwMainNodeLookup()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

identifier Text or integer identifier used to
look up the main node.

• If an integer value is specified,
then the lookup operation
assumes this is an entityId.

• If a string field is specified,
then the lookup operation
assumes this is an IP address,
DNS name, sysName or
entityName.

In each case, an appropriate
lookup operation will be
performed.

Yes Yes Yes

Example

The following example looks up a main node based on an integer value.

int anyEntityId = 99;
mainNode = GwMainNodeLookup(anyEntityId);

Example

The following example looks up a main node based on a specified IP address.

Record mainNode = GwMainNodeLookup("9.196.131.49");

Example

The following example looks up a main node based on a system name.

text sysName = "fred";
mainNode = GwMainNodeLookup(sysName);

GwMainNodeLookupUsing()
The GwMainNodeLookupUsing(); rule performs the same operation as the GwMainNodeLookup()
rule, except that a field within the current top-level in-scope event is used to perform the lookup.

Syntax
The GwMainNodeLookupUsing(); statement uses following syntax.

GwMainNodeLookup (event field name);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Chapter 2. Stitchers and stitcher language 93

Table 61. Arguments of GwMainNodeLookupUsing()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

event field
name

Extract the value of this field
from the current event, and use it
to look for the main node in the
topology.

Yes Yes Yes

Example

The following examples look up a main node based on a field within the current top-level in-scope event.

Record mainNode = GwMainNodeLookupUsing("LocalNodeAlias");

Example

The following examples look up a main node based on a field within the current top-level in-scope event.

text sysName = "MyCustomSysNameField";
mainNode = GwMainNodeLookup(sysName);

Example

The following examples look up a main node based on a field within the current top-level in-scope event.

mainNode = GwMainNodeLookup("NmosEntityId");

GwManagedStatus()
Retrieves the managed status of a specified entity. This rule checks for managed status by containment,
and returns the actual managed status of the entity. For example, if the entity ID represents an entity
contained in an unmanaged main node, then the contained entity is implicitly unmanaged and this rule
returns the status as unmanaged, regardless of the status given in the ncimCache.managedStatus table.

Syntax
The GwManagedStatus(); statement uses the following syntax.

GwManagedStatus (entity ID);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 62. Arguments of GwManagedStatus()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

entity ID Integer entity ID of the entity. Yes Yes Yes

Returns
This stitcher returns the managed status value for the specified entity.

94 IBM Tivoli Network Manager IP Edition: Reference

Updating the current in-scope event
This example retrieves the managed status of the entity with entity ID 99. If this entity is listed as
unmanaged in the managedStatus table, or a containing main node of entity ID 99 is unmanaged, then
this rule will return the managed status value for entity ID 99 as unmanaged.

int nmosEntityId = 99;
int status = GwEntityData(nmosEntityId);

GwPipeComposition()
The GwPipeComposition(); rule retrieves a list of pipe compositions for a specified entity. This data is
retrieved from the NCIM cache table, ncimCache.pipeComposition.

Syntax
The GwPipeComposition(); statement uses following syntax.

GwPipeComposition (entityId or entityName);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 63. Arguments of GwPipeComposition()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

entityId or
entityName

Instructs the rule to return a list
of pipe compositions for this
entity.

Yes Yes Yes

Example

The following example finds pipe compositions for a specified entity and then prints out all of the results.

int entityId = eval(int, '&NmosEntityId');

Find all pipe compositions for the given entityId...
RecordList pipeCompositions = GwPipeComposition(entityId);

...and iterate through the returned results
Record pipeCompositionRow;
foreach (pipeCompositions)
{
 pipeCompositionRow = GetInScopeRecord();
 PrintRecord(pipeCompositionRow);
}

Returns
This rule returns a list of records. Each record contains information about a single pipe composition, as
contained in the ncimCache.pipeComposition table.

The following snippet shows an example of the results returned by this rule.

{
 ENTITYNAME='pe6-cr38.core.eu.test.lab[Gi0/1]_
 p4-cr28.core.eu.test.lab[0 [2]]';
 AGGREGATIONSEQUENCE=1;
},
{
 ENTITYNAME='p4-cr28.core.eu.test.lab[Se0/0/1:0.202]_
 pe7-cr38.core.eu.test.lab[Se0/0/0:0.202]';
 AGGREGATIONSEQUENCE=2;
}

Chapter 2. Stitchers and stitcher language 95

For more information on the NCIM cache tables see the IBM Tivoli Network Manager Reference.

Related reference
ncimCache database
This database stores topology updates from DNCIM.

GwProtocolEndPoint()
The GwProtocolEndPoint(); rule retrieves a list of entities directly connected to a specified entity.
This data is retrieved from the NCIM cache table, ncimCache.protocolEndPoint.

Syntax
The GwProtocolEndPoint(); statement uses following syntax.

GwProtocolEndPoint (entityId or entityName);

Arguments
The following table lists the properties of the arguments of this stitcher rule.

Table 64. Arguments of GwProtocolEndPoint()

Argument Description
Accepts
constants

Accepts
variables

Accepts eval
clauses

entityId or
entityName

Instructs the rule to return a list
of end points on this entity.

Yes Yes Yes

Example

The following example retrieve a list of end points on a specified entity and then prints out all of the
results.

text entityName = eval(int, '&EntityName');

Find all end points on the given entityName...
RecordList endPoints = GwProtocolEndPoint(entityName);

...and iterate through the returned results
Record protocolEndPointRow;
foreach (endPoints)
{
 protocolEndPointRow = GetInScopeRecord();
 PrintRecord(protocolEndPointRow);
}

Returns
This rule returns a list of records. Each record contains information about a single end point, as contained
in the ncimCache.protocolEndPoint table.

The following snippet shows an example of the results returned by this rule.

{
 ENTITYNAME='Area_0.0.0.2_OSPF_ProtocolEndPoint_172.20.98.51_RD_[1]';
},
{
 ENTITYNAME='PIM_ENDPOINT_glasgow-gw-cr26.uk.eu.test.lab[Fa0/0.1]';
},
{
 ENTITYNAME='IPMRoute_ProtocolEndPoint_(0.0.0.0, 224.0.1.39)_
 glasgow-gw-cr26.uk.eu.test.lab[Fa0/0.1](downstream)';
},
{
 ENTITYNAME='IGMP_ENDPOINT_glasgow-gw-cr26.uk.eu.test.lab[Fa0/0.1]';
},
{
 ENTITYNAME='glasgow-gw-cr26.uk.eu.test.lab[Fa0/0.1] IP: 172.20.98.51';

96 IBM Tivoli Network Manager IP Edition: Reference

},
{
 ENTITYNAME='glasgow-gw-cr26.uk.eu.test.lab[Fa0/0.1]
 IP: 2001:15f8:106:212::51';
}

For more information on the NCIM cache tables see the IBM Tivoli Network Manager Reference.

Related reference
ncimCache database
This database stores topology updates from DNCIM.

Root-cause analysis stitcher rules
Use these stitcher rules for reference when you are working with root-cause analysis (RCA) stitchers.

Standard RCA Stitcher rules
These stitcher rules are used in standard root-cause analysis processing.

All of the standard RCA Stitcher rules operate with reference to the in-scope trigger event, and this event
is referenced using the value in its Serial field. These stitcher rules work with a copy of the trigger event
and this copy of the event is not actually updated during processing. Following processing the copy of
trigger event simply goes out of scope without being updated. All updates are made to the original trigger
event held in the RCA plug-in mojo.events table.

AmosDeleteEvent()
The AmosDeleteEvent(); rule removes the trigger event from mojo.events.

Syntax
The AmosDeleteEvent(); statement uses following syntax.

AmosDeleteEvent ();

Arguments
This stitcher rule takes no arguments.

Example

The following example shows how this rule is used in the ProcessResolutionEvent.stch stitcher.

int retval = 0
retval = AmosDeleteEvent();

This is equivalent to the following OQL action.

delete from mojo.events where Serial=Serial;

Where Serial is the serial number of the in-scope event at nestlevel 0.

AmosReprocessSuppressees()
The AmosReprocessSuppressees(); rule reprocesses all suppressed events of the cleared or deleted
trigger events.

Syntax
The AmosReprocessSuppressees(); statement uses following syntax.

AmosReprocessSuppressees ();

Chapter 2. Stitchers and stitcher language 97

Arguments
This rule does not take any arguments.

Example

The following example reprocesses all suppressed events.

int numberOfSuppressees = 0;
numberOfSuppressees = AmosReprocessSuppressees();

AmosSetCause()
The AmosSetCause(); rule makes the trigger event a root cause or unknown cause event. In either
case, the event is not suppressed.

Syntax
The AmosSetCause(); statement uses following syntax.

AmosSetCause (causeType);

Example

The following example sets the cause type of an event.

int causeType = eval(int, '$RCA_ROOT_CAUSE');
success = AmosSetCause(causeType)

AmosSuppressByPeer()
The AmosSuppressByPeer(); rule suppresses the trigger event with an existing event from
mojo.events that is on a remote peer or remote neighbour. This is relevant for certain BGP and OSPF
events.

Syntax
The AmosSuppressByPeer(); statement uses following syntax.

AmosSuppressByPeer (remoteNodeEntityId);

Example

The following example retrieves a remote node entity ID for the trigger event and then attempts to
suppress the trigger event.

int suppressionType = eval(int, '$RCA_NO_SUPPRESSION');

// Get the RemoteNodeEntityId in this trigger event
int remoteNodeEntityId=0;
remoteNodeEntityId = eval(int,'&RemoteNodeEntityId');

if (remoteNodeEntityId > 0)
{
 suppressionType = AmosSuppressByPeer(remoteNodeEntityId);
}

98 IBM Tivoli Network Manager IP Edition: Reference

AmosSuppressEvents()
The AmosSuppressEvents(); rule is called by each of the suppression rules, such as
ContainedEntitySuppression.stch, in order to suppress events, using a specified suppression type.

Syntax
The AmosSuppressEvents(); statement uses following syntax.

AmosSuppressEvents (suppressionType);

Example

The following example performs event suppression.

int suppressionType = eval(int, '$RCA_CONTAINED_SUPPRESSION');
int numberOfSuppressedEvents = 0;
numberOfSuppressedEvents = AmosSuppressEvents(suppressionType);

AmosSuppressTrigger()
The AmosSuppressTrigger(); rule suppresses the trigger event with an existing event from the
mojo.events table.

Syntax
The AmosSuppressTrigger(); statement uses following syntax.

AmosSuppressTrigger ();

Example

The following example shows how this rule is used to return the suppression type if the trigger event was
suppressed. The value 0 means that the trigger event was not suppressed.

int suppressionType = eval(int, '$RCA_CONTAINED_SUPPRESSION');
suppressionType = AmosSuppressTrigger()

AmosTimedEventSuppression()
The AmosTimedEventSuppression(); rule processes all events in the mojo.event table that have the
TimedEscalation field set to 1 and that were created at least a specified number of seconds ago. The
rule returns the number of events that were processed.

Syntax
The AmosTimedEventSuppression(); statement uses following syntax.

AmosTimedEventSuppression (age);

Example

The following example processes all events in the mojo.event table that have the TimedEscalation
field set to 1 and that were created at least 30 seconds ago. The rule returns the number of events that
were processed.

// Specify that the event's CreateTime value must be at least 30 seconds ago
int age = 30; // Specifies time in seconds
int numEventsProcessed = 0;
numEventsProcessed = AmosTimedEventSuppression(age);

Chapter 2. Stitchers and stitcher language 99

RCA stitcher rules for customization
Use these stitchers to retrieve extra data to use in root-cause analysis processing. These stitcher rules are
not used in standard root-cause analysis processing should only be used by advanced users.

AmosGetConnectedEntities()
The AmosGetConnectedEntities(); rule retrieves all entities connected to an entity with a specified
entityId and entityType.

Syntax
The AmosGetConnectedEntities(); statement uses following syntax.

AmosGetConnectedEntities (entityId, entityType);

Example

The following example shows how to use the AmosGetConnectedEntities(); rule.

int entityId=0;
entityId = eval(int,'&NmosEntityId');

int entityType=0;
entityType = eval(int,'&EntityType');

RecordList myEntities = NULL;
myEntities = AmosGetConnectedEntities(entityId, entityType);

AmosGetContainedEntities()
The AmosGetContainedEntities(); rule retrieves all entities contained by the entity with a specified
entityId.

Syntax
The AmosGetContainedEntities(); statement uses following syntax.

AmosGetContainedEntities (entityId);

Example

The following example shows how to use the AmosGetContainedEntities(); rule.

int entityId=0;
entityId = eval(int,'&NmosEntityId');

RecordList myEntities = NULL;
myEntities = AmosGetContainedEntities(entityId);

AmosGetContainerEntities()
The AmosGetContainerEntities(); rule recursively retrieves all entities containing an entity with a
specified entityId.

Syntax
The AmosGetContainedEntities(); statement uses following syntax.

AmosGetContainerEntities (entityId);

100 IBM Tivoli Network Manager IP Edition: Reference

Example

The following example shows how to use the AmosGetContainerEntities(); rule.

int entityId=0;
entityId = eval(int,'&NmosEntityId');

RecordList myEntities = NULL;
myEntities = AmosGetContainerEntities(entityId);

AmosGetEvents()
The AmosGetEvents(); rule retrieves all events on a specified entityId.

Syntax
The AmosGetEvents(); statement uses following syntax.

AmosGetEvents (entityId);

Example

The following example shows how to use the AmosGetEvents(); rule.

RecordList myEvents = NULL;
myEvents = AmosGetEvents(myEntityId);

AmosGetIsolatedEntities()
The AmosGetIsolatedEntities(); rule retrieves all entities isolated by the entity with the specified
entityId value with respect to the specified poller entity.

Syntax
The AmosGetIsolatedEntities(); statement uses following syntax.

AmosGetIsolatedEntities (entityId, pollerEntityId);

Example

The following example shows how to use the AmosGetIsolatedEntities(); rule.

int entityId=0;
entityId = eval(int,'&NmosEntityId');

int pollerEntityId=0;
pollerEntityId = eval(int,'&PollerEntityId');

RecordList myEntities = NULL;
myEntities = AmosGetIsolatedEntities(entityId, pollerEntityId);

AmosRetrieveEntities()
The AmosRetrieveEntities(); rule retrieves entities relative to the trigger entity; for example, it can
retrieve all entities contained by the trigger entity.

Syntax
The AmosRetrieveEntities(); statement uses following syntax.

AmosRetrieveEntities (suppressionType);

Chapter 2. Stitchers and stitcher language 101

Example

The following example shows how to use the AmosRetrieveEntities(); rule.

int suppressionType = eval(int, '$RCA_CONTAINED_SUPPRESSION');

RecordList myEntities = NULL;
myEntities = AmosRetrieveEntities(suppressionType);

AmosUpdateEvent()
The AmosUpdateEvent(); rule updates the event in the table, mojo.events. The rule uses the Serial
number of the in-scope event to do this. The rule does not update the in-scope record itself. The in-scope
records simply goes out of scope at the end of the operation.

Syntax
The AmosUpdateEvent(); statement uses following syntax.

AmosUpdateEvent (attribute nameattribute value);

Example

The following example shows how to use the AmosUpdateEvent(); rule to update an integer field.

int success = 0;
success = AmosUpdateEvent("NmosCauseType", 1);

This is equivalent to the following OQL action:

update mojo.events set NmosCauseType=1 where Serial=Serial;

Where Serial is the serial number of the in-scope event.

Example

The following example shows how to use the AmosUpdateEvent(); rule to update text string fields.

success = AmosUpdateEvent("NmosSerial", "0");
success = AmosUpdateEvent("SuppressionState", "0");
success = AmosUpdateEvent("SuppressionTime", "0");

Example

The following is a further example of how to use the AmosUpdateEvent(); rule to update an integer
field.

int success = 0
text myname = "NmosCauseType";
int myvalue = 2;
success = AmosUpdateEvent(myname, myvalue);

AmosUpdateSuppressees()
The AmosUpdateSuppressees(); rule assigns a value to one field in all of the suppressed events and
then sets this flag to a specified value.

Syntax
The AmosUpdateSuppressees(); statement uses following syntax.

AmosUpdateSuppressees (attribute name, attribute value);

102 IBM Tivoli Network Manager IP Edition: Reference

Example

The following example finds all the events currently suppressed by the trigger event, and flags them as
orphans because the trigger event has just been cleared or deleted. The orphan events are subsequently
reprocessed by the AmosReprocessSuppressees rule called later in the stitcher. The parameters set the
field Orphaned to the value 1 in each of the suppressee events.

int numberOfSuppressees = 0;
numberOfSuppressees = AmosUpdateSuppressees("Orphaned", 1);

Stitcher language building blocks
To construct statements in the stitcher language, use the programming constructs, relational operators,
and datatypes.

Programming constructs
The following table lists the stitcher language programming constructs.

Table 65. Stitcher language programming constructs

Stitcher keyword Description

delete Deletes lists created by the RetrieveOQL function.

else Executes statements where the conditional test specified with the if loop is not
passed.

for Defines a loop that is repeated a specified number of times.

foreach Performs an action on each member of a list of datatype RecordList.

if Executes statements if a conditional test is passed.

while Defines a loop that repeats while a condition holds true.

Datatypes
The following table describes the stitcher language datatypes.

Table 66. Stitcher language datatypes

Datatype Description

int Stores integer values.

Record Stores a single returned record.

RecordList Stores lists created by the RetrieveOQL function.

text Stores string values.

Relational operators
The following table lists the relational operators.

Table 67. Stitcher language relational operators

Operator Description

== Test for equality.

!= Test for non-equality.

< Test for less than.

Chapter 2. Stitchers and stitcher language 103

Table 67. Stitcher language relational operators (continued)

Operator Description

> Test for greater than.

<= Test for less than or equal to.

>= Test for greater than or equal to.

Related reference
Stitcher rules
The stitcher rules are specified within the StitcherRules{} section of a stitcher. Stitcher rules
determine how a stitcher functions.
Quotes in OQL
In OQL the TEXT datatype must be enclosed by matching quotation marks (either single or double
quotes).
delete()
The delete rule removes lists and records that have been created and are no longer needed.
The for loop
The for loop is used to repeat a set of rules a given number of times.
The while Loop
The while loop is used to execute a series of instructions while a specified condition remains true.
The if statement
The if statement performs an action if a particular condition is satisfied.
The foreach Loop
The foreach loop performs an action on every record stored in a variable of type RecordList.

Stitcher language comments
Comments are introduced by -- or //. If a comment requires a carriage return, the characters on the next
line must also be commented out.

The following example shows how to use comments.

-- This is a valid comment.
// This is also a valid comment.

Related reference
Features of OQL
The following topics describe the features of Object Query Language (OQL).

Precedence and association of operators
The rules for precedence and association of operators determine the grouping of operators with
operands, and indicate the order in which the operators in an expression are executed.

For complex expressions, use parentheses to avoid ambiguity.

The following table describes the operators.

Table 68. OQL operators in order of decreasing precedence

Operator Description Associativity Precedence

- Negative sign Non-associative 1 (highest)

* Multiplication Left 2

/ Division Left 2

104 IBM Tivoli Network Manager IP Edition: Reference

Table 68. OQL operators in order of decreasing precedence (continued)

Operator Description Associativity Precedence

OR Logical OR Left 3

AND Logical AND Left 4

NOT Logical NOT Left 5

= Equal to Left 6

<> Not equal to Left 6

< Less than Left 6

> Greater than Left 6

<= Less than or equal to Left 6

>= Greater than or equal to Left 6

+ Addition Left 7

- Subtraction Left 7 (lowest)

OQL quotes in the stitcher language
OQL statements embedded within the stitcher language (for example, within the ExecuteOQL();
statement) are enclosed in double quotes.

If quotes are needed inside the embedded OQL, they must be single quotes even if double quotes would
normally be used. The following example shows an embedded OQL statement that is enclosed in double
quotes. The TEXT datatype within the statement is enclosed in single quotes:

ExecuteOQL(
 "select m_Name from finders.returns where m_Creator = 'PingFinder';"
);

Elsewhere in the stitcher language, single quotes are generally used, as shown in the following example:

ExecuteStitcher('CreateAndSendTopology');

Domain-specific stitchers
If you want to make custom stitching easier to debug, or you want to keep the original stitcher files
unaltered, you can create domain-specific stitchers.

Advantages and operation of domain-specific stitchers
To make a stitcher domain-specific, save a copy of it with the domain name appended to the filename. For
example: LinkDomainsLoadPresetConnections.DOMAIN1.stch.

Domain-specific stitchers only process connections that start in the domain defined in their filename.

If you have a large number of connections that you want to create, having multiple stitcher files can
reduce the size and complexity of individual files.

Chapter 2. Stitchers and stitcher language 105

106 IBM Tivoli Network Manager IP Edition: Reference

Chapter 3. Syntax for poll definition expressions
Use this information to understand how to build complex threshold expressions to use in basic and
generic threshold poll definitions.

eval statement syntax in threshold expressions
Use this information to understand how to use the eval statement to create complex threshold
expressions within basic and generic threshold poll definitions.

eval statement syntax for SNMP variables
You can evaluate SNMP variables using the eval statement.

The following examples illustrate how to evaluate SNMP variables using the eval statement.

Sample: Evaluation of SNMP values
The following example returns the value of the SNMP variable sysName.

eval(text, '&SNMP.VALUE.sysName')

Sample: Evaluation of SNMP indices
The following example returns the value of the index of the SNMP request for the variable
ipRouteNextHop. In a table poll, this is evaluated for every index in the table list..

eval(text, '&SNMP.INDEX.ipRouteNextHop')

Sample: Evaluation of previously retrieved SNMP values
The following example returns the value of the SNMP variable sysName, which was retrieved when this
poll was last run..

eval(text, '&SNMP.VALUE.OLD.sysName')

Sample: Evaluation of the results of an expression
The following example returns the results of an expression, such as the SNMP Bandwidth poll. The results
are written directly within the alert description within the IBM Tivoli Netcool/OMNIbus or Event Viewer.

Note: This feature is only available in basic threshold polls. The feature is not available in generic
threshold polls, because generic threshold polls do not evaluate to a result, they only evaluate to true or
false. If you attempt to use this syntax in a generic threshold, the operation will not fail; however, it will
generate a blank space in the alert.

eval(text,'&POLLDATA.RESULT')

Sample: Evaluation of Old SNMP Indices
The following example returns the value of the index of the SNMP request for the variable
ipRouteNextHop, which was retrieved when this poll was last run. In a table poll, this is evaluated for
every index in the table list. Note that the old index is likely to be the same as the new index.

eval(text, '&SNMP.INDEX.OLD.ipRouteNextHop')

© Copyright IBM Corp. 2006, 2021 107

eval statement syntax for network entity variables
You can evaluate network entity variables, such as the value of an entity ID or entity name, using the eval
statement.

The ENTITY keyword can be used in threshold expressions or descriptions to evaluate the value of
network entity variables. The following examples illustrate how to evaluate network entity variables using
the ENTITY keyword in the eval statement.

Sample: Evaluation of the value of the entityName of the containing chassis
The following example can be used in a threshold expression or threshold description, and shows how to
evaluate the value of the entityName corresponding to the chassis that contains the entity being
monitored.

An interface on eval(text, '&ENTITY.MAINNODEENTITYNAME') is down

Attributes of the ENTITY keyword
Valid attributes of the ENTITY keyword are listed in the following table. For information on the NCIM
database fields cited in the table, see the IBM Tivoli Network Manager Reference.

Table 69. Attributes of the ENTITY keyword

Attribute Description

ENTITYID Value of the field entity.entityId for the monitored entity. This can be either an
interface or chassis.

ENTITYNAME Value of the field entity.entityName for the monitored entity. This can be either
an interface or chassis.

ENTITYTYPE Value of the field entity.entityType for the monitored entity. This can be either
an interface or chassis.

ENTITYCLASS Value of the field entity.className for the monitored entity. This can be either
an interface or chassis.

ACCESSIPADDRESS Value of the field interface.accessIPAddress or chassis.accessIPAddress,
depending on what type of poll it is.

IFINDEX For interface polls, the value of the field interface.ifIndex for the monitored
entity.

IFTYPESTRING For interface polls, the value of the field interface.ifTypeString for the monitored
entity

IFNAME For interface polls, the value of the field interface.ifName for the monitored
entity.

IFDESCR For interface polls, the value of the field interface.ifDescr for the monitored
entity.

IFALIAS For interface polls, the value of the field interface.ifAlias for the monitored
entity.

INSTANCESTR For interface polls, a string representation of the field interface.instanceStr for
the monitored entity.

ENTITYMANAGED Indicates whether the monitored entity is in a managed state, determined by
whether the field managedStatus.status is either not present or zero for the
entity in question.

108 IBM Tivoli Network Manager IP Edition: Reference

Table 69. Attributes of the ENTITY keyword (continued)

Attribute Description

CHASSISMANAGED Indicates whether the chassis containing the entity being monitored is in a
managed status, determined by whether the field managedStatus.status is
either not present or zero for the chassis in question.

MAINNODEADDRESS Value of accessIPAddress for the chassis containing the entity being monitored

MAINNODEENTITYNAM
E

Value of the field entityName for the entity record corresponding to the chassis
containing the entity being monitored.

MAINNODEENTITYID Value of the field chassis.entityId for the chassis containing the entity being
monitored

eval statement syntax for poll policy variables
You can evaluate poll policy variables, such as the name of a policy or the ID of the domain in which this
poll policy is found, using the eval statement.

The POLICY keyword can be used in threshold expressions or descriptions to evaluate the value of poll
policy variables. The following examples illustrate how to evaluate poll policy variables using the POLICY
keyword in the eval statement.

Sample: Evaluation of the value of poll policy name and related domain ID
The following example can be used in a threshold expression or threshold description, and shows how to
evaluate the value of name of the poll policy and the ID of the domain in which this poll policy is found.

The eval(text, '&POLICY.POLICYNAME') policy polls entities in
domain number eval(text, '&POLICY.DOMAINMGRID)

Attributes of the POLICY keyword
Valid attributes of the POLICY keyword are listed in the following table. For information on the NCIM
database fields cited in the table, see the IBM Tivoli Network Manager Reference.

Table 70. Attributes of the POLICY keyword

Attribute Description

POLICYID Unique integer identifier for this poll policy.

DOMAINMGRID Foreign key referencing the NCIM domainMgr table. Specifies the ID for the
domain of the monitored entity.

POLICYNAME Name of this poll policy.

eval statement syntax for poll definition variables
You can evaluate poll definition variables, such as the name of a poll definition or the severity of failure
events raised by policies using a poll definition, using the eval statement.

The POLL keyword can be used in threshold expressions or descriptions to evaluate the value of poll
definition variables. The following examples illustrate how to evaluate poll definition variables using the
POLL keyword in the eval statement.

Chapter 3. Syntax for poll definition expressions 109

Sample: Evaluation of the value of poll definition name and associated event severity
The following example can be used in a threshold expression or threshold description, and shows how to
evaluate the value of name of the poll definition and the severity of the events generated by poll policies
that use this poll definition.

Poll policies that use the eval(text, '&POLL.TEMPLATENAME') poll definition
generate events with severity eval(text, '&POLL.EVENTSEVERITY')

Attributes of the POLL keyword
Valid attributes of the POLL keyword are listed in the following table.

Table 71. Attributes of the POLL keyword

Attribute Description

TEMPLATEID Unique identifier for this poll definition.

TEMPLATENAME Name of this poll definition.

TEMPLATETYPE Type of poll definition. This value is derived from the list the user is presented
with when creating a new poll definition.

EVENTNAME Text identifier to be used for events raised by poll policies that use this poll
definition. This text is written to the alerts.status table as the EventId field,
unless the text is modified by the rules file of the probe for Tivoli Netcool/
OMNIbus (nco_p_ncpmonitor).

EVENTSEVERITY Severity of failure events raised by poll policies using this poll definition. This
text is written to the alerts.status table as the Severity field, unless the text is
modified by the rules file of the probe for Tivoli Netcool/OMNIbus
(nco_p_ncpmonitor).

POLLINTERVAL Interval in seconds at which each entity in scope for this poll is polled.

Operators in threshold expressions
Use this information to understand which operators to use to create threshold expressions in basic and
generic threshold poll definitions.

The following table lists the operators that you can use in threshold expressions.

Table 72. Operators in threshold expressions

Operator Example

Plus (1 + 2)

Minus (4 - 2)

Multiplication (5 * 3)

Division (10 / 2)

Modulus (8 % 3)

Power® (10 POW 3)

Log (Ln 5)

IP to Long datatype
conversion

(IpToLong("1.2.3.4"))

Bitwise AND (5 & 3)

Note: Bitwise operations can only be applied to integer values.

110 IBM Tivoli Network Manager IP Edition: Reference

Table 72. Operators in threshold expressions (continued)

Operator Example

Bitwise (5 | 3)

Bitwise Exclusive OR (5 ^ 3)

Boolean OR ((eval(int, '&SNMP.VALUE.ifSpeed') > 10000) OR (eval(int,
'&SNMP.VALUE.ifSpeed') < 100))

Boolean AND ((eval(int, '&SNMP.VALUE.ifSpeed') > 10000) AND (eval(int,
'&SNMP.VALUE.ifOperStatus') !=2))

Boolean NOT (NOT((eval(int,'&SNMP.VALUE.ifOperStatus') = 1))

Equal (eval(int, '&SNMP.VALUE.ifOperStatus') = 1)

Not equal (eval(int, '&SNMP.VALUE.ifOperStatus') != 1)

Less than (eval(int, '&SNMP.VALUE.ifSpeed') < 100)

Greater than (eval(int, '&SNMP.VALUE.ifSpeed') >100)

Less than or equal (eval(int, '&SNMP.VALUE.ifSpeed') <= 100)

Greater than or equal (eval(int, '&SNMP.VALUE.ifSpeed') >= 100)

Like (eval(text, '&ENTITY.IFDESCR') LIKE 'Gigabit.*')

Not Like (eval(text, '&ENTITY.IFDESCR') NOT LIKE 'Loopback.*')

Chapter 3. Syntax for poll definition expressions 111

112 IBM Tivoli Network Manager IP Edition: Reference

Chapter 4. Active Object Class files
Active Object Class (AOC) files are used to define the device class hierarchy upon which Network Manager
automatically classifies all discovered network devices after the completion of a discovery. By default,
AOC files are stored in the NCHOME/precision/aoc directory.

The following topics describe AOC syntax.

Device class hierarchy
Network Manager uses a class hierarchy to model network devices.

The following figure shows an example class hierarchy.

Figure 1. Class hierarchy of network devices

The management policies specified in the class hierarchy describe how to handle instances of devices and
how to handle events related to them. The class hierarchy is available for polling operations. You can
specify which classes to include in each polling operation through the poll policy settings.

Network Manager does not permit multiple inheritance, which is the ability of a new class to inherit the
characteristics from more than one class.

The following topics describe the classes contained in the hierarchy.

© Copyright IBM Corp. 2006, 2021 113

EndNode class
The EndNode class contains devices such as workstations and printers.

Within the EndNode class, the NoSNMPAccess class contains devices that were discovered and added to
the topology even though Network Manager had no SNMP access to them, such as workstations. Devices
might not have SNMP access for one of the following reasons:

• The device does not have SNMP capabilities.
• Network Manager does not have the SNMP credentials to access the device.

InferredDevice class
The InferredDevice class contains devices that Network Manager could not discover directly, although
they are considered to exist on the network.

You might infer the existence of CE routers for your customer, for example, by specifying the CE routers in
the advanced discovery configuration options.

NetworkDevice class
The NetworkDevice class contains all device types grouped into subclasses according to their
manufacturer.

All Cisco devices, for example, are contained within the Cisco subclass. The default poll policies are
usually defined for network devices and their derived classes.

AOC syntax
Use this information to understand the structure of AOC files.

In addition to the information in this topic, you should also read the OQL language syntax information, in
particular, the eval statement.

The syntax and naming conventions described in the following table are used throughout the AOCs.

Table 73. Syntax characters used in AOCs

Character Name Meaning

[] Square brackets Typically defines a list of items. There can be zero or more items
within the brackets and each item must be separated by a single
comma.

{ } Curly brackets Typically defines an object.

" " Double quotes Typically used to enclose assignments to various attributes (of
datatype text) within an AOC. As a general rule all assignments use
double quotes.

' ' Single quotes Typically used to enclose evaluations of column names or system
variables within an eval statement. Single quotes can be used
within double quotes, but double quotes cannot be used within
single quotes.

, Single comma Typically used either as a separator between elements of a list or to
terminate an assignment to a particular attribute.

; Semi colon Typically used to terminate assignments to the major components
listed below.

114 IBM Tivoli Network Manager IP Edition: Reference

Components of an AOC file
Use this generic description of the structure of an AOC to help you write new AOC files and understand
existing AOC files.

AOC components
The major components of the AOC and descriptions of the components are provided below.

• Name of the active object class (active object)
• Super class (super_class)
• Instantiate rule (instantiate_rule)
• Icon used in GUI to represent the device class

Name
In the active object attribute, you declare the name of the current class.

You can specify any unique text string between the double quotes. The entire AOC file is contained within
the first pair of curly brackets. A semicolon follows the final bracket to terminate the AOC.

active object 'Linux'
{
 super_class = 'EndNode';

 instantiate_rule = "EntityOID = '1.3.6.1.4.1.2021.250.10' OR
 EntityOID = '1.3.6.1.4.1.8072.3.2.10' OR
 EntityOID = '1.3.6.1.4.1.1575.1.5'";

 visual_icon = 'EndNode';
};

Super class
You can configure the Super class to define the name of the AOC from which the current class inherits.

The name between the double quotes must be the name of an already-defined AOC. In the AOC hierarchy,
Core is the only class that has an unassigned super_class. When editing any other class, the super_class
must never be left empty.

super_class = "Core";

Instantiate rule
You code the instantiate rule as a logical test against the attributes of the entity. The most specific class
that matches the test defines the class the object belongs to. The test is done by first testing the Core.aoc
class and then its subclasses in turn.

If an object meets the instantiation criteria for more than one class, it automatically instantiates to the
lowest leftmost class in the hierarchy. The following example shows a specification of the rule that
instantiates everything by default.

instantiate_rule = "EntityOID like '.*'";

Visual icon
You can assign icons to device classes. These icons represent devices of that class in the network
visuulization GUIs, including the Network Views and the Network Hop View.

For information on how to assign icons to device classes, see the IBM Tivoli Network Manager IP Edition
Installation and Configuration Guide.

Chapter 4. Active Object Class files 115

116 IBM Tivoli Network Manager IP Edition: Reference

Part 2. Perl API reference
Read about the Perl API provided with Network Manager.

© Copyright IBM Corp. 2006, 2021 117

118 IBM Tivoli Network Manager IP Edition: Reference

Chapter 5. Overview of the Perl API
The Perl API provides developers with the functionality to write discovery agents and other client/server
applications. These applications can perform such tasks as accessing and modifying records in Network
Manager databases, and retrieving SNMP information from a network device. Developers can also
integrate third-party products using the Perl API as a tool to interface with Network Manager.

RIV module overview
The RIV module provides a variable, functions, and virtual methods that the Perl API application modules
— RIV::Agent and RIV::App — use.

Perl API modules used with the RIV module
The following table identifies and briefly describes the Perl API modules used with the RIV module:

Perl API Module Description

RIV::Agent Provides an interface for implementing Network Manager discovery agents.

RIV::App Provides an interface for implementing other Network Manager client/server
applications.

RIV::OQL Provides an interface to communicate and perform operations on internal
Network Manager databases.

RIV::Param Provides an interface for parsing standard and Network Manager application-
specific command line arguments.

RIV::Record Provides a data structure to store the network entity. Typically, you use this data
structure in conjunction with the RIV::Agent module to write discovery agents.

RIV::RecordCache Provides an interface to access records that reside in a cache.

RIV::SnmpAccess Provides an interface to perform SNMP-related operations on Network Manager
MIB trees.

Note: Discovery agents in previous versions of the Perl API used this module to
obtain SNMP information from network devices. Discovery agents implemented
with this version of the Perl API should use the SNMP methods that the
RIV::Agent module provides.

Types of applications
There are two types of applications that you can write using the Perl API:

• Discovery agents — Use the RIV::Agent constructor and the ncp_disco_perl_agent binary to create
discovery agent applications.

• Other client/server applications — Use the RIV::App constructor and the ncp_perl binary to other
client/server applications. Examples of these other client/server applications include those that access
Network Manager databases.

These application objects are required for interaction with Network Manager components (through the
virtual methods exported through the RIV module) and for instantiation of the other RIV modules.

© Copyright IBM Corp. 2006, 2021 119

Application objects that the RIV::Agent and RIV::App constructors return are identical for the purpose
of accessing other module functionality (for example, RIV::OQL).

RIV module functions
The following table identifies and briefly describes the functions that the RIV module provides for
Network Manager discovery agents and other Network Manager client/server applications:

RIV module function Description

RIV::GetInput This function has been deprecated. Use the
RIV::GetResult function.

RIV::GetResult Obtains input either directly or indirectly from message
broker.

RIV::InputFilter Binds the specified input function to input tags that match
the specified regular expression.

RIV::InputQueueLength Returns the number of items waiting in the application's
input queue.

RIV::IsIpNotLoopBackOrMulticast Determines whether the specified address is a valid IP
address and not a loop back or multicast address.

RIV::IsIpValid Determines whether the specified address is a valid IP
address.

RIV::IsIpv4Valid Determines whether the specified address is a valid IPv4
address.

RIV::IsIpv6Valid Determines whether the specified address is a valid IPv6
address.

RIV::ReadDir Returns a reference to an array of filenames contained in the
specified directory.

RIV::RivDebug Prints a list of debug message strings to the standard output.

RIV::RivMessage Prints a list of log message strings to the standard output.

RIV::RivError Displays error messages.

See “RIV module reference” on page 165 for the reference (man) pages associated with these functions.

RIV module virtual methods
The following table identifies and briefly describes the virtual methods that the RIV module provides for
Network Manager discovery agents and other Network Manager client/server applications:

RIV module virtual method Description

AddSubject Binds the application to the specified message broker subject.

AddTimer Creates a single-shot or repeating timer.

120 IBM Tivoli Network Manager IP Edition: Reference

RIV module virtual method Description

DebugLevel Provides access to the global Network Manager debug setting through the
RIV::DebugLevel variable.

DecryptPassword Decrypts a password that was previously encrypted in a previous call to
the EncryptPassword RIV module virtual method.

EncryptPassword Returns an encrypted representation of the specified password.

Latency Retrieves the timeout for queries.

PostInput Adds a message to the queue.

PublishMessage Publishes the specified message string.

PublishMessage Encodes the hash reference into a message broker string.

RetryLimit Sets the retry limit for queries or returns the maximum number of retries
for queries.

See “RIV module reference” on page 165 for the reference (man) pages associated with these functions.

RIV::Agent module overview
The RIV::Agent module provides an interface for implementing Network Manager discovery agents. A
discovery agent is a specialized application that retrieves connectivity-related information for network
entities.

RIV::Agent constructor
The RIV::Agent module provides a constructor that creates a discovery agent application object. Use
this application object to:

• Interact with Network Manager core components libraries using the virtual methods exported from the
RIV module.

• Instantiate objects for and interact with the other Perl modules: RIV::Param, RIV::Record, and
RIV::RecordCache.

Input data records
Input data records that the discovery service sends are supplied through the RIV::GetResult method.
These input data records can be stored as RIV::Record objects, which are nested hash lists to which
you can add local and remote neighbors.

Note: All input data records that other services (including the OQL service) send are also supplied through
the RIV::GetResult method.

Discovery agents and multiple threads
The RIV::Agent module allows you to implement discovery agents using multiple threads. The threads
implementation creates a single master Perl interpreter that gets copied, one for each thread. Thus, if the
discovery agent makes use of three threads, there will be three copies of the master interpreter.
Specifically, the RIV::Agent module provides the LockThreads and UnLockThreads methods related
to discovery agents and multiple threads.

Chapter 5. Overview of the Perl API 121

SNMP operation methods
The RIV::Agent module provides methods that discovery agents use to obtain Simple Network
Management Protocol (SNMP) information from network devices. These methods obtain this information
through the Helper Server. Thus, the Helper Server (and ncp_ctrl) must be running so that the SNMP-
related methods can make the appropriate SNMP requests.

The following table identifies and briefly describes the SNMP operation methods that the RIV::Agent
module provides:

SNMP method Description

SnmpGet Performs an SNMP get operation.

SnmpGetNext Performs an SNMP get-next operation.

SnmpGetBulk Performs an SNMP get-bulk operation.

See “RIV::Agent module reference” on page 187 for the reference (man) pages associated with these
methods.

DNS operation methods
The RIV::Agent module provides methods that discovery agents use to obtain Domain Name System
(DNS) information from network devices. These methods obtain this information through the Helper
Server. Thus, the Helper Server (and ncp_ctrl) must be running so that the DNS-related methods can
make the appropriate DNS requests.

The following table identifies and briefly describes the DNS operation methods that the RIV::Agent
module provides:

DNS method Description

GetDNSAllIpAddrs Gets all IP addresses corresponding to a particular node name.

GetDNSAllNames Gets all node names corresponding to the specified IP addresses.

GetDNSFirstIpAddr Gets the first IP address in the list of IP addresses for this node.

GetDNSFirstName Gets the first node name in the list of node names for this IP address.

See “RIV::Agent module reference” on page 187 for the reference (man) pages associated with these
methods.

Ping operation methods
The RIV::Agent module provides methods that discovery agents use to perform ping operations on
network devices. Ping operations determine whether a specific IP or subnet address is accessible.
Typically, the ping operation sends a packet to the specified address and waits for a reply.

The RIV::Agent module ping operation methods perform the specified ping operation through the
Helper Server. Thus, the Helper Server (and ncp_ctrl) must be running so that these ping-related methods
can make the appropriate ping requests.

The following table identifies and briefly describes the ping operation methods that the RIV::Agent
module provides:

ping method Description

GetPingIP Pings the specified IP address and returns whether a network device exists at that
address.

122 IBM Tivoli Network Manager IP Edition: Reference

ping method Description

GetPingList Pings the specified list of IP addresses and returns a list of network devices that exist
at those addresses.

GetPingSubnet Pings the specified subnet and returns whether one or more devices exist at that
subnet.

Ping Pings the specified IP address.

PingList Pings the specified list of IP addresses.

PingSubnet Pings the specified subnet.

See “RIV::Agent module reference” on page 187 for the reference (man) pages associated with these
methods.

IP and MAC address operation methods
The RIV::Agent module provides methods that discovery agents use to perform operations on Internet
Protocol (IP) and Medium Access Control (MAC) addresses. The RIV::Agent module IP and MAC
address operation methods perform the specified address operation through the Helper Server. Thus, the
Helper Server (and ncp_ctrl) must be running so that these address-related methods can make the
appropriate address operation requests.

The following table identifies and briefly describes the IP and MAC address operation methods that the
RIV::Agent module provides:

Address method Description

GetIpArp Converts the specified MAC address to an IP address.

GetMacArp Converts the specified IP address to a MAC address.

GetTraceRoute Traces a route to the specified destination IP address and returns a list of network
devices that reside on that route.

See “RIV::Agent module reference” on page 187 for the reference (man) pages associated with these
methods.

Telnet operation methods
The RIV::Agent module provides methods that discovery agents use to obtain network device
information through Telnet rather than SNMP. Like the SNMP methods, the Telnet methods obtain
network device-related information through the Helper Server. Thus, the Helper Server (and ncp_ctrl)
must be running so that the Telnet-related methods can make the appropriate Telnet requests.

The following table identifies and briefly describes the Telnet operation methods that the RIV::Agent
module provides:

Telnet method Description

GetMultTelnet Executes multiple Telnet commands on the specified network device.

GetTelnet Executes the specified Telnet command on the specified network device.

GetTelnetCols Executes the specified Telnet command on the specified network device and splits
the return data into table columns.

See “RIV::Agent module reference” on page 187 for the reference (man) pages associated with these
methods.

Chapter 5. Overview of the Perl API 123

Network entity operation methods
The RIV::Agent module provides methods that discovery agents use to perform operations on network
entities. Specifically, the RIV::Agent module provides methods that perform the following network
entity operations:

Network entity method Description

SendNEToDisco Sends processed records from RIV::Record to the returns table of the
specified Agent database in Disco.

SendNEToNextPhase Marks the network entity as having completed the current phase and puts the
network entity back on the Agent queue ready for processing in the next
phase.

See “RIV::Agent module reference” on page 187 for the reference (man) pages associated with these
methods.

Collector communication operation methods
The RIV::Agent module provides methods that discovery agents can use to call XML-RPC methods
supported by Collectors. These XML-RPC Collector supported methods will return an XML response that
needs to be parsed. The caller specifies either a custom XML-RPC method or one of the XML-RPC
methods that the Network Manager Collector XML Schema defines. The Collector communication
methods issue requests through the Helper Server. Thus, the Helper Server (and ncp_ctrl) must be
running so that the Collector communication-related methods can make the appropriate XML-RPC
requests.

The following table identifies and briefly describes the Collector communication operation methods that
the RIV::Agent module provides to make the XML-RPC call:

XML-RPC method Description

GetXMLRPCData Issues an XML-RPC call, via the XML-RPC Helper, on the specified method to
the specified host and port.

GetXMLRPCEntityData Issues an XML-RPC call, via the XML-RPC Helper, on the specified method.
The Collector contacted will be that referenced in the supplied standard
entity record (that is, the .despatch record).

See “RIV::Agent module reference” on page 187 for the reference (man) pages associated with these
methods.

RIV::App module overview
The RIV::App module provides an interface for implementing Network Manager client/server
applications within one domain.

RIV::APP constructor
The RIV::App module provides two constructors that create a client/server application object. You use
this client/server application object to:

• Interact with Network Manager core components libraries using the virtual methods exported from the
RIV module.

• Instantiate objects for and interact with the other Perl modules: RIV::OQL, RIV::Param,
RIV::Record, and RIV::RecordCache.

A client/server application can create one or more RIV::App application objects as required. For
example, two instances of RIV::App application objects would be needed in order to implement some
special purpose cross-domain behavior.

124 IBM Tivoli Network Manager IP Edition: Reference

One example of a client/server application is one that performs one or more OQL queries (in which case
the RIV::OQL module would also be used).

Note: The RIV::App module provides the interface for implementing all Network Manager client/server
applications except for discovery agents. To write discovery agents, use the RIV::Agent module.

RIV::OQL module overview
The RIV::OQL module provides an interface to communicate with and perform operations on Network
Manager internal databases.

RIV::OQL constructor
The RIV::OQL module provides a constructor that creates and initializes a new RIV::OQL object. The
RIV::OQL constructor takes a blessed reference to either a discovery agent application object or a client/
server application object. These application objects were returned in a previous call to the RIV::Agent
or RIV::App constructor. The RIV::OQL constructor also takes the name of a service that indicates the
Network Manager internal database to use.

Database operation methods
The RIV::OQL module provides methods that client/server applications use to perform a variety of
operations on Network Manager internal databases.

The following table identifies and briefly describes the database operation methods that the RIV::OQL
module provides:

Database method Description

Close Close an OQL client.

CreateDB Creates a database.

CreateTable Creates a database table.

Delete Deletes records from a database table.

Insert Inserts records into a database table.

Print Prints records as a result of a database query.

Query Run a query.

QueryGetResult Get a single result.

QueryGetResults Get multiple results.

Select Executes the specified OQL statement.

Send Communicates with the specified database.

Update Updates records that currently reside in the specified database.

See “RIV::OQL module reference” on page 212 for the reference (man) pages associated with these
methods.

Chapter 5. Overview of the Perl API 125

RIV::Param module overview
The RIV::Param module provides an interface to parse standard and Network Manager application-
specific command line arguments.

Standard arguments
Standard arguments are used to specify information about the Network Manager execution environment
and to select debug output and application help. All Network Manager applications must support these
arguments.

The standard arguments that the RIV::Param module provides are summarized in the following table:

Argument Description

-domain domain name Specifies the command line argument used to identify the domain in which a
user wants to perform some task, for example, starting the Network Manager
core components.

The domain name argument specifies the name of the domain.

-debug debug level Specifies the command line argument used to identify the level of debugging
output that a user prefers.

The debug level argument specifies a value from 1-4, where 4 represents the
most detailed output.

-latency query
latency

Specifies the command line argument used to specify the maximum time that
CLASS waits to connect to another Network Manager process by means of the
messaging bus. This option is useful for large and busy networks where the
default settings can cause processes to assume that there is a problem when
in fact the communication delay is a result of network traffic.

The query latency argument specifies the maximum time in milliseconds (ms)
that CLASS waits.

-messagelevel
message level

Specifies the command line argument used to identify the level of message
output that a user prefers.

The message level argument specifies the level of message to be logged (the
default is warn):

• debug
• info
• warn
• error
• fatal

-help Specifies the command line argument used to display command line options.

RIV::Param constructor
The RIV::Param module provides a constructor that creates and initializes a new RIV::Param object.
The RIV::Param constructor takes three optional parameters used to specify:

• Application-specific parameters
• Usage information or nonstandard command line argument scenarios
• Help information written to standard output

126 IBM Tivoli Network Manager IP Edition: Reference

The RIV::Param object can be used as the first parameter to the RIV::App constructor in place of the
domain name argument. In this case, the application object is created with the specified values. Likewise,
the RIV::Param object can be used as the first parameter to the RIV::Agent constructor.

See “RIV::Param Constructor” on page 225 for details.

RIV::Param module constants
The RIV::Param module also provides several constants that the RIV::Param constructor uses to
identify a particular command line as follows:

Constant Description

RivParamNoArg Specifies that the command line takes no arguments.

RivParamSingleArg Specifies that the command line takes one argument.

RivParamMandatory Specifies that the command line takes a mandatory argument.

Parameter operation methods
The RIV::Param module provides methods that client/server applications use to print usage information
or to obtain information about domain and command names.

The following table identifies and briefly describes the parameter operation methods that the
RIV::Param module provides:

Parameter method Description

CommandName Returns the name of the command.

DomainName Returns the name of the domain.

Usage Writes a brief usage explanation to standard output.

See “RIV::Param module reference” on page 224 for the reference (man) pages associated with these
methods.

RIV::Record module overview
The RIV::Record module provides a data structure to store network entity data records.

Network entities
The RIV::Record module is used in conjunction with the RIV::Agent module to write discovery
agents. The RIV::Record data structure stores records associated with the network entities sent by
DISCO to the Perl Discovery Agent. You can then add local neighbors and remote neighbors to this record
by calling the appropriate local and remote neighbor operation methods.

RIV::Record constructor
Before accessing the methods that the RIV::Record module provides, you must call the RIV::Record
constructor to create and initialize a new RIV::Record data structure. This data structure stores
network entity records retrieved from DISCO.

Chapter 5. Overview of the Perl API 127

RIV::Record data structure
The following respresents a RIV::Record data structure:

$refLocalNeighbours = $record->{m_LocalNbr};
@LocalNeighbours = @$refLocalNeighbours;
$refRemoteNeighbours = $LocalNeighbours[$i]->{m_RemoteNbr};
@RemoteNeighbours = @$refRemoteNeighbours;
$refRemoteNeighbour = $RemoteNeighbours[$j];
%remoteNeighbour = %$refRemoteNeighbour;

The value for the key m_LocalNbr is a pointer to an array, which is a list of hashes, where each hash
represents a local neighbor. If there are any remote neighbors, the local neighbor has a key
(m_RemoteNbr) whose value points to the reference of an array, which is a list of hashes, each
representing a remote neighbor. You will need this data structure if you intend to manipulate it directly. In
most cases, however, your task is limited to creating hash lists that define the local and remote neighbors.

The AddLocalNeighbour and AddRemoteNeighbour methods can be used to add neighbors, and the
GetLocalNeighbours and GetRemoteNeighbours methods can be used to retrieve information about
neighbors.

Local and remote neighbor operation methods
The RIV::Record module provides methods that discovery agents use to perform add and get
operations on local and remote neighbors.

The following table identifies and briefly describes the local and remote operation methods that the
RIV::Record module provides:

Local and remote neighbor method Description

AddLocalNeighbour Adds a local neighbor.

AddLocalNeighbourTag Adds a tag to a local neighbor.

AddRemoteNeighbour Adds a remote neighbor.

AddRemoteNeighbourTag Adds a tag to a remote neighbor.

GetLocalNeighbours Returns an array of local neighbors.

GetRemoteNeighbours Returns an array of remote neighbors.

Print Prints the current record.

See “RIV::Record module reference” on page 231 for the reference (man) pages associated with these
methods.

RIV::RecordCache module overview
The RIV::RecordCache module provides an interface to access a record cache file.

RIV::RecordCache constructor
Before accessing the methods that the RIV::RecordCache module provides, you must call the
RIV::RecordCache constructor to create and initialize a new record cache file object. The
RIV::RecordCache constructor takes a blessed reference to either a discovery agent application object
or a client/server application object. These application objects were returned in a previous call to the
RIV::Agent or RIV::App constructor.

128 IBM Tivoli Network Manager IP Edition: Reference

The RIV::RecordCache constructor also takes the name of the record cache file object to be created
and an optional path to this object. By default, the optional path is $NCHOME/var/precision

Record cache operation methods
The RIV::RecordCache module provides methods that applications use to perform a variety of
operations on records that reside in the cache file.

The following table identifies and briefly describes the record cache operation methods that the
RIV::RecordCache module provides:

Record cache method Description

CacheRecord Adds a record to the cache file.

GetRecord Retrieves a record from the cache file.

GetRecords Retrieves a list of all records residing in the cache file.

See “RIV::RecordCache module reference” on page 236 for the reference (man) pages associated with
these methods.

RIV::SnmpAccess module overview
The RIV::SnmpAccess module provides an interface to perform SNMP-related operations on Network
Manager MIB trees.

Obtaining SNMP information with the RIV::Agent and RIV::SnmpAccess modules
The following list summarizes how discovery agents should deal with obtaining SNMP information with
this version of the Perl API:

• The Helper Server (and ncp_ctrl) must be running so that the Get, GetNext, and GetBulk methods
provided by the RIV::Agent and RIV::SnmpAccess modules can make the appropriate queries.

• Discovery agents implemented with this version of the Perl API should use the Get, GetNext, and
GetBulk methods provided by the RIV::Agent module to obtain SNMP information from a network
device.

• Discovery agents implemented with previous versions of the Perl API and that called the Get, GetNext,
and GetBulk methods provided by the RIV::SnmpAccess module will work. There is no need to port
these discovery agents to use the Get, GetNext, and GetBulk methods provided by the RIV::Agent
module.

RIV::SnmpAccess constructor
Before accessing the methods that the RIV::SnmpAccess module provides, you must call the
RIV::SnmpAccess constructor to create and initialize a new RIV::SnmpAccess object. The
RIV::SnmpAccess constructor takes a blessed reference to either a discovery agent application object
or a client/server application object. These application objects were returned in a previous call to the
RIV::Agent or RIV::App constructor.

Maximum number of concurrent asynchronous requests
The RIV::SnmpAccess module provides a MaxAsyncConcurrent variable that sets the maximum
number of concurrent asynchronous requests.

Chapter 5. Overview of the Perl API 129

Synchronous and asynchronous SNMP operation methods
The RIV::SnmpAccess module provides an interface to the Vertigo SNMP and MIB library functions.
Both synchronous and asynchronous variants of each SNMP Get method are provided. The synchronous
versions cause the caller to wait until the results are available (or the request has failed). The
asynchronous versions all return results via RIV::GetResult. By using this latter method, overlapped
I/O may be implemented without the complexity of using Perl threads.

SNMP operation methods
The RIV::SnmpAccess module provides methods that discovery agents and client/server applications
use to perform SNMP operations on a network device through the Helper Server. Thus, the Helper Server
(and ncp_ctrl) must be running so that the SNMP-related methods can make the appropriate SNMP
requests.

The following table identifies and briefly describes the SNMP operation methods that the
RIV::SnmpAccess module provides:

SNMP operation method Description

ASN1ToOid Converts the specified ASN.1 value to its corresponding OID.

AsyncSnmpGet Performs an asynchronous SNMP get operation on the specified MIB
variable.

AsyncSnmpGetBulk Performs an asynchronous SNMP get-bulk operation on all MIB objects in
the specified MIB table.

AsyncSnmpGetNext Performs an asynchronous SNMP get-next operation on the specified MIB
variable.

GetMibHash Gets the entire MIB tree by browsing the files that exist in the $NCHOME/
mibs directory.

OidToASN1 Converts the specified OID to its corresponding ASN.1 value.

SnmpGet Performs a synchronous SNMP get operation on the specified MIB variable.

SnmpGetBulk Performs a synchronous SNMP get-bulk operation on all MIB objects in the
specified MIB table.

SnmpGetNext Performs a synchronous SNMP get-next operation on the specified MIB
variable.

SnmpWalk Performs an SNMP walk operation on a given device, starting at a given MIB
variable.

SplitOidAndIndex Converts the full ASN.1 value into its index and the base OID.

See “RIV::SnmpAccess module reference” on page 240 for the reference (man) pages associated with
these methods.

130 IBM Tivoli Network Manager IP Edition: Reference

NCP modules overview
The NCP modules provide interfaces that operate on the NCIM topology database and domains.

Summary of Perl API NCP modules
The following table identifies and briefly describes the Perl API NCP modules:

Perl API NCP Module Description

NCP::DBI_Factory Provides an interface to make it easier to use the standard Perl DBI module to
perform operations on the Network Connectivity and Inventory Model (NCIM)
topology database.

NCP::Domain Provides an interface to perform operations on NCIM domains.

NCP::DBI_Factory module overview
The NCP::DBI_Factory module provides an interface to make it easier to use the standard Perl DBI
module to perform operations on the NCIM topology database. Use of this module assumes that you
understand the standard Perl DBI module. The NCP::DBI_Factory module reads the database login
details from DbLogins.DOMAIN.cfg, which allows it access to the pre-configured data sources such as
NCIM.

DBI handle
The NCP::DBI_Factory module provides a method that creates and initializes a new DBI handle. You
pass this handle in subsequent calls to the methods that perform operations on the specified NCIM
topology database. This DBI handle contains the information needed to connect to the requested NCIM
topology database.

Databases that the DBI_Factory module supports
The NCP::DBI_Factory module currently supports operations on the following databases:

• Db2®

• Oracle

For all of these databases, table and field names are case-insensitive from the point of view of SQL
statements. However, rows returned by both the Db2 and Oracle databases will have all field names in
upper case. The NCP::DBI_Factory module provides the toUpper method that returns a copy of a
single row with all lower case field names in upper case.

NCIM Database operation methods
The NCP::DBI_Factory module provides methods that client/server applications use to perform a
variety of operations on the specified NCIM topology database.

The following table identifies and briefly describes the database operation methods that the
NCP::DBI_Factory module provides:

NCIM Database method Description

createDbHandle Creates a standard DBI handle to be used in subsequent calls to the other
NCP::DBI_Factory methods.

describeTable Returns a sorted array of upper case field names for the specified table or
view.

Chapter 5. Overview of the Perl API 131

NCIM Database method Description

extractCmdLineOptions Allows database login options for the DBI handles to be provided in a
common format.

extractHashRefOptions Extracts database login options from a reference to a hash.

insert_auto_inc_row Inserts a row into a named table, where the table has an auto incremented
column.

insert_row Inserts a row into a named table.

schema Returns the schema name associated with the NCIM topology database
being used.

setLogHandle Passes in a log handle associated with an opened file used for logging
messages.

setLogLevel Sets the log level for error and message reporting.

tables Returns a sorted array of table and view names for the current schema.

timeStamp Returns the current timestamp in a format suitable for addition to the
NCIM topology database.

toUpper Returns a copy of a hash (a single row retrieved from an NCIM database
table) with all field names converted to upper case.

See “NCP::DBI_Factory module reference” on page 253 for the reference (man) pages associated with
these methods.

NCP::Domain module overview
The NCP::Domain module provides an interface to perform operations on NCIM Network Manager
domains.

NCP::Domain constructor
Before accessing the methods that the NCP::Domain module provides, you must call the NCP::Domain
constructor to create a new NCP::Domain object. The NCP::Domain constructor requires the domain
name and options for the database connection. The newly created NCP::Domain object encapsulates the
attributes associated with the specified domain and database connection.

NCIM domain operation methods
The NCP::Domain module provides methods that client/server applications use to perform a variety of
operations on a specified NCIM domains. Some of these operations involve the domainMgr table in the
NCIM topology database that resides in the specified domain.

The following table identifies and briefly describes the database operation methods that the
NCP::Domain module provides:

NCIM domain database
method

Description

clone Creates a new domain that is a copy of an existing domain.

132 IBM Tivoli Network Manager IP Edition: Reference

NCIM domain database
method

Description

create Creates an entry in the domainMgr table for this domain if one does not
already exist.

drop Removes all references to the specified domain from the domainMgr table.

id Retrieves the domainMgrId from the domainMgr table in the NCIM
topology database that resides in the specified domain.

name Returns the domain name for the current domain.

setLogHandle Passes in a log handle associated with an opened file used for logging
messages.

setLogLevel Sets the log level for error and message reporting.

See “NCP::Domain Reference” on page 276 for the reference (man) pages associated with these methods.

Synchronization with message broker
The Network Manager core components use of message broker is highly multithreaded, whereas Perl
applications are single-threaded. Although support for threads was included from Perl 5.005 onwards,
this is neither operating system-native, nor POSIX in semantics. Thus, there is no possibility of direct
thread-safe integration between the Network Manager and Perl code.

All modules contained in RIV (except for the RIV::Agent module) assume a single Perl thread. If
multiple Perl threads are used, a single thread (the one in which the session was instantiated) must be
used for interaction with Network Manager core components. The RIV::SnmpAccess module provides
both synchronous and asynchronous methods that allow you to perform operations on the MIB tree. The
methods RIV::InputQueueLength and RIV::GetResult are used to query and extract from the
application's input queue.

The RIV::Agent module provides a multithreading capability into the Perl discovery agent.

See “Using threads in discovery agents” on page 147 for more information.

Installing the Perl API
The Perl API and its associated modules reside in a specific directory.

After installing the Perl API, the required version of Perl and its associated modules reside in the
$NCHOME/precision/perl directory.

Note: The Perl API is installed when you install the Network Manager core components. Typically, you
source the appropriate environment variables in $NCHOME/precision/env.sh to set up the required
environment to use the Perl API.

Perl builds
Network Manager provides two customized Perl executables as it is necessary to use static linkage
against the Network Manager core components libraries.

The first executable is the ncp_disco_perl_agent binary. This binary is used by Discovery agents and it is
executed automatically by ncp_disco. You would not expect to run this binary directly.

The second executable is the ncp_perl binary. You use this binary to develop Perl scripts to customize
ITNM or to integrate with other products.

Chapter 5. Overview of the Perl API 133

Obtaining SNMP information from a network device
The Perl API allows discovery agents and other client/server applications to obtain SNMP information
from a network device through the Helper Server. Typically, this information is retrieved from one or more
MIB variables or an entire MIB table.

Helpers retrieve information from the network during a discovery. More specifically, the SNMP helper
(ncp_dh_snmp) returns results of an SNMP request such as Get, GetNext, GetBulk, and so forth. The
Helper Server can service these SNMP requests directly with cached data or pass on the request to the
SNMP helper. The methods that the RIV::Agent and RIV::SnmpAccess modules provide query the
Helper Server. Therefore, the Helper Server must be running so that the methods in these modules can
obtain SNMP information from network devices.

Note: It is no longer possible to obtain SNMP information directly from a network device as all queries are
now made through the Helper Server.

See the IBM Tivoli Network Manager IP Edition Administration Guide for more information on the Helper
Server.

In previous versions of the Perl API, the only way to obtain SNMP information from a network device was
to call the methods defined in the RIV::SnmpAccess module. Futhermore, a discovery agent could
obtain SNMP information directly from a network device.

The following list summarizes how discovery agents and other client/server applications should deal with
obtaining SNMP information with this version of the Perl API:

• The Helper Server (and ncp_ctrl) must be running so that the Get, GetNext, and GetBulk methods
provided by the RIV::Agent and RIV::SnmpAccess modules can make the appropriate queries.

• Discovery agents implemented with this version of the Perl API should use the Get, GetNext, and
GetBulk methods provided by the RIV::Agent module to obtain SNMP information from a network
device.

• Discovery agents implemented with previous versions of the Perl API and that called the Get, GetNext,
and GetBulk methods provided by the RIV::SnmpAccess module will work. There is no need to port
these discovery agents to use the Get, GetNext, and GetBulk methods provided by the RIV::Agent
module.

Perl API modules reference page syntax
The Perl API modules reference pages use a consistent reference page format.

Each Perl API module reference page uses the following format:

• Constructor/Method — This section specifies the name of the constructor or method associated with
this Perl API module.

• Synopsis — This section provides the definition for this constructor or method.
• Description — This section provides a description of the functionality that this constructor or method

provides.
• Parameters — This section provides descriptions for the input parameters identified in the Synopsis for

this constructor or method. If there are no input parameters, this section specifies None.
• Returns — This section provides a description of the value or values that this constructor or method

returns. If no values are returned, this section specifies None.
• Notes® — This optional section provides additional information about a constructor or method.
• Example Usage — This section provides an example of how to call this constructor or method.
• See Also — This section provides references to modules or methods that you should be aware of when

using this module's constructor or methods.

134 IBM Tivoli Network Manager IP Edition: Reference

Chapter 6. Writing discovery agents
Discovery agents retrieve information about devices in the network. They also report on new devices by
finding new connections when investigating device connectivity. Discovery agents are used for specialized
tasks. For example, the ARP Cache discovery agent populates the Helper Server database with IP
address-to-MAC address mappings. You can use the Perl API to write custom discovery agents that
perform a variety of useful and specialized tasks, including retrieving information about the connectivity of
network entities.

To create custom discovery agents in Perl, you use the RIV, RIV::Agent, RIV::Param, and
RIV::Record modules.

Before you write a discovery agent
The Perl API is designed to enable the easy creation and prototyping of custom discovery agents. Before
writing a custom discovery agent, you need to perform some prerequisite tasks and to be familiar with the
discovery process.

Before writing a custom discovery agent, ensure that you have completed these steps:

1. Copied the Agent Definition File (.agnt file extension) to the $NCHOME/precision/disco/agents
directory.

See“Prototype agent definition file template” on page 145 for details about this file.
2. If additional MIBS are required, ensure that they are copied to the $NCHOME/precision/mibs

directory and that the ncp_mib process is run to import these MIBs into the database.
3. Created new discovery stitchers to process the returns data from the new discovery agent and to add

the data into the topology.

See the IBM Tivoli Network Manager Reference for a detailed description of stitchers and the stitcher
language.

4. Started the Helper Server (and ncp_ctrl). The Helper Server (and ncp_ctrl) must be running because
the SNMP-related methods that the RIV::Agent module provides query the Helper Server. It is not
possible to obtain SNMP information directly from a network device.

In addition, you should also be familiar with:

• The architecture of the discovery process
• How discovery agents communicate with the DISCO process and the Helper Servers
• The different databases created in the DISCO process to enable discovery agents to work successfully

See IBM Tivoli Network Manager User Guide for more information on the previously listed topics.

Writing a discovery agent
Writing a discovery agent requires you to use the RIV::Agent and RIV::Record modules and to
perform a number of prescribed steps. Many discovery agents also use the RIV and RIV::Param
modules.

The following topics describe the steps to follow when writing a discovery agent, using the IP routing
discovery agent as an example.

Step 1: Create an agent.pl file
Create an agent.pl file to contain the Perl code that implements the discovery agent.

Where:

© Copyright IBM Corp. 2006, 2021 135

• agent — Specifies the name of the file to contain the discovery agent Perl code. For example:
ASAgent.pl, TunnelAgent.pl, and NATTextFileAgent.pl are agent.pl files that contain the Perl
code that implement their respective discovery agents.

Create the agent.pl file in the $NCHOME/precision/disco/agents/perlAgents directory.

Step 2: Declare Perl modules
Declare the Perl modules (using use statements) the discovery agent requires. For example:

use RIV;
use RIV::Param;
use RIV::Record;
use RIV::Agent;

Step 3: Create a new agent
To begin, you must create a new discovery agent using the RIV::Agent constructor that the
RIV::Agent module provides. This constructor sets the name of the discovery agent and also sets up the
TCP connections to the DISCO and Helper Server processes. For example:

$param = new RIV::Param();
$agent = new RIV::Agent($param, "foo");

The example shows that the RIV::Agent constructor consists of two parameters:

• $param — Specifies a RIV::Param object. As the example shows, this object is returned in a call to the
RIV::Param constructor.

• $agentName — Specifies a string that identifies the name of this discovery agent. In this example, the
name of the agent is foo.

The RIV::Agent constructor returns a discovery agent application object to the $agent variable. You
reference all RIV::Agent module methods through this object. For example: $agent->SnmpGet(...),
$agent->SnmpGetNext(...), and so forth.

Step 4: Wait for input from the DISCO process
Once the finders detect a network entity that has an OID matching a device that needs to be processed by
the discovery agent, the network entity is inserted into the agent's despatch table.

Note: The list of devices supported by the DISCO process is defined in the Agent Definition File.

The DISCO process then sends the record of the device to the agent for processing. This record is received
by the Perl discovery agent using the $agent->RIV::GetResult() method. The records received from
DISCO are tagged with the string NE. For example:

DEVICE: while (1)
{
 my ($tag,$data) = RIV::GetInput(-1);
 if ($tag ne "NE")
 {
 print "Data is not a network entity. Ignoring it!\n";
 next DEVICE;
 }
 my ($tag, $data) = $agent->RIV::GetInput(-1);
 if ($tag ne "NE")
 {
 print "Data is not a network entity. Ignoring it!\n";
 next DEVICE;
 }
 else
 {
 print "This agent is going to process the device!\n";
 }

136 IBM Tivoli Network Manager IP Edition: Reference

Note: The RIV::GetInput function has been deprecated and you should use the RIV::GetResult
function. The example continues to use the RIV::GetInput function to be consistent with the standard
scripts which have not yet been updated to use the RIV::GetResult function.

Step 5: Create a RIV::Record object
When DISCO sends a record for processing by the discovery agent, the record can be conveniently stored
in a data structure. This data structure is referred to as a RIV::Record object. You use the
RIV::Record constructor that the RIV::Record module provides to create this object. For example:

my $TestNE = new RIV::Record($data);

The RIV::Record constructor takes the following parameter:

• $refNE — Specifies a reference to a hash list.

The record that DISCO sends for processing may be a request from ncp_disco for the agent to terminate.
The following code checks for this termination request:

my $TestNE = new RIV::Record($data);

 if ($TestNE->{m_TerminateAgent})
 {
 log_msg("Exit Main Loop\n");
 exit(0);
 }

The RIV::Record constructor returns a RIV::Record object.

The RIV::Record module provides methods that enable you to easily add and retrieve local and remote
neighbors. For example, the following example shows a call to the AddLocalNeighbour method.

my %localNbr;
$localNbr{'m_IpAddress'} = '1.2.3.4';
$localNbr{'m_IfIndex'} = 2;
$TestNE->AddLocalNeighbour(\%localNbr);

The AddLocalNeighbour method takes a $refNbr parameter that specifies a reference to a hash list.
This hash list defines the local neighbor as a set of key value pairs (varBinds).

Step 6: Decide if the agent must process the device (pre-mediation layer)
In the pre-mediation layer you must write Perl code to decide if the device needs to be processed by this
discovery agent. The Agent Definition File should be used to filter out devices based on the OIDs.

Note: The list of devices supported by the DISCO process is defined in the Agent Definition File.

Typically, this Perl code checks the device's IP address using the RIV::IsIpValid method, as shown in
the following example:

print "Checking if IP address is valid..\n";
if (!RIV::IsIpValid($host))
 {
 print "Device has invalid IP address. Ignoring the record!\n";
 next DEVICE;
 }

If the device's IP address is valid, then the discovery agent processes the device. Otherwise, the discovery
agent does not process the device. In the example an appropriate message would display to standard
output if the device has an invalid IP address.

Step 7: Retrieve device information from the Helper Server (meditation layer)
Next, you must retrieve device information from the Helper Server. This can be achieved using SNMP Get,
Telnet, or DNS. For example:

Chapter 6. Writing discovery agents 137

{
$refLifindex=$agent->SnmpGetNext($TestNE,'ipAdEntIfIndex');
$refLnetmask=$agent->SnmpGetNext($TestNE,'ipAdEntNetMask');
$refLphysaddress=$agent->SnmpGetNext($TestNE,'ifPhysAddress');
$refRifindex=$agent->SnmpGetNext($TestNE,'ipRouteIfIndex');
$refRtype=$agent->SnmpGetNext($TestNE,'ipRouteType');
$refRnexthop=$agent->SnmpGetNext($TestNE,'ipRouteNextHop');
}

The above example uses the RIV::Agent method SNMPGetNext. The SNMPGetNext method takes two
parameters:

• $ne — Specifies the network entity, which is typically a RIV::Record object.
• $oid — Specifies a MIB variable, for example, ipAdEntIfIndex in the above example.

The above example performs SNMP GET operations on the network entity (NE) in question and retrieves
the specified MIB variables. If you prefer, you could substitute the SnmpGetNext method with the
appropriate methods to allow Telnet or DNS access.

Step 8: Determine local and remote neighbors (processing layer)
In the processing layer, the local and remote neighbors are determined, based on the information from
the Mediation layer. A local neighbor is a network interface that resides on the device being discovered. A
remote neighbor is something connected to one of these network interfaces.

The following example is taken from the IP routing discovery agent:

sub Processing
{
 print "Processing the local neighbours\n";
 foreach $entry (@$refLifindex)
 {
 if (RIV::IsIpValid($entry->{ASN1}))
 {
 my %localNbr;
 $localNbr{’m_IpAddress’} = $entry->{ASN1};
 $localNbr{’m_IfIndex’} = $entry->{VALUE};
 $TestNE->AddLocalNeighbour(\%localNbr);
 }
 }
}

Step 9: Sending the processed record to DISCO
Once the network entity has been processed, its record needs to be sent to DISCO. The RIV::Agent
method SendNEToDisco allows you to accomplish this task. The SendNEToDisco method takes two
parameters:

• $entity — Specifies a reference to a hash list that contains the definition of the record to be sent to
DISCO. For convenience, the RIV::Record module provides an object that serves as a hash list with
nested structures for representing local and remote neighbors.

• $lastRecTag — Specify the value 1 to indicate that this is the last record for the network entity. Specify
the value 0 (zero) to indicate that more records for this network entity are to follow.

If you use RIV::Record objects, the SendNEToDisco method ignores this parameter.

Step 10: Running the newly created agent
Before running the newly created agent, make sure that you have:

• Created the agent definition file (agentName.agnt) in the $NCHOME/precision/disco/agents
directory. The following example shows the agent definition file for a discovery agent called
CustomPerlAgent:

$NCHOME/precision/disco/agents/CustomPerlAgent.agnt

138 IBM Tivoli Network Manager IP Edition: Reference

• Created or copied the Perl discovery agent script (agentName.pl) in the $NCHOME/precision/
disco/agents/perlAgents directory. The following example shows the Perl discovery agent script
for a discovery agent called CustomPerlAgent:

$NCHOME/precision/disco/agents/perlAgents/CustomPerlAgent.pl

• Registered the agent with ITNM using the following command:

$NCHOME/precision/bin/ncp_agent_registrar -register agentName

Where: agentName specifies the name of the discovery agent.

The following example shows how to register a discovery agent called CustomPerlAgent:

$NCHOME/precision/bin/ncp_agent_registrar -register
CustomPerlAgent

Once the agent has been registered, you should be able to see it and any other registered discovery
agents in the Discovery Configuation GUI. Use the Discovery Agent GUI to enable the discovery agent for
the next discovery.

For information on the Discovery Configuation GUI, see IBM Tivoli Network Manager IP Edition
Administration Guide.

Example discovery agents
Typically, a network environment contains multiple discovery agents to support the wide variety of
network devices operating in this environment. Thus, the types of discovery agents you can implement
with the Perl API is extensive.

The following topics provide simple examples of discovery agents and a skeleton outline of a discovery
agent that you can use as a template.

Discovery agent skeleton
The discovery agent skeleton provides an outline of the sections typically implemented in a discovery
agent that makes use of the Perl API. This outline also specifies calls to the constructors and methods (for
example, new RIV::Agent, RIV::IsIpValid, RIV::Agent::SendNEToDisco, and so forth) typically
used in a discovery agent. Use the discovery agent skeleton as a way to start implementing your custom
discovery agents.

The following Perl script provides a skeleton outline for a simple discovery agent. Explanations of specific
lines follow the skeleton outline:

use RIV;
use RIV::Param;
use RIV::Record;
use RIV::Agent; 1
Create a new discovery agent
print "Creating a new agent\n"; 2

sub Init{
 my $param=new RIV::Param();
 $agent=new RIV::Agent($param, "PerlDetails"); 3
 # Wait for input from the DISCO process
 print "Entering infinite loop wait for devices for Disco\n"; 4

 DEVICE: while (1){
 my ($tag, $data) = $agent->RIV::GetResult(-1);
 if ($tag ne 'NE'){ 5
 print "Data is not a Network entity Ignoring it!\n";
 next DEVICE;
 }
Create a RIV::Record object
my $TestNE = new RIV::Record($data);

 if ($TestNE->{m_TerminateAgent})

Chapter 6. Writing discovery agents 139

 {
 log_msg("Exit Main Loop\n");
 exit(0);
 } 6

Decide if the agent must process the device (pre-mediation layer)
 ...
 ...
 print "Checking if IP address valid..\n";

 if (!RIV::IsIpValid($host)){ 7
 print "Device has invalid IP address ignoring the record!\n";
 next DEVICE;
 }
 # Retrieve device information from the Helper Server (mediation layer)
 ...
 print "Entering Mediation layer\n"; 8
 Mediation();

 print "Entering Processing layer\n";
 Processing(); 9

 print "Sending Record to Discovery\n";
 $agent->SendNEToDisco($TestNE,0); 10
 }

sub Mediation{ 11
 . . .
 . . .
 # Retrieve the relevant information from the Helper Server using SNMP,
Telnet or DNS.
 . . .
 . . .
 }
 sub Processing{ 12
 . . .
 . . .
 # Determine local and remote neighbors (processing layer) based
 # on the information retrieved in the Mediation Layer.
 # The neighbours are then added to the RIV::Record representing
 # the network entity.
 . . .
 . . .
 }
 Init();

The following list explains specific numbered items in the previously listed skeleton outline of a discovery
agent:

1. Declare the Perl API modules to use in the discovery agent. The RIV::Agent and RIV::Record
modules are required. The optional RIV::Param module is useful for parsing standard and
application-specific command line arguments.

2. Calls the print operator to display a message to the standard output indicating the creation of a new
discovery agent.

3. This is the create or initiate discovery agent section. Creates a new discovery agent with the specified
name. The skeleton outline specifies a discovery agent with the name of PerlDetails.

4. The discovery agent is ready to receive records from DISCO.
5. Checks that the data records received from DISCO have been tagged with the string NE.
6. Handles a request from ncp_disco to terminate the Perl discovery agent if the test evaluates to true.
7. Checks that the device has a valid IP address.
8. This is the mediation layer section. Gets the relevant SNMP information.
9. This is the processing layer section. Interprets the information to find the local and remote neighbors.

10. Sends the record and filled-out network entity to DISCO.
11. Implements the Mediation method.
12. Implements the Processing method.

140 IBM Tivoli Network Manager IP Edition: Reference

Network entity discovery agent example
The purpose of many discovery agents is to accept network entities from DISCO, process these entities in
some way, and then return the result. This example network entity discovery agent provides a skeleton
outline for these tasks. Use this example discovery agent skeleton to write discovery agents that need to
accomplish these tasks.

The following Perl script provides a skeleton outline for a simple network entity discovery agent:

use RIV; 1
use RIV::Param;
use RIV::Agent;
use RIV::Record;

$param = RIV::Param::new();
$agent = RIV::Agent::new($param, "PerlAgent");

while (1)
{
 my ($tag, $data) = $agent->RIV::GetResult(-1);
 next unless ($tag eq "NE"); 2

 foreach my $ne (@{ $data })
 (
 $NE = RIV::Record::new($ne);
 ...
 ...
 $agent->SendToDisco($$ne,1); 3
)
)

The following list explains specific numbered items in the previously listed discovery agent example:

1. Declare the Perl API modules to use in the discovery agent. The RIV::Agent and RIV::Record
modules are required. The optional RIV::Param module is useful for parsing standard and
application-specific command line arguments.

2. Checks that the data received from DISCO has been tagged with the string NE.
3. Returns the data to DISCO.

IP routing discovery agent example
The IP routing discovery agent Perl program shows how a simple discovery agent can be written using the
Perl API. Study this example to acquire additional knowledge about how to write discovery agents using
the Perl API.

The following IP routing discovery agent example uses a representative number of the methods provided
in the RIV::Agent, RIV::Record, and RIV::Param Perl API modules. Explanations of specific lines
follow the program.

use RIV;
use RIV::Param;
use RIV::Record;
use RIV::Agent; 1

print "Creating a new agent\n"; 2
Init();

print "Entering infinite loop wait for devices for DISCO\n"; 3

 DEVICE: while (1){ 4
 my ($tag, $data) = $agent->RIV::GetResult(-1); 5
 if ($tag ne 'NE'){ 6
 print "Data is not a Network entityIgnoring it!\n";
 next DEVICE; 7
 }

 my $TestNE = new RIV::Record($data);
 if ($TestNE->{m_TerminateAgent})
 {
 log_msg("Exit Main Loop\n");
 exit(0); 8
 }

Chapter 6. Writing discovery agents 141

 $TestNE->{'m_LastRecord'}=1; 9
 $TestNE->{'m_UpdAgent'}="PerlDetails"; 10
 my $host=$TestNE->{'m_IpAddress'}; 11

The following list explains specific numbered items in the previously listed IP routing discovery agent Perl
program:

1. Declare the Perl API modules to use in this discovery agent. The RIV::Agent and RIV::Record
modules are required. The optional RIV::Param module is useful for parsing standard and
application-specific command line arguments.

2. Calls the print operator to display a message to the standard output indicating the creation of a new
discovery agent.

3. Calls the print operator to display a message to the standard output indicating the program is ready
to receive records from the DISCO process.

4. Sets up an infinite loop waiting to receive data from DISCO.
5. Calls the RIV::GetResult function to return a data record from DISCO. In this call, the value -1 is

passed signifying that RIV::GetResult should "wait forever" to received data records from DISCO
before returning.

6. Checks the data record that RIV::GetResult returns to the $tag variable. If the returned data
record has not been tagged with the string NE, then use the print operator to display a message to
the standard output indicating this data record is not a network entity and thus should not be
processed.

7. Continues through the loop to get the next data record from DISCO.
8. Creates a RIV::Record object by calling the RIV::Record constructor. In this call, the data

returned by RIV::GetResult to the $data variable is passed. This data is actually a reference to a
hash list, which is the mechanism used to store network entity records from DISCO.

The RIV::Record constructor returns the newly created RIV::Record object to the $TestNE
variable.

This code also handles a request from ncp_disco to terminate the Perl discovery agent if the test
evaluates to true.

9. Assigns the value 1 to the m_LastRecord key in the hash.
10. Assigns the string PerlDetails to the m_UpdAgent key in the hash.
11. Assigns the value associated with the m_IpAddress key in the hash to the $host variable.

 print "Checking if IP address valid..\n"; 1
 if (!RIV::IsIpValid($host)){ 2
 print "Device has invalid IP address ignoring the record!\n";
 next DEVICE;
 }

 print "Checking if its a router...\n";
 $refNextHop=$agent->SnmpGet($TestNE,'ipForwarding');
 if ($refNextHop->{VALUE} != 1){ 3
 print "Device is not a router!\n";
 next DEVICE;
 }

 print "Entering Mediation layer\n";
 Mediation(); 4

 print "Entering Processing layer\n";
 Processing(); 5

 print "Sending Record to Discovery\n";
 $agent->SendNEToDisco($TestNE,0); 6
 } 7

 sub Init{
 my $param=new RIV::Param();
 $agent=new RIV::Agent($param, "PerlDetails");
 } 8

142 IBM Tivoli Network Manager IP Edition: Reference

The following list explains specific numbered items in the previously listed IP routing discovery agent Perl
program:

1. This section of code is the Mediation Filter. Check that the device has a valid IP address and also
perform an SNMP get for ipforwarding. IP routers have a value of 'ipforwarding' =1.

2. Check that the NE has a valid IP address.
3. Check if the NE is a router. It is a router if the ipForwarding value is 1.
4. This section of code is the Mediation Layer. Get the relevant SNMP information.
5. This section of code is the Processing Layer. Interpret the information to find the local and remote

neighbors.
6. Send the record to DISCO.
7. The main loop ends.
8. Creates a new agent with the name PerlDetails.

 sub Mediation{ 1

 $refLifindex=$agent->SnmpGetNext($TestNE,'ipAdEntIfIndex'); 2
 $refLnetmask=$agent->SnmpGetNext($TestNE,'ipAdEntNetMask'); 2
 $refLphysaddress=$agent->SnmpGetNext($TestNE,'ifPhysAddress'); 2

 $refRifindex=$agent->SnmpGetNext($TestNE,'ipRouteIfIndex'); 3
 $refRtype=$agent->SnmpGetNext($TestNE,'ipRouteType'); 3
 $refRnexthop=$agent->SnmpGetNext($TestNE,'ipRouteNextHop'); 3

 }

 sub Processing{ 4
 print "Processing the local neighbours\n";
 for ($j=0;$j<=$#$refLifindex;$j++){
 if (RIV::IsIpValid($refLifindex->[$j]->{ASN1}))
 {
 print $j, "\n";
 my %localNbr
 $localNbr{'m_IpAddress'} = $refLifindex->[$j]->{ASN1}; 5
 $localNbr{'m_IfIndex'} = $refLifindex->[$j]->{VALUE}; 5
 $localNbr{'m_NetMask'} = GetValueForKey($refLnetmask, 5
 $refLifindex->[$j]->{ASN1});

 $m_1 = $localNbr{'m_IpAddress'};
 $m_2 = $localNbr{'m_NetMask'};
 $localNbr{'m_SubNet'} = inet_ntoa(pack("N", (unpack ("N",
 inet_aton($m_1)) & unpack("N",
 inet_aton($m_2)))));

 for ($i =0; $i <= $#$refLphysaddress; $i++)
 {
 if ($refLphysaddress->[$i]->{ASN1} == $refLifindex
 ->[$j]->{VALUE})
 {
 $localNbr{'m_LocalNbrPhysAddr'} = $refLphysaddress
 ->[$i]->{VALUE};
 }
 }
 print $localNbr{'m_IpAddress'}, $localNbr{'m_IfIndex'},
 $localNbr{'m_NetMask'}, "\n";
 $TestNE->AddLocalNeighbour(\%localNbr);
 }
 }

 print "processing for Remote Neighbours \n"; 6
 @localN = $TestNE->GetLocalNeighbours();
 for ($j=0;$j<=$#$refRtype;$j++)
 {
 if(($refRtype->[$j]->{VALUE} !=2) && RIV::IsIpValid($refRtype
 ->[$j]->{ASN1}))
 {
 $nexthop = GetValueForKey($refRnexthop, $refRtype->[$j]->{ASN1});
 print "next hop = $nexthop for key $refRtype->[$j]->{ASN1}\n";
 if(NotLocalNbr($nexthop))
 {
 my %remoteNbr;
 $remoteNbr{'m_IpAddress'} = $nexthop;
 $Rindex = GetValueForKey($refRifindex,$refRtype->[$j]->{ASN1});

Chapter 6. Writing discovery agents 143

 AttachLocalNbr(\%remoteNbr, $Rindex);
 }
 }
 }
 }

The following list explains specific numbered items in the previously listed IP routing discovery agent Perl
program:

1. This section of code implements the Mediation Layer. You should perform all SNMP GET operations in
this layer.

2. Get information required for determining local neighbors.
3. Get information required for determining remote neighbors.
4. This section of code implements the Processing Layer. To get the local neighbors, loop through
ipAdEntIfIndex values. If the ASN1 value is a valid IP address, set the local neighbor tags for local
neighbor IP address and ifIndex. Set tags for the netMask and physaddress based on the
corresponding values in ipAdEntIfIndex and ifAdEntNetMask.

To get the remote neighbors, start looping through the ipRouteType. The progam processes only if
the route type is not 2 and the ASN1 value is a valid IP address. Then get the corresponding value of
the next hop. Make it a remote neighbor if it is not a local neighbor IP address and the remote IP
address does not already exist. Use the ipRouteIfIndex values to find the local neighbor to attach
this remote neighbor to.

5. Add local neighbors to device record m_IpAddress, m_IfIndex, and m_NetMask.
6. This section of code determines and adds remote neighbors.

 sub GetValueForKey 1
 {
 my $refArray = shift;
 my $key = shift;

 for (my $jj=0; $jj<=$#$refArray; $jj++)
 {
 if ($refArray->[$jj]->{ASN1} eq $key)
 {
 return $refArray->[$jj]->{VALUE};
 }
 }
 return 0;
 }

 sub NotLocalNbr 2
 {
 my $ip_in = shift;
 @lN = $TestNE->GetLocalNeighbours();
 foreach $l_nbr (@lN)
 {
 print "RMAA $l_nbr->{m_IpAddress}, $ip_in, \n";
 if ($l_nbr->{'m_IpAddress'} eq $ip_in)
 {
 print "remote neighbour IP same as local neighbour IP \n";
 return 0;
 }
 my @remoteN = $TestNE->GetRemoteNeighbours($l_nbr);
 print @remoteN, "\n";
 foreach my $remoteNbr (@remoteN)
 {
 print "$remoteNbr->{'m_IpAddress'}, $ip_in, \n";
 if ($remoteNbr->{'m_IpAddress'} eq $ip_in)
 {
 print "remote neighbour IP already exists \n";
 return 0;
 }
 }
 }
 return 1;
 }

144 IBM Tivoli Network Manager IP Edition: Reference

The following list explains specific numbered items in the previously listed IP routing discovery agent Perl
program:

1. This section of code returns a value corresponding to the key from an array of varOps.
2. This section of code checks if the remote IP is the same as the local neighbor.

 sub AttachLocalNbr 1
 {
 my $refR = shift;
 my $index = shift;
 foreach $lnbr (@localN)
 {
 if ($lnbr->{'m_IfIndex'} eq $index)
 {
 print $lnbr->{'m_IfIndex'}, $index, "\n";
 print "$lnbr->{'m_IpAddress'}connected to $refR->{m_IpAddress}\n";
 $TestNE->AddRemoteNeighbour($lnbr, $refR);
 }
 }
 }

The following list explains specific numbered items in the previously listed IP routing discovery agent Perl
program:

1. This section of code finds the appropriate local neighbor to connect the remote neighbor to.

Prototype agent definition file template
A discovery agent requires a discovery agent definition file ($NCHOME/precision/disco/agents/
*.agnt), regardless of whether the agent is text-based or precompiled. Items that can be defined in this
file include when and from where the discovery agent can be run; a list of devices that should be sent to
the discovery agent; and the discovery phase at which the discovery agent should complete.

The following is a discovery agent definition file template with required and optional fields. Use this
template to create the *.agnt file to be associated with your discovery agent. Explanations of specific lines
follow the example.

Note: Where parsing errors occur, the discovery agent definition file rule will be ignored or the default
behavior will be assumed.

See the IBM Tivoli Network Manager IP Edition Administration Guide for more information on the discovery
agent definition file and its associated keywords.

--
 -- The following fields are used to initialize the config GUI
 -- and update DiscoAgents.cfg when the agent is first installed
 -- The DiscoAgentDescription keyword provides a way to describe
 -- the discovery agent. The CustomPerlAgent is used as an example.
 DiscoAgentDescription("Agent description goes here.");

 DiscoAgentGUILocked(0);
 DiscoAgentClass(0);
 DiscoAgentIsIndirect(0);
 DiscoAgentPrecedence(2);
 DiscoAgentEnabledByDefaultOnPartial(0);
 DiscoAgentEnabledByDefault(0);
 DiscoAgentDefaultThreads(1);

-- Discovery agent type section
DiscoCompiledAgent
{
--
-- Optional "ncp_ctrl" information section
--
-- DiscoExecuteAgentOn("<Machine Name>");
--
-- Devices that should be sent to this agent section
--
DiscoAgentSupportedDevices
(
"Filter Expression"
);

Chapter 6. Writing discovery agents 145

-- Agent completion phase section
--
DiscoAgentCompletionPhase(n);

-- Mediation filter section
--

DiscoAgentMediationFilter
{
// Optional section containing filters for the mediation layer.
}
}

The following list explains specific items in the Agent Definition File template:

• Discovery agent type section

Specifies the agent type. The template specifies the keyword DiscoCompiledAgent that denotes a
compiled discovery agent. This compiled agent has a corresponding shared library in the $NCHOME/
precision/lib directory. Possible other values include DiscoDefinedAgent and
DiscoCombinedAgent.

This section is required.
• Optional "ncp_ctrl" information section

Specifies ncp_ctrl information. This control information defines when and from what server or
computer the discovery agent is to be run. If this line is omitted, the discovery agent will be run on the
same server or computer as the DISCO process. Replace Machine Name with the name of the server or
computer on which the discovery agent is to be run.

This section is optional.
• Devices that should be sent to this agent section

Specifies the devices that should be sent to the discovery agent. Replace "Filter Expression" with valid
values that include a range or list of IP addresses to include or exclude, along with a range or list of
OIDs to include or exclude. The default is ALL.

This section is required.

The following is an example:

DiscoAgentSupportedDevices
 (
 "(
 m_ObjectId LIKE '1\.3\.6\.1\.4\.1\.9\.5\.'
)
 OR
 (
 (
 m_ObjectId LIKE '1\.3\.6\.1\.4\.1\.9\.1\.'
)
 AND
 (
 m_Description NOT LIKE
 'IOS \(tm\) C2900XL Software \(C2900XL-C3H2S-M\),
 Version 12.0\(5.3\)WC\(1\), MAINTENANCE INTERIM SOFTWARE'
 AND
 m_ObjectId <> '1.3.6.1.4.1.9.1.576'
 AND
 m_ObjectId <> '1.3.6.1.4.1.9.1.577'
 AND
 m_ObjectId <> '1.3.6.1.4.1.9.1.577'
 AND
 m_ObjectId <> '1.3.6.1.4.1.9.1.619'
)
)"
);

• Agent completion phase section

Specifies at which of the n discovery phases should this discovery agent complete.

This section is required.

146 IBM Tivoli Network Manager IP Edition: Reference

The following example shows that the discovery agent should complete at phase 3:

--
 -- During which of the n discovery phases should this agent complete?
 --
 DiscoAgentCompletionPhase(3);

• Mediation filter section

Specifies the mediation layer, which contains, among other items, an optional filter on the mediation
layer.

Using threads in discovery agents
Discovery agents written in Perl can experience slow performance because the data retrieved for each
device operating in the network is retrieved within a single thread. Thus, the discovery agent spends much
of its time idle, waiting for data to be retrieved from a device. The RIV::Agent module provides a
multithreading capability that improves the performance of discovery agents.

The following topics provide information about the RIV::Agent module multithreading capability.

Note: Although Perl itself supports execution of multiple threads, many of the add-on CPAN modules
often used with Perl are not thread safe. This means that Perl discovery agents using CPAN modules may
need to be restricted to a single thread.

The RIV::Agent::LockThreads and RIV::Agent::UnLockThreads methods might enable you to
use third party Perl modules. These methods allow you to restrict access to a section of a discovery agent
to a single thread.

Discovery agent threads example
To overcome the slow performance of discovery agents written in Perl, the RIV::Agent module provides
a multithreading capability. This capability allows you to serialize execution of specific sections of a
discovery agent.

The following example calls the LockThreads method to serialize execution of specific sections of a
discovery agent:

#
 # Begin a serialised section of execution within the Perl agent
 #
 $agent->LockThreads();

 #
 # It is important not to have any fatal errors that could prevent the
 # threads getting unlocked again so wrap the following in an eval block.
 #
 eval
 {
 … only one agent thread executing here at any given time ..
 }
 if ($@)
 {
 warn "Error: $@\nWhen executing serialised block\n";
 }
 #
 # Unlock to allow other threads a chance to execute the above section
 #
 $agent->UnLockThreads();

Note: It may be possible to use a non-thread safe Perl module within such a serialized section of the
discovery agent. However, no guarantees can be made and results may vary with different modules. So if
the results are not successful then the discovery agent may still need to be restricted to a single thread.

Chapter 6. Writing discovery agents 147

Default number of threads
The default number of threads for a Perl discovery agent is defined within its agent definition file.

The number of threads that a Perl discovery agent should use is defined in exactly the same way as that
for normal discovery agents, by modifying the m_NumThreads attribute in the DiscoAgents.cfg
configuration file. The default number of threads for a Perl discovery agent is specified in the agent's
definition file as follows:

DiscoAgentDefaultThreads(10);

Note: In order for a Perl discovery agent to use multiple threads, a DiscoAgentDefaultThreads entry
must be defined in its agent definition file. If such an entry does not exist, then the value of the
m_NumThreads attribute in the DiscoAgents.cfg configuration file will be ignored.

148 IBM Tivoli Network Manager IP Edition: Reference

Chapter 7. Accessing component databases
Network Manager provides component databases that store specific categories of information. Each
component schema can consist of one or more databases and each database one or more tables. For
example, the ncp_class database consists of one database and three tables. You use the RIV::OQL Perl
API module to access or modify records in these component databases.

To access or modify records in the Network Manager component databases, you use the RIV::OQL Perl
API module. Typically, you will also make use of the RIV::App and RIV::Param Perl API modules.

See the IBM Tivoli Network Manager Reference for information about the component databases you can
access with the RIV::OQL module.

Object Query Language
Object Query Language (OQL) is a version of the Structured Query Language (SQL) that has been designed
for use in Network Manager. The components create and interact with their databases using OQL.

Use OQL to create new databases or insert data into existing databases (to configure the operation of
Network Manager components) by amending the component schema files. You can also issue OQL
statements using the OQL Service Provider, for example, to create or modify databases, insert data into
databases and retrieve data.

For more information about the OQL schema used by Network Manager, see the IBM Tivoli Network
Manager Reference.

The OQL Service Provider is described in the IBM Tivoli Network Manager IP Edition Administration Guide.

Differences between OQL and Structured Query Language
Network Manager uses OQL to transfer data between and communicate with its internal databases. OQL
is an object-based version of Structured Query Language (SQL) that was designed specifically around the
operational needs of the Network Manager architecture.

The following items identify the main differences between OQL and SQL:

• OQL has the ability to support object referencing within database tables. Thus, it is possible to have
objects nested within objects.

• Not all SQL keywords are supported within OQL. Thus, irrelevant keywords have been removed for the
OQL syntax.

Note: Before using the Perl API to access the component databases, make sure you understand the
available component databases and the Object Query Language. See IBM Tivoli Network Manager
Reference for details related to the component databases. See IBM Tivoli Network Manager Reference for
details related to the Object Query Language.

Actions that can be performed on component databases
The Perl API provides utilities that allow you to query any of the Network Manager component databases
and to retrieve and control the information stored in them.

The RIV::OQL Perl API module allows you to perform operations on the component databases,
including:

• Inserting new entries into the component databases
• Modifying existing device attributes
• Deleting entries from the component databases

© Copyright IBM Corp. 2006, 2021 149

To access a particular component database, the service in which the database resides must be running.
For example, if you want to access a component database that resides in DISCO, ncp_disco must be
running. Likewise, to access a CLASS database, ncp_class must be running. For a full listing of services
to which you can connect, see “RIV::OQL Constructor” on page 214.

After you create a RIV::OQL object based on a selected service, you can perform one of four actions on a
component database:

• SELECT
• INSERT
• UPDATE
• DELETE

A SELECT statement returns records, while the other statements do not return any records.

The RIV::OQL module allows you to:

• Access retrieved records using the RIV::GetResult method.
• Print these retrieved records using the RIV::OQL::Print method.
• Create new databases and tables with the RIV::OQL::CreateDB and RIV::OQL::CreateTable

methods.

In addition to the previously described convenience methods, you can use the
RIV::OQL::Send($statement, $returnResults) method, where $statement is any valid OQL
statement, and $returnResults equals:

• 1 — For queries that return results. For example, select and show.
• 0 — For queries that do not return results. For example, insert.

Example Perl scripts that operate on component databases
Use the following examples as guides to writing Perl scripts that access the Network Manager component
databases.

The oql_example.pl example script
The oql_example.pl script demonstrates the use of Perl to parse the /etc/hosts file and input any
devices listed therein into the finders.despatch database, providing the IP address listed is valid.

The oql_example.pl script uses some of the methods provided in the RIV::Param and RIV::OQL Perl
API modules.

#!/opt/netcool/precision/Solaris2/bin/ncp_perl
 use strict;
 use RIV;
 use RIV::Param;
 use RIV::App;
 use RIV::OQL; 1

 my $param = new RIV::Param() or 2
 die "RIV::Param::new failed";

 my $app = new RIV::App($param, "ncp_test:oql") or 3
 die "Can't create RIV application session";

 my $oql = new RIV::OQL($app, "Disco") or 4
 die "Can't create RIV OQL session";

 open (INPUT, "/etc/hosts") 5
 or die "Could not open /etc/hosts: $!\n":
 my $number_records =0; 6
 my $finder = "PerlFileFinder";
 my $sep = "'";
 my $stat;
 while (<INPUT>){

150 IBM Tivoli Network Manager IP Edition: Reference

 next if (/^#/ or /^--/); 7
 my ($ipadd, $ipname)= /^(\S+)\s+(\S+)/; 8

 if (RIV::IsIpValid($ipadd)){ 9
 my %record = (m_Creator => $sep.$finder.$sep, m_Name => 10
 $sep.$ipname.$sep, m_IpAddress => $sep.$ipadd.$sep,);
 $oql->Insert('finders', 'despatch', \%record); 11
 $number_records ++;
 }
 }
 print STDOUT "Number of Records input = ", $number_records; 12

The following list explains specific numbered items in the previously listed Perl script example:

1. Declare the Perl API modules to use in the oql_example.pl script. This script makes use of the
RIV, RIV::Param, RIV::App, and RIV::OQL modules. The oql_example.pl script also makes
use of the use strict pragma. The use strict pragma enforces good programming practices,
including enforcing the declarations of any new variables with my.

2. Creates and initializes a new Param object. If the Param object cannot be created the script stops. In
this call to the RIV::Param constructor, no arguments are specified. This means that there are no
application-specific command line arguments. However, the standard command line arguments that
the RIV::Param module provides are available once the Param object is created.

3. Creates a new client/server application object using the RIV::App constructor. This call to the
RIV::App constructor takes two parameters:

• RIV::Param — Specifies a RIV::Param object reference. This object was returned to $param by
the RIV::Param constructor.

• $progname — Specifies a string that uniquely identifies this application. By convention, the
application name should start with ncp_. In the example, the specified application name is
ncp_test:oql.

If the client/server application object cannot be created, the script stops.
4. Creates a new OQL object on the service type Disco. If the OQL object fails to create, the script stops.
5. Opens and reads the file /etc/hosts using the name INPUT as a file handle.
6. Initializes variables.
7. Ignores lines beginning with # or -- characters.
8. Browse each line and get the IP address and name, filtering out any spaces in between.
9. Checks the validity of the IP address.

10. If the IP address is valid, the value pairs m_Creator, m_Name, and m_IpAddress are put in the
%record hash.

11. Inserts the record in the despatch table of the finders database.
12. After the loop completes, prints to standard output the number of records input into the

finders.despatch table. The finders database is defined in the DiscoSchema.cfg file.

See the IBM Tivoli Network Manager IP Edition Administration Guide for information about the finders
database.

OQL example script
The OQL example script shows how to create an OQL session and perform several operations on the
MODEL database.

$PRECISION_HOME/bin/ncp_perl
 use RIV;
 use RIV::Param;
 use RIV::App;
 use RIV::OQL; 1

 my $param = new RIV::Param() 2
 or die "RIV::Param::new failed";

 my $app = new RIV::App($param, "ncp_test:oql"); 3

Chapter 7. Accessing component databases 151

 or die "Can't create RIV application session";

 my $oql = new RIV::OQL($app, "Model"); 4
 or die "Can't create RIV OQL session";

 my $stat ='insert into master.entityByName (EntityName, Description, 5
ClassName) values ("bar", "This is a switch", "Switch");';
 $oql->Send($stat, 0);

 $stat = 'select * from master.entityByName;'; 6
 $oql->Send($stat);
 my ($type, $data) = $oql->RIV::GetResult(10); 7
 $oql->Print($data);

 $oql->Select('master', 'entityByName', 'ALL'); 8
 ($type, $data) = $oql->RIV::GetResult(10);
 $oql->Print($data);

 $oql->Delete(master, entityByName, "ClassName = 'Switch'"); 9

 my %insert_rec; 10
 $insert_rec{EntityName} = "'foo'";
 $insert_rec{Description} = "'This is a router'";

 $oql->Insert('master', 'entityByName', \%insert_rec);

 $oql->Select('master', 'entityByName', 'ALL'); 11
 ($type, $data) = $oql->RIV::GetResult(10);
 $oql->Print($data);

 $oql->CreateDB("PerlDB"); 12

 my %table_columns = (m_IpAddress=> "text", m_Name=> "text"); 13
 $oql->CreateTable("PerlDB", "PerlTable", \%table_columns);
 my %dummy_entry = ("m_IpAddress"=> "'8.9.10.11'", "m_Name" => "'dummy'"); 14
 $oql->Insert('PerlDB', 'PerlTable', \%dummy_entry);

 $oql->Select('PerlDB', 'PerlTable', 'm_Name'); 15
 ($type, $data) = $oql->RIV::GetResult(10);
 $oql->Print($data);

The following list explains specific numbered items in the previously listed Perl script example:

1. Declare the Perl API modules to use in the OQL example script. This script makes use of the RIV,
RIV::Param, RIV::App, and RIV::OQL modules.

2. Reads and parses the command line. The standard arguments are hidden.
3. Creates a new RIV application object. If the creation of this object fails, the script stops.
4. Creates an OQL object with service Model. If the creation of this object fails, the script stops.
5. Inserts a record into MODEL using the Send method.
6. Determines what records there are in the MODEL database using the Send method.
7. Gets and prints the records.
8. Determines what records there are in the MODEL database using the Select method.
9. Deletes the record using the Delete method.

10. Inserts a new record.
11. Checks if the records were deleted or inserted.
12. Creates a database called PerlDB.
13. Creates a table in the PerlDB with columns m_IpAddress and m_Name.
14. Inserts a record into the PerlDB database.
15. Selects the entries in the user defined database to verify that the database table has been created

and the record inserted.

152 IBM Tivoli Network Manager IP Edition: Reference

Chapter 8. Performing SNMP queries
The RIV::SnmpAccess module allows client/server scripts that use the Perl API to retrieve SNMP
information from a network device through the SNMP helper.

To write client/server Perl scripts that retrieve SNMP information from network devices you typically use
the RIV::Param, RIV::App, and RIV::SnmpAccess modules.

Note: Discovery agent Perl scripts should not use the RIV::SnmpAccess module. Discovery agent Perl
scripts use the RIV::Agent module, which provides its own methods to perform SNMP operations
through the SNMP helper.

Using get methods to obtain SNMP information from a device
The Perl API, specifically the RIV::SnmpAccess module, provides a number of get methods for
retrieving SNMP information from a particular device. You can make these get SNMP information requests
either synchronously or asynchronously because the RIV::SnmpAccess module provides both
synchronous and asynchronous versions of these get methods.

The following table summarizes which methods to call in a client/server Perl script.

Synchronous/
asynchronous method

Description Level of SNMP information
accessed

SnmpGet and
AsyncSnmpGet

The caller specifies a valid IP address
for the particular device and the MIB
variable of interest. These methods
return the specified MIB variable for the
specified device.

These methods retrieve a single
MIB variable. If you pass a MIB
table (instead of a single MIB
variable) to these methods, only
the first entry in this MIB table is
returned.

SnmpGetNext and
AsyncSnmpGetNext

The caller specifies a valid IP address
for the particular device and a MIB table
of interest. These methods return the
specified MIB table for the specified
device.

These methods retrieve an entire
MIB table that contains multiple
variables (for example,
ifTable).

SnmpGetBulk and
AsyncSnmpGetBulk

The caller specifies a valid IP address
for the particular device and the MIB
variables of interest. These methods
return the specified MIB variables for
the specified device.

These methods retrieve multiple
MIB variables (for example,
ifDescr, ifType, and
ifSpeed).

Making synchronous and asynchronous SNMP get requests
The Perl API provides two ways to make SNMP get requests: synchronous and asynchronous. You make
these SNMP get requests by calling the get request methods that the RIV::SnmpAccess module
provides.

The following list briefly describes the two ways to perform SNMP get requests:

• Synchronous — Each successive transmission of data requires a response to the previous transmission
before a new one can be initiated.

• Asynchronous — Each transmission of data proceeds independently until one transmission needs to
interrupt another one with a request.

© Copyright IBM Corp. 2006, 2021 153

When writing a client/server Perl script that makes a synchronous SNMP GET request, the request is
made and the caller will not be able to perform other tasks until the specified MIB variable has been
retrieved. The information that is returned will have an attached tag so that you know what it is referring
to. The tag will be whatever you have specified it to be in the synchronous get method.

Unlike a synchronous SNMP GET request, an asynchronous SNMP GET request is multithreaded. Thus,
you are free to perform other tasks while waiting for a response when using an asynchronous SNMP GET
request. In the Perl API, the caller can specify the number of threads. When retrieving SNMP information
from a large device, use 10 threads.

Example SNMP GET access script
The SNMP GET access example Perl script shows how to retrieve SNMP information using several of the
SNMP get methods — both synchronous and asynchronous — that the RIV::SnmpAccess module
provides. Use this example as a model for writing your own client/server Perl scripts that retrieve SNMP
information for specific devices from a single MIB variable, multiple MIB variables, and a MIB table.

Declare Perl API modules and variables
This section of the SNMP GET access example Perl script declares the Perl API modules to be used as
well as a number of variables. Use this part of the example script as a guide to setting up client/server Perl
scripts that will retrieve SNMP information.

The SNMP GET access example Perl script declares the Perl API modules to be used and a number of
variables as follows:

#!$NCHOME/bin/ncp_perl
 use strict; 1
 use RIV;
 use RIV::Param;
 use RIV::App;
 use RIV::SnmpAccess; # qw (RivSnmpResultOk); 2

 $RIV::SnmpAccess::MaxAsyncConcurrent = 40; 3

 my $Ttype = "TEST"; 4
 my $Verbose;
 my @_Usage = ("node" [async]);

The following list explains specific numbered items in the previously listed section of the SNMP GET
access Perl script example:

1. Declares the strict pragma with the use directive. The strict pragma enforces good programming
practices, including enforcing the declarations of any new variables with my.

2. Specify the use directive to declare the Perl API modules to be used. In this case, use the RIV,
RIV::Param, RIV::App, and RIV::SnmpAccess modules.

3. Sets the MaxAsyncConcurrent RIV::SnmpAccess module variable to the value 40. This module
variable sets the maximum number of concurrent asynchronous SNMP get requests.

4. Declare the following my variables:

• $Ttype — Stores a string that identifies whether the SNMP GET access is synchronous or
asynchronous. Later sections of the SNMP GET access example script use this variable in calls to the
print operator. The variable gets set initially to the string TEST.

• $Verbose — Specifies how the script progress details are to be displayed. The -v option displays
verbose progress details. This variable is defined with the RIV::Param module, specifically with the
Usage method.

• @_Usage — Specifies the usage string suffixes node and async.

154 IBM Tivoli Network Manager IP Edition: Reference

Create and initialize a RIV::Param object
This section of the SNMP GET access example Perl script creates and initializes a new RIV::Param
object. Use this part of the example script as a guide to creating and initializing new RIV::Param objects
in client/server Perl scripts that retrieve SNMP information.

The SNMP GET access example Perl script creates and initializes a new RIV::Param object as follows:

 my $param = new RIV::Param({"-v"=> [$RIV::Param::NoArg, \$Verbose],}, 1
 \@_Usage) or
 die "RIV::Param::new failed"; 2

 my $node = shift @ARGV;
 my $what = shift @ARGV;
 $what = "" unless defined $what;

 $param->Usage(1) unless (defined $node && $node ne "");

The following list explains specific numbered items in the previously listed section of the SNMP GET
access Perl script example:

1. Creates and initializes a new RIV::Param object by calling the RIV::Param constructor.

Note: The standard arguments (for example, -domain, -debug, and so forth) are hidden.
2. If the constructor fails to create and initialize the new RIV::Param object, consider this a fatal error

and call the die function. The die function prints out an appropriate message (in this case, that the
RIV::Param constructor failed) to the standard error stream.

Create and initialize a RIV::App object
This section of the SNMP GET access example Perl script creates and initializes a new RIV::App object.
Use this part of the example script as a guide to creating and initializing new RIV::App objects in client/
server Perl scripts that retrieve SNMP information.

The SNMP GET access example Perl script creates and initializes a new RIV::App object as follows:

 my $app = new RIV::App($param, "ncp_test:snmp") or 1

 die "Can't create RIV application session" unless (defined $app); 2

The following list explains specific numbered items in the previously listed section of the SNMP GET
access Perl script example:

1. Creates and initializes a new RIV::App object by calling the RIV::App constructor. This call to the
RIV::App constructor takes the following parameters:

• RIV::Param — Specifies a reference to a RIV::Param object. In this example, the newly created
RIV::Param object is returned to the my $param variable in a previous call to the RIV::Param
constructor.

• $progname — Specifies a string that uniquely identifies an application. In this example, the
application name is identified by the string ncp_test:snmp.

2. If the constructor fails to create and initialize the new RIV::App object, consider this a fatal error and
call the die function. The die function prints out an appropriate message (in this case, that the
RIV::App constructor failed) to the standard error stream.

Chapter 8. Performing SNMP queries 155

Create and initialize a RIV::SnmpAccess object
This section of the SNMP GET access example Perl script creates and initializes a new
RIV::SnmpAccess object. Use this part of the example script as a guide to creating and initializing new
RIV::SnmpAccess objects in client/server Perl scripts that retrieve SNMP information.

The SNMP GET access example Perl script creates and initializes a new RIV::SnmpAccess object as
follows:

my $snmp = new RIV::SnmpAccess($app) or 1

die "Can't create RIV SNMP session"; 2

The following list explains specific numbered items in the previously listed section of the SNMP GET
access Perl script example:

1. Creates and initializes a new RIV::SnmpAccess object by calling the RIV::SnmpAccess constructor.
Upon successful completion, the RIV::SnmpAccess constructor returns a RIV::SnmpAccess object
to the my $snmp variable.

This call to the RIV::SnmpAccess constructor takes the following parameter:

• $rivSession — Specifies a reference to RIV::App object returned in a previous call to the
RIV::App constructor. In this example, the newly created RIV::App object is returned to the my
$app variable in a previous call to the RIV::App constructor.

2. If the constructor fails to create and initialize the new RIV::SnmpAccess object, consider this a fatal
error and call the die function. The die function prints out an appropriate message (in this case, that
the RIV::Snmp constructor failed) to the standard error stream.

Check the device IP address and node name
This section of the SNMP GET access example Perl script checks for the device's IP address and node
name. Use this part of the example script as a guide to writing code that checks for a device's IP address
and node name in client/server Perl scripts that retrieve SNMP information.

The SNMP GET access example Perl script checks for a device's IP address and node name as follows:

 my $nodeIP = $node; 1

 if ($node !~ /^\d+\.\d+\.\d+\.\d+$/) { 2

 $nodeIP = gethostbyname($node); 3

 $nodeIP = inet_ntoa($nodeIP) if (defined $nodeIP) or

 die "Can't find IP address for '$node'"; 4

 }

The following list explains specific numbered items in the previously listed section of the SNMP GET
access Perl script example:

1. Assigns the value stored in the my $node variable to the my $nodeIP variable. The my $node
variable was set after the call to the RIV::Param constructor.

See “RIV::Param Constructor” on page 225 for more information.
2. Determines if an IP address or node (host) name was specified.
3. Gets the IP address from the node name by calling the gethostbyname and inet_ntoa functions.
4. If the defined function verifies that the value in $nodeIP is undef, consider this a fatal error and call

the die function. The die function prints out an appropriate message (in this case, that the IP address
for this device cannot be found) to the standard error stream.

156 IBM Tivoli Network Manager IP Edition: Reference

Determine which SNMP GET requests to run
This section of the SNMP GET access example Perl script determines which SNMP GET requests —
synchronous or asynchronous — to run. Use this part of the example script as a guide to writing code that
sets up an appropriate condition to run either the synchronous or asynchronous SNMP GET requests in
client/server Perl scripts that retrieve SNMP information.

The SNMP GET access example Perl script sets up a condition to run either the synchronous or
asynchronous SNMP GET requests as follows:

 if ($what =~ /async/) { 1

 $Ttype = "ASYNCTEST";

 AsyncTests();

 exit 0;

 }

 SyncTests(); 2

 exit 0;

The following list explains specific numbered items in the previously listed section of the SNMP GET
access Perl script example:

1. Checks the input parameter to determine if the asynchronous tests (using the asynchronous SNMP
GET requests) should be run.

2. By default, the synchronous tests (using the synchronous SNMP GET requests) should be run.

Perform asynchronous SNMP GET requests
This section of the SNMP GET access example Perl script sets up the logic to run the asynchronous SNMP
GET requests. Use this part of the example script as a guide to writing code that makes use of some of the
asynchronous SNMP GET requests in client/server Perl scripts that retrieve SNMP information.

The SNMP GET access example Perl script sets up the logic and runs the asynchronous SNMP GET
requests as follows:

sub AsyncTests {
 my $sTag = "GETNEXT_$node"; 1
 print "$Ttype: call AsyncSnmpGetNext($sTag, $nodeIP, \"\", \"ifDescr\")\n";

 AsyncSnmpGetNext($sTag, $nodeIP, "", "ifDescr") or
 die "AsyncSnmpGetNext() failed";

 my ($tag, $data) = $snmp->GetInput(-1) or 2
 die "Unexpected tag ’$tag’";

 foreach my $varop (@{ $data->[0] })
 {
 PrintVarOp($varop);
 }

 $sTag = "GET_$node"; 3

 print "$Ttype: call AsyncSnmpGet($sTag, $nodeIP, \"\", \"ifDescr\", \"2\")\n"

 AsyncSnmpGet($sTag, $nodeIP, "", "ifDescr", "2")

 or die "AsyncSnmpGet() failed" ;

 ($tag, $data) = $app->GetInput(-1)
 or die "Unexpected tag '$tag'" unless ($tag eq "SNMP_$sTag");
 PrintVarOp($data->[0]);
}

Chapter 8. Performing SNMP queries 157

The following list explains specific numbered items in the previously listed section of the SNMP GET
access Perl script example:

1. Performs an SNMP GETNEXT asynchronous request (by calling the AsynchSnmpGetNext method).
2. Receives the results, using the $snmp->RIV::GetResult() method, and then prints these results.

Note: The RIV::GetInput function has been deprecated and you should use the RIV::GetResult
function. The example continues to use the RIV::GetInput function to be consistent with the
standard scripts which have not yet been updated to use the RIV::GetResult function.

3. Performs an SNMP GET asynchronous request (by calling the AsynchSnmpGet method). Receives the
results using the $snmp->RIV::GetResult() method. Then checks the tag and prints the results.

Note: The RIV::GetInput function has been deprecated and you should use the RIV::GetResult
function. The example continues to use the RIV::GetInput function to be consistent with the
standard scripts which have not yet been updated to use the RIV::GetResult function.

Perform synchronous SNMP GET requests
This section of the SNMP GET access example Perl script sets up the logic to run the synchronous SNMP
GET requests. Use this part of the example script as a guide to writing code that makes use of some of the
synchronous SNMP GET requests in client/server Perl scripts that retrieve SNMP information.

The SNMP GET access example Perl script sets up the logic and runs the synchronous SNMP GET requests
as follows:

 sub SyncTests {

 print "$Ttype: call SnmpGetNext($nodeIP, NULL, ifDescr)\n"; 1
 my ($vap) = $snmp->SnmpGetNext($nodeIP, "", "ifDescr") or
 die "SnmpGetNext on ifDescr table for '$node' failed";

 foreach my $varop (@{ $vap })
 {
 PrintVarOp($varop);
 }

 print "$Ttype: call SnmpGet($nodeIP, NULL, ifDescr,1)\n"; 2
 $vap = $snmp->SnmpGet($nodeIP, "", "ifDescr",1) or
 die "SnmpGetNext on ifDescr table for '$node' failed";

 PrintVarOp($vap);

 print "$Ttype: call SnmpGetBulk($nodeIP, NULL,\@oids,8,100)\n";
 my @oids=('sysDescr', 'sysContact', 'sysUpTime', 'ipInReceives',
'ipOutRequests', 'ipOutDiscards', 'ipForwDatagrams',
'tcpCurrEstab', 'ifDescr');

 ($vap) = $snmp->SnmpGetBulk($nodeIP, "", \@oids, 8, 100); 3
 foreach my $varop (@{ $vap })
 {
 PrintVarOp($varop);
 }
 }

The following list explains specific numbered items in the previously listed section of the SNMP GET
access Perl script example:

1. Performs an SNMP GETNEXT synchronous request (by calling the SnmpGetNext method).
2. Performs an SNMP GET synchronous request (by calling the SnmpGet method).
3. Performs an SNMP GETBULK synchronous request (by calling the SnmpGetBulk method).

158 IBM Tivoli Network Manager IP Edition: Reference

Print the SNMP varops
This section of the SNMP GET access example Perl script sets up the logic to print the SNMP varops. Use
this part of the example script as a guide to writing code that prints the SNMP varops in client/server Perl
scripts that retrieve SNMP information.

The SNMP GET access example Perl script sets up the logic to print SNMP varops as follows:

 sub PrintVarOp { 1
 my ($vp) = @_;

 my $asn1 = $vp->{ASN1};
 my $value = $vp->{VALUE};
 my ($oid, $index, $name) = $snmp-> SplitOidAndIndex ($asn1);
 print "$Ttype: $name.$index = $value\n";
 }

The following list explains specific numbered items in the previously listed section of the SNMP GET
access Perl script example:

1. Prints the SNMP varops.

Chapter 8. Performing SNMP queries 159

160 IBM Tivoli Network Manager IP Edition: Reference

Chapter 9. Writing and integrating Perl applications
with third-party products

The Perl API allows you to write Perl applications (for example, Listeners) that you can then integrate with
third-party products.

Listener applications
A Listener is an application written for a specific Network Manager database. The purpose of a Listener is
to "listen" and respond to record events that occur in the associated database.

Record events in the database include updates to existing records, additions of new records, and
deletions of existing records. A Listener application can process these record events in order to:

• Update an external database
• Send email to an appropriate administrator or end user based on the event type
• Integrate with a variety of third-party products or applications

Users of the Perl API can also make use of the mail modules (for example, Mail::Mailer) to email
database record events. Listener applications, through the RIV::OQL module, can send a stream of data
into HTML, CGI scripts, and XML data.

Note: Communication with external databases — such as, Oracle® or Sybase® — can be done using the Perl
DBI module.

In the record received from the Listener there is a tag for Action Type that defines the action
performed. For example, a record returned with an action type of 2 indicates that the listener had picked
up a record deletion. The actions are summarized in the table below.

Table 74. Listener actions

Tag Action

0 Insert

1 Update

2 Delete

Note: The listener must be associated with a subject. For example, to listen to events the subject must be
ITNM/EVENT/NOTIFY.

Example Listener script
The Listener example script shows how to "listen" to record insertions, deletions, and updates in the
MODEL topology database. Use this example as a model for writing your own Listener applications using
the Perl API.

Declare Perl API modules and variables for Listener
This section of the Listener example script declares the Perl API modules to be used. Use this part of the
example script as a guide to declaring the Perl modules used with Listener applications.

The Listener example script declares the Perl API modules to be used as follows:

 use RIV;

© Copyright IBM Corp. 2006, 2021 161

 use RIV::Param;
 use RIV::App; 1

The following list explains specific numbered items in the previously listed section of the Listener Perl
script example:

1. Declare the Perl API modules to be used with the use directive, specifically, RIV, RIV::Param, and
RIV::App.

Create and initialize a RIV::Param object for Listener
This section of the Listener example script creates and initializes a new RIV::Param object. Use this part
of the example script as a guide to creating and initializing new RIV::Param objects in Listener
applications.

The Listener example script creates and initializes a new RIV::Param object as follows:

 $param = RIV::Param::new(); 1

The following list explains the specific numbered item in the previously listed section of the Listener Perl
script example:

1. Creates and initializes a new RIV::Param object by calling the RIV::Param constructor. Upon
successful completion, the RIV::Param constructor returns a RIV::Param object to the $param
variable. This RIV::Param object is then passed as a parameter to the RIV::App constructor.

Create and initialize a RIV::App object for Listener
This section of the Listener example script creates and initializes a new RIV::App object. Use this part of
the example script as a guide to creating and initializing new RIV::App objects in Listener Perl scripts.

The Listener example script creates and initializes a new RIV::App object as follows:

 $app = RIV::App::new($param, "model_listener"); 1

The following list explains the specific numbered item in the previously listed section of the Listener Perl
script example:

1. Creates and initializes a new RIV::App object by calling the RIV::App constructor. This call to the
RIV::App constructor takes the following parameters:

• RIV::Param — Specifies a reference to a RIV::Param object. In this example, the newly created
RIV::Param object is returned to the $param variable in a previous call to the RIV::Param
constructor.

• $progname — Specifies a string that uniquely identifies an application. In this example, the
application name is identified by the string model_listener.

Bind the RIV::App object to the message broker subject for Listener
Network Manager uses the message broker publish and subscribe messaging system to enable processes
to communicate with each other. This section of the Listener example script binds the newly created
RIV::App object to message broker. Use this part of the example script as a guide to binding RIV::App
objects to message broker.

The Listener example script binds the newly created RIV::App object to message broker as follows.

See the IBM Tivoli Network Manager IP Edition Administration Guide for more information on message
broker.

 $ok = $app->RIV::AddSubject('ITNM/MODEL/NOTIFY','model'); 1
 print $ok, "\n"; 2

162 IBM Tivoli Network Manager IP Edition: Reference

The following list explains the specific numbered items in the previously listed section of the Listener Perl
script example:

1. Calls the AddSubject virtual method to bind the RIV::App object to message broker. The
AddSubject virtual method takes two parameters:

• $subject — Specifies the message broker subject to which the RIV::App object binds. In this call,
the message broker subject is ITNM/MODEL/NOTIFY.

Note: If you wanted the Listener application to listen to events, then $subject would be ITNM/
EVENT/NOTIFY.

• $tag — Specifies the tag to be appended to USER_, which describes the message returned through
the RIV::GetResult method. In this call, the tag is model.

Upon successful completion, the AddSubject virtual method returns the value 1.
2. Calls the print operator to print the value that the AddSubject virtual method returns to the

standard output.

Write database records to a log file
This section of the Listener example script sets up an appropriate loop for "listening" to records inserted,
deleted, or updated in the MODEL database and then sending the information to a log file. Use this part of
the example script as a guide to setting up appropriate loops to capture record activity and then send this
activity to some log file in Listener Perl scripts.

The Listener example script sets up an appropriate loop for capturing record activity in the MODEL
database as follows:

 open(LOGFILE, ">>model.log)"; 1
 while(1){ 2
 my ($tag, $data) = $snmp->GetResult(-1);
 foreach $key (@$data){
 foreach $rec (keys %$key){
 {
 print LOGFILE "$rec : $key->{$rec}","\n"; 3
 }
 }
 }

The following list explains the specific numbered items in the previously listed section of the Listener Perl
script example:

1. Calls the open operator to open the file handle LOGFILE for output (or appending) to the new (or
existing) file model.log.

2. Sets up a while loop that executes until all inserted, deleted, and updated database records are
processed and written to the model.log file.

3. Writes the desired information to the model.log file. However, if you want to send the information to
a third-party database management application, such as Sybase or Oracle, or a trouble-ticketing
system, such as ClearQuest®, use the Perl DBI module. To accomplish this, replace this line of code
with the DBI connect method and then send the information.

Send database records to different applications
This section of the Listener example script sets up an appropriate loop for "listening" to records inserted,
deleted, or updated in the MODEL database and then sending the information to different applications
using the Perl DBI module. Use this part of the example script as a guide to setting up appropriate loops
to capture record activity and then sending that information to different applications using the Perl DBI
module.

The Listener example script sets up an appropriate loop for capturing record activity in the MODEL
database and then sending that information to an Oracle database as follows:

Chapter 9. Writing and integrating Perl applications with third-party products 163

 use DBI; 1
.
.
.
 $dbname = 'modelEntities'; $user = 'foo'; 2
 $password = 'foobar'; $dbd = 'Oracle';
 $dbh = DBI->connect($dbname, $user, $password, $dbd);
 . . .
 . . .
 $dbh->do($statement);

The following list explains the specific numbered items in the previously listed section of the Listener Perl
script example:

1. Declares use of the Perl DBI module. See the Perl DBI documentation for more information.
2. Sets up the appropriate code to send database information to the Oracle database. Note the use of the

DBI connect method.

164 IBM Tivoli Network Manager IP Edition: Reference

Chapter 10. RIV Modules Reference
Each RIV module provides constructors and methods used in the Perl scripts that you implement to
create custom discovery agent and other client/server applications.

To implement Perl scripts using the RIV modules, you must be familiar with the constructors and methods
that each module provides. These constructors and methods are described in manual (reference) page
format.

RIV module reference
The RIV module is a container for a set of modules that support implementation of Perl applications on
IBM Tivoli Network Manager IP Edition.

The RIV module provides variables, functions, and virtual methods that the Perl API application modules
— RIV::Agent and RIV::App — use.

RIV module synopsis
The RIV module synopsis provides summary calls to the variable, functions, and virtual methods that the
RIV::Agent module and RIV::App module can use.

Synopsis
Add an IO handle
$ok = $rivSession->AddIoHandle($fileHandle, $tag);

Load the RIV module.
use RIV;

Call the RIV::RivDebug function.
$RIV::DebugLevel;
RIV::RivDebug($lvl, $debugString);

Call the RIV::RivMessage function.
$RIV::MessageLevel;
RIV::RivMessage($msglvl, $messageString);

Call the RIV::RivError function.
RIV::RivError($class, @errorMessageStrings);

Call the RIV::InputQueueLength function.
$qlen = RIV::InputQueueLength();

Call the RIV::GetResult function. Note the optional $waitTime
parameter. Note also that $rivSession stores the application object
returned in a previous call to the RIV::Agent or RIV::App constructor.
($tag, $value, $domain) = RIV::GetResult($waitTime);
($tag, $value, $domain) = $rivSession->RIV::GetResult([$waitTime]);

Call the RIV::GetResultSet function. Note the optional $waitTime parameter.
$rsKey = $rivSession->RIV::GetResultSet([$waitTime]);

Call the RIV::InputFilter function.
$ok = RIV::InputFilter($pattern, $function);

Call the PostInput virtual method. Note that $rivSession stores
the application object returned in a previous call to the RIV::Agent
or RIV::App constructor.
$ok = $rivSession->PostInput($tag, $data);

Call the DecryptPassword and EncryptPassword virtual methods.
$txtPwd = RIV::DecryptPassword($encPwd);
$encPwd = RIV::EncryptPassword($txtPwd);

Call the RIV::ReadDir function.
$fileListArrayRef = RIV::ReadDir($dirName);

© Copyright IBM Corp. 2006, 2021 165

Call the Latency and Retry Limit virtual methods. Note the optional
parameters. Note also that $rivSession stores the application object
returned in a previous call to the RIV::Agent or RIV::App constructor.
$latency = $rivSession->Latency([$timeoutMilliSeconds]);
$retryLimit = $rivSession->RetryLimit([$retryLimit]);

Call the two versions of the PublishMessage virtual methods. Note that
$rivSession stores the application object returned in a previous call
to the RIV::Agent or RIV::App constructor.
$ok = $rivSession->PublishMessage($subject, $message);
$ok = $rivSession->PublishMessage($subject, $refHash);

Call the AddSubject and AddTimer virtual methods. Note that
$rivsession stores the application object returned in a previous
call to the RIV::Agent or RIV::App constructor.
$ok = $rivSession->AddSubject($subject, $tag);
$ok = $rivSession->AddTimer($timerval, $tag, $isRepeat);

Fetch a row
my $dat = $app->RIV::FetchRow($rsKey)

Get a result set
$rsKey = $rivSession->RIV::GetResultSet([$waitTime]);

Remove an IO Handle
$ok = $rivSession->RemoveIoHandle($fileHandle, $tag);

Remove a subject
$ok = $rivSession->RemoveSubject($subject, $isRaw);

AddIoHandle
The AddIoHandle virtual method adds the file or socket handle to the I/O list.

Virtual Method Synopsis

AddIoHandle($fileHandle, $tag)

Parameters
$fileHandle

Specifies the file or socket handle.
$tag

Specifies the tag to be appended to "USER_" and to be associated with the messages.

Description
The AddIoHandle virtual method adds the file or socket handle specified in the $fileHandle parameter to
the I/O list. When the file descriptor is available for reading, the tag "USER_$tag" is returned to the Perl
application through a call to the RIV::GetResult() function.

Example Usage
$app->AddIoHandle(STDOUT, "test");

Returns
Upon completion, the AddIoHandle virtual method returns:

• 0 (zero) — The attempt to add the file or socket handle to the I/O list was unsuccessful.
• 1 — The attempt to add the file or socket handle to the I/O list was successful.

See Also
• “RIV::Agent module reference” on page 187

166 IBM Tivoli Network Manager IP Edition: Reference

• “RIV::App module reference” on page 211

AddSubject
The AddSubject virtual method binds the application to the specified message broker subject.

Virtual Method Synopsis

AddSubject($subject, $tag)

Parameters
$subject

Specifies the message broker subject to which AddSubject binds the application.
$tag

Specifies the tag to be appended to "USER_".

Description
The AddSubject virtual method:

• Binds the application to the message broker subject specified in the $subject parameter.
• Appends the tag specified in the $tag parameter to "USER_". The "USER_$tag" messages are returned

in a call to the RIV::GetResult() function.

The subject is automatically appended with the domain in order to limit messages to purely those for the
current domain.

Example Usage
The following example assumes a previous call to the RIV::App constructor, which returns a client/
server application object to $app. A call could also be made to the RIV::Agent constructor, which
returns a discovery agent application object (typically, to $agent).

$ok = $app->AddSubject('ITNM/MODEL/NOTIFY', 'model');

Returns
Upon completion, the AddSubject virtual method returns:

• 0 (zero) — The attempt to bind the application to the message broker subject was unsuccessful.
• 1 — The attempt to bind the application to the message broker subject was successful.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212
• “RIV::RivDebug” on page 185
• “RIV::GetResult” on page 178

Chapter 10. RIV Modules Reference 167

AddTimer
The AddTimer virtual method creates a single-shot or repeating timer.

Virtual Method Synopsis

AddTimer($timerVal, $tag, $isRepeat)

Parameters
$timerVal

Specifies the time interval, in milliseconds, between timer events.
$tag

Specifies the tag to be appended to "USER_".
$isRepeat

Specifies the type of timer to create. The value 0 (zero) creates a single-shot timer and the value 1
creates a repeating timer.

Description
The AddIimer virtual method:

• Creates a single-shot or repeating timer, depending on the value passed to the $isRepeat parameter.
The value of the $timerVal parameter specifies the interval, in milliseconds, between the timer events.

• Appends the tag specified in the $tag parameter to "USER_". The timer events are returned to the Perl
application as "USER_$tag" messages through a call to the RIV::GetResult function.

Example Usage
The following example assumes a previous call to the RIV::App constructor, which returns a client/
server application object to $app. A call could also be made to the RIV::Agent constructor, which
returns a discovery agent application object (typically, to $agent).

$ok = $app->AddTimer(100, "TIMER", 1);

Returns
Upon completion, the AddTimer virtual method returns:

• 0 (zero) — The attempt to create a single-shot or repeating timer was unsuccessful.
• 1 — The attempt to create a single-shot or repeating timer was successful.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212
• “RIV::RivDebug” on page 185
• “RIV::GetResult” on page 178

168 IBM Tivoli Network Manager IP Edition: Reference

DebugLevel
The RIV module provides access to the global Network Manager debugging level setting through the
$RIV::DebugLevel variable.

Variable Synopsis

$RIV::DebugLevel

Description
The RIV module provides access to the global Network Manager debugging level setting through the
$RIV::DebugLevel variable. Changing the value of this variable will affect all debugging output. The
default value is 0 (zero).

Typically, you use this variable with the following RIV module function:

• RIV::RivDebug

See Also
• “RIV::RivDebug” on page 185

DecryptPassword
The DecryptPassword virtual method decrypts the specified encrypted password.

Synopsis

DecryptPassword($encPwd)

Parameters
$encPwd

Specifies the encrypted password to be decrypted.

Description
The DecryptPassword virtual method decrypts the encrypted password specified in the $encPwd
parameter. You previously encrypted this password in a call to the EncryptPassword virtual method.
Note that the encryption key must be the same as that used to encrypt the original password.

Example Usage
$txtPwd = RIV::DecryptPassword($encPwd);

Returns
Upon completion, the DecryptPassword virtual method returns the plain text password or undef if an
error occurred.

See Also
• “EncryptPassword” on page 170
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212

Chapter 10. RIV Modules Reference 169

EncryptPassword
The EncryptPassword virtual method returns an encrypted representation of the specified password.

Synopsis

EncryptPassword($txtPwd)

Parameters
$txtPwd

Specifies the plain text password to be encrypted.

Description
The EncryptPassword virtual method encrypts the plain text password specified in the $txtPwd
parameter.

Example Usage

$encPwd = RIV::EncryptPassword($txtPwd);

Returns
Upon completion, the EncryptPassword virtual method returns an encrypted and ASCII encoded
representation of the specified plain text password or undef if an error occurred.

See Also
• “DecryptPassword” on page 169
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212

Latency
The Latency virtual method sets or retrieves the timeout for queries.

Virtual Method Synopsis

Latency([$timeoutMilliseconds])

Parameters
$timeoutMilliseconds

Specifies the timeout, in milliseconds, for the queries. This is an optional parameter and if omitted
(that is, no timeout is specified) it returns the value of the timeout.

Description
The Latency virtual method:

• Sets a timeout, in milliseconds, for queries if a timeout value is passed to the $timeoutMilliseconds
parameter. The value passed to $timeoutMilliseconds cannot be the undef value.

• Returns the timeout, in milliseconds, for queries if the $timeoutMilliseconds parameter is omitted (that
is, no timeout is specified). If an acknowledgement is not received within this time, further requests are

170 IBM Tivoli Network Manager IP Edition: Reference

sent up to the retry limit. (The retry limit is specified in a call to the RetryLimit virtual method). If no
acknowledgement is received after (retry*timeout), an error is returned to the caller.

Example Usage
The following examples assume a previous call to the RIV::App constructor, which returns a client/
server application object to $app. A call could also be made to the RIV::Agent constructor, which
returns a discovery agent application object (typically, to $agent).

The following example shows a call with no $timeoutMilliseconds parameter specified:

$latency = $app->Latency();

The following example shows a call with the $timeoutMilliseconds parameter specified:

$app->Latency(1000);

Returns
Upon completion, the Latency virtual method returns the timeout, in milliseconds, if the
$timeoutMilliseconds parameter is omitted.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212
• “RetryLimit” on page 175
• “RIV::RivDebug” on page 185

MessageLevel
The RIV module provides access to the global Network Manager logging level setting through the
$RIV::MessageLevel variable.

Variable Synopsis

$RIV::MessageLevel

Description
The RIV module provides access to the global Network Manager logging setting through the
$RIV::MessageLevel variable. Changing the value of this variable will affect all logging output.

Typically, you use this variable with the following RIV module function:

• RIV::RivMessage

See Also
• “RIV::RivMessage” on page 187

Chapter 10. RIV Modules Reference 171

PostInput
The PostInput virtual method adds a message to the queue.

Virtual Method Synopsis

PostInput($tag, $data)

Parameters
$tag

Specifies the tag to be associated with the input message.
$data

Specifies the data in the message.

Description
The PostInput virtual method adds the input message specified in the $data parameter to the queue
along with the associated tag specified in the $tag parameter.

Example Usage
The following example assumes a previous call to the RIV::App constructor, which returns a client/
server application object to $app. A call could also be made to the RIV::Agent constructor, which
returns a discovery agent application object (typically, to $agent).

$app = RIV::App::new(.......);
$app->PostInput("myTag", "test data");

Returns
Upon completion, the PostInput virtual method returns:

• 0 (zero) — The attempt to add the input message to the queue was unsuccessful.
• 1 — The attempt to add the input message to the queue was successful.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212
• “RIV::RivDebug” on page 185

PublishMessage
The PublishMessage virtual method publishes the specified message string.

Virtual Method Synopsis

PublishMessage($subject, $message)

Parameters
$subject

Specifies the unqualified Network Manager subject used for message broker messaging.
$message

Specifies a valid ASCII message string.

172 IBM Tivoli Network Manager IP Edition: Reference

Description
The PublishMessage virtual method publishes the message string specified in the $message parameter
on the subject specified in the $subject parameter. The value specified in $subject must be unqualified,
that is, it must be without the .DOMAIN suffix. The message in $message must be a valid ASCII string.

Example Usage
The following example assumes a previous call to the RIV::App constructor, which returns a client/
server application object to $app. A call could also be made to the RIV::Agent constructor, which
returns a discovery agent application object (typically, to $agent).

$ok = $app->PublishMessage('ITNM/MODEL/QUERY', "hello");

Returns
Upon completion, the PublishMessage virtual method returns:

• 0 (zero) — The attempt to publish the specified message was unsuccessful.
• 1 — The attempt to publish the specified message was successful.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::RivDebug” on page 185
• “PublishMessage” on page 173

PublishMessage
The PublishMessage virtual method encodes the hash reference into a message broker message.

Virtual Method Synopsis

PublishMessage($subject, $refHash)

Parameters
$subject

Specifies the unqualified Network Manager subject used for message broker messaging.
$refHash

Specifies a reference to a hash that contains the message to be sent.

Description
The PublishMessage virtual method encodes the hash specified in the $refHash parameter into a
message broker message and publishes it on the subject specified in the $subject parameter. The hash
passed to $refHash may be nested. The value passed to the $subject parameter must be unqualified,
that is, it must be without the .DOMAIN suffix.

Note: The message type and contents must be what the consumer is expecting. There is a chance that the
core processes will SIGSEGV if they receive unexpected data (for example, publishing a string message to
a NOTIFY subject).

Chapter 10. RIV Modules Reference 173

Example Usage
The following example assumes a previous call to the RIV::App constructor, which returns a client/
server application object to $app. A call could also be made to the RIV::Agent constructor, which
returns a discovery agent application object (typically, to $agent).

my %gg; $gg{'foo'} = 'bar'; $gg{'color'} = 'red';

$ok = $app->PublishMessage('ITNM/MODEL/QUERY', \%gg);

Returns
Upon completion, the PublishMessage virtual method returns:

• 0 (zero) — The attempt to encode the hash and publish the specified message was unsuccessful.
• 1 — The attempt to encode the hash and publish the specified message was successful.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::RivDebug” on page 185
• “PublishMessage” on page 172

RemoveIoHandle
The RemoveIoHandle virtual method removes the file handle $fielHandle from the I/O list.

Virtual Method Synopsis

RemoveIoHandle($fileHandle, $tag)

Parameters
$fileHandle

Specifies the file or socket handle to be removed from the I/O list.
$tag

Specifies the tag to be associated with the messages.

Description
The RemoveIoHandle virtual method removes the file or socket handle that is specified in the
$fileHandle parameter from the I/O list.

Example Usage

$app->RemoveIoHandle(STDOUT "test");

Returns
Upon completion, the RemoveIoHandle virtual method returns:

• 0 (zero) — The attempt to remove the file or socket handle from the I/O list was unsuccessful.
• 1 — The attempt to remove the file or socket handle from the I/O list was successful.

174 IBM Tivoli Network Manager IP Edition: Reference

See Also
• “RIV::Agent module reference” on page 187
• “RIV::App module reference” on page 211

RemoveSubject
The RemoveSubject virtual method removes the listener on the application to the Message Broker
subject $subject.

Virtual Method Synopsis

RemoveSubject($subject, $isRaw)

Parameters
$subject

Specifies the Message Broker subject from which to remove the listener.
$isRaw

Specifies whether the domain is appended to subject, or not.

• 0 — Add the domain to the subject.
• 1 — Do not add the domain to the subject.

Description
The RemoveSubject virtual method removes the listener on the application to the Message Broker
subject $subject. If $isRaw = 0 then the domain is appended to the subject to be removed.

Example Usage

$ok =$app->RIV::RemoveSubject('ITNM/MODEL/NOTIFY', 0);

Returns
Upon completion, the RemoveSubject virtual method returns:

• 0 (zero) — The attempt to remove the application from the subject was unsuccessful.
• 1 — The attempt to remove the application from the subject was successful.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212

RetryLimit
The RetryLimit virtual method sets the retry limit for queries or returns the maximum number of retries
for queries.

Virtual Method Synopsis

RetryLimit([$retryLimit])

Chapter 10. RIV Modules Reference 175

Parameters
$retryLimit

Specifies the retry limit for a specified query. This is an optional parameter and if omitted (that is, no
retry limit is specified) it returns the maximum number of retries.

Description
The RetryLimit virtual method:

• Sets a retry limit for queries if a value is passed to the $retryLimit parameter.
• Returns the maximum number of retries for a specified query if the $retryLimit parameter is omitted

(that is, no retry limit is specified).

Example Usage
The following examples assume a previous call to the RIV::App constructor, which returns a client/
server application object to $app. A call could also be made to the RIV::Agent constructor, which
returns a discovery agent application object (typically, to $agent).

The following usage example shows a call with no $retryLimit parameter specified:

$retry = $app->RetryLimit();

The following usage example shows a call with the $retryLimit parameter specified:

$app->RetryLimit(5);

Returns
Upon completion, the RetryLimit virtual method returns the maximum number of retries for a specified
query if the $retryLimit parameter is omitted.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::RivDebug” on page 185

RIV::FetchRow
The RIV::FetchRow method is used to fetch the next row from a results set retrieved by
RIV::GetResultSet() and returns undef if there are no more rows to return.

Synopsis
RIV::FetchRow([$rsKey])

Parameters
$rsKey

The results set key that was returned by the RIV::GetResultSet() method.

Description
The RIV::FetchRow method is used to fetch the next row from a results set retrieved by
RIV::GetResultSet() and returns undef if there are no more rows to return. Care must be taken to
iterate over all rows in the results set (even if the data is not required) otherwise the memory that is
allocated to hold remainder of the results set is not freed.

176 IBM Tivoli Network Manager IP Edition: Reference

Example Usage
my $isSelect = 1;
$oql->Send($request, $isSelect);
my $rsKey = $app->RIV::GetResultSet();

if ($rsKey)
{
 while (my $dat = $app->RIV::FetchRow($rsKey))
 {
 # process data
 }
}

Returns
Upon completion, the RIV::FetchRow method returns a Perl hash that represents the next row of the
results set, or undef if there is no more data.

See Also
• “RIV::Agent module reference” on page 187
• “RIV::App module reference” on page 211
• “RIV::GetResultSet” on page 180

RIV::GetInput
The RIV::GetInput function has been deprecated by RIV::GetResult. The documentation exists for
historical purposes only.

Synopsis

RIV::GetInput($waitTime [,$pattern])

Parameters
$waitTime

Specifies the time, in seconds, to wait before returning. If $waitTime is negative, RIV::GetInput
waits forever for the response.

$pattern
Specifies the pattern of tags that the user is interested in. Only messages with a matching tag will be
returned. All other messages will be left in the queue for retrieval at a later time. This parameter is
optional.

Description
The RIV::GetInput function provides a mechanism for synchronizing a single-threaded Perl application
with the multithreaded Network Manager platform. There is currently no support for direct interface with
Perl threads.

The normal usage of RIV::GetInput takes a single parameter to specify the number of seconds to wait
for input before returning. A value of 0 (zero) means "do not wait", and a negative value means "wait
forever".

Because Network Manager platform receives input either directly or indirectly through message broker,
the input data is placed on a FIFO together with its identifying tag. One input item is returned for each call
to RIV::GetInput. Items are returned as an array of size 3 containing the item tag, item tag value, and
the application domain (that is, the domain string specified in the call to RIV::App::new). For example:

($tag, $data, $domain) = RIV::GetInput(-1);

Chapter 10. RIV Modules Reference 177

If there is only one active RIV::App, the domain value may be ignored. However, if multiple RIV::App
objects have been created, the value of $domain must be used to determine the source of the input.

Value types depend on the item returned and must be interpreted in the context of the value of $tag. Tag
values are either specified in a call to create the input stream or are from a set of standard tags. User
specified tags are returned from RIV::GetInput with the prefix USER_. Standard tags include:

• QUERY — (RIV::OQL query results)
• UPDATE — (RIV::OQL updates)
• NE — (RIV::Agent)
• TIMEOUT — (all - wait time exceeded and no data)

The extended form of RIV::GetInput uses a second parameter ($pattern) to specify a regular
expression pattern for matching against input tag strings. Only data items with matching tags will be
returned. This form is useful for temporarily suspending delivery of input to all but the wanted channel
and has the effect of taking input data items out of turn. Non-matching input tags are kept in the queue
and will be delivered in sequence when the standard form of RIV::GetInput is used, or a matching
pattern is specified to a subsequent call of the extended version.

Example Usage

($tag, $data, $domain) = RIV::GetInput(-1);

Returns
Upon successful completion, the RIV::GetInput function returns:

• $tag — The tag associated with the message.
• $data — The data associated with the tag. The $data value could be a string or a reference to any data

structure and will be interpreted based on the $tag value.
• $domain — The domain name. This return will only be of interest if multiple domains are running.

See Also
• “RIV::GetResult” on page 178

RIV::GetResult
The RIV::GetResult function provides the "standard" mechanism for synchronizing a single-threaded
Perl application with the multi-threaded Network Manager platform. There is currently no support for a
direct interface with Perl threads.

Synopsis

RIV::GetResult([$waitTime])

Parameters
$waitTime

Specifies the time, in seconds, to wait for input before returning. If $waitTime is negative,
RIV::GetResult waits forever for the response. This is an optional parameter that defaults to the
latency of the application.

Description
The typical call to the RIV::GetResult function takes a single parameter to specify the number of
seconds to wait for input before returning. A value of 0 (zero) means "do not wait" and a value of minus

178 IBM Tivoli Network Manager IP Edition: Reference

one (-1) means "wait forever". The $waitTime parameter is optional and, if it is not specified, it defaults to
the latency associated with the application.

As the Network Manager platform receives input (either directly or indirectly through message broker),
the input data is placed on a FIFO basis, together with its identifying tag. One input item is returned for
each call to RIV::GetResult. Items are returned as an array of size 3, containing the item tag, its value
and the application domain (that is, the domain string specified in a call to the RIV::App::new()
constructor). For example:

my ($tag, $data, $domain) = $app->RIV::GetResult(-1);

If there is only one active RIV::App, the domain value may be ignored. However, if multiple RIV::App
objects have been created, the value of $domain must be used to determine the source of the input.

Value types depend on the item returned and must be interpreted in the context of the value of $tag. Tag
values are either specified in a call to create the input stream or are from a set of standard tags. User
specified tags are returned from RIV::GetResult() with the prefix "USER_". The following example
identifies the standard tags:

OQLQuery (RIV::OQL query results)
OQLUpdate (RIV::OQL updates)
NE (RIV::Agent)
TIMEOUT (all - wait time exceeded and no data)

Example Usage
The following example assumes a previous call to the RIV::App constructor, which returns a client/
server application object to $app. A call could also be made to the RIV::Agent constructor, which
returns a discovery agent application object (typically, to $agent).

($tag, $data, $domain) = $app->RIV::GetResult();
($tag, $data, $domain) = $app->RIV::GetResult(10);
($tag, $data, $domain) = $app->RIV::GetResult(-1);

Returns
Upon successful completion, the RIV::GetResult function returns:

• $tag — The tag associated with the message.
• $data — The data associated with the tag. The $data value could be a string or a reference to any data

structure and will be interpreted based on the $tag value.
• $domain — The domain name. This return will only be of interest if multiple domains are running.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212
• “RIV::GetInput” on page 177
• “RIV::RivDebug” on page 185

Chapter 10. RIV Modules Reference 179

RIV::GetResultSet
This RIV::GetResultSet method is much like RIV::GetResult() . However, instead of returning the
entire results set as a Perl hash the RIV::GetResultSet method returns a key that can be used as an
argument to RIV::FetchRow() to retrieve the results set one row at a time.

Synopsis
RIV::GetResultSet([$waitTime])

Parameters
$waitTime

Specifies the time, in seconds, to wait for input before it returns information. If $waitTime is
negative, RIV::GetResult waits forever for the response. This parameter is an optional parameter
that defaults to the latency of the application.

Description
Use the RIV::GetResultSet method to retrieve data from tables with large numbers of rows as the
RIV::GetResultSet method uses less memory than the RIV::GetResult() alternative. The results
set is cached and can be accessed by using only the key that is returned by this method. Therefore, care
must be taken to iterate over every row of the results set, even if the value is not required. Otherwise, the
memory that is used by the results set cannot be reclaimed by the script.

Example Usage
my $isSelect = 1;
$oql->Send($request, $isSelect);
my $rsKey = $app->RIV::GetResultSet();

if ($rsKey)
{
 while (my $dat = $app->RIV::FetchRow($rsKey))
 {
 # process data
 }
}

Returns
Upon completion, the RIV::GetResultSet method returns a scalar results set key that is passed to
RIV::FetchRow() to access the data within the results set.

See Also
• “RIV::Agent module reference” on page 187
• “RIV::App module reference” on page 211
• “RIV::GetResult” on page 178

RIV::InputFilter
The RIV::InputFilter function binds the function referenced by $function to input tags matching the
regular expression $pattern.

Synopsis

RIV::InputFilter($pattern [,$function]
[,$arg])

180 IBM Tivoli Network Manager IP Edition: Reference

Parameters
$pattern

Specifies the tag corresponding to the regular expression to which the filter must be run.
$function

Specifies the function that will be executed if the input tag matches the regular expression passed to
the $pattern parameter. This parameter is optional. If no function is specified, the existing callback for
the pattern is deleted.

$arg
Specifies an argument to be passed to the function specified in the $function parameter. This
parameter is optional.

Description
The RIV::InputFilter function binds the function referenced by $function to input tags matching the
regular expression $pattern. Whenever the application program calls the RIV::GetResult function and
data with a matching tag is returned, the corresponding function is called instead of a return from
RIV::GetResult. If all input tags match one of the patterns passed to RIV::InputFilter, the effect
is as if the original call to RIV::GetResult never returned. The called function must not call
RIV::GetResult. Calling the RIV::InputFilter function with a value of undef for $function removes
the filter.

Example Usage

$ok = RIV::InputFilter("NE", $method1);

Returns
Upon completion, the RIV::InputFilter function returns:

• 0 (zero) — The attempt to bind the function referenced by $function was unsuccessful.
• 1 — The attempt to bind the function referenced by $function was successful.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212
• “RIV::GetResult” on page 178
• “RIV::RivDebug” on page 185

RIV::InputQueueLength
The RIV::InputQueueLength function returns the number of items waiting in the application's input
queue.

Synopsis

RIV::InputQueueLength()

Parameters
None

Chapter 10. RIV Modules Reference 181

Description
The RIV::InputQueueLength function returns the number of items waiting in the application's input
queue, that is, the number of times RIV::GetResult would need to be called in order to drain the
queue.

Example Usage

$queue_length = RIV::InputQueueLength();

Returns
Upon successful completion, the RIV::InputQueueLength function returns the number of items
waiting in the application's input queue.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212
• “RIV::GetResult” on page 178
• “RIV::RivDebug” on page 185

RIV::IsIpNotLoopBackOrMulticast
The RIV::IsIpNotLoopBackOrMulticast function returns true if the address parameter is a valid IP
address, and not a loop back or multicast address.

Synopsis

RIV::IsIpNotLoopBackOrMulticast($ipAddress)

Parameters
$ipAddress

Specifies the IP address that must be checked for validity.

Description
The RIV::IsIpNotLoopBackOrMulticast function returns true if the address passed to the
$ipAddress parameter is a valid IP address, and not a loop back or multicast address.

Example Usage

$result = RIV::IsIpNotLoopBackOrMulticast($ipAddress);

Returns
Upon completion, the RIV::IsIpNotLoopBackOrMulticast function returns:

• 0 (zero) — The IP address is not valid or the IP address is a loop back or multicast address.
• 1 — The IP address is valid.

See Also
• “RIV::Agent Constructor” on page 188

182 IBM Tivoli Network Manager IP Edition: Reference

• “RIV::App Constructor” on page 212
• “RIV::RivDebug” on page 185

RIV::IsIpValid
The RIV::IsIpValid function returns true if the address parameter is a valid IP address.

Synopsis

RIV::IsIpValid($ipAddress)

Parameters
$ipAddress

Specifies the IP address that must be checked for validity.

Description
The RIV::IsIpValid function returns true if the address passed to the $ipAddress parameter is a valid
IP address. More specifically, the function checks if $ipAddress is a valid IPv4 or IPv6 address using the
functions specific to those address families.

Example Usage

$result = RIV::IsIpValid($ipAddress);

Returns
Upon completion, the RIV::IsIpValid function returns:

• 0 (zero) — The IP address is not valid.
• 1 — The IP address is valid.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212
• “RIV::IsIpv4Valid” on page 183
• “RIV::IsIpv6Valid” on page 184
• “RIV::RivDebug” on page 185

RIV::IsIpv4Valid
The RIV::IsIpv4Valid function returns true if the address parameter is a valid IPv4 address.

Synopsis

RIV::IsIpv4Valid($ipAddress)

Parameters
$ipAddress

Specifies the IP address that must be checked for validity.

Chapter 10. RIV Modules Reference 183

Description
The RIV::IsIpv4Valid function returns true if the address passed to the $ipAddress parameter is a
valid IPv4 address. More specifically, the function checks that the IP address is of the form a.b.c.d and
that each number in the IP address (a, b, c, d) is less than 256.

Example Usage

$result = RIV::IsIpv4Valid($ipAddress);

Returns
Upon completion, the RIV::IsIpv4Valid function returns:

• 0 (zero) — The IP address is not valid.
• 1 — The IP address is valid.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212
• “RIV::IsIpValid” on page 183
• “RIV::IsIpv6Valid” on page 184
• “RIV::RivDebug” on page 185

RIV::IsIpv6Valid
The RIV::IsIpv6Valid function returns true if the address parameter is a valid IPv6 address.

Synopsis

RIV::IsIpv6Valid($ipAddress)

Parameters
$ipAddress

Specifies the IP address that must be checked for validity.

Description
The RIV::IsIpv6Valid function returns true if the address passed to the $ipAddress parameter is a
valid IPv6 address. More specifically, the function checks that the IP address is of the standard forms as
defined in RFC429.

Example Usage

$result = RIV::IsIpv6Valid($ipAddress);

Returns
Upon completion, the RIV::IsIpv6Valid function returns:

• 0 (zero) — The IP address is not valid.
• 1 — The IP address is valid.

184 IBM Tivoli Network Manager IP Edition: Reference

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212
• “RIV::IsIpValid” on page 183
• “RIV::IsIpv4Valid” on page 183
• “RIV::RivDebug” on page 185

RIV::ReadDir
The RIV::ReadDir function returns a reference to an array of filenames that reside in the specified
directory.

Synopsis

RIV::ReadDir($dirName)

Parameters
$dirName

Specifies the name of the directory to read.

Description
The RIV::ReadDir function returns a reference to an array of filenames that reside in the directory
specified in the $dirName parameter. The RIV::ReadDir function provides the same functionality as the
standard Perl readdir function. The RIV::ReadDir function is supplied to accommodate known issues
when trying to use readdir with ncp_perl on some Linux® platforms.

Example Usage

$fileListArrayRef = RIV::ReadDir($dirName);

Returns
Upon completion, the RIV::ReadDir function returns a reference to an array of filenames that reside in
the directory specified in the $dirName parameter.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212

RIV::RivDebug
The RIV::RivDebug function prints a list of debug message strings to the standard output.

Synopsis

RIV::RivDebug($lvl,@debugMessageStrings)

Parameters
$lvl

Specifies the debug level. Specify a value of 1-4, where 4 represents the most detailed output.

Chapter 10. RIV Modules Reference 185

@debugMessageStrings
Specifies the strings to be printed when the debug level is set.

Description
The RIV::RivDebug function prints the space-concatenated list of strings from the
@debugMessageStrings parameter to the standard output if the value of the $RIV::DebugLevel global
variable is equal to, or greater than, the value specified in the $lvl parameter.

Example Usage

RIV::RivDebug(4, "my debug message here");

Returns
Upon completion, the RIV::RivDebug function returns no records or values.

See Also
• “DebugLevel” on page 169

RIV::RivError
The RIV::RivError function provides a convenient way to display error messages.

Synopsis

RIV::RivError($class, @errorMessageStrings)

Parameters
$class

Specifies the name of the calling Perl API module (for example, RIV::App).
@errorMessageStrings

Specifies the error message string to be printed when an error occurs.

Description
The RIV::RivError function prints the error messages tagged with the name of the calling class
(RIV::*) and will integrate with the forthcoming trace package.

Example Usage

RIV::RivError("RIV::App", "An error has occurred");

Returns
Upon completion, the RIV::RivError function returns no records or values.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212
• “RIV::RivDebug” on page 185

186 IBM Tivoli Network Manager IP Edition: Reference

RIV::RivMessage
The RIV::RivMessage function prints a list of log message strings to the standard output.

Synopsis

RIV::RivMessage($msglvl,@messageLevelStrings)

Parameters
$msglvl

Specifies the level of messages to be logged (the default is warn):

• debug
• info
• warn
• error
• fatal

@messageLevelStrings
Specifies the strings to be printed when the logging level is set.

Description
The RIV::RivMessage function prints the space-concatenated list of strings from the
@messageLevelStrings parameter to the standard output if the value of the $RIV::MessageLevel global
variable is equal to, or greater than, the value specified in the $msglvl parameter.

Example Usage

RIV::RivMessage("warn", "my messagelevel message here");

Returns
Upon completion, the RIV::RivMessage function returns no records or values.

See Also
• “MessageLevel” on page 171

RIV::Agent module reference
The RIV::Agent module enables developers to implement Network Manager discovery agents.

The RIV::Agent module provides a constructor and the following categories of methods:

• SNMP operation methods
• DNS operation methods
• Ping operation methods
• IP and MAC address operation methods
• Telnet operation methods
• Network entity operation methods
• Threads methods
• Collector communication operation methods (also referred to as XML-RPC operation methods)

Chapter 10. RIV Modules Reference 187

RIV::Agent module synopsis
The RIV::Agent module synopsis provides summary synopses of the constructor and methods that
discovery agents use.

Load the RIV::Agent module
use RIV::Agent;

Call the RIV::Agent constructor and return a RIV::Agent object
$agent = RIV::Agent::new($param, $agentName);

Call the SNMP operation methods
$varOp = $agent->SnmpGet($ne, $oid, $instance, $communitySuffix);
$varOpArray = $agent->SnmpGetNext($ne, $oid, $instance, $communitySuffix);
$varOpArray = $agent->SnmpGetBulk($ne, $oidList, $nonRepeaters,
 $maxRepeaters, $communitySuffix);

Call the DNS operation methods
$refAllIpAddrs = $agent->GetDNSAllIpAddrs($name);
$refAllNames = $agent->GetDNSAllNames($ipAddress);
$ip = $agent->GetDNSFirstIpAddr($name);
$name = $agent->GetDNSFirstName($ipAddress);

Call the IP and MAC address operation methods
$ip = $agent->GetIpArp($macAddress);
$mac = $agent->GetMacArp($ipAddress);
$routelist = $agent->GetTraceRoute($ipAddress, $protocol);

Call the ping operation methods
$reply = $agent->GetPingIP($ipAddress, $protocol);
$replylist = $agent->GetPingList($ipAddressList, $protocol);
$reply = $agent->GetPingSubnet($subnet, $netMask, $protocol);
$agent->PingIP($ipAddress, $protocol);
$agent->PingList($ipAddressList, $protocol);
$agent->PingSubnet($subnet, $netMask, $protocol);

Call the Telnet operation methods
$telarray = $agent->GetMultTelnet($ne, $commandList);
$teldata = $agent->GetTelnet($ne, $command, $regExp);
$teldata = $agent->GetTelnetCols($ne, $command, $regExpList, $colNameList);
$telData = $agent->ExtGetTelnet($ne, $commandList, $accessCredentials);
Call the Collector communication operation methods

Call an XML-RPC Collector method
$xmlResponse = $agent->GetXMLRPCData($host, $port, "GetDeviceInfo",
$idAgr, $deviceIdArg);
or ..
$xmlResponse = $agent->GetXMLRPCEntityData($ne, "GetDeviceInfo", $idAgr,
$deviceIdArg);

Call the Network Entity operation methods
$agent->SendNEToDisco($NE);
$agent->SendNEToNextPhase($NE);

Call the threads operation methods
$agent->LockThreads();
$agent->UnLockThreads();

RIV::Agent Constructor
The RIV::Agent constructor creates a Network Manager discovery agent with the specified name.

Constructor

new($param, $agentName)

Parameters
$param

Specifies a RIV::Param object that was returned in a previous call to the RIV::Param constructor.

188 IBM Tivoli Network Manager IP Edition: Reference

$agentName
Specifies a string that identifies the name of the discovery agent to be created in the domain specified
by the RIV::Param object passed to the $param parameter.

Description
The RIV::Agent constructor creates a Network Manager discovery agent with an agent name as
specified in the $agentName parameter. This agent name resides in the domain as specified by the
$param parameter (that is, a RIV::Param object).

The RIV::Agent constructor uses the Transmission Control Protocol (TCP) to establish the necessary
connections to the Discovery Server and Helper Server. To ensure that the databases for the discovery
agent are created inside the Discovery Server, the $agentName.agnt file must be defined in the
$NCHOME/disco/agents directory before the Discovery Engine executable, ncp_disco, is started.

Example Usage
The following example:

• Calls the RIV::Param constructor and stores the return value (a RIV::Param object) in the $param
variable.

• Calls the RIV::Agent constructor and specifies a discovery agent name of foo_perl_disco_agent.
• Stores the return value (a RIV::Agent object) in the $agent variable.

$param = new RIV::Param();
$agent = new RIV::Agent($param, "foo_perl_disco_agent");

Returns
Upon completion, the RIV::Agent constructor returns a RIV::Agent object. This object is associated
with the discovery agent specified in the $agentName parameter.

ExtGetTelnet
The ExtGetTelnet method is used to gather device data via telnet, rather than SNMP.

Method Synopsis
ExtGetTelnet($ne, $commandList, $accessCredentials)

Parameters
$ne

The device to issue the command on.
$commandList

An array of hashes that contain the extended commands.
$accessCredentials

An optional hash that contains the access credentials.

Description
The ExtGetTelnet method is used to gather device data via telnet, rather than SNMP.

Notes
The GetTelnet method issues the appropriate Telnet request to the Helper Server, which performs the
actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate Telnet request.

Chapter 10. RIV Modules Reference 189

Example Usage
The following example;

• Assumes a previous call to the RIV::Agent constructor, which returns a RIV::Agent object
that is represented by $agent->.

• $host specifies the device to issue the command on.
• $command specifies the commands to run.
• $accessCredential specifies the access credentials.
• Returns a hash that contains the results of the telnet command.
• Calls the Dumper method to print the results to standard output.

my $host = { "m_IpAddress" => "172.20.1.5",
 "m_ObjectId" => "1.3.6.1.4.1.9.1.222",
 "m_ResponseTime" => 1000 };
my $commands = [{"m_Command" => "show clock"}];
my $accessCredentials = { "m_Username" => "user",
 "m_Password" => "password",
 "m_SSHSupport" => 1 };

my $result = $agent->ExtGetTelnet($host, $commands, $accessCredentials);

print Dumper($result);

Returns
Upon completion of the ExtGetTelnet method, an array of hashes from each telnet response is
returned.

GetDNSAllIpAddrs
The GetDNSAllIpAddrs method returns all IP addresses corresponding to a particular node name.

Method Synopsis

GetDNSAllIpAddrs($name)

Parameters
$name

Specifies the name of the node whose corresponding IP addresses are of interest.

Description
The GetDNSAllIpAddrs method returns all IP addresses corresponding to the node name specified in
the $name parameter.

Notes
The GetDNSAllIpAddrs method issues the appropriate DNS request to the Helper Server, which
performs the actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can
make the appropriate DNS request.

Example Usage
The following example:

• Assumes a previous call to the RIV::Agent constructor, which returns a RIV::Agent object
(represented by $agent->).

190 IBM Tivoli Network Manager IP Edition: Reference

• Returns to the $refAllIpAddrs variable a reference to an array that contains all IP addresses
corresponding to the node called foo.

• Calls the print operator to send each IP address in the list to standard output.

$refAllIpAddrs = $agent->GetDNSAllIpAddrs("foo");
print @$refAllIpAddrs;

Returns
Upon completion, the GetDNSAllIpAddrs method returns a reference to an array of IP addresses
corresponding to the specified node name.

GetDNSAllNames
The GetDNSAllNames method returns all node names corresponding to a specific IP address.

Method Synopsis

GetDNSAllNames($ipAddress)

Parameters
$ipAddress

Specifies the IP address whose corresponding node names are of interest.

Description
The GetDNSAllNames method returns all node names corresponding to the IP address specified in the
$ipAddress parameter. by issuing a DNS request to the Helper Server.

Notes
The GetDNSAllNames method issues the appropriate DNS request to the Helper Server, which performs
the actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate DNS request.

Example Usage
The following example:

• Assumes a previous call to the RIV::Agent constructor, which returns a RIV::Agent object
(represented by $agent->).

• Returns to the $refAllNames variable a reference to an array that contains all node names
corresponding to the IP address 1.2.3.4.

• Calls the print operator to send each node name in the list to standard output.

$refAllNames = $agent->GetDNSAllNames("1.2.3.4");
print @$refAllNames;

Returns
Upon completion, the GetDNSAllNames method returns a reference to an array of names corresponding
to a specific IP address.

Chapter 10. RIV Modules Reference 191

GetDNSFirstIpAddr
The GetDNSFirstIpAddr method returns the first IP address in the list of IP addresses for the specified
node.

Method Synopsis

GetDNSFirstIpAddr($name)

Parameters
$name

Specifies the name of the node whose first IP address in the corresponding list of IP addresses is of
interest.

Description
The GetDNSFirstIpAddr method returns the first IP address in the list of IP addresses corresponding
to the node specified in the $name parameter.

Notes
The GetDNSFirstIpAddr method issues the appropriate DNS request to the Helper Server, which
performs the actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can
make the appropriate DNS request.

Example Usage
The following example:

• Assumes a previous call to the RIV::Agent constructor, which returns a RIV::Agent object
(represented by $agent->).

• Returns to the $ip variable the first IP address in the list of IP addresses corresponding to the node
called foo.

$ip = $agent->GetDNSFirstIpAddr("foo");

Returns
Upon completion, the GetDNSFirstIpAddr method returns the first IP address in the list of IP
addresses for the specified node. This IP address is a scalar value.

GetDNSFirstName
The GetDNSFirstName method returns the first node name in the list of node names for the specified IP
address.

Method Synopsis

GetDNSFirstName($ipAddress)

Parameters
$ipAddress

Specifies the IP address whose first node name in the corresponding list of node names is of interest.

192 IBM Tivoli Network Manager IP Edition: Reference

Description
The GetDNSFirstName method returns the first node name in the list of node names corresponding to
the IP address specified in the $ipAddress parameter.

Notes
The GetDNSFirstName method issues the appropriate DNS request to the Helper Server, which
performs the actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can
make the appropriate DNS request.

Example Usage
The following example:

• Assumes a previous call to the RIV::Agent constructor, which returns a RIV::Agent object
(represented by $agent->).

• Returns to the $name variable the first node name in the list of node names corresponding to the IP
address 1.2.3.1.

$name = $agent->GetDNSFirstName("1.2.3.1");

Returns
Upon completion, the GetDNSFirstName method returns the first node name in the list of node names
for the specified IP address. This node name is a scalar value.

GetIpArp
The GetIpArp method converts the specified MAC address to its corresponding IP address.

Method Synopsis

GetIpArp($macAddress)

Parameters
$macAddress

Specifies the MAC address to be converted to its corresponding IP address.

Description
The GetIpArp method converts the MAC address specified in the macAddress parameter to its
corresponding IP address.

Notes
The GetIpArp method issues the appropriate ARP request to the Helper Server, which performs the
actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate ARP request.

Example Usage
The following example:

• Assumes a previous call to the RIV::Agent constructor, which returns a RIV::Agent object
(represented by $agent->).

• Returns to the $ip variable the IP address corresponding to the MAC address 00-0C-F1-56-98-AD.

Chapter 10. RIV Modules Reference 193

$ip = $agent->GetIpArp("00-0C-F1-56-98-AD");

Returns
Upon completion, the GetIpArp method returns the IP address corresponding to the specified MAC
address.

GetMacArp
The GetMacArp method converts the specified IP address to a MAC address.

Method Synopsis

GetMacArp($ipAddress)

Parameters
$ipAddress

Specifies the IP address to be converted to an associated MAC address.

Description
The GetMacArp method converts the IP address specified in the ipAddress parameter to an associated
MAC address.

Notes
The GetMacArp method issues the appropriate ARP request to the Helper Server, which performs the
actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate ARP request.

Example Usage
The following example:

• Assumes a previous call to the RIV::Agent constructor, which returns a RIV::Agent object
(represented by $agent->).

• Returns to the $macAddress variable the MAC address corresponding to the IP address 1.2.3.1.

$macAddress = $agent->GetMacArp("1.2.3.1");

Returns
Upon completion, the GetMacArp method returns the MAC address corresponding to the specified IP
address.

GetMultTelnet
The GetMultTelnet method initiates a Telnet session on the specified network device and then
executes the specified Telnet commands on that network device.

Method Synopsis

GetMultTelnet($ne, $commandList)

194 IBM Tivoli Network Manager IP Edition: Reference

Parameters
$ne

Specifies a reference to the network entity, in this case the network device on which to execute the
Telnet commands specified in the $commandList parameter.

$commandList
Specifies an array that contains the Telnet commands to execute on the network device specified in
the $ne parameter.

Description
The GetMultTelnet method initiates a Telnet session on the network device specified in the $ne
parameter. It then executes the Telnet commands specified in the $commandList parameter on that
network device.

Notes
The GetMultTelnet method issues the appropriate Telnet request to the Helper Server, which performs
the actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate Telnet request.

Returns
Upon completion, the GetMultTelnet method returns an array of data corresponding to each Telnet
command executed during the Telnet session.

GetPingIP
The GetPingIP method issues a ping at the specified IP address to determine if a network device exists
at that address.

Method Synopsis

GetPingIP($ipAddress [, $protocol])

Parameters
$ipAddress

Specifies the IP address to be pinged.
$protocol

Specifies an optional parameter that identifies the IP protocol. You can specify one of the following
values:

• 1 — Specifies Internet Protocol version 4 (IPv4).
• 3 — Specifies Internet Protocol version 6 (IPv6).

Description
The GetPingIP method pings the IP address specified in the ipAddress parameter. A network device that
exists at the specified IP address will respond to this ping request.

Notes
The GetPingIP method issues the appropriate ping request to the Helper Server, which performs the
actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate ping request.

Chapter 10. RIV Modules Reference 195

Example Usage
The following example:

• Assumes a previous call to the RIV::Agent constructor, which returns a RIV::Agent object
(represented by $agent->).

• Returns to the $device_exists variable a value of 0 (zero) or 1.

$device_exists = $agent->GetPingIP("1.2.3.1");

Returns
Upon completion, the GetPingIP method returns one of the following values:

• 0 (zero) — There is no network device at the specified IP.
• 1 — There is a network device at the specified IP address.

GetPingList
The GetPingList method issues a ping at the specified list of IP addresses to determine if network
devices exist at those addresses.

Method Synopsis

GetPingList($ipAddressList [, $protocol])

Parameters
$ipAddressList

Specifies the list of IP addresses to be pinged.
$protocol

Specifies an optional parameter that identifies the IP protocol. You can specify one of the following
values:

• 1 — Specifies Internet Protocol version 4 (IPv4).
• 3 — Specifies Internet Protocol version 6 (IPv6).

Description
The GetPingList method pings the list of IP addresses specified in the ipAddressList parameter.
Network devices that exist at the specified IP addresses will respond to this ping request.

Notes
The GetPingList method issues the appropriate ping request to the Helper Server, which performs the
actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate ping request.

Returns
Upon completion, the GetPingList method returns a list that identifies whether the network devices
exist at the specified IP addresses. The following values are specified in the list:

• 0 (zero) — There is no network device at the specified IP.
• 1 — There is a network device at the specified IP address.

196 IBM Tivoli Network Manager IP Edition: Reference

GetPingSubnet
The GetPingSubnet method pings the specified subnet and returns whether a reply was received.
issues a ping at the specified subnet to determine if one or more network devices exist at that subnet.

Method Synopsis

GetPingSubnet($subnet, $netMask [, $protocol])

Parameters
$subnet

Specifies the IP address of the subnet to be pinged. Typically, subnets are defined as all devices
whose IP addresses have the same prefix. Thus, all devices with IP addresses that start with 1.1.1
would be part of the same subnet.

$netmask
Specifies the mask used to determine the subnet to which an IP address belongs.

$protocol
Specifies an optional parameter that identifies the IP protocol. You can specify one of the following
values:

• 1 — Specifies Internet Protocol version 4 (IPv4).
• 3 — Specifies Internet Protocol version 6 (IPv6).

Description
The GetPingSubnet method pings the subnet specified in the subnet parameter Network devices that
exist at the specified subnet will respond to this ping request.

Notes
The GetPingSubnet method issues the appropriate ping request to the Helper Server, which performs
the actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate ping request.

Returns
Upon completion, the GetPingSubnet method returns a list that identifies whether the network devices
exist at the specified subnet. The following values are specified in the list:

• 0 (zero) — There is no network device at the specified IP.
• 1 — There is a network device at the specified IP address.

GetTelnet
The GetTelnet method initiates a Telnet session on the specified network device and executes the
specified Telnet command on that network device.

Method Synopsis

GetTelnet($ne, $command, $regExp)

Chapter 10. RIV Modules Reference 197

Parameters
$ne

Specifies a reference to the network entity, in this case the network device on which to execute the
Telnet command specified in the $command parameter.

$command
Specifies the Telnet command to execute on the network device specified in the $ne parameter.

$regExp
Specifies the regular expression to apply to the response of the Telnet command specified in the
$command parameter.

Description
The GetTelnet method initiates a Telnet session on the network device specified in the $ne parameter.
The GetTelnet method then executes the Telnet command specified in the $command parameter on
that network device.

Notes
The GetTelnet method issues the appropriate Telnet request to the Helper Server, which performs the
actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate Telnet request.

Returns
Upon completion, the GetTelnet method returns the data corresponding to the Telnet command
executed during the Telnet session. This data must meet the regular expression supplied in the $regExp
parameter.

GetTelnetCols
The GetTelnetCols method initiates a Telnet session on the specified network device and executes the
specified Telnet command on that network device.

Method Synopsis

GetTelnetCols($ne, $command, $regExpList, $colNameList)

Parameters
$ne

Specifies a reference to the network entity, in this case the network device on which to execute the
Telnet command specified in the $command parameter.

$command
Specifies the Telnet command to execute on the network device specified in the $ne parameter.

$regExpList
Specifies an array of regular expressions to apply to the response of the Telnet command specified in
the $command parameter.

$colNameList
Specifies an array of table columns.

Description
The GetTelnetCols method:

198 IBM Tivoli Network Manager IP Edition: Reference

• Initiates a Telnet session on the network device specified in the $ne parameter by issuing a Telnet
request through the Helper Server.

• Executes the Telnet command specified in the $command parameter on that network device.
• Splits data into columns based on the regular expression specified in the $regExpList parameter. This

method is particularly suited to responses to Telnet commands that consist of tables.

Notes
The GetTelnetCols method issues the appropriate Telnet request to the Helper Server, which performs
the actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate Telnet request.

Returns
Upon completion, the GetTelnetCols method returns the data corresponding to the Telnet command
executed during the Telnet session. This data must meet the regular expression supplied in the $regExp
parameter.

GetTraceRoute
The GetTraceRoute method traces a route to the specified destination IP address and returns the
network devices that reside on that route.

Method Synopsis

GetTraceRoute($ipAddress [, $protocol])

Parameters
$ipAddress

Specifies the destination IP address whose route is to be traced.
$protocol

Specifies an optional parameter that identifies the IP protocol. You can specify one of the following
values:

• 1 — Specifies Internet Protocol version 4 (IPv4).
• 3 — Specifies Internet Protocol version 6 (IPv6).

Description
The GetTraceRoute method traces a route to the destination IP address specified in the ipAddress
parameter. Network devices that exist at the IP addresses on the route will respond to ping requests.

Notes
The GetTraceRoute method issues the appropriate ping request to the Helper Server, which performs
the actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate ping request.

Returns
Upon completion, the GetTraceRoute method returns a list of the devices that reside at IP addresses on
the route ending with the destination address specified in the $ipAddress parameter.

Chapter 10. RIV Modules Reference 199

GetXMLRPCData
The GetXMLRPCData method issues an XML-RPC call, through the XML-RPC Helper, on the specified
method to the specified host and port.

Method Synopsis

GetXMLRPCData($host, $port, $method, $methodArgArray)

Parameters
$host

Specifies the host address of the target device supporting XML-RPC calls.
$port

Specifies the port of the target device to which XML-RPC calls should be made.
$method

Specifies the XML-RPC method to call on the target device.
$methodArgArray

Holds the relevant arguments to the selected XML-RPC method call specified in the $method
parameter.

Description
The GetXMLRPCData method uses the XML-RPC Helper to perform the XML-RPC call specified in the
$method parameter on the target device specified in the $host and $port parameters. The call can be a
custom call or one of the calls defined in the published Network Manager Collector XML Schema.

Notes
The GetXMLRPCData method issues the request to the Helper Server, which performs the actual work.
Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the appropriate
XML-RPC request.

Returns
Upon completion, the GetXMLRPCData method returns the XML data with which the target device
responded. It is the responsibility of the caller to interpret this XML data.

GetXMLRPCEntityData
The GetXMLRPCEntityData method issues an XML-RPC call, through the XML-RPC Helper, on the
specified method. The Collector contacted will be that referenced in the supplied standard entity record
(that is, the .despatch record).

Method Synopsis

GetXMLRPCEntityData($ne, $method, $methodArgArray)

Parameters
$ne

Specifies a reference to the network entity record as received in the .despatch table of the Collector
supporting Agents. The target device’s host address and port will be extracted from the data
m_CollectorInfo within this record.

200 IBM Tivoli Network Manager IP Edition: Reference

$method
Specifies the XML-RPC method to call on the target device.

$methodArgArray
Holds the relevant arguments to the selected XML-RPC method call specified in the $method
parameter.

Description
The GetXMLRPCEntityData method uses the XML-RPC Helper to perform the XML-RPC call specified in
the $method parameter on the target device specified in the $ne parameter. The call can be a custom call
or one of the calls defined in the published Network Manager Collector XML Schema.

Notes
The GetXMLRPCEntityData method issues the request to the Helper Server, which performs the actual
work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate XML-RPC request.

Returns
Upon completion, the GetXMLRPCEntityData method returns the XML data with which the target
device responded. It is the responsibility of the caller to interpret this XML data.

LockThreads
The LockThreads method acquires a lock that only a single agent thread may hold at any given time.

Method Synopsis

LockThreads()

Parameters
None

Description
The LockThreads method provides a way for a discovery agent to acquire a lock that only a single agent
thread may hold at any given time. This means that the code within the locked section is serialized. You
should release the lock by calling the UnLockThreads method.

Example Usage
The following example shows a call to the LockThreads method followed by a call to the
UnLockThreads method to release the lock. The example assumes a previous call to the RIV::Agent
constructor, which returns a RIV::Agent object (represented by $agent->).

$agent->LockThreads();

 #
 # Serialised code goes here
 #

 $agent->UnLockThreads();

Returns
Upon completion, the LockThreads method does not return any values.

Chapter 10. RIV Modules Reference 201

PingIP
The PingIP method pings the specified IP address.

Method Synopsis

PingIP($ipAddress [, $protocol])

Parameters
$ipAddress

Specifies the IP address to be pinged.
$protocol

Specifies an optional parameter that identifies the IP protocol. You can specify one of the following
values:

• 1 — Specifies Internet Protocol version 4 (IPv4).
• 3 — Specifies Internet Protocol version 6 (IPv6).

Description
The PingIP method pings the IP address specified in the ipAddress parameter. The method returns
without waiting for a response from the network device at that address.

Notes
The PingIP method issues the appropriate ping request to the Helper Server, which performs the actual
work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate ping request.

Returns
Upon completion, the PingIP method returns the value 1 to indicate that it successfully pinged the
device at the specified address. Otherwise, it returns the value 0 (zero).

PingList
The PingList method pings the specified list of IP addresses.

Method Synopsis

PingList($ipAddressList [, $protocol])

Parameters
$ipAddressList

Specifies the list of IP addresses to be pinged.
$protocol

Specifies an optional parameter that identifies the IP protocol. You can specify one of the following
values:

• 1 — Specifies Internet Protocol version 4 (IPv4).
• 3 — Specifies Internet Protocol version 6 (IPv6).

202 IBM Tivoli Network Manager IP Edition: Reference

Description
The PingList method pings the list of IP addresses specified in the ipAddressList parameter. The
method returns without waiting for responses from the network devices at the list of addresses.

Notes
The PingList method issues the appropriate ping request to the Helper Server, which performs the
actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate ping request.

Returns
Upon completion, the PingList method returns the value 1 to indicate that it successfully pinged the
devices at the specified addresses. Otherwise, it returns the value 0 (zero).

PingSubnet
The PingSubnet method pings the specified subnet.

Method Synopsis

PingSubnet($subnet, $netMask [, $protocol])

Parameters
$subnet

Specifies the IP address of the subnet to be pinged. Typically, subnets are defined as all devices
whose IP addresses have the same prefix. Thus, all devices with IP addresses that start with 1.1.1
would be part of the same subnet.

$netmask
Specifies the mask used to determine the subnet to which an IP address belongs.

$protocol
Specifies an optional parameter that identifies the IP protocol. You can specify one of the following
values:

• 1 — Specifies Internet Protocol version 4 (IPv4).
• 3 — Specifies Internet Protocol version 6 (IPv6).

Description
The PingSubnet method pings the subnet specified in the subnet parameter. The method returns
without waiting for responses from the network devices that reside on the specified subnet.

Notes
The PingSubnet method issues the appropriate ping request to the Helper Server, which performs the
actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate ping request.

Returns
Upon completion, the PingSubnet method returns the value 1 to indicate that it successfully pinged the
devices at the specified subnet. Otherwise, it returns the value 0 (zero).

Chapter 10. RIV Modules Reference 203

SendNEToDisco
The SendNeToDisco method sends a processed RIV::Record to the returns table of the particular
Agent database in DISCO.

Method Synopsis

SendNEToDisco($entity, $lastRecTag)

Parameters
$entity

Specifies a reference to a hash list that contains the definition of the record to be sent to DISCO. For
convenience, the RIV::Record module is such a hash list that provides nested structures for
representing local and remote neighbors.

$lastRecTag
Specifies the record for the network entity according to the following values:

• 0 (zero) — Indicates that more records for this network entity are to follow.
• 1 — Indicates the last record for this network.

Note: If you use RIV::Record module objects, this parameter is ignored.

Description
The SendNEToDISCO method sends a processed $entity record object to the returns table of the
particular Agent database in DISCO. Typically, the $entity parameter is a RIV::Record module object
that contains information about local and remote neighbors.

Example Usage

$TestNE=new RIV::Record($data);
..
..
..
$agent->SendNEToDisco($TestNE,0);

Returns
None

SendNEToNextPhase
The SendNEToNextPhase method is called by discovery agents that accept data during multiple phases
of a network discovery operation. These "multi-phased" discovery agents call SendNEToNextPhase
when any data processing for a given phase (for example, phase 1) has been completed.

Method Synopsis

RIV::Agent::SendNEToNextPhase($entity)

Parameters
$entity

Specifies the network entity to be processed and then marked as having been processed for a specific
discovery phase.

204 IBM Tivoli Network Manager IP Edition: Reference

Description
The SendNEToNextPhase method marks the network entity specified in the $entity parameter as having
completed processing in the current discovery phase, and it puts the network entity back on the Agent
queue ready for processing in the next discovery phase.

Each discovery agent maintains an Agent queue that contains network entities sent to it from the DISCO
process. A typical discovery agent processes the network entities on its Agent queue and then calls the
SendNEToDisco method to return the processed network entity to the DISCO process.

Unlike a typical discovery agent, a multi-phased discovery agent must allow for the fact that each
discovery phase can be hours apart. Therefore, a multi-phased discovery agent must make multiple calls
to the SendNEToNextPhase method to put the network entity back on the Agent queue and mark it as
ready for processing in the next discovery phase. Once it completes processing of the network entity, the
multi-phased discovery agent calls the SendNEToDisco method to send the data back to the DISCO
process.

The following is the basic flow for a multi-phased discovery agent:

• The DISCO process sends a record (network entity) that provides details about a device that this phased
discovery agent can process.

• The multi-phased discovery agent receives this record.
• When free, the multi-phased discovery agent starts processing the record in discovery phase 1. When

processing is complete in discovery phase 1, the multi-phased discovery agent calls
SendNEToNextPhase to put the record back on the Agent queue and mark it as ready for processing in
the next discovery phase.

During any of the discovery phases, a multi-phased agent may also be sending multiple data requests to
the Helper Server through the GetSnmp and GetTelnet methods that the RIV::Agent module
provides.

• When the phase changes, the DISCO process sends out a broadcast indicating that it is proceeding to
the next phase (for example, discovery phase 2). When free, the multi-phased discovery agent starts
processing the record marked ready for processing in discovery phase 1. When processing is complete
in discovery phase 2, the discovery agent calls SendNEToNextPhase to put the record back on the
Agent queue and mark it as ready for processing in the next discovery phase.

• When the phase changes, the DISCO process sends out a broadcast indicating that it is proceeding to
the next phase (for example, discovery phase 3). When free, the multi-phased discovery agent
completes processing of the record marked ready for processing in discovery phase 2 and calls
SendNEToDisco to send all of the data back to the DISCO process.

Notes
You invoke the SendNEToNextPhase method on the RIV::Agent object returned in a previous call to
the RIV::Agent constructor. For example:

.

.

.
my $agent;
my $agentName = "CiscoSwitchInPerl";
.
.
.
$agent=new RIV::Agent($param, $agentName);
$agent->SendNEToNextPhase($TestNE);
.
.
.

Chapter 10. RIV Modules Reference 205

Example Usage
The example that illustrates calls to the SendNEToNextPhase and SendNEToDisco methods is divided
into the following sections:

• Create a new multi-phased agent
• Setup for discovery phase-dependent processing
• Setup for discovery phase 1 processing
• Setup for discovery phase 2 processing
• Setup for discovery phase 3 processing

Create a new multi-phased agent

.

.

.
my $agent;
my $agentName = "CiscoSwitchInPerl";

sub Init{
 my $param=new RIV::Param();
 $agent=new RIV::Agent($param, $agentName);
}
.
.
.

The previous code:

• Declares two variables. The $agent variable stores the discovery agent application session object
identifier returned by the RIV::Agent constructor. The $agentName variable stores the name of the
agent, which in this example is CiscoSwitchInPerl.

• The call to the RIV::Param constructor returns an object of type RIV::Param to the $param variable.
• The call to the RIV::Agent constructor takes two parameters: the RIV::Param object ($param) and

the name of the agent ($agentName). The RIV::Agent constructor returns an agent session object for
use in the subsequent call to the SendNEToNextPhase method.

Setup for discovery phase-dependent processing

The following code shows the setup for phase-dependent processing:

sub ProcessPhase($){
 my $phaseNumber = shift;

 if($RIV::DebugLevel >= 1)
 {
 print "Phase number is $phaseNumber\n";
 }
}

Setup for discovery phase 1 processing

The following code shows the setup for phase 1 processing, including the call to the
SendNEToNextPhase method and calls to the SnmpGetNext method. Note that the calls to the
SendNEToNextPhase and SnmpGetNext methods are made through the agent session object ($agent)
returned in the previous call to the RIV::Agent constructor. The SendNEToNextPhase method:

• Marks the network entity ($TestNE) as having been processed for phase 1.
• Puts this network entity on the CiscoSwitchInPerl agent queue ready for phase 2 processing.

sub ProcessPhase1($){
 my $TestNE = shift;
.
.
.
BuildVlanData($TestNE);
 my $refVlanIfIndex=$agent->SnmpGetNext($TestNE,'vlanIfIndex');

206 IBM Tivoli Network Manager IP Edition: Reference

BuildCardPortToIfIndexData($TestNE);

 my $refLphysAddress=$agent->SnmpGetNext($TestNE,'ifPhysAddress');
.
.
.
$agent->SendNEToNextPhase($TestNE);
}

Setup for discovery phase 2 processing

A second call to the SendNEToNextPhase method causes the network entity to be marked as having
been processed for phase 2 and to be added to the CiscoSwitchInPerl agent queue ready for phase 2
processing.

sub ProcessPhase2($){
 my $TestNE = shift;
.
.
.
$agent->SendNEToNextPhase($TestNE);
}

Setup for discovery phase 3 processing

The following code sets up discovery phase 3 processing: Finally, the multi-phased discovery agenta third
call to the SendNEToNextPhase method causes the network entity to be marked as having been
processed for phase 3 and that it need not be added to the CiscoSwitchInPerl agent queue because
there is no additional phase processing required. This multi-phased agent also sends back to the DISCO
process the SendNEToNextPhase record set to the value 1 to indicate the final tokenA second
parameter to the SendNEToNextPhase method, the value 0 (zero), signifies to the DISCO process that
this is the last record token and no additional phase processing is required.

sub ProcessPhase3($){
 my $TestNE = shift;
.
.
.
$TestNE->{'m_LastRecord'}=1;
.
.
.
$agent->SendNEToDisco($TestNE,0);
}

The CiscoSwitchInPerl discovery agent sends back the data associated with this network entity.
Because there is no further processing required for this network entity, the CiscoSwitchInPerl
discovery agent:

• Sets the m_LastRecord to the value 1 to indicate the final token and to let the DISCO process know
that processing is complete for this network entity.

• Passes the value 0 (zero) as the second parameter in the call to SendNEToDisco. A multi-phased agent
receives a single network entity, but it may return to the DISCO process several records (one for each
local neighbor entry and one for each remote neighbor entry). The DISCO process determines that the
multi-phased discovery agent has finished processing a network entity when the value 0 is specified in
the call to SendNEToDisco to indicate the last record token.

Returns
Upon completion, the SendNEToNextPhase method returns no value.

See also
• “RIV::Agent Constructor” on page 188
• “SendNEToDisco” on page 204

Chapter 10. RIV Modules Reference 207

SnmpGet
The SnmpGet method retrieves the appropriate SNMP information from the Helper Server.

Method Synopsis

SnmpGet($ne, $oid [,$instance, $communitySuffix])

Parameters
$ne

Specifies a reference to the network entity. Typically, this network entity is a RIV::Record object.
$oid

Specifies a MIB variable (for example, ifIndex).
$instance

Specifies the instance of the MIB variable. This is an optional parameter.
$communitySuffix

Specifies the suffix to the community string. This is an optional parameter.

Description
The SnmpGet method retrieves the specified SNMP information for the network entity specified in the $ne
parameter.

Notes
The SnmpGet method issues the appropriate SNMP request to the Helper Server, which performs the
actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate SNMP request.

Example Usage

$varOp = $agent->SnmpGet($NE, 'sysDescr');
print "$varop->{ASN1}", "$varop->{VALUE}", "\n";

Returns
Upon completion, the SnmpGet method returns a varop that contains two key value pairs. The keys are
ASN1 and value. The ASN1 value is the index value after the OID corresponding to the MIB variable is
removed. It is a single number for MIB variables indexed on a single key and a dot notation for MIB
variables indexed by multiple keys.

Note: The ASN1 value obtained using the RIV::SnmpAccess module is the complete OID that needs to
be split, whereas the ASN1 value returned by the Helper Server is only the index part.

SnmpGetBulk
The SnmpGetBulk method retrieves SNMP GETBULK information from the Helper Server.

Method Synopsis

SnmpGetBulk($ne, $oidList, $nonRepeaters,maxRepeaters [,$communitySuffix])

208 IBM Tivoli Network Manager IP Edition: Reference

Parameters
$ne

Specifies a reference to the network entity. Typically, this network entity is a RIV::Record object.
$oidList

Specifies a reference to an array of MIB variables. For example:

@oids=('sysDescr','sysContact','sysUpTime','ipInReceives',
'ipOutRequests','ipOutDiscards','ipForwDatagrams',
'tcpCurrEstab', 'ifDescr');
$oidList = \@oids;

$noRepeaters
Specifies the number of MIB values at the start of the array of MIB variables that return a single value.
For example, the 'sysDescr' MIB variable from the @oids array returns a single value.

$maxRepeaters
This parameter is for any MIB variable (for example, ifIndex) in the array of MIB variables that
returns a table. This parameter specifies the number of values in the table that are to be returned. For
example, the value 2 returns only the first two entries. If all the entries are to be returned,
$maxRepeaters is set to a large number.

$communitySuffix
Specifies the suffix to the community string.

Description
The SnmpGetBulk method retrieves SNMP GETBULK information for the network entity specified in the
$ne parameter.

Notes
The SnmpGetBulk method issues the appropriate SNMP request to the Helper Server, which performs
the actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate SNMP request.

Example Usage

@oids=('sysDescr','sysContact','sysUpTime','ipInReceives',
'ipOutRequests','ipOutDiscards','ipForwDatagrams','tcpCurrEstab',
'ifDescr');
($vap) = $agent->SnmpGetBulk($nodeIP, \@oids, 3, 100);
foreach my $varop (@{ $vap})
{
print "$varop->{ASN1}", "$varop->{VALUE}", "\n";
}

Returns
Upon completion, the SnmpGetBulk method returns a reference to a varop array. Each varop array
contains two key value pairs. The keys are ASN1 and VALUE. The ASN1 value is the index value after the
OID corresponding to the MIB variable is removed. It is a single number for MIB variables indexed on a
single key and a dot notation for MIB variables indexed by multiple keys.

Note: The ASN1 value obtained using the RIV::SnmpAccess module is the complete OID that needs to
be split, whereas the ASN1 value returned by the Helper Server is only the index part.

Chapter 10. RIV Modules Reference 209

SnmpGetNext
The SnmpGetNext method retrieves the appropriate SNMP information from the Helper Server.

Method Synopsis

SnmpGetNext($ne, $oid [,$instance, $communitySuffix])

Parameters
$ne

Specifies a reference to the network entity. Typically, this network entity is a RIV::Record object.
$oid

Specifies a MIB variable (for example, ifIndex).
$instance

Specifies the instance of the MIB variable. This is an optional parameter.
$communitySuffix

Specifies the suffix to the community string. This is an optional parameter.

Description
The SnmpGetNext method retrieves the specified SNMP information for the network entity specified in
the $ne parameter. If $instance is defined, the MIB sub-tree starting at that particular instance is
retrieved. The $instance parameter must be specified as an ASN1 string (for example, "5.3.15").

Notes
The SnmpGetNext method issues the appropriate SNMP request to the Helper Server, which performs
the actual work. Thus, the Helper Server (and ncp_ctrl) must be running so that this method can make the
appropriate SNMP request.

Example Usage

$varOpArray = $agent->SnmpGetNext($NE, 'ifDescr');
foreach my $varop (@{ $varOpArray})
{
print "$varop->{ASN1}", "$varop->{VALUE}", "\n";
}

Returns
Upon completion, the SnmpGetNext method returns a reference to a varop array. Each varop array
contains two key value pairs. The keys are ASN1 and VALUE. The ASN1 value is the index value after the
OID corresponding to the MIB variable is removed. It is a single number for MIB variables indexed on a
single key and a dot notation for MIB variables indexed by multiple keys.

Note: The ASN1 value obtained using the RIV::SnmpAccess module is the complete OID that needs to
be split, whereas the ASN1 value returned by the Helper Server is only the index part.

UnLockThreads
The UnLockThreads method releases the lock previously acquired in a call to the LockThreads
method.

Method Synopsis

UnLockThreads()

210 IBM Tivoli Network Manager IP Edition: Reference

Parameters
None

Description
The UnLockThreads method releases the lock previously acquired in a call to the LockThreads
method.

Example Usage
The following example shows a call to the LockThreads method followed by a call to the
UnLockThreads method to release the lock. The example assumes a previous call to the RIV::Agent
constructor, which returns a RIV::Agent object (represented by $agent->).

$agent->LockThreads();

 #
 # Serialised code goes here
 #

 $agent->UnLockThreads();

Returns
Upon completion, the UnLockThreads method does not return any values.

RIV::App module reference
The RIV::App module provides an interface for implementing Network Manager client/server
applications within one domain.

The RIV::App module provides two constructors that instantiate a RIV::App object. The constructors
are described in reference (man) page format.

Note: The RIV::App module does not provide any methods or functions.

RIV::App module synopsis
The RIV::App module synopsis shows how to make calls to the two constructors that this module
provides.

The comments provided in the synopsis serve as a quick reference as to the purpose of the constructors.
The reference (man) page for the constructors provides the details.

Load the RIV::App module.
use Riv::App;
#
 # Call the first form of the RIV::App constructor, passing to $domain the
 # name of the Network Manager domain. The constructor returns
 # a RIV::App object to $rivApp.
$rivApp = new RIV::App($domain, $progname, $doHeartBeat);
#
 # Call the second form of the RIV::App constructor, passing as the
 # first parameter a RIV::Param object that was returned
 # in a previous call to the RIV::Param constructor. The constructor
 # returns a RIV::App object to $rivApp.
$rivApp = new RIV::App(RIV::Param, $progname, $doHeartBeat);

Chapter 10. RIV Modules Reference 211

RIV::App Constructor
The RIV::App constructor creates and initializes a new application session.

Constructor

new($domain, $progname [, $doHeartBeat])

new(RIV::Param, $progname [, $doHeartBeat])

Parameters
$domain

Specifies a Network Manager domain name.

Note: A default domain name is not supported.

RIV::Param
Specifies a RIV::Param object that was returned in a previous call to the RIV::Param constructor.
The RIV::Param object contains a parsed form of the command line arguments.

$progname
Specifies a parameter used when building fault-tolerant server groups. It must contain a string that
uniquely identifies the application. By convention, the application name should start with ncp_.

$doHeartBeat
Specifies an optional parameter that indicates whether the application generates a heartbeat signal. If
the application generates a heartbeat signal, set this parameter to a nonzero value.

Description
The RIV::App constructors create and initialize a new application session. The constructors differ in that
one takes a $domain parameter and the other takes a RIV::Param parameter.

Example Usage

$app = RIV::App::new("foo", "ncp_test", 1);

#!$NCHOME/bin/ncp_perl
use RIV;
use RIV::App;
my $app = RIV::App::new("MYDOMAIN", "ncp_test");
...
undef $app;

Returns
Upon completion, the RIV::App constructors return a RIV::App object that encapsulates the new
application session.

See Also
• “RIV::Param Constructor” on page 225

RIV::OQL module reference
The RIV::OQL module provides an interface to communicate with and perform operations on Network
Manager internal databases.

The RIV::OQL module provides a constructor that allows you to create a new RIV::OQL session object
and within this session object call methods to:

212 IBM Tivoli Network Manager IP Edition: Reference

• Connect to a particular service type
• Create new databases and tables
• Query the internal databases
• Insert records into and delete records from the internal databases
• Print and update records that reside in the internal databases

The constructor and methods are described in reference (man) page format.

RIV::OQL module synopsis
The RIV::OQL module synopsis shows how to make calls to the constructor and database operation
methods that this module provides.

The comments provided in the synopsis serve as a quick reference as to the purpose of the constructor
and database operation methods. The reference (man) pages for the constructor and each method
provide the details.

Load the RIV::OQL module
use RIV::OQL;

Call the RIV::OQL constructor, passing to $appSession one of the
following blessed references:
#
+ A RIV::Agent object (returned in a previous call to the
RIV::Agent constructor)
+ A RIV::App object (returned in a previous call to the
RIV::App constructor)
#
The $precisionService parameter takes one of the valid Network Manager
service names, for example, ncp_disco (Disco service).
#
The calls to the database operation methods are made through a
reference to the RIV::OQL session object ($oql->) that the RIV::OQL
constructor returns.
#

$oql = new RIV::OQL($appSession, $precision_Service);

Call the Send method to send an OQL query to the specified database.
#
$oql->Send($oqlStatement, $returnResults);
#
Call the CreateDb method to create a database in the Network Manager
service specified in a previous call to the RIV::OQL constructor.
#
$oql->CreateDB($databaseName);
#
Call the CreateTable method to create a table in the database.
#
$oql->CreateTable($databaseName, $tableName, \%columnNamesandTypes);
#
Call the Insert method to insert records into a database table.

$oql->Insert($database, $table, \%record);
#
Call the Select method to execute a specific OQL command.
oql->Select($database, $table, $columnName);
#
Call the RIV module's GetResult function to get input data.
my ($type, $data) = $oql->RIV::GetResult(10);
#
Call the Print method to print the contents of the records obtained
as a result of this database query.
$oql->Print($data);
#
Call the Delete method to delete records from the database table.
$oql->Delete($database, $table, $clauseForDeletion);
#
Call the Update method to update records that currently reside in
the database.
$oql->Update($database, $table, $setClause, $whereClause);

Chapter 10. RIV Modules Reference 213

RIV::OQL Constructor
The RIV::OQL constructor creates and initializes a new RIV::OQL object.

Constructor

new($rivSession, $rivService)

Parameters
$rivSession

Specifies a blessed reference to either a RIV::App or RIV::Agent object.
$rivService

Specifies the name of a service to indicate the internal database to which this OQL session interacts.
The following table identifies the available services to which to connect along with their corresponding
executable. For example, the service name Disco indicates that the OQL session will interact with the
DISCO databases that the ncp_disco executable creates.

Service Name Executable

Model ncp_model

Amos ncp_event

Monitor ncp_monitor

Class ncp_class

Store ncp_store

Ctrl ncp_ctrl

Helper ncp_d_helpserv

Disco ncp_disco

Description
The RIV::OQL constructor creates and initializes a new RIV::OQL session object.

Example Usage

$app = new RIV::App();
$oql = new RIV::OQL($app, 'Disco');

Returns
Upon completion, the RIV::OQL constructor returns a RIV::OQL session object.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212

214 IBM Tivoli Network Manager IP Edition: Reference

Close
The Close method closes an OQL Client.

Method Synopsis
Close()

Parameters
None.

Description
The Close method closes an OQL Client. If successful, the OQL client is undefined.

Example Usage
$oql->Close();

Returns
Upon completion, the Close method does not return any values.

See Also
• “RIV::OQL Constructor” on page 214

CreateDB
The CreateDB method creates a database.

Method Synopsis

CreateDB($databaseName)

Parameters
$databaseName

Specifies the name of the database to be created.

Description
The CreateDB method creates a database with the name $databaseName in the specified service. You
specified this service in the $rivService parameter in a previous call to the RIV::OQL constructor.

Example Usage
The following example shows how to create a new database, with the name foo, in the Disco service for
which an OQL session was created using the RIV::OQL constructor.

$oql = new RIV::OQL($app, 'Disco');
$oql->CreateDB("foo");

Returns
Upon completion, the CreateDB method does not return any records.

Chapter 10. RIV Modules Reference 215

See Also
• “RIV::OQL Constructor” on page 214“RIV::Agent Constructor” on page 188

CreateTable
The CreateTable method creates a database table.

Method Synopsis

CreateTable($databaseName, $tableName, \%columnNames)

Parameters
$databaseName

Specifies the name of the database in which the table is to be created.
$tableName

Specifies the name of the table to be created.
\%columnNames

Specifies a hash list of the columns in the table. The keys in the hash list refer to the column name and
the values are one of the types supported by the OQL syntax.

Description
The CreateTable method creates a database table with the name specified in the $tableName
parameter in the database specified in the $databaseName parameter.

You created this database in previous calls to the:

• RIV::OQL constructor — You specified the name of a service (in the $rivService parameter) to indicate
the internal database to which this RIV::OQL session object interacts.

• CreateDB method — You specified the name of the database (in the $databaseName parameter) to be
created in the service specified in the call to the RIV::OQL constructor.

Example Usage
The following example shows how to create:

• A new database, with the name foo, in the Disco service for which a RIV::OQL session object was
created in a call to the RIV::OQL constructor.

• Column names (m_IpAddress and m_Name) and associated values to appear in the table.
• A table called bar.

$oql = new RIV::OQL($app, 'Disco');
$oql->CreateDB("foo");
%columnNames = ("m_IpAddress"=> "text", "m_Name"=> "text");
$oql->CreateTable("foo", "bar", \%columnNames);

Returns
Upon completion, the CreateTable method does not return any records.

See Also
• “RIV::OQL Constructor” on page 214
• “CreateDB” on page 215

216 IBM Tivoli Network Manager IP Edition: Reference

Delete
The Delete method deletes records from a database table.

Method Synopsis

Delete($databaseName, $tableName, $clause)

Parameters
$databaseName

Specifies the name of the database from which records are to be deleted.
$tableName

Specifies the name of the table in the specified database ($databaseName) from which records are to
be deleted.

$clause
Specifies any valid OQL comparative statement used as a condition for deleting records. If a record
matches $clause, the Delete method will delete it.

Description
The Delete method deletes records from the table specified in the $tableName parameter that resides in
the database specified in $databaseName parameter and that satisfy the criteria defined by the OQL
comparative statement specified in the $clause parameter.

You created this database and database table in previous calls to the:

• RIV::OQL constructor — You specified the name of a service (in the $rivService parameter) to indicate
the internal database to which this RIV::OQL session object interacts.

• CreateDB method — You specified the name of the database (in the $databaseName parameter) to be
created in the service specified in the call to the RIV::OQL constructor.

• CreateTable method — You specified the name of the database table (in the $tableName parameter)
to be created in the database specified in the call to the CreateDB method.

Example Usage
The following example shows how to delete records from:

• A database called ncimCache.
• A table called entityData.

The records to be deleted are those with a description equal to the value foo.

$oql->Delete('ncimCache', 'entityData', "description = 'foo'");

Returns
Upon completion, the Delete method does not return any records.

See Also
• “RIV::OQL Constructor” on page 214
• “CreateDB” on page 215
• “CreateTable” on page 216

Chapter 10. RIV Modules Reference 217

Insert
The Insert method inserts records into a database table.

Method Synopsis

Insert($databaseName, $tableName, \%record)

Parameters
$databaseName

Specifies the name of the database in which the record is to be inserted.
$tableName

Specifies the name of the table in the specified database ($databaseName) in which the record is to
be inserted.

\%record
Specifies a hash list that defines the record to be inserted.

Description
The Insert method creates an OQL statement that inserts the record defined by the hash list specified in
the \%record parameter into the database table specified in the $tableName parameter that resides in the
database specified in the $databaseName parameter.

You created this database and database table in previous calls to the:

• RIV::OQL constructor — You specified the name of a service (in the $rivService parameter) to indicate
the internal database to which this RIV::OQL session object interacts.

• CreateDB method — You specified the name of the database (in the $databaseName parameter) to be
created in the service specified in the call to the RIV::OQL constructor.

• CreateTable method — You specified the name of the database table (in the $tableName parameter)
to be created in the database specified in the call to the CreateDB method.

Example Usage
The following example shows how to insert the record specified in the \%record parameter in:

• A database called finders.
• A table called despatch.

Note:

The service used to create the RIV::OQL object ($oql->) in a previous call to the RIV::OQL constructor
has to be Disco.

%record = (m_Creator => 'PerlDetails',
m_Name => 'foo',
m_IpAddress => '123.1.2.3',);
$oql->Insert('finders', 'despatch', \%record);

Returns
Upon completion, the Insert method does not return any records.

See Also
• “RIV::OQL Constructor” on page 214
• “CreateDB” on page 215

218 IBM Tivoli Network Manager IP Edition: Reference

• “CreateTable” on page 216

Print
The Print method prints records obtained as a result of a database query.

Method Synopsis

Print($data)

Parameters
$data

Specifies a reference to an array of hash lists that represent the records obtained from the SELECT
statement.

Description
The Print method prints the records obtained as a result of a query.

Example Usage
The following example shows how to:

• Use the Select method to execute a SELECT statement.
• Use the RIV::GetResult method to specify the number of seconds to wait (in the example, 10

seconds) for input before returning.
• Print the data specified in $data.

$oql->Select('class','activeClasses', 'ALL');
my ($type, $data) = $oql->RIV::GetResult(10);
$oql->Print($data);

Returns
Upon completion, the Print method does not return any records.

See Also
• “RIV::GetResult” on page 178

Query
The Query method runs a query.

Method Synopsis
Query($queryString)

Parameters
$queryString

Is a string that contains the details of the query.

Description
The Query method is used to run a query by using the OQL client subject. Running a query clears any
results from a previous query.

Chapter 10. RIV Modules Reference 219

Example Usage
$oql->Query("select * from disco.status;");

Returns
Upon completion, the Query method does not return any values.

See Also
• “RIV::OQL Constructor” on page 214
• “QueryGetResult” on page 220
• “QueryGetResults” on page 221

QueryGetResult
The QueryGetResult method gets a single result from the Query command.

Method Synopsis
QueryGetResult()

Parameters
None.

Description
The QueryGetResult method gets a single result from the Query method. The QueryGetResult
method is commonly used when you don't want to process every result of the query into a Perl reference,
to prevent use of much memory. The QueryGetResult method can also be used where only a single
result is expected. Each time a result is retrieved it is removed from the result stack within the OQL client.

Example Usage

my $query = "select * from disco.status;";
$oql->Query($query);

my $data = $oql->QueryGetResult();
if($data)
{
print "Got result.\n";
print Dumper($data);
}
else
{
print "Query $query returned nothing.\n";
}

Returns
Upon completion, the QueryGetResult method returns a hash reference that contains the details of the
returned record.

See Also
• “RIV::OQL Constructor” on page 214
• “Query” on page 219
• “QueryGetResults” on page 221

220 IBM Tivoli Network Manager IP Edition: Reference

QueryGetResults
The QueryGetResults method gets multiple results from the Query command.

Method Synopsis
QueryGetResults()

Parameters
None.

Description
The QueryGetResults method gets all the results from a previously run Query method. This
QueryGetResults method is commonly used when you expect the query to return a limited number of
records. As each record is turned into a hash reference, it can use much memory. When the results are
retrieved, the results are no longer available within the OQL client.

Example Usage

my $query = "select * from disco.agents;";
$oql->Query($query);

my $queryData = $oql->QueryGetResults();
if($queryData)
{
$recCount = scalar(@$queryData);

print "query $query returned $recCount results.\n";

foreach my $dat (@$queryData)
{
print "Got result.\n";
print Dumper($dat);
}
}
else
{
print "Query $query returned nothing.\n";
}

Returns
Upon completion, the QueryGetResults method returns a reference to a hash list, which contains the
results of the query.

See Also
“RIV::OQL Constructor” on page 214
“Query” on page 219
“QueryGetResult” on page 220

Select
The Select method executes a specific OQL statement.

Method Synopsis

Select($databaseName, $tableName, $columnName)

Chapter 10. RIV Modules Reference 221

Parameters
$databaseName

Specifies the name of the database in which the OQL statement is to be executed.
$tableName

Specifies the name of the table in the specified database ($databaseName) in which the OQL
statement is to be executed.

$columnName
Specifies the name of the column for which the results are to be returned. If all entries are to be
returned, set the $columnName parameter to ALL.

Description
The Select method executes the following OQL statement:

select $columnName from $dbName.$tableName;

When the $columnName parameter is set to ALL, the Select method executes the following OQL
statement:

select * from $dbName.$tableName;

You created this database and database table in previous calls to the:

• RIV::OQL constructor — You specified the name of a service (in the $rivService parameter) to indicate
the internal database to which this RIV::OQL session object interacts.

• CreateDB method — You specified the name of the database (in the $databaseName parameter) to be
created in the service specified in the call to the RIV::OQL constructor.

• CreateTable method — You specified the name of the database table (in the $tableName parameter)
to be created in the database specified in the call to the CreateDB method.

Example Usage

$oql->Select('class', 'activeClasses', 'ALL');

The results are obtained by using the RIV::GetResult method. For example:

my ($type, $data) = $oql->RIV::GetResult(10);

In the previous example:

• The $type parameter specifies the tag OQLQuery.
• The $data parameter specifies a reference to an array of hash lists that represents the records obtained

from the OQL database query.
• All records are received from the database table called activeClasses that resides in the database

called class. In this case, the service to which this OQL session is connected must be Class.

Returns
The results are obtained by using the RIV::GetResult method.

See Also
• “RIV::GetResult” on page 178
• “RIV::OQL Constructor” on page 214
• “CreateDB” on page 215
• “CreateTable” on page 216

222 IBM Tivoli Network Manager IP Edition: Reference

Send
The Send method provides a way to communicate with the databases.

Method Synopsis

Send($statement, $returnResults)

Parameters
$statement

Specifies any valid OQL statement.
$returnResults

Specifies whether to return results. This parameter takes one of the following values:

• 1 – Specify the value 1 for database queries (for example, OQL statements such as select and
show) that return results.

• 0 – Specify the value 0 (zero) for database queries (for example, OQL statements such as insert,
update, and delete) that do not return results.

Description
The Send method provides a way to communicate with the databases. The $statement parameter
specifies any valid OQL statement that the Send method executes. The $returnResults parameter
indicates whether you are interested in the results of the OQL statement. For example, when an OQL
select statement is executed and you are interested in the results, the $returnResults parameter must
be set to the value 1. The RIV::GetResult method is used to receive the results.

Example Usage

$statement = "select * from ncimCache.entityData;";
$oql->Send($statement, 1);
my ($type, $data) = $oql->RIV::GetResult(10);

Returns
Upon completion, the Send method returns the results of the OQL statement. If you set $returnResults to
0 (zero), the Send method does not return any records.

See Also
• “RIV::GetResult” on page 178
• “Select” on page 221

Update
The Update method updates records that currently reside in the database.

Method Synopsis

Update($databaseName, $tableName, $setClause, $whereClause)

Parameters
$databaseName

Specifies the name of the database in which the record is to be updated.

Chapter 10. RIV Modules Reference 223

$tableName
Specifies the name of the table in the specified database ($databaseName) in which the record is to
be updated.

$setClause
Specifies the clause that defines set the variable to.

$whereClause
Specifies the clause that defines where the variable is.

Description
The Update method updates records that already reside in the database and database table specified in
the $databaseName and $tableName parameters, respectively. Calling the Update method is equivalent
to executing the following OQL statement:

UPDATE $databaseName.$tableName SET $setClause WHERE $whereClause;

You created this database and database table in previous calls to the:

• RIV::OQL constructor — You specified the name of a service (in the $rivService parameter) to indicate
the internal database to which this RIV::OQL session object interacts.

• CreateDB method — You specified the name of the database (in the $databaseName parameter) to be
created in the service specified in the call to the RIV::OQL constructor.

• CreateTable method — You specified the name of the database table (in the $tableName parameter)
to be created in the database specified in the call to the CreateDB method.

Example Usage
The following example does the following:

• Updates specific records in the table called entityData that resides in the database called
ncimCache.

• The specific records updated are those that have EntityName foo with a description foo.

$oql->Update('ncimCache', 'entityData', "EntityName='foo'",
"description='foo'");

Returns
Upon completion, the Update method does not return any records.

See Also
• “RIV::OQL Constructor” on page 214
• “CreateDB” on page 215
• “CreateTable” on page 216

RIV::Param module reference
The RIV::Param module provides an interface for parsing standard and Network Manager application-
specific command line arguments.

The RIV::Param module provides a constructor that creates a new RIV::Param object that you use to
call methods that perform the following tasks:

• Obtain the name of a command
• Obtain the name of a domain
• Print a brief usage explanation to standard output

224 IBM Tivoli Network Manager IP Edition: Reference

The constructor and methods are described in reference (man) page format.

RIV::Param module synopsis
The RIV::Param module synopsis shows how to make calls to the constructor and parameter operation
methods that this module provides.

The comments provided in the synopsis serve as a quick reference as to the purpose of the constructor
and parameter operation methods. The reference (man) pages for the constructor and each method
provide the details.

Load the RIV::Param module
use RIV::Param;

These are the RIV::Param module constants used to specify
whether a command line parameter takes no arguments or a
single argument and whether it is mandatory.
RivParamNoArg, RivParamSingleArg;
RivParamMandatory, RivParamListArg;
#
Call the RIV::Param constructor. The RIV::Param constructor
returns to $param a new RIV::Param object.
#

$param = RIV::Param::new(\%paramHash, \$usageStringsRef, \$helpMessage, $dieOnUnknownArgs);
#
Use the RIV::Param object ($param->) to invoke the methods
that the RIV::Param module provides.

Call the Usage method to print a brief usage explanation to
standard output.
$param->Usage($errorCode);
#
Call the DomainName method to obtain the name of the domain.
$domainName = $param->DomainName();
#
Call the CommandName method to obtain the name of the command.
$commandName = $param->CommandName();

RIV::Param Constructor
The RIV::Param constructor creates and initializes a new RIV::Param object.

Constructor

$param = RIV::Param::new([\%paramHash,\@usageStrings, \$helpMessage])

Parameters
\%paramHash

Specifies a reference to a hash used to specify application-specific command line arguments. Each
hash key (index) represents a command line switch and its associated hash value is an array with the
following elements:

• element 0 — Is a flags element that specifies a bitwise OR that indicates:

– Whether the command line switch takes an argument.
– Whether the switch is mandatory

The flags element makes use of the package constants described in “Package Constants” on page
226.

• element 1 — Is a scalar variable reference or undef value. You initialize the scalar variable
reference with the appropriate value (a parameter from the command line or 1).

The \%paramHash parameter is optional.

Chapter 10. RIV Modules Reference 225

\$usageStringsRef
This is an array reference that contains an element for each of the non-standard command line
argument scenarios. If the application takes only standard arguments, this constructor argument
should be set to undef.

By default, the usage message has the standard arguments appended to it (-domain, -debug, -
latency, -messageLevel, -help). If the application does not accept all of these, or you do not
want to print them, then include an element in the array with the value nostdargs. This element will
not be printed, but will prevent the usage message from listing the standard arguments.

\$helpMessage
Specifies a string reference that contains explanatory information that is written to standard output, in
addition to standard help information, when the -help command line argument is specified.

The \$helpMessage parameter is optional.

$dieOnUnknownArgs
This is an optional scalar. If present and true, and if the command line (@ARGV) contains any
parameters that are not in \%paramHashRef or the default set of accepted parameters, this causes
the constructor to fail (return undef). If this parameter is not present or is false, the constructor
silently ignores any unrecognized parameters, because some callers prefer to do a part of their own
command-line processing.

Package Constants
The RIV::Param constructor's \%paramHash parameter makes use of the following package constants:

• RivParamNoArg — Specifies that the command line parameter takes no arguments.
• RivParamSingleArg — Specifies that the command line parameter takes one argument.
• RivParamMandatory — Specifies that the command line parameter is mandatory, and that it is a fatal

error for the parameter to be missing.
• RivParamListArg — Specifies that the command-line parameters accepts a list of zero or more

values.

These constants are bit masks that can be ORed together where appropriate.

For example, RivParamMandatory | RivParamSingleArg specifies a mandatory parameter that
requires a single argument.

Description
The RIV::Param constructor creates and initializes a new RIV::Param object from the application-
specific command line arguments specified in the \%paramHash parameter. Each new RIV::Param
object also encapsulates the supported standard command line arguments. Thus, Network Manager
client/server and Agent applications can make use of these standard command line arguments in addition
to the application-specific command line arguments.

If you call the RIV::Param constructor without specifying any of the optional parameters, the new
RIV::Param object provides access to the standard command line arguments.

Example Usage No Parameters
The following code shows a call to the RIV::Param constructor without specifying any of the optional
parameters. The newly created RIV::Param object is then passed to the RIV::Agent constructor,
which returns a RIV::Agent object that provides a discovery agent application session. In this example,
the discovery agent called PerlDetails (the name specified in the second parameter of the
RIV::Agent constructor) can make use of the standard command line arguments.

.

.

.
sub Init{

226 IBM Tivoli Network Manager IP Edition: Reference

 my $param=RIV::Param::new();
 $agent=RIV::Agent::new($param,"PerlDetails");
}
.
.
.

Example Usage Three Parameters
The example described in this section shows a call to the RIV::Param constructor that specifies the
three optional parameters.

The following code defines a reference to a hash called %CmdLineArgs used to specify application-
specific command line arguments. The %CmdLineArgs hash is passed as the first parameter to the
RIV::Param constructor:

.

.

.
my $subject;
my $process = 'Model';
my $messageClass = 'NOTIFY';
my $verbose;
my %CmdLineArgs = (
 "-subject" => [RivParamSingleArg , \$subject],
 "-process" => [RivParamSingleArg , \$process],
 "-messageClass" => [RivParamSingleArg , \$messageClass],
 "-verbose" => [RivParamNoArg, \$verbose]
);
.
.
.

The following list provides brief descriptions of the application-specific command line arguments defined
in the %CmdLineArgs hash.

• -subject — Specifies a command line argument that takes one argument (as indicated by the
RivParamSingleArg package constant). This command line argument also specifies a reference to a
scalar value, \$subject. It is expected that a user would supply a specific subject on the command
line.

• -process — Specifies a command line argument that takes one argument (as indicated by the
RivParamSingleArg package constant). This command line argument also specifies a reference to a
scalar value, \$process. It is expected that a user would supply the specific process that is of interest
(for example, Class, Config, Event, and so forth) on the command line. The default process is Model.

• -messageClass — Specifies a command line argument that takes one argument (as indicated by the
RivParamSingleArg package constant). This command line argument also specifies a reference to a
scalar value, \$messageClass. It is expected that a user would supply the class of messages that are
of interest (for example, QUERY, STATUS, and so forth) on the command line. The default message class
is NOTIFY.

• -verbose — Specifies a command line argument that takes no arguments (as indicated by the
RivParamNoArg package constant). This command line argument also specifies a reference to a scalar
value, \$verbose. It is expected that a user would specify this command line argument to explicitly
print out details of nested fields.

The following code defines a usage string called @Usage that provides information on how to use the
command line for this application. The @Usage array is passed as the second parameter to the
RIV::Param constructor:

.

.

.
my @Usage = (
 "[-subject <subject> -process [Model|Disco|Ctrl|...]
 -messageClass [NOTIFY|QUERY|...] "
);
.

Chapter 10. RIV Modules Reference 227

.

.

The following code defines a string reference called $helpData that contains explanatory information
about the application-specific command line arguments and other pertinent information. The explanatory
information also includes descriptions of the standard command line arguments (-domain, -debug, and
-help). The $helpData string reference is passed as the third parameter to the RIV::Param
constructor:

my $helpData = "\n
The ITListener perl script is intended to listen on the supplied subject
and print out the messages received.

The arguments are
-domain <domain> = Name of the domain to retrieve data from
-debug [0-4] = Required debug level
-help = This information
-verbose = Explicitly print out details of nested fields
-subject = The specific subject to listen to (this will not include the domain)
-process = The process to listen to (e.g. Model, Class, Event, Config, Ctrl ,
 Disco , PingFinder)
-messageClass = The class of messages of interest. Not all processes support
all classes. The common ones of interest are NOTIFY, QUERY, STATUS

The most common arguments to use are
-process Model -messageClass NOTIFY : (default) - Listen for the models
 updates on topology changes (old style)
-process Model -messageClass TOPOLOGY : (default) - Listen for the models
 updates on topology changes (new style)
-process Disco -messageClass STATUS : - Listen to disco broadcasts on the
 current state of the discovery.
-process DNCIM2NCIM -messageClase NOTIFY : - Listen to Disco to Model
 DNCIM2NCIM updates.
-process ITNMSTATUS -messageClass NOTIFY : - Listen to ITNM status events.

The process is capable of listening on any subject on the message broker bus
but will not decode the output beyond printing out the contents of the message.

The syntax for message broker subjects is

 /<subject>/<sub-subject>/<sub-sub-subject>/....

All ITNM IP subjects begin \'ITNM/\' and have the domain appended so the
model notify subject for domain TESTDOMAIN is

 /ITNM/MODEL/NOTIFY/TESTDOMAIN

\n";

The following code shows the call to the RIV::Param constructor using the three previously defined
parameters: \%CmdLineArgs, \@Usage, and \$helpData. Note the call to the die function to exit the
script if the RIV::Param constructor fails to create a new RIV::Param object.

.

.

.
my $param = RIV::Param::new(\%CmdLineArgs, \@Usage, \$helpData);
die "Can't create RIV::Param" unless (defined $param);
.
.
.

Returns
Upon completion, the RIV::Param constructor returns a new RIV::Param object.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212

228 IBM Tivoli Network Manager IP Edition: Reference

• “Usage” on page 230
• “RIV::Param module overview” on page 126

CommandName
The CommandName method returns the name of the specified command.

Method Synopsis

RIV::Param::CommandName()

Parameters
None

Description
The CommandName method returns the name of the command specified on the command line.

Use the RIV::Param object returned in a previous call to the RIV::Param constructor to invoke the
CommandName method. For example: $param->CommandName.

Example Usage
The following code shows a call to the CommandName method. Note that the CommandName method is
invoked through the newly created RIV::Param object returned to the $param variable.

.

.

.
my $param = RIV::Param::new(\%cmdLineArgs, \@Usage, \$helpData);
die "Can't create RIV::Param" unless (defined $param);
.
.
.
 my $command = $param->CommandName();
.
.
.

Returns
Upon completion, the CommandName method returns the name of the command specified on the
command line.

See Also
• “RIV::Param Constructor” on page 225

DomainName
The DomainName method returns the name of the specified domain.

Method Synopsis

RIV::Param::DomainName()

Parameters
None

Chapter 10. RIV Modules Reference 229

Description
The DomainName method returns the name of the domain specified on the command line for the -
domain standard command line argument.

Use the RIV::Param object returned in a previous call to the RIV::Param constructor to invoke the
DomainName method. For example: $param->DomainName.

Example Usage
The following code shows a call to the DomainName method. Note that the DomainName method is
invoked through the newly created RIV::Param object returned to the $param variable.

.

.

.
my $param = RIV::Param::new(\%cmdLineArgs, \@Usage, \$helpData);
die "Can't create RIV::Param" unless (defined $param);
.
.
.
die "ncp_disco must be running under domain ",
 $param->DomainName(),
 " - unable to query the disco.config table"
 unless $dbData;

 print "...disco is running under domain ", $param->DomainName(), "\n" if $debug;
.
.
.

Returns
Upon completion, the DomainName method returns the name of the domain specified on the command
line for the -domain standard command line argument.

See Also
• “RIV::Param Constructor” on page 225

Usage
The Usage method writes a brief usage explanation to standard output.

Method Synopsis

RIV::Param::Usage($errorCode)

Parameters
$errorCode

Specifies either a status or the undef value. The status gets written to standard output.

Description
The Usage method writes a brief usage explanation to standard output and then exits with the status
specified in the $errorCode parameter, if defined. If you specified the undef value in the $errorCode
parameter, the Usage method returns to the caller.

Use the RIV::Param object returned in a previous call to the RIV::Param constructor to invoke the
Usage method. For example: $param->Usage.

230 IBM Tivoli Network Manager IP Edition: Reference

Example Usage
The following code shows a call to the Usage method. In this example, an error code of 1 is passed. Note
that the Usage method is invoked through the newly created RIV::Param object returned to the $param
variable.

my @_Usage = (# usage string suffixes
 "<node> [async]"
);

#
Read and parse the command line, standard args are hidden
#
my $param = RIV::Param::new({
 "-v" => [$RIV::Param::NoArg, \$Verbose],
 }, \@_Usage);
die "RIV::Param::new failed" unless defined $param;

my $node = shift @ARGV;
my $what = shift @ARGV;
$what = "" unless defined $what;

$param->Usage(1)
 unless (defined $node && $node ne "");

Returns
Upon completion, the Usage method writes a brief usage message to standard output and the status
specified in the $errorCode parameter and simply exits. If the $errorCode parameter is set to the undef
value, the Usage method returns to the caller.

See Also
• “RIV::Param Constructor” on page 225

RIV::Record module reference
The RIV::Record module provides a data structure to store the network entity.

The RIV::Record module provides a constructor that creates and initializes a RIV::Record data
structure. This module also provides methods to perform the following operations:

• Add local neighbors
• Add remote neighbors
• Get local neighbors
• Get remote neighbors
• Print the current records

The constructor and methods are described in reference (man) page format.

RIV::Record module synopsis
The RIV::Record synopsis shows how to make calls to the constructor and local and remote neighbors
operation methods that this module provides.

use RIV::Agent;
use RIV::Record;
my($tag, $data) = $agent->RIV::GetResult(-1);
if($tag eq 'NE'){
foreach $key (@$data){
$NE = RIV::Record::new($key);
}
}
$NE->AddLocalNeighbour($refLocalNeighbour);
$NE->AddRemoteNeighbour($refLocalNeighbour, $refRemoteNeighbour);

Chapter 10. RIV Modules Reference 231

$arrayVarOps = $agent->SnmpGetNext($NE, $mibVariable);
$NE->AddLocalNeighbourTag($tagName, $arrayVarOps);
$NE->AddRemoteNeighbourTag($reflocalNeighbour, $tagName, $arrayVarOps);
@localNeighbours = $NE->GetLocalNeighbours();
@remoteNeighbours = $NE->GetRemoteNeighbours($refLocalNeighbour);
$NE->Print();

RIV::Record Constructor
The RIV::Record constructor creates and initializes a new RIV::Record object.

Constructor

new($refNE)

Parameters
$refNE

Specifies a reference to a hash list. The hash list is the mechanism used to store network entity
records retrieved from the discovery engine, DISCO.

Description
The RIV::Record constructor creates and initializes a new RIV::Record object. This object stores
network entity records retrieved from DISCO.

Example Usage
The following code fragment illustrates a typical loop for receiving records from DISCO:

while (1){
my($tag, $data) = $agent->RIV::GetResult(-1);
Get the network entities
print "TAG :", $tag, "\n";
if($tag eq 'NE'){
foreach $key (@$data){
$ne = new RIV::Record($key);
}
}
}

Returns
Upon completion, the RIV::Record constructor returns a RIV::Record object.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::GetResult” on page 178

AddLocalNeighbour
The AddLocalNeighbour method adds a local neighbor.

Method Synopsis

AddLocalNeighbour($refNbr)

232 IBM Tivoli Network Manager IP Edition: Reference

Parameters
$refNbr

Specifies a reference to a hash list that defines the local neighbor using a set of key value pairs
(varBinds).

Description
The AddLocalNeighbour method adds a local neighbor whose hash list reference is $refNbr.

Example Usage

$localNbr{'m_IpAddress'} = '1.2.3.4';
$localNbr{'m_IfIndex'} = 2;
$NE->AddLocalNeighbour(\%localNbr);

Returns
Upon completion, the AddLocalNeighbour method does not return any records.

AddLocalNeighbourTag
The AddLocalNeighbourTag method adds a tag (varBind) to a local neighbor.

Method Synopsis

AddLocalNeighbourTag($tag, $refVarOp)

Parameters
$tag

Specifies the key value for the varBind.
$refVarOp

Specifies a reference to an array of varops.

Description
The AddLocalNeighbourTag method adds to local neighbors a varBind whose key is defined by the
$tag parameter and the value defined by the $refVarOp parameter (a reference to an array of varops). The
key and value are added sequentially, that is, the values in the @$refVarOp array are assumed to be in
the same order as the local neighbor array. If local neighbors do not exist, then AddLocalNeighbourTag
creates them.

Example Usage

$refLifindex=$agent->SnmpGetNext($TestNE, 'ipAdEntIfIndex');
$TestNE->AddLocalNeighbourTag("m_IfIndex", $refLifIndex);

Returns
Upon completion, the AddLocalNeighbourTag method does not return any records.

See Also
• “RIV::Agent Constructor” on page 188
• “SnmpGetNext” on page 210

Chapter 10. RIV Modules Reference 233

AddRemoteNeighbour
The AddRemoteNeighbour method adds a remote neighbor.

Method Synopsis

AddRemoteNeighbour($refLocalNbr, $refRemoteNbr)

Parameters
$refLocalNbr

Specifies a reference to the hash list that defines a local neighbor and to which list the remote
neighbor is to be added.

$refRemoteNbr
Specifies a reference to a hash list that defines the remote neighbor using a set of key value pairs
(varBinds).

Description
The AddRemoteNeighbour method adds a remote neighbor whose hash list reference is $refRemoteNbr
to the local neighbor whose hash list reference is $refLocalNbr.

Example Usage

$remoteNbr{'m_IpAddress'} = '1.2.5.6';
$NE->AddRemoteNeighbour($localNbr, \%remoteNbr);

Returns
Upon completion, the AddRemoteNeighbour method does not return any records.

AddRemoteNeighbourTag
The AddRemoteNeighbourTag method adds a tag (varBind) to a remote neighbor.

Method Synopsis

AddRemoteNeighbourTag($refLocalNbr, $tag, $refVarOp)

Parameters
$refLocalNbr

Specifies a reference to the local neighbor to which the remote neighbors are to be added.
$tag

Specifies the key value for the varBind.
$refVarOp

Specifies a reference to an array of varops.

Description
The AddRemoteNeighbourTag method adds to remote neighbors a varBind whose key is defined by
the $tag parameter and the value defined by the $refVarOp parameter (a reference to an array of varops).
The key and value are added sequentially, that is, the values in the @$refVarOp array are assumed to be
in the same order as the remote neighbor array. If remote neighbors do not exist, then
AddRemoteNeighbourTag creates them.

234 IBM Tivoli Network Manager IP Edition: Reference

The $tag parameter specifies a reference to the local neighbor to which the remote neighbor currently
resides or will be added (if it does not currently exist).

Example Usage

$refRifIndex = $agent->SnmpGetNext($TestNE,...);
$TestNE->AddRemoteNeighbourTag($refLocal, "m_IfIndex", $refRifIndex);

Returns
Upon completion, the AddRemoteNeighbourTag method does not return any records.

See Also
• “RIV::Agent Constructor” on page 188
• “SnmpGetNext” on page 210

GetLocalNeighbours
The GetLocalNeighbours method returns an array of local neighbors.

Method Synopsis

GetLocalNeighbours()

Parameters
None

Description
The GetLocalNeighbours method returns an array of local neighbors.

Example Usage

@localNeighbours = $NE->GetLocalNeighbours();

Returns
Upon completion, the GetLocalNeighbours method returns an array of local neighbors (as a reference
to a hash list).

GetRemoteNeighbours
The GetRemoteNeighbours method returns an array of remote neighbors.

Method Synopsis

GetRemoteNeighbours($refLocalNeighbour)

Parameters
$refLocalNeighbour

Specifies a reference to the hash list that defines a local neighbor and for which list the remote
neighbor is to be returned.

Chapter 10. RIV Modules Reference 235

Description
The GetRemoteNeighbours method returns an array of remote neighbors associated with the specified
local neighbor. The local neighbor is specified in the hash list passed to the $refLocalNeighbour parameter.

Example Usage

@remoteNeighbours = $NE->GetRemoteNeighbours($refLocalNeighbour);

Returns
Upon completion, the GetRemoteNeighbours method returns an array of remote neighbors (as a
reference to a hash list).

Print
The Print method prints the current record.

Method Synopsis

Print()

Parameters
None

Description
The Print method prints the current record.

Example Usage

$NE->Print();

Returns
Upon completion, the Print method does not return any records.

RIV::RecordCache module reference
The RIV::RecordCache module provides an interface to access a record cache file.

The RIV::RecordCache module provides a constructor that creates and initializes a
RIV::RecordCache file object. After creating this object, you can call methods that:

• Create or open an existing RIV::RecordCache file object
• Add a record to this RIV::RecordCache file object and obtain the key under which this record was

added
• Retrieve all the records that reside in this RIV::RecordCache file object
• Retrieve a specific record from this RIV::RecordCache file object using the record's associated key

The constructor and methods are described in reference (man) page format.

236 IBM Tivoli Network Manager IP Edition: Reference

RIV::RecordCache module synopsis
The RIV::RecordCache module synopsis shows how to make calls to the constructor and record cache
operation methods that this module provides.

use RIV::RecordCache;
 $recordCache = new RIV::RecordCache($rivSession, $cacheName [,$cacheLocation]);
 my $recKey = $recordCache->CacheRecord($record);
 $recordCache->GetRecords();
 $recordCache->GetRecord($recKey);

RIV::RecordCache Constructor
The RIV::RecordCache constructor creates and initializes a new RIV::RecordCache file object.

Constructor

new($rivSession, $cacheName [,$cacheLocation])

Parameters
$rivSession

Specifies a blessed reference to either a RIV::App or RIV::Agent object. More specifically, this is a
RIV::App or RIV::Agent application object returned in a previous call to the RIV::App or
RIV::Agent constructor.

$cacheName
Specifies the name of the RIV::RecordCache file object to be created or read from.

$cacheLocation
Specifies the path to the RIV::RecordCache file object.
This parameter is optional. If you do not pass a value to this parameter, the path to the
RIV::RecordCache file object is assumed to be the $NCHOME/var/precision directory.

Description
The RIV::RecordCache constructor creates and initializes a new RIV::RecordCache file object with
the name as specified in the $cacheName parameter and the location as specified in the $cacheLocation
parameter.

Example Usage
The following code fragment illustrates a typical call to the RIV::RecordCache constructor:

$app = RIV::App::new();
 $cache = RIV::RecordCache::new($app, "Disco.Cache.Details.returns.MYDOMAIN",
 "/opt/netcool/var/precision/");
}

Returns
Upon completion, the RIV::RecordCache constructor returns a RIV::RecordCache file object. This is
the object upon which you can perform add and retrieve record operations.

See Also
• “RIV module reference” on page 165
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212

Chapter 10. RIV Modules Reference 237

• “CacheRecord” on page 238
• “GetRecord” on page 238
• “GetRecords” on page 239

CacheRecord
The CacheRecord method attempts to add the specified record to the specified cache.

Method Synopsis

CacheRecord($record)

Parameters
$record

Specifies the record that is to be added to the cache. This record is expressed as a hash.

Description
The CacheRecord method adds the record specified in the $record parameter to the specified cache. You
specified the name of the cache in a previous call to the RIV::RecordCache constructor.

Example Usage
The following example illustrates a typical call to the CacheRecord method, where the method caches
the record (hash) called $myRec:

$cache->CacheRecord($myRec);

Returns
Upon completion, the CacheRecord method returns:

• The value -1 to indicate that the attempt to add the record to the cache was unsuccessful. The method
displays an appropriate error message requesting that you check to ensure that the cache is valid.

• The key that the record was added under if the attempt to add the record to the cache was successful.

See Also
• “RIV::RecordCache Constructor” on page 237

GetRecord
The GetRecord method retrieves from the cache a record associated with the specified key.

Method Synopsis

GetRecord($recordKey)

Parameters
$recordKey

Specifies the key associated with the record to be retrieved from the cache. This key was returned in a
previous call to the CacheRecord method after it successfully inserted the record into the cache.

238 IBM Tivoli Network Manager IP Edition: Reference

Description
The GetRecord method retrieves from the cache a record associated with the key specified in the
$recordKey parameter. You specified the name of the cache in a previous call to the RIV::RecordCache
constructor.

Example Usage
The following example illustrates a typical call to the GetRecord method, where the method returns to
$record a hash from a previously specified cache that contains several records:

my $record = $cache->GetRecord();

Returns
Upon completion, the GetRecord method returns:

• %record — Specifies a hash that represents one of the records residing in the cache.

See Also
• “RIV::RecordCache Constructor” on page 237
• “CacheRecord” on page 238
• “GetRecords” on page 239

GetRecords
The GetRecords method retrieves from the cache a list of all the records currently residing in it.

Method Synopsis

GetRecords()

Parameters
None

Description
The GetRecords method retrieves from the cache a list of all the records currently residing in it. Each
record is returned as a hash within a list.

Example Usage
The following example illustrates a typical call to the GetRecords method, where the method returns to
recordList an array of hashes from a previously specified cache that contains several records:

my @recordList = $cache->GetRecords();

Returns
Upon completion, the GetRecords method returns:

• $recordList— Specifies an array of hashes, where each hash represents one of the records in the cache.

See Also
• “RIV::RecordCache Constructor” on page 237

Chapter 10. RIV Modules Reference 239

• “CacheRecord” on page 238
• “GetRecord” on page 238

RIV::SnmpAccess module reference
The RIV::SnmpAccess module provides an interface to perform SNMP-related operations on Network
Manager MIB trees.

The RIV::SnmpAccess module provides a constructor that allows you to create and initialize a new
RIV::SnmpAccess session object. After obtaining this session object, you can call the synchronous or
asynchronous versions of the SnmpGet-related methods to perform the following operations:

• SNMP get
• SNMP get-next
• SNMP get-bulk

The RIV::SnmpAccess module also provides several utility methods that allow you to operate on ANS.1
(Abstract Syntax Notation One) values and the MIB tree.

Note: Discovery agents implemented with this version of the Perl API should use the SNMP methods that
the RIV::Agent module provides to obtain SNMP information from a network device.

The constructor and methods are described in reference (man) page format.

RIV::SnmpAccess module synopsis
The RIV::SnmpAccess module synopsis shows how to make calls to the constructor and SNMP
operation methods that this module provides.

Synopsis

use RIV::SnmpAccess;

$RIV::SnmpAccess::MaxAsyncConcurrent;

$snmp = new RIV::SnmpAccess($RivSession);

\%varop = $snmp->SnmpGet($host, $addOn, $oid
[, $instance [, $splitOutput]]);

$ok = $snmp->AsyncSnmpGet($tag, $host, $addOn, $oid
[, $instance [, $splitOutput]]);

\@varops = $snmp->SnmpGetNext($host, $addOn, $oid
[, $instance [, $splitOutput]]);

$ok = $snmp->AsyncSnmpGetNext($tag, $host, $addOn, $oid
[, $instance [, $splitOutput]]);

\@varops = $snmp->SnmpGetBulk($host, $addOn, $oidBindList,
 $nonRepeaters, $maxRepetitions [, $instance [, $splitOutput]]);

$ok = $snmp->AsyncSnmpGetBulk($tag, $host, $addOn, $oidBindList, $nonRepeaters,
$maxRepetitions [, $instance [, $splitOutput]]);

(\@varops, \%status) = $snmp->SnmpWalk($host, $addOn, $oid,
$ignoreInstanceFilters);

where:

$asn1 = $varop{ASN1};
$value = $varop{VALUE};

foreach my $vp (@varops) {
$asn1 = $vp->{ASN1};
$value = $vp->{VALUE};
...
}

($baseOid, $indexOid, $baseOidName) = $snmp->SplitOidAndIndex($fullASN1);

240 IBM Tivoli Network Manager IP Edition: Reference

($fullASN1);

$asn1 = $snmp->OidToASN1($oid);

RIV::SnmpAccess Constructor
The RIV::SnmpAccess constructor creates and initializes a new RIV::SnmpAccess object.

Constructor

new($rivSession)

Parameters
$rivSession

Specifies a blessed reference to either a RIV::App or RIV::Agent object. More specifically, this is a
RIV::App or RIV::Agent application object returned in a previous call to the RIV::App or
RIV::Agent constructor.

Description
The RIV::SnmpAccess constructor creates and initializes a new RIV::SnmpAccess session object that
must be a blessed reference to either a RIV::App or RIV::Agent object.

You can create only one RIV::SnmpAccess session object in any Perl application. If multiple domains
are being supported (that is, multiple RIV::App objects) one of the application sessions must be used as
the base for the RIV::SnmpAccess session.

Example Usage

$app = new RIV::App();
$snmp = new RIV::SnmpAccess('TEST', 'ncp_test');

Returns
Upon completion, the RIV::SnmpAccess constructor returns a RIV::SnmpAccess session object.

See Also
• “RIV::Agent Constructor” on page 188
• “RIV::App Constructor” on page 212

ASN1ToOid
The ASN1ToOid method converts the specified ASN.1 value to its corresponding OID.

Method Synopsis

ASN1ToOid($asn1)

Parameters
$asn1

Specifies the ASN.1 (Abstract Syntax Notation One) value to be converted to its corresponding object
identifier (OID).

Chapter 10. RIV Modules Reference 241

Description
The ASN1ToOid method converts the specified ASN.1 value ($asn1) to its corresponding OID.

Example Usage
The following example returns $oid as 'ifIndex':

$oid = $snmp->ASN1ToOid ("1.3.6.1.2.1.2.2.1.1")

Returns
Upon completion, the ASN1ToOid method returns an OID that corresponds to the specified ASN.1 value
($asn1) .

See Also
• “RIV::SnmpAccess Constructor” on page 241

AsyncSnmpGet
The AsyncSnmpGet method performs an asynchronous SNMP get operation on the specified MIB
variable.

Method Synopsis

AsyncSnmpGet($tag, $host, $addOn,
$oid [,$instance [,$splitOutput]])

Parameters
$tag

Specifies a string that the AsyncSnmpGet method appends to SNMP_$tag. This tag is associated with
the results of an SNMP get operation. For example, if you specify the string GET to the $tag
parameter, the AsyncSnmpGet method associates the tag SNMP_GET with the results for this SNMP
get operation.

$host
Specifies a valid host IP address.

$addOn
Specifies the suffix to the community string.

$oid
Specifies the MIB variable for which you want to perform an asynchronous SNMP get operation.

$instance
Specifies the start of the MIB subtree to retrieve. You must specify $instance as an ASN1 string (for
example, 5.3.15).

This parameter is optional.

$splitOutput
Specifies a value of true or false. If set to true (1) returns three extra keys — OID, INDEX, and
NAMEMIB. The default is false (0), that is, does not return the three extra keys.

This parameter is optional.

242 IBM Tivoli Network Manager IP Edition: Reference

Description
The AsyncSnmpGet method performs an asynchronous SNMP get operation on the specified MIB
variable (the$oid parameter). The AsyncSnmpGet method returns the three extra keys — OID, INDEX,
and NAMEMIB — only if the $splitOutput parameter is set to true (1).

Example Usage

$snmp->AsyncSnmpGet('GET', "1.2.3.4", "", "ifDescr", "2", 1);
($tag, $data) = $snmp->RIV::GetInput(-1);

Returns
Upon successful completion, the AsyncSnmpGet method returns the value /%varop and the tag SNMP_
$tag. If the request failed, AsyncSnmpGet returns undef. The return value, along with the tag SNMP_
$tag, are returned in a call to RIV::GetInput.

See Also
• “RIV::GetInput” on page 177
• “RIV::SnmpAccess Constructor” on page 241
• “MaxAsyncConcurrent” on page 246

AsyncSnmpGetBulk
The AsyncSnmpGetBulk method performs an asynchronous SNMP get-bulk operation on all MIB
objects in the specified MIB table.

Method Synopsis

AsyncSnmpGetBulk($tag, $host, $addOn,
$oidBindList, $nonRepeaters, $maxRepetitions
[,$instance [,$splitOutput]])

Parameters
$tag

Specifies a string that the AsyncSnmpGetBulk method appends to SNMP_$tag. This tag is associated
with the results of an SNMP get-bulk operation. For example, if you specify the string GETBULK to
the $tag parameter, the AsyncSnmpGetBulk method associates the tag SNMP_GETBULK with the
results for this SNMP get-bulk operation.

$host
Specifies a valid a host IP address.

$addOn
Specifies the suffix to the community string.

$oidBindList
Specifies a reference to an array that contains the MIB variables for which you want to perform an
asynchronous SNMP get-bulk operation. The following is an example of an array that contains two
MIB variables:

$oidBindList = \@oids;
where,
@oids = ('sysDescr', 'ifIndex');

$nonRepeaters
Specifies the number of MIB variables at the start of the list of @oids that return a single value. In the
previous example, the @oids list contains two MIB variables: sysDescr and ifIndex. Only the

Chapter 10. RIV Modules Reference 243

sysDescr MIB variable returns a single value. Thus, this parameter would be set to the value 1 for
the previous example.

$maxRepetitions
Specifies the number of MIB variable values in the table to be returned. For example, if you specify the
value 2 to the $maxRepetitions parameter, the AsyncSnmpGetBulk method returns only the values
for the first two MIB variables in the table. To return values for all MIB variables in the table, specify a
large number for this parameter.

This parameter is relevant for MIB variables that return a table, for example, ifIndex.

$instance
Specifies the start of the MIB subtree to retrieve. You must specify $instance as an ASN1 string (for
example, 5.3.15).

This parameter is optional.

$splitOutput
Specifies a value of true or false. If set to true (1) returns three extra keys — OID, INDEX, and
NAMEMIB. The default is false (0), that is, does not return the three extra keys.

This parameter is optional.

Description
The AsyncSnmpGetBulk method performs an asynchronous SNMP get-bulk operation on all MIB
objects specified in $oidBindList. The SnmpGetBulk method returns the three extra keys — OID, INDEX,
and NAMEMIB — only if the $splitOutput parameter is set to true (1).

Notes
The parameters $nonRepeaters and $maxRepetitions must be defined. No default values are specified for
these parameters.

Example Usage

my @oids=
('sysDescr', 'sysContact', 'sysUpTime', 'ipInReceives',
'ipOutRequests', 'ipOutDiscards', 'ipForwDatagrams', 'tcpCurrEstab',
'ifDescr');

$snmp->AsyncSnmpGetBulk("GETBULK", "1.2.3.4", "", \@oids, 8, 100);

($tag, $data) = RIV::GetInput(-1);

Returns
Upon completion, the AsyncSnmpGetBulk method returns a reference to an array of varops and the tag
SNMP_$tag. If the request failed, AsyncSnmpGetBulk returns undef. The return value, along with the
tag SNMP_$tag, are returned in a call to RIV::GetInput.

See Also
• “RIV::GetInput” on page 177
• “RIV::SnmpAccess Constructor” on page 241
• “MaxAsyncConcurrent” on page 246

244 IBM Tivoli Network Manager IP Edition: Reference

AsyncSnmpGetNext
The AsyncSnmpGetNext method performs an asynchronous SNMP get-next operation on the specified
MIB variable.

Method Synopsis

AsyncSnmpGetNext($tag, $host, $addOn,
$oid [,$instance [,$splitOutput]])

Parameters
$tag

Specifies a string that the AsyncSnmpGetNext method appends to SNMP_$tag. This tag is associated
with the results of an SNMP get-next operation. For example, if you specify the string GETNEXT to
the $tag parameter, the AsyncSnmpGetNext method associates the tag SNMP_GETNEXT with the
results for this SNMP get-next operation.

$host
Specifies a valid host IP address.

$addOn
Specifies the suffix to the community string.

$oid
Specifies the MIB variable for which you want to perform an asynchronous SNMP get-next
operation.

$instance
Specifies the start of the MIB subtree to retrieve. You must specify $instance as an ASN1 string (for
example, 5.3.15).

This parameter is optional.

$splitOutput
Specifies a value of true or false. If set to true (1) returns three extra keys — OID, INDEX, and
NAMEMIB. The default is false (0), that is, does not return the three extra keys.

This parameter is optional.

Description
The AsyncSnmpGetNext method performs an asynchronous SNMP get-next operation on the specified
MIB variable ($oid). The AsyncSnmpGetNext method returns the three extra keys — OID, INDEX, and
NAMEMIB — only if the $splitOutput parameter is set to true (1).

Example Usage

$snmp->AsyncSnmpGetNext('GETNEXT', "1.2.3.4", "", "ifDescr");

($tag, $data) = RIV::GetInput(-1);

Returns
Upon successful completion, the AsyncSnmpGetNext method returns a reference to an array of varops
and the tag SNMP_$tag. If the request failed, AsyncSnmpGetNext returns undef. The return value, along
with the tag SNMP_$tag, are returned in a call to RIV::GetInput.

See Also
• “RIV::GetInput” on page 177

Chapter 10. RIV Modules Reference 245

• “RIV::SnmpAccess Constructor” on page 241
• “MaxAsyncConcurrent” on page 246

GetMibHash
The GetMibHash method gets the entire MIB tree.

Method Synopsis

GetMibHash()

Parameters
None

Description
The GetMibHash method gets the entire MIB tree by browsing the files that exist in the $NCHOME/mibs
directory.

Example Usage

my %tree=$snmp->GetMibHash();

The hash list has keys associated with the MIB variables and values that correspond to the ASN.1 values.

Returns
Upon completion, the GetMibHash method returns the complete MIB tree constructed as a result of
browsing the files that reside in the $NCHOME/mibs directory.

See Also
• “RIV::SnmpAccess Constructor” on page 241

MaxAsyncConcurrent
The MaxAsyncConcurrent package variable sets the maximum number of concurrent asynchronous
requests.

Variable Synopsis

$RIV::SnmpAccess::MaxAsyncConcurrent

Description
The MaxAsyncConcurrent package variable sets the maximum number of concurrent asynchronous
requests. The default is ten concurrent asynchronous requests. The value of this variable is used when
the first asynchronous request is executed. Thereafter, any changes to this package variable are ignored.

You use this package variable with the following asynchronous methods:

• AsyncSnmpGet
• AsyncSnmpGetNext
• AsyncSnmpGetBulk

246 IBM Tivoli Network Manager IP Edition: Reference

See Also
• “AsyncSnmpGet” on page 242
• “AsyncSnmpGetNext” on page 245
• “AsyncSnmpGetBulk” on page 243

OidToASN1
The OidToASN1 method converts the specified OID to its corresponding ASN.1 value.

Method Synopsis

OidToASN1($oid)

Parameters
$oid

Specifies the object identifier (OID) to be converted to its corresponding ASN.1 (Abstract Syntax
Notation One) value.

Description
The OidToASN1 method converts the specified OID ($oid) to its corresponding ASN.1 value.

Example Usage

$asn1 = $snmp->OidToASN1('ifDescr');

Returns
Upon completion, the OidToASN1 method returns an ASN.1 value that corresponds to the specified OID
($oid).

See Also
• “RIV::SnmpAccess Constructor” on page 241

SnmpGet
The SnmpGet method performs an SNMP get operation on the specified MIB variable.

Method Synopsis

SnmpGet($host, $addOn, $oid
[,$instance [,$splitOutput]])

Parameters
$host

Specifies a valid host IP address.
$addOn

Specifies the suffix to the community string.
$oid

Specifies the MIB variable for which you want to perform an SNMP get operation.

Chapter 10. RIV Modules Reference 247

$instance
Specifies the start of the MIB subtree to retrieve. You must specify $instance as an ASN1 string (for
example, 5.3.15).

This parameter is optional.

$splitOutput
Specifies a value of true or false. If set to true (1) returns three extra keys — OID, INDEX, and
NAMEMIB. The default is false (0), that is, does not return the three extra keys.

This parameter is optional.

Description
The SnmpGet method performs an SNMP get operation on the specified MIB variable ($oid). The
SnmpGet method returns the three extra keys — OID, INDEX, and NAMEMIB — only if the $splitOutput
parameter is set to true (1).

Example Usage

$vap = $snmp->SnmpGet("1.2.3.4", "", "ifDescr", 1);
print "$vap->{ASN1}, $vap->{VALUE}", "\n";

Returns
Upon completion, the SnmpGet method returns /%varop, where the %varop keys are ASN1 and VALUE.

See Also
• “RIV::SnmpAccess Constructor” on page 241

SnmpGetBulk
The SnmpGetBulk method performs an SNMP get-bulk operation on all MIB objects in the specified
MIB table.

Method Synopsis

SnmpGetBulk($host, $addOn, $oidBindList,
$nonRepeaters, $maxRepetitions
[,$instance [,$splitOutput]])

Parameters
$host

Specifies a valid host IP address.
$addOn

Specifies the suffix to the community string.
$oidBindList

Specifies a reference to an array that contains the MIB variables for which you want to perform an
SNMP get-bulk operation. The following is an example of an array that contains two MIB variables:

$oidBindList = \@oids;
where,
@oids = ('sysDescr', 'ifIndex');

$nonRepeaters
Specifies the number of MIB variables at the start of the list of @oids that return a single value. In the
previous example, the @oids list contains two MIB variables: sysDescr and ifIndex. Only the

248 IBM Tivoli Network Manager IP Edition: Reference

sysDescr MIB variable returns a single value. Thus, this parameter would be set to the value 1 for
the previous example.

$maxRepetitions
Specifies the number of MIB variable values in the table to be returned. For example, if you specify the
value 2 to the $maxRepetitions parameter, the SnmpGetBulk method returns only the values for the
first two MIB variables in the table. To return values for all MIB variables in the table, specify a large
number for this parameter.

This parameter is relevant for MIB variables that return a table, for example, ifIndex.

$instance
Specifies the start of the MIB subtree to retrieve. You must specify $instance as an ASN1 string (for
example, 5.3.15).

This parameter is optional.

$splitOutput
Specifies a value of true or false. If set to true (1) returns three extra keys — OID, INDEX, and
NAMEMIB. The default is false (0), that is, does not return the three extra keys.

This parameter is optional.

Description
The SnmpGetBulk method performs an SNMP get-bulk operation on all MIB objects specified in
$oidBindList. The SnmpGetBulk method returns the three extra keys — OID, INDEX, and NAMEMIB — only
if the $splitOutput parameter is set to true (1).

Notes
The parameters $nonRepeaters and $maxRepetitions must be defined. No default values are specified for
these parameters.

Example Usage

my @oids=('sysDescr','sysContact','sysUpTime','ipInReceives',

'ipOutRequests','ipOutDiscards','ipForwDatagrams','tcpCurrEstab',
'ifDescr');

($vap) = $snmp->SnmpGetBulk("1.2.3.4", "", \@oids, 8, 100);

Returns
Upon completion, the SnmpGetBulk method returns a reference to a result array. Each element of the
result array is a %varop hash.

See Also
• “RIV::SnmpAccess Constructor” on page 241

SnmpGetNext
The SnmpGetNext method performs an SNMP get-next operation on the specified MIB variable.

Method Synopsis

SnmpGetNext($host, $addOn, $oid
[, $instance [,$splitOutput]])

Chapter 10. RIV Modules Reference 249

Parameters
$host

Specifies a valid IP address.
$addOn

Specifies the suffix to the community string.
$oid

Specifies the MIB variable for which you want to perform an SNMP get-next operation.
$instance

Specifies the start of the MIB subtree to retrieve. You must specify $instance as an ASN1 string (for
example, 5.3.15).

This parameter is optional.

$splitOutput
Specifies a value of true or false. If set to true (1) returns three extra keys — OID, INDEX, and
NAMEMIB. The default is false (0), that is, does not return the three extra keys.

This parameter is optional.

Description
The SnmpGetNext method performs iterative SNMP get-next operations on the specified host
($nodeIP) for the MIB table starting at the specified MIB variable ($oid). The SnmpGetNext method
returns the three extra keys — OID, INDEX, and NAMEMIB — only if the $splitOutput parameter is set to
true (1).

Example Usage

my ($vap) = $snmp->SnmpGetNext("1.2.3.4", "", "ifDescr");

Returns
Upon completion, the SnmpGetNext method returns a reference to a result array. Each element of the
result array is a %varop hash.

See Also
• “RIV::SnmpAccess Constructor” on page 241

SnmpWalk
The SnmpWalk method performs an SNMP walk operation on the specified device, starting at the
specified MIB variable.

Method Synopsis

SnmpWalk($host, $addOn, $oid,
$ignoreInstanceFilters)

Parameters
$host

Specifies a valid IP address.
$addOn

Specifies the suffix to the community string (usually an empty string).

250 IBM Tivoli Network Manager IP Edition: Reference

$oid
Specifies the MIB variable from which to start the SNMP walk operation.

ignoreInstanceFilters
If instance filters have been configured for the SNMP helper, determines whether the SNMP walk
operation returns only the filtered instances or all data. Pass one of the following values to this
parameter:

• 0 -- Applies filters to the SNMP walk operation.
• 1 -- Ignores any filters.

Description
The SnmpWalk method performs an SNMP walk operation on a given device, starting at the specified MIB
variable ($oid). The SnmpWalk method returns either only filtered instances or all data, depending on the
value passed to the $ignoreInstanceFilters parameter.

Example Usage

my ($results, $status) = $snmp->SnmpWalk("1.2.3.4", "", "ifTable", 1);

Returns
Upon successful completion, the SnmpWalk method returns a 2-element array. The first element is a
reference to an array of returned SNMP data. Each element has the same format as returned by the
SnmpGetNext method. The second element is a hash of additional data. This hash can include the
following fields:

• m_InstanceFiltered -- If present, this field indicates that instance filtering was applied to the returned
results.

• m_ErrorStatus -- If present, this field indicates any error status detected by the SNMP helper while
trying to process the query.

See Also
• “SnmpGetNext” on page 249
• “RIV::SnmpAccess Constructor” on page 241

SplitOidAndIndex
The SplitOidAndIndex method converts the full ASN.1 value into its index and the base OID.

Method Synopsis

SplitOidAndIndex($fullASN1)

Parameters
$fullASN1

Specifies the complete ASN.1 (Abstract Syntax Notation One) value to be split.

Description
The SplitOidAndIndex method splits the specified ASN.1 value ($fullASN1) into its index and the base
OID (object identifier).

Chapter 10. RIV Modules Reference 251

Example Usage
The following call to SplitOidAndIndex passes an ASN.1 value of 1.3.6.1.2.1.2.2.1.1 to the
$fullASN1 parameter:

($baseOid, $indexOid, $baseOidName) = $snmp->SplitOidAndIndex($fullASN1);

The previous call returns the following values:

• $baseOID=1.3.6.1.2.1.2.2.1.1
• $indexOID=0
• $baseOidName=ifDescr

Returns
Upon completion, the SplitOidAndIndex method returns an array with three elements:

• The base OID.
• The index.
• The name of the base OID.

See Also
• “RIV::SnmpAccess Constructor” on page 241

252 IBM Tivoli Network Manager IP Edition: Reference

Chapter 11. NCP Modules Reference
Each NCP module provides constructors and methods used in the Perl scripts that you implement to
perform operations on NCIM topology databases and NCIM domains.

To implement Perl scripts using the NCP modules, you must be familiar with the constructors and
methods that each module provides. These constructors and methods are described in manual
(reference) page format.

The following list identifies the NCP modules:

• NCP::DBI_FACTORY
• NCP::Domain

NCP::DBI_Factory module reference
The NCP::DBI_Factory module provides an interface to make it easier to use the standard Perl DBI
module to perform operations on NCIM topology databases.

The NCP::DBI_Factory module provides a method used to create a standard DBI handle used in
subsequent calls to some of the methods that perform operations on NCIM topology databases.

Use of the methods that the NCP::DBI_Factory module provides assumes that you understand how to
use the standard Perl DBI module and that you are familiar with NCIM topology databases.

See IBM Tivoli Network Manager Reference for information on NCIM topology databases.

Each of the NCP::DBI_Factory module methods is described in manual (reference) page format.

NCP::DBI_Factory module synopsis
The NCP::DBI_Factory module synopsis shows how to make calls to some of the NCIM database
operation methods that this module provides.

The comments provided in the synopsis serve as a quick reference as to the purpose of the NCIM
database operation methods. The reference (man) pages provide the details.

Load the NCP::DBI_Factory module.
use NCP::DBI_Factory;

Get the database login details from DbLogins.NCOMS.cfg, or,
failing that, from DbLogins.cfg.
 my %typicalParameters = (
 domain => "NCOMS",
 dbid => "NCIM",
);

Call the createDbHandle method to obtain the DBI handle. In this call,
pass the %typicalParameters hash parameter.
my $dbh = NCP::DBI_Factory::createDbHandle(%typicalParameters);

my %explicitParams = (
 dbname => "ncim",
 server => "db2",
 schema => "ncim",
 host => "192.168.1.1",
 username => "dbuser",
 password => "dbpassword",
 port => 50000 # optional
);

Call the createDbHandle method to obtain a second DBI handle. In this call,
pass the %explicitParameters hash parameter.
my $otherDbh = NCP::DBI_Factory::createDbHandle(%explicitParams);

Declare variables that the insert_row and insert_auto_inc_row methods use.
my $tableName = "entityNameCache";
my $name = "entity1";

© Copyright IBM Corp. 2006, 2021 253

Declare a hash that the insert_row and insert_auto_inc_row methods use.
Note: The string in $name will automatically be quoted.
my %row = (
 entityName => $name,
 domainMgrId => 1
);

Call the insert_row method to insert a row into a database table
called entityNameCache.
NCP::DBI_Factory::insert_row($dbh, $tableName, \%row)
 or print "Insert failed ", $dbh->errstr "\n";

 my $autoIncColumnName = "entityId";

Call the insert_auto_inc_row method to insert a row into a database table
called entityNameCache. This table has an auto incremented column called
entityId.
my $newId = NCP::DBI_Factory::insert_auto_inc_row(
 $dbh, $tableName, \%row, $autoIncColumnName)
 or print "Insert failed ", $dbh->errstr "\n";

Set up the variabloes to use in the calls to the
prepare_insert_auto_inc and execute_insert_auto_inc methods.
my @columnName = ["entityName","domainMgrId"];
my @values = ["entity2",2];
my $sth = NCP::DBI_Factory::prepare_insert_auto_inc(
 $dbh, $tableName, $autoIncColumnName, @columnNames)
 or print "Prepared failed ", $dbh->errstr, "\n";

my $newId2 = NCP::DBI_Factory::execute_insert_auto_inc(
 $dbh, $sth, @values)
 or print "Insert failed ", $dbh->errstr "\n";

$sth->finish();

Commit the changes to the NCIM topology database by calling
the Perl DBI module commit method. Otherwise, call the Perl DBI
rollback method to undo the most recent series of uncommitted
database changes.
if ($happy)
{
 $dbh->commit();
}
else
{
 $dbh->rollback();
}

Identify the current schema by calling the schema method.
Call the tables method to return a sorted array of table
and view names for the current schema.
Call the describeTable method to return a sorted array
of upper case field names for the specified table
in the current schema.
my $schema = NCP::DBI_Factory::schema(%typicalParameters);
my @tableList = NCP::DBI_Factory::tables(dbh => $dbh,
 schema => $schema,
 %typicalParameters);
foreach my $table (@tableList)
{
my @fields = NCP::DBI_Factory::describeTable(
 $table,
 dbh => $dbh,
 schema => $schema);

Disconnect and clean.
NCP::DBI_Factory::finish($dbh);
NCP::DBI_Factory::finish($otherDbh);

254 IBM Tivoli Network Manager IP Edition: Reference

createDbHandle
The createDbHandle method creates a standard DBI handle, connected to the requested NCIM
topology database. This DBI handle is used in subsequent calls to some of the other NCP::DBI_Factory
module methods.

Method Synopsis

NCP::DBI_Factory::createDbHandle(%typicalParameters)

NCP::DBI_Factory::createDbHandle(%explicitParameters)

Parameters
%typicalParameters

Specifies a hash that contains the key/value pairs necessary for createDbHandle to access
information from one of the following files in order to create a DBI handle:

• DbLogins.cfg — Specifies the standard database log-ins configuration file.
• DbLogins.domain.cfg — Specifies a domain-specific database log-ins configuration file where

domain identifies a domain (for example, DbLogins.NCOMS.cfg).
• Custom file — Specifies an optional custom database log-ins configuration file. This file is expected

to have the same format as DbLogins.cfg and DbLogins.domain.cfg.

The following table identifies the key/value pairs in this hash:

Hash key Description

domain Specifies the name of the domain used to identify whether a DbLogins.domain.cfg file
exists in the $NCHOME/etc/precision directory.

The following example shows a possible value for this key:

domain => "NCOMS"

In this example, the createDbHandle method would look for a file called
DbLogins.NCOMS.cfg in the $NCHOME/etc/precision directory.

If a DbLogins.domain.cfg file does not exist, createDbHandle looks for the
DbLogins.cfg file.

This is a required key/value pair.

dbid Specifies the logical name for the NCIM topology database to which you want to connect.
Each NCIM topology database has a unique logical name specified in the
DbLogins.cfg, DbLogins.domain.cfg, or custom database log-ins configuration file.

The following example shows a possible value for this key:

dbid => "ncim"

In this example, the value ncim specifies the logical name for this connection to the
NCIM topology database.

The createDbHandle method uses dbid to locate the appropriate section of the
database log-ins configuration file.

This is a required key/value pair.

Note: The dbid key/value pair maps to the m_DbId field in the database log-ins
configuration file.

Chapter 11. NCP Modules Reference 255

Hash key Description

dbfile Specifies the name of the custom database log-ins configuration file. If you specify the
optional dbfile key/value pair, the createDbHandle method would look for the
specified custom file in the $NCHOME/etc/precision directory.

%explicitParameters
Specifies a hash that contains the key/value pairs necessary to create a DBI handle. In this case,
createDbHandle does not obtain the necessary values from a file as is the case for the
%typicalParameters hash parameter. Instead, all of the necessary values are explicitly specified.
(Typically, an application would obtain these values from the command line.) The following table
identifies the key/value pairs in this hash. All key/value pairs listed in the table are required, except for
port, which is optional.

Hash key Description

dbname Specifies the name of the NCIM topology database to which you want to connect.

The following example shows a possible value for this key:

dbname => "ncim"

In this example, the value ncim specifies that you want to connect to the NCIM topology
database.

server Specifies a string that identifies the type of database associated with the database
name specified in the dbname key.

The following list identifies the possible values for this key:

• oracle — Specifies the Oracle database.
• db2 — Specifies the Db2 database.

The following example shows a database type of Db2:

server => "db2"

schema Specifies the name of the schema to access in the database specified in the dbname
key.

The following example shows a possible value for this key:

schema => "ncim"

host Specifies the address of the host computer on which the specified NCIM topology
database resides.

The following example shows a possible value for this key:

host => "192.168.1.1"

username Specifies the name of the user who has access to the specified NCIM topology
database.

The following example shows a possible value for this key:

username => "dbuser"

password Specifies the password of the user who has access to the specified NCIM topology
database.

The following example shows a possible value for this key:

256 IBM Tivoli Network Manager IP Edition: Reference

Hash key Description

password => "dbpassword"

port Specifies an optional key that identifies the port associated with the address specified in
host.

The following example shows a possible value for this key:

port => "3406"

Description
The createDbHandle method creates a standard DBI (Database Interface) handle to be used in
subsequent calls to some of the other NCP::DBI_Factory methods. This DBI handle contains the
information needed to connect to the requested NCIM topology database.

The createDbHandle method accepts the following hash parameters:

• %typicalParameters — This hash provides the domain and dbid key/value pairs. Optionally, this hash
can provide a dbfile key/value pair. Given this information, the createDbHandle method:

– Reads and parses one of these files that resides in the $NCHOME/etc/precision directory:
DbLogins.cfg (the default), DbLogins.domain.cfg, or an optional custom database login-ins
configuration file.

– Uses the dbid key/value pair to locate the database entry of interest in the specified database log-
ins configuration file.

– Connects to the specified NCIM topology database.
– Sets the context to the schema associated with the specified NCIM topology database.

• %explicitParameters — This hash provides all of the required information from the command line. Given
this information, the createDbHandle method:

– Connects to the specified NCIM topology database.
– Sets the context to the schema associated with the specified NCIM topology database.

When reading from a database log-ins configuration file, createDbHandle can override any values from
the file if you explicitly pass them in from the command line. The following table provides the available
override options and their mappings to the fields in the database log-ins configuration file:

Override
option

Description

dbfile Specifies an optional override for the DbLogins.cfgdatabase log-ins configuration file.
This file is expected to have the same format as DbLogins.cfg and
DbLogins.domain.cfg.

dbname Specifies the name of the database. If specified on the command line, this option
overrides the value specified for the m_DbName field in the database log-ins
configuration file.

server Specifies a string that identifies the type of database associated with the database
name specified in the dbname option.

The following list identifies the possible values for the server option:

• oracle — Specifies the Oracle database.
• db2 — Specifies the Db2 database.

This option overrides the value specified for the m_Server field in the database log-ins
configuration file.

Chapter 11. NCP Modules Reference 257

Override
option

Description

schema Specifies the name of the schema to access in the specified database. This option
overrides the value specified for the m_Schema field in the database log-ins
configuration file.

host Specifies the address of the host computer on which the specified NCIM topology
database resides. This option overrides the value specified for the m_Hostname field in
the database log-ins configuration file.

username Specifies the name of the user who has access to the specified NCIM topology
database. This option overrides the value specified for the m_Username field in the
database log-ins configuration file.

password Specifies the password of the user who has access to the specified NCIM topology
database. This option overrides the value specified for the m_Password field in the
database log-ins configuration file.

port Specifies the port associated with the address specified in host. This option overrides
the value specified for the m_PortNum field in the database log-ins configuration file.

Notes
To ensure that the createDbHandle method can print appropriate messages to a log file, you must have
previously specified a log handle (that is, a reference to a file object) by calling the setLogHandle
method. Otherwise, the method sends these messages to STDOUT.

Example Usage
The following code example illustrates a typical call to the createDbHandle method using the
%typicalParameters hash parameter:

Set up the hash list to contain the domain and
database ID.

my %typicalParameters = (
 domain => "NCOMS",
 dbid => "NCIM"
);

Call the createDbHandle method passing to it the previously
set up hash list. In this case, createDbHandle knows that the
information it needs to create the DBI handle resides in a file.
The createDbHandle method returns the DBI to the $dbh variable.
#

my $dbh = NCP::DBI_Factory::createDbHandle(%typicalParameters);

The following code example illustrates a typical call to the createDbHandle method using the
explicitParams parameter:

Set up the hash list to contain the information necessary to create
the DBI handle without reading a database log-ins configuration file.

my %explicitParams = (
 dbname => "ncim",
 server => "db2",
 schema => "ncim",
 host => "9.180.209.24",
 username => "batman",
 password => "robin",
 port => 3406 # This is an optional element.
);

258 IBM Tivoli Network Manager IP Edition: Reference

Call the createDbHandle method passing to it the previously set up
hash list that contains the information necessary to create the
DBI handle. The createDbHandle method returns the DBI handle to
the $otherDbh variable.
my $otherDbh = NCP::DBI_Factory::createDbHandle(%explicitParams);

Returns
Upon completion, the createDbHandle method returns a standard DBI handle associated with the
requested NCIM topology database.

See Also
• “schema” on page 269

describeTable
The describeTable method returns a sorted array of uppercase field names for the specified table or
view.

Method Synopsis

NCP::DBI_Factory::describeTable($tableName, %dbhschema)

NCP::DBI_Factory::describeTable($tableName, %typicalParameters)

Parameters
$tableName

Specifies the name of the database table that is of interest. Because the different databases that the
DBI_Factory module supports use different cases for table names, supply the table name in mixed
case. For example, if the table name is entitynamecache, then the mixed case equivalent is
entityNameCache.

In either case, the describeTable method internally converts the specified database table name to
upper or lower case as required.

%dbhschema
Specifies a hash that contains the following keys:

• dbh — Specifies an existing DBI handle returned in a previous call to the createDbHandle method.
This handle supplies the context for connecting to the specified NCIM topology database.

• schema — Specifies the schema that contains the database table name specified in the $tableName
parameter. Typically, this schema name is obtained in a call to the schema method.

%typicalParameters
Specifies the same hash parameter accepted by the createDbHandle method.

Description
The describeTable method returns a sorted array of uppercase field names for the database table or
view specified in the $tableName parameter. For full portability, pass this table name in mixed case to the
tableName parameter. The describeTable method:

• Converts the table name to upper case for Oracle and Db2 databases, since these databases require
upper case table names. For example, the table name entityNameCache would be converted to
ENTITYNAMECACHE.

If you specify the %typicalParameters hash instead of the %dbhschema hash, describeTable calls
createDbHandle to create a new DBI handle. The schema associated with this newly created handle is

Chapter 11. NCP Modules Reference 259

identified by the dbid key/value pair and this schema is expected to contain the table specified in the
$tableName parameter.

Notes
The NCP::DBI_Factory module supports Db2 and Oracle databases. In both these databases, tables
and field names are case insensitive with regard to SQL statements. However, Db2 and Oracle return field
names in table rows in uppercase.

Example Usage
The following code example illustrates a typical call to the describeTable method using the
%dbhschema hash parameter. The code example also shows a call to the tables method:

List the tables in schema $schema without creating a new DBI handle.
my @tableList = NCP::DBI_Factory::tables(dbh => $dbh,
 schema => $schema);
 foreach my $table (@tableList)
 {
 my @fields = NCP::DBI_Factory::describeTable(
 $table,
 dbh => $dbh,
 schema => $schema);
 }

Returns
Upon completion, the describeTable method returns a sorted array of uppercase field names for the
specified database table or view.

See Also
• “createDbHandle” on page 255
• “schema” on page 269
• “tables” on page 272

execute_insert_auto_inc
The execute_insert_auto_inc method executes an auto-incremented column statement handle
prepared by the prepare_insert_auto_inc method.

Method Synopsis

NCP::DBI_Factory::execute_insert_auto_inc($dbHandle,$statementHandle,
 $values)

Parameters
$dbHandle

Specifies the DBI handle returned in a previous call to the createDbHandle method. This handle
supplies the context for connecting to the specified NCIM topology database.

$statementHandel
Specifies the statement handle returned in a previous call to the prepare_insert_auto_inc
method.

$values
Specifies the values to be executed.

260 IBM Tivoli Network Manager IP Edition: Reference

Description
The execute_insert_auto_inc method executes an auto-incremented column statement handle
prepared by the prepare_insert_auto_inc method.

Notes
To ensure that the execute_insert_auto_inc method can print appropriate messages to a log file,
you must have previously specified a log handle (that is, a reference to a file object) by calling the
setLogHandle method. Otherwise, the method sends these messages to STDOUT.

Example Usage
The following code example illustrates a typical call to the execute_insert_auto_inc method:

 my $newId2 = NCP::DBI_Factory::execute_insert_auto_inc($dbh, $sth, @values)
 or print "Insert failed ", $dbh->errstr "\n";

Returns
Upon completion, the execute_insert_auto_inc method returns the new auto-incremented value.

See Also
• “createDbHandle” on page 255
• “prepare_insert_auto_inc” on page 268

extractCmdLineOptions
The extractCmdLineOptions method allows database login options specified on the command line to
be provided in a common format.

Method Synopsis

NCP::DBI_Factory::extractCmdLineOptions([$prefix])

Parameters
$prefix

An optional parameter that specifies a prefix used to allow other similar database login options to be
supplied for multiple database connections. Examples of such prefixes include ncim_, ncmonitor_,
and ncpoller_.

Description
The extractCmdLineOptions method allows database login options specified on the command line to
be provided in a common format. This method accepts the same database login options as the
createDbHandle method:

• dbfile
• server
• dbname
• schema
• host
• username
• password

Chapter 11. NCP Modules Reference 261

• port

The extractCmdLineOptions method can also take an optional $prefix parameter that specifies similar
database login options other than the previously listed options. This optional parameter allows Perl
scripts to handle multiple sets of database login options by calling the extractCmdLineOptions
method multiple times.

Notes
The extractCmdLineOptions method removes the database login options that it processes and
returns in the hash from the @ARGV array. However, any options that do not get processed and returned in
the hash remain in the @ARGV array.

Use the extractCmdLineOptions method to process database login options from the command line.
Use the extractHashRefOptions method to process database login options from a hash reference.

Example Usage
You can call the extractCmdLineOptions method with or without the $prefix parameter.

Calling extractCmdLineOption without the $prefix parameter

The following code example illustrates a call to the extractCmdLineOptions method without the use
of the $prefix optional parameter. The example declares a variable called $optionsHashRef to store the
reference to the hash returned by extractCmdLineOptions:

my $optionsHashRef = NCP::DBI_Factory::extractCmdLineOptions();

Assume that the previous code example is contained in a Perl script called dboptions.pl. Consider this
script executed with the password , host, and whatever database login options:

dboptions.pl -password tom -host dick -whatever harry

The extractCmdLineOptions returns a reference to a hash in $optionsHashRef as follows:

$optionsHashRef = { password => "tom", host => "dick" }

The database login option — ('-whatever', 'harry') — remains in the @ARGV array because the
extractCmdLineOptions method could not process it without the $prefix optional parameter.

Calling extractCmdLineOption with the $prefix parameter

The following code example illustrates multiple calls to the extractCmdLineOptions method with the
use of the $prefix optional parameter:

my $generic =
NCP::DBI_Factory::extractCmdLineOptions();
my $ncimSpecific =
NCP::DBI_Factory::extractCmdLineOptions("ncim_")|| $generic;
my $ncmonitorSpecific =
NCP::DBI_Factory::extractCmdLineOptions("ncmonitor_") || $generic;
my $ncpollerSpecific =
NCP::DBI_Factory::extractCmdLineOptions("ncpoller_") || $generic;

Assume that the previous code example is contained in a Perl script called dboptionsuseprefix.pl.
Consider this script executed with the password and ncpoller_password database login options:

dboptionsuseprefix.pl -password "ncim" -ncpoller_password "ncpoller"

The extractCmdLineOptions returns references to hashes in $ncimSpecific, $ncmonitorSpecific, and
$ncpollerSpecific as follows:

$ncimSpecific = { password => "ncim" };
$ncmonitorSpecific = { password => "ncim" };
$ncpollerSpecific = { password => "ncpoller" };

262 IBM Tivoli Network Manager IP Edition: Reference

The following list further explains how these calls to extractCmdLineOptions work:

• The first call to extractCmdLineOptions (without the optional $prefix parameter) processes the -
password "ncim database login option and returns a reference to a hash that contains { password
=> "ncim" }.

• The second call to extractCmdLineOptions sets up a logical OR operation. If a database login option
beginning with the prefix ncim_ is specified, then process it and return the appropriate value in the
hash reference. Otherwise, return { password => "ncim" } to the hash reference. In this case, the
right side of the logical OR is true.

• The third call to extractCmdLineOptions sets up a logical OR operation. If a database login option
beginning with the prefix ncmonitor_ is specified, then process it and return the appropriate value in
the hash reference. Otherwise return { password => "ncim" } to the hash reference. In this case,
the right side of the logical OR is true.

• The fourth call to extractCmdLineOptions sets up a logical OR operation. If a database login option
beginning with the prefix ncpoller_ is specified, then process it and return the appropriate value in
the hash reference. Otherwise return { password => "ncim" } to the hash reference. In this case,
the left side of the logical OR is true and so password => "ncpoller is returned.

Returns
Upon completion, the extractCmdLineOptions method returns a reference to a hash that contains the
extracted database login options and values in key/value format. If no database login options were
specified, the extractCmdLineOptions method returns undef.

See Also
• “createDbHandle” on page 255
• “extractHashRefOptions” on page 263

extractHashRefOptions
The extractHashRefOptions method extracts the database login options from the specified hash
reference.

Method Synopsis

NCP::DBI_Factory::extractHashRefOptions($originalHashRef [,$prefix])

Parameters
$originalHashRef

Specifies a reference to the original hash that contains the database login options.
$prefix

An optional parameter that specifies a prefix used to allow other similar database login options to be
supplied for multiple database connections. Examples of such prefixes include ncim_, ncmonitor_,
and ncpoller_.

Description
The extractHashRefOptions method extracts the database login options from the hash reference
specified in the $originalHashRef parameter. This method accepts the same database login options as the
createDbHandle method:

• dbfile
• server
• dbname

Chapter 11. NCP Modules Reference 263

• schema
• host
• username
• password
• port

The extractHashRefOptions method can also take an optional $prefix parameter that specifies similar
database login options other than the previously listed options. This optional parameter allows Perl
scripts to handle multiple sets of database login options by calling the extractHashRefOptions
method multiple times.

Notes
The extractHashRefOptions method does not remove the key/value pairs from the hash reference
specified in the $originalHashRef parameter.

Use the extractHashRefOptions method to process database login options from a hash reference.
Use the extractCmdLineOptions method to process database login options from the command line or
DbLogins.cfg file.

Example Usage
The following code example sets up a hash reference and then makes two calls to the
extractHashRefOptions method:

my %original =
{ password => "topsecret", ncpoller_password => "classified, foo => "bar" };

my $generic = NCP::DBI_Factory::extractHashRefOptions(\%original);
my $ncpoller = NCP::DBI_Factory::extractHashRefOptions(\%original, "ncpoller_");

The following further explains how these calls to extractHashRefOptions work:

• The first call to extractHashRefOptions extracts the -password => "topsecret" database login
option and returns it to $generic. This call to extractHashRefOptions cannot extract the other two
options because this call did not specify ncpoller_ or foo_ in the optional $prefix parameter. The -
password => "topsecret" option remains in the %original hash reference.

• The second call to extractHashRefOptions extracts the -password => "classified" database
login option and returns it to $ncpoller. This call to extractHashRefOptions extracts -password =>
"classified" because of the ncpoller_ prefix passed to the $prefix parameter. The -password =>
"classified" option remains in the %original hash reference.

• The foo => "bar" option is not extracted and remains in the %original hash reference.

Returns
Upon completion, the extractHashRefOptions method returns a reference to a hash that contains the
extracted database login options and values in key/value format. If no database login options were
specified, the extractHashRefOptions method returns undef.

See Also
• “createDbHandle” on page 255
• “extractCmdLineOptions” on page 261

264 IBM Tivoli Network Manager IP Edition: Reference

finish
The finish method disconnects and cleans the specified database handle.

Method Synopsis
NCP::DBI_Factory::finish($dbHandle);

Parameters
$dbHandle

Specifies the DBI handle returned in a previous call to the createDbHandle method. This handle
supplies the context for finishing the connection for the specified NCIM topology database.

Description
The finish method disconnects and cleans the specified database handle.

Example usage
NCP::DBI_Factory::finish($dbHandle);

Returns
Upon completion, the finish method returns no value.

See Also
• “createDbHandle” on page 255

insert_auto_inc_row
The insert_auto_inc_row method inserts a row into the specified table that has an auto-increment
column.

Method Synopsis

NCP::DBI_Factory::insert_auto_inc_row($dbHandle,$tableName,
$tableRow, $autoIncColumnName)

Parameters
$dbHandle

Specifies the DBI handle returned in a previous call to the createDbHandle method. This handle
supplies the context for connecting to the specified NCIM topology database.

$tableName
Specifies the name of the table into which the insert_auto_inc_row method inserts the row
specified in the $tableRow parameter.

$tableRow
Specifies a hash of scalars keyed on the column name.

$autoIncColumnName
Specifies the name of the auto-increment column in the specified table.

Chapter 11. NCP Modules Reference 265

Description
The insert_auto_inc_row method inserts the row specified in the $tableRow parameter into the table
specified in the $tableName parameter. The table is expected to contain the auto-increment column
name specified in the $autoIncColumnName parameter.

Note: You can also call the DBI rollback interface to undo the most recent insert row change.

Notes
To ensure that the insert_auto_inc_row method can print appropriate messages to a log file, you
must have previously specified a log handle (that is, a reference to a file object) by calling the
setLogHandle method. Otherwise, the method sends these messages to STDOUT.

Use the insert_auto_inc_row method to insert rows in tables that have an auto- increment column.
Use the insert_row method to insert rows in tables that have do not have an auto- increment column.

Example Usage
The following code example illustrates a typical call to the insert_auto_inc_row method:

my $tableName = "entityNameCache";
 my $name = "fred";

 # Note: the string in $name will automatically be quoted
 my %row = (
 entityName => $name,
 domainMgrId => 1
);

my $autoIncColumnName = "entityId";

 my $newId = NCP::DBI_Factory::insert_auto_inc_row(
 $dbh, $tableName, \%row, $autoIncColumnName)
 or print "Insert failed ", $dbh->errstr "\n";

 # Changes only take effect when this is called
 if ($happy)
 {
 $dbh->commit();
 }
 else
 {
 $dbh->rollback();
 }

Returns
Upon completion, the insert_auto_inc_row method returns the new auto-increment value, provided
that the row could be uniquely identified by the fields that the insert_auto_inc_row method just
inserted into the specified table.

See Also
• “createDbHandle” on page 255
• “insert_row” on page 266

insert_row
The insert_row method inserts a row into the specified table.

Method Synopsis

NCP::DBI_Factory::insert_row($dbHandle,$tableName, $tableRow)

266 IBM Tivoli Network Manager IP Edition: Reference

Parameters
$dbHandle

Specifies the DBI handle returned in a previous call to the createDbHandle method. This handle
supplies the context for connecting to the specified NCIM topology database.

$tableName
Specifies the name of the table into which the insert_row method inserts the row specified in the
$tableRow parameter.

$tableRow
Specifies a hash of scalars keyed on the column name.

Description
The insert_row method inserts the row specified in the $tableRow parameter into the table specified in
the $tableName parameter. The insert_row method automatically interpolates any strings in $tableRow
into double-quoted strings.

Note: You can also call the DBI rollback interface to undo the most recent insert row change.

Notes
To ensure that the insert_row method can print appropriate messages to a log file, you must have
previously specified a log handle (that is, a reference to a file object) by calling the setLogHandle
method. Otherwise, the method sends these messages to STDOUT.

Use the insert_row method to insert rows in tables that have do not have an auto- increment column.
Use the insert_auto_inc_row method to insert rows in tables that have an auto- increment column.

Example Usage
The following code example illustrates a typical call to the insert_row method:

my $tableName = "entityNameCache";
 my $name = "fred";

 # Note: the string in $name will automatically be quoted
 my %row = (
 entityName => $name,
 domainMgrId => 1
);

 NCP::DBI_Factory::insert_row($dbh, $tableName, \%row)
 or print "Insert failed ", $dbh->errstr "\n";

Changes only take effect when commit is called
 if ($happy)
 {
 $dbh->commit();
 }
 else
 {
 $dbh->rollback();
 }

Returns
Upon completion, the insert_row method returns whatever the standard DBI statement handle execute
method returns.

See Also
• “createDbHandle” on page 255
• “insert_auto_inc_row” on page 265

Chapter 11. NCP Modules Reference 267

prepare_insert_auto_inc
The prepare_insert_auto_inc method prepares the SQL statement once so that it can be used
multiple times when inserting many rows into an auto-increment column of the specified database table.

Method Synopsis

NCP::DBI_Factory::prepare_insert_auto_inc($dbHandle,$tableName,
$autoIncColumnName, $columnNames)

Parameters
$dbHandle

Specifies the DBI handle returned in a previous call to the createDbHandle method. This handle
supplies the context for connecting to the specified NCIM topology database.

$tableName
Specifies the name of the table into which the prepare_insert_auto_inc method prepares the
SQL statement to be inserted into multiple rows in the specified columns.

$autoIncColumnName
Specifies the name of the auto-increment column in the specified table.

$columnNames
Specifies a hash of column names.

Description
The prepare_insert_auto_inc method prepares the SQL statement once so that it can be used
multiple times when inserting many rows into an auto-increment column of the specified database table.
Use this method when inserting many rows into an auto-incremented column.

The returned SQL statement handle should be used with the execute_insert_auto_inc method.

Notes
To ensure that the prepare_insert_auto_inc method can print appropriate messages to a log file,
you must have previously specified a log handle (that is, a reference to a file object) by calling the
setLogHandle method. Otherwise, the method sends these messages to STDOUT.

Example Usage
The following code example illustrates a typical call to the prepare_insert_auto_inc method:

my $sth =
NCP::DBI_Factory::prepare_insert_auto_inc($dbh,
 $tableName,
 $autoIncColumnName, @columnNames)
or print "Prepared failed ", $dbh->errstr, "\n";

Returns
Upon completion, the prepare_insert_auto_inc method returns the prepared SQL statement handle.

See Also
• “createDbHandle” on page 255
• “insert_row” on page 266

268 IBM Tivoli Network Manager IP Edition: Reference

schema
The schema method returns the schema name associated with the specified database.

Method Synopsis

NCP::DBI_Factory::schema(%typicalParameters)

NCP::DBI_Factory::schema(%explicitParameters)

Parameters
$typicalParameters

Specifies the same hash parameter accepted by the createDbHandle method. If you supply this
hash parameter, schema obtains the value from the database log-ins configuration file.

%explicitParameters
Specifies the same hash parameter accepted by the createDbHandle method. If you supply this
hash parameter, schema obtains the value from the command line.

Description
The schema method returns the name of the schema being used as follows:

• If the %typicalParameters hash was specified — The schema method obtains the name of the schema
being used from one of these files: DbLogins.cfg, DbLogins.DOMAIN.cfg, or an optional custom
database log-ins configuration file. If schema finds a domain-specific file, it uses that file to obtain the
name of the schema. If the schema variable was passed to the createDbHandle method, then the
schema method uses this variable to obtain the name of the schema. The schema variable overrides the
schema information contained in any of the configuration files.

• If the %explicitParameters hash was specified — The schema method obtains the name of the schema
from the command line. (The schema name is the value associated with the schema key in the
%explicitParameters hash.)

Notes
To ensure that the schema method can print appropriate messages to a log file, you must have previously
specified a log handle (that is, a reference to a file object) by calling the setLogHandle method.
Otherwise, the method sends these messages to STDOUT.

Example Usage
The following code fragment illustrates a typical call to the schema method using the %typicalParams
hash parameter:

Set up the hash list to contain the domain and database ID.
my %typicalParameters = (
 domain => "NCOMS",
 dbid => "NCIM"
);

Call the schema method passing to it the previously set up hash list.
In this case, the schema method knows that the name of the schema
resides in a database log-ins configuration file. The schema method
returns the name of the schema being used to the $schema variable.
#

my $schema = NCP::DBI_Factory::schema(%typicalParameters);

Consider the following entry in a DbLogins.cfg file. The previous call to the schema method would
return a schema name of ncim (m_schema), which is associated with the database whose logical name is
identified by the string NCIM (m_DbId).

Chapter 11. NCP Modules Reference 269

insert into config.dbserver
(
 m_DbId,
 m_Server,
 m_DbName,
 m_Schema,
 m_Hostname,
 m_Username,
 m_Password,
 m_PortNum,
 m_EncryptedPwd,
 m_OracleService
)
values
(
 "NCIM", -- Logical name for this connection (don't change it)
 "db2",
 "NCOMS",
 "ncim",
 "ITNMServer.company.com",
 "itnm_db_user",
 "itnm_db_password",
 50000,
 0,
 1
);

Returns
Upon completion, the schema method returns the name of the schema associated with the specified
NCIM topology database.

See Also
• “createDbHandle” on page 255

setLogHandle
The setLogHandle method passes in the specified log handle associated with an opened file to which
the NCP::DBI_Factory module methods can write messages.

Method Synopsis

NCP::DBI_Factory::setLogHandle($filehandle)

Parameters
$filehandle

Specifies a reference to a file handle (for example, IO::File) that points to an opened file to which
messages can be written.

Description
The setLogHandle method passes in the log handle specified in the $filehandle parameter to an internal
utility method called by the NCP::DBI_Factory module methods. This handle is associated with an
opened file to which this internal utility method writes messages. In effect, this opened file serves as a log
file that can contain debug, critical, informational, and warning type messages associated with the
execution of the NCP::DBI_Factory module methods.

If you do not call the setLogHandle method, the internal utility method writes these messages to
STDOUT.

To control the level of message reporting, call the setLogLevel method and specify the desired log
level.

270 IBM Tivoli Network Manager IP Edition: Reference

Example Usage
The following code example shows a call to the setLogHandle method so that messages get logged to
an open file (whose associated file handle is specified in the $logFile local variable) rather than to
STDOUT. The code example also shows a call to the setLogLevel method that specifies the logging of
messages at the warn and critical levels.

.

.

.
my $logName = "$logdir/checkPing.$domainName.log";

 my $logFile = new IO::File;
 $logFile->open(">$logName") or die "Could not open log file $logName\n";
 NCP::DBI_Factory::setLogHandle($logFile);
.
.
.

NCP::DBI_Factory::setLogLevel("warn");

Returns
Upon completion, the setLogHandle method returns no data.

See Also
• “setLogLevel” on page 271

setLogLevel
The setLogLevel method sets the log level for error and message reporting.

Method Synopsis

NCP::DBI_Factory::setLogLevel($loglevel)

Parameters
$loglevel

Specifies the log level to set. The following are the valid options described in ascending order:

• debug — Specifies a log level in which all messages are logged.
• info — Specifies a log level in which informational, warning, and critical messages are logged.
• warn — Specifies a log level in which warning and critical messages are logged.
• critical — Specifies a log level in which only critical messages are logged.

Description
The setLogLevel method sets the log level to the option specified in the $loglevel parameter. The
default is debug level. If set to a higher level, only messages with an equal or higher level will be logged.
For example, at level warn, messages of level info and level debug will not be logged.

By default, the NCP::DBI_Factory module methods log messages to STDOUT. If you specify a log
handle to the setLogHandle method, the NCP::DBI_Factory module methods log messages to the
opened file associated with this log handle.

The setLogLevel method logs an appropriate message (either to STDOUT or to an opened file) if you
specify an invalid log level.

Chapter 11. NCP Modules Reference 271

Example Usage
The following code example illustrates a call to the setLogLevel method that specifies the logging of
messages at the warn and critical levels. The code example also shows a call to the setLogHandle
method so that these messages get logged to an open file (stored in the $logFile local variable) rather
than to STDOUT:

.

.

.
my $logName = "$logdir/checkPing.$domainName.log";

 my $logFile = new IO::File;
 $logFile->open(">$logName") or die "Could not open log file $logName\n";
 NCP::DBI_Factory::setLogHandle($logFile);
.
.
.
NCP::DBI_Factory::setLogLevel("warn");

Returns
Upon completion, the setLogLevel method returns no data.

See Also
• “setLogHandle” on page 270

tables
The tables method returns a sorted array of table and view names for the current schema.

Method Synopsis

NCP::DBI_Factory::tables(%dbhschema)

NCP::DBI_Factory::tables(%typicalParameters)

Parameters
%dbhschema

Specifies a hash that contains the following keys:

• dbh — Specifies an existing DBI handle returned in a previous call to the createDbHandle method.
• schema — Specifies the schema that contains the tables of interest. Typically, this schema name is

obtained in a call to the schema method.

%typicalParameters
Specifies the same hash parameter accepted by the createDbHandle method.

Description
The tables method returns a sorted array of table and view names for the current schema.

If you specify the %dbhschema hash, the tables method:

• Uses the dbh key/value pair to identify the existing DBI handle returned in a previous call to the
createDbHandle method. This DBI handle provides the context for connecting to the specified NCIM
topology database.

• Uses the current schema specified in the schema key/value pair to obtain the tables of interest.
• Returns a sorted array of the table and view names for all tables associated with the current schema.

If you specify the %typicalParameters hash, the tables method:

272 IBM Tivoli Network Manager IP Edition: Reference

• Creates a new DBI handle. This DBI handle provides the context for connecting to the specified NCIM
topology database.

• Uses the dbid key/value pair to identify the current schema. For example, if the dbid key/value pair is
dbid => "NCIM", then the current schema might be called ncim.

• Uses the current schema identified in the dbid key/value pair to obtain the tables of interest.
• Returns a sorted array of the table and view names for all tables associated with the current schema.

Example Usage
The following code example illustrates a typical call to the tables method using the %dbhschema hash
parameter:

List the tables in schema $schema without creating a new DBI handle.
 my @tableList = NCP::DBI_Factory::tables(dbh => $dbh,
 schema => $schema);

Returns
Upon completion, the tables method returns a sorted array of table and view names for the current
schema.

See Also
• “createDbHandle” on page 255
• “describeTable” on page 259
• “schema” on page 269

timeStamp
The timeStamp method returns a timestamp in a format suitable for addition to the NCIM topology
database.

Method Synopsis

NCP::DBI_Factory::timeStamp([$unixtimestamp])

Parameters
$unixtimestamp

Specifies a UNIX timestamp. This is an optional parameter. If you do not specify this parameter, the
timeStamp method uses the current timestamp on the local host.

Description
The timeStamp method converts the current timestamp on the local host (or the UNIX timestamp if
specified in the unixtimestamp parameter) to the following format that is suitable for addition to the
requested NCIM topology database:

YYYY-MM-DD HH:MM:SS

where:

• YYYY — Specifies the year.
• MM — Specifies the month.
• DD — Specifies the day.
• HH — Specifies the hour.

Chapter 11. NCP Modules Reference 273

• MM — Specifies the minutes.
• SS — Specifies the seconds.

The timeStamp method adds leading zeroes to any of the previous fields whose values are less than 10.

Example Usage
The following code example illustrates a call to the timeStamp method, specifying the current timestamp
on the local host:

.

.

.
my $currenttime
$currenttime = timestamp();
.
.
.

If the current timestamp on the local host is June 6, 2010 5:39:45 EST, the timeStamp method
converts it to the following format that is suitable for addition to the requested NCIM topology database:

2010-06-04-18:39:45

The following code example illustrates a call to the timeStamp method, specifying a UNIX timestamp:

my $currenttime
$currenttime = timestamp(1275694785);

The timeStamp method converts this UNIX timestamp to the following format that is suitable for addition
to the requested database:

2010-06-04-18:39:45

Returns
Upon completion, the currentTimeStamp method returns the current timestamp on the local host (or
the UNIX timestamp) in the following format:

YYYY-MM-DD HH:MM:SS

toUpper
The toUpper method returns a copy of a hash (a single row retrieved from an NCIM database table) with
all field names converted to uppercase.

Method Synopsis

NCP::DBI_Factory::toUpper(%rowHashRef)

Parameters
%rowHashRef

Specifies a hash that is a single row retrieved from an NCIM database table. The field names in this
row can be specified in mixed case, lowercase, or uppercase.

Description
The toUpper method takes the hash (a single row retrieved from an NCIM database table) specified in
the %rowHashRef parameter and returns a copy of this hash with all field names converted to uppercase.

274 IBM Tivoli Network Manager IP Edition: Reference

The reason for providing this method is to ensure consistency across databases. Different database
implementations return field names in different formats (mixed case, uppercase, or lowercase). By always
converting field names to uppercase, client scripts can be made database-server-independent. To do this,
pass all returned rows through this method and perform any subsequent lookup operations with
uppercase field names.

The toUpper method drops any undefined fields in the row to promote consistent behavior across the
supported databases.

Notes
The NCP::DBI_Factory module supports Db2 and Oracle databases. In both these databases, tables
and field names are case insensitive with regard to SQL statements. However, Db2 and Oracle return field
names in table rows in uppercase.

Example Usage
The following code example makes calls to methods defined in the Perl DBI module to prepare, execute,
and fetch a select statement:

my $statement = $dbh->prepare($selectQuery);
$statement->execute();
my $results = $statement->fetchall_arrayref({});

The following list provides a line-by-line explanation of the previous code example:

• The first line calls the prepare method to prepare the select statement specified in $selectQuery for
later execution by the database engine. The prepare method returns a reference to a statement handle
object in $statement.

• The second line uses the statement handle object returned in $statement to get attributes of the select
statement and then invokes the execute method to process the prepared statement.

• The third line calls the fetchall_arrayref method to fetch all the data returned from the previously
prepared and executed select statement. The fetchall_arrayref method returns to $results a
reference to an array that contains one reference per row.

The following code example calls the toUpper method to convert all field names to upper case:

foreach my $row (@$results)
 {
 $row = NCP::DBI_Factory::toUpper($row);
 }

The following list provides a line-by-line explanation of the previous code example:

• The first line sets up a foreach loop that iterates through the @$results array.
• For each field name in the table row, call the toUpper method to covert the name to uppercase.

The following code example shows that fields can be safely extracted using uppercase field names:

foreach my $row (@$results)
 {
 my $entityId = $row->{ENTITYID};
 }

Returns
Upon completion, the toUpper method returns a copy of a hash (a single row retrieved from a database
table) with all field names converted to upper case.

Chapter 11. NCP Modules Reference 275

NCP::Domain Reference
The NCP::Domain module provides an interface to perform operations on the Network Connectivity and
Inventory Model (NCIM) topology database that resides in a single Network Manager domain.

The NCP::Domain module provides a constructor that creates a new NCP::Domain object that you use
to call methods that perform these tasks:

• Create an entry in the domainMgr table for this domain if one does not already exist
• Create a new domain that is a copy of an existing domain
• Remove all references to the specified domain from the domainMgr table
• Retrieve the domainMgrId from the domainMgr table in the NCIM topology database that resides in the
specified domain

• Return the domain name for the current domain
• Pass in a log handle associated with an opened file used for logging messages
• Set the log level for error and message reporting

Use of the methods that the NCP::Domain module provides assumes that you understand concepts
related to the NCIM topology database.

See IBM Tivoli Network Manager Reference for information on NCIM topology databases.

The constructor and methods are described in reference (man) page format.

NCP::Domain module synopsis
The NCP::Domain module synopsis shows how to make calls to the constructor and domain operation
methods that this module provides.

The comments provided in the synopsis serve as a quick reference as to the purpose of the constructor
and domain operation methods. The reference (man) pages for the constructor and each method provide
the details.

Declare the module with the use directive.

use NCP::Domain;

Call the NCP::Domain constructor. This call to the NCP::Domain
constructor specifies the name of the Network Manager domain with
the string "NEWDOMAIN". The NCP::Domain constructor returns
to $domain a new NCP::Domain object.

This call to the NCP::Domain constructor does not specify any
database connection options.

my $domain = new NCP::Domain("NEWDOMAIN");

Use the NCP::Domain object ($domain->) to directly invoke the
create method to create an entry in the domainMgr table for the
NEWDOMAIN domain.

$domain->create();

Call the NCP::Domain constructor a second time. This call to
the NCP::Domain constructor specifies the name of the Network
Manager domain with a hash keyword/value pair of domain => "COPY".
The NCP::Domain constructor returns to $copy a new NCP::Domain object.
#
This call to the NCP::Domain constructor does not specify any
database connection options.

my $copy = new NCP::Domain(domain => "COPY");

Use the NCP::Domain object ($copy->) to directly invoke the clone
method to create a new domain that is a copy of the existing
domain (NEWDOMAIN).

$copy->clone("NEWDOMAIN");

276 IBM Tivoli Network Manager IP Edition: Reference

Call the NCP::Domain constructor a third time. This call to
the NCP::Domain constructor specifies the name of the Network
Manager domain with the string "OLD". The NCP::Domain constructor
returns to $obsolete a new NCP::Domain object.

my $obsolete = new NCP::Domain("OLD");

Use the NCP::Domain object ($obsolete->) to directly invoke
the drop method to remove all references to the specified
domain (OLD) from the domainMgr table.

$obsolete->drop();

Use the NCP::Domain object ($domain->) created in the first
call to the NCP::Domain constructor to directly invoke the id
method to retrieve the domain manager ID for this domain.

$domain->id();

Use the NCP::Domain object ($domain->) created in the first
call to the NCP::Domain constructor to directly invoke the name
method to retrieve the domain name for this domain.

$domain->name();

get a summary of the domain contents.

%summary = $domain->summary();

See Also
• “NCP::Domain Constructor” on page 277
• “clone” on page 278
• “create” on page 279
• “drop” on page 281
• “id” on page 282
• “name” on page 283
• “setLogHandle” on page 284
• “setLogLevel” on page 285

NCP::Domain Constructor
The NCP::Domain constructor creates a blessed NCP::Domain object for the specified Network
Manager domain.

Constructor

new NCP::Domain($domainName)

new NCP::Domain($domainName, %dbOptionsHash)

new NCP::Domain(%dbOptionsHash)

Parameters
$domainName

Specifies the name of the Network Manager domain for which you want to create a blessed domain
instance object. In this case, the domain name is specified with plain text or plain text assigned to a
variable. You can also specify the domain name using the explicit hash key "domain".

%dbOptionsHash
Specifies the hash that contains the database login options. One of these database login options is the
domain name. More specifically, this hash takes the same database login options as the
DBI_Factory::createDbHandle method.

Chapter 11. NCP Modules Reference 277

Description
The NCP::Domain constructor creates a blessed NCP::Domain object for the specified Network
Manager domain. Use the NCP::Domain object (for example, $domain->) to invoke the methods that the
NCP::Domain module provides.

The NCP::Domain constructor provides a great deal of flexibility on how you obtain the database login
options for the %dbOptionsHash parameter. For example, you can call the
NCP::DBI_Factory::extractCmdLineOptions method to ensure that the database login options
specified on the command line are provided in a common format. The return from the
NCP::DBI_Factory::extractCmdLineOptions method (a reference to a hash that contains the
extracted database login options and values in key/value format) is passed to the %dbOptionsHash
parameter.

Notes
Connection to the NCIM topology database that resides in this domain will be attempted only when
required.

To ensure that the NCP::Domain constructor can print appropriate messages to a log file, you must have
previously specified a log handle (that is, a reference to a file object) by calling the setLogHandle
method. Otherwise, the constructor sends these messages to STDOUT.

Example Usage
The following code fragment illustrates a typical call to the NCP::Domain constructor:

my $domain = new NCP::Domain("NEWDOMAIN");

Returns
Upon completion, the NCP::Domain constructor returns a new NCP::Domain object.

See Also
• “createDbHandle” on page 255
• “extractCmdLineOptions” on page 261
• “setLogHandle” on page 284

clone
The clone method creates a new domain that is a copy of an existing domain.

Method Synopsis

clone($domain)

Parameters
$domain

Specifies the name of an existing Network Manager domain for which you want to create a copy. You
created an instance of this domain by calling the NCP::Domain constructor.

Description
The clone method creates a new domain that is a copy of an existing domain.

278 IBM Tivoli Network Manager IP Edition: Reference

Notes
The clone method assumes that the $NCHOME environment variable is set. Otherwise, the clone method
will not be able to copy the domain-specific configuration files from the existing domain.

To ensure that the clone method can print appropriate error and other messages to a log file, you must
have previously specified a log handle (that is, a reference to a file object) by calling the setLogHandle
method. Otherwise, the method sends these messages to STDOUT.

Example Usage
The following code example illustrates a typical call to the clone method:

my $copy = new NCP::Domain(domain => "COPY"); 1

$copy->clone("NEWDOMAIN"); 2

1. This call to the NCP::Domain constructor does not specify any database connection options.
2. Uses the NCP::Domain object ($copy->) to directly invoke the clone method to create a new

domain (NEWDOMAIN) that is a copy of the existing domain.

Returns
Upon completion, the clone method does not return any data.

See Also
• “NCP::Domain Constructor” on page 277
• “setLogHandle” on page 284

create
The create method creates an entry in the domainMgr table for the specified domain if one does not
already exist.

Method Synopsis

create()

Parameters
None

Description
The create method creates an entry in the domainMgr table for the specified domain if one does not
already exist. In addition, the create method creates an entry in the domainSummary table for the
specified domain if one does not already exist. The domain name was specified in a previous call to the
NCP::Domain constructor.

The domainMgr table stores data on network domains. For the specified domain, the create method
inserts a row in the domainMgr table with values for the following table columns:

• domainName
• creationTime
• lastUpdated
• managerName
• webtopDataSource

Chapter 11. NCP Modules Reference 279

• domainHost
• domainPort
• description

The domainMgr table contains an auto-increment column called domainMgrId, which the create method
uses to automatically increment the field.

The domainSummary table stores statistical data on the specified domain. For the specified domain, the
create method inserts a row in the domainSummary table with values for the following table columns:

• domainMgrId
• createTime
• changeTime

The create method logs appropriate error messages to a log file or STDOUT if it fails to insert an entry in
the domainMgr table or the domainSummary table for the specified domain.

The create method permanently commits the insert row operations in the domainMgr and
domainSummary tables to the database. Thus, it is not necessary for the application to call the Perl DBI
module commit method.

Notes
To ensure that the create method can print appropriate error and other messages to a log file, you must
have previously specified a log handle (that is, a reference to a file object) by calling the setLogHandle
method. Otherwise, the method sends these messages to STDOUT.

Network Manager applications often use the NCP::Domain module methods in conjunction with the
methods that the NCP::DBI_Factory module provides.

Example Usage
The following code shows a call to the NCP::Domain constructor, which returns the newly created
NCP::Domain object to the $domain variable. The name of the domain is specified in $domainName in
the call to the NCP::Domain constructor. The %$ncimArgs hash reference contains the command line
arguments (database login options and values) in key/value format returned in a previous call to the
NCP::DBI_Factory::extractcmdLineOptions method.

.

.

.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.

The following code shows that the create method is invoked on the NCP::Domain object ($domain->).
The create method creates entries in the domainMgr and domainSummary tables for the domain
specified in $domainName:

.

.

.
$domain->create();
.
.
.

Returns
Upon completion, the create method does not return any data.

280 IBM Tivoli Network Manager IP Edition: Reference

See Also
• “NCP::Domain Constructor” on page 277
• “setLogHandle” on page 284
• “NCP::DBI_Factory module reference” on page 253

drop
The drop method removes all references to the specified domain from the domainMgr table.

Method Synopsis

drop($domain)

Parameters
$domain

Specifies the name of an existing Network Manager domain for which you want to delete its
associated entry from the domainMgr table. You created an instance of this domain by calling the
NCP::Domain constructor.

Description
The drop method removes all references to the specified domain from the domainMgr table. This action
effectively deletes any entities in the NCIM topology database for the specified domain. The drop method
does not remove any configuration files associated with the specified domain.

Notes
To ensure that the drop method can print appropriate error and other messages to a log file, you must
have previously specified a log handle (that is, a reference to a file object) by calling the setLogHandle
method. Otherwise, the method sends these messages to STDOUT.

Network Manager applications often use the NCP::Domain module methods in conjunction with the
methods that the NCP::DBI_Factory module provides.

Example Usage
The example that illustrates a call to the drop method is divided into the following sections:

• Create a new NCP::Domain object
• Call drop to remove all references to the specified domain

Create a new NCP::Domain object

The following code shows a call to the NCP::Domain constructor, which returns a new NCP::Domain
object to the $domain variable. The name of the domain is specified in $domainName in the call to the
NCP::Domain constructor:

.

.

.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.

Call drop to remove all references to the specified domain

The following code shows an invocation of the drop method on the NCP::Domain object ($domain->):

Chapter 11. NCP Modules Reference 281

.

.

.
$domain->drop(%$scriptOptions);
.
.
.

Returns
Upon completion, the drop method does not return any data.

See Also
• “NCP::Domain Constructor” on page 277
• “setLogHandle” on page 284
• “NCP::DBI_Factory module reference” on page 253

id
The id method retrieves the domainMgrId from the domainMgr table in the NCIM topology database that
resides in the specified domain.

Method Synopsis

id()

Parameters
None

Description
The id method retrieves the domainMgrId from the domainMgr table in the NCIM topology database that
resides in this domain.

Notes
To ensure that the id method can print appropriate error and other messages to a log file, you must have
previously specified a log handle (that is, a reference to a file object) by calling the setLogHandle
method. Otherwise, the method sends these messages to STDOUT.

Example Usage
The example that illustrates a call to the id method is divided into the following sections:

• Create a new NCP::Domain object
• Call id to return the domainMgrId

Create a new NCP::Domain object

The following code shows a call to the NCP::Domain constructor, which returns a new NCP::Domain
object to the $domain variable. The name of the domain is specified in $domainName in the call to the
NCP::Domain constructor:

.

.

.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.

282 IBM Tivoli Network Manager IP Edition: Reference

.

.

Call id to return the name of the domain

The following code shows an invocation of the id method on the NCP::Domain object ($domain->). The
id method returns the domainMgrId to the $domainMgrId variable. Note that $domainMgrId is used in
the call to the dropPollPolicies method.

.

.

.
my $domainMgrId = $domain->id();
.
.
.

dropPollPolicies($ncmonitor, $domainMgrId);
.
.
.

Returns
Upon completion, the id method returns the domainMgrId.

See Also
• “NCP::Domain Constructor” on page 277
• “setLogHandle” on page 284

name
The name method returns the name of the domain.

Method Synopsis

name()

Parameters
None

Description
The name method returns the name of the domain.

Example Usage
The example that illustrates a call to the name method is divided into the following sections:

• Create a new NCP::Domain object
• Call name to return the name of the domain

Create a new NCP::Domain object

The following code shows a call to the NCP::Domain constructor, which returns a new NCP::Domain
object to the $domain variable. The name of the domain is specified in $domainName in the call to the
NCP::Domain constructor:

.

.

.

Chapter 11. NCP Modules Reference 283

my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.

Call name to return the name of the domain

The following code shows an invocation of the name method on the NCP::Domain object ($domain->).
The name method returns the name of the domain to the $domainName variable. Note that
$domainName is used in the call to the createDbHandle method.

.

.

.
my $domainName = $domain->name();
.
.
.

 my $ncmonitor = NCP::DBI_Factory::createDbHandle(domain => $domainName,
 dbid => "NCMONITOR",
 %$ncmonitorArgs);
.
.
.

Returns
Upon completion, the name method returns the name of the domain.

See Also
• “NCP::Domain Constructor” on page 277
• “createDbHandle” on page 255

setLogHandle
The setLogHandle method passes in a log handle associated with an opened file to the NCP::Domain
module methods. These methods can then write messages to this opened file.

Method Synopsis

setLogHandle($filehandle)

Parameters
$filehandle

Specifies a reference to a file handle (for example, IO::File) that points to an opened file to which
messages can be written.

Description
The setLogHandle method passes in the log handle specified in the $filehandle parameter to an internal
utility method called by the NCP::Domain module methods. This handle is associated with an opened file
to which this internal utility method writes messages. In effect, this opened file serves as a log file that
contains critical, informational, and warning type messages associated with the execution of the
NCP::Domain module methods.

If you do not call the setLogHandle method, the internal utility method writes these messages to
STDOUT.

284 IBM Tivoli Network Manager IP Edition: Reference

Example Usage
The example that illustrates a call to the setLogHandle method is divided into the following sections:

• Create a new NCP::Domain object
• Call setLogHandle to log messages to a specified open file

Create a new NCP::Domain object

The following code shows a call to the NCP::Domain constructor, which returns a new NCP::Domain
object to the $domain variable. The name of the domain is specified in $domainName in the call to the
NCP::Domain constructor:

.

.

.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.

Call setLogHandle to log messages to a specified open file

The following code shows an invocation of the setLogHandle method on the NCP::Domain object
($domain->). The call to the setLogHandle method ensures that any messages get logged to an open
file (whose associated file handle is specified in the $logFile local variable) rather than to STDOUT:

.

.

.
my $logName = "$logdir/checkDomain.$domainName.log";

 my $logFile = new IO::File;
 $logFile->open(">$logName") or die "Could not open log file $logName\n";
 $domain->setLogHandle($logFile);
.
.
.

Returns
Upon completion, the setLogHandle method returns no data.

See Also
• “NCP::Domain Constructor” on page 277

setLogLevel
The setLogLevel method sets the log level for error and message reporting.

Method Synopsis

setLogLevel($loglevel)

Parameters
$loglevel

Specifies the log level to set. The following are the valid options described in ascending order:

• debug — Specifies a log level in which all messages are logged.
• info — Specifies a log level in which informational, warning, and critical messages are logged.
• warn — Specifies a log level in which warning and critical messages are logged.
• critical — Specifies a log level in which only critical messages are logged.

Chapter 11. NCP Modules Reference 285

Description
The setLogLevel method sets the log level to the option specified in the $loglevel parameter. The
default is debug level. If set to a higher level, only messages with an equal or higher level will be logged.
For example, at level warn, messages of level info and level debug will not be logged.

By default, the NCP::Domain module methods log messages to STDOUT. If you specify a log handle to
the setLogHandle method, the NCP::Domain module methods log messages to the opened file
associated with this log handle.

The setLogLevel method logs an appropriate message (either to STDOUT or to an opened file) if you
specify an invalid log level.

Example Usage
The example that illustrates a call to the setLogLevel method is divided into the following sections:

• Create a new NCP::Domain object
• Call setLogHandle to log messages to a specified open file
• Call setLogLevel to set the log level

Create a new NCP::Domain object

The following code shows a call to the NCP::Domain constructor, which returns a new NCP::Domain
object to the $domain variable. The name of the domain is specified in $domainName in the call to the
NCP::Domain constructor:

.

.

.
my $domain = new NCP::Domain($domainName, %$ncimArgs);
.
.
.

Call setLogHandle to log messages to a specified open file

The following code shows an invocation of the setLogHandle method on the NCP::Domain object
($domain->). The call to the setLogHandle method ensures that any messages get logged to an open
file (stored in the $logFile local variable) rather than to STDOUT:

.

.

.
my $logName = "$logdir/checkDomain.$domainName.log";

 my $logFile = new IO::File;
 $logFile->open(">$logName") or die "Could not open log file $logName\n";
 $domain->setLogHandle($logFile);
.
.
.

Call setLogLevel to set the log level

The following code shows that the setLogLevel method is invoked on the NCP::Domain object
($domain->). The call to setLogLevel specifies the logging of messages at the warn and critical
levels.

.

.

.
$domain->setLogLevel("warn");
.
.
.

286 IBM Tivoli Network Manager IP Edition: Reference

Returns
Upon completion, the setLogLevel method returns no data.

See Also
• “NCP::Domain Constructor” on page 277
• “setLogHandle” on page 284

summary
The summary method provides a summary of the current domain.

Method Synopsis
%summary = $domain->summary();

Parameters
None.

Description
The summary method provides a summary of the contents of the current domain.

Example Usage
my %summary = $domain->summary();

Returns
Upon completion, the summary method returns a hash containing the keys and values.

entityData : Number of entities within this domain.
chassis : Number of chassis entities within this domain
interface : Number of interface entities within this domain
contains : Number of containing entities within this domain
connects : Number of connects within this domain

See Also
• “NCP::Domain Constructor” on page 277

Chapter 11. NCP Modules Reference 287

288 IBM Tivoli Network Manager IP Edition: Reference

Part 3. Database reference
Use this information to understand the structure of the Network Manager process databases and of the
NCIM topology database.

© Copyright IBM Corp. 2006, 2021 289

290 IBM Tivoli Network Manager IP Edition: Reference

Chapter 12. Discovery databases
There are various specialized databases that are used by ncp_disco, the component that discovers
network device existence and connectivity, and by ncp_model, the component that manages, stores, and
distributes the discovered network topology.

The ncp_disco component and ncp_model component store configuration, management, and operational
information in databases. You can interrogate these databases by logging into the DISCO or MODEL
service using the OQL Service Provider.

The ncp_disco databases can either be active or passive. When data is inserted into an active database,
an action is automatically triggered; for example, another table is populated with data, or a script or
stitcher is launched.

Discovery engine database
Use the Discovery engine (ncp_disco) database to configure the general options for the discovery process,
and to track the discovery process.

The Discovery engine database, disco, is defined in $NCHOME/etc/precision/DiscoSchema.cfg.

disco.agents table
The agents table specifies the discovery agents that ncp_disco uses for the discovery. Every agent that
you want to run must have an insertion into the disco.agents table within the DiscoAgents.cfg
configuration file that enables that agent (set m_Valid=1). If m_Valid=0, the agent is not run.

Table 75. disco.agents database table schema

Column name Constraints Data type Description

m_AgentClass Integer The category to which the current discovery
agent belongs:

• (0) Routing agent
• (1) Switch agent
• (2) Hub agent
• (3) ILMI agent
• (4) FDDI agent
• (5) PNNI agent
• (6) Frame Relay agent
• (7) CDP agent
• (8) NAT agent

m_AgentName • PRIMARY KEY
• NOT NULL

Text The unique name of the discovery agent.

m_DebugLevel Integer The level of debugging for the agent.

m_EndSignal Defines what signal to use to stop the agent. This
property can be used if directed by IBM Support,
but is not defined in the DiscoSchema.cfg
table.

© Copyright IBM Corp. 2006, 2021 291

Table 75. disco.agents database table schema (continued)

Column name Constraints Data type Description

m_HostName Text The name of the host machine on which to run
the agent.

m_IsIndirect Integer A flag indicating the type of connectivity
information returned by the discovery agent:

• (0) Direct connectivity; for example, Routing
agents

• (1) Indirect connectivity information; for
example, Switch agents

m_LogFile Text The text file to which debugging output is
written.

m_Precedence Integer An integer representation of the precedence
level of the information returned by the
discovery agent; the higher the integer, the
higher the weighting given to the information
returned.

The precedence is only used when there is a
conflict when merging device information to
produce the workingEntities.finalEntity database
table.

m_MessageLevel Text Specifies the message level (the default is warn).
Options include:

• debug
• info
• warn
• error
• fatal

m_NumThreads Integer The number of threads this agent runs. If not
specified, the default number is 10; the
maximum allowed is 900.

m_Valid Integer A flag determining whether or not the discovery
agent is to be used:

• (1) Run the discovery agent
• (0) Do not run the discovery agent

m_ValidOnPartial Integer Specifies whether the agent is to be used on a
partial discovery:

• 0: Agent is not to be used in a partial discovery.
• 1: Agent is to be used in a partial discovery.

The disco.agents table also indicates agent precedence, which can be used when merging device
information to produce the workingEntities.finalEntity table. Precedence determines which records are
used when duplicate or conflicting records are reported by different discovery agents.

292 IBM Tivoli Network Manager IP Edition: Reference

The following precedence applies:

• The Details agent has the lowest precedence because it is designed to retrieve only basic device
information.

• Routing agents have the next highest precedence. Their connectivity information is at the IP layer only,
however, so it is not as accurate as that returned by the switching agents.

• Switching agents have next-highest precedence because they can return information on the media layer
(layer 2), which is more accurate than layer 3 information.

disco.config table
The config table configures the general operation of the discovery process.

Table 76. disco.config database table schema

Column name Constraints Data type Description

m_AddIntDisplayLabel Boolean
Integer

Specifies whether to add an interface display
label:

• 0: Do not add an interface display label.
• 1: Add an interface display label.

m_AllowVirtual Default = 1 Integer Flag indicating whether to allow virtual IP
addresses as part of the discovery.

• 0: Do not perform any discovery for virtual
IP addresses.

• 1: Perform discovery for virtual IP
addresses. This is the default setting.

• 2: Perform discovery for virtual IP
addresses only if the address is defined in
the scope.special table. This table defines
management IP addresses.

m_BuildLogicalCollections Boolean
Integer

Specifies whether to build logical collection
entities to group together items such as VTP
domains, OSPF areas, and MPLS VPNs:

• 0: Do not build logical collection entities.
• 1: Build logical collection entities.

m_CheckFileFinderReturns Externally
defined
Boolean data
type

default = 0

Boolean
Integer

Flag indicating whether to use the Ping finder
to check the devices specified in the flat file
supplied to the File finder.

• 1: This setting tells the Ping finder to check
the devices specified in the flat file
supplied to the File finder. This setting is
recommended if you have reason to doubt
that some of the devices specified in the
flat file are still connected to the network.

• 0: This setting indicates that you do not
want to perform any checking of the
devices specified in the flat file supplied to
the File finder.

Chapter 12. Discovery databases 293

Table 76. disco.config database table schema (continued)

Column name Constraints Data type Description

m_CycleLimit Integer The number of discovery cycles to complete
before instigating a full rediscovery (used by
the FinalPhase stitcher).

m_CreateStchrEvents Externally
defined
Boolean data
type

default = 1

Boolean
Integer

Specifies whether to create discovery events
to be sent to the ObjectServer. This field
takes the following values:

• 0: Do not generate discovery events.
• 1: Generate discovery events.

m_CustomIntNaming Boolean
Integer

Changes the default naming convention for
discovered interfaces. If you change the
default naming convention for discovered
interfaces, you must change the
BuildInterfaceName stitcher to specify your
naming convention.

m_DirScanIntvl Integer The time period between scans for
modifications to the stitcher and agent files.

If changes are found, the stitcher and agent
definitions are loaded and the appropriate
changes are made to the stitchers and
agents.

m_DiscoProfiling Boolean
Integer

Flag indicating whether to profile the
discovery.

• 1: Profile the discovery.
• 0: Do not profile the discovery.

m_DiscoOnStartup Boolean
Integer

Specifies whether a discovery should
automatically start when the Discovery
engine, ncp_disco, is started:

• 0: Do not automatically start a discovery.
• 1: Automatically start a discovery.

m_DisplayMode Integer Specifies how the display label used for GUI
network and network hop views should be
populated for main nodes.

• 0 - Use Entity Name (default)
• 1 - Use SysName. This option is useful

when it is not desirable to name entities by
sysName in the database (see
m_UseSysName) but it is desirable to have
the entities displayed in the GUI views with
a sysName.

294 IBM Tivoli Network Manager IP Edition: Reference

Table 76. disco.config database table schema (continued)

Column name Constraints Data type Description

m_FeedbackCtrl Default = 0 Integer Flag indicating whether to use the feedback
mechanism during the discovery. The
feedback mechanism allows any new IP
addresses to be fed back into the discovery
and thus increases the size of the discovered
network. Devices that are fed back are
pinged by the Ping finder.

Note: For feedback to work the ping finder
must be activated.

• 0: Feedback is off for all discoveries and
rediscoveries. This option provides speed
but discovers only those devices specified
to the finders, and hence provides an
incomplete topology. However, this setting
ensures that discoveries and rediscoveries
complete in the quickest possible time.

• 1: Feedback is on for full discoveries, full
rediscoveries, and partial rediscoveries. All
IP addresses are pinged. This option
provides a complete topology in all
situations but takes the longest.

• 2: Feedback is on for full discoveries and
full rediscoveries, this ensuring a complete
topology in these cases. In the case of
partial rediscoveries there is no feedback.
This ensures that the partial rediscovery
runs in the quickest time possible. This is
the default setting.

m_FindersOnStartup Boolean
Integer

Specifies whether the finders should
automatically start when the Discovery
engine, ncp_disco, is started :

• 0: Do not automatically start finders.
• 1: Automatically start finders.

m_EnableCrossDomainProcessin
g

Boolean
Integer

Set to 1 to enable cross-domain processing.
If you are performing a cross-domain
discovery, you must perform other
configuration steps in addition.

m_InferCEs Externally
defined
Boolean data
type

default = 0

Boolean
Integer

Flag indicating whether to infer the existence
of customer-edge (CE) routers. When
enabled, DISCO creates a CE router entity for
each provider-edge (PE) router interface that
is on a /30 subnet and does not have CE
information from another source.

• 1: This setting tells DISCO to infer the
existence of CE routers.

• 0: This setting tells DISCO not to infer the
existence of CE routers.

Chapter 12. Discovery databases 295

Table 76. disco.config database table schema (continued)

Column name Constraints Data type Description

m_InferPEsUsingBGP Boolean
Integer

Specifies whether to infer the existence of
provider-edge (PE) routers using BGP
information on customer-edge (CE) routers:

• 0: Do not infer PEs.
• 1: Infer PEs.

m_ManagedWaitTimeOut Integer Applicable when the value of the field
m_WaitForManagedProcs is set to 1.
Maximum time to wait for all collectors to
complete retrieving data from their EMSs.
Effectively a fail-safe mechanism to cover the
siutation where one of the collectors never
completes processing.

By default, this value is set to 0, which means
wait indefinitely.

m_MinResidentSize Integer The minimum initial size of DISCO in
kilobytes (KB). The maximum value that you
can specify is 500 MB (512 000 KB).

Specifying an initial value speeds up the
discovery by allocating the memory of DISCO
in one block.

m_ModelVlans Externally
defined
Boolean data
type

Boolean
Integer

Flag indicating whether to switch off VLAN
modelling.

1: This setting switches on VLAN modelling.
When you make this setting, the
AddGlobalVlans, CreateTrunkConnections
and AddVlanContainers stitchers are called.

0: This setting switches off VLAN modelling.
When you make this setting, the
AddGlobalVlans, CreateTrunkConnections
and AddVlanContainers stitchers are not
called.

m_NothngFndPeriod Float The maximum time lapse, in seconds,
between the discovery of one device and the
discovery of the next device in the device
discovery phase.

296 IBM Tivoli Network Manager IP Edition: Reference

Table 76. disco.config database table schema (continued)

Column name Constraints Data type Description

m_OspfPidNaming Default=0 Integer Defines whether OSPF process IDs
(PIDs) are used when naming and creating
OSPF-related entities. Leave this setting at
the default (off) unless your network has a
meaningful OSFP process ID allocation policy
and you are running discovery agents
capable of discovering process IDs from the
target devices.

The possible options are the following:

0 - (default)
Do not use PIDs when naming OSPF
entities.

1 - Name OSPF Areas by PID
Use PID and area ID when creating and
naming area entities. Areas collect
interfaces with the same domain, area
and PID.

2 - Name OSPF domains and Areas by PID
Use PID and area ID when creating and
naming area entities. Areas collect
interfaces with the same domain, area
and PID. Create per-process ID OSPF
routing domains in addition to the
standard PID-agnostic domains. Per-PID
domains collect only areas with the
required PID.

m_PendingPerCent Integer The maximum allowed ratio of pending
devices to processing devices. A breach of
this threshold condition instigates a full
discovery (rather than a partial rediscovery).

m_PingVerification Default = 2 Integer Option to check whether an interface is able
to be pinged. If the device is not pingable,
then Network Manager does not poll the
device for alerts

• 0: Do not check pingability: Network
Manager performs no pingability check on
any of the interfaces discovered. Interfaces
will be polled regardless of whether they
are pingable at discovery time.

• 1: Check pingability: perform a pingability
check, following discovery, for every
interface discovered.

• 2: Determine best method: sets the
pollability flag for an interface based on
whether feedback was active during the
discovery..

Chapter 12. Discovery databases 297

Table 76. disco.config database table schema (continued)

Column name Constraints Data type Description

m_RebuildLayers Externally
defined
Boolean data
type

Boolean
Integer

Flag indicating whether to rebuild topology
layers after partial rediscovery.

• 1: Rebuild the layers. After partial
rediscovery, topology layers stitchers are
run. Partial rediscovery takes longer but
results in a complete topology.

• 0: Do not rebuild the layers. After partial
rediscovery, topology layers stitchers are
not run. The result is a much quicker partial
discovery; however, connectivity
associated with the newly discovered
device is not fully seen in the topology.

m_RediscoverRelatedDevices Boolean
Integer

In a partial rediscovery when a device has
changed, specifies whether to rediscover the
related devices if the connection appears to
have changed:

• 0: Do not rediscover the related devices if
the connection appears to have changed.

• 1: Rediscover the related devices if the
connection appears to have changed.

m_RefreshDiscovery Default = 1 Boolean
Integer

Specifies whether the FullDiscovery stitcher
restarts the discovery when called after an
initial full discovery has completed. The
default value is 1: restart the discovery
process. Set the value to 0 to not restart the
discovery process using the
RestartDiscoProcess.stch stitcher.

Enabling this option by default is useful for
the following reasons:

• If the discovery is loading custom data into
the DiscoContrib.cfg file then this
option facilitates the process by having the
new discovery process read the file again.

• The option also helps if the discovery
process is accumulating memory because
the newly started process resets the
process to the initial state

Note: The FullDiscovery stitcher only stops
and starts the discovery process if there is no
discovery in progress at the time it is called.

m_RestartAgents Integer A flag that determines whether DISCO
attempts to restart discovery agents that fail
during their operation.

m_RestartFinders Integer Flag to determine whether to restart a failed
finder.

298 IBM Tivoli Network Manager IP Edition: Reference

Table 76. disco.config database table schema (continued)

Column name Constraints Data type Description

m_RTVPNResolution Integer Specifies whether to apply fine control over
Layer 3 VPN resolution and naming in a route
target-based discovery:

• 1: Use route target.
• 2: Use VRF (default).

m_SubnetFiltering Integer Alters which interfaces are included in
subnet-based connections:

• 0: No filtering
• 1: Filter out VRF interfaces (consider using

m_VpnASTagging instead of this mode as it
improves connectivity in all layers rather
than just layer 3).

• 2 - Filter out in-scope interfaces known to
hold inaccessible duplicate IPs.

• 3 - Automatic. Decides best approach
based on other configuration options.

m_UseIfIndex Boolean
Integer

Specifies whether to name interfaces using
the ifIndex only. This setting overrides the
m_UseIfName setting.

• 0: Do not name interfaces using the ifIndex
only.

• 1: Name interfaces using the ifIndex only.

m_UseContext Boolean
Integer

Flag indicating whether this is a context-
sensitive discovery.

• 1: Specifies a context-sensitive discovery.
• 0: Specifies that this is not a context-

sensitive discovery.

m_UseIPName Externally
defined
Boolean data
type

default = 0

Boolean
Integer

Flag to indicate which naming strategy to use
for devices.

• 1: Uses the IP address for device naming.
• 0 (default): Does not use IP address for

device naming. Instead, the DNS name is
used where available.

Chapter 12. Discovery databases 299

Table 76. disco.config database table schema (continued)

Column name Constraints Data type Description

m_UseIfName Externally
defined
Boolean data
type

default = 0

Boolean
Integer

Flag indicating which naming strategy to use
when building interfaces.

• 1: This setting indicates that you want to
use ifName or ifDescr to name the
interfaces rather than their ifIndex, card or
port information.

• 0: This setting indicates that you want to
use the default naming convention for any
device interface:

baseName[<card>[<port>]

m_UseSysName Externally
defined
Boolean data
type

default = 0

Boolean
Integer

Flag indicating which naming strategy to use
when naming devices.

• 1: This setting indicates that you want to
name devices using the value of the SNMP
sysName variable as the main source of
naming information. The sysName variable
must be set and must be unique within the
network.

• 0: This setting indicates that you do not
want to name devices using the value of
the SNMP sysName variable as the main
source of naming information.

m_VerifyCDPUsingDeviceId Boolean
Integer

Specifies whether to verify the CDP links
using the CDP device ID. Occasionally the
CDP device ID has been found to be
unreliable. Switching on
m_VerifyCDPUsingDeviceId will improve
CDP connectivity if the Device ID is accurate
but might degrade connectivity if the Device
ID is inaccurate.

• 0: Do not verify the CDP links using the CDP
device ID.

• 1: Verify the CDP links using the CDP device
ID.

m_VpnASTagging Integer Specifies whether CE facing PE interfaces
should be assigned to a private address
space:

• 0: Do not assign.
• 1: Assign.
• 2: Automatic. Decides the best approach

based on other configuration options.

300 IBM Tivoli Network Manager IP Edition: Reference

Table 76. disco.config database table schema (continued)

Column name Constraints Data type Description

m_WaitForManagedProcs Boolean
Integer

Flag indicating whether to tell the discovery
engine ncp_disco wait until the Collector
finder status is complete before moving to
the next phase of discovery.

• 1: Wait until the Collector finder status is
complete before moving to the next phase
of discovery. Setting
m_WaitForManagedProcs = 1 when running
a multiple collector discovery forces the
discovery process to remain in phase 1
until all the collectors have completed data
processing on their respective EMSs.

• 0: Do not wait until the Collector finder
status is complete before moving to the
next phase of discovery.

When this field is set to 1, then the
parameter m_ManagedWaitTimeOut
defines the maximum time to wait for all
collectors to complete retrieving data from
their EMSs.

m_WriteTablesToCache Externally
defined
Boolean data
type

Boolean
Integer

Flag indicating whether to write a cache of
the Discovery engine, ncp_disco, tables to
disk.

Note: Setting this flag results in discoveries
that are slower than a standard discovery.

• 1: Write cache of ncp_disco tables to disk.
The tables that are defined in the failover
database are cached and ncp_disco can be
restarted at any point.

• 0: Do not write cache of ncp_disco tables to
disk. No tables are cached during the
discovery and ncp_disco ignores any
existing cache files if it is restarted.

m_UnmanagedSubInts Boolean
Integer

Flag indicating whether to automatically set
sub-interfaces to unmanaged when the
parent interface is marked as unmanaged by
the PopulateDNCIM_ManagedStatus.stch
stitcher.

• 1: Automatically set sub-interfaces to
unmanaged if the parent interface is set to
unmanaged by the stitcher.

• 0: Do not automatically set sub-interfaces
to unmanaged.

Chapter 12. Discovery databases 301

disco.convergedTopologies table
The convergedTopologies table stores information on how layers must be merged by the discovery
process.

Table 77. disco.convergedTopologies database table schema

Column name Constraints Data type Description

m_TopologyName • PRIMARY
KEY

• NOT NULL

Text Name of the topology to be created from the
source topologies.

m_Order Integer Order in which to process this entry.

m_SourceTopologies List of text Topologies to be used in the merge, by order
of most accurate topology first.

m_RetainOverride Boolean
Integer

Controls whether the override flags found in
the source topologies are to be put into the
merge topology. This value is only relevant
when the merged topology is going to be
used as a source topology in another merged
topology.

• 0: Do not copy override flags.
• 1: Copy override flags.

m_UseContainment Boolean
Integer

Provides fine control over whether interface
containment information is taken into
consideration when merging this particular
topology.

• 0: Do not try to use containment to refine
links.

• 1: Allow links on interfaces higher in the
containment to be overridden by any links
on interfaces lower down; that is, more
physical interfaces.

disco.dynamicConfigFiles table
The dynamicConfigFiles table stores the names of configuration files that must be reread each time a full
discovery is launched.

Table 78. disco.dynamicConfigFiles database table schema

Column name Constraints Data type Description

m_Name
Primary key

Not null
Text Name of configuration file to be reread,

m_UpdTime Timestamp Last update time for this configuration file.

302 IBM Tivoli Network Manager IP Edition: Reference

disco.events table
The events table constrains discovery events generated to a standard format. An event is generated by
inserting a record into this table.

Table 79. disco.events database table schema

Column name Constraints Data type Description

m_EventName
Not null

Text The name of the event.

m_EntityName
Not null

Text The name of the entity on which the event
occurred.

m_EventType
Not null

Integer This field can take one of the following
values:

• 1: Problem
• 2: Resolution
• 13: Informational

m_Severity Not null Integer This field can take one of the following
values:

• 0: CLEAR
• 1: INDETERMINATE
• 2: WARNING
• 3: MINOR
• 4: MAJOR
• 5: CRITICAL

It is possible to define more values.

m_Description Not null Text Description of the discovery event

m_ExtraInfo Externally
defined
vblist data
type

Specifies a list of additional information.

Chapter 12. Discovery databases 303

disco.filterCustomTags table
The filterCustomTags table stores custom tags, which can be associated with a filtered set of discovered
entities during the discovery and used to perform custom visualization and polling tasks.

Table 80. disco.filterCustomTags database table schema

Column name Constraint
s

Data type Description

m_Filter Text Filter definition that extracts a set
of IP address to which the name-
value pair tags in the
m_CustomTags is to be
associated to. You can create a
filter based on any attributes
associated with discovered
entities. For example, you could
apply the following filters:

• Filter based on entity IP
address: "m_UniqueAddress
LIKE '172.20.3'"

• Filter based on entity name:
"m_Name LIKE 'lon'"

• Filter based on VLAN identifier
of a VLAN entity:
"m_LocalNbr->m_VlanID =
102"

m_StitcherTagName Text Name of a tag to be evaluated
using the GetTagStitcher.stch
stitcher.

m_CustomTags Object type vblist List of name-value pair tags.

disco.ipCustomTags table
The ipCustomTags table stores custom tags, which can be associated with unique discovered entities
during the discovery and used to perform custom visualization and polling tasks.

Table 81. disco.ipCustomTags database table schema

Column name Constraint
s

Data type Description

m_UniqueAddress Text IP address to which the name-value
pair tags in the m_CustomTags is to
be associated to.

m_StitcherTagName Text Name of a tag to be evaluated using
the GetTagStitcher.stch stitcher.

m_CustomTags Object type vblist List of name-value pair tags.

304 IBM Tivoli Network Manager IP Edition: Reference

disco.managedProcesses table
The managedProcesses table is a repository for all the subprocesses managed by DISCO, such as the
finders. Provided that CTRL is running, processes that are inserted into this table are started and managed
by DISCO.

Table 82. disco.managedProcesses database table schema

Column name Constraints Data type Description

m_Name • PRIMARY KEY
• UNIQUE
• NOT NULL

Text The name of the process to be managed.

m_Args List of text A list of command-line arguments sent to the
executable.

m_Host Text The name of the host on which to run the
executable.

m_LogFile Text The name of the log file to which output is
written.

disco.NATStatus table
The NATStatus table is used to configure the discovery system to use NAT.

Table 83. disco.NATStatus database table schema

Column name Constraints Data type Description

m_NATChecks Integer A counter for unresponsive NAT Gateways that
were configured for discovery.

Important: Do not change the value of this field
unless you are advised to do so by IBM
Software Support.

m_NATStatus • UNIQUE
• NOT NULL

Integer This column is populated automatically by the
discovery process, and can be used to track the
process of a NAT discovery. To make inserts into
this table, set the value to 0. Possible values are
as follows:

• 0: Uninitialized
• 1: Seeded discovery with gateways
• 2: Awaiting gateway returns
• 3: Processing NAT translations
• 4: NAT translations complete

m_UsingNAT • UNIQUE
• NOT NULL

Boolean integer Indicates whether the discovery uses multiple
address spaces. If the discovery uses multiple
address spaces, set the value to 1. If not, set
the value to 0.

Chapter 12. Discovery databases 305

disco.profilingData table
The profilingData table is used by the discovery profiling stitchers to record data associated with time and
memory expended during the discovery.

Table 84. disco.profilingData database table schema

Column name Constraints Data type Description

m_AgentData List For each agent that ran during the
discovery, provides a brief summary
of the work performed by that agent
during the discovery.

m_CompletionMem 64-character string Memory used when phase -1 of the
discovery completed.

m_CompletionTime Integer Time that phase -1 completed.

m_DiscoveryMode Integer Type of discovery:

• 0: Full discovery
• 1: Partial discovery

m_NumDetailsReturns Integer Total number of details table returns
during the discovery.

m_NumEntities Integer Total number of entities in the dNCIM
database based on the count of NCIM
topology database entityData table
records for the domain.

m_NumFinderInserts Integer Total number of finder inserts during
the discovery.

m_NumMainNodes Integer Total number of main nodes
discovered.

m_NumMainNodesWithAcc
ess

Integer Total number of main nodes with
SNMP access discovered.

m_NumIPs Integer Total number of IP addresses
discovered.

m_NumRouters Integer Total number of routing devices
discovered.

m_NumSwitches Integer Total number of switches discovered.

m_Phase1StartMem 64-character string Memory used when phase 1 of the
discovery started.

m_Phase1StartTime Integer Time that phase 1 of the discovery
started. Phase 1 is also known as the
Interrogating Devices phase.

306 IBM Tivoli Network Manager IP Edition: Reference

Table 84. disco.profilingData database table schema (continued)

Column name Constraints Data type Description

m_Phase2StartMem 64-character string Memory used when phase 2 of the
discovery started.

m_Phase2StartTime Integer Time that phase 2 of the discovery
started. Phase 2 is also known as the
Resolving Addresses phase.

m_Phase3StartMem 64-character string Memory used when phase 3 of the
discovery started.

m_Phase3StartTime Integer Time that phase 3 of the discovery
started. Phase 3 is also known as the
Downloading Connections phase.

m_ProcPhaseStartTime Integer Time that phase -1, the data
processing phase of the discovery
started. Phase -1 is also known as the
Correlating Connections phase.

m_ProcPhaseStartMem 64-character string Memory used when phase -1 of the
discovery started.

m_SoftwareVersion Text Software version used.

m_StitcherData List For each stitcher that ran during the
discovery, provides information on
how long the stitcher ran for, and how
many times it was executed during
the discovery. This enables the
identification of problem stitchers
during a discovery.

disco.status table
Use the disco.status table to monitor the progress of the ncp_disco process during the discovery
process.

Attention: The disco.status table is used and updated internally, and you must not make inserts
into this table.

Table 85. disco.status database table schema

Column name Constraints Data type Description

m_BlackoutState Externally
defined
Boolean data
type

Boolean
Integer

Flag to show if the discovery process is
in Blackout mode, that is, whether or not
DISCO is accepting new devices from
the finders in the current discovery
cycle:

• 0: False (accepting new devices)
• 1: True (not accepting new devices)

Chapter 12. Discovery databases 307

Table 85. disco.status database table schema (continued)

Column name Constraints Data type Description

m_CycleCount Integer Current rediscovery cycle, that is, the
current number of cycles DISCO has
been through without actually building a
topology.

In rediscovery mode, DISCO only builds
a topology at the end of the last cycle
(the last cycle is determined by the fact
that there is nothing left in
finders.pending awaiting
processing).

m_DiscoveryCycle
Requested

Externally
defined
Boolean data
type

Boolean
Integer

Flag to indicate that a discovery has
been requested by the GUI.

m_DiscoveryCycle
RequestTime

Integer The time that the discovery was
requested, in Unix time.

m_DiscoveryMode Integer The present discovery mode:

• 0: Full discovery
• 1: Partial discovery

m_ForcedLayerRebuild Boolean
Integer

Flag that indicates whether a 'false'
value of the
disco.config.m_RebuildLayers column
has been overridden for the current
discovery cycle. The default value is 0.

m_FullDiscovery Externally
defined
Boolean data
type

Boolean
Integer

Flag to indicate that the
FullDiscovery.stch stitcher has been
called during the discovery.

If the stitcher is called, the flag is set to
1 to ensure that the FullDiscovery.stch
stitcher is executed when the current
discovery finishes (thus starting another
full discovery).

If the flag is set to any other value, no
action is taken.

308 IBM Tivoli Network Manager IP Edition: Reference

Table 85. disco.status database table schema (continued)

Column name Constraints Data type Description

m_Phase Integer The current phase within the present
discovery cycle. During the data
collection stage, the phases are as
follows:

• 0: The discovery has not yet started.
• 1: The main discovery phase in which

device data is retrieved. Most
discovery agents complete in this
phase.

• 2 - n: The phases in which the
topology data is retrieved for the
currently discovered objects. The
number of phases required depends
on how your discovery is configured.
By default, in a layer 2 discovery,
phase 2 consists of the retrieval of IP
to MAC address translations and
phase 3 consists of the retrieval of
Ethernet switch topology information.

During the data processing stage, the
following phase is undertaken.

• 3: The phase in which the collected
data is processed; the layers are built
and the data is sent to MODEL.

More detailed information about the
discovery phases can be found in
“Discovery stages and phases” on page
797.

m_ProcessingNeeded Externally
defined
Boolean data
type

Boolean
Integer

Flag to indicate whether the current
topology needs reprocessing. This flag is
checked when DISCO is in rediscovery
mode in order to determine whether any
newly found devices (that are now in the
finders.pending table) necessitate the
reprocessing of the entire topology:

• 0: The topology does not need
reprocessing

• 1: The topology needs reprocessing

Chapter 12. Discovery databases 309

disco.tempData table
The tempData table is used by the discovery profiling stitchers to record the time and memory expended
to perform the discovery.

Table 86. disco.tempData database table schema

Column name Constraints Data type Description

m_Phase1TmpTime Integer Time taken by phase 1 of the discovery,
also known as the Interrogating Devices
phase.

m_Phase2TmpTime Integer Time taken by phase 2 of the discovery,
also known as the Resolving Addresses
phase.

m_Phase3TmpTime Integer Time taken by phase 3 of the discovery,
also known as the Downloading
Connections phase.

m_ProcPhaseTmpTim
e

Integer Time taken by phase -1, the data
processing phase of the discovery, also
known as the Correlating Connections
phase.

m_Phase1TmpMem 64-character string Memory used during phase 1 of the
discovery.

m_Phase2TmpMem 64-character string Memory used during phase 2 of the
discovery.

m_Phase3TmpMem 64-character string Memory used during phase 3 of the
discovery.

m_ProcPhaseTmpMem 64-character string Memory used during phase -1 of the
discovery.

Example configuration of the disco.agents table
This example uses OQL commands to insert configuration values into the disco.agents table.

• The ArpCache discovery agent is enabled to run during the discovery (m_Valid=1), belongs to the
routing class (m_AgentClass=0), returns direct connectivity information (m_IsIndirect=0) and has a
precedence level of 2.

• The AtmForumPnni discovery agent is disabled for this discovery (m_Valid=0), belongs to the PNNI
class (m_AgentClass=5), returns direct connectivity information (m_IsIndirect=0) and has a
precedence level of 5.

• The BayEthernetHub discovery agent is disabled for this discovery (m_Valid=0), belongs to the hub
class (m_AgentClass=2), returns indirect connectivity information (m_IsIndirect=1) and has a
precedence level of 3.

insert into disco.agents
(
 m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence
)
values
(
 'ArpCache', 1, 0, 0, 2
);

310 IBM Tivoli Network Manager IP Edition: Reference

insert into disco.agents
(
 m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence
)
values
(
 'AtmForumPnni', 0, 5, 0, 5
);

insert into disco.agents

(
 m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence
)
values
(
 'BayEthernetHub', 0, 2, 1, 3
);

Example configuration of the disco.config table
This example uses OQL commands to insert configuration values into the disco.config table.

• The maximum period between device discovery is 300 seconds. This condition and the next condition
must be satisfied in order to proceed to the next phase of the discovery cycle.

• The maximum allowable ratio of pending to processing devices is 20 percent. If this threshold is
breached, a full discovery is instigated.

• The cycle limit is 5, which means that a maximum of five discovery cycles are necessary to complete the
discovery process. If there are more than 5 discovery cycles, a full rediscovery is initiated.

• The agent restart flag is 1, which means that DISCO is mandated to restart any discovery agent that fails
in its operation.

• The finder restart flag is 1, which means that DISCO is mandated to restart any finder that fails in its
operation.

• Scans for updates to the agents and stitchers have been disabled. This is usually the case when you do
not wish to alter the discovery data flow.

• Do not write a cache of the Discovery engine, ncp_disco, tables to disk.

insert into disco.config
(
 m_NothngFindPeriod,
 m_PendingPerCent,
 m_CycleLimit,
 m_RestartAgents,
 m_RestartFinders,
 m_DirScanIntvl,
 m_WriteTablesToCache
)
values
(
 300,
 20,
 5,
 1,
 1,
 0,
 0
);

Example configuration of the disco.managedProcesses table
This example uses OQL commands to insert configuration values into the disco.managedProcesses table.
If the CTRL program is running, you can configure, launch, and manage the File finder and Ping finder
subprocesses.

insert into disco.managedProcesses
(

Chapter 12. Discovery databases 311

 m_Name, m_Args, m_Host
)
values
(
 "ncp_df_file", [], "othello"
);

insert into disco.managedProcesses
(
 m_Name, m_Args, m_Host
)
values
(
 "ncp_df_ping", [], "othello"
);

Discovery scope database
The scope database limits the extent or reach of a discovery. Using the scope database, you can configure
a range of protocols and attributes that define zones that are to be included or excluded from the
discovery process.

The range of IP addresses and devices that can potentially be considered by the discovery process is
unlimited, so unless you restrict the scope of the discovery, ncp_disco would eventually attempt to
discover the entire Internet.

For example, you can specify that sensitive devices not be discovered and consequently not be
instantiated. A sensitive device is one that you do not want to poll. This might be because there is a
security risk involved in polling the device, or that polling might overload device.

disco.scope database schema
The scope database is defined in $NCHOME/etc/precision/DiscoSchema.cfg and $NCHOME/etc/
precision/DiscoScope.cfg. Its fully qualified database table names are: scope.zones;
scope.detectionFilter; scope.instantiateFilter; scope.special.

scope.detectionFilter table
If you specify a filter in the detectionFilter table, only devices matching it are discovered.

Table 87. scope.detectionFilter database table schema

Column name Constraints Data type Description

m_Filter Text A textual representation of an attribute filter
against the columns of the Details.returns table;
for example, m_UniqueAddress or m_ObjectId.

Although you can configure the filter condition to test any of the columns in the Details.returns table,
when filtering IP devices you might need to use the IP address as the basis for the filter if you need to
restrict the detection of a particular device. If the device does not grant SNMP access to the Details agent,
the Details agent might not be able to retrieve MIB variables such as the Object ID. However, you are
guaranteed the return of at least the IP address when the device is detected.

scope.inferMPLSPEs table
Use the scope.inferMPLSPEs table when enabling inference of inaccessible provider-edge (PE) devices by
using the BGP data on the customer-edge (CE) devices. This table enables you to optionally specify which
zones to process to determine which of the inferred PE devices are valid devices.

To specify which zones to process to determine which of the inferred PE devices are valid devices
populate the scope.inferMPLSPEs table, using standard format scope entries, as in the scope.zones table.

312 IBM Tivoli Network Manager IP Edition: Reference

Use this option when you have inaccessible devices that are connected by means of BGP but which are
not actually PE devices.

If the following conditions are true, then the system creates a "third-party" network object to model this
inaccessible provider network.

• A router is within this scope
• The router has BGP peers outside the discovered network
• m_InferMPLSPEsUsingBGP is on. This can also be defined using the Advanced tab on the Discovery
Configuration GUI.

Table 88. scope.inferMPLSPEs database table schema

Column name Constraints Data type Description

m_Protocol • PRIMARY KEY
• NOT NULL
• Externally defined

netProtocol data
type

Integer An integer representation of the IP
protocol used by the presently-defined
zone:

• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6

m_Action • NOT NULL
• Externally defined
filtAction data
type

Integer Action to perform for current zone:

• 0: Undefined
• 1: Include
• 2: Exclude

m_Zones NOT NULL List of type zone A list of varbinds (name=value) that
define the present discovery zone.

Only process interfaces in the 199.220.* network
The following example shows how to instruct the system to only process interfaces in the 199.220.*
network.

insert into scope.inferMPLSPEs
(
 Protocol,
 m_Action,
 m_Zones
)
values
(
 1,
 1,
 [{ m_Subnet = "199.220.*" }]
);

scope.instantiateFilter table
When you specify a filter in the instantiateFilter table, only devices that pass the criteria are instantiated,
that is, sent to the DNCIM database. If no filter is specified, all discovered devices are instantiated.

Note that because the m_Protocol column must be unique, there must be only one insert into this table
for any given protocol. Multiple filters must be defined within a single insert.

Chapter 12. Discovery databases 313

Table 89. scope.instantiateFilter database table schema

Column name Constraints Data type Description

m_Filter Text A textual representation of an attribute filter
against the columns of the ncimCache database.

The following example insert prevents instantiation
of an interface:

insert into scope.instantiateFilter
(
 m_Filter
)
values
(
 "
 (
 BASENAME != 'jane'
 OR
 (
 BASENAME = 'jane'
 AND
 networkInterface->IFINDEX != 1
)
)
 "
);

scope.mplsTe table
The scope.mplsTe table defines the scope of MPLS Traffic Engineered (TE) tunnel discovery, and defines
what information is retrieved.

The following table shows the schema of the scope.mplsTe table.

Table 90. scope.zones database table schema

Column name Constraints Data type Description

m_Protocol • NOT NULL
• Externally defined

netProtocol data
type

Integer An integer representation of the IP
protocol used by the presently-defined
zone:

• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6

m_Zones NOT NULL List of type zone Defines the scope in which the tunnel
heads will be discovered

m_AddressSpace Text Optional address space

314 IBM Tivoli Network Manager IP Edition: Reference

Table 90. scope.zones database table schema (continued)

Column name Constraints Data type Description

m_Mode Integer The TE tunnel discovery mode defines
what information is retrieved. Possible
values are:

• 0: Unknown (not set)
• 1: Tunnel Head/Tail with Transit Hop

List
• 2: Tunnel Head/Tail (No Hop List)
• 3: Tunnel Head, Tails, and Transit

devices

m_TunnelFilter Integer The TE tunnel filter. Possible values are:

• 0: Unknown (not set)
• 1: Include tunnels with this head
• 2: Exclude tunnels with this head

scope.multicastGroup table
The scope.multicastGroup table defines which multicast groups to discover and which details to retrieve
from these groups.

The following table shows the schema of the scope.multicastGroup table.

Table 91. scope.multicastGroup database table schema

Column name Constraints Data type Description

m_AddressSpace Text Optional address space

m_GroupName Text Descriptive name for a group

m_Groups Not null list type zone Zones defines the multicast subnets to
which the scope options apply

m_IGMPMode Integer IGMP Group discovery mode

• 0 - unknown (use default)
• 1 - Include group
• 2 - Exclude group

m_IPMRouteMode Integer IP Multicast Route Group discovery
mode:

• 0 - unknown (use default)
• 1 - Include group
• 2 - Exclude group

Chapter 12. Discovery databases 315

Table 91. scope.multicastGroup database table schema (continued)

Column name Constraints Data type Description

m_PimMode Integer The PIM multicast discovery mode
defines what information is retrieved.
Possible values are:

• 0: Unknown (use default)
• 1: Retrieve PIM group data
• 2: Do not retrieve PIM group data.

Groups with this option applied will
not be represented in the PIM
Service/End Point data.

m_Protocol • NOT NULL
• Externally
defined
netProtocol data
type (Currently
IPv4 [1] only)

Integer An integer representation of the IP
protocol used by the presently-defined
zone:

• 1: IPv4
• 2: IPv4 that has been through

network address translation (NAT)
• 3: IPv6

scope.multicastSource table
The scope.multicastSource table defines which IPM routes to discover. This is particularly useful if you
have multiple IPM route sources, since you can scope multicast discovery by IPM route source to focus on
the sources of interest.

The following table shows the schema of the scope.multicastSource table.

Table 92. scope.multicastSource database table schema

Column name Constraints Data type Description

m_Protocol • NOT NULL
• Externally
defined
netProtocol data
type

Integer An integer representation of the IP
protocol used by the presently-defined
zone:

• 1: IPv4
• 2: IPv4 that has been through

network address translation (NAT)
• 3: IPv6

m_Source NOT NULL list type zone The multicast source to be included or
excluded

316 IBM Tivoli Network Manager IP Edition: Reference

Table 92. scope.multicastSource database table schema (continued)

Column name Constraints Data type Description

m_IPMRouteMode Integer An integer representation of the
network protocol used by the presently
defined group. The following values are
possible:

• IP Multicast Route Source discovery
mode

• 0 - unknown (use default)
• 1 - Include Source
• 2 - Exclude Source

m_Groups list type zone The multicast group subnets to which
the source scope option applies

scope.special table
The special table defines management IP addresses. A management address is an IP address on a device
whose only role is to manage the device. Management addresses do not handle network traffic.

Table 93. scope.special database table schema

Column name Constraints Data type Description

m_Zones NOT NULL List of type zone A list of varbinds
(name=value) that define the
present discovery zone. This
takes the form of a list of
subnet IP addresses and
subnet.

m_AddressSpace Text Optional address space
identifier for a particular
scope entry.

m_Protocol Integer An integer representation of
the IP protocol used by the
presently-defined zone:

• 1: IPv4
• 2: IPv4 that has been

through network address
translation (NAT)

• 3: IPv6

m_OutOfBand Int Type Boolean Indicates whether the
management area is out of
band. Takes one of the
following values:

• 0: in band
• 1: out of band

Chapter 12. Discovery databases 317

Table 93. scope.special database table schema (continued)

Column name Constraints Data type Description

m_IsManagement Int Type Boolean Indicates whether the
address is a management
address.

m_IsValidVirtual Int Type Boolean Indicates whether the
address is a valid virtual IP.

m_Identifier Text Optional identifier for
tracking.

m_Priority Int Priority that is used if there
are multiple matches. The
scope.special entry that has
the highest priority is
selected. This priority must be
set to at least 1.

m_NonPingable Int If set to 1, the address is
selected even if it cannot be
pinged.

m_AdminInterface Int Type Boolean Indicates whether the
address is an interface.

m_ExtraInfo Object type vblist Optional fields with which the
target entity can be enriched.

scope.zones table
Use the zones table to define areas of the network to be either included or excluded from the discovery
process. A zone is typically defined as a list of varbinds. Varbinds are name = value pairs.

You can define multiple zones, and you can combine inclusion and exclusion zones. However, if you define
a combination of inclusion and exclusion zones, the exclusion zones must be within the scope of the
inclusion zones.

Table 94. scope.zones database table schema

Column name Constraints Data type Description

m_Protocol • PRIMARY KEY
• NOT NULL
• Externally defined

netProtocol data
type

Integer An integer representation of the IP
protocol used by the presently-defined
zone:

• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6

m_Action • NOT NULL
• Externally defined
filtAction data
type

Integer Action to perform for current zone:

• 0: Undefined
• 1: Include
• 2: Exclude

318 IBM Tivoli Network Manager IP Edition: Reference

Table 94. scope.zones database table schema (continued)

Column name Constraints Data type Description

m_Zones List of type zone A list of varbinds (name=value) that
define the present discovery zone.

m_AddressSpace Text The name of the NAT address space to
which the device belongs. This value is
set in the
translations.NATAddressSpaceIds table.
If the discovery is not using NAT, or if the
device is in the public domain, this value
is NULL.

Example scope database configuration
The example OQL inserts into the scope database tables in this topic would be appended to the
DiscoScope.cfg configuration file to configure the ncp_disco process when it starts.

Configuration of the scope.zones table
Use this information to understand how to configure the scope.zones table.

Creating two inclusion zones
This example configuration of the scope.zones table creates two inclusion zones for the current discovery.
Both zones are defined using a single insert.

insert into scope.zones
(
 m_Protocol,
 m_Action,
 m_Zones
)
values
(
 1,
 1,
 [
 {
 m_Subnet="172.16.1.0",
 m_NetMask=24
 },
 {
 m_Subnet="172.16.2.*"
 }
]
);

The previous OQL insert specifies the following conditions:

• The network uses the Internet Protocol (m_Protocol=1).
• Any devices that fall into the present zone are to be included in the discovery (m_Action=1).
• The discovery includes:

– Any device that falls within the 172.16.1.0 subnet (with a subnet mask of 24, that is, 24 bits turned
on and 8 bits turned off, which implies a netmask of 255.255.255.0).

– Any device with an IP address starting with 172.16.2, that is, in the 172.16.2.0 subnet with a mask of
255.255.255.0.

Chapter 12. Discovery databases 319

Creating a zone within a zone

Zones can be specified within zones: within a given inclusion zone, you can specify devices or subnets
that are not to be detected. These devices are not pinged by the Ping finder or interrogated by the
discovery agents. For example, you can define an include scope zone consisting of the Class B subnet
172.20.0.0/16, and completely contained within that zone you can specify an exclude scope zone
consisting of the subnet 172.20.32.0/19. Finally, completely contained within the exclude scope zone you
could specify an include scope zone 172.20.33.0/24.

// Include all IP addresses in this range
insert into scope.zones
(
 m_Protocol,
 m_Action,
 m_Zones
)
values
(
 1,
 1,
 [{m_Subnet = '172.20.0.0', m_NetMask = 16 }]
);

// Apart from the IP addresses in this range
insert into scope.zones
(
 m_Protocol,
 m_Action,
 m_Zones
)
values
(
 1,
 2,
 [{m_Subnet = '172.20.32.0' , m_NetMask = 19 }]
);
// Except for these IP addresses which we do want to include
insert into scope.zones
(
 m_Protocol,
 m_Action,
 m_Zones
)
values
(
 1,
 1,
 [{m_Subnet = '172.20.33.0' , m_NetMask = 24 }]
);

The previous OQL insert specifies three scope zones:

• All zones specify that the network uses the Internet Protocol (m_Protocol=1).
• Include and exclude zones are defined as follows:

– Any devices that fall into the first zone, 172.20.0.0/16, are to be included in the discovery
(m_Action=1).

– Any devices that fall into the second zone, 172.20.32.0/19, which is completely contained within the
first zone, are to be excluded from the discovery (m_Action=2).

– Any devices that fall into the third zone, 172.20.33.0/24, which is completely contained within the
second zone, are to be included in the discovery (m_Action=1).

Preventing the detection of devices with a filter
This example insert defines a detection filter. Since there must only be one insert into the
scope.detectionFilter table, multiple conditions for IP must be defined using a single insert. The
conditions of the filter can be combined using the Boolean OQL keywords AND and OR.

insert into scope.detectionFilter
(
 m_Protocol, m_Filter

320 IBM Tivoli Network Manager IP Edition: Reference

)
values
(
 1,
 "(
 (m_UniqueAddress <> '10.10.63.234')
 AND
 (m_ObjectId not like '1\.3\.6\.1\.4\.1\..*')
)"
);

The above example filter ensures that only the following are further interrogated by the discovery:

• Devices that do not have the IP address 10.10.63.234.
• Devices that do not have the Object ID 1.3.6.1.4.1.*.

In the above example, the backslash (\) is used in conjunction with the not like comparison to escape
the . character, which would otherwise be treated as a wildcard.

Restricting instantiation based on entity name
This example insert defines an instantiation filter, also known as a postdiscovery filter. This example
prevents the instantiation of devices that match a given entity name.

The filter (m_Filter) uses topology data in the ncimCache format.

Note: To ensure that alerts are not raised for interfaces that are excluded by the instantiation filter, you
must set the RaiseAlertsForUnknownInterfaces variable. To this, perform the following steps:

1. Edit the $NCHOME/etc/precision/NcPollerSchema.cfg configuration file.
2. Add the following line to the file:

update config.properties set RaiseAlertsForUnknownInterfaces = 0;

Restricting instantiation of a chassis based on entity name

The following example postdiscovery filter restricts instantiation of a chassis and its contents.

insert into scope.instantiateFilter
(
 m_Filter
)
values
(
 "
 (
 BASENAME != 'jane'
)
 "
);

Restricting instantiation of mutiple chassis

The following example postdiscovery filter restricts instantiation of a chassis and its contents.

insert into scope.instantiateFilter
(
 m_Filter
)
values
(
 "
 (
 snmpSystem->SYSDESCR NOT LIKE ' device'
)
 "
);

Chapter 12. Discovery databases 321

Access databases
There are several databases that control access to network devices: snmpStack database and telnetStack
database.

snmpStack database
The snmpStack database defines the operation of the SNMP helper.

Description
The snmpStack database in defined in the SnmpStackSchema.cfg file.

snmpStack.accessParameters database table
The snmpStack.accessParameters database table configures the way that the SNMP helper handles the
retrieval of large non-scalar variables for particular devices or subnets.

Description
Any values inserted into this table override the values for m_GetNextBoundary and
m_GetNextSlowDown that have been specified in the snmpHelper.configuration table.

Schema
The snmpStack.accessParameters database table schema is described in the following table:

Table 95. snmpStack.accessParameters database table schema

Column name Constraints Data type Description

m_GeneralSlowDown NOT NULL Integer The general amount by which to delay a
request (in milliseconds). A general slow
down must only be used where
absolutely necessary as it can
significantly increase the overall
discovery time.

m_GetNextBoundary NOT NULL Integer When retrieving a particular non-scalar
SNMP variable from a device, this is the
minimum number of GetNext requests to
be issued before the delay specified by
m_GetNextSlowDown is introduced.

m_GetNextSlowDown NOT NULL Integer The delay (in milliseconds) to introduce
between each SNMP GetNext request
when the number of separate GetNext
requests issued while retrieving a
particular non-scalar SNMP variable
exceeds m_GetNextBoundary.

m_NetAddress NOT NULL Text The IP address on which to override the
boundary and slowdown values.

322 IBM Tivoli Network Manager IP Edition: Reference

Table 95. snmpStack.accessParameters database table schema (continued)

Column name Constraints Data type Description

m_NetMask Text The netmask. If no netmask is specified,
m_NetAddress is taken to be a single IP
address. If a netmask is specified,
m_NetAddress is taken to be a subnet
address.

m_SnmpPort Integer The SNMP port on the target device, or
target devices if the device access
configuration specified by this record is
applicable to a subnet. If no value is
specified for m_SnmpPort, then the
value defaults to the standard SNMP 161
port.

snmpStack.multibyteObjects table
The snmpStack.multibyteObjects table defines MIB objects that are checked to see if they are multibyte
strings.

Description
Sending a raw ASCII string back to the helper server can cause problems if the string contains characters
with special meaning in ASCII. If the MIB objects contain multibyte strings, the SNMP helper encodes
them.

Schema
The snmpStack.multibyteObjects database table schema is described in the following table:

Table 96. snmpStack.multibyteObjects database table schema

Column name Constraints Data type Description

m_ObjectName NOT NULL Text The MIB object name to be checked.

Related reference
snmpStack.conversionCfg database table
The snmpStack.conversionCfg database table configures the SNMP Helper to replace characters that are
not allowed in the locale of the NCIM database with the question mark character: '?'.

snmpStack.conversionCfg database table
The snmpStack.conversionCfg database table configures the SNMP Helper to replace characters that are
not allowed in the locale of the NCIM database with the question mark character: '?'.

Description
The SNMP Helper substitutes characters on only those objects that are configured in the
snmpStack.multibyteObjects table.

Inserts into this database table are configured in the SnmpStackSchema.cfg file.

Chapter 12. Discovery databases 323

Schema
The snmpStack.conversionCfg database table schema is described in the following table:

Table 97. snmpStack.conversionCfg database table schema

Column name Constraints Data type Description

m_SubstituteInvalidUTF8 NOT NULL Integer If set to 1, the SNMP Helper replaces
characters that are not allowed in the
locale of the NCIM database with the
question mark character: '?'.

If set to 0, no action is taken on invalid
characters.

Related reference
snmpStack.multibyteObjects table
The snmpStack.multibyteObjects table defines MIB objects that are checked to see if they are multibyte
strings.

snmpStack.verSecurityTable database table
The snmpStack.verSecurityTable maps an IP or subnet address with an SNMP version (1, 2, or 3).

Description
The security parameters must be configured, as specified by the SNMP version, in order to gain SNMP
access to network devices. An example of this is the use of community strings for SNMP versions 1 and 2,
as well as the specification of the different security levels offered by SNMP V3.

Schema
The snmpStack.verSecurityTable database table schema is described in the following table:

Table 98. snmpStack.verSecurityTable database table schema

Column name Constraints Data type Description

m_AccessLevel Integer The SNMP access level. Possible
values are:

• 1 - Read
• 2 - Read/write

The default value is 1.

m_EncryptedPwd Integer Whether the password stored in the
configuration file is encrypted:

• 1 - Encrypted
• 2 - Unencrypted

324 IBM Tivoli Network Manager IP Edition: Reference

Table 98. snmpStack.verSecurityTable database table schema (continued)

Column name Constraints Data type Description

m_IpOrSubNetVer Text The IP or subnet address to which
the device access configuration
specified by this record is applicable.
The interpretation of this field as an
IP or a subnet address is dependent
on the value specified in the
m_NetMaskBitsVer field.

m_NetMaskBitsVer Integer The subnet mask for the address
specified by the m_IpOrSubNetVer
field. If this field is set to 32 then
m_IpOrSubNetVer is taken as a
single IP address.

m_NumRetries Integer The number of times to retry the
request.

m_Password Text The password to try for this IP or
subnet address; for example,
community string.

m_Protocol Integer An integer representation of the
network protocol used by the
presently-defined zone:

• 0: Unknown
• 1: IPv4
• 2: IPv4 that has been through

network address translation (NAT)
• 3: IPv6
• 4: Element Management System

(EMS) key for a non-IP device

m_SecurityName Text The SNMP V3 security password.

m_SnmpPort Integer The SNMP port on the target device,
or target devices if the device access
configuration specified by this record
is applicable to a subnet.

If no value is specified for
m_SnmpPort, then the value defaults
to the standard SNMP 161 port.

m_SNMPVer3Details Object of type
V3SecInfo

An object representation of the
authpassword and/or privpassword
details for SNMP V3.

m_SNMPVer3Level Integer Integer representation of the SNMP
V3 security level.

Chapter 12. Discovery databases 325

Table 98. snmpStack.verSecurityTable database table schema (continued)

Column name Constraints Data type Description

m_SNMPVersion Integer The SNMP version that this
configuration applies to.

• 0: SNMP V1
• 1: SNMP V2
• 2: SNMP V3

m_TimeOut Integer The maximum time to wait for a reply
from a device, in milliseconds.

m_Type Integer An integer classification of the
password type; for example:

(2) SNMP Get password.

telnetStack database
The telnetStack database defines the Telnet access parameters for devices.

Description
The telnetStack database is defined in the TelnetStackSchema.cfg file.

telnetStack.passwords database table
The telnetStack.passwords database table defines the Telnet access parameters for devices.

Schema
The telnetStack.passwords database table schema is described in the following table:

Table 99. telnetStack.passwords database table schema

Column name Constraints Data type Description

m_AccessPort Integer The port on which to access the device.

m_ConPrompt Text Console prompt to expect from remote device.
Default = "^.*[a-zA-Z0-9].*[$%>#]$".

m_EncryptedPwd Integer Whether the password stored in the configuration
file is encrypted:

• 1 - Encrypted
• 2 - Unencrypted

m_IpOrSubNet Text IP or subnet address depending on value of
m_NetMaskBits.

m_LogPrompt Text Login prompt to expect from remote device.

Default = ".*ogin:.*".

326 IBM Tivoli Network Manager IP Edition: Reference

Table 99. telnetStack.passwords database table schema (continued)

Column name Constraints Data type Description

m_NetMaskBits Integer The subnet mask. If set to 32, m_IpOrSubNet is
taken to be a single IP address.

m_Password NOT NULL Text The password to try for this subnet or IP address.
Default = "\n" (carriage return).

m_PreferSSHv1 Integer A boolean flag that indicates whether
SSHv1 is used if a device supports SSH v1 and v2.
Possible values are:

• 0: Use SSHv2 support.
• 1: Prefer SSHv1 support.

If no value is specified for m_PreferSSHv1, then
the value defaults to 0.

The m_PreferSSHv1 setting functions only when
m_SSHSupport is enabled and the target device
supports both SSH v1 and v2.

m_PrivAccessCmd Text The command for this device to enter into
privileged mode.

m_PrivCommands List type text Which commands require privileged access.

m_PrivConPrompt Text The regular expression for the console prompt in
privileged mode.

m_PrivPassword Text The password to enter privileged mode.

m_PrivPwdPrompt Text The regular expression for the password prompt in
privileged mode.

m_Protocol Integer An integer representation of the network protocol
used by the presently-defined zone:

• 0: Unknown
• 1: IPv4
• 2: IPv4 that has been through network address

translation (NAT)
• 3: IPv6
• 4: Element Management System (EMS) key for a

non-IP device

m_PwdPrompt Text Password prompt to expect from remote device.
Default = ".*assword:.*".

m_SSHSupport Boolean
Integer

Flag to indicate whether or not to use SSH support
for this device:

• 1: Use SSH support for this device.
• 0: Do not use SSH support for this device.

If no value is specified for m_SSHSupport, then the
value defaults to 0, that is, no SSH support.

Chapter 12. Discovery databases 327

Table 99. telnetStack.passwords database table schema (continued)

Column name Constraints Data type Description

m_TimeOut Integer The time to wait for a response from the device, in
milliseconds.

m_Username Text The username to try for this subnet or IP address.
Default = "".

Process management databases
On startup, the discovery engine, ncp_disco, populates the agent and stitcher databases with information
extracted from the discovery agent and discovery stitcher files. While operating, ncp_disco scans for
alterations to the agent and stitcher files and updates the agent and stitcher databases if necessary. The
frequency of scans is set in the disco database.

The agents and stitchers databases contain definition and configuration information for the agents and
stitchers, such as a list of the types of devices that are sent to any given agent. The information in these
databases is extracted by the discovery engine from the following directories:

• /precision/disco/agents
• /precision/disco/stitchers

The stitchers databases also contain information about when any given stitcher is triggered; for example,
"start stitcher X upon completion of agent Y," or "start stitcher X upon the insertion of an entry into
database table Z." It is therefore possible to start stitchers on demand by inserting their name into the
appropriate actions table using OQL. The necessary agents are started automatically when a device is
inserted into the despatch table of the agent.

Configuring the data flow: starting stitchers on-demand
The information extracted by DISCO contains the full definitions of the agents and stitchers, which
includes the trigger conditions. By modifying the trigger conditions, you can modify the data flow of the
discovery process.

You can start the discovery cycle from any point within the configured data flow by placing a stitcher into
the actions table of the stitchers database.

agents database schema
The agents database is defined in $NCHOME/etc/precision/DiscoSchema.cfg. Its fully qualified
database table names are: agents.definitions; agents.victims; agents.status

agents.definitions table
The agents.definitions table contains scheduling information for every discovery agent, extracted from the
information in the discovery agent file.

Table 100. agents.definitions database table schema

Column name Constraints Data type Description

m_Name • PRIMARY KEY
• NOT NULL

Text Name of the agent.

328 IBM Tivoli Network Manager IP Edition: Reference

Table 100. agents.definitions database table schema (continued)

Column name Constraints Data type Description

m_Type Externally defined
agentType data
type

Integer Agent Type:

• 0: Undefined
• 1: Precompiled
• 2: Text defined
• 3: Combination

m_Text NOT NULL Text Textual description of agent rules.

m_ExecuteOn Text The host on which to execute the agent.

m_Phase Default = 1 Integer The discovery phase by the end of which the
agent is expected to complete.

m_UpdTime Long integer The time of the last modification, which
determines whether the agent has changed
since its definition was stored.

agents.sourceInfo table
The agents.sourceInfo table holds information on the types of data source used by an agent.

Table 101. agents.sourceInfo database table schema

Column name Constraints Data type Description

m_DiscoveryProtocol NOT NULL Text The protocol used by the agent to get data from
this source. Possible values are:

• Unknown
• Other
• Manual
• FlatFile
• SNMP
• Telnet
• XML-RPC
• VSphere
• OtherJavaAPI
• TL1
• CORBA

m_Name • PRIMARY KEY
• NOT NULL

Text Name of the agent.

m_RequiredField List type text Lists a field that must exist in the main node
record in order for the entity to be considered
of this source.

Chapter 12. Discovery databases 329

Table 101. agents.sourceInfo database table schema (continued)

Column name Constraints Data type Description

m_RequiredValue Lists a value for the field specified in
m_RequiredField that must exist in the main
node record in order for the entity to be
considered of this source.

m_Source NOT NULL Text The source of the data. Possible values are:

• Unknown: source of the chassis is unknown.
• Other: other source.
• TopologyEditor: chassis was manually

added using the Topology Editor.
• PresetLayer: chassis was manually set

using the PresetLayer stitcher.
• Agent: chassis was discovered as part of the

standard discovery process.
• Collector: chassis was discovered as part

of the EMS discovery process.

agents.status table
The agents.status table contains information about the present status of the agent.

Table 102. agents.status database table schema

Column name Constraints Data type Description

m_CompletionPhase Integer The discovery phase in which the agent
completes.

m_Name • PRIMARY KEY
• NOT NULL
• UNIQUE

Text Name of the agent.

m_NumConnects Default = 0 Integer The number of times that DISCO has connected
to the agent.

m_State Externally defined
agentState data
type.

Default = 0

Integer The current state of the agent:

• 0: Undefined
• 1: Not running
• 2: Start up
• 3: Running
• 4: Finished
• 5: Died

330 IBM Tivoli Network Manager IP Edition: Reference

agents.victims table
The agents.victims table contains an extraction of the criteria that determine which devices get sent to the
agent.

Table 103. agents.victims database table schema

Column name Constraints Data type Description

m_Name • PRIMARY KEY
• NOT NULL
• UNIQUE

Text Name of the agent.

m_Filter Text The filter condition that determines which
devices are sent to the agent.

Stitchers database schema
The stitchers database is defined in $NCHOME/etc/precision/DiscoSchema.cfg. Its fully qualified
database table names are: stitchers.triggers; stitchers.status; stitchers.actions.

stitchers.triggers table
The stitchers.triggers table contains an extraction of the criteria that determine the trigger for the stitcher.

Table 104. stitchers.triggers database table schema

Column name Constraints Data type Description

m_Name • PRIMARY KEY
• NOT NULL
• UNIQUE

Text Name of the stitcher.

m_Type Integer The type of stitcher trigger:

• 0: Undefined
• 1: On the completion of some other activity; for

example, another stitcher or a discovery phase
• 2: On a table insert
• 3: On demand
• 4: On a timer

m_Trigger Externally defined
ruleTrigger data
type

Object Description of the stitcher trigger.

Chapter 12. Discovery databases 331

stitchers.status table
The stitchers.status table contains the information about the present status of the stitcher.

Table 105. stitchers.status database table schema

Column name Constraints Data type Description

m_Name • PRIMARY KEY
• NOT NULL
• UNIQUE

Text Name of the stitcher.

m_State Externally defined
stchrState data
type

Default = 0

Integer The current state of the stitcher:

• 0: Undefined
• 1: Start up
• 2: Running
• 3: Finished
• 4: Not maintained (the stitcher is not having its

state maintained)

stitchers.actions table
If a stitcher is inserted into the stitchers.actions table, DISCO runs the stitcher. Once the stitcher has
completed, its entry is deleted from the stitchers.actions table. Any stitchers triggered to execute from
the stitcher that has been inserted, or upon completion of the stitcher, are also executed.

You can also configure other actions to take place on completion of the stitcher, so that the discovery
cycle completes from that point onwards.

Table 106. stitchers.actions database table schema

Column name Constraints Data type Description

m_Name • PRIMARY KEY
• NOT NULL

Text Name of the stitcher.

Subprocess databases
The finders, Details, and agent databases are used during the discovery by the discovery engine
subprocesses to store information retrieved from the network. The databases are defined within the
configuration file, DiscoSchema.cfg.

The subprocess databases include:

• The finders database, which is used by the finders to store information about device existence.
• The Details database, which is used by the Details agent to store basic device information.
• The discovery agent databases, which are created using a template.

The finders, Details and AssocAddress agents must always be run, so their databases are defined in the
DiscoSchema.cfg configuration file. The databases for the rest of the discovery agents are created based
on a template that is defined in the DiscoSchema.cfg configuration file.

finders database schema
The finders database is defined in $NCHOME/etc/precision/DiscoSchema.cfg.

The fully qualified database table names of the finders database are:

332 IBM Tivoli Network Manager IP Edition: Reference

• finders.despatch
• finders.returns
• finders.pending
• finders.processing
• finders.rediscovery

The finders database is the central monitoring and management point for finders operating during
discovery. The finders discover the existence of devices and report these devices back to the finders
database, but do not discover connections.

Network entities reported by the finders are usually sent to the Details agent for retrieval of basic device
information, although the discovery data flow is fully configurable.

finders.despatch table
The finders.despatch table contains a record of all the requests sent to the finders and the current status
of the requests.

Table 107. finders.despatch database table schema

Column name Constraints Data type Description

m_Finder • PRIMARY KEY
• NOT NULL

Text The name of the finder
responsible for the request.

m_FindRequest • PRIMARY KEY
• UNIQUE
• NOT NULL

Text The OQL request sent to the
finder named above.

m_Request Status Integer The current status of the
request sent to the finder.

finders.returns table
When a finder finds a device, it returns the information to the finders.returns table, provided that the
discovery is still in the device discovery phase, that is, data collection phase one. If the discovery is in the
blackout state, the finders return the information to the pending table.

The returns table serves as a transfer point, notifying the system that a device exists. By default, a stitcher
sends the device information to the Details agent to discover basic device information.

Table 108. finders.returns database table schema

Column name Constraints Data type Description

m_UniqueAddress • PRIMARY KEY
• UNIQUE
• NOT NULL

Text A string that uniquely identifies
this entity. The content of this field
is unconstrained, and might be an
IP address or an element
management system (EMS) key.

m_Name Text The unique name of the network
entity.

m_Creator Text The finder that created this record.

Chapter 12. Discovery databases 333

Table 108. finders.returns database table schema (continued)

Column name Constraints Data type Description

m_Protocol Integer An integer representation of the
network protocol used by the
presently-defined zone:

• 0: Unknown
• 1: IPv4
• 2: IPv4 that has been through

network address translation
(NAT)

• 3: IPv6
• 4: Element Management System

(EMS) key for a non-IP device

finders.pending table
The pending table accepts device information when the returns table has been locked out by DISCO. The
returns table has to be locked during data processing because even though the data collection stage has
completed, it does not necessarily mean that all the devices on the network have been discovered.

Network entities that have been sent to the pending table are processed after the current discovery cycle
has been completed.

Table 109. finders.pending database table schema

Column name Constraints Data
type

Description

m_UniqueAddress • PRIMARY KEY
• UNIQUE
• NOT NULL

Text A string that uniquely identifies this entity. The
content of this field is unconstrained, and might
be an IP address or an element management
system (EMS) key.

m_Name Text The unique name of the network entity.

m_Creator Text The finder that created this record in the table.

m_Protocol Integer An integer representation of the network protocol
used by the presently-defined zone:

• 0: Unknown
• 1: IPv4
• 2: IPv4 that has been through network address

translation (NAT)
• 3: IPv6
• 4: Element Management System (EMS) key for

a non-IP device

334 IBM Tivoli Network Manager IP Edition: Reference

Table 109. finders.pending database table schema (continued)

Column name Constraints Data
type

Description

m_AddressSpace Text The name of the NAT address space to which the
device belongs.

This value is set in the
translations.NATAddressSpaceIds table. If the
discovery is not using NAT, or if the device is in
the public domain, this value is NULL.

finders.processing table
The processing table contains a record of all the discovered entities that are currently being processed by
DISCO. Any device that has been reported to the returns table and is awaiting the next action to take
place has an entry in the processing table.

Table 110. finders.processing database table schema

Column name Constraints Data type Description

m_UniqueAddress • PRIMARY KEY
• UNIQUE
• NOT NULL

Text A string that uniquely identifies this
entity. The content of this field is
unconstrained, and might be an IP
address or an element management
system (EMS) key.

m_Name Text The unique name of the network entity.

m_Creator Text The finder that created this record in the
table.

m_Protocol Integer An integer representation of the network
protocol used by the presently-defined
zone:

• 0: Unknown
• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6
• 4: Element Management System (EMS)

key for a non-IP device

m_AddressSpace Text The name of the NAT address space to
which the device belongs. This value is
set in the
translations.NATAddressSpaceIds table.
If the discovery is not using NAT, or if the
device is in the public domain, this value
is NULL.

Chapter 12. Discovery databases 335

finders.rediscovery table
The rediscovery table can hold nodes and subnets that you want to rediscover. Any device inserted into
this table is sent to the Ping finder for processing.

Table 111. finders.rediscovery database table schema

Column name Constraints Data type Description

m_Address • PRIMARY KEY
• NOT NULL

Text The IP address of the discovered network
entity.

m_RequestType Int The type of IP address:

• 1: Individual
• 2: Subnet

m_NetMask Text The net mask if the address refers to a
subnet.

m_Protocol NOT NULL Integer An integer representation of the IP protocol
used by the presently-defined zone:

• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6

CollectorDetails database schema
The CollectorDetails database is defined in $NCHOME/etc/precision/DiscoSchema.cfg. Its
fully qualified database table names are: CollectorDetails.despatch;
CollectorDetails.returns.

The CollectorDetails agent retrieves basic information about devices discovered by the collector finders
when information from the collector finders is placed in the despatch table. The CollectorDetails agent
retrieves the appropriate device information and places the results in the returns table.

CollectorDetails.despatch table
The despatch table contains basic information about devices that have been detected by the collector
finders. When data is placed in this table, the CollectorDetails agent automatically interrogates the
network for more detailed device information.

Table 112. CollectorDetails.despatch database table schema

Column name Constraints Data type Description

m_UniqueAddress • PRIMARY KEY
• NOT NULL

Text A string that uniquely identifies this entity.
The content of this field is unconstrained, and
might be an IP address or an element
management system (EMS) key.

m_ManagerId NOT NULL Text Identifies the manager of the device. Takes
the value "" if device is accessed directly.

m_Name Text Unique name of an entity on the network.

336 IBM Tivoli Network Manager IP Edition: Reference

Table 112. CollectorDetails.despatch database table schema (continued)

Column name Constraints Data type Description

m_Protocol Integer An integer representation of the network
protocol used by the presently-defined zone:

• 0: Unknown
• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6
• 4: Element Management System (EMS) key

for a non-IP device

m_AddressSpace Text The name of the NAT address space to which
the device belongs.

This value is set in the
translations.NATAddressSpaceIds table. If
the discovery is not using NAT, or if the device
is in the public domain, this value is NULL.

m_DespatchTime Timestam
p

Date and time the network was interrogated
by the CollectorDetails agent.

m_ExtraInfo Externally defined vblist
data type

Object Any extra information.

CollectorDetails.returns table
The returns table holds detailed device information retrieved by the CollectorDetails agent. Information
inserted into this table is automatically processed by the stitchers so that the device connectivity can be
discovered by the appropriate discovery agent.

Table 113. CollectorDetails.returns database table schema

Column name Constraints Data type Description

m_Name Text Unique name of an entity on the
network.

m_UniqueAddress NOT NULL Text A string that uniquely identifies this
entity. The content of this field is
unconstrained, and might be an IP
address or an element management
system (EMS) key.

m_ManagerId NOT NULL Text Identifies the manager of the device.
Takes the value "" if device is accessed
directly.

Chapter 12. Discovery databases 337

Table 113. CollectorDetails.returns database table schema (continued)

Column name Constraints Data type Description

m_Protocol Integer An integer representation of the
network protocol used by the presently-
defined zone:

• 0: Unknown
• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6
• 4: Element Management System

(EMS) key for a non-IP device

m_ObjectId Text Textual representation of the device
class (an ASN.1 address).

m_Description Text Value of sysDescr MIB variable of the
entity.

m_HaveAccess Externally defined
Boolean data type

Integer Flag indicating whether there is SNMP
access to the device:

• 1: Have access
• 0: No access

m_UpdAgent Text The agent that updated this device.

m_LastRecord Externally defined
Boolean data type

Boolean
integer

A flag indicating whether this is the last
record for this entity (that is, whether
the entity has been completely
processed):

• 1: True
• 0: False

m_AddressSpace Text The name of the NAT address space to
which the device belongs. This value is
set in the
translations.NATAddressSpaceIds table.
If the discovery is not using NAT, or if
the device is in the public domain, this
value is NULL.

m_ReturnTime Timestamp Date and time this value was returned.

m_ExtraInfo Externally defined
vblist data type

Object Any extra information.

338 IBM Tivoli Network Manager IP Edition: Reference

Details database schema
The Details database is defined in $NCHOME/etc/precision/DiscoSchema.cfg. Its fully qualified database
table names are: Details.despatch; Details.returns.

The Details agent retrieves basic information about devices discovered by the finders when information
from the finders is placed in the despatch table. The Details agent retrieves the appropriate device
information and places the results in the returns table.

A stitcher takes the information from the Details.returns table and sends it to the Associated Address
agent and ultimately the appropriate discovery agent.

details.despatch table
The despatch table contains basic information about devices that have been detected by the finders.
When data is placed in this table, the Details agent automatically interrogates the network for more
detailed device information.

Table 114. Details.despatch database table schema

Column name Constraints Data
type

Description

m_UniqueAddress • PRIMARY KEY
• NOT NULL

Text The IP address of the discovered network
entity.

m_Name Text Unique name of an entity on the network.

m_ManagerId NOT NULL Text Identifies the manager of the device. Takes
the value "" if device is accessed directly.

m_Protocol Integer An integer representation of the IP
protocol used by the presently-defined
zone:

• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6

m_AddressSpace Text The name of the NAT address space to
which the device belongs.

This value is set in the
translations.NATAddressSpaceIds table. If
the discovery is not using NAT, or if the
device is in the public domain, this value is
NULL.

Chapter 12. Discovery databases 339

details.returns table
The returns table holds detailed device information retrieved by the Details agent. Information inserted
into this table is automatically processed by the stitchers so that the device connectivity can be
discovered by the appropriate discovery agent.

Table 115. Details.returns database table schema

Column name Constraints Data type Description

m_AddressSpace Text The name of the NAT address space to
which the device belongs. This value is
set in the
translations.NATAddressSpaceIds table.
If the discovery is not using NAT, or if
the device is in the public domain, this
value is NULL.

m_Description Text Value of sysDescr MIB variable of the
entity.

m_ExtraInfo Externally defined
vblist data type

Object Any extra information.

m_HaveAccess Externally defined
Boolean data type

Integer Flag indicating whether there is SNMP
access to the device:

• 1: Have access
• 0: No access

m_LastRecord Externally defined
Boolean data type

Boolean
integer

A flag indicating whether this is the last
record for this entity (that is, whether
the entity has been completely
processed):

• 1: True
• 0: False

m_ManagerId NOT NULL Text Identifies the manager of the device.
Takes the value "" if device is accessed
directly.

m_Name Text Unique name of an entity on the
network.

m_ObjectId Text Textual representation of the device
class (an ASN.1 address).

m_Protocol Integer An integer representation of the IP
protocol used by the presently-defined
zone:

• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6

340 IBM Tivoli Network Manager IP Edition: Reference

Table 115. Details.returns database table schema (continued)

Column name Constraints Data type Description

m_UniqueAddress NOT NULL Text The IP address of the discovered
network entity.

m_UpdAgent Text The agent that updated this device.

Finders databases
Finders determine device existence. Each of the finders uses a different method to discover network
devices. You can enable finders for your discovery by configuring them as managed processes of DISCO in
their respective configuration files. Finders are automatically launched at the appropriate time, provided
that CTRL is running.

Each finder must be configured by editing its configuration file. The finders discover the existence of
devices and report these devices back to the finders database, but do not discover connections.

Note that the finders database is distinct from the databases that are associated with the individual
finders.

The finders are described in the table below, with their executable name and the location of their
configuration file. $NCHOME is the environment variable that contains the path to the netcool directory.

Table 116. Description of the finders

Finder Executable Configuration file Description

Ping ncp_df_ping $NCHOME/etc/precision/
DiscoPingFinderSchema.cfg
$NCHOME/etc/precision/
DiscoPingFinderSeeds.cfg

Makes a simple ICMP echo
request for broadcast or
multicast addresses,
individual IP addresses, or all
devices on a subnet.

File ncp_df_file $NCHOME/etc/precision/
DiscoFileFinderSchema.cfg
$NCHOME/etc/precision/
DiscoFileFinderParseRules.cfg

Parses a file, such as /etc/
hosts, to retrieve a list of
devices to find devices on the
network.

Databas
e

ncp_df_dbentry $NCHOME/etc/precision/
DiscoDBEntryFinderSchema.cfg

Reads a database in order to
retrieve a list of devices to
find on the network.

Collector ncp_df_collector $NCHOME/etc/precision/
DiscoCollectorFinderSchema.cfg
$NCHOME/etc/precision/
DiscoCollectorFinderSeeds.cfg

An EMS collector is a software
module that retrieves and
stores topology data from an
Element Management System
(EMS). The Collector finder
queries a collector and gets a
list of IP addresses managed
by the EMS associated with
that collector.

Chapter 12. Discovery databases 341

collectorFinder database
The collectorFinder database defines the operation of the Collector finders.

Description
The collectorFinder database is defined in the DiscoCollectorFinderSchema.cfg configuration file.
It has the following tables:

• collectorFinder.collectorRules
• collectorFinder.configuration

collectorFinder.collectorRules database table
The collectorFinder.collectorRules database table configures the operation of the Collector finder.

Description
You can override some of the settings for particular collectors in the collectorFinder.configuration table.
The collectorRules table can contain multiple records.

Schema
The collectorFinder.collectorRules database table schema is described in the following table:

Table 117. collectorFinder.collectorRules database table schema

Column name Constraints Data type Description

m_Host Text The host address on which the collector is
running. This field is NOT NULL only if the
collector is running on a different host to
Network Manager.

This field may be configured for both a
discovery and a rediscovery.

m_Port • PRIMARY KEY
• NOT NULL

Text The port on which the collector is listening. If
the collector is running on the same host as
Network Manager, then this is a Network
Manager port.

This field may be configured for both a
discovery and a rediscovery.

342 IBM Tivoli Network Manager IP Edition: Reference

Table 117. collectorFinder.collectorRules database table schema (continued)

Column name Constraints Data type Description

m_RequestType Integer Flag denoting which topology data to
download from the data source. This flag
works together with the m_Address and
m_NetMask fields. The flag takes the
following values:

• 0: Rediscover all devices. All devices
retrieved by the collector are discovered.
The m_Address and m_NetMask fields are
ignored.

• 1: Rediscover single device. Only one of the
devices retrieved by the collector is
discovered. The m_Address field specifies
the device and the m_NetMask fields is
ignored.

• 2: Rediscover subnet. One of the subnets
retrieved by the collector is discovered. The
m_Address field specifies the subnet and
the m_NetMask field specifies the subnet
mask.

This field is configured for a rediscovery only.

m_DataSourceId Integer Limits rediscovery to a single data source
supported by the collector. This field is rarely
used as a collector usually only supports a
single data source.

This field is configured for a rediscovery only.

m_Address Text Used in conjunction with the m_RequestType
and m_NetMask fields when specifying a
device or subnet to rediscover. See the entry
for m_RequestType for more information.

This field is configured for a rediscovery only.

m_NetMask Text Used in conjunction with the m_RequestType
and m_Address fields when specifying a
device or subnet to rediscover. See the entry
for m_RequestType for more information.

This field is configured for a rediscovery only.

m_NumRetries Integer Number of retries to issue an RPC XML
request to the collector. Setting this field is
optional. If set, this field overrides the default
specified in the collectorFinder.configuration
table.

This field may be configured for both a
discovery and a rediscovery.

Chapter 12. Discovery databases 343

collectorFinder.configuration database table
The collectorFinder.configuration table specifies the general rules of the Element Management System
(EMS) collector methodology and must only contain one record.

Schema
The collectorFinder.configuration database table schema is described in the following table:

Table 118. collectorFinder.configuration database table schema

Column name Constraints Data type Description

m_NumThreads Integer The number of threads to be used by the
Collector finder.

m_TimeOut Integer The maximum time to wait for a reply from a
collector (the timeout).

m_NumRetries Integer The number of times to issue an RPC XML
request to a collector.

m_MaxResponseSize Integer The maximum size for an XML-RPC response in
bytes.

Note: The default maximum response size might
be too small when running a Collector-based
discovery against Collectors that result in very
large responses. In such cases, increase the
maximum response size. To increase the
maximum response size, set the
m_MaxResponseSize parameter to a higher
value. Make sure you set the same value for
m_MaxResponseSize in both of the following
files:

• NCHOME/etc/precision/
DiscoCollectorFinderSchema.cfg

• NCHOME/etc/precision/
DiscoXmlRpcHelperSchema.cfg

dbEntryFinder database
The dbEntryFinder database defines the operation of the Database finder.

Description
The dbEntryFinder database is defined in the DiscoDBEntryFinderSchema.cfg file. It has the following
tables:

• dbEntryFinder.configuration
• dbEntryFinder.dbQueries

344 IBM Tivoli Network Manager IP Edition: Reference

dbEntryFinder.configuration database table
You can configure the Database finder with the dbEntryFinder.configuration table, which specifies the
number of threads to be used by the finder.

Schema
The dbEntryFinder.configuration database table is described in the following table.

Table 119. dbEntryFinder.configuration database table schema

Column name Constraints Data type Description

m_NumThreads NOT NULL Integer The number of threads to be used by the
Database finder.

dbEntryFinder.dbQueries database table
By configuring inserts into the dbEntryFinder.dbQueries table, you can specify the SQL queries to run to
retrieve device details from the database that stores discovery seed details. You can also specify optional
mapping parameters that define how to map the device details retrieved from the database to the
finders.returns or finders.discovery tables.

Schema
The dbEntryFinder.dbQueries database table schema is described in the following table:

Table 120. dbEntryFinder.dbQueries database table schema

Column name Constraints Data type Description

m_DBEntryName • NOT NULL
• UNIQUE

Text The unique name of this database entry.

m_DbId Text Identifier of the database that contains the
device details, as defined in the
DbLogins.DOMAIN.cfg configuration file.

m_TriggerType NOT NULL Integer Indicates which trigger type invokes this
query:

• 1 Full discovery
• 2 Partial rediscovery
• 3 Forced rediscovery

m_Query Text Code of the query.

m_Parameters List of atoms Optional parameters to pass to the query.

Chapter 12. Discovery databases 345

Table 120. dbEntryFinder.dbQueries database table schema (continued)

Column name Constraints Data type Description

m_Mapping List of atoms Optional mapping parameters that define
how to map the fields returned from the
query into fields expected by the Discovery
engine, ncp_disco. These parameters map
data into target database tables as follows:

• If m_TriggerType is 1 or 2, then map the
data to the finders.returns table.

• If m_TriggerType is 3, then map the
data to the finders.rediscovery
table.

fileFinder database
The fileFinder database defines the operation of the File finder.

Description
The fileFinder database is defined in the DiscoFileFinderParseRules.cfg file. It has the following tables:

• fileFinder.configuration
• fileFinder.parseRules

fileFinder.configuration database table
You can configure the File finder with the fileFinder.configuration table, which specifies the number of
threads to be used by the finder.

Schema
The fileFinder.configuration database table is described in the following table.

Table 121. fileFinder.configuration database table schema

Column name Constraints Data type Description

m_NumThreads NOT NULL Integer The number of threads to be used by the
File finder.

fileFinder.parseRules database table
By configuring inserts into the fileFinder.parseRules table, you can specify the files to be parsed for a list
of IP addresses of devices on the network.

Description
The fileFinder.parseRules table specifies the rules for file parsing.

A typical file that you would parse, for example, is the /etc/hosts file on the machine running DISCO.
You can also seed the discovery by parsing the /etc/defaultrouter file.

Schema
The fileFinder.parseRules database table schema is described in the following table:

346 IBM Tivoli Network Manager IP Edition: Reference

Table 122. fileFinder.parseRules database table schema

Column name Constraints Data type Description

m_FileName • NOT NULL
• UNIQUE

Text The unique full path and filename of the file
to be parsed, for example, /etc/hosts.

m_Delimiter Text The delimiter that separates the data fields
in the file. Regular pattern matching
expressions are also accepted as valid
delimiters.

Note: \t is not supported as a valid value for
the <tab> character.

m_ColDefs List of atoms A list of rules that specify which variables to
extract and the columns from which to get
them.

pingFinder database
The pingFinder database defines the operation of the Ping finder.

Description
The pingFinder database is defined in the DiscoPingFinderSeeds.cfg file. It has the following tables:

• pingFinder.configuration
• pingFinder.pingFilter
• pingFinder.pingRules
• pingFinder.scope

pingFinder.configuration database table
The pingFinder.configuration table specifies the general rules of the ping methodology. The table must
contain only one record.

Description
The pingFinder.configuration table allows you to configure the way devices are pinged, including enabling
broadcast or multicast pinging. Although pinging of broadcast/multicast addresses allows devices to be
discovered more quickly than other detection methods, it is sometimes less desirable to do so under
certain network conditions, such as when the network is heavily congested. In general, you would ping
broadcast addresses on an unknown sparsely populated network. You must only ping multicast addresses
where they have been set up on the network.

Schema
The pingFinder.configuration database table schema is described in the following table:

Table 123. pingFinder.configuration database table schema

Column name Data type Description

m_NumThreads Integer The number of threads to be used by the Ping finder.

Chapter 12. Discovery databases 347

Table 123. pingFinder.configuration database table schema (continued)

Column name Data type Description

m_TimeOut Integer The maximum time to wait for a reply from a pinged
address (the timeout).

m_InterPingTime Integer The interval between pinging the addresses in a subnet.

m_NumRetries Integer The number of times a device is to be re-pinged.

m_Broadcast Integer Flag used to enable or disable broadcast address
pinging:

• 1: Enable
• 0: Disable

m_Multicast Integer Flag used to enable or disable multicast address
pinging:

• 1: Enable
• 0: Disable

pingFinder.pingFilter database table
The pingFinder.pingFilter table can be used to exclude particular devices or subnets from being pinged by
the Ping finder.

Description
You may wish to exclude certain interfaces, such as ISDN and modem interfaces, because pinging these
interfaces generates phone calls, which costs money. If you configure the Ping finder to use both the
scope.zones table and the pingFinder.pingFilter table, the Ping finder pings those devices or subnets it
has been seeded with if they are within either the discovery scope or the Ping finder scope.

Schema
The pingFinder.pingFilter database table schema is described in the following table:

Table 124. pingFinder.pingFilter database table schema

Column name Constraints Data type Description

m_Protocol • PRIMARY KEY
• NOT NULL
• Externally defined

netProtocol data
type

Integer An integer representation of the IP
protocol used by the presently-defined
zone:

• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6

348 IBM Tivoli Network Manager IP Edition: Reference

Table 124. pingFinder.pingFilter database table schema (continued)

Column name Constraints Data type Description

m_Action • NOT NULL
• Externally defined

netProtocol data
type

Integer Action to perform for current zone:

• 0: Undefined
• 1: Include
• 2: Exclude

m_Zones List of type zone A list of varbinds (name=value) that
define the present zone.

m_AddressSpace Text The name of the NAT address space to
which the device belongs. This value is
set in the
translations.NATAddressSpaceIds table.
If the discovery is not using NAT, or if the
device is in the public domain, this value
is NULL.

pingFinder.pingRules database table
The pingFinder.pingRules table specifies the different addresses and subnets to be pinged by the Ping
finder.

Description
The pingRules table can contain multiple records.

Schema
The pingFinder.pingRules table is described in the following table.

Table 125. pingFinder.pingRules database table schema

Column name Constraints Data type Description

m_Address • PRIMARY KEY
• NOT NULL

Text The address to ping.

m_RequestType Integer Flag denoting address type:

• 1: Individual
• 2: Subnet

m_NetMask Text The subnet mask. If a value is specified for
this field, it automatically implies that the
address is a subnet address.

m_TimeOut Integer Maximum time to wait for response. This
value overrides the default timeout specified
in the configuration table.

m_NumRetries Integer Maximum number of times to reattempt the
ping. This value overrides the default value.

Chapter 12. Discovery databases 349

pingFinder.scope database table
The pingFinder.scope table defines the scope of the Ping finder.

Description
You can use the pingFinder.scope table to configure the way the Ping finder checks whether it is allowed
to ping a particular device. You can exclude particular devices or subnets from being pinged by the Ping
finder.

Schema
The pingFinder.scope database table schema is described in the following table:

Table 126. pingFinder.scope database table schema

Column name Constraints Data type Description

m_UseScope Integer Flag denoting whether or not to use the entries
in the scope.zones table when deciding
which devices to ping:

• 0: The Ping finder ignores the scope.zones
table when deciding which devices to ping.

• 1: This is the default value. The Ping finder
uses the scope.zones table to check which
devices can be pinged.

If you are performing an unscoped discovery,
that is, a discovery without any entries in the
scope.zones table, then it is preferable to set
m_UseScope to zero to reduce processing load.

m_UsePingEntries Integer Flag denoting whether or not to use the entries
in the pingFinder.pingFilter table when deciding
which devices to ping:

• 0: This is the default value. The Ping finder
ignores any entries in the
pingFinder.pingFilter table when deciding
which devices can be pinged.

• 1: The Ping finder checks the
pingFinder.pingFilter table before it pings a
particular device to see if the device can be
pinged.

The Helper Server databases
When the Helper Server starts, it creates a database for each helper that is to be run.

Tip: It is good practice to configure the Helper Server to start automatically by making the appropriate
OQL insertion into the services.inTray table of CTRL. Alternatively, you can start the Helper Server
manually with the ncp_d_helpserv command on the command line.

350 IBM Tivoli Network Manager IP Edition: Reference

ARPhelper database
The ARPHelper database configures the operation of the ARP helper, stores information about the
requests the ARP helper makes from the network.

The ARPHelper database is defined in NCHOME/etc/precision/ DiscoHelperServerSchema.cfg.

ARPhelper.ARPHelperConfig table
The ARPhelper.ARPHelperConfig database table configures the general operation of the ARP helper.

The ARPhelper.ARPHelperConfig database table is described in the following table.

Table 127. ARPhelper.ARPHelperConfig database table schema

Column name Constraints Data type Description

m_HelperDbTimeout UNIQUE Long64 The helper database timeout, that is,
how long before the database expires
in the absence of any activity.

m_HelperReqTimeout Long64 The helper request timeout, that is,
how long before each request
expires.

m_HelperStartupTimeout Long64 The default helper startup timeout,
that is, the maximum time to wait for
a helper to start up when requested.

m_HelperDoWeQuery Integer Indicates whether the Helper Server
queries its database or whether it
queries the network using a helper:

(0) Do not use cache

(1) Use cache

m_HelperDoQueryVBs

Optional

Object type
varbinds

List of helper inputs that always
query the database before querying
the network. If the item is found in
the database then the network is not
queried.

m_HelperDoNotQueryVBs

Optional

Object type
varbinds

List of helper inputs that do not query
the database. This field overrides the
value specified in
m_HelperDoWeQuery.

m_HelperDoWeStore Integer Indicates whether the Helper Server
stores any replies from the helpers in
its database:

(0) Do not store replies in database

(1) Store replies in database

m_HelperDoStoreVBs

Optional

Object type
varbinds

List of helper inputs that always store
data in the Helper Server database.
This field overrides the value of
m_HelperDoWeStore.

Chapter 12. Discovery databases 351

Table 127. ARPhelper.ARPHelperConfig database table schema (continued)

Column name Constraints Data type Description

m_HelperDoNotStoreVBs

Optional

Object type
varbinds

List of helper inputs that never store
data in the Helper Server databases.
This field overrides the value of
m_HelperDoWeStore.

m_HelperDebugLevel

Optional

Integer Sets the debug level of the helper,
printing to m_HelperLogfile.

m_HelperLogfile

Optional

Text The full path and file for the logfile of
the current helper.

The m_HelperDoWeQuery and m_HelperDoWeStore fields each have two related optional fields. A record
entered into either m_HelperDoWeQuery or m_HelperDoWeStore is the default setting to which the
helper responds if no records are entered into the optional fields. However, a record entered into either of
the related optional fields overrides the default setting.

For example, if m_HelperDoWeQuery is set to query the network rather than the cache (that is,
m_HelperDoWeQuery=0) and if an IP address of 192.168.0.1 is specified in m_HelperDoQueryVBs, then
a request record where m_IpAddress = 192.168.0.1 results in the cache being queried rather than
the network. The network is only queried if the information is not currently held in the cache.

ARPhelper database configuration

The following example insert gives a typical ARP helper configuration.

insert into ARPHelper.ARPHelperConfig
(
 m_HelperDbTimeout,
 m_HelperReqTimeout,
 m_HelperStartupTimeout,
 m_HelperDoWeQuery,
 m_HelperDoWeStore
)
values
(
 259200, 1200, 90, 0, 0
);

ARPhelper.ARPHelperTable table
The ARPHelper.ARPHelperTable database table stores information about the requests the ARP helper
makes from the network.

The ARPHelper.ARPHelperTable database table is described in the following table.

Table 128. ARPHelper.ARPHelperTable database table schema

Column name Constraints Data type Description

m_AddressSpace Text The address space of the
device.

m_HostIp NOT NULL Text IP address of the device to
interrogate.

352 IBM Tivoli Network Manager IP Edition: Reference

Table 128. ARPHelper.ARPHelperTable database table schema (continued)

Column name Constraints Data type Description

m_HostMac Text The physical address of the
device (MAC address).

m_HostMask Text The subnet mask of the host
device to be interrogated.

m_HostSubnet Text Subnet of the host device to
be interrogated.

m_Protocol Integer An integer representation of
the IP protocol used by the
presently-defined zone:

• 1: IPv4
• 2: IPv4 that has been

through network address
translation (NAT)

• 3: IPv6

RivHelperDbTimeToDie Long64 Indicates how long the
requested information is to
live within the Helper Server.

RivHelperRequestGetKey NOT NULL Text A key interface to the
databases of the Helper
Server for Get requests.

RivHelperRequestReplyKey • PRIMARY KEY
• NOT NULL
• UNIQUE

Text A unique key interface to the
databases of the Helper
Server for Reply requests.

ARPHelper.configuration table
The ARPHelper.configuration database table defines the number of threads the helper uses.

The ARPHelper.configuration database is described in the following table.

Table 129. ARPHelper.configuration database table schema

Column Name Constraints Data type Description

m_NumThreads None Integer The number of threads to be used by the
helper.

DNSHelper database
The DNSHelper database is defined in NCHOME/etc/precision/DiscoHelperServerSchema.cfg.

The DNSHelper database table stores information about the requests that the DNS helper makes from the
network, and configuration information for the DNS helper.

Chapter 12. Discovery databases 353

DNSHelper.DNSHelperTable table
The DNSHelper.DNSHelperTable database table stores information about the requests that the ARP
helper makes from the network.

The DNSHelper.DNSHelperTable database table is described in the following table.

Table 130. DNSHelper.DNSHelperTable database table schema

Column name Constraints Data type Description

m_HostName Text The host name for this IP
address.

m_HostIp Text The IP addresses for this
host.

RivHelperDbTimeToDie Long64 How long the requested
information is to live
within the Helper Server.

RivHelperRequestGetKey NOT NULL Text A key for Get requests.

RivHelperRequestOutput Atom The response data.

RivHelperRequestReplyKey • PRIMARY KEY
• NOT NULL
• UNIQUE

Text A unique key for Reply
requests.

DNSHelper.DNSHelperConfig table
The DNSHelper.DNSHelperConfig table holds configuration information for the DNS helper.

The DNSHelper.DNSHelperConfig table is described in the following table.

Table 131. DNSHelper.DNSHelperConfig database table schema

Column name Constraints Data type Description

m_HelperDbTimeout UNIQUE Long64 The helper database timeout,
that is, how long before the
database expires.

m_HelperDebugLevel

optional

Integer Sets the debug level of the
helper, printing to m_Logfile.

m_HelperDoQueryVBs

optional

Object type
varbinds

List of helper inputs that
always query the database
before querying the network.
If the item is found in the
database then the network is
not queried.

354 IBM Tivoli Network Manager IP Edition: Reference

Table 131. DNSHelper.DNSHelperConfig database table schema (continued)

Column name Constraints Data type Description

m_HelperDoNotQueryVBs

optional

Object type
varbinds

List of helper inputs that do
not query the database. This
field overrides the value of
m_HelperDoWeQuery.

m_HelperDoNotStoreVBs

optional

Object type
varbinds

List of helper inputs that
never store data in the Helper
Server databases. This field
overrides
m_HelperDoWeStore.

m_HelperDoStoreVBs

optional

Object type
varbinds

List of helper inputs that
always store data in the
Helper Server database. This
field overrides
m_HelperDoWeStore.

m_HelperDoWeQuery Integer Indicates whether the Helper
Server queries its database
or whether it queries the
network using a helper:

• 0: Do not use cache
• 1: Use cache

m_HelperDoWeStore Integer Indicates whether the Helper
Server stores any replies
from the helpers in its
database:

• 0: Do not store replies in
database

• 1: Store replies in database

m_HelperLogfile

optional

Text The full path and file for the
logfile of the current helper.

m_HelperReqTimeout Long64 The helper request timeout,
that is, how long before each
request expires.

m_HelperStartupTimeout Long64 The default helper start-up
timeout, that is, the
maximum time to wait for a
helper to start up when
requested.

Chapter 12. Discovery databases 355

DNS helper database configuration

The following example insert shows a typical DNS helper configuration.

insert into DNSHelper.DNSHelperConfig
(
 m_HelperDbTimeout,
 m_HelperReqTimeout,
 m_HelperStartupTimeout,
 m_HelperDoWeQuery,
 m_HelperDoWeStore
)
values
(
 259200, 1200, 90, 0, 0
);

DNSHelper.configuration table
The DNSHelper.configuration database table configures the operation of the DNS Helper. This table must
contain only one record

The DNSHelper.configuration table is described in the following table.

Table 132. DNSHelper.configuration database table schema

Column name Constraints Data type Description

m_NumThreads Integer The number of threads to be used by the helper.

m_MethodList List of text An ordered list of the methods for name retrieval.

DNShelper.methods table
The DNShelper.methods database table holds information used by the DNS Helper to access devices.

The DNShelper.methods database table is described in the following table.

Table 133. DNShelper.methods database table schema

Column name Constraints Data type Description

m_FileName Text The filename, if appropriate.

m_FileOrder Integer The order of the files:

• 0: Name first, then IP address
• 1: IP address, then name

m_MethodName • PRIMARY
KEY

• NOT NULL
• UNIQUE

Text The name of the method.

m_MethodType Integer The type of the method:

• 0: System
• 1: DNS
• 2: File

356 IBM Tivoli Network Manager IP Edition: Reference

Table 133. DNShelper.methods database table schema (continued)

Column name Constraints Data type Description

m_NameDomain Text Domain name; for example, abcd.com.

m_NameDomainList Text Contains a list of expected domain suffixes.
If you expect the discovery to return some or
all devices names with domain suffixes
already appended, then you can specify a
list of expected domain suffixes in this
column.

Note: The domain suffix value specified in
m_NameDomain is not appended to any
device names returned by the discovery that
have any of the suffixes listed in
m_NameDomainList.

m_NameServerAddr Text The IP address of the DNS server (specified
as a text string). If no value is
specified, /etc/resolv.conf is read.

m_TimeOut Integer Time out for the request in seconds.

PingHelper database
The PingHelper database is defined in NCHOME/etc/precision/DiscoHelperServerSchema.cfg.

PingHelper.configuration table
The PingHelper.configuration database table configures broadcast and multicast pinging.

Although pinging broadcast and multicast addresses allows devices to be discovered quicker than other
detection methods, it is not advisable to do so under certain network conditions; for instance, when the
network is heavily congested.

The PingHelper.configuration database table must contain only one record.

The schema of the PingHelper.configuration database table is described in the following table.

Table 134. PingHelper.configuration database table schema

Column name Constraints Data type Description

m_Broadcast Integer Flag used to enable or disable
broadcast address pinging:

• (1) Enable
• (0) Disable

m_ICMPSrcPort The ICMP source port.

m_InterPingTime Integer The time interval in milliseconds
between successive ping
attempts of subnet addresses.

m_NumRetries Integer The number of times a device is
to be re-pinged.

Chapter 12. Discovery databases 357

Table 134. PingHelper.configuration database table schema (continued)

Column name Constraints Data type Description

m_NumThreads Integer The number of threads to be used
by the helper.

m_Multicast Integer Flag used to enable or disable
multicast address pinging:

• (1) Enable
• (0) Disable

m_TimeOut Integer The maximum time to wait for a
reply from a pinged address, in
milliseconds. If you are running
the TraceRoute agent you may
need to increase this value,
depending on network conditions.

m_UdpSrcPort Integer The UDP port to be used.

PingHelper.PingHelperConfig table
The PingHelper.PingHelperConfig database table configures the operation of the Ping helper.

The schema of the PingHelper.PingHelperConfig database table is described in the following table.

Table 135. PingHelper.PingHelperConfig database table schema

Column name Constraints Data type Description

m_HelperDbTimeout UNIQUE Long64 The helper database
timeout, that is, how long
before the database
expires.

m_HelperDebugLevel

optional

Integer Sets the debug level of the
helper, printing to the file
specified in
m_HelperLogfile.

m_HelperDoNotQueryVBs

optional

Object type
varbinds

List of helper inputs that do
not query the database.
This field overrides
m_HelperDoWeQuery.

m_HelperDoNotStoreVBs

optional

Object type
varbinds

List of helper inputs that
never store data in the
Helper Server databases.
This field overrides
m_HelperDoWeStore.

m_HelperDoQueryVBs

optional

Object type
varbinds

List of helper inputs that
always query the database
before querying the
network. If the item is found
in the database then the
network is not queried.

358 IBM Tivoli Network Manager IP Edition: Reference

Table 135. PingHelper.PingHelperConfig database table schema (continued)

Column name Constraints Data type Description

m_HelperDoStoreVBs

optional

Object type
varbinds

List of helper inputs that
always store data in the
Helper Server database.
This field overrides
m_HelperDoWeStore.

m_HelperDoWeQuery Integer Indicates whether the
Helper Server queries its
database or whether it
queries the network using a
helper:

• 0: Do not use cache
• 1: Use cache

m_HelperDoWeStore Integer Indicates whether the
Helper Server stores any
replies from the helpers in
its database:

• 0: Do not store replies in
database

• 1: Store replies in
database

m_HelperLogFile

optional

Text The full path and file for the
logfile of the current helper.

m_HelperReqTimeout Long64 The helper request timeout
that is, how long before
each request expires.

m_HelperStartupTimeout Long64 The default helper startup
timeout, that is, the
maximum time to wait for a
helper to start up when
requested to.

PingHelper.PingHelperConfig database table configuration

The following insert provides a typical example configuration of the PingHelper.PingHelperConfig
database table.

insert into PingHelper.PingHelperConfig
(
 m_HelperDbTimeout,
 m_HelperReqTimeout,
 m_HelperStartupTimeout,
 m_HelperDoWeQuery,
 m_HelperDoWeStore
)
values
(
 259200, 1200, 90, 0, 0
);

Chapter 12. Discovery databases 359

PingHelper.PingHelperTable table
PingHelper.PingHelperTable database table configures the operation of the Ping helper.

The schema of the PingHelper.PingHelperTable database table is described in the following table.

Table 136. PingHelper.PingHelperTable database table schema

Column name Constraints Data type Description

m_HostIp Atom IP address to ping.

m_HostMask Text The subnet mask of the
address to ping.

m_HostSubnet Text Subnet of the IP
address to ping.

m_PingRequestType Integer The type of ping
request:

• 1: Individual address
• 2: Subnet

m_PingResponseType Integer Type of reply to the
ping.

m_PingRetries Integer Number of retries for
the ping.

m_PingTimeout Integer Maximum time to wait
for reply.

m_Protocol Integer An integer
representation of the IP
protocol used by the
presently-defined zone:

• 1: IPv4
• 2: IPv4 that has been

through network
address translation
(NAT)

• 3: IPv6

RivHelperDbTimeToDie Long64 How long the requested
information is to live
within the Helper
Server.

RivHelperRequestGetKey NOT NULL Text A key interface to the
databases of the Helper
Server for Get requests.

360 IBM Tivoli Network Manager IP Edition: Reference

Table 136. PingHelper.PingHelperTable database table schema (continued)

Column name Constraints Data type Description

RivHelperRequestReplyKey • PRIMARY KEY
• NOT NULL
• UNIQUE

Text A key interface to the
databases of the Helper
Server for Reply
requests.

RivHelperRequestOutput Atom The response data.

snmpHelper database
The snmpHelper database configures the operation of the SNMP Helper. This database is defined in
NCHOME/etc/precision/DiscoSnmpHelperSchema.cfg.

snmpHelper.configuration table
The snmpHelper.configuration database table configures the operation of the SNMP Helper.

The snmpHelper.configuration database table is described in the following table.

Table 137. snmpHelper.configuration database table schema

Column name Constraints Data
type

Description

m_ExponentialRetries None Integer Number of times to try to reestablish
SNMP communication with a device that
has temporarily stopped responding

m_LogRequests None Boolea
n

Specifies whether the system should log
details about each request serviced by the
SNMP helper. If set to positive, this causes
the SnmpHelperDebug.DOMAIN.Trace
file to be created in the log directory.

m_NumIOThreads None Integer The number of input/output threads that
the engine should use. The default value is
10, and the maximum allowed value is
1000 but it is best practice to set this
value no higher than 100.

m_NumRetries
None Integer The number of attempts to retrieve SNMP

variable(s) from a device.

m_NumThreads None Integer The number of threads to be used by the
helper.

m_ReadStackConfigOnConnect None Boolea
n

Indicates whether to read (or reread) the
contents of the
SnmpStackSecurityInfo.cfg file
when connecting to the Helper server,
ncp_d_helpserv.

m_ResolveHostNames None Boolea
n

Specifies whether the SNMP helper
ncp_dh_snmp should attempt to resolve a
hostname.

m_TimeOut None Integer The maximum time to wait for a reply from
a device, in milliseconds.

Chapter 12. Discovery databases 361

snmpHelper.dependentInstanceFilter database table
The snmpHelper.dependentInstanceFilter database table is used to define interface filters that depend on
other filters.

Schema
The snmpHelper.dependentInstanceFilter database table schema is described in the following table:

Table 138. snmpHelper.dependentInstanceFilter database table schema

Column name Constraints Data type Description

m_InstanceFilter not null
primary key

text The dependent filter.

The syntax of the filter is

MIB_variable_name in
(eval(list_type,'&MIB_table.MIB_entry'))

where MIB_variable_name must exist in
MIB_table, and a filter on MIB_table has been
defined in the snmpHelper.instanceFilter
table.

m_ApplyToFilteredTable text This value is automatically derived from
m_InstanceFilter. You must not configure
inserts into this field.

snmpHelper.instanceFilter database table
The snmpHelper.instanceFilter database table configures SNMP interface filters for the SNMP helper.

Schema
The snmpHelper.instanceFilter database table schema is described in the following table:

Table 139. snmpHelper.instanceFilter database table schema

Column
name

Constrain
ts

Data
type

Description

m_Filter
Name

not null,
primary
key

text The name of the interface filter. The name must be unique.

362 IBM Tivoli Network Manager IP Edition: Reference

Table 139. snmpHelper.instanceFilter database table schema (continued)

Column
name

Constrain
ts

Data
type

Description

m_Device
Filter

not null text The device filter is applied to each discovered device to determine whether or
not to apply the interface filter.

The filter must be in the following form:

mibVariableName expression values
[optional_Boolean_operator expression optional_Boolean_operator ..]

For example, the following are all valid filters:

// Apply the interface filter to only a specific type of device
sysObjectID = '1.3.6.1.4.1.4874.1.1.1.1.3'

// More complex example of the above
sysObjectID = '1.3.6.1.4.1.4874.1.1.1.1.3' OR sysDescr LIKE 'ERX-1440'

// Apply the interface filter only to devices in certain locations
sysLocation in ('location1', 'location2')

//Apply the interface filter to all types of device.
sysObjectID != ''

m_Device
FilterOids

list
type
text

Specifies any OIDs that need to be retrieved in order to allow the evaluation of
the device filter defined in the m_DeviceFilter field. The OIDs are usually
determined programatically from the value of m_DeviceFilter. You do not
normally need to define the OIDs manually.

m_Instan
ce
Filter

text The interface filter to be applied to the filtered tables. The interface filter is only
applied to devices that match the device filter. Only rows from those tables with
interfaces that match this filter are returned.

The filter must be in the following form:

mibVariableName expression values
[optional_Boolean_operator expression optional_Boolean_operator ..]

For example, the following are all valid filters:

// Only interfaces with names like this are returned
ifName like 'Gi0'

// This filter is against 2 distinct tables (ifTable and ifXTable)
with the requirement that these share a common index (ifIndex)
ifName like 'Gi0' or ifDescr like 'FastEthernet'

// Filter out interfaces of these types
ifType not in (1, 53, 166)

Restriction: You can configure inserts into only one of the m_InstanceFilter or
m_InstanceFilterTable fields.

Restriction:

The MIB variable used in the interface filter must be from a table that is keyed
on ifIndex, for example, from ifTable or ifXTable.

Chapter 12. Discovery databases 363

Table 139. snmpHelper.instanceFilter database table schema (continued)

Column
name

Constrain
ts

Data
type

Description

m_Instan
ce
FilterTable

text Defines a table that is not to be queried.

Restriction: You can configure inserts into only one of the m_InstanceFilter or
m_InstanceFilterTable fields.

Restriction: If you define a table that is not to be queried using the
m_InstanceFilterTable field, you must not apply other filters to the same MIB
table for the same device.

m_Instan
ce
Filters

list
type
obje
ct
type
vblis
t

The m_InstanceFilters field contains the full collection of interface filters. The
full interface filters are automatically generated from the contents of the
m_InstanceFilter or m_InstanceFilterTable fields.

Restriction: User-configured inserts into this field are not supported.

snmpHelper.SnmpHelperConfig table
The snmpHelper.SnmpHelperConfig database table configures the operation of the SNMP Helper.

The schema of the snmpHelper.SnmpHelperConfig database table is described in the following table.

Table 140. snmpHelper.SnmpHelperConfig database table schema

Column name Constraints Data type Description

m_HelperDbTimeout UNIQUE Long64 The helper database
timeout, that is, how long
before the database
expires.

m_HelperDebugLevel

optional

Integer Sets the debug level of the
helper, printing to
m_HelperLogfile.

m_HelperDoNotQueryVBs

optional

Object type
varbinds

List of helper inputs that do
not query the database.
This field overrides
m_HelperDoWeQuery.

m_HelperDoNotStoreVBs

optional

Object type
varbinds

List of helper inputs that
never store data in the
Helper Server databases.
This field overrides
m_HelperDoWeStore.

m_HelperDoQueryVBs

optional

Object type
varbinds

List of helper inputs that
always query the database
before querying the
network. If the item is
found in the database then
the network is not queried.

364 IBM Tivoli Network Manager IP Edition: Reference

Table 140. snmpHelper.SnmpHelperConfig database table schema (continued)

Column name Constraints Data type Description

m_HelperDoStoreVBs

optional

Object type
varbinds

List of helper inputs that
always store data in the
Helper Server database.
This field overrides
m_HelperDoWeStore.

m_HelperDoWeQuery Integer Indicates whether the
Helper Server queries its
database or whether it
queries the network using
a helper:

• 0: Do not use cache
• 1: Use cache

m_HelperDoWeStore Integer Indicates whether the
Helper Server stores any
replies from the helpers in
its database:

• 0: Do not store replies in
database

• 1: Store replies in
database

m_HelperLogfile

optional

Text The full path and file for the
logfile of the current
helper.

m_HelperStartupTimeout Long64 The default helper startup
timeout, that is, the
maximum time to wait for a
helper to start up when
requested to.

m_HelperReqTimeout Long64 The helper request
timeout, that is, how long
before each request
expires.

SNMP helper database configuration

The following insert provides an example configuration of the SNMP helper database.

insert into SnmpHelper.SnmpHelperConfig
(
 m_HelperDbTimeout,
 m_HelperReqTimeout,
 m_HelperStartupTimeout,
 m_HelperDoWeQuery,
 m_HelperDoWeStore
)
values
(
 259200, 1200, 90, 0, 0
);

Chapter 12. Discovery databases 365

snmpHelper.SnmpHelperTable table
The snmpHelper.SnmpHelperTable database table configures the operation of the SNMP helper.

The schema of the snmpHelper.SnmpHelperTable database table is described in the following table.

Table 141. snmpHelper.SnmpHelperTable database table schema

Column name Constraints Data type Description

m_CommunitySuffix Text The suffix to the
community string.

m_HostIp NOT NULL Text IP address of the
device to interrogate.

m_OID NOT NULL Atom Object ID for the Get
request.

m_Protocol Integer An integer
representation of the
IP protocol used by the
presently-defined
zone:

• 1: IPv4
• 2: IPv4 that has been

through network
address translation
(NAT)

• 3: IPv6

m_RequestType Integer Type of request:

• 0: Get
• 1: GetNext
• 2: GetBulk

m_SnmpIndex Atom The index of the Get
request (if it is a Get
request).

RivHelperDbTimeToDie Long64 How long the
requested information
is to live within the
Helper Server.

RivHelperRequestGetKey NOT NULL Text A key interface to the
databases of the
Helper Server for Get
requests.

RivHelperRequestOutput Atom The response data.

366 IBM Tivoli Network Manager IP Edition: Reference

Table 141. snmpHelper.SnmpHelperTable database table schema (continued)

Column name Constraints Data type Description

RivHelperRequestReplyKey • PRIMARY
KEY

• NOT NULL
• UNIQUE

Text A key interface to the
databases of the
Helper Server for Reply
requests.

snmpFilter database
The snmpFilter database is automatically populated with information about devices that have SNMP
interface filters applied to them. You can also define dependent SNMP interface filters in this database
table.

Description
The snmpFilter database is defined in the NCHOME/etc/precision/DiscoSnmpHelperSchema.cfg
file.

snmpFilter.instances database table
The snmpFilter.instances database table is used by the SNMP Helper to hold cached data for devices for
which filtered SNMP requests were made. This table is automatically populated. You must not configure
inserts into this table.

Schema
The snmpFilter.instances database table schema is described in the following table:

Table 142. snmpFilter.instances database table schema

Column name Constraints Data type Description

m_HostIP not null text The IP address of the device to which this
filter is applied.

m_FilterName not null text The name of the filter from which the
instance list was generated.

m_InstanceFilterTables not null list type text The list of the tables to which this interface
filter applies.

m_InstanceList list type text The list of instances for this device that
match the filter.

TelnetHelper database
The TelnetHelper database defines the operation of the Telnet helper.

TelnetHelper.configuration database table
The TelnetHelper.configuration table specifies the general rules for receiving information from remote
devices.

The TelnetHelper.configuration table is described in the following table.

Chapter 12. Discovery databases 367

Table 143. TelnetHelper.configuration database table schema

Column name Constraints Data type Description

m_NumThreads Integer The number of threads to be used by the helper.
If you change this value, be sure that your
system is configured to allow at least this
number of concurrent Telnet sessions.

m_TimeOut Integer The maximum time to wait for access to a device
(milliseconds).

m_Retries Integer The number of times to retry the device.

TelnetHelper.deviceConfig database table
The TelnetHelper.deviceConfig table sets device-specific configuration options.

The TelnetHelper.deviceConfig table is described in the following table.

Table 144. TelnetHelper.deviceConfig database table schema

Column name Constraints Data type Description

m_ContinueCmd Text The response to send to the remote device in
order for it to continue the paged output. This
is usually set to "y".

You must take care setting this value, as
some devices require a carriage return after
the command and some do not. For
maximum flexibility, a return is not added by
default. It must be specified explicitly using a
trailing Ctrl-M in the string.

m_ContinueMsg Text The expected prompt from the remote device
between paged output; for example, "Do you
want to continue". Regular expressions
are valid entries.

m_IpOrSubNet Text The IP or fully qualified subnet address of the
device corresponding to a particular
configuration. If this is not specified, the
configuration is used as the default subnet
address.

m_NetMaskBits Integer The number of most significant bits in the
netmask. This number must be specified if
m_IpOrSubNet is specified.

m_PageLength Integer The output page length size. This is set to 0
by default; that is, no paging.

If you set a page length size, you must also
insert a value into the m_PageLengthCmd
column in order to set a page length
command.

368 IBM Tivoli Network Manager IP Edition: Reference

Table 144. TelnetHelper.deviceConfig database table schema (continued)

Column name Constraints Data type Description

m_PageLengthCmd Text The command to issue in order to set the
output page length.

m_Protocol Integer An integer representation of the IP protocol
used by the presently-defined zone:

• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6

m_SysObjectId

optional

Text The sysObjectID MIB variable to match for
this configuration entry. The entry with the
longest OID match will be the entry used. For
example, if you specify a value of
1.3.6.1.4.1.9.1 then all devices with OIDs of
the form 1.3.6.1.4.1.9.1.* will be matched.
Cisco IOS devices have OIDs of the form
1.3.6.1.4.1.9.1.*.

This field is ignored if m_IpOrSubNet is
specified.

m_TransmissionDelay Integer This option allows you to customize the delay
used by ncp_dh_telnet when transmitting
data to a device. This may be useful if data
loss or device issues occur when using the
default transmission delay setting.

TelnetHelper.telnetHelperconfig database table
The TelnetHelper.telnetHelperconfig database table configures the operation of the Telnet Helper.

The TelnetHelper.telnetHelperconfig database table is described in the following table.

Table 145. TelnetHelper.telnetHelperconfig database table schema

Column name Constraints Data type Description

m_HelperDbTimeout UNIQUE Long64 The helper database timeout,
that is, how long before the
database expires.

m_HelperDebugLevel

optional

Integer Sets the debug level of the
helper, printing to
m_HelperLogfile.

m_HelperDoNotQueryVBs

optional

Object type
varbinds

List of helper inputs that do
not query the database. This
field overrides
m_HelperDoWeQuery.

Chapter 12. Discovery databases 369

Table 145. TelnetHelper.telnetHelperconfig database table schema (continued)

Column name Constraints Data type Description

m_HelperDoNotStoreVBs

optional

Object type
varbinds

List of helper inputs that never
store data in the Helper Server
databases. This field overrides
m_HelperDoWeStore.

m_HelperDoQueryVBs

optional

Object type
varbinds

List of helper inputs that
always query the database
before querying the network.
If the item is found in the
database then the network is
not queried.

m_HelperDoStoreVBs

optional

Object type
varbinds

List of helper inputs that
always store data in the
Helper Server database. This
field overrides
m_HelperDoWeStore.

m_HelperDoWeQuery Integer Indicates whether the Helper
Server queries its database or
whether it queries the network
using a helper:

• 0: Do not use cache
• 1: Use cache

m_HelperDoWeStore Integer Indicates whether the Helper
Server stores any replies from
the helpers in its database:

• 0: Do not store replies in
database

• 1: Store replies in database

m_HelperLogfile

optional

Text The full path and file for the
logfile of the current helper.

m_HelperReqTimeout Long64 The helper request timeout,
that is, how long before each
request expires.

m_HelperStartupTimeout Long64 The default helper start-up
timeout, that is, the maximum
time to wait for a helper to
start up when requested.

Telnet helper database configuration

The following example insert gives a typical configuration of the Telnet helper database.

insert into TelnetHelper.TelnetHelperConfig
(
 m_HelperDbTimeout,

370 IBM Tivoli Network Manager IP Edition: Reference

 m_HelperReqTimeout,
 m_HelperStartupTimeout,
 m_HelperDoWeQuery,
 m_HelperDoWeStore
)
values
(
 259200, 1200, 90, 0, 0
);

TelnetHelper.telnetHelperTable database table
The TelnetHelper.telnetHelperTable database table configures the operation of the Telnet helper.

The TelnetHelper.telnetHelperTable table is described in the following table.

Table 146. TelnetHelper.telnetHelperTable database table schema

Column name Constraints Data type Description

m_Protocol Integer An integer representation of
the IP protocol used by the
presently-defined zone:

• 1: IPv4
• 2: IPv4 that has been

through network address
translation (NAT)

• 3: IPv6

RivHelperRequestReplyKey • PRIMARY
KEY

• NOT NULL
• UNIQUE

Text A unique request reply key
interface to the databases of
the Helper Server.

RivHelperRequestGetKey NOT NULL Text A request get key interface
to the databases of the
Helper Server.

RivHelperDbTimeToDie Long64 How long the requested
information is to live within
the Helper Server.

m_HostIp NOT NULL Text IP address of the device to
interrogate.

m_TelnetCommand Text The Telnet command.

RivHelperRequestOutput Atom The response data.

Chapter 12. Discovery databases 371

XmlRpcHelper database
The XmlRpcHelper helper database is defined in NCHOME/etc/precision/
DiscoHelperServerSchema.cfg.

XmlRpcHelper.configuration table
The XmlRpcHelper.configuration database table configures the threads and timeout for the XMLRPC
helper.

The XmlRpcHelper.configuration database table must contain only one record. The
XmlRpcHelper.configuration database table is described in the following table.

Table 147. XmlRpcHelper.configuration database table schema

Column name Constraints Data type Description

m_NumThreads
None Integer The number of threads to be used by the

helper.

m_TimeOut
None Integer The maximum time to wait for a reply from

an EMS collector, in milliseconds. If you
are running the TraceRoute agent you may
need to increase this value, depending on
network conditions.

XmlRpcHelper.XmlRpcHelperConfig table
The XmlRpcHelper.XmlRpcHelperConfig helper database table configures the operation of the XMLRPC
Helper.

The schema of the XmlRpcHelper.XmlRpcHelperConfig database table is described in the following table.

Table 148. XmlRpcHelper.XmlRpcHelperConfig database table schema

Column name Constraints Data type Description

m_HelperDbTimeout UNIQUE Long64 The helper database timeout, that is, how
long before the database expires.

m_HelperDebugLevel

optional

Integer Sets the debug level of the helper,
printing to the file specified in
m_HelperLogfile.

m_HelperDoNotQueryVBs

optional

Object type
varbinds

List of helper inputs that do not query the
database. This field overrides
m_HelperDoWeQuery.

m_HelperDoNotStoreVBs

optional

Object type
varbinds

List of helper inputs that never store data
in the Helper Server databases. This field
overrides m_HelperDoWeStore.

m_HelperDoQueryVBs

optional

Object type
varbinds

List of helper inputs that always query the
database before querying the network. If
the item is found in the database then the
network is not queried.

m_HelperDoStoreVBs

optional

Object type
varbinds

List of helper inputs that always store
data in the Helper Server database. This
field overrides m_HelperDoWeStore.

372 IBM Tivoli Network Manager IP Edition: Reference

Table 148. XmlRpcHelper.XmlRpcHelperConfig database table schema (continued)

Column name Constraints Data type Description

m_HelperDoWeQuery
Integer Indicates whether the Helper Server

queries its database or whether it queries
the network using a helper:

• 0: Do not use cache
• 1: Use cache

Because each data item is requested
from the Collector only once, caching is
not usually enabled.

m_HelperDoWeStore
Integer Indicates whether the Helper Server

stores any replies from the helpers in its
database:

• 0: Do not store replies in database
• 1: Store replies in database

Because each data item is requested
from the Collector only once, caching is
not usually enabled.

m_HelperLogFile

optional

Text The full path and file for the logfile of the
current helper.

m_HelperReqTimeout Long64 The helper request timeout that is, how
long before each request expires.

m_HelperStartupTimeout Long64 The default helper startup timeout, that
is, the maximum time to wait for a helper
to start up when requested to.

XmlRpcHelper.config database configuration

The following insert provides a typical example configuration of the XmlRpcHelper database. This insert
specifies the following settings:

• Helper database expires after 3 days.
• Each helper database request timeout expires after 20 minutes.
• Maximum time to wait for a helper to start up when requested is 90 seconds.
• Helper Server does not query its database.
• Helper Server does not store any replies from the helpers in its database.

insert into XmlRpcHelper.XmlRpcHelperConfig
(
 m_HelperDbTimeout,
 m_HelperReqTimeout,
 m_HelperStartupTimeout,
 m_HelperDoWeQuery,
 m_HelperDoWeStore
)
values
(
 259200,
 1200,
 90,
 0,

Chapter 12. Discovery databases 373

0
);

XmlRpcHelper.XmlRpcHelperTable table
The XmlRpcHelper.XmlRpcHelperTable configures the operation of the XMLRPC helper.

The schema of the XmlRpcHelper.XmlRpcHelperTable database table is described in the following table.

Table 149. XmlRpcHelper.XmlRpcHelperTable database table schema

Column name Constraints Data type Description

m_DataSourceId
Integer Data source of interest.

m_Host
NOT NULL Text The IP address of the physical

device.

m_MethodCalled
Text Method called.

m_MethodSignature Integer Method signature.

m_Port Atom Port of physical device.

RivHelperDbTimeToDie Text How long the requested information
is to live within the Helper Server.

RivHelperRequestGetKey NOT NULL Text A key interface to the databases of
the Helper Server for Get requests.

RivHelperRequestOutput Atom Response data.

RivHelperRequestReplyKey • PRIMARY
KEY

• NOT NULL
• UNIQUE

Text A key interface to the databases of
the Helper Server for Reply requests.

Tracking discovery databases
During the discovery process, the discovery engine, ncp_disco, records every element discovered in the
network, whether it has been processed or not. The instrumentation and translations databases are used
for this purpose. These databases can be interrogated at any time to view the number of device types and
categories that have been discovered.

The translations, instrumentation, and workingEntities databases record the known network entities and
technologies, and can be used to track the progress of the discovery.

translations database
The translations database is defined in the $NCHOME/etc/precision/DiscoSchema.cfg file. It has
several fully qualified database table names.

The fully qualified database table names for the translations database are as follows:

• translations.ipToBaseName
• translations.vlans
• translations.NAT

374 IBM Tivoli Network Manager IP Edition: Reference

• translations.NATtemp
• translations.NATAddressSpaceIds
• specialManagementIPs

translations.ipToBaseName table
The ipToBaseName table is a registry of discovered devices and the IP addresses associated with those
devices.

When a device has multiple interfaces, and therefore multiple IP addresses, the Associated Address
agent downloads all the associated addresses, stores them in the ipToBaseName table and allows the
appropriate discovery agents to discover the device. Any subsequent attempt to discover the device by
means of another of its IP addresses is halted when the Associated Address agent checks the
ipToBaseName table, that is, before the device details are passed to the appropriate discovery agent.

Table 150. translations.ipToBaseName database table schema

Column name Constraints Data type Description

m_BaseName NOT NULL Text Base name of the discovered entity.

m_BaseAddress NOT NULL Text Base address of the discovered entity.

m_WorkAddress NOT NULL Text The address that was used for data retrieval.

m_IpAddress NOT NULL Text IP address of the entity.

m_AddressSpace Text The name of the NAT address space to which
the device belongs. This value is set in the
translations.NATAddressSpaceIds table. If the
discovery is not using NAT, or if the device is in
the public domain, this value is NULL.

m_InScope Boolean
integer

Indicates whether the value of the field
m_IpAddress is in scope.

m_Protocol NOT NULL Integer Protocol for this address. This field can take
the following values:

• 1: IPv4
• 3: IPv6

m_IsManagementIP Boolean
integer

Indicates whether this is a management IP
address.

m_IsOutOfBand Boolean
integer

Indicates whether this is an out of band
address.

m_Name Text Name of interface with IP if known.

Chapter 12. Discovery databases 375

translations.vlans table
The vlans table holds a list of devices that are part of Virtual Local Area Networks (VLANs). Each record in
the vlans table maps the device to the VLAN to which it belongs.

Table 151. translations.vlans database table schema

Column name Constraints Data type Description

m_Name • PRIMARY KEY
• NOT NULL

Text The name of the device associated with
this entry.

m_VlanID • PRIMARY KEY
• NOT NULL

Text The VLAN identifier on the device.

m_Subnet Text The subnet with which the VLAN
appears to be associated.

m_NetMask Text The subnet mask.

m_AddressSpace Text The name of the NAT address space to
which the device belongs. This value is
set in the
translations.NATAddressSpaceIds
table. If the discovery is not using NAT,
or if the device is in the public domain,
this value is NULL.

translations.NAT table
The NAT table is used to hold static NAT mappings. The mapped devices are discovered even if they are
outside the scope of the discovery.

Table 152. translations.NAT database table schema

Column name Constraints Data
type

Description

m_OutsideGlobalAddr • PRIMARY KEY
• NOT NULL

Text The public address.

m_InsideLocalAddr NOT NULL Text The private address.

m_InsideGlobalAddr Text This column is currently not used.

m_OutsideLocalAddr Text This column is currently not used.

m_AddressSpace Text The name of the NAT address space to
which the device belongs. This value is set
in the translations.NATAddressSpaceIds
table. If the discovery is not using NAT, or if
the device is in the public domain, this
value is NULL.

376 IBM Tivoli Network Manager IP Edition: Reference

translations.NATtemp
The NATtemp table is used to hold NAT mappings from a particular NAT gateway. This enables the
discovery process to compare the old and new NAT mappings and initiate a partial or full rediscovery if
necessary.

Table 153. translations.NATtemp database table schema

Column name Constraints Data type Description

m_OutsideAddr • PRIMARY KEY
• NOT NULL

Text The public address of the device.

m_InsideAddr NOT NULL Text The private address of the device.

m_AddressSpace Text The name of the NAT address space to which
the device belongs. This value is set in the
translations.NATAddressSpaceIds table. If
the discovery is not using NAT, or if the
device is in the public domain, this value is
NULL.

translations.NATAddressSpaceIds table
The NATAddressSpaceIds table is used to identify the IP addresses of NAT gateways and specify an
address-space identifier for each one.

Table 154. translations.NATAddressSpaceIds database table schema

Column name Constraints Data type Description

m_NATGatewayIP • PRIMARY KEY
• NOT NULL

Text The IP address of the gateway.

m_AddressSpaceId Text The address space identifier to be used for
all devices in the NAT domain belonging to
the gateway whose IP address is specified in
m_NATGatewayIP.

specialManagementIPs table
After the discovery processing phase, this table contains an entry for each IP address that was in scope,
based on the entries in the scope.special table.

Table 155. specialManagementIPs table

Column Constraints Data type Description

m_IpAddress Not null Text The IP address of the
entity.

m_WorkAddress Not null Text The address that was
used for data retrieval

m_AdminInterfaceIP Int type Boolean Indicates whether the
address is an interface,
as defined in the
scope.special table

Chapter 12. Discovery databases 377

Table 155. specialManagementIPs table (continued)

Column Constraints Data type Description

m_IsManagementIP Int type Boolean Indicates whether the
address is a
management address,
as defined in the
scope.special table

m_ExtraInfo Object type VB list The extra information
that enriches the target
entity, as defined in the
scope.special table.

m_AddressSpace Text The address space for
this IP as defined in the
ipToBaseName table.

m_Identifier Text The identifier, as defined
in the scope.special
table.

m_Priority Int The priority, as defined
in the scope.special
table.

m_NonPingable Int Indicates whether the
address is selected even
if it cannot be pinged, as
defined in the
scope.special table

m_UsedForChassis Int If 1then this IP address
was assigned to be used
as the access address
for a chassis entity.

instrumentation database schema
The instrumentation database is defined in $NCHOME/etc/precision/DiscoSchema.cfg. It lists discovered
devices grouped by technology. You can do OQL queries to retrieve the names of all discovered subnets,
VLANs, Frame Relay devices, and so on.

The fully qualified database table names for the instrumentation database are:

• instrumentation.ipAddresses
• instrumentation.name
• instrumentation.subNet
• instrumentation.vlan
• instrumentation.frameRelay
• instrumentation.ciscoFrameRelay
• instrumentation.hsrp
• instrumentation.pnniPeerGroup
• instrumentation.fddi

378 IBM Tivoli Network Manager IP Edition: Reference

instrumentation.ipAddresses table
The ipAddresses table contains a record of the unique IP addresses discovered in the network.

Table 156. instrumentation.ipAddresses database table schema

Column name Constraints Data type Description

m_UniqueAddress • PRIMARY KEY
• NOT NULL
• UNIQUE

Text The IP address of a discovered network
entity.

instrumentation.name table
The name table contains a record of the unique name of every discovered device.

Table 157. instrumentation.name database table schema

Column name Constraints Data type Description

m_Name • PRIMARY KEY
• NOT NULL
• UNIQUE

Text The name of a discovered network entity.

instrumentation.subNet table
The subNet table contains a record of every discovered subnet address and mask.

Table 158. instrumentation.subNet database table schema

Column name Constraints Data type Description

m_SubNet • PRIMARY KEY
• NOT NULL
• UNIQUE

Text The subnet address of a discovered subnet.

m_NetMask • NOT NULL
• UNIQUE

Text The subnet mask of a discovered subnet.

instrumentation.vlan table
The vlan table contains a record of every discovered VLAN.

Table 159. instrumentation.vlan database table schema

Column name Constraints Data type Description

m_Vlan UNIQUE Integer The ID of the discovered VLAN.

Chapter 12. Discovery databases 379

instrumentation.frameRelay table
The frameRelay table contains a record of every discovered Frame Relay device.

Table 160. instrumentation.frameRelay database table schema

Column name Constraints Data type Description

m_IfDlci • PRIMARY KEY
• NOT NULL
• UNIQUE

Integer The Frame Relay device Data Link
Connection Identifier.

m_IfIndex • PRIMARY KEY
• NOT NULL

Integer The unique value for each device interface.

instrumentation.ciscoFrameRelay table
The ciscoFrameRelay table contains a record of every discovered Cisco Frame Relay device.

Table 161. instrumentation.ciscoFrameRelay database table schema

Column name Constraints Data type Description

m_UniqueKey • NOT NULL
• UNIQUE

Text A combination of the IP Address, the
FRIfIndex, and the FRDlci.

m_FRIfIndex • PRIMARY KEY
• NOT NULL

Integer The unique value for each device interface.

m_FRDlci • PRIMARY KEY
• NOT NULL
• UNIQUE

Integer The Frame Relay device Data Link
Connection Identifier.

instrumentation.hsrp table
The hsrp table contains a record of every discovered Hot Standby Router Protocol (HSRP) device.

Table 162. instrumentation.hsrp database table schema

Column name Constraints Data type Description

m_GroupAddress • PRIMARY KEY
• NOT NULL
• UNIQUE

Text The group address of the
device.

m_PrimaryAddress Text The primary address of the
device.

m_StandbyAddress Text The standby address of the
device.

380 IBM Tivoli Network Manager IP Edition: Reference

instrumentation.pnniPeerGroup table
The pnniPeerGroup table contains the lowest level Peer Group Identifiers of PNNI devices that have been
discovered. Logical PNNI Peer Groups IDs are not stored.

Table 163. instrumentation.pnniPeerGroup database table schema

Column name Constraints Data type Description

m_PeerGroupId • PRIMARY KEY
• NOT NULL
• UNIQUE

Text The lowest level PNNI peer group
identifier.

instrumentation.fddi table
The fddi table contains the Fibre Distributed Data Interface (FDDI) nodes that have been discovered.

Table 164. instrumentation.fddi database table schema

Column name Constraints Data type Description

m_UniqueAddress • PRIMARY KEY
• NOT NULL

Text The unique address of the node.

m_StationManagmentTask • PRIMARY KEY
• NOT NULL

Integer The station management task for
that node.

workingEntities database
The workingEntities database is defined in $NCHOME/etc/precision/DiscoSchema.cfg. Its fully qualified
database table names are: workingEntities.finalEntity; workingEntities.containment.

The workingEntities database provides a central repository for information about discovered entities and
the containment details associated with each of these entities. However, this database is populated only
at the end of the discovery process.

workingEntities.finalEntity table
The finalEntity table is a central repository for information about discovered entities.

Table 165. workingEntities.finalEntity database table schema

Column name Constraints Data
type

Description

m_AddressSpace
Text The name of the NAT address space to

which the device belongs. This value is set
in the translations.NATAddressSpaceIds
table. If the discovery is not using NAT, or if
the device is in the public domain, this
value is NULL.

m_BaseName
Text The name of the Base Entity for this device.

m_Creator NOT NULL Text Name of agent (or finder) that discovered
the entity.

Chapter 12. Discovery databases 381

Table 165. workingEntities.finalEntity database table schema (continued)

Column name Constraints Data
type

Description

m_Description
Text Description of the device, taken from the

sysDescr MIB variable for the entity.

m_EntityType Externally defined
entityType data
type

Integer Element type description of the discovered
entity:

• 0: Unknown type
• 1: Base entity
• 2: Local neighbor
• 3: Remote neighbor

m_ExtraInfo Externally defined
vblist data type

Object Extra information requested by the agent.

m_HaveAccess Externally defined
Boolean data type

Boolea
n
integer

Flag indicating whether SNMP access to the
device is available:

• 1: SNMP access is available
• 0: No SNMP Access

m_IsActive Externally defined
Boolean data type

Boolea
n
Integer

Indicates whether the entity is active:

• (2) Indicates that the entity is discovered
but is not in scope. Entities that are not in
scope are not monitored by Network
Manager.

• (1) Entity is active.
• (0) Entity is inactive.

m_LocalNbr Externally defined
vblist data type

Object Information about the local neighbor.

m_Name • PRIMARY KEY
• NOT NULL
• UNIQUE

Text Unique name of the discovered entity.

m_ObjectId Text Device class (a textual representation of the
ASN.1 address).

m_UniqueAddress Text IP address of the network entity.

workingEntities.containment table
The containment table is a central repository for information about containment information for
discovered entities. It shows the containment relationships between all entities in the finalEntity table.

As an example of how the containment table works, assume the finalEntity table includes the following
distinct entities:

• A device with IP address 1.2.3.4
• An interface on this device, 1.2.3.4[0[1]]

382 IBM Tivoli Network Manager IP Edition: Reference

The finalEntity table provides no containment information for these two entities. In other words, it does
not indicate that the interface 1.2.3.4[0[1]] is physically contained within the device 1.2.3.4. This
containment information is held within the containment table, as follows:

m_Container='1.2.3.4'
m_Part='1.2.3.4[0[1]]'
m_IsPhysical=1
m_LinkType=1

Note that m_Container and m_Part are each unique names of entities on the network, each with a unique
m_Name in the finalEntity table.

Table 166. workingEntities.containment database table schema

Column name Constraints Data type Description

m_Container • PRIMARY KEY
• NOT NULL

Text The name of an object which contains
something. This object refers to an entity on
the network and corresponds to an entity
with its own entry and unique m_Name in
the workingEntities.finalEntity table.

m_Part • PRIMARY KEY
• NOT NULL

Text The name of the object which is contained.
This object refers to an entity on the network
and corresponds to an entity with its own
entry and unique m_Name in the
workingEntities.finalEntity table.

m_IsPhysical Boolean
integer

Flag indicating whether the containment is
physical or logical:

• 1: Physical Containment
• 0: Logical Containment

m_LinkType Integer Value indicating mode of data transfer
between m_Container and m_Part. The
following values are possible:

• 0: No data is transmitted.
• 1: Data is transmitted both ways.
• 2: Data travels from m_Container to

m_Part.
• 3: Data travels from m_Part to

m_Container

workingEntities.interfaceMapping
The interfaceMapping table enables the stitching to quickly identify interfaces.

The following table lists the columns in the interfaceMapping table.

Note: Not all the fields in this table are populated; however, the use of this table provides a fast way of
looking up data.

Chapter 12. Discovery databases 383

Table 167. workingEntities.interfaceMapping database table schema

Column name Constraints Data type Description

m_Name not null Text Unique name of an interface on the network.

m_IfIndex Integer SNMP ifIndex.

m_InterfaceId Text Interface identifier.

m_EntPhysIndex Integer Entity MIB physical Index if present.

 m_IfDescr Text Interface RFC.ifDescr.

m_IfName Text Interface RFC ifName.

m_IfAlias Text Interface RFC ifAlias field.

m_IfType Integer Interface RFC ifType.

m_PhysAddress Text MAC address for this entity if present.

m_BaseName Not null Text Name of the "Base Entity" for this device.

m_AddressSpace Text Name of the address space this device is on.
For public devices the field is null.

dbModel database
The dbModel database maps custom discovery data from discovery agents to NCIM tables.

The dbModel database is used for mapping data that hs been retrieved by discovery agents to the
appropriate tables in the NCIM topology database. It is defined in the NCHOME/etc/precision/
ModelNcimDB.cfg configuration file.

dbModel.access table
The dbModel.access table configures database access.

The following table shows the schema for the dbModel.access database table.

Table 168. dbModel.access database table schema

Column name Constraints Data type Description

EnumGroupFilter NOT NULL Text Lists the enumerations groups that contain
enumerations that can be used in the entity
maps defined in the dbModel.entityMap table.
The enumerations are defined in the
enumerations table in the NCIM topology
database.

384 IBM Tivoli Network Manager IP Edition: Reference

Table 168. dbModel.access database table schema (continued)

Column name Constraints Data type Description

TransactionLength NOT NULL Integer The number of SQL statements to execute within
a single transaction during topology upload
before committing.

WebTopDataSource NOT NULL Text The name of the Webtop Datasource to use. This
value can be different from the ObjectServer
name.

DomainHost Text The hostname that Topoviz connects to. This is
set in the entry for ncp_config in the
ServiceData.cfg configuration file. This field
should be left blank unless you need to
overwrite this value.

DomainPort Integer The port that Topoviz connects to. This is set in
the entry for ncp_config in the
ServiceData.cfg configuration file. This field
should be left blank unless you need to
overwrite this value.

Example: Using an enumeration group filter and entity map

In the workingEntities.finalEntity table, the OSPF interface type is stored in the m_OspfIfState
enumerated list, which is contained in the m_ExtraInfo field. The value of the m_OspfIfState field is a
single integer, for example, 3. m_OspfIfState corresponds to ospfIfState in the NCIM topology
database. The enumerations for ospfIfState are defined for the enumGroup ospfIfType in the
enumerations table in the NCIM database, as shown in the following example output:

> select * from enumerations where enumGroup = 'ospfIfType';
> go
+------------+---------+-------------------+-----------------+
| ENUMGROUP | ENUMKEY | ENUMVALUE | ENUMDESCRIPTION |
+------------+---------+-------------------+-----------------+
| ospfIfType | 1 | broadcast | |
| ospfIfType | 2 | nbma | |
| ospfIfType | 3 | pointToPoint | |
| ospfIfType | 5 | pointToMultipoint | |
+------------+---------+-------------------+-----------------+

The following example insert includes ospfIfType (shown here in bold type) in the enumerations to be
downloaded:

insert into dbModel.access
(
 EnumGroupFilter,
 TransactionLength,
 WebTopDataSource
)
values
(
 "enumGroup in ('ASN' , 'sysServices', 'ifAdminStatus', 'ifOperStatus',
 'sysServices', 'ifType', 'ifOperStatusToOperationalStatus',
 'entPhysicalClass', 'cefcFRUPowerAdminStatus', 'cefcFRUPowerOperStatus',
 'TruthValue','TruthValueString', 'entSensorType', 'entSensorScale',
 'entSensorStatus', 'cefcModuleAdminStatus', 'cefcModuleOperStatus',
 'ipForwarding', 'cefcPowerRedundancyMode', 'EntityType', 'ospfIfState',
 'ospfIfType', 'dot3StatsDuplexStatus', 'accessProtocol', 'cdmDuplex',
 'OperationalStatusEnum')",
 500,
 "NCOMS"
);

Chapter 12. Discovery databases 385

The following example insert into the dbModel.entityMap database shows m_ospfIfType (displayed in
bold type) from the workingEntities.finalEntity table being mapped to the ospfIfType column in the
ospfEndPoint table in the NCIM topology database.

insert into dbModel.entityMap
(
 EntityFilter,
 TableName,
 FieldMap,
 StitcherDefined
)
values
(
 "m_ObjectId = 'OSPF_PROTOCOL_ENDPOINT'",
 'ospfEndPoint',
 {
 entityId = "eval(int, '&m_EntityId')",
 areaId = "eval(text, '&m_ExtraInfo->m_AreaId')",
 ospfIfAdminStat = "eval(int, '&m_ExtraInfo->m_OspfIfAdminStat')",
 ospfIfState = "eval(text, 'LOOKUP(&m_ExtraInfo->m_OspfIfState,
&&ospfIfState)')",
 ospfIfType = "eval(text, 'LOOKUP(&m_ExtraInfo->m_OspfIfType,
&&ospfIfType)')",
 defaultCost = "eval(int, '&m_ExtraInfo->m_Cost')"
 },
 1
);

Because the enumeration for ospfIfType was downloaded, the integer value of ospfIfType from the
workingEntities.finalEntity table is mapped to a meaningful string in the record in the NCIM topology
database. For example, instead of 3, the value for the interface type is stored as pointToPoint.

dbModel.entityDetails table
The dbModel.entityDetails table defines extra information to be added to the EntityDetails table in the
NCIM topology database.

The following table shows the schema for the dbModel.entityDetails database table.

Table 169. dbModel.entityDetails database table schema

Column name Constraints Data type Description

EntityType Primary Key Integer Any entities of this type will have the
entityDetails field in NCIM enriched with the
fields from EntityDetails. A single insert is
allowed per entity type.

EntityDetails NOT NULL Object type
vblist

A list of key-value pairs that, if they are present,
are inserted into the EntityDetails table in the
NCIM topology database. Use this field to set
multiple values for the same entity type.

dbModel.entityMap table
The dbModel.entityMap table defines how values are mapped from the discovery
workingEntities.finalEntity table to dNCIM and NCIM.

The NCHOME/etc/precision/ModelNcimDB.cfg configuration file contains example inserts showing
how to add data for new and existing entities.

The following table shows the schema for the dbModel.entityMap database table.

386 IBM Tivoli Network Manager IP Edition: Reference

Table 170. dbModel.entityMap database table schema

Column name Constraints Data type Description

EntityFilter NOT NULL Text The filter to apply to the contents of the
workingEntities.finalEntity database table. Any
entity matching the filter has the entityMap
applied to it.

TableName NOT NULL Text The name of table to be populated in dNCIM or
NCIM.

DisplayLabel Text Evaluated in the same way as FieldMap.
Populates the entityData.displayLabel field for
different types of entity.

FieldMap NOT NULL Object of type
vblist

Maps the fields of the table defined by the
TableName value to the evaluation against the
data from the workingEntities.finalEntity
database table.

Connection Object of type
vblist

This field is not used.

Relationships Object of type
vblist

List of relationships that this entity has with
other entities. For example, if it connects or
contains other entities.

Iterators Object of type
vblist

Used to iterate over lists in the OQL record.

ImplicitEntities Object of type
vblist

Defines any new entities to be created in NCIM
that are not explicitly represented in ncp_model.

StitcherDefined Boolean
integer

If this is 1, then the mapping is done by the
stitchers and not by this table. By default, this
value is 0.

Working topology databases
The discovery engine, ncp_disco, uses a series of databases to perform the data processing stages of the
discovery cycle. Stitchers operate on these databases to knit together a network topology and create the
containment model.

The stitchers produce the various network topologies, such as layer 2 and layer 3 topologies, by
amalgamating the information in the discovery agents returns tables into a single cumulative topology
within the fullTopology database.

fullTopology database schema
The fullTopology database is defined in $NCHOME/etc/precision/DiscoSchema.cfg. Its fully qualified
database table name is fullTopology.entityByNeighbor.

The fullTopology database holds the generated topology. On completion of the data collection phase of
the discovery, the stitchers merge the information that has been retrieved by the discovery agents to form
a single topology, which at this stage is in a name-to-name format.

Chapter 12. Discovery databases 387

fullTopology.entityByNeighbor table
The entityByNeighbor table contains information about connectivity between discovered devices.

Table 171. fullTopology.entityByNeighbor database table schema

Column name Constraints Data type Description

m_Name • PRIMARY KEY
• NOT NULL

Text Unique name of an entity on the network.

m_NbrName • PRIMARY KEY
• NOT NULL

Text The name of the device that is connected to
the unique network entity.

m_NbrType Externally
defined
connectionType
data type

Integer Integer representation of the type of
connection between the network entity and
its neighbor:

• 2: Main-to-Local
• 3: Local-to-Remote

dNCIM schema
The dNCIM database holds the containment model that is derived from the workingEntities.finalEntity,
workingEntities.containment and layer tables, mainly fullTopology.entityByNeighbor. The model is built by
the stitchers located in the dNCIM subdirectory, $NCHOME/precision/disco/stitchers/DNCIM. This is the
version of the topology that is sent to the ncp_model component

The dNCIM database contains the same tables as the NCIM topology database. These NCIM tables hold
topology information about the network In addition, dNCIM contains extra tables that store processing
data as the topology is being built.
Related concepts
Data schema
In the NCIM database, Network Manager topology data falls into different categories.
Data dictionary
The NCIM topology database schema is made up of a set of relational database tables that represent the
topology model.

rediscoveryStore database
The rediscoveryStore database is used for comparison purposes in rediscovery mode. It is defined in
$NCHOME/etc/precision/ DiscoSchema.cfg. Its fully qualified database table names are:
rediscoveryStore.dataLibrary; rediscoveryStore.rediscoveredEntities

The rediscoveryStore database holds information from previous discovery cycles that can be used for
comparison purposes during a full or partial rediscovery.

388 IBM Tivoli Network Manager IP Edition: Reference

rediscoveryStore.dataLibrary table
The dataLibrary table is used as a reference point during rediscovery mode to compare the previous and
present states.

Table 172. rediscoveryStore.dataLibrary database table schema

Column name Constraints Data type Description

m_Name Text Unique name of an entity on the
network.

m_UniqueAddress Text The IP address of a discovered network
entity.

m_CompareDb NOT NULL Text The entity that is used to compare this
network entity.

rediscoveryStore.rediscoveredEntities table
The rediscoveredEntites table stores entities found during a rediscovery.

Table 173. rediscoveryStore.rediscoveredEntities database table schema

Column name Constraints Datatype Description

m_Name Text Unique name of an entity on the
network.

m_UniqueAddress Text The IP address of a discovered network
entity.

m_PhysAddr Text The physical address of the entity.

m_OldBaseName The base name of the entity prior to
rediscovery

m_NewBaseName The base name of the entity after
rediscovery.

Topology manager databases
On completion of a discovery, ncp_model receives topology updates from dNCIM, and based on these
updates, generates the necessary inserts to update the NCIM database. The Topology Manager also
broadcasts these changes to other processes in Network Manager.

ncimCache database
This database stores topology updates from DNCIM.

The ncimCache database is created by ncp_model. The ncp_model process sends topology updates on
the message bus to all subscribers in the format of this database. The ncp_g_event and ncp_store
processes subscribe to topology updates and keep a copy of the ncimCache database.

The Event Gateway stitchers use data from the ncimCache database.

You can query the ncimCache database tables on the service model.

Chapter 12. Discovery databases 389

Related reference
NCIM cache files
Topology updates are held in a set of files called the NCIM cache files.

ncimCache.collects table
The ncimCache.collects table lists all the entities participating in a given collection.

The following table shows the schema for the ncimCache.collects database table.

Table 174. ncimCache.collects database table schema

Column name Constraints Data type Description

ENTITYID NOT NULL Integer The identifier of an entity. Corresponds to
collectingEntityID in the collects table in the
NCIM database.

ENTITYNAME NOT NULL String The name of the collecting entity.

MSGTYPE String The name of the table within the ncimCache
database.

collects NOT NULL List of name/
value pairs

A list of name/value pairs for the entity.

• ENTITYNAME corresponds to
collectedEntityID in the collects table in the
NCIM database.

• SEQUENCE corresponds to sequence in the
collects table in the NCIM database.

Format of the data in the ncimCache.collects database table

The following example shows the format of the data in the ncimCache.collects database table, as shown
either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.collects.DOMAIN file.

{
 ENTITYID=31051;
 ENTITYNAME='SUBNET_OBJECT / 192.168.232.24 / 30 /';
 MSGTYPE='collects';
 collects=[
 {
 ENTITYNAME='some-device.1[0 [33]]';
 SEQUENCE=0;
 },
 {
 ENTITYNAME='some-device.2[0 [25]]';
 SEQUENCE=0;
 }
];
}

Related reference
collects
The collects table stores data on collections of entities, such as subnets and MPLS VPNs. This table
belongs to the category collections.

ncimCache.connectActions table
The ncimCache.connectActions table lists all changes made manually to connections in the topology.

The following table shows the schema for the ncimCache.connectActions database table.

390 IBM Tivoli Network Manager IP Edition: Reference

Table 175. ncimCache.connectActions database table schema

Column name Constraints Data type Description

ENTITYID NOT NULL Integer The identifier of an entity. Corresponds to the
aEndEntityId in the connectActions table in
the NCIM database.

ENTITYNAME NOT NULL String The name of the entity.

MANUAL Boolean If the connection was added manually to the
topology, this value is present and set to 1.

MSGTYPE String The name of the table within the ncimCache
database.

connectActions NOT NULL List of name/
value pairs

A list of name/value pairs for the entity. All
names correspond to the column names in the
connectActions table in the NCIM database.

Format of the data in the ncimCache.connectActions database table

The following example shows the format of the data in the ncimCache.connectActions database table, as
shown either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.connectActions.DOMAIN file.

{
 ENTITYID=60857;
 ENTITYNAME='MyManualDevice';
 MANUAL=1;
 MSGTYPE='connectActions';
 connectActions=[
 {
 ACTION='add';
 AENDENTITYNAME='MyManualDevice';
 CHANGETIME='2013-07-08 11:50:58';
 CONNECTACTIONSID=61;
 DESCRIPTION='';
 LOCATION='192.168.78.108';
 MANUAL=1;
 TOPOENTITYNAME='Layer1Topology';
 UNIDIRECTIONAL=0;
 USERNAME='defaultWIMFileBasedRealm/itnmadmin';
 ZENDENTITYNAME='bungle';
 }
];
}

Related reference
connectActions
The connectActions table records all manual connection additions and all connection removals, including
removal of connections that were discovered rather than manually added.

ncimCache. connectstable
The ncimCache.connects table describes the type and speed of connections between devices.

The following table shows the schema for the ncimCache.connects database table.

Table 176. ncimCache.connects database table schema

Column name Constraints Data type Description

ENTITYID NOT NULL Integer The identifier of an entity. Corresponds to the
aEndEntityId in the connects table in the NCIM
database.

Chapter 12. Discovery databases 391

Table 176. ncimCache.connects database table schema (continued)

Column name Constraints Data type Description

ENTITYNAME NOT NULL String The name of the aEndEntityId device.

MANUAL Boolean If the connection was added manually to the
topology, this value is present and set to 1.

MSGTYPE String The name of the table within the ncimCache
database.

connectSpeeds NOT NULL List of name/
value pairs

A list of name/value pairs for the connection.
ENTITYNAME

The name of the zEndEntityId device in the
connects table in the NCIM database.

SPEEDTYPE
Corresponds to speedType in the
connectSpeeds table in the NCIM
database.

SPEEDVALUE
Corresponds to speedValue in the
connectSpeeds table in the NCIM
database.

UNIDIRECTIONAL
Corresponds to unidirectional in the
connects table in the NCIM database.

connects NOT NULL List of name/
value pairs

A list of name/value pairs for the connection.
ENTITYNAME

Corresponds to zEndEntityID in the
connects table in the NCIM database.

MANUAL
This value is 1 if the connection was
manually added. The connection can be
between discovered devices, manually
added devices, or both. If the connection
was not manually added, this name/value
pair is not present.

TOPOENTITYNAME
Corresponds to entityId in the
topologyLinks table in the NCIM
database.

UNIDIRECTIONAL
Corresponds to unidirectional in the
connects table in the NCIM database.

Format of the data in the ncimCache.connects database table

The following example shows the format of the data in the ncimCache.connects database table, as shown
either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.connects.DOMAIN file.

{
 ENTITYID=42795;
 ENTITYNAME='mydevice[0 [25]]';
 MSGTYPE='connects';

392 IBM Tivoli Network Manager IP Edition: Reference

 connectSpeeds=[
 {
 ENTITYNAME=''mydevice[0 [33]]';
 SPEEDTYPE='DEFAULT';
 SPEEDVALUE=100000000;
 UNIDIRECTIONAL=0;
 }
];
 connects=[
 {
 ENTITYNAME=''mydevice[0 [33]]';
 TOPOENTITYNAME='IpPathTopology';
 UNIDIRECTIONAL=0;
 },
 {
 ENTITYNAME=''mydevice[0 [33]]';
 TOPOENTITYNAME='RouterLinksTopology';
 UNIDIRECTIONAL=0;
 },
 {
 ENTITYNAME=''mydevice[0 [33]]';
 TOPOENTITYNAME='RelatedToTopology';
 UNIDIRECTIONAL=0;
 },
 {
 ENTITYNAME=''mydevice[0 [33]]';
 TOPOENTITYNAME='ConvergedTopology';
 UNIDIRECTIONAL=0;
 }
];
}

Related reference
connects
The connects table stores data on connectivity between devices. This table belongs to the category
collections.
connectSpeeds
The connectSpeeds table stores data on connectivity speed between devices.

ncimCache. containstable
The ncimCache.contains table lists containment information for a device.

The following table shows the schema for the ncimCache.contains database table.

Table 177. ncimCache.contains database table schema

Column name Constraints Data type Description

ENTITYID NOT NULL Integer The identifier of an entity. Corresponds to
containingEntityID in the contains table in the
NCIM database.

ENTITYNAME NOT NULL String The name of the collecting entity.

MSGTYPE String The name of the table within the ncimCache
database.

contains NOT NULL List of name/
value pairs

A list of name/value pairs for the entity.

• ENTITYNAME is the collectedEntityID in the
contains table in the NCIM database.

• UPWARDCONNECTION corresponds to
upwardConnection in the contains table in
the NCIM database.

Chapter 12. Discovery databases 393

Format of the data in the ncimCache.contains database table

The following example shows the format of the data in the ncimCache.contains database table, as shown
either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.contains.DOMAIN file.

{
 ENTITYID=40892;
 ENTITYNAME='my-device.mylab';
 MSGTYPE='contains';
 contains=[
 {
 ENTITYNAME='my-device.mylab[0 [31]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [19]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [20]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [22]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [23]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [24]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [25]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [26]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [27]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [28]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [30]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [33]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [35]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [37]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [39]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [41]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [43]]';
 UPWARDCONNECTION=1;
 },
 {

394 IBM Tivoli Network Manager IP Edition: Reference

 ENTITYNAME='my-device.mylab[0 [45]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [46]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [47]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab[0 [21]]';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab_SLOT_I2_R0';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab_SLOT_I12_R1';
 UPWARDCONNECTION=1;
 },
 {
 ENTITYNAME='my-device.mylab_SLOT_I32_R2';
 UPWARDCONNECTION=1;
 }
];
}

Related reference
contains
The contains table stores data on physical and logical containment. This table belongs to the category
containment.

ncimCache.dependency table
The ncimCache.dependency table lists entities that are dependent on other devices.

The following table shows the schema for the ncimCache.dependency database table.

Table 178. ncimCache.dependency database table schema

Column name Constraints Data type Description

ENTITYID NOT NULL Integer The identifier of an entity. Corresponds to the
independentEntityID in the dependency table
in the NCIM database.

ENTITYNAME NOT NULL String The name of the independent entity.

MSGTYPE String The name of the table within the ncimCache
database.

dependency NOT NULL List of name/
value pairs

A list of name/value pairs for dependent entities.

• DEPENDENCYTYPE corresponds to
dependencyType in the dependency table in
the NCIM database.

• ENTITYNAME corresponds to
dependentEntityID in the dependency table in
the NCIM database.

Format of the data in the ncimCache.dependency database table

The following example shows the format of the data in the ncimCache.dependency database table, as
shown either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.dependency.DOMAIN file.

Chapter 12. Discovery databases 395

In this example, the cell depends on the base station.

{
 ENTITYID=60844;
 ENTITYNAME='baseStation12';
 MSGTYPE='dependency';
 dependency=[
 {
 DEPENDENCYTYPE=0;
 ENTITYNAME='Cell-01';
 }
];
}

Related reference
dependency
The dependency table defines a general dependency between two entities. This table belongs to the
category dependency.

ncimCache.domainMembers table
The ncimCache.domainMembers table shows the domain to which an entity belongs.

The following table shows the schema for the ncimCache.domainMembers database table.

Table 179. ncimCache.domainMembers database table schema

Column name Constraints Data type Description

ENTITYID NOT NULL Integer The identifier of an entity. Corresponds to
entityId in the domainMembers table in the
NCIM database.

ENTITYNAME NOT NULL String The name of the entity.

MANUAL Boolean If the entity was added manually to the topology,
this value is present and set to 1.

MSGTYPE String The name of the table within the
domainMembers database.

domainMembers NOT NULL List of name/
value pairs

A list of name/value pairs for the entity.

• DOMAINNAME corresponds to domainMgrId in
the domainMembers table in the NCIM
database.

Format of the data in the ncimCache.domainMembers database table

The following example shows the format of the data in the ncimCache.domainMembers database table,
as shown either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.domainMembers.DOMAIN file.

{
 ENTITYID=42739;
 ENTITYNAME='my-device.mylab[0 [33]]';
 MSGTYPE='domainMembers';
 domainMembers=[
 {
 DOMAINNAME='DOMAIN1';
 }
];
}

Related reference
domainMembers

396 IBM Tivoli Network Manager IP Edition: Reference

The domainMembers table stores information on membership of entities within domains. This table
belongs to the category domains.

ncimCache.entityActions table
The ncimCache.entityActions table lists all devices added using the manual topology API.

The following table shows the schema for the ncimCache.entityActions database table.

Table 180. ncimCache.entityActions database table schema

Column name Constraints Data type Description

ENTITYID NOT NULL Integer The identifier of an entity. Corresponds to
entityID in the entityActions table in the
NCIM database.

ENTITYNAME NOT NULL String The name of the entity.

MSGTYPE String The name of the table within the ncimCache
database.

MANUAL Boolean This value is always 1, showing that the device
was added manually to the topology.

entityActions NOT NULL List of name/
value pairs

A list of name/value pairs for the entity. All
names correspond to the column names in the
entityActions table in the NCIM database.

Format of the data in the ncimCache.entityActions database table

The following example shows the format of the data in the ncimCache.entityActions database table, as
shown either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.entityActions.DOMAIN file.

{
 ENTITYID=60857;
 ENTITYNAME='MyManualDevice';
 MANUAL=1;
 MSGTYPE='entityActions';
 entityActions={
 ACTION='add';
 CHANGETIME='2013-07-08 11:50:31';
 DESCRIPTION='';
 DOMAINNAME='STEPH';
 ENTITYACTIONSID=106;
 ENTITYID=60857;
 ENTITYNAME='MyManualDevice';
 LOCATION='192.168.78.108';
 MANUAL=1;
 USERNAME='defaultWIMFileBasedRealm/itnmadmin';
 };
}

Related reference
entityActions
The entityActions table records all manual node additions and all node removals, including removal of
nodes that were discovered rather than manually added and the swapping of nodes into and out of a
domain.

ncimCache.entityData table
The ncimCache.entityData table holds different kinds of data about entities.

The following table shows the schema for the ncimCache.entityData database table.

Chapter 12. Discovery databases 397

Table 181. ncimCache.entityData database table schema

Column name Constraints Data type Description

ENTITYID NOT NULL Integer The identifier of an entity. Corresponds to the
entityId in the entityData table in the NCIM
database.

ENTITYNAME NOT NULL String The name of the entity.

MANUAL Boolean If the entity was added manually to the topology,
this value is present and set to 1.

MSGTYPE String The name of the table within the ncimCache
database.

entityData NOT NULL List of name/
value pairs

A list of name/value pairs for the entity,
corresponding to the entityData table in NCIM.
This section contains a separate row per entity in
the entityData table. The information that is
included here depends on the type of the entity.
For example, a chassis has different information
available than an interface.

Other table names List of name/
value pairs

The lists of name/value pairs depend on the
information that is available for the entity. The
name of the list corresponds to the equivalent
database table in NCIM.

Format of the data in the ncimCache.entityData database table for a chassis

The following example shows the format of the data in the ncimCache.entityData database table, as
shown either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.entityData.DOMAIN file.

This example shows data for a chassis, corresponding to the classMembers, computerSystem,
discoverySource, entityData, operatingSystem, physicalChassis, and snmpSystem tables in NCIM.

{
 BASENAME='xx-xx-xxnn.xx.test.lab';
 ENTITYID=40892;
 ENTITYNAME='xx-xx-xxnn.xx.test.lab';
 ENTITYTYPE=1;
 METACLASS='Element';
 MSGTYPE='entityData';
 classMembers={
 CLASSID=33;
 ENTITYID=99999;
 };
 computerSystem={
 ENTITYID=99999;
 };
 discoverySource=[
 {
 DISCOVERYPROTOCOL='SNMP';
 ENTITYID=40892;
 MANAGEDBY='DirectAccess';
 SOURCE='Agent';
 }
];
 entityData={
 CDMADMINSTATE=0;
 CHANGETIME='2013-06-26 14:21:10';
 CREATETIME='2013-06-26 14:21:10';
 DESCRIPTION='Cisco IOS Software, 2800 Software (C2800NM-ADVIPSERVICESK9-M),
Version 12.4(24)T7, RELEASE SOFTWARE (fc2)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2012 by Cisco Systems, Inc.
Compiled Tue 28-Feb-12 10:43 by prod_rel_team';

398 IBM Tivoli Network Manager IP Edition: Reference

 DISPLAYLABEL='xx-xx-xxnn.xx.test.lab';
 ENTITYID=40892;
 ENTITYNAME='xx-xx-xxnn.xx.test.lab';
 ENTITYTYPE=1;
 MAINNODEENTITYID=40892;
 MANUAL=0;
 };
 operatingSystem={
 ENTITYID=40892;
 };
 physicalChassis={
 ACCESSIPADDRESS='192.168.233.103';
 ACCESSPROTOCOL='IPv6';
 CDMTYPE=2;
 CLASSNAME='Cisco28xx';
 ENTITYID=40892;
 FWREVISION='System Bootstrap, Version 12.4(1r) [hqluong 1r],
RELEASE SOFTWARE (fc1)';
 HWREVISION='V02 ';
 INTERFACECOUNT=47;
 ISIPFORWARDING='forwarding';
 MANUFACTURER='Cisco';
 MODEL='CISCO2811 ';
 NAME='2811 chassis';
 PARTNUMBER='CISCO2811 ';
 PHYSICALINDEX=1;
 RELATIVEPOSITION=-1;
 SERIALNUMBER='XXXXXXXXXXXX';
 SERVICES='datalink(2) network(3) transport(4) application(7)';
 SWREVISION='12.4(24)T7, RELEASE SOFTWARE (fc2)';
 VENDORTYPE='1.3.6.1.4.1.9.12.3.1.3.436';
 };
 snmpSystem={
 ENTITYID=40892;
 SYSCONTACT='example@example.com';
 SYSDESCR='Cisco IOS Software, 2800 Software (C2800NM-ADVIPSERVICESK9-M),
Version 12.4(24)T7, RELEASE SOFTWARE (fc2)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2012 by Cisco Systems, Inc.
Compiled Tue 28-Feb-12 10:43 by prod_rel_team';
 SYSLOCATION='B510/3D32 3rd Floor Lab';
 SYSNAME='xx-xx-xxnn.xx.test.lab';
 SYSOBJECTID='1.3.6.1.4.1.9.1.576';
 };
}

Format of the data in the ncimCache.entityData database table for an interface

The following example shows the format of the data in the ncimCache.entityData database table, as
shown either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.entityData.DOMAIN file.

This example shows data for a network interface, corresponding to the entityData, networkInterface, and
physicalConnector tables in NCIM.

{
 BASENAME='my-device1.mylab';
 CONNECTIONS=['my-device2.mylabb[0 [25]]'];
 ENTITYID=42739;
 ENTITYNAME='my-device1.mylab[0 [33]]';
 ENTITYTYPE=2;
 METACLASS='Element';
 MSGTYPE='entityData';
 entityData={
 CDMADMINSTATE=2;
 CHANGETIME='2013-06-26 14:21:24';
 CREATETIME='2013-06-26 14:21:24';
 DISPLAYLABEL='[IfIndex:33]';
 ENTITYID=42739;
 ENTITYNAME='my-device1.mylab[0 [33]]';
 ENTITYTYPE=2;
 MAINNODEENTITYID=40892;
 MANUAL=0;
 };
 networkInterface={
 ACCESSIPADDRESS='2222:22a:2a2e:222::22';
 ACCESSPROTOCOL='IPv6';
 CONNECTORPRESENT='false';

Chapter 12. Discovery databases 399

 ENTITYID=42739;
 IFADMINSTATUS='up';
 IFALIAS='to my-device';
 IFDESCR='Vlan25';
 IFHIGHSPEED=100;
 IFINDEX=33;
 IFNAME='Vl25';
 IFOPERSTATUS='up';
 IFSPEED=100000000;
 IFTYPE=53;
 IFTYPESTRING='propVirtual';
 MTU=1500;
 OPERATIONALDUPLEX='Unknown';
 OPERATIONALSTATUS='started';
 PHYSICALADDRESS='00:22:22:22:22:22';
 PROMISCUOUS='false';
 };
 physicalConnector={
 CDMTYPE=9;
 ENTITYID=42739;
 };
}

Format of the data in the ncimCache.entityData database table for a connection

The following example shows the format of the data in the ncimCache.entityData database table, as
shown either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.entityData.DOMAIN file.

This example shows data for an IP connection, corresponding to the entityData and ipConnection tables
in NCIM.

{
 BASENAME='my-device1.mylab[0 [33]]->my-device2.mylab[0 [25]]';
 ENTITYID=50401;
 ENTITYNAME='my-device1.mylab[0 [33]]->my-device2.mylab[0 [25]]';
 ENTITYTYPE=40;
 METACLASS='Element';
 MSGTYPE='entityData';
 entityData={
 CDMADMINSTATE=0;
 CHANGETIME='2013-07-03 10:46:35';
 CREATETIME='2013-07-03 10:46:35';
 DESCRIPTION='Sequential Hop between my-device1.mylab[0 [33]] and
my-device2.mylab[0 [25]]';
 DISPLAYLABEL='my-device.mylab[0 [33]]->my-device2.mylab[0 [25]]';
 ENTITYID=50401;
 ENTITYNAME='my-device1.mylab[0 [33]]->my-device2.mylab[0 [25]]';
 ENTITYTYPE=40;
 MANUAL=0;
 };
 ipConnection={
 ENTITYID=50401;
 };
}

Related reference
entityData
The entityData table stores data on entities. This table belongs to the category entities.

ncimCache.hostedService table
The ncimCache.hostedService table maps a main node device, the hosting entity, to the service or
applications that are running on that device, the hosted entities. The hostedService table belongs to the
category entities.

The following table shows the schema for the ncimCache.hostedService database table.

400 IBM Tivoli Network Manager IP Edition: Reference

Table 182. ncimCache.hostedService database table schema

Column name Constraints Data type Description

ENTITYID NOT NULL Integer The identifier of an entity. Corresponds to
hostingEntityId in the hostedService table in
the NCIM database.

ENTITYNAME NOT NULL String The name of the hosting entity.

MSGTYPE String The name of the table within the ncimCache
database.

hostedService NOT NULL List of name/
value pairs

A list of name/value pairs for the hosted entity.

• ENTITYNAME corresponds to hostedEntityID
in the hostedService table in the NCIM
database.

Format of the data in the ncimCache.hostedService database table

The following example shows the format of the data in the ncimCache.hostedService database table, as
shown either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.hostedService.DOMAIN file.

{
 ENTITYID=8734;
 ENTITYNAME='router3.ibm.com';
 MSGTYPE='hostedService';
 hostedService=[
 {
 ENTITYNAME='OSPF_RoutingService_ID_192.168.34.21_RD_[0]';
 }
];
}

Related reference
hostedService
A hosted service is a service or application running on a specific main node device. The hostedService
table maps a main node device, the hosting entity, to the service or applications that are running on that
device, the hosted entities. The hostedService table belongs to the category entities.

ncimCache.lingerTime table
The ncimCache.lingerTime table stores the linger time for a device.

The following table shows the schema for the ncimCache.lingerTime database table.

Table 183. ncimCache.lingerTime database table schema

Column name Constraints Data type Description

BASENAME The base name of this entity.

ENTITYID NOT NULL Integer The identifier of an entity. Corresponds to
entityId in the lingerTime table in the NCIM
database.

ENTITYNAME NOT NULL String The name of the entity.

ENTITYTYPE The type of the entity, as enumerated in the
entityType NCIM table.

MSGTYPE String The name of the table within the ncimCache
database.

Chapter 12. Discovery databases 401

Table 183. ncimCache.lingerTime database table schema (continued)

Column name Constraints Data type Description

lingerTime NOT NULL List of name/
value pairs

A list of name/value pairs for the entity.
LINGERTIME

The linger time is the number of discoveries
that a device can fail to be found in before it
is removed from the topology.

The linger time is set for a device when it is
instantiated, from the default value in the
model.config table. Each time that a device
in the topology is not discovered, the linger
time is decreased by 1. When the linger time
is zero, if the device is not discovered, it is
removed from the topology.

Format of the data in the ncimCache.lingerTime database table

The following example shows the format of the data in the ncimCache.lingerTime database table, as
shown either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.lingerTime.DOMAIN file.

{
 BASENAME='somedevice.mylab';
 ENTITYID=40892;
 ENTITYNAME='somedevice.mylab';
 ENTITYTYPE=1;
 MSGTYPE='lingerTime';
 lingerTime={
 LINGERTIME=2;
 };
}

Related reference
lingerTime
The lingerTime table stores the linger time for a device. The linger time is the number of discoveries that a
device can fail to be found in before it is removed from the topology.

ncimCache.managedStatus table
The ncimCache.managedStatus table stores the managed status information for network entities.

The following table shows the schema for the ncimCache.managedStatus database table.

Table 184. ncimCache.managedStatus database table schema

Column name Constraints Data type Description

BASENAME The name of the base entity for this device.

ENTITYID NOT NULL Integer The identifier of an entity. Corresponds to entityID in the
managedStatus table in the NCIM database.

ENTITYNAME NOT NULL String The name of the entity.

ENTITYTYPE The type of the entity.

MANUAL Boolean If the entity was added manually to the topology, this value
is present and set to 1.

MSGTYPE String The name of the table within the ncimCache database.

402 IBM Tivoli Network Manager IP Edition: Reference

Table 184. ncimCache.managedStatus database table schema (continued)

Column name Constraints Data type Description

managedStatus NOT NULL List of name/
value pairs

A list of name/value pairs for the entity.
STATUS

The managed status of an entity can be one of the
following values:
0

Managed state. The entity is managed. A device
can be set to managed by using the Topoviz or the
Structure Browser GUIs, or by using the
ManagedNode.pl or RemoveNode.pl scripts.

1
Unmanaged state. The entity is unmanaged. A
device can be set to unmanaged by using the
Topoviz or the Structure Browser GUIs, or by using
the UnManagedNode.pl or RemoveNode.pl
scripts.

2
Unmanaged by ncp_disco. This setting cannot be
modified from the GUI. This value is set by the
PopulateDNCIM_ManagedStatus.stch
stitcher.

3
Unmanaged because the IP address is out of the
discovery scope. The device has been discovered
through another IP address that is within the
discovery scope. A managed status of 3 is usually
given to interfaces, rather than chassis. This value
is set by the
PopulateDNCIM_ManagedStatus.stch
stitcher.

Note: Unmanaged entities do not suppress other
events in RCA. The ncp_poller process does not poll
unmanaged entities. Events on unmanaged entities
have the field NmosManagedStatus set in the
alerts.status field in the ObjectServer.

Format of the data in the ncimCache.managedStatus database table

The following example shows the format of the data in the ncimCache.managedStatus database table, as
shown either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.managedStatus.DOMAIN file.

{
 BASENAME='somedevice';
 ENTITYID=42766;
 ENTITYNAME='somedevice[0 [47]]';
 ENTITYTYPE=2;
 MSGTYPE='managedStatus';
 managedStatus={
 STATUS=1;
 };
}

Chapter 12. Discovery databases 403

Related reference
managedStatus
The managedStatus table stores the managed status information for each network entity in the
topology.

ncimCache.networkPipe table
The ncimCache.networkPipe table represents managed connections.

The following table shows the schema for the ncimCache.networkPipe database table.

Table 185. ncimCache.networkPipe database table schema

Column name Constraints Data type Description

ENTITYID NOT NULL Integer The identifier of an entity. Corresponds to
collectingEntityID in the networkPipe table in
the NCIM database.

ENTITYNAME NOT NULL String The name of the collecting network pipe.

MSGTYPE String The name of the table within the ncimCache
database.

networkPipe NOT NULL List of name/
value pairs

A list of name/value pairs for the entity.

• AENDENTITYNAME corresponds to entityId in
the networkPipe table in the NCIM database.

• AGGREGATIONTYPE corresponds to
aggregationType in the networkPipe table in
the NCIM database.

• UNIDIRECTIONAL corresponds to
unidirectional in the connects table in the
NCIM database.

• ZENDENTITYNAME corresponds to
zEndEntityId in the connects table in the
NCIM database.

Format of the data in the ncimCache.networkPipe database table

The following example shows the format of the data in the ncimCache.networkPipe database table, as
shown either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.networkPipe.DOMAIN file.

{
 ENTITYID=50401;
 ENTITYNAME='my-device.mylab[0 [33]]->my-device2.lab[0 [25]]';
 MSGTYPE='networkPipe';
 networkPipe=[
 {
 AENDENTITYNAME='my-device2.lab[0 [25]]';
 AGGREGATIONTYPE=4;
 UNIDIRECTIONAL=0;
 ZENDENTITYNAME='my-device.mylab[0 [33]]';
 }
];
}

Related reference
networkPipe

404 IBM Tivoli Network Manager IP Edition: Reference

The networkPipe table represents managed connections in the network. This table belongs to the
category connectivity.

ncimCache.pipeComposition table
The ncimCache.pipeComposition table can be used with the networkPipe table to represent a hierarchy of
connections.

The following table shows the schema for the ncimCache.pipeComposition database table.

Table 186. ncimCache.pipeComposition database table schema

Column name Constraints Data type Description

ENTITYID NOT NULL Integer The identifier of the containing network pipe.
Corresponds to groupComponent in the
pipeComposition table in the NCIM database.

ENTITYNAME NOT NULL String The name of the network pipe.

MSGTYPE String The name of the table within the ncimCache
database.

pipeComposition NOT NULL List of name/
value pairs

A list of name/value pairs for the entity.

• AGGREGATIONSEQUENCE corresponds to
aggregationSequence in the collects
table in the NCIM database.

• ENTITYNAME is the component network pipe,
and corresponds to partComponent in the
pipeComposition table in the NCIM
database.

Format of the data in the ncimCache.pipeComposition database table

The following example shows the format of the data in the ncimCache.pipeComposition database table,
as shown either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.pipeComposition.DOMAIN file.

{
 ENTITYID=50402;
 ENTITYNAME='IP_Path_[172.30.233.103]->[172.30.233.101]';
 MSGTYPE='pipeComposition';
 pipeComposition=[
 {
 AGGREGATIONSEQUENCE=1;
 ENTITYNAME='my-device.mylab[0 [33]]->ny-p1-cr28.na.test.lab[0 [25]]';
 }
];
}

Related reference
pipeComposition
The pipeComposition table allows a higher-level connection to be defined in terms of its lower-level
connections. This table belongs to the category connectivity.

ncimCache.protocolEndpoint table
The ncimCache.protocolEndpoint table allows a higher-level connection to be defined in terms of lower-
level connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.

The following table shows the schema for the ncimCache.protocolEndpoint database table.

Chapter 12. Discovery databases 405

Table 187. ncimCache.protocolEndpoint database table schema

Column name Constraints Data type Description

ENTITYID NOT NULL Integer The identifier of an entity. Corresponds to
endPointEntityID in the protocolEndpoint
table in the NCIM database. This entity specifies
protocol-specific addressing information for this
endpoint.

ENTITYNAME NOT NULL String The name of the end point entity.

MANUAL Boolean If the entity was added manually to the topology,
this value is present and set to 1.

MSGTYPE String The name of the table within the ncimCache
database.

protocolEndpoint NOT NULL List of name/
value pairs

A list of name/value pairs for the entity.

• ENTITYNAME corresponds to the name of the
implementingEntityID entity in the
protocolEndpoint table in the NCIM database.
This entity implements this protocol end point.
This is usually a device interface.

Format of the data in the ncimCache.protocolEndpoint database table

The following example shows the format of the data in the ncimCache.protocolEndpoint database table,
as shown either using an OQL query, or as seen in the NCHOME/var/precision/
Store.Cache.ncimCache.protocolEndpoint.DOMAIN file.

{
 ENTITYID=42739;
 ENTITYNAME='my-device.mylab[0 [33]]';
 MSGTYPE='protocolEndPoint';
 protocolEndPoint=[
 {
 ENTITYNAME='my-device.mylab[0 [33]] IP: 2222:22a:2a2e:222::22';
 },
 {
 ENTITYNAME='my-device.mylab[0 [33]] IP: 192.168.222.22';
 }
];
}

Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.

model database schema
This database stores information about the topology so that during rediscovery, topologies can be merged
efficiently.

The model database is defined in NCHOME/etc/precision/ ModelSchema.cfg. Its fully qualified
database table names are: model.config; model.profilingData, and model.statistics.

406 IBM Tivoli Network Manager IP Edition: Reference

model.config table
The model.config table stores the configuration information that is used by MODEL during rediscovery.

Table 188. model.config database table schema

Column name Constraints Data type Description

ChassisCreation
Events

NOT NULL Boolean
Integer

If set to 1, generates ItnmEntityCreation and
ItnmEntityDeletion events when a chassis
entity is created.

DiscoveryUpdateMode NOT NULL Integer For internal system use only; do not modify.
Prior to a batch update, ncp_disco sets this
value to 1 for a partial discovery, or to 0 for a
full discovery.

DeleteRenamedDevice
s

NOT NULL Boolean
Integer

Controls whether duplicate nodes are created
in the topology if a device name, that is, the
EntityName, is changed between discovery
cycles but the IP address of the device
remains the same. Possible values are as
follows. An example describes the behavior
depending on the value. In this example, the
topology contains a node that is called
deviceA.home.com, which has a LingerTime
value of 3. Before the next discovery cycle, the
deviceA.home.com device is renamed to
deviceB.home.com. If you change this setting,
restart the product for the change to take
effect.

• 0 (default): A duplicate node is created. The
LingerTime of the existing node is
decremented. In the example, the nodes
deviceA.home.com and deviceB.home.com
are duplicates. The LingerTime of
deviceA.home.com is decremented to 2. The
LingerTime of deviceB.home.com is set to 3.

• 1: The existing node is overwritten by a node
that has the new name of the device. In the
example, the deviceA.home.com node is
overwritten. A node is created for
deviceB.home.com.

Important: If you set this field to 1, you must
disable sysName naming in the advanced
discovery parameters.

IpInterfaceCreation
Events

NOT NULL Boolean
Integer

If set to 1, generates ItnmEntityCreation and
ItnmEntityDeletion events when an interface
with its own IP address is created.

Chapter 12. Discovery databases 407

Table 188. model.config database table schema (continued)

Column name Constraints Data type Description

KeepOldEntityDetails NOT NULL Integer If this value is set to 0 (the default), any
custom data that was added to the
dbModel.entityDetails table is kept up-to-date
by future discoveries. Custom data that was
added but is no longer present in a discovery is
removed from the NCIM topology database. If
this value is set to 1, then custom data is
always kept in future discoveries, unless it is
manually deleted.

LingerTime • PRIMARY KEY
• NOT NULL
• UNIQUE

Integer The LingerTime value is how many discovery
cycles a device can fail to be found in before it
is considered as no longer present in the
topology and removed.

MaintenanceState
Events

NOT NULL Boolean
Integer

If set to 1, generates ItnmMaintenanceState
events when the status of an entity changes in
the managedStatus table.

ManagedStatusUpdate
Interval

NOT NULL Integer Interval in seconds at which ncp_model scans
the NCIM managedStatus table for changes.
This is the maximum time the poller should
take to react to changes in managed status
made in any of the following GUIs: Network
Views, Network Hop View, Structure Browser.
Default value 30 seconds.

Any combination of the flags ChassisCreationEvents, IpInterfaceCreationEvents, and
MaintenanceStateEvents can be turned on and off. The default is for all three to be disabled.

Note: If you have a network that contains routers with a large number of IP addresses, then enabling the
IpInterfaceCreationEvents flag can might generate a large number of events in the Object Server.

model.profilingData
The model.profilingData table stores data associated with time and memory expended during the
discovery. This table includes information on how long it took to transfer the discovery profiling data to
the NCIM topology database.

Table 189. model.profilingData database table schema

Column name Constraints Data type Description

BatchStartTime • PRIMARY KEY
• NOT NULL
• UNIQUE

Integer The time that a batch update from the Discovery
engine, ncp_disco, started.

BatchStartSize NOT NULL Integer Number of records in the batch received.

BatchStartMem NOT NULL 64-bit integer Memory usage when batch started.

408 IBM Tivoli Network Manager IP Edition: Reference

Table 189. model.profilingData database table schema (continued)

Column name Constraints Data type Description

BatchEndTime Integer The time a batch update from the Discovery
engine, ncp_disco, ended.

BatchEndSize Integer Number of records at the end.

Note: This value could be larger than at the start
if subsequent batches got merged in.

BatchEndMem 64-bit integer Memory usage when batch ended.

EntityCount Integer Number of entities after the batch update.

ChassisCount Integer Number of chassis devices after the batch
update.

InterfaceCount Integer Number of interfaces after the batch update.

model.statistics table
The model.statistics table stores information about previous discoveries.

Table 190. model.statistics database table schema

Column name Constraints Data type Description

TopologyCount • PRIMARY KEY
• NOT NULL
• UNIQUE

Long A count of the number of times the
topology has been sent from DISCO
to MODEL.

TopologySendFinished Integer Indicates whether DISCO has
finished transferring the topology to
MODEL.

This column is set to 0 when the
SendTopologyToModel.stch stitcher
begins sending the topology, and set
to 1 when it has completed sending
the topology.

InsertCount Long The number of entities inserted into
the topology.

UpdateCount Long The number of entities updated in
the topology.

DeleteCount Long The number of entities deleted from
the topology.

Chapter 12. Discovery databases 409

Failover database
Failover recovery with the failover database is not to be confused with agent and finder failover recovery,
which are configured directly from the disco.config table. When selected, agent and finder failover
recovery operate regardless of whether recovery with the failover database is implemented.

If the m_WriteTablesToCache column of the disco.config table is set to 1 (true), data is cached during the
discovery process to enable data recovery in the event that the Discovery engine, ncp_disco, fails. A
discovery running in this mode is slower than a standard discovery, because of the extra time required to
store data on the disk throughout the discovery process.

Ignored cached data
If DISCO is restarted in failover recovery mode, any cached data for a group of tables are ignored.

The cached data for the following tables are ignored when DISCO is restarted in failover recovery mode:

• disco.config
• disco.managedProcesses
• disco.agents
• The entire scope database
• failover.config
• failover.doNotCache
• failover.restartPhaseAction

For the above tables, only the insertions specified in the schema file at the time of the restart are
registered.

The failover database schema
The failover database is defined in $NCHOME/etc/precision/DiscoSchema.cfg. Its fully qualified database
table names are: failover.config; failover.status; failover.findRateDetails; failover.doNotCache;
failover.restartPhaseAction.

failover.config table
There must never be more than one insert into the failover.config table.

Table 191. failover.config database table schema

Column name Constraints Data type Description

m_InitialiseFromCache Externally
defined
Boolean data
type

Boolean
integer

Flag indicating whether to use the
data that already exists in the cache:

• 0: Do not use cached data
• 1: Use cached data if any exists

m_NumberOfRetries Integer The number of times to try using the
cached data before giving up (that is,
the number of subsequent times that
DISCO can be restarted before
starting with a clean slate).

If no value is specified, DISCO always
starts with clear databases.

410 IBM Tivoli Network Manager IP Edition: Reference

Table 191. failover.config database table schema (continued)

Column name Constraints Data type Description

m_StoreEveryNthDevice Default = 10 Integer How often the findRateDetails table is
to be updated. After the specified
number of devices have been found
the table is updated.

failover.status table
The failover.status table displays the number of times that the DISCO process has attempted to restart
with cached data. This table is active, so you must not configure inserts into it.

Table 192. failover.status database table schema

Column name Constraints Data type Description

m_NumberOfAttempts • NOT NULL
• PRIMARY KEY

Integer The number of times that the
DISCO process has attempted to
restart with cached data.

This column is set to 1 when
DISCO is first run in failover
recovery mode and incremented
each time DISCO is subsequently
run in failover mode.

failover.findRateDetails table
The findRateDetails table gives details of devices that have been found at a certain point in the discovery.
This table is active and inserts must not be made in the schema file; the table is populated automatically.

Table 193. failover.findRateDetails database table schema

Column name Constraints Data type Description

m_StartTime • NOT NULL
• PRIMARY KEY

Text The time at which the first device
was found.

m_LastFindTime Text The time at which the last device was
found.

m_DevicesFound Integer The number of devices found so far.

Chapter 12. Discovery databases 411

failover.doNotCache table
To prevent caching a given table, you can specify its name in the doNotCache table. This ensures that
unnecessary cache files are not created, such as those for temporary tables defined within stitchers.

Table 194. failover.doNotCache database table schema

Column name Constraints Data type Description

m_DatabaseName NOT NULL Text The name of any database that is not to
be cached during failover recovery.

The following tables must be cached in
order to use the failover recovery mode,
and therefore must not be listed in this
table:

• disco.status
• failover.status

The following tables must be cached, and
therefore must not be listed in this table:

• The agent despatch and returns tables.
• finders.processing
• translations.ipToBaseName

m_TableName NOT NULL Text The name of the table within the
database specified in m_DatabaseName
that is not to be cached.

Use * to indicate all the tables of the
database.

failover.restartPhaseAction table
The restartPhaseAction table contains the set of stitchers that are executed when restarting in a given
discovery phase. Multiple stitchers can be specified, but they are executed in an arbitrary order. It is
recommended that at least the FinalPhase stitcher is executed when restarting in the topology creation
phase.

Table 195. failover.restartPhaseAction database table schema

Column name Constraints Data type Description

m_RestartPhase NOT NULL Integer The phase in which DISCO is
restarted.

m_ExecuteStitcher NOT NULL Text The stitcher that is to be executed
in this phase.

Example failover database configuration
This example uses OQL commands to insert configuration values into the failover database tables that are
appended to the DiscoConfig.cfg file to configure DISCO when it is launched.

412 IBM Tivoli Network Manager IP Edition: Reference

Example configuration of the failover.config table
This example uses OQL commands to insert configuration values into the failover.config table.

For this configuration of the failover.config table, data already in the cache is used. The Discovery engine,
ncp_disco, can be restarted up to three times before cached data is ignored. These values are used only
when disco.config.m_WriteTablesToCache=1.

insert into failover.config
(
 m_InitialiseFromCache,
 m_NumberOfRetries
)
values
(1, 3);

Example configuration of the failover.doNotCache table
This example uses OQL commands to insert configuration values into the failover.doNotCache table. The
disco.config table and all tables of the instrumentation database are not cached.

insert into failover.doNotCache
(
 m_DatabaseName,
 m_TableName
)
values
(
 'disco', 'config'
);

insert into failover.doNotCache
(
 m_DatabaseName, m_TableName
)
values
(
 'instrumentation', '*'
);

Agent Template database
The databases of each discovery agent are based on a template called the agentTemplate database.

The agentTemplate database is defined in $NCHOME/etc/precision/DiscoSchema.cfg, and its fully
qualified database table names are: agentTemplate.despatch and agentTemplate.returns.

Discovery agent despatch table
When a device has been interrogated by the Details agent, it is passed to the Associated Address agent to
check whether it has already been discovered. If the device has not been discovered, the device details
are processed and sent by a stitcher to the despatch table of the appropriate agent.

The despatch table is described in Table 196 on page 413.

When the device details are placed in the despatch table, the agent attempts to retrieve connectivity
information pertaining to the device.

Table 196. agentTemplate.despatch database table schema

Column name Constraints Data type Description

m_Name PRIMARY KEY

NOT NULL

Text Unique name of an entity on the network.

Chapter 12. Discovery databases 413

Table 196. agentTemplate.despatch database table schema (continued)

Column name Constraints Data type Description

m_UniqueAddress NOT NULL Text A string that uniquely identifies this entity.
The content of this field is unconstrained,
and might be an IP address or an element
management system (EMS) key.

m_ManagerId PRIMARY KEY

NOT NULL

Text Manager of the device. If the device is
accessed directly, this is set to " ". By
default, this is set to " ".

m_Protocol Integer An integer representation of the network
protocol used by the presently-defined
zone:

• 0: Unknown
• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6
• 4: Element Management System (EMS)

key for a non-IP device

m_ObjectId Text Textual representation of the device class
(an ASN.1 address).

m_SnmpAccessIP Text If present, overrides the IP address used
for SNMP access to devices using the
Helper Server.

m_AddressSpace Text The name of the NAT address space to
which the device belongs. This value is set
in the translations.NATAddressSpaceIds
table. If the discovery is not using NAT, or if
the device is in the public domain, this
value is NULL.

m_HaveAccess Externally
defined Boolean
data type

Boolean
Integer

Flag indicating whether there is SNMP
access to the device:

• (1) Have Access
• (0) No Access

Discovery agent returns table
Returned device connectivity details are placed in the returns table of the agent. These details are used to
populate the topology databases.

The returns table is described in Table 197 on page 414.

Table 197. agentTemplate.returns database table schema

Column name Constraints Data type Description

m_Name NOT NULL Text Unique name of an entity on the network.

414 IBM Tivoli Network Manager IP Edition: Reference

Table 197. agentTemplate.returns database table schema (continued)

Column name Constraints Data type Description

m_ManagerId PRIMARY KEY

NOT NULL

Text Manager of the device. If the device is
accessed directly, this is set to " ". By
default, this is set to " ".

m_UniqueAddress NOT NULL Text A string that uniquely identifies this entity.
The content of this field is unconstrained,
and might be an IP address or an element
management system (EMS) key.

m_Protocol Integer An integer representation of the network
protocol used by the presently-defined
zone:

• 0: Unknown
• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6
• 4: Element Management System (EMS)

key for a non-IP device

m_ObjectId Text Textual representation of the device class
(an ASN.1 address).

m_HaveAccess Externally
defined Boolean
data type

Boolean Integer Flag indicating whether there is SNMP
access to the device:

• (1) Have Access
• (0) No Access

m_ExtraInfo Externally
defined vblist
data type

Object Any extra information specified by the
user in the agent definition file.

m_LocalNbr Externally
defined neighbor
data type

Object Direct neighbors (interfaces).

m_RemoteNbr Externally
defined
nbrsNeighbor
data type

Object Remote neighbors connected to
interfaces.

m_UpdAgent Text The agent that updated this device.

m_SnmpAccessIP Text If present, overrides the IP address used
for SNMP access to devices using the
Helper Server.

m_AddressSpace Text The name of the NAT address space to
which the device belongs. This value is set
in the translations.NATAddressSpaceIds
table. If the discovery is not using NAT, or
if the device is in the public domain, this
value is NULL.

Chapter 12. Discovery databases 415

Table 197. agentTemplate.returns database table schema (continued)

Column name Constraints Data type Description

m_LastRecord Externally
defined Boolean
data type

Boolean integer Is this the last record for this entity:

• (1) True
• (0) False

416 IBM Tivoli Network Manager IP Edition: Reference

Chapter 13. Polling databases
Use this information to understand the structure of databases used for polling.

NCMONITOR databases
The NCMONITOR schema hosts a number of databases used by polling.

SNMP tables for polling in the ncmonitor database
The SNMP tables in the ncmonitor database are used by the polling engine, ncp_poller, to store
information on how to access each discovered device using SNMP.

Both the ncp_dh_snmp and ncp_poller processes use the ncmonitor database. However, only the
ncp_dh_snmp process populates the database; the ncp_poller process treats it as read-only. Hence, you
must have discovered a device using SNMP to monitor it using SNMP.

The ncmonitor database is defined in $NCHOME/etc/precision/DbLogins.DOMAIN.cfg, where
DOMAIN is the domain that contains the discovered devices.

The ncmonitor database has the following tables:

• ncmonitor.snmpTarget
• ncmonitor.snmpAccess
• ncmonitor.snmpv1Sec
• ncmonitor.snmpv3Sec
• ncmonitor.snmpUser

ncmonitor.snmpTarget table
The snmpTarget table lists each IP address that Network Manager recognizes.

Table 198. ncmonitor.snmpTarget database table

Column name Constraints Data type Description

targetid • PRIMARY KEY
• NOT NULL

Text Unique identifier for the target.

netaddr Text IP address of the target.

readaccessid FOREIGN KEY Text Refers to the snmpaccess table. Provides
access details used to perform SNMP Get
and GetNext operations for this target.

writeaccessid FOREIGN KEY Text Refers to the snmpaccess table. Provides
access details used to perform SNMP Set
operations for this target.

snmpgetbulk Boolean
integer

Flag indicating whether GetNext operations
will be attempted when appropriate; for
example, when using SNMPv2 or SNMPv3,
and performing a table walk.

snmpthrottleid Text Throttling details used to control the rate at
which requests will be made to this target
when performing table walk operations.

© Copyright IBM Corp. 2006, 2021 417

Table 198. ncmonitor.snmpTarget database table (continued)

Column name Constraints Data type Description

createtime Text Timestamp recording the time this target
was created.

lastupdate Text Timestamp recording the time any detail for
this target was last modified.

domain Text Domain to which this target belongs.

ncmonitor.snmpAccess table
The snmpAccess table provides details of SNMP access.

Table 199. ncmonitor.snmpAccess database table

Column name Constraints Data type Description

accessid • PRIMARY KEY
• NOT NULL

Text Unique identifier for these SNMP access
details.

version Enumerated
value

SNMP version to be used. Possible value
are:

• 0: SNMPv1
• 1: SNMPv2
• 3: SNMPv3

remoteport Integer UDP port to which SNMP packets will be
sent.

retries Integer Number of retries before giving up.

timeout Integer Number of milliseconds before retrying an
SNMP request .

accesslevel Enumerated
value

Flag indicating level of access provided.
Possible values are:

• 1: read
• 2: write

ncmonitor.snmpv1Sec table
The snmpv1Sec table is populated only for rows in the snmpAccess table that relate to SNMPv1 and
SNMPv2.

Table 200. ncmonitor.snmpv1Sec database table

Column name Constraints Data type Description

accessid FOREIGN KEY Text Refers to the details for which SNMPv1 or
SNMPv2-specific detail is being provided.

community Text Community string to use when sending
requests using these details.

418 IBM Tivoli Network Manager IP Edition: Reference

Table 200. ncmonitor.snmpv1Sec database table (continued)

Column name Constraints Data type Description

encrypted Boolean
integer

Flag indicating whether the community
string is encrypted. Possible values are:

• 0: not encrypted
• 1: encrypted

ncmonitor.snmpv3Sec table
The snmpv3Sec table is populated only for rows in the snmpAccess table that relate to SNMPv3.

Table 201. ncmonitor.snmpv3Sec database table

Column name Constraints Data type Description

accessid FOREIGN KEY Text Refers to the details for which SNMPv3-
specific detail is being provided.

userid FOREIGN KEY Text Refers to the userid field in the
snmpusmuser table. This is the user to use
when sending SNMP requests using these
details.

securitylevel Enumerated
value

Flag indicating SNMPv3 security level.
Possible values are:

• noAuthNoPriv
• authNoPriv
• authPriv

defaultcontext Text SNMPv3 contextName to be used when not
explicitly specified by a discovery agent.

ncmonitor.snmpUser table
The snmpUser table provides a list of SNMP user details to be used by the SNMPv3 protocol.

Table 202. ncmonitor.snmpUser database table

Column name Constraints Data type Description

userid • PRIMARY KEY
• NOT NULL

Text Unique identifier for this user.

username Text USM username.

authpass Text Authentication password.

privpass Text Privacy password. This is used for
encrypting the SNMPv3 payload.

authtype Text Encryption method to be used for the
SNMPv3 authentication header.

privtype Text Encryption method to be used for the
payload.

Chapter 13. Polling databases 419

Table 202. ncmonitor.snmpUser database table (continued)

Column name Constraints Data type Description

encrypted Boolean
integer

Flag indicating authpass and authtype
fields are encrypted. Possible values are:

• 0: not encrypted
• 1: encrypted

Ping polling status tables
The NCMONITOR ping polling status tables enable diagnostic operations to be performed on network ping
polling.

expectedIps table
The expectedIps table contains a list of IP addresses expected to be discovered by Network Manager for
a particular domain. It is populated using the ncp_upload_expected_ips.pl script.

The following table lists the columns in the expectedIps table.

Table 203. ncmonitor.expectedIps database table

Column name Description

ip A dot-notation IPv4 address that is expected to have been
discovered and added to the NCIM topology database.

domainMgrId The ID of the relevant domain, as found in the NCIM topology
database domainMgr table.

pollLog table
The pollLog table stores the latest snapshot of the status of the Polling engine. It is populated using the
ncp_ping_poller_snapshot.pl script which queries ncp_poller, and transfers the results to this table.

Each row in this table corresponds to a single entity that is within the defined scope of a single active
polling policy. The fields in the table can be divided into three conceptual groupings:
“Entity information” on page 420

This entity information can be used to cross-reference with other NCIM topology database tables.
“Managed status information” on page 421

This is the managed status being applied by the poll policy.
“Latest poll state information” on page 422

This is the latest poll state for the current entity and policy.

Entity information
Fields in the pollLog table that store entity information are described below.

Table 204. ncmonitor.pollLog database table entity information fields

Column name Description

entityId ID of the entity to ping, as defined in the NCIM topology database
entityData table.

policyId ID of the relevant ping policy, as defined in the NCMONITOR
policy table.

420 IBM Tivoli Network Manager IP Edition: Reference

Table 204. ncmonitor.pollLog database table entity information fields (continued)

Column name Description

mainNodeEntityId ID of the main node that the entity belongs to, as defined in the
NCIM topology database entityData table. For Chassis Ping polls,
this is the same as the entityId. For Interface Ping polls, this is
the ID of the main node containing the interface.

entityType As defined in the NCIM topology database entityType table, this
field can take one of the following values:

• 1: Chassis Ping polls
• 2 Interface Ping polls

ip IP address to which the ICMP ping packet was sent. This is the
accessIPAddress of the interface or chassis entity identified by
entityId.

mainNodeAddress IP address of the main node that the entity belongs to, as found in
the NCIM topology database entityData table. This is the
accessIPAddress of the chassis entity identified by
mainNodeEntityId.

ifIndex The ifIndex of the relevant interface might be available for
Interface Ping polls. This can be NULL for any ping poll.

domainMgrId ID of the relevant domain, as found in the NCIM topology
database domainMgr table.

Managed status information
Fields in the pollLog table that store managed status information are described below.

Table 205. ncmonitor.pollLog database table managed status information fields

Column name Description

isManaged Indicates whether the entity is being polled by this policy?

• 0: False
• 1: True

entityStatus Managed status of the entity identified by entityId that is being
used by the poller. The value of this field is set to 0 if managed,
whether explicitly listed in the NCIM managedStatus table or not.

Note: This is the status at the time of the snapshot, and therefore
can differ from the contents of the NCIM managedStatus table if
it is dynamically altered.

mainNodeStatus Managed status of the entity identified by mainNodeEntityId that
is being used by the poller. Interfaces within an unmanaged main
node are also unmanaged. The value of this field is set to 0 if
managed, whether explicitly listed in the NCIM managedStatus
table or not.

Note: This is the status at the time of the snapshot, and therefore
can differ from the contents of the NCIM managedStatus table if
it is dynamically altered.

entityChangeTime Timestamp of the last change to the entityStatus field. Defaults to
a zero timestamp if unused.

Chapter 13. Polling databases 421

Table 205. ncmonitor.pollLog database table managed status information fields (continued)

Column name Description

mainNodeChangeTime Timestamp of the last change to the mainNodeStatus field.
Defaults to a zero timestamp if unused.

Latest poll state information
Fields in the pollLog table that store latest poll state information are described below.

Table 206. ncmonitor.pollLog database table latest poll state information fields

Column name Description

lastPollFailure Last time at which a ping poll failure event was raised. Defaults to
a zero timestamp if no poll failures have been raised since the
poller was started.

lastPollInterval Duration of the last complete polling cycle, in seconds. This field
is NULL if the policy is not actively monitoring the entity or a
complete poll cycle has not finished since the poller started.

Note: The system must be on the third polling interval when the
snapshot is taken.

timeSinceLastPoll Number of seconds since the last poll, at the time the snapshot
was taken.

snapshotTime Time at which the data was retrieved from the poller. This is a
zero timestamp if the policy is not actively monitoring the entity.

pollLogSummary table
This table stores a summary of the results for each snapshot written to the pollLog table for a domain,
generated using the views listed in the following sections. It is populated using the
ncp_ping_poller_snapshot.pl script which queries the poller, and transfers the results to this table.

The following table lists the columns in the pollLogSummary table.

Note: The ncp_ping_poller_snapshot.pl script never clears out existing data from this table, so the table
can grow. If required, data that is no longer of interest can be removed by filtering against the
domainMgrId or the summaryTimestamp fields.

Table 207. ncmonitor.pollLogSummary database table

Column name Description

domainMgrId ID of the relevant domain, as found in the NCIM domainMgr table.

domainName Name of the domain identified by the domainMgrId.

undiscoveredIps Count of IP addresses returned from the undiscoveredIps view
for this domain after the snapshot was loaded to the pollLog.

unmonitoredIps Count of IP addresses returned from the unmonitoredIps view for
this domain after the snapshot was loaded to the pollLog.

unmanagedIps Count of IP addresses returned from the unmanagedIps view for
this domain after the snapshot was loaded to the pollLog.

unpolledFor15MinutesIps Count of IP addresses returned from the
unpolledFor15MinutesIps view for this domain after the snapshot
was loaded to the pollLog.

422 IBM Tivoli Network Manager IP Edition: Reference

Table 207. ncmonitor.pollLogSummary database table (continued)

Column name Description

delayedPollPolicies Count of IP addresses returned from the delayedPollPolicies view
for this domain after the snapshot was loaded to the pollLog
table.

summaryTimestamp Timestamp indicating when the summary was generated.

undiscoveredIps view
The undiscoveredIps view lists any IP addresses that were are not discovered by Network Manager and
therefore are not listed in the NCIM topology database, but that you expected to discover. The IP
addresses listed in this table are those that were loaded into the expectedIps table but are not present in
NCIM.

The following table lists the columns in the undiscoveredIps view.

Table 208. ncmonitor undiscoveredIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have been
discovered and added to the NCIM topology database.

domainMgrId The ID of the relevant domain, as found in the NCIM topology
database domainMgr table.

domainName The name of the domain identified by the domainMgrId column..

unmonitoredIps view
The unmonitoredIps view uses the latest poller snapshot from the pollLog table to list any IP addresses
from the expectedIps table that are not currently being polled because they are not in the scope of any
active ping policy.

The following table lists the columns in the unmonitoredIps view.

Table 209. ncmonitor unmonitoredIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have been
discovered and added to the NCIM topology database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM entityData
table.

entityId The entityId of the interface, as found in the NCIM entityData
table.

class The entityClass of the main node, as defined by the NCIM
classMembers and entityClass tables.

domainMgrId The ID of the relevant domain, as found in the NCIM topology
database domainMgr table.

domainName The name of the domain identified by the domainMgrId column.

Chapter 13. Polling databases 423

unmanagedIps view
The unmanagedIps view uses the latest poller snapshot from the pollLog table to list any IP addresses
from the expectedIps table that are in the scope of active ping policies, but that are not being monitored
because they are unmanaged. This is based on the managed status known to the poller at the time of the
snapshot.

The following table lists the columns in the unmanagedIps view.

Table 210. ncmonitor unmanagedIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have been
discovered and added to the NCIM topology database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM entityData
table.

entityId The entityId of the interface, as found in the NCIM entityData
table.

class The entityClass of the main node, as defined by the NCIM
classMembers and entityClass tables.

domainMgrId The ID of the relevant domain, as found in the NCIM topology
database domainMgr table.

domainName The name of the domain identified by the domainMgrId column.

unpolledFor15MinutesIps view
The unpolledFor15MinutesIps view uses the latest poller snapshot from the pollLog table to list any IP
addresses from the expectedIps table that have not been ping polled at all in the last 15 minutes. This
includes any IP addresses that are unmanaged or outside the scope of the configured ping polling
policies.

The following table lists the columns in the unpolledFor15MinutesIps view.

Table 211. ncmonitor unpolledFor15MinutesIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have been
discovered and added to the NCIM topology database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM entityData
table.

entityId The entityId of the interface, as found in the NCIM entityData
table.

class The entityClass of the main node, as defined by the NCIM
classMembers and entityClass tables.

domainMgrId The ID of the relevant domain, as found in the NCIM topology
database domainMgr table.

domainName The name of the domain identified by the domainMgrId column.

424 IBM Tivoli Network Manager IP Edition: Reference

delayedPollPolicies view
The delayedPollPolicies view uses the latest poller snapshot from the pollLog table to list all active ping
policies are lagging behind schedule.

If the current or previous time interval in the poll cycle (measured from the time at which the poller
snapshot was taken) are greater than twice the configured poll interval, the entity and the relevant policy
will be listed in this view. This excludes entities that are out of poll scope (see unmonitoredIps view) or
that have been unmanaged (see unmanagedIps view), and only applies to the latest snapshot in the
pollLog table.

The following table lists the columns in the delayedPollPolicies view.

Table 212. ncmonitor delayedPollPolicies view

Column name Description

ip A dot-notation IPv4 address that is expected to have been
discovered and added to the NCIM topology database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM entityData
table.

entityId The entityId of the interface, as found in the NCIM entityData
table.

entityType As defined in the NCIM entityType table, this will be:

• 1 for Chassis Ping polls
• 2 for Interface Ping polls

policy The policyName of the ping policy, as found in the NCMONITOR
policy table.

configuredPollInterval The configured pollInterval of the ping policy, as found in the
NCMONITOR policy table.

lastPollInterval The duration of the last complete polling cycle, in seconds.

timeSinceLastPoll The number of seconds since the last poll, at the time the
snapshot was taken.

domainMgrId The ID of the relevant domain, as found in the NCIM topology
database domainMgr table.

domainName The name of the domain identified by the domainMgrId column.

discoveredIps view
The discoveredIps view lists all IP addresses in the NCIM topology database, together with details of the
associated device.

The following table lists the columns in the discoveredIps view.

Table 213. ncmonitor discoveredIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have been
discovered and added to the NCIM topology database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

Chapter 13. Polling databases 425

Table 213. ncmonitor discoveredIps view (continued)

Column name Description

mainNodeEntityId The entityId of the main node, as found in the NCIM entityData
table.

entityId The entityId of the interface, as found in the NCIM entityData
table.

class The entityClass of the main node, as defined by the NCIM
classMembers and entityClass tables.

mainNodeMgdStatus The current managed status of the main node, as found in the
NCIM managedStatus table.

entityMgdStatus The current managed status of the entity, as found in the NCIM
managedStatus table.

domainMgrId The ID of the relevant domain, as found in the NCIM topology
database domainMgr table.

domainName The name of the domain identified by the domainMgrId column.

managementInterfaceIps view
The managementInterfaceIps view lists SNMP management interface IP addresses for all devices for
which Network Manager obtained SNMP access. It does not list the IP addresses of chassis for which no
SNMP access was obtained.

For SNMP-accessible devices, the IP address assigned to the chassis by Network Manager must also be
the IP address of an interface on that device. This view therefore displays the set of IP addresses which
can be monitored by both chassis ping polls and interface ping polls.

The following table describes the columns in the managementInterfaceIps view.

Table 214. ncmonitor managementInterfaceIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have been
discovered and added to the NCIM topology database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM entityData
table.

entityId The entityId of the interface, as found in the NCIM entityData
table.

class The entityClass of the main node, as defined by the NCIM
classMembers and entityClass tables.

ifIndex The ifIndex of the interface from the NCIM interface table.

mainNodeMgdStatus Managed status of the chassis entity identified by the
mainNodeEntityId column from the last poller snapshot.

interfaceMgdStatus Managed status of the interface entity identified by the
mainNodeEntityId column from the last poller snapshot.

domainMgrId The ID of the relevant domain, as found in the NCIM topology
database domainMgr table.

426 IBM Tivoli Network Manager IP Edition: Reference

Table 214. ncmonitor managementInterfaceIps view (continued)

Column name Description

domainName The name of the domain identified by the domainMgrId column.

chassisOnlyIps view
The chassisOnlyIps view lists the IP addresses which can only be monitored with the chassis ping polls,
as no interfaces with IP addresses have been discovered on these devices. This is usually the case when
Network Manager failed to obtain SNMP access to the device, although it can also depend on the
discovery configuration.

The following table lists the columns in the chassisOnlyIps view.

Table 215. ncmonitor chassisOnlyIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have been
discovered and added to the NCIM topology database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM entityData
table.

class The entityClass of the main node, as defined by the NCIM
classMembers and entityClass tables.

mainNodeMgdStatus Managed status of the chassis entity identified by the
mainNodeEntityId column from the last poller snapshot.

domainMgrId The ID of the relevant domain, as found in the NCIM topology
database domainMgr table.

domainName The name of the domain identified by the domainMgrId column.

unpollableIps view
The unpollableIps view lists the IP addresses that the poller will not attempt to ping poll. These IP
addresses can be monitored using SNMP poll policies.

These are only the secondary IP addresses of multinet interfaces, where a single interface has multiple IP
addresses. Ping polls work from the accessIPAddress field of the NCIM chassis and interface tables, and
thus only a single IP address per interface can be monitored using ping polls.

The following table lists the columns in the unpollableIps view.

Table 216. ncmonitor unpollableIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have been
discovered and added to the NCIM topology database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM entityData
table.

class The entityClass of the main node, as defined by the NCIM
classMembers and entityClass tables.

Chapter 13. Polling databases 427

Table 216. ncmonitor unpollableIps view (continued)

Column name Description

ifIndex ifIndex The ifIndex of the interface from the NCIM interface table.

interfaceAccessIp interfaceAccessIp The primary, pollable IP address for the multi-
net interface that has this ip as a secondary IP address.

mainNodeMgdStatus Managed status of the chassis entity identified by the
mainNodeEntityId column from the last poller snapshot.

interfaceMgdStatus interfaceMgdStatus Managed status of the interface entity
identified by mainNodeEntityId from the last poller snapshot.

domainMgrId The ID of the relevant domain, as found in the NCIM topology
database domainMgr table.

domainName The name of the domain identified by the domainMgrId column.

NCPOLLDATA database
The NCPOLLDATA database stores raw and historical polled data. It is used by dashboard widgets and
reports to present polling data.

The NCPOLLDATA database
The NCPOLLDATA database stores a data that is used by the Polling engine to administer polling and to
administer storage and pruning of historical poll data. It also stores raw collected by the pollers and
historical poll data that is derived from the raw data.

The NCPOLLDATA database tables fall into the following categories:

• Tables indicating which entities to poll.
• Tables indicating how to poll.
• Tables containing raw and historical poll data.
• Tables containing information on how to prune raw and historical poll data.
• Tables that are used by the Apache Storm real-time computation system when it is managing the

aggregation of raw poll data into historical poll data.
• Views that are used by the Top Performers GUI to support the visualization of raw and historical poll

data.

Tables indicating which entities to poll
The following tables contain subsets of data from the NCIM topology database. The Polling engine,
ncp_poller, uses data from these tables to determine which entities to poll.

• domainMgr
• monitoredEntity
• monitoredChassis
• monitoredInterface

Tables indicating how to poll
The following tables contain subsets of data from the NCMONITOR database. The Polling engine,
ncp_poller, uses data from these tables to determine how to poll.

• poller
• template

428 IBM Tivoli Network Manager IP Edition: Reference

• policy
• poll
• monitoredInstance
• pollInstance
• monitoredObject

Tables containing raw and historical poll data
The following tables store raw and historical poll data.

• pollData
• pdEwmaForDay
• pdEwmaForWeek
• pdEwmaForMonth
• pdEwmaForYear

Note: The pollBatch table is related to the pollData table and contains identifiers used in the
pollData table records.

Tables containing partition information
The following tables contain data on partitioning. The NCPOLLDATA tables that contain raw and historical
poll data are partitioned to enable data pruning. These partitioning tables are used by the Polling engine,
ncp_poller to manage the partitioning of raw and historical poll data tables.

• pollDataPartitions
• detachedPartitions
• partitionSizes
• partitionLog

Tables used by Apache Storm
The following tables are used by the Apache Storm real-time computation system to manage the
aggregation of raw poll data into historical poll data.

• getPollDataLog
• master
• mastershipAuditTrail
• mastershipCheck

Views used by the GUI
The following views are used by the Top Performers GUI to support the visualization of raw and historical
poll data.

• KNP_POLL_DATA_COLLECTION
• pollItemView
• PERFORMANCE_DATA
• PERFORMANCE_DATA_DAILY
• PERFORMANCE_DATA_WEEKLY
• PERFORMANCE_DATA_MONTHLY
• PERFORMANCE_DATA_YEARLY
• CHASSIS_PERFORMANCE_DATA
• NETWORK_VIEW_PERF_DATA
• NETWORK_VIEW_PERF_DATA_DAILY

Chapter 13. Polling databases 429

• NETWORK_VIEW_PERF_DATA_WEEKLY
• NETWORK_VIEW_PERF_DATA_MONTHLY
• NETWORK_VIEW_PERF_DATA_YEARLY
• POLICIES_PER_NETWORK_VIEW

NCPOLLDATA queries
Use these sample NCPOLLDATA queries to investigate issues associated with partioning of poll data
tables.

Logging in to the NCPOLLDATA database
Log in to the NCPOLLDATA database to run an SQL query that retrieves polling data.

To log in to NCPOLLDATA using ncp_oql you must log in using the ncim service and specify the
NCPOLLDATA database identifier. You must also provide a valid NCIM user name and password. The
default user name for the NCIM database user is ncim. The default password is ncim.

To log in to NCPOLLDATA enter the following command:

ncp_oql -domain DOMAIN -service ncim -username USERNAME -password PASSWORD

Where:

• DOMAIN is any Network Manager domain. The pollers run across all domains so it does not matter
which domain you choose.

• USERNAME is the user name for the NCIM database user. The default is ncim.
• PASSWORD is the password for the NCIM database user. The default is ncim.

Show partitions allocated to a specific raw or historical poll data table
This query lists the partitions allocated to a specific raw or historical poll data table. This query is useful if
you want to investigate whether all partitions are being created properly.

The sample query provided shows partitions allocated to the raw poll data , pollData. By default, this table
stores approximately an hour of raw poll data, and the table is partitioned into 8 partitions of 10 minutes
each. Check the results of this query to make sure that the upper and lower ranges of the partition reflect
expected values according to the clock on the server hosting the database. If these times are not current
then either the relevant instance of the Polling engine, ncp_poller, is not runnning, or there is a problem
creating new partitions.

Example
This example query displays sample SQL to show partitions allocated to the raw poll data , pollData.

select TABNAME,DATAPARTITIONNAME,LOWTIME,HIGHTIME
from ncpolldata.pollDataPartitions
WHERE TABNAME = 'POLLDATA'
ORDER BY HIGHTIME

The table below describes this query.

430 IBM Tivoli Network Manager IP Edition: Reference

Table 217. Description of the query

Line numbers Description

1 Specify the data to show in the results.

• TABNAME: name of thje table to which the partitions belong.
• DATAPARTITIONNAME: name of the partitions.
• LOWTIME: lower time limit for the partition.
• HIGHTIME: upper time limit for the partition.

2 Specify the pollDataPartitions table as the driving table for this query.

3 Limit the partition data retrieved to those partitions related to the pollData table.

4 List results in order of the HIGHTIME column. This orders the data by latest partition
first.

Results
The table below shows sample results for this query.

Table 218. Results of the query

Table name Partition name Low time High time

POLLDATA PART_1439376000 2015-08-13 13:00:00 2015-08-13 13:10:00

POLLDATA PART_1439376600 2015-08-13 13:10:00 2015-08-13 13:20:00

POLLDATA PART_1439377200 2015-08-13 12:00:00 2015-08-13 12:10:00

POLLDATA PART_1439377800 2015-08-13 12:10:00 2015-08-13 12:20:00

POLLDATA PART_1439378400 2015-08-13 12:20:00 2015-08-13 12:30:00

POLLDATA PART_1439374200 2015-08-13 12:30:00 2015-08-13 12:40:00

POLLDATA PART_1439374800 2015-08-13 12:40:00 2015-08-13 12:50:00

POLLDATA PART_1439374800 2015-08-13 12:50:00 2015-08-13 13:00:00

Show which partitions have recently been detached and dropped
This query shows the recent history of which partitions have been detached and then dropped and also
those which have not yet been detached but are pending a drop soon. This query is useful if you want to
investigate whether partitions are being detached and dropped correctly.

When running this query, check the value of the status field. It should normally cycle through the
following states: it begins as pending then becomes detaching and ends up as dropped. If the
status value remains as pending for an extended length of time then that would indicate that the poller
pruning thread is not running. If it remains at detaching for an an extended length of time then this is an
indication that there are problems detaching partitions.

The sample query provided shows data related to partitions being detached from the raw poll data table,
pollData. Check the status value for these partitions; any status value that does not cycle to
dropped but stays at pending or detaching might indicate an issue that requires further investigation.

Chapter 13. Polling databases 431

Example
This example query displays data related partitions being detached from the raw poll data , pollData.

select TABNAME,DETACHTIME,CLIENTID,DATAPARTITIONNAME,LOWTIME,HIGHTIME,STATUS
from ncpolldata.detachedPartitions
WHERE TABNAME = 'POLLDATA'
ORDER BY HIGHTIME

The table below describes this query.

Table 219. Description of the query

Line numbers Description

1 Specify the data to show in the results.

• TABNAME: table name to which the partitions belong.
• DETACHTIME: time at which the partition detach operation was requested .
• CLIENTID: name of the poller that handled the detach operation.
• DATAPARTITIONNAME: name of the related partition.
• LOWTIME: lower time limit of data in that partition.
• HIGHTIME: upper time limit of data in that partition.
• STATUS: takes one of the following values: pending, detaching or dropped.

2 Specify the detachedPartitions table as the driving table for this query.

3 Limit the partition data retrieved to those partitions detached from the pollData table.

4 List results in order of the HIGHTIME column. This orders the data by latest partition
first.

Results
The table below shows sample results for this query.

Table
name

Detach time Client ID Partition
name

Low time High time Status

POLL
DATA

2015-08-13
11:40:14

ncp_poller_
default_POLLDATA

PART_143
9458800

2015-08-13
10:30:00

2015-08-13
10:40:00

dropped

POLL
DATA

2015-08-13
11:50:20

ncp_poller_
default_POLLDATA

PART_143
9459400

2015-08-13
10:40:00

2015-08-13
10:50:00

dropped

POLL
DATA

2015-08-13
12:00:15

ncp_poller_
default_POLLDATA

PART_143
9460000

2015-08-13
10:50:00

2015-08-13
11:00:00

dropped

POLL
DATA

2015-08-13
12:10:20

ncp_poller_
default_POLLDATA

PART_143
9460600

2015-08-13
11:00:00

2015-08-13
11:10:00

dropped

POLL
DATA

2015-08-13
12:20:15

ncp_poller_
default_POLLDATA

PART_143
9461200

2015-08-13
11:10:00

2015-08-13
11:20:00

dropped

POLL
DATA

2015-08-13
12:30:10

ncp_poller_
default_POLLDATA

PART_143
9461800

2015-08-13
11:20:00

2015-08-13
11:30:00

dropped

432 IBM Tivoli Network Manager IP Edition: Reference

Table
name

Detach time Client ID Partition
name

Low time High time Status

POLL
DATA

2015-08-13
12:40:15

ncp_poller_
default_POLLDATA

PART_143
9462400

2015-08-13
11:30:00

2015-08-13
11:40:00

dropped

POLL
DATA

2015-08-13
12:50:10

ncp_poller_
default_POLLDATA

PART_143
9463000

2015-08-13
11:40:00

2015-08-13
11:50:00

dropped

POLL
DATA

2015-08-13
13:00:15

ncp_poller_
default_POLLDATA

PART_143
9463600

2015-08-13
11:50:00

2015-08-13
12:00:00

dropped

POLL
DATA

2015-08-13
13:10:11

ncp_poller_
default_POLLDATA

PART_143
9464120

2015-08-13
12:00:00

2015-08-13
12:10:00

dropped

Show log messages for recently attached and detached partitions
This query displays log messages for recently attached and detached partitions.

You are unlikely to run this query unless prompted to by log errors or alerts. However, if you run this query
and you notice that the logmsg field has the value %SQLCODE% this could mean that the database is
having problems partitioning.

The sample query provided shows log messages for partitions related to the raw poll data, pollData.

Example
This example query displays log messages for partitions related to the raw poll data, pollData.

select LOGID,TABNAME,CLIENTID,LOGTIME,LOGMSG
from ncpolldata.partitionLog
WHERE TABNAME = 'POLLDATA'
ORDER BY LOGTIME, LOGID

The table below describes this query.

Table 220. Description of the query

Line numbers Description

1 Specify the data to show in the results.

• LOGID: identifier for this log message.
• TABNAME: table name to which the partitions belong.
• CLIENTID: name of the poller that handled the detach operation.
• LOGTIME: time the message was logged.
• LOGMSG: content of the log message.

2 Specify the partitionLog table as the driving table for this query.

3 Limit the partition data retrieved to those partitions related to the pollData table.

4 List results in order of the time the message was logged, and then by the content of the
log message.

Results
The table below shows a subset of results for this query.Results of the query

Chapter 13. Polling databases 433

Log ID Table
name

Client ID Log time Log message

10101 POLLDAT
A

ncp_poller_
default_POLLDATA

2015-08-12
10:40:14

Start
ATTACH_POLLDATA_PARTITION
for: POLLDATA with
pollTime: 1439372404

10102 POLLDAT
A

ncp_poller_
default_POLLDATA

2015-08-12
10:40:14

Checking for partition
in: POLLDATA with
highValue: 1439373600

10103 POLLDAT
A

ncp_poller_
default_POLLDATA

2015-08-12
10:40:14

Created partition in:
POLLDATA with highValue:
1439373600

10104 POLLDAT
A

ncp_poller_
default_POLLDATA

2015-08-12
10:40:14

Partition pending detach:
PART_1439368800 id 6 with
highValue: 1439368800

10105 POLLDAT
A

ncp_poller_
default_POLLDATA

2015-08-12
10:40:14

End
ATTACH_POLLDATA_PARTITION
for: POLLDATA with
pollTime: 1439372404

10106 POLLDAT
A

ncp_poller_
default_POLLDATA

2015-08-12
10:40:19

Start
DETACH_POLLDATA_PARTITION

10107 POLLDAT
A

ncp_poller_
default_POLLDATA

2015-08-12
10:40:19

Detaching partition:
PART_1439368800 with
hightValue: 1439368800
into:
POLLDATA_PART_1439368800

10108 POLLDAT
A

ncp_poller_
default_POLLDATA

2015-08-12
10:40:19

Finished waiting for
detach of:
PART_1439368800 from:
POLLDATA

10109 POLLDAT
A

ncp_poller_
default_POLLDATA

2015-08-12
10:40:19

Dropped detached table:
POLLDATA_PART_1439368800

101010 POLLDAT
A

ncp_poller_
default_POLLDATA

2015-08-12
10:50:09

End
DETACH_POLLDATA_PARTITION

OQL databases
The embedded OQL polling databases provide a number of polling configuration options.

config database for polling
The config database is used by the polling engine, ncp_poller, for a variety of purposes, including
diagnostic and debugging purposes, facilitating failover in high availability deployments, debugging the
MIB grapher, and configuring the storage limit for historical performance data.

The config database for polling is defined in $NCHOME/etc/precision/NcPollerSchema.cfg.

The config database has the following tables:

434 IBM Tivoli Network Manager IP Edition: Reference

• config.properties
• config.failover
• config.realTimeControl
• config.pruning

config.properties table
The config.properties table provides the option to configure a number of polling settings.

You can set the values in the config.properties table by editing the following file: $NCHOME/etc/
precision/NcPollerSchema.cfg.

The following table describes the columns in the config.properties table.

Table 221. config.properties database table

Column name Constraints Data type Description

CheckOutOfOrderOid Boolean
integer

If this value is 1, the SNMP Helper
stops retrieving data if the returned
OIDs are out of order. This is the
default setting.

If you want the SNMP Helper to
continue to retrieve data from non-
contiguous indexes, that is, to step
over gaps in the returned data, set
this to 0.

CheckPollDataValueRange Boolean
integer

If this value is 1, the values to be
inserted into the pollData.value field
are are checked to make sure that
they are valid 32-bit signed integers.
Set this value to 0 to bypass this
check. Bypass this check only if you
know that the output of the relevant
polls is not likely to cause problems,
and the ncpolldata schema is able to
handle the output.

DefaultGetBulkMaxReps Integer This property defines the number
assigned to the max-repetitions
field in GetBulk requests issued by
Network Manager processes. The
value 20 is used when the GetBulk
request contains a single varbind. If
multiple varbinds are included, then
the value is adjusted accordingly
(divided by the number of varbinds),
so that responses always contain a
similar number of varbinds.

DiscoverInitialAccess Boolean
integer

If set to 1 (the default), the
ncp_poller process tests SNMP
credentials when it starts. Set to 0 to
bypass this test.

Chapter 13. Polling databases 435

Table 221. config.properties database table (continued)

Column name Constraints Data type Description

LogAccessCredentials Boolean
integer

Controls whether SNMP access
credentials (community strings and
passwords) appear in plain text. If
this is set to false then these strings
are replaced with a fixed length
string of asterisks. Default is False.

ManagedStatusUpdateInterval Integer Interval in seconds at which the
ncp_poller process scans the NCIM
managedStatus table for changes.
This is the maximum time the poller
should take to react to changes in
managed status made in any of the
following GUIs: Network Views,
Network Hop View, Structure
Browser. Default is 30 seconds.

PolicyUpdateInterval Integer Interval in seconds at which the
ncp_poller process scans the
ncmonitor database for changes to
poll policy configuration. Default is
30 seconds.

PollerProfiling Boolean
integer

SNMP and ICMP profiling is a
collection of data about the various
SNMP and ICMP operations being
performed by the Polling engine,
ncp_poller. This profiling data is
collected at a very low level in
ncp_poller and therefore results in
performance issue when ncp_poller
is processing a heavy SNMP load;
therefore profiling is turned off by
default. Takes the following values:

• 0: Default value. Poller profiling is
off.

• 1: Poller profiling is on.

Warning: Do not change the
default setting unless
advised to do so by IBM
Support.

436 IBM Tivoli Network Manager IP Edition: Reference

Table 221. config.properties database table (continued)

Column name Constraints Data type Description

UseGetBulk Boolean
integer

By default, GetBulk is not used. Set
this parameter to one of the
following values:

• 0: Default value. GetBulk is not
used by the SNMP Helper.

• 1: Set this value to configure the
SNMP Helper to use GetBulk
requests in place of GetNext
requests when SNMPv2 or v3 is
used.

config.failover table
The config.failover provides the option to configure failover settings for polling.

The following table describes the columns in the config.failover table.

Table 222. config.failover database table

Column name Constraints Data type Description

FailedOver Not NULL Boolean
integer

Used to facilitate failover in high availability
deployments. This value must never be
modified. You can check this value to
determine whether the system has failed
over. This field can take the following
values:

• 0: poller in the primary domain is actively
polling, and the backup poller is on
standby

• 1: primary poller is not actively polling,
and the backup poller has taken over

ReadyState Not NULL Integer ReadyState is for ncp_ctrl. It is an
internal state field used to determine when
the poller process should start sending
heartbeats. 0 is the initial value on startup,
1 is an internal intermediate state, and 2 is
ready when the process starts transmitting
heartbeats.

ReadyState on the Backup server changes
only when the server becomes active and
all policies started. Until then it will be set
to 0.

config.realTimeControl table
The config.realTimeControl provides the option to configure settings for the managing real-time poll
policies in the MIB Grapher.

The following table describes the columns in the config.realTimeControl table. This table is used by the
MIB Grapher application to maintain real-time poll policies. Although the table is not of general use, it can
be used to debug MIB graphs if a problem is encountered.

Chapter 13. Polling databases 437

Table 223. config.realTimeControl database table

Column name Constraints Data type Description

POLICYID Not NULL

Primary key

Integer If there are any real-time graphs active, a
record will exist for each one in this
table, corresponding to the poll policy
created for each graph and referenced
using this POLICYID field.

HEARTBEATCOUNT Not NULL Integer Provides an indication of how long the
graph has been active. This value
represents the number of times the
graph has updated the record.

CHANGETIME Timestamp UNIX timestamp indicating the last time
a 'heartbeat' was received.

config.tableMonitor table
The config.tableMonitor table stores data that is used to monitor the raw and historical poll data tables in
the NCPOLLDATA database.

The following table describes the columns in the config.tableMonitor table.

Table 224. config.tableMonitor database table

Column name Constraints Data type Description

MAXPOLLDATARATE NOT NULL LONG64 Defines the maximum insertion rate to the raw
poll data table NCPOLLDATA.polldata in units of
rows of data per hour. By default, this value is
20,000,000 (20 million) rows per hour.

MAXDAILYDATAAGE NOT NULL LONG64 Defines the maximum age, in hours, for the data
in the daily summary poll data table
NCPOLLDATA.pdEwmaForDay. Data in this table
is capped at 24 hours. If the age of data in this
table exceeds the limit in the
MAXDAILYDATAAGE field, then the Polling
engine, ncp_poller logs a message and issues an
alert.

By default, this value is 25.

MAXWEEKLYDATAAGE NOT NULL LONG64 Defines the maximum age, in days, for the data in
the daily summary poll data table
NCPOLLDATA.pdEwmaForWeek. Data in this
table is capped at 7 days. If the age of data in this
table exceeds the limit in the
MAXWEEKLYDATAAGE field, then the Polling
engine, ncp_poller logs a message and issues an
alert.

By default, this value is 8.

438 IBM Tivoli Network Manager IP Edition: Reference

Table 224. config.tableMonitor database table (continued)

Column name Constraints Data type Description

MAXMONTHLYDATAAGE NOT NULL LONG64 Defines the maximum age, in days, for the data in
the daily summary poll data table
NCPOLLDATA.pdEwmaForMonth. Data in this
table is capped at 30 days. If the age of data in
this table exceeds the limit in the
MAXMONTHLYDATAAGE field, then the Polling
engine, ncp_poller logs a message and issues an
alert.

By default, this value is 32.

MAXYEARLYDATAAGE NOT NULL LONG64 Defines the maximum age, in days, for the data in
the daily summary poll data table
NCPOLLDATA.pdEwmaForYear. Data in this table
is capped at 365 days. If the age of data in this
table exceeds the limit in the
MAXYEARLYDATAAGE field, then the Polling
engine, ncp_poller logs a message and issues an
alert.

By default, this value is 395.

profiling database for polling
The profiling database is used by the polling engine, ncp_poller, for a variety of purposes, including the
storage of summary information for poll policies and poll definitions, ping and SNMP response statistics,
and general profiling statistics.

The profiling database for polling is defined in $NCHOME/etc/precision/NcPollerSchema.cfg.

The profiling database has the following tables:

• profiling.policy
• profiling.icmp
• profiling.snmp
• profiling.engine

profiling.policy table
The profiling.policy table provides summary information for poll policies and poll definitions.

The following table describes the columns in the profiling.policy table.

Table 225. profiling.policy database table

Column name Constraints Data type Description

AVGSCOPETIME Not NULL Integer The average time taken to evaluate the
scope of each poll (not counting the first
poll).

FIRSTSCOPETIME Not NULL Integer Time taken, in CPU clock ticks, for the list of
entities in scope for the poll to be evaluated
for the first time.

ENTITYCOUNT Not NULL Integer Number of entities being monitored by this
poll policy and poll definition combination.

Chapter 13. Polling databases 439

Table 225. profiling.policy database table (continued)

Column name Constraints Data type Description

POLICYID Not NULL

Primary key

Integer Value of the ncmonitor.poll.policyId field.

POLICYNAME Not NULL Text Value of the ncmonitor.policy.policyName
field.

SCOPETIME Not NULL Integer The total time taken, in CPU clock ticks, for
the list of entities in scope for the poll to be
evaluated, excluding the first time.

SCOPECOUNT Not NULL Integer The number of times that the scope of the
poll has been evaluated.

TARGETCOUNT Not NULL Integer Number of addresses being polled by this
poll policy and poll definition combination.

TEMPLATEID Not NULL

Primary key

Integer Value of the ncmonitor.poll.templateId
field.

profiling.icmp table
The profiling.icmp table stores information on ping response statistics.

The following table describes the columns in the profiling.icmp table.

Table 226. profiling.icmp database table

Column name Constraints Data type Description

IPVERSION Not NULL Text IPv4, IPv6, or all versions.

TIMEOUTS Not NULL Integer Number of ICMP requests for which no
replay has been received.

PACKETSIN Not NULL Text Number of ICMP packets received.

ERRORSIN Not NULL Integer Number of ICMP errors received.

PACKETSOUT Not NULL Integer Number of ICMP packets sent.

ERRORSOUT Not NULL Integer Total number of errors encountered when
sending ICMP packets.

profiling.snmp table
The profiling.snmp table stores information on SNMP response statistics.

The following table describes the columns in the profiling.snmp table.

Table 227. profiling.snmp database table

Column name Constraints Data type Description

ATTRIBUTESIN Not NULL Integer Total number of SNMP errors received.

440 IBM Tivoli Network Manager IP Edition: Reference

Table 227. profiling.snmp database table (continued)

Column name Constraints Data type Description

BACKOFFS Not NULL Integer Total number of times exponential backoff
was initiated.

DROPS Not NULL Integer Total number of packets received that were
not processed.

ERRORSOUT Not NULL Integer Total number of tooBig errors received.

GETOPERATIONS Not NULL Text Number of SNMP Get operations
performed.

GETBULKSOUT Not NULL Integer Total number of SNMP Get Bulk requests
sent.

IPADDR Not NULL Text Management IP address of the target
device.

GETNEXTOUT Not NULL Integer Total number of SNMP Get Next requests
sent.

GETSOUT Not NULL Integer Total number of SNMP Get requests sent.

NOSUCHNAMESIN Not NULL Integer Total number of noSuchName errors
received.

PACKETSIN Not NULL Integer Total number of SNMP packets received,
including errors.

PACKETSOUT Not NULL Integer Total number of SNMP packets sent.

RETRIES Not NULL Integer Total number of retries.

SETERRORSIN Not NULL Integer Number of errors received from Set
requests.

SETOPERATIONS Not NULL Integer Number of SNMP Set operations
performed.

SETSOUT Not NULL Integer Total number of Set requests sent.

TIMEOUTS Not NULL Integer Total number of SNMP operations that
timed out.

TOOBIGSIN Not NULL Integer Number of tooBig errors received.

WALKOPERATIONS Not NULL Integer Number of SNMP Walk operations
performed.

profiling.engine table
The profiling.engine table stores general profiling statistics information.

The following table describes the columns in the profiling.engine table.

Chapter 13. Polling databases 441

Table 228. profiling.engine database table

Column name Constraints Data type Description

STARTTIME Not NULL Timestamp Time when profiling started.

LASTUPDATE Not NULL Timestamp Last time profiling statistics were updated.

THREADSINUSE Not NULL Integer Number of active threads in the core polling
engine.

BATCHESQUEUED Not NULL Integer Number of batches that should be running
but for which there are no threads
available.

AVGBATCHTIME Not NULL Integer Average time in milliseconds to process
each batch of work.

442 IBM Tivoli Network Manager IP Edition: Reference

Chapter 14. Event enrichment databases
Use this information to understand the structure of databases used for event enrichment and for the
Event Gateway plug-ins.

ncp_g_event database
The Event Gateway database enables ncp_g_event, the Event Gateway, to transfer data between Network
Manager and Tivoli Netcool/OMNIbus.

The ncp_g_event database has the following database schema: config

The default configuration of the gateway is used for most systems. You can make adjustments to the
configuration settings by modifying the values inserted into the Event Gateway config database. This
database contains the configuration settings that define the operation of the Event Gateway. For example,
you can modify the mappings used between Network Manager and Tivoli Netcool/OMNIbus and the filters
that determine which events are processed.

Entity data used by the Event Gateway is stored in NCIM cache, which is a copy of the NCIM topology
database. For more information on NCIM cache see the IBM Tivoli Network Manager Reference.

For information about ncp_g_event command-line options, see the IBM Tivoli Network Manager IP Edition
Administration Guide.

Related reference
ncimCache database
This database stores topology updates from DNCIM.

The config database schema
The config database is used to configure event mapping between Tivoli Netcool/OMNIbus and Network
Manager.

The config database can also be used to define filters that limit the number of events passed between
Tivoli Netcool/OMNIbus and Network Manager.

The table below summarizes the config database schema. This schema is defined in NCHOME/etc/
precision/EventGatewaySchema.cfg. You can specify domain-specific versions of this file using the
format: NCHOME/etc/precision/EventGatewaySchema.domain_name.cfg, where domain_name
is the name of your domain; for example, NCHOME/etc/precision/
EventGatewaySchema.NCOMS.cfg.

Table 229. config database summary

Database name config

Defined in NCHOME/etc/precision/EventGatewaySchema.cfg

Fully qualified database table names config.defaults

config.eventMaps

config.failover

config.nco2ncp

config.ncp2nco

config.precedence

The topics below describe the database tables of the config database.

© Copyright IBM Corp. 2006, 2021 443

config.defaults table
The config.defaults table contains general configuration data for the Event Gateway.

The table below describes the config.defaults table.

Note: The fields NcoAuthUserName and NcoAuthPassword are now configured in the $NCHOME/etc/
precision/NcoLogins.DOMAIN.cfg file.

Table 230. config.defaults Table Description

Column Name Constraints Data Type Description

IDUCFlushTime NOT NULL Integer Specifies the interval, in seconds, between
Insert Delete Update Control (IDUC)
flushes from the ObjectServer. The default
value is 5.

NcimHandleCount Integer Maximum number of connections to the
NCIM database server. A single handle
(NcimHandleCount = 1) is usually
sufficient, unless heavily customized
stitchers are used.

NcpServerEntity NOT NULL Text Specifies the IP address of the polling
station. By default, the gateway assumes
that the polling station for Network
Manager is running on the local host. If you
want to set a different polling station,
specify the IP address of the polling station
in the NcpServerEntity field.

Note: Root cause analysis (RCA) cannot
perform isolated suppression if the device
specified in NcpServerEntity is not present
and connected within the topology.

ObjectServerUpdate
Interval

NOT NULL Integer Specifies the interval that the Event
Gateway uses to queue event enrichment
updates to the ObjectServer.

backupDiscoveryCaches
NOT NULL Integer Specifies whether to back up the discovery

cache files. A value of 0 disables backup,
and 1 enables backup. The default value is
0.

numberOfBackupsToKee
p

NOT NULL Integer After this number of backups have been
made, older backups are deleted whenever
a successful backup runs. The limit is per
domain. The default value is 3.

limitOnlyOnFullBackup
NOT NULL Integer Specifies which kind of backups to delete

when the number of backups made
exceeds the value of
numberOfBackupsToKeep. If this
parameter is set to 1, only full discovery
backups are deleted, and if it is set to 0,
backups of full and partial discoveries are
deleted. The default value is 1.

444 IBM Tivoli Network Manager IP Edition: Reference

config.precedence table
The config.precedence table lists events by event ID and contains the information necessary to determine
which event has precedence when multiple events occur on the same interface. Based on the event ID,
the config.precedence table also determines which event map to use to process an event from Tivoli
Netcool/OMNIbus.

The table below describes the config.precedence table.

Table 231. config.precedence Table Description

Column Name Constraints Data Type Description

Precedence NOT NULL Integer Specifies the number used by the root-cause analysis
(RCA) plug-in when there are multiple events on the
same entity within the network topology. The number
is used to determine which of the events has
precedence and therefore suppresses the other
event on the interface. If a link down event has a
higher Precedence value than a ping fail event, then
the link down event suppresses the ping fail event on
the interface.

These Precedence values are unique.

• 0 - An event with this Precedence value cannot
suppress any other events. The event cannot
become a root cause event. If the Precedence
value is set to 0, then the event can become a
symptom event or be marked as cause unknown.

• 10000 and greater - An event with a Precedence
value greater than or equal to 10000 cannot be
suppressed; and the event cannot become a
symptom event. The event can only become a root
cause event or be marked as cause unknown.

EventMapName NOT NULL Text Specifies the name of the event map from the
config.eventMaps table that is used to process the
event with a matching EventId.

NcoEventId PRIMARY KEY

NOT NULL

Text Specifies the mapping from the EventId in the
alerts.status table to the values of Precedence and
EventMapName defined in this table.

Note: If an event is not listed in this table, then the
event is handled by the generic-ip event map.

config.eventMaps Table
The config.eventMaps table contains the event map that specifies how an event is processed. The table
holds information specific to each type of Tivoli Netcool/OMNIbus event that is processed by the Event
Gateway.

The table below describes the config.eventMaps table.

Chapter 14. Event enrichment databases 445

Table 232. config.eventMaps table description

Column Name Constraints Data Type Description

EventMapName PRIMARY
KEY

NOT NULL

Text Specifies the name of the event map. This value is
referenced by the config.precedence table.

HandledBy Text An alternative to the PolledEntityStitcher, and
provided for backwards compatibility. Some legacy
gateway eventMaps are redundant, but removing
them completely would create upgrade problems.
This field allows a legacy eventMap to be mapped
to a new eventMap, and behave as if the event had
been handled by that eventMap.

IsPollingEvent Integer Specifies whether the event is a polling event. If it is
a polling event then the isolated suppression RCA
rule will fire for it. Defaults to a value of 1 (True).

EventCanFlap Boolean Indicates if it is possible for the event to flap.
Flapping is a condition where a device or interface
connects to and then disconnects from the network
repeatedly in a short space of time. This causes
problem and clear events to be received one after
the other for the same device or interface. Setting
the EventCanFlap = 1 informs the RCA plug-in
of this condition.

The RCA plug-in places these events in the
mojo.events database with TimedEscalation =
1 and are left there for 30 seconds. After 30
seconds one of the RCA plug-in stitchers processes
all events that are at least 30 seconds old and have
the TimedEscalation = 1 setting. By waiting 30
seconds to process the event, the system ensures
that the entity that generated the event has settled
down and is not flapping.

config.nco2ncp table
The config.nco2ncp table is used to filter events being passed from Tivoli Netcool/OMNIbus to Network
Manager.

The table below describes the config.nco2ncp table.

446 IBM Tivoli Network Manager IP Edition: Reference

Table 233. config.nco2ncp table description

Column Name Constraints Data Type Description

EventFilter NOT NULL Text Specifies a filter that indicates which events
should be processed by the Event Gateway.
Events that match the filter are processed.

Attention: Do not modify this filter
unless you are aware of the
consequences of the modification.
Only advanced users should modify
this filter.

StandbyEvent
Filter

Text Used when the primary server is down and
the backup server is active. The standby filter
only allows ItnmHealthCheck events through
the Event Gateway. These events are passed
to the Failover plugin and tell the system to
switch back to primary mode.

FieldFilter Externally defined
vblist data type

Object Specifies a subset of alerts.status fields that
are passed through to the Event Gateway. If
the field filter is empty then all alerts.status
fields are are passed through. The purpose of
this filter is to limit the fields passed through
to the minimum required set in order to
lighten the processing load.

The gateway determines whether to insert a new record or update an existing record according to
whether the ObjectServer sends the event as an insert using IDUC or as an update.

config.ncp2nco table
The config.ncp2nco table is used to filter and map events passed from Network Manager to Tivoli
Netcool/OMNIbus.

The table below describes the config.ncp2nco table.

Table 234. config.ncp2nco table description

Column Name Constraints Data
Type

Description

FieldFilter Externally defined
vblist data type

Object Specifies the set of ObjectServer fields that may
be updated by the Event Gateway.

config.failover table
The config.failover table contains the failover configuration and current failover state of the Event
Gateway component.

Attention: Do not manually change the values of the config.failover table. In a failover
configuration, the FailedOver field is modified by the virtual domain process.

The table below describes the config.failover table.

Chapter 14. Event enrichment databases 447

Table 235. config.failover table description

Column Name Constraints Data Type Description

FailedOver NOT NULL Boolean Specifies the failover state.

• 0 - Not in a failover state
• 1 - In a failover state

ReadyState ReadyState Integer ReadyState is for ncp_ctrl. It is an internal state
field used to determine when the poller process
should start sending heartbeats. 0 is the initial value
on startup, 1 is an internal intermediate state, and 2
is ready when the process starts transmitting
heartbeats.

ReadyState on the Backup server changes only when
the server becomes active and all policies started.
Until then it will be set to 0.

ncp_g_event plug-in databases
The Event Gateway plug-in database tables are used by the plug-ins to store processing data.

RCA plug-in database
The RCA plug-in database tables enable the RCA plug-in to perform root-cause analysis.

mojo.events events database table
The mojo database stores all event records sent for root cause analysis by the Event Gateway. The
database contains the mojo.events table.

The mojo database is defined in NCHOME/etc/precision/RCASchema.cfg.

The column names of the records are used in many of the conditional filters when constructing event
correlation methods.

The table below describes columns in the mojo.events table.

Table 236. Descriptions for the mojo.events database table columns

Column Name Constraints Data type Description

ChangeTime TIMESTAMP

Not null

Long Integer Specifies the time the event was last updated by
the RCA plug-in.

CreateTime TIMESTAMP

Not null

Long Integer Specifies the time the event was first seen by the
RCA plug-in.

Description Text Specifies a textual description of the event.

EntityType Not null Int A value of 1 or 8 indicates that this is a chassis
device.

EventId Text Type of event; for example NmosPingFail.

448 IBM Tivoli Network Manager IP Edition: Reference

Table 236. Descriptions for the mojo.events database table columns (continued)

Column Name Constraints Data type Description

FirstOccurrence TIMESTAMP

Not null

Time the event was first seen by Tivoli Netcool/
OMNIbus.

Note: This value is set by the probe, not by Tivoli
Netcool/OMNIbus. This means that this field
arrives at the ObjectServer with a value already
set. Tivoli Netcool/OMNIbus never touches this
field.

IsIsolationPoint Not null Int Can take the following values:

• 0 - No
• 1 - Yes

IsLoopbackInterface Not null Int Can take the following values:

• 0 - No
• 1 - Yes

IsMasterEvent Not null Int Can take the following values:

• 0 - This is not the master event on the entity.
• 1 - This is the master event on the entity.

Note: The master event on an entity will suppress
all other events on that entity, should there be
any.

IsOrphan Not null Int Can take the following values:

• 0 - No
• 1 - Yes

Note: This field is used internally to enable the
RCA plug-in to reprocess suppressed events
whose root cause event has since been deleted.

LastOccurrence TIMESTAMP

Not null

Long Integer Time the event was last seen by Tivoli Netcool/
OMNIbus.

Note: This value is set by Tivoli Netcool/OMNIbus
itself when it receives the event.

NmosCauseType Not null Int Can take the following values:

• 0 - Unknown
• 1 - Root cause
• 2 - Symptom
• 3 - Not suppressing and not suppressed

NmosEntityId Not null Int Entity on which the event occurred.

NmosManagedStatu
s

Not null Int Managed status of the entity.

Chapter 14. Event enrichment databases 449

Table 236. Descriptions for the mojo.events database table columns (continued)

Column Name Constraints Data type Description

NmosObjInst Not null Int Entity ID for the chassis related to the entity on
which the event occurred.

NmosSerial Not null Int Serial number of the event that suppressed this
event.

Precedence Int A value from 0 to 10,000 indicating, where there
are multiple events on the same entity, the event
to be used to suppress the other events on that
entity. The event with the highest precedence
value suppresses the others.

RemoteNodeAlias Text Network address of the remote network entity

Serial Primary key

Not null

Uint Serial number of this event in Tivoli Netcool/
OMNIbus. Used to uniquely identify the event and
the record in mojo.events.

Severity Not null Int Severity of the event.

State Not null Int Event state for this event.

SuppressionState Not null Int Suppression state for this event. This field can
take the following values:

• 0 - No suppression
• 1 - Entity suppression
• 2 - Contained suppression
• 3 - ConnectedSuppression
• 4 - IsolatedSuppression
• 5 - PeerSuppression

SuppressionTime TIMESTAMP

Not null

Long Integer Time the event was last suppressed.

TimedEscalation Not null Int Can take the following values:

• 0 - Tells RCA plug-in to process the event
immediately.

• 1 - Tells RCA plug-in to process the event after
30 seconds. This is usually set by events that
can flap.

• 2 - Set for events that previously had the
TimedEscalation = 1 setting and have since
been processed.

config.defaults database table
The config.defaults database table stores configuration data for the RCA plug-in event queue.

The config database is defined in NCHOME/etc/precision/RCASchema.cfg.

450 IBM Tivoli Network Manager IP Edition: Reference

The table below describes columns in the config.defaults database table.

Table 237. Descriptions for the config.defaults database table columns

Column Name Constraints Data type Description

RequeueableEventIds Text Specifies that events of certain types can be
requeued if the RCA plug-in queue becomes very
large. This ensures that only one event of a
specific event type exists in the queue at any one
time.

MaxAgeDifference NOT NULL Text Specifies the maximum age difference between
events that pass through the RCA plug-in. Events
that have a difference in age greater than this
specified value cannot suppress each other.

By default this option is switched off, that is, set
to 0. This means that events on the same entity
suppress each other regardless of the age of the
events.

HonourManagedStatus Integer

Boolean

Specifies whether the RCA plugin uses the
managed status of an entity in calculating the
root cause of an event. If this value is set to 1,
then events from unmanaged devices are
ignored.

GraphTopologyNames List Specifies topologies that are to be used to create
the RCA graph. By default the topologies used
are the following:

• RelatedToTopology
• LocalVlanTopology

TopologyChangesThreshol
d

NOT NULL Integer Maximum number of changes allowed before
deleting the graph and recreating from scratch.
If the current number of changes is less than this
threshold value, the dynamic updates are made
to the graph. Default value is 100.

SAE plug-in database
The SAE plug-in database tables enable the SAE plug-into generate service-affected events for services
such as MPLS VPNs and IP paths.

The table below summarizes the config database schema.

Table 238. config database summary

Database name config

Defined in NCHOME/etc/precision/SaeSchema.cfg

NCHOME/etc/precision/SaeCluster.cfg

NCHOME/etc/precision/SaeIPPath.cfg

NCHOME/etc/precision/SaeItnmService.cfg

NCHOME/etc/precision/SaeMplsVpn.cfg

Chapter 14. Event enrichment databases 451

Table 238. config database summary (continued)

Fully qualified database table names config.serviceTypes

config.serviceTypes table
The config.serviceTypes table contains configuration information for the SAE plug-in.

The table below describes columns in the config.serviceTypes table.

Table 239. Descriptions for the config.serviceTypes database table columns

Column Name Constraints Data type Description

ServiceTypeName Primary key

Not null

Text Represents the type of service; for example,
"MPLS VPN Edge Service" or "IP Path". This string
will appear in the eventId field of the SAE event in
the ObjectServer and will also form part of the
Summary field of the SAE event in the
ObjectServer.

CollectionEntityType Not null Integer Used to specify the entity type that corresponds
to the collection that the SAE will be generated
for; for example 17 (VPN), 34 (ITNM Service), or
80 (IP Path). For a listing of possible entity types
in the NCIM entityType table, see the IBM Tivoli
Network Manager Reference.

ConstraintFilter Optional Text Used to constrain the entries of interest in the
collection table, if necessary. For example, for the
table networkVpn, entries that have Type = 'MPLS
Core' are excluded. In this case, the contraint
filter is formulated as follows: "networkVpn-
>VPNTYPE <> 'MPLS Core'"

CustomerNameField Optional Text Used to specify where to obtain the customer
name string to append to the Summary field of
the event in the ObjectServer. For example, if the
ServiceEntity record contains the field Customer
then this can be used to retrieve a string such as
"ACME Inc" from the ServiceEntity topology
record. This example would take the form
"entityData->DESCRIPTION".

Related reference
entityType
The entityType table provides a comprehensive list of every entity type in NCIM. It belongs to the category
entities.

ncp_g_event plug-in database tables in ncmonitor
Use this information to understand which Event Gateway configuration tables are available in the
ncmonitor database and what type of information each table contains. Most of these tables relate to
Event Gateway plug-in configuration.

The table below lists each Event Gateway plug-in configuration tables in the ncmonitor database and
explains the purpose of the table.

452 IBM Tivoli Network Manager IP Edition: Reference

Table 240. Event Gateway plug-in configuration tables in ncmonitor

Table Description

ncmonitor.
gwPluginTypes

Lists the available plugin libraries. Similar idea to poller templates/poll definitions. This
should contain a single entry for the Adaptive Polling plugin.

ncmonitor.
gwPlugins

Lists the plugins that are enabled. Similar idea to the poller policies. This should contain
a handful of entries for the Adaptive Polling plugin.

ncmonitor.
gwPluginEventMaps

Identifies the event maps that each plugin is interested in. Plugins are only supplied with
events handled by listed event maps.

ncmonitor.
gwPluginEventState
s

Identifies the type of event that each plugin is interested in. Plugins are only supplied
with events handled by listed event states.

ncmonitor.
gwSchemaFiles

Lists the OQL schema files to be read by the Event Gateway. These files are read in the
order they are listed, and therefore the EventGatewaySchema file should be the first file
listed, as it defines the tables. By default, this lists the EventGatewaySchema file. The
purpose of this table is to allow additional self-contained schema files to be supplied for
future device support.

ncmonitor.
gwPluginConf

Allows optional configuration variables to be defined for specific plugins.

Note: It is intended for values that would not, under normal circumstances, be changed.

Chapter 14. Event enrichment databases 453

454 IBM Tivoli Network Manager IP Edition: Reference

Chapter 15. ncp_class database
The ncp_class database enables the Active Object Class (AOC) manager, ncp_class, to manage AOCs.

The CLASS database consists of two main tables, activeClasses and staticClasses, which are populated at
startup as CLASS reads the AOC definitions. The two tables represent two different views of the class
hierarchy.

The ncp_class database is described in the following file.

$NCHOME/etc/precision/ClassSchema.cfg

Note: For information about ncp_class command-line options, see the IBM Tivoli Network Manager IP
Edition Administration Guide.

class.activeClasses table
The class.activeClasses table holds the full definition of every Active Object Class (AOC).

The table below describes the activeClasses table.

Table 241. class.activeClasses Database Table Schema

Column name Constraints Data type Description

ClassName PRIMARY KEY

NOT NULL

UNIQUE

Text Specifies the unique name of the AOC.

ClassId PRIMARY KEY

NOT NULL

Integer Specifies an identifier for the AOC.

SuperClass NOT NULL Text Specifies the name of the parent AOC.

Dictionary Text List of dictionaries.

Instantiate NOT NULL Text Specifies the rules for instantiating the AOC.

VisualIcon NOT NULL Text Specifies the icon associated with the AOC,
which is displayed in a user interface.

MenuRules List type
object

List of executable rules.

Menu List type
object

Menu for the AOC.

ActionType Externally defined
actions data type

Integer Specifies the list of actions to be taken.

© Copyright IBM Corp. 2006, 2021 455

class.staticClasses table
The class.staticClasses table holds the contents of a raw Active Object Class (AOC) as it is defined in
the .aoc file.

The table below describes the class.staticClasses table.

Table 242. class.staticClasses Database Table Schema

Column name Constraints Data type Description

ClassName PRIMARY KEY

NOT NULL

UNIQUE

Text Specifies the unique name of the AOC.

ClassId PRIMARY KEY

NOT NULL

Integer Specifies an identifier for the AOC.

SuperClass NOT NULL Text Specifies the name of the parent AOC.

Dictionary Text List of dictionaries.

Instantiate NOT NULL Text Specifies the rules for instantiating the
AOC.

Extensions Externally defined
extension data type

Object of
extension data
type

Specifies the list of extensions contained
within the AOC.

VisualIcon NOT NULL Text Specifies the icon associated with the AOC.

MenuRules List type object List of executable rules.

Menu List type object Menu for the AOC.

ActionType Externally defined
actions data type

Integer Specifies a list of actions to be taken.

class.classIds table
The class.classIds table stores the lookup values for class IDs from class name.

The table below describes the classIds table.

Table 243. class.classIds Database Table Schema

Column name Constraints Data type Description

ClassId PRIMARY KEY

NOT NULL

UNIQUE

Integer Specifies the numerical ID for the
Active Object Class (AOC).

456 IBM Tivoli Network Manager IP Edition: Reference

Table 243. class.classIds Database Table Schema (continued)

Column name Constraints Data type Description

ClassName PRIMARY KEY

NOT NULL

UNIQUE

Text Specifies the unique name of the
AOC.

Chapter 15. ncp_class database 457

458 IBM Tivoli Network Manager IP Edition: Reference

Chapter 16. ncp_ctrl database
The ncp_ctrl database enables the master process controller, ncp_ctrl, to manage and monitor the status
of Network Manager processes.

The ncp_ctrl database is defined in the $NCHOME/etc/precision/CtrlSchema.cfg file.

The services.config Table
The services.config database table is an active table for managed processes.

This table is used for the ncp_ctrl process when it overwrites trace files. To enable and configure trace file
rotation, do not change this database; use the log file rotation environment variables.

The table below describes the services.config database table.

Table 244. services.config database table schema

Column name Constraints Data type Description

enableTraceFileRotation NOT NULL Integer Specifies whether log file rotation is enabled.

The services.inTray Table
The services.inTray database table is an active table for managed processes.

Data is inserted into this table by ncp_ctrl when it reads its configuration file. Processes with an entry in
this database are started by ncp_ctrl as managed processes. If an entry is removed from this table, it is
stopped by ncp_ctrl.. The ncp_ctrl process also monitors the status of processes named in the inTray
table and restarts them if they are stopped.

The table below describes the services.inTray database table.

Table 245. services.inTray Database Table Schema

Column name Constraints Data type Description

argList List of type
text

Specifies a list of arguments sent to the
service.

binaryName NOT NULL Text Base name for the binary that implements
the service. This is used in preference to the
serviceName field to launch the service.

dependsOn List of type
text

Specifies a list of processes, prerequisites,
required to run the current services.

domainName Text Specifies the domain under which the service
is running.

hostName Text Specifies the name of the system upon which
the service is running.

interval Integer Specifies the average interval between
heartbeat signals from the service.

© Copyright IBM Corp. 2006, 2021 459

Table 245. services.inTray Database Table Schema (continued)

Column name Constraints Data type Description

logFile Text Specifies the name of file in which output is
logged.

logLevel Text The logging level for the process. By default,
this field has the value warn. The value in
this table updates dynamically if the logging
level is changed for the process on the
command line. Changing this value in the
table dynamically changes the logging level
for the process even if it is already running.

processId Long integer Specifies the process ID of the service.

memUsage Long integer The native memory of the process.

retryCount Integer Specifies the number of times to attempt to
restart a service.

Note: Providing the value 0 (zero) means no
attempt is made to restart a service when it
stops, while -1 sets the service to always
start again when it stops.

serviceId PRIMARY KEY

NOT NULL

UNIQUE

Integer Specifies the unique ID of the service and is
assigned internally.

serviceKey NOT NULL

UNIQUE

Text Auto-generated unique key for a process.

serviceName NOT NULL Text Specifies the name of the service to be
managed.

servicePath Text Specifies the full path to the service, which
might be NCHOME/precision/platform/
$PLATFORM/bin if NULL.

460 IBM Tivoli Network Manager IP Edition: Reference

Table 245. services.inTray Database Table Schema (continued)

Column name Constraints Data type Description

serviceState Externally defined
serviceState data
type

Integer Specifies an integer which reflects the
current operational state of the service.

0 - The service is alive but currently idle.

1 - The service is waiting for its prerequisites,
that is, waiting for its dependencies to be
satisfied.

2 - The service is waiting to begin sending
heartbeats.

3 - The application is currently starting,
which is Fork service.

4 - The service is alive and running.

5 - The service is not functioning correctly.

6 - The service is stopped.

7 - The service has failed.

8 - The service is shutdown.

traceLevel Integer The trace level for the process. By default,
this field has the value 0 (zero). The value in
this table updates dynamically if the trace
level is changed for the process on the
command line. Changing this value in the
table dynamically changes the trace level for
the process even if it is already running.

The services.slaveCtrl Table
The services.slaveCtrl table is populated automatically and serves as a reference for other
instances of the ncp_ctrl process that are running in slave mode.

The table below describes the services.slaveCtrl database table.

Important: Do not use the OQL Service Provider to manually insert records into this table.

Table 246. services.slaveCtrl Database Table Schema

Column name Constraints Data type Description

slaveId UNIQUE

PRIMARY KEY

NOT NULL

Integer Specifies the unique ID number of the
subordinate ncp_ctrl process running in slave
mode.

domainName Text Specifies the domain under which the
subordinate ncp_ctrl process is operating.

hostName Text Specifies the name of the system on which
the subordinate ncp_ctrl process is running.

Chapter 16. ncp_ctrl database 461

Table 246. services.slaveCtrl Database Table Schema (continued)

Column name Constraints Data type Description

processId Long integer Specifies the process ID of the subordinate
ncp_ctrl process.

slaveState Externally defined
serviceState data
type

Integer Specifies the current operational state of the
subordinate process.

The services.unControlled Table
The services.unControlled table is a read-only table used to monitor uncontrolled services.

If the ncp_ctrl process receives a heartbeat from a service but does not start, the service is considered an
uncontrolled service.

Important: Do not insert the information provided into this table. If you insert the information into the
unControlled table, then your system might not function correctly.

The table below describes the services.unControlled database table.

Table 247. services.unControlledDatabase Table Schema

Column name Constraints Data type Description

serviceId UNIQUE

PRIMARY KEY

NOT NULL

Integer Specifies the unique ID of the service.

serviceName NOT NULL Text Specifies the name of the service.

domainName Text Specifies the domain under which the service
is running.

hostName Text Specifies the name of the system on which the
service is running.

processId Long integer Specifies the process ID of the service.

serviceState Externally defined
serviceState data
type

Integer Specifies an integer which reflects the current
operational state of the service.

interval Integer Specifies the average interval between
heartbeat signals from the service.

The services.unManaged Table
The services.unManaged table is used by the ncp_ctrl process to start and stop unmanaged processes.
This table is also used by other Network Manager processes to instruct the ncp_ctrl process to start their
subprocesses.

The ncp_disco process, for example, instructs the ncp_ctrl process to start the finders, helpers and agents
by sending inserts into the services.unManaged table of the ncp_ctrl process. Inserting or deleting records
from the table causes the corresponding processes to be started or stopped.

462 IBM Tivoli Network Manager IP Edition: Reference

The table below describes the services.unManaged database table.

Table 248. services.unManaged Database Table Schema

Column name Constraints Data type Description

argList List of type
Text

Specifies a list of arguments sent to the
service process.

dependency Long integer Specifies the process ID of the parent that
the service is dependent upon. Examine the
content of this field to determine whether
this unmanaged process is dependent or
independent.

• If this field contains a process ID value
then this means that this is a dependent
unmanaged process. A dependent
unmanaged process is stopped by
ncp_ctrl if the parent process dies. When
this field is set then it contains the PID of
the parent process. An example of
dependent unmanaged processes are the
discovery agents started by the parent
Discovery engine, ncp_disco, process.

• If this field contains a NULL value then
this means that this is an independent
unmanaged process. An independent
unmanaged process continues to run if
the parent process dies.

endSignal Integer The signal to be used to end the process.
The default value is 9.

hostName Text Specifies the system on which the service is
running.

logFile Text Specifies the name of the file in which
output is logged.

processId Long integer Specifies the service process ID.

serviceId UNIQUE

PRIMARY KEY

NOT NULL

Integer Specifies the unique ID of the service.

serviceName NOT NULL Text Specifies the name of the service.

servicePath Text Specifies the full path to the service
process. If the value is set to NULL, then
this default path is used: NCHOME/
precision/platform/$PLATFORM/bin.

serviceState Externally defined
serviceState data
type

Integer Specifies an integer which reflects the
current operational state of the service.

Chapter 16. ncp_ctrl database 463

464 IBM Tivoli Network Manager IP Edition: Reference

Chapter 17. ncp_trapMux database
The ncp_trapMux database enables the SNMP Trap Multiplexer, ncp_trapMux, to forward traps to multiple
ports and capture and replay traps.

The ncp_trapMux database is defined in the $NCHOME/etc/precision/TrapMuxSchema.cfg file.

trapMux.command table
The trapMux.command database table is an active table used to control the ncp_trapmux process.

The table below describes the trapMux.command table.

Table 249. trapMux.command Database Table Schema

Column name Constraints Data type Description

command NOT NULL Text Specifies the command to issue to the
ncp_trapmux process.

fileName Text Specifies the file on which to perform the
command, if applicable.

trapMux.config table
The trapMux.config table contains the main configuration data for the ncp_trapmux process.

The table below describes the trapMux.config table.

Table 250. trapMux.config Database Table Schema

Column name Constraints Data type Description

port Integer Specifies the port on which to listen for traps.

trapMux.sinkHosts table
The trapMux.sinkHosts table contains details of the hosts to which traps are forwarded and the port
numbers

The table below describes the trapMux.sinkHosts table.

Table 251. trapMux.sinkHosts Database Table Schema

Column name Constraints Data type Description

host NOT NULL Text Specifies the host name or IP address to which
traps are forwarded.

port NOT NULL Integer Specifies the port number of the host name or IP
address to which traps are forwarded.

© Copyright IBM Corp. 2006, 2021 465

466 IBM Tivoli Network Manager IP Edition: Reference

Chapter 18. ncp_virtualdomain database
The ncp_virtualdomain database enables the virtual domain subsystem to support Network Manager
failover.

The ncp_virtualdomain database uses two database tables: config and state. The health check status
and filters are stored in these tables.

To configure the operation of virtual domains specify OQL inserts to the VirtualDomainSchema.cfg
file. The primary server and the backup server each have a VirtualDomainSchema.cfg file. Ensure that
you make the same changes to both configuration files.

config database schema
The config database schema is defined in the NCHOME/etc/precision/VirtualDomainSchema.cfg
directory. The config database schema has one table: config.defaults.

The table below describes the defaults table. The defaults table holds the time periods for the failover
checks.

Table 252. config.defaults table description

Column name Constraint
s

Data type Description

m_AutoTopologyDownload NOT NULL Integer Specifies the network topology transferred from
the primary server when the backup server
starts. If this option is set, then the Network
Manager server downloads the topology every
time the TCP connection is lost and
reestablished.

• 0 - Topology is only downloaded once when
the Network Manager server is started.

• 1 - Topology is downloaded each time a new
TCP connection is made. This is the default
value.

m_FailoverTime NOT NULL Integer Specifies the maximum difference between the
current time and the Health Check Resolution
event timestamp. If the difference exceeds this
value, then Network Manager fails over.

The default value is 300 seconds.

m_HealthCheckPeriod NOT NULL Integer Specifies the time period between each health
check. The health check applies the filters in
state.filters to the values in state.services (the
current state of the processes monitored by the
CTRL process).

The default value is 60 seconds.

© Copyright IBM Corp. 2006, 2021 467

Table 252. config.defaults table description (continued)

Column name Constraint
s

Data type Description

m_SocketKeepAlivePeriod NOT NULL Integer Specifies the time, in seconds, between
messages that Virtual Domain sends to indicate
that a connection is still active. If three of these
messages are missed, the connection is
considered inactive and Virtual Domain tries to
open a new connection. By default this is 60,
that is, one minute.

state database schema
The state database schema is defined in the NCHOME/etc/precision/VirtualDomainSchema.cfg
directory. The state database schema has three tables: state.services, state.domains, and state.filters.

The services table holds the status of the processes monitored by the CTRL process. The table below
describes the columns of the services table.

Table 253. state.services Table Descriptions

Column name Constraints Data type Description

m_ArgList List Specifies a list of arguments sent to the
service process.

m_ChangeTime NOT NULL Timestamp Specifies a timestamp from the last time the
status of this service was updated by the
CTRL process.

m_CtrlState NOT NULL Integer Specifies an integer which reflects the
operational state of the service.

• 0 - The service is alive but idle.
• 1 - The service is waiting for its

prerequisites, that is, waiting for its
dependencies to be satisfied.

• 2 - The service is waiting for a heartbeat
from another service.

• 3 - The application is starting, that is, Fork
service.

• 4 - The service is alive and running.
• 5 - The service is not functioning correctly.
• 6 - The service is stopped.
• 7 - The service failed.
• 8 - The service is shutdown.

m_Domain NOT NULL Text Specifies the domain name under which the
service is running.

m_ExtraInfo Vblist Specifies additional information. The default
value is empty.

m_Pid NOT NULL Integer Specifies the process ID for the component.

468 IBM Tivoli Network Manager IP Edition: Reference

Table 253. state.services Table Descriptions (continued)

Column name Constraints Data type Description

m_ServiceName PRIMARY KEY

NOT NULL

Text Specifies the service name of the component
monitored by the CTRL process.

The domains table holds the status of the primary and backup domains in the failover architecture. This
table always contains an entry for the primary server and the backup server.

The table below describes the columns of the domains table.

Table 254. state.domains Table Descriptions

Column name Constraints Data type Description

m_ActingPrimary NOT NULL Integer Specifies whether the Network Manager server is
acting as the primary server and is monitoring
the network.

• 0 - Not acting as the primary server
• 1 - Acting as the primary server

m_Backup NOT NULL Integer Specifies whether the server is configured as the
backup server. This value is automatically set by
the configuration defined in the $NCHOME/etc/
precision/ConfigItnm.DOMAIN.cfg file, or
by inclusion of the -primaryDomain command-
line option on components started by the CTRL
process.

• 0 - Not configured as the backup server
• 1 - Configured as the backup server

m_ChangeTime NOT NULL Long Specifies the timestamp from the last time the
status of the domain was updated by the Event
Gateway.

m_Domain NOT NULL Text Specifies the domain in which this installation of
Network Manager is running. The domain name
must be different from the names of the primary
and backup servers.

m_HealthStatus NOT NULL Integer Specifies the status of the Health Check events.

• 0 - Unhealthy. The Network Manager server
generated a Health Check Problem event or the
existing Health Check Resolution event
exceeded the m_failover time period.

• 1 - Healthy. The Network Manager server
generated a Health Check Resolution event
within the m_failover time period.

The filters table contains the filters that are to be applied to the values in the state.services table. The
table below describes the columns of the filters table.

Chapter 18. ncp_virtualdomain database 469

Table 255. state.filters Table Descriptions

Column name Constraints Data type Description

m_ServiceName NOT NULL Text Specifies the unique name of the service to
which the filter is applied.

m_Filter NOT NULL Text Specifies the OQL filter to apply.

m_Description Text Specifies a description of the filter operation.

Network Manager provides a default filter for the following components:

There is one filter for each component except for the ncp_poller component, which instead can have a
filter for each poller defined. Each filter checks that the m_CtrlState value is not set to 7 (the service has
not failed), and that the timestamp m_ChangeTime is not older than 300 seconds.

Default filters for the state.filters table are provided for the components below.

• Polling engine, ncp_poller: multiple filters can be defined, one for each poller defined in the
CtrlServices.cfg file.

• Event Gateway, ncp_g_event
• Topology manager, ncp_model

Example Virtual Domain configuration
Use these examples to familiarize yourself with the default OQL inserts that are appended to the
VirtualDomainSchema.cfg file to configure Virtual Domain when it is launched.

Remember: Both the primary server and backup server have a VirtualDomainSchema.cfg
configuration file. Ensure that you make identical changes to both configuration files.

Example configuration of the config.defaults table
The OQL sample below configures the config.defaults table.

insert into config.defaults
(
 m_HealthCheckPeriod,
 m_FailoverTime,
 m_AutoTopologyDownload
)
values
(60, 300, 1);

This insert triggers the following behavior:

• Virtual Domain performs a health check of each of the processes listed in the state.services table every
60 seconds. The health check applies the filters in the state.filters table to the values in state.services
(the current state of the processes being monitored by the CTRL process).

• Virtual Domain has a default time difference of 300 seconds between the current time and the Health
Check Resolution event timestamp. When the difference exceeds this value Network Manager fails over.
The time difference is set to this value to avoid spurious failover.

• The backup server downloads the topology every time the TCP connection is lost and remade with the
primary server.

Example configuration of the state.filters table: Event Gateway filter
The following sample OQL insert specifies one of the default filters provided with Network Manager.

insert into state.filters
(
 m_ServiceName,

470 IBM Tivoli Network Manager IP Edition: Reference

 m_Filter,
 m_Description
)
values
(
 "ncp_g_event",
 "m_ChangeTime > eval(long,'$TIME - 300') and m_CtrlState <> 7",
 "The Gateway has been running within the last 300 seconds"
);

This insert triggers the following behavior:

• Virtual Domain applies the filter (to be specified later in the insert) against the Event Gateway process,
ncp_g_event.

• Virtual Domain applies a filter that checks that the m_CtrlState value is not equal to 7 (the service has
not failed), and that the time stamp m_ChangeTime is not older than 300 seconds.

• Virtual Domain outputs the following description of the filter: The Gateway has been running
within the last 300 seconds.

Example configuration of the state.filters table: filter for additionally configured
poller
Additionally configured pollers can trigger failover. The following sample OQL insert specifies the
commented out example filter for an additionally configured poller provided in the default version of the
VirtualDomainSchema.cfg file. Remove the slashes in order to uncomment this filter. The
m_ServiceName setting in the filter below must match the serviceName column specified for the
additionally configured poller in the $NCHOME/etc/precision/CtrlServices.cfg file.

// insert into state.filters
// (
// m_ServiceName,
// m_Filter,
// m_Description
//)
// values
// (
// "PingPoller",
// "m_ChangeTime > eval(time,'$TIME - 300') and m_CtrlState <> 7",
// "The Poller has been running within the last 300 seconds"
//);

This insert triggers the following behavior:

• Virtual Domain applies the filter (to be specified later in the insert) against the additionally configured
poller, PingPoller.

• Virtual Domain applies a filter that checks that the m_CtrlState value is not equal to 7 (the service has
not failed), and that the time stamp m_ChangeTime is not older than 300 seconds.

• Virtual Domain outputs the following description of the filter: The Poller has been running
within the last 300 seconds.

Chapter 18. ncp_virtualdomain database 471

472 IBM Tivoli Network Manager IP Edition: Reference

Chapter 19. NCIM topology database
The Network Connectivity and Inventory Model (NCIM) topology database is a relational database that
Network Manager uses to consolidate topology data about the physical and logical composition of
devices, layer 1, layer 2, and 3 connectivity, routing protocols and network technologies such as OSPF,
BGP and MPLS Layer 3 VPNs.

Usage considerations
This information about the NCIM database assumes that you are familiar with relational databases. It also
assumes that you are familiar with SQL query techniques used to extract data from relational databases.
You can use these query techniques to query the NCIM database to obtain topology data. Expert users
can manipulate data in the NCIM database using insert, update, and delete statements.

Related reference
Techniques used in the SQL queries
The SQL query examples use a variety of techniques that are aimed at extracting information efficiently.
Use this information to familiarize yourself with the techniques used in SQL queries.

© Copyright IBM Corp. 2006, 2021 473

474 IBM Tivoli Network Manager IP Edition: Reference

Chapter 20. About NCIM
Use this information to understand how NCIM works, what you can use NCIM for, and the how the NCIM
database is structured to store data, and support queries and extensibility.

Topology database tasks
You can use the NCIM topology database to perform the tasks, such as extracting data topology using SQL
queries, exporting data from the topology database to third-party applications, and including data from
third-party sources and from customized discoveries by extending the database.

Use the NCIM topology database to perform the following tasks:

Extracting data
You can write SQL queries to extract topology data from NCIM. SQL queries can be made using
ncp_oql as well as using third-party tools.

Integrating with third-party applications
You can export data from the topology database to third-party applications. In order to do this, you
must understand the structure of the database.

Extending the database
You can extend the database to include data from third-party sources and from customized
discoveries. For example, discovery stitchers may be configured to look up customer details from a
third-party source based on IP address.

Topology database architecture
Use this information to understand how the NCIM topology database works.

The following figure shows how Network Manager populates NCIM, and shows how the topology data is
shared and accessed by different processes within Network Manager.

© Copyright IBM Corp. 2006, 2021 475

Figure 2. NCIM working with Network Manager

Network Manager populates NCIM by means of the Discovery engine, ncp_disco, and Topology Manager,
ncp_model, processes.

The topology data in NCIM can be shared and accessed by the following processes and applications:

 1 TopoViz
Used for displaying topology maps.

 2 Structure Browser
Used for navigating within the containment structure of devices in the topology.

 3 Asset reporting
Used for asset reporting software.

 4 Integrations with third-party applications
Used for example provisioning software that requires regularly updated topology data from Network
Manager. These activities require knowledge of programming languages such as Java and Perl.

476 IBM Tivoli Network Manager IP Edition: Reference

Topology database properties
Use this information to understand how the NCIM topology database is structured to store data, and
support queries and extensibility.

NCIM data storage
The NCIM relational database are divided into core tables and attribute tables. Core tables define all
entities within NCIM together with the relationships between these entities. Attribute tables contain
attribute data for each entity; they are specific to Network Manager.

NCIM database structure
Base information for the discovered network resources and relationships is held within the entityData
table. Resource-specific attribute data is held in product-specific extension tables that typically have a
foreign key relationship with the core-model entityData table.

The NCIM topology database also holds meta-data in tables such as the mappings, enumerations,
CIDRInfo and deviceFunction tables. You can query this data to get useful, typically human-readable
information for device attributes. For example, you can determine the user-friendly name of BGP AS
numbers.

The NCIM topology database has been designed to be familiar to users who work with the MODEL
database in legacy object-oriented format. This is most apparent in the naming of NCIM relational
database tables and fields. Where possible, the naming is the same as that used in MODEL.

Multiple domain queries
NCIM allows multiple network domains to be stored in the database simultaneously. A domain is a scoped
set of entities discovered and managed by an application, such as Network Manager.

A single SQL query on the NCIM database can extract data from multiple domains. This is in contrast to
Object Query Language (OQL) queries on the Topology manager, ncp_model, topology database, which
are able to extract information only from a single domain at a time.

Extensibility
The NCIM topology database can hold additional data that is collected during a customized discovery. For
example, discovery stitchers can be configured to look up customer details from a third-party source
based on an IP address. It is possible to configure MODEL to populate NCIM with this additional data and
to configure NCIM to store this additional data in the form of key-value pairs.

Continuing the example, you might configure NCIM to store a customer name and customer type,
associated with each main node entity discovered. It is also possible to modify NCIM to create new
multicolumn tables and configure MODEL to populate these tables following a customized discovery.
These modifications enable NCIM to store more custom data. For example, you might want to store a set
of data on each customer associated with an IP address.

Related concepts
Domains
A domain is a scoped set of entities that are discovered and managed by an application, such as Network
Manager. NCIM holds entity data related to multiple domains.

Topology data
When the network is discovered, both core NCIM tables and entity attribute tables are updated with
topology data. These tables include Layer 1, Layer 2, Layer 3, device structure, routing protocol,
containment, and technology-specific information.

The NCIM tables are not case-sensitive.

Chapter 20. About NCIM 477

The core and entity attribute tables are listed in the data dictionary.

Data modeled by NCIM
NCIM models different types of network data, including the following:
IP networks

NCIM models network devices and device connections within layer 2 and layer 3 of the OSI model.
Optical networks

NCIM models optical network devices within layer 1 of the OSI model.
Routing networks

NCIM models routing networks based on routing protocols such as MPLS, BGP, and OSPF.
VLANs

NCIM models Virtual Local Area Networks (VLANs).
Radio access networks

NCIM models a variety of radio access networks (RANs), including GSM, UMTS, and LTE.
Related concepts
Data dictionary
The NCIM topology database schema is made up of a set of relational database tables that represent the
topology model.

Domains and entities
The NCIM topology database models network domains and entities within those domains.

Domains
A domain is a scoped set of entities that are discovered and managed by an application, such as Network
Manager. NCIM holds entity data related to multiple domains.

For more information on domains, see the IBM Tivoli Network Manager User Guide and the IBM Tivoli
Network Manager IP Edition Installation and Configuration Guide.

Entities
A Network Manager discovery returns many different types of entity. If you understand the entities that
you might encounter, you can more easily restrict your queries to return only required information.

Basic information about discovered network resources is held within the entityData table. Resource-
specific attribute data is held in product-specific extension tables that typically have a foreign key
relationship with the core-model entityData table. Information on relationships between discovered
network resources, such as containment and connectivity, is also held in tables, such as the contains
and connects tables.

Records in the entityData table are at least related to a given instance and the domainMgr, manager,
and domainMembers tables.

Discovered resources held in the entityData table can be any of the following types:

• Physical and logical entities, including devices and their physical and logical characteristics, such as
slots, cards, ports, and interfaces, and the relationships between them.

• Protocol end points represent protocol or technology-specific information that is typically associated
with an entity representing a port or interface resource.

• Device collections, including MPLS VPNs, global VLANs and subnets.
• Hosted services, including BGP and OSPF services hosted on a device.

Network Manager populates the database with information about discovered layer 1, layer 2 and layer 3
entities. To uniquely identify entities as they are discovered, the NCIM database uses a unique key,
entityId. The entityId column appears in all database tables that reference entities.

478 IBM Tivoli Network Manager IP Edition: Reference

For example, the entityId column appears in the core entityData table, as well as in the
physicalChassis, networkInterface, and physicalPowerSupply tables.

The following table describes the discovery-related entities that are stored in the NCIM database.

Some entity types are defined in advance for future use.

Table 256. Network Manager entities

Entity
type

Entity type name Categor
y

NCIM table Description

0 Unknown Element

1 Chassis Element physicalChassis Main node device.

2 Interface Element networkInterface Interfaces with entityType 2 can be discovered
and polled.

3 Logical Interface Element networkInterface Interfaces with entityType 3 are inferred but are
not directly accessible. Hot Standby Routing
Protocol (HSRP) virtual IP interfaces are an
example of logical interfaces.

4 Local VLAN Element localVlan VLAN port on a main node device.

5 Module Element physicalCard Card within a switch or router. The term module is
used to avoid confusion with the term card which
is used in layer 1 networks.

6 PSU Element physicalPower
Supply

Power supply unit within a main node device.

7 Logical Collection Collecti
on

Examples of logical collections include MPLS
VPNs, global VLANs and subnets. NCIM can also
model OSPF areas.

8 Daughter Card Element The child of a network card.

9 Fan Element physicalFan Fan component within a main node device.

10 Backplane Element physicalBackplane Backplane component within a main node device.
Backplanes usually contain slot entities.

11 Slot Element physicalSlot Slot component within a main node device. Slots
usually contain module entities.

12 Sensor Element physicalSensor Sensor component within a main node device.

13 Virtual Router Element virtualRouter Represents a instance of a virtual router within a
chassis device.

14 CPU Element cpu Represents Central Processing Units (CPUs).

15 Subnet Collecti
on

subnet Logical collection that lists the IP address in a
class A, B, or C subnet.

16 Global VLAN Collecti
on

globalVlan Collection of VLAN entities across multiple
chassis devices that combine to form a virtual
network.

17 VPN Collecti
on

networkVpn Logical collection of IP address collected within a
VPN.

Chapter 20. About NCIM 479

Table 256. Network Manager entities (continued)

Entity
type

Entity type name Categor
y

NCIM table Description

18 HSRP Group Collecti
on

hsrpGroup Represents an Hot Standby Routing Protocol
(HSRP) group logical collection. The Cisco HRSP
implements a virtual router with its own IP and
MAC addresses. This virtual router forms an
HSRP group that consists of a number of real
interfaces, only one of which is active at any
given time. The active interface forwards IP
traffic that is sent to the virtual router, and the
other interfaces in the group stand by ready to
become active if the active interface fails.

19 Stack Element Collection of chassis devices as defined by the
Entity MIB.

20 VRF Element vpnRoute
Forwarding

Represents a VPN routing and forwarding table.

21 OSPF Routing
Domain

Collecti
on

ospfRoutingDomai
n

Represents an OSPF routing domain.

22 OSPF Service Service ospfService Represents an OSPF service running on a device.

23 OSPF Area Collecti
on

ospfArea Represents an OSPF area.

24 VTP Domain Collecti
on

vtpDomain Represents a VLAN trunking protocol domain.

25 Other Element physicalOther Stores attributes of a component whose entity
type the discovery was unable to determine. This
occurs if the physical entity class is known, but
does not match any of the supported values.

26 BGP Service Service bgpService Represents a BGP service.

27 BGP AS Collecti
on

bgpAutonomous
System

Represents a BGP autonomous system.

28 BGP Route Attribut
e

bgpRouteAttribute Represents a BGP route.

29 BGP Cluster Collecti
on

bgpCluster Represents a BGP cluster.

30 BGP Network Service bgpNetwork Represents a BGP network.

31 ISIS Service Collecti
on

Represents an ISIS service.

32 ISIS Level Element Represents the ISIS level.

33 OSPF Pseudo-
Node

Element Represents an OSPF pseudo-node.

34 ITNM Service Collecti
on

itnmService The base type for other services such as ISIS
Service.

35 MPLS TE Service Service mplsTEService Represents a Multi Protocol Label Switching
Traffic Engineered (MPLS TE) service

480 IBM Tivoli Network Manager IP Edition: Reference

Table 256. Network Manager entities (continued)

Entity
type

Entity type name Categor
y

NCIM table Description

36 MPLS TE Tunnel Element mplsTETunnel Represents an MPLS TE tunnel

37 MPLS TE Resource Element mplsTETunnel
Resource

Represents an MPLS TE resource

38 MPLS LSP Element mplsLSP Represents an MPLS Label Switch Path (LSP)

40 IP Connection Element ipConnection Represents a connection using TCP/IP.

41 PIM Service Service pimService Represents a Protocol Independent Multicast
(PIM) service.

42 PIM Network Collecti
on

pimNetwork Represents a PIM network.

43 IPMRoute Service Service ipMRouteService Represents an IP Multicast Routing service.

44 IPMRoute
Upstream

Element ipMRouteUpstrea
m

Stores the upstream (RPF) route statistics for
each device or Multicast Distribution Tree (MDT).

45 IPMRoute
Downstream

Element Stores the downstream route statistics per
device or MDT.

46 IPMRouteMdt Collecti
on

ipMRouteMdt Stores the Collection entities representing the
MDTs for each Multicast Source or Group.

47 IPMRouteSource Element ipMRouteSource Represents Multicast Sources, as contained by
the MDT.

48 IPMRouteGroup Element ipMRouteGroup Represents Multicast Groups, as contained by the
MDT.

49 IP Path Collecti
on

ipPath Represents a network path between IP devices.

50 IP End point Protocol
Endpoin
t

ipEndPoint Represents a logical IP end point that is
implemented by a physical interface.

51 VLAN Trunk End
point

Protocol
Endpoin
t

vlanTrunkEndPoint Represents a logical VLAN trunk end point that is
implemented by a physical interface.

52 Frame Relay End
point

Protocol
Endpoin
t

frameRelay
EndPoint

Represents a logical Frame Relay end point that
is implemented by a physical interface.

53 OSPF End point Protocol
Endpoin
t

ospfEndPoint Represents a logical OSPF end point that is
implemented by a physical interface.

54 ATM End point Protocol
Endpoin
t

atmEndPoint Represents a logical ATM end point that is
implemented by a physical interface.

55 VPWS End point Protocol
Endpoin
t

vpwsEndPoint Represents a logical VPWS end point that is
implemented by a physical interface.

Chapter 20. About NCIM 481

Table 256. Network Manager entities (continued)

Entity
type

Entity type name Categor
y

NCIM table Description

56 BGP End Point Protocol
Endpoin
t

bgpEndPoint Represents a logical BGP end point that is
implemented by a physical interface.

57 ISIS End Point Protocol
Endpoin
t

Represents a logical ISIS end point that is
implemented by a physical interface.

58 MPLS Tunnel End
Point

Protocol
Endpoin
t

mplsTETunnelEnd
Point

Represents a logical MPLS tunnel end point that
is implemented by a physical interface.

59 TCP/UDP End
Point

Protocol
Endpoin
t

Represents a logical TCP/UDP end point that is
implemented by a physical interface.

60 PIM End Point Protocol
Endpoin
t

pimEndpoint Represents the Protocol Independent Multicast
(PIM) end points discovered in the network and
their associated attributes.

61 IPMRoute End
Point

Protocol
Endpoin
t

ipMRouteEndPoint Stores information on the IP Multicast Routing
Protocol End Points.

62 IGMP End Point Protocol
Endpoin
t

igmpEndPoint Stores information on the Internet Group
Membership Protocol (IGMP) End Points.

63 Network Service
Entity End Point

Protocol
Endpoin
t

networkService
Entity
EndPoint

Helps model relationships related to the
management of frame relay links.

67 LAG End Point Protocol
Endpoin
t

lagEndPoint Represents a logical Link Aggregation Group
(LAG) end point that is implemented by a
physical interface.

68 Probe End point Protocol
Endpoin
t

probeEndPoint Represents the source or target end
point of a probe operation, implemented by a
physical interface.

70 Topology Topolog
y

Grouping of connections which belong to a
topology.

71 Layer 1 Topology Topolog
y

Grouping of connections which belong to a Layer
1 topology.

72 Layer 2 Topology Topolog
y

Grouping of connections which belong to a Layer
2 topology.

73 Layer 3 Meshed
Topology

Topolog
y

Grouping of connections which belong to a Layer
3 meshed topology.

74 Converged
Topology (Layer 1
- Layer 3)

Topolog
y

Based on data available in NCIM, groups together
connections at the lowest layer for which data is
available.

75 MPLS TE Topology Topolog
y

Grouping of connections which belong to an
MPLS TE topology.

482 IBM Tivoli Network Manager IP Edition: Reference

Table 256. Network Manager entities (continued)

Entity
type

Entity type name Categor
y

NCIM table Description

77 Pseudo Wire
Topology

Topolog
y

Grouping of connections which belong to a
Pseudo Wire topology.

78 OSPF Topology Topolog
y

Represents an OSPF topology.

79 BGP Topology Topolog
y

Represents a BGP topology.

80 IP Path Topology Topolog
y

ipPath Represents an IP path.

81 PIM Topology Topolog
y

Represents PIM topologies.

82 Local VLAN
Topology

Topolog
y

Represents local VLAN topologies.

83 IPMRoute
Topology

Topolog
y

Represents an IP Multicast Routing topology.

84 VPLS Pseudo Wire
Topology

Topolog
y

Respresents a VPLS Pseudo Wire Topology.

85 Virtualization
Topology

Topolog
y

Represents a virtualization topology.

86 Microwave
Topology

Topolog
y

Represents a microwave topology.

87 RAN Topology Topolog
y

Represents a radio access network topology.

90 LTE Control Plane Topolog
y

Represents the devices and connectivity that
make up the LTE control plane.

91 LTE User Plane Topolog
y

Represents the devices and connectivity that
make up the LTE user plane.

92 Probe Topology Topolog
y

Represents the probe source/target connectivity.

110 Generic Collection Collecti
on

genericCollection A collection that is not of any other type.

111 Geographic
Location

Element geographicLocatio
n

Represents a geographic location.

112 Geographic Region Collecti
on

geographicRegion Represents a geographic region.

113 VLAN Ports Collecti
on

vlanCollection Represents a collection of the ports on a given
named VLAN or, if no name is provided, on a
given VLAN identifier.

120 IGMP Service Service igmpService Represents an Internet Group Management
Protocol (IGMP) service.

Chapter 20. About NCIM 483

Table 256. Network Manager entities (continued)

Entity
type

Entity type name Categor
y

NCIM table Description

121 IGMP Groups Collecti
on

igmpGroup Stores multicast group collections for which
there are associated Internet Group Membership
Protocol (IGMP) end points in the igmpEndPoint
table.

122 VSI (Virtual Switch
Instance)

Element virtualSwitch
Instance

Represents a virtual switch instance (VSI)
configured on a Provider Edge (PE) device that is
associated with a Virtual Private LAN Service
(VPLS) Virtual Private Network (VPN) instance.

123 Data Center Element Represents a data center.

124 Virtual Cluster Collecti
on

virtualCluster Represents a cluster of virtual machines.

125 Virtual
Management
Service

Service virtualMgmtServic
e

Represents a virtual management service.

126 Hypervisor Element hypervisor Represents a hypervisor.

127 Port Group Collecti
on

portGroup Represents a port group.

128 EMS System Element emsSystem Represents an EMS system accessed by a
collector.

130 RAN GSM Cell Element ranGSMCell Represents a GSM cell.

131 RAN UTRAN Cell Element ranUtranCell Represents a UTRAN cell.

132 RAN Sector Element ranSector Represents a RAN sector.

133 RAN NodeB Local
Cell

Element ranNodeBLocalCel
l

Represents a NodeB Local Cell.

134 RAN Location Area Collecti
on

ranLocationArea Represents a RAN Location Area.

135 RAN Routing Area Collecti
on

ranRoutingArea Represents a RAN Routing Area.

136 RAN Packet Core Collecti
on

Represents RAN packet switch core entity.

137 RAN Circuit Core Collecti
on

Represents a RAN circuit switched core entity.

138 RAN Radio Core Collecti
on

ranRadioCore Represents a RAN radio core entity.

139 RAN Transceiver Collecti
on

ranTransceiver Represents a RAN transceiver.

150 LTE Sector Element eUtranSector Represents a geographic area of radio coverage
and is implemented and supported by physical
radio equipment. An LTE sector implements one
or more LTE cells.

484 IBM Tivoli Network Manager IP Edition: Reference

Table 256. Network Manager entities (continued)

Entity
type

Entity type name Categor
y

NCIM table Description

151 LTE Cell Element eUtranCell Represents a geographical area of radio coverage
and is implemented and supported by physical
radio equipment, such as towers, amplifiers, and
antennas.

152 MME Function Element mmeFunction The Mobility Management Entity (MME) is the
main signalling control element in the core
network and is the key control node for enabling
user equipment access to the core network. The
role of the MME is implemented within a network
hardware node and is modelled by NCIM using
the mmeFunction entity type. Multiple
mmeFunction instances can be implemented
within a single network hardware node.

153 Tracking Area Collecti
on

trackingArea Represents an LTE tracking area.

154 SGW Function Element sgwFunction The Serving Gateway (SGW) resides in the user
plane where it forwards and routes packets to
and from the eNodeB and packet data network
gateway (PGW). The role of the SGW is
implemented within a network hardware node
and is modelled by NCIM using the sgwFunction
entity type. Multiple sgwFunction instances can
be implemented within a single network
hardware node.

155 PGW Function Element pgwFunction The Packet Data Network Gateway (PGW)
provides user plane connectivity to packet data
networks. The role of the PGW is implemented
within a network hardware node and is modelled
by NCIM using the pgwFunction entity type.
Multiple pgwFunction instances can be
implemented within a single network hardware
node.

156 ENB Function Element enbFunction The eNodeB device manages the radio air
interface communication with users of the LTE
network. Each eNodeB device controls one or
more cells, which are geographic areas of radio
coverage. The role of the eNodeB is implemented
within a network hardware node and is modelled
by NCIM using the enbFunction entity type.
Multiple enbFunction instances may be
implemented within a single network hardware
node.

157 LTE Pool Collecti
on

ltePool Generic modelling mechanism for groups of
pooled LTE entities, and currently used to model
MME pools, PGW pools, and SGW pools. As an
example, in order to model an MME pool, the
relationship between the ltePool entity and
associated mmeFunction entities is modelled
using the collects table.

Chapter 20. About NCIM 485

Table 256. Network Manager entities (continued)

Entity
type

Entity type name Categor
y

NCIM table Description

158 PLMN Element plmn Models a Public Land Mobile Network (PLMN). A
PLMN is a network that provides land mobile
telecommunications services to the public. Each
operator providing mobile services has its own
PLMN.

159 HSS Function Element hssFunction Models the LTE Home Subscriber Service (HSS).
The HSS manages subscriber identities, service
profiles, authentication, authorization, and
quality of service (QoS), and acts as the master
repository for subscriber profiles, device profiles
and state information.

160 PCRF Function Element pcrfFunction Models the LTE Policy and Charging Rules
Function (PCRF). The PCRF manages the policy
and charging for uplink and downlink service
flows and the permitted EPS bearer QoS.

161 EIR Function Element eirFunction Models the LTE Equipment Identity Register
(EIR). The EIR keeps track of mobile devices
which should either be banned from using the
network or monitored. When a mobile phone is
stolen its identity it is added to the EIR blacklist
and the result is that this phone will never be
able to attach to the network for service. Usually
each network has its own EIR which is often
combined with the HSS node. It is possible for
multiple operators to share a common EIR which
enables the blacklisted information to be more
easily and widely available.

163 LTE Control Plane Collecti
on

controlPlane
ViewCollection

Supports the dynamic collection views under LTE
Network Topology > Control Plane by Tracking
Area in the Network Views. Each instance of this
entity type collects the eNodeBs in the
corresponding tracking area, together with the
devices that these eNodeBs are connected to on
the control plane.

164 LTE User Plane Collecti
on

userPlane
ViewCollection

Supports the dynamic collection views under LTE
Network Topology > User Plane by Tracking
Area in the Network Views. Each instance of this
entity type collects the eNodeBs in the
corresponding tracking area, together with the
devices that these eNodeBs are connected to on
the user plane.

170 Aggregated Link Collecti
on

aggregatedLink Represents a network link between Link
Aggregation Groups (LAGs)

171 Link Aggregation
Group

Element aggregationGroup Represents a Link Aggregation Group (LAG).

190 Probe Service Service probeService Represents the service that provides
probes on a device.

486 IBM Tivoli Network Manager IP Edition: Reference

Table 256. Network Manager entities (continued)

Entity
type

Entity type name Categor
y

NCIM table Description

191 Probe Collecti
on

probe Represents configured network probes
and their attributes.

192 Probe Collection Collecti
on

probeCollection Provides a collection facility for probes
or probe collections.

200 LTE S1-U Topolog
y

entityData Topology type for LTE S1-U connectivity.

201 LTE S5 Topolog
y

entityData Topology type for LTE S5 connectivity.

202 LTE S8 Topolog
y

entityData Topology type for LTE S8 connectivity.

203 LTE S1-MME Topolog
y

entityData Topology type for LTE S1-MME connectivity.

204 LTE S10 Topolog
y

entityData Topology type for LTE S10 connectivity.

205 LTE S11 Topolog
y

entityData Topology type for LTE S11 connectivity.

206 LTE SGi Topolog
y

entityData Topology type for LTE SGi connectivity.

207 LTE Gx Topolog
y

entityData Topology type for LTE Gx connectivity.

208 LTE S3 Topolog
y

entityData Topology type for LTE S3 connectivity.

209 LTE S4 Topolog
y

entityData Topology type for LTE S4 connectivity.

210 LTE S6a Topolog
y

entityData Topology type for LTE S6a connectivity.

211 LTE S13 Topolog
y

entityData Topology type for LTE S13 connectivity.

212 LTE X2 Topolog
y

entityData Topology type for LTE X2 connectivity.

250 NR Sector Element eUtranSector 5G New Radio Sector Entity.

251 NR Cell DU Element NRCellDU Represents a geographical area of radio coverage
and is implemented and supported by physical
radio equipment for 5G LTE, such as towers,
amplifiers, and antennas.

252 NR Cell CU Element NRCellCU Represents a geographical area of radio coverage
and is implemented and supported by physical
radio equipment for 5G LTE, such as towers,
amplifiers, and antennas.

Chapter 20. About NCIM 487

Table 256. Network Manager entities (continued)

Entity
type

Entity type name Categor
y

NCIM table Description

253 GNB DU Function Element gnbFunction The gNodeB device manages the radio air
interface communication with users of the 5G
network. Each gNodeB device controls one or
more cells, which are geographic areas of radio
coverage. The role of the gNodeB is implemented
within a network hardware node and is modelled
by NCIM using the gnbFunction entity type.
Multiple gnbFunction instances may be
implemented within a single network hardware
node.

254 GNB CUCP
Function

Element gnbFunction The gNodeB device manages the radio air
interface communication with users of the 5G
network. Each gNodeB device controls one or
more cells, which are geographic areas of radio
coverage. The role of the gNodeB is implemented
within a network hardware node and is modelled
by NCIM using the gnbFunction entity type.
Multiple gnbFunction instances may be
implemented within a single network hardware
node.

255 GNB CUUP
Function

Element gnbFunction The gNodeB device manages the radio air
interface communication with users of the 5G
network. Each gNodeB device controls one or
more cells, which are geographic areas of radio
coverage. The role of the gNodeB is implemented
within a network hardware node and is modelled
by NCIM using the gnbFunction entity type.
Multiple gnbFunction instances may be
implemented within a single network hardware
node.

Related reference
entityType
The entityType table provides a comprehensive list of every entity type in NCIM. It belongs to the category
entities.

entityData table and entity view
Information on entities is held in the entityData table in Network Manager versions 3.9 and later. This
table replaces the entity table used in earlier versions. To ensure backward compatibility an entity view
has been created to hold the same data as the entity table from earlier versions.

The difference between the entityData table and the earlier entity table is that entities in the entityData
can be members of more than one domain. In versions 3.8 and earlier, an entity in the entity table could
only be a member of a single domain.

In order to facilitate this, the domainMgrId field that was in the earlier entity tables does not appear in the
entityData table. Instead, in versions 3.9 and later a new domainMembers table maps entityId values
from the entityData table to the domainMgrId values from the domainMgr table. This enables a single
entity to be a member of multiple domains.

In versions 3.9 and later the entity view is created by joining the two tables, entityData and
domainMembers.

488 IBM Tivoli Network Manager IP Edition: Reference

Related reference
domainMembers
The domainMembers table stores information on membership of entities within domains. This table
belongs to the category domains.
domainMgr
The domainMgr table stores data on network domains. This table belongs to the category domains.
entity
The entity view joins data from the entityData and domainMembers tables and is equivalent to the
entity table that existed in Network Manager versions 3.8 and earlier.The entity view stores data on
entities and includes the domainMgrId, which the domain in which the entity is located.
entityData
The entityData table stores data on entities. This table belongs to the category entities.

Protocol-specific data
Device entities, usually interfaces, can be associated with protocol-specific data. One example is the
association of a device interface with the IP addressing data. Ports and interfaces can also be associated
with other data, including ATM, BGP and OSPF protocol endpoints.

NCIM associates protocol-specific information with entities such as interfaces, using protocol endpoint
tables. Examples of protocol endpoint tables are the atmEndPoint and ipEndPoint tables.

Technology-specific data
NCIM models a range of different network technologies, including IP, VLANs, and MPLS VLANs.
Related reference
ipEndPoint
The ipEndPoint table represents an IP end point and includes relevant data. The endpoint is implemented
by a physical interface, as modeled in the protocolEndPoint table.

Relationships
The NCIM topology database models relationships between entities.

Connectivity data
Connectivity data defines how entities are connected in the network. It includes connections between
different devices, and VLAN-related connections within the same device. Connectivity information is
stored in the topologyLinks, networkPipe, and pipeComposition tables.

Bidirectional connections are only entered into the database once, either from the "A" end to the "Z" end
or from the "Z" end to the "A" end. Therefore, SQL queries that extract connectivity data must check for
the connection in either direction.

Representation of connectivity at different layers of the topology
The NCIM database represents the connectivity of entities in different independent layers. Therefore
representation of connectivity at layer 2 is represented independently of the connectivity at layer 3. Each
connection is associated with a topology entity.

Representation of connectivity within sub-topologies
The NCIM database represents complex connectivity scenarios. For example, within the MPLS VPN realm,
NCIM can model the layer 3 connection between a provider-edge (PE) router and multiple customer-edge
(CE) routers. Connectivity between multiple devices that form a mini-topology is defined in the
topologyLinks table.

Chapter 20. About NCIM 489

Related reference
Find devices connected to a named device
This query identifies all main node devices connected to a single specified main node device.

Containment data
Containment data defines logical and physical containment within your network. A containment model is
generated at the end of the discovery process when the network topology is created. This model reflects
the real-world topology of the network that is being modelled, in a physical, logical or business-oriented
sense.

Overview of containment
Containment is a key principle of the network model. Containers are objects that can "hold" both elements
and other containers. Elements and containers can represent logical or physical entities. You can put any
object within a container and even mix different objects within the same container.

An example of physical containment is a chassis containing network interface cards; the network interface
cards can themselves contain individual ports. An example of logical containment is a set of ports or
interfaces being contained by a particular VLAN. Network Manager also uses VLAN objects to model
containment. VLAN objects are created by the stitchers. They contain all the interfaces that exist on each
VLAN.

Use of the containment model
When generated, the default containment model represents both physical and logical containment:

• The physical containment model enables you to perform device management down to the port level.
• The logical containment model shows how objects are contained within logical containers that do not

necessarily exist in the physical sense. One example is a VLAN container, which is a logical grouping of
devices, cards, and ports that are not necessarily physically connected together or in the same location.
The default logical containment model is based on VLAN containment.

VLAN naming
Network Manager uses different naming conventions. One approach is to identify the entity name, card
and port numbers of specific ports, in the format EntityName [card [port]].

For example, port 12 on card 1 of chassis A is identified as A[1 [12]].

By using stitchers, VLAN names can also be modified to reflect the business context in which a given
VLAN is used.

The naming used also depends on configuration of the product. This means that interface naming might
be used; for example, Se4/0.

VLAN trunking
When traffic from different VLANs is passed along a single trunk link between switches, this is
represented in the Network Manager containment model.

The following figure shows how the containment model represents this traffic.

490 IBM Tivoli Network Manager IP Edition: Reference

Figure 3. Logical sub-interfaces contained within a trunk port

If a port is being used for a trunk link, it contains logical sub-interfaces. The following information
describes the properties of the ports and sub-interfaces shown in Figure 3 on page 491:

 1 A sub-interface connecting VLAN 2 on the switch to VLAN 2 on another switch. Sub-interfaces are
contained by trunk ports.
 2 A sub-interface connecting VLAN 3 on the switch to VLAN 3 on another switch. Sub-interfaces have
no upward connections to their containing trunk port.
 3 A normal port.
 4 A port containing sub-interfaces.

Customization of the containment model
The containment model can be customized. This customization is an advanced feature of the discovery
process. To generate a custom containment model, you must either modify the existing stitchers, or write
a new stitcher and configure the existing stitchers to run the new stitcher during the creation of the
network topology.

Two example stitchers, ExampleContainment1.stch and ExampleContainment2.stch are supplied
to help you modify the containment model. These stitchers can be executed by removing the comments
before the ExecuteStitcher(); statements in the BuildContainment.stch stitcher.

These stitchers are stored in the following directory: $NCHOME/precision/disco/stitchers/.

For a syntax definition of the stitcher language, see the IBM Tivoli Network Manager Reference.

Dependencies
When one entity in a system cannot meaningfully function without another entity it is said to be
dependent. Dependencies can be defined by the containment model. A container can be dependent upon
the objects it contains.

Network Manager applications take dependencies into account. The root-cause analysis (RCA) engine (a
plug-in to the Event Gateway, ncp_g_event), for example, can consider dependencies when performing
root cause analysis of network faults.

Collection data
Collection data defines logical collections. Collections are defined in the collects table. Examples of
logical collections defined within NCIM include MPLS VPNs, global VLANs, and subnets.

NCIM can also model OSPF areas. Each row in the collects table holds a pair of entity identifiers: the
collecting entity, for example the VPN, and one of the entities within that collecting entity.

Related reference
Find all devices in a given VPN

Chapter 20. About NCIM 491

This query identifies all of the VPNs listed in the database. For each VPN the query provides the name of
that VPN and the list of IP addresses collected within that subnet. The IP address collected within a VPN
might refer to main nodes or interfaces; typically they refer to interfaces.
collects
The collects table stores data on collections of entities, such as subnets and MPLS VPNs. This table
belongs to the category collections.

Hosted services
A hosted service is a service or application running on a specific device. For example, a device can host
BGP or OSPF services. NCIM can also model the fact that a software application, is running on a
workstation.
Related reference
Find all chassis devices hosting OSPF services
This query identifies all devices that are hosting OSPF services. These devices are serving as routers
within an autonomous system (AS). Each device identified has an IP address and a separate OSPF router
IP address.

NCIM cache files
Topology updates are held in a set of files called the NCIM cache files.

There is one cache file for each type of update message and the name of each cache file reflects the
content. The format of each file matches the data in the ncimCache database tables. The cache files are
as follows:

• NCHOME/var/precision/Store.Cache.ncimCache.collects.DOMAIN
• NCHOME/var/precision/Store.Cache.ncimCache.connectActions.DOMAIN
• NCHOME/var/precision/Store.Cache.ncimCache.connects.DOMAIN
• NCHOME/var/precision/Store.Cache.ncimCache.contains.DOMAIN
• NCHOME/var/precision/Store.Cache.ncimCache.dependency.DOMAIN
• NCHOME/var/precision/Store.Cache.ncimCache.domainMembers.DOMAIN
• NCHOME/var/precision/Store.Cache.ncimCache.entityActions.DOMAIN
• NCHOME/var/precision/Store.Cache.ncimCache.entityData.DOMAIN
• NCHOME/var/precision/Store.Cache.ncimCache.hostedService.DOMAIN
• NCHOME/var/precision/Store.Cache.ncimCache.lingerTime.DOMAIN
• NCHOME/var/precision/Store.Cache.ncimCache.managedStatus.DOMAIN
• NCHOME/var/precision/Store.Cache.ncimCache.networkPipe.DOMAIN
• NCHOME/var/precision/Store.Cache.ncimCache.pipeComposition.DOMAIN
• NCHOME/var/precision/Store.Cache.ncimCache.protocolEndPoint.DOMAIN

Where DOMAIN is the current domain.
Related reference
ncimCache database
This database stores topology updates from DNCIM.

SQL files for the NCIM schema
The NCIM database schema is contained within several SQL files. The following is a list of SQL files that
contain the schema.

The files are as follows:

492 IBM Tivoli Network Manager IP Edition: Reference

$NCHOME/precision/scripts/sql/db2/createPrecisionMgmtTables.sql
$NCHOME/precision/scripts/sql/db2/createNetCoolCoreDb.sql

$NCHOME/precision/scripts/sql/oracle/createPrecisionMgmtTables.sql
$NCHOME/precision/scripts/sql/oracle/createNetCoolCoreDb.sql

The schema files below are common to all database products.

• $NCHOME/precision/scripts/sql/data/populateMappings.sql
• $NCHOME/precision/scripts/sql/data/populateEnumerations.sql
• $NCHOME/precision/scripts/sql/data/populateDeviceFunction.sql
• $NCHOME/precision/scripts/sql/data/populateDefaults.sql

The database schema specific to Network Manager is contained in the createPrecisionIPDb.sql file.

The directory location of the Network Manager database schema is as follows:

$NCHOME/precision/scripts/sql/db2/createPrecisionIPDb.sql

$NCHOME/precision/scripts/sql/oracle/createPrecisionIPDb.sql

To better understand how to formulate queries for purposes of correlating, analyzing, or reporting data,
you can view these files, but do not attempt to modify them.

Chapter 20. About NCIM 493

494 IBM Tivoli Network Manager IP Edition: Reference

Chapter 21. Topology database queries
Use these sample SQL queries, which are based on real-world queries, as an example of the kind of data
that can be extracted, and as a basis for constructing further queries.

About this task
Different databases can require differently formed queries. Refer to your database documentation for the
required format of queries. This information assumes that you are familiar with SQL syntax. For more
information about SQL, refer to an appropriate SQL tutorial or reference text.

Note: Earlier versions of this documentation contained a section on Extending the NCIM topology
database. This section has now been replaced by the new topology enrichment features. For more
information see the Enriching the topology chapter within IBM Tivoli Network Manager IP Edition
Administration Guide.

Logging in to NCIM
Log in to NCIM to run an SQL query that retrieves topology data.

About this task
To log in to NCIM using ncp_oql you must provide a valid NCIM user name and password. The default
user name for the NCIM database user is ncim. The default password is ncim.

To log in to NCIM enter the following command:

ncp_oql -domain DOMAIN -service ncim -username USERNAME -password PASSWORD

Use the tabular display format capabilities of the ncp_oql command. The -tabular option is useful when
retrieving only a small number of columns. For more information on the ncp_oql command, see the IBM
Tivoli Network Manager IP Edition Administration Guide.

Formatting used in the SQL queries
The SQL queries are formatted for readability.

The following formatting is used:

• SQL keywords, such as SELECT and INNER JOIN, are presented in uppercase.
• Code is spaced to aid scanning.
• Each piece of data extracted by a SELECT statement is presented on a separate line.
• Capitalization is used within table and field names. For example, in the field name mainNodeEntityId

the M, E, and I are capitalized.

Note: Capitalization of table and field names is not required in the SQL queries that you submit to NCIM.

Techniques used in the SQL queries
The SQL query examples use a variety of techniques that are aimed at extracting information efficiently.
Use this information to familiarize yourself with the techniques used in SQL queries.
Related reference
Find devices connected to a named device

© Copyright IBM Corp. 2006, 2021 495

This query identifies all main node devices connected to a single specified main node device.

Choice of driving table
One of the most important design decisions when creating a query is the choice of driving table. The
choice of driving table is particularly important for ensuring the efficiency of queries.

The driving table is the table from which rows of data are first selected. Data is then added from other
tables by joining these tables, initially to the driving table. Therefore, choose the driving table so that a
minimum of rows are initially selected. This ensures that the query is as efficient as possible. In many of
the sample queries, the driving table is the domainMgr table, as there are generally very few rows in this
table. This is in contrast to the entityData table, which generally holds tens or hundreds of thousands
of rows.

Aliasing
Aliasing is the use of a temporary name for a column, sub-query or table within a query.

Common reasons for using aliasing include:

• Brevity: For example, use e to refer to the entityData table.
• Distinguishing between table data in a meaningful way: For example, use eComponent to refer to the
entityData table when extracting component data from this table. Use eMainNode to refer to the
entityData table when extracting main node data from the table.

Aliasing can also be applied to columns, functions, and subqueries. For example, aliasing can be used to
rename a results column.

Table joins
Use table joins to combine records from one or more tables. Two types of table join are used, INNER JOIN
and OUTER JOIN.

OUTER JOIN
An OUTER JOIN table join preserves all the rows in one or both tables, even when they do not have
corresponding rows in the other tables being queried. An example of when an OUTER JOIN table join
is useful is if you want to retrieve all interface and IP addressing data where applicable, bearing in
mind that some interfaces may not have IP addresses. Commonly used outer joins include:
LEFT OUTER JOIN

Retains all records from the left table even if the join predicate does not find any matching record
in the right table.

RIGHT OUTER JOIN
Retains all records from the right table even if the join predicate does not find any matching record
in the left table.

INNER JOIN
An INNER JOIN table join between tables combines the records from one or more tables based on a
given join predicate to produce a record set that incorporates rows and columns from each table
included in the join. Typically, a common attribute, such as the NCIM entityId, is used to retrieve sets
of associated records. For example, an inner join could be used to retrieve all of the records that
contain other resources by joining the entity.entityId and contains.containingEntityId attributes.

496 IBM Tivoli Network Manager IP Edition: Reference

Use of specific fields and tables in queries
You can write more efficient SQL queries by making careful use of certain strategic fields and tables.

mainNodeEntityId field
The mainNodeEntityId field in the entityData table specifies the main node of the entity. This field
provides a shortcut to the main node for a particular entity, avoiding the need to traverse the entire
containment tree.

The mainNodeEntityId field is relevant only for entities that are wholly contained within a single main
node device. It therefore has a non-NULL value only for entities that are related to a single main node
device, such as:

• The main node itself
• Physical and logical device components, such as interfaces, modules, PSUs, sensors, backplanes, and

fans
• Logical interfaces entities on the main node, such as IP endpoints and VLAN trunk endpoints
• Local VLANs, which are local VLAN entities contained within a single main node device. The interfaces

contained by this VLAN are constrained to only those interfaces contained within the main node device.

Entities that are related to multiple main node devices, such as VPNs and global VLANs, have a NULL
value in the mainNodeEntityId field.

To retrieve only the entities that are wholly contained within a single main node device, use an INNER
JOIN statement on the entityData table. This statement ensures that only entities that have a non-
NULL value in the mainNodeEntityId field are retrieved.

entityType field
The entityType field can be used in SQL queries to limit the type of component data that is retrieved.

For example, if you specify the entity type 2, which corresponds to interfaces, in an SQL query, only
component data of the type "interface" is retrieved. The entity type of each entity is specified in the
entityType field of the entityData table.

Protocol endpoint tables
The protocolEndPoint and ipEndPoint tables can be used in SQL queries to identify the IP addresses that
are implemented by the device interfaces.

protocolEndPoint
This table associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The most common example of the contents of the
protocolEndPoint table is a row of data that associates a device interface with the IP addressing data
associated with that interface. The protocolEndPoint table refers to protocol-specific information,
such as IP addressing data, using an entity ID.

ipEndPoint
This table contains the IP addressing data.

Protocols other than IP have their own protocol endpoint tables, for example:

• atmEndPoint table for ATM
• bgpEndPoint for Border Gateway Protocol (BGP)
• frameRelayEndPoint for Frame Relay
• igmpEndPoint for Internet Group Multicast Protocol (IGMP)
• ipmRouteEndPoint for IP Multicast routes
• mplsTeTunnelEndPoint for Traffic Engineering tunnels
• OSPFEndPoint table for OSPF

Chapter 21. Topology database queries 497

• pimEndPoint for Protocol Independent Multicast
• portEndPoint for ports
• vlanTrunkEndPoint table for VLAN trunks
• vpwsEndPoint for Virtual Private Wire Services

Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.

Queries for domain information
These queries retrieve information relevant to an entire domain or multiple domains. A domain is a
scoped set of entities discovered and managed by an application. Sample queries extract information on
the number of devices in a domain, names of devices in a domain, and so on.

Tip: A single SQL query on the NCIM database can extract data from multiple domains, whereas queries
on the MODEL topology database, which can extract information from only a single domain at a time.

List all main nodes in a domain
This query provides a list of all main nodes in the database for a specified domain, or for all domains. The
query provides the entity ID of the main node together with the entity name.

Entity ID
The unique primary key of the entity within the entityData table. This is an integer value assigned to
the entity by the database. Entities are not only main nodes. Entities include any device component
present in the database, and other items recorded in the database, such as collections of logical or
physical network elements, for example, VPNs and VLANs.

Entity name
A string value used to refer to the entity. If the entity is a device, then the entity name might be the IP
address of the device or the device name.

Note: Entity names are unique only within a given domain.

Example

SELECT e.entityId Entity_ID,
 e.entityName Device_Name
FROM domainMgr d
INNER JOIN entity e ON e.domainMgrId = d.domainMgrId
WHERE d.domainName = 'NCOMS'
AND e.entityType = 1

Description
The table below describes this query.

Table 257. Description of the query

Line numbers Description

1-2 Specify the data to show in the results as follows:

• The entity identifier of a main node device, represented by e.entityId.
• The entity name of the device, represented by e.entityName.

3 Specify the domainMgr table as the driving table for this query.

498 IBM Tivoli Network Manager IP Edition: Reference

Table 257. Description of the query (continued)

Line numbers Description

4 Retrieve all entities in each domain by joining the entity view. The INNER JOIN ensures
that only entities that are associated to a domain (that is, with a valid domainMgrId
field) are retrieved.

5 Restrict the results to entities within the NCOMS domain.

Tip: To list all main node devices across all domains, omit this line from the query.

6 Restrict the entities to main nodes. Entities that have an entityType of 1 are main
nodes.

Results
The table below shows a portion of the results of this query.

Table 258. Results of the query

Entity ID Device name

1 192.168.15.23

3 192.168.15.7

5 192.168.15.21

72 VE002.example.net

74 172.20.4.20

77 172.20.4.16

83 172.50.0.2

98 VE003.example.net

109 10.1.254.7

143 10.1.254.30

269 10.1.1.9

Related reference
Choice of driving table
One of the most important design decisions when creating a query is the choice of driving table. The
choice of driving table is particularly important for ensuring the efficiency of queries.

Count the number of entities in a domain
This query counts the total number of entities in a domain. Entities include any device component present
in the database, as well as other items recorded in the database such as collections of logical or physical

Chapter 21. Topology database queries 499

network elements, for example, VPNs and VLANs. This query returns a number indicating the number of
entities in the domain.

Example

1] SELECT COUNT(*)
2] FROM domainMgr d
3] INNER JOIN entity e ON e.domainMgrId = d.domainMgrId
4] WHERE d.domainName = 'NCOMS'

Description
The table below describes this query:

Table 259. Description of the query

Line
number(s)

Description

1 Specify that we wish to count the number of rows returned by the query. Each entity
returned by the query generates a row of results; therefore the number of rows
returned corresponds to the number of entities in the domain.

2 Specify the domainMgr table as the driving table for this query.

3-4 Retrieve all entities in the NCOMS domain, by joining the entity view. Restrict the
domain to NCOMS by means of the WHERE statement.

Customizing the query

It is possible to customize this query to retrieve only entities of a specific type. You can find a complete
listing of entity types by viewing the contents of the entityType table. To count the number of interfaces
only in the domain, add the following line to the query:

AND e.entityType = 2

In this line e.entityType is the entityType field within the entity view. The entity view is referred
to using the alias e.

1] SELECT COUNT(*)
2] FROM domainMgr d
3] INNER JOIN entity e ON e.domainMgrId = d.domainMgrId
4] WHERE d.domainName = 'NCOMS'
5] AND e.entityType = 2

Description
The table below describes this customized query:

Table 260. Description of the customized query

Line
number(s)

Description

1 Specify that you want to count the number of rows returned by the query. Each entity
returned by the query generates a row of results; therefore the number of rows
returned corresponds to the number of entities in the domain.

2 Specify the domainMgr table as the driving table for this query.

500 IBM Tivoli Network Manager IP Edition: Reference

Table 260. Description of the customized query (continued)

Line
number(s)

Description

3 Retrieve all entities in the NCOMS domain, by joining the entity view.

4 Restrict the results to entities within the NCOMS domain.

5 Restrict the entities returned by the query to interfaces. Entities with an entityType
of 2 are interfaces.

Related reference
Techniques used in the SQL queries
The SQL query examples use a variety of techniques that are aimed at extracting information efficiently.
Use this information to familiarize yourself with the techniques used in SQL queries.
Choice of driving table
One of the most important design decisions when creating a query is the choice of driving table. The
choice of driving table is particularly important for ensuring the efficiency of queries.

Queries for main node information
These sample queries retrieve data on main node devices.

List all devices with class name and system object identifier
This query retrieves all main node devices across all domains and, for each device, provides the class
name of the device and the type of device.

Class name
The manufacturer and product family of the device. For example, CiscoCat35xx is the Cisco Catalyst
3500 product family.

Type of device
The model number of the device within product family of the manufacturer. For example,
catalyst3524XL is the Cisco Catalyst 3524XL Gigabit Ethernet switch. The query determines the type
of device by extracting the system object identifier (sysObjectId) value for the device. The sysObjectId
field is held in the chassis table, which is one of the tables joined as part of the query. The system
object identifier is a MIB value that provides the vendor's authoritative identification of the network
management subsystem contained in the entity and serves as easy and unambiguous means for
determining the type of device.

You can convert the system object identifier (for example, (1.3.6.1.4.1.9.1.248) into human-readable text
(for example, catalyst3524XL), by using an OUTER JOIN statement to join the mappings table to the
query. Within the mappings table, the sysObjectId mapping group lists system object identifier strings
and their corresponding human-readable string values. The mappings table provides string-to-string
mappings, unlike the enumerations table, which provides integer-to-string mappings.

If no entry exists in the mappings table for a specific system object identifier, the query returns a NULL
value for the device type. Use of an OUTER JOIN statement enables you to perform this conversion
without losing any rows of main node data. If no string exists for any particular system object identifier,
the OUTER JOIN statement ensures that you nevertheless do not lose the row of data for the main node
device associated with that system object identifier.

Example

1] SELECT e.entityName Entity_Name,
2] ec.className Class_Name,
3] s.sysObjectId System_Object_ID,

Chapter 21. Topology database queries 501

4] m.mappingValue Device_Type
5] FROM entityData e
6] INNER JOIN physicalChassis c ON c.entityId = e.entityId
7] INNER JOIN snmpSystem s ON s.entityId = e.entityId
8] INNER JOIN classMembers cm ON cm.entityId = e.entityId
9] INNER JOIN entityClass ec ON ec.classId = cm.classId
10] LEFT OUTER JOIN mappings m ON m.mappingGroup = 'sysObjectId'
11] AND m.mappingKey = s.sysObjectId
12] ORDER BY ec.className, s.sysObjectId

The following table describes this query:

Table 261. Description of the query

Line numbers Description

1-4 Specify the data to show in the results, as follows:

• The entity name of a device, represented by e.entityName.
• The class name of the device, indicating the manufacturer and product family. This is

represented by ec.className, where ec is the alias used to refer to the entityClass
table.

• The system object identifier for this device, represented by s.sysObjectId. (SNMP
devices only)

• The device type, based on a lookup of the system object identifier in the mappings
table. This is represented by m.mappingValue.

5 Use the entityData table as the driving table for this query.

6 Limit the results of the query to main node devices, by joining the physicalChassis
table to the entityData table. There is now a line of data for each main node device.
Use an INNER JOIN statement to ensure that only entities that are main node devices
are retrieved.

7 For SNMP devices determine the System Object ID.

8 Determine the class to which the device belongs. This is a two-step process. The first
step, shown in this line, is to use an INNER JOIN statement to the classMembers table
to retrieve the classId value for the class to which the device belongs.

9 Use the classId retrieved in line 7 as a lookup to determine the name of the class to
which the device belongs. Do this by performing an INNER JOIN statement with the
entityClass table. The entityClass table holds class details, including class names, and
the name of the superclass, the containing class in the class hierarchy.

10-11 Look up the system object identifier in the mappings table in order to obtain a human-
readable string for the device type. Do this by performing a join on the mappings table.
Use an OUTER JOIN statement to enable you to perform this join without losing any
rows of main node data. If no string exists for any particular system object identifier,
the OUTER JOIN statement ensures that you nevertheless do not lose the row of data
for the main node device associated with that system object identifier.

12 Order the query results for maximum readability. In order to do this list the devices first
by manufacturer and product family (classname) and then by model (system object
identifier).

Results
The table below shows a portion of the results of the query.

502 IBM Tivoli Network Manager IP Edition: Reference

Table 262. Results of the query

Entity name Class name System object ID Device type

192.168.15.23 3ComSuperStack
1.3.6.1.4.1.43.10.27.
4.1.2.2

3Com SuperStack II

192.168.15.7 3ComSuperStack 1.3.6.1.4.1.43.10.27.
4.1.2.2

3Com SuperStack II

172.20.4.16 Cisco26xx 1.3.6.1.4.1.9.1.185 cisco2610

10.1.1.8 Cisco26xx 1.3.6.1.4.1.9.1.186 cisco2611

10.1.1.9 Cisco26xx 1.3.6.1.4.1.9.1.209 cisco2621

172.20.4.15 Cisco36xx 1.3.6.1.4.1.9.1.122 cisco3620

10.1.254.1 Cisco72xx 1.3.6.1.4.1.9.1.222 cisco7206VXR

172.18.1.151 CiscoCat35xx 1.3.6.1.4.1.9.1.247 catalyst3512XL

172.18.1.203 CiscoCat35xx 1.3.6.1.4.1.9.1.248 catalyst3524XL

172.20.1.41 HuaweiARxx 1.3.6.1.4.1.2011.1.1.1.
12809

NULL

10.1.1.5 MarconiASX 1.3.6.1.4.1.326.2.2.5 NULL

192.168.32.13 Sun 1.3.6.1.4.1.42 NULL

192.168.34.
199

Sun 1.3.6.1.4.1.42.2.1.1 SunMicrosystemsServers

192.168.15.4 Windows 1.3.6.1.4.1.311.1.1.3.1.2 MicrosoftWindowsServer

List all IP addresses on all main node devices
This query retrieves all IP addresses on all main node devices. For each IP address, the query lists the
entity that implements the IP address. This entity is usually an interface, but under certain conditions the
IP address might be implemented by the main node itself.

This query lists the IP addresses implemented by each interface identified on a main node or by the main
node itself. If an interface does not implement an IP address, that interface is not returned by this query.

Note: IP end points might be present on interfaces and on any of the following main nodes:

• Main nodes with no SNMP access
• Inferred chassis
• NAT-translated chassis

Example

SELECT e.entityId Implementing_Entity_ID,
 eMainNode.entityName Main_Node_Name,
 e.entityName Implementing_Entity_Name,
 ip.address IP_Address
FROM entityData e
INNER JOIN entityData eMainNode ON eMainNode.entityId =
 e.mainNodeEntityId
INNER JOIN protocolEndPoint p ON p.implementingEntityId = e.entityId
INNER JOIN ipEndPoint ip ON ip.entityId = p.endPointEntityId
ORDER BY e.entityId

Chapter 21. Topology database queries 503

Description
The table below describes this query.

Table 263. Description of the query

Line numbers Description

1-4 Specify the data to show in the results, as follows:

• The unique entity ID of the interface within the topology database, represented by
e.entityId

• The name of a main node device, represented by eMainNode.entityName
• The name of the interface, represented by e.entityName
• An IP address implemented by this interface, represented by ip.address

5 Use the entityData table as the driving table for this query. Use the alias e for the
entityData table.

6-7 Identify the containing main node device for each of the entities retrieved in the
preceding line.

Do this by joining the entityData table to itself using the mainNodeEntityId field.

8-9 Identify the IP addresses implemented by each of the entities identified in line 5 of the
query.

Do this by performing an INNER JOIN statement on the protocolEndPoint table to
extract the entity ID for any protocol-specific information associated with the entities
identified in line 5.

Then perform a second INNER JOIN statement on the ipEndPoint table to limit the
protocol-specific information returned by the query to IP information.

10 To facilitate readability of the results, order first by the unique entity ID of the interface.

Results
The table below shows the results of this query.

Table 264. Results of the query

Implementing Entity ID Main Node Name Implementing Entity
Name

IP Address

270 172.20.4.11 172.20.4.11[0[5]] 172.50.0.2

338 172.18.1.196 172.18.1.196[0[2]] 172.50.0.3

366 172.18.1.54 172.18.1.54[0[2]] 172.50.0.4

370 172.18.1.54 172.18.1.54[0[1]] 172.50.0.5

373 172.20.4.13 172.20.4.13[0[1]] 172.50.0.6

377 172.20.4.20 172.20.4.20[0[1]] 172.50.0.7

504 IBM Tivoli Network Manager IP Edition: Reference

Table 264. Results of the query (continued)

Implementing Entity ID Main Node Name Implementing Entity
Name

IP Address

417 192.168.139.7 192.168.139.7[0
[5]]

172.20.11.1

417 192.168.139.7 192.168.139.7[0
[5]]

172.20.1.2

Queries for containment information
These queries retrieve data on logical and physical containment within your network.

The containment model can reflect the real world topology of the network that is being modelled, in a
physical, logical or business-oriented sense. Logical containment includes the definition of local VLAN
objects and VLAN trunks within main nodes.

The following sample queries extract containment information.

List all components on a device
This query retrieves all components on a named device, and lists each component. The query lists the
components by entity ID and displays the name of the component. All components are displayed,
regardless of their type.

You can run this query in the following ways, which specify the main node device differently:

• Using the device name (entityName) and the name of the domain in which the device is located
(domainName). The device name might be an IP address or a textual name and should be unique within
a given domain. This query is shown below.

• You can also write this query using the entityId for the device within the entityData table. This field
contains an integer value unique across all domains.

Note: The SQL query in this section uses meaningful table aliases, such as eComponent and eMainNode .
This makes the query more readable by enabling you to distinguish between different types of data from
the same table.

Example

1] SELECT eComponent.entityId Component_Entity_ID,
2] eComponent.entityName Component_Name,
3] eMainNode.entityName Main_Node_Name
4] FROM domainMgr d
5] INNER JOIN entity eComponent ON eComponent.domainMgrId = d.domainMgrId
6] INNER JOIN entityData eMainNode ON eMainNode.entityId =
7] eComponent.mainNodeEntityId
8] WHERE eMainNode.entityName = 'VE004.example.net'
9] AND d.domainName = 'NCOMS';

The table below describes this query.

Chapter 21. Topology database queries 505

Table 265. Description of the query

Line numbers Description

1-3 Specify the data to show in the results, as follows:

• The entity ID of a component within the specified main node device, represented by
eComponent.entityId.

• The name of a component, represented by eComponent.entityName.
• The name of the specified main node device, represented by
eMainNode.entityName.

4 Use the domainMgr table as the driving table for this query.

5 Retrieve data for all the entities in this domain by joining the entity view to the query.
This join retrieves all entities in the domain, including those wholly contained within a
single main node (required) as well as those entities related to multiple main nodes ,
such as VPNs and global VLANs (not required).

In this join, the entity view is aliased using a meaningful alias, eComponent. This
alias indicates that the data retrieved from the entity view using this join is
component data.

6-7 Identify the containing main node device for each of the entities by joining the
entityData table to itself using the mainNodeEntityId field. This automatically
excludes those entities that are related to multiple main node devices, such as VPNs
and global VLANs. These entities have a NULL value in the mainNodeEntityId field.

8-9 Limit the entities retrieved to those contained within the main node
VE004.example.net and the domain to the NCOMS domain.

The table below describes the results of this query.

Table 266. Results of the query

Comp-
onent
entity ID

Component name Main node name

83 VE004.example.net VE004.example.net

84 VLAN_trunk_1_VE004.example.net
[0[26]]

VE004.example.net

2151 VE004.example.net[0[21]] VE004.example.net

2224 VE004.example.net[0[14]] VE004.example.net

2226 VE004.example.net[0[10]] VE004.example.net

2227 VE004.example.net[0[15]] VE004.example.net

2228 VE004.example.net[0[12]] VE004.example.net

2231
VE004.example.net[0[1]IP:192.168.
32.65]

VE004.example.net

2232 VE004.example.net[0[13]] VE004.example.net

2233 VLAN_OBJECT_VE004.example.net
_VLAN_1

VE004.example.net

3187 VE004.example.net_CARD_0 VE004.example.net

506 IBM Tivoli Network Manager IP Edition: Reference

Related reference
Aliasing
Aliasing is the use of a temporary name for a column, sub-query or table within a query.
mainNodeEntityId field
The mainNodeEntityId field in the entityData table specifies the main node of the entity. This field
provides a shortcut to the main node for a particular entity, avoiding the need to traverse the entire
containment tree.

List all components on a device and show component type
This query displays all the components on a device and also displays the type of component.

To determine the type of component, the query uses the entityType value for the device. The system
object identifier is a numerical key that specifies the type of entity. For example, an entityType value of 1
indicates a main node; an entityType value of 2 indicates an interface.

The entityType table provides a comprehensive list of every entity type in NCIM. This query joins the
entityType table to the query to extract the name of the entity type for each component.

Example

1] SELECT eComponent.entityId Component_Entity_ID,
2] eComponent.entityName Component_Name,
3] et.typeName Component_Type,
4] eMainNode.entityName Main_Node_Name
5] FROM domainMgr d
6] INNER JOIN entity eComponent ON eComponent.domainMgrId = d.domainMgrId
7] INNER JOIN entityData eMainNode ON eMainNode.entityId =
8] eComponent.mainNodeEntityId
9] INNER JOIN entityType et ON et.entityType = eComponent.entityType
10] WHERE eMainNode.entityName = 'VE004.example.net'
11] AND d.domainName = 'NCOMS';

Description
The table below describes how the query determines the type of component.

Table 267. Description of the query

Line numbers Description

3 In addition to the main node and component data, this query also retrieves the
component type of the component contained within the named device. This is
represented by et.typeName.

9-10 Join the entityType table to extract data related to the entity type, including the
name of the entity type for each component.

Results
The table below shows the results of this query.

Table 268. Results of the query

Comp-
onent
entity ID

Component name Component type Main node name

83 VE004.example.net chassis VE004.example.
net

Chapter 21. Topology database queries 507

Table 268. Results of the query (continued)

Comp-
onent
entity ID

Component name Component type Main node name

84
VLAN_trunk_1_VE004.example.net
[0[26]]

vlanTrunkEndPoin
t

VE004.example.
net

2151 VE004.example.net[0[21]] interface VE004.example.
net

2224 VE004.example.net[0[14]] interface VE004.example.
net

2226 VE004.example.net[0[10]] interface VE004.example.
net

2227 VE004.example.net[0[15]] interface VE004.example.
net

2228 VE004.example.net[0[12]] interface VE004.example.
net

2231 VE004.example.net[0[1]
IP:192.168.32.65]

ipEndPoint VE004.example.
net

2232 VE004.example.net[0[13]] interface VE004.example.
net

2233 VLAN_OBJECT_VE004.example.net
_VLAN_1

localVlan VE004.example.
net

3187 VE004.example.net_CARD_0 module VE004.example.
net

Display the number of cards on each device
This query lists all of the main node devices in a domain and retrieves the number of cards in each of
these devices.

The query retrieves only devices that contain at least two cards; devices that have no cards are not
displayed.

Examples of cards include Three-Port Gigabit Ethernet cards, WAN interface cards, and mainboards
cards.

Example

1] SELECT eMainNode.entityName Main_Node_Entity_Name,
2] COUNT(physicalCard.entityId) AS 'Number of Cards'
3] FROM domainMgr d
4] INNER JOIN entity eCard ON eCard.domainMgrId = d.domainMgrId
5] INNER JOIN physicalCard ON physicalCard.entityId = eCard.entityId
6] INNER JOIN entityData eMainNode ON eMainNode.entityId =
7] eCard.mainNodeEntityId
8] WHERE d.domainName = 'NCOMS'
9] GROUP BY eMainNode.entityId
10] HAVING count(physicalCard.entityId) > 1

Description
The table below describes this query.

508 IBM Tivoli Network Manager IP Edition: Reference

Table 269. Description of the query

Line numbers Description

1-2 Specify the data to show in the results, as follows:

• The name of a main node device, represented by eMainNode.entityname
• The number of cards in that device, represented by
COUNT(physicalCard.entityId)

4-6 Join relevant tables to the domainMgr table in order to retrieve the required data. The
joins are as described in the next two rows.

4 Retrieve all the entities in each domain. The INNER JOIN clause ensures that only
entities that have a valid domainMgrId field are retrieved.

5 From all the entities, extract only that subset of entities that are cards. Use an INNER
JOIN statement to ensure that only entities that have corresponding entries in the
physicalCard table are retrieved. There is a line of data for each card. This line of
data consists of all columns from the domain table, the entity view, and the
physicalCard table related to that card.

6-7 Identify the containing main node device for each of the cards by joining the
entityData table to itself using the mainNodeEntityId field. The join on this field
enables the query to go directly to the top of the containment tree.

8 Limit the resulting data to the main node devices in the NCOMS domain only.

9 Group the results by the name of the main node device. This means that the results
show the number of cards within each main node.

10 Use the HAVING clause to specify that you want to retrieve only devices that contain
two or more cards.

Results
The table below shows a portion of the results for this query.

Table 270. Results of the query

Main node entity name Number of cards

172.18.1.102 20

VE001.example.net 10

Related reference
mainNodeEntityId field
The mainNodeEntityId field in the entityData table specifies the main node of the entity. This field
provides a shortcut to the main node for a particular entity, avoiding the need to traverse the entire
containment tree.

Find all devices containing Three-Port Gigabit Ethernet cards
This query looks for specific containment information within a device. In this example, the query finds all
main-node devices that contain a specific component: a Cisco Three-Port Gigabit Ethernet card.

This query also returns the following information about each Three-Port Gigabit Ethernet Card retrieved:

• Serial number of the card
• Hardware revision of the card
• The physical position occupied within the main node device by the slot that contains this card

Chapter 21. Topology database queries 509

Tip: To perform this type of query, you need to know the MIB OID of the component contained within the
device. In this example, you need to know that the OID of the Three-Port Gigabit Ethernet Card within the
Cisco MIB is 1.3.6.1.4.1.9.12.3.1.9.18.49.

Prerequisites
Before you run this query, you must have enabled the Entity agent to run during the discovery process.
This enables the query to retrieve the required data. The Entity agent discovers detailed containment
information from the Entity MIB. For more information about the Entity agent, see the IBM Tivoli Network
Manager IP Edition Administration Guide. By default the Entity agent is not configured to run during
discovery. You must therefore configure this agent manually if you want the topology database to contain
the detailed MIB information that is required for queries of this type.

Example

1] SELECT d.domainname Domain,
2] e2.entityName Device_Name,
3] c.serialnumber Serial_Number,
4] c.hwRevision Hardware_Revision,
5] s.relativePosition Slot_Number
6] FROM domainmgr d
7] INNER JOIN entity e1 ON e1.domainmgrid = d.domainmgrid
8] INNER JOIN physicalCard c ON c.entityid = e1.entityid
9] INNER JOIN entityData e2 ON e2.entityid = e1.mainnodeentityid
10] INNER JOIN contains c2 ON c2.containedentityid = c.entityid
11] INNER JOIN physicalSlot s ON s.entityid = c2.containingentityid
12] WHERE c.vendorType = '1.3.6.1.4.1.9.12.3.1.9.18.49'
13] ORDER BY LOWER(d.domainname) ASC, LOWER(e2.entityName) ASC;

Description
The table below describes this query.

Table 271. Description of the query

Line numbers Description

1-5 Specify the data to show in the results, as follows:

• The domain to which the main node device belongs, represented by d.domainname
• The name of a main node device containing a Three-Port Gigabit Ethernet card,

represented by e2.entityName
• The serial number of the Three-Port Gigabit Ethernet card, represented by
c.serialnumber

• The hardware version of the Three-Port Gigabit Ethernet card, represented by
c.hwRevision

• The slot occupied by the Three-Port Gigabit Ethernet card in the main node device,
represented by s.relativePosition

7-11 Join relevant tables to the domainMgr table in order to retrieve the required data.

7 Retrieve all the entities in each domain. The INNER JOIN clause ensures that only
entities that have a valid domainMgrId field are retrieved.

8 From all the entities, extract only that subset of entities that are cards. Card data is
held in the physicalCard table. There is a line of data for each card. This line of data
consists of all columns from the domain table, the entity view, and the
physicalCard tables related to that card.

9 For each card, obtain the name of the main node that contains that card. Do this by
performing a second INNER JOIN statement on the entityData table to retrieve all
the data for the main node that contains the card.

510 IBM Tivoli Network Manager IP Edition: Reference

Table 271. Description of the query (continued)

Line numbers Description

10-11 These two lines retrieve for each card, the physical position occupied within the main
node device by the slot that contains that card.

10 The query has so far extracted all cards in the database, together with line of relevant
data for each card. From all these cards, extract only those cards that are contained
within another entity. Do this by performing an INNER JOIN statement between the
physicalCard table and the contains table. This INNER JOIN statement also
retrieves the containingEntityId column values, which are the IDs of the entities
containing the cards.

11 For each card, obtain data for the slot that contains the card. Do this by performing an
INNER JOIN statement between the physicalSlot table and the contains table to
retrieve all the data for the main node that contains the card. This limits the results to
only those cards which are contained within slots.

12 Limit the resulting data to those cards that have an OID of
1.3.6.1.4.1.9.12.3.1.9.18.49. This OID corresponds to the MIB variable
cevGsr3ge, which is the MIB variable for the Cisco Three-Port Gigabit Ethernet Card.

13 For readability purposes, order the results first by domain and then by name of the
main node device.

Results
The following table shows an example of the results of this query.

Table 272. Results of the query

Domain Device name Serial number Hardware revision Slot
number

NCOMS VE001.example.
net

SAD06A400WY 2.0 3

NCOMS 172.20.4.13 SDK04A70XV4 2.0 4

NCOMS 172.50.0.2 SAD06A300PY 2.0 5

Find entities within all cards
This query retrieves entities contained within all cards. Cards might contain entities of different types,
including ports, slots, and sensors. The query lists each of the cards identified and, for each card, lists the
entities contained within the card.

This query does not traverse the entire containment tree within the card. Therefore, the query only
retrieves components at the top level within the card.

This query uses the contains table. This table defines all the containment relationships between
entities. Each row in the contains table holds a pair of entity identifiers: the containing entity and the
contained entity identifier. For each card identified, the query joins to the contains table and extracts
information about one of the entities contained within that card.

Example

1] SELECT container.entityName Card_Name,
2] m.cardNumber Card_Number,
3] part.entityName Contained_Entity

Chapter 21. Topology database queries 511

4] FROM physicalCard m
5] INNER JOIN entityData container ON container.entityId = m.entityId
6] INNER JOIN contains c ON c.containingEntityId = m.entityId
7] INNER JOIN entityData part ON part.entityId = c.containedEntityId
8] ORDER BY container.entityName

The table below describes this query.

Table 273. Description of the query

Line numbers Description

1-3 Specify the data to show in the results, as follows:

• The name of the card, represented by container.entityName
• The number of the card within the main node device, represented by m.cardNumber
• The name of the interface, represented by part.entityName

4 Use the physicalCard table as the driving table for this query.

The FROM clause extracts data for all cards.

5 For each card, extract the full set of entity data for that card. This ensures that the
entity name of the card is retrieved for display in the query results, as specified in line
1). Use the alias container for the entityData table to indicate that data extracted
using this alias is data for the containing card.

Do this by specifying an INNER JOIN statement with the entityData table.

6 For each card, extract records from the contains table on entities contained within
that card. Limit the query results to those cards that contain other entities.

Do this by specifying an INNER JOIN statement with the contains table.

The query extracts a record from the contains table for each entity contained within a
given card. Each of these records includes the entity identifier for an entity contained
within the card.

7 Extract the full set of entity data for each contained entity. Use the alias part for the
entityData table to indicate that data extracted using this alias is data for a
contained entity.

Do this by specifying a second INNER JOIN statement with the entityData table.

8 To facilitate readability of the results, order by the entity name of the containing card.

The table below shows the results of this query.

Table 274. Results of the query

Card name Card number Contained entity

10.1.1.11_CARD_1 1 10.1.1.11[1 [1]]

10.1.1.11_CARD_2 2 10.1.1.11[2 [1]]

10.1.1.12_CARD_0 0 10.1.1.12[0 [14]]

10.1.1.12_CARD_0 0 10.1.1.12[0 [10]]

512 IBM Tivoli Network Manager IP Edition: Reference

Table 274. Results of the query (continued)

Card name Card number Contained entity

10.1.1.12_CARD_0 0 10.1.1.12[0 [12]]

10.1.1.12_CARD_0 0 10.1.1.12[0 [11]]

10.1.1.12_CARD_0 0 10.1.1.12[0 [13]]

10.1.1.8_CARD_I3_R0 NULL 10.1.1.8_SLOT_I4_R0'

10.1.1.8_CARD_I3_R0 NULL 10.1.1.8_SLOT_I6_R1'

10.1.1.9_CARD_I3_R0 NULL 10.1.1.9_SLOT_I4_R0'

10.1.1.9_CARD_I3_R0 NULL 10.1.1.9_SLOT_I6_R1'

10.1.254.2_CARD_I1000_R1 NULL 10.1.254.2_SENSOR_I1002_R2

10.1.254.2_CARD_I1000_R1 NULL 10.1.254.2_SENSOR_I1001_R1

10.1.254.2_CARD_I1100_R1 NULL 10.1.254.2_PORT_I1102_R1

10.1.254.2_CARD_I1100_R1 NULL 10.1.254.2_PORT_I1101_R0

Related reference
Aliasing
Aliasing is the use of a temporary name for a column, sub-query or table within a query.
Table joins
Use table joins to combine records from one or more tables. Two types of table join are used, INNER JOIN
and OUTER JOIN.
Choice of driving table
One of the most important design decisions when creating a query is the choice of driving table. The
choice of driving table is particularly important for ensuring the efficiency of queries.

Queries for port and interface information
These sample queries extract interface and protocol information associated with interfaces.

Device entities, usually interfaces, might be associated with protocol-specific data. The most common
example is the association between a device interface with the IP addressing data. Interfaces might also
be associated with other types of addressing data, including ATM protocol data and OSPF protocol data.

List all interfaces on all devices
This query provides a list of all main node devices within a domain together with the identifiers and names
of the interfaces on each device.

Example

1] SELECT eMainNode.entityName Main_Node_Name,
2] eInterface.entityId Interface_Entity_ID,
3] eInterface.entityName Interface_Entity_Name
4] FROM entityData eInterface
5] INNER JOIN entityData eMainNode ON eMainNode.entityId =
6] eInterface.mainNodeEntityId

Chapter 21. Topology database queries 513

7] WHERE eInterface.entityType = 2
8] ORDER BY eMainNode.entityName, eInterface.entityName

Description
The table below describes this query.

Table 275. Description of the query

Line numbers Description

1-3 Specify the data to show in the results, as follows:

• The name of a main node device, represented by eMainNode.entityName
• The unique entity ID of the interface within the topology database, represented by
eInterface.entityId

• The name of the interface, represented by eInterface.entityName

4 Use the entityData table as the driving table for this query. Use the alias
eInterface for the entityData table to indicate that the data extracted using this
alias is interface data.

5-6 Identify the containing main node device for each of the entities retrieved in the
preceding line. Do this by joining the entityData table to itself using the
mainNodeEntityId field.

7 Limit the components of the device to interfaces only. Do this filtering the components
to retrieve only components with an entity type of 2, which corresponds to an interface.

8 To facilitate readability of the results, order first by main node name and then by
interface name.

Results
The table below shows a portion of the results for this query.

Table 276. Results of the query

Main node name Interface entity ID Interface entity name

172.20.1.41 1622 172.20.1.41[0[1]]

172.20.4.11 1621 172.20.4.11[0[1]]

172.20.4.11 1624 172.20.4.11[0[10]]

172.20.4.11 1479 172.20.4.11[0[11]

172.20.4.11 1632 172.20.4.11[0[12]

VE001.example.net 1631 VE001.example.net[0[1]]

Related reference
mainNodeEntityId field

514 IBM Tivoli Network Manager IP Edition: Reference

The mainNodeEntityId field in the entityData table specifies the main node of the entity. This field
provides a shortcut to the main node for a particular entity, avoiding the need to traverse the entire
containment tree.
entityType field
The entityType field can be used in SQL queries to limit the type of component data that is retrieved.

List all interfaces with specific attributes
This query provides a list of all interfaces within a domain that have specific attribute values.

The example given here retrieves interfaces that have an interface speed greater than 155 MB per
second; however, you can construct a query using any of the attributes in the networkInterface table.

Example

1] SELECT e.entityName Interface_Name,
2] i.ifName IfName,
3] i.ifSpeed Interface_Speed
4] FROM entityData e
5] INNER JOIN networkInterface i ON i.entityId = e.entityId
6] WHERE ifSpeed > 155000000
7] ORDER BY i.ifSpeed DESC;

Description
The table below describes this query.

Table 277. Description of the query

Line numbers Description

1-3 Specify the data to show in the results, as follows:

• The name of an interface, represented by e.entityName
• The name of the interface stored in the MIB, represented by i.ifName
• The speed of the interface, represented by i.ifSpeed

4 Use the entityData table as the driving table for this query. This part of the query
retrieves all entities held in the database.

5 Limit the results of the query to interfaces.

Do this by joining the networkInterface table to the entityData table using the
mainNodeEntityId field. There is now a line of data for each interface in the
database. The INNER JOIN statement ensures that only interface data is retrieved.

6 Limit the results of the query to interfaces with interface speeds greater than 155 MB
per second.

7 Order the results by the speed of the interface.

Results
The table below shows the results of this query.

Chapter 21. Topology database queries 515

Table 278. Results of the query

Interface name IfName Interface speed

10.1.254.2[1 [1]] Gi1/1 1000000000

192.170.170.10[0 [51]] Gi50 1000000000

192.170.170.10[0 [50]] Gi49 1000000000

192.170.170.10[0 [1]] FX1 1000000000

172.20.4.19[0 [1]] ATM0/1/0 622080000

172.18.1.102[2 [1]] FEC-9/39-42 400000000

172.20.4.19[0 [2]] ATM0 155520000

192.170.170.10[0 [52]] Co51 155520000

List all interfaces on all devices with interface type
This query retrieves all interfaces on all devices across all domains, and also retrieves information about
the interface.

For each interface the query retrieves the following information about the interface:

• ifName
• ifType
• A textual description corresponding to the ifType field

In addition to using information from the entityData table to list the interfaces on each device, this
query provides a join to the networkInterface table to bring in detailed attribute data for the interfaces
identified.

Example

1] SELECT eInterface.entityId Interface_Entity_ID,
2] eMainNode.entityName Main_Node_Name,
3] eInterface.entityName Interface_Entity_Name,
4] i.ifName IfName,
5] i.ifType Interface_Type,
6] i.ifTypeString Interface_Type_String
7] FROM entityData eInterface
8] INNER JOIN entityData eMainNode ON eMainNode.entityId =
9] eInterface.mainNodeEntityId
10] INNER JOIN networkInterface i ON i.entityId = eInterface.entityId
11] WHERE eInterface.entityType = 2
12] ORDER BY eMainNode.entityName, i.ifType

Description
The table below describes this query.

516 IBM Tivoli Network Manager IP Edition: Reference

Table 279. Description of the query

Line numbers Description

1-6 Specify the data to show in the results, as follows:

• The unique entity ID of the interface within the topology database, represented by
eInterface.entityId

• The name of the main node to which the interface belongs, represented by
eMainNode.entityName

• The name of the interface, represented by eInterface.entityName
• The textual name of the interface, as specified in the MIB, represented by i.ifName
• The type of interface, as specified in the MIB, represented by i.ifType
• The textual description corresponding to this type of interface, represented by
i.ifTypeString

7 Use the entityData table as the driving table for this query. Use the alias
eInterface for the entityData table to indicate that the data extracted using this
alias is interface data.

8-9 Identify the containing main node device for each of the entities retrieved in the
preceding line.

Do this by joining the entityData table to itself using the mainNodeEntityId field.

10 Extract all attribute data for the various interfaces. This attribute data is held in the
networkInterface table.

Do this by joining the networkInterface table to the entityData table using the
entityId field. The INNER JOIN statement ensures that only interface data is
retrieved.

11 Limit the components of the device to interfaces only.

Do this by filtering the components to retrieve only components with an entity type of
2, which corresponds to an interface.

12 To facilitate readability of the results, order first by main node name and then by
ifType.

Results
The table below shows the results of this query.

Table 280. Results of the query

Inter-
face
entity
ID

Main node
name

Interface entity name IfName Inter-
face
type

Interface type string

1479 10.1.1.11 10.1.1.11[0 [12] Fa0/11 6 ethernetCsmacd

1621 10.1.1.11 10.1.1.11[0 [10] Fa0/9 6 ethernetCsmacd

1622 10.1.1.11 10.1.1.11[0 [1] VL1 6 ethernetCsmacd

Chapter 21. Topology database queries 517

Table 280. Results of the query (continued)

Inter-
face
entity
ID

Main node
name

Interface entity name IfName Inter-
face
type

Interface type string

2466 10.1.1.5 10.1.1.5[0 [1029] 1B1 18 ds1

2471 10.1.1.5 10.1.1.5[0
[1035]]

1B4 18 ds1

2465 10.1.1.5 10.1.1.5[0
[1032]]

1B2 37 atm

2476 10.1.1.5 10.1.1.5[0
[1030]]

1B1 37 atm

2477 10.1.1.5 10.1.1.5[0
[1024]]

1CTL 37 atm

2474 10.1.1.5 10.1.1.5[0
[1059]]

44 frameRelayService

2480 10.1.1.5 10.1.1.5[0
[1053]]

44 frameRelayService

2482 10.1.1.5 10.1.1.5[0
[1055]]

44 frameRelayService

2488 10.1.1.5 10.1.1.5[0 [5]] qaa1 114 ipOverAtm

2490 10.1.1.5 10.1.1.5[0 [4]] qaa0 114 ipOverAtm

2496 10.1.1.5 10.1.1.5[0 [6]] qaa2 114 ipOverAtm

1652 10.1.1.9 10.1.1.9[0 [1]] Se0/0 22 propPointToPointSeria
l

1131 10.1.254.
1

10.1.254.1[0
[20]]

Fa0/1.8
0

135 l2vlan

1130 10.1.254.
1

10.1.254.1[0
[22]]

Se1/1:0 166 mpls

Related reference
Techniques used in the SQL queries
The SQL query examples use a variety of techniques that are aimed at extracting information efficiently.
Use this information to familiarize yourself with the techniques used in SQL queries.
List all interfaces on all devices
This query provides a list of all main node devices within a domain together with the identifiers and names
of the interfaces on each device.
entityType field

518 IBM Tivoli Network Manager IP Edition: Reference

The entityType field can be used in SQL queries to limit the type of component data that is retrieved.

List all IP addresses and the interfaces that implement them
This query retrieves all interfaces on all main node devices. For each interface, the query lists the IP
addresses that the interface implements. An interface can implement multiple IP addresses.

In addition to using information from the entityData table to list the interfaces on each device, this
query lists the IP addresses implemented by each interface identified. If an interface does not implement
an IP address, that interface is not returned by this query.

Example

1] SELECT eInterface.entityId Interface_Entity_ID,
2] eMainNode.entityName Main_Node_Name,
3] eInterface.entityName Interface_Entity_Name,
4] ip.address IP_Address
5] FROM entityData eInterface
6] INNER JOIN entityData eMainNode ON eMainNode.entityId =
7] eInterface.mainNodeEntityId
8] INNER JOIN protocolEndPoint p ON p.implementingEntityId = eInterface.entityId
9] INNER JOIN ipEndPoint ip ON ip.entityId = p.endPointEntityId
10] WHERE eInterface.entityType = 2
11] ORDER BY eInterface.entityId

Description
The table below describes this query.

Table 281. Description of the query

Line numbers Description

1-4 Specify the data to show in the results, as follows:

• The unique entity ID of the interface within the topology database, represented by
eInterface.entityId

• The name of a main node device, represented by eMainNode.entityName
• The name of the interface, represented by eInterface.entityName
• An IP address implemented by this interface, represented by ip.address

5 Use the entityData table as the driving table for this query. Use the alias
eInterface for the entityData table to indicate that the data extracted using this
alias is interface data.

6-7 Identify the containing main node device for each of the entities retrieved in the
preceding line.

Do this by joining the entityData table to itself using the mainNodeEntityId field.

8-9 Identify the IP addresses implemented by each of the entities identified in line 5 of the
query.

Do this by performing an INNER JOIN statement on the protocolEndPoint table to
extract the entity ID for any protocol-specific information associated with the entities
identified in line 5.

Then perform a second INNER JOIN statement on the ipEndPoint table to limit the
protocol-specific information returned by the query to IP information.

Chapter 21. Topology database queries 519

Table 281. Description of the query (continued)

Line numbers Description

10 Limit the components of the device to interfaces only.

Do this by filtering the components to retrieve only components with an entity type of
2, which corresponds to an interface.

11 To facilitate readability of the results, order first by the unique entity ID of the interface.

Results
The table below shows the results of this query.

Table 282. Results of the query

Interface Entity ID Main Node Name Interface Entity Name IP Address

270 172.20.4.11 172.20.4.11[0[5]] 172.50.0.2

338 172.18.1.196 172.18.1.196[0[2]] 172.50.0.3

366 172.18.1.54 172.18.1.54[0[2]] 172.50.0.4

370 172.18.1.54 172.18.1.54[0[1]] 172.50.0.5

373 172.20.4.13 172.20.4.13[0[1]] 172.50.0.6

377 172.20.4.20 172.20.4.20[0[1]] 172.50.0.7

417 192.168.139.7 192.168.139.7[0
[5]]

172.20.11.1

417 192.168.139.7 192.168.139.7[0
[5]]

172.20.1.2

Related reference
List all interfaces on all devices
This query provides a list of all main node devices within a domain together with the identifiers and names
of the interfaces on each device.
Techniques used in the SQL queries
The SQL query examples use a variety of techniques that are aimed at extracting information efficiently.
Use this information to familiarize yourself with the techniques used in SQL queries.
ipEndPoint
The ipEndPoint table represents an IP end point and includes relevant data. The endpoint is implemented
by a physical interface, as modeled in the protocolEndPoint table.
mainNodeEntityId field
The mainNodeEntityId field in the entityData table specifies the main node of the entity. This field
provides a shortcut to the main node for a particular entity, avoiding the need to traverse the entire
containment tree.
Protocol endpoint tables

520 IBM Tivoli Network Manager IP Edition: Reference

The protocolEndPoint and ipEndPoint tables can be used in SQL queries to identify the IP addresses that
are implemented by the device interfaces.

Queries for connectivity information
These sample queries extract data on connectivity within your network.

Connectivity includes connections between different devices, and VLAN-related connections within the
same device. In addition, the NCIM database independently represents connectivity of entities in different
layers, so that the connectivity at layer 2 is represented independently of the connectivity at layer 3.

NCIM can model complex connectivity scenarios. For example, within the MPLS VPN realm, NCIM can
model the layer 3 connection between a provider-edge (PE) router and multiple customer-edge (CE)
routers.

Connectivity information is stored in the connects table. This table stores each connection as a single
record. However, because two entities are involved in a connection, the order of the connected entities in
the connects table is random.

For example, the following figures shows the devices that are connected to the main node device
VE001.example.net.

Figure 4. Devices connected to main node device VE001.example.net

The following table shows how the connects table might store the data about the connectivity between
the device VE001.example.net and neighboring devices.

Table 283. Example data from the connects table for connections to main node device
VE001.example.net

connectionId aEndEntityId zEndEntityId

101 VE001.example.net 192.168.35.225

102 VE001.example.net 192.168.34.86

103 192.168.39.175 VE001.example.net

Chapter 21. Topology database queries 521

It is arbitrary whether a device is designated at the start (the aEnd) or at the end (zEnd) of a connection.
The following example from Table 283 on page 521 shows why:

Connections 101 and 102 show the device VE001.example.net at the aEnd of the connection.
Connection 103 shows the device VE001.example.net at the zEnd of the connection.

Connections in NCIM can be bidirectional or unidirectional. A field in the connects table that specifies
whether the connection is bidirectional or unidirectional.

To ensure that all connections are retrieved from the connects table for a given device, the query must
take into account the random ordering of aEnd and zEnd data in the table. This is done using a UNION
statement. The query works as follows:

Find all devices connected to the device VE001.example.net where VE001.example.net
is the aEnd of the connection
UNION
Find all devices connected to the device VE001.example.net where VE001.example.net
is the zEnd of the connection

Types of connectivity
Queries that retrieve device connectivity can identify different types of connection. Use this information to
learn about the connectivity types that can be queried.

The following types of connectivity are retrieved:

Connections to other devices
The connection passes through a physical or logical interface. Interfaces have an entity type of 2 and
are modleled using the interface table.

Trunk connection between a specific VLAN on the named device to the same VLAN on a different
device

The connection passes through a VLAN trunk port. A VLAN trunk port is a physical port that carries
data from multiple VLANs. Each VLAN trunked by the VLAN trunk port is modelled with a VLAN trunk
end point.

Connections within the named device between local VLANs and VLAN trunk ports
The connection passes between a local VLAN on the current device to a VLAN trunk on the same
device. The query reports this connection as a connection between the device and itself. Local VLANs
are modelled using the localVlan table.

Related reference
networkInterface
The networkInterface table represents interfaces on a chassis device.
vlanTrunkEndPoint
The vlanTrunkEndPoint table represents a VLAN trunk end point and includes relevant data. This endpoint
is implemented by a physical interface, as modeled in the protocolEndPoint table.
localVlan
The localVlan table specifies which global VLAN the local VLAN belongs to. A local VLAN represents all the
interfaces on a single chassis device that belong to a global VLAN.

Hierarchy modeling with the networkPipe and pipeComposition tables
The networkPipe table and pipeComposition table can be used together to represent connectivity at
different layers, for example the modeling of layer 2 and layer 3 connections.

A layer 3 connection can be considered as a higher-level connection that is defined in terms of lower-level
layer 2 connections. A hierarchy of connections is modeled using the networkPipe and pipeComposition
tables, as follows:

Rows in the networkPipe table can be combined in collections using the pipeComposition table
The difference between a network pipe and a simple connection is that a network pipe is an entity.
This gives the network pipe the following advantages over a simple connection:

522 IBM Tivoli Network Manager IP Edition: Reference

• You can associate attributes to the network pipe, for example by using the entityDetails table.
• A network pipe is able to participate in the relationships available to entities, including containment,

connectivity, and dependency relationships.

The pipeComposition table allows a higher-level connection to be defined in terms of lower-level
connections

The higher-level and lower-level connections are all represented by rows in the networkPipe table.

Find devices connected to a named device
This query identifies all main node devices connected to a single specified main node device.

Example

1] SELECT locm.entityid Local_Main_Node_Entity_ID,
2] locm.entityName Local_Main_Node_Entity_Name,
3] nbrm.entityid Neighbor_Main_Node_Entity_ID,
4] nbrm.entityName Neighbor_Main_Node_Entity_Name
5] FROM entityData loc
6] INNER JOIN connects c ON c.aEndEntityId = loc.entityId
7] INNER JOIN entityData nbr ON nbr.entityId = c.zEndEntityId
8] INNER JOIN entityData nbrm ON nbrm.entityid = nbr.mainnodeentityid
9] INNER JOIN entityData locm ON locm.entityid = loc.mainnodeentityid
10] WHERE loc.mainNodeEntityId = 5
11] UNION
12] SELECT locm.entityid as locMainNodeEntityId,
13] locm.entityName as locMainNodeEntityName,
14] nbrm.entityid as nbrMainNodeEntityId,
15] nbrm.entityName as nbrMainNodeEntityName
16] FROM entityData loc
17] INNER JOIN connects c ON c.zEndEntityId = loc.entityId
18] INNER JOIN entityData nbr ON nbr.entityId = c.aEndEntityId
19] INNER JOIN entityData nbrm ON nbrm.entityid = nbr.mainnodeentityid
20] INNER JOIN entityData locm ON locm.entityid = loc.mainnodeentityid
21] WHERE loc.mainNodeEntityId = 5

Description
The table below describes this query.

Table 284. Description of the query

Line numbers Description

1-4 Specify the data to show in the results, as follows:

• The unique entity ID of a specified main node device, represented by
locm.entityId. This is the named device whose neighbors you want to extract
from the database. The rest of this description refers to this device as the local device

• The name of the local device, represented by locm.entityName
• The unique entity ID of a device that is next to the specified device, represented by
nbrm.entityId

• The name of the neighboring device, represented by nbrm.entityName

5 Use the entityData table as the driving table for this query. Use the alias loc for the
entityData table to indicate that the data extracted using this alias is for local
entities.

6 Identify all the connections for the entities associated with the local device.

Do this by joining the connects table using the aEndEntityId value.

Chapter 21. Topology database queries 523

Table 284. Description of the query (continued)

Line numbers Description

7 Extract the entity data for each neighboring entity.

Do this by joining the entityData table a second time using the zEndEntityId
value. Use the alias nbr for the entityData table to indicate that the data extracted
using this alias is for neighboring entities.

8 Limit the results to neighboring main node devices only.

Do this by joining the entityData table a second time using the mainNodeEntityId
value.

Use the alias nbrm for the entityData table to indicate that the data extracted using
this alias is entity data for a neighboring main node device.

9 Limit the results to local main node devices only.

Do this by joining the entityData table a second time using the
mainNodeEntityId.

Use the alias locm for the entityData table to indicate that the data extracted using
this alias is entity data for a local main node device.

10 Specify the identity of the local device.

11 Use the UNION statement to ensure that all connections are retrieved.

12-21 This is the same code as line 1-10 with the difference that here the specified device is
considered to be the zend (see line 17) and the neighboring devices are all considered
to be at the aend (see line 18).

Results
The table below shows the results of this query. This data includes examples of devices connected to
themselves. These are connections within the same device between local VLANs and VLAN trunk ports.

Table 285. Results of the query

Local main node entity
ID

Local main node entity
name

Neighbor main node
entity ID

Neighbor main mode
entity name

5 VE001.example.net 83 192.168.35.225

5 VE001.example.net 2698 192.168.34.86

77 VE002.example.net 77 VE002.example.net

77 VE002.example.net 77 VE002.example.net

531 192.168.39.175 5 VE001.example.net

Related concepts
Connectivity data

524 IBM Tivoli Network Manager IP Edition: Reference

Connectivity data defines how entities are connected in the network. It includes connections between
different devices, and VLAN-related connections within the same device. Connectivity information is
stored in the topologyLinks, networkPipe, and pipeComposition tables.
Related reference
connects
The connects table stores data on connectivity between devices. This table belongs to the category
collections.
Techniques used in the SQL queries
The SQL query examples use a variety of techniques that are aimed at extracting information efficiently.
Use this information to familiarize yourself with the techniques used in SQL queries.
Related information
Find all devices connected to a named device together with connecting interfaces
This query identifies all main node devices that are connected to a main device, and also retrieves the
interface data that is associated with each of those connections.

Find all devices connected to a named device together with connecting
interfaces

This query identifies all main node devices that are connected to a main device, and also retrieves the
interface data that is associated with each of those connections.

Example

1] SELECT locm.entityid Local_Main_Node_Entity_ID,
2] locm.entityName Local_Main_Node_Entity_Name,
3] loc.entityName Local_Interface_Name,
4] nbrm.entityid Neighbor_Main_Node_Entity_ID,
5] nbrm.entityName Neighbor_Main_Node_Entity_Name,
6] nbr.entityName Neighbor_Interface_Name
7] FROM entityData loc
8] INNER JOIN connects c ON c.aEndEntityId = loc.entityId
9] INNER JOIN entityData nbr ON nbr.entityId = c.zEndEntityId
10] INNER JOIN entityData nbrm ON nbrm.entityid = nbr.mainnodeentityid
11] INNER JOIN entityData locm ON locm.entityid = loc.mainnodeentityid
12] WHERE loc.mainNodeEntityId = 5
13] UNION
14] SELECT locm.entityid as locMainNodeEntityId,
15] locm.entityName as locMainNodeEntityName,
16] loc.entityName as locEntityName,
17] nbrm.entityid as nbrMainNodeEntityId,
18] nbrm.entityName as nbrMainNodeEntityName,
19] nbr.entityName as nbrEntityName
20] FROM entityData loc
21] INNER JOIN connects c ON c.zEndEntityId = loc.entityId
22] INNER JOIN entityData nbr ON nbr.entityId = c.aEndEntityId
23] INNER JOIN entityData nbrm ON nbrm.entityid = nbr.mainnodeentityid
24] INNER JOIN entityData locm ON locm.entityid = loc.mainnodeentityid
25] WHERE loc.mainNodeEntityId = 5

Description
The table below describes this query.

Chapter 21. Topology database queries 525

Table 286. Description of the query

Line
number(s)

Description

1-6 Specify the data to show in the results, as follows:

• The unique entity ID of a specified main node device. This is the named device whose
neighbors you want to extract from the database. The rest of this description refers to
this device as the local device, represented by locm.entityId

• The name of the local device, represented by locm.entityName
• The name of the interface on the local device, represented by loc.entityName
• The unique entity ID of a device that is adjacent to the specified device, represented

by nbrm.entityId
• The name of the neighboring device, represented by nbrm.entityName
• The name of the interface on the neighboring device, represented by
nbr.entityName

7 Extract the entity data for each neighboring entity.

Do this by joining the entityData table a second time using the zEndEntityId
value. Use the alias nbr for the entityData table to indicate that the data extracted
using this alias is for neighboring entities.

8 Limit the results to neighboring main node devices only.

Do this by joining the entityData table a second time using the mainNodeEntityId
value.

Use the alias nbrm for the entityData table to indicate that the data extracted using
this alias is entity data for a neighboring main node device.

9 Limit the results to local main node devices only.

Do this by joining the entityData table a second time using the
mainNodeEntityId.

Use the alias locm for the entityData table to indicate that the data extracted using
this alias is entity data for a local main node device.

10 Specify the identity of the local device.

11 Use the UNION statement to to ensure that all connections are retrieved.

12-21 This is the same code as line 1-10 with the difference that here the specified device is
considered to be the zend (see line 21) and the neighboring devices are all considered
to be at the aend (see line 22).

Results
The following table shows an example of the results of the query.the results of the query.

526 IBM Tivoli Network Manager IP Edition: Reference

Table 287. Results of the query

Local
main
node
entity
ID

Local main
node entity
name

Local interface
name

Neigh-
bor
main
node
entity
ID

Neighbor
main node
entity
name

Neighbor interface
name

5 VE001.
example.ne
t

VE001.example.net
[0[3]]

83 192.168.
35.225

192.168.
35.225

5 VE001.
example.ne
t

VE001.example.net
[0[4]]

2698 192.168.
34.86

192.168.
34.86

77 VE002.
example.ne
t

VLAN_OBJECT_VE002.
example.net_
VLAN_400

77 VE002.
example.
net

VLAN_trunk_400_
VE002.example.
net[0 [2]]

77 VE002.
example
net

VLAN_OBJECT_VE002.
example.net_VLAN_1

77 VE002.
example.
net

VLAN_trunk_1_
VE002.example.
net[0 [2]]

531 192.168.
39.175

192.168.
39.175

5 VE001.
example.
net

VE001.example.
net[0[5]]

Identify all connections between routers
This query identifies all connections between routers. These types of connections are also called Layer 3
router links. Each of these connections also represents a connection between two subnets.

You can use similar queries to determine the type of connection between two devices. You can determine
whether a connection falls into any of the following types:

• Layer 2 connection
• Layer 3 router links

This refers to connections between routers, and hence, between subnets, and is the example provided
in this query.

• Psuedowire connection

Use the topologyLinks table to identify which connections belong to a specific type of topology. This table
lists all the connections in the database and specifies the identifier of a topology type entity from the
entityData table.

Example

1] SELECT a.entityName Connected_Entity,
2] z.entityName Connected_Entity
3] FROM topologyLinks t
4] INNER JOIN entityData topo ON topo.entityId = t.entityId
5] INNER JOIN connects c ON c.connectionId = t.connectionId
6] INNER JOIN entityData a ON a.entityId = c.aEndEntityId
7] INNER JOIN entityData z ON z.entityId = c.zEndEntityId
8] WHERE topo.entityType = 73

Description
The table below describes this query.

Chapter 21. Topology database queries 527

Table 288. Description of the query

Line numbers Description

1-2 Specify the data to show in the results, as follows:

• The name of an interface at one end of the connection, represented by
a.entityName

• The name of an interface at the other end of the connection, represented by
z.entityName

3 Use the topologyLinks table as the driving table for this query. Use the alias t for
the topologyLinks table for purposes of brevity.

4 Identify all the types of topology listed in the topologyLinks table. Do this by joining
the entityData table using the entityId field.

5 Extract the connection data for each connection. Do this by joining the connects table
using the connectionId field.

6-7 Extract entity details for each of the interfaces at either end of the connection.

Do this by joining the entityData table a second time using the entityId field in the
entityData table and the aEndEntityId and zEndEntityId fields in turn in the
connects table.

8 Limit the results to connections within layer 3 router links only. This limits the results to
connections between routers, and hence, between subnets.

Results
The table below shows the results of the query.

Table 289. Results of the query

Connected entity Connected entity

172.20.4.16[Et0/0] 172.20.4.11[Fa0/0]

172.20.4.11[Fa0/0] 172.20.4.16[Et0/0]

172.20.4.16[Et0/0] 172.20.4.12[Fa0/0]

172.20.4.11[Fa0/0] 172.20.4.12[Fa0/0]

172.20.4.12[Fa0/0] 172.20.4.16[Et0/0]

172.20.4.12[Fa0/0] 172.20.4.11[Fa0/0]

172.20.4.16[Et0/0] 172.20.4.15[Fa0/1]

172.20.4.11[Fa0/0] 172.20.4.15[Fa0/1]

172.20.4.12[Fa0/0] 172.20.4.15[Fa0/1]

172.20.4.15[Fa0/1] 172.20.4.12[Fa0/0]

528 IBM Tivoli Network Manager IP Edition: Reference

Table 289. Results of the query (continued)

Connected entity Connected entity

172.20.4.15[Fa0/1] 172.20.4.11[Fa0/0]

172.20.4.15[Fa0/1] 172.20.4.16[Et0/0]

172.20.4.16[Et0/0] 172.20.4.28[Gi0/0]

Related reference
Techniques used in the SQL queries
The SQL query examples use a variety of techniques that are aimed at extracting information efficiently.
Use this information to familiarize yourself with the techniques used in SQL queries.

Queries for LTE network information
These sample queries retrieve information about Long-Term Evolution (LTE) devices.

Find specific LTE entity types
These queries retrieve details of specific entity types used in LTE networks; for example, Extended NodeB
entities, Packet Gateway entities, or Serving Gateway entities.

Example: find all discovered Extended NodeB entities

This query retrieves the details of all Extended NodeB entities that have been discovered.

select e.entityId,
 e.entityName,
 enb.eNodeBId,
 enb.eNodeBName,
 enb.emsDistinguishedName
from ncim.entityData e
INNER JOIN ncim.enbFunction enb ON enb.entityId = e.entityId

The table below describes this query.

Table 290. Description of the query

Line numbers Description

1-5 Specify the data to show in the results, as follows:

• The entity ID of the Extended NodeB function entities, represented by e.entityId.
• The name of the eNodeB, represented by e.entityName.
• The identifier of the eNodeB, represented by enb.eNodeBId.
• A more user-friendly name for the eNodeB, represented by enb.eNodeBName.
• The name by which the enbFunction is known to its element management system

(EMS), represented by enb.emsDistinguishedName.

6 Use the entityData table as the driving table for this query. This part of the query
retrieves all entities held in the database.

7 Limit the results of the query to eNodeB function entities.

Do this by joining the enbFunction table to the entityData table using the
entityId field.

Chapter 21. Topology database queries 529

Similar queries
The following example queries retrieve relevant data for different LTE entity types, using similar syntax to
the above example.

Example: find all discovered Equipment Identity Register entities

This query retrieves the details of all Equipment Identity Register (EIR) entities that have been
discovered.

select e.entityId,
 e.entityName,
 eir.eirFunctionName,
 eir.emsDistinguishedName
from ncim.entityData e
INNER JOIN ncim.eirFunction eir ON eir.entityId = e.entityId

Example: find all discovered Home Subscriber Server entities

This query retrieves the details of all Home Subscriber Server (HSS) entities that have been discovered.

select e.entityId,
 e.entityName,
 hss.hssFunctionName,
 hss.emsDistinguishedName
from ncim.entityData e
INNER JOIN ncim.hssFunction hss ON hss.entityId = e.entityId

Example: find all discovered Mobility Management Entities

This query retrieves the details of all Mobility Management Entities (MMEs) that have been discovered.

select e.entityId,
 e.entityName,
 mme.MMEGI,
 mme.MMEC,
 mme.mmeName,
 mme.emsDistinguishedName
from ncim.entityData e
INNER JOIN ncim.mmeFunction mme ON mme.entityId = e.entityId

Example: find all discovered Packet Gateway entities

This query retrieves the details of all Packet Gateway entities that have been discovered.

select e.entityId,
 e.entityName,
 pgw.pgwFunctionName,
 pgw.emsDistinguishedName
from ncim.entityData e
INNER JOIN ncim.pgwFunction pgw ON pgw.entityId = e.entityId

Example: find all discovered Policy and Charging Rule Function entities

This query retrieves the details of all Policy and Charging Rule Function entities that have been
discovered.

select e.entityId,
 e.entityName,
 pcrf.pcrfFunctionName,
 pcrf.emsDistinguishedName
from ncim.entityData e
INNER JOIN ncim.pcrfFunction pcrf ON pcrf.entityId = e.entityId

530 IBM Tivoli Network Manager IP Edition: Reference

Example: find all discovered Serving Gateway entities

This query retrieves the details of all Serving Gateway entities that have been discovered.

select e.entityId,
 e.entityName,
 sgw.sgwFunctionName,
 sgw.emsDistinguishedName
from ncim.entityData e
INNER JOIN ncim.sgwFunction sgw ON sgw.entityId = e.entityId

Queries for MPLS Traffic Engineered Tunnel information
These sample queries retrieve information about the MPLS Traffic Engineered tunnels that have been
discovered.

List all Traffic Engineered tunnels
This database query shows the names of the Traffic Engineered (TE) tunnels that have been discovered,
and the domain they are associated with.

Example

1] SELECT e.entityName, e.displayLabel, d.domainName
2] FROM entityData e
3] INNER JOIN entityType t on t.entityType = e.entityType
4] INNER JOIN domainMgr d on d.domainMgrId = e.domainMgrId
5] WHERE t.typeName = 'MPLS TE Tunnel';

Results
The following table provides an example of part of the result set for this query.

Table 291. Results of the query

entityName displayLabel domainName

172.20.1.6_MPLS_TE_Tunnel
_Idx_10_Inst_0

172.20.1.6 Tunnel10 10:0 NCOMS

172.20.1.6_MPLS_TE_Tunnel
_Idx_10_Inst_12

172.20.1.6 Tunnel10 10:12
Primary

NCOMS

172.20.1.7_MPLS_TE_Tunnel
_Idx_12_Inst_0

172.20.1.7 Tunnel12 12:0 NCOMS

172.20.1.7_MPLS_TE_Tunnel
_Idx_12_Inst_13

172.20.1.7 Tunnel12 12:13
Primary

NCOMS

172.20.1.7_MPLS_TE_Tunnel
_Idx_50_Inst_0

172.20.1.7 Tunnel50 50:0 NCOMS

172.20.1.7_MPLS_TE_Tunnel
_Idx_50_Inst_12

172.20.1.7 Tunnel50 50:12
Primary

NCOMS

Chapter 21. Topology database queries 531

Show interfaces utilized by Traffic Engineered tunnels
This database query shows the interfaces and physical ports used by a particular Traffic Engineered (TE)
tunnel.

Example

1] SELECT eTun.entityName as Tunnel, eInt.entityName as Interface
3] FROM collects c
4] INNER JOIN entityData eTun ON eTun.entityId = c.collectingEntityId
5] INNER JOIN entityData eInt ON eInt.entityId = c.collectedEntityId
6] WHERE eTun.entityName = '172.20.1.7_MPLS_TE_Tunnel_Idx_50_Inst_12';

Results
The following table provides an example of part of the result set for this query.

Table 292. Results of the query

Tunnel Interface

172.20.1.7_MPLS_TE_Tunnel_Idx_50_Inst_
12

172.20.1.7[0 [22]]

172.20.1.7_MPLS_TE_Tunnel_Idx_50_Inst_
12

172.20.1.7[0 [24]]

172.20.1.7_MPLS_TE_Tunnel_Idx_50_Inst_
12

172.20.1.4[0 [18]]

172.20.1.7_MPLS_TE_Tunnel_Idx_50_Inst_
12

172.20.1.4[0 [2]]

172.20.1.7_MPLS_TE_Tunnel_Idx_50_Inst_
12

172.20.1.6[0 [2]]

172.20.1.7_MPLS_TE_Tunnel_Idx_50_Inst_
12

172.20.1.6[0 [26]]

Show Traffic Engineered tunnel configuration
This query shows a subset of the tunnel attributes for a particular tunnel.

Example

1] SELECT e.entityName, m.role, m.ingressLSRId, m.egressLSRId, m.signallingProtocol
2] FROM mplsTETunnel m
3] INNER JOIN entityData e on e.entityId = m.entityId
4] WHERE e.entityName = '172.20.1.7_MPLS_TE_Tunnel_Idx_50_Inst_12';

Results
The following table provides an example of the result set for this query.

Table 293. Results of the query

entityName 172.20.1.7_MPLS_TE_Tunnel_Idx_50_Inst_
12

532 IBM Tivoli Network Manager IP Edition: Reference

Table 293. Results of the query (continued)

role head

ingressLSRId 172.20.1.7

egressLSRId 172.20.1.6

signallingProtocol rsvp

List supporting routers for a Traffic Engineered tunnel
These queries show which routers and services support a particular tunnel.

Example: which router and service support a particular tunnel

1] SELECT eHost.entityName as HostingRouter, eServ.entityName as TunnelService,
eTun.entityName as TunnelName
2] FROM entityData eTun
3] INNER JOIN contains c ON c.containedEntityId = eTun.entityId
4] INNER JOIN entityData eServ ON eServ.entityId = c.containingEntityId
5] INNER JOIN hostedService h ON h.hostedEntityId = eServ.entityId
6] INNER JOIN entityData eHost ON eHost.entityId = h.hostingEntityId
7] WHERE eTun.entityName = '172.20.1.7_MPLS_TE_Tunnel_Idx_50_Inst_12';

Results
The following table provides an example of part of the result set for this query.

Table 294. Results of the query

HostingRouter TunnelService TunnelName

172.20.1.7 MPLS_TE_Service_172.20.1.
7

172.20.1.7_MPLS_TE_Tunnel
_Idx_50_Inst_12

Example: show all routers in a tunnel path

1] SELECT DISTINCT eMain.entityName
2] FROM collects c
3] INNER JOIN entityData eTun ON eTun.entityId = c.collectingEntityId
4] INNER JOIN entityData eInt ON eInt.entityId = c.collectedEntityId
5] INNER JOIN entityData eMain ON eMain.entityId = eInt.mainNodeEntityId
6] WHERE eTun.entityName = '172.20.1.7_MPLS_TE_Tunnel_Idx_50_Inst_12';

Results
The following table provides an example of part of the result set for this query.

Table 295. Results of the query

entityName

172.20.1.7

172.20.1.4

172.20.1.6

Chapter 21. Topology database queries 533

Show performance data for a Traffic Engineered tunnel
This query shows performance data for a tunnel.

Example

1] SELECT eTun.entityName, res.maxRate, res.meanRate, res.maxBurstSize,
res.meanBurstSize
2] FROM entityData eTun
3] INNER JOIN dependency d ON d.dependentEntityId = eTun.entityId
4] INNER JOIN mplsTETunnelResource res ON res.entityId = d.independentEntityId
5] WHERE eTun.entityName = '172.20.1.7_MPLS_TE_Tunnel_Idx_50_Inst_12';

Results
The following table provides an example of part of the result set for this query.

Table 296. Results of the query

entityName 172.20.1.7_MPLS_TE_Tunnel_Idx_50_Inst_
12

maxRate 100000

meanRate 100000

maxBurstSize 1000

meanBurstSize 1

Queries for Radio Access Network information
These sample queries retrieve information about Radio Access Network (RAN) devices.

Find specific RAN entity types
These queries retrieve details of specific entity types used in Radio Access Networks, for example, base
stations, node B entities, or Mobile Switching Centres.

Example: find all discovered base stations

This query retrieves the details of all base stations that have been discovered.

select e.entityId,
 e.entityName,
 c.className,
 rbs.baseStationId,
 rbs.ranTechnologyType
from ncim.entityData e
INNER JOIN ncim.physicalChassis c ON c.entityId = e.entityId
INNER JOIN ncim.ranBaseStation rbs ON rbs.entityId = c.entityId

The table below describes this query.

534 IBM Tivoli Network Manager IP Edition: Reference

Table 297. Description of the query

Line numbers Description

1-5 Specify the data to show in the results, as follows:

• The entity ID of the base station, represented by e.entityId.
• The name of the base station, represented by e.entityName.
• The Active Object Class assigned to the base station, represented by c.className.
• The unique identifier of the base station, represented by rbs.baseStationId.
• The type of wireless technology used by the base station, represented by
rbs.ranTechnologyType.

6 Use the entityData table as the driving table for this query. This part of the query
retrieves all entities held in the database.

7 Limit the results of the query to chassis entities.

Do this by joining the chassis table to the entityData table using the entityId
field.

8 Limit the results of the query to entities that are present in the ranBaseStation
table, that is, to base stations.

Similar queries
The following example queries retrieve relevant data for different RAN entity types, using similar syntax to
the above example.

Example: find all discovered Node B entities

This query retrieves the details of all Node B entities that have been discovered.

select e.entityId,
 e.entityName,
 c.className,
 rnb.nodebId,
 rnb.ranTechnologyType
from ncim.entityData e
INNER JOIN ncim.physicalChassis c ON c.entityId = e.entityId
INNER JOIN ncim.ranNodeB rnb ON rnb.entityId = c.entityId

Example: find all discovered Base Station Controllers

This query retrieves the details of all base station controllers that have been discovered.

select e.entityId,
 e.entityName,
 c.className,
 rbsc.baseStationControllerId,
 rbsc.ranTechnologyType
from ncim.entityData e
INNER JOIN ncim.physicalChassis c ON c.entityId = e.entityId
INNER JOIN ncim.ranBaseStationController rbsc ON rbsc.entityId = c.entityId

Example: find all discovered Radio Network Controllers

This query retrieves the details of all Radio Network Controllers that have been discovered.

select e.entityId,
 e.entityName,
 c.className,

Chapter 21. Topology database queries 535

 rrnc.rncId,
 rrnc.ranTechnologyType
from ncim.entityData e
INNER JOIN ncim.physicalChassis c ON c.entityId = e.entityId
INNER JOIN ncim.ranRadioNetworkController rrnc ON rrnc.entityId = c.entityId

Example: find all discovered Mobile Switching Centers

This query retrieves the details of all Mobile Switching Centers that have been discovered.

select e.entityId,
 e.entityName,
 c.className,
 rmsc.mscId,
 rmsc.msctype,
 rmsc.ranTechnologyType
from ncim.entityData e
INNER JOIN ncim.physicalChassis c ON c.entityId = e.entityId
INNER JOIN ncim.ranMobileSwitchingCentre rmsc ON rmsc.entityId = c.entityId

Retrieve RAN connectivity
These queries retrieve the details of entities that are connected to RAN entities.

Example: connectivity of a given base station

This query retrieves the connectivity of a given base station.

select e1.entityName BTSName,
 e2.entityName BTSConnectedName,
 e3.entityName ConnectedInt,
 e4.entityName ConnectedDevice,
 e4.entityType, ch4.className,
 et.entityName Topology

The table below describes this query.

Table 298. Description of the query

Line numbers Description

1-6 Specify the data to show in the results, as follows:

• Name of the base station, represented by as e1.entityName
• Name of the connected base station, represented by e2.entityName
• Name of the connected interface, represented by e3.entityName
• Name of the connected device, represented by e4.entityName
• Class of the connected device, represented by e4.entityType
• Name of the connection, represented by et.entityName

7-15 Retrieve the data from the following tables:

• entityData
• ranBaseStation
• connects
• topologyLinks
• chassis

18 The entity name of the base station is BaseStation10.

20 Ensure that the entity is a base station.

536 IBM Tivoli Network Manager IP Edition: Reference

Table 298. Description of the query (continued)

Line numbers Description

22 Limit the results (connected devices) to entities that are main nodes.

24 Identify all the connections for the entities associated with the specified base station.

26 Extract the entity data for each neighboring entity.

28 Determine the connecting point on the other device for the connection. This is captured
in e3.entityId.

30 Determine the layer in which the other connection is located. This is determined using
the topologyLinks object.

32 Determine the entityData entry corresponding to the topology layer. This enables
the query results to specify in which layer the connecting point on the other device is;
for example, layer 1,or layer 2.

34 Determine the chassis that the connecting point is in.

36 Use the UNION statement to ensure that all connections are retrieved.

37-71 This is the same code as line 1-36 with the difference that here the specified device is
considered to be the zend (see line 60) and the neighboring devices are all considered
to be at the aend (see line 62).

Similar queries
The following example queries retrieve relevant data for different RAN relationships, using similar syntax
to the above example.

Example: connectivity of a given Node B entity

This query retrieves the connectivity of a given Node B entity.

select e1.entityName AS NodeBName,
 e2.entityName AS NodeBConnectedName,
 e3.entityName AS ConnectedInt,
 e4.entityName AS ConnectedDevice,
 e4.entityType, ch4.className
from ncim.entityData e1,
 ncim.ranNodeB rnb,
 ncim.entityData e2,
 ncim.entityData et,
 ncim.topologyLinks tl,
 ncim.connects c,
 ncim.entityData e3,
 ncim.entityData e4, ncim.physicalChassis ch4
where
(
 e1.entityName = 'NodeB10'
 AND
 e1.entityId = rnb.entityId
 AND
 e2.mainNodeEntityId = e1.entityId
 AND
 e2.entityId = c.aEndEntityId
 AND
 e3.entityId = c.zEndEntityId
 AND
 c.connectionId = tl.connectionId
 AND
 tl.entityId = et.entityId

Chapter 21. Topology database queries 537

 AND
 e3.mainNodeEntityId = e4.entityId
 AND
 ch4.entityId = e4.entityId
)
UNION
select e1.entityName AS NodeBName,
 e2.entityName AS NodeBConnectedName,
 e3.entityName AS ConnectedInt,
 e4.entityName AS ConnectedDevice,
 e4.entityType,
 ch4.className
from ncim.entityData e1,
 ncim.ranNodeB rnb,
 ncim.entityData e2,
 ncim.entityData et,
 ncim.topologyLinks tl,
 ncim.connects c,
 ncim.entityData e3,
 ncim.entityData e4,
 ncim.physicalChassis ch4
where
(
 e1.entityName = 'NodeB10'
 AND
 e1.entityId = rnb.entityId
 AND
 e2.mainNodeEntityId = e1.entityId
 AND
 e2.entityId = c.zEndEntityId
 AND
 e3.entityId = c.aEndEntityId
 AND
 c.connectionId = tl.connectionId
 AND
 tl.entityId = et.entityId
 AND
 e3.mainNodeEntityId = e4.entityId
 AND
 ch4.entityId = e4.entityId
)

Example: connectivity of a given base station controller

This query retrieves the connectivity of a given base station controller.

select e1.entityName AS BSCName,
 e2.entityName AS BSCConnectedName,
 e3.entityName AS ConnectedInt,
 e4.entityName AS ConnectedDevice,
 e4.entityType,
 ch4.className
from ncim.entityData e1,
 ncim.ranBaseStationController rbsc,
 ncim.entityData e2,
 ncim.entityData et,
 ncim.topologyLinks tl,
 ncim.connects c,
 ncim.entityData e3,
 ncim.entityData e4,
 ncim.physicalChassis ch4
where
(
 e1.entityName = 'BaseStationController2'
 AND
 e1.entityId = rbsc.entityId
 AND
 e2.mainNodeEntityId = e1.entityId
 AND
 e2.entityId = c.aEndEntityId
 AND
 e3.entityId = c.zEndEntityId
 AND
 c.connectionId = tl.connectionId
 AND
 tl.entityId = et.entityId
 AND
 e3.mainNodeEntityId = e4.entityId
 AND

538 IBM Tivoli Network Manager IP Edition: Reference

 ch4.entityId = e4.entityId
)
UNION
select e1.entityName AS BSCName,
 e2.entityName AS BSCConnectedName,
 e3.entityName AS ConnectedInt,
 e4.entityName AS ConnectedDevice,
 e4.entityType, ch4.className
from ncim.entityData e1,
 ncim.ranBaseStationController rbsc,
 ncim.entityData e2,
 ncim.entityData et,
 ncim.topologyLinks tl,
 ncim.connects c,
 ncim.entityData e3,
 ncim.entityData e4,
 ncim.physicalChassis ch4
where
(
 e1.entityName = 'BaseStationController2'
 AND
 e1.entityId = rbsc.entityId
 AND
 e2.mainNodeEntityId = e1.entityId
 AND
 e2.entityId = c.zEndEntityId
 AND
 e3.entityId = c.aEndEntityId
 AND
 c.connectionId = tl.connectionId
 AND
 tl.entityId = et.entityId
 AND
 e3.mainNodeEntityId = e4.entityId
 AND
 ch4.entityId = e4.entityId
)

Example: connectivity of a given radio network controller

This query retrieves the connectivity of a given radio network controller.

select e1.entityName AS RNCName,
 e2.entityName AS RNCConnectedName,
 e3.entityName AS ConnectedInt,
 e4.entityName AS ConnectedDevice,
 e4.entityType,
 ch4.className
from ncim.entityData e1,
 ncim.ranRadioNetworkController rrnc,
 ncim.entityData e2,
 ncim.entityData et,
 ncim.topologyLinks tl,
 ncim.connects c,
 ncim.entityData e3,
 ncim.entityData e4,
 ncim.physicalChassis ch4
where
(
 e1.entityName = 'radioNetworkController2'
 AND
 e1.entityId = rrnc.entityId
 AND
 e2.mainNodeEntityId = e1.entityId
 AND
 e2.entityId = c.aEndEntityId
 AND
 e3.entityId = c.zEndEntityId
 AND
 c.connectionId = tl.connectionId
 AND
 tl.entityId = et.entityId
 AND
 e3.mainNodeEntityId = e4.entityId
 AND
 ch4.entityId = e4.entityId
)
UNION
select e1.entityName AS RNCName,

Chapter 21. Topology database queries 539

 e2.entityName AS RNCConnectedName,
 e3.entityName AS ConnectedInt,
 e4.entityName AS ConnectedDevice,
 e4.entityType,
 ch4.className
from ncim.entityData e1,
 ncim.ranRadioNetworkController rrnc,
 ncim.entityData e2,
 ncim.entityData et,
 ncim.topologyLinks tl,
 ncim.connects c,
 ncim.entityData e3,
 ncim.entityData e4,
 ncim.physicalChassis ch4
where
(
 e1.entityName = 'radioNetworkController2'
 AND
 e1.entityId = rrnc.entityId
 AND
 e2.mainNodeEntityId = e1.entityId
 AND
 e2.entityId = c.zEndEntityId
 AND
 e3.entityId = c.aEndEntityId
 AND
 c.connectionId = tl.connectionId
 AND
 tl.entityId = et.entityId
 AND
 e3.mainNodeEntityId = e4.entityId
 AND
 ch4.entityId = e4.entityId
)

Example: connectivity of a given media gateway

This query retrieves the connectivity of a given media gateway.

select e1.entityName AS MGWName,
 e2.entityName AS MGWConnectedName,
 e3.entityName AS ConnectedInt,
 e4.entityName AS ConnectedDevice,
 e4.entityType,
 ch4.className
from ncim.entityData e1,
 ncim.ranMediaGateway rmgw,
 ncim.entityData e2,
 ncim.entityData et,
 ncim.topologyLinks tl,
 ncim.connects c,
 ncim.entityData e3,
 ncim.entityData e4,
 ncim.physicalChassis ch4
where
(
 e1.entityName = 'MediaGateway1'
 AND
 e1.entityId = rmgw.entityId
 AND
 e2.mainNodeEntityId = e1.entityId
 AND
 e2.entityId = c.aEndEntityId
 AND
 e3.entityId = c.zEndEntityId
 AND
 c.connectionId = tl.connectionId
 AND
 tl.entityId = et.entityId
 AND
 e3.mainNodeEntityId = e4.entityId
 AND
 ch4.entityId = e4.entityId
)
UNION
select e1.entityName AS MGWName,
 e2.entityName AS MGWConnectedName,
 e3.entityName AS ConnectedInt,
 e4.entityName AS ConnectedDevice,

540 IBM Tivoli Network Manager IP Edition: Reference

 e4.entityType,
 ch4.className
from ncim.entityData e1,
 ncim.ranMediaGateway rmgw,
 ncim.entityData e2,
 ncim.entityData et,
 ncim.topologyLinks tl,
 ncim.connects c,
 ncim.entityData e3,
 ncim.entityData e4,
 ncim.physicalChassis ch4
where
(
 e1.entityName = 'MediaGateway1'
 AND
 e1.entityId = rmgw.entityId
 AND
 e2.mainNodeEntityId = e1.entityId
 AND
 e2.entityId = c.zEndEntityId
 AND
 e3.entityId = c.aEndEntityId
 AND
 c.connectionId = tl.connectionId
 AND
 tl.entityId = et.entityId
 AND
 e3.mainNodeEntityId = e4.entityId
 AND
 ch4.entityId = e4.entityId
)

Example: connectivity of a given serving GPRS support node

This query retrieves the connectivity of a given serving GPRS support node.

select e1.entityName AS SGSNName,
 e2.entityName AS SGSNConnectedName,
 e3.entityName AS ConnectedInt,
 e4.entityName AS ConnectedDevice,
 e4.entityType, ch4.className
from ncim.entityData e1,
 ncim.ranSGSN rsgsn,
 ncim.entityData e2,
 ncim.entityData et,
 ncim.topologyLinks tl,
 ncim.connects c,
 ncim.entityData e3,
 ncim.entityData e4,
 ncim.physicalChassis ch4
where
(
 e1.entityName = 'SGSN3'
 AND
 e1.entityId = rsgsn.entityId
 AND
 e2.mainNodeEntityId = e1.entityId
 AND
 e2.entityId = c.aEndEntityId
 AND
 e3.entityId = c.zEndEntityId
 AND
 c.connectionId = tl.connectionId
 AND
 tl.entityId = et.entityId
 AND
 e3.mainNodeEntityId = e4.entityId
 AND
 ch4.entityId = e4.entityId
)
UNION
select e1.entityName AS SGSNName,
 e2.entityName AS SGSNConnectedName,
 e3.entityName AS ConnectedInt,
 e4.entityName AS ConnectedDevice,
 e4.entityType,
 ch4.className
from ncim.entityData e1,
 ncim.ranSGSN rsgsn,

Chapter 21. Topology database queries 541

 ncim.entityData e2,
 ncim.entityData et,
 ncim.topologyLinks tl,
 ncim.connects c,
 ncim.entityData e3,
 ncim.entityData e4,
 ncim.physicalChassis ch4
where
(
 e1.entityName = 'SGSN3'
 AND
 e1.entityId = rsgsn.entityId
 AND
 e2.mainNodeEntityId = e1.entityId
 AND
 e2.entityId = c.zEndEntityId
 AND
 e3.entityId = c.aEndEntityId
 AND
 c.connectionId = tl.connectionId
 AND
 tl.entityId = et.entityId
 AND
 e3.mainNodeEntityId = e4.entityId
 AND
 ch4.entityId = e4.entityId
)

Find RAN containment
These queries retrieve the details of RAN entities that are contained, by other entities.

Example: find all sectors within a given cell

This query retrieves the details of all sectors within a given cell. There is no direct relationship between a
sector and a cell. Sectors are hosted by transceivers, and transceivers are contained within a base station.
There is a collects relationship between cells and transceivers. The query also deals with fact that there
are two different types of cell: GSM cells and UTRAN cells.

select e1.entityId sectorEntityId,
 e1.entityName sectorName,
 e2.entityId cellEntityId ,
 e2.entityName cellEntityName,
 COALESCE(rgc.cellid, ruc.cellid),
 COALESCE(rgc.rantechnologytype,'UMTS') cellType
from ncim.entityData e1
INNER JOIN ncim.ranSector rs ON rs.entityId = e1.entityId
INNER JOIN ncim.hostedService hs ON hs.hostedEntityId = e1.entityId
INNER JOIN ncim.entityData e3 ON e3.entityId = hs.hostingEntityId
INNER JOIN ncim.collects c ON c.collectedEntityId = e3.entityId
INNER JOIN ncim.entityData e2 ON e2.entityId = c.collectingEntityId
LEFT OUTER JOIN ncim.rangsmcell rgc ON rgc.entityId = e2.entityId
LEFT OUTER JOIN ncim.ranutrancell ruc ON ruc.entityId = e2.entityId
WHERE
(
 e2.entityName = cell_name
 AND
 (
 e2.entityType = 130
 OR
 e2.entityType = 131
)
);

The table below describes this query.

542 IBM Tivoli Network Manager IP Edition: Reference

Table 299. Description of the query

Line numbers Description

1-6 Specify the data to show in the results, as follows:

• The entity ID of the sector, represented by e1.entityId.
• The name of the sector, represented by e1.entityName
• The ID of the cell, represented by e2.entityId
• The name of the cell, represented by e2.entityName
• Use the COALESCE function to take either GSM or UTRAN cell IDs as a return value.

7 Use the entityData table as the driving table for this query.

8 Limit the results of the query to RAN sectors

9-10 The alias e3 identifies the hosting transceiver. The JOIN operations on these lines limit
the results to the transceiver that hosts the RAN sectors.

11-12 The alias e2 identifies the cells that collect the transceivers. The JOIN operations on
these lines limit the results to the cells that collect the transceiver, that in turn hosts
the RAN sectors.

13-14 Join the two cell tables, GSM and UTRAN. Use an outer join, as one of these tables will
be empty.

15-23 Specify the cell name and include results for GSM cells (entityType = 130) and
UTRAN cells (entityType = 131).

Similar queries
The following example queries retrieve relevant data for different RAN relationships, using similar syntax
to the above example.

Example: find contents of the RAN radio core

This query retrieves the contents of the RAN radio core.

SELECT e.entityId,
 e.entityName, ch.className,
 e2.entityName RANRadioCore,
 rrc.mmc, rrc.mnc
FROM ncim.entityData e
INNER JOIN ncim.physicalChassis ch ON ch.entityId = e.entityId
INNER JOIN ncim.collects c ON c.collectedEntityId = e.entityId
INNER JOIN ncim.entityData e2 ON e2.entityId = c.collectingEntityId
INNER JOIN ncim.ranRadioCore rrc ON rrc.entityId = e2.entityId
WHERE
e2.entityType = 138

Example: find contents of the RAN circuit-switched core

This query retrieves the contents of the RAN circuit-switched core.

SELECT e.entityId,
 e.entityName, ch.className,
 e2.entityName RANCircuitSwitchedCore,
 rcsc.mmc, rcsc.mnc
FROM ncim.entityData e
INNER JOIN ncim.physicalChassis ch ON ch.entityId = e.entityId
INNER JOIN ncim.collects c ON c.collectedEntityId = e.entityId
INNER JOIN ncim.entityData e2 ON e2.entityId = c.collectingEntityId

Chapter 21. Topology database queries 543

INNER JOIN ncim.ranCircuitSwitchedCore rcsc ON rcsc.entityId = e2.entityId
WHERE
e2.entityType = 137

Example: find contents of the RAN packet-switched core

This query retrieves the contents of the RAN packet-switched core.

SELECT e.entityId,
 e.entityName, ch.className,
 e2.entityName RANPacketSwitchedCore,
 rpsc.mmc,
 rpsc.mnc
FROM ncim.entityData e
INNER JOIN ncim.physicalChassis ch ON ch.entityId = e.entityId
INNER JOIN ncim.collects c ON c.collectedEntityId = e.entityId
INNER JOIN ncim.entityData e2 ON e2.entityId = c.collectingEntityId
INNER JOIN ncim.ranPacketSwitchedCore rpsc ON rpsc.entityId = e2.entityId
WHERE
e2.entityType = 136

Find RAN dependencies
These queries retrieve the details of RAN entities that are dependent upon other RAN entities.

Example: find all cells managed by a given base station

This query retrieves the details of all cells that are managed by a given base station.

select e1.entityId cellEntityId,
 e1.entityName cellName,
 rc.cellid,
 e2.entityId btsEntityId,
 e2.entityName BTSname,
 rbs.baseStationId
from ncim.entityData e1
INNER JOIN ncim.rangsmcell rc ON rc.entityId = e1.entityId
INNER JOIN ncim.dependency dep ON dep.dependentEntityId = e1.entityId
INNER JOIN ncim.entityData e2 ON e2.entityId = dep.independentEntityId
INNER JOIN ncim.ranBaseStation rbs ON rbs.entityId = e2.entityId
WHERE (e2.entityName = base_station_name)

The table below describes this query.

Table 300. Description of the query

Line numbers Description

1-6 Specify the data to show in the results, as follows:

• The entity ID of the cell, represented by e1.entityId.
• The name of the cell, represented by e1.entityName
• The ID of the cell, represented by rc.cellid
• The entity ID of the base station, represented by e2.entityId
• The name of the base station, represented by e2.entityName
• The identifying string of the base station, represented by rbs.baseStationId

7 Use the entityData table as the driving table for this query.

8 Limit the results of the query to RAN GSM cells.

Do this by joining the ranGSMCell table to the entityData table using the
entityId field.

544 IBM Tivoli Network Manager IP Edition: Reference

Table 300. Description of the query (continued)

Line numbers Description

9-11 Limit the results of the query to cells that have dependencies listed on entities that are
RAN base stations.

12 Limit the results of the query to cells managed by the base station known as
base_station_name.

Similar queries
The following example queries retrieve relevant data for different RAN relationships, using similar syntax
to the above example.

Example: find all cells managed by a given Node B entity

This query retrieves the details of all cells managed by a given Node B entity.

select e1.entityId cellEntityId,
 e1.entityName cellName, rc.cellid,
 e2.entityId nodeBEntityId,
 e2.entityName nodeBName,
 rnb.nodeBId
from ncim.entityData e1
INNER JOIN ncim.ranutrancell rc ON rc.entityId = e1.entityId
INNER JOIN ncim.dependency dep ON dep.dependentEntityId = e1.entityId
INNER JOIN ncim.entityData e2 ON e2.entityId = dep.independentEntityId
INNER JOIN ncim.ranNodeB rnb ON rnb.entityId = e2.entityId
WHERE
(
 e2.entityName = node_b_name
)

Example: find all base stations managed by a given base station controller

This query retrieves the details of all base stations managed by a given base station controller.

select e1.entityId btsEntityId,
 e1.entityName btsName,
 rbs.basestationid,
 e2.entityId bscEntityId,
 e2.entityName bscName,
 rbsc.baseStationControllerId
from ncim.entityData e1
INNER JOIN ncim.ranBaseStation rbs ON rbs.entityId = e1.entityId
INNER JOIN ncim.dependency d ON d.dependentEntityId = e1.entityId
INNER JOIN ncim.entityData e2 ON e2.entityId = d.independentEntityId
INNER JOIN ncim.ranBaseStationController rbsc ON rbsc.entityId = e2.entityId
WHERE
(
 e2.entityName = base_station_controller_name
);

Example: find all Node B entities managed by a given radio network controller

This query retrieves the details of all Node B entities managed by a given radio network controller.

select e1.entityId nodeBEntityId,
 e1.entityName nodeBName,
 rnb.nodeBid,
 e2.entityId rncEntityId,
 e2.entityName rncName,
 rrnc.rncId
from ncim.entityData e1
INNER JOIN ncim.ranNodeB rnb ON rnb.entityId = e1.entityId
INNER JOIN ncim.dependency d ON d.dependentEntityId = e1.entityId
INNER JOIN ncim.entityData e2 ON e2.entityId = d.independentEntityId

Chapter 21. Topology database queries 545

INNER JOIN ncim.ranRadioNetworkController rrnc ON rrnc.entityId = e2.entityId
WHERE
(
 e2.entityName = radio_network_controller_name
);

Queries for hosted services
These queries extract data on services or applications running on specific devices.

A hosted service is a service or application running on a specific device. For example, a device can host
BGP or OSPF services.

Find all chassis devices hosting OSPF services
This query identifies all devices that are hosting OSPF services. These devices are serving as routers
within an autonomous system (AS). Each device identified has an IP address and a separate OSPF router
IP address.

Example

1] SELECT e.entityName Entity_Name,
2] o.routerId OSPF_Router_ID
3] FROM entityData e
4] INNER JOIN hostedService h ON h.hostingEntityId = e.entityId
5] INNER JOIN ospfService o ON o.entityId = h.hostedEntityId;

Description
The table below describes this query.

Table 301. Description of the query

Line numbers Description

1-2 Specify the data to show in the results, as follows:

• The IP address of the hosting entity, represented by e.EntityName
• The ID of the hosted service, represented by o.routerID

3 Use the entityData table as the driving table for this query.

4 Restrict the entities returned to devices that host services. Do this by joining the
hostedService table.

5 For each of the entities identified as devices hosting services, retrieve the OSPF service
hosted on that device. Do this by joining the ospfService table to the query.

Results
The table below shows the results of this query.

Table 302. Results of the query

Entity name OSPF router ID

172.18.1.2 22.130.159.0

172.18.2.4 22.130.53.0

546 IBM Tivoli Network Manager IP Edition: Reference

Table 302. Results of the query (continued)

Entity name OSPF router ID

router1.ibm.net 172.20.4.16

Related concepts
Hosted services
A hosted service is a service or application running on a specific device. For example, a device can host
BGP or OSPF services. NCIM can also model the fact that a software application, is running on a
workstation.

Queries for collection information
These queries extract data on logical collections of devices.

Device collections are logical collections of devices. Examples of logical collections defined within NCIM
include MPLS VPNs, global VLANs, and subnets. NCIM can also model OSPF areas.

Show all PIM adjacencies
This query returns details of all Protocol Independent Multicast (PIM) adjacencies.

Example

1] SELECT eA.entityName A, eZ.entityName Z
2] FROM topologyLinks t
3] INNER JOIN connects c ON t.connectionId=c.connectionId
4] INNER JOIN entityData eA ON eA.entityId=c.aEndEntityId
5] INNER JOIN entityData eZ ON eZ.entityId=c.zEndEntityId
6] INNER JOIN entityData et ON et.entityId = t.entityId
7] WHERE et.entityName='PIMTopology';

Show PIM adjacencies for a device
This query shows Protocol Independent Multicast (PIM) adjacencies for a particular device.

Example

This example shows PIM adjacencies for the device 172.20.1.7.

1] SELECT eA.entityName A, eZ.entityName Z
2] FROM topologyLinks t
3] INNER JOIN connects c ON t.connectionId=c.connectionId
4] INNER JOIN entityData eA ON eA.entityId=c.aEndEntityId
5] INNER JOIN entityData eZ ON eZ.entityId=c.zEndEntityId
6] INNER JOIN entityData et ON et.entityId = t.entityId
7] INNER JOIN entityData eAMain ON eAMain.entityId=eA.mainNodeEntityId
8] INNER JOIN entityData eZMain ON eZMain.entityId=eZ.mainNodeEntityId
9] WHERE et.entityName='PIMTopology'
10] and eAMain.entityName = '172.20.1.7' or eZMain.entityName = '172.20.1.7';

Find PIM enabled routers
This query returns a list of all routers that are enabled to use Protocol Independent Multicast (PIM).

Example

1] SELECT e.entityName,
2] c.sysName,
3] p.joinPruneInterval
4] FROM pimService p
5] INNER JOIN hostedService h ON h.hostedEntityId=p.entityId

Chapter 21. Topology database queries 547

6] INNER JOIN entityData e ON e.entityId=h.hostingEntityId
7] INNER JOIN physicalChassis c ON c.entityId = e.mainNodeEntityId;

Find all devices in each subnet
This query identifies all of the subnets listed in the database. For each subnet the query provides the
netmask of that subnet and the list of IP addresses collected within that subnet. The IP address collected
within a subnet might refer to main nodes or interfaces; typically, they refer to interfaces.

Example

1] SELECT s.network Network,
2] s.netmask Netmask,
3] e.entityName Entity_Name
4] FROM subnet s
5] INNER JOIN collects c ON c.collectingEntityId = s.entityId
6] INNER JOIN entityData e ON e.entityId = c.collectedEntityId
7] ORDER BY s.network

Description
The table below describes this query.

Table 303. Description of the query

Line numbers Description

1-3 Specify the data to show in the results, as follows:

• The IP address of the collecting subnet, represented by s.network
• The netmask of the subnet, represented by s.netmask
• The name – usually an IP address – of an interface or main node within this subnet,

represented by e.entityName

4 Use the subnet table as the driving table for this query. This enables the query to
extract all the subnets in the database.

5 Retrieve a listing of all the collected entities within each subnet. At this point the
collected entities are identified by their entity identifier only. The corresponding IP
address is retrieved in the next line. Do this by joining the collects table.

6 Extract the entity data for each interface or main node collected within each subnet. Do
this by joining the entityData table to the query. This enables the query to retrieve
the IP address for each of the collected entities.

7 For readability purposes, order the results by the IP address of the collecting subnet.

Results
The table below shows the results of this query.

Table 304. Results of the query

Network Netmask Entity name

10.1.1.0 255.255.255.0 10.1.1.6

10.1.1.0 255.255.255.0 10.1.1.8

10.1.1.0 255.255.255.0 10.1.1.9

10.1.1.0 255.255.255.0 10.1.1.25

10.1.1.0 255.255.255.0 10.1.1.26

548 IBM Tivoli Network Manager IP Edition: Reference

Table 304. Results of the query (continued)

Network Netmask Entity name

10.1.1.0 255.255.255.0 10.1.1.27

172.18.1.0 255.255.255.0 172.18.1.30

172.18.1.0 255.255.255.0 172.18.1.31

172.20.11.0 255.255.255.248 172.20.11.54

172.20.11.0 255.255.255.248 172.20.11.75

Find all devices in a given VPN
This query identifies all of the VPNs listed in the database. For each VPN the query provides the name of
that VPN and the list of IP addresses collected within that subnet. The IP address collected within a VPN
might refer to main nodes or interfaces; typically they refer to interfaces.

Example

1] SELECT v.VPNName VPN_Name,
2] v.VPNType VPN_Type,
3] e.entityName Entity_Name
4] FROM networkVpn v
5] INNER JOIN collects c ON c.collectingEntityId = v.entityId
6] INNER JOIN entityData e ON e.entityId = c.collectedEntityId
7] ORDER BY v.VPNName

Description
The table below describes this query.

Table 305. Description of the query

Line numbers Description

1-3 Specify the data to show in the results, as follows:

• The IP address of the VPN, represented by v.VPNName
• The VPN type, represented by v.VPNType
• The name – usually an IP address – of an interface or main node within this VPN,

represented by e.entityName

4 Use the networkVpn table as the driving table for this query. This enables the query to
extract all the VPNs in the database.

5 Retrieve a listing of all the collected entities within each VPN. At this point the collected
entities are identified by their entity identifier only. The corresponding IP address is
retrieved in the next line. Do this by joining the collects table.

6 Extract the entity data for each interface or main node collected within each VPN. Do
this by joining the entityData table to the query. This enables the query to retrieve
the IP address for each of the collected entities

7 For readability purposes, order the results by the name of the collecting VPN.

Results
The table below shows the results of this query.

Chapter 21. Topology database queries 549

Table 306. Results of the query

VPN name VPN type Entity name

VPN-BLUE MPLS L2 PseudoWire 172.18.1.31

VPN-BLUE MPLS L2 PseudoWire 172.20.11.54

VPN-BLUE MPLS L2 PseudoWire 172.20.11.75

VPN-GREEN MPLS L2 BGP VPN 10.1.1.26

VPN-GREEN MPLS L2 BGP VPN 10.1.1.27

VPN-GREEN MPLS L2 BGP VPN 172.18.1.30

VPN-PURPLE MPLS IP VPN RT PAIR 10.1.1.59

VPN-PURPLE MPLS IP VPN RT PAIR 10.1.1.75

VPN-RED MPLS IP VPN 172.20.11.103

VPN-RED MPLS IP VPN 172.20.11.111

VPN-WHITE MPLS IP VPN MESH 172.18.1.233

VPN-WHITE MPLS IP VPN MESH 172.18.1.240

VPN-YELLOW MPLS IP VPN 10.1.1.6

VPN-YELLOW MPLS IP VPN 10.1.1.8

VPN-YELLOW MPLS IP VPN 10.1.1.9

VPN-YELLOW MPLS IP VPN 10.1.1.25

Related concepts
Collection data
Collection data defines logical collections. Collections are defined in the collects table. Examples of
logical collections defined within NCIM include MPLS VPNs, global VLANs, and subnets.

Queries for mapping and enumeration information
These sample queries extract mapping and enumeration data from NCIM.

Mappings and enumerations provide a means of looking up a database value in numerical or textual
format and retrieving corresponding human-readable text.

Identify all the device hardware manufacturers listed in the database
This query provides a list of all device manufacturers held in the topology database.

The query uses the mappings table. This table provides lookups for alternative textual names. These
lookups provide more human-readable text for fields. You can perform lookups in the mappings table for
the types of information (or mapping groups) shown in the following table.

Table 307. Mapping groups supported by the mappings table

Type of information String provided for lookup Human-readable output of
lookup

MAC vendors MAC address suffix information Name of equipment vendor

Internet Assigned Number
Authority (IANA) enterprise
number

IANA enterprise number Name of company with an
enterprise section in the SNMP
object MIB

550 IBM Tivoli Network Manager IP Edition: Reference

Table 307. Mapping groups supported by the mappings table (continued)

Type of information String provided for lookup Human-readable output of
lookup

entPhysicalVendorType MIB value for
entPhysicalVendorType MIB
variable

Vendor-specific hardware type of
the physical entity

sysObjectId MIB value for sysObjectId MIB
variable

Vendor's authoritative
identification of the network
management subsystem
contained in an entity

This query identifies the list of all device manufacturers held in the topology database by extracting a list
of all mappings in the MACVendors mapping group in the mappings table.

The mappings table provides string-to-string mappings, whereas the enumerations table provides
integer-to-string mappings.

Example

1] SELECT DISTINCT(mappingValue) Equipment_Vendor
2] FROM mappings m
3] WHERE mappingGroup = 'MACVendors'
4] ORDER BY mappingValue;

Description
The following table describes this query.

Table 308. Description of the query

Line numbers Description

1 Display the name of the equipment vendor.

This is represented by DISTINCT(mappingValue). Ensure that each name is listed
only once by using the DISTINCT keyword.

2 Use the mappings table as the driving table for this query. This enables the query to
extract all the mapping data in the database.

3 Limit the mappings to those that form part of the MACVendors mapping group.

4 Order the results by the name of the equipment vendor.

Results
The following table shows an example of the results of this query.

Table 309. Results of the query

Equipment vendor

360 Systems

3COM

3e Technologies International Inc.

Chapter 21. Topology database queries 551

Table 309. Results of the query (continued)

Equipment vendor

A-TREND TECHNOLOGY CO., LTD.

Abatron AG

ABB Automation Technology Products AB, Control

Abbey Systems Ltd

ABIT CORPORATION

AboveCable, Inc.

AbsoluteValue Systems, Inc.

AC Tech corporation DBA Advanced Digital

AC&T SYSTEM CO., LTD.

ACACIA NETWORKS, INC.

Related reference
Identify all the device hardware manufacturers listed in the database
This query provides a list of all device manufacturers held in the topology database.

Show all the entity types defined in the database
This query provides a list of entity types configured within the topology database. Entity type data
includes a numerical key, a textual name for the entity type, and a category of entity to which the entity
belongs.

Network Manager has the following entity categories:

• Element
• Collection
• Service
• Protocol endpoint
• Topology

This query uses the entityType table. This table contains every entity type in NCIM. If you want to define a
new entity type, you need to update this table to include the entity type.

Example

1] SELECT e.entityType Entity_Type,
2] e.typeName Entity_Name,
3] e.metaClass Category_of_Entity
4] FROM entityType e;

Description
The following table describes this query.

552 IBM Tivoli Network Manager IP Edition: Reference

Table 310. Description of the query

Line numbers Description

1-3 Specify the data to show in the results, as follows:

• The numerical enumeration key value, represented by e.entityType
• The corresponding human-readable string value, represented by e.typeName
• Category of entity, represented by e.metaClass

4 All of this information is held in the entityType table.

Results
The following table shows some of the results of this query.

Table 311. Results of the query

Entity type Entity name Category of entity

0 Unknown Element

1 Chassis Element

2 Interface Element

3 Logical Interface Element

4 localVlan Element

5 Module Element

6 PSU Element

9 Fan Element

10 Backplane Element

11 Slot Element

12 Sensor Element

Related concepts
Topology data
When the network is discovered, both core NCIM tables and entity attribute tables are updated with
topology data. These tables include Layer 1, Layer 2, Layer 3, device structure, routing protocol,
containment, and technology-specific information.

Chapter 21. Topology database queries 553

554 IBM Tivoli Network Manager IP Edition: Reference

Chapter 22. NCIM topology database schemas
Use this information to understand how the relationships between topology data are modelled.

The NCIM database has the following schemas:

• Core schema
• Data schema

The NCIM database schemas are represented as a set of UML diagrams that model the relationships
between topology data. Each class and relationship shown in the UML diagrams is modeled by a table in
the NCIM relational database. The UML diagrams are color-coded and use the following color key.

Core schema
Use the following information to understand the NCIM database core schema.

The following UML diagram shows how NCIM models containment relationships.

In this diagram, the entity class has no connections to any of the other classes. This is intentional because
the entity view is no longer part of the NCIM model as it got split into the entityData and domainMembers
classes, and their corresponding tables. However, the entity class has been maintained as a database
view partly for convenience as it makes some SQL easier to write but mainly to ensure backwards
compatibility with previous versions of the schema. The entity class is shown in the diagram for
completeness.

© Copyright IBM Corp. 2006, 2021 555

Figure 5. Core schema

Table 312 on page 556 describes the NCIM relationship database table and data dictionary that
correspond to each class and relationship in the core schema.

Table 312. Classes and relationships for the core schema

NCIM table Class or
relationship

Related NCIM table or
view

Data dictionary

Collection Abstract Class Not applicable Not applicable

556 IBM Tivoli Network Manager IP Edition: Reference

Table 312. Classes and relationships for the core schema (continued)

NCIM table Class or
relationship

Related NCIM table or
view

Data dictionary

collects Relationship collects “collects” on page 595

connects Relationship connects “connects” on page 596

contains Relationship contains “contains” on page 598

dependsOn Relationship entityDetails “dependency” on page
599

domainMembers Class domainMembers “domainMembers” on page
601

domainMgr Class domainMgr “domainMgr” on page
602

Element Abstract Class NA NA

entity Class entity “entity” on page 620

entityClass Class entityClass “entityClass” on page 604

entityData Class entityData “entityData” on page 605

entityDetails Class entityDetails “entityDetails” on page
607

entityNameCache Class entityNameCache “entityNameCache” on
page 607

entityType Class entityType “entityType” on page 608

hostedService Relationship hostedService “hostedService” on page
611

implementsEndPoint Relationship hostedService “protocolEndPoint” on
page 617

manager Class manager “manager” on page 612

networkPipe Class networkPipe “networkPipe” on page
613

pipeComposition Class pipeComposition “pipeComposition” on page
614

protocolEndPoint Class hostedService “protocolEndPoint” on
page 617

topologyLinks Relationship hostedService “topologyLinks” on page
618

Chapter 22. NCIM topology database schemas 557

Data schema
In the NCIM database, Network Manager topology data falls into different categories.
Related reference
dNCIM schema
The dNCIM database holds the containment model that is derived from the workingEntities.finalEntity,
workingEntities.containment and layer tables, mainly fullTopology.entityByNeighbor. The model is built by
the stitchers located in the dNCIM subdirectory, $NCHOME/precision/disco/stitchers/DNCIM. This is the
version of the topology that is sent to the ncp_model component

BGP
Use this information to understand how the NCIM database models Border Gateway Protocol (BGP).

The following UML diagram shows how NCIM models BGP.

Figure 6. BGP schema

Table 313 on page 558 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model BGP.

Table 313. Classes and relationships for BGP

Item Class or relationship Data dictionary

bgpAutonomousSystem Class “bgpAutonomousSystem” on page
633

bgpEndPoint Class “bgpEndPoint” on page 634

bgpNetwork Class “bgpNetwork” on page 637

bgpRouteAttribute Class “bgpRouteAttribute” on page 637

bgpService Class “bgpService” on page 639

558 IBM Tivoli Network Manager IP Edition: Reference

Table 313. Classes and relationships for BGP (continued)

Item Class or relationship Data dictionary

chassis Class “physicalChassis” on page 710

collects Relationship “collects” on page 595

connects Relationship “connects” on page 596

contains Relationship “contains” on page 598

entity Class “entity” on page 620

hostedService Relationship “hostedService” on page 611

implementsEndPoint Class “protocolEndPoint” on page 617

interface Class “networkInterface” on page 687

topologyLinks Relationship “topologyLinks” on page 618

Related concepts
NCIM topology database schemas
Use this information to understand how the relationships between topology data are modelled.

Collections
Use this information to understand how the NCIM database models device collections, such as subnets,
VPNs, and VLANs.

The following UML diagram shows how NCIM models device collections, such as subnets, VPNs and
VLANs.

Chapter 22. NCIM topology database schemas 559

Figure 7. Device collections schema

Table 314 on page 560 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used for modelling device collections.

Table 314. Classes and relationships for device collections

Item Class or relationship Data dictionary

bgpAutonomousSystem Class “bgpAutonomousSystem” on page
633

bgpNetwork Class “bgpNetwork” on page 637

Collection Abstract Class Not applicable

collects Relationship “collects” on page 595

entity Class “entity” on page 620

globalVlan Class “globalVlan” on page 659

hsrpGroup Class “hsrpGroup” on page 662

560 IBM Tivoli Network Manager IP Edition: Reference

Table 314. Classes and relationships for device collections (continued)

Item Class or relationship Data dictionary

networkVpn Class “networkVpn” on page 691

ospfArea Class “ospfArea” on page 699

ospfRoutingDomain Class “ospfRoutingDomain” on page 701

pimNetwork Class “Collections” on page 559

VTPDomain

subnet

Class

Class

“vtpDomain” on page 750

“subnet” on page 746

Related concepts
NCIM topology database schemas
Use this information to understand how the relationships between topology data are modelled.

Containment
Use this information to learn how the NCIM database models containment relationships.

The following UML diagram shows how NCIM models containment relationships.

Figure 8. Containment schema

Table 315 on page 561 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model containment relationships.

Table 315. Classes and relationships for containment

Item Class or relationship Data dictionary

backplane Class “backplane” on page 754

chassis Class “physicalChassis” on page 710

Element Abstract Class Not applicable

Chapter 22. NCIM topology database schemas 561

Table 315. Classes and relationships for containment (continued)

Item Class or relationship Data dictionary

entity Class “entity” on page 620

fan Class “physicalFan” on page 716

interface Class “networkInterface” on page 687

localVlan Class “localVlan” on page 676

module Class “physicalCard” on page 706

other Class “physicalOther” on page 718

psu Class “physicalPowerSupply” on page 719

sensor Class “physicalSensor” on page 721

slot Class “physicalSlot” on page 724

vlanTrunkEndPoint Class “vlanTrunkEndPoint” on page 748

vpnRouteForwarding Class “vpnRouteForwarding” on page 749

Related concepts
NCIM topology database schemas
Use this information to understand how the relationships between topology data are modelled.

Endpoints
Use this information to understand how the NCIM database models endpoints.

The following UML diagram shows how NCIM models protocol endpoints. Not all endpoints are shown in
the diagram; see the following table for a full list of endpoints.

562 IBM Tivoli Network Manager IP Edition: Reference

Figure 9. Protocol endpoints schema

Table 316 on page 563 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model endpoints.

Table 316. Classes and relationships for protocol endpoints

Item Class or relationship Data dictionary

atmEndPoint Class “atmEndPoint” on page 632

bgpEndPoint Class “bgpEndPoint” on page 634

entity Class “entity” on page 620

frameRelayEndPoint Class “frameRelayEndPoint” on page 656

igmpEndPoint Class “igmpEndPoint” on page 664

implementsEndPoint Class “protocolEndPoint” on page 617

ipEndPoint Class “ipEndPoint” on page 666

ipMRouteEndPoint Class “ipMRouteEndPoint” on page 669

mplsTETunnelEndPoint Class “mplsTETunnelEndPoint” on page
685

pimEndPoint Class “pimEndpoint” on page 726

portEndPoint Class “portEndPoint” on page 728

Chapter 22. NCIM topology database schemas 563

Table 316. Classes and relationships for protocol endpoints (continued)

Item Class or relationship Data dictionary

protocolEndPoint Class “protocolEndPoint” on page 617

ospfEndPoint Class “ospfEndPoint” on page 700

vlanTrunkEndPoint Class “vlanTrunkEndPoint” on page 748

vpwsEndPoint Class “vpwsEndPoint” on page 749

Related concepts
NCIM topology database schemas
Use this information to understand how the relationships between topology data are modelled.

Geographical location
The NCIM database models geographical locations using several database tables.

The following UML diagram shows how NCIM models geographical locations.

Figure 10. Geographical location schema

Table 317 on page 564 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model geographical locations.

Table 317. Classes and relationships for geographical locations

NCIM table Class or relationship Data dictionary

collects Relationship “collects” on page 595

entityData Class “entityData” on page 605

geographicLocation Class “geographicLocation” on page 657

geographicRegion Class “geographicRegion” on page 659

564 IBM Tivoli Network Manager IP Edition: Reference

IP endpoints
Use this information to understand how the NCIM database models Internet Protocol (IP) endpoints.

The following UML diagram shows how NCIM models IP endpoints.

Figure 11. IP endpoints schema

Table 318 on page 565 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model IP endpoints.

Table 318. Classes and relationships for IP

Item Class or relationship Data dictionary

chassis Class “physicalChassis” on page 710

Collection Abstract class Not applicable

collects Relationship “collects” on page 595

connects Relationship “connects” on page 596

entity Class “entity” on page 620

implementsEndPoint Class “protocolEndPoint” on page 617

interface Class “networkInterface” on page 687

ipEndPoint Class “ipEndPoint” on page 666

protocolEndPoint Class “protocolEndPoint” on page 617

Chapter 22. NCIM topology database schemas 565

Table 318. Classes and relationships for IP (continued)

Item Class or relationship Data dictionary

subnet Class “subnet” on page 746

Related concepts
NCIM topology database schemas
Use this information to understand how the relationships between topology data are modelled.

LTE
In the NCIM database, Network Manager LTE topology data is modelled using a variety of NCIM tables.

LTE schema
Use the following information for a high-level view of the LTE schema.

The following UML diagram shows how NCIM models LTE entities and relationships.

Figure 12. LTE schema

The following table describes the NCIM relationship database table that correspond to each class and
relationship in the LTE schema.

Table 319. Classes and relationships for the LTE schema

NCIM table Class or
relationship

Related NCIM table or
view

Data dictionary

antennaFunction Class antennaFunction “antennaFunction” on page
631

collects Relationship collects “collects” on page 595

566 IBM Tivoli Network Manager IP Edition: Reference

Table 319. Classes and relationships for the LTE schema (continued)

NCIM table Class or
relationship

Related NCIM table or
view

Data dictionary

contains Relationship contains “contains” on page 598

depends Relationship depends “dependency” on page
599

eirFunction Class eirFunction “eirFunction” on page
649

enbFunction Class enbFunction “enbFunction” on page
651

eUtranCell Class eUtranCell “eUtranCell” on page 653

eUtranSector Class eUtranSector “eUtranSector” on page
655

hssFunction Class hssFunction “hssFunction” on page
662

ltePool Class ltePool “ltePool” on page 679

mmeFunction Class mmeFunction “mmeFunction” on page
681

pcrfFunction Class pcrfFunction “pcrfFunction” on page
702

pgwFunction Class pgwFunction “pgwFunction” on page
704

PLMN Class PLMN “plmn” on page 728

sgwFunction Class sgwFunction “sgwFunction” on page
744

SGSN Class ranSGSN “ranSGSN” on page 742

trackingArea Class trackingArea “trackingArea” on page
747

LTE interfaces
The NCIM database models LTE interfaces using several database tables.

The following UML diagram shows how NCIM models the LTE interfaces.

Chapter 22. NCIM topology database schemas 567

Figure 13. LTE interface schema

The following table describes the NCIM relationship database tables and data dictionary that correspond
to each class and relationship used to model LTE interfaces.

Table 320. Classes and relationships for LTE interfaces

UML element Modelled by NCIM table Class or
relationship

Data dictionary

entityData entityData Class “entityData” on page 605

lteInterface lteInterface Class “lteInterface” on page
677

Gx lteInterface Class “lteInterface” on page
677

networkInterface networkInterface Class “networkInterface” on
page 687

OAM lteInterface Class “lteInterface” on page
677

568 IBM Tivoli Network Manager IP Edition: Reference

Table 320. Classes and relationships for LTE interfaces (continued)

UML element Modelled by NCIM table Class or
relationship

Data dictionary

SGi lteInterface Class “lteInterface” on page
677

X2 lteInterface Class “lteInterface” on page
677

S1-MME lteInterface Class “lteInterface” on page
677

S1-U lteInterface Class “lteInterface” on page
677

S3 lteInterface Class “lteInterface” on page
677

S4 lteInterface Class “lteInterface” on page
677

S5 lteInterface Class “lteInterface” on page
677

S6a lteInterface Class “lteInterface” on page
677

S8 lteInterface Class “lteInterface” on page
677

S10 lteInterface Class “lteInterface” on page
677

S11 lteInterface Class “lteInterface” on page
677

S13 lteInterface Class “lteInterface” on page
677

X2 lteInterface Class “lteInterface” on page
677

LTE elements
In the NCIM database, Network Manager LTE elements are modelled using a variety of NCIM tables.

Note: Equipment Identity Register (EIR), Home Subscriber Server (HSS) and Policy and Charging Rules
Function (PCRF) are not exclusively LTE elements. These three elements service a variety of technologies,
including GSM, LTE, and UMTS. However, within the NCIM topology database, these elements are
currently modelled only within LTE. They are therefore presented in the NCIM schema together with the
other LTE elements.

Chapter 22. NCIM topology database schemas 569

Equipment Identity Register
The NCIM database models the Equipment Identity Register (EIR) using several database tables.

The following UML diagram shows how NCIM models the EIR.

Figure 14. Equipment Identity Register (EIR) schema

The following table describes the NCIM relationship database tables and data dictionary that correspond
to each class and relationship used to model the EIR.

Table 321. Classes and relationships for EIR

UML element Modelled by NCIM table Class or
relationship

Data dictionary

collects collects Relationship “connects” on page 596

contains contains Relationship “contains” on page 598

eirFunction eirFunction Class “eirFunction” on page 649

entityData entityData Class “entityData” on page 605

lteInterface lteInterface Class “lteInterface” on page
677

physicalChassis physicalChassis Class “physicalChassis” on page
710

physicalInterface networkInterface

Where the entity type of
the interface has the value
2.

Class “networkInterface” on
page 687

Related reference
LTE interfaces

570 IBM Tivoli Network Manager IP Edition: Reference

The NCIM database models LTE interfaces using several database tables.

Evolved NodeB
The NCIM database models the Evolved NodeB (eNodeB) using several database tables.

The following UML diagram shows how NCIM models the eNodeB.

Figure 15. Evolved NodeB (eNodeB) schema

The following table describes the NCIM relationship database tables and data dictionary that correspond
to each class and relationship used to model the eNodeB.

Table 322. Classes and relationships for Evolved NodeB (eNodeB)

UML element Modelled by NCIM table Class or
relationship

Data dictionary

collects collects Relationship “connects” on page 596

contains contains Relationship “contains” on page 598

enbFunction enbFunction Class “enbFunction” on page
651

entityData entityData Class “entityData” on page 605

lteInterface lteInterface Class “lteInterface” on page
677

physicalChassis physicalChassis Class “physicalChassis” on page
710

physicalInterface networkInterface

Where the entity type of
the interface has the value
2.

Class “networkInterface” on
page 687

Chapter 22. NCIM topology database schemas 571

Related reference
LTE interfaces
The NCIM database models LTE interfaces using several database tables.

Home Subscriber Server
The NCIM database models the Home Subscriber Server (HSS) using several database tables.

The following UML diagram shows how NCIM models the HSS.

Figure 16. Home Subscriber Server (HSS) schema

The following table describes the NCIM relationship database tables and data dictionary that correspond
to each class and relationship used to model the Home Subscriber Server (HSS).

Table 323. Classes and relationships for Home Subscriber Server (HSS)

UML element Modelled by NCIM table Class or
relationship

Data dictionary

collects collects Relationship “connects” on page 596

contains contains Relationship “contains” on page 598

hssFunction hssFunction Class “hssFunction” on page
662

entityData entityData Class “entityData” on page 605

lteInterface lteInterface Class “lteInterface” on page
677

physicalChassis physicalChassis Class “physicalChassis” on page
710

572 IBM Tivoli Network Manager IP Edition: Reference

Table 323. Classes and relationships for Home Subscriber Server (HSS) (continued)

UML element Modelled by NCIM table Class or
relationship

Data dictionary

physicalInterface networkInterface

Where the entity type of
the interface has the value
2.

Class “networkInterface” on
page 687

Related reference
LTE interfaces
The NCIM database models LTE interfaces using several database tables.

Mobility Management Entity
The NCIM database models the Mobility Management Entity (MME) using several database tables.

The following UML diagram shows how NCIM models the Mobility Management Entity.

Figure 17. Mobility Management Entity (MME)

The following table describes the NCIM relationship database tables and data dictionary that correspond
to each class and relationship used to model Mobility Management Entity.

Table 324. Classes and relationships for Mobility Management Entity (MME)

UML element Modelled by NCIM table Class or
relationship

Data dictionary

collects collects Relationship “connects” on page 596

contains contains Relationship “contains” on page 598

mmeFunction mmeFunction Class “mmeFunction” on page
681

Chapter 22. NCIM topology database schemas 573

Table 324. Classes and relationships for Mobility Management Entity (MME) (continued)

UML element Modelled by NCIM table Class or
relationship

Data dictionary

entityData entityData Class “entityData” on page 605

lteInterface lteInterface Class “lteInterface” on page
677

physicalChassis physicalChassis Class “physicalChassis” on page
710

physicalInterface networkInterface

Where the entity type of
the interface has the value
2.

Class “networkInterface” on
page 687

Related reference
LTE interfaces
The NCIM database models LTE interfaces using several database tables.

Packet Gateway
The NCIM database models the Packet Gateway (PGW) using several database tables.

The following UML diagram shows how NCIM models the Packet Gateway.

Figure 18. Packet Gateway (PGW) schema

The following table describes the NCIM relationship database tables and data dictionary that correspond
to each class and relationship used to model Packet Gateway.

574 IBM Tivoli Network Manager IP Edition: Reference

Table 325. Classes and relationships for Packet Gateway (PGW)

UML element Modelled by NCIM table Class or
relationship

Data dictionary

collects collects Relationship “connects” on page 596

contains contains Relationship “contains” on page 598

pgwFunction pgwFunction Class “pgwFunction” on page
704

entityData entityData Class “entityData” on page 605

lteInterface lteInterface Class “lteInterface” on page
677

physicalChassis physicalChassis Class “physicalChassis” on page
710

physicalInterface networkInterface

Where the entity type of
the interface has the value
2.

Class “networkInterface” on
page 687

Related reference
LTE interfaces
The NCIM database models LTE interfaces using several database tables.

Policy and Charging Rules Function
The NCIM database models the Policy and Charging Rules Function (PCRF) using several database tables.

The following UML diagram shows how NCIM models the Policy and Charging Rules Function (PCRF).

Figure 19. Policy and Charging Rules Function (PCRF) schema

Chapter 22. NCIM topology database schemas 575

The following table describes the NCIM relationship database tables and data dictionary that correspond
to each class and relationship used to model the Policy and Charging Rules Function (PCRF).

Table 326. Classes and relationships for Policy and Charging Rules Function (PCRF)

UML element Modelled by NCIM table Class or
relationship

Data dictionary

collects collects Relationship “connects” on page 596

contains contains Relationship “contains” on page 598

pcrfFunction pcrfFunction Class “pcrfFunction” on page
702

entityData entityData Class “entityData” on page 605

lteInterface lteInterface Class “lteInterface” on page
677

physicalChassis physicalChassis Class “physicalChassis” on page
710

physicalInterface networkInterface

Where the entity type of
the interface has the value
2.

Class “networkInterface” on
page 687

Related reference
LTE interfaces
The NCIM database models LTE interfaces using several database tables.

Serving Gateway
The NCIM database models the Serving Gateway (SGW) using several database tables.

The following UML diagram shows how NCIM models the Serving Gateway.

576 IBM Tivoli Network Manager IP Edition: Reference

Figure 20. Serving Gateway (SGW) schema

The following table describes the NCIM relationship database tables and data dictionary that correspond
to each class and relationship used to model Serving Gateway.

Table 327. Classes and relationships for Serving Gateway (SGW)

UML element Modelled by NCIM table Class or
relationship

Data dictionary

collects collects Relationship “connects” on page 596

contains contains Relationship “contains” on page 598

sgwFunction sgwFunction Class “sgwFunction” on page
744

entityData entityData Class “entityData” on page 605

lteInterface lteInterface Class “lteInterface” on page
677

physicalChassis physicalChassis Class “physicalChassis” on page
710

physicalInterface networkInterface

Where the entity type of
the interface has the value
2.

Class “networkInterface” on
page 687

Related reference
LTE interfaces

Chapter 22. NCIM topology database schemas 577

The NCIM database models LTE interfaces using several database tables.

MPLS traffic engineered (TE) tunnels
The NCIM database models MPLS TE tunnels using several databases.

The following UML diagram shows how NCIM models MPLS TE tunnels.

Figure 21. MPLS TE schema

Table 328 on page 578 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model MPLS TE tunnels.

Table 328. Classes and relationships for MPLS TE tunnels

NCIM table Class or relationship Data dictionary

chasssis Class “physicalChassis” on page 710

contains Relationship “contains” on page 598

dependency Relationship “dependency” on page 599

entity Class “entity” on page 620

578 IBM Tivoli Network Manager IP Edition: Reference

Table 328. Classes and relationships for MPLS TE tunnels (continued)

NCIM table Class or relationship Data dictionary

hostedService Class “hostedService” on page 611

interface Class “networkInterface” on page 687

mplsTEService Class “mplsTEService” on page 683

mplsTETunnel Class “mplsTETunnel” on page 683

mplsTETunnelEndPoint Class “mplsTETunnelEndPoint” on page
685

mplsTETunnelResource Class “mplsTETunnelResource” on page
685

mplsLSP Class “mplsLSP” on page 686

MPLS VPNs
Use this information to understand how the NCIM database models Multi Protocol Label Switching Virtual
Private Networks (MPLS VPNs).

The following UML diagram shows how NCIM models MPLS VPNs.

Figure 22. MPLS VPNs schema

Table 329 on page 579 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model MPLS VPNs.

Table 329. Classes and relationships for MPLS VPNs

Item Class or relationship Data dictionary

chassis Class “physicalChassis” on page 710

collects Relationship “collects” on page 595

contains Relationship “contains” on page 598

entity Class “entity” on page 620

Chapter 22. NCIM topology database schemas 579

Table 329. Classes and relationships for MPLS VPNs (continued)

Item Class or relationship Data dictionary

interface Class “networkInterface” on page 687

networkVpn Class “networkVpn” on page 691

RTExportTargets Relationship “rtExportList” on page 744

RTImportTargets Relationship “rtImportList” on page 744

vpnRouteForwarding Class “vpnRouteForwarding” on page 749

Related concepts
NCIM topology database schemas
Use this information to understand how the relationships between topology data are modelled.

OSPF
Use this information to understand how the NCIM database models Open Shortest Path First (OSPF)
protocols .

The following UML diagram shows how NCIM models OSPF.

Figure 23. OSPF schema

Table 330 on page 581 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model OSPFs.

580 IBM Tivoli Network Manager IP Edition: Reference

Table 330. Classes and relationships for OSPF

Item Class or relationship Data dictionary

chassis Class “physicalChassis” on page 710

collects Relationship “collects” on page 595

connects Relationship “connects” on page 596

contains Relationship “contains” on page 598

entity Class “entity” on page 620

hostedService Relationship “hostedService” on page 611

implementsEndPoint Class “protocolEndPoint” on page 617

interface Class “networkInterface” on page 687

ospfArea Class “ospfArea” on page 699

ospfEndPoint Class “ospfEndPoint” on page 700

ospfNetworkLSA Class “ospfNetworkLSA” on page 701

ospfRoutingDomain Class “ospfRoutingDomain” on page 701

ospfService Class “ospfService” on page 701

topologyLinks Relationship “topologyLinks” on page 618

Related concepts
NCIM topology database schemas
Use this information to understand how the relationships between topology data are modelled.

Services
Use this information to understand how the NCIM database models the services that are offered by device
interfaces, for example BGP services or OSPF services.

The following UML diagram shows how NCIM models services. Not all services are shown in the diagram;
see the following table for a full list of services.

Figure 24. Services schema

Chapter 22. NCIM topology database schemas 581

Table 331 on page 582 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model services.

Table 331. Classes and relationships for services

Item Class or relationship Data dictionary

bgpService Class “bgpService” on page 639

entity Class “entity” on page 620

hostedService Relationship “hostedService” on page 611

igmpService Class “igmpService” on page 666

ipMRouteService Class “ipMRouteService” on page 671

itnmService Class “itnmService” on page 674

mplsTEService Class “mplsTEService” on page 683

ospfService Class “ospfService” on page 701

pimService Class “pimService” on page 727

Service Abstract class Not applicable

Related concepts
NCIM topology database schemas
Use this information to understand how the relationships between topology data are modelled.

UMTS and GSM
In the NCIM database, Network Manager UMTS and GSM topology data is modelled using a variety of
NCIM tables.

GSM
The NCIM database models GSM using several database tables.

The following UML diagram shows how NCIM models GSM.

Note: In addition to the standard relationships between entities shown in the core schema diagram, the
GSM schema diagram models extra relationships between RAN entities. These RAN entity relationships
have been added to make it easier to process RAN data. For example, the dependency relationship
between ranBaseStation and ranBaseStationController was added to enable a single query to
retrieve all RAN base stations managed by a given RAN base station controller.

582 IBM Tivoli Network Manager IP Edition: Reference

Figure 25. GSM schema

Table 332 on page 583 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model GSM.

Table 332. Classes and relationships for GSM

NCIM table Class or relationship Data dictionary

collects Relationship “collects” on page 595

connects Relationship “connects” on page 596

contains Relationship “contains” on page 598

dependency Relationship “dependency” on page 599

entityData Class “entityData” on page 605

physicalChasssis Class “physicalChassis” on page 710

ranBaseStationController Class “ranBaseStationController” on page
733

Chapter 22. NCIM topology database schemas 583

Table 332. Classes and relationships for GSM (continued)

NCIM table Class or relationship Data dictionary

ranBaseStation Class “ranBaseStation” on page 732

ranGSMCell Class “ranGSMCell” on page 735

ranPacketControlUnit Class “ranPacketControlUnit” on page 739

ranSector Class “ranSector” on page 742

ranTransceiver Class “ranTransceiver” on page 743

RAN collections
The NCIM database models RAN collections using several database tables.

The following UML diagram shows how NCIM models RAN collections.

Figure 26. RAN collections

Table 333 on page 585 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model RAN collections.

584 IBM Tivoli Network Manager IP Edition: Reference

Table 333. Classes and relationships for RAN collections

NCIM table Class or relationship Data dictionary

collects Relationship “collects” on page 595

dependency Relationship “dependency” on page 599

entityData Class “entityData” on page 605

physicalChasssis Class “physicalChassis” on page 710

ranBaseStationController Class “ranBaseStationController” on page
733

ranCircuitSwitchedCore Class “ranCircuitSwitchedCore” on page
734

ranGGSN Class “ranGGSN” on page 734

ranMediaGateway Class “ranMediaGateway” on page 736

ranMSS Class “ranMSS” on page 737

ranMobileSwitchingCentre Class “ranMobileSwitchingCentre” on page
737

ranPacketControlUnit Class “ranPacketControlUnit” on page 739

ranPacketSwitchedCore Class “ranPacketSwitchedCore” on page
739

ranRadioCore Class “ranRadioCore” on page 740

ranRadioNetworkController Class “ranRadioNetworkController” on page
740

ranSGSN Class “ranSGSN” on page 742

RAN routing and location areas
The NCIM database models RAN routing and location areas using several database tables.

A routing area is the region within which an end user can move using the data service without having to
update the Serving GPRS Serving Nodes (SGSN). The location area is the area within which an end user
can move using the voice service without having to update the VLR (visitor location registrar, which
indicates where you are physically located). Therefore RAN routing and location areas do not indicate
geographic location but rather the responsibilities of the devices in the system.

The following UML diagram shows how NCIM models RAN routing and location areas.

Chapter 22. NCIM topology database schemas 585

Figure 27. RAN location schema

Table 334 on page 586 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model radio access network entity location.

Table 334. Classes and relationships for radio access network entity location

NCIM table Class or relationship Data dictionary

collects Relationship “collects” on page 595

entityData Class “entityData” on page 605

ranGSMCell Class “ranGSMCell” on page 735

ranLocationArea Class “ranLocationArea” on page 736

ranRoutingArea Class “ranRoutingArea” on page 741

ranUtranCell Class “ranUtranCell” on page 743

UMTS
The NCIM database models UMTS using several database tables.

The following UML diagram shows how NCIM models UMTS.

Note: In addition to the standard relationships between entities shown in the core schema diagram, the
UMTS schema diagram models extra relationships between RAN entities. These RAN entity relationships
have been added to make it easier to process RAN data. For example, the dependency relationship
between ranUtranCell and ranNodeB was added to enable a single query to retrieve all UTRAN cells
managed by a given Node B entity.

586 IBM Tivoli Network Manager IP Edition: Reference

Figure 28. UMTS schema

Table 335 on page 587 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model UMTS.

Table 335. Classes and relationships for UMTS

NCIM table Class or relationship Data dictionary

collects Relationship “collects” on page 595

contains Relationship “contains” on page 598

dependency Relationship “dependency” on page 599

entityData Class “entityData” on page 605

hostedService Relationship “hostedService” on page 611

physicalChasssis Class “physicalChassis” on page 710

ranNodeB Class “ranNodeB” on page 738

ranNodeBLocalCell Class “ranNodeBLocalCell” on page 738

Chapter 22. NCIM topology database schemas 587

Table 335. Classes and relationships for UMTS (continued)

NCIM table Class or relationship Data dictionary

ranRadioNetworkController Class “ranRadioNetworkController” on page
740

ranSector Class “ranSector” on page 742

ranTransceiver Class “ranTransceiver” on page 743

ranUtranCell Class “ranUtranCell” on page 743

VLANs
Use this information to understand how the NCIM database models virtual local area networks (VLANs).

The following UML diagram shows how NCIM models VLANs.

Figure 29. VLAN schema

Table 336 on page 589 describes the NCIM relationship database tables and data dictionary that
correspond to each class and relationship used to model VLANs.

588 IBM Tivoli Network Manager IP Edition: Reference

Table 336. Classes and relationships for VLANs

Item Class or relationship Data dictionary

chassis Class “physicalChassis” on page 710

collects Relationship “collects” on page 595

contains Relationship “contains” on page 598

entity Class “entity” on page 620

globalVlan Class “globalVlan” on page 659

interface Class “networkInterface” on page 687

localVlan Class “localVlan” on page 676

implementsEndPoint Class “protocolEndPoint” on page 617

vlanCollection Class

vtpDomain Class “vtpDomain” on page 750

VLANTrunkEndPoint Class “vlanTrunkEndPoint” on page 748

Related concepts
NCIM topology database schemas
Use this information to understand how the relationships between topology data are modelled.

Chapter 22. NCIM topology database schemas 589

590 IBM Tivoli Network Manager IP Edition: Reference

Chapter 23. Data dictionary
The NCIM topology database schema is made up of a set of relational database tables that represent the
topology model.
Related concepts
Topology data
When the network is discovered, both core NCIM tables and entity attribute tables are updated with
topology data. These tables include Layer 1, Layer 2, Layer 3, device structure, routing protocol,
containment, and technology-specific information.
Related reference
dNCIM schema
The dNCIM database holds the containment model that is derived from the workingEntities.finalEntity,
workingEntities.containment and layer tables, mainly fullTopology.entityByNeighbor. The model is built by
the stitchers located in the dNCIM subdirectory, $NCHOME/precision/disco/stitchers/DNCIM. This is the
version of the topology that is sent to the ncp_model component

Core tables
Core tables define entities and relationships between them. Core tables do not provide detailed attribute
information on the entities.

Core tables include those tables that define the domains, for example the domainMgr table and the
domainSummary table, and also the entityData table, which provides generic information about an
entity, for example entityName and entityType.

The core table models the following categories of topology data:

Domains
A domain is a scoped set of entities that are discovered and managed by an application, such as
Network Manager. Domains are represented using the domainMgr table. Membership of entities
within these domains is represented using the domainMembers table.

Entities
An entity is a topology database concept. All devices and device components discovered by Network
Manager are entities. Also device collections such as VPNs and VLANs, as well as pieces of topology
that form a complex connection, are entities. Generic information for all entities within NCIM is held
within the entityData table. The entity view joins data from the entityData and
domainMembers tables and is equivalent to the entity table that existed in Network Manager
versions 3.8 and earlier.

Containment relationships
Containment relationships express physical and logical containment. These relationships are
represented by the contains table.

Connectivity relationships
Connectivity relationships are relationships between entities. These relationships are represented by
the connects table. Other tables used to define connectivity include the networkPipe,
pipeComposition, and topologyLinks tables.

Collection relationships
Collection relationships enable NCIM to model collections of entities, such as MPLS VPNs, global
VLANs and subnets. The relationship is represented by the collects table.

Dependency relationships
Dependency relationships express a generic dependency relationship between two entities. This
relationship is represented by the dependency table.

Mappings
Mappings provide a means of looking up a database value in numerical or textual format and retrieving
corresponding human-readable text.

© Copyright IBM Corp. 2006, 2021 591

Related concepts
Topology data
When the network is discovered, both core NCIM tables and entity attribute tables are updated with
topology data. These tables include Layer 1, Layer 2, Layer 3, device structure, routing protocol,
containment, and technology-specific information.

aggregatedLink
The aggregatedLink table records the entity IDs of aggregated links in Link Aggregation Groups.

The following table describes the aggregatedLink table.

Table 337. aggregatedLink table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Primary key

Not null

Automatically incremented ID
that provides a unique value for
each aggregated link across all
domains.

aggregationDomain
The aggregationDomain table records the timestamps of when the last aggregation for an entity was done.
If an entity is already up to date, it is not updated again.

The following table describes the aggregationDomain table.

Table 338. aggregationDomain table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Primary key

Not null

Automatically incremented ID
that provides a unique value for
each entity across all domains.

domainMgrId 32-bit integer Foreign key

Primary key

Not null

The identifier of the domain
from the domainMgr table.

createTime Not null The time that the entity was
created.

changeTime Not null The time that the entity was
updated.

CIDRinfo
The CIDRinfo table provides the means to map between different representations of subnets and subnet
masks. This table belongs to the category mappings.

The following table describes the CIDRinfo table.

592 IBM Tivoli Network Manager IP Edition: Reference

Table 339. CIDRInfo table

Column name Type Constraints Description

maskBits 32-bit integer Primary key

Not null

The number of bits in the mask.
For example, for a class C
network, this is 24.

CIDRString 7-character string Not null The Classless Inter-Domain
Routing (CIDR) notation for the
subnet. For example, for a class
C network, this is /24.

inverseMask IP Address Not null The inverse mask for the
network. The inverse mask acts
as a wildcard for OSPF and
ACLs.

numHosts 64-bit integer Not null The number of IP addresses in
the network. For example, for a
class C network this is 256.

numClassC Double precision
floating point
number

Not null The number of class C
networks within the subnet.

netmask 15-character string Not null The subnet mask for the
network. For example, for a
class C network this is
255.255.255.0.

The following table summarizes the information in the CIDRInfo table.

Table 340. Summary of the information in the CIDRInfo table

Subnet mask Bits CIDR notation Number of hosts

0.0.0.0 0 /0 4294967296

128.0.0.0 1 /1 2147483648

192.0.0.0 2 /2 1073741824

224.0.0.0 3 /3 536870912

240.0.0.0 4 /4 268435456

248.0.0.0 5 /5 134217728

252.0.0.0 6 /6 67108864

254.0.0.0 7 /7 33554432

255.0.0.0 8 /8 (A) 16777216

255.128.0.0 9 /9 8388608

255.192.0.0 10 /10 4194304

255.224.0.0 11 /11 2097152

255.240.0.0 12 /12 1048576

255.248.0.0 13 /13 524288

255.252.0.0 14 /14 262144

Chapter 23. Data dictionary 593

Table 340. Summary of the information in the CIDRInfo table (continued)

Subnet mask Bits CIDR notation Number of hosts

255.254.0.0 15 /15 131072

255.255.0.0 16 /16 (B) 65536

255.255.128.0 17 /17 32768

255.255.192.0 18 /18 16384

255.255.224.0 19 /19 8192

255.255.240.0 20 /20 4096

255.255.248.0 21 /21 2048

255.255.252.0 22 /22 1024

255.255.254.0 23 /23 512

255.255.255.0 24 /24 (C) 256

255.255.255.128 25 /25 128

255.255.255.192 26 /26 64

255.255.255.224 27 /27 32

255.255.255.240 28 /28 16

255.255.255.248 29 /29 8

255.255.255.252 30 /30 4

255.255.255.254 31 /31 2

255.255.255.255 32 /32 1

classMembers
The classMembers table specifies the device class to which a specific entity belongs. This table belongs
to the category entities.

This table is populated only for entities that are chassis devices.

The following table describes the classMembers table.

Table 341. classMembers table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

Foreign key from the
entityData table. Specifies
the entity ID of the chassis
device.

classId 32-bit integer Foreign key

Not null

Foreign key from the
entityClass table. Specifies the
ID of the class to which the
chassis belongs.

594 IBM Tivoli Network Manager IP Edition: Reference

collects
The collects table stores data on collections of entities, such as subnets and MPLS VPNs. This table
belongs to the category collections.

The sequence column of the collects table allows collections to be ordered, if required.

The following table describes the collects table.

Table 342. collects table

Column name Type Constraints Description

collectingEntityId 32-bit integer Foreign key

Not null

Foreign key from the
entityData table. Specifies
the collection instance. There is
a row in this table for each
entity within this collection.

collectedEntityId 32-bit integer Foreign key

Not null

Foreign key from the
entityData table. Specifies
an entity within the collection.

sequence 32-bit integer For ordered collections,
specifies the sequence number
of the collection.

Related concepts
Collection data
Collection data defines logical collections. Collections are defined in the collects table. Examples of
logical collections defined within NCIM include MPLS VPNs, global VLANs, and subnets.
Related reference
ncimCache.collects table
The ncimCache.collects table lists all the entities participating in a given collection.

connectActions
The connectActions table records all manual connection additions and all connection removals, including
removal of connections that were discovered rather than manually added.

The following table describes the connectActions table.

Table 343. connectActions table

Column name Type Constraints Description

connectActionsId 32-bit integer Primary key

Automatically
incremented

Not null

Unique auto generated primary
key column.

aEndEntityId 32-bit integer Foreign key

Not null

Foreign key to the entityData
table. EntityId of the A-end of
the connection.

zEndEntityId 32-bit integer Foreign key

Not null

Foreign key to the entityData
table. EntityId of the Z-end of
the connection.

Chapter 23. Data dictionary 595

Table 343. connectActions table (continued)

Column name Type Constraints Description

topologyEntityId 32-bit integer Foreign key

Not null

Foreign key to the entityData
table. EntityId of the topology
for this connection.

unidirectional Boolean Not null

Not null

Boolean indicating if the
connection ID is directed or
not.

action 6-character string Enumeration of
values “add” and
“delete”

Not null

Indicates an action that added
or deleted an entity.

changeTime Timestamp Not null Indicates when this
entityAction was last updated.

username 64-character string Not null Indicates the user that
performed the entity action.

location 512-character
string

Indicates location from which
user is logged in.

description 512-character
string

Textual description of reason
for the connect action.

userSpeed 64-bit integer User specified speedValue from
connectSpeeds table.

manual Boolean Not null Indicates if the entity was
manually added.

Related reference
ncimCache.connectActions table
The ncimCache.connectActions table lists all changes made manually to connections in the topology.

connects
The connects table stores data on connectivity between devices. This table belongs to the category
collections.

Each row in the connects table defines a relationship between two entities.

The connects table stores each connection as a single record. However, because two entities are
involved in a connection, the order of the connected entities within the connects table is random. One of
the devices involved in the connection is considered to be at a notional start (or aEnd) of the connection,
while the second device is considered to be at a notional end (or zEnd) of the connection.

The following table describes the connects table.

596 IBM Tivoli Network Manager IP Edition: Reference

Table 344. connects table

Column name Type Constraints Description

connectionId 32-bit integer Primary key

Not null

Automatically
incremented

Unique

This is an automatically-
incremented field that must be
unique for each connection
across all domains.

aEndEntityId 32-bit integer Foreign key

Not null

The entityId of an interface
from the entityData table
giving the notional start of the
connection.

zEndEntityId 32-bit integer Foreign key

Not null

The entityId of an interface
from the entityData table
giving the notional end of the
connection.

unidirectional Boolean Not null

Takes one of the
following values:

0: is not uni
directional
1: is uni
directional

Indicates whether the
connection is unidirectional or
bidirectional. Currently all
connections are bidirectional.

Related reference
ncimCache. connectstable
The ncimCache.connects table describes the type and speed of connections between devices.

connectSpeeds
The connectSpeeds table stores data on connectivity speed between devices.

The connectSpeeds table stores each connection as a single record.

The following table describes the connectSpeeds table.

Table 345. connectSpeeds table

Column name Type Constraints Description

connectionId 32-bit integer Primary key

Foreign key

Not null

The connection ID from the
NCIM connects table.

Chapter 23. Data dictionary 597

Table 345. connectSpeeds table (continued)

Column name Type Constraints Description

speedType 9-bit integer Primary key

Not null

The type of the speed of the
connection. This column can
take one of the following
values:

DEFAULT
The standard speed derived
from the data from the
network element.

RATELIMIT
Not currently used.

USER
The speed specified by the
user.

speedValue 64-bit integer Foreign key The speed of the connection, if
known, in bits per second.

Related reference
ncimCache. connectstable
The ncimCache.connects table describes the type and speed of connections between devices.

contains
The contains table stores data on physical and logical containment. This table belongs to the category
containment.

The following table describe the contains table.

Table 346. contains table

Column name Type Constraints Description

containingEntityId 32-bit integer Foreign key

Not null

The identifier of the containing
entity from the entityData
table

containedEntityId 32-bit integer Foreign key

Not null

The identifier of the contained
entity from the entityData
table

upwardConnection Boolean Unique within
domain

Takes one of the
following values:

0: bi
directional
1: uni
directional

Used by the root-cause analysis
(RCA) engine (a plug-in to the
Event Gateway, ncp_g_event).
This field enables the RCA
engine to describe the
connectivity between the entity
identified by the
containedEntityId field and
other entities that share the
same containing entity.

Related reference
ncimCache. containstable

598 IBM Tivoli Network Manager IP Edition: Reference

The ncimCache.contains table lists containment information for a device.
localVlan
The localVlan table specifies which global VLAN the local VLAN belongs to. A local VLAN represents all the
interfaces on a single chassis device that belong to a global VLAN.

dependency
The dependency table defines a general dependency between two entities. This table belongs to the
category dependency.

This relationship is more general than the containment and connectivity relationships defined in other
tables.

The following table describes the dependency table.

Table 347. dependency table

Column name Type Constraints Description

independentEntityId 32-bit integer Foreign key

Not null

The identifier from the
entityData table of the entity
on which the dependent entity
depends.

dependentEntityId 32-bit integer Foreign key

Not null

The identifier of the dependent
entity from the entityData
table.

dependencyType Integer Not null The value identifying the type
of dependency relationship.

Related reference
ncimCache.dependency table
The ncimCache.dependency table lists entities that are dependent on other devices.

deviceFunction
The deviceFunction table stores data on device vendors, associated device models together with the role
of the device model such as router, switch, and so on. This table belongs to the category entities.

The following table describes the deviceFunction table.

Table 348. deviceFunction table

Column name Type Constraints Description

vendorName 100-character
string

Not null The name of a device vendor.

vendorOID 100-character
string

Not null The MIB object ID (OID)
associated with this vendor.

sysObjectId 100-character
string

Primary key

Not null

The vendor's authoritative
identification of the network
management subsystem
contained in entities of this
type. Provides an indication of
what kind of device this is.

deviceModel 150-character
string

Not null The commercial name
associated with this device
type.

Chapter 23. Data dictionary 599

Table 348. deviceFunction table (continued)

Column name Type Constraints Description

deviceFunction 30-character string The function of the device, such
as "Router," "Switch," "Hub," or
"Firewall."

discoverySource
The discoverySource table describes the source of the data discovered for an entity. In the case where
there are multiple sources, for example, SNMP and an EMS, or two different EMSs, the table identifies all
of the data sources for that entity.

In the case where there are multiple data sources for a single entity, there will be multiple rows in the
discoverySource table for that entity. The nativeId and nativeIdString fields are important, as they are
the identifiers used by the EMS to identify a given device. Network Manager might refer to the same entity
in a completely different way. For example, a DNS lookup on a retrieved IP might have provided a DNS
name, and this DNS name would then be used to name the entity in the NCIM topology database.

The following table describes the discoverySource table.

Table 349. discoverySource table

Column name Type Constraints Description

entityId Integer not null The identifier of an entity from
the entityData table.

managedBy 255-character
string

The name of an element
manager. This is usually either
Network Manager or the name
of an EMS.

source 14-character string Source of the data. This field
takes one of the following
values:

• Unknown
• Other
• TopologyEditor
• PresetLayer
• Agent
• Collector

600 IBM Tivoli Network Manager IP Edition: Reference

Table 349. discoverySource table (continued)

Column name Type Constraints Description

discoveryProtocol 13-character string Protocol of the data provided
by this discovery source. This
field takes one of the following
values:

• Unknown
• Other
• Manual
• FlatFile
• SNMP
• Telnet
• XML-RPC
• VSphere
• OtherJavaAPI
• TL1
• CORBA

nativeId Integer Identifier used by the discovery
source to identify a given
device.

nativeIdString 255-character
string

String used by the discovery
source to identify a given
device.

managedElementId 255-characters String optionally used to hold a
non-EMS specific ID for a
device. Useful where multiple
systems need to manage the
device but might use different
EMSs to do so.

domainMembers
The domainMembers table stores information on membership of entities within domains. This table
belongs to the category domains.

The following table describes the domainMembers table.

Table 350. domainMembers table

Column name Type Constraints Description

entityId 32-bit integer Foreign key
Not null
Automatically
incremented

Foreign key to the
entityNameCache table.

domainMgrId 32-bit integer Foreign key

Not null

The identifier of the domain
from the domainMgr table.

Chapter 23. Data dictionary 601

Related concepts
entityData table and entity view
Information on entities is held in the entityData table in Network Manager versions 3.9 and later. This
table replaces the entity table used in earlier versions. To ensure backward compatibility an entity view
has been created to hold the same data as the entity table from earlier versions.
Related reference
ncimCache.domainMembers table
The ncimCache.domainMembers table shows the domain to which an entity belongs.

domainMgr
The domainMgr table stores data on network domains. This table belongs to the category domains.

The following table describes the domainMgr table.

Table 351. domainMgr table

Column name Type Constraints Description

domainMgrId 32-bit integer Primary key

Not null

Automatically
incremented

Unique

This is an automatically-
incremented field that must be
unique for each domain.

domainName 255-character
string

Not null The name of the domain.

creationTime Timestamp Not null The timestamp indicating when
the domain was created.

lastUpdated Timestamp Not null The timestamp indicating when
this domain was last updated.

managerName 100-character
string

Foreign key

Not null

The application that manages
this domain. This is usually
Network Manager. This is one
of the network manager
applications specified in the
manager table.

description 255-character
string

The textual description of the
domain.

webtopDataSource 32-character string The name of theTivoli Netcool/
OMNIbus Web GUI data source
that Topoviz must connect to.
The default value is NCOMS. If
you change this value, then you
must also edit the
ModelNcimDb.DOMAIN.cfg
and insert the new value there.

domainHost 32-character string Used by Topoviz to
communicate with the Network
Manager server. This value is
automatically set by the
ncp_model process.

602 IBM Tivoli Network Manager IP Edition: Reference

Table 351. domainMgr table (continued)

Column name Type Constraints Description

domainPort 32-character string Used by Topoviz to
communicate with the Network
Manager server. This value is
automatically set by the
ncp_model process.

batchUpdatePercent 8-bit integer This field is updated by the
domain manager during batch
updates.

Related concepts
entityData table and entity view
Information on entities is held in the entityData table in Network Manager versions 3.9 and later. This
table replaces the entity table used in earlier versions. To ensure backward compatibility an entity view
has been created to hold the same data as the entity table from earlier versions.

entityActions
The entityActions table records all manual node additions and all node removals, including removal of
nodes that were discovered rather than manually added and the swapping of nodes into and out of a
domain.

The following table describes the entityActions table.

Table 352. entityActions table

Column name Type Constraints Description

entityActionsId 32-bit integer Primary key

Automatically
incremented

Not null

Unique auto generated primary
key column.

entityId 32-bit integer Foreign key

Not null

Foreign key to the entityData
table.

domainMgrId 32-bit integer Foreign key

Not null

Foreign key to the domainMgr.
Indicates domain that an entity
was added to or deleted from.

action 6-character string Enumeration of
values “add” and
“delete"

Not null

Indicates an action that added
or deleted an entity.

changeTime Timestamp Not null Indicates when this
entityAction was last updated.

username 64-character string Not null Indicates the user that
performed the entity action.

location 512-character
string

Indicates location from which
user is logged in.

description 512-character
string

Textual description of reason
for the entity action.

Chapter 23. Data dictionary 603

Table 352. entityActions table (continued)

Column name Type Constraints Description

manual Boolean Not null Indicates if the entity was
manually added.

Related reference
ncimCache.entityActions table
The ncimCache.entityActions table lists all devices added using the manual topology API.

entityClass
The entityClass table stores information on all device classes and relationships between device classes.
The table belongs to the category entities.

The following table describes the entityClass table.

Table 353. entityClass table

Column name Type Constraints Description

classId 32-bit integer Primary key

Not null

Automatically
incremented

Unique

A unique field for each class.

className 32-character string Not null The name of a class of devices.

superClassId 32-bit integer Foreign key The classID value associated
with the class that contains the
device class specified by the
className value.

For example, the classId for the
NetworkDevice class is 5.
Because Alcatel and Cisco
device classes are contained in
the NetworkDevice device
class, they have a superClassId
of 5.

classType 32-character string Not null The type of device or type of
class.

managerName 64-character string Foreign key

Not null

The application that manages
this device class. This is usually
Network Manager.

Related reference
physicalChassis

604 IBM Tivoli Network Manager IP Edition: Reference

The physicalChassis table stores the attributes of chassis entities.

entityData
The entityData table stores data on entities. This table belongs to the category entities.

The following table describes the entityData table.

Table 354. entityData table

Column name Type Constraints Description

entityId 32-bit integer Foreign key
Not null
Automatically
incremented
Unique

Foreign key to the
entityNameCache table. Must
be unique for each entity across
all domains.

mainNodeEntityId 32-bit integer Foreign key This field is relevant only for
entities that are wholly
contained within a single main
node device. The field therefore
has a non-null value only for
entities that are related to a
single main node device, such
as the main node itself,
physical and logical device
components, or logical
interfaces (for example IP end
points or local VLAN entities).

entityName 255-character
string

Not null

Unique within
domain

Name of the entity. This field
must be unique for all entities
within a given domain.

entityType 32-bit integer Foreign key

Not null

A lookup value that indicates
the type of entity. To look up
the entity type, use the
entityType table.

createTime Timestamp Not null Indicates when the entity was
created.

changeTime Timestamp Not null Indicates when this entity was
last updated.

displayLabel 255-character
string

Not null Human-readable name to be
displayed adjacent to this entity
in a topology map and in the
Network Views tabular layout.

description 512-character
string

Textual description of the
entity.

alias 255-character
string

Field that can be used to store
a user-defined name for the
entity.

Chapter 23. Data dictionary 605

Table 354. entityData table (continued)

Column name Type Constraints Description

manual Boolean Not null

Takes one of the
following values:

• 0: entity was not
manually added

• 1: entity was
manually added

Default = 0

Indicates whether this entity
was discovered as part of the
discovery process or was
manually added.

cdmAdminState Enumerated value

16-bit integer

Takes one of the
following values:

• 0 - Unknown:
administrative
state of this
element is not
known.

• 1 - Other:
administrative
state of this
element is
known, but does
not match one of
the defined
enumerated
values.

• 2 - Enabled: this
entity has been
enabled for use.

• 3 - Disabled: this
entity has been
disabled and
cannot be used.

Default value = 0

An enumeration that
corresponds to the AdminState
attribute in the
cdmModelObject view. The
values of this are stored in the
enumerations table under the
cdmAdminState group.

Related concepts
entityData table and entity view
Information on entities is held in the entityData table in Network Manager versions 3.9 and later. This
table replaces the entity table used in earlier versions. To ensure backward compatibility an entity view
has been created to hold the same data as the entity table from earlier versions.
Related reference
ncimCache.entityData table

606 IBM Tivoli Network Manager IP Edition: Reference

The ncimCache.entityData table holds different kinds of data about entities.

entityDetails
The entityDetails table allows the addition of arbitrary data about an entity in the form of key-value pairs.
This enables you to extend the database to provide additional data on entities. The entityDetails table
belongs to the category entities.

To add arbitrary data about an entity to the entityDetails table, you must first customize your discovery to
retrieve data from an external source, using the IP address of the device as a lookup.

Restriction: NCIM cannot check the constraints of any value that is stored with the key in the
entityDetails table.

On completion of a new discovery, MODEL automatically populates the NCIM topology database. You can
modify the way in which this population occurs in order to ensure that the customer data held in the
ExtraInfo section of the interface records within the MODEL database is used to populate key-value pair
records within the entityDetails table.

The following table describes the entityDetails table.

Table 355. entityDetails table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier from the
entityData table of an entity.
The current row of this table
provides key-value pair data for
this entity.

keyName 255-character
string

Not null Name of the key part of the
extra data. For example, this
might be the name of the
customer or location
associated with this device.

keyValue 1000-character
string

Value of the key part of the
extra data. For example, this
might be a customer type.

entityNameCache
The entityNameCache table is a lookup table that provides the entity name for every entity in the
entityData table. This table belongs to the category entities.

The following table describes the entityNameCache table.

Table 356. entityNameCache table

Column name Type Constraints Description

entityId 32-bit integer Primary key

Not null

Automatically-incremented
field that provides a unique
value for each entity across all
domains.

entityName 255-character
string

Not null The name of the entity.

domainMgrId 32-bit integer Not null The identifier from the
domainMgr table of the domain
that contains this entity.

Chapter 23. Data dictionary 607

entityType
The entityType table provides a comprehensive list of every entity type in NCIM. It belongs to the category
entities.

If you want to define a new entity type, you must update the entityType table to include the new entity
type.

The following table describes the entityType table:

Table 357. entityType table

Column name Type Constraints Description

entityType 32-bit integer Primary key

Not null

Unique field for each entity
type.

typeName 32-character string Not null The name of an entity type.

dbTable 32-character string Not null The name of the NCIM
database table that contains
attribute data for this entity
type.

metaClass Enumerated value Not null

Takes one of the
following values:

• Element
• Collection
• Protocol

EndPoint
• Topology
• Service
• NetworkPipe
• Attribute

The category of device to which
this entity type belongs.

managerName 64-character string Not null The application that manages
this entity type. This is usually
PrecisionIP (Network Manager).

The following table summarizes the information in the entityType table. You can use this table to look up
the value for a particular type of entity, for example, for defining a connectivity type for use in the Hop
View and Network Views.

Related concepts
Entities
A Network Manager discovery returns many different types of entity. If you understand the entities that
you might encounter, you can more easily restrict your queries to return only required information.
Related reference
config.serviceTypes table

608 IBM Tivoli Network Manager IP Edition: Reference

The config.serviceTypes table contains configuration information for the SAE plug-in.

enumerations
The enumerations table provides a means of looking up a human-readable string value by providing a
numerical value. Each enumeration is defined as a key-value pair. The enumerations table belongs to
the category mapping.

Description
The following table describes the enumerations table.

Table 358. enumerations table

Column Name Type Constraints Description

enumGroup 100-character
string

Primary key with
enumKey

Not null

Groups together all the key-
name pairs that form part of a
single enumeration.

enumKey 32-bit integer Primary key with
enumGroup

Not null

Integer value used as the key
by the enumeration.

enumValue 100-character
string

Not null Human-readable string value
that corresponds to the key.

enumDescription 100-character
string

Brief description of the
enumeration.

Summary
The following table summarizes the information in the enumerations table.

Table 359. Summary of the information in the enumerations table

Enumeration group Description Example

accessProtocol Address protocol. 3 = Ipv6

altitudeUnits Positional data unit. 5 = Miles

ASN BGP ASN assignment lookups. 8406 = Cablecom

cardIfConnector
TypeEnabled

Interface connector type. 3 = RJ45

cdmAdminState CDM style administrative state of
the entity.

2 = Enabled

cdmCardConfiguration CDM style card configuration state. 2 = Configured

cdmDataLinkLayerDiscovery CDM style data link layer protocol. 4 = LLDP

cdmDuplex CDM style duplex state. 2 = Auto

cdmEncapsulation CDM-style encapsulation setting. 17 = frame-relay

cdmIpAddressType CDM-style IP address type. 7 = Multicast

cdmMediaType CDM-style media type. 3 = gbic

cdmPhysType CDM-style physical entity type. 8 = sensor

Chapter 23. Data dictionary 609

Table 359. Summary of the information in the enumerations table (continued)

Enumeration group Description Example

cdmSlotState CDM-style slot state. 3 = connected

cdmSwitchPortMode CDM-style switch port mode. 3 = Trunk

cefcFRUPowerAdmin
Status

Administrative status for a PSU 1 = on

cefcFRUPowerOper
Status

Operational status of a PSU 8 = failed

cefcModuleAdmin
Status

Administrative status of a card 1 = enabled

cefcModuleOper
Status

Operational status of a card 2 = ok

cefcModuleReset
Reason

Reason for card reset 2 = powerUp

cefcPower
RedundancyMode

Redundancy mode of PSUs 2 = redundant

cpwOperStatus Operational status of a virtual
circuit.

1 = up , Ready to pass packets

cpwVcType Virtual circuit type. 9 = atmVccCell

discoveryProtocol Method used for network discovery. 5 = Telnet

discoverySource Source of network discovery data. 5 = Collector

dot3StatsDuplexStatus Duplex type. 3 = FullDuplex

duplexToLegacyNcim Legacy duplex method used with
NCIM.

1 = fullDuplex

entPhysicalClass Entity MIB type of an entity 10 = port

entPhysicalIsFRU Indication of whether a component
is field replaceable

1 = true

entSensorScale Scale of a sensor 11 = mega

entSensorStatus Status of a sensor 1 = OK

entSensorThreshold
Evaluation

Indication of whether to evaluate
sensor threshold-crossing

1 = true

entSensorThreshold
NotificationEnable

Indication of whether threshold-
crossing should be notified

1 = true

entSensor
ThresholdRelation

Sensor relationship type to
evaluate

1 = lessThan

entSensor
ThresholdSeverity

Severity of a sensor threshold-
crossing

20 = major

entSensorType Type of sensor 3 = voltsAC

ifAdminStatus Administrative status of an
interface

1 = up

ifOperStatus Operational status of an interface 1 = up

610 IBM Tivoli Network Manager IP Edition: Reference

Table 359. Summary of the information in the enumerations table (continued)

Enumeration group Description Example

ifOperStatusToOperationalStatus Mapping used to translate SNMP
ifOperStatus values into CDM
OperationalStatus style values

1 = started

ifType Type of interface 24 = softwareLoopback

ipForwarding Is IP forwarding on? 2 = not-forwarding

jnxVpnPwStatus Status of the JNX VPN. 2 = up

mscType MSC type. 3 = MSCS

ncimDuplexToCdm Duplex method used from NCIM to
CDM

2 = fullDuplex

OperationalStatusEnum Operational status 2 = started

ospfIfState OSPF interface state. 2 = loopback

ospfIfType OSPF interface type 3 = pointToPoint

protocolEndPoint Protocal endpoint value 3 = layer3

ranTechnologyType Radio access network technology
type

4 = UMTS

sysServices Open Systems Interconnection
(OSI) layers supported by a device

5 = physical(1) network(3)

terminationPointType Type of termination type. 2 = ctp , connection termination
point

transceiverType Type of transceiver. 3 = Dedicated

TruthValue Boolean values. 2 = 0 , false

TruthValueString Textual equivalent of Boolean
values.

2 = false

hostedService
A hosted service is a service or application running on a specific main node device. The hostedService
table maps a main node device, the hosting entity, to the service or applications that are running on that
device, the hosted entities. The hostedService table belongs to the category entities.

The following table describes the hostedService table.

Table 360. hostedService table

Column name Type Constraints Description

hostingEntityId 32-bit integer Foreign key

Not null

The identifier of a main node
device from the entityData
table. This main node device
hosts the service or application
identified by hostedEntityId.

Chapter 23. Data dictionary 611

Table 360. hostedService table (continued)

Column name Type Constraints Description

hostedEntityId 32-bit integer Foreign key

Not null

The identifier of a service or
application from the
entityData table. This
service or application is running
on the main node device
identified by hostingEntityId.

Related reference
ncimCache.hostedService table
The ncimCache.hostedService table maps a main node device, the hosting entity, to the service or
applications that are running on that device, the hosted entities. The hostedService table belongs to the
category entities.
bgpService
The bgpService table represents a BGP service and includes relevant protocol data. This BGP service runs
on a device, as modeled in the hostedService table.
ospfService
The ospfService table represents an OSPF service and includes relevant protocol data. This OSPF service
runs on a device, as modeled in the hostedService table.

manager
The manager table lists the applications that manage the network domains stored in NCIM, for example
Network Manager. The manager table belongs to the category domains.

The following table describes the manager table.

Table 361. manager table

Column name Type Constraints Description

managerName 64-character string Primary key

Not null

The textual identifier of one of
the network management
applications that manage the
network domains stored in
NCIM.

description 255-character
string

Not null Full name and descriptive
information of the network
management application.

version 32-character string Not null The current version of the
network management
application.

contact 64-character string Contact person for the network
management application.

mappings
The mappings table provides a means of looking up an alternative textual name. It is used to map non-
human-readable data to human-readable data. The mappings table belongs to the category mapping.

Description
The following table describes the mappings table.

612 IBM Tivoli Network Manager IP Edition: Reference

Table 362. mappings table

Column name Type Constraints Description

mappingGroup 100-character
string

Primary key with
mappingkey

Not null

Groups together all the key-
value pairs that form part of a
single mapping type.

mappingkey 100-character
string

Primary key with
mappingGroup

Not null

Non-human readable string
value used as the key by the
enumeration.

mappingValue 100-character
string

Not null Human-readable string value
that corresponds to the key.

mappingDescription 1000-character
string

Description of the item
specified by the key-value pair.

Summary
The following table summarizes the information held in the mappings table.

Table 363. Summary of information held in the mappings table

Mapping group Description Example

entPhysicalVendorType Physical component lookups 1.3.6.1.4.1.9.12.3.1.9.20 .33
= cevCat8500m4pDs3

IANAEnterprise Internet Assigned Numbers
Authority (IANA) vendor object
Identifier (OID) to vendor name

1.3.6.1.4.1.9=
Cisco Systems, Inc

MACVendors Holds partial MAC addresses that
represent the Organizationally
Unique Identifier (OUI)

00:02:9C = 3COM

sysObjectId Lookups for sysObjectId to
device model

1.3.6.1.4.1.318.1.3.2.6 =
APC SmartUPS 2000

Related reference
physicalChassis
The physicalChassis table stores the attributes of chassis entities.

networkPipe
The networkPipe table represents managed connections in the network. This table belongs to the
category connectivity.

The following table describes the networkPipe table.

Table 364. networkPipe table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a network pipe
entity from the entityData
table.

Chapter 23. Data dictionary 613

Table 364. networkPipe table (continued)

Column name Type Constraints Description

connectionId 32-bit integer Foreign key

Not null

The identifier of a connection
from the connects table.

aggregationType Enumerated value Not null

Takes one of the
following values:

1: unknown
2: no lower level
3: in parallel
4: in sequence

Indicates how the network pipe
is made up of other network
pipes. You can model
redundancy by combining
lower-level network pipes in
parallel.

Related reference
ncimCache.networkPipe table
The ncimCache.networkPipe table represents managed connections.
entityDetails
The entityDetails table allows the addition of arbitrary data about an entity in the form of key-value pairs.
This enables you to extend the database to provide additional data on entities. The entityDetails table
belongs to the category entities.
pipeComposition
The pipeComposition table allows a higher-level connection to be defined in terms of its lower-level
connections. This table belongs to the category connectivity.
Hierarchy modeling with the networkPipe and pipeComposition tables
The networkPipe table and pipeComposition table can be used together to represent connectivity at
different layers, for example the modeling of layer 2 and layer 3 connections.

notes
The notes table provides a means of storing textual data related to an entity. This table belongs to the
category entities.

The following table describes the notes table.

Table 365. notes table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of an entity from
the entityData table.

createTime Timestamp Not null The date and time of entity
creation.

note 1000-character
string

A textual note associated with
the entity.

pipeComposition
The pipeComposition table allows a higher-level connection to be defined in terms of its lower-level
connections. This table belongs to the category connectivity.

The pipeComposition table can be used together with the networkPipe table to represent a hierarchy of
connections.

614 IBM Tivoli Network Manager IP Edition: Reference

The following table describes the pipeComposition table.

Table 366. pipeComposition table

Column name Type Constraints Description

groupComponent 32-bit integer Foreign key

Primary key with
partComponent

Not null

A foreign key from the row in
the entityData table that
represents the network pipe
instance.

partComponent 32-bit integer Foreign key

Primary key with
groupComponent

Not null

A foreign key from the row in
the entityData table that
represents the network pipe
that is part of the composition.

aggregationSequence 32-bit integer The sequence number of the
composition. For unordered
paths this value can be null.

Related reference
ncimCache.pipeComposition table
The ncimCache.pipeComposition table can be used with the networkPipe table to represent a hierarchy of
connections.
networkPipe
The networkPipe table represents managed connections in the network. This table belongs to the
category connectivity.
Hierarchy modeling with the networkPipe and pipeComposition tables
The networkPipe table and pipeComposition table can be used together to represent connectivity at
different layers, for example the modeling of layer 2 and layer 3 connections.

probeTooltip
The probeTooltip view joins data from the entityData, probeEndPoint, and probe tables.

The information stored in this view is accessible from the tooltip by hovering over a link between two SLA
Probe entities on a network map.

The following table describes the probeTooltip view.

Table 367. probeTooltip view

Column name Description Containing table

entityid The entity ID of the source or
destination probe protocol end point.

entityData

role The role of this particular endpoint in
the related probe configuration.
Takes one of the following values:

• other
• source
• target

probeEndPoint

probeEntityId The entity ID of the probe entity. probeEndPoint

Chapter 23. Data dictionary 615

Table 367. probeTooltip view (continued)

Column name Description Containing table

probeid Unique probe identifier. Identifies the
probe uniquely at a device level.

probe

nativetypeid An integer representation of the
probe type. The values depend on
the data definition in the probe.

probe

nativetype A human-readable textual
representation of the
nativeTypeId.

probe

adminstatus The administrative status of the
probe. Takes one of the following
values:

• active
• inactive
• other

probe

operstatus The operational status of the probe.
Takes one of the following values:

• active
• inactive
• other

probe

frequency Duration between probe operations,
in seconds.

probe

timeout The maximum time to wait for a
proper operation to complete, in ms.

probe

name Name of the probe. probe

owner Owner/creator of the probe instance. probe

target Destination address. Can be an IP
address.

probe

source Source address. Can be an IP
address.

probe

sourceinterface Source interface index. probe

vrfname VRF associated with this probe. probe

differentiatedservice Type of service octet value (if set in
IP header).

probe

probecount Number of packets to transmit. probe

targetport Port number on the target. probe

616 IBM Tivoli Network Manager IP Edition: Reference

Table 367. probeTooltip view (continued)

Column name Description Containing table

sourceport The port number on the source. probe

sourcevoiceport Specifies the voice port on the
gateway.

probe

packetinterval The delay between packets, in ms. probe

codectype Codec type used by Jitter probes.
Takes one of the following values:

• unknown
• g711Alaw
• g711Ulaw
• g729A

probe

icpifadvantage Used in Jitter probe ICPIF
calculations.

probe

httpversion HTTP server version. Used with HTTP
probes.

probe

callduration Duration for RTP/Video probes. probe

protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.

The following table describes the protocolEndPoint table.

Table 368. protocolEndPoint table

Column name Type Constraints Description

endPointEntityId 32-bit integer Foreign key

Not null

The identifier of an entity from
the entityData table that
specifies protocol-specific
addressing information for this
endpoint.

implementingEntityId 32-bit integer Foreign key

Not null

The identifier of an entity from
the entityData table that
implements this protocol end
point. This is usually a device
interface.

Related reference
ncimCache.protocolEndpoint table
The ncimCache.protocolEndpoint table allows a higher-level connection to be defined in terms of lower-
level connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.
atmEndPoint

Chapter 23. Data dictionary 617

The atmEndPoint table represents a logical ATM end point and includes relevant ATM data. This endpoint
is implemented by a physical interface.
bgpEndPoint
The bgpEndPoint table represents a logical BGP end point and includes relevant BGP data. This endpoint
is implemented by a physical interface, as modeled in the protocolEndPoint table
igmpEndPoint
The igmpEndPoint table holds information on the Internet Group Membership Protocol (IGMP) End Points.
ipMRouteEndPoint
The ipMRouteEndPoint table holds information on the IP Multicast Routing Protocol End Points.
mplsTETunnelEndPoint
The mplsTETunnelEndPoint table represents an MPLS TE protocol end point and is implemented on the
interface associated with the configured tunnel. The end point references the associated TE tunnels
unique instance id.
ospfEndPoint
The ospfEndPoint table represents an OSPF end point and includes relevant data. This endpoint is
implemented by a physical interface, as modeled in the protocolEndPoint table.
pimEndpoint
The pimEndPoint table represents the Protocol Independent Multicast (PIM) end points discovered in the
network and their associated attributes.
portEndPoint
The portEndPoint holds data about TCP/UDP endpoints found by the NMAPScan agent.
vlanTrunkEndPoint
The vlanTrunkEndPoint table represents a VLAN trunk end point and includes relevant data. This endpoint
is implemented by a physical interface, as modeled in the protocolEndPoint table.
vpwsEndPoint
The vpwsEndPoint table represents a VPWS end point and includes relevant data. This endpoint is
implemented by a physical interface, as modeled in the protocolEndPoint table.
frameRelayEndPoint
The frameRelayEndPoint table represents a logical Frame Relay end point and includes relevant data. This
endpoint is implemented by a physical interface, as modeled in the protocolEndPoint table.
ipEndPoint
The ipEndPoint table represents an IP end point and includes relevant data. The endpoint is implemented
by a physical interface, as modeled in the protocolEndPoint table.
Protocol endpoint tables
The protocolEndPoint and ipEndPoint tables can be used in SQL queries to identify the IP addresses that
are implemented by the device interfaces.

topologyLinks
The topologyLinks table allows you to identify which connections belong to a specific type of topology.
This table belongs to the category connectivity.

Examples of distinct network topologies modeled in NCIM include:

• Layer 2 topology
• Layer 3 router links: This refers to connections between routers, and therefore, between subnets.
• Pseudowire topology
• OSPF topology

The following table describes the topologyLinks table.

618 IBM Tivoli Network Manager IP Edition: Reference

Table 369. topologyLinks table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a topology type
entity from the entityData
table.

connectionID 32-bit integer Foreign key

Not null

The identifier of a connection
from the connects table.

manual Boolean Not null

Takes one of the
following values:

• 0: entity was not
manually added

• 1: entity was
manually added

Default = 0

Indicates whether this entity
was discovered as part of the
discovery process or was
manually added.

Core views
The core views group together useful entity data that does not appear in a single table.

discoveryOverview
The discoveryOverview view joins data from the entityData collates timestamps from various
sources.

The information stored in this view is accessible from the Show Discovery Overview right-click tool in the
topology GUIs.

For more information on the Show Discovery Overview right-click tool, see the IBM Tivoli Network
Manager IP Edition Administration Guide.

The following table describes the discoveryOverview view.

Table 370. discoveryOverview view

Column name Description Containing table

className Class of devices to which this
device belongs.

entityClass

currentTime The current time is given as a
visual reference aid only.

NA

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

entityData

entityName IP address, DNS name, or sysName
for this device. For example, an IP
address such as 172.20.1.7, or a
DNS name, such as company-
abc.net.

entityData

Chapter 23. Data dictionary 619

Table 370. discoveryOverview view (continued)

Column name Description Containing table

interfaceFiltered A flag to show whether the device
has had interface filtering applied
to it or not. If you do not see all the
information for the device that you
expect, the information might have
been filtered out. You can do an
SNMP walk of the device using the
MIB Browser with the option to
ignore filtering.

discoveryAttributes

ipAddress IP address through which this
entity was discovered and through
which it is monitored.

physicalChassis

firstDiscoveryComplete Date and time when the entity was
first uploaded to the NCIM
topology database.

entityData

lastDiscovered Date and time when the Details
agent last accessed the device.

physicalChassis

lastModified Date and time when the last
detected change on the device was
reflected in the NCIM topology
database. For example, if an
interface name on the device
changes, this is the time at which
that change was uploaded to
NCIM.

entityData

rebootTime Date and time when the device
was last rebooted. This is
calculated based on the
sysUpTime MIB value retrieved
from the device, so Last Reboot is
only available if the sysUpTime was
retrieved. For example, for devices
with no SNMP access, the value of
Last Reboot is NULL.

Calculated based on data in the
chassis table

entity
The entity view joins data from the entityData and domainMembers tables and is equivalent to the
entity table that existed in Network Manager versions 3.8 and earlier.The entity view stores data on
entities and includes the domainMgrId, which the domain in which the entity is located.

The following table describes the entity view.

620 IBM Tivoli Network Manager IP Edition: Reference

Table 371. entity view

Column name Description Containing table

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

entityData

mainNodeEntityId This field is relevant only for
entities that are wholly contained
within a single main node device.
The field therefore has a non-null
value only for entities that are
related to a single main node
device, such as the main node
itself, physical and logical device
components, or logical interfaces
(for example IP end points or local
VLAN entities).

entityData

entityName Name of the entity. This field must
be unique for all entities within a
given domain.

entityData

domainMgrId The identifier of the domain from
the domainMgr table.

domainMgr

entityType A lookup value that indicates the
type of entity. To look up the entity
type, use the entityType table.

entityData

createTime Indicates when the entity was
created.

entityData

changeTime Indicates when this entity was last
updated.

entityData

displayLabel Human-readable name to be
displayed adjacent to this entity in
a topology map and in the
Network Views tabular layout.

entityData

description Textual description of the entity. entityData

alias Field that can be used to store a
user-defined name for the entity.

entityData

manual Indicates if the entity was
manually added.

entityData

Related concepts
entityData table and entity view

Chapter 23. Data dictionary 621

Information on entities is held in the entityData table in Network Manager versions 3.9 and later. This
table replaces the entity table used in earlier versions. To ensure backward compatibility an entity view
has been created to hold the same data as the entity table from earlier versions.
Related reference
entityType
The entityType table provides a comprehensive list of every entity type in NCIM. It belongs to the category
entities.

interfaceDomain
The interfaceDomain view adds the domain name to the interface table. This view is used to get the
domain details of a particular interface.

The following table describes the interfaceDomain view.

Table 372. interfaceDomain view

Column name Description Containing table

ipAddress The IP address through which this
entity was discovered and will be
monitored.

Note: For non-IP entities, such as
layer 1 optical devices, this field is
null.

chassis

In the chassis table, this field is
called accessIpAddress.

ifName The name assigned to the
interface.

interface

ifDescr A description of the interface. interface

entityName Name of the entity. This field must
be unique for all entities within a
given domain.

entityData

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

entityData

domainMgrId The identifier of the domain from
the domainMgr table.

domainMgr

domainName The name of the domain in which
the node was discovered.

domainMgr

interfaces
The interfaces view provides a consolidated set of data on all device interfaces.

The following table describes the interfaces view. The type, constraints, and description are
automatically inherited, where appropriate, from the tables to which the fields belong.

622 IBM Tivoli Network Manager IP Edition: Reference

Table 373. interfaces view

Column name Description Containing table

displayLabel Human-readable name to be
displayed adjacent to this entity in
a topology map and in the
Network Views tabular layout.

entityData

duplex Actual duplex of the interface.
Takes one of the following values:

• HalfDuplex
• FullDuplex
• Auto
• Unknown
• Other

interface

entPhysicalParentRelPos An indication of the relative
position of this child component
among all its sibling components.
Sibling components are defined as
entPhysicalEntries which share the
same instance values of each of
the entPhysicalContainedIn and
entPhysicalClass objects.

chassis

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

entityData

entityName Name of the entity. This field must
be unique for all entities within a
given domain.

entityData

ifAdminStatus The required state of the interface.
Takes one of the following values:

• Up
• Down
• Testing

interface

ifAlias The alias for the interface. interface

ifDescr A description of the interface. interface

ifHighSpeed An estimate of the current
bandwidth of the interface in units
of 1,000,000 bits per second.

interface

ifIndex The index of the interface. interface

ifMTU The maximum transmission unit
for this interface.

interface

Chapter 23. Data dictionary 623

Table 373. interfaces view (continued)

Column name Description Containing table

ifName The name assigned to the
interface.

interface

ifOperStatus The current operational state of
the interface. Takes one of the
following values:

• Up
• Down
• Testing
• unknown
• dormant
• notPresent
• lowerLayerDown

interface

ifPhysAddress The physical address of the
interface.

interface

ifPromiscuousMode Indicates whether this interface
only accepts packets or frames
addressed to this station. Takes
one of the following values:

• True
• False

interface

ifSpeed An estimate of the current
bandwidth of the interface in bits
per second.

interface

ifType The interface type. interface

ifTypeString The textual string for the interface
type.

interface

ipAddress The IP address through which this
entity was discovered and will be
monitored.

Note: For non-IP entities, such as
layer 1 optical devices, this field is
null.

chassis

In the chassis table, this field is
called accessIpAddress.

isTrunkPort Indicates whether this physical
interface is a VLAN trunk port.

interface

624 IBM Tivoli Network Manager IP Edition: Reference

Table 373. interfaces view (continued)

Column name Description Containing table

mainNodeEntityId This field is relevant only for
entities that are wholly contained
within a single main node device.
The field therefore has a non-null
value only for entities that are
related to a single main node
device, such as the main node
itself, physical and logical device
components, or logical interfaces
(for example IP end points or local
VLAN entities).

entityData

portNumber The port number for this interface
on the chassis device. The method
of determining the port number is
dependent on the make and model
of the device that is discovered.
For this reason, use this value with
caution.

interface

domainMgrId The ID for the domain to which this
interface belongs.

domainMgr

mainNodeDetails
The mainNodeDetails view provides a consolidated set of data on all network devices.

The following table describes the mainNodeDetails view. The type, constraints, and description are
automatically inherited, where appropriate, from the tables to which the fields belong.

Table 374. mainNodeDetails view

Column name Description Containing table

altitude Vertical height above World
Geodetic System WGS84 datum
surface (EGM96) at the particular
geographical location.

geographicLocation

altitudeUnits Units to use for the altitude.

• 0 – Meters
• 1 – Kilometers
• 2 – Centimeters
• 3 - Feet
• 4 – Yards
• 5 - Miles
• 6 - Inches

geographicLocation

className The name of a class of devices. The
master className field is in the
entityClass table.

chassis

Chapter 23. Data dictionary 625

Table 374. mainNodeDetails view (continued)

Column name Description Containing table

classType The type of device or type of class. entityClass

description Textual description of the entity. entityData

displayLabel Human-readable name to be
displayed adjacent to this entity in
a topology map and in the
Network Views tabular layout.

entityData

domainMgrId The ID for the domain to which this
device belongs.

domainMgr

domainName The name of the domain to which
this device belongs.

domainMgr

entPhysicalDescr A textual description of physical
entity. This object must contain a
string which identifies the
manufacturer's name for the
physical entity. The value must be
set to a distinct value for each
version or model of the physical
entity.

chassis

entPhysicalVendorType An indication of the vendor-
specific hardware type of the
physical entity.

chassis

entityId Unique ID for each entity across all
domains.

entityData

entityName Name of the entity. This field must
be unique for all entities within a
given domain.

entityData

ipAddress The IP address through which this
entity was discovered and will be
monitored.

Note: For non-IP entities, such as
layer 1 optical devices, this field is
null.

chassis

In the chassis table, this field is
called accessIpAddress.

626 IBM Tivoli Network Manager IP Edition: Reference

Table 374. mainNodeDetails view (continued)

Column name Description Containing table

ipForwarding Indication of whether this entity is
acting as an IP gateway in respect
to the forwarding of datagrams
received by this entity but not
addressed to this entity. IP
gateways forward datagrams,
whereas IP hosts do not, unless
the source is routed through the
host. Takes one of the following
values:

• forwarding
• not-forwarding

chassis

latitude Measurement of latitude for this
entity. This is the angular distance
(north and south) from the equator
on the earth's surface; for
example, 78.838753. The value of
this attribute is determined based
on World Geodetic System WGS84
standard.

geographicLocation

locationDescription Free-format textual description of
location

geographicLocation

locationId The location identifier by which the
location is know to the end-user.

geographicLocation

longitude Measurement of longitude for this
entity. This is the angular distance
(east and west) from the prime
meridian on the earth's surface; for
example, 35.832636. The value of
this attribute is determined based
on World Geodetic System WGS84
standard.

geographicLocation

manual Indicates whether this entity was
discovered as part of the discovery
process or was manually added.

entityData

serialNumber The serial number of the entity. chassis

sysContact The textual identification of the
contact person for this managed
node, and information on how to
contact this person. If no contact
information is known, the value is
the zero-length string.

chassis

Chapter 23. Data dictionary 627

Table 374. mainNodeDetails view (continued)

Column name Description Containing table

sysDescr A textual description of the entity.
This value must include the full
name and version identification of
the system hardware type,
software operating-system, and
networking software.

chassis

sysLocation The physical location of this node,
for example "telephone closet, 3rd
floor." If the location is unknown,
the value is the zero-length string.

chassis

sysName An administratively-assigned name
for this managed node. By
convention, this is the fully-
qualified domain name of the
node. If the name is unknown, the
value is the zero-length string.

chassis

sysObjectId The vendor's authoritative
identification of the network
management subsystem contained
in the entity.

chassis

628 IBM Tivoli Network Manager IP Edition: Reference

Table 374. mainNodeDetails view (continued)

Column name Description Containing table

sysServices A value that indicates the set of
services that this entity potentially
offers. The value is a sum that
initially takes the value zero. Then,
for each layer, L, in the range 1
through 7, that this node performs
transactions for, 2 raised to (L - 1)
is added to the sum. For example,
a node that performs only routing
functions would have a value of 4
(2^(3-1)). A node that is a host
offering application services would
have a value of 72 (2^(4-1) +
2^(7-1)). For the Internet suite of
protocols, values should be
calculated accordingly:

• Layer 1: Physical, for example
repeaters)

• Layer 2: Datalink or subnetwork,
for example bridges

• Layer 3: Internet, for example
supports IP

• Layer 4: End-to-end, for example
supports TCP

• Layer 7: Applications, for
example supports the SMTP

For systems including OSI
protocols, layers 5 and 6 can also
be considered.

chassis

sysUpTime The time (in hundredths of a
second) since the network
management portion of the system
was last reinitialized.

chassis

timeZoneOffset Offset of local time from UTC in
format UTC-HH:MM or UTC
+HH:MM; for example, UTC+10:30,
UTC-6:00.

geographicLocation

interfaceDomain
The interfaceDomain view adds the domain name to the interface table. This view is used to get the
domain details of a particular interface.

The following table describes the interfaceDomain view.

Chapter 23. Data dictionary 629

Table 375. interfaceDomain view

Column name Description Containing table

ipAddress The IP address through which this
entity was discovered and will be
monitored.

Note: For non-IP entities, such as
layer 1 optical devices, this field is
null.

chassis

In the chassis table, this field is
called accessIpAddress.

ifName The name assigned to the
interface.

interface

ifDescr A description of the interface. interface

entityName Name of the entity. This field must
be unique for all entities within a
given domain.

entityData

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

entityData

domainMgrId The identifier of the domain from
the domainMgr table.

domainMgr

domainName The name of the domain in which
the node was discovered.

domainMgr

Entity attribute tables
Entity attribute tables define attributes for the entities discovered by Network Manager, that is, layer 1,
layer 2 and layer 3 entities.

If the entity is a physical element, such as a chassis or module, these are the tables that contain the
attributes which relate specifically to that physical element, such as sysDescr and sysObjectId for a
chassis or serialNumber for a module. If the entity is a device collection, such as a VLAN or VPN, these
tables contain collection-specific parameters, such as vlanId or vpnName.

aggregationGroup
The aggregationGroup table holds information about Link Aggregation Groups (LAGs).

The following table describes the aggregationGroup table.

Table 376. aggregationGroup table

Column name Type Constraints Description

entityId 32-bit integer Not null

Primary Key

Foreign Key

Automatically incremented ID
that provides a unique value for
each aggregated group across
all domains.

lagId 32-bit integer Not null The ID of the LAG.

630 IBM Tivoli Network Manager IP Edition: Reference

Table 376. aggregationGroup table (continued)

Column name Type Constraints Description

lagName 255-character
string

The name of the LAG.

lagMode 8-character string The mode that the LAG is
operating in. Takes one of the
following values:

• lacp
• static
• unknown
• other
• disabled

lacpMode 7-character string The Link Aggregation Control
Protocol mode. Can be active
or passive.

actorSystemPriority Integer The priority associated with the
Actor's System ID.

actorSystemId 255-character
string

The MAC address value used as
a unique identifier for the
server that contains this LAG.

actorAdminKey Integer Administrative value of the key
for the LAG.

actorOperKey Integer Operational value of the key for
the LAG.

partnerSystemPriority Integer The priority associated with the
Partner's System ID.

partnerSystemId 255-character
string

The MAC address value used as
a unique identifier for the
current protocol partner of this
LAG.

partnerAdminKey Integer Administrative value of the key
for the protocol partner.

partnerOperKey Integer Operational value of the key for
the protocol partner.

antennaFunction
The antennaFunction table models the physical antenna which support eUTRAN cells and sectors.

The following table describes the antennaFunction table.

Table 377. antennaFunction table

Column name Type Constraints Description

entityID Integer FOREIGN KEY

NOT NULL

The identifier of an antenna entity from the
entityData table.

Chapter 23. Data dictionary 631

Table 377. antennaFunction table (continued)

Column name Type Constraints Description

antennaSerial
Number

64-character
string

NOT NULL Unique antenna identifier.

emsDistinguished
Name

255-character
string

Distinguished name by which the antenna is known
to its element management system (EMS).

antennaHeight Float Height of the antenna above sea level in metres.

antennaDownTilt Float Antenna vertical tilt in degrees.

antennaBearing Float Bearing in degrees that the antenna is pointing in.

antennaMax
Azimuth

Float Maximum amount of change of azimuth the system
can support. This is the change in degrees clockwise
from bearing.

antennaMin
Azimuth

Float Minimum amount of change of azimuth the system
can support. This is the change in degrees clockwise
from bearing.

antennaHorizontal
Beamwidth

Float Power beamwidth of the antenna pattern in the
horizontal plane. A value of 360 indicates an omni-
directional antenna. A single integral value
corresponding to an angle in degrees between 0 and
360.

antennaVerticall
Beamwidth

Float Power beamwidth of the antenna pattern in the
vertical plane. A value of 360 indicates an omni-
directional antenna. A single integral value
corresponding to an angle in degrees between 0 and
360.

antennaLatitude Float Latitude of Antenna equipment associated with the
sector. This is the angular distance (east and west)
from the prime meridian on the earth's surface; for
example, 35.832636. The value of this attribute is
determined based on World Geodetic System
WGS84 standard.

antennaLongitude Float Longitude of Antenna equipment associated with the
sector. This is the angular distance (north and south)
from the equator on the earth's surface; for example,
78.838753. The value of this attribute is determined
based on World Geodetic System WGS84 standard.

antenna
Manufacturer

64-character
string

Vendor or manufacturer of the antenna.

antennaModel 64-character
string

Vendor-specific antenna type.

atmEndPoint
The atmEndPoint table represents a logical ATM end point and includes relevant ATM data. This endpoint
is implemented by a physical interface.

The following table describes the atmEndPoint table.

632 IBM Tivoli Network Manager IP Edition: Reference

Table 378. atmEndPoint table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a logical ATM
end point from the
entityData table.

VPI 32-bit integer Virtual Path Indicator (VPI) in
the ATM cell header. The VPI is
used together with the Virtual
Channel Identifier (VCI) to
route the ATM cell.

VCI 32-bit integer VCI in the ATM cell header. The
VCI is used together with the
VPI to route the ATM cell.

Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.

bgpAutonomousSystem
The bgpAutonomousSystem table stores data about a BGP autonomous system (AS), including number,
name, and whether the AS is private.

The following table describes the bgpAutonomousSystem table.

Table 379. bgpAutonomousSystem table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a BGP AS from
the entityData table.

ASN 32-bit integer Not null The number of this BGP AS.
This can be a value between 1
and 65535; the range from
64512 to 65535 is reserved for
private use. Every AS has a
unique AS number, which is
assigned to it by an Internet
Registry or a service provider.

ASName 64-character string The name of this BGP AS.

isSingleHomed 8-bit integer Indicates whether this AS is
single-homed. A single-homed
AS reaches networks outside of
its domain through a single exit
point.

Chapter 23. Data dictionary 633

Table 379. bgpAutonomousSystem table (continued)

Column name Type Constraints Description

isTransit 8-bit integer Indicates whether this AS is a
transit AS. A transit AS
advertises routes that it learns
from other ASs. A non-transit
AS will only advertise its own
routes.

isPrivate 8-bit integer Indicates whether this AS is
private.

bgpCluster
The bgpCluster table represents use of route reflectors within a BGP AS. This table is currently not used.

The following table describes the bgpCluster table.

Table 380. bgpCluster table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a BGP AS from
the entityData table.

clusterID 15-character string Not null Identifier for the BGP route
reflector in the cluster when
there is more than one route
reflector in the local AS.

bgpEndPoint
The bgpEndPoint table represents a logical BGP end point and includes relevant BGP data. This endpoint
is implemented by a physical interface, as modeled in the protocolEndPoint table

The following table describes the bgpEndPoint table:

Table 381. bgpEndPoint Table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a BGP AS from
the entityData table.

isEBGP 8-bit integer Indicates whether this is an
instance of the external version
of BGP (eBGP).

isEBGPMultiHop 8-bit integer Normally, two routers running
eBGP must be physically
connected. This field indicates
whether there is a logical
connection between two
routers that are running eBGP.
For example, there might be an
intermediate router or interface
between them.

634 IBM Tivoli Network Manager IP Edition: Reference

Table 381. bgpEndPoint Table (continued)

Column name Type Constraints Description

localIdentifier 15-character string The unique identifier of the BGP
peer router. This is often the
router identifier, for example,
an IP address. Corresponds to
the bgpIdentifier MIB variable
in BGP4-MIB.

peerIdentifier 15-character string The unique identifier of the
peer BGP router. This is often
the router identifier, for
example, an IP address.
Corresponds to the
bgpIdentifier MIB variable in
BGP4-MIB.

peerState 20-character string The BGP state of the
connection, as stored in the
bgpPeerState MIB variable in
BGP4-MIB.

adminStatus 5-character string Not null The required state of the BGP
connection.

localAddress 15-character string The local IP address of the BGP
connection for this router.
Corresponds to the
bgpPeerLocalAddr MIB variable
in BGP4-MIB.

localPort 32-bit integer The local port number for the
TCP connection of the BGP
connection of the router.
Corresponds to the
bgpPeerLocalPort MIB variable
in BGP4-MIB.

remoteAddress 15-character string The remote IP address of the
BGP connection for this router.
Corresponds to the
bgpPeerRemoteAddress MIB
variable in BGP4-MIB.

remotePort 32-bit integer Remote port number for the
TCP connection the BGP
connection of this router.
Corresponds to the
bgpPeerRemotePort MIB
variable in BGP4-MIB.

Chapter 23. Data dictionary 635

Table 381. bgpEndPoint Table (continued)

Column name Type Constraints Description

remoteAS 32-bit integer Remote AS number of the BGP
peer connected to this router.
The AS number can be a value
between 1 and 65535; the
range 64512 to 65535 is
reserved for private use. Every
AS has a unique AS number,
which is assigned to it by an
Internet Registry or a service
provider. Corresponds to the
bgpPeerRemoteAS MIB
variable in BGP4-MIB.

connectRetryInterval 32-bit integer Time interval, in seconds, for
the ConnectRetry timer.
Corresponds to the
bgpConnectRetryInterval MIB
variable in BGP4-MIB.

holdTime 32-bit integer Maximum amount of time
elapsed in seconds between
receipt of successive
KEEPALIVE or UPDATE
messages.

holdTimeConfigured 32-bit integer Time interval in seconds for the
hold time configured for this
BGP speaker with a peer.
Corresponds to the
bgpHoldTimeConfigured MIB
variable in BGP4-MIB.

keepAlive 32-bit integer Time in seconds for the
KEEPALIVE timer established
with the BGP peer.

keepAliveConfigured 32-bit integer Time interval in seconds
for the KeepAlive timer
configured for this BGP
speaker with a peer.
Corresponds to the
bgpPeerKeepAlive
Configured MIB variable in
BGP4-MIB.

minASOrigInterval 32-bit integer Time interval in seconds for the
MinASOriginationInterval
timer. Corresponds to
the bgpPeerMinASOrigination
Interval MIB
variable in BGP4-MIB.

636 IBM Tivoli Network Manager IP Edition: Reference

Table 381. bgpEndPoint Table (continued)

Column name Type Constraints Description

minASRouteAdv
Interval

32-bit integer Time interval in seconds
for the
MinRouteAdvertisement
Interval timer. Corresponds
to the bgpPeerMinRoute
AdvertiseMentInterval MIB
variable
in BGP4-MIB.

Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.
frameRelayEndPoint
The frameRelayEndPoint table represents a logical Frame Relay end point and includes relevant data. This
endpoint is implemented by a physical interface, as modeled in the protocolEndPoint table.
ipEndPoint
The ipEndPoint table represents an IP end point and includes relevant data. The endpoint is implemented
by a physical interface, as modeled in the protocolEndPoint table.

bgpNetwork
The bgpNetwork table holds a collection of BGP ASs.

The following table describes the bgpNetwork table:

Table 382. bgpNetwork table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a BGP network
from the entityData table.

bgpRouteAttribute
The bgpRouteAttribute table stores data about a given BGP route such as its next hop and prefix. These
attributes affect routing decisions for the AS.

The following table describes the bgpRouteAttribute table.

Table 383. bgpRouteAttribute table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a BGP AS from
the entityData table.

AFI 30-character string Address Family Identifier (AFI)
information for this BGP route.

SAFI 30-character string Subsequent Address Family
Identifier (SAFI)
information for this BGP route.

Chapter 23. Data dictionary 637

Table 383. bgpRouteAttribute table (continued)

Column name Type Constraints Description

prefix 15-character string IP prefix for the advertized
network. Corresponds to the
bgp4PathAttripAddrPrefix MIB
variable in BGP4-MIB.

prefixLength 8-bit integer CIDR prefix length of the
advertized network.
Corresponds to the
bgp4PathAttripAddrPrefix-
Length MIB variable in BGP4-
MIB.

peerAddress 15-character string IP address of the BGP peer
from which this path was
learned.

nextHop 15-character string Next hop IP address of the
eBGP to reach a given network.
Corresponds to the
bgp4PathAttrNextHop MIB
variable in BGP4-MIB.

origin 15-character string Origin of this BGP route.

localPreference 32-bit integer Local preference of a route with
respect to other routes to the
same destination. Higher value
indicates a preferred route.
Corresponds to the
bgp4PathAttrLocalPref MIB
variable in BGP4-MIB.

aggregatingAddr 15-character string Aggregating address for this
route.

aggregatingAS 32-bit integer AS number of the last BGP4
speaker that performed route
aggregation. The AS number is
a value between 1 and 65535;
the range 64512 to 65535 is
reserved for private use. Every
AS has a unique AS number,
which is assigned to it by an
Internet Registry or a service
provider. Corresponds to the
bgp4PathAttrAggregatorAS MIB
variable in BGP4-MIB.

ASPathSegment 100-character
string

Sequence of AS path segments
to a given network.
Corresponds to the
bgp4PathAttrASPath MIB
variable in BGP4-MIB.

638 IBM Tivoli Network Manager IP Edition: Reference

Table 383. bgpRouteAttribute table (continued)

Column name Type Constraints Description

atomicAggregate 40-character string Indicates whether a less
specific route is selected
instead of a
more specific route.
Corresponds to the
bgp4PathAttrAtomic-
Aggregrate
MIB variable in BGP4-MIB.

MED Integer with up to
10 decimal digits.

Multi-Exit Discriminator (MED)
value that indicates a preferred
entry point into the AS for a
given network. Lower MED
values are preferred.
Corresponds to the
bgp4PathAttrMultiExitDisc MIB
variable in BGP4-MIB.

bestRoute 10-character string Indicates whether this route
was chosen as the best BGP4
route.

peerType 10-character string Peer type for this BGP route
attribute.

bgpService
The bgpService table represents a BGP service and includes relevant protocol data. This BGP service runs
on a device, as modeled in the hostedService table.

Each row in this table corresponds to a single hosted BGP service. BGP routers can only host one BGP
service.

The following table describes the bgpService table.

Table 384. bgpService table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a BGP service
from the entityData table.

BGPVersion 6-character string Not null Negotiated BGP version
number. Each peer negotiates
this version number from the
vector contained in the
bgpVersion MIB variable within
the BGP4-MIB.

BGPLocalAS 32-bit integer Not null Local AS for this BGP service.

BGPIdentifier 15-character string Not null Identifier for this BGP service.

RouteReflectorMode 25-character string Not null Router reflector mode for this
BGP service.

Related reference
hostedService

Chapter 23. Data dictionary 639

A hosted service is a service or application running on a specific main node device. The hostedService
table maps a main node device, the hosting entity, to the service or applications that are running on that
device, the hosted entities. The hostedService table belongs to the category entities.

computerSystem
The computerSystem table represents the logical or virtual perspective of the physical device

The following table describes the computerSystem table.

Table 385. computerSystem table

Column name Type Constraints Description

entityId Integer not null The identifier of a
computerSystem entity from
the entityData table.

architecture 255-character
string

Architecture of the device. Valid
values are

• alpha
• i686
• sun4
• PowerPC®

• PowerPC_POWER3
• PowerPC_POWER4
• PowerPC_POWER5
• PowerPC_604
• HP PA-RISC

assetID 255-character
string

Asset identifier for this entity.

assetTag 255-character
string

Asset tag for this entity.

autoStart Tiny integer Indicates whether the
computer system can be
automatically started.

• TRUE: computer system can
be automatically started.

• FALSE: computer system
cannot be automatically
started.

availableMem
ForAllVMs

64-bit integer Amount of memory (in bytes)
currently available for all virtual
machines.

640 IBM Tivoli Network Manager IP Edition: Reference

Table 385. computerSystem table (continued)

Column name Type Constraints Description

bootOrder 255-character
string

Boot sequence settings of a
system. The colon (:) character
is used to delimit multiple
device names. Possible values
for this attribute are as follows:

• Hard Drive x (where x is
optional and is an integer
value starting from 0).

• DVD x.
• CD x.
• LAN PXE (including all

variants such as MBA, IGA
and others).

ciCategory 255-character
string

Configuration item category for
this entity.

ciRole Tiny integer Identifies the environment, or
role, in which a configuration
item (CI) resides. For example,
if a CI is set aside for test
purposes, then this column can
be set to a value of Test. If a
role is needed that is not
defined in the enumeration for
ciRole, then use the value
Other.

cpuLimit 64-bit integer Maximum amount of CPU that
can be used by this virtual
machine even if there is more
CPU available in the resource
pool.

cpuReservation 64-bit integer Amount of CPU that is reserved
for this virtual machine.

Chapter 23. Data dictionary 641

Table 385. computerSystem table (continued)

Column name Type Constraints Description

cpuSharesLevel Tiny integer Level of shares specified for
this virtual machine. Shares
define the relative priority or
importance of a virtual machine
within a specific Hypervisor.
Each virtual machine is entitled
to resources in proportion to its
specified shares, bounded by
its reservation and limit. A
virtual machine with twice as
many shares as another is
entitled to twice as many
resources. The values are
comparable only across VMs
that are virtualizing the same
ComputerSystem.

cpuSharesValue 64-bit integer Actual number of CPU shares
allocated to this virtual
machine or resource pool. It is
used only when the level of
CPU shares (defined by the
CPUSharesLevel attribute) is
set to the value Custom.

cdpDeviceId 255-character
string

Device ID defining the node for
the Cisco Discovery Protocol.
This attribute is Cisco-specific
and will move to a class
representing the Cisco
Computer System.

configLastUpdate 255-character
string

UTC date and time when the
information was last altered in
the source application.

currentMemForAllVMs 64-bit integer Amount of memory currently
allocated for all virtual
machines.

generalCIRole 255-character
string

Environment, or role, in which a
configuration item (CI) resides.

642 IBM Tivoli Network Manager IP Edition: Reference

Table 385. computerSystem table (continued)

Column name Type Constraints Description

isVMIDanLPAR Tiny integer Specifies if the computer
system is a Logical PARtition
(LPAR) or if the computer
system is using other virtual
machine types, such as a
central processor complex
(CPC) . An LPAR represents all
IBM® mainframe and non-
mainframe virtualization
technologies, including zSeries,
pSeries, iSeries, and DS8000®.
Possible value are:

• TRUE: computer system is an
LPAR.

• FALSE: computer system is
using a virtual machine type
other than an LPAR.

lastAuditState Tiny integer Last audit state for this device.
Possible values are:

• 0 Unknown
• 1 Other
• 2 Good
• 3 No Physical CI
• 4 No CMDB Record
• 5 Inaccurate CMDB Record

lastAuditTime Timestamp Last audit time this entity.

lastLifecycleStateTime Timestamp Last lifecycle state time for this
entity.

Chapter 23. Data dictionary 643

Table 385. computerSystem table (continued)

Column name Type Constraints Description

lifecycleState Tiny integer Lifecycle state for this device.
Possible values are:

• 0 Unknown
• 1 Other
• 2 Ordered
• 3 Received
• 4 In Test
• 5 Tested
• 6 Installed
• 7 Enabled
• 8 Disabled
• 9 In Maintenance
• 10 Retired
• 11 Archived
• 12 Accepted
• 13 Draft
• 14 Build
• 15 Validate
• 16 ProductionReady
• 17 Production
• 18 Sunset
• 19 PostProduction
• 20 Inventory
• 21 Development
• 22 Offline

manufacturer 255-character
string

Vendor-specific hardware type
for this entity.

memoryLimit 64-bit integer Last audit time this device.

memoryReservation 64-bit integer Amount of memory that is
reserved for this machine.

644 IBM Tivoli Network Manager IP Edition: Reference

Table 385. computerSystem table (continued)

Column name Type Constraints Description

memorySharesLevel Tiny integer level of memory shares
specified for this virtual
machine. Shares define the
relative priority or importance
of a virtual machine. Each
virtual machine is entitled to
resources in proportion to its
specified shares, bounded by
its reservation and limit. A
virtual machine with twice as
many shares as another is
entitled to twice as many
resources.

memorySize 64-bit integer Size of physical memory that is
present in the computer
system.

model 255-character
string

Model name for this entity.

name 255-character
string

The textual name of the
physical entity. The value of this
object must be the name of the
component as assigned by the
local device and is suitable for
use in commands entered at
the console of the device.
Depending on the physical
component naming syntax of
the device, this value might be
a text name, for example
console, or a single component
number, for example a port
number or a module number.

namingRuleAlgorithms 255-character
string

Proprietary attribute, used
internally by IBM Tivoli
Application Dependency
Discovery Manager.

primaryMACAddress 255-character
string

MAC Address of the network
adapter in the computer
system. If there are multiple
network adapters in the
computer system, the primary
MAC Address is determined by
ordering the MAC address
according to their numeric
value, selecting the lowest
valued MAC address.

Chapter 23. Data dictionary 645

Table 385. computerSystem table (continued)

Column name Type Constraints Description

processCapacityUnits Tiny integer Units in which the
ProcessingCapacity field
value is expressed.

processingCapacity Floating-point
number

Processing capacity of this
computer system, including all
of the CPUs assigned to it.

romVersion 255-character
string

ROM (Read-Only Memory) or
the BIOS (Basic Input/Output
System) version of the
motherboard in the computer
system.

serialNumber 255-character
string

The serial number of the entity.

serviceConsoleMemSize 64-bit integer Amount of memory that is
reserved for the service
console.

signature 255-character
string

Signature of the computer
system. The value is composed
as follows: the dot-notated IP
address, the (character, the
MAC Address in hexadecimal
with upper case characters only
(sans hashes), the)character.

swapMemSize 64-bit integer Memory size of a datastore on
which the virtual machine swap
files are allocated.

systemBoardUUID 255-character
string

Specifies the burned-in
Globally Unique Identifier
(GUID) of this piece of
equipment.

systemId 255-character
string

Field used by IBM Tivoli
Application Dependency
Discovery Manager.

cdmType 255-character
string

Common data model type for
this device.

uuid 255-character
string

Unique identifier of this piece of
equipment.

646 IBM Tivoli Network Manager IP Edition: Reference

Table 385. computerSystem table (continued)

Column name Type Constraints Description

vmid 255-character
string

Unique identifier for the virtual
machine. It corresponds to the
Virtual Machine ID in the VM
table. For System p or System
z® computer systems, this is the
LPARID value.

virtual Tiny integer Specifies whether this
computer system is virtual.
Possible values are:

• TRUE: computer system is
virtual.

• FALSE: computer system is
not virtual.

vmotionEnabled Tiny integer Specifies whether the VMWare
VMotion feature is enabled on
this computer system.

controlPlaneViewCollection
The controlPlaneViewCollection table supports the dynamic collection views under LTE Network
Topology > Control Plane by Tracking Area in the Network Views. Each instance of this entity type
collects the eNodeBs in the corresponding tracking area, together with the devices that these eNodeBs
are connected to on the control plane..

The following table describes the controlPlaneViewCollection table.

Table 386. controlPlaneViewCollection table

Column name Type Constraints Description

entityId Integer FOREIGN KEY

NOT NULL

The identifier of an
controlPlaneViewCollection
entity from the entityData
table.

viewType 64-character string NOT NULL Specifies the type of view.

cpu
The cpu table describes Central Processing Units (CPUs).

The following table describes the cpu table.

Table 387. cpu table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a CPU from the
entityData table.

serialNumber Varchar (100) The serial number of the
processor.

Chapter 23. Data dictionary 647

Table 387. cpu table (continued)

Column name Type Constraints Description

modelName Varchar (100) The model of the processor.

manufacturer Varchar (100) The manufacturer of the
processor.

cpuSpeed Big int The clock speed of the
processor.

coresEnabled Integer How many cores are enabled.

coresInstalled Integer How many cores are installed.

discoveryAttributes
The discoveryAttributes table stores data that shows whether a device has been subject to interface
filtering.

The following table describes the discoveryAttributes table.

Table 388. discoveryAttributes table

Column name Type Constraints Description

entityId Integer Primary key

Not null

The entity ID of the device.

interfaceFiltered Boolean integer Not null A flag showing whether the
SNMP information from the
device had an interface filter
applied to it. If the value is 1,
then the information was
filtered. The default is zero.

domainSummary
The domainSummary table stores statistical data on a given domain.

The following table describes the domainSummary table.

Table 389. domainSummary table

Column name Type Constraints Description

domainMgrId 32-bit integer Foreign key

Not null

An automatically-incremented
field that must be unique for
each domain.

createTime Timestamp Not null The date and time that the
domain was created.

changeTime Timestamp Not null The date and time that the
domain was changed.

entityCount 32-bit integer Not null The number of entities in the
domain.

chassisCount 32-bit integer Not null The number of main node
chassis devices in the domain.

648 IBM Tivoli Network Manager IP Edition: Reference

Table 389. domainSummary table (continued)

Column name Type Constraints Description

interfaceCount 32-bit integer Not null The number of interfaces in the
domain.

eirFunction
The eirFunction table models the Equipment Identity Register (EIR). The EIR keeps track of mobile
devices which should either be banned from using the network or monitored. When a mobile phone is
stolen its identity it is added to the EIR blacklist and the result is that this phone will never be able to
attach to the network for service. Usually each network has its own EIR which is often combined with the
HSS node. It is possible for multiple operators to share a common EIR which enables the blacklisted
information to be more easily and widely available.

The following table describes the eirFunction table.

Table 390. eirFunction table

Column name Type Constraints

Description

entityId Integer FOREIGN
KEY

NOT NULL

The identifier of an eirFunction entity
from the entityData table.

eirFunctionName 64-
character
string

NOT NULL Name of the eirFunction (Equipment
Identity Register) instance configured
on the physical node that implements
the eirFunction.

MCC 3-character
string

An EIR can support multiple PLMNs. The
MCC attribute specifies the Mobile
Country Code (MCC) of the primary
PLMN supported by the EIR. Primary
PLMN usually means the sole PLMN or
the PLMN of the operator responsible
for the operation and maintenance of
the EIR. The MCC consists of three
digits.

MNC 3-character
string

An EIR can support multiple PLMNs. The
MNC attribute specifies the Mobile
Network Code (MNC) of the primary
PLMN supported by the EIR. Primary
PLMN usually means the sole PLMN or
the PLMN of the operator responsible
for the operation and maintenance of
the EIR. The length of the MNC (two or
three digits) depends upon the value of
the MCC.

supportedPLMNs Integer Count of the number of PLMNs (Public
Land Mobile Networks) supported by the
EIR.

Chapter 23. Data dictionary 649

Table 390. eirFunction table (continued)

Column name Type Constraints

Description

emsDistinguishedName 255-
character
string

Distinguished name by which the EIR is
known to its element management
system (EMS)

emsIpAddress 39-
character
string

IP address of the element management
system.

vendorName 64-
character
string

Vendor or manufacturer of the EIR.

vendorModuleType 64-
character
string

Vendor specific EIR Type.

softwareVersion 64-
character
string

Vendor specific EIR sofware version.

operationalState Enumeratio
n

Operational state of the eirFunction.
Takes one of the following values:

• Enabled
• Disabled
• Other
• Unknown

administrativeState Enumeratio
n

Administrative state of the eirFunction.
Takes one of the following values:

• Unlocked
• Locked
• Shutting Down
• Other
• Unknown

emsSystem
The emsSystem table describes EMS system entities.

The following table describes the emsSystem table.

Table 391. emsSystem table

Column name Type Constraints Description

entityId Integer not null The identifier of an EMS system
entity from the entityData
table.

650 IBM Tivoli Network Manager IP Edition: Reference

Table 391. emsSystem table (continued)

Column name Type Constraints Description

collectorPort Integer Port number on the EMS
collector used to retrieve data.

collectorhost 64-character string EMS host identifier string

collectorSourceId Integer Source identifier for the
collector.

emsHost 255-character
string

Hostname of the EMS.

emsName 255-character
string

Name of the EMS.

emsVersion 255-character
string

Version of the EMS.

emsIdentifier 255-character
string

Identifier for the EMS and key
for integrating the Network
Manager collector with the
Netcool Configuration Manager
driver.

emsRole 7-character string Role of the EMS. This
parameter can take one of the
following values:

• unknown
• primary
• backup
• other

emsStatus 7-character string Status of the EMS. This
parameter can take one of the
following values

• unknown
• up
• down
• other

enbFunction
The enbFunction table models the role of the eNodeB entity within a network hardware node. Multiple
enbFunction instances may be implemented within a single network hardware node. The eNodeB entity
manages radio air interface communication with users of the LTE network. Each eNodeB controls one or
more cells which are geographic areas of radio coverage.

The following table describes the enbFunction table.

Table 392. enbFunction table

Column name Type Constraints Description

entityId Integer FOREIGN KEY

NOT NULL

The identifier of an enbFunction
entity from the entityData
table.

Chapter 23. Data dictionary 651

Table 392. enbFunction table (continued)

Column name Type Constraints Description

eNodeBId 64-character string NOT NULL Identifier of the eNodeB.

eNodeBName 64-character string NOT NULL User friendly name of the eNodeB.

MCC 3-character string An eNodeB can support multiple
PLMNs. The MCC attribute
specifies the Mobile Country Code
(MCC) of the primary PLMN
supported by the eNodeB. Primary
PLMN usually means the sole
PLMN or the PLMN of the operator
responsible for the operation and
maintenance of the eNodeB. The
MCC consists of three digits.

MNC 3-character string An eNodeB can support multiple
PLMNs. The MNC attribute
specifies the Mobile Network Code
(MNC) of the primary PLMN
supported by the eNodeB. Primary
PLMN usually means the sole
PLMN or the PLMN of the operator
responsible for the operation and
maintenance of the eNodeB. The
length of the MNC (two or three
digits) depends upon the value of
the MCC.

supportedPLMNs Integer Count of the number of PLMNs
(Public Land Mobile Networks)
supported by the enbFunction.

emsDistinguishedName 255-character string Distinguished name by which the
enbFunction is known to its
element management system
(EMS).

emsIpAddress 39-character string IP address of the element
management system.

vendorName 64-character string Vendor or manufacturer of the
enbFunction.

vendorModuleType 64-character string Vendor-specific eNodeB type.

softwareVersion 64-character string Vendor-specific eNodeB software
version.

userCapacity Integer Maximum number of active pieces
of user equipment (UEs) that can
connect to this eNodeB
simultaneously.

maximumOutputPower Float Maximum output power of the
eNodeB.

652 IBM Tivoli Network Manager IP Edition: Reference

Table 392. enbFunction table (continued)

Column name Type Constraints Description

operationalState Enumeration Operational state of the
enbFunction. Takes one of the
following values:

• Enabled
• Disabled
• Other
• Unknown

administrativeState Enumeration Administrative state of the
enbFunction. Takes one of the
following values:

• Unlocked
• Locked
• Shutting Down
• Other
• Unknown

backHaulConnection 39-character string IP address of the first hop
backhaul device to which the
enbFunction is connected; for
example, the IP address of a cell-
site router.

eUtranCell
The eUtranCell table models a geographical area of radio coverage that is implemented and supported
by physical radio equipment, such as towers, amplifiers, and antennas.

The following tables describes the eUtranCell table.

Table 393. eUtranCell table

Column name Type Constrain
ts

Description

entityId Integer FOREIGN
KEY

NOT NULL

The identifier of an eUtranCell entity from the
entityData table.

eUtranCellId 64-character
string

NOT NULL Uniquely identifies a cell within a PLMN. It is often
constructed from eNodeB ID + Physical Cell ID.

eUtranCellName 64-character
string

NOT NULL Cell identifier or name of the cell.

Chapter 23. Data dictionary 653

Table 393. eUtranCell table (continued)

Column name Type Constrain
ts

Description

physicalCellID Integer Physical cell identifier. Takes a value in the range 0 to
503. The physical cell id is used by the cell to encode
and decode the data that it transmits. It is used in a
similar way to the UMTS scrambling code. To avoid
interference, neighboring cells should have different
physical cell identifiers. The physical cell id is derived
from the primary and secondary synchronization signals
(PSS and SSS). The PSS takes a value from 0 to 2, the
SSS takes a value from 0 to 167, and the physical cell id
is determined based on the following formula:

PSS + 3*SSS

The result of this calculation equates to a value of
between 0 and 503.

localCellId Integer Local cell id unique within the eNodeB.

emsDistinguishedName 255-character
string

Distinguished name by which the eUtranCell is known to
its element management system (EMS).

channelBandwidthUI Integer Uplink channel bandwidth. Takes one of the following
values in MHz

• 3
• 5
• 10
• 15
• 20

channelBandwidthDI Integer Downlink channel bandwidth. Takes one of the following
values in MHz

• 3
• 5
• 10
• 15
• 20

maximumOutputPower Float Maximum power in Watts for the sum of all downlink
channels that are allowed to be used simultaneously in
a cell.

userCapacity Integer Maximum number of pieces of user equipment (UEs)
that can connect to this eUtranCell simultaneously.

earfcnDl Integer E-UTRA Absolute Radio Frequency Channel Number
(downlink). An integer value which identifies the
downlink carrier frequency of the cell.

earfcnUl Integer E-UTRA Absolute Radio Frequency Channel Number
(uplink). An integer value which identifies the uplink
carrier frequency of the cell.

654 IBM Tivoli Network Manager IP Edition: Reference

Table 393. eUtranCell table (continued)

Column name Type Constrain
ts

Description

TAI 64-character
string

Tracking area identifier of the cell. This corresponds to
the value stored in the NCIM trackingArea table.

operationalState Enumeration Operational state of the LTE cell. Takes one of the
following values:

• Enabled
• Disabled
• Other
• Unknown

administrativeState Enumeration Administrative state of the LTE sector. Takes one of the
following values:

• Unlocked
• Locked
• Shutting Down
• Other
• Unknown

eUtranSector
The eUtranSector table models a geographic area of radio coverage that is implemented and supported
by physical radio equipment. An eUTRAN sector implements one or more eUTRAN cells.

The following table describes the eUtranSector table.

Table 394. eUtranSector table

Column name Type Constraints Description

entityID Integer FOREIGN KEY

NOT NULL

The identifier of an eUtranSector location entity
from the entityData table.

sectorId 255-character
string

NOT NULL Sector identifier.

sectorName 64-character
string

NOT NULL Sector name.

sectorNumber Integer Sector number.

emsDistinguishedName 255-character
string

Distinguished name by which the sector is known
to its element management system (EMS).

frequencyBand Integer Frequency band supported by the sector. All cells
serviced by the sector must have carrier
frequencies falling within this band.

maximumOutputPower Float Available sector power in Watts.

Chapter 23. Data dictionary 655

Table 394. eUtranSector table (continued)

Column name Type Constraints Description

operationalState Enumeration Operational state of the sector. This field takes
one of the following values:

• Enabled
• Disabled
• Other
• Unknown

administrativeState Enumeration Administrative state of the sector. This field takes
one of the following values:

• Unlocked
• Locked
• Shutting Down
• Other
• Unknown

frameRelayEndPoint
The frameRelayEndPoint table represents a logical Frame Relay end point and includes relevant data. This
endpoint is implemented by a physical interface, as modeled in the protocolEndPoint table.

The following table describes the frameRelayEndPoint table.

Table 395. frameRelayEndPoint table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a Frame Relay
endpoint entity from the
entityData table.

DLCI 32-bit integer The data link connection
identifier for this Frame Relay
endpoint.

Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.
bgpEndPoint
The bgpEndPoint table represents a logical BGP end point and includes relevant BGP data. This endpoint
is implemented by a physical interface, as modeled in the protocolEndPoint table

genericCollection
The genericCollection table stores information on generic collections of entities.

The following table describes the genericCollection table.

656 IBM Tivoli Network Manager IP Edition: Reference

Table 396. genericCollection table

Column name Type Constraints Description

entityId Integer not null The identifier of a generic
collection from the
entityData table.

genericRange
The genericRange table holds information about which Customer VLANS are switched through each
Virtual Switch Instance (VSI).

The following table describes the genericRange table.

Table 397. genericRange table

Column name Type Constraints Description

entityId Integer Foreign key

Primary key

Not null

The entity ID of the interface
that is associated with the
Customer VLAN range data.

minimumvalue Integer Not null The minimum value of the
range. Customer VLANs within
the range are switched through
the VSI; Customer VLANs
outside the range are
discarded.

maximumvalue Integer Not null The maximum value of the
range.

rangeType Enumerated Not null Can only take the value
CVlanRange.

geographicLocation
The geographicLocation table stores geographic location information for network entities. It does this
by creating collections of entities at a specific location.

The following table describes the geographicLocation table.

Table 398. geographicLocation table

Column name Type Constraints Description

altitude Integer Vertical height above World
Geodetic System WGS84 datum
surface (EGM96) at the
particular geographical
location.

Chapter 23. Data dictionary 657

Table 398. geographicLocation table (continued)

Column name Type Constraints Description

altitudeUnits 11-character string Units to use for the altitude.

• 0 – Meters
• 1 – Kilometers
• 2 – Centimeters
• 3 - Feet
• 4 – Yards
• 5 - Miles
• 6 - Inches

entityId Integer NOT NULL The identifier of a geographical
location entity from the
entityData table.

latitude Fixed-point
decimal (up to 10
digits with 8 to the
right of the decimal
point)

Measurement of latitude for this
entity. This is the angular
distance (north and south) from
the equator on the earth's
surface; for example,
78.838753. The value of this
attribute is determined based
on World Geodetic System
WGS84 standard.

locationId 64-character string NOT NULL The location identifier by which
the location is know to the end-
user.

longitude Fixed-point
decimal (up to 11
digits with 8 to the
right of the decimal
point)

Measurement of longitude for
this entity. This is the angular
distance (east and west) from
the prime meridian on the
earth's surface; for example,
35.832636. The value of this
attribute is determined based
on World Geodetic System
WGS84 standard.

locationDescription 255-character
string

Free-format textual description
of location

timezoneOffset 9-character string Offset of local time from UTC in
format UTC-HH:MM or UTC
+HH:MM; for example, UTC
+10:30, UTC-6:00.

658 IBM Tivoli Network Manager IP Edition: Reference

geographicRegion
The geographicRegion table stores geographic region information for radio access network entities.
The geographicRegion table collects geographic locations from the geographicLocation table or
other geographic regions from the current table to build a geographical hierarchy.

The following table describes the geographicRegion table.

Table 399. geographicRegion table

Column name Type Constraints Description

entityId Integer NOT NULL The identifier of a geographical
region from the entityData
table.

hierachyName 64-character string The name of hierarchy which
this region is part of.

levelName 64-character string The name of the hierarchy level
which this region represents.

hierarchyLevel Integer Represents the level of this
region within the geographical
hierarchy, where the value 1 is
the first or lowest level.

globalVlan
The globalVlan table models global VLAN logical collections. A global VLAN is a collection of VLAN entities
across multiple chassis devices that combine to form a virtual network.

The following table describes the globalVlan table.

Table 400. globalVlan table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a global VLAN
entity from the entityData
table.

subnet 16-character string Not null The subnet address of the
VLAN.

netmask 16-character string Not null The netmask of the subnet for
this VLAN.

vlanClass Enumerated The class of the VLAN. Possible
values are: cvlan (Customer
VLAN using QinQ), svlan
(Service VLAN using QinQ), or
local (VLAN not using QinQ).

vlanDescr 255-character
string

A description of this VLAN.

gnbFunction
The gnbFunction table models the role of the gNodeB entity within a network hardware node. Multiple
gnbFunction instances may be implemented within a single network hardware node. The gNodeB entity

Chapter 23. Data dictionary 659

manages radio air interface communication with users of the 5G network. Each gNodeB controls one or
more cells which are geographic areas of radio coverage.

There are three variants of the gnbFunctions will be available for a single GNodeB device. They are listed
as follows:

• GNBDU
• GNBCUCP
• GNBCUUP

The following table describes the gnbFunction table.

Table 401. gnbFunction table

Column name Type Constraints Description

entityId Integer FOREIGN KEY

NOT NULL

The identifier of an gnbFunction
entity from the entityData
table.

gNodeBId 64-character string NOT NULL Identifier of the gNodeB.

gNodeBIdLength Integer

gNodeBName 64-character string NOT NULL User friendly name of the gNodeB.

emsDistinguishedName 255-character string Distinguished name by which the
gnbFunction is known to its
element management system
(EMS).

emsIpAddress 39-character string IP address of the element
management system.

backHaulConnection 39-character string IP address of the first hop
backhaul device to which the
gnbFunction is connected; for
example, the IP address of a cell-
site router.

supportedPLMNs Integer Count of the number of PLMNs
(Public Land Mobile Networks)
supported by the gnbFunction.

MCC 3-character string An gNodeB can support multiple
PLMNs. The MCC attribute
specifies the Mobile Country Code
(MCC) of the primary PLMN
supported by the gNodeB. Primary
PLMN usually means the sole
PLMN or the PLMN of the operator
responsible for the operation and
maintenance of the gNodeB. The
MCC consists of three digits.

660 IBM Tivoli Network Manager IP Edition: Reference

Table 401. gnbFunction table (continued)

Column name Type Constraints Description

MNC 3-character string An gNodeB can support multiple
PLMNs. The MNC attribute
specifies the Mobile Network Code
(MNC) of the primary PLMN
supported by the gNodeB. Primary
PLMN usually means the sole
PLMN or the PLMN of the operator
responsible for the operation and
maintenance of the gNodeB. The
length of the MNC (two or three
digits) depends upon the value of
the MCC.

vendorName 64-character string Vendor or manufacturer of the
gnbFunction.

gnbFunctionType 10-character string The gNodeB device manages the
radio air interface communication
with users of the 5G network. Each
gNodeB device controls one or
more cells, which are geographic
areas of radio coverage. The role
of the gNodeB is implemented
within a network hardware node
and is modelled by NCIM using the
gnbFunction entity type. Multiple
gnbFunction instances may be
implemented within a single
network hardware node.

vendorModuleType 64-character string Vendor-specific gNodeB type.

softwareVersion 64-character string Vendor-specific gNodeB software
version.

userCapacity Integer Maximum number of active pieces
of user equipment (UEs) that can
connect to this gNodeB
simultaneously.

maximumOutputPower Float Maximum output power of the
gNodeB.

operationalState 10-character string Operational state of the
gnbFunction. Takes one of the
following values:

• Enabled
• Disabled
• Other
• Unknown

Chapter 23. Data dictionary 661

Table 401. gnbFunction table (continued)

Column name Type Constraints Description

administrativeState 10-character string Administrative state of the
gnbFunction. Takes one of the
following values:

• Unlocked
• Locked
• Shutting Down
• Other
• Unknown

hsrpGroup
The hsrpGroup table represents a Cisco Hot Standby Routing Protocol (HRSP) group logical collection.

The HRSP implements a virtual router with its own IP and MAC addresses. This virtual router forms an
HSRP group that consists of a number of real interfaces, only one of which is active at any given time. The
active interface forwards IP traffic that is sent to the virtual router and the other interfaces in the group
stand by ready to become active if the active interface fails.

The following table describes the hsrpGroup table.

Table 402. hsrpGroup table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a HSRP group
entity from the entityData
table.

virtualIP 32-bit integer Foreign key

Not null

The virtual IP address used by
this HSRP group.

hssFunction
The hssFunction table models the Home Subscriber Server (HSS). The HSS manages subscriber
identities, service profiles, authentication, authorization, and quality of service (QoS), and acts as the
master repository for subscriber profiles, device profiles and state information.

The following table describes the hssFunction table.

Table 403. hssFunction table

Column name Type Constraints

Description

entityId Integer FOREIGN
KEY

NOT NULL

The identifier of a hssFunction entity
from the entityData table.

hssFunctionName varchar(64) NOT NULL Name of the hssFunction (Home
Subscriber Server) instance configured
on the physical node that implements
the hssFunction

662 IBM Tivoli Network Manager IP Edition: Reference

Table 403. hssFunction table (continued)

Column name Type Constraints

Description

MCC varchar(3) An HSS can support multiple PLMNs.
The MCC attribute specifies the Mobile
Country Code (MCC) of the primary
PLMN supported by the HSS. Primary
PLMN usually means the sole PLMN or
the PLMN of the operator responsible
for the operation and maintenance of
the HSS. The MCC consists of three
digits.

MNC varchar(3) An HSS can support multiple PLMNs.
The MNC attribute specifies the Mobile
Network Code (MNC) of the primary
PLMN supported by the HSS. Primary
PLMN usually means the sole PLMN or
the PLMN of the operator responsible
for the operation and maintenance of
the HSS. The length of the MNC (two or
three digits) depends upon the value of
the MCC.

supportedPLMNs Integer This is a count of the number of PLMNs
(Public Land Mobile Networks)
supported by the HSS.

emsDistinguishedName varchar(255
)

The distinguished name by which the
HSS is known to its element
management system (EMS)

emsIpAddress varchar(39) The IP address of the element
management system

vendorName varchar(64) The vendor/manufacturer of the HSS

vendorModuleType varchar(64) Vendor specific HSS Type

softwareVersion varchar(64) Vendor specific HSS sofware version

operationalState Enumeratio
n

The operational state of the
hssFunction. Takes one of the following
values:

• Enabled
• Disabled
• Other
• Unknown

Chapter 23. Data dictionary 663

Table 403. hssFunction table (continued)

Column name Type Constraints

Description

administrativeState Enumeratio
n

The administrative state of the
hssFunction. Takes one of the following
values:

• Unlocked
• Locked
• Shutting Down
• Other
• Unknown

igmpEndPoint
The igmpEndPoint table holds information on the Internet Group Membership Protocol (IGMP) End Points.

Each End Point holds various attributes describing the interface that implements it. There is a
dependency between the end point and service associated with it (modeled via the existing dependency
table). The End Point is associated with the interface which implements it using the existing
protocolEndPoint table.

The following table describes the igmpEndPoint table.

Table 404. igmpEndPoint table

Column name Type Constraints Description

entityId 32-bit integer • Primary Key
• Foreign Key

(entityData table)
• Not Null

The identifier of the IGMP End
Point.

groups 32-bit integer A count of the number Cache
Table entries for this end point

lastMembQueryIntvl 32-bit integer Holds the Last Member Query
Interval

numJoins 32-bit integer Number of IGMP group
membership joins that have
occurred

proxyIfIndex 32-bit integer Where IGMP proxying is used,
this field holds the interface
index to which IGMP Host
Membership Reports are sent.

querier 25 character string IP address of the IGMP Querier

querierExpiryTime 64-bit integer Remaining time before expiry of
the Other Querier Present
Timer expires. (0 if local system
is the querier)

querierUpTime 64-bit integer Time ticks since the Querier
last changed

664 IBM Tivoli Network Manager IP Edition: Reference

Table 404. igmpEndPoint table (continued)

Column name Type Constraints Description

queryInterval 32-bit integer How often IGMP query
messages are sent on the
interface associated with this
End Point.

queryMaxResponse
Time

32-bit integer Maximum response time in
tenths of a second

robustness 32-bit integer The Robustness Variable used
to alter IGMP sensitivity to
packet loss

status Enumerated Value Takes one of the
following values:

• ‘other'
• ‘unknown'
• ‘enabled'
• ‘disabled'

The status of IGMP on the
interface associated with the
End Point.

version 32-bit integer Version of IGMP running

versionQuerierTimer 64-bit integer Remaining time before it is
assumed that no IGMP routers
are present on the interface
associated with the End Point

wrongVersionQueries 32-bit integer A count of number of queries
received with unexpected IGMP
versions. A non-zero value
indicates an IGMP
configuration issue.

Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.

igmpGroup
The igmpGroup table holds multicast group collections for which there are associated Internet Group
Membership Protocol (IGMP) end points in the igmpEndPoint table. Entries in the igmpGroup table collect
associated igmpEndPoints using the existing collects table.

The following table describes the igmpGroup table.

Table 405. igmpGroup table

Column name Type Constraints Description

entityId 32-bit integer • Primary Key
• Foreign Key

(entityData table)
• Not Null

The identifier of the IGMP
group

Chapter 23. Data dictionary 665

Table 405. igmpGroup table (continued)

Column name Type Constraints Description

groupAddress 25-character string IP address of the multicast
group

groupMask 25-character string Mask of the multicast group

groupName 60-character string Name associated with the
group

igmpService
The igmpService table represents an Internet Group Management Protocol (IGMP) service. Each row in
the table corresponds to a single hosted IGMP service. The service is associated with the device on which
it runs using the hostedService table.

The following table describes the igmpService table.

Table 406. igmpService table

Column name Type Constraints Description

entityId 32-bit integer • Primary Key
• Foreign Key

(entityData table)
• Not Null

The identifier of the IGMP
Service

ipConnection
The ipConnection table stores information on IP connections.

The following table describes the ipConnection table.

Table 407. ipConnection table

Column name Type Constraints Description

entityId Integer not null The identifier of an IP
connection from the
entityData table.

ipEndPoint
The ipEndPoint table represents an IP end point and includes relevant data. The endpoint is implemented
by a physical interface, as modeled in the protocolEndPoint table.

The following table describes the ipEndPoint table:

Table 408. ipEndPoint table

Column name Type Constraints Description

entityId 32–bit integer Foreign key

Not null

The identifier of an IP end point entity from
the entityData table.

DNSName 255–character
string

DNS name for the IP address associated
with this IP end point.

address 39–character string Not null IP address associated with this IP end
point.

666 IBM Tivoli Network Manager IP Edition: Reference

Table 408. ipEndPoint table (continued)

Column name Type Constraints Description

ipNumber 64–bit integer,
unsigned

Not null For IPv4: IP address represented as a 32–
bit integer.

For IPv6: The first half of the IP address is
represented as a 128–bit integer. The
value is shown as a signed 64-bit integer.
For example, for the IPv6 address
fe80:0000:0000:0000:21a:30ff:fe2b:fb80,
the hexadecimal ipNumber is FE80 0000
0000 0000.

netNumber 64–bit integer Not null For IPv4: Not applicable

For IPv6: Second half of IP address
represented as a 128–bit integer. The
value is shown as a signed 64-bit integer.
For example, for the IPv6 address
fe80:0000:0000:0000:21a:30ff:fe2b:fb80,
the hexadecimal netNumber is 021A 30FF
FE2B FB80. (The decimal number is
18338657682652659712 as an unsigned
integer and 108086391056891904 as a
signed integer.)

subnet 39–character string Subnet to which the IP address belongs.

netmask 39–character string Netmask for the subnet.

netmaskbits 32–bit integer Netmask bits for the subnet

addressSpace 255–character
string

Relevant NAT address space if network
address translation is being used.

protocol String value An integer representation of the IP
protocol used by the presently-defined
zone:

• 1: IPv4
• 2: IPv4 that has been through network

address translation (NAT)
• 3: IPv6

cdmAddressType 16-bit integer Not null

Default value: 0

The IBM Common Data Model defines an
attribute named AddressType in the
IpV4Address and IPv6Address views and
the ipEndPoint class is the equivalent
object in NCIM. Therefore to make the
attributes in the classes consistent, a new
attribute named cdmAddressType has
been added to the ipEndPoint table.

Related concepts
Technology-specific data

Chapter 23. Data dictionary 667

NCIM models a range of different network technologies, including IP, VLANs, and MPLS VLANs.
Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.
bgpEndPoint
The bgpEndPoint table represents a logical BGP end point and includes relevant BGP data. This endpoint
is implemented by a physical interface, as modeled in the protocolEndPoint table

ipMRouteDownstream
The ipMRouteDownstream table holds the downstream route statistics per device or MDT. Each entity in
this table will have a dependency relationship with the associated MDT via the existing dependency table.

The following table describes the ipMRouteDownstream table.

Table 409. ipMRouteDownstream table

Column name Type Constraints Description

closestMemberHops 32-bit integer The number of hops that it will
take to reach the closest
member of this multicast
group.

entityId 32-bit integer • Primary Key
• Foreign Key

(entityData table)
• Not Null

The identifier of the IGMP End
Point

expiryTime 32-bit integer Time ticks left before the route
entry expires

hopState Enumerated value Takes one of the
following values:

• unknown
• other
• pruned
• forwarding

Indicates whether the
downstream interface is being
used to forward packets.

nextHop 15-character string IP Address of the next
downstream hop. This address
may be the multicast group
address.

outInterface 32-bit integer NULL if ifIndex was 0

packetCount 32-bit integer The number of packets from
sources destined for the group.

668 IBM Tivoli Network Manager IP Edition: Reference

Table 409. ipMRouteDownstream table (continued)

Column name Type Constraints Description

protocol Enumerated value Takes one of the
following values:

• other
• local
• netmgmt
• DVMRP
• MOSPF
• PIMSparseDense
• CBT
• PIMSparseMode
• PIMDenseMode
• IGMPOnly
• BGMP
• MSDP

The protocol used to learn the
downstream next hop route

startTime Timestamp Approximate time that the
route entry was learnt;
calculated using uptime and
the system time at the time the
device was interrogated.

uptime 32-bit integer Time ticks since this route entry
was learnt

ipMRouteEndPoint
The ipMRouteEndPoint table holds information on the IP Multicast Routing Protocol End Points.

Each End Point holds various attributes describing the interface that implements it. There is a
dependency between the end point and service associated with it (modelled using the existing
dependency table). The End Point is associated with the interface which implements it through the
existing protocolEndPoint table.

The following table describes the ipMRouteEndPoint table.

Table 410. ipMRouteEndPoint table

Column name Type Constraints Description

entityId 32-bit integer • Primary Key
• Foreign Key

(entityData table)
• Not Null

The identifier of the IP
Multicast Routing Protocol End
Point

flowDirection Enumerated value Takes one of the
following values:

• upstream
• downstream

Indicates the direction of flow
represented by this end point

Chapter 23. Data dictionary 669

Table 410. ipMRouteEndPoint table (continued)

Column name Type Constraints Description

isLastHop 32-bit integer 0 or 1 Indicates whether this end
point represents a last known
hop

protocol Enumerated value Takes one of the
following values:

• other
• local
• netmgmt
• DVMRP
• MOSPF
• PIMSparseDense
• CBT
• PIMSparseMode
• PIMDenseMode
• IGMPOnly
• BGMP
• MSDP

Routing protocol running on the
interface associated with this
End Point

rateLimit 32-bit integer Rate limit in kbps of multicast
traffic on the interface
associated with this End Point

ttl 32-bit integer Time To Live counter

Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.

ipMRouteGroup
The ipMRouteGroup table represents Multicast Groups, as contained by the Multicast Distribution Tree
(MDT).

The following table describes the ipMRouteGroup table.

Table 411. ipMRouteGroup table

Column name Type Constraints Description

entityId 32-bit integer • Primary Key
• Foreign Key

(entityData table)
• Not Null

The identifier of the IP
Multicast Routing Group

groupAddress 15-character string Not Null The address of the multicast
group

groupMask 15-character string 15-character string

670 IBM Tivoli Network Manager IP Edition: Reference

ipMRouteMdt
The ipMRouteMdt table holds the Collection entities representing the Multicast Distribution Trees (MDTs)
for each Multicast Source/Group. The name of the entity (present in the entityData table) takes the
form (S,G). Each row in the table represents a single MDT. The MDT collects the End Points involved using
the existing collects table. The MDT contains their related Groups/Source entities (through the existing
contains table), and depend on the Multicast Route entities (through the dependency table).

The following table describes the ipMRouteMdt table.

Table 412. ipMRouteMdt table

Column name Type Constraints Description

entityId 32-bit integer • Primary Key
• Foreign Key

(entityData table)
• Not Null

The identifier of the IP
Multicast Routing MDT entity

mdtType Enumerated value Takes one of the
following values:

• unknown
• other
• SPT
• SDT

Holds the type of MDT
represented

ipMRouteService
The ipMRouteService table represents an IP Multicast Routing service and includes any attributes
relevant to the service. Each row in the table corresponds to a single hosted IPMRouting service. The
service is associated with the device on which it runs through the hostedService table.

The following table describes the ipMRouteService table.

Table 413. ipMRouteService table

Column name Type Constraints Description

entityId 32-bit integer • Primary Key
• Foreign Key

(entityData table)
• Not Null

The identifier of the IP
Multicast Routing Service

routeCount 32-bit integer The number of routes known to
this Service

ipMRouteSource
The ipMRouteSource table represents Multicast Sources, as contained by the Multicast Distribution Tree
(MDT).

The following table describes the ipMRouteSource table.

Chapter 23. Data dictionary 671

Table 414. ipMRouteSource table

Column name Type Constraints Description

entityId 32-bit integer • Primary Key
• Foreign Key

(entityData table)
• Not Null

The identifier of the IP
Multicast Routing Source

source 15-character string Not Null The address of the source

sourceMask 15-character string The mask of the source

ipMRouteUpstream
The ipMRouteUpstream table holds the upstream (RPF) route statistics for each device or MDT. Each
entity in this table has a dependency relationship with the associated MDT through the existing
dependency table.

The following table describes the ipMRouteUpstream table.

Table 415. ipMRouteUpstream table

Column name Type Constraints Description

entityId 32-bit integer • Primary Key
• Foreign Key

(entityData table)
• Not Null

The identifier of the RPF
upstream route entity

inInterface 32-bit integer NULL if ifIndex was 0

upstreamNbr 15-character string IP address of the RPF
neighbour (if known)

uptime 32-bit integer Time ticks since this route entry
was learnt

expiryTime 32-bit integer Time ticks left before the route
entry expires

startTime Timestamp Approximate time that the
route entry was learnt;
calculated using uptime and
the system time at the time the
device was interrogated.

packetCount 32-bit integer The number of packets from
sources destined for the group.

differentInIfPackets 32-bit integer The number of packets
dropped because they were
received on the wrong interface

octets 32-bit integer The number of octets
forwarded

672 IBM Tivoli Network Manager IP Edition: Reference

Table 415. ipMRouteUpstream table (continued)

Column name Type Constraints Description

protocol Enumerated value Takes one of the
following values:

• other
• local
• netmgmt
• DVMRP
• MOSPF
• PIMSparseDense
• CBT
• PIMSparseMode
• PIMDenseMode
• IGMPOnly
• BGMP
• MSDP

The protocol used to learn this
route entry

rtProto Enumerated value Takes one of the
following values;

• other
• local
• netmgmt
• ICMP
• EGP
• GGP
• hello
• RIP
• ISIS
• ESIS
• ciscoIGRP
• bbnSpfIGP
• OSPF
• BGP
• IDRP
• ciscoEIGRP
• DVMRP

The protocol used to learn the
upstream interface for this
route entry

rtAddress 15-character string Address used to determine the
upstream interface

rtMask 15-character string Mask used to determine the
upstream interface

Chapter 23. Data dictionary 673

Table 415. ipMRouteUpstream table (continued)

Column name Type Constraints Description

rtType Enumerated Value Takes one of the
following values:

• unknown
• other
• unicast
• multicast

The type of route

ipPath
The ipPath table stores information on IP paths.

The following table describes the ipPath table.

Table 416. ipPath table

Column name Type Constraints Description

entityId Integer Not null The identifier of an IP pathfrom
the entityData table.

fromIP 39-character string Starting IP address for this
path.

toIP 39-character string End IP address for this path.

viaIP 39-character string IP address that this path must
traverse.

hops 32-bit integer Not null Number of hops in the path.

ecmp Indicates whether equal-cost
multi-path routing applies to
this path.

asymmetric Indicates whether this is an
asymmetric path.

protocols 100-character
string

Indicates the protocols used in
this path.

cost 32-bit integer

itnmService
The itnmService table represents Service-Affected Events (SAE); the table is used by the SAE plug-ins in
the Event Gateway, ncp_g_event. This table is used only indirectly by the SAE plug-ins, since the SAE
plug-ins use the NCIM cache tables, which are based on NCIM tables.

The following table describes the itnmService table.

674 IBM Tivoli Network Manager IP Edition: Reference

Table 417. itnmService table

Column name Type Constraints Description

entityID 32–bit integer Not null The identifier of the SAE
entity from the
entityData table.

serviceName 255–character string Not null The name of the SAE.

serviceType 64–character string Not null The type of SAE

lagEndPoint
The lagEndPoint table holds information about end points within Link Aggregation Groups (LAGs).

The following table describes the lagEndPoint table.

Table 418. lagEndPoint table

Column name Type Constraints Description

entityId 32-bit integer Not null

Primary Key

Foreign Key

Automatically incremented ID
that provides a unique value for
each end point across all
domains.

lagId 32-bit integer Not null The ID of the LAG.

priority 32-bit integer The priority of the end point.

lagMode 8-character string The mode that the LAG is
operating in. Takes one of the
following values:

• lacp
• static
• unknown
• other
• disabled

actorAdminState 255-character
string

The administrative value of
Actor_State as transmitted by
the actor in the Link
Aggregation Control PDUs.

actorOperState 255-character
string

The operational value of
Actor_State as transmitted by
the actor in the Link
Aggregation Control PDUs.

actorSystemId 255-character
string

The MAC address value used as
a unique identifier for the
server that contains this LAG.

actorAdminKey Integer Administrative value of the key
for the LAG.

actorOperKey Integer Operational value of the key for
the LAG.

Chapter 23. Data dictionary 675

Table 418. lagEndPoint table (continued)

Column name Type Constraints Description

partnerAdminState 255-character
string

The administrative value of
Actor_State for the protocol
partner.

partnerOperState 255-character
string

The value of Actor_State in the
most recently received Link
Aggregation Control PDU
transmitted by the protocol
partner.

partnerSystemId 255-character
string

The MAC address value used as
a unique identifier for the
current protocol partner of this
LAG.

partnerAdminKey Integer Administrative value of the key
for the protocol partner.

partnerOperKey Integer Operational value of the key for
the protocol partner.

lingerTime
The lingerTime table stores the linger time for a device. The linger time is the number of discoveries that a
device can fail to be found in before it is removed from the topology.

The linger time is set for a device when it is instantiated, from the default value in the model.config table.
Each time that a device in the topology is not discovered, the linger time is decreased by 1. When the
linger time is zero, if the device is not discovered, it is removed from the topology.

The lingerTime table is described in the following table:

Table 419. lingerTime table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a device.

lingerTime Integer Not null The current linger time of the
device.

Related reference
ncimCache.lingerTime table
The ncimCache.lingerTime table stores the linger time for a device.

localVlan
The localVlan table specifies which global VLAN the local VLAN belongs to. A local VLAN represents all the
interfaces on a single chassis device that belong to a global VLAN.

In addition, the contains table specifies the interfaces contained by the local VLAN.

676 IBM Tivoli Network Manager IP Edition: Reference

Table 420. localVlan Ttable

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a local VLAN
entity from the entityData
table.

vlanClass Enumerated The class of the VLAN. Possible
values are: cvlan (Customer
VLAN using QinQ), svlan
(Service VLAN using QinQ), or
local (VLAN not using QinQ).

vlanId 32-bit integer Not null The identifier of a connection
from the connects table.

vlanDescr 255-character
string

The description of a connection
from the connects table.

vlanName 64-character string The name of a connection from
the connects table.

vlanType 32-character string The type of a connection from
the connects table.

vlanState 32-character string The state of a connection from
the connects table.

Related reference
contains
The contains table stores data on physical and logical containment. This table belongs to the category
containment.

lteInterface
The lteInterface table models the different types of interfaces between LTE devices.

LTE interfaces modelled in NCIM
The following table lists the LTE interface types that are modelled in NCIM, and shows which interface
types are used to connect different LTE elements. The interface types are described below the table.

Table 421. LTE interfaces modelled in NCIM

LTE element EIR eNode
B

HSS MME PCRF PGW SGW SGSN

Equipment Identity Register (EIR)

“eirFunction” on page 649

S13

Evolved NodeB

“enbFunction” on page 651

X2 S1-
MME

S1-U

Home Subscriber Server (HSS)

“hssFunction” on page 662

S6a

Mobility Management Entity (MME)

“mmeFunction” on page 681

S13 S1-
MME

S6a S10 S11 S3

Chapter 23. Data dictionary 677

Table 421. LTE interfaces modelled in NCIM (continued)

LTE element EIR eNode
B

HSS MME PCRF PGW SGW SGSN

Policy and Charging Rules Function
(PCRF)

“pcrfFunction” on page 702

Gx

Packet Data Network Gateway
(PGW)

“pgwFunction” on page 704

Gx S5

S8

Serving Gateway (SGW)

“sgwFunction” on page 744

S1-U S11 S5

S8

S4

Serving GPRS Support Node (SGSN)

“ranSGSN” on page 742

S4

Gx
Interface between the PGW and the Policy and Charging Rules Function (PCRF). In particular, this is
the interface between the Policy Control Enforcement Function (PCEF) or the PGW and the PCRF.

OAM
Operational and maintenance interface, used to manage the device.

SGi
Interface between the PGW and any packet data network.

S1
Interface between the eNodeB and the core network.

S1-MME
Control plane interface between an eNodeB and an MME.

S1-U
User plane interface between an eNodeB and one or more SGWs.

S3
Control plane interface between an MME and a Serving GPRS Support Node (SGSN). The interface is
used to manage mobility inter-3GPP Radio Access Technology (RAT) mobility between, for example,
LTE and UMTS or GPRS.

S4
Control and user plane interface between an SGW and a Serving GPRS Support Node (SGSN).

S5
Modelled in NCIM as a user plane interface between an SGW and a PGW within the same Public Land
Mobile Network (PLMN).

Note: The S5 interface can carry control and user plane data but in NCIM it is modelled as user plane
only.

S6a
Control plane interface between MME and Home Subscriber Server (HSS).

S8
Equivalent to the S5 interface except that it connects an SGW in the Visited PLMN (VPLMN) to a PGW
in the roaming subscriber's Home PLMN (HPLMN).

Note: The S5 interface can carry control and user plane data but in NCIM it is modelled as user plane
only.

678 IBM Tivoli Network Manager IP Edition: Reference

S10
Inter-MME control plane interface.

S11
Control plane interface between an MME and an SGW.

S13
Control plane interface between MME and the Equipment Identity Register (EIR).

X2
Modelled in NCIM as a control plane interface between neighbouring eNodeBs. Used for signalling
between neighbouring eNodeBs.

Note: The X2 interface can carry control and user plane data but in NCIM it is modelled as control
plane only.

The following table describes the lteInterface table.

Table 422. lteInterface table

Column name Type Constraints Description

entityId Integer FOREIGN KEY

NOT NULL

interfaceType Enumeration Type of LTE interface. Takes one of the following
values:

• Gx
• OAM
• SGi
• S1
• S1-MME
• S1-U
• S3
• S4
• S5
• S6a
• S8
• S10
• S11
• S13
• X2

ltePool
The ltePool table is a generic modelling mechanism for groups of pooled LTE entities, and is used to
model MME pools, PGW pools, and SGW pools. As an example, in order to model an MME pool, the
relationship between the ltePool entity and associated mmeFunction entities is modelled using the
collects table.

The following table describes the ltePool table.

Chapter 23. Data dictionary 679

Table 423. ltePool table

Column name Type Constraints Description

entityId Integer FOREIGN
KEY

NOT NULL

The identifier of an ltePool entity from the
entityData table.

lteGroupId 64-character string The group identifier of the LTE pool.

ltePoolName 64-character string NOT NULL The name of the MME Pool.

ltePoolType Enumeration Type of LTE pool. Takes one of the following
values:

• MME
• SGW
• PGW

ltePoolArea 64-character string The name of the Pool Area that is covered
by the pool. There is a one to one mapping
between a Pool and a Pool Area.

managedStatus
The managedStatus table stores the managed status information for each network entity in the
topology.

The following table describes the managedStatus table.

Table 424. managedStatus table

Column name Type Constraints Description

entityId 32–bit integer Foreign key
Not null

Identifier of an entity from the entityData table.

680 IBM Tivoli Network Manager IP Edition: Reference

Table 424. managedStatus table (continued)

Column name Type Constraints Description

status 8–bit integer The managed status of an entity can be one of the following
values:
0

Managed state. The entity is managed. A device can be set
to managed by using the Topoviz or the Structure Browser
GUIs, or by using the ManagedNode.pl or
RemoveNode.pl scripts.

1
Unmanaged state. The entity is unmanaged. A device can
be set to unmanaged by using the Topoviz or the Structure
Browser GUIs, or by using the UnManagedNode.pl or
RemoveNode.pl scripts.

2
Unmanaged by ncp_disco. This setting cannot be modified
from the GUI. This value is set by the
PopulateDNCIM_ManagedStatus.stch stitcher.

3
Unmanaged because the IP address is out of the discovery
scope. The device has been discovered through another IP
address that is within the discovery scope. A managed
status of 3 is usually given to interfaces, rather than
chassis. This value is set by the
PopulateDNCIM_ManagedStatus.stch stitcher.

Note: Unmanaged entities do not suppress other events in
RCA. The ncp_poller process does not poll unmanaged
entities. Events on unmanaged entities have the field
NmosManagedStatus set in the alerts.status field in the
ObjectServer.

username 240–
character
string

Name of the user who last set the status of the entity.

changeTime Timestamp Date and time when the status of the entity was changed.

maintenance
StartTime

Timestamp Start time for device to be in unmanaged state.

maintenance
EndTime

Timestamp End time for device to be in unmanaged state.

Related reference
ncimCache.managedStatus table
The ncimCache.managedStatus table stores the managed status information for network entities.

mmeFunction
The mmeFunction table models the role of the Mobility Management Entity (MME) within a network
hardware node. Multiple mmeFunction instances can be implemented within a single network hardware
node. The MME is the main signalling control element in the core network and is the key control node for
enabling user equipment access to the core network.

The following table describes the mmeFunction table.

Chapter 23. Data dictionary 681

Table 425. mmeFunction table

Column name Type Constraints Description

entityId Integer FOREIGN KEY

NOT NULL

The identifier of an mmeFunction location entity
from the entityData table.

MMEC 64-character
string

MME code. Uniquely identifies an MME within
an MME Group. This attribute consists of 8 bits.

MMEGI 64-character
string

MME group identifier. Uniquely identifies an
MME Group within a public land mobile network
(PLMN). This attribute consists of 16 bits.

mmeName 64-character
string

NOT NULL Uniquely identifies an MME when more than
one MME configured on same device.

MCC 3-character
string

An MME can support multiple PLMNs. The MCC
attribute specifies the Mobile Country Code
(MCC) of the primary PLMN supported by the
MME. Primary PLMN usually means the sole
PLMN or the PLMN of the operator responsible
for the operation and maintenance of the MME.
The MCC consists of three digits.

MNC 3-character
string

An MME can support multiple PLMNs. The MNC
attribute specifies the Mobile Network Code
(MNC) of the primary PLMN supported by the
MME. Primary PLMN usually means the sole
PLMN or the PLMN of the operator responsible
for the operation and maintenance of the MME.
The length of the MNC (two or three digits)
depends upon the value of the MCC.

supportedPLMNs Integer Count of the number of PLMNs supported by
the MME.

emsDistinguishedNam
e

255-character
string

Distinguished name by which the MME is known
to its element management system (EMS).

emsIpAddress 39-character
string

IP address of the element management system.

vendorName 64-character
string

Vendor or manufacturer of the MME.

vendorModuleType 64-character
string

Vendor-specific MME type.

softwareVersion 64-character
string

Vendor-specific MME sofware version.

operationalState Enumeration Operational state of the mmeFunction. Takes
one of the following values:

• Enabled
• Disabled
• Other
• Unknown

682 IBM Tivoli Network Manager IP Edition: Reference

Table 425. mmeFunction table (continued)

Column name Type Constraints Description

administrativeState Enumeration Administrative state of the mmeFunction. Takes
one of the following values:

• Unlocked
• Locked
• Shutting Down
• Other
• Unknown

mplsTEService
The mplsTEService table represents an MPLS TE service and includes relevant protocol data. This MPLS
TE service runs on a device, as modeled in the hostedService table. Each row in this table corresponds to
a single hosted MPLS TE service. MPLS TE configured devices will host only one MPLS TE service, which in
turn can support multiple MPLS TE tunnels.

The following table describes the mplsTEService table.

Table 426. mplsTEService table

Column name Type Constraints Description

entityId 32-bit integer Foreign Key

Not Null

The identifier of an MPLS TE
service from the entityData
table.

numTunnelsConfigured 32-bit integer The number of configured
tunnels represented by this
service.

numTunnelsActive 32-bit integer The number of active tunnels
represented by this service.

teDistributionProtos 30-character string Names of the TE distribution
protocols in use by the service.

maxNumTunnelHops 32-bit integer Maximum number of hops a TE
tunnel is allowed to make.

mplsTETunnel
The mplsTETunnel table represents the MPLS TE tunnels discovered in the network and includes a
number of tunnel attributes. Each row in this table corresponds to a TE tunnel discovered on a device.

The following table describes the mplsTETunnel table.

Table 427. mplsTETunnel table

Column name Type Constraints Description

adminStatus Enumerated value Takes one of the
following values:

• up
• down
• testing

Administrative status

Chapter 23. Data dictionary 683

Table 427. mplsTETunnel table (continued)

Column name Type Constraints Description

creationTime Timestamp Time when tunnel was created

description 100-character
string

The description of the tunnel

egressLSRId 15-character string Egress LSR ID of the tunnel

entityId 32-bit integer Foreign Key

Not Null

The identifier of an MPLS TE
service from the entityData
table

excludeAllAffinity 32-bit integer Exclude-All constraint

holdPriority 32-bit integer Hold priority

includeAllAffinity 32-bit integer Include-All constraint

includeAnyAffinity 32-bit integer Include-Any constraint

ingressLSRId 15-character string Ingress LSR ID of the tunnel

instanceId 25-character string Unique tunnel identifier

instancePriority 32-bit integer Priority of this tunnel instance

locallyProtected 8-bit integer Denotes whether tunnel is
locally protected or not

name 50-character string The name of the tunnel

numPathChanges 32-bit integer Number of times the tunnel
path has changed

operStatus Enumerated value Takes one of the
following values:

• up
• down
• testing
• unknown
• dormant
• notPresent
• lowerLayer

Down

Operational status

owner 20-character string Owner of the tunnel

resourcePointer 32-bit integer Index into the resource table
for this tunnel.

role Enumerated value Takes one of the
following values:

• head
• transit
• tail

Role of this tunnel

sessionAttributes 90-character string Tunnel session attributes in
text form

684 IBM Tivoli Network Manager IP Edition: Reference

Table 427. mplsTETunnel table (continued)

Column name Type Constraints Description

setupPriority 32-bit integer Setup priority

signallingProtocol Enumerated value Takes one of the
following values:

• none
• rsvp
• crldp
• other

The protocol used to signal the
tunnel

transitions 32-bit integer Number of times the state has
changed

tunnelInstance 25-character string Identifies a specific instance of
the tunnel identified by
tunnelIndex

tunnelIndex 25-character string Tunnel index

uptime 32-bit integer Amount of time tunnel has
been up

xcPointer 128-character
string

Index into the LSP cross-
connect table for this tunnel

mplsTETunnelEndPoint
The mplsTETunnelEndPoint table represents an MPLS TE protocol end point and is implemented on the
interface associated with the configured tunnel. The end point references the associated TE tunnels
unique instance id.

The following table describes the mplsTETunnelEndPoint table.

Table 428. mplsTETunnelEndPoint table

Column name Type Constraints Description

entityId 32-bit integer Foreign Key

Not Null

The identifier of an MPLS TE
service from the entityData
table

instanceId 25-character string Unique tunnel identifier, as
seen in the mplsTETunnel table

Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.

mplsTETunnelResource
The mplsTETunnelResource table represents the MPLS TE Tunnel resource configurations that tunnels
might be associated with.

The following table describes the mplsTETunnelResource table.

Chapter 23. Data dictionary 685

Table 429. mplsTETunnelResource table

Column name Type Constraints Description

entityId 32-bit integer Foreign Key

Not Null

The identifier of an MPLS TE
service from the entityData
table.

resourceIndex 32-bit integer Resource index. This is the
value associated with the
mplsTETunnel tables
resourcePointer.

maxRate 32-bit integer Maximum data rate in bits per
second, where 0 means best
effort.

meanRate 32-bit integer Average data rate in bits per
second. 0 means best effort

maxBurstSize 32-bit integer Maximum burst size in bytes

meanBurstSize 32-bit integer Average burst size in bytes

mplsLSP
The mplsLSP table represents LSPs (Label Switched Paths) that might be traversed by MPLS TE tunnels.

The following table describes the mplsLSP table.

Table 430. mplsLSP table

Column name Type Constraints Description

entityId 32-bit integer Foreign Key

Not Null

The identifier of an MPLS TE
service from the entityData
table.

lspID 40-character string The ID of the LSP.

multiplexer
The multiplexer table describes multiplexer entities.

The following table describes the multiplexer table.

Table 431. multiplexer table

Column name Type Constraints Description

entityId Integer not null The identifier of a multiplexer
entity from the entityData
table.

netcoolAsmsRunning
The netcoolAsmsRunning table lists instances of ASM running on main node devices.

The following table describes the netcoolAsmsRunning table.

686 IBM Tivoli Network Manager IP Edition: Reference

Table 432. netcoolAsmsRunning table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a chassis
device from the entityData
table.

ASMName 64-character string Not null The name of an ASM running on
this chassis device.

networkInterface
The networkInterface table represents interfaces on a chassis device.

The following table describes the networkInterface table.

Table 433. networkInterface

Column name Type Constraints Description

entityId 32–bit integer Foreign key
Not null

The identifier of a physical
interface from the entityData
table.

ifTypeString 45-character string The textual string for the
interface type.

aid 255-character
string

TL1 access identifier.

alternativeName 255-character
string

Alternative name for the device.

bandwidth NUMBER(19) Bandwidth of the interface
measured in kilobits per
second.

configuredDuplex Enumerated value Current® administrative duplex
setting for this interface. Takes
one of the following values:

• HalfDuplex
• FullDuplex
• Auto
• Unknown
• Other

connectorPresent Enumerated value Indicates whether the interface
has a connector. Takes one of
the following values:

• True
• False

dataLinkLayer
Discovery

Integer An indication as to whether this
interface is running a data-link-
layer discovery protocol.

Chapter 23. Data dictionary 687

Table 433. networkInterface (continued)

Column name Type Constraints Description

encapsulation Tiny integer Current encapsulation used on
the interface.

ifType 32–bit integer The interface type.

keepalive 32–bit integer Shows the duration between
keepalive messages.

mediaType Tiny integer Indicates the physical media
being used by this interface.

mtu 32–bit integer The maximum transmission
unit for this interface.

name 255-character
string

Name of the interface.

operationalDuplex Enumerated value Actual duplex of the interface.
Takes one of the following
values:

• HalfDuplex
• FullDuplex
• Auto
• Unknown
• Other

operationalStatus 12-character string Takes one of the following
values:

• unknown
• other
• started
• stopped

physicalAddress 255–character
string

The physical address of the
interface.

promiscuous 5–character string Indicates whether this interface
only accepts packets or frames
addressed to this station. Takes
one of the following values:

• True
• False

688 IBM Tivoli Network Manager IP Edition: Reference

Table 433. networkInterface (continued)

Column name Type Constraints Description

sendLinkStateAlarm 5–character string Indicates whether the interface
or port is configured to send
link state alarms to a
management station. Takes one
of the following values:

• True
• False

ifIndex 32–bit integer The index of the interface.

speed 64–bit integer Normalized actual available
speed of the interface
measured in bits per second.

switchPortMode Tiny integer Indicates whether this physical
interface is a VLAN trunk port.

ifName 128-character
string

The name assigned to the
interface.

ifDescr 255-character
string

A description of the interface.

ifAlias 255-character
string

The alias for the interface.

ifSpeed 64–bit integer An estimate of the current
bandwidth of the interface in
bits per second.

ifHighSpeed 32–bit integer An estimate of the current
bandwidth of the interface in
units of 1,000,000 bits per
second.

ifAdminStatus Enumerated value The required state of the
interface. Takes one of the
following values:

• Up
• Down
• Testing

Chapter 23. Data dictionary 689

Table 433. networkInterface (continued)

Column name Type Constraints Description

ifOperStatus Enumerated value The current operational state of
the interface. Takes one of the
following values:

• Up
• Down
• Testing
• unknown
• dormant
• notPresent
• lowerLayerDown

accessIPAddress 39-character string The IP address through which
this entity was discovered and
will be monitored.

Note: For non-IP entities, such
as layer 1 optical devices, this
field is null.

accessProtocol Enumerated type
(string 7 chars)

An integer representation of the
network protocol used by the
presently-defined zone:

• 0: Unknown
• 1: IPv4
• 2: IPv4 that has been through

network address translation
(NAT)

• 3: IPv6
• 4: Element Management

System (EMS) key for a non-
IP device

portNumber 32–bit integer The port number for this
interface on the chassis device.
The method of determining the
port number is dependent on
the make and model of the
device that is discovered. For
this reason, use this value with
caution.

status 255-character
string

Status of this entity.

networkServiceEntityEndPoint
The networkServiceEntityEndPoint table describes network service entity endpoints.

The following table describes the networkServiceEntityEndPoint table.

690 IBM Tivoli Network Manager IP Edition: Reference

Table 434. networkServiceEntityEndPoint table

Column name Type Constraints Description

entityId Integer not null The identifier of a network service
entity from the entityData
table.

NSEI Integer Network service entity identifier.
An NSEI is used in the
management of frame relay links.
The
networkServiceEntityEndPo
int object helps model that
relationship.

networkVpn
The networkVpn table represents a logical collection of IP addresses collected within a VPN.

The following table describes the networkVpn table.

Table 435. networkVpn table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a network VPN
from the entityData table.

VPNName 255-character
string

Not null The name of the VPN.

VPNType 64-character string Not null The type of VPN.

nrCellCU
The nrCellCU table models a geographical area of radio coverage that is implemented and supported by
physical radio equipment for 5G NR GNB devices, such as towers, amplifiers, and antennas. These are
contained in GNBCUCP/GNBCUUP Functions.

The following table describes the nrCellCU table.

Table 436. nrCellCU table

Column name Type Constraints Description

entityId Integer FOREIGN KEY

NOT NULL

The identifier of an nrCellCU entity
from the entityData table.

nRCellName 64-character string NOT NULL Cell identifier or name of the cell.

emsDistinguishedName 255-character string Distinguished name by which the
nrCellCU is known to its element
management system (EMS).

nRCellId 64-character string NOT NULL Uniquely identifies a cell within a
PLMN. It is often constructed from
gNodeB ID + Physical Cell ID.

Chapter 23. Data dictionary 691

Table 436. nrCellCU table (continued)

Column name Type Constraints Description

nRCellState 10-character string Represents the active state of the
cell. Takes one of the following
values:

• IDLE
• ACTIVE
• INACTIVE
• UNKNOWN

TAI 64-character string NOT NULL Tracking Area Identifier (TAI). This
is a globally unique tracking area
identifier, made up of the PLMN ID
and the TAC.

physicalCellID Integer Physical cell identifier. Takes a
value in the range 0 to 503. The
physical cell id is used by the cell
to encode and decode the data
that it transmits. It is used in a
similar way to the UMTS
scrambling code. To avoid
interference, neighboring cells
should have different physical cell
identifiers. The physical cell id is
derived from the primary and
secondary synchronization signals
(PSS and SSS). The PSS takes a
value from 0 to 2, the SSS takes a
value from 0 to 167, and the
physical cell id is determined
based on the following formula:

PSS + 3*SSS

The result of this calculation
equates to a value of between 0
and 503.

localCellId Integer Local cell id unique within the
nrCellCU.

operationalState 10-character string Operational state of the nrCellCU.
Takes one of the following values:

• Enabled
• Disabled
• Other
• Unknown

692 IBM Tivoli Network Manager IP Edition: Reference

Table 436. nrCellCU table (continued)

Column name Type Constraints Description

administrativeState 13-character string Administrative state of the
nrCellCU. Takes one of the
following values:

• Unlocked
• Locked
• Shutting Down
• Other
• Unknown

nrCellDU
The nrCellDU table models a geographical area of radio coverage that is implemented and supported by
physical radio equipment for 5G NR GNB devices, such as towers, amplifiers, and antennas. These are
contained in GNBDU Functions.

The following table describes the nrCellDU table.

Table 437. nrCellDU table

Column name Type Constraints Description

entityId Integer FOREIGN KEY

NOT NULL

The identifier of an nrCellDU entity
from the entityData table.

nRCellName 64-character string NOT NULL Cell identifier or name of the cell.

emsDistinguishedName 255-character string Distinguished name by which the
nrCellDU is known to its element
management system (EMS).

nRCellId 64-character string NOT NULL Uniquely identifies a cell within a
PLMN. It is often constructed from
gNodeB ID + Physical Cell ID.

nRCellState 10-character string Represents the active state of the
cell. Takes one of the following
values:

• IDLE
• ACTIVE
• INACTIVE
• UNKNOWN

TAI 64-character string NOT NULL Tracking Area Identifier (TAI). This
is a globally unique tracking area
identifier, made up of the PLMN ID
and the TAC.

channelBandwidthUl Float Uplink channel bandwidth.

channelBandwidthDl Float Downlink channel bandwidth.

Chapter 23. Data dictionary 693

Table 437. nrCellDU table (continued)

Column name Type Constraints Description

maximumOutputPower Float Maximum power in Watts for the
sum of all downlink channels that
are allowed to be used
simultaneously in a cell.

userCapacity Integer Maximum number of pieces of
user equipment (UEs) that can
connect to this nrCellDU
simultaneously.

physicalCellID Integer Physical cell identifier. Takes a
value in the range 0 to 503. The
physical cell id is used by the cell
to encode and decode the data
that it transmits. It is used in a
similar way to the UMTS
scrambling code. To avoid
interference, neighboring cells
should have different physical cell
identifiers. The physical cell id is
derived from the primary and
secondary synchronization signals
(PSS and SSS). The PSS takes a
value from 0 to 2, the SSS takes a
value from 0 to 167, and the
physical cell id is determined
based on the following formula:

PSS + 3*SSS

The result of this calculation
equates to a value of between 0
and 503.

localCellId Integer Local cell id unique within the
nrCellDU.

arfcnDl Integer Absolute Radio Frequency
Channel Number (downlink). An
integer value which identifies the
downlink carrier frequency of the
cell.

arfcnUl Integer Absolute Radio Frequency
Channel Number (uplink). An
integer value which identifies the
uplink carrier frequency of the cell.

nRPCI 64-character string Holds the Physical Cell Identity
(PCI) of the NR cell

694 IBM Tivoli Network Manager IP Edition: Reference

Table 437. nrCellDU table (continued)

Column name Type Constraints Description

ssbFreq Float Indicates cell defining SSB
frequency domain position.
Frequency of the cell defining SSB
transmission. The frequency
provided in this attribute identifies
the position of resource element.
The frequency shall be positioned
on the NR global frequency raster,
and within bSChannelBwDL.

Allowed values: 0..3279165

ssbPeriodicity Integer Indicates cell defined SSB
periodicity in number of
subframes(ms). The SSB
periodicity in msec is used for the
rate matching purpose.

Allowed values: 5, 10, 20, 40, 80,
160

ssbSubCarrierSpacing Integer This SSB is used for
synchronization. Its units are in
kHz.

Allowed values: {15, 30, 120, 240}

Note: The allowed values of SSB
used for representing data. For
example, a BWP is 15, 30, 60 and
120 in units of kHz.

operationalState 10-character string Operational state of the nrCellDU.
Takes one of the following values:

• Enabled
• Disabled
• Other
• Unknown

administrativeState 13-character string Administrative state of the
nrCellDU. Takes one of the
following values:

• Unlocked
• Locked
• Shutting Down
• Other
• Unknown

operatingSystem
The operatingSystem table represents the software responsible for interacting with hardware devices.

The following table describes the operatingSystem table.

Chapter 23. Data dictionary 695

Table 438. operatingSystem table

Column name Type Constraints Description

entityId Integer not null The identifier of an operating
system entity from the
entityData table.

assetID 255-character
string

Asset identifier for this entity.

assetTag 255-character
string

Asset tag for this entity.

bootTime 64-bit integer Time duration the operating
system has been online.

buildLevel 255-character
string

Build level of the operating
system without any version or
release information.

ciCategory 255-character
string

Configuration item category for
this entity.

ciRole Tiny integer Identifies the environment, or
role, in which a configuration
item (CI) resides. For example,
if a CI is set aside for test
purposes, then this column can
be set to a value of Test. If a
role is needed that is not
defined in the enumeration for
ciRole, then use the value
Other.

configLastUpdate 255-character
string

UTC date and time when the
information was last altered in
the source application.

currentTime 64-bit integer Current time of the instance of
the operating system.

fqdn 255-character
string

Fully-qualified host name
assigned to the operating
system. In cases where the
datacenter does not implement
the Domain Name System
(DNS), the fully-qualified host
name is the short name.

generalCIRole 255-character
string

Environment, or role, in which a
CI resides.

696 IBM Tivoli Network Manager IP Edition: Reference

Table 438. operatingSystem table (continued)

Column name Type Constraints Description

kernelArchitecture 255-character
string

Raw details of the supported
system architecture of the
kernel component of the
operating system.

kernelVersion 255-character
string

Raw version of the kernel
component of the operating
system.

lastAuditState Tiny integer Last audit state for this device.
Possible values are:

• 0 Unknown
• 1 Other
• 2 Good
• 3 No Physical CI
• 4 No CMDB Record
• 5 Inaccurate CMDB Record

lastAuditTime Timestamp Last audit time this entity.

lastLifecycleStateTime Timestamp Last lifecycle state time for this
entity.

osLevel Integer Operating system level.

Chapter 23. Data dictionary 697

Table 438. operatingSystem table (continued)

Column name Type Constraints Description

lifecycleState Tiny integer Lifecycle state for this device.
Possible values are:

• 0 Unknown
• 1 Other
• 2 Ordered
• 3 Received
• 4 In Test
• 5 Tested
• 6 Installed
• 7 Enabled
• 8 Disabled
• 9 In Maintenance
• 10 Retired
• 11 Archived
• 12 Accepted
• 13 Draft
• 14 Build
• 15 Validate
• 16 ProductionReady
• 17 Production
• 18 Sunset
• 19 PostProduction
• 20 Inventory
• 21 Development
• 22 Offline

majorVersion Integer Major version of the product,
and generally specified as the
first number in a version string
(for example, in WebSphere®

6.1, the '6' is the major
version).

modifier Integer Version specification that is
normally tied to fixes within a
software release, and is
normally specified third in a
version string. The Modifier
may not always be specified, as
in WebSphere 6.1.

698 IBM Tivoli Network Manager IP Edition: Reference

Table 438. operatingSystem table (continued)

Column name Type Constraints Description

name 255-character
string

The textual name of the
physical entity. The value of this
object must be the name of the
component as assigned by the
local device and is suitable for
use in commands entered at
the console of the device.
Depending on the physical
component naming syntax of
the device, this value might be
a text name, for example
console, or a single component
number, for example a port
number or a module number.

osConfidence Integer Field used by IBM Tivoli
Application Dependency
Discovery Manager.

osMode 255-character
string

Current kernel bit architecture
mode of the operating system.

osName 255-character
string

String representation of the
operating system name.

osVersion 255-character
string

Raw text representation of the
operating system version.

osId Integer Field used by IBM Tivoli
Application Dependency
Discovery Manager.

osRelease Integer Raw text representation of the
operating system release.

systemGuid 255-character
string

Globally Unique Identifier
(GUID) for the operating
system.

versionString 255-character
string

Complete version specification
of the entity, expressed as a
single string.

virtualMemorySize 64-bit integer Allocated size of memory that
does not include physical
memory size.

ospfArea
The ospfArea table models an OSPF area.

The following table describes the ospfArea table.

Chapter 23. Data dictionary 699

Table 439. ospfArea table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of an OSPF area
entity from the entityData
table.

areaId 15-character string Not null Identifier for the OSPF area.

isNSSA 8-bit integer Indicates whether this is an
OSPF not-so-stubby area
(NSSA).

isExtArea 8-bit integer Indicates whether this is an
OSPF external area.

ospfEndPoint
The ospfEndPoint table represents an OSPF end point and includes relevant data. This endpoint is
implemented by a physical interface, as modeled in the protocolEndPoint table.

The following table describes the ospfEndPoint table.

Table 440. ospfEndPoint table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of an OSPF
endpoint entity from the
entityData table.

areaID 15-character string Not null

ospfIfAdminState 32-bit integer

ospfIfState Enumerated value Takes one of the
following values:

1: down
2: loopback
3: waiting
4: pointToPoint
5: designated-
Router
6: backup-
DesignatedRouter
7: other-
DesignatedRouter

The state of the OSPF interface.

ospfIfType Enumerated value Takes one of the
following values:

1: broadcast
2: nbma
3: pointTo-
Point
5: pointTo-
Multipoint

The OSPF interface type.

defaultCost 32-bit integer

700 IBM Tivoli Network Manager IP Edition: Reference

Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.

ospfNetworkLSA
The ospfNetworkLSA table represents an OSPF Link-State Advertisement (LSA) and includes relevant
data.

The following table describes the ospfNetworkLSA table.

Table 441. ospfNetworkLSA table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of an OSPF LSA
entity from the entityData
table.

linkStateId 15-character string Not null Specifies link state ID.

networkMask 15-character string Specifies network mask.

networkType 10-character string Indicates the network type.

ospfRoutingDomain
The ospfRoutingDomain table represents an OSPF routing domain.

The following table describes the ospfRoutingDomain table.

Table 442. ospfRoutingDomain table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a network pipe
entity from the entityData
table.

ospfDomain 32-bit integer Not null The domain of the OSPF.

ospfService
The ospfService table represents an OSPF service and includes relevant protocol data. This OSPF service
runs on a device, as modeled in the hostedService table.

The following table describes the ospfService table.

Table 443. ospfService table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of an OSPF
service entity from the
entityData table.

routerId 15-character string Not null The entity ID of the router on
which this OSPF service is
running.

isAreaBdrRtr 8-bit integer Indicates whether this router is
an area border router.

Chapter 23. Data dictionary 701

Table 443. ospfService table (continued)

Column name Type Constraints Description

isAsBdrRtr 8-bit integer Indicates whether this router is
an AS border router.

isDrRtr 8-bit integer Indicates whether this router is
acting as a designated router.

isBdrRtr 8-bit integer Indicates whether this router is
acting as a backup designated
router.

isDrOtherRtr 8-bit integer Indicates that this router is
neither a designated router nor
a backup designated router.

Related reference
hostedService
A hosted service is a service or application running on a specific main node device. The hostedService
table maps a main node device, the hosting entity, to the service or applications that are running on that
device, the hosted entities. The hostedService table belongs to the category entities.

pcrfFunction
The pcrfFunction table models the Policy and Charging Rules Function (PCRF). The PCRF manages the
policy and charging for uplink and downlink service flows and the permitted EPS bearer QoS.

The following table describes the pcrfFunction table.

Table 444. pcrfFunction table

Column name Type Constraints

Description

entityId Integer FOREIGN
KEY

NOT NULL

The identifier of a pcrfFunction entity
from the entityData table.

pcrfFunctionName 64-
character
string

NOT NULL Name of the pcrfFunction (Policy Control
and Charging Rules Function) instance
configured on the physical node that
implements the pcrfFunction

MCC 3-character
string

A PCRF can support multiple PLMNs.
The MCC attribute specifies the Mobile
Country Code (MCC) of the primary
PLMN supported by the PCRF. Primary
PLMN usually means the sole PLMN or
the PLMN of the operator responsible
for the operation and maintenance of
the PCRF. The MCC consists of three
digits.

702 IBM Tivoli Network Manager IP Edition: Reference

Table 444. pcrfFunction table (continued)

Column name Type Constraints

Description

MNC 3-character
string

A PCRF can support multiple PLMNs.
The MNC attribute specifies the Mobile
Network Code (MNC) of the primary
PLMN supported by the PCRF. Primary
PLMN usually means the sole PLMN or
the PLMN of the operator responsible
for the operation and maintenance of
the PCRF. The length of the MNC (two or
three digits) depends upon the value of
the MCC.

supportedPLMNs Integer This is a count of the number of PLMNs
(Public Land Mobile Networks)
supported by the PCRF.

emsDistinguishedName 255-
character
string

Distinguished name by which the PCRF
is known to its element management
system (EMS)

emsIpAddress 39-
character
string

IP address of the element management
system

vendorName 64-
character
string

Vendor or manufacturer of the PCRF

vendorModuleType 64-
character
string

Vendor specific PCRF Type

softwareVersion 64-
character
string

Vendor specific PCRF sofware version

operationalState Enumeratio
n

The operational state of the
pcrfFunction. Takes one of the following
values:

• Enabled
• Disabled
• Other
• Unknown

Chapter 23. Data dictionary 703

Table 444. pcrfFunction table (continued)

Column name Type Constraints

Description

administrativeState Enumeratio
n

The administrative state of the
pcrfFunction. Takes one of the following
values:

• Unlocked
• Locked
• Shutting Down
• Other
• Unknown

pgwFunction
The pgwFunction table models the Packet Data Network Gateway, which provides user plane
connectivity to packet data networks. The role of the PGW is implemented within a network hardware
node and is modelled by NCIM using the pgwFunction entity type. Multiple pgwFunction instances can be
implemented within a single network hardware node.

The following table describes the pgwFunction table.

Table 445. pgwFunction table

Column name Type Constraints Description

entityId Integer FOREIGN KEY

NOT NULL

The identifier of a pgwFunction location entity
from the entityData table.

pgwFunctionName 64-character
string

NOT NULL Name of the PGW function instance configured
on the physical node.

MCC 3-character
string

A PGW can support multiple PLMNs. The MCC
attribute specifies the Mobile Country Code
(MCC) of the primary PLMN supported by the
PGW. Primary PLMN usually means the sole
PLMN or the PLMN of the operator responsible
for the operation and maintenance of the PGW.
The MCC consists of three digits.

MNC 3-character
string

A PGW can support multiple PLMNs. The MNC
attribute specifies the Mobile Network Code
(MNC) of the primary PLMN supported by the
PGW. Primary PLMN usually means the sole
PLMN or the PLMN of the operator responsible
for the operation and maintenance of the PGW.
The length of the MNC (two or three digits)
depends upon the value of the MCC.

supportedPLMNs Integer This is a count of the number of PLMNs (Public
Land Mobile Networks) supported by the PGW

emsDistinguishedNam
e

255-character
string

The distinguished name by which the PGW is
known to its element management system
(EMS)

704 IBM Tivoli Network Manager IP Edition: Reference

Table 445. pgwFunction table (continued)

Column name Type Constraints Description

emsIpAddress 39-character
string

The IP address of the element management
system

vendorName 64-character
string

The vendor/manufacturer of the PGW

vendorModuleType 64-character
string

Vendor specific PGW Type

softwareVersion 64-character
string

Vendor specific PGW sofware version

operationalState Enumeration Operational state of the pgwFunction. Takes one
of the following values:

• Enabled
• Disabled
• Other
• Unknown

administrativeState Enumeration Administrative state of the pgwFunction. Takes
one of the following values:

• Unlocked
• Locked
• Shutting Down
• Other
• Unknown

physicalBackplane
The physicalBackplane table stores the attributes of chassis entities.

The following table describes the physicalBackplane table.

Table 446. physicalBackplane table

Column name Type Constraints Description

entityId 32-bit integer Foreign key
Not null

The identifier of a chassis entity
from the entityData table.

fwRevision 255-character
string

Firmware version for this entity.

hwRevision 255-character
string

Hardware version for this entity.

manufacturer 255-character
string

Vendor-specific hardware type
for this entity.

manufacturingDate Timestamp Date of manufacture for this
entity.

Chapter 23. Data dictionary 705

Table 446. physicalBackplane table (continued)

Column name Type Constraints Description

model 255-character
string

Model name for this entity.

name 255-character
string

The textual name of the
physical entity. The value of this
object must be the name of the
component as assigned by the
local device and is suitable for
use in commands entered at
the console of the device.
Depending on the physical
component naming syntax of
the device, this value might be
a text name, for example
console, or a single component
number, for example a port
number or a module number.

relativePosition 32-bit integer Indication of the relative
position of this entity within the
containment.

swRevision 255-character
string

An indication of the vendor-
specific hardware type of the
physical entity.

serialNumber 255-character
string

The serial number of the entity.

cdmType 32-bit integer The model name of the entity.

physicalIndex 32-bit integer The physical index for this
entity.

vendorType 255-character
string

Vendor assigned type
information.

physicalCard
The physicalCard table represents card entities.

The following table describes the physicalCard table.

Table 447. physicalCard table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a module
(card) entity from the
entityData table.

aisle 255-character
string

Column or longitudinal division
of an interior area.

706 IBM Tivoli Network Manager IP Edition: Reference

Table 447. physicalCard table (continued)

Column name Type Constraints Description

altitude FLOAT Column or longitudinal division
of an interior area.

cardConfigurationState NUMBER(3) Default value for this field is 0.

fruNumber 255-character
string

Specifies the number assigned
to a FRU (field-replaceable
unit) by the manufacturer.

fruSerialNumber 255-character
string

Specifies the serial number
assigned to a FRU (field-
replaceable unit) by the
manufacturer.

fwRevision 255-character
string

Firmware version for this entity.

hwRevision 255-character
string

Hardware version for this entity.

manufacturer 255-character
string

Vendor-specific hardware type
for this entity.

manufacturingDate Timestamp Date of manufacture for this
entity.

model 255-character
string

Model name for this entity.

name 255-character
string

The textual name of the
physical entity. The value of this
object must be the name of the
component as assigned by the
local device and is suitable for
use in commands entered at
the console of the device.
Depending on the physical
component naming syntax of
the device, this value might be
a text name, for example
console, or a single component
number, for example a port
number or a module number.

partNumber 255-character
string

Orderable part number for this
entity.

rfidTag 255-character
string

Radio frequency ID tag
identifier.

rackPosition NUMBER(10) Particular vertical position on a
data center rack.

Chapter 23. Data dictionary 707

Table 447. physicalCard table (continued)

Column name Type Constraints Description

relativePosition 32-bit integer Indication of the relative
position of this entity within the
containment.

cdmRow 255-character
string

Latitudinal division of an
interior area.

swRevision 255-character
string

Software revision.

serialNumber 255-character
string

The serial number of the entity.

systemBoardUUID 255-character
string

Specifies the burned-in
Globally Unique Identifier
(GUID) of this piece of
equipment.

cdmType NUMBER(3) NOT NULL Default value for this field is 8.

userTracking 64-character string Common language location
identification (CLLI) code.

xCoordinate 255-character
string

Angular distance (east and
west) from the prime meridian
on the earth's surface.

yCoordinate 255-character
string

Angular distance (north and
south) from the equator on the
earth's surface.

physicalIndex 32-bit integer The physical index for this
entity.

vendorType 255-character
string

Vendor assigned type
information.

softwareImage 100-character
string

isFRU Indication of whether this piece
of equipment is replaceable in
the field. Takes one of the
following values:

• True
• False

708 IBM Tivoli Network Manager IP Edition: Reference

Table 447. physicalCard table (continued)

Column name Type Constraints Description

operStatus Enumerated value Operational status of this card.
Takes one of the following
values:

• unknown
• ok
• disabled
• okButDiagFailed
• boot
• selfTest
• failed
• missing
• mismatchWithParent
• mismatchConfig
• diagFailed
• dormant
• outOfServiceAdmin
• outOfServiceEnvTemp

adminStatus Enumerated value Administrative status of this
card. Takes one of the following
values:

• unknown
• enabled
• disabled
• reset
• outOfServiceAdmin

numItemsSupported 32-bit integer The number of items supported
by this entity. For example, if
the entity models a layer 1
card, then this number
indicates the number of cards
supported on the entity.
Negative values are ignored.

status 255-character
string

Status of this entity.

primaryState 255-character
string

Primary state of this entity.

This field only applies where
the module is the card of a
layer 1 device.

Chapter 23. Data dictionary 709

Table 447. physicalCard table (continued)

Column name Type Constraints Description

secondaryState 255-character
string

Secondary state of this entity.

This field only applies where
the module is the card of a
layer 1 device.

cardNumber 32-bit integer Card number.

physicalChassis
The physicalChassis table stores the attributes of chassis entities.

The following table describes the physicalChassis table.

Table 448. physicalChassis table

Column name Type Constraints Description

entityId 32-bit integer Foreign key
Not null

The identifier of a chassis entity
from the entityData table.

aisle 255-character
string

Column or longitudinal division
of an interior area.

altitude FLOAT Vertical height above sea level
at the particular geographical
location.

chassisUUID 255-character
string

Unique identifier of this chassis.

fruNumber 255-character
string

Specifies the number assigned
to a FRU (field-replaceable
unit) by the manufacturer.

fruSerialNumber 255-character
string

Specifies the serial number
assigned to a FRU (field-
replaceable unit) by the
manufacturer.

fwRevision 255-character
string

Firmware version for this entity.

hwRevision 255-character
string

Hardware version for this entity.

manufacturer 255-character
string

Vendor-specific hardware type
for this entity.

manufacturingDate Timestamp Date of manufacture for this
entity.

710 IBM Tivoli Network Manager IP Edition: Reference

Table 448. physicalChassis table (continued)

Column name Type Constraints Description

model 255-character
string

The model name of the entity.

name 255-character
string

The textual name of the
physical entity. The value of this
object must be the name of the
component as assigned by the
local device and is suitable for
use in commands entered at
the console of the device.
Depending on the physical
component naming syntax of
the device, this value might be
a text name, for example
console, or a single component
number, for example a port
number or a module number.

partNumber 255-character
string

Orderable part number for this
entity.

rfidTag 255-character
string

Radio frequency ID tag
identifier.

rackPosition 255-character
string

Particular vertical position on a
data center rack.

relativePosition NUMBER(10) Indication of the relative
position of this entity within the
containment.

cdmRow 255-character
string

Latitudinal division of an
interior area.

swRevision 255-character
string

Software revision.

serialNumber 255-character
string

The serial number of the entity.

systemBoardUUID 255-character
string

Specifies the burned-in
Globally Unique Identifier
(GUID) of this piece of
equipment.

cdmType NUMBER(3) NOT NULL Default value for this field is 2.

userTracking 255-character
string

Common language location
identification (CLLI) code.

Chapter 23. Data dictionary 711

Table 448. physicalChassis table (continued)

Column name Type Constraints Description

xCoordinate 255-character
string

Angular distance (east and
west) from the prime meridian
on the earth's surface.

yCoordinate 255-character
string

Angular distance (north and
south) from the equator on the
earth's surface.

physicalIndex 32-bit integer The physical index for this
entity.

vendorType 100-character
string

Vendor assigned type
information.

className 32-character string NOT NULL The name of a class of devices.
The master className field is
in the entityClass table.

upTime 32-bit integer The time (in hundredths of a
second) since the network
management portion of the
system was last reinitialized.

712 IBM Tivoli Network Manager IP Edition: Reference

Table 448. physicalChassis table (continued)

Column name Type Constraints Description

services 100-character
string

A value that indicates the set of
services that this entity
potentially offers. The value is a
sum that initially takes the
value zero. Then, for each layer,
L, in the range 1 through 7, that
this node performs transactions
for, 2 raised to (L - 1) is added
to the sum. For example, a
node that performs only routing
functions would have a value of
4 (2^(3-1)). A node that is a
host offering application
services would have a value of
72 (2^(4-1) + 2^(7-1)). For the
Internet suite of protocols,
values should be calculated
accordingly:

• Layer 1: Physical, for example
repeaters)

• Layer 2: Datalink or
subnetwork, for example
bridges

• Layer 3: Internet, for example
supports IP

• Layer 4: End-to-end, for
example supports TCP

• Layer 7: Applications, for
example supports the SMTP

For systems including OSI
protocols, layers 5 and 6 can
also be considered.

interfaceCount 32-bit integer The number of network
interfaces (regardless of their
current state) present on this
system.

Chapter 23. Data dictionary 713

Table 448. physicalChassis table (continued)

Column name Type Constraints Description

isIpForwarding 16-character string Indication of whether this
entity is acting as an IP
gateway in respect to the
forwarding of datagrams
received by this entity but not
addressed to this entity. IP
gateways forward datagrams,
whereas IP hosts do not, unless
the source is routed through
the host. Takes one of the
following values:

• forwarding
• not-forwarding

accessIPAddress 39-character string The IP address through which
this entity was discovered and
will be monitored.

Note: For non-IP entities, such
as layer 1 optical devices, this
field is null.

accessProtocol Enumerated type
(string 7 chars)

String representation of the
network protocol. Takes one of
the following values:

• Unknown
• IPv4
• IPv6
• EMSKey

discoveryTime Timestamp Time at which the Details agent
attempted to discover the
device. This value is stored
even if the device is not
accessible using SNMP.

Related reference
entityClass
The entityClass table stores information on all device classes and relationships between device classes.
The table belongs to the category entities.
mappings
The mappings table provides a means of looking up an alternative textual name. It is used to map non-
human-readable data to human-readable data. The mappings table belongs to the category mapping.

physicalConnector
The physicalConnector table stores information about physical connectors.

The following table describes the physicalConnector table.

714 IBM Tivoli Network Manager IP Edition: Reference

Table 449. physicalConnector table

Column name Type Constraints Description

entityId 32-bit integer Not null The identifier of a geographical
location from the entityData
table.

fwRevision 64character string Firmware version for this entity.

hwRevision 64character string Hardware version for this entity.

manufacturer 32-bit integer Vendor-specific hardware type
for this entity.

manufacturingDate Timestamp Date of manufacture for this
entity.

model 255-character
string

Model name for this entity.

name 255-character
string

The textual name of the
physical entity. The value of this
object must be the name of the
component as assigned by the
local device and is suitable for
use in commands entered at
the console of the device.
Depending on the physical
component naming syntax of
the device, this value might be
a text name, for example
console, or a single component
number, for example a port
number or a module number.

relativePosition 32-bit integer Indication of the relative
position of this entity within the
containment.

swRevision 255-character
string

Software revision.

serialNumber 255-character
string

The serial number of the entity.

cdmType Tiny integer Not null

physicalIndex 32-bit integer The physical index for this
entity.

vendorType 100-character
string

Vendor assigned type
information.

Chapter 23. Data dictionary 715

physicalFan
The physicalFan table represents fan cooling unit entities.

The following table describes the physicalFan table.

Table 450. physicalFan table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a fan entity from
the entityData table.

fruNumber 255-character string Specifies the number assigned to
a FRU (field-replaceable unit) by
the manufacturer.

fruSerialNumber 255-character string Specifies the serial number
assigned to a FRU (field-
replaceable unit) by the
manufacturer.

fwRevision 255-character string Firmware version for this entity.

hwRevision 255-character string Hardware version for this entity.

manufacturer 255-character string Vendor-specific hardware type for
this entity.

manufacturingDate timestamp Date of manufacture for this
entity.

model 255-character string Model name for this entity.

name 255-character string The textual name of the physical
entity. The value of this object
must be the name of the
component as assigned by the
local device and is suitable for
use in commands entered at the
console of the device. Depending
on the physical component
naming syntax of the device, this
value might be a text name, for
example console, or a single
component number, for example
a port number or a module
number.

partNumber 255-character string Orderable part number for this
entity.

716 IBM Tivoli Network Manager IP Edition: Reference

Table 450. physicalFan table (continued)

Column name Type Constraints Description

relativePosition NUMBER(10),

This format is
NUMBER
(precision,scale),
where precision is
the number of digits
in a number and
scale is the number
of digits to the right
of the decimal point.

Indication of the relative position
of this entity within the
containment.

swRevision 255-character string Software revision.

serialNumber 255-character string The serial number of the entity.

cdmType NUMBER(3)

This format is
NUMBER
(precision,scale),
where precision is
the number of digits
in a number and
scale is the number
of digits to the right
of the decimal point.

Not null By default, this field takes the
value 6

uuid 255-character string Unique identifier of this piece of
equipment.

physicalIndex NUMBER(10),

This format is
NUMBER
(precision,scale),
where precision is
the number of digits
in a number and
scale is the number
of digits to the right
of the decimal point.

The physical index for this entity.

isFRU Enumerated value Indication of whether this piece
of equipment is replaceable in the
field. Takes one of the following
values:

• True
• False

vendorType 255-character string Vendor assigned type
information.

Chapter 23. Data dictionary 717

physicalOther
The physicalOther table stores attributes of a component whose physical entity class is known, but
does not match any of the supported values.

The following table describes the physicalOther table.

Table 451. physicalOther table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a network pipe
entity from the entityData
table.

fwRevision 255-character
string

Firmware version for this entity.

hwRevision 255-character
string

Hardware version for this entity.

manufacturer 255-character
string

Vendor-specific hardware type
for this entity.

model 255-character
string

Model name for this entity.

name 255-character
string

The textual name of the
physical entity. The value of this
object must be the name of the
component as assigned by the
local device and is suitable for
use in commands entered at
the console of the device.
Depending on the physical
component naming syntax of
the device, this value might be
a text name, for example
console, or a single component
number, for example a port
number or a module number.

powerOperStatus Enumerated value Operation status. Takes one of
the following values:

• unknown
• offEnvOther
• on
• offAdmin
• offDenied
• offEnvPower
• offEnvTemp
• offEnvFan

718 IBM Tivoli Network Manager IP Edition: Reference

Table 451. physicalOther table (continued)

Column name Type Constraints Description

powerAdminStatus Enumerated value Administrative status. Takes
one of the following values:

• unknown
• on
• off
• inlineAuto
• inlineOn

relativePosition 32-bit integer Indication of the relative
position of this entity within the
containment.

swRevision 255-character
string

Software revision.

serialNumber 255-character
string

The serial number of the entity.

cdmType NUMBER(3) NOT NULL By default, takes the value 0.

physicalIndex NUMBER(10) The physical index for this
entity.

physicalClass Enumerated value Takes one of the following
values:

• 1: unknown
• 2: other

vendorType 255-character
string

Vendor assigned type
information.

physicalPowerSupply
The physicalPowerSupply table represents a power supply unit (PSU) entity.

The following table describes the physicalPowerSupply table.

Table 452. physicalPowerSupply table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a network pipe
entity from the entityData
table.

fruNumber 255-character
string

Specifies the number assigned
to a FRU (field-replaceable
unit) by the manufacturer.

Chapter 23. Data dictionary 719

Table 452. physicalPowerSupply table (continued)

Column name Type Constraints Description

fruSerialNumber 255-character
string

Specifies the serial number
assigned to a FRU (field-
replaceable unit) by the
manufacturer.

fwRevision 255-character
string

Firmware version for this entity.

hwRevision 255-character
string

Hardware version for this entity.

manufacturer 255-character
string

Vendor-specific hardware type
for this entity.

manufacturingDate Timestamp Date of manufacture for this
entity.

model 255-character
string

Model name for this entity.

name 255-character
string

The textual name of the
physical entity. The value of this
object must be the name of the
component as assigned by the
local device and is suitable for
use in commands entered at
the console of the device.
Depending on the physical
component naming syntax of
the device, this value might be
a text name, for example
console, or a single component
number, for example a port
number or a module number.

partNumber 255-character
string

Orderable part number for this
entity.

relativePosition NUMBER(10), Indication of the relative
position of this entity within the
containment.

swRevision 255-character
string

Software revision.

serialNumber 255-character
string

The serial number of the entity.

cdmType NUMBER(3) NOT NULL By default, this field takes the
value of 5.

uuid 255-character
string

Unique identifier of this piece of
equipment.

720 IBM Tivoli Network Manager IP Edition: Reference

Table 452. physicalPowerSupply table (continued)

Column name Type Constraints Description

physicalIndex NUMBER(10) The physical index for this
entity.

isFRU Enumerated value Indication of whether this piece
of equipment is replaceable in
the field. Takes one of the
following values:

• True
• False

powerOperStatus Enumerated value See the values for
cefcFRUPowerOperStatus in
Eumerations table.

powerAdminStatus Enumerated value See the values for
cefcFRUPowerAdminStatus in
Eumerations table.

vendorType 255-character
string

Vendor assigned type
information.

physicalSensor
The physicalSensor table represents sensor entities.

The following table describes the physicalSensor table.

Table 453. physicalSensor table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a sensor entity
from the entityData table.

aisle 255-character
string

Column or longitudinal division
of an interior area.

altitude Floating-point
number

Vertical height above sea level
at the particular geographical
location.

fwRevision 255-character
string

Firmware version for this entity.

hwRevision 255-character
string

Hardware version for this entity.

manufacturer 255-character
string

Vendor-specific hardware type
for this entity.

model 255-character
string

Model name for this entity.

Chapter 23. Data dictionary 721

Table 453. physicalSensor table (continued)

Column name Type Constraints Description

name 255-character
string

The textual name of the
physical entity. The value of this
object must be the name of the
component as assigned by the
local device and is suitable for
use in commands entered at
the console of the device.
Depending on the physical
component naming syntax of
the device, this value might be
a text name, for example
console, or a single component
number, for example a port
number or a module number.

rackPosition 255-character
string

Particular vertical position on a
data center rack.

relativePosition NUMBER(10) Indication of the relative
position of this entity within the
containment.

cdmRow 255-character
string

swRevision 255-character
string

Software revision.

sensorID 255-character
string

Identifier for a sensor.

serialNumber 255-character
string

The serial number of the entity.

cdmType NUMBER(3) The default value for this field is
7.

xCoordinate 255-character
string

Angular distance (east and
west) from the prime meridian
on the earth's surface.

yCoordinate 255-character
string

Angular distance (north and
south) from the equator on the
earth's surface.

physicalIndex NUMBER(10) The physical index for this
entity.

722 IBM Tivoli Network Manager IP Edition: Reference

Table 453. physicalSensor table (continued)

Column name Type Constraints Description

sensorType Enumerated value Sensor type. Takes one of the
following values:

• other
• unknown
• voltsAC
• voltsDC
• amperes
• watts
• hertz
• celsius
• percentRH
• rpm
• cmm
• truthValue
• specialEnum

sensorScale Enumerated value Sensor scale. Takes one of the
following values:

• unknown
• yocto
• zepto
• atto
• femto
• pico
• nano
• micro
• milli
• Units
• kilo
• mega
• giga
• tera
• exa
• peta
• zetta
• yotta

Chapter 23. Data dictionary 723

Table 453. physicalSensor table (continued)

Column name Type Constraints Description

sensorStatus Enumerated value Sensor status. Takes one of the
following values:

• ok
• unavailable
• nonoperational
• unknown

sensorValue 255-character
string

The value for the sensor.

vendorType 255-character
string

Vendor assigned type
information.

physicalSlot
The physicalSlot table represents slot entities.

If you want this table to be populated with MIB data, you must configure the Entity agent to run during the
discovery process. The Entity agent discovers detailed containment information from the Entity MIB. By
default, the Entity agent is configured not to run during discovery.

The following table describes the physicalSlot table:

Table 454. physicalSlot table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a slot entity from
the entityData table.

fwRevision 255-character string Firmware version for this entity.

hwRevision 255-character string Hardware version for this entity.

manufacturer 255-character string Vendor-specific hardware type for
this entity.

model 255-character string Model name for this entity.

724 IBM Tivoli Network Manager IP Edition: Reference

Table 454. physicalSlot table (continued)

Column name Type Constraints Description

name 255-character string The textual name of the physical
entity. The value of this object
must be the name of the
component as assigned by the
local device and is suitable for
use in commands entered at the
console of the device. Depending
on the physical component
naming syntax of the device, this
value might be a text name, for
example console, or a single
component number, for example
a port number or a module
number.

slotNumber NUMBER(10) Slot number.

relativePosition NUMBER(10) Indication of the relative position
of this entity within the
containment.

swRevision 255-character string Software revision.

serialNumber 255-character string The serial number of the entity.

slotState Current state of the slot.

cdmType NUMBER(3) The default value for this field is
7.

powerRedundancy
Mode

17-character string Takes one of the following values:

• unknown
• notSupported
• redundant
• combined

physicalIndex NUMBER(10) The physical index for this entity.

numItemsSupported NUMBER The number of items supported
by this slot. For example, if the
slot models a layer 1 shelf, then
this number indicates the number
of cards supported on the shelf.
Negative values are ignored.

status 255-character string Status of this entity.

Chapter 23. Data dictionary 725

Table 454. physicalSlot table (continued)

Column name Type Constraints Description

primaryState 255-character string Primary state of this entity.

This field only applies where the
slot is the rack or shelf of a layer
1 device.

secondaryState 255-character string Secondary state of this entity.

This field only applies where the
slot is the rack or shelf of a layer
1 device.

vendorType 255-character string Vendor assigned type
information.

pimEndpoint
The pimEndPoint table represents the Protocol Independent Multicast (PIM) end points discovered in the
network and their associated attributes.

The following table describes the pimEndPoint table.

Table 455. pimEndPoint table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a PIM end
point from the entityData
table.

pimmode Enumerated value Takes one of the
following values:

• unknown
• sparse
• dense
• sparseDense

The PIM mode.

designatedRouter 15-character string IP address of the Designated
Router.

helloInterval 32-bit integer Frequency (seconds) of PIM
Hello message transmission.

joinPruneInterval 32-bit integer Frequency (seconds) of PIM
join/prune messages

csbrPreference 32-bit integer Candidate BSR preference
value. A value of -1 means it is
not a BSR candidate.

isCandidateRP 8-bit integer Indicates that the end point
acts as a Candidate RP.

rpCandidateGroup 15-character string IP address of multicast group
for which this end point is a
Candidate RP.

726 IBM Tivoli Network Manager IP Edition: Reference

Table 455. pimEndPoint table (continued)

Column name Type Constraints Description

rpCandidateMask 15-character string Mask of multicast group for
which this end point is a
Candidate RP

crpHoldTime 32-bit integer The hold time for the Candidate
RP. A value of 0 indicates that
this end point is not an RP
candidate.

bsrAddress 15-character string Bootstrap Router IP address

bsrExpiryTime 32-bit Integer Time remaining until BSR is
considered down (and a new
one selected).

Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.

pimNetwork
The pimNetwork table holds the Protocol Independent Multicast (PIM) Network collection entity which
collects all PIM-enabled routers.

The following table describes the pimNetwork table.

Table 456. pimNetwork table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of the PIM
Network collection entity.

pimService
The pimService table represents a Protocol Independent Multicast (PIM) service and includes relevant
protocol data.

The following table describes the pimService table.

Table 457. pimService table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a PIM service
entity from the entityData
table.

joinPruneInterval 32-bit integer The PIM join/prune message
interval (in seconds).

Chapter 23. Data dictionary 727

Table 457. pimService table (continued)

Column name Type Constraints Description

isRP 8-bit integer Indicates whether the service is
known to be acting as a
Rendezvous Point for one or
more Multicast Groups.

isCRP 8-bit integer Indicates whether the service
acts as a Candidate
Rendezvous Point for one or
more Multicast Groups.

isBSR 8-bit integer Indicates whether the service is
known to be acting as a
Bootstrap Router.

isCBSR 8-bit integer Indicates whether the service
acts as a Candidate Bootstrap
Router.

isDR 8-bit integer Indicates whether the service
acts as a Designated Router.

plmn
The plmn table models a Public Land Mobile Network (PLMN). A PLMN is a network that provides land
mobile telecommunications services to the public. Each operator providing mobile services has its own
PLMN.

The following table describes theplmn table.

Table 458. plmn table

Column
name

Type Constraints Description

entityId Integer FOREIGN
KEY

NOT NULL

The identifier of a plmn entity from the entityData
table.

plmnName 64-character
string

Name or description of the PLMN

MCC 3-character
string

Specifies the Mobile Country Code (MCC) of the PLMN.
The MCC consists of three digits.

MNC 3-character
string

Specifies the Mobile Network Code (MNC) of the PLMN.
The length of the MNC (two or three digits) depends upon
the value of the MCC.

portEndPoint
The portEndPoint holds data about TCP/UDP endpoints found by the NMAPScan agent.

The following table describes the portEndPoint table.

728 IBM Tivoli Network Manager IP Edition: Reference

Table 459. portEndPoint table

Column name Type Constraints Description

entityId Integer Not null

Primary key

The entityId of the
portEndPoint entity.

portId Integer Not null The numeric port ID.

portState 15-character string The port state, such as open/
closed.

protocol 5-character string The protocol, whether TCP or
UDP.

serviceProduct 255-character
string

The name of the port service.

serviceVersion 75-character string The version if available, such as
5.0.54a-enterprise.

serviceName 75-character string The service name, typically
short, such as ftp.

Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.

probe
The probe table holds probe specific details of all discovered network probes.

The following table describes the probe table.

Table 460. probe table

Column name Type Constraints Description

adminStatus Enumerated value The administrative status of the
probe. Takes one of the
following values:

• active
• inactive
• other

callDuration 32-bit integer Duration for RTP/Video probes.

codecType Enumerated value Codec type used by Jitter
probes. Takes one of the
following values:

• unknown
• g711Alaw
• g711Ulaw
• g729A

Chapter 23. Data dictionary 729

Table 460. probe table (continued)

Column name Type Constraints Description

differentiatedServic
e

32-bit integer Type of service octet value (if
set in IP header).

entityId 32-bit integer Primary Key

Foreign Key
(entityData table)

Not Null

Unique identifier for the entity.

frequency 32-bit integer Duration between probe
operations, in seconds.

httpVersion 10-character string HTTP server version. Used with
HTTP probes.

icpifAdvantage 32-bit integer Used in Jitter probe ICPIF
calculations.

name 32-character string Name of the probe.

nativeType 32-character string A human-readable textual
representation of the
nativeTypeId.

nativeTypeId 32-bit integer An integer representation of the
probe type. The values depend
on the data definition in the
probe.

operStatus Enumerated value The operational status of the
probe. Takes one of the
following values:

• active
• inactive
• other

owner 255-character
string

Owner/creator of the probe
instance.

packetInterval 32-bit integer The delay between packets, in
ms.

probeCount 32-bit integer Number of packets to transmit.

probeId 255-character
string

Unique probe identifier.
Identifies the probe uniquely at
a device level.

target 255-character
string

Destination address. Can be an
IP address.

730 IBM Tivoli Network Manager IP Edition: Reference

Table 460. probe table (continued)

Column name Type Constraints Description

targetPort 32-bit integer Port number on the target.

timeout 32-bit integer The maximum time to wait for a
proper operation to complete,
in ms.

source 255-character
string

Source address. Can be an IP
address.

sourceInterface 32-bit integer Source interface index.

sourcePort 32-bit integer The port number on the source.

sourceVoicePort 255-character
string

Specifies the voice port on the
gateway.

vrfName 255-character
string

VRF associated with this probe.

probeCollection
The probeCollection table represents entities that collect probes, or further probe collections. This
table is used to provide a hierarchical probe collection and to allow the display of probes and the devices
they relate to.

The following table describes the probeCollection table.

Table 461. probeCollection table

Column name Type Constraints Description

entityId 32-bit integer Primary Key

Foreign Key
(entityData table)

Not Null

The entity identifier.

probeEndPoint
The probeEndPoint table provides probe-specific protocol end point information. These end points are
implemented by interfaces that are identified as a probe source or target.

The following table describes the probeEndPoint table.

Table 462. probeEndPoint table

Column name Type Constraints Description

entityId 32-bit integer Primary Key

Foreign Key
(entityData table)

Not Null

Unique identifier for the entity.

Chapter 23. Data dictionary 731

Table 462. probeEndPoint table (continued)

Column name Type Constraints Description

role Enumerated value The role of this particular
endpoint in the related probe
configuration. Takes one of the
following values:

• other
• source
• target

probeService
The probeService table holds details of the technology that provides network probes for a given device.

The following table describes the probeService table.

Table 463. probeService table

Column name Type Constraints Description

entityId 32-bit integer Primary Key

Foreign Key
(entityData table)

Not Null

Unique identifier for the entity.

maxProbes 32-bit integer Total number of probes
supported.

monitorType 16-character string Name of the technology that
provides the probes. For
example, IPSLA. This value is
used to group probes.

responderEnabled Enumerated value Indicates whether the device is
configured as a responder.

Takes one of the following
values:

• true
• false

updateTime Timestamp Time of last update.

version 255-character
string

Version of the monitor type.

ranBaseStation
The ranBaseStation table describes Radio Access Network (RAN) base stations.

The following table describes the ranBaseStation table.

732 IBM Tivoli Network Manager IP Edition: Reference

Table 464. ranBaseStation table

Column name Type Constraints Description

baseStationId varchar(64) not null A string identifying the base
station. In a naming convention
that follows the GSM 04.08
standard, the string consists of
the Network Color Code (NCC)
and the Base Station Code
(BSC).

entityId Integer not null The identifier of a base station
entity from the entityData
table.

ranTechnologyType varchar(10) The type of wireless technology
used by the base station.
Possible values are:

• Unknown
• Other
• GSM
• GPRS
• UMTS

ranBaseStationController
The ranBaseStationController table describes Radio Access Network (RAN) base station controllers.

The following table describes the ranBaseStationController table.

Table 465. ranBaseStationController table

Column name Type Constraints Description

baseStationControllerId varchar(64) A string identifying the base
station controller. In a naming
convention that follows the
GSM 04.08 standard, the string
consists of the Base Station
Color Code (BSC).

entityId Integer not null The identifier of a base station
controllers entity from the
entityData table.

ranTechnologyType varchar(10) The type of wireless technology
used by the base station.
Possible values are:

• Unknown
• Other
• GSM
• GPRS
• UMTS

Chapter 23. Data dictionary 733

ranCircuitSwitchedCore
The ranCircuitSwitchedCore table describes RAN circuit switched core entities, which are collection
entities that collect the entities involved in the circuit switched core network of a given mobile phone
network.

The following table describes the ranCircuitSwitchedCore table.

Table 466. ranCircuitSwitchedCore table

Column name Type Constraints Description

entityId Integer not null The identifier of a RAN circuit
switched core entity from the
entityData table.

mcc varchar(64) Mobile country code, which
consists of three digits. The
MCC uniquely identifies the
country of domicile of the
mobile subscriber.

mnc varchar(64) Mobile network code, which
consists of two or three digits
for GSM and UMTS
applications. The MNC
identifies the home PLMN
(Public Land Mobile Network)
of the mobile subscriber. The
length of the MNC (two or three
digits) depends on the value of
the MCC.

ranGGSN
The ranGGSN table describes Radio Access Network (RAN) Gateway GPRS Serving Nodes (GGSNs).

The following table describes the ranGGSN table.

Table 467. ranGGSN table

Column name Type Constraints Description

accessPointName varchar(64) The Access Point Name is a
unique name that is associated
with the IP address of a specific
GGSN through a DNS lookup.

entityId Integer not null The identifier of a GGSN entity
from the entityData table.

ggsnId varchar(64) A unique identifier for the
GGSN.

734 IBM Tivoli Network Manager IP Edition: Reference

Table 467. ranGGSN table (continued)

Column name Type Constraints Description

ranTechnologyType varchar(10) The type of wireless technology
used by the base station.
Possible values are:

• Unknown
• Other
• GSM
• GPRS
• UMTS

ranGSMCell
The ranGSMCell table describes Radio Access Network (RAN) GSM cells.

The following table describes the ranGSMCell table.

Table 468. ranGSMCell table

Column name Type Constraints Description

bcc integer The Base station Color Code
(BCC), which is used to
distinguish neighboring cells of
the same operator on the same
channel.

broadcastPower varchar(64) The broadcast channel power
level (dBm).

broadcastScrambling
Code

integer From 0 to 500. Used to generate the primary
scrambling code.

cellId varchar(64) Unique identifier for the cell.

entityId Integer not null The identifier of a GSM cell entity
from the entityData table.

hopSeqNum integer From 0 to 63. The hopping sequence number.
Defines the set of channels that
the cell is to use for frequency
hopping.

msTxPower integer The maximum power level that
the mobile station is allowed to
use.

ncc integer The Network Color Code (NCC) is
used to distinguish neighboring
cells between operators of
different countries broadcasting
channel.

racc integer The Routing Area Color Code.

Chapter 23. Data dictionary 735

Table 468. ranGSMCell table (continued)

Column name Type Constraints Description

ranTechnologyType varchar(10) The type of wireless technology
used by the base station. Possible
values are:

• Unknown
• Other
• GSM
• GPRS
• UMTS

rxLevAccessMin integer The minimum Rx signal strength
threshold.

tsc integer From 0 to 7. Specifies the Training Sequence
Code (TSC) used in the cell.

ranLocationArea
The ranLocationArea table describes Radio Access Network (RAN) location areas, in which there may be
one or more GSM/UMTS cells. This entity is a collection and it models those devices within which a given
mobile user can move for voice access before having to switch to a different location area.

The following table describes the ranLocationArea table.

Table 469. ranLocationArea table

Column name Type Constraints Description

entityId Integer not null The identifier of a RAN location
area entity from the
entityData table.

lac varchar(64) not null The Location Area Code (LAC)
identifies a location area within
a PLMN.

mcc varchar(64) not null The three-digit Mobile Country
Code (MCC) uniquely identifies
the country of the mobile
subscriber.

mnc varchar(64) not null The Mobile Network Code
(MNC) identifies the home
PLMN (Public Land Mobile
Network) of the mobile
subscriber. The length of the
MNC (two or three digits)
depends on the value of the
MCC (Mobile Country Code).

ranMediaGateway
The ranMediaGateway table describes Radio Access Network (RAN) media gateways.

The following table describes the ranMediaGateway table.

736 IBM Tivoli Network Manager IP Edition: Reference

Table 470. ranMediaGateway table

Column name Type Constraints Description

entityId Integer not null The identifier of a media
gateway entity from the
entityData table.

mgwId varchar(64) Unique identifier for the media
gateway.

ranMobileSwitchingCentre
The ranMobileSwitchingCentre table describes Radio Access Network (RAN) Mobile Switching Centers.

The following table describes the ranMobileSwitchingCentre table.

Table 471. ranMobileSwitchingCentre table

Column name Type Constraints Description

entityId Integer not null The identifier of a transceiver
entity from the entityData
table.

mscId varchar(64) A unique, enterprise-specific
identifier for the mobile
switching center.

mscType varchar(10) The type of the mobile
switching centers. Possible
values are:

• Unknown
• Other
• Voice Switch
• MSCS
• Type2G3G

ranTechnologyType varchar(10) The type of wireless technology
used by the base station.
Possible values are:

• Unknown
• Other
• GSM
• GPRS
• UMTS

ranMSS
The ranMSS table describes Radio Access Network (RAN) mobile switching center servers.

The following table describes the ranMSS table.

Chapter 23. Data dictionary 737

Table 472. ranMSS table

Column name Type Constraints Description

entityId Integer not null The identifier of a mobile
switching center server entity
from the entityData table.

mssId varchar(64) Unique identifier for the MMS.

ranNodeB
The ranNodeB table describes Node B entities.

The following table describes the ranNodeB table.

Table 473. ranNodeB table

Column name Type Constraints Description

entityId Integer not null The identifier of a Node B entity
from the entityData table.

ranTechnologyType varchar(10) The wireless technology type
for this entity, which can take
any of the following values:

• 0: Unknown
• 1: Other
• 2: GSM
• 3: GPRS
• 4: UMTS

nodeBId varchar(64) not null Node B entity identifier string

ranNodeBLocalCell
The ranNodeBLocalCell table models the local Node B identifier. This identifier is related to local
hardware that is available to manage a given cell.

The following table describes the ranNodeBLocalCell table.

Table 474. ranNodeBLocalCell table

Column name Type Constraints Description

entityId Integer not null The identifier of a Node B local
cell entity from the
entityData table.

ranTechnologyType varchar(10) The wireless technology type
for this entity, which can take
any of the following values:

• 0: Unknown
• 1: Other
• 2: GSM
• 3: GPRS
• 4: UMTS

738 IBM Tivoli Network Manager IP Edition: Reference

Table 474. ranNodeBLocalCell table (continued)

Column name Type Constraints Description

localCellId varchar(64) not null Node B local cell entity
identifier string

ranPacketControlUnit
The ranPacketControlUnit table describes Radio Access Network (RAN) base station controllers.

The following table describes the ranPacketControlUnit table.

Table 475. ranPacketControlUnit table

Column name Type Constraints Description

entityId Integer not null The identifier of a transceiver
entity from the entityData
table.

pcuId varchar(64) Unique internal identifier for
the Packet Control Unit. In
some networks, this is the
same as the Base Station
Controller ID.

ranTechnologyType varchar(10) The type of wireless technology
used by the base station.
Possible values are:

• Unknown
• Other
• GSM
• GPRS
• UMTS

ranPacketSwitchedCore
The ranPacketSwitchedCore table describes RAN packet switched core entities, which are collection
entities that collect the entities involved in the packet switch core network of a given mobile phone
network.

The following table describes the ranPacketSwitchedCore table.

Table 476. ranPacketSwitchedCore table

Column name Type Constraints Description

entityId Integer not null The identifier of a RAN packet
switched core entity from the
entityData table.

mcc varchar(64) Mobile country code, which
consists of three digits. The
MCC uniquely identifies the
country of domicile of the
mobile subscriber.

Chapter 23. Data dictionary 739

Table 476. ranPacketSwitchedCore table (continued)

Column name Type Constraints Description

mnc varchar(64) Mobile network code, which
consists of two or three digits
for GSM and UMTS
applications. The MNC
identifies the home PLMN
(Public Land Mobile Network)
of the mobile subscriber. The
length of the MNC (two or three
digits) depends on the value of
the MCC.

ranRadioCore
The ranRadioCore table describes RAN radio core entities, which are collection entities that collect the
entities involved in the RAN network radio core; that is, radio network controller (RNC) and base station
controller (BSC) entities.

The following table describes the ranRadioCore table.

Table 477. ranRadioCore table

Column name Type Constraints Description

entityId Integer not null The identifier of a RAN radio
core entity from the
entityData table.

mcc varchar(64) Mobile country code, which
consists of three digits. The
MCC uniquely identifies the
country of domicile of the
mobile subscriber.

mnc varchar(64) Mobile network code, which
consists of two or three digits
for GSM and UMTS
applications. The MNC
identifies the home PLMN
(Public Land Mobile Network)
of the mobile subscriber. The
length of the MNC (two or three
digits) depends on the value of
the MCC.

ranRadioNetworkController
The ranRadioNetworkController table describes RAN radio network controller entities.

The following table describes the ranRadioNetworkController table.

740 IBM Tivoli Network Manager IP Edition: Reference

Table 478. ranRadioNetworkController table

Column name Type Constraints Description

entityId Integer not null The identifier of a RAN radio
network controller entity from
the entityData table.

ranTechnologyType varchar(10) The wireless technology type
for this entity, which can take
any of the following values:

• 0: Unknown
• 1: Other
• 2: GSM
• 3: GPRS
• 4: UMTS

rncId varchar(64) not null RAN radio network controller
entity identifier string. A unique
identifier in the network in
which the RNC is operational.

ranRoutingArea
The ranRoutingArea table describes RAN routing area entities, which are devices within which a given
mobile user can move for data access before having to switch to a different routing area.

The following table describes the ranRoutingArea table.

Table 479. ranRoutingArea table

Column name Type Constraints Description

entityId Integer not null The identifier of a RAN routing
area entity from the
entityData table.

rac varchar(10) not null Enterprise-specific routing area
code.

mcc varchar(64) not null Mobile country code, which
consists of three digits. The
MCC uniquely identifies the
country of domicile of the
mobile subscriber.

mnc varchar(64) not null Mobile network code, which
consists of two or three digits
for GSM and UMTS
applications. The MNC
identifies the home PLMN
(Public Land Mobile Network)
of the mobile subscriber. The
length of the MNC (two or three
digits) depends on the value of
the MCC.

Chapter 23. Data dictionary 741

Table 479. ranRoutingArea table (continued)

Column name Type Constraints Description

lac varchar(64) not null Location area code, which is a
fixed length code (of 2 octets)
identifying a location area
within a PLMN.

ranSector
TheranSector table describes Radio Access Network (RAN) cell sectors.

The following table describes the ranSector table.

Table 480. ranSector table

Column name Type Constraints Description

beamDirection integer The beam direction of the
sector. Degrees 0 – North, 90
East, 180 South, 270 West.

entityId Integer not null The identifier of a cell sector
entity from the entityData
table.

sectorHeight integer Height of the sector above
ground in centimeters.

sectorId varchar (64) not null Enterprise-specific sector
identifier.

ranSGSN
The ranSGSN table describes Radio Access Network (RAN) Serving GPRS Serving Nodes (SGSNs).

The following table describes the ranSGSN table.

Table 481. ranSGSN table

Column name Type Constraints Description

entityId Integer not null The identifier of a SGSN entity
from the entityData table.

ranTechnologyType varchar(10) The type of wireless technology
used by the base station.
Possible values are:

• Unknown
• Other
• GSM
• GPRS
• UMTS

sgsnId varchar(64) not null Unique identifier for the SGSN.

742 IBM Tivoli Network Manager IP Edition: Reference

ranTransceiver
The ranTransceiver table describes transceivers.

The following table describes the ranTransceiver table.

Table 482. ranTransceiver table

Column name Type Constraints Description

entityId Integer not null The identifier of a transceiver
entity from the entityData
table.

transceiverType varchar(10) The type of transceiver, which
can be any of the following
values:

• 0: Unknown
• 1: Other
• 2: Normal
• 3: Dedicated
• 4: Extended

trxId varchar(64) not null Transceiver identifier string

ranUtranCell
The ranUtranCell table describes Radio Access Network (RAN) UTRAN cells.

The following table describes the ranUtranCell table.

Table 483. ranUtranCell table

Column name Type Constraints Description

broadcastPower varchar(64) The broadcast channel power
level (dBm).

broadcastScrambling
Code

integer From 0 to 500. Used to generate a number for
code scrambling.

cellId varchar(64) not null Unique identifier for the cell.

entityId Integer not null The identifier of a transceiver
entity from the entityData
table.

maxTransmission
Power

integer Maximum transmission power for
all downlink channels that are
allowed to be used
simultaneously in a cell, added
together Unit: 0.1 dBm Range
0-500.

primarySchPower integer Primary synchronization power.
Unit: 0.1 dB Range: 350-150.

primaryScrambling
Code

long A code used to separate the
transmission of one cell from
another.

Chapter 23. Data dictionary 743

Table 483. ranUtranCell table (continued)

Column name Type Constraints Description

secondarySchPower integer Secondary synchronization
power. Unit: 0.1 dB Range:
350-150.

uarfcnDL integer Absolute downlink radio
frequency number.

uarfcnUL integer Absolute uplink radio frequency
number.

rtExportList
The rtExportList table stores export route targets associated with Virtual Forwarding and Routing (VRF).

The following table describes the rtExportList table.

Table 484. rtExportList table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a route target
export list entity from the
entityData table.

routeTarget 64-character string Not null Router target value.

rtImportList
The rtImportList table stores import route targets associated with Virtual Forwarding and Routing (VRF).

The following table describes the rtImportList table.

Table 485. rtImportList table

Column Name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a route target
import list entity from the
entityData table.

routeTarget 64-character string Not null The router target value.

sgwFunction
The sgwFunction table models the Serving Gateway (SGW), which resides in the user plane where it
forwards and routes packets to and from the eNodeB and packet data network gateway (PGW). The role
of the SGW is implemented within a network hardware node and is modelled by NCIM using the
sgwFunction entity type. Multiple sgwFunction instances can be implemented within a single network
hardware node.

The following table describes the sgwFunction table.

Table 486. sgwFunction table

Column name Type Constraints Description

entityId Integer FOREIGN KEY

NOT NULL

The identifier of an sgwFunction location entity
from the entityData table.

744 IBM Tivoli Network Manager IP Edition: Reference

Table 486. sgwFunction table (continued)

Column name Type Constraints Description

sgwFunctionName 64-character
string

NOT NULL Name of the SGWFunction instance configured
on Physical node that implement the
SGWFunction

MCC 3-character
string

An SGW can support multiple PLMNs. The MCC
attribute specifies the Mobile Country Code
(MCC) of the primary PLMN supported by the
SGW. Primary PLMN usually means the sole
PLMN or the PLMN of the operator responsible
for the operation and maintenance of the SGW.
The MCC consists of three digits.

MNC 3-character
string

An SGW can support multiple PLMNs. The MNC
attribute specifies the Mobile Network Code
(MNC) of the primary PLMN supported by the
SGW. Primary PLMN usually means the sole
PLMN or the PLMN of the operator responsible
for the operation and maintenance of the SGW.
The length of the MNC (two or three digits)
depends upon the value of the MCC.

supportedPLMNs Integer This is a count of the number of PLMNs (Public
Land Mobile Networks) supported by the SGW

emsDistinguishedNam
e

255-character
string

The distinguished name by which the SGW is
known to its element management system
(EMS)

emsIpAddress 39-character
string

The IP address of the element management
system

vendorName 64-character
string

The vendor/manufacturer of the SGW

vendorModuleType 64-character
string

Vendor specific SGW Type

softwareVersion 64-character
string

Vendor specific SGW sofware version

operationalState Enumeration Operational state of the sgwFunction. Takes
one of the following values:

• Enabled
• Disabled
• Other
• Unknown

administrativeState Enumeration Administrative state of the sgwFunction. Takes
one of the following values:

• Unlocked
• Locked
• Shutting Down
• Other
• Unknown

Chapter 23. Data dictionary 745

snmpSystem
The snmpSystem table represents a Simple Network Management Protocol (SNMP) managed host on a
network.

The following table describes the snmpSystem table.

Table 487. snmpSystem table

Column name Type Constraints Description

entityId Integer not null The identifier of an
snmpSystem entity from the
entityData table.

sysContact 255-character
string

The textual identification of the
contact person for this
managed node, and information
on how to contact this person.
If no contact information is
known, the value is the zero-
length string.

sysDescr 255-character
string

A textual description of the
entity. This value must include
the full name and version
identification of the system
hardware type, software
operating-system, and
networking software.

sysLocation 255-character
string

The physical location of this
node, for example "telephone
closet, 3rd floor." If the location
is unknown, the value is the
zero-length string.

sysName 255-character
string

An administratively-assigned
name for this managed node.
By convention, this is the fully-
qualified domain name of the
node. If the name is unknown,
the value is the zero-length
string.

sysObjectId 100-character
string

The vendor's authoritative
identification of the network
management subsystem
contained in the entity.

subnet
The subnet table represents a logical collection of IP addresses collected within a subnet.

The following table describes the subnet table

746 IBM Tivoli Network Manager IP Edition: Reference

Table 488. subnet table

Column name Type Constraints Description

entityId 32-bit integer Not null
Foreign key

The identifier of a subnet entity
from the entityData table.

network 39-character string Not null The IP address of this subnet.

netmask 39-character string Not null The netmask for this subnet.

protocol String value An integer representation of the
IP protocol used by the
presently-defined zone:

• 1: IPv4
• 2: IPv4 that has been through

network address translation
(NAT)

• 3: IPv6

netmaskBits 32–bit integer Netmask bits for the subnet

addressSpace 255–character
string

Relevant NAT address space if
network address translation is
being used.

trackingArea
The trackingArea table models an LTE tracking area.

The following table describes the trackingArea table.

Table 489. trackingArea table

Column name Type Constraints Description

entityId Integer FOREIGN KEY

NOT NULL

The identifier of a trackingArea location entity
from the entityData table.

TAC 64-character
string

Tracking Area Code (TAC), consisting of 16 bits.
This is an identifier for the tracking area and is
unique within a public land mobile network
(PLMN).

TAI 64-character
string

NOT NULL Tracking Area Identifier (TAI). This is a globally
unique tracking area identifier, made up of the
PLMN ID and the TAC.

trackingAreaName 64-character
string

Name of the tracking area.

transmissionTp
The transmissionTp table provides information about transmission interface entities in the network.

The following table describes the transmissionTp table.

Chapter 23. Data dictionary 747

Table 490. transmissionTp table

Column name Type Constraints Description

entityId 32–bit integer Not null The identifier of a transmission
interface entity from the
entityData table.

tpType 3-character string The type of transmission
interface entity:

• Physical termination point
(PTP)

• Connection termination point
(CTP)

primaryState 255-character
string

Primary state of this entity.

secondaryState 255-character
string

Secondary state of this entity.

layerRate 255-character
string

Layer rate of the transmission
interface entity.

isEdgePoint 5-character string Label of the transmission
interface entity. Takes one oft
he following values:

• True
• False

mappingMode 255-character
string

Mapping mode of the
transmission interface entity.

userPlaneViewCollection
The userPlaneViewCollection table supports the dynamic collection views under LTE Network
Topology > User Plane by Tracking Area in the Network Views. Each instance of this entity type collects
the eNodeBs in the corresponding tracking area, together with the devices that these eNodeBs are
connected to on the user plane.

The following table describes the userPlaneViewCollection table.

Table 491. userPlaneViewCollection table

Column name Type Constraints Description

entityId Integer FOREIGN KEY

NOT NULL

The identifier of a
userPlaneViewCollection entity
from the entityData table.

viewType 64-character string NOT NULL Specifies the type of view.

vlanTrunkEndPoint
The vlanTrunkEndPoint table represents a VLAN trunk end point and includes relevant data. This endpoint
is implemented by a physical interface, as modeled in the protocolEndPoint table.

The following table describes the vlanTrunkEndPoint table.

748 IBM Tivoli Network Manager IP Edition: Reference

Table 492. vlanTrunkEndPoint table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a VLAN trunk
endpoint entity from the
entityData table.

vlanClass Enumerated The class of the VLAN. Possible
values are: cvlan (Customer
VLAN using QinQ), svlan
(Service VLAN using QinQ), or
local (VLAN not using QinQ).

vlanId 32-bit integer The identifier for the VLAN
carried by this protocol end
point object. If multiple VLANs
are carried by the trunk then a
vlanTrunkEndPoint entity
should be created for each one.

vlanTag 32-bit integer The tag used for this VLAN. In
Cisco devices, this tag is usually
the same as the vlanId value.
However, for other
manufacturers, the tag might
be different.

Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.

vpnRouteForwarding
The vpnRouteForwarding table models a VPN routing and forwarding table.

The following table describes the vpnRouteForwarding table.

Table 493. vpnRouteForwarding table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a VPN Routing
and Forwarding table entity
from the entityData table.

VRFName 255-character
string

The name of the VPN Routing
and Forwarding table.

routeDistinguisher 255-character
string

Not null The route distinguisher for the
VPN Routing and Forwarding
table.

vpwsEndPoint
The vpwsEndPoint table represents a VPWS end point and includes relevant data. This endpoint is
implemented by a physical interface, as modeled in the protocolEndPoint table.

The following table describes the vpwsEndPoint table.

Chapter 23. Data dictionary 749

Table 494. vpwsEndPoint table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Primary key

Not null

The identifier of a network pipe
entity from the entityData
table.

VCID 64-character string Primary key

Not null

The Virtual Circuit Identifier
(VCID) for this entity.

circuitId 128-character
string

The ID for this circuit.

circuitType 32-bit integer The type of circuit.

circuitStatus 32-bit integer The status of circuit.

inboundLabel 32-bit integer The inbound label related to
this endpoint.

outboundLabel 32-bit integer The outbound label related to
this endpoint.

Related reference
protocolEndPoint
The protocolEndPoint table allows a higher-level connection to be defined in terms of lower-level
connections. It associates a device entity, usually an interface, with protocol-specific information
associated with that device entity. The protocolEndPoint table belongs to the category connectivity.

vtpDomain
The vtpDomain table represents a VLAN trunking protocol domain.

The following table describes the vtpDomain table.

Table 495. vtpDomain table

Column name Type Constraints Description

entityId 32-bit integer Foreign key

Not null

The identifier of a VTP domain
entity from the entityData
table.

vtpDomainName 64-character string Not null The name of this VTP domain.

vtpDomainLocalMode 15-character string The local mode of this VTP
domain.

wlan
The wlan table stores information about wireless networks.

The following table describes the wlan table.

750 IBM Tivoli Network Manager IP Edition: Reference

Table 496. wlan table

Column name Type Constraints Description

entityId 32-bit integer Primary key

Foreign key

Not null

Automatically incremented ID
that provides a unique value for
each WLAN across all domains.

ssid 50-character string Not null The SSID of this WLAN.

broadcastSSID 15-character string Not null A string indicating whether the
broadcast of the SSID of this
WLAN is enabled or disabled.

wlanAccessPoint
The wlanAccessPoint table stores information about wireless access points.

The following table describes the wlanAccessPoint table.

Table 497. wlanAccessPoint table

Column name Type Constraints Description

entityId 32-bit integer Primary key

Foreign key

Not null

Automatically incremented ID
that provides a unique value for
each wireless Access Point
across all domains.

apMACAddress 40-character string The MAC address of this access
point.

adminStatus 15-character string The administrative status of
this access point.

apType 25-character string The type of this access point.

ethernetMAC 40-character string The Ethernet MAC address of
this access point.

gatewayRouter 39-character string The IP address of the gateway
router of this access point.

isStaticIP 15-character string Whether the IP address is static
or not.

lastRebootReason 40-character string The reason why this access
point was last rebooted.

monitorOnlyMode 25-character string The monitor only mode of this
access point.

numEthernetIfaces 32-bit integer The number of Ethernet
interfaces of this access point.

numRadioInterfaces 32-bit integer The number of radio interfaces
of this access point

operationalStatus 25-character string The operational status of this
access point.

snmpIndex 50-character string The SNMP index of this access
point.

Chapter 23. Data dictionary 751

Table 497. wlanAccessPoint table (continued)

Column name Type Constraints Description

statsTimer 32-bit integer The interval in seconds
between each time the access
point sends its DOT11 statistics
to the WLAN controller.

trafficViaPortNum 32-bit integer The port number where traffic
flows in and out of this access
point.

upTime 50-character string How long the access point have
been running since the last
power up or reboot.

wlanChannel
The wlanChannel table stores information about wireless channels.

The following table describes the wlanChannel table.

Table 498. wlanChannel table

Column name Type Constraints Description

entityId 32-bit integer Primary key

Foreign key

Not null

Automatically incremented ID
that provides a unique value for
each wireless channel across
all domains.

channelNo 10-character string The number of this WLAN
channel.

wlanDot11Interface
The wlanDot11Interface table stores information about DOT11 interfaces.

The following table describes the wlanDot11Interface table.

Table 499. wlanDot11Interface table

Column name Type Constraints Description

entityId 32-bit integer Primary key

Foreign key

Not null

Automatically incremented ID
that provides a unique value for
each WLAN DOT11 across all
domains.

antennaDiversity 50-character string The antenna diversity value of
this DOT11 interface.

antennaGain 32-bit integer The antenna gain of this DOT11
interface.

antennaOptions 30-character string The antenna options of this
DOT11 interface.

channelAssignMode 30-character string The antenna channel
assignment mode of this
DOT11 interface.

752 IBM Tivoli Network Manager IP Edition: Reference

Table 499. wlanDot11Interface table (continued)

Column name Type Constraints Description

channelNo 10-character string The channel number of this
DOT11 interface.

dot11IfType 20-character string The interface type of this
DOT11 interface.

packetSniffMode 20-character string The packet sniff mode of this
DOT11 interface.

packetSniffChannelNo 10-character string The packet sniff channel
number of this DOT11
interface.

radioSlot 32-bit integer The radio slot of this DOT11
interface.

snmpIndex 50-character string The SNMP index of this DOT11
interface.

supportedChannelNo 255-character
string

The supported channel number
of this DOT11 interface.

trafficViaPortNum 32-bit integer The port number where traffic
flows in and out of this DOT11
interface.

txPowerControlMode 30-character string The Tx power control mode of
this DOT11 interface.

txPowerLevel 32-bit integer The Tx power level of this
DOT11 interface.

wlanService
The wlanService table stores information about wireless LAN services.

The following table describes the wlanService table.

Table 500. wlanService table

Column name Type Constraints Description

entityId 32-bit integer Primary key

Foreign key

Not null

Automatically incremented ID
that provides a unique value for
each WLAN service across all
domains.

aclName 75-character string The ACL name of this WLAN
service.

adminStatus 15-character string The administrative status of
this WLAN service.

authType 15-character string The authentication type of this
WLAN service.

broadcastSSID 15-character string The broadcast SSID of this
WLAN service.

dhcpRequired 15-character string Whether DHCP server is
required or not.

Chapter 23. Data dictionary 753

Table 500. wlanService table (continued)

Column name Type Constraints Description

dhcpServerIP 39-character string The IP address of the DHCP
server.

interfaceName 20-character string The interface name of this
WLAN service.

qos 20-character string The QoS of this WLAN service.

radioPolicy 15-character string The radio policy of this WLAN
service.

sessionTimeout 32-bit integer The session timeout in seconds
of this WLAN service.

snmpIndex 50-character string The SNMP index of this WLAN
service.

ssid 50-character string Not null The SSID of this WLAN service.

wepSecurity 15-character string Whether the WEP security is
enabled or disabled.

wepType 15-character string The WEP type of this WLAN
service.

wlanSpec
The wlanSpec table stores information about wireless specifications.

The following table describes the wlanSpec table.

Table 501. wlanSpec table

Column name Type Constraints Description

entityId 32-bit integer Primary key

Foreign key

Not null

Automatically incremented ID
that provides a unique value for
each WLAN specification across
all domains.

protocol 50-character string Not null The protocol of this WLAN
specification.

Entity attribute views
Entity attribute views define attributes for the entities discovered by Network Manager, in legacy NCIM
topology database format. This enables backward compatibility; for example, SQL queries written to use
the legacy NCIM database tables still function because they retrieve data from the entity attribute views.

backplane
The backplane view joins data from a number of tables and is equivalent to the backplane table that
existed in Network Manager version 3.9 and earlier , thereby ensuring backward compatibility.

The following table describes the backplane view.

754 IBM Tivoli Network Manager IP Edition: Reference

Table 502. backplane view

Column name Description Containing table and field name

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

physicalBackplane

entityId

entPhysicalVendorType An indication of the vendor-
specific hardware type of the
physical entity.

physicalBackplane

Model

entPhysicalParentRelPos An indication of the relative
position of this child component
among all its sibling components.
Sibling components are defined as
entPhysicalEntries which share the
same instance values of each of
the entPhysicalContainedIn and
entPhysicalClass objects.

physicalBackplane

RelativePosition

entPhysicalIndex The physical index for this entity. physicalBackplane

PhysicalIndex

entPhysicalName The textual name of the physical
entity. The value of this object
must be the name of the
component as assigned by the
local device and is suitable for use
in commands entered at the
console of the device. Depending
on the physical component naming
syntax of the device, this value
might be a text name, for example
console, or a single component
number, for example a port
number or a module number.

physicalBackplane

Name

entPhysicalDescr A textual description of physical
entity. This object must contain a
string which identifies the
manufacturer's name for the
physical entity. The value must be
set to a distinct value for each
version or model of the physical
entity.

entityData

Description

chassis
The chassis view joins data a number of tables, and is equivalent to the chassis table that existed in
Network Manager versions 3.9 and earlier, thereby ensuring backward compatibility.

The following table describes the chassis view.

Chapter 23. Data dictionary 755

Table 503. chassis view

Column name Description Containing table and field name

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

physicalChassis

entityId

className The name of a class of devices. The
master className field is in the
entityClass table.

physicalChassis

className

sysName An administratively-assigned name
for this managed node. By
convention, this is the fully-
qualified domain name of the
node. If the name is unknown, the
value is the zero-length string.

physicalChassis

sysName

sysDescr A textual description of the entity.
This value must include the full
name and version identification of
the system hardware type,
software operating-system, and
networking software.

entityData

Description

sysObjectId The vendor's authoritative
identification of the network
management subsystem contained
in the entity.

physicalChassis

sysObjectId

sysLocation The physical location of this node,
for example "telephone closet, 3rd
floor." If the location is unknown,
the value is the zero-length string.

physicalChassis

Location

sysContact The textual identification of the
contact person for this managed
node, and information on how to
contact this person. If no contact
information is known, the value is
the zero-length string.

physicalChassis

Contact

sysUpTime The time (in hundredths of a
second) since the network
management portion of the system
was last reinitialized.

physicalChassis

UpTime

756 IBM Tivoli Network Manager IP Edition: Reference

Table 503. chassis view (continued)

Column name Description Containing table and field name

sysServices A value that indicates the set of
services that this entity potentially
offers. The value is a sum that
initially takes the value zero. Then,
for each layer, L, in the range 1
through 7, that this node performs
transactions for, 2 raised to (L - 1)
is added to the sum. For example,
a node that performs only routing
functions would have a value of 4
(2^(3-1)). A node that is a host
offering application services would
have a value of 72 (2^(4-1) +
2^(7-1)). For the Internet suite of
protocols, values should be
calculated accordingly:

• Layer 1: Physical, for example
repeaters)

• Layer 2: Datalink or subnetwork,
for example bridges

• Layer 3: Internet, for example
supports IP

• Layer 4: End-to-end, for example
supports TCP

• Layer 7: Applications, for
example supports the SMTP

For systems including OSI
protocols, layers 5 and 6 can also
be considered.

physicalChassis

Services

ifNumber The number of network interfaces
(regardless of their current state)
present on this system.

physicalChassis

InterfaceCount

ipForwarding Indication of whether this entity is
acting as an IP gateway in respect
to the forwarding of datagrams
received by this entity but not
addressed to this entity. IP
gateways forward datagrams,
whereas IP hosts do not, unless
the source is routed through the
host. Takes one of the following
values:

• forwarding
• not-forwarding

physicalChassis

isIpForwarding

entPhysicalVendorType An indication of the vendor-
specific hardware type of the
physical entity.

physicalChassis

Model

Chapter 23. Data dictionary 757

Table 503. chassis view (continued)

Column name Description Containing table and field name

entPhysicalParentRelPos An indication of the relative
position of this child component
among all its sibling components.
Sibling components are defined as
entPhysicalEntries which share the
same instance values of each of
the entPhysicalContainedIn and
entPhysicalClass objects.

physicalChassis

RelativePosition

entPhysicalIndex The physical index for this entity. physicalChassis

physicalIndex

entPhysicalName The textual name of the physical
entity. The value of this object
must be the name of the
component as assigned by the
local device and is suitable for use
in commands entered at the
console of the device. Depending
on the physical component naming
syntax of the device, this value
might be a text name, for example
console, or a single component
number, for example a port
number or a module number.

physicalChassis

Name

entPhysicalDescr A textual description of physical
entity. This object must contain a
string which identifies the
manufacturer's name for the
physical entity. The value must be
set to a distinct value for each
version or model of the physical
entity.

entityData

Description

serialNumber The serial number of the entity. physicalChassis

SerialNumber

modelName The model name of the entity. physicalChassis

Model

orderablePartNumber Orderable part number for this
entity.

physicalChassis

PartNumber

hardwareVersion Hardware version for this entity. physicalChassis

HWRevision

OSType The operating system type related
to this chassis.

operatingSystem

OSName

758 IBM Tivoli Network Manager IP Edition: Reference

Table 503. chassis view (continued)

Column name Description Containing table and field name

OSVersion The operating system version
related to this chassis.

operatingSystem

OSVersion

OSImage The operating system image
related to this chassis.

operatingSystem

VersionString

accessIPAddress The IP address through which this
entity was discovered and will be
monitored.

Note: For non-IP entities, such as
layer 1 optical devices, this field is
null.

physicalChassis

accessIP

accessProtocol An integer representation of the
network protocol used by the
presently-defined zone:

• 0: Unknown
• 1: IPv4
• 2: IPv4 that has been through

network address translation
(NAT)

• 3: IPv6
• 4: Element Management System

(EMS) key for a non-IP device

physicalChassis

accessProtocol

memorySize The size, in MB, of the available
memory.

computerSystem

MemorySize

discoveryTime Time at which the Details agent
attempted to discover the device.
This value is stored even if the
device is not accessible using
SNMP.

physicalChassis

DiscoveryTime

Related reference
entityData
The entityData table stores data on entities. This table belongs to the category entities.
physicalChassis
The physicalChassis table stores the attributes of chassis entities.

fan
The fan view joins data from a number of tables and is equivalent to the fan table that existed in
Network Manager versions 3.9 and earlier , thereby ensuring backward compatibility.

The following table describes the fan view.

Chapter 23. Data dictionary 759

Table 504. fan view

Column name Description Containing table and field name

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

entityData

entityId

entPhysicalVendorType An indication of the vendor-
specific hardware type of the
physical entity.

physicalFan

Model

entPhysicalParentRelPos An indication of the relative
position of this child component
among all its sibling components.
Sibling components are defined as
entPhysicalEntries which share the
same instance values of each of
the entPhysicalContainedIn and
entPhysicalClass objects.

physicalFan

RelativePosition

entPhysicalIndex The physical index for this entity. physicalFan

physicalIndex

entPhysicalName The textual name of the physical
entity. The value of this object
must be the name of the
component as assigned by the
local device and is suitable for use
in commands entered at the
console of the device. Depending
on the physical component naming
syntax of the device, this value
might be a text name, for example
console, or a single component
number, for example a port
number or a module number.

physicalFan

Name

entPhysicalDescr A textual description of the entity.
This value must include the full
name and version identification of
the system hardware type,
software operating-system, and
networking software.

entityData

Description

serialNumber The serial number of the entity. physicalFan

SerialNumber

modelName Model name for this entity. physicalFan

Model

760 IBM Tivoli Network Manager IP Edition: Reference

Table 504. fan view (continued)

Column name Description Containing table and field name

isFieldReplaceable Indication of whether this piece of
equipment is replaceable in the
field. Takes one of the following
values:

• True
• False

physicalFan

isFRU

Related reference
entityData
The entityData table stores data on entities. This table belongs to the category entities.
physicalFan
The physicalFan table represents fan cooling unit entities.

interface
The interface view joins data from a number of tables and is equivalent to the interface table that
existed in Network Manager version 3.9 and earlier , thereby ensuring backward compatibility.

The following table describes the interface view.

Table 505. interface view

Column name Description Containing table and field name

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

networkInterface

entityData

ifIndex The index of the interface. networkInterface

SNMPIndex

ifPhysAddress The physical address of the
interface.

networkInterface

PhysicalAddress

ifName The name assigned to the
interface.

networkInterface

ifName

ifDescr A description of the interface. networkInterface

ifDescr

ifAlias The alias for the interface. networkInterface

ifAlias

ifSpeed An estimate of the current
bandwidth of the interface in bits
per second.

networkInterface

ifSpeed

Chapter 23. Data dictionary 761

Table 505. interface view (continued)

Column name Description Containing table and field name

ifHighSpeed An estimate of the current
bandwidth of the interface in units
of 1,000,000 bits per second.

networkInterface

ifHighSpeed

ifAdminStatus The required state of the interface.
Takes one of the following values:

• Up
• Down
• Testing

networkInterface

ifAdminStatus

ifOperStatus The current operational state of
the interface. Takes one of the
following values:

• Up
• Down
• Testing
• unknown
• dormant
• notPresent
• lowerLayerDown

networkInterface

ifOperStatus

ifType The interface type. networkInterface

IANAInterfaceType

ifTypeString The textual string for the interface
type.

networkInterface

ifTypeString

ifMTU The maximum transmission unit
for this interface.

networkInterface

MTU

ifPromiscuousMode Indicates whether this interface
only accepts packets or frames
addressed to this station. Takes
one of the following values:

• True
• False

networkInterface

PromiscuousMode

ifConnectorPresent Indicates whether the interface
has a connector. Takes one of the
following values:

• True
• False

networkInterface

ConnectorPresent

762 IBM Tivoli Network Manager IP Edition: Reference

Table 505. interface view (continued)

Column name Description Containing table and field name

accessIPAddress The IP address through which this
entity was discovered and will be
monitored.

Note: For non-IP entities, such as
layer 1 optical devices, this field is
null.

networkInterface

accessIP

accessProtocol An integer representation of the
network protocol used by the
presently-defined zone:

• 0: Unknown
• 1: IPv4
• 2: IPv4 that has been through

network address translation
(NAT)

• 3: IPv6
• 4: Element Management System

(EMS) key for a non-IP device

networkInterface

accessProtocol

entPhysicalVendorType The vendor-specific hardware type
of this physical entity.

x_cdmPhysicalConnector

Model

entPhysicalParentRelPos The relative position of this entity
within the containment.

x_cdmPhysicalConnector

RelativePosition

entPhysicalIndex The physical index for this entity. x_cdmPhysicalConnector

physicalIndex

entPhysicalName The textual name of this physical
entity.

x_cdmPhysicalConnector

Name

entPhysicalDescr The textual description of this
physical entity.

x_cdmPhysicalConnector

entPhysicalDescr

portNumber The port number for this interface
on the chassis device. The method
of determining the port number is
dependent on the make and model
of the device that is discovered.
For this reason, use this value with
caution.

networkInterface

portNumber

isTrunkPort Indicates whether this physical
interface is a VLAN trunk port.

networkInterface

SwitchPortMode

Chapter 23. Data dictionary 763

Table 505. interface view (continued)

Column name Description Containing table and field name

duplex Actual duplex of the interface.
Takes one of the following values:

• HalfDuplex
• FullDuplex
• Auto
• Unknown
• Other

networkInterface

OperationalDuplex

Related reference
entityData
The entityData table stores data on entities. This table belongs to the category entities.
networkInterface
The networkInterface table represents interfaces on a chassis device.

module
The module view joins data from a number of tables and is equivalent to the module table that existed in
Network Manager version 3.9 and earlier , thereby ensuring backward compatibility.

The following table describes the module view.

Table 506. module view

Column name Description Containing table and field name

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

physicalCard

entityId

entPhysicalVendorType An indication of the vendor-
specific hardware type of the
physical entity.

physicalCard

Model

entPhysicalParentRelPos An indication of the relative
position of this child component
among all its sibling components.
Sibling components are defined as
entPhysicalEntries which share the
same instance values of each of
the entPhysicalContainedIn and
entPhysicalClass objects.

physicalCard

RelativePosition

entPhysicalIndex The physical index for this entity. physicalCard

Physical Index

764 IBM Tivoli Network Manager IP Edition: Reference

Table 506. module view (continued)

Column name Description Containing table and field name

entPhysicalName The textual name of the physical
entity. The value of this object
must be the name of the
component as assigned by the
local device and is suitable for use
in commands entered at the
console of the device. Depending
on the physical component naming
syntax of the device, this value
might be a text name, for example
console, or a single component
number, for example a port
number or a module number.

physicalCard

Name

entPhysicalDescr A textual description of the entity.
This value must include the full
name and version identification of
the system hardware type,
software operating-system, and
networking software.

entityData

Description

serialNumber The serial number of the entity. physicalCard

SerialNumber

modelName Model name for this entity. physicalCard

Model

orderablePartNumber Orderable part number for this
entity.

physicalCard

PartNumber

hardwareVersion Hardware version for this entity. physicalCard

HWRevision

firmwareVersion Firmware version for this entity. physicalCard

FWRevision

softwareVersion Software revision. physicalCard

SWRevision

softwareImage physicalCard

softwareImage

isFieldReplaceable Indication of whether this piece of
equipment is replaceable in the
field. Takes one of the following
values:

• True
• False

physicalCard

isFRU

Chapter 23. Data dictionary 765

Table 506. module view (continued)

Column name Description Containing table and field name

operStatus Operational status of this card.
Takes one of the following values:

• unknown
• ok
• disabled
• okButDiagFailed
• boot
• selfTest
• failed
• missing
• mismatchWithParent
• mismatchConfig
• diagFailed
• dormant
• outOfServiceAdmin
• outOfServiceEnvTemp

physicalCard

operStatus

adminStatus Administrative status of this card.
Takes one of the following values:

• unknown
• enabled
• disabled
• reset
• outOfServiceAdmin

physicalCard

adminStatus

cardNumber Indication of the relative position
of this entity within the
containment.

physicalCard

RelativePosition

Related reference
entityData
The entityData table stores data on entities. This table belongs to the category entities.
physicalCard
The physicalCard table represents card entities.

other
The other view joins data from a number of tables and is equivalent to the other table that existed in
Network Manager version 3.9 and earlier , thereby ensuring backward compatibility.

The following table describes the other view.

766 IBM Tivoli Network Manager IP Edition: Reference

Table 507. other view

Column name Description Containing table and field name

entityId The identifier of a network pipe
entity from the entityData table.

physicalOther

entityId

entPhysicalVendorType An indication of the vendor-
specific hardware type of the
physical entity.

physicalOther

vendorType

entPhysicalParentRelPos An indication of the relative
position of this child component
among all its sibling components.
Sibling components are defined as
entPhysicalEntries which share the
same instance values of each of
the entPhysicalContainedIn and
entPhysicalClass objects.

physicalOther

relativePosition

entPhysicalIndex The physical index for this entity. physicalOther

physicalIndex

entPhysicalName The textual name of the physical
entity. The value of this object
must be the name of the
component as assigned by the
local device and is suitable for use
in commands entered at the
console of the device. Depending
on the physical component naming
syntax of the device, this value
might be a text name, for example
console, or a single component
number, for example a port
number or a module number.

physicalOther

name

entPhysicalDescr A textual description of physical
entity. This object must contain a
string which identifies the
manufacturer's name for the
physical entity. The value must be
set to a distinct value for each
version or model of the physical
entity.

entityData

description

entPhysicalClass Takes one of the following values:

• 1: unknown
• 2: other

physicalOther

physicalClass

Related reference
entityData
The entityData table stores data on entities. This table belongs to the category entities.
physicalOther

Chapter 23. Data dictionary 767

The physicalOther table stores attributes of a component whose physical entity class is known, but
does not match any of the supported values.

psu
The psu view joins data from a number of tables and is equivalent to the psu table that existed in
Network Manager version 3.9 and earlier , thereby ensuring backward compatibility.

The following table describes the psu view.

Table 508. psu view

Column name Description Containing table and field name

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

physicalPowerSupply

entityId

entPhysicalVendorType An indication of the vendor-
specific hardware type of the
physical entity.

physicalPowerSupply

Model

entPhysicalParentRelPos An indication of the relative
position of this child component
among all its sibling components.
Sibling components are defined as
entPhysicalEntries which share the
same instance values of each of
the entPhysicalContainedIn and
entPhysicalClass objects.

physicalPowerSupply

RelativePosition

entPhysicalIndex The physical index for this entity. physicalPowerSupply

PhysicalIndex

entPhysicalName The textual name of the physical
entity. The value of this object
must be the name of the
component as assigned by the
local device and is suitable for use
in commands entered at the
console of the device. Depending
on the physical component naming
syntax of the device, this value
might be a text name, for example
console, or a single component
number, for example a port
number or a module number.

physicalPowerSupply

Name

entPhysicalDescr A textual description of physical
entity. This object must contain a
string which identifies the
manufacturer's name for the
physical entity. The value must be
set to a distinct value for each
version or model of the physical
entity.

entityData

Description

768 IBM Tivoli Network Manager IP Edition: Reference

Table 508. psu view (continued)

Column name Description Containing table and field name

serialNumber The serial number of the entity. physicalPowerSupply

SerialNumber

modelName Model name for this entity. physicalPowerSupply

Model

isFieldReplaceable Indication of whether this piece of
equipment is replaceable in the
field. Takes one of the following
values:

• True
• False

physicalPowerSupply

isFRU

adminStatus See the values for
cefcFRUPowerAdminStatus in
Eumerations table.

physicalPowerSupply

powerAdminStatus

operStatus See the values for
cefcFRUPowerOperStatus in
Eumerations table.

physicalPowerSupply

powerOperStatus

Related reference
entityData
The entityData table stores data on entities. This table belongs to the category entities.
physicalPowerSupply
The physicalPowerSupply table represents a power supply unit (PSU) entity.

sensor
The sensor view joins data from a number of tables and is equivalent to the sensor table that existed in
Network Manager version 3.9 and earlier , thereby ensuring backward compatibility.

The following table describes the sensor view.

Table 509. sensor view

Column name Description Containing table and field name

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

physicalSensor

entityId

entPhysicalVendorType An indication of the vendor-
specific hardware type of the
physical entity.

physicalSensor

Model

Chapter 23. Data dictionary 769

Table 509. sensor view (continued)

Column name Description Containing table and field name

entPhysicalParentRelPos An indication of the relative
position of this child component
among all its sibling components.
Sibling components are defined as
entPhysicalEntries which share the
same instance values of each of
the entPhysicalContainedIn and
entPhysicalClass objects.

physicalSensor

RelativePosition

entPhysicalIndex The physical index for this entity. physicalSensor

physicalIndex

entPhysicalName The textual name of the physical
entity. The value of this object
must be the name of the
component as assigned by the
local device and is suitable for use
in commands entered at the
console of the device. Depending
on the physical component naming
syntax of the device, this value
might be a text name, for example
console, or a single component
number, for example a port
number or a module number.

physicalSensor

Name

entPhysicalDescr A textual description of physical
entity. This object must contain a
string which identifies the
manufacturer's name for the
physical entity. The value must be
set to a distinct value for each
version or model of the physical
entity.

entityData

Description

770 IBM Tivoli Network Manager IP Edition: Reference

Table 509. sensor view (continued)

Column name Description Containing table and field name

sensorType Sensor type. Takes one of the
following values:

• other
• unknown
• voltsAC
• voltsDC
• amperes
• watts
• hertz
• celsius
• percentRH
• rpm
• cmm
• truthValue
• specialEnum

physicalSensor

sensorType

sensorScale Sensor scale. Takes one of the
following values:

• unknown
• yocto
• zepto
• atto
• femto
• pico
• nano
• micro
• milli
• Units
• kilo
• mega
• giga
• tera
• exa
• peta
• zetta
• yotta

physicalSensor

sensorScale

Chapter 23. Data dictionary 771

Table 509. sensor view (continued)

Column name Description Containing table and field name

sensorStatus Sensor status. Takes one of the
following values:

• ok
• unavailable
• nonoperational
• unknown

physicalSensor

sensorStatus

sensorValue The value for the sensor. physicalSensor

sensorValue

Related reference
entityData
The entityData table stores data on entities. This table belongs to the category entities.
physicalSensor
The physicalSensor table represents sensor entities.

slot
The slot view joins data from a number of tables and is equivalent to the slot table that existed in
Network Manager version 3.9 and earlier , thereby ensuring backward compatibility.

The following table describes the slot view.

Table 510. slot view

Column name Description Containing table and field name

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

physicalSlot

entityId

entPhysicalVendorType An indication of the vendor-
specific hardware type of the
physical entity.

physicalSlot

Model

entPhysicalParentRelPos An indication of the relative
position of this child component
among all its sibling components.
Sibling components are defined as
entPhysicalEntries which share the
same instance values of each of
the entPhysicalContainedIn and
entPhysicalClass objects.

physicalSlot

RelativePosition

entPhysicalIndex The physical index for this entity. physicalSlot

PhysicalIndex

772 IBM Tivoli Network Manager IP Edition: Reference

Table 510. slot view (continued)

Column name Description Containing table and field name

entPhysicalName The textual name of the physical
entity. The value of this object
must be the name of the
component as assigned by the
local device and is suitable for use
in commands entered at the
console of the device. Depending
on the physical component naming
syntax of the device, this value
might be a text name, for example
console, or a single component
number, for example a port
number or a module number.

physicalSlot

Name

entPhysicalDescr A textual description of physical
entity. This object must contain a
string which identifies the
manufacturer's name for the
physical entity. The value must be
set to a distinct value for each
version or model of the physical
entity.

entityData

Description

powerRedundancyMode Takes one of the following values:

• unknown
• notSupported
• redundant
• combined

physicalSlot

SerialNumber

Related reference
entityData
The entityData table stores data on entities. This table belongs to the category entities.
physicalSlot
The physicalSlot table represents slot entities.

sourceEms
The sourceEms view joins data a number of tables. This view provides data on devices discovered by an
EMS collector and provides a mapping between the device and the EMS or EMSs that manage the device.

The following table describes the sourceEms view.

Table 511. sourceEms view

Column name Description Containing table and field name

entityId Foreign key to the
entityNameCache table. Must be
unique for each entity across all
domains.

discoverySource

entityId

Chapter 23. Data dictionary 773

Table 511. sourceEms view (continued)

Column name Description Containing table and field name

entityName Name of the entity. discoverySource

entityName

source Source of the data. This field takes
one of the following values:

• Unknown
• Other
• TopologyEditor
• PresetLayer
• Agent
• Collector

discoverySource

source

discoveryProtocol Protocol of the data provided by
this discovery source. This field
takes one of the following values:

• Unknown
• Other
• Manual
• FlatFile
• SNMP
• Telnet
• XML-RPC
• VSphere
• OtherJavaAPI
• TL1
• CORBA

discoverySource

discoveryProtocol

nativeId Identifier used by the discovery
source to identify a given device.

discoverySource

nativeId

nativeIdString String used by the discovery
source to identify a given device.

discoverySource

nativeIdString

emsEntityId Automatically-incremented field
that provides a unique value for
each entity across all domains.

entityNameCache

entityId

emsEntityName Name of the entity. entityNameCache

entityName

emsName Name of the EMS. emsSystem

emsName

774 IBM Tivoli Network Manager IP Edition: Reference

Table 511. sourceEms view (continued)

Column name Description Containing table and field name

domainMgrId Automatically-incremented field
that is unique for each domain.

domainMgr

domainMgrId

domainName Name of the domain. domainMgr

domainName

Common Data Model views
The Common Data Model (CDM) is an information model that provides consistent definitions for managed
resources, business systems and processes, and other data, and the relationships between those
elements. CDM is based on the unified modeling language (UML).

The IBM Common Data Model (CDM) overlay schema enables Network Manager to expose a subset of its
data in a CDM-like relational representation corresponding to aspects of the CDM Computer System,
Networking, Operating System, and Physical sub-models. The CDM schema complements the NCIM
topology database by providing tables to allow the storage of extra CDM attributes.

This section describes the CDM views exposed by Network Manager. The CDM views have been defined
using existing NCIM database tables and attributes.

CDM views
The CDM views are described below. For each CDM view the corresponding row lists the tables and views
mapped to by the CDM view.

Table 512.

CDM view Tables and views mapped to by this CDM view

CDMCARD This view maps to the following tables and views:

• CDMMODLEOBJECT view
• mappings table
• module view
• x_cdmCard table

CDMCHASSIS This view maps to the following tables and views:

• CDMMODELOBJECT view
• chassis view
• deviceFunction table
• x_cdmChassis table

CDMCOMPUTER
SYSTEM

This view maps to the following tables and views:

• CDMMODELOBJECT view
• chassis view
• deviceFunction table
• virtualMachine table
• x_cdmComputerSystem table

Chapter 23. Data dictionary 775

Table 512. (continued)

CDM view Tables and views mapped to by this CDM view

CDMFAN This view maps to the following tables and views:

• CDMMODELOBJECT view
• fan view
• mappings table
• x_cdmFan table

CDMIPV4ADDRESS This view maps to the following tables and views:

• CDMMODELOBJECT view
• ipEndPoint table

CDMIPV4NETWORK This view maps to the following tables and views:

• CDMMODELOBJECT view
• subnet table

CDMIPV6ADDRESS This view maps to the following tables and views:

• CDMMODELOBJECT view
• ipEndPoint table

CDMIPV6NETWORK This view maps to the following tables and views:

• CDMMODELOBJECT view
• subnet table

CDMMODELOBJECT Provides generally applicable data to the other CDM views.

This view maps to the following tables and views:

• entityData
• domainMembers
• domainMgr

CDMNETWORK
INTERFACE

This view maps to the following tables and views:

• CDMModelObject view
• enumerations table
• interface view
• x_cdmNetworkInterface table

CDMOPERATING
SYSTEM

This view maps to the following tables and views:

• CDMModelObject view
• chassis table
• x_cdmOperatingSystem table

776 IBM Tivoli Network Manager IP Edition: Reference

Table 512. (continued)

CDM view Tables and views mapped to by this CDM view

CDMOTHER
PHYSICALPACKAGE

This view maps to the following tables and views:

• CDMMODELOBJECT view
• chassis view
• x_cdmOperatingSystem table

CDMPHYSICAL
CONNECTOR

This view maps to the following tables and views:

• CDMMODELOBJECT view
• interface view
• mappings table
• x_cdmPhysicalConnector table

CDMPOWER
SUPPLY

This view maps to the following tables and views:

• CDMMODELOBJECT view
• mappings table
• psu view
• x_cdmPowerSupply table

CDMSENSOR This view maps to the following tables and views:

• CDMMODELOBJECT view
• mappings table
• sensor view
• x_cdmSensor table

CDMSLOT This view maps to the following tables and views:

• CDMMODELOBJECT view
• mappings table
• sensor view
• x_cdmSensor table

CDMSNMPSYSTEM
GROUP

This view maps to the following tables and views:

• CDMMODELOBJECT view
• chassis view

Related information
IBM Tivoli Common Data Model: Guide to Best PracticesThe Common Data Model (CDM) is an information
model that provides consistent definitions for managed resources, business systems and processes, and
other data, and the relationships between those elements. CDM is based on the unified modeling
language (UML). This IBM Redpaper presents a set of example templates and scenarios that help you
learn and apply the basics of the Common Data Model.

Chapter 23. Data dictionary 777

http://www.redbooks.ibm.com/abstracts/redp4389.html?Open

778 IBM Tivoli Network Manager IP Edition: Reference

Chapter 24. Topology API reference
Read about the Topology API provided with Network Manager.

Overview of the Topology API
The Topology API is a RESTful interface that enables you to extract chassis device data from the Network
Manager NCIM topology database into a JavaScript Object Notation (JSON) file that represents the device
resources. This JSON file can be parsed and imported into a third-party tool, possibly together with data
from other products, for presentation or further analysis.

In order to implement the Topology API within an integration you can use a command-line HTTP client
that understands HTTPS, such as wget or curl, or whatever libraries your programming language of choice
provides. A quick and simple way to test the output of the Topology API is to use GET and POST REST
methods in a REST client within a web browser. Results are presented in JSON format.

Retrieving device data
You can use the Topology API to extract device data from the NCIM topology database.

Extracting topology data for all chassis devices
You can use the Topology API to extract topology data from the NCIM topology database for all chassis
devices in the database. You could use this data to integrate with another product; however, this is not a
complete database dump because it retrieves only chassis devices.

Syntax
Specify the following parameters within a REST client in order to extract topology data for all chassis
devices.

Table 513. Parameters to extract topology data for all chassis devices

Parameter Value

Method GET

© Copyright IBM Corp. 2006, 2021 779

Table 513. Parameters to extract topology data for all chassis devices (continued)

Parameter Value

URL
https://HOST:PORT/ROOT-CONTEXT/nm_rest/topology/devices/
all?includeSubChassis=true|false

Where:

• HOST is the hostname or IP address of the Dashboard Application Services Hub
server.

• PORT is the secure port number of the Dashboard Application Services Hub server.
By default, this is 16311.

• ROOT-CONTEXT is the path from the root of your file system to the Topology API.
• includeSubChassis is an optional Boolean parameter. If this parameter is set to
true, the results of the call include sub-chassis. If this parameter is set to false,
the results of this call exclude sub-chassis. The default is true. For the purposes of
this feature, a sub-chassis is defined as a device that exists in ncim.chassis,
where its entityId in ncim.entityData is not equal to its mainNodeEntityId,
and its className in ncim.chassis is equal to the className of the row for its
mainNodeEntityId.

For example:

https://myHost:16311/ibm/console/nm_rest/topology/devices/
all?includeSubChassis=true

Content Type application/json

Extracting topology data for all chassis devices that belong to a set of
classes

You can use the Topology API to extract topology data from the NCIM topology database for all chassis
devices that belong to a specified set of classes, or that do not belong to a specified set of classes.

Syntax
Specify the following parameters within a REST client in order to extract topology data for all chassis
devices that do or do not belong to a specified set of classes.

Table 514. Parameters to extract topology data for all chassis devices that do or do not belong to a
specified set of classes

Parameter Value

Method GET

780 IBM Tivoli Network Manager IP Edition: Reference

Table 514. Parameters to extract topology data for all chassis devices that do or do not belong to a
specified set of classes (continued)

Parameter Value

URL
https://HOST:PORT/ROOT-CONTEXT/nm_rest/topology/
devices/classes?classes=CLASSNAME1,CLASSNAME2
&include=true|false&includeSubChassis=true|false

Where:

• HOST is the hostname or IP address of the Dashboard Application Services Hub
server.

• PORT is the secure port number of the Dashboard Application Services Hub server.
By default, this is 16311.

• ROOT-CONTEXT is the path from the root of your file system to the Topology API.
• classes is a comma-separated list of class names. See “Retrieving class data” on

page 789 for information about retrieving class data by using the Topology API.
• include is an optional parameter. It can be set to true, in which case data is

extracted for devices that belong to the specified classes, or false, in which case
data is extracted for all devices except those that belong to the specified classes.
The default is true.

• includeSubChassis is an optional Boolean parameter. If this parameter is set to
true, the results of the call include sub-chassis. If this parameter is set to false,
the results of this call exclude sub-chassis. The default is true. For the purposes of
this feature, a sub-chassis is defined as a device that exists in ncim.chassis,
where its entityId in ncim.entityData is not equal to its mainNodeEntityId,
and its className in ncim.chassis is equal to the className of the row for its
mainNodeEntityId.

For example:

https://myHost.com:16311/ibm/console/nm_rest/topology/
devices/classes?classes=Router,Linux&includeSubChassis=true

Content Type application/json

Extracting topology data for all chassis devices within a specified network
view

You can use the Topology API to extract topology data from the NCIM topology database for all chassis
devices within a specified network view and all views under it, recursively. You could use this export to
write new widgets for Network Manager. You could use this mode to integrate widgets from another
product into a dashboard, as long as that product understands Network Manager entity identifiers or the
other properties that the Topology API returns. If you are integrating with a third-party product, then that
product does not need to know anything about network views; it just knows that it needs to call the
Topology API with the view ID parameter, and display information for the devices that the API returns. In
the case where you are using the network view tree to drive the Topology API export, this export would
run interactively.

Syntax
Specify the following parameters within a REST client in order to extract topology data for all chassis
devices within a specified network view.

Chapter 24. Topology API reference 781

Table 515. Parameters to extract topology data for all chassis devices within a specified network view

Parameter Value

Method GET

URL
https://host:port/root-context/nm_rest/topology/devices/viewId/
view-id/allAttributes=true|false

Where:

• host is the hostname or IP address of the Dashboard Application Services Hub
server.

• port is the secure port number of the Dashboard Application Services Hub server. By
default, this is 16311.

• root-context is the path from the root of your file system to the Topology API.
• view-id is the numerical identifier of the network view from which you want to

extract chassis device data.

• allAttributes is an optional parameter. If set to true, the query retrieves
all attributes of the entities. If it is omitted, or set to false, the query retrieves only
the entity IDs.

For example:

https://myHost.com:16311/ibm/console/nm_rest/topology/devices/
viewId/4203?allAttributes=true

Content Type application/json

Extracting topology data for all chassis devices within specified domains
You can use the Topology API to extract topology data from the NCIM topology database for all chassis
devices within a specified domain or set of domains, or that do not belong to a specified set of domains.

Syntax
Specify the following parameters within a REST client in order to extract topology data for all chassis
devices within a specified domain.

Table 516. Parameters to extract topology data for all chassis devices within a specified domain

Parameter Value

Method GET

782 IBM Tivoli Network Manager IP Edition: Reference

Table 516. Parameters to extract topology data for all chassis devices within a specified domain
(continued)

Parameter Value

URL
https://HOST:PORT/ROOT-CONTEXT/nm_rest/topology/devices/
domains?domains=DOMAIN_NAME&include=true|false

Where:

• HOST is the hostname or IP address of the Dashboard Application Services Hub
server.

• PORT is the secure port number of the Dashboard Application Services Hub server.
By default, this is 16311.

• ROOT-CONTEXT is the path from the root of your file system to the Topology API.
• DOMAIN_NAME is a comma-separated list of the names of the domains from which

you want to extract chassis device data.
• include=true|false is a domain filter. The filter considers the list of domains

passed to the URL. If include=true, only devices in those domains are retrieved. If
include=false the filter excludes all devices in those domains.

For example:

https://myHost:16311/ibm/console/nm_rest/topology/devices/
domains?domains=NCOMS1,NCOMS2,NCOMS3&include=true

Content Type application/json

Extracting topology data for a limited set of chassis devices
You can use the Topology API to extract topology data from the NCIM topology database for a limited set
of chassis devices, such as a single device or a small number of devices.

Syntax
Specify the following parameters within a REST client in order to extract topology data for a limited set of
chassis devices.

Table 517. Parameters to extract topology data for a limited set of chassis devices

Parameter Value

Method POST

URL https://HOST:PORT/ROOT-CONTEXT/nm_rest/topology/devices/
entityIds

Where:

• HOST is the hostname or IP address of the Dashboard Application Services Hub
server.

• PORT is the secure port number of the Dashboard Application Services Hub server.
By default, this is 16311.

• ROOT-CONTEXT is the path from the root of your file system to the Topology API.

Content Type application/json

Chapter 24. Topology API reference 783

Table 517. Parameters to extract topology data for a limited set of chassis devices (continued)

Parameter Value

Payload Comma-separated list representing the entity identifiers of the devices to retrieve; for
example,

11649,11654,11661

Retrieving entity identifiers for devices
In order to retrieve an entity identifier for devices for which you know the entity name, execute an SQL
query similar to the following against the NCIM database:

select e.entityId from ncim.entityData e
inner join ncim.chassis c on e.entityId = c.entityId
where e.entityName = 'My Device';

In order to retrieve an entity identifier for devices for which you know the IP address, execute an SQL
query similar to the following against the NCIM database:

select entityId from ncim.chassis
where accessIpAddress = '1.2.3.4';

For information on how to retrieve a list of chassis device or main node identifiers in a domain, see the
IBM Tivoli Network Manager Reference.

Example JSON output for chassis devices
Use this information to understand the format of the JSON file that the Topology API produces as output.

The following code snippet shows an example of a JSON file produced as output for the following
Topology API query. This query retrieves data for a single device with the entity identifier 1996.

https://myHost:16311/ibm/console/nm_rest/topology/devices/entityIds?id=1996

Example of JSON output
This query produced the following JSON output. For a description of this output, see the notes that follow
the output.

Note: The actual output produced does not have the indentation in this example. The output is indented
here in order to make the data easier to read.

{
 "devices":
 {
 "items":
 [
 {
 "memorysize":null,
 "classid":5,
 "classname":"NetworkDevice",
 "syslocation":"3rd Floor Lab",
 "entphysicalvendortype":"1.3.6.1.4.1.9.12.3.1.3.436",
 "manual":0,
 "entphysicalparentrelpos":-1,
 "accessipaddress":"172.30.233.101",
 "createtime":1376304329000,
 "entphysicalname":"2811 chassis",
 "cdmadminstate":0,
 "domainname":"PEMBERS",
 "alias":null,
 "entphysicalindex":1,
 "sysdescr":"Cisco IOS Software, 2800 Software (C2800NM-ADVIPSERVICESK9-M),
Version 12.4(24)T7, RELEASE SOFTWARE (fc2)\r\n
Technical Support: http://www.cisco.com/techsupport\r\n
Copyright (c) 1986-2012 by Cisco Systems, Inc.\r\n

784 IBM Tivoli Network Manager IP Edition: Reference

Compiled Tue 28-Feb-12 10:43 by prod_rel_team",
 "sysname":"uk-t1-cj31.na.test.lab",
 "entitytype":1,
 "ostype":"Cisco IOS",
 "orderablepartnumber":"CISCO2811 ",
 "ipforwarding":"forwarding",
 "ifnumber":38,
 "sysobjectid":"1.3.6.1.4.1.9.1.576",
 "sysservices":"datalink(2) network(3) transport(4) application(7)",
 "entityname":"172.30.233.101",
 "domainmgrid":1,
 "hardwareversion":"V04 ",
 "displaylabel":"172.30.233.101",
 "syscontact":"someone@example.com",
 "osversion":"12.4(24)T7",
 "modelname":"CISCO2811 ",
 "sysuptime":449642945,
 "osimage":"flash:c2800nm-advipservicesk9-mz.124-24.T7.bin",
 "accessprotocol":"IPv4",
 "description":"Cisco IOS Software, 2800 Software (C2800NM-ADVIPSERVICESK9-M),
Version 12.4(24)T7, RELEASE SOFTWARE (fc2)\r\n
Technical Support: http://www.cisco.com/techsupport\r\n
Copyright (c) 1986-2012 by Cisco Systems, Inc.\r\n
Compiled Tue 28-Feb-12 10:43 by prod_rel_team",
 "discoverytime":1434637258000,
 "changetime":1376304329000,
 "serialnumber":"ZZ9PZA42",
 "entityid":1996,
 "entphysicaldescr":
"Cisco IOS Software, 2800 Software (C2800NM-ADVIPSERVICESK9-M),
Version 12.4(24)T7, RELEASE SOFTWARE (fc2)\r\n
Technical Support: http://www.cisco.com/techsupport\r\n
Copyright (c) 1986-2012 by Cisco Systems, Inc.\r\n
Compiled Tue 28-Feb-12 10:43 by prod_rel_team"
 }
],
 "properties":
 [
 {"entityid":"LONG"},
 {"classid":"LONG"},
 {"classname":"STRING"},
 {"entityname":"STRING"},
 {"createtime":"DATETIME"},
 {"changetime":"DATETIME"},
 {"displaylabel":"STRING"},
 {"description":"STRING"},
 {"entitytype":"LONG"},
 {"manual":"LONG"},
 {"alias":"STRING"},
 {"cdmadminstate":"LONG"},
 {"sysname":"STRING"},
 {"sysdescr":"STRING"},
 {"sysobjectid":"STRING"},
 {"syslocation":"STRING"},
 {"syscontact":"STRING"},
 {"sysuptime":"LONG"},
 {"sysservices":"STRING"},
 {"ifnumber":"LONG"},
 {"ipforwarding":"STRING"},
 {"entphysicalvendortype":"STRING"},
 {"entphysicalparentrelpos":"LONG"},
 {"entphysicalindex":"LONG"},
 {"entphysicalname":"STRING"},
 {"entphysicaldescr":"STRING"},
 {"serialnumber":"STRING"},
 {"modelname":"STRING"},
 {"orderablepartnumber":"STRING"},
 {"hardwareversion":"STRING"},
 {"ostype":"STRING"},
 {"osversion":"STRING"},
 {"osimage":"STRING"},
 {"accessipaddress":"STRING"},
 {"accessprotocol":"STRING"},
 {"memorysize":"LONG"},
 {"discoverytime":"DATETIME"},
 {"domainmgrid":"LONG"},
 {"domainname":"STRING"}
],
 "instrumentation":
 {
 "totalExecTime":142,
 "queryTime":105,

Chapter 24. Topology API reference 785

 "processTime":37,
 "count":1
 }
 }
}

Source of data in JSON output
The columns in the JSON output come from the following tables and views in the NCIM topology
database:

1. chassis view: all of the columns come from this view, except for the columns listed in items 2 and 3.
2. domainMgr table: the following columns come from this table:

• domainname
• domainmgrid

3. entityClass table: the following columns come from this table:

• classId
• className

4. entityData table: the following columns come from this table:

• alias
• cdmadminstate
• changetime
• createtime
• entitytype
• entityname
• displaylabel
• description

For more information on these NCIM topology database tables and views, see the IBM Tivoli Network
Manager Reference.

Structure of JSON output
The JSON output is structured as follows:
devices:items

An array containing one JSON object for each device that the query returns. The devices are not
returned in any particular order.

devices:properties
An array that is returned once per query. This array contains JSON objects that specify the name and
type of each property in the device instances contained in the devices:items arrray. Possible types
are as follows:
DATETIME

Integer representing the number of milliseconds since midnight on 1st January 1970. No
timezone conversion is performed on the value that is stored in the NCIM database.

LONG
64-bit signed integer. In order to minimize differences in the code between the Oracle and Db2, all
integers returned by the Topology API are represented as 64-bit.

STRING
Quoted character string, UTF-8 encoded.

Note: A property whose value is NULL in the database is represented in the JSON output as the
string null. If the property is a STRING type, the null does not have quotes around it. This
distinguishes it from a string whose value is the four characters n, u, l, l.

786 IBM Tivoli Network Manager IP Edition: Reference

devices:instrumentation
JSON object, returned once per query, and containing the following information:
count

Number of devices that the query returned.
queryTime

Number of milliseconds that the server took to execute the query on the NCIM database.
processTime

Number of milliseconds that the server took to process the result from the database and return it
to the client.

totalExecTime
Number of milliseconds that passed between when the server received the query from the client
and when it finished returning the result.

Retrieving domain data
You can use the Topology API to extract a list of the domains defined in the ncim.domainMgr NCIM
database table.

Syntax
Specify the following parameters within a REST client.

Table 518. Parameters to retrieve data for all domains

Parameter Value

Method GET

URL https://HOST:PORT/
ROOT-CONTEXT/nm_rest/topology/devices/meta/domains

Where:

• HOST is the hostname or IP address of the Dashboard Application Services Hub
server.

• PORT is the secure port number of the Dashboard Application Services Hub server.
By default, this is 16311.

• ROOT-CONTEXT is the path from the root of your file system to the Topology API.
This path is usually ibm/console.

For example:

https://myHost:16311/ibm/console/nm_rest/topology/
devices/meta/domains

Content Type application/json

Example JSON output for domains
Use this information to understand the format of the JSON file that the Topology API produces as output.

The following code snippet shows an example of a JSON file produced as output for the following
Topology API query.

https://myHost:16311/ibm/console/nm_rest/topology/
devices/meta/domains

Chapter 24. Topology API reference 787

Example of JSON output
This query produced the following JSON output. For a description of this output, see the notes that follow
the output.

Note: The actual output produced does not have the indentation in this example. The output is indented
here in order to make the data easier to read.

{
 "devices":
 {
 "instrumentation":
 {
 "count":1,
 "queryTime":4,
 "totalExecTime":8,
 "processTime":4
 },
 "items":
 [
 {
 "lastUpdated":1552404469000,
 "webtopDataSource":"NCO_AGG_P",
 "creationTime":1546622278000,
 "domainName":"NCOMS",
 "description":null,
 "domainHost":"10.10.10.232",
 "domainMgrId":1,
 "managerName":"PrecisionIP",
 "domainPort":7968,
 "batchUpdatePercent":0
 }
],
 "properties":
 [
 {"domainmgrid":"LONG"},
 {"domainname":"STRING"},
 {"creationtime":"DATETIME"},
 {"lastupdated":"DATETIME"},
 {"managername":"LONG"},
 {"description":"STRING"},
 {"webtopdatasource":"STRING"},
 {"domainhost":"STRING"},
 {"domainport":"LONG"},
 {"batchupdatepercent":"LONG"}
]
 }
}

Source of data in JSON output
The columns in the JSON output come from the domainMgr table in the NCIM topology database. For
more information on these NCIM topology database tables and views, see the IBM Tivoli Network Manager
Reference.

Structure of JSON output
The JSON output is structured as follows:
devices:items

An array containing one JSON object for each device that the query returns. The devices are not
returned in any particular order.

devices:properties
An array that is returned once per query. This array contains JSON objects that specify the name and
type of each property in the device instances contained in the devices:items arrray. Possible types
are as follows:
DATETIME

Integer representing the number of milliseconds since midnight on 1st January 1970. No
timezone conversion is performed on the value that is stored in the NCIM database.

788 IBM Tivoli Network Manager IP Edition: Reference

LONG
64-bit signed integer. In order to minimize differences in the code between the Oracle and Db2, all
integers returned by the Topology API are represented as 64-bit.

STRING
Quoted character string, UTF-8 encoded.

Note: A property whose value is NULL in the database is represented in the JSON output as the
string null. If the property is a STRING type, the null does not have quotes around it. This
distinguishes it from a string whose value is the four characters n, u, l, l.

devices:instrumentation
JSON object, returned once per query, and containing the following information:
count

Number of devices that the query returned.
queryTime

Number of milliseconds that the server took to execute the query on the NCIM database.
processTime

Number of milliseconds that the server took to process the result from the database and return it
to the client.

totalExecTime
Number of milliseconds that passed between when the server received the query from the client
and when it finished returning the result.

Retrieving class data
You can use the Topology API to extract a list of the classes that devices in the topology belong to.

Syntax
Specify the following parameters within a REST client.

Table 519. Parameters to retrieve data for all classes

Parameter Value

Method GET

URL https://HOST:PORT/
ROOT-CONTEXT/nm_rest/topology/devices/meta/classes

Where:

• HOST is the hostname or IP address of the Dashboard Application Services Hub
server.

• PORT is the secure port number of the Dashboard Application Services Hub server.
By default, this is 16311.

• ROOT-CONTEXT is the path from the root of your file system to the Topology API.
This path is usually ibm/console.

For example:

https://myHost:16311/ibm/console/nm_rest/topology/
devices/meta/classes

Content Type application/json

Chapter 24. Topology API reference 789

Example JSON output for classes
Use this information to understand the format of the JSON file that the Topology API produces as output.

The following code snippet shows an example of a JSON file produced as output for the following
Topology API query.

https://myHost:16311/ibm/console/nm_rest/topology/
devices/meta/classes

Example of JSON output
This query produced the following JSON output. For a description of this output, see the notes that follow
the output.

Note: The actual output produced does not have the indentation in this example. The output is indented
here in order to make the data easier to read.

{
 "devices":
 {
 "instrumentation":
 {
 "count":427,
 "queryTime":15,
 "totalExecTime":20,
 "processTime":5
 },
 "items":
 [
 {"classId":6,"className":"3Com","superClassId":5,"managerName":
"PrecisionIP","classType":"NetworkDevice"},
 {"classId":7,"className":"3ComAccessPoint","superClassId":6,"managerName"
:"PrecisionIP","classType":"Router"},
 {"classId":8,"className":"3ComCoreBuilder","superClassId":6,"managerName"
:"PrecisionIP","classType":"Switch"},
 ...
 {"classId":161,"className":"zOS","superClassId":200,"managerName":
"PrecisionIP","classType":"EndNode"}
],
 "properties":
 [
 {"classid":"LONG"},
 {"classname":"STRING"},
 {"superclassid":"LONG"},
 {"classtype":"STRING"},
 {"managername":"STRING"}
]
 }
}

Source of data in JSON output
The columns in the JSON output come from the entityClass table in the NCIM topology database. For
more information on these NCIM topology database tables and views, see the IBM Tivoli Network Manager
Reference.

Structure of JSON output
The JSON output is structured as follows:
devices:items

An array containing one JSON object for each device that the query returns. The devices are not
returned in any particular order.

devices:properties
An array that is returned once per query. This array contains JSON objects that specify the name and
type of each property in the device instances contained in the devices:items arrray. Possible types
are as follows:

790 IBM Tivoli Network Manager IP Edition: Reference

DATETIME
Integer representing the number of milliseconds since midnight on 1st January 1970. No
timezone conversion is performed on the value that is stored in the NCIM database.

LONG
64-bit signed integer. In order to minimize differences in the code between the Oracle and Db2, all
integers returned by the Topology API are represented as 64-bit.

STRING
Quoted character string, UTF-8 encoded.

Note: A property whose value is NULL in the database is represented in the JSON output as the
string null. If the property is a STRING type, the null does not have quotes around it. This
distinguishes it from a string whose value is the four characters n, u, l, l.

devices:instrumentation
JSON object, returned once per query, and containing the following information:
count

Number of devices that the query returned.
queryTime

Number of milliseconds that the server took to execute the query on the NCIM database.
processTime

Number of milliseconds that the server took to process the result from the database and return it
to the client.

totalExecTime
Number of milliseconds that passed between when the server received the query from the client
and when it finished returning the result.

Chapter 24. Topology API reference 791

792 IBM Tivoli Network Manager IP Edition: Reference

Part 4. Discovery reference
To make advanced changes to the discovery, first understand the different aspects of discovery, including
the discovery processes, phases, stages, Helpers, agents, stitchers and traps.

Note: The Discovery databases are not described in this section; they are described in the Management
databases node.

© Copyright IBM Corp. 2006, 2021 793

794 IBM Tivoli Network Manager IP Edition: Reference

Chapter 25. Discovery process
The Network Manager discovery process produces a network topology that includes connectivity and
containment data.

Discovery subprocesses
The discovery process consists of several subprocesses that work together to discover devices and device
interconnectivity.

When you launch a discovery, the internal Network Manager discovery engine (ncp_disco) is run. The
ncp_disco engine manages the process of discovering device existence and interconnectivity.

Whenever you launch a full discovery the Discovery Engine, ncp_disco, rereads its configuration files. The
Discovery Engine also instructs the Helper Server and the individual helpers to reread their configuration
files. This is controlled by the DiscoReadConfig() rule within the FullDiscovery stitcher file.

Note: When you launch a partial discovery, ncp_disco does not read its configuration files.

The Discovery engine operates by detecting the existence of a device on the network and querying the
device for inventory and connectivity information, which is subsequently processed or 'stitched' together
to generate a connectivity or topology model. The discovery engine components are described in Table
520 on page 795.

Table 520. Discovery components

Name Description

Finders Finders discover the existence of devices but do not retrieve connectivity
information.

Agents ncp_disco uses discovery agents to request connectivity information from devices
that the finders have discovered. There are a variety of agents, each specialized to
retrieve information from different devices, and, in certain cases, to use different
protocols. Agents do not have any direct interaction with the network, but instead
retrieve information through the Helper Server. Agents can be libraries or text files,
and are specialized for particular protocols, devices or classes.

The Discovery engine starts each agent as a dependent unmanaged process. In the
event of a failure of the Discovery engine, the Process controller, ncp_ctrl, shuts
down each of the agents started by the discovery.

Helper Server The Helper Server manages the helpers and stores the information that is retrieved
from the network. Discovery agents retrieve their information through the Helper
Server to reduce the load on the network. The Helper Server can service the requests
directly with cached data or pass on the request to the appropriate helper.

Helpers The helpers retrieve information from the network on behalf of the discovery agents.
Helpers also translate agent queries into the appropriate network protocol and make
requests to the devices.

Stitchers Stitchers are processes that transfer, manipulate and distribute data between
databases. The discovery stitchers are also responsible for processing the
information collected by the agents and using this information to create the network
topology. A predefined set of stitchers is included with Network Manager. You can
modify existing stitchers or write new stitchers to perform custom manipulation of
your network topology. For example, you can write a stitcher to make your device
interfaces appear with a custom naming convention. Stitchers are coded using the
stitcher language.

© Copyright IBM Corp. 2006, 2021 795

Discovery timing
Each full discovery consists of one or more discovery cycles. The division of a full discovery into multiple
discovery cycles enables the discovery to complete in a timely way.

In the first discovery cycle, Network Manager discovers the existence of a predetermined majority of
devices on the network, and proceeds to complete all data collection and processing operations
associated with these devices. When Network Manager has discovered the existence of a predetermined
majority of devices on the network, Network Manager enters the blackout state.

Any devices that Network Manager discovers during the blackout state are placed into a database table
named finders.pending. These devices are only processed in the following discovery cycle. This means
that the discovery process does not have to wait for all devices to be discovered before proceeding to the
more detailed data collection and data processing operations.

Note: Ideally a discovery should complete in a single discovery cycle; however, sometimes it is not
possible to discover the existence of entities sufficiently quickly as a result more discovery cycles are
needed. Reasons why the system does not discover the existence of entities sufficiently quickly include:
ping sweeping of sparsely populated subnets, and lack of access to devices. First-time discoveries often
have multiple cycles. This can be mitigated by using the BuildSeedList.pl script to build a seed list after
the initial discoveries. This seed list will then be used in subsequent discoveries to find devices in a more
timely manner.

By default, each discovery cycle is made up of a data collection stage and a data processing stage. The
data collection stage is in turn broken up into three phases. Figure 30 on page 796 shows a timing
diagram for a discovery that requires two discovery cycles to complete.

The data collection and data processing stages are briefly described in Table 521 on page 797.

Figure 30. Discovery timing for a full discovery with two discovery cycles

In Figure 30 on page 796, the blackout state for the first discovery cycle begins and ends at the instants
indicated by the numbers 1 and 2 respectively:

 1 : Blackout state begins. A predetermined majority of devices on the network have now been
discovered. Any devices discovered after this point are placed into the finders.pending table for
processing in the subsequent discovery cycle.
 2 : Blackout state ends. Devices stored in the finders.pending table are now processed in the
subsequent discovery cycle.

796 IBM Tivoli Network Manager IP Edition: Reference

Note: If the network being discovered is particularly large or complex, more than two discovery cycles
may be required to complete a full discovery. In this case, each discovery cycle, except for the last cycle,
has its own blackout state.

Table 521. Data collection and data processing stages

Stage or Phase Description

Data collection stage During this stage, Network Manager interrogates the network for
device information, using the finder, agent and helper components of
DISCO. The data collection stage is divided into three phases, which
are described in this table.

Data collection: first phase During this phase, finders identify devices on the network. Phase one
completes when the device find rate drops below a certain level. For
each device discovered, agents retrieve device details, IP addresses
associated with the device, and device connectivity information.

Data collection: second phase During this phase, an agent retrieves IP address to MAC address
mapping data.

Data collection: third phase During this phase agents download all forward database table
information for the network switches and ping all devices to confirm
the accuracy of the contents of the forward database tables.

Data processing stage During this stage, Network Manager deduces the network topology
based on data collected during the data collection stage. Stitchers
analyze the data collected and build a network topology that
includes connectivity and containment data.

Discovery stages and phases
The discovery process can be divided into two stages: data collection and data processing. The stages are
subdivided into phases.

Data processing stage
Topology deduction takes place during the data processing stage, as the information from the data
collection stage is analyzed, interpreted and processed by the stitchers. The culmination of the data
processing stage is the production of the containment model.

The data processing stage corresponds to creating the topology. This is the final conceptual step in the
discovery cycle.

The data processing and data collection stages usually overlap, because you can configure the stitchers to
begin processing connectivity information from different discovery agents before the main stitching
operation begins.

Data collection stage
The data collection stage involves interrogating the network for device information to produce a network
topology. DISCO uses the finders, agents and helpers during the data collection stage. The data collection
stage can be further subdivided into a number of phases.

First phase
In the first phase of data collection, the finders identify all the devices that exist on the network.
Generally, a phase can be completed when all the launched processes have completed their operation.
However, although you might want to wait until all devices have been discovered by the finders before
proceeding to phase two, it is inefficient to hold back the discovery process by waiting indefinitely. The

Chapter 25. Discovery process 797

first phase therefore completes when the find rate drops below a certain level, determined by no devices
being discovered for the amount of time specified in disco.config.m_NothingFndPeriod.

The following conceptual steps in the discovery cycle take place during data collection phase one:

• Discovering device existence
• Discovering device details (standard)
• Discovering associated device addresses
• Discovering device connectivity

Agents in the first phase
Some agents return data that can be used to find other devices, for example, the IP address of remote
neighbors, or the subnet within which a local neighbor exists. This mechanism is known as feedback.

The Feedback stitcher manages feedback by sending the information returned by the agents to the Ping
finder for inclusion in the discovery. However, the blackout state ensures that any agent involved in the
feedback process must be run in phase one for devices to be discovered in the current discovery cycle.

Phase one also usually involves the Switch discovery agents downloading all VLAN and interface
information.

Blackout state
After phase one, the discovery enters the blackout state. The finders have discovered the existence of a
pre-determined majority of devices on the network. Any new device addresses discovered in the blackout
state, either by the finders or recursively by a discovery agent, are put into the finders.pending database
table.

Devices in the finders.pending database table are processed in the next discovery. If there are devices in
the finders.pending database table, the next discovery starts as soon as the current discovery finishes.

Second phase
After the criteria for the completion of phase one have been fulfilled, phase two begins. To map layers two
and three of the OSI model, the ARP Cache discovery agent populates the Helper Server with ARP data,
which is a list of device IP address-to-MAC address resolution.

Before the discovery can transfer from phase two to phase three, the processes from phase two must
have completed their operation. An agent is considered to have finished after all entities in its despatch
table are also in its returns table.

The agents are multithread, and records of discovered devices passed to the agents are tagged with a
certain phase. Consequently, at any time an agent can be processing devices in two separate phases. If
any action that should have occurred in phase two is detected after phase three has begun, phase three
continues while the agent runs through phase two processing.

Third phase
By phase three, the discovery process has full knowledge of the devices that exist within the network
(acquired from phase one) and access to full IP address-to-MAC address mappings for all devices in the
Helper Server (acquired from phase two). The Switch agents can now proceed to download all the forward
database table information of the network switches whilst pinging all devices to confirm the accuracy of
the contents of the forward database tables.

When phase three has finished, which is signified by the completion of all processes scheduled to run in
the phase, the discovery is ready to proceed from the data collection stage to the data processing stage,
where all the connectivity information is knitted together to form a network topology.

798 IBM Tivoli Network Manager IP Edition: Reference

Impact of the stages and phases approach on DISCO processes
The division of the data collection stage into phases affects all the processes involved in the discovery and
network topology deduction, because the phases are processed in order. Any given phase cannot begin
until the criteria for completion of the previous phase have been met.

All the processes of DISCO must therefore have an associated phase (or phases) in which they are
allowed to operate. Thus, whilst the finders are typically configured to run through all phases, you might
want to configure certain discovery agents to operate only within a specific phase(s). The flexibility of
DISCO allows you to have processes that are intelligent enough to behave differently when they operate
within different phases, and can pass control to other processes or stop operation until the start of their
next operational phase.

Advantages of staged discovery
There are several reasons why it is advantageous to apply a staged and phased approach to discovery.

Switch connectivity

In determining the connectivity of some devices, it is sometimes necessary for the discovery agent to
know all the devices that exist before requesting particular Management Information Base (MIB)
variable(s), especially if the requested information is transient.

An example is when the layer 2 agents discover connectivity between Ethernet switches. Ethernet
switches have forward database tables that expire over time. So, to ensure that a switch has a fully
populated forward database table at the time of interrogation, you could ping all devices associated with
the switch.

You would therefore configure the switch discovery agents to perform some other processing in data
collection phase one. After the agents receive the signal that phase one has been completed (that is, all
devices have been found) they can start phase two operations. For example, they could ping all devices
within the discovery domain while downloading the forward database tables for all switches.

Mapping subnet boundaries

One limitation of configuring individual discovery agents to make individual ARP requests directly from the
Helper Server is that the ARP helper cannot run simultaneously on multiple subnets unless it is
specifically configured to do so. To resolve this problem, use a special ARP Cache discovery agent that
imitates a generic discovery agent (in the sense that entities can be sent to it) but that also can map
boundaries or different layers of the OSI model.

The ARP Cache discovery agent can inquire about ARP caches that exist on routers. It uses this
information to populate the ARP helper database within the Helper Server and build up full device IP
address to MAC address mapping without having to rely on the ARP helper.

This approach can be applied when using switch discovery agents that need to perform IP address-to-
MAC address resolution before they can start operation. Following the example above, you could
configure your discovery data collection stage to have three phases:

• Phase one: Find all devices that exist on the network.
• Phase two: Use the ARP Cache discovery agent to populate the Helper Server with full IP address to

MAC address mappings.
• Phase three: Ping all devices and invoke the switch discovery agents by downloading the forward

database tables for all switches in the network, using the IP address to MAC address mappings
determined in phase two.

Multiphase discovery agents

Another possible consequence of dividing the data collection stage into phases is that you can configure
the discovery agents to perform different operations within different phases.

Chapter 25. Discovery process 799

Although a discovery agent is programmed to start operating in phase two, it could also conduct some
other operation in phase one. This is because the end of phase one signifies only that all devices have
been discovered. The agent could be configured to perform other actions such as downloading interfaces,
issuing Telnet requests, or downloading other MIB variables during phase one. Only after phase two has
started does the agent begin to process instructions specific to phase two.

Tip: It is good practice to configure the discovery to occur over multiple phases, to ensure maximum
accuracy of the deduced topology.

Effect of discovery multiphasing on network traffic
One of the main benefits of multiphasing is reduced network traffic.

Because similar types of network requests are grouped in phases, data can be cached in the Helper
Server to reduce the network load. The Helper Server is the intermediary between the discovery agents
and the network, and can amalgamate multiple pings of the same device into one block so that they are
resolved into a single ping.

The Helper Server also has a request pool that ensures that the Helper Server does not overload the
network. The request pool does this by restricting the number of simultaneously-handled requests.

Criteria for multiphasing
The main criterion for configuring a discovery that has multiple phases is to assess the requirements of
the different operations that need to be performed during the discovery process. For example, Ethernet-
based discovery agents require at least two phases. It is possible to have discovery agents that can
operate in any phase.

Managing the phases
The different phases of the discovery data collection stage are managed by an internal phase manager.

The phase manager:

• Reads the maximum overall phase number and calculates the total number of phases when all the
discovery agent and stitcher definition files are loaded.

• Calculates the phase and process dependencies, that is, which discovery agents are scheduled to run in
which phases.

• Monitors the processes running during the phases.

When the phase manager detects that all the processes for the current phase have completed, it sends a
signal indicating phase completion for all the processes that are waiting to be launched in the next phase.

Discovery cycles
A discovery cycle has occurred when the discovery data flow for a particular cycle has gone from start to
finish. A full discovery might require more than one cycle.

The discovery data flow can be categorized into the following conceptual steps:

• Discovering device existence
• Discovering device details (standard)
• Discovering device details (context-sensitive)
• Discovering associated device addresses
• Discovering device connectivity
• Creating the topology

These steps follow the discovery data flow in order from start to finish, with the exception of discovering
device details (context-sensitive), which replaces discovering device details (standard) if the discovery is
context-sensitive.

800 IBM Tivoli Network Manager IP Edition: Reference

Discovering device existence
The discovery of device existence is carried out in several steps.

Figure 31 on page 801 shows how the initial existence of devices on the network is discovered.

Figure 31. Discovery process flow: device existence

The process flow shown in Figure 31 on page 801 is described below.

 1 : The finders receive their instructions from their configuration files and the inserts made into the
finders.despatch table, then proceed to the network to look for devices.
 2 : The finders return the device existence information to the finders.returns table.
 3 : After the device existence information is placed into the finders.returns table, a stitcher moves the
information to the finders.processing table. This signifies that the network entity is being processed by
DISCO. If the discovery is in the blackout state, the information is placed into the finders.pending table
instead.
 4 : A stitcher moves the information about device existence from the finders.processing table to the
Details.despatch table, ready for processing by the Details agent.

Discovering device details (standard)
The standard discovery of device details is carried out in several steps.

Figure 32 on page 802 shows how device details are discovered in a standard discovery.

Chapter 25. Discovery process 801

Figure 32. Discovery Process Flow: Device Details (Standard)

The process flow shown in Figure 32 on page 802 is described below.

 1 : All the agent despatch tables are active, so an insertion into the Details.despatch table
automatically triggers the Details agent to discover basic device information and determine whether
SNMP access to the device is available.
 2 : The Details agent interrogates the network through the Helper Server. Requests are cached to
reduce the number of times that the helpers (represented by the letter H in Figure 32 on page 802)
must interrogate the network directly.
 3 : The information retrieved from the network is returned to the Details.returns table.
 4 : The information in the Details.returns table is passed to the despatch table of the Associated
Address (AssocAddress) agent for processing.

Discovering device details (context-sensitive)
The discovery of context-sensitive device details is carried out in several steps.

Figure 33 on page 803 shows how device details are discovered in a context-sensitive discovery.

802 IBM Tivoli Network Manager IP Edition: Reference

Figure 33. Discovery process flow: device details (context-sensitive)

The process flow shown in Figure 33 on page 803 is described below.

 1 : All the agent despatch tables are active, so an insertion into the Details.despatch table
automatically triggers the Details agent to discover basic device information and determine whether or
not SNMP access to the device is available.
 2 : The Details agent interrogates the network through the Helper Server. Requests are cached to
reduce the number of times that the helpers must interrogate the network directly.
 3 : The information retrieved from the network is returned to the Details.returns table.
 4 : The information in the Details.returns table is passed to the despatch table of the appropriate
Context agent, which adds context tags.
 5 : After the Context agent has finished its processing, the information is passed to the despatch table
of the Associated Address (AssocAddress) agent for processing.

Discovering associated device addresses
There are several steps in the process flow during the discovery of associated device addresses.

The following figure shows how associated device addresses are discovered.

Chapter 25. Discovery process 803

Figure 34. Discovery process flow: associated device addresses

The following process flow describes Figure 34 on page 804:

 1 : The Associated Address agent uses the Helper Server to download all the IP addresses associated
with the interfaces of the device that is under investigation.
 2 : The Associated Address agent checks the IP addresses against the registry of addresses, the
translations.ipToBaseName table. The details are also added to this registry. If the device has already
been discovered by another of its addresses (that is, if the translations.ipToBaseName table already
contains a record for this device), the details of the device are not sent to the discovery agents.
 3 : Provided the device has not already been discovered, the stitchers pass the details to the
appropriate discovery agents, as specified in the DiscoAgents.cfg configuration file.

Discovering device connectivity
The discovery of device connectivity is carried out in several steps.

The following figure shows how device connectivity is discovered, as well as how devices are discovered
recursively.

804 IBM Tivoli Network Manager IP Edition: Reference

Figure 35. Discovery process flow: device connectivity

The following process flow describes Figure 35 on page 805:

 1 : When information is inserted into the despatch table of a discovery agent, the agent attempts to
discover the connectivity information for that device. The agent sets up a TCP socket-based
communication link with the Helper Server and requests the appropriate connectivity information.
 2 : A stitcher passes the addresses of the remote neighbors of the device, and the subnet address or
addresses of the device, to a finder for discovery. Because these addresses might not exist, and also
might not be in the specified discovery scope, the addresses must run through the discovery process
from the beginning.

Creating the topology
The creation of the topology is carried out in several steps.

The following figure shows a simplified data flow for the creation of the topology from the raw data
returned by the discovery agents

Chapter 25. Discovery process 805

Figure 36. Discovery process flow: creating the topology

The following process flow describes the data flow.

 1 : After all the discovery agents have finished, and the discovery enters the data processing stage,
special data processing stitchers interact with the discovery agent databases to produce the
workingEntities.finalEntity table. Network entities that did not pass the instantiation filter are not
included in the workingEntities.finalEntity table.
 2 : The stitchers use a subset of the agents-returns tables, together with the
workingEntities.finalEntity table, to deduce and create the containment model. This model is stored in
the workingEntities.containment table.
 3 : The stitchers use a further subset of the agents-returns tables, together with the
workingEntities.finalEntity table and the workingEntities.containment table, to build the various
topology layers, which are stored in the layer database tables. The full set of layers is merged in the
fullTopology.entityByNeighbor table.
 4 : The stitchers merge the three tables produced (workingEntities.finalEntity;
workingEntities.containment; fullTopology.entityByNeighbor) to build the network model. The network
model is stored in the dNCIM database. The dNCIM data processing stitchers are used to populate the
dNCIM database. The database topology is then sent in ncimCache format to ncp_model.
 5 : The Topology manager, ncp_model, receives the topology from the dNCIM database and merges it
into the existing NCIM database topology model. The ncp_model process instantiates each network
element and sends the topology to other components as required.

806 IBM Tivoli Network Manager IP Edition: Reference

Advanced discovery configuration options
Use this information to understand how to configure the discovery process data flow and to configure
download of full routing tables.

Configurable discovery data flow
The discovery process data flow is user-configurable. Stitchers control the movement of data between
databases, and you can customize the discovery process by changing the way in which the stitchers are
triggered and operate.

Stitcher and agent triggers
You can modify the data flow by changing the criteria that trigger the deployment of the stitchers and
discovery agents, by modifying the stitchers, and, if necessary, by modifying the agent definitions. Some
typical triggers are:

• Data being inserted into a specific database table
• A stitcher or discovery agent completing its operation
• The end of a discovery phase

Any changes you make are automatically detected by DISCO during its periodic scan of the agent and
stitcher files (the scan frequency is determined by the entry in the disco.config database). On detecting
changes, DISCO modifies its agent and stitcher definitions databases accordingly, and applies the
changes to the next discovery cycle.

For more details about the stitchers and the stitcher language, see the IBM Tivoli Network Manager
Reference.

On-demand stitchers
Stitchers can be started on demand. If you insert a stitcher into the stitchers.actions database, DISCO
automatically runs the stitcher. This means that the discovery cycle can be started at any point, and
further actions can be configured to start when the stitcher completes.

Partial matching
By default, the discovery process uses partial matching, which means that the discovery agents do not
need to download the full routing tables during discovery.

You do not need to modify the discovery agent definition files to use partial matching. However, it is
possible to prevent the IpForwardingTable and IpRoutingTable discovery agents from using partial
matching in certain cases if you have devices on your network that do not support partial matching.

To prevent partial matching on certain devices, you must specify the devices that do not support partial
matching in the DiscoRouterPartialMatchRestrictions(); section of the
IpForwardingTable.agnt definition file (for modern devices that use RFC2096) or the
IpRoutingTable.agnt definition file (for older devices that use RFC1213). If a discovered device
matches the filter specified in the DiscoRouterPartialMatchRestrictions(); section, partial
matching is not attempted on that device.

Discovery process with EMS integration
Network Manager collects topology data from an EMS using collectors.

The following steps show how Network Manager collects topology data from an EMS using collectors.

Collector-based discovery can be divided into the following conceptual steps:

• Discovering device existence
• Discovering basic device information

Chapter 25. Discovery process 807

• Discovering detailed device information

For an overview of how Network Manager collects topology data from Element Management Systems
(EMSs) and integrates this data into the discovered topology, see the IBM Tivoli Network Manager User
Guide.

Discovering device existence with collectors
During a collector discovery, the discovery of device existence takes place in several steps.

Figure 37 on page 808 shows how the initial existence of devices held on the collectors is discovered.

Figure 37. Collector discovery process flow: discovery of device existence

The following process flow describes Figure 37 on page 808:

 1 : The collector finders receive instructions from its configuration files and then proceeds to the
network to look for collectors.
 2 : The collector finders return the list of devices to the finders.returns table.
 3 : Immediately after the device existence information is placed into the finders.returns table, the
FnderRetProcessing stitcher moves the information to the finders.processing table, to denote that the
network entity is being processed. If the discovery is in the blackout state, the information is placed
into the finders.pending table.
 4 : The FnderProcToDetailsDesp stitcher moves the information about device existence from the
finders.processing table to the CollectorDetails.despatch table so that the CollectorDetails agent can
process the information.

808 IBM Tivoli Network Manager IP Edition: Reference

Discovering basic device information
During a collector discovery, the discovery of basic device information takes place in several steps.

The following figure shows how basic device details are discovered in a collector discovery.

Figure 38. Collector discovery process flow: Discovery of basic device information

The following process flow describes Figure 38 on page 809:

 1 : All the agent despatch tables are active, so an insertion into the CollectorDetails.despatch table
automatically triggers the CollectorDetails agent to discover basic device information from the
collector.
 2 : The CollectorDetails agent uses the Helper Server to interrogate the helper collector .
 3 : The information retrieved from the network is returned to the CollectorDetails.returns table.

Discovering detailed device information
During a collector discovery, the discovery of detailed device information takes place in several steps.

The following figure shows how detailed device information is discovered in a collector discovery.

Chapter 25. Discovery process 809

Figure 39. Collector discovery process flow: detailed device information

The following process flow describes Figure 39 on page 810:

 1 : The CollectorDetailsRetProcessing stitcher passes the information in the CollectorDetails.returns
table to the despatch table of the various collector agents for processing.

 2 : Inserting information into the despatch table of an agent triggers an attempt by that agent to discover
information about that device. The collector agents interrogate the collectors to discover the following
information about each device.
CollectorInventory agent

Retrieves local neighbor, entity and associated address data for each of the devices on the collector.

CollectorLayer1

Retrieves layer 1 and microwave connectivity information for the devices on the collector.

CollectorLayer2

Retrieves layer 2 connectivity information for the devices on the collector.

CollectorLayer3

Retrieves layer 3 connectivity information for the devices on the collector.

810 IBM Tivoli Network Manager IP Edition: Reference

CollectorLTE

Retrieves LTE-specific entity information for the devices on the collector.

CollectorRan

Retrieves radio access network (RAN) information for the devices on the collector.

CollectorVpn

Retrieves layer 2 and layer 3 VPN data for the devices on the collector.

Rediscovery
When a discovery has completed, ncp_disco enters rediscovery mode, in which the discovery of new
devices results in updates to the topology model.

Full and partial rediscovery
By modifying the stitchers, you can configure the way DISCO treats devices that are found in the
rediscovery mode.

By default, when the system is in rediscovery mode and either a new device is found or an existing device
changes, the device is rediscovered. The stitchers ensure that the device is rediscovered only once. The
stitchers also check that the change has not caused the relationship of the device with its neighbors to
change. If necessary, the neighbors of the device are rediscovered. If the number of devices that need to
be rediscovered as a result of relationship changes exceeds a certain limit, the rediscovery process
initiates a full rediscovery.

Process flow of the FnderRetProcessing stitcher
To configure the way in which DISCO handles newly discovered devices, edit the FnderRetProcessing.stch
stitcher. This stitcher processes the entries that are placed into the finders.returns table.

The default process flow of the FnderRetProcessing.stch stitcher is:

1. When an entry is placed in the finders.returns table, the stitcher checks whether the device is in the
scope of the discovery. If the device is not in scope, it is ignored.

2. If the device is in scope and disco.status.m_DiscoveryMode=0, that is, DISCO is in discovery mode, the
stitcher moves the device details to either the finders.pending table to be processed later (if the
discovery is in the blackout state) or the finders.processing table to be processed now.

3. If the device is in scope and disco.status.m_DiscoveryMode=1, that is, DISCO is in rediscovery mode,
the stitcher determines whether the device needs to be rediscovered. By default, the stitcher
rediscovers:

• Devices for which finders.returns.m_Creator='Rediscovery'. There is no Rediscovery finder, but this
column is set to 'Rediscovery' by other stitchers, such as ProcRemoteConns.stch, to indicate that as
a result of rediscovering other devices this device needs to be rediscovered.

• Any newly found device that is in scope and has not already been discovered.
4. If necessary, you can alter the section of the FnderRetProcessing.stch stitcher that performs the above

checks in order to configure when rediscovery of a device takes place, although this configuration
adjustment must be undertaken by advanced users only.

5. If a device that has already been discovered is to be rediscovered, the stitcher refreshes the
information held in the Helper Server that relates to that device.

6. For all devices to be rediscovered, the stitcher removes the old entries for that device from the
finders.processing, Details.returns and Details.despatch tables, copying the old information to the
rediscoveryStore.dataLibrary table for comparison purposes.

7. The stitcher then places the details of the device to be rediscovered into the finders.processing table
and the FnderProcToDetailsDesp.stch stitcher moves the device details to the Details agent.

Chapter 25. Discovery process 811

Processing information from discovery agents during rediscovery
After the entity that is being rediscovered has been processed by the Details agent, and the details are
placed in the Details.returns table, the DetailsRetProcessing.stch stitcher compares the old data in the
rediscoveryStore.dataLibrary table with the new data. By default, the rediscovery continues from this
point.

If necessary, you can edit the DetailsRetProcessing.stch stitcher so that rediscovery continues only when
certain conditions are in place. For example, rediscovery continues only when SNMP access is available.

The rediscovery data is processed by the AssocAddress agent and then by the appropriate agents
(according to the configured discovery process flow) and sent to their returns tables.

A full discovery combines the information from the discovery agent returns tables to produce the
topology. However, in a rediscovery, the information must be checked to determine whether the
relationships between devices have changed as a result of the new information.

For example, if the device being rediscovered, device A, was connected to device B before the
rediscovery, but is now connected to a third device, device C, then both B and C must also be rediscovered
because their relationship has changed. The AgentRetProcessing.stch stitcher determines the
relationships between devices and the comparison is done by ProcRemoteConns.stch. Switches and hubs
need to be rediscovered differently to routers because the connectivity information they provide is
indirect instead of direct. Any entity that also needs to be rediscovered as a consequence of rediscovery is
inserted back into the finders.returns table with the parameter m_Creator='Rediscovery'.

Full rediscoveries
Comparing the current relationship between devices to their previous relationship, and rediscovering all
the devices whose relationships have changed, can sometimes become circular. However, the discovery
process includes a check to prevent this repetition.

If the ratio of entities that have been compared to the entities that need to be rediscovered exceeds the
percentage specified in the disco.config.m_PendingPerCent column, then DISCO stops rediscovering
individual devices and initiates a full network discovery.

Additionally, the fact that all rediscovered entities are recorded in the
rediscoveryStore.rediscoveredEntities table means that a given entity can be rediscovered only once.

Rediscovery completion
When all the entities that need to be rediscovered have been processed, the topology layers are rebuilt by
the FinalPhase.stch stitcher. This stitcher also clears the rediscoveryStore database so that it is ready for
the next rediscovery.

It is important to note that DISCO might go through many discovery cycles during rediscovery before the
topology is rebuilt. DISCO rebuilds the topology only when there are no entities needing to be
rediscovered.

Option to rebuild topology layers
You can specify whether to rebuild the topology layers following a partial rediscovery. Using this option,
you can increase the speed of partial rediscovery.

Suggested reasons to rebuild or not to rebuild the topology layers are:

• If you specify that the topology layers should not be rebuilt following partial rediscovery, the result is
that new devices are added to the topology much faster than they would be if the topology layers are
rebuilt; however, the resulting topology may not be complete. Connectivity associated with the newly
discovered device is not fully reflected in the topology. Topology layers are fully rebuilt when a full
rediscovery is run.

• If you specify that topology layers should be rebuilt following partial rediscovery, the result is an
accurate topology showing all connectivity. However the process of adding new devices takes longer.

812 IBM Tivoli Network Manager IP Edition: Reference

Use the m_RebuildLayers field in the disco.config table to specify whether or not to rebuild topology
layers following partial rediscovery. You set this value as follows:

• If disco.config.m_RebuildLayers=0, then following partial rediscovery, topology layers stitchers are not
run. The result is a much quicker partial discovery: however, connectivity associated with the newly
discovered device is not fully reflected in the topology.

• If disco.config.m_RebuildLayers=1, then following partial rediscovery, topology layers stitchers are run.
Partial rediscovery takes longer but results in a complete topology.

Chapter 25. Discovery process 813

814 IBM Tivoli Network Manager IP Edition: Reference

Chapter 26. Discovery agents
Use this information to support the selection of discovery agents to run as part of your discovery.

The following topics provide information on the discovery agents available. There is also guidance on the
agents to select, based on the characteristics of your network.

Agents
Discovery agents retrieve information about devices in the network. They also report on new devices by
finding new connections when investigating device connectivity. Discovery agents are used for specialized
tasks. For example, the ARP Cache discovery agent populates the Helper Server database with IP
address-to-MAC address mappings.

In addition to the main discovery agents, which can be enabled or disabled according to your discovery
requirements, there are two agents that must always be run: the Details agent and the Associated
Address agent.

Each discovery agent has its own database resident within DISCO. These databases are generically
structured and based on a template called the agentTemplate database.

Each discovery agent database contains the following tables:

• agentName.despatch
• agentName.returns

Note: The default configuration sets the majority of agents to run. This is because the more agents that
are run, the wider the range of networks that can be discovered. Furthermore, agents are designed to
quickly stop analyzing devices that do not provide the data they require. This means that running a large
number of agents increases network traffic by a very small amount only.

Note: Network Manager kills all discovery agents at the end of data collection stage 3. This ensures that
the next discovery restarts the agents and forces the agents to reread their configuration files at the
beginning of a discovery, thereby detecting any changes to the configuration files.

Details agent
This agent is triggered by the entries in the finders.processing table. At least one finder is needed to
activate this agent. The SNMP helper configuration for associated devices is also a prerequisite for
running this agent.

The Details agent retrieves basic information about devices discovered by the finders, and determines
whether SNMP access to the device is available. This mandatory agent is triggered by the entries in the
finders.processing table, so at least one finder is needed to activate this agent.

The Details agent is triggered when device information (usually transferred from the finders by a stitcher)
is placed in the Details.despatch database table.

The Details agent retrieves basic information from the network and deposits this information in the
Details.returns table. The basic information retrieved comprises the DNS name of the device
obtained by the configured DNS helper, and the system object ID obtained by the SNMP helper.
IpForwarding data is downloaded and inserted into the ExtraInfo field which is used to identify
routing devices. SysName information is also downloaded for use if this optional naming scheme is
required. The insertion of data into the returns table triggers a stitcher that sends this information to the
Associated Address agent.

© Copyright IBM Corp. 2006, 2021 815

Associated Address (AssocAddress) agent
This mandatory agent is triggered by the output of the Details agent. The SNMP helper configuration for
associated devices is a prerequisite for running this agent.

When an interface on a device has been discovered, and basic device information has been retrieved by
the Details agent, a stitcher passes the discovered device information to the Associated Address agent.
This agent downloads all the other IP addresses associated with the device and adds them to a central
registry, held in the translations.ipToBaseName table, provided the device details are not already in
the registry. Downloading all the associated IP addresses ensures that any given device is only
interrogated once by the main discovery agents, thus reducing the load on the agents. Any attempt to
discover a device more than once (using multiple interfaces) is blocked by the Associated Address agent
as the device details are already in the translations database.

Provided the device being checked has not already been discovered, a stitcher sends the device details to
the appropriate discovery agent for the retrieval of device connectivity and protocol-specific information.

Interface data retrieved by agents
The Interfaces agent downloads interface information primarily from the interfaces table of
RFC1213.mib. For each device discovered, the interface information is written to the m_LocalNbr field
within each record in the relevant agent.returns table.

The interface information can hold a number of subfields, including an index number that identifies the
interface together with the properties of that interface and values for each property. For example, the
m_LocalNbr field may include the following subfields:

• m_LocalNbr->m_IfIndex: the index associated with this interface
• m_LocalNbr->m_IfType: the type of interface
• m_LocalNbr->m_SubnetMask: the subnet mask of the interface

Discovery agent definition file keywords
Discovery agent definition file keywords are used to define the operation of discovery agents.

DiscoAgentClass
The DiscoAgentClass keyword specifies the basic type of agent. The following table identifies the most
commonly used values:

Value Description

0 Specifies an IP type agent.

1 Specifies a switch type agent.

2 Specifies a hub type agent.

3 Specifies an ATM device type agent.

4 Specifies an FDDI type agent.

5 Specifies a PVC type agent.

6 Specifies a frame relay type agent.

8 Specifies a NAT gateway agent.

The following example shows a DiscoAgentClass keyword set to a frame relay type agent. Frame relay
type agents typically discover Frame Relay interfaces and connections between two points on Frame
Relay networks that incorporate specific network devices, for example, CISCO devices.

816 IBM Tivoli Network Manager IP Edition: Reference

DiscoCompiledAgent
{
.
.
.
DiscoAgentClass(6);
.
.
.
}

DiscoAgentClassEnabledByDefault
The DiscoAgentClassEnabledByDefault keyword specifies whether the agent is enabled by default
for full discoveries. Specify one of the following values:

Value Description

0 Specifies that the agent is not enabled by default for full discoveries.

1 Specifies that the agent is enabled by default for full discoveries.

The following example shows a DiscoAgentClassEnabledByDefault keyword set to enable a frame
relay type agent by default for full discoveries.

DiscoCompiledAgent
{
.
.
.
DiscoAgentClass(6);
.
.
.
DiscoAgentEnabledByDefault(1);
}

DiscoAgentClassEnabledByDefaultOnPartial
The DiscoAgentClassEnabledByDefaultOnPartial keyword specifies whether the agent is
enabled by default for partial discoveries. Specify one of the following values:

Value Description

0 Specifies that the agent is not enabled by default for partial discoveries.

1 Specifies that the agent is enabled by default for partial discoveries.

The following example shows a DiscoAgentClassEnabledByDefaultOnPartial keyword set to
enable a frame relay type agent by default for partial discoveries.

DiscoCompiledAgent
{
.
.
.
DiscoAgentClass(6);
.
.
.
DiscoAgentEnabledByDefaultOnPartial(1);
DiscoAgentEnabledByDefault(1);
}

Chapter 26. Discovery agents 817

DiscoAgentIsIndirect
A direct agent returns relationship data about objects that it is directly connected to at the layer it deals
with. An indirect agent returns relationship data about objects it is indirectly connected to. The most
common indirect agents are switch agents. The remote neighbor records for indirect agents relate to
devices that can be reached from a specific port, not from devices to which they are directly connected.
The relationship data from indirect agents is required to determine which remote neighbor records of a
device need to be rediscovered when the device changes.

The DiscoAgentIsIndirect keyword specifies whether the agent is an indirect agent that returns
relationship data about objects it is indirectly connected to. Specify one of the following values:

Value Description

0 Specifies that the agent is a direct agent.

1 Specifies that the agent is an indirect agent.

The following example shows a DiscoAgentIsIndirect keyword set to specify that a frame relay type
agent is a direct agent.

DiscoCompiledAgent
{
.
.
.
DiscoAgentGUILocked(0);
DiscoAgentClass(6);
DiscoAgentIsIndirect(0);
.
.
.
DiscoAgentEnabledByDefaultOnPartial(1);
DiscoAgentEnabledByDefault(1);
}

DiscoAgentCompanionAgents
The DiscoAgentCompanionAgents keyword is used to display in the GUI the agent or agents that this
agent should execute with.

The following example shows a DiscoAgentCompanionAgents keyword that displays in the GUI the
agent (ArpCache.agnt) that should execute with the Centillion Networks agent.

DiscoCompiledAgent
{
.
.
.
-- This agent examines all devices originally made by Centillion
-- Networks (enterprise OID 1.3.6.1.4.1.930), to see if it can
-- discover them.
.
.
.

DiscoAgentCompanionAgents("ArpCache");
.
.
.
}

DiscoAgentCompletionPhase
The DiscoAgentCompletionPhase keyword specifies during which of the discovery phases the
specified agent should complete executing. Specify one of the following values:

818 IBM Tivoli Network Manager IP Edition: Reference

Value Description

1 Specifies that the agent should complete execution during discovery phase 1.

2 Specifies that the agent should complete execution during discovery phase 2.

3 Specifies that the agent should complete execution during discovery phase 3.

The following example shows a DiscoAgentCompletionPhase keyword set to enable a frame relay
type agent to complete execution during discovery phase 1.

DiscoCompiledAgent
{
.
.
.
DiscoAgentCompletionPhase(1);
.
.
.
DiscoAgentEnabledByDefaultOnPartial(1);
DiscoAgentEnabledByDefault(1);
}

DiscoAgentConflictingAgents
The DiscoAgentConflictingAgents keyword is used to display in the GUI the agent or agents that
this agent should not execute with.

The following example shows a DiscoAgentConflictingAgents keyword that displays in the GUI the
agents (IpRoutingTable.agnt and IpForwardingTable.agnt) that should not execute with the IP
backup routes agent.

DiscoCompiledAgent
{
.
.
.
-- This agent examines every device with SNMP access to see if it
-- can discover it.
.
.

DiscoAgentConflictingAgents("IpRoutingTable","IpForwardingTable");
.
.
.
}

DiscoAgentDescription
The DiscoAgentDescription keyword specifies a description of the agent that is displayed in the GUI.

The following example shows a DiscoAgentDescription keyword that specifies a description to
display in the GUI for a frame relay type agent. The description makes use of HTML coding.

DiscoCompiledAgent
{
.
.
.
DiscoAgentDescription("
Agent Name : CiscoFrameRelay

Agent Type : Layer 3

Agent Prerequisites : SNMP helper configuration for associated devices.

Operation :

Discovers Frame Relay interfaces and connections between two points on Frame Relay
networks that incorporate Cisco devices. If you need to add DLCI information to the

Chapter 26. Discovery agents 819

interfaces of Frame Relay devices, then run Frame Relay agents in conjunction with
the IP layer agents.

 ");
.
.
.
}

DiscoAgentMinCertifiedDeviceOS
The DiscoAgentMinCertifiedDeviceOS keyword specifies a device operating system specific filter.
This filter can be configured to run the specified agent against specific releases of a device operating
system.

The following example shows a DiscoAgentMinCertifiedDeviceOS keyword that specifies a device
operating system specific filter for an agent that discovers MPLS VRFs, VPNs, and label switching
information from CISCO routers. This device operating specific filter configures the agent to run against
the following CISCO devices and associated operating system releases:

• m_ObjectId — Specifies the CISCO devices (OID 1.3.6.1.4.1.9) that the agent attempts to
discover.

• m_OSVersion — Specifies the CISCO device operating system filter that configures the agent to run
against the following device operating system versions:

– 12.0 releases of 12.0(27) or later which are not experimental
– 12.2 releases of 12.2(19) or later which are not experimental
– 12.3 releases of 12.3(18) or later which are not experimental
– 12.4 releases

DiscoCompiledAgent
{
.
.
.
DiscoAgentMinCertifiedDeviceOS
 (
 "(
 m_ObjectId LIKE '1\.3\.6\.1\.4\.1\.9\.',
 m_OSVersion >= '12.0(27)' AND m_OSVersion < '12.1' AND m_OSVersion
 NOT LIKE '.*Experimental.*',
 m_MibVar = 'sysDescr.0'
),
 (
 m_ObjectId LIKE '1\.3\.6\.1\.4\.1\.9\.',
 m_OSVersion >= '12.2(19)' AND m_OSVersion < '12.3' AND m_OSVersion
 NOT LIKE '.*Experimental.*',
 m_MibVar = 'sysDescr.0'
),
 (
 m_ObjectId LIKE '1\.3\.6\.1\.4\.1\.9\.',
 m_OSVersion >= '12.3(18)' AND m_OSVersion < '12.4' AND m_OSVersion
 NOT LIKE '.*Experimental.*',
 m_MibVar = 'sysDescr.0'
),
 (
 m_ObjectId LIKE '1\.3\.6\.1\.4\.1\.9\.',
 m_OSVersion >= '12.4',
 m_MibVar = 'sysDescr.0'
)"
);
.
.
.
}

820 IBM Tivoli Network Manager IP Edition: Reference

DiscoAgentPrecedence
The DiscoAgentPrecedence keyword specifies which agent gets precedence when there is conflicting
data from two agents. Specify a value that is greater than or equal to 0 (zero). The recommended range of
values is from 1 to 100, where the higher the number the higher the precedence. The higher the
precedence the more that agent data is correct. For example, if given conflicting data from a precedence 2
agent and a precedence 3 agent then the precedence 3 agent data is used.

The following example shows a DiscoAgentPrecedence keyword for a frame relay type agent set to a
precedence of 2.

DiscoCompiledAgent
{
.
.
.
DiscoAgentGUILocked(0);
DiscoAgentClass(6);
DiscoAgentIsIndirect(0);
DiscoAgentPrecedence(2);
.
.
.
DiscoAgentEnabledByDefaultOnPartial(1);
DiscoAgentEnabledByDefault(1);
}

DiscoPerlAgent
The DiscoPerlAgent keyword specifies whether this .agnt file refers to a Perl agent.

The following example shows a DiscoPerlAgent keyword specified for a Perl based agent that extracts
information about the operating system running on the device.

DiscoPerlAgent
{
.
.
.
DiscoAgentGUILocked(0);
 DiscoAgentClass(0);
 DiscoAgentIsIndirect(0);
 DiscoAgentPrecedence(2);
 DiscoAgentEnabledByDefaultOnPartial(0);
 DiscoAgentEnabledByDefault(0);
}

Types of agents
The agents supplied with Network Manager can be divided into categories according to the type of data
they retrieve or the technology they discover.

Discovery agents that discover connectivity among Ethernet switches
Discovery agents that discover connectivity information between Ethernet switches have three main
operational stages: gain access to the switch and download all the switch interfaces; discover VLAN
information for the switch; download the forward database table for the switch.

A list of the discovery agents that handle Ethernet switches is shown in Table 522 on page 822.

Note: Before you enable these layer 2 agents, it is necessary to configure SNMP access. Some agents also
require Telnet access and Telnet Helper configuration.

Chapter 26. Discovery agents 821

Table 522. Ethernet switch discovery agents

Agent name Function

AccelarSwitch The AccelarSwitch agent contains the specialized methods for
retrieving connectivity information from Accelar routing switches.
These devices are now branded as the Nortel Passport 86xx series.
This agent also discovers BayStack 450 and BayStack 470 devices.

This agent downloads the switch forwarding database (FDB) table
and the VLAN information for the device. The switch stitcher uses
this information to resolve layer 2 Ethernet connectivity.

BayEthernetHub The BayEthernetHub agent discovers hub cards that are
manufactured by Bay. Connectivity information is downloaded from
the hub and the connectivity is resolved by the
HubFdbToConnections stitcher.

Before you enable this agent, it is also necessary to configure the
SNMP Helper.

CentillionSwitch The CentillionSwitch agent contains the methods that are needed to
retrieve and resolve information from the Centillion switching
devices, in particular the enterprise-specific VLAN information.

ChipcomDistributedMM The ChipcomDistributedMM agent discovers the Ethernet switch
connectivity for 3Com CoreBuilder 5000 devices that contain
distributed management modules.

ChipcomEthernetMM The ChipcomEthernetMM agent is appropriate for Chipcom online
concentrators that contain Ethernet Management Modules (EMMs),
and discovers the Ethernet connectivity of Chipcom EMMs.

CiscoSRP The CiscoSRP agent discovers the connectivity of networks by using
the Spatial Reuse Protocol (SRP), that is, DPT Ring topologies. SRP
is a layer 2 protocol that was developed by Cisco. It uses ‘side'
information to identify adjacent neighbors in its ring topology. The
CiscoSRP agent discovers connectivity of any device that supports
the CISCO-SRP-MIB. The agent definition file is configured by
default to accept only Cisco devices with any IOS version, except
devices that are supported by the CiscoSRPTelnet agent. The agent
accepts only devices that support the srpMacAddress MIB variable.

IOS version 12.2(14)S7 and 12.2(18)S, used with NPE-G1 cards,
are known to corrupt SNMP data. IOS version 12.2(15)BC1 is
known to lack CISCO-SRP_MIB support.

822 IBM Tivoli Network Manager IP Edition: Reference

Table 522. Ethernet switch discovery agents (continued)

Agent name Function

CiscoSRPTelnet The CiscoSRPTelnet agent discovers the connectivity of networks by
using the Spatial Reuse Protocol (SRP), that is, DPT Ring topologies.
SRP is a layer 2 protocol that was developed by Cisco that uses
‘side' information to identify adjacent neighbors in its ring topology.
The CiscoSRPTelnet agent discovers the connectivity of any device
that supports the show controllers srp command. The agent
definition file is configured to accept only Cisco devices that have an
IOS that is known not to support the CISCO-SRP-MIB. Those IOS
versions that have issues with SNMP discovery. IOS version
12.2(14)S7 and 12.2(18)S, used with NPE-G1 cards, are known to
corrupt SNMP data. IOS version 12.2(15)BC1 is known to lack
CISCO-SRP_MIB support.

Note: Before you enable this agent, configure Telnet access and the
Telnet Helper.

CiscoSwitchSnmp The CiscoSwitchSnmp agent contains the specialized methods for
retrieving information from Cisco switches by using SNMP. This
agent uses different methods for finding VLANs and card or port to
ifIndex mappings because different Cisco switches store this
information in different MIB variables.

The CiscoSwitchSnmp agent also discovers Virtual Port Channel
(vPC) links from Forwarding Database (FDB) data.

CiscoSwitchTelnet The CiscoSwitchTelnet agent contains specialized methods for
retrieving connectivity information from Cisco switches by using
Telnet. This agent uses different methods to find VLANs and card/
port to ifIndex mappings because different Cisco switches store this
information in different MIB variables. Only FDB tables are
downloaded by using Telnet. All other information is downloaded by
using SNMP.

The Telnet commands that are used to obtain the FDB table are
show cam dynamic and show mac-address table.

Some devices might require enable mode to run the show mac-
address table command.

Note: Before you enable this agent, configure SNMP and Telnet
access and the SNMP and Telnet Helpers.

CiscoVSS The Cisco VSS agent discovers Virtual Switching System information
from Cisco switches.

Corebuilder3ComSwitch The Corebuilder3ComSwitch agent discovers links for the
CoreBuilder 9000 layer 3 switches that are manufactured by 3Com.

Chapter 26. Discovery agents 823

Table 522. Ethernet switch discovery agents (continued)

Agent name Function

DasanSwitchTelnet The DasanSwitchTelnet agent is responsible for the discovery of the
layer 2 connectivity in the FDB/MAC table of Dasan switches. The
agent was developed against the following devices: V5208 (OS
9.07)V5224 (OS 9.10). The agent is able to discover layer 2
connectivity, VLANs, and trunk ports. It is configured to run only
against devices with a sysObjectID of 1.3.6.1.4.1.6296.* and that
support the command show vlan.

Note: Before you enable this agent, configure Telnet access and the
Telnet Helper.

DefaultEthernetHub This agent has a specialized class for dealing with semi-intelligent
hubs.

EnterasysSwitch The EnterasysSwitch agent provides layer 2 connectivity discovery
by retrieving the FDB table and VLAN information from the device.
The agent discovers layer 2 connectivity for devices that support
the IEEE 802.1q or IEEE 802.1d standards, as modeled in the Q-
BRIDGE-MIB and BRIDGE-MIB SNMP MIBs.

Note: This agent is used for Enterasys devices that do not have
SecureFast turned on.

ExtremeSwitch The ExtremeSwitch agent obtains layer 2 connectivity information,
EDP neighbors, and VLAN details from Extreme switches.

The Extreme devices must be configured to enable SNMP access
and dot1dFdbTable population to achieve a detailed layer 2
discovery. Send the following commands to each Extreme device:

• enable snmp access
• enable dot1dFdbTable

This configuration change is only required on switches that are
running a version of ExtremeWare® before 6.1.8.

F5Switch This agent discovers configuration for F5 switches. The agent
retrieves information from the sysChassisSlotSlotId variable
in the F5-BIGIP-COMMON-MIB and F5-BIGIP-SYSTEM-MIB MIBs.

Note: Before you enable this agent, configure SNMP and Telnet
access and the SNMP and Telnet Helpers.

FoundrySwitch The FoundrySwitch agent discovers switch connectivity of any
Foundry device that supports the IEEE 802.1q or IEEE 802.1d
standards, as modeled in the Q-BRIDGE-MIB and BRIDGE-MIB
SNMP MIBs.

The agent definition file is configured to accept all SNMP-enabled
Foundry devices by default. The agent discovers only devices that
support the Q-BRIDGE-MIB dot1qVlanVersionNumber MIB variable
or the BRIDGE-MIB. The FoundrySwitch agent also obtains
multislot port trunking information, but does not discover single-
slot port trunking. Some Foundry devices support only IEEE 802.1d
and as a consequence no VLAN information is discovered for these
devices.

824 IBM Tivoli Network Manager IP Edition: Reference

Table 522. Ethernet switch discovery agents (continued)

Agent name Function

HuaweiLLDPTelnet The HuaweiLLDPTelnet agent discovers the Layer 2 physical switch-
to-switch links between Huawei switches. To discover the Layer 2
connections between switch interfaces it uses the LLDP Telnet
command display lldp neighbor brief. It does not use the
SNMP method that retrieves the FDB (MAC) table and its entries on
a switch, because this method does not show all the data from the
LLDP MIB. This agent does not use the telnet command display
mac dynamic, because this command has similar issues. Using
this agent avoids getting duplicate MAC addresses on multiple ports
or interfaces.

HuaweiSwitchTelnet The HuaweiSwitchTelnet agent discovers the Ethernet switch
connectivity for Huawei Quidway switches.

This agent is Telnet-based, but also requires SNMP access to
discover certain information. It requires completion of the
Privileged mode (Super 3 mode) sections of the
TelnetStackPasswords.cfg configuration file. If you do not
complete these parts of the file, the agent fails.

Certain Telnet commands have the side-effect of changing the
command prompt of a Huawei device. For example, the command
prompt:

<device_name> becomes

[device_name] or

[device_name-diag] when certain commands are entered.

The parameters m_ConPrompt and m_PrivConPrompt in the
TelnetStackPasswords.cfg file must be configured to cope
with these variations.

Note: Before you enable this agent, configure Telnet access and the
Telnet Helper.

HPSwitch The HPSwitch agent contains the specialized methods for retrieving
connectivity information from HP ProCurve switches, including the
download of enterprise-specific VLAN information.

Marconi3810 The Marconi3810 specialized agent discovers the Ethernet
connectivity of Marconi ES-3810 switches that run operating
system version 4.x.x and 5.x.x. This agent also removes connectivity
from LANE interfaces by default, which can be configured by using
the GetElanData flag in the .agnt file.

Chapter 26. Discovery agents 825

Table 522. Ethernet switch discovery agents (continued)

Agent name Function

SecureFast The SecureFast agent contains the specialized methods for
retrieving connectivity information from Enterasys/Cabletron
SecureFast VLAN switches. These devices use the Cabletron
Discovery Protocol to discover their neighbors. The SecureFast
operating mode is turned on. This agent is sent to all Cabletron and
Enterasys devices that are specified by 1.3.6.1.4.1.52.* and
1.3.6.1.4.1.5624.* in the .agnt file, and determines whether a
device is SecureFast enabled by downloading the
sfpsCommonNeighborSwitchMAC MIB variable.

Devices in SecureFast mode do not support the dot1dBridge MIBs.

StandardSwitch The StandardSwitch generic agent provides layer 2 connectivity
discovery of all switches for which a specialized agent does not
exist. The agent discovers layer 2 connectivity for devices that
support the IEEE 802.1q or IEEE 802.1d standards, as modeled in
the Q-BRIDGE-MIB and BRIDGE-MIB SNMP MIBs.

Devices in SecureFast mode do not support the dot1dBridge MIBs.

SuperStack3ComSwitch The SuperStack3ComSwitch agent finds the connections in stacked
switches that are manufactured by 3Com.

XyplexEthernetHub The XyplexEthernetHub agent discovers the layer 2 connectivity of
intelligent hubs that are manufactured by Xyplex.

Connectivity at the layer 3 network layer
There are a number of discovery agents that retrieve connectivity information from OSI model layer 3 (the
Network Layer). Layer 3 is responsible for routing, congestion control, and sending messages between
networks.

Table 523. Layer 3 network layer agents

Agent name Function

AlteonVRRP VRRP is not modelled for RCA. The AlteonVRRP agent only sets tags on VRRP
interfaces that show the state of Alteon routers at the time of the discovery.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

CiscoBGPTelnet The CiscoBGPTelnet agent downloads the following BGP data from Cisco
routers:

• Peer data: the agent retrieves iBGP and eBGP data from peer routers.
• Route data: the agent retrieves routing information from BGP routing tables of

peer routers. This option is off by default as it will retrieve huge amounts of
data from a typical service provider network. This agent also provides the
option to configure a filter to specify the route data that you would like to
retrieve.

Note: Before enabling this agent, configure Telnet access and the Telnet helper.

826 IBM Tivoli Network Manager IP Edition: Reference

Table 523. Layer 3 network layer agents (continued)

Agent name Function

CiscoFrameRelay The CiscoFrameRelay agent discovers Frame Relay interfaces and connections
between two points on Frame Relay networks that incorporate Cisco devices.
Frame Relay agents should be run in conjunction with the IP layer agents if you
want to add DLCI information to the interfaces of Frame Relay devices.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

CiscoOSPFTelnet The CiscoOSPFTelnet agent is responsible for discovery of Cisco devices running
the Open Shortest Path First (OSPF) protocol. This agent provides
complementary information to that of the StandardOSPF agent, such as what
OSFP processes are running and virtual-link information.

Note: Before enabling this agent, configure Telnet access and the Telnet helper.

ExtremeESRP The ExtremeESRP agent discovers Extreme Standby Routing Protocol (ESRP)
information from Extreme routing switches. ESRP is a feature of ExtremeWare
that allows multiple switches to provide redundant routing services to users.
The agent relies on the extremeEsrpTable and
extremeEsrpNeighborTable of the EXTREME-ESRP-MIB being correctly
populated.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

FoundryVRRP VRRP is not modelled for RCA. The FoundryVRRP agent only sets tags on VRRP
interfaces that show the state of Foundry routers at the time of the discovery.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

HSRPSnmp The HSRPSnmp agent retrieves connectivity information using SNMP by means
of the MIB from routing devices that use the HSRP (Hot Stand-by Routing
Protocol) Virtual IP protocol.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

InetRouting The InetRouting agent discovers connectivity.

Interfaces This agent is triggered by the AssocAddress agent returns.

The Interfaces agent downloads interface information primarily from the
interfaces table of RFC1213.mib. The information will then be written to the
m_LocalNbr field of the returned entities. You can increase or decrease the
number of returned variables by modifying the Interfaces.agnt. Any basic MIB
variable (sysDescr, sysName, and so on) or MIB variable that is indexed by the
ifIndex can be added to the OIDs to download in the .agnt file.

The Interfaces agent also retrieves IPv6 interface information.

You must enable the Interfaces agent if you want to use interface filtering.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

Chapter 26. Discovery agents 827

Table 523. Layer 3 network layer agents (continued)

Agent name Function

IpBackupRoutes The IpBackupRoutes agent finds links by looking through the IpNetToMedia MIB
table, which gives the physical and IP address of devices connected to the
router.

This agent is not enabled by default because it retrieves a large amount of
information that is not essential in order to determine layer 3 connections.
Furthermore, this information may be obsolete because it is downloaded from a
table that is not dynamic and requires manual refresh. If you are performing a
layer 2 discovery, then the server connectivity that this agent discovers is often
obsolete, as it may have been superseded by switch connectivity information.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

IpForwardingTable The IpForwardingTable agent finds links in the more recent version of the
routing tables, that is, the IP Forwarding table as specified in RFC 2096. It also
exploits Open Shortest Path First (OSPF) information to enhance the discovery
of Juniper devices. This agent downloads elements from the routing table based
on discovery scoping. The default setting assumes that the SNMP agent for a
particular device supports partial matching. If the device cannot partial match,
this should be specified in the DiscoRouterPartialMatchRestrictions section of
the .agnt file.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

IpRoutingTable Retrieves generic connectivity information by looking through the router routing
table, as specified in RFC1213. The agent downloads elements from the routing
table based on discovery scoping. The default agent setting assumes that the
SNMP agents for particular devices support partial matching. If a device cannot
partial match, this should be specified in the
DiscoRouterPartialMatchRestrictions section of the .agnt file.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

ISISExperimental Discovers connectivity between routers that support the experimental ISIS
MIBs. This agent should be used when some of your routers are configured with
netmasks of 255.255.255.255, making them unsuitable for standard discovery.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

LinkStateAdvOSPF Retrieves link state advertisements (LSAs) from OSPF routers. These LSAs are
used by the CreateOSPFNetworkLSAPseudoNodes stitcher to create OSPF
pseudonodes. Pseudonodes overcome the problem of full meshing when
representing OSPF area in Topoviz Network Views and enables connections
within OSPF areas to be visualized in a clear, uncluttered manner.

JuniperBGPTelnet Downloads BGP information from Juniper routers. It is not enabled by default
because it gathers a very specific piece of information only, that is, whether
devices are route reflectors.

Note: Before enabling this agent, configure Telnet access and the Telnet helper.

828 IBM Tivoli Network Manager IP Edition: Reference

Table 523. Layer 3 network layer agents (continued)

Agent name Function

NetScreenInterface The NetScreenInterface agent retrieves information about all configured
interfaces in Juniper Netscreen devices. The agent retrieves information about
logical interfaces and other interfaces, which is not available from the standard
IF-MIB, and requires both the NETSCREEN-INTERFACE-MIB.mib and NS-VPN-
MON.mib files. The agent also retrieves VPN tunnel and tunnel connectivity
information that is configured in Juniper NetScreen devices.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

NetScreenIpRoutingTable The NetScreenIpRoutingTable agent retrieves information on IP routing tables
configured on Netscreen devices. The agent determines the interfaces and sub-
interfaces from the interface index of the Netscreen device.

This agent performs the same function as the IpRoutingTable agent, but for
Netscreen devices only, in order to take account of sub-interfaces which would
not be discovered correctly by the IpRoutingTable agent.

The NetScreenIpRoutingTable agent uses the IP-FORWARD-MIB Standard MIB
and the NETSCREEN-INTERFACE-MIB.

Note: The IpRoutingTable agent does not process the Netscreen devices
processed by the NetScreenIpRoutingTable agent.

NokiaVRRP Downloads VRRP information from routers that support the Nokia interpretation
of the VRRP MIB. The information retrieved includes the VRRP state, ID, primary
IP and associated addresses. This information is retrieved from the following
MIB variables:

• vrrpOperState
• vrrpOperMasterIpAddr
• vrrpAssoIpAddrRowStatus

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

NortelPassport The NortelPassport agent retrieves Layer 3 connectivity and containment
information from Nortel Passport switches.

RFC2787VRRP The RFC2787VRRP agent downloads Virtual Router Redundancy Protocol
(VRRP) information from routers that run RFC2787-compliant VRRP and support
the RFC2787 VRRP MIB. Some Nokia firewalls support this MIB.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

VRRP is not modelled for RCA. This agent sets tags on VRRP interfaces that
show the state of the interfaces at the time of the discovery. The agent also
downloads associated IP addresses, which are used to build VRRP collections.

Tip: There are two subtly different versions of the VRRP MIB. They contain the
same names but with different OIDs. If this agent does not work, use the other
version of the VRRP MIB.

Chapter 26. Discovery agents 829

Table 523. Layer 3 network layer agents (continued)

Agent name Function

StandardBgp The StandardBgp agent is responsible for discovery of networks running the
Border Gateway Protocol. It supports any device that complies with the
standard RFC1657 (BGP4-MIB) MIB and discovers the following information:

• Autonomous System IDs
• BGP Peer connections to external peers (EBGP)
• BGP Peer connections to internal peers (IBGP)
• BGP acquired route data (not recommended)

The agent definition file is configured to accept all SNMP enabled devices by
default, but the agent will only accept devices that support the BGP44-MIB,
bgpIdentifier MIB variable.

The agent has the following additional configuration parameters in the
DiscoAgentDiscoveryScoping section of its .agnt file:

• GetPeerData – determines whether the agent should acquire BGP Peer data
(activated by default).

• GetRouteData – determines whether the agent should acquire BGP routes
(deactivated by default). This may result in a large amount of data being
discovered.

The StandardBgp agent does not currently support peer groups, confederations,
per VRF BGP processes, or route reflection.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.
It is also necessary to configure the Ping helper.

StandardOSPF The StandardOSPF agent is responsible for the discovery of networks running
the Open Shortest Path First (OSPF) protocol. It will support any device that
complies with the standard RFC1850.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

TraceRoute The TraceRoute agent finds links by tracing the route taken by an ICMP ping
packet with a predetermined life span. If you are using this agent, you should
increase the value of m_Timeout in the DiscoPingHelperSchema.cfg
configuration file, as traceroute functionality takes longer than standard ICMP.
This agent is not enabled by default as it does not only operate on SNMP-
enabled devices. Therefore, if this agent were switched on by default, it would
trace the route to every device on the network. The result could be incomplete
connectivity in a meshed environment or inaccurate connectivity in a load-
balanced environment.

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

Topology data stored in an EMS
There are several discovery agents that retrieve information about devices managed by an EMS.

The routing protocol discovery agents query an EMS collector for basic and detailed information about
devices managed by EMS. These agents are shown in Table 524 on page 831.

830 IBM Tivoli Network Manager IP Edition: Reference

Table 524. Routing protocol discovery agents

Agent name Function

CollectorDetails Retrieves basic information about the devices on the collector, including
sysObjectId, sysDescr, and naming data.

CollectorInventory Retrieves local neighbor, entity and associated address data for each of the
devices on the collector.

CollectorLayer1 Retrieves layer 1 and microwave connectivity information for the devices
on the collector.

CollectorLayer2 Retrieves layer 2 connectivity information for the devices on the collector.

CollectorLayer3 Retrieves layer 3 connectivity information for the devices on the collector.

CollectorLTE Retrieves LTE-specific entity information for the devices on the collector.

CollectorRan Retrieves radio access network (RAN) information for the devices on the
collector.

CollectorVpn Retrieves layer 2 and layer 3 VPN data for the devices on the collector.

Discovering connectivity among ATM devices
Asynchronous Transfer Mode (ATM) is an alternative switching protocol for mixed format data (such as
pure data, voice, and video). Several types of discovery agents can be used to discover ATM devices on a
network.

Note: Before enabling these agents, it is necessary to configure SNMP access and the SNMP Helper.

Table 525. ATM discovery agents

Agent name Function

AtmForumPnni The AtmForumPnni agent retrieves connectivity information from ATM devices that
use the Private Network-to-Network Interface (PNNI) dynamic routing protocol
and the ATM Forum's PNNI MIB. The PNNI protocol is commonly used on large
networks, as it provides ATM switches with a detailed map of the network topology
so that the ATM devices can make optimal routing decisions.

CellPath90 The CellPath90 agent enables discovery of the ATM connection of Marconi CellPath
90 WAN (Wide Area Network) multiplexers. The CellPath 90 WAN multiplexer does
not know the ATM addresses of its neighbours, so it can only be discovered when it
is connected to another, more intelligent, certified ATM device.

The CellPath90 discovery agent is used in the calculation of network topology. It
places information about the CellPath 90 into the correct layers within the
discovery database.

CiscoPVC The CiscoPVC agent retrieves PVC data from Cisco devices.

ILMI The ILMI agent retrieves connectivity information from devices using the Interim
Local Management Interface (ILMI), an RFC standard for managing ATM and IP
networks. It investigates how ATM networks are connected down to the layer 2
virtual circuit and port level. This agent also removes logical connectivity from
LANE interfaces.

Chapter 26. Discovery agents 831

Table 525. ATM discovery agents (continued)

Agent name Function

ILMIForeSys The ILMIForeSys agent discovers physical ATM connections between devices by
using the ILMI (Interim Local Management Interface) connectivity information
provided by the Marconi ASX series of switches.

When connectivity is deduced using ILMI information, it is usually the same as the
connectivity that could have been calculated using PNNI information, as is the
case with the standard AtmForumPnni and ILMI agents. However, there are some
situations where the ILMI information contains details of a connection that is not in
the PNNI information, and some situations where the PNNI information details a
connection not in the ILMI information. The following examples detail situations
where this may be the case:

• Connections between ASX series switches and SE420/SE440 IADs are only
discovered using ILMI.

• Connections between Cisco routers or switches containing ATM cards and an
ATM core are only discovered using ILMI.

• As with the PnniForeSys agent, the ILMIForeSys agent is designed to operate
seamlessly in conjunction with the ILMI agent. A network containing a mixture of
ASX devices and another vendor's devices (for example, Cisco 5509 switches
with ATM cards) can, therefore, be accurately discovered.

MariposaAtm The MariposaAtm agent discovers the ATM connectivity of the SE420 and SE440
Integrated Access Devices (IADs).

Note: The Ethernet switching and Frame Relay capabilities of these devices are not
currently certified.

PnniForeSys The PnniForeSys agent discovers physical ATM connections between devices by
using the Private Network-to-Network Interface (PNNI) connectivity information
provided by the Marconi ASX series switches. The PnniForeSys agent is designed
to operate in conjunction with the AtmForumPnni agent.

The PnniForeSys agent performs extra processing on Fore devices that do not store
a logical ifIndex in their pnniLinkIfIndex variable. The information retrieved from
these devices requires further processing to retrieve the actual ifIndex, which is
held within the ifTable .

Note: SNMP helper configuration for associated devices is a prerequisite for this
agent. The AtmForumPnni agent must also be active.

Agents for discovering MPLS devices
To discover Multiprotocol Label Switching (MPLS) data, including Virtual Private LAN Service (VPLS)
information, enable the appropriate agents.

The agents that retrieve MPLS data use either Telnet or SNMP to retrieve the data. Before you enable the
MPLS agents, configure Telnet and SNMP access.

• Before you enable the MPLS agents that use Telnet, configure Telnet to enable the agents to access
devices and to understand device output.

• Before you enable the MPLS agents that use SNMP, configure SNMP to enable access to devices and to
specify threads, timeouts, and number of retries.

Tip: Agents that retrieve VPLS information can retrieve large amounts of data. Enabling these agents can
add significant processing time to the discovery process. If you do not need to rediscover VPLS
information, disable these agents for a faster discovery.

832 IBM Tivoli Network Manager IP Edition: Reference

Table 526. MPLS discovery agents

Agent name Function

CiscoMPLSSnmp The CiscoMPLSSnmp agent discovers MPLS paths on Cisco devices by
using standard MIBs, and on Cisco devices that support the Cisco
Experimental MPLS MIBs.

CiscoMPLSTelnet The CiscoMPLSTelnet agent discovers MPLS paths and LDP VPLS on
Cisco devices.

CiscoQinQTelnet The CiscoQinQTelnet agent discovers QinQ (IEEE 802.1QinQ)
configuration on Cisco devices.

HuaweiMPLSTelnet The HuaweiMPLSTelnet agent discovers Layer 2 and Layer 3 MPLS/VPN
related data on Huawei devices, including User-facing Provider Edge
(UPE) and Network Provider Edge (NPE) information. You must configure
the discovery to discover and visualize VPLS information from Huawei
VPNs.

JuniperMPLSTelnet The JuniperMPLSTelnet agent discovers MPLS paths on Juniper devices.
This agent also discovers Juniper MultiHome VPLS configurations and
tags the Virtual Switch Instance (VSI) with the relevant information.

JuniperMPLSSNMP The JuniperMPLSSNMP agent discovers MPLS/VPN (RT-based VPN
discovery) and VPLS (LDP and BGP) related data on Juniper devices.

JuniperQinQTelnet The JuniperQinQTelnet agent discovers QinQ (IEEE 802.1QinQ)
configuration on Juniper devices.

LaurelMPLSTelnet The LaurelMPLSTelnet agent discovers MPLS paths on Laurel devices.
This agent is intended for route target-based discoveries only.

StandardMPLSTE The StandardMPLSTE discovers MPLS Traffic Engineered (TE) tunnels by
using SNMP.

UnisphereMPLSTelnet The UnisphereMPLSTelnet agent discovers MPLS paths on Juniper ERX
routers (formerly Unisphere).

Multicast agents
Multicast agents retrieve data from devices participating in multicast groups and routes.

The agents that retrieve multicast data need SNMP and Ping access to retrieve the data. Before enabling
the multicast agents, ensure that you first configured SNMP to enable the agents to access devices and to
specify threads, timeouts, and number of retries.

The following table describes the multicast agents.

Table 527. Multicast discovery agents

Agent name Function

StandardIGMP Discovers networks running the Internet Group Management Protocol
(IGMP). Supports any device that complies with the RFC2933 IGMP MIB.
Depending on the level of MIB support, the following information may be
discovered: IGMP Interfaces; Per-Interface Group Memberships; Group
Members Visible on IGMP Interfaces.

Chapter 26. Discovery agents 833

Table 527. Multicast discovery agents (continued)

Agent name Function

StandardIPMRoute Discovers IP multicasting networks. Supports any device that complies
with the RFC2932 IPMRoute MIB. Depending on the level of MIB
support, the following information may be discovered: Multicast Routing
data (upstream/downstream); Interfaces involved in Multicast Routing;
Multicast Sources and Groups.

StandardPIM Discovers networks running the Multicast protocol PIM. Supports any
device that complies with the RFC2934 PIM MIB. Depending on the level
of MIB support, the following information may be discovered: PIM
Interfaces; PIM Adjacencies; Candidate RPs/BSR.

Discovering NAT gateways
There are several agents that download Network Address Translation (NAT) information from known NAT
gateways.

None of the agents listed in the table below is enabled in the default configuration. These agents require
advanced configuration, and it is preferable not to enable them by default.

Table 528. NAT gateway agents

Agent name Function

CiscoNATTelnet The CiscoNATTelnet agent interrogates Cisco routers acting as NAT gateways.
This agent downloads the static NAT translations by means of TELNET from the
device. The translations are then used to identify within which part of the network
a particular device exists.

Note: Before enabling this agent, it is necessary to configure Telnet access and
the Telnet Helper.

NATNetScreen The NATNetScreen agent interrogates NetScreen® Firewalls acting as NAT
gateways. This agent downloads the static NAT translations by means of TELNET
from the device. The translations are then used to identify within which part of the
network a particular device exists.

Note: Before enabling this agent, it is necessary to configure Telnet access and
the Telnet Helper.

NATTextFileAgent The NATTextFileAgent mimics the function of the other NAT gateway agents by
reading NAT mapping information from a flat file. The translations are then used
to identify within which part of the network a particular device exists.

Note: Before enabling this agent, it is necessary to configure SNMP access and
the SNMP Helper.

Discovering containment information
An important principle used by the network model is containment. A container holds other objects. You
can put any object within a container and even mix different objects within the same container.

Containment information includes a physical breakdown of all parts held within the container, as well as
detailed information on each of these parts. The parts that can be held within a container are:

• Chassis
• Interface
• Logical interface

834 IBM Tivoli Network Manager IP Edition: Reference

• Vlan object
• Card
• PSU
• Logical collection, such as a VPN
• Module

There is also an Unknown category, which covers entities for which no part type has been defined.

The following table describes the discovery agents that discover containment information.

Table 529. Discovery agents that discover containment information

Agent name Function

AvayaPhysicalInventory The AvayaPhysicalInventory agent queries RAPID-CITY MIB for each physical
entity and retrieves containment information for that physical entity. Run the
AvayaPhysicalInventory agent if you want to model physical containment and
perform asset management. Enable this agent if you have Avaya (formerly
Nortel) devices in your network.

Note: Configure SNMP access and the SNMP Helper before enabling this agent.

BrocadeEntity The BrocadeEntity agent queries FOUNDRY-SN-ROOT-MIB, IF-MIB and
ENTITY-MIB MIBs for Brocade ICX and VDX devices for each physical entity.
The agent retrieves containment information for that physical entity.

Run the BrocadeEntity agent if you want to model physical containment and
perform asset management for ICX6430, ICX7430, VDX8770 and VDX6470
devices. Enable this agent if you have Brocade devices in your network.

Note: Configure SNMP access and the SNMP Helper before enabling this agent.

IBMSystemNetworkingSwitc
h

The IBMSystemNetworkingSwitch agent retrieves Layer 2 connectivity and
VLAN containment information (including VLAN tags, VLAN Trunk, and Trunk
Group information) using SNMP.

Entity The Entity agent queries the MIB for each entity and retrieves containment
information for that entity. Before enabling this agent, you must configure SNMP
access and the SNMP Helper.

Running the Entity agent during a discovery is optional. Some containment
information is gathered during a discovery even if the Entity agent is not run.
Run the Entity agent to model physical containment and perform asset
management.

Note: During a discovery, the Entity agent retrieves a large amount of data. This
slows down the discovery. You should therefore only use this agent if you need
to perform asset management on the retrieved data.

For information on Entity agent configuration, see “Entity agent configuration”
on page 836.

IfStackTable The IfStackTable determines the interface stacking hierarchy on devices that
support the RFC 2863 MIB.

Note: Configure SNMP access and the SNMP Helper before enabling this agent.

JuniperBoxAnatomy The JuniperBoxAnatomy agent retrieves information about which modules and
components are installed in a Juniper device and their containment. The agent
uses vendor-specific MIBs such as the Juniper Box Anatomy MIB.

Chapter 26. Discovery agents 835

Table 529. Discovery agents that discover containment information (continued)

Agent name Function

JuniperERXIfStackTable The JuniperERXIfStackTable determines the interface stacking hierarchy on
Juniper ERX devices.

This agent determines virtual-router and VRF context-sensitive stacking
information for Juniper ERX devices. When a context-sensitive discovery is
enabled this agent can be disabled, as the IfStackTable agent also determines
this information. This will improve the performance of discovery.

Note: Configure SNMP access and the SNMP Helper before enabling this agent.

JuniperLAGStack The JuniperLAGStack agent retrieves Link Aggregation Group (LAG) information
from Juniper devices. LAG information is needed to accurately represent the
interface stacking hierarchy.

JuniperVlanTagTelnet Discovers VLAN tagging configuration for Juniper E, ERX, M and MX Series
routers. For Juniper model MX, M and T series, the agent issues the telnet
command show configuration interfaces and captures the vlan-id from
the output. For Juniper model E and ERX series, the agent retrieves
juniVlanSubIfVlanId and juniVlanSubIfVlanStackId from the Juniper-
ETHERNET-MIB.

Note: Configure the SNMP Helper and the Telnet Helper before enabling this
agent.

Entity agent configuration
You can configure the Entity agent to specify how much data the agent should retrieve. You can optionally
choose to download this extra information from the entity MIBs of the Asset, ExtraPhysData, Module,
Power, and Sensor entities.

Configure the Entity agent by setting the following variables in the Entity.agnt file:

• GetAssetData
• GetExtraPhysData
• GetModuleData
• GetPowerData
• GetSensorData

In each case, set a value of 1 to retrieve the data, and set a value of 0 if you do not want to retrieve the
data. The default value is 1.

In addition, you can specify how the Entity agent retrieves data from devices. The options are as follows:
0 GetNext

This is the default value.
Using this data retrieval option, the system requests one SNMP variable at a time from the device in
series, that is, retrieval of one column in a table, one value at a time for a given device. This approach
is slower but puts least pressure on the device. In a discovery with multiple entities the expectation is
that overall this approach will not slow down the discovery as the SNMP helper is still busy with other
activities. This approach might take a long time for individual large devices. This method works with
SNMP version 1.

1 Asynchronous GetNext
Similar to the GetNext method in that one index is retrieved at a time with the difference that all the
columns are retrieved in parallel. This is also supported by SNMP version 1 and is faster but it also
puts slightly more load on the device.

836 IBM Tivoli Network Manager IP Edition: Reference

2 GetBulk
Requests the entire column or multiple columns and individual Get commands in one go. This method
requires SNMP version 2 support. If the device only supports version 1 then the retrieval method is
broken down into multiple SNMP Get Next and Get commands. This is the fastest retrieval and it does
not put much more load on the device than the Asynchronous GetNext method. This method also
involves larger packets on the network.

Note: The Entity.agnt file, together with all other agent configuration files, can be found in the
$NCHOME/precision/disco/agents directory.

Discovery agents for wireless networks
Network Manager provides agents that discover devices on wireless networks.

Table 530. Discovery agents on wireless networks

Agent name Function

Airspace The Airspace Perl discovery agent retrieves WLAN information from devices using the
Airspace MIBs.

Discovery agents on other protocols
Network Manager provides agents that discover devices that use other protocols than ones previously
described.

Note: Before enabling these agents, configure SNMP access and the SNMP Helper.

Table 531. Discovery agents on other protocols

Agent name Function

AlteonStp This is a Spanning Tree Protocol discovery agent for Alteon switches that support the
dot1dStp section of the BRIDGE-MIB.

BrocadeFDPSnmp The BrocadeFDPSnmp agent provides Layer 2 links using the Foundry Discovery Protocol
(FDP). The agent establishes links between Brocade devices. By using the FOUNDRY-SN-
ROOT-MIB and IF-MIB MIB files, the agent can discover the neighboring devices and
store minimal information about the local device and its corresponding neighbor. This
agent uses the index from the FDP network layer address of the device to find complete
information that links to the neighboring devices.

CDP The CDP agent understands the protocol used among Cisco communication devices. Using
CDP, Cisco devices can discover their nearest neighbors and store minimal information
about them.

This agent begins with the address of a known Cisco device and uses CDP to find more
complete information about the locations of other connected or neighboring Cisco devices.

Chapter 26. Discovery agents 837

Table 531. Discovery agents on other protocols (continued)

Agent name Function

DefaultLLDP The DefaultLLDP agent discovers layer 2 connectivity between devices that support the
LLDP MIB and have Link Layer Discovery Protocol (LLDP) enabled.

Both the LLDP and DefaultLLDP agents use data from the LLDP MIB that is indexed by
lldpRemLocalPortNum. This variable indicates which ifIndex or port a particular LLDP
connection exists on. The LLDP agent supports devices where lldpRemLocalPortNum
refers to the ifIndex on the device: typically, Cisco devices. The DefaultLLDP agent
supports devices where lldpRemLocalPortNum refers to the port or other arbitrarily
assigned index: typically, non-Cisco devices such as Juniper or BNT devices.

The DefaultLLDP agent checks if the device supports the Extended-LLDP-MIB. If the
device does not support the Extended-LLDP-MIB, lldpRemLocalPortNum is assumed to be
a switch port. The agent then uses the dot1dBasePortIfIndex variable from the BRIDGE-
MIB to determine the ifIndex of this record. Enable both the LLDP and DefaultLLDP agents
so that Network Manager is able to find LLDP connectivity on devices that have different
implementations of lldpRemLocalPortNum.

FddiDefault The FddiDefault agent discovers any device that supports the standard FDDI MIB. When
an FDDI device is interrogated, information relating to the interfaces of that device and its
upstream and downstream neighbours is returned. The FddiLayer stitcher uses this and all
other FDDI agents to determine the FDDI ring topology.

FddiCiscoConc The FddiCiscoConc agent discovers Cisco Concentrator FDDI devices. Cisco concentrators
know the full connectivity of every FDDI ring that passes though them, as opposed to just
their upstream and downstream neighbours. Hence the FddiLayer stitcher gives the
topology information returned by this agent precedence over that found by FddiDefault.

IEEE8023LAG The IEEE8023LAG agent discovers the LAG (Link Aggregation Group) Link
entities and physical ports associated with the LAG between two network devices. The
agent discovers information from Cisco Carrier Routing System (CRS) LAG networks.

LLDP The LLDP agent discovers layer 2 connectivity between devices that support the LLDP MIB
and have Link Layer Discovery Protocol (LLDP) enabled.

Both the LLDP and DefaultLLDP agents use data from the LLDP MIB that is indexed by
lldpRemLocalPortNum. This variable indicates which ifIndex or port a particular LLDP
connection exists on. The LLDP agent supports devices where lldpRemLocalPortNum
refers to the ifIndex on the device: typically, Cisco devices. The DefaultLLDP agent
supports devices where lldpRemLocalPortNum refers to the port or other arbitrarily
assigned index: typically, non-Cisco devices such as Juniper or BNT devices.

The LLDP agent checks if the device supports the Extended-LLDP-MIB. If it does, the
agent retrieves the mapping between lldpRemLocalPortNum and ifIndex. If the device
does not support the Extended-LLDP-MIB, lldpRemLocalPortNum is assumed to be the
ifIndex. Enable both the LLDP and DefaultLLDP agents so that Network Manager is able to
find LLDP connectivity on devices that have different implementations of
lldpRemLocalPortNum.

SONMP The SONMP agent uses the SynOptics Network Management Protocol, the protocol used
between Nortel communications devices. The SONMP agent begins with the address of a
known Nortel device and uses SONMP to discover location, containment, address, and
connection information from connected, or neighbouring, Nortel devices.

838 IBM Tivoli Network Manager IP Edition: Reference

Table 531. Discovery agents on other protocols (continued)

Agent name Function

StandardSTP The StandardSTP agent discovers STP connectivity data on any STP-enabled switch that
supports the dot1dSTP section of the BRIDGE-MIB. You should run this agent in addition
to any other necessary switch agents in order to discover STP backup (blocking)
connections.

The STP switch discovery method has the following advantages over other switch-based
discovery methods:

• Hidden links: STP backup (blocking) connections are discovered.
• Speed: the agent completes in Phase 1; no pinging is required.

Note : The STP agent only shows connections between STP enabled switches, that is, it
ignores connections to nodes, non-switch devices, and non-STP enabled switches.

This agent will not discover multiple STP instances, VLANs, or Virtual Routers.

Context-sensitive discovery agents
There are several agents that take part in a context-sensitive discovery.

Attention: Enabling a context-sensitive discovery enables all the Context agents. The discovery
process runs the appropriate agents for the devices to be discovered, based on the OID defined in
the agent definition files. Disabling a context-sensitive discovery disables all the Context agents
and no Context agents will run. You do not need to enable or disable individual Context agents.

Note: These agents require Telnet access and the Telnet Helper.

Table 532. Context-sensitive discovery agents

Agent Name Function

CheckpointContext This Perl agent queries CheckPoint VSX firewalls to retrieve context data.
Retrieving context data allows other context-sensitive discovery agents to
retrieve interface and connectivity data from the appropriate contexts.

CheckpointVSX The CheckpointVSX agent retrieves details of the virtual firewalls running on
a VSX device. For those virtual firewalls it retrieves further information to
resolve the dependencies between the physical hardware and the logical
interfaces running on top of the hardware. This information is then used to
inform the root cause analysis and better model the VSX devices.

CiscoNexusContext Discovers VRF context-sensitive information from Cisco Nexus family
devices.

Prerequisite: You must configure an SNMP context for each VRF so that the
VRFs can be discovered.

The SNMP context is used to discover the IP address and IP routing data
from non-default VRFs.

RedbackContext The RedbackContext agent discovers virtual router context-sensitive
information for Redback devices.

Chapter 26. Discovery agents 839

Table 532. Context-sensitive discovery agents (continued)

Agent Name Function

UnisphereERXContext The UnisphereERXContext agent discovers virtual router and VRF context-
sensitive information for Juniper ERX devices.

You can restrict the scope of the VRF contexts discovered by configuring the
optional DiscoAgentDiscoveryScoping section in the .agnt file. The
configurable options are:

• IncludeVRF – allows the discovery of the named VRF.
• ExcludeVRF – does not discover the specified VRF.

VRF names are case-sensitive. The wildcard " * " can be used in place of a
VRF name to apply the filter to all VRFs. If no filters are specified, all VRFs
will be discovered by default.

Task-specific discovery agents
There is a group of discovery agents that are task-specific.

Table 533. Task-specific discovery agents

Agent name Function

AlliedTelesynATSwitch The AlliedTelesynATSwitch agent discovers Ethernet switches made by
Allied Telesyn.

Note: Before enabling this agent, it is necessary to configure SNMP
access and the SNMP Helper.

AlteonSwitch The AlteonSwitch agent retrieves layer 2 connectivity information from
Alteon load balancers and Ethernet switch modules.

Note: Configure SNMP access and the SNMP Helper before enabling this
agent.

ARPCache The ARPCache agent assists in populating the Helper Server with IP to
MAC address mappings in preparation for the Ethernet-based discovery
agents.

You must run this agent if you are running a layer 2 discovery. This agent
is optional if you are running a layer 3 discovery. However, it can be more
efficient to use the ARP Cache discovery agent because in most network
environments the ARP helper can only run on one subnet at a time.

Note: Before enabling this agent, it is necessary to configure SNMP
access and the SNMP Helper.

840 IBM Tivoli Network Manager IP Edition: Reference

Table 533. Task-specific discovery agents (continued)

Agent name Function

ASM Determines whether ASMs for the following commercial server and
database products are running on a device:

• Oracle
• Apache
• Microsoft SQL Server
• Microsoft Exchange
• Microsoft Internet Information Server (IIS)
• Microsoft Active Directory
• IBM WebSphere
• BEA WebLogic
• SAP
• Sybase ASE
• IBM Lotus® Notes/Domino Server

The ASM agent determines whether an application is running by querying
ASM-specific MIBs for the device. These MIBs are installed by default
when you install Network Manager.

The ASM agent can only retrieve this information from network devices
on which ASM is deployed. Typically, you would deploy a ASM sub-agent
on each commercial server and database product which is running on a
device and whose performance you wish to monitor.

BGPPeerNextHop
Interface

All PE to CE interfaces are added to a members list and an event on any
of the interfaces in this members list causes the system to generate a
synthetic MPLS VPN SAE.

This agent, which is off by default, enables the generation of MPLS VPN
service-affected events (SAEs) based on interfaces dependencies deeper
in the core network. This agent calls the
AddLayer3VPNInterfaceDependency.stch stitcher.

This stitcher determines all PE to core provider router (P) interfaces and
P to PE interfaces involved in a VPN. These PE -> P and P ->PE interfaces
are added to a dependency list. An event on any of the interfaces in this
dependency list causes the system to generate a synthetic MPLS VPN
SAE. If an MPLS VPN SAE has already been generated based on an event
on any of the interfaces in the members list, then any events in interfaces
in the dependency list will be added as related events to that already
generated MPLS VPN SAE.

CiscoNexusVdc Discovers Virtual Device Context (VDC) information from Cisco Nexus
7000 and 9000 series devices. Each VDC instance is hosted under a
hypervisor entity contained by the physical device.

Chapter 26. Discovery agents 841

Table 533. Task-specific discovery agents (continued)

Agent name Function

CiscoVoIPHttp The CiscoVoIPHttp agent is a Perl-based agent that extracts device data
and network information about the Cisco VOIP device.

The agent uses a Network Manager-specific Perl module to retrieve the
information from the following pages of the device:

• http://IP ADDRESS/CGI/Java/Serviceability?
adapter=device.statistics.device

• http://IP ADDRESS/CGI/Java/Serviceability?
adapter=device.statistics.configuration

CM Retrieves data from cable modems that are connected to a cable modem
termination system device.

Note: If activated, this agent retrieves a large amount of information.
Activating this agent may therefore place a heavy load on memory. You
should only activate this agent if specific cable modem information is
required beyond that provided by other agents.

CMTS Discovers cable modem termination system devices. This agent also
discovers cable modem connectivity.

Note: If activated, this agent retrieves a large amount of information.
Activating this agent may therefore place a heavy load on memory. You
should only activate this agent if specific cable modem information is
required beyond that provided by other agents.

ExtraDetails The ExtraDetails agent is a text-based agent that builds on the basic
SNMP information already retrieved by the Details agent.This agent
retrieves the following information:

• sysDescr
• sysLocation
• sysUpTime
• sysServices
• ifNumber

Note: Before enabling this agent, it is necessary to configure SNMP
access and the SNMP Helper.

HPNetworkTeaming The HPNetworkTeaming agent discovers secondary NICs on HP Proliant
Teamed network cards.If this agent is not enabled, only the primary NIC
on an HP Proliant device will be discovered (as a local neighbour to the
server) because only this NIC resides in the ifTable. This agent will
create all NICs as local neighbours to the server.

Note: Before enabling this agent, it is necessary to configure SNMP
access and the SNMP Helper.

842 IBM Tivoli Network Manager IP Edition: Reference

Table 533. Task-specific discovery agents (continued)

Agent name Function

LoopbackDetails The LoopbackDetails agent is used to ensure that the management
interface of a device is used in the topology and in subsequent
monitoring as the main IP/name combination. The agent retrieves
information needed to identify the management interfaces. This data is
then used in the NamingFromLoopbackDetails stitcher.

Note: Before enabling this agent, it is necessary to configure SNMP
access and the SNMP Helper.

MACFromArpCache The ArpCache agent must be enabled for this agent to run.

The MACFromArpCache agent is optionally activated in phase 3 of
Discovery. It uses the ArpCache information retrieved by the ArpCache
agent to retrieve the MAC address of the device. The agent is useful as it
does not require SNMP access to the device to obtain the MAC address.

MACFromTDWDatabase This agent queries the Tivoli Data Warehouse. The agent retrieves the
mapping of MAC address to IP address for each server. Run this agent if
the connectivity of servers is not represented properly in the network
topology due to incomplete mapping of MAC address to IP address of the
servers. The IBM Tivoli Monitoring (ITM) Operating System (OS) Agent
must be running on the servers in the network for which you want to
retrieve information. You must also have access to the Tivoli Data
Warehouse database in order to access the information retrieved by the
ITM OS agents.

Before running this agent, add the access details for the Tivoli Data
Warehouse database to the DbLogins.cfg file. Edit the DbLogins.cfg file
and add an insert similar to the following example:

insert into config.dbserver
(
 m_DbId,
 m_Server,
 m_DbName,
 m_Schema,
 m_Hostname,
 m_Username,
 m_Password,
 m_PortNum,
 m_EncryptedPwd,
 m_OracleService
)
values
(
 "TDW",
 "oracle",
 "someDbName",
 "someSchema",
 "serverHostName",
 "username",
 "password",
 port,
 [0|1],
 1
);

Chapter 26. Discovery agents 843

Table 533. Task-specific discovery agents (continued)

Agent name Function

NetScreenArpCache The NetScreenArpCache agent retrieves information from ARP tables
configured in Netscreen devices and processes the tables to obtain the
IP to MAC translation. The agent then sends the ARP information to the
ARP Helper. After further processing, the ARP Helper sends the IP and
MAC address mapping to the ARPHelperTable.

The NetScreenArpCache agent uses the SNMPv2-SMI Standard MIB.

Note: The ArpCache agent does not process the Netscreen devices
processed by the NetScreenArpCache agent. This is to avoid conflict in
the ipForwarding value as Netscreen is recognized as a non-routing
device by the ArpCache agent.

NMAPScan The NMAPScan agent is a Perl agent that runs the NMAP scanner against
devices discovered by Network Manager. By default, the agent runs
against devices that do not have SNMP access, or devices that have
SNMP access but return sysObjectIds of devices from Apple, Compaq,
IBM, Microsoft, Sun, Network Harmoni, UC David, Net-SNMP, and HP.

The agent retrieves the following data:

• Operating System Fingerprint details
• TCP/UDP port and application information including port number,

name, state, type, and service

You must install NMAP version 4.85 or later on the same server where
the Network Manager core components are installed. You must then edit
the NMAPScan.pl file and specify the path to the NMAP binary in the my
$nmapBinary line, and remove the comment from the beginning of the
line. NMAP is available at http://nmap.org.

Attention: Enabling the NMAPScan agent can extend the
duration of the discovery. NMAP has a large number of scan
options, refer to the NMAP documentation for more information.

The following options are set by default for NMAP:

• -sS: Perform a TCP SYN scan
• -sV: Enable service version identification
• -PN: Do not ping each target (Network Manager already uses the ping

or file finder, or both)
• -O: Enable Operating System fingerprinting
• -oX: Enable XML output

Important: Do not change this value.

OSInfo Retrieves information about the operating system running on discovered
devices. This agent only runs against Cisco and Juniper devices. The
agent retrieves the following information:

• OSType
• OSVersion
• OSImage

844 IBM Tivoli Network Manager IP Edition: Reference

http://nmap.org

Table 533. Task-specific discovery agents (continued)

Agent name Function

SSM The SSM agent retrieves MIB information by SNMP from devices running
SSM agents. This agent retrieves information such as the software
installed on the device, running processes, CPU utilization, storage
devices on this entity, free disk space, and so on.

The SSM agent can only retrieve this information from network devices
on which the SSM Agent is deployed. Typically, you would deploy a SSM
Agent on devices whose performance you wish to monitor.

For more information on the SSM Agent, see the SSM Application Guide.

Note: Before enabling this agent, it is necessary to configure SNMP
access and the SNMP Helper.

SSMOracle The SSM application and the Oracle monitoring package must also be
running.

The SSMOracle agent retrieves MIB information by SNMP from devices
running SSM agents. This agent retrieves information such as the Oracle
database names, fields, and database sizes.

The SSMOracle agent can only retrieve this information from network
devices on which the SSM Agent is deployed. Typically, you would deploy
a SSM Agent on devices whose performance you wish to monitor.

For more information on the SSM Agent, see the SSM Application Guide.

Note: Before enabling this agent, it is necessary to configure SNMP
access and the SNMP Helper.

TunnelAgent Template for a Perl agent to retrieve information about all tunnels,
including IPv6 over IPv4 tunnels, present in the network. This agent
works in conjunction with the IPv6Interface agent.

Discovery agents for IPv6
Network Manager provides a Perl agent template that you can use as a base for developing Perl agents to
retrieve IPv6 interface data.

Table 534 on page 845 describes the Perl agent templates.

Note: Rather than having agents with specific IPv6 capabilities, most of the discovery agents have IPv6
capabilities; for example, the InetRouting agent supports IPv6 routing entries but it also downloads IPv4
interfaces and route information.

Table 534. IPv6 agent template

Agent name Function

IPv6Interface Template for a Perl agent to retrieve interface information from an IPv6 device. This
agent is designed to work in an identical way to the Interface agent. This agent
template is located in the Perl agents directory at the following location: $NCHOME/
precision/disco/agents/perlAgents.

Chapter 26. Discovery agents 845

Service Level Agreement agents
Service Level Agreement (SLA) agents retrieve data that relates to the network performance monitoring
features of a device.

The agents that retrieve SLA data need SNMP and Ping access to retrieve the data. Before you enable the
SLA agents, configure SNMP to enable the agents to access devices and to specify threads, timeouts, and
number of retries.

The following table describes the SLA agents:

Table 535. SLA agents

Agent name Function

CiscoIPSLA Discovers IP SLA-related data from Cisco devices that support the CISCO-RTTMON-
MIB and CISCO-RTTMON-IP-EXT-MIB MIBs. The agent retrieves data such as
information on the configured probes.

HuaweiNQA The Huawei Network Quality Analyser (NQA) agent discovers IP SLA-related data
from Huawei NQA devices that support the NQA-MIB MIB. The agent retrieves data
such as information on the configured probes.

JuniperRPM The Juniper Realtime Performance Monitoring (RPM) agent discovers IP SLA-related
data from Juniper RPM devices that support the DISMAN-PING-MIB and JUNIPER-
PING-MIB MIBs. The agent retrieves data such as information on the configured
probes.

Guidance for selecting agents
To discover device technologies (that is, those that use protocols other than IP) on your network, you
must ensure that the appropriate agents are active.

The following list provides the non-IP device protocols that are supported by Network Manager. You can
select the appropriate agents for these protocols.

• Frame Relay
• Private Network-Network Interface (PNNI)
• Cisco Discovery Protocol (CDP)
• Link Layer Discovery Protocol (LLDP)
• Hot Standby Routing Protocol (HSRP)
• Fibre Distributed Data Interface (FDDI)
• Asynchronous Transfer Mode (ATM)
• Integrated Local Management Interface (ILMI)
• Multiprotocol Label Switching (MPLS)

Which IP layer agents to use
The IP layer agents that you need to use depend on the devices on your network:

• If you do not want to have your IP routing tables accessed, you must only use the IpBackupRoutes
agent.

This agent is not used by default as it has the following drawbacks:

– It retrieves data from a table that is not dynamic. If the router has not been refreshed, then the data
retrieved by this agent may be spurious.

– The table is large and therefore takes a long time to download.

846 IBM Tivoli Network Manager IP Edition: Reference

• If there are modern devices on the network, you must use the IpRoutingTable agent and the
IpForwardingTable agent.

These agents provide an accurate picture of IP layer connectivity and are therefore used by default.

Which standard agents to use
The standard agents that you need to use depend on the information you require and the devices on your
network.

• The TraceRoute agent can be used if there is a firewall on the network, because SNMP calls cannot
always be made through firewalls. If you use the TraceRoute agent, you must specify, as a discovery
seed, the subnet node for the subnet on the other side of the firewall.

• The ArpCache agent retrieves the physical address of a device, so is only required (in conjunction with
the Switch agents) when performing layer 2 discoveries.

• Frame Relay agents should be run in conjunction with the IP layer agents if you need to add DLCI
information to the interfaces of Frame Relay devices.

• Switch agents must be run for a layer 2 discovery.
• The device-specific and protocol-specific agents are only required to discover the devices or protocols

to which they relate.

Which specialized agents to run
Several agents need to run only when you need to discover certain device types or network technologies.

The specialized agents that you need to run depend on the devices and protocols in your network:

• The Extreme agent can be used to extract layer 2 connectivity information, EDP neighbors, and VLAN
details from Extreme switches.

• The ExtremeESRP agent discovers Extreme Standby Routing Table information from Extreme routing
switches.

• The PnniForeSys agent discovers physical ATM connections between devices by using the PNNI (Private
Network-to-Network Interface) connectivity information provided by the Marconi ASX series switches.

• The ILMIForeSys agent discovers physical ATM connections between devices by using the ILMI (Interim
Local Management Interface) connectivity information provided by the Marconi ASX series switches.

• The CellPath90 agent discovers the ATM connection of a CellPath 90 WAN (Wide Area Network)
multiplexer.

• The Marconi3810 agent discovers the Ethernet connectivity of the ES-3810 switches running operating
system version 4.x.x.

• The MariposaAtm agent discovers the ATM connectivity of the SE420 and SE440 IADs.

Note: The Ethernet switching and Frame Relay capabilities of these devices are not currently certified.
• The ILMI agent discovers connectivity between ATM devices running ILMI that support the ATM Forum's

ATM MIB. The CiscoPVC agent retrieves PVC data from Cisco devices.
• The AtmForumPnni agent discovers connectivity between devices running ATM Forum PNNI that

correctly support the ATM Forum's PNNI MIB.
• For Cisco devices, run the CiscoMPLSSnmp agent if you have the MPLS MIBs enabled on a device,

otherwise, use the CiscoMPLSTelnet agent.
• For Juniper devices, run the JuniperMPLSTelnet agent if you wish to discover MPLS paths.
• For Juniper ERX devices (formerly Unisphere), the UnisphereMPLSTelnet agent must be used to

discover MPLS paths, as these devices are sufficiently different to the Juniper "M" series routers that a
different agent is required.

• The StandardMPLSTE agent discovers MPLS Traffic Engineered (TE) tunnels.
• The StandardIGMP agent discovers networks running the Internet Group Management Protocol (IGMP).

Chapter 26. Discovery agents 847

• The StandardIPMRoute agent discovers IP multicasting networks.
• The StandardPIM agent discovers Protocol Independent Multicast (PIM) groups.

Suggested agents for a layer 3 discovery
The recommended agents for a layer 3 discovery depends on your network.

When running a layer 3 discovery, the following agents should be run:

• Details and AssocAddress
• A combination of the following IP layer agents:

– IpRoutingTable
– IpBackupRoutes
– IpRoutingTable and IpForwardingTable

• HSRP
• VRRP
• TraceRoute (if firewalls are present)
• IPv4/6 InetRouting. If you have IPv6 in your network, consider running this agent to discover the

connectivity, particularly the IPv6 connectivity.

Tip: Some routers support layer 2 technologies. For example, when an ATM card is located in a router
chassis, layer 3 discovery agents, such as the IpRoutingTable agent, only discover interfaces with an IP
address. Therefore, to fully discover all the interfaces on routers that support layer 2 technologies, you
must run the appropriate agents.

Suggested agents for a layer 2 discovery
The recommended agents for a layer 2 discovery depends on your network.

When running a layer 2 discovery, the following agents must be run:

• Details and AssocAddress
• A combination of the following IP layer agents:

– IpRoutingTable
– IpBackupRoutes
– IpRoutingTable and IpForwardingTable

• Switch
• FrameRelay
• ArpCache
• ATM
• FDDI
• HSRP
• VRRP
• MPLS

848 IBM Tivoli Network Manager IP Edition: Reference

Chapter 27. Helper System
The helpers are specialized applications that retrieve information from the network on demand.

Note: If the helpers and the Helper Server are running on a different host to the DISCO process, and these
hosts are behind a firewall, then specialized configuration is required to ensure that the Helper System
can communicate with DISCO. For more information, see the IBM Tivoli Network Manager IP Edition
Administration Guide.

Helpers
Helpers retrieve information from devices and pass it to the Helper Server for retrieval by the agents.

The default helpers are described in the following table.

Table 536. Helpers available with Network Manager

Helper Executable Configuration file Description

ARP ncp_dh_arp NCHOME/etc/
precision/
DiscoARPHelperSchem
a.cfg

Performs IP address to
MAC address resolution.

DNS ncp_dh_dns NCHOME/etc/
precision/
DiscoDNSHelperSchem
a.cfg

Performs IP address to
device name resolution.

PING ncp_dh_ping NCHOME/etc/
precision/
DiscoPingHelperSche
ma.cfg

Either pings each device
in a subnet, an individual
IP address or a broadcast
or multicast address. The
result of the ping could be
used to populate the MIB
of the device.

SNMP ncp_dh_snmp NCHOME/etc/
precision/
DiscoSnmpHelperSche
ma.cfg

NCHOME/etc/
precision/
SnmpStackSchema.cfg

NCHOME/etc/
precision/
SnmpStackSecurityIn
fo.cfg

Returns results of an
SNMP request such as
Get, GetNext and GetBulk.

© Copyright IBM Corp. 2006, 2021 849

Table 536. Helpers available with Network Manager (continued)

Helper Executable Configuration file Description

TELNET ncp_dh_telnet NCHOME/etc/
precision/
DiscoTelnetHelperSc
hema
.cfg

NCHOME/etc/
precision/
TelnetStackPassword
s.cfg

NCHOME/etc/
precision/
TelnetStackSchema.c
fg

Returns the results of an
OS command against a
specific device using the
Telnet or SSH protocol.

The Telnet Helper
supports the following
encryption algorithms:

• 3DES-CBC
• AES-128-CBC

• AES-128-CTR

• AES-192-CTR

• AES-256-CTR

XMLRPC ncp_dh_xmlrpc NCHOME/etc/
precision/
DiscoXmlRpcHelperSc
hema
.cfg

Enables Network Manager
to communicate with EMS
collectors using the XML-
RPC interface.

Helper System operation
At startup, the Helper Server loads up the Helper Server schema from the DiscoHelperServerSchema.cfg
configuration file and creates the appropriate helper databases. The Helper Server also creates a Helper
Manager for every helper database.

The Helper Manager manages the way in which the helper handles requests from the Helper Server to
retrieve network device data. The Helper Manager specifies:

• The request timeout
• The time-to-live for the returned variables
• Whether multiple requests are to be processed in serial or parallel

When the Helper Manager detects a request for network data from the Helper Server, it instructs the
associated helper to retrieve the data from the network.

Dynamic timeouts
The Helper System uses dynamic timeouts to handle network requests.

As an example of the benefit of dynamic timeouts, if the SNMP helper is asked to perform numerous
SNMP Get requests, the helper might begin to slow down and therefore exceed the timeout. A static
timeout would cause the retrieval of data to terminate (with data lost) even though the device is still
responding with data.

To prevent this situation, the helpers incorporate a dynamic timeout system in which they note SNMP Get
requests and recalculate and update the timeout as the SNMP daemons of the device begin to slow down.

850 IBM Tivoli Network Manager IP Edition: Reference

Chapter 28. Discovery stitchers
Stitchers are processes that transfer, manipulate, and distribute data between databases. The discovery
stitchers also process the information collected by the agents and using this information to create the
network topology.

The discovery stitchers supplied with Network Manager are stored in the following directories and their
subdirectories.

• Text-based discovery stitchers (text files with a .stch extension): $NCHOME/precision/disco/
stitchers/

• Precompiled discovery stitchers : $NCHOME/precision/platform/platform/lib/, where platform
is the operating system on which Network Manager is running.

• dNCIM stitchers: $NCHOME/precision/disco/stitchers/DNCIM

For information on stitcher language, see the IBM Tivoli Network Manager Reference.

Related reference
Stitchers and stitcher language
Stitchers are pieces of code that are used by different Network Manager processes. They take information
from one database, process it, and place the information in its new form in another database, or send the
information to another process.

Main discovery stitchers
This topic lists the main discovery stitchers.

The following table describes the main discovery stitchers currently included with Network Manager.

Note: This list is subject to change.

Table 537. List of main discovery stitchers

Stitcher Function

AddAEPhysicalIFContainment Adds physical interfaces to the chassis in the Link Aggregation
Group (LAG) containment structure of Juniper devices. This
stitcher is called by BuildContainment.stch.

AddBaseNATTags Updates all the private NAT addresses that have a private address
with their public address and adds a tag denoting the private
address.

AddBasicContainment Part of the mechanism for containment stitching. This stitcher
inserts containment information into the simple chassis.

AddCardContainment Adds card objects to the workingEntities.containment
table.

AddChassisIPTag Preprocessing stitcher that fixes the situation where a device on
the network has IP access but the management IP address of that
device is not in the IP table of the device. Consequently the device
would end up in the NCIM physicalChassis table but with no
corresponding entry in the NCIM ipEndPoint table. This stitcher
fixes this issue by adding a tag, m_ChassisIPNotInIPTable, which
is processed by the ModelNcimDb.cfg file to ensure that the
ipEndPoint table is populated.

© Copyright IBM Corp. 2006, 2021 851

Table 537. List of main discovery stitchers (continued)

Stitcher Function

AddClass For each discovered entity, retrieves class definition data from the
Active Object Class manager, ncp_class, and adds this data to the
workingEntities database. This stitcher is called by the
PostLayerProcessing.stch stitcher.

AddEntityContainment Adds general entity information to the
workingEntities.containment table.

AddGenericEntityContainment Processes non-Entity MIB data from the CollectorInventory agent
and adds processed data to the workingEntities.finalEntity table.
This stitcher is called by the BuildContainment stitcher.

AddGeoLocationData Adds geographic data to the m_ExtraInfo field of the topology
record of a device from the SysLocation field.

AddGlobalVlans Builds global Virtual Local Area Network (VLAN) objects using the
translations.vlans table.

AddIfStackContainment Adds interface stack objects to the
workingEntities.containment table.

852 IBM Tivoli Network Manager IP Edition: Reference

Table 537. List of main discovery stitchers (continued)

Stitcher Function

AddLayer3VPNInterfaceDependency This stitcher determines all PE to core provider router (P)
interfaces and P to PE interfaces involved in a VPN. These PE -> P
and P ->PE interfaces are added to a dependency list. An event on
any of the interfaces in this dependency list causes the system to
generate a synthetic MPLS VPN SAE. If an MPLS VPN SAE has
already been generated based on an event on any of the interfaces
in the members list, then any events in interfaces in the
dependency list will be added as related events to that already
generated MPLS VPN SAE.

The BGP sessions set up between the PE speakers, and
consequently, the VPNs, depend on the PE -> P and P -> PE
interfaces for a given VPN and PE pair. The value of adding these
interfaces to the VPN dependency list is that it allows the P->PE
and PE->P links to be considered in Service Affected Event (SAE)
calculations and thus provide a notification that some set of VPNs
on a PE are affected by a link problem between PE and P routers.

The diagram below marks with an asterisk the interfaces that the
AddLayer3VPNInterfaceDependency stitcher adds as an MPLS
VPN SAE dependency. In this diagram, the following conventions
are used:

• [ce] is a customer-edge router
• [PE is a provider-edge router
• [P] is a provide core router

[ce]---[PE]*---*[P]---[P]---[P]*---*[PE]---[ce]
 |*
 |
 |*
 [PE]---[ce]

The results of the stitcher manifest themselves as the
m_DependsOn list in the following sample record which shows
that an example VPN, VPN_CONTAINER_ACME consists of a
number of interfaces in the VPN (m_Members list contains the PE-
>CE facing interfaces) and subsequently depends on the PE->P/P-
>PE facing interfaces in the m_DependsOn list.

{
m_Name='VPN_CONTAINER_ACME';
m_Creator='STITCHER CREATED';
m_Description='Logical object for VPN ACME';
m_EntityType=7;
m_ObjectId='VIRTUAL_PRIVATE_NETWORK';
m_HaveAccess=0;
m_IsActive=0;
m_ExtraInfo={
 m_VPNName='ACME';
 m_MPLSVPNType='MPLS IP VPN MESH';
 m_Members=['pe7-cr38.core.eu.test.lab[Vl2]',
 'pe7-cr38.core.eu.test.lab[Fa0/3/1]',
 'pe8-cr72.core.eu.test.lab[Fa5/0]'];
 m_DependsOn=['pe7-
cr38.core.eu.test.lab[Se0/0/0:0.202]',
 'pe8-cr72.core.eu.test.lab[Fa0/0]',
 'p4-cr28.core.eu.test.lab[Se0/0/1:0.202]',
 'p4-cr28.core.eu.test.lab[Gi0/0]'];
 };
}

Chapter 28. Discovery stitchers 853

Table 537. List of main discovery stitchers (continued)

Stitcher Function

AddLogicalToIpToBaseName Adds logical information to the translations.ipToBaseName
table.

AddLoopbackTag Adds a tag to the ExtraInfo column of the topology database
indicating that an interface is a globally addressable loopback
interface.

AddLteEntityContainment Called within the BuildContainment.stch stitcher.

This stitcher processes the return records from the CollectorLTE
agent and, using this data it builds LTE-related entities within the
workingEntities.finalEntity table, as follows:

• All LTE-related entities, such as enbFunction, mmeFunction,
sgwFunction, and so on.

• All lteIinterface entities of various types, such as S1-U , S1-
MME , X2 , S5/S8 ,S11.

The stitcher also builds the appropriate relationship records
among these LTE entities and their respective chassis entities.

• Containment relationship records are built in the
workingEntities.containment table.

• Relationship records of connection and dependency are built in
the m_ExtraInfo->m_Members and m_ExtraInfo-> m_Depends
member attributes of the appropriate workingEntity record.

AddNoConnectionsToLayer The final topology layer is constructed by merging the topology
information from the various layers. If there is a mismatch in
connectivity information provided by the different layers,
information from the more detailed layer takes precedence.

For example, the Network Layer (layer 3) provides information
indicating that a router interface is connected to another router
interface. However, information from the more detailed Data Link
Layer (layer 2) shows that there is actually a switch between the
two router interfaces.

The AddNoConnectionsToLayer is used in cases where it is
necessary to remove a connection at one layer but keep the
connection at a different layer.

AddSwitchRoutingLinks Adds switch routing data (that assists the RCA plug-in when
performing Root Cause Analysis) to the topology database.

854 IBM Tivoli Network Manager IP Edition: Reference

Table 537. List of main discovery stitchers (continued)

Stitcher Function

AddTechnologyType Optional stitcher called by the PostScratchProcessing.stch
stitcher. This stitcher is commented out by default. If enabled, this
stitcher creates a technology type variable for each interface
object. This variable can then be used to create technology-based
Network Views.

See the IBM Tivoli Network Manager User Guide for more
information about network views.

The stitcher creates the technology type variable by adding an
m_Technology field to the ExtraInfo field within the
scratchTopology.entityByName table for each interface
object. The m_Technology field is a string, such as Ethernet,
ATM. The stitcher contains a large collection of default technology
types; more can be added by directly altering the stitcher.

The small processing load associated with activating this stitcher
might slow down your discovery slightly.

AddUnconnectedContainment Gives unconnected entities a default containment. Unconnected
entities do not have a parent, except for their main node or
interface.

AddVlanContainers Uses information in the workingEntities.finalEntity and
translations.vlans tables to add VLAN objects to the
workingEntities.containment table.

AddWLANContainment Populates workingEntities.containment with WLAN
containment data.

AddZTEEntityContainment Invokes either the AddZTEMSeriesEntityContainment.stch
stitcher or the AddZTETSeriesEntityContainment.stch
stitcher, based on the device series OID.

AddZTEMSeriesEntityContainment Builds up the containment information for the ZTE M series
device.

AddZTETSeriesEntityContainment Builds up the containment information for the ZTE T series
device.

AdjustedIPLayer Adjusts the IP layer to move the IP layer connectivity on logical
interfaces down to the physical interface for some routers.

AdjustVlanInterfaceContainment A real world example stitcher to show how containment
could be adjusted to meet user requirements. This stitcher is not
run.

AgentRetProcessing Processes data from the returns table of each table.

AgentRetToInstrumentationCiscoFrameRe
lay

Populates the instrumentation.ciscoFrameRelay table with
information from the returns table of the appropriate agent.

AgentRetToInstrumentationFddi Populates the instrumentation.fddi table with information
from the returns table of the appropriate agent.

AgentRetToInstrumentationFrameRelay Populates the instrumentation.frameRelay table with
information from the returns table of the appropriate agent.

AgentRetToInstrumentationHSRP Populates the instrumentation.hsrp table with information
from the returns table of the appropriate agent.

Chapter 28. Discovery stitchers 855

Table 537. List of main discovery stitchers (continued)

Stitcher Function

AgentRetToInstrumentationIp Populates the instrumentation.ip table with information from
the returns table of the appropriate agent.

AgentRetToInstrumentationName Populates the instrumentation.name table with information
from the returns table of the appropriate agent.

AgentRetToInstrumentationPnniPgi Populates the instrumentation.pnniPeerGroup table with
information from the returns table of the appropriate agent.

AgentRetToInstrumentationSubnet Populates the instrumentation.subNet table with information
from the returns table of the appropriate agent.

AgentRetToInstrumentationVlan Populates the instrumentation.vlan table with information
from the returns table of the appropriate agent.

AgentStatus This stitcher sends events to the disco.events table about the
status of the discovery agents. These events indicate changes in
the state of the agent; for example, if it has started, has finished,
or has crashed. See also, FinderStatus, CreateStchTimeEvent, and
DiscoEventProcessing stitchers.

AnalyseTopology Analyses a connectivity database to find how many connections
there are on each interface.

AnalyseTopologySummary This stitcher uses the analysis summary information produced by
the AnalyseTopology stitcher to provide an optional deeper
topology analysis. This functionality is kept separate from the
basic topology analysis as it might affect performance or create
topology issues on some networks.

AnalyseTopology Analyses a connectivity database to find how many connections
there are on each interface.

AnalyseTopologySummary This stitcher uses the analysis summary information produced by
the AnalyseTopology stitcher to provide an optional deeper
topology analysis. This functionality is kept separate from the
basic topology analysis as it might affect performance or create
topology issues on some networks.

ApplyMainDisplayLabel Sets the display label for devices in the GUI based on the setting
of m_DisplayMode in the disco.config configuration file. Modifies
the entities in the workingEntities.finalEntity database table.
Called by the BuildFinalEntityTable.stch and
RebuildFinalEntityTable.stch stitchers.

ASMAgentRetProcessing Based on MIB variable data retrieved by the ASM stitcher, this
stitcher generates a list of ASM sub agents running on a given
device. Each ASM subagent running on a device corresponds to a
commercial server or database product running on that device.
The list of ASMs enables autopartitioning of devices within a
network based on the commercial server or database products
running on those devices.

ASAMIfStringLayer Uses the ASAM ifDescr format to deduce connectivity.

ASMProcessing Updates entities based on the services running on them.

856 IBM Tivoli Network Manager IP Edition: Reference

Table 537. List of main discovery stitchers (continued)

Stitcher Function

ASRetProcessing Used in MPLS discoveries where devices in different customer
VPNs have identical IP addresses. This stitcher performs the
processing necessary to differentiate between these devices and
correctly resolve device connectivity. This stitcher is called by the
AsAgent agent and works with the ASMap.txt file in NCHOME/
precision/etc.

AssocAddressRetProcessing Processes data in the AssocAddress.returns table, sending
the device details to the appropriate discovery agent if the device
has not already been discovered.

BGPLayer Builds the BGP layer created by BGP agent. In common with other
layer stitchers, this stitcher receives input from relevant agents.
This input consists of entity records containing local and remote
neighbor data fields. The stitcher uses these records to work out
the local and remote connections for each entity.

BuildBaseSubnetRegex Takes a given subnet and mask and produces a regular expression
to find IP addresses in that subnet.

BuildContainment Calls the following stitchers to add different types of objects to the
workingEntities.finalEntity table:

• AddBasicContainment stitcher, which adds device
containment information.

• AddCardContainment stitcher, which adds card containment
information.

• AddIfStackContainment stitcher, which adds interface stack
containment information.

• AddEntityContainment stitcher, which adds general
containment information.

• NATAddressSpaceContainment stitcher, which adds
containment information associated with NAT address spaces.

• AddVlanContainers stitcher, which adds VLAN containment
information.

You can comment out lines in this stitcher as appropriate in order
to exclude types of objects that are not needed.

Note: This stitcher also manages collector-discovered devices by
accepting data from the CollectorInventory agent.

BuildFinalEntity Builds the records for a single chassis. The BuildFinalEntity
stitcher merges data from multiple agents to create the complete
definition of an entity. This stitcher is called by the
BuildFinalEntityTable stitcher.

BuildFinalEntityTable Uses the entries in the translations.ipToBaseName table to
populate the workingEntities.finalEntity table.

BuildHuaweiVSIContainers Creates Virtual Switch Instance (VSI) and Virtual Forwarding
Instance (VFI) entities and associated containment for Network
Provider Edge devices of Huawei VPNs.

Chapter 28. Discovery stitchers 857

Table 537. List of main discovery stitchers (continued)

Stitcher Function

BuildInterfaceName Used to control the naming of interfaces. By default, this stitcher is
called by the BuildFinalEntity stitcher.

The default naming strategy for any device interface is as follows:

baseName[<card>[<port>]]

Alternatively Network Manager uses the following default naming
convention if the card and port are not valid:

baseName[0[<ifIndex>]]

You can use the BuildInterfaceName stitcher to change the
naming convention for an interface in one of the following ways:

• Specify that you want to use ifName or ifDescr to name the
interfaces rather than the ifIndex, card or port information.
Using this option, interfaces would have names like the following
example:

baseName[eth0/0]

In this example eth0 is the ifName of an interface.

To change the naming convention in this way, change the value
of m_UseIfName in the disco.config table.

• Modify the BuildInterfaceName stitcher directly to specify
any interface naming convention.

BuildLayers Activated in the final phase to implement the stitchers that build
the layer databases.

BuildMPLSContainers This stitcher calls the BuildVPNContainers and
BuildVRAndVRFContainers stitchers. It builds VPN, VR, and VRF
containers.

BuildNATTranslation Builds a global translation table for all NAT devices.

BuildNexusVRFContainers Builds Virtual Route Forwarding (VRF) containers for Cisco Nexus
devices.

BuildVPNContainers Creates objects to represent the MPLS VPNs within the system.

BuildVRAndVRFContainers Creates virtual router (VR) and virtual routing and forwarding table
(VRF) objects within the system. These objects are useful for
displaying MPLS information.

BuildVSIContainers Creates Virtual Switch Instance (VSI) and Virtual Forwarding
Instance (VFI) entities. This stitcher also creates logical
containment of devices associated with VSIs, VFIs, and CE-PE
links.

CabletronLayer Determines connectivity information based on Cabletron data
returned by the discovery agents.

CDPLayer Determines connectivity information based on the data returned
by the CDP agent.

CheckAndSendNATGatewaysToArpCache Sends the NAT gateways to the ArpCache agent.

858 IBM Tivoli Network Manager IP Edition: Reference

Table 537. List of main discovery stitchers (continued)

Stitcher Function

CheckForMasterLink Looks for connections lower down the interface stack that take
precedence over connections higher up the stack.

CheckIfMgmtAddress Determines if a given IP address is a defined management
address.

CheckIndirectResponse Handles indirect ICMP responses due to NAT.

CheckInterfaceStatus Checks the ifOperStatus data and updates the interfaces status
where the ifOperStatus is not 1.

CheckManagedProcesses Checks if the processes in disco.managedProcesses have been
started, and if they have not been started it attempts to start
them.

CheckMultipleIPNoAccess Checks for devices with no access but multiple IP addresses.
Creates interface objects for these IP addresses and updates the
entity appropriately.

CheckValidVirtual Determines if the given IP address is a valid virtual IP address.

CiscoSerialInterfaceLayer Creates a new layer called CiscoSerialInterfaceLayer connecting
Cisco switches that are connected by serial interfaces. By default,
the stitcher removes any connections in the
CiscoSerialInterfaceLayer that are duplicated in the IPLayer
database, to prevent wrong connectivity. The function to remove
mesh connections can be turned on or off by editing a flag in the
stitcher.

CiscoVSSContainment CiscoVSSContainment adds new containment entities,
representing the two physical chassis and their respective
interfaces and objects, to the workingEntities.finalEntity table.

CMTSLayer Uses the data downloaded by the CMTS agent to build the
connection information between cable modem termination
systems and the attached cable modem devices.

CollectorAddressTranslation This stitcher processes devices discovered using an EMS collector.
This stitcher performs the following activities:

• Ensures that any collector-discovered devices are identified as
being the same as the equivalent SNMP-discovered devices.

• Stores data on the collector associated with each device.
• Performs other administration tasks related to a collector

discovery.

CollectorDetailsRetProcessing This stitcher processes devices discovered using an EMS collector.
It processes entries in the returns table of the CollectorDetails
agent and sends these entries to other collector discovery agents.
The collector discovery agents retrieve detailed device data from
the EMS collectors.

CollectorIPLayer This stitcher builds layer 2 connectivity for devices discovered
using an EMS collector based on the connection data supplied by
the CollectorLayer2 agent.

CollectorLagLayer Creates EMS-based Layer 2 connectivity from Alcatel Lucent 5620
Collector Link Aggregation (LAG) information.

Chapter 28. Discovery stitchers 859

Table 537. List of main discovery stitchers (continued)

Stitcher Function

CollectorL1Layer Uses the data downloaded by the CollectorLayer1 agent to build
Layer 1 connectivity information between optical devices and
neighboring optical devices. As long as layer 1 data is present, this
stitcher will be invoked.

CollectorLTELayer Processes all return records from the CollectorLTE agent where
the variable m_RemoteNbr is not null. Based on information in the
m_RemoteNbr variable, the stitcher populates the
CollectorLTEControlLayer.entityByNeighbor OQL table to store all
LTE control plane connectivity records. For example, the
CollectorLTEControlLayer.entityByNeighbor table stores eNodeB
to eNodeB connectivity over the X2 interface, and eNodeB to MME
connectivity over the S1-MME interface.

This stitcher also determines the LTE user plane connectivity from
information available in the m_RemoteNbr variable and populates
the OQL table CollectorLTEUserPlaneLayer.entityByNeighbor to
store all LTE user plane connectivity records. For example , the
CollectorLTEUserPlaneLayer.entityByNeighbor table stores
eNodeB to Serving Gateway connectivity over the S1-U interface,
and Serving Gateway to Packet Data Network Gateway
connectivity over the S5/58 interface.

CollectorLTEMMEPool Builds MME pools in the database. It does this by processing LTE-
related records in the workingEntities.finalEntity OQL table and
identifying unique MME group identifiers. The stitcher then builds
an LTE pool object of type MMEPool in the
workingEntities.finalEntity table for every unique MME group. For
every LTE pool object of type MMEPool, the stitcher builds an
m_MMEList collection list attribute. This attribute stores the entity
names of all MMEfunction entities in that LTE pool object.

CollectorLTETrackingArea Builds a Tracking Area entity in the workingEntities.finalEntity
table for every unique tracking area code. It does this by
processing LTE related records in the workingEntities.finalEntity
OQL table and identifying unique tracking area codes. For every
tracking area entity, the stitcher builds an m_CellList collection list
attribute. This attribute stories the entity names of all eUtranCell
entities in that tracking area.

CollectorRANLayer Populates the CollectorRANLayer.entityByNeighbor table with
logical RAN connections.

CollectorSwitchLayer This stitcher builds layer 3 connectivity for devices discovered
using an EMS collector based on the connection data supplied by
the CollectorLayer3 agent.

CreateAndSendTopology Activates the stitchers that create the topology and send the final
Scratch Topology to MODEL.

Note: If you are using the embedded relational database, dNCIM,
instead of the scratchTopology database, then the dNCIM stitchers
are called from this stitcher.

ContainResolvableGenericPortEntities Creates containment for non-ENTITY MIB- like port entities that
have existing corresponding interface records.

860 IBM Tivoli Network Manager IP Edition: Reference

Table 537. List of main discovery stitchers (continued)

Stitcher Function

ContextAgentRetProcessing This stitcher is used for context-sensitive discovery data flow. It
merges the outputs of all the Context agents for each entity. It
then inserts the results of this merge into the
AssocAddress.despatch table, using the
DetailsOrContextRetProcToAgent stitcher.

CreateBGPServices Creates BGP hosted service entities. A hosted service is a service
or application running on a specific device. For example, a device
might host BGP and OSPF services. Each BGP hosted service
entity describes a BGP process on a router. This stitcher is called
by the PostScratchProcessing stitcher following the creation of the
scratch topology.

CreateBGPTopology Creates connections between BGP speakers. These connections
are presented in the Network Views, and correspond to working
BGP connections at the time of the discovery. This stitcher can
also infer BGP peer routers that Network Manager cannot access.
These inferred routers might correspond to BGP autonomous
systems outside of your company. This stitcher is called by the
PostScratchProcessing stitcher following the creation of the
scratch topology.

CreateEmsEntities Creates an element management system (EMS) object for each
known EMS in the topology. In a situation where a collector is
acting as the EMS itself (that is, the collector does not specify an
EMS source) an EMS object is still created to represent the
collector. The discovery infers the chassis hosting the EMS if the
chassis has not been discovered.

CreateImpactTopology An optional stitcher that can be used to make a copy of the
Scratch Topology before it is sent to the Topology Manager,
ncp_model.

CreateIPMRouteRoutes Manages the creation of upstream and downstream route entities
for the routes downloaded from multicast routers. It also aids MDT
resolution.

CreateMPLSPE This stitcher uses BGP information on the customer edge (CE)
routers to infer the existence of inaccessible provider edge (PE)
routers. The stitcher builds a single object to represent the
provider network and each interface represents a BGP peer found
on the customer edge device. This allows RCA to be evaluated
across the MPLS provider core. Note the stitcher assumes that all
out-of-scope BGP peers are members of the provider network. If
this is not true then you can configure which specific sections of
the network can be considered valid PE IPs and which not. The
inferred interfaces will then be limited to those that are within the
defined MPLS scope (scope.inferMPLSPEs). Whether an IP is
within the MPLS PE scope is determined by the
IsInMPLSScope.stch stitcher.

CreateOSPFAreas Creates and names an OSPF area. This stitcher is called by the
PostScratchProcessing stitcher following the creation of the
scratch topology.

Chapter 28. Discovery stitchers 861

Table 537. List of main discovery stitchers (continued)

Stitcher Function

CreateOSPFNetworkLSAPseudoNodes Retrieves data associated with OSPF pseudonodes advertised by
designated routers and builds these pseudonodes in the topology.
This overcomes the problem of full meshing when representing
OSPF area in Network Views and enables connections within OSPF
areas to be visualized in a clear, uncluttered manner.

CreateStchTimeEvent This stitcher sends events to the disco.events table about
progress within the data processing phase. For example, the
stitcher generates events to indicate that the discovery process
has started building the working entities table, and that the
discovery process has started building the containment table. See
also, AgentStatus, FinderStatus, and DiscoEventProcessing
stitchers.

CreateVRRPCollection Creates collections based on the Virtual Router Redundancy
Protocol (VRRP) virtual router ID and associated IP address.
Called by the PostScratchProcessing stitcher.

CreateTrunkConnections Modifies the containment model to take account of VLAN trunks.

CreateVlanEntity This stitcher creates a single VLAN entity object by adding VLAN
data to the Scratch Topology.

CreateWLANAP Populates WLAN Access Points from WLAN agent data.

CreateWLANAPInterfaces Populates WLAN Access Points interfaces from WLAN agent data.

CreateWLANAPIPLayer Populates the IPLayer tables from WLAN data.

DetailsOrContextRetProcToAgent This stitcher is used as part of the context-sensitive discovery data
flow. It is equivalent to DetailsRetProcessing but handles context-
sensitive discovery. It processes entities from the
details.returns table, and sends the details to the despatch
table of the relevant Context agent.

DetailsRetProcessing Processes entities from the details.returns table, and sends
the details to the AssocAddress.despatch table.

DetectionFilter Determines whether a given device passes the detection filter and
is to be discovered based on the detectionFilter defined in
the scope database.

By default, the discovery filters do not filter out the Network
Manager server, because this server usually also serves as the
polling station for root cause analysis. In order for root cause
analysis to work correctly, the polling station, and hence the
Network Manager server, must be part of the topology.

If you need to filter out the Network Manager server using the
detectionFilter, modify the DetectionFilter stitcher and
remove the sections of code indicated by comments that prevent
the Network Manager server from being filtered.

862 IBM Tivoli Network Manager IP Edition: Reference

Table 537. List of main discovery stitchers (continued)

Stitcher Function

DetermineProtocol Called by other stitchers. This stitcher receives an IP address
string as input and based on the contents of the string it
determines the associated IP protocol; for example, an input
string of:

• 1.1.1.1 returns a value of 1, corresponding to the IPv4
protocol.

• 2003:3542:45AB::34 returns a value of 3, corresponding to
the IPv6 protocol.

• any-old-string returns a value of 0, corresponding to
unknown protocol.

DiscoEventProcessing This stitcher responds to an insert into the disco.events table
and creates and sends the appropriate discovery event to the
probe for Tivoli Netcool/OMNIbus, nco_p_ncpmonitor process,
which then forwards the event to the ObjectServer. You can
control whether discovery events are generated by changing the
value of the m_CreateStchrEvents field in the disco.config
table. See also, AgentStatus, FinderStatus, and
CreateStchTimeEvent stitchers.

DiscoShutdown Activated when DISCO is shut down. Calls the
RefreshDiscoveryTables stitcher.

ExampleContainment1 An example stitcher that could be modified to configure the
containment model.

ExampleContainment2 An example stitcher that could be modified to configure the
containment model.

FddiLayer Deduces the FDDI layer topology.

FDPLayer Determines connectivity between Brocade devices, based on data
returned by the BrocadeFDPSnmp agent.

Feedback Sends device details back to the Ping finder to seed the discovery
again.

FinalPhase Activated in the final phase to implement the final stitchers.

FindAddressSpace Identifies the address space of an IP address.

FinderStatus This stitcher sends events to the disco.events table about the
status of the finders. For each finder, the stitcher sends an event to
indicate changes in the state of the finder; for example, if the
finder has started, has finished, or has failed. See also,
AgentStatus, CreateStchTimeEvent, and DiscoEventProcessing
stitchers.

FindGatewayInterfaces Identifies the gateway interface on NAT translation devices.

FindPhysIpForVirtIp Used in resolution of HSRP issues. Finds the physical IP address
corresponding to a virtual HSRP address.

Chapter 28. Discovery stitchers 863

Table 537. List of main discovery stitchers (continued)

Stitcher Function

FnderProcToDetailsDesp Processes entries in the finders.processing table, and sends
the details to one of the following agents:

• Details agent, if the device was discovered directly in the
network.

• CollectorDetails agent, if the record is a device discovered using
an EMS collector.

FnderRediscoveryProcessing Processes data inserted into the finders.rediscovery table.
Commonly it will cause the device or subnet range inserted into
the table to be rediscovered, either immediately or indirectly after
verification by the ping finder.

FnderRetProcessing Processes entities in the finders.returns table. Checks
whether the device is in scope and moves this entry to the
finders.processing or finders.pending table, depending
on whether the discovery is in blackout state.

FullDiscovery Determines whether a full discovery is to be run.

GetEntityNameByBase For a given base name and interface index (or interface ID), this
stitcher resolves the associated entity name.

GetEntityNameByIp For a given address and optional address space, this stitcher
resolves the associated entity name. An optional base name can
also be specified to restrict the search.

GetBaseNameByIp Returns the base name associated with the supplied IP address,
or "" if none is found. If there are multiple matches then the first is
used.

HandleIPMRouteDownstream Processes the IPMRoute downstream routing data for the current
device. It creates downstream route entities which populate the
ipMRouteDownstream NCIM table. It also tracks end points
required by the route, which are created later, and which MDT to
associate the route with.

HandleIPMRouteUpstream Processes the IPMRoute upstream routing data for the current
device. It creates upstream route entities which populate the
ipMRouteUpstream NCIM table. It also tracks end points required
by the route, which are created later, and which MDT uses to
associate the route with.

HubFdbToConnections A precompiled stitcher that processes all of the connections for
the Ethernet hubs. It also requires the connectivity information
from the Ethernet switch discovery.

IlmiLayer Creates the ILMI (Interim Local Management Interface) topology
connections based upon ATM ILMI information.

InitiateNATGatewayDiscovery Seeds the Ping finder with the NAT gateway addresses.

IPAddressNaming Causes the system to name devices using the IP address where
the data is valid. This stitcher is optional and is off by default.

IPLayer Creates the IP layer topology connections.

IpToBaseName Populates the translations.ipToBaseName table with
information from the AssocAddress agent.

864 IBM Tivoli Network Manager IP Edition: Reference

Table 537. List of main discovery stitchers (continued)

Stitcher Function

IsForcedRediscovery This stitcher is used to determine if a finder insert is part of a
forced rediscovery. Forced rediscovery contrasts with reactive
rediscovery, the mode that the Discovery Engine, ncp_disco,
adopts after completion of a discovery. In this mode a device is
typically only rediscovered if it is new or if the finder insert
references a trap, thus suggesting that the entity has been
modified.

Forced rediscoveries are started using the Discovery Configuration
GUI.

IsInMPLSScope Determines if a given IP address is in the scope of devices
considered to be valid CE devices connected to an inaccessible
third-party MPLS PE device.

IsInScope Used by other stitchers to check that an entity is within the scope
of the discovery (that is, within the scope defined in the
scope.zones table).

Prior to checking whether an entity is in scope, the stitcher first
determines whether the entity is IP or non-IP:

• If the entity is an IP-based entity, then scoping is required. The
stitcher proceeds to determine if the entity is in scope.

• If the entity is non-IP, for example a layer 1 optical device, or a
radio access network device, then no scoping is performed. The
system assumes that the device is in scope.

LLDPLayer Determines connectivity information of remote neighbors based
on data returned by the LLDP agent.

Note:

If connectivity is incorrectly displayed for a devices, then this
might mean that the LLDP MIB on the network device is incorrectly
populated. In some cases the relevant MIB data is incorrectly
populated with device model number instead of a unique
identifier. In this case the LLDP stitcher is unable to calculate LLDP
connectivity correctly.

To verify that this is the problem, for each of the devices that are
not connected correctly you must examine the values of the
LLDPChassisId field in the LLDP agent's LLDP.returns table. If
you determine that the LLDPChassisId field values are not unique,
then edit the LLDPLayer stitcher and set the processing method to
a value of 2, by changing the following line in the stitcher:

int processingMethod = 2;

MergeLayers Merges the layer topologies.

ModifyIPContainment Modifies the containment of IP interfaces on non-IP forwarding
devices so that they are not upwardly connected. This
modification is required to trace root cause.

MPLSCE Tries to resolve CE to PE connectivity for VRF interfaces on a PE
where the connecting CE has not been identified. It uses layer 3
information to try to find the correct connectivity.

Chapter 28. Discovery stitchers 865

Table 537. List of main discovery stitchers (continued)

Stitcher Function

MPLSProcessing The route target-based MPLS post-layer processing is performed.
The MPLSProcessing stitcher calls the RTBasedVPNDiscovery
stitcher to perform this processing. The MPLS discovery results in
the ability to display an edge view.

This stitcher also performs the background processing required to
generate service-affected events.

MPLStackProcessing Ensures that any interfaces that are situated below a VPN
supporting interface in the interface stack are marked as being
part of the VPNs which flow through the higher interfaces.

NameResolution Finds entities where the name has not been resolved and attempts
to resolve the entity name based on the resolved names of the
other interfaces of the device.

NamingFromLoopbackDetails Provided there is a LoopBack agent running, this stitcher updates
the names in the translations.ipToBaseName table. The
management IP address of the device used by the poll policies is
set to one of the loopback addresses, if Network Manager has
confirmed that it has SNMP access.

NamingViaManagementInterface Looks for management IP addresses from the
translations.ipToBaseName and ensures the base address and
name of an entity is that of the management server.

NATAddressSpaceContainers Optional stitcher that builds NAT container objects holding devices
within a particular address space and creates inserts into the
workingEntities.finalEntity table for these NAT container
objects. Also builds relevant entries into the
workingEntities.containment table.

NATAgentRetProcessing Processes the output from the NAT gateway agents.

NATFnderRetProcessing Performs processing of NAT devices.

NATGatewayRetProcessing Used in discoveries involving NAT gateways where one or more of
the management interfaces of the NAT gateway device is in private
address space. This stitcher performs the processing necessary to
determine whether each management interface is in public or
private address space. This stitcher is called by the
NATGatewayAgent agent and works with the NATGateways.txt
file in NCHOME/precision/etc.

NATIpCheck Resolves an issue where a NAT gateway adds all of its translated
IP addresses to its own IP table.

NATTimer Triggers rediscovery of NAT gateways.

NortelPassportLayer Resolves the NortelPassport connectivity discovered by the
NortelPassport agent.

OSPFLayer Creates a topology of the OSPF routing within the network. This
OSPF routing information is used by the DetermineOSPFDomains
stitcher in order to tag devices and interfaces with OSPF domain
information.

OspfPostLayerProcessing Performs OSPF processing after the OSPF topology has been
calculated, for example, assignment of OSPF domains.

866 IBM Tivoli Network Manager IP Edition: Reference

Table 537. List of main discovery stitchers (continued)

Stitcher Function

ParseASAMIfString Parses the ASAM Interface description data into its component
parts. Called from the ASAMIfStringLayer stitcher.

ParseZyxelIfString Parses the ZYXEL Interface description data into its component
parts. Called from the ZyxelIfStringLayer stitcher.

PeerBasedHuaweiVPLSDiscovery Identifies the membership and pseudowire interfaces of middle
Network Provider Edge and User-facing Provider Edge devices for
each Virtual Switch Instance.

PeerBasedPWDiscovery Used in discovery of enhanced Layer 2 VPNs on an MPLS core
network. This stitcher identifies MPLS pseudowire connections
retrieved by the Cisco MPLS agents and adds information about
these connections to the relevant network entities for viewing in
Topoviz. The information is stored as a pseudowire VPN and
provides information about the two provider edge (PE) router ends
of the pseudowire.

PIMLayer Creates PIM Topology table based on remote neighbor data from
PIM supporting agents. The topology data is used to populate the
m_PIMAdjacency data, which in turn is used to populate the PIM
Topology in NCIM

PingFinderScopeRefresh Tells the Ping Finder to refresh its scope. This stitcher is activated
by the Discovery Configuration GUI when you refresh the scope,
ensuring that the Ping finder has an up-to-date scope.

PnniLayer Creates the PNNI topology connections provided the connections
at both ends have been discovered.

PostLayerProcessing The PostLayerProcessing stitcher runs stitchers that extend the
network model. These stitchers use data from the
workingEntities.finalEntity and workingEntities.containment
database tables and the topology layers that were created
recently in the stitching process. They create entities such as
MPLS entities, global VLANs, and switch modules. If you create
any custom discovery stitchers, you can run them from the
PostLayerProcessing stitcher.

PreProcessIGMPEndPointData Creates and populates a temporary table consisting of end-point
information for each IGMP-enabled interface and known groups. It
also tracks the Multicast groups for which there is IGMP data. This
data is used by other IGMP stitchers to create end point and group
entities.

PresetLayer Can be used to "preset" undiscoverable connections, if required.
This stitcher is not used by default.

This stitcher contains advanced configuration settings. Any
changes must be made by certified personnel only.

ProcessQinQData Processes QinQ data associated with interfaces and builds
appropriate containment.

ProcessSwitchModules Identifies which switch modules have their own IP addresses.

ProcRemoteConns Takes a record containing a remote neighbor and processes
remote connections if the agent that discovered it supports
indirect connections.

Chapter 28. Discovery stitchers 867

Table 537. List of main discovery stitchers (continued)

Stitcher Function

ProfilingEndFinal

ProfilingPhase1

ProfilingPhase2

ProfilingPhase3

ProfilingStartFinal

These stitchers populate the disco.profilingData table,
providing data on discovery duration, memory usage, and a broad
overview of the results of the discovery. This information is used in
the estimation of scaling, and provides you with an overview of
discovery performance.

PruneSwitchConnections This stitcher can be used as a way of improving switch connectivity
in cases where the switches do not provide full connectivity
information. This stitcher is not enabled by default, and must be
enabled only on advice from IBM Support.

PVCNamePath Adds the name of a PVC path to the internal
atmPVCs.memberships database table.

PVCProcessedRecord Updates the atmPVCs database to indicate which record is
currently being processed.

PVCProcessingRecord Updates the atmPVCs database to indicate which record is
currently being processed.

PVCTraceAway Performs PVC tracing.

PVCTraceCrossConnected Performs PVC tracing.

PVCTracePath Performs PVC tracing for a given interface using the other PVC
tracing stitchers to trace all the paths through the entire ATM
section of the network.

PVCTraceTowards Performs PVC tracing.

RebuildFinalEntityTable This stitcher is very similar to the BuildFinalEntityTable. It also
uses the entries in the translations.ipToBaseName table to
populate the workingEntities.finalEntity table. The
difference is that this stitcher is used in rediscovery mode rather
than full discovery mode.

RecreateAndSendTopology This stitcher is very similar to the CreateAndSendTopology.stch. It
also activates the stitchers that create the topology and sends the
final Scratch Topology to MODEL. The difference is that this
stitcher is used in rediscovery mode rather than full discovery
mode.

Note: The dNCIM stitchers, the stitchers that interact with the
dNCIM database during the discovery process, are called from this
stitcher.

ReDoIpToBaseName Refreshes the translations.ipToBaseName table.

RefreshDiscoveryTables Refreshes the discovery database tables.

RefreshLayerDatabase Refreshes a given layer topology database.

RefreshMPLSTEScope Refreshes the scope of the StandardMPLSTE agent.

RefreshMulticastScope Refreshes the scope of the StandardPIM agent.

868 IBM Tivoli Network Manager IP Edition: Reference

Table 537. List of main discovery stitchers (continued)

Stitcher Function

RelateVirtualDevices Creates virtual device instances based on Virtual Device Contexts
(VDCs) data discovered by the CiscoNexusVdc agent. Links the
VDC instances to the physical device through the hostedServices
relationship and Hypervisor entity.

RemoveDeviceFromTopology Removes a device from the topology. The first argument of this
stitcher must be the base name of the device to be removed.

RemoveInferredCEDuplicates When the existence of a CE router is inferred, this stitcher removes
potential duplicate devices from the topology.

RemoveOutOfBandConnectivity Removes connectivity for out of band devices from the
fullTopology.entityByNeighbor table.

RemoveWrongConnectionsToTA838 Removes wrong connections from Cisco 7609 and Cisco 3400 to
Adtran TA838 devices.

ResetNATMainNodes Resets the IP of devices whose addresses have been translated by
NAT from the private IP we use to resolve connectivity back to the
public IP for monitoring. This allows the devices to be connected
and visualized correctly and also remain accessible for monitoring
purposes.

ResolveHSRPIssues Checks for entities that have been discovered through their virtual
Hot Standby Routing Protocol (HSRP) address. In that situation,
the stitcher updates the discovery agent returns tables and the
translations.ipToBaseName to show the correct physical
interface.

ResolveHuaweiVPLSConnections Adds Temporary Wire information for middle Network Provider
Edge devices to the data that is modeled by the
ResolveVPLSConnections stitcher. This stitcher is called by the
ResolveVPLSConnections stitcher, if discovery of Huawei VPNs
is enabled.

ResolveVPLSConnections Identifies the User-facing Provider Edge interfaces and
Pseudowire interfaces of middle Network Provider Edge devices,
and far end Network Provider Edges for each VSI. If discovery of
Huawei VPNs is not configured, only User-facing Provider Edge
interface information is modeled.

ResolveVPLSPortVlans Uses data returned from the CISCO-IETF-PW-ENET MIB to
associate pseudo wires with the correct logical interface.

ResolveVRRPAssocAddresses Resolves issues caused by VRRP addresses. In such a situation,
the stitcher updates the discovery agent returns tables and the
translations.ipToBaseName to show the correct physical
interface.

RestartDiscoProcess Calls the restart_disco_process.pl script which stops the
currently running discovery process and starts a new instance of it.
It takes a single argument and a new full discovery is initiated by
the newly started discovery process if the value is set to 1. If set to
0, then a full discovery is not initiated.

Restitcher Re-stitches the topology together.

Chapter 28. Discovery stitchers 869

Table 537. List of main discovery stitchers (continued)

Stitcher Function

RTBasedVPNDiscovery Discovers MPLS VPNs based on route target usage. This results in
an edge view only which shows the MPLS core network with
provider edge (PE) routers for VPNs and VRFs within the scope of
the discovery. This view does not show the provider (P) routers
within the MPLS core network and associated LSPs (label switched
paths) that link these P routers. For each PE router discovered,
Network Manager holds information on the route targets imported
into and exported from that PE router. This enables you to identify
which VPNs use which PE routers.

RTBasedVPNResolution Uses the VRF data pre-processed by the RTBasedVPDiscovery
stitcher to resolve VPNs based on Route Target import and export.

ScopeRefresh Informs the finders and agents that require scope information
when the scope table has changed.

SendRelationalTopologyToModel Sends the relational topology model network traffic detailing the
latest discovery.

SendToCollectors Sends the supplied seed to the Collector finder for rediscover.

SendTopologyToModel Sends the stitched topology to MODEL.

SerialLinkLayer Determines connections from the data returned by the SerialLink
agent.

SetOSPFServiceDesignatedStatus Specifies whether or not the router running an OSPF service is a
designated router or a backup router.

SONMPLayer Determines connections from the data returned by the SONMP
agent.

SubnetConnections Creates subnet entities and inserts into each of the interfaces
belonging to the subnet. At layer 3 level the interfaces within a
subnet are all considered to be connected, so any connections not
already discovered are added to the IP layer database.

SubnetToIPLayer Adds default layer-three containment and/or connectivity.

SRPLayer Builds the SRP layer to hold the containment information
discovered by the SRP agent. In common with other layer
stitchers, this stitcher receives input from relevant agents. This
input consists of entity records containing local and remote
neighbor data fields. The stitcher uses these records to work out
the local and remote connections for each entity.

SwitchFdbToConnections Copies entries from the Switch agent returns tables to the
connections table.

SwitchStpMltProcessing Adds connections for all links in a multi-link trunk to an
entityByNeighbor table.

870 IBM Tivoli Network Manager IP Edition: Reference

Table 537. List of main discovery stitchers (continued)

Stitcher Function

SwitchStpToConnections Builds a new layer based on the SwitchStp connectivity. Processes
the data from the STP agent to create correctly named local and
remote entity connection records in the stpTopology database.

In common with other layer stitchers, this stitcher receives input
from relevant agents. This input consists of entity records
containing local and remote neighbor data fields. The stitcher uses
these records to work out the local and remote connections for
each entity.

SysNameNaming Causes the system to name devices using the SNMP sysName
where the data is valid. This is an optional stitcher that is off by
default.

TagManagementInterfaces Tags the interface that has the IP address used as the main access
IP address for a given entity. This stitcher is used in root cause
analysis.

TraceRouteConnectivity Updates the IPLayer.entityByNeighbor table with
connectivity information retrieved from the TraceRoute agent
returns data.

VRFBasedVPNResolution Uses the VRF data pre-processed by the RTBasedVPDiscovery
stitcher to resolve VPNs based on VRF names.

ZTEEnumerationLookup Provides a lookup table of enum type for cards, subcards, slots,
NPC, systemId, port, PSU, fan, etc. for
AddZTEMSeriesEntityContainment.stch and
AddZTETSeriesEntityContainment.stch.

ZyxelIfStringLayer Uses the ZYXEL ifDescr format to deduce connectivity.

DNCIM stitchers
The following stitchers all interact with the DNCIM database. The Discovery engine, ncp_disco, uses
these stitchers to store the network model data in the DNCIM database .

The DNCIM stitchers are called from one of the following stitchers:

• CreateAndSendTopology: if Network Manager is in full discovery mode
• RecreateAndSendTopology: if Network Manager is in rediscovery mode

The following table describes the discovery stitchers that interact with the DNCIM database.

Note: This list is subject to change.

Table 538. List of DNCIM discovery stitchers

Stitcher Function

CleanDNCIMCollections To conform to the standard model, this stitcher fixes
Collection by setting the mainNodeEntityId to
NULL if the mainNodeEntityId is not NULL.

CleanDNCIMObjects A placeholder stitcher that calls any stitcher that is
required to filter or remove data from DNCIM before
it sends the data to MODEL (for example, it calls the
CleanDNCIM_OutOfBandRouterLinks stitcher).

Chapter 28. Discovery stitchers 871

Table 538. List of DNCIM discovery stitchers (continued)

Stitcher Function

CleanDNCIM_OutOfBandRouterLinks Removes router link connectivity for out of band
devices from the connects table.

CreateInferredChassis Creates an inferred chassis which usually is a BGP
peer, an MPLS PE router visible from a CE router, or
an MPLS CE visible from a customer PE.

DeleteDNCIMSubnetCollects Deletes the collects entries from the subnet objects
so that the collects relationship is correctly rebuilt
after a partial discovery without deleting the subnet
object.

DeleteNodeFromDNCIM This stitcher is used in partial discovery. It moves a
given DNCIM entity into a pending delete domain. If
a device is not found after the discovery, then the
device is removed entirely. Such devices are
removed by the DeleteRemovedEntities stitcher.

DeleteRemovedEntities The DeleteRemovedEntities stitcher deletes
entities that have previously been put aside for
deletion during a partial discovery.

GetConnectSpeedOfComponent Calculates the connection speed of a connection
component such as a network pipe (containing
multiple paths, hops, and so on through the
network). This stitcher iterates over the links
resolving the overall connection speed of the
component. The stitcher is recursive, so if a
component contains subcomponents, then the
stitcher is called again on the subcomponent.

GetConnectSpeed Resolves the connection speed of a simple
connection by examining the interface speed of the
interfaces at each end.

GetEntityId Gets the entity ID for a given domain and entity
name.

GetInterfaceSpeed Retrieves the interface speed of an interface.

GetPendingDeleteDomainId Retrieves the ID of the temporary domain used to
store entities affected by the partial discovery. The
temporary domain might need to be deleted.

InferDNCIMObjects Infers the existence of objects from current data.
This stitcher replaces functionality in the deprecated
PostScratchProcessing stitcher.

PopulateConnectSpeeds Builds an entry to the connectSpeeds table.

PopulateDNCIM This is the root DNCIM stitcher, which populates the
DNCIM database tables with entity and relationship
data.

PopulateDNCIM_BGP A container stitcher which calls all the BGP-related
modelling stitchers as appropriate to model BGP
within the topology.

PopulateDNCIM_BGPAutonomousSystem Models a BGP autonomous system record.

872 IBM Tivoli Network Manager IP Edition: Reference

Table 538. List of DNCIM discovery stitchers (continued)

Stitcher Function

PopulateDNCIM_BGPProtoEndPt Models a BGP protocol end point.

PopulateDNCIM_BGPServices Models the BGP services within the system.

PopulateDNCIM_BGPTopology Builds the BGP topology layer.

PopulateDNCIM_Collect Builds an entry to the collects table within DNCIM.

PopulateDNCIMCollection Populates the DNCIM collection table with data.

PopulateDNCIM_Connection Puts a single connection for supplied arguments into
DNCIM connection table.

PopulateDNCIMConnects Populates the DNCIM connection table with data
from layer tables.

PopulateDNCIM_ConnectSpeeds Populates the connection speed table for a simple
connection (no pipes).

PopulateDNCIM_ConnectSpeedsPipe Populates the connectSpeed entry for a network
pipe.

PopulateDNCIM_Containment Populates the DNCIM containment table with data
about the containment relationship, modelling a
single individual containment relationship from the
arguments passed to the stitcher.

PopulateDNCIMContainment Transposes the workingEntities.containment
table to the DNCIM contains table.

PopulateDNCIM_CreateProbeCollection Assists with the creation of probe
collections.

PopulateDNCIM_CustomGeography Adds devices to the correct geographical
collections based on their location data.

PopulateDNCIMDependencies Takes the contents of the
workingEntities.dependencies table, and
adds the relevant relationships to DNCIM.

PopulateDNCIM_Dependency Populates the dependency table for a single
dependency relationship, modelling a single
dependency relationship from the arguments passed
to the stitcher.

PopulateDNCIMDiscoverySource Populates the discovery source objects.

PopulateDNCIM_DomainMembers Populates the domainMembers table within DNCIM.

PopulateDNCIM_Entity Inserts a record with the given arguments into the
DNCIM entityData and domain members tables.
This results in the entity showing up in the entity
view as this view s based on a JOIN operation of
those two tables.

PopulateDNCIMFromEbnbr Takes the contents of a single discovery
entityByNeighbor table, for example,
CollectorLayer1, and transfers these contents to
the DNCIM connects table.

Chapter 28. Discovery stitchers 873

Table 538. List of DNCIM discovery stitchers (continued)

Stitcher Function

PopulateDNCIM_GeographicLocation Processes geographical location and region
information for devices. Calls the
PopulateDNCIM_Entity stitcher to stores the
processed location and region information in the
DNCIM entityData table.

As long as geographical data is supported by the
respective vendor EMSs that are interrogated by the
LTE collectors, then geographical location data will
be determined by the collectors, processed by this
stitcher, and the corresponding NCIM topology
database tables will be populated with this
geographical data. When you create dynamic
collection network views of type Geographical
Region and Geographical Location, then this
geographical data in NCIM is used to create the
hierarchical geographical views of the network.

PopulateDNCIM_GlobalVlanUnresolved Copies a global VLAN entity from
workingEntities.finalEntity into the DNCIM
globalVlan table.

PopulateDNCIMHostedServices Populates the hostedService table for the
network.

PopulateDNCIM_HostedService Populates the hostedService table for a single
relationship.

PopulateDNCIM_IGMP Manages the population of DNCIM with IGMP data.

PopulateDNCIM_IGMPService Creates Multicast IGMP Service entities and
populates igmpService.

PopulateDNCIM_IGMPEndPt Resolves the required IGMP end points and
populates igmpEndPoint.

PopulateDNCIM_IGMPGroups Creates the required group entities and populates
igmpGroup. It also makes the Group entities collect
any relevant End Points.

PopulateDNCIM_IPMRoute Models the IPMRoute objects.

PopulateDNCIM_IPMRouteService Creates Multicast Routing Service entities. The
service entities are linked to the appropriate chassis
entity as a Hosted Service.

PopulateDNCIM_IPMRouteEndPt Populates DNCIM with IPMRoute Protocol Endpoint
data.

PopulateDNCIM_IPMRouteGroups Creates the MDT, Group, and Source entities and
populates the ipMRouteMDT, ipMRouteGroup, and
ipMRouteSource DNCIM tables.

PopulateDNCIM_IPMRouteTopology Models the topology of the IPM routes

874 IBM Tivoli Network Manager IP Edition: Reference

Table 538. List of DNCIM discovery stitchers (continued)

Stitcher Function

PopulateDNCIM_LAG Manages the population of dNCIM with Link
Aggregation Group (LAG) modelling entities,
including SAE link aggregation entities (which collect
LAG ports), and aggregation group entities (which
contains LAG ports).

PopulateDNCIM_LAGEndPt Creates LAG End Point entities for LAG members.

PopulateDNCIM_LAGLinkCollections Creates and populates the Link Aggregation Service
Affected Event (SAE) entities.

PopulateDNCIM_LTECollection Populates DNCIM with LTE collection records.

PopulateDNCIM_LTEControlPlane Populates DNCIM with LTE control plane records.

PopulateDNCIM_LTEDataPlane Populates DNCIM with LTE data plane records.

PopulateDNCIM_LTEDepends Populates DNCIM with LTE eUtranSector entities and
the corresponding LTE eUtranCell and
antennaFunction entities that this eUtranSector
entity depends on.

Chapter 28. Discovery stitchers 875

Table 538. List of DNCIM discovery stitchers (continued)

Stitcher Function

PopulateDNCIM_ManagedStatus Sets the value of the managedStatus field for each
of the interfaces of a main node indicating whether
that interface should be monitored or not. The tag
can take the following values:

The managed status of an entity can be one of the
following values:
0

Managed state. The entity is managed. A device
can be set to managed by using the Topoviz or
the Structure Browser GUIs, or by using the
ManagedNode.pl or RemoveNode.pl scripts.

1
Unmanaged state. The entity is unmanaged. A
device can be set to unmanaged by using the
Topoviz or the Structure Browser GUIs, or by
using the UnManagedNode.pl or
RemoveNode.pl scripts.

2
Unmanaged by ncp_disco. This setting cannot be
modified from the GUI. This value is set by the
PopulateDNCIM_ManagedStatus.stch
stitcher.

3
Unmanaged because the IP address is out of the
discovery scope. The device has been discovered
through another IP address that is within the
discovery scope. A managed status of 3 is
usually given to interfaces, rather than chassis.
This value is set by the
PopulateDNCIM_ManagedStatus.stch
stitcher.

Note: Unmanaged entities do not suppress other
events in RCA. The ncp_poller process does not poll
unmanaged entities. Events on unmanaged entities
have the field NmosManagedStatus set in the
alerts.status field in the ObjectServer.

PopulateDNCIM_MPLSTE Top-level MPLS TE stitcher that calls the other MPLS
TE stitchers in order. This stitcher is like the
CreateMPLSTE stitcher that does the equivalent
work on the scratchTopology database.

PopulateDNCIM_MPLSTEPipeHop Builds a single MPLS TE pipe segment as part of an
MPLS TE tunnel pipe. This stitcher is like the
CreateMPLSTEPipeHop that does the equivalent
work on the scratchTopology database.

PopulateDNCIM_MPLSTEResources Builds the MPLS TE Resource objects. This stitcher is
like the CreateMPLSTEResources stitcher that does
the equivalent work on the scratchTopology
database.

876 IBM Tivoli Network Manager IP Edition: Reference

Table 538. List of DNCIM discovery stitchers (continued)

Stitcher Function

PopulateDNCIM_MPLSTEServices Builds the MPLS TE Service objects. This stitcher is
like the CreateMPLSTEServices stitcher that does the
equivalent work on the scratchTopology database.

PopulateDNCIM_MPLSTETunnelPipe Builds a network pipe object for an MPLS TE tunnel.
This stitcher is like the CreateMPLSTETunnelPipe
stitcher that does the equivalent work on the
scratchTopology database.

PopulateDNCIM_MPLSTETunnels Builds the MPLS TE tunnels and LSP objects. This
stitcher is like the CreateMPLSTETunnels stitcher
that does the equivalent work on the
scratchTopology database.

PopulateDNCIM_MXGroupCollection Populates the Juniper MX group collection object.

PopulateDNCIM_NseEndPt Populates an NSE end point entity within the
topology model to aid in RAN network RCA
management.

PopulateDNCIM_OSPFArea Infers the existence and creates the ospfArea and
ospfRoutingDomain objects. This stitcher replaces
functionality in the deprecated CreateOSPFAreas
and CreateOSPFRoutingDomains stitchers.

PopulateDNCIM_OSPFEndPt Infers the existence and creates the ospfEndPoint
objects. This stitcher replaces functionality in the
deprecated CreateOSPFProtocolEndPoints stitchers.

PopulateDNCIM_OSPFLinks Populates the connects table with OSPF links. This
stitcher replaces functionality in the deprecated
CreateOSPFPointToPointAdjacencies stitchers.

PopulateDNCIM_OSPFLSANodes Builds the OSPF LSA nodes within the network as
well as their connections.

PopulateDNCIM_OSPFService Infers the existence and creates the ospfService and
ospfNetworkLSA objects. This stitcher replaces
functionality in the deprecated CreateOSPFServices
and CreateOSPFNetworkLSAPseudoNodes stitchers.

PopulateDNCIM_OSPF Calls the appropriate stitchers to populate the OSPF
objects.

PopulateDNCIM_PIM Manages the population of DNCIM with PIM data.

PopulateDNCIM_PIMService Creates Multicast PIM Service entities and populates
the pimService table.

PopulateDNCIM_PIMEndPt This stitcher creates PIM End Point entities and
populates the pimEndPoint table.

PopulateDNCIM_PIMTopology Creates the PIM Topology links.

PopulateDNCIM_PIMNetworkCollection Creates the PIM Network entity, which collects all
PIM routers. It also updates the PIM service display
label to indicate the role of the service.

PopulateDNCIM_PipeComposition Builds and populates the pipeComposition entry for
a given relationship.

Chapter 28. Discovery stitchers 877

Table 538. List of DNCIM discovery stitchers (continued)

Stitcher Function

PopulateDNCIM_ProbeCollection Creates hierarchical probe collections for
use in network views.

PopulateDNCIM_ProbeEndPt Creates probe end points representing the
source or target. Defines the probe service to
depend on them, and the probe entity collect them.

PopulateDNCIM_Probes Creates probe entities representing a
network performance probe instance, and contains
them beneath the appropriate probe service.

PopulateDNCIM_ProbeService Creates probe service entities that
represent the network probe technology that is
supported on the device, and hosts it on the chassis.

PopulateDNCIM_ProbeTopology Creates links based on probe source or
target data, and assigns them to the probe topology.

PopulateDNCIM_ProtocolEndPt Populates the DNCIM protocolEndPoint table for a
single relationship.

PopulateDNCIMProtocolEndPts Populates the protocolEndPoint table for the
topology.

PopulateDNCIM_RanChassis Populates the DNCIM tables that extend chassis
entities with radio area network (RAN) data. The
following items are all modelled as chassis entities:

• RAN base station (containing transceivers)
• RAN base station controller
• RAN packet control unit
• RAN radio network controller
• RAN Node B (containing transceivers and local

cells)
• RAN service GPRS support node
• RAN gateway GPRS support node
• RAN mobile switching center server
• RAN mobile switching center
• RAN media gateway

PopulateDNCIM_RanCollection Takes RAN area data, defines logical collections from
it, and adds devices and cells to the created
collections.

878 IBM Tivoli Network Manager IP Edition: Reference

Table 538. List of DNCIM discovery stitchers (continued)

Stitcher Function

PopulateDNCIM_RanContainedElements Populates DNCIM tables to handle RAN based on the
following considerations:

• 2G RAN base stations and 3G Node B chassis can
contain transceivers.

• The transceivers can, in turn, host RAN sectors.
• Node B chassis can additionally contain Node B

Local Cells.

PopulateDNCIM_RediscoveredEntities Populates the rediscovered entities table which is
used to keep track of partial discovery.

PopulateDNCIM_SLA Processes SLA-related data for network
performance probes.

PopulateDNCIM_SubIfaceStatus Sets the sub-interfaces to unmanaged state if the
m_UnmanagedSubInts option is enable in
disco.config and the parent interfaces were set
to unmanaged by
PopulateDNCIM_ManagedStatus.stch. The
stitcher runs recursively to find all the sub-
interfaces.

PopulateDNCIMSubnetAndCollects Models the subnet objects within DNCIM and
creates the collects relationship between the subnet
and the interfaces on those subnets.

PopulateDNCIMTopologies Builds the topology model objects within DNCIM
with which the presence of a connection within a
specific topology is modelled.

PopulateDNCIM_VlanCollections Creates VLAN connections and creates VLAN
collection entities. Called by the InferDNCIMObjects
stitcher.

PopulateDNCIM_VTPEdges Augments VTP domain entities with edge devices
connected to VTP entities. This stitcher replaces
functionality in the deprecated AddVTPEdges
stitcher.

PopulateDNCIM_VTP Populates the DNCIM vtpDomain table with inferred
VTP entities. This stitcher replaces functionality in
the deprecated AddVTPCollections.

PopulateDNCIM_WLAN This stitcher builds the WLAN objects inferred from
the topology.

PopulateDNCIM_WLAN80211SpecCollection This stitcher creates or updates WLAN spec
collections.

PopulateDNCIM_WLANAccessPoint This stitcher populates WLAN Access Points from
the discovery engine. The data in the
wlanAccessPoint table supplements the chassis
data.

PopulateDNCIM_WLANChannelCollection This stitcher creates or updates WLAN channel
collections.

Chapter 28. Discovery stitchers 879

Table 538. List of DNCIM discovery stitchers (continued)

Stitcher Function

PopulateDNCIM_WLANCollections This stitcher identifies the entities of interest to
various WLAN collections and invokes the stitchers
to create or update them.

PopulateDNCIM_WLANServices This stitcher populates WLAN services from the
discovery engine.

PopulateDNCIM_WLANSSIDCollection This stitcher creates or updates SSID WLAN
collections.

PrepareDNCIMForRediscovery Sets up a temporary domain if necessary, retrieves
the domain's ID, and copies the partially
rediscovered entities into the temporary domain to
make them ready for processing.

RefreshDNCIM Clears out the DNCIM tables before repopulating the
tables.

RemovePendingDomainRelationships Removes all relationships involving a rediscovered
device. The relationships are then recreated by the
processing stitchers where the relationships are still
present at the time of the rediscovery.

RetrieveDisplayLabel For a supplied record, retrieves the display label to
use in the entityData table.

RetrieveDNCIMEnumeration For a given group and key, returns the DNCIM
enumeration string.

RetrieveDNCIMMapping Retrieves the mapping value for gven mappingGroup
and mappingKey values.

RetrieveDNCIMVendorFromObjectId Retrieves the vendor value for a given sysObjectId
value.

RetrieveDomainId For a given domain, retrieves the domain ID.

RetrieveEntityId For a given name and domain ID, retrieves the entity
ID. If the ID does not exist in the DNCIM entityName
cache, then the stitcher calls the
RetrieveNCIMEntityId stitcher to retrieve the entity
ID from NCIM and create the same entity ID in the
DNCIM entityName cache. This ensures that NCIM
and DNCIM entity IDs are consistent where possible.

If the RetrieveNCIMEntityId stitcher retrieves an
entity ID from NCIM but that entityId is already
allocated within dNCIM, then a new entity ID is
created in dNCIM and a discovery event is generated
with information on the mismatch between the
entity IDs in dCNIM and NCIM.

If the RetrieveNCIMEntityId fails to communicate
with the NCIM database, then it hands back control
to the RetrieveEntityId stitcher. The RetrieveEntityId
then generates a new entity ID in the dNCIM
entityName cache and generates a discovery event
indicating that the NCIM database is down.

880 IBM Tivoli Network Manager IP Edition: Reference

Table 538. List of DNCIM discovery stitchers (continued)

Stitcher Function

RetrieveNCIMEntityId Called by the RetrieveEntityId stitcher to requests an
entity ID from the NCIM database if it has not been
possible to retrieve the entity ID from the DNCIM
entityName cache. If the ID does not exist in NCIM,
then the stitcher creates the entity ID in the NCIM
database and also creates the same entity ID in the
DNCIM entityName cache. This ensures that NCIM
and DNCIM entity IDs are consistent where possible.

If the RetrieveNCIMEntityId stitcher retrieves an
entity ID from NCIM but that entityId is already
allocated within dNCIM, then a new entity ID is
created in dNCIM and a discovery event is generated
with information on the mismatch between the
entity IDs in dCNIM and NCIM.

If the RetrieveNCIMEntityId fails to communicate
with the NCIM database, then it hands back control
to the RetrieveEntityId stitcher. The RetrieveEntityId
then generates a new entity ID in the dNCIM
entityName cache and generates a discovery event
indicating that the NCIM database is down.

SendDNCIMChangesToModel Sends topology changes to ncp_model. The stitcher
records the time the topology is sent. Called by
PopulateDNCIM.stch.

UnconnectedToSubnet Finds main node entities which are not connected to
anything and places them within the appropriate
subnet collection.

Cross-domain stitchers
Cross-domain stitchers look for links between devices in different domains and create connections
between them in the topology.

The following table describes the stitchers currently included with Network Manager that are used for
cross-domain discovery.

Note: This list is subject to change.

Table 539. Cross-domain stitchers

Stitcher Function

AggregationDomainCollectionOfCollections.stch Creates collections of collection entities in the
aggregation domain.

AggregationDomainCollections.stch Creates collection entities in the aggregation domain.

AggregationDomainCopyEntity.stch Creates the entity in the aggregation domain based on
the entity in the source domain.

AggregationDomainCreate.stch Creates an aggregation domain.

AggregationDomainFindEntity.stch Finds entities within the aggregation domain.

AggregationDomainMain.stch Updates the aggregation domain after a discovery has
finished. Calls the other aggregation domain stitchers.

Chapter 28. Discovery stitchers 881

Table 539. Cross-domain stitchers (continued)

Stitcher Function

AggregationDomain.stch Checks that the ncp_disco process is not in the
Processing phase and then calls the
AggregationDomainMain.stch stitcher.

AggregationDomainUpdateChangeTime.stch Updates the timestamp for collection entities.

AggregationDomainUpdateRequired.stch Check the timestamps for collection entities to
determine if an update is required.

LinkDomains.stch Controls the linking of domains. You can edit this
stitcher to configure how domains are linked.

LinkDomainsActOnInstructions.stch Processes any instructions held in the
linkDomains.instruction table and creates connections
via the LinkDomainsCreateConnection stitcher.

LinkDomainsAddInstruction.stch Other stitchers supply instructions to add cross-
domain connections to this stitcher. This stitcher adds
the connections to the linkDomains.instructions table,
after checking that each connection is not already in
the table.

LinkDomainsCheckDNCIMForEntityName.stch Checks that a specified entityName exists in DNCIM.

LinkDomainsCheckDNCIMValidEntityType.stch Checks that the specified entityType is valid, and,
optionally, that the entityType is of the specified
metaclass.

LinkDomainsCreateConnection.stch Adds the connection to DNCIM.

LinkDomainsCreateEntity.stch Creates the entity in DNCIM based on the entity in
NCIM

LinkDomainsDatabaseSetup.stch Creates the databases used by the domain linking
stitchers.

LinkDomainsGetEntityIdFromDNCIMByEntityName
AndDomainId.stch

Checks whether the specified entity is in DNCIM by
EntityName and domainId.

LinkDomainsGetEntityIdFromNCIMByEntityName
AndDomainName.stch

Checks whether the specified entity is in NCIM by
EntityName and domainName.

LinkDomainsGetNumConnectsForEntityName.stch Retrieves the number of related network elements for
an entity.

LinkDomainsLoadInterfaceDescriptionMatches.stch You can configure cross-domain stitching so that
devices are linked to each other based on the interface
ifAlias field. You can edit this stitcher to define the
interface description matches.

LinkDomainsLoadPresetConnections.stch You can edit this stitcher to define connections
between specific devices.

LinkDomainsPopulateDomainAdjacencies.stch Populates the domainAdjacencies NCIM database
table with the information about the domains that are
considered to be adjacent. Adjacent domains are
expected to have Layer 2 links between them.

LinkDomainsPreProcessInterfaceMatches.stch Processes devices with matching interface
descriptions.

882 IBM Tivoli Network Manager IP Edition: Reference

Table 539. Cross-domain stitchers (continued)

Stitcher Function

LinkDomainsProcessConnectivityMatrix.stch Processes devices with matching interface
descriptions.

LinkDomainsProcessPresetConnections.stch Processes devices with preset connections.

LinkDomainsResolveInterfaceToLowestPortDNCIM.stc
h

Finds the lowest port or interface for a given DNCIM
interface entityName.

LinkDomainsResolveInterfaceToLowestPortNCIM.stch Finds the lowest port or interface for a given NCIM
interface entityName.

LinkDomainsViaLayer1NameInterface.stch Creates connections between domains based on layer
1 connectivity.

LinkDomainsViaLLDP Creates connections between domains based on LLDP
data.

LinkDomainsViaPseudoWires.stch Creates connections between domains based on
pseudowire connectivity.

LinkDomainsViaSlash30Subnet.stch Creates connections between domains based on /30
subnet connectivity.

LinkDomainsViaBGPSessions.stch Creates connections between domains based on BGP
sessions.

LinkDomainsViaCDP.stch Creates connections between domains based on CDP
data.

LinkDomainsViaMPLSTE.stch Creates connections between domains based on MPLS
TE data.

LinkDomainsViaOSPF.stch Creates connections between domains based on OSPF
data.

LinkDomainsViaOSPFAssist.stch Switched on if LinkViaOSPF is enabled.

LinkDomainsViaPIM.stch Creates connections between domains based on PIM
data.

LinkDomainsViaUnresolvedFDBPorts.stch Creates connections between domains based on
unresolved Forwarding Database (FDB) ports
identified by the switch discovery agents.

Chapter 28. Discovery stitchers 883

884 IBM Tivoli Network Manager IP Edition: Reference

Part 5. Administrative reference

© Copyright IBM Corp. 2006, 2021 885

886 IBM Tivoli Network Manager IP Edition: Reference

Chapter 29. Scripts
Use the supplied Perl, shell, or SQL scripts to perform administration, discovery configuration, product
upgrade, or troubleshooting tasks.

Related reference
Discovery agents
Use this information to support the selection of discovery agents to run as part of your discovery.

Administration scripts
Use these scripts to administer domains, manage nodes, query processes, and perform actions on the
topology.

AddNode.pl
Use the AddNode.pl Perl script to add devices to your network topology.

Description
You might want to add a device to your network topology if you know it has been added since the last
discovery.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/AddNode.pl -domain
NCOMS -latency 10000 -debug 4 -verbose 192.168.10.8

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/AddNode.pl -domain
NCOMS -file mynodes.txt

Command-line options
The following table describes the command-line options for the AddNode.pl script.

Table 540. AddNode.pl command-line options

Command-line option Description

-domain DomainName Mandatory; the name of the domain you want to
add the node to.

-latency MessageLatency Optional; the maximum time in milliseconds to wait
between attempts to send a message. This is
needed for busy networks.

-debug DebugLevel Optional; the level of detail the debugging output
provides. Values are 1 to 4, where 4 represents the
most detailed output.

-file FileName Optional; file containing the list of nodes to be
added to the network topology. Add one IP address
or host name per line in the file.

Note: You must provide the names of the nodes
either in a file or by entering them in the command
line, as described in host below.

© Copyright IBM Corp. 2006, 2021 887

Table 540. AddNode.pl command-line options (continued)

Command-line option Description

-verbose Optional; provides more information on the screen.

host Optional; the name of the node to be added. You
can add any number of nodes this way, separated
by spaces. The information entered for a node can
be either the IP address or the host name. If you
do not provide a host name, then the -file option
must be used.

domain_create.pl
Use the domain_create.pl Perl script to migrate discovery configuration and existing poll policies from
an existing domain to a newly created domain.

Description
If your deployment requires additional network domains, you must configure process control for the
domains. Once you have done this, you can then use the domain_create.pl Perl script to migrate
configuration files and network polls from an existing domain to the new domain. You must use one
instance of ncp_ctrl to run and manage each domain. The script does not migrate the topology from the
original domain.

The script also registers the new domain with the NCIM topology database. To create the connection to
the NCIM topology database for the new domain, you must specify the connection details in a domain-
specific DbLogins.new_domain.cfg configuration file or specify the connection details on the command
line.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts
/perl/scripts/domain_create.pl -domain NCOMS2 [-clone NCOMS1]

Command-line options
The following table describes the command-line options for the script. All options are optional unless
noted as mandatory.

888 IBM Tivoli Network Manager IP Edition: Reference

Table 541. domain_create.pl command-line options

Command-line option Description

-domain New domain Mandatory; the name of the domain you have
created, for example NCOMS2.

Restriction: Use only alphanumeric characters and
underscores (_) for domain names. Any other
characters, for example hyphens (-), are not
permitted.

Note: Provides a warning that the name of the
domain you want to create is not all uppercase. If
not, the script reads a line from standard input, and
if the first character is anything other than y or Y, it
exits without creating the domain. If the first
character is y or Y, then the script creates the
domain.

-clone Existing domain The name of the domain to copy. If this option is
not specified, a new domain is created with default
poll policies and configuration files.

-help Provides help on this command.

-nopolls Configures the script to not migrate polls.

-password Mandatory if you are not using a domain-specific
DbLogins.new_domain.cfg configuration file.

The NCIM database password.

-server Mandatory if you are not using a domain-specific
DbLogins.new_domain.cfg configuration file.

The type of NCIM database server. Use db2 or
oracle.

-host Mandatory if you are not using a domain-specific
DbLogins.new_domain.cfg configuration file.

The hostname of the NCIM database server.

-port Mandatory if you are not using a domain-specific
DbLogins.new_domain.cfg configuration file.

The port of the NCIM database server

-username Mandatory if you are not using a domain-specific
DbLogins.new_domain.cfg configuration file.

The username for NCIM database access

-schema Mandatory if you are not using a domain-specific
DbLogins.new_domain.cfg configuration file.

The NCIM schema name. By default, this is NCIM.

-dbname Mandatory if you are not using a domain-specific
DbLogins.new_domain.cfg configuration file.

The Db2 database name or Oracle Service Name.

Chapter 29. Scripts 889

Table 541. domain_create.pl command-line options (continued)

Command-line option Description

-force By convention, domain names are all uppercase. If
the name of the new domain (the command-line
option to -domain) contains any lowercase letters,
then by default, the script prompts to ask if you
want to create a domain with that name. The -force
option suppresses this question, and creates the
new domain unconditionally.

domain_drop.pl
Use the domain_drop.pl Perl script to remove network domains from the NCIM topology database. The
entire topology for the domain is removed, together with any poll policies and network views for that
domain. The configuration information for the domain and the topology cache is not affected.

Important: Before you run this script, stop the domain that you want to remove. Use the itnm_stop
command to stop the domain.

Running the script
The following example shows how to run the script:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts
/perl/scripts/domain_drop.pl -domain obsoletedomain -password
password

Command-line options
The following table describes the command-line options for the script.

Table 542. domain_drop.pl command-line options

Command-line option Description

-clearPolldata Optional: Removes data from the poll Data table.

-domain obsoletedomain Required: The name of the obsolete domain to
remove.

-force Optional: As a safety precaution, you are prompted
to confirm that you want to delete the domain. Use
the -force option to execute this script without
receiving the confirmation.

-help Provides help on this command

-pollsOnly Optional: Removes all polling policies and
associated information for the domain, but does
not remove the domain.

-transactionSize transaction_size Optional: To allow cascaded removal of entities
from the NCIM database, the entities are removed
in a series of transactions, rather than as a single
operation. By default, the maximum number of
entities to be removed in a single transation is
1000. This option should be supplied only if you
encounter problems with the default value.

890 IBM Tivoli Network Manager IP Edition: Reference

The following table describes the NCIM topology database command-line options for the script. You can
specify these options to override the values in the DbLogins.cfg configuration file.

Note: The options described in the table can be optionally supplied with the following qualifiers:

• ncim_: Use this value for accessing NCIM only.
• ncmonitor_: Use this value for accessing NCMONITOR only.

For example:

-ncim_password ncim -ncmonitor_password ncmonitor

Table 543. NCIM topology database command-line options for the domain_drop.pl script

Command-line option Description

-password password Optional: The password associated with the
domain to remove.

-server db2 | oracle Optional: Type of database server.

-host Optional: Host name or IP address of the device
running the DB server

-port Optional: Port number on the host. If this value is
not supplied and is not read from the DbLogins.cfg
configuration file, then the default port number for
the server type is used.

-username Optional: Username used for accessing the
database.

-schema Deprecated: Name of the schema. Do not use this
option.

-dbname Optional: Database name or Oracle Service Name.

inject_fake_events.pl
Use the inject_fake_events.pl Perl script to inject fake events onto specified entities and interfaces
in the NCIM topology database.

You can use this script to inject fake events onto entities that match a specified string, together with all
the interfaces on those entities. Unless specified otherwise, the script will inject events onto entities of
the following types:

• 1: Chassis devices
• 2: Interfaces
• 8: Daughter cards

Alternatively you can specify one or more of the three entity types listed above onto which to inject the
fake events.

The script injects two types of events:

• PingFail events

– Events injected onto chassis entities are always PingFail events. These events have NmosEventMap
set to 'PrecisionMonitorEvent.300', where 300 is the precedence value.

– Events on interfaces are PingFail events if the interface has an IP address. In this case these events
have NmosEventMap set to PrecisionMonitorEvent.300, where 300 is the precedence value.

• LinkState events: events on interfaces are LinkState events if the interface does not have an IP address.
In this case these events have NmosEventMap set to PrecisionMonitorEvent.910, where 910 is the
precedence value.

Chapter 29. Scripts 891

This result of setting the NmosEventMap value is that the Event Gateway uses only the NmosEntityId to
locate the exact entity to which the event pertains.

If you want to inject events onto many entities with very different names, then run the
inject_fake_events.pl Perl script multiple times using different values for -entityNameString
parameter in each case. To make this process easier, run this script multiple times with different
arguments using a bash shell script.

Running the script
The following examples show how to run the script:

1. Inject an event onto a single chassis entity named "BakerStreetWAN4".

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts
/perl/scripts/inject_fake_events.pl -domain NCOMS -entityNameString
"BakerStreetWAN4" -entityType 1

2. Inject an event onto a single interface named "BakerStreetWAN4[0 [747]]"

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts
/perl/scripts/inject_fake_events.pl -domain NCOMS -entityNameString
"BakerStreetWAN4[0 [747]]" -entityType 1

3. Inject events onto all matching chassis entities and their interfaces for devices with a name like
"BakerStreetWAN4"

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts
/perl/scripts/inject_fake_events.pl -domain NCOMS -entityNameString
"BakerStreetWAN4"

4. This example is similar to example 3 but with a -interfaceDescriptionString parameter to restrict the
search to FastEthernet interfaces only.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts
/perl/scripts/inject_fake_events.pl -domain NCOMS -entityNameString
"BakerStreetWAN4" -interfaceDescriptionString "FastEthernet" -entityType 2

5. This example is similar to example 4, but using an interface description of "Fa2"

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts
/perl/scripts/inject_fake_events.pl -domain NCOMS -entityNameString
"BakerStreetWAN4" -interfaceDescriptionString "Fa2" -entityType 2

6. This example is similar to example 5, but inject events onto the chassis entities too

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts
/perl/scripts/inject_fake_events.pl -domain NCOMS -entityNameString
"BakerStreetWAN4" -interfaceDescriptionString "Fa2"

7. Create resolution events for those events raised by example 6 by simply adding the -resolution
command-line option. Tivoli Netcool/OMNIbus will eventually delete the problem events and their
matching resolution events.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts
/perl/scripts/inject_fake_events.pl -domain NCOMS -entityNameString
"BakerStreetWAN4" -interfaceDescriptionString "Fa2" -entityType 2 -resolution

8. To see the SQL queries that are executed, use the -debug 1 command-line option.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts
/perl/scripts/inject_fake_events.pl -domain NCOMS -entityNameString
"BakerStreetWAN4" -debug 1

9. To see the SQL queries and the entities found, use the -debug 2 command-line option.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts

892 IBM Tivoli Network Manager IP Edition: Reference

/perl/scripts/inject_fake_events.pl -domain NCOMS -entityNameString
"BakerStreetWAN4" -debug 2

Command-line options
The following table describes the command-line options for the script.

Table 544. inject_fake_events.pl command-line options

Command-line option Description

-domain domainName Required: The name of the domain that contains
the entities onto which to inject the events.

-entityNameString string String used to match names of entities onto which
events are to be injected. The script uses this
argument to produce an SQL WHERE clause to
search for an entityName LIKE "%string%" in
the field entityName in the NCIM topology
database entity view.

-entityType entityType Optional: Type of entity onto which events are to be
injected. Must be 1, 2, or 8. If this parameter is not
specified then events are injected onto entities of
all three entity types.

-interfaceDescriptionString string Optional: String used to match the ifName and
ifDescr fields in the NCIM topology database
interface view as a means of further filtering the
entities onto which events are to be injected. The
script uses this argument to produce an SQL
WHERE clause to search for a name LIKE
"%string%" in the fields ifName and ifDescr in the
NCIM topology database interface view.

-resolution Optional: By default, only problem events are
injected. The argument -resolution injects
resolution events instead of problem events.

-latency latency Optional: the maximum time in milliseconds to wait
between attempts to send a message. This is
needed for busy networks.

-debug number Optional: Specify one of the following depending
on the debugging detail that you require:

• Specify -debug 1 to see the SQL queries that
are executed.

• Specify -debug 2 to see the SQL queries that
are executed and the devices that are found by
the queries.

-help Provides help on this command.

Chapter 29. Scripts 893

itnm_pathTool.pl
Use the itnm_pathTool.pl script to trace a path between a source and destination device. The script
determines the interfaces and physical ports used along the path.

Usage
The script displays the path in ASCII format providing the path is not asymmetric or load-balanced. If the
path is asymmetric or load-balanced, the path data is displayed in raw format.

Tracing a path
The following example command line traces a path from IPv4 address 172.16.254.1 to IPv4 address
172.16.2.3.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/webtools/bin/
itnm_pathTool.pl -domain NCOMS -from 172.16.254.1 -to 172.16.2.3

Command-line options
The following table describes the command-line options for the script.

Table 545. itnm_pathTool.pl command-line options

Command-line option Description

-domain DomainName Mandatory. The network domain in which to
perform the path trace.

-from Specifies the source IPv4 address, from which to
perform the trace.

-to Specifies the target IPv4 address, to which to
perform the trace.

-delete Deletes the specified path from the NCIM topology
database.

-outofband You can trace a path between an interface inside
your domain and one outside, and this option is
referred to as an out-of-band trace. This
command-line option forces the use of discovered
access IP addresses, if available.

Note: This reduces ingress accuracy.

-ping Pings each next-hop address to verify it is
reachable from the management platform.

-store Stores or updates the retrieved path information in
the NCIM topology database.

-return Instructs the path trace to additionally retrieve the
return path, from the target device back to the
source device. Specifying -from A -to B -
return is the same as specifying -from A -to
A -via B. Therefore the command-line options -
return and -via cannot be specified together.

894 IBM Tivoli Network Manager IP Edition: Reference

Table 545. itnm_pathTool.pl command-line options (continued)

Command-line option Description

-timeout Override the default 30 second timeout per
prerequisite check.

-via Optional IPv4 address to perform the path trace
through. This command-line option cannot be used
with the option -return.

-debug debug The level of debugging output (0-4, where 4
represents the most detailed output).

-help Displays the command line options. Does not start
the component even if used in conjunction with
other arguments.

ITListener.pl
Use the ITListener.pl script to listen to messages being passed between processes on the message
bus.

Usage
Many Network Manager processes communicate through a message bus. For example, ncp_model
broadcasts topology updates on the message bus. Each process broadcasts on a different subject. For
example, ncp_model broadcasts on the subject MODEL. The ITListener.pl script listens to messages
on the message bus and prints them to screen.

Listening for topology change notifications
The following example command line listens for topology change notifications on the NCOMS domain.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ITListener.pl -domain NCOMS -process Model -messageClass NOTIFY

Listening for updates from DNCIM to NCIM

The following example listens for updates from the discovery database DNCIM to the NCIM database.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ITListener.pl -domain NCOMS -process DNCIM2NCIM -messageClase NOTIFY

Listening for Network Manager status events

The following example listens for events regarding the status of the Network Manager product.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ITListener.pl -domain NCOMS -process ITNMSTATUS -messageClass NOTIFY

Command-line options
The following table describes the command-line options for the script.

Chapter 29. Scripts 895

Table 546. ITListener.pl command-line options

Command-line option Description

-debug debug The level of debugging output (0-4, where 4
represents the most detailed output).

-domain DomainName Mandatory. The discovery domain on which to
listen.

-help Displays the command line options. Does not start
the component even if used in conjunction with
other arguments.

-subject The specific subject to listen to. If you specify a
subject, the -domain argument is ignored, and the
script listens on all domains. If you specify a
subject you do not need to specify a messageClass
and process. All subjects begin \'ITNM/\' and
have the domain appended. For example, the
ncp_model notify subject for domain
TESTDOMAIN is /ITNM/MODEL/NOTIFY/
TESTDOMAIN.

-process The process to listen to. Valid options are:

• Model - ncp_model
• Class - ncp_class
• Config - ncp_config
• Ctrl - ncp_ctrl
• Disco - ncp_disco
• PingFinder - ncp_f_ping
• ITNMSTATUS - status events
• DNCIM2NCIM - events passed from the DNCIM

discovery database to the NCIM database

If you specify a messageClass and process you do
not need to specify a subject.

-messageClass The class of messages to listen for. Not all
processes support all classes. Classes are:

• NOTIFY
• QUERY
• STATUS

If you specify a messageClass and process you do
not need to specify a subject.

list_applied_updates.pl
Use the list_applied_updates.pl script to check which fixpack and interim fix schema updates have
been applied to the NCIM topology database.

Description
The list_applied_updates.pl script queries the ncim.schemaAudit table and lists the fixpack and
interim fix schema updates that have been applied to the NCIM topology database recorded there, in the
order that they were applied. Note that if a given fixpack or interim fix was applied but contained no

896 IBM Tivoli Network Manager IP Edition: Reference

updates to the schema, it is not recorded in the ncim.schemaAudit table, and so this script will not list
it.

Note: This script works in conjunction with the update_db_schemas.pl script. The
update_db_schemas.pl script applies the schema changes, and this script is used to check that
changes for a particular fixpack or interim release were applied.

Running the script
The script has the following syntax.

• Use a domain name to specify login details:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/sql/
list_applied_updates.pl -domain DOMAIN_NAME [-dbname DATABASE_NAME] [-debug]

• Specify login details explicitly:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/sql/
list_applied_updates.pl -server DATABASE_TYPE [-dbname DATABASE_NAME]
-host DATABASE_HOST -username DATABASE_USERNAME -password DATABASE_PASSWORD
[-port DATABASE_PORT] [-debug]

Command-line options
The following table describes the command-line options for the script.

Table 547. list_applied_updates.pl command-line options

Command-line option Description

-domain DOMAIN_NAME The name of a Network Manager domain. This is a
convenient way for the script to retrieve the
database login details from the relevant
DbLogin.cfg file. In this case, the options -
server, -host, -username, -password and -port are
not needed.

Note: If you have more than one domain that
shares the same login details, you only need to run
the script for one of the domains. Running the
script for the other domains that use those same
login details will simply produce the same output.

-server DATABASE_TYPE Type of database (Oracle or Db2). This option is not
needed if you specified the -domain option.

-dbname DATABASE_NAME Optional: The service name of the database (or
Oracle SID) The default value is NCIM.

-host DATABASE_HOST Database server host name. This option is not
needed if you specified the -domain option.

-username DATABASE_USERNAME Username for the database. This option is not
needed if you specified the -domain option.

-password DATABASE_PASSWORD Password for the database user. This option is not
needed if you specified the -domain option.

-port DATABASE_PORT Optional: Database port, if not using the default.
This option is not needed if you specified the -
domain option.

-debug Optional: Prints extra debugging information.

Chapter 29. Scripts 897

Table 547. list_applied_updates.pl command-line options (continued)

Command-line option Description

-help Optional: Provides help on this command.

ManageNode.pl
Use the ManageNode.pl perl script to set the status of one or more unmanaged devices back to
managed state following a period of maintenance.

Description
You can set the status of one or more unmanaged devices back to managed state following a period of
maintenance.

This is useful when a device is in unmanaged state and you want to set it to managed state again to
receive alerts that are not tagged unmanaged and are used for root cause analysis.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/ManageNode.pl
-domain NCOMS -user root -pwd fruit -verbose -file mynodes.txt

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/ManageNode.pl
-domain NCOMS -user root -pwd fruit -verbose neptune.ibm.com 192.168.0.6

Command-line options
The following table describes the command-line options for the script.

Table 548. ManageNode.pl command-line options

Command-line option Description

-domain DomainName Mandatory; the name of the domain where the
unmanaged node resides.

-user username Mandatory; the name of the database user.

-pwd password Mandatory; the password for the database user.

-file FileName Optional; file containing the list of nodes to be set
to managed state. Add one IP address or host
name per line in the file.

Note: You must provide the names of the nodes
either in a file or by entering them in the command
line, as described in host below.

-verbose Optional; provides more information on the screen.

host Optional; the name of the node to be set to
managed state. You can specify any number of
nodes this way, separated by spaces. The
information entered for a node can be either the IP
address or the host name. If you do not provide a
host name, then the -file option must be used.

898 IBM Tivoli Network Manager IP Edition: Reference

ncp_password_update.pl
The ncp_password_update.pl script is used to update the passwords that are stored in Network
Manager configuration files.

Description
These passwords are used by the Network Manager back-end processes to access the NCIM database
and the ObjectServer. The script does not change the NCIM or ObjectServer passwords themselves.
However, if your database administrator changes the NCIM or ObjectServer password, then in order to
enable the Network Manager back-end processes to access the NCIM database (or the ObjectServer) you
must run this script to update the passwords configured in Network Manager to match the new NCIM
database (or ObjectServer) passwords.

Note that this script does not change the passwords that are used by the Network Manager GUI
components to access the NCIM database and the ObjectServer.

As the ncp_password_update.pl script runs, this script requires user confirmation. The following
configuration files are affected by the script.

DbLogins.cfg
MibDbLogin.cfg
NcoLogin.cfg

The changes to the configurations are not automatically detected. For the changes to be detected you
must restart Network Manager by using itnm_stop ncp; itnm_start ncp. You are prompted for the
new passwords during the restart. Original versions of the configuration files are backed up in the
directory $NCHOME/etc/precision/backup/. All passwords are encrypted when written to the
configuration files. This topic details 2 use cases for this script.

• Using the script to update the NCIM password.
• Using the script to update the NCIM and ObjectServer passwords in a failover setup.

Note: The set_db_details.pl script performs similar database configuration tasks. See the
set_db_details.pl documentation topic for more information.

Running the script
To run the script, use a command-line similar to one of the following use cases.

• Use case 1 - Update only the NCIM password.

Update only the NCIM password, as the NCIM database password was updated. For example, local
security protocols might require that you regularly change all user passwords, including the Db2 user. To
update only the NCIM password, use this command-line.

$NCHOME/precision/bin/ncp_perl
$NCHOME/precision/scripts/perl/scripts/ncp_password_update.pl -domain NCOMS -ncim

• Use case 2 - Update both the NCIM and ObjectServer passwords.

Update both the NCIM and ObjectServer passwords, as the encryption key on the backup Network
Manager domain was updated. For example, in a failover setup the backup Network Manager domain is
installed on a separate server to the primary Network Manager domain. After the installation, the
encryption key $NCHOME/etc/security/keys/conf.key must be copied from the primary domain
to the backup domain. Any existing encrypted passwords for NCIM access or ObjectServer access are
no longer readable. To update both the NCIM and ObjectServer passwords, use this command-line.

$NCHOME/precision/bin/ncp_perl
$NCHOME/precision/scripts/perl/scripts/ncp_password_update.pl -domain NCOMS

Chapter 29. Scripts 899

Command-line options
The following table describes the command-line options for the ncp_password_update.pl script.

Table 549. ncp_password_update.pl command-line options

Command-line option Description

-domain DomainName Mandatory. The passwords for NCIM or
ObjectServer, or both, are updated for this domain
and other domains that have the same credentials.

-ncim Optional. No value is needed. Updates the NCIM
passwords in the DbLogins and MibDbLogin
configuration files.

-objectServer Optional. No value is needed. Updates the
ObjectServer password in the NcoLogin
configuration file.

-help Optional. Displays help information about the Perl
script.

ncp_scan_storm_diagnostic_dir.pl
The Perl script ncp_scan_storm_diagnostic_dir.pl is used to purge binary data files from the
$NCHOME/precision/PD/core/storm/ directory, and leave the javacore.txt file that gives an
indication of the type and source of the problem.

Description
The Apache Storm processes aggregate the Network Manager poll data and are highly resilient. If a
problem occurs at run time, the processes restart. When there is a major issue, the java run time can
create large files in the $NCHOME/precision/PD/core/storm/ directory, similar to the following files.

core.20150826.164534.6612.0001.dmp
heapdump.20150826.164534.6612.0002.phd
javacore.20150826.164534.6612.0003.txt
Snap.20150826.164534.6612.0004.trc

The 3 binary files can be large, and repeated restarts can result in the filling up of disk space. This Perl
script ref_ncp_scan_storm_diagnostic_dir.pl can be used to purge the directory of the binary
data files and to leave only the javacore text file, which gives an indication of the type and source of the
problem.

Running the script
This script automatically runs when you run storm with itnm_start. To run the script, use a command-
line similar to one of the following use cases.

• Scan once without logging details.

$NCHOME/precision/bin/ncp_perl
$NCHOME/precision/scripts/perl/scripts/ncp_scan_storm_diagnostic_dir.pl

• Scan once and log the affected files, if there are affected files.

$NCHOME/precision/bin/ncp_perl
$NCHOME/precision/bin/ncp_scan_storm_diagnostic_dir.pl -verbose

• Scan every 10 minutes without logging details.

$NCHOME/precision/bin/ncp_perl
$NCHOME/precision/scripts/perl/scripts/ncp_scan_storm_diagnostic_dir.pl -loop 600

• Scan to see what files might be removed, but the files are not removed.

900 IBM Tivoli Network Manager IP Edition: Reference

$NCHOME/precision/bin/ncp_perl
$NCHOME/precision/scripts/perl/scripts/ncp_scan_storm_diagnostic_dir.pl -test

Command line options
The following table describes the optional command-line options for the
ncp_scan_storm_diagnostic_dir.pl script. These command-line options are not mandatory.

Table 550. ncp_scan_storm_diagnostic_dir.plcommand-line options

Command-line option Description

-test Scan the directory to see what files would be
affected, but take no action. This option is non-
intrusive, and logs the affected files to stdout.

-verbose Log details of any affected files to stdout.

-dir Specify a non-default directory to scan. The default
directory is $NCHOME/precision/PD/core/
storm/.

-loop This option can be given with an interval that is
specified in seconds, at which to scan the
directory. This option is ignored if run with -test.
If you do not want to this script to run at intervals
or if you want to run this script as a once off, then
omit this option.

-help Optional. Displays help information about the Perl
script.

read_ncp_cfg.pl
Use the read_ncp_cfg.pl Perl script to query the Master Domain Controller process, ncp_ctrl, and
extract the current service state of the processes that ncp_ctrl has been configured to run.

Description

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/read_ncp_cfg.pl

Command-line options
The following table describes the command-line options for the script.

Table 551. read_ncp_cfg.pl command-line options

Command-line option Description

-domain DomainName Mandatory; the name of the domain where the
Master Domain Controller process resides.

Chapter 29. Scripts 901

RemoveNode.pl
Use the RemoveNode.pl perl script to remove specified devices from the network topology.

Description
The RemoveNode.pl script removes the specified devices from the network topology by issuing an OQL
command to the Model service to delete the entity from the ncimCache.entityData database table.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/RemoveNode.pl
-domain NCOMS -verbose -file mynodes.txt

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/RemoveNode.pl
-domain NCOMS -force 192.168.0.6

Command-line options
The following table describes the command-line options for the script.

Table 552. Command-line options

Command-line option Description

-debugDebugLevel The level of debugging output (1-4, where 4
represents the most detailed output).

-domain DomainName Mandatory; the name of the domain where the
device was discovered.

-file FileName Optional; file containing the list of nodes to be
removed from the network topology. Add one IP
address or host name per line in the file.

Note: You must provide the names of the nodes
either in a file or by entering them in the command
line, as described in host below.

-force Optional; when used, you are not prompted to
confirm the removing of a node.

host Optional; the name of the node to be removed. You
can specify any number of nodes in this way,
separated by spaces. The information entered for a
node can be either the IP address or the host
name. If you do not provide a host name, then the
-file option must be used.

-latency MessageLatency The maximum time in milliseconds (ms) that the
script waits to connect to another process by
means of the messaging bus. This option is useful
for large and busy networks where the default
settings can cause processes to assume that there
is a problem when in fact the communication delay
is a result of network traffic.

902 IBM Tivoli Network Manager IP Edition: Reference

Table 552. Command-line options (continued)

Command-line option Description

-messagelevelMessageLevel The level of messages to be logged (the default is
warn):

• debug
• info
• warn
• error
• fatal

-verbose Optional; provides more information on the screen.

set_db_details.pl
Use the set_db_details.pl script to modify parameters for a database. The script modifies the
DbLogins.DOMAIN.cfg file.

Running the script

To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
set_db_details.pl -domain NCOMS -dbId DNCIM -portNum 2316

This example updates the domain-specific DbLogins.NCOMS.cfg file and sets the port number for the
DNCIM database to 2316. All other settings for the DNCIM database remains unchanged.

Note: The ncp_password_update.pl script performs similar database configuration tasks. See the
ncp_password_update.pl documentation topic for more information.

Command-line options
The following table describes the command-line options for the script.

Table 553. set_db_details.pl command-line options

Command-line option Description

-domain DomainName Mandatory; the domain for which database details
you want to change.

-dbId Database identifier Mandatory; the identifier of the database for which
you want to modify parameters.

-server ServerName Optional; use this option to change the name of the
server the database is on.

-dbName dbName Optional; use this option to change the name of the
database.

-schema schema Optional; use this option to specify the schema to
be changed.

-hostname hostname Optional; use this option to change the host of the
database.

-username user name Optional; use this option to change the user name
used to log into the database.

Chapter 29. Scripts 903

Table 553. set_db_details.pl command-line options (continued)

Command-line option Description

-password password Optional; use this option to change the password
used to log into the database.

-portNum portNum Optional; use this option to change the port
number used to access the database.

-help Optional; displays the command line options.

UnmanageNode.pl
Use the UnmanageNode.pl Perl script to set one or more devices to unmanaged state so that engineers
can work on these devices without generating network events. Unmanaged devices are not polled by
Network Manager. Events for these devices from other sources are tagged in the Event Viewer to indicate
they are from an unmanaged device.

Description
If you set a device to unmanaged, polling is suspended for the unmanaged node. In the Event Viewer, all
alerts are tagged to indicate they are from an unmanaged device, and are not used for root cause analysis.
You can also unmanage individual devices or groups of devices from the topology map views. There is also
an option to set individual components of a device to unmanaged state using the Structure Browser.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/UnmanageNode.pl
-domain NCOMS -user root -pwd fruit -noMainNodeLookup -verbose -file mynodes.txt

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/UnmanageNode.pl
-domain NCOMS -user root -pwd fruit -verbose neptune.ibm.com 192.168.0.6

Command-line options
The following table describes the command-line options for the script.

Table 554. UnmanageNode.pl command-line options

Command-line option Description

-domain DomainName Mandatory; the name of the domain where the
node to be unmanaged resides.

-user username Mandatory; the name of the database user.

-pwd password Mandatory; the password for the database user.

-noMainNodeLookup Optional; switch that enables both interfaces and
main nodes to placed into unmanaged status. Use
this option together with the -file option.

Note: If you do not specify the -
noMainNodeLookup option, then the script only
places main nodes into unmanaged state. Where
an interface is specified in the file, the script will
look up the main node and place that main node
into unmanaged status.

904 IBM Tivoli Network Manager IP Edition: Reference

Table 554. UnmanageNode.pl command-line options (continued)

Command-line option Description

-file FileName Optional; file containing the list of nodes and
interfaces to be unmanaged. Add one IP address or
host name per line in the file.

Note: You must provide the names of the nodes
and interfaces either in a file or by entering them in
the command line, as described in host below.

-verbose Optional; provides more information on the screen.

host Optional; the name of the node to be unmanaged.
You can specify any number of nodes this way,
separated by spaces. The information entered for a
node can be either the IP address or the host
name. If you do not provide a host name, then the
-file option must be used.

update_db_schemas.pl
Use the update_db_schemas.pl script to apply all necessary schema updates for one or more fixpacks
or interim fixes.

Description
Starting with Network Manager V4.2, when you download a new fixpack or interim fix, the download
includes the update_db_schemas.pl and associated update files. These update files include all NCIM
topology database schema changes for all fixpacks and interim fixes up to the current fix.

You can bring your NCIM topology database up to date with all schema changes for the current fixpack or
interim fix, by running the update_db_schemas.pl script. The script will also apply schema changes for
multiple fixpacks or interim fixes. For example, if for a particular major release you did not install fixpack
1, but are now installing fixpack 2, running the update_db_schemas.pl script will bring the NCIM
topology database up to date with all schema changes for both fixpack 1 and fixpack 2.

This script works in conjunction with the list_applied_updates.pl script. This script applies the
schema changes, and the list_applied_updates.pl script is used to check that changes for a
particular fixpack or interim release were applied.

Note: Do not run the supplied SQL scripts directly. Running these scripts directly can cause schema
errors. To update database schemas, always run the update_db_schemas.pl script, which makes the
appropriate changes for your system.

For more information on installing fixpacks, see the IBM Tivoli Network Manager IP Edition Installation
and Configuration Guide.

Running the script
The script has the following syntax.

• Use a domain name to specify login details:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/sql/
update_db_schemas.pl -domain DOMAIN_NAME [-dbname DATABASE_NAME]
[-preview [PREVIEW_FILE]] [-debug]

• Specify login details explicitly:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/sql/
update_db_schemas.pl -server DATABASE_TYPE [-dbname DATABASE_NAME]
-host DATABASE_HOST -username DATABASE_USERNAME -password DATABASE_PASSWORD

Chapter 29. Scripts 905

[-port DATABASE_PORT] [-preview [PREVIEW_FILE]] [-debug]

The following are examples of how to run the script:

1. Preview the schema updates that will be applied.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/sql/
update_db_schemas.pl -domain DOMAIN_NAME -preview

2. Apply the schema updates.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/sql/
update_db_schemas.pl -domain DOMAIN_NAME

Note: When the schema updater has successfully applied all the changes for a given fixpack, it writes a
row to the ncim.schemaAudit table, giving the name of the file that contained those changes and the
timestamp when they were applied.

Command-line options
The following table describes the command-line options for the script.

Table 555. update_db_schemas.pl command-line options

Command-line option Description

-debug Optional: Prints extra debugging information.

-dbname DATABASE_NAME Optional: The service name of the database (or
Oracle SID) The default value is NCIM.

-domain DOMAIN_NAME The name of a Network Manager domain. This is a
convenient way for the script to retrieve the
database login details from the relevant
DbLogin.cfg file. In this case, the options -
server, -host, -username, -password and -port are
not needed.

Note: . If you have more than one domain that
shares the same login details, you only need to run
the script for one of the domains. Running the
script for the other domains that use those same
login details has no effect.

-help Optional: Provides help on this command.

-host DATABASE_HOST Database server host name. This option is not
needed if you specified the -domain option.

-password DATABASE_PASSWORD Password for the database user. This option is not
needed if you specified the -domain option.

-port DATABASE_PORT Optional: Database port, if not using the default.
This option is not needed if you specified the -
domain option.

-preview [PREVIEW_FILE] Optional: Prints the schema changes to be made to
a file. By default, this file is located in /tmp/nm-
update.sql. To give the file a different name,
specify the name after the -preview option. If you
do this, then the preview is written to a file with
that name in the current directory.

906 IBM Tivoli Network Manager IP Edition: Reference

Table 555. update_db_schemas.pl command-line options (continued)

Command-line option Description

-server DATABASE_TYPE Type of database (Oracle or Db2). This option is not
needed if you specified the -domain option.

-updatesDir Optional. The location of the schema
update files. The default is /updates/db2/ or /
updates/oracle/, relative to the directory
where the script is run. If that directory does not
exist, the script looks in $NCHOME/precision/
scripts/sql/updates/SERVER.

-username DATABASE_USERNAME Username for the database. This option is not
needed if you specified the -domain option.

Database scripts
Use these scripts to query and control the databases.

catalog_db2_database
Use this script to catalog a Db2 database as part of setting up an existing Db2 database for use with
Network Manager.

Running the script
The following example shows how to run the script.

$NCHOME/precision/scripts/sql/db2/catalog_db2_database.sh database_name host port

Command-line options
The following table describes the command-line options for the catalog_db2_database script.

Table 556. catalog_db2_database command-line options

Command-line option Description

database_name Mandatory; the name of the database to catalog.

host Mandatory; the hostname of the server where Db2
is installed.

port Mandatory; the port of the Db2 server.

configTCR
This script is deprecated as of Fix Pack 11. As of 4.2 Fix Pack 11, Tivoli Common Reporting is not
supported. You must use Cognos Analytics. Refer to the Cognos Analytics Knowledge Center at https://
www.ibm.com/support/knowledgecenter/SSEP7J.

Running the script

Run this script as the user that installed Network Manager.

The following example deploys reports and configures Oracle data sources.

configTCR.sh -d ncim -p netcool -h machine123 -n 1521 -z oracle -b NCIM42
-e ncim -k lk -t /opt/IBM/JazzSM -i install

Chapter 29. Scripts 907

https://www.ibm.com/support/knowledgecenter/SSEP7J
https://www.ibm.com/support/knowledgecenter/SSEP7J

The following example deploys reports and configures Db2 data sources.

configTCR.sh -d netcool -p netcool -h machine123 -n 50000 -z db2 -b NCIM42
-e db2inst1 -t /opt/IBM/JazzSM -i install

Command-line options
The following table describes the command-line options for the configTCR script.

Table 557. configTCR command-line options

Command-line option Description

-b database_name | service_name Optional. The NCIM Db2 database name or NCIM
Oracle service name.

-d password The password for the NCIM database. This could
be on the local machine or on a remote host.

-e username Optional. The username to use to connect to the
NCIM database.

-h hostname Optional. The hostname of the server where the
NCIM database is installed.

-i install Optional. Specifies that the network management
reports are to be installed. You must use the
install parameter in all cases after option -i.
Used by the Network Manager installation, but also
used if you need to install a report package
provided in a fix pack.

-j jazz_admin_name The administrator username for Jazz for Service
Management.

-n port Optional. The NCIM database port.

-p jazz_admin_password The password for the Jazz for Service Management
administrator.

-r path_to_reports_package Optional. If your Network Manager installation has
the reports package in a non-default location, you
can define where the package is using this option.

-s Optional. Specifies that the Oracle database name
is used instead of using the Oracle service name.
By default, service name is used.

-t jazz_location The location where Jazz for Service Management is
installed.

-z db2 | oracle The database server type. Can be db2 or oracle.

create_all_schemas
Use the create_all_schemas script to apply the NCIM schemas to an existing topology database. This
script is useful, for example, if an NCIM database was not created during the installation of the product,
during an upgrade, or to change from one database type to another. Run the script only after you created
the topology database. Otherwise the script fails.

908 IBM Tivoli Network Manager IP Edition: Reference

The create_all_schemas.sh script requires the following information. Specify the information in the
order that is given in the table.

Table 558. Information required by the create_all_schemas.sh script

Information Required or optional More information

Database type Required Specify one of the following
values, depending on the
database type:

• db2

• oracle

Database name Required Specify the service
name.

Host name Required The host name can be the name
or the IP address.

User name and password Required Use an existing Db2
user. Ensure that the user is not
the root user of the host.

Port number Required N/A

Examples

The following example creates the NCIM schemas on an Oracle database that has the service name
DB_123 on a remote host that is called samplehost, on port 9088. The user/password combination for
connecting to the database is ncim/password.

$NCHOME/precision/scripts/sql/create_all_schemas.sh oracle DB_123 samplehost ncim
password 9088

create_db2_database
Use this script to create the back end NCIM relational database schemas in a Db2 database.

Running the script

Run this script as the Db2 administrative user.

To run the script, use a command line similar to the following:

$NCHOME/precision/scripts/sql/db2/create_db2_database.sh database_name user_name
 [-force]

Command-line options
The following table describes the command-line options for the create_db2_database script.

Table 559. create_db2_database.sh and create_db2_database.bat command-line options

Command-line option Description

database_name Mandatory; the name of the database.

Chapter 29. Scripts 909

Table 559. create_db2_database.sh and create_db2_database.bat command-line options (continued)

Command-line option Description

user_name Mandatory; the name of the database user that will
be used to connect to the database.

Important: This user must not be the
administrative user. This user must be an existing
operating system and Db2 user.

-force Optional; instructs the script to force any existing
Db2 users off the instance before attempting to
drop the database

create_oracle_database
Use this script to create the back end NCIM relational database schemas in an Oracle database. This
script must be run as the Oracle system user.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/scripts/sql/oracle/create_oracle_database.sh user_name
password [-asm] [-pdb pluggable_database_name]

Command line options
The following table describes the command line options for the create_oracle_database.sh script.

Table 560. create_oracle_database command line options

Command-line option Description

user_name Mandatory; the Oracle user used to create the
ncadmin user. This is usually the system user.

password Mandatory; the password of the system user.

-asm Optional; include this flag if the Oracle database is
using Oracle Automatice Storage Manager (ASM).

-pdb pluggable_database_name Required only when running the script with Oracle
12c with RAC. Specifies the Oracle 12c pluggable
database name.

create_oracle_ncadmin_user
Use the create_oracle_ncadmin_user.sh script to create the ncadmin user. Run the script as the
sys user, the user with database administrator privileges. The ncadmin user is needed to provide access
to the dbms_lock methods. These locking methods are used in our stored procedures when creating and
dropping partitions associated with historical poll data storage.

This script must be run as the sys user because the script needs to run sqlplus as sysdba. Also, only
the database administrator role has permission to grant execute on dbms_lock, which is required for
the ncadmin user.

Note: If you prefer not to run this script as the sys user, then you can use an alternative method to create
the ncadmin user that does not require this script and does not involve the sys user. The alternative
method is as follows:

1. Run the commands in the create_oracle_ncadmin_user.sql file.

910 IBM Tivoli Network Manager IP Edition: Reference

2. As a DBA user, grant execute on dbms_lock to the ncadmin user.
3. As the ncadmin user, execute the commands in the create_oracle_ncadmin_functions.sql file.

Both the create_oracle_ncadmin_user.sql and create_oracle_ncadmin_functions.sql SQL
files can be found in the same directory as the create_oracle_ncadmin_user.sh script.

Running the script
As the sys user, run the create_oracle_ncadmin_user.sh script on the server where the database is
installed. Run the script as in the following example.

./create_oracle_ncadmin_user.sh user password [-pdb pluggable_database_name]

Command line options
The following table describes the command line options for the create_oracle_ncadmin_user script.

Table 561. create_oracle_database command line options

Command-line option Description

user_name Mandatory; the Oracle user used to create the
ncadmin user. This is usually the sys user.

password Mandatory; specifies the password of the sys user.

pluggable_database_name Specifies the Oracle 12c pluggable database name.
If you are running Oracle 12c with RAC, you must
use a pluggable database.

drop_db2_database
Use this script to remove the back end NCIM relational database implemented using Db2.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/scripts/sql/db2/drop_db2_database.sh database_name [-force]

Command-line options
The following table describes the command-line options for the drop_db2_database script.

Table 562. drop_db2_database.sh and drop_db2_database.bat command-line options

Command-line option Description

database_name Mandatory; the name of the database.

-force Optional; instructs the script to force any existing
Db2 users off the instance before attempting to
drop the database

Chapter 29. Scripts 911

drop_oracle_database
Use this script to remove the back end NCIM relational database implemented using Oracle. This script
must be run as the Oracle system user.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/scripts/sql/oracle/drop_oracle_database.sh user_name
password [-pdb pluggable_database_name]

Command-line options
The following table describes the command-line options for the drop_oracle_database script.

Table 563. drop_oracle_database.sh and drop_oracle_database.bat command-line options

Command-line option Description

user_name Mandatory; the name of the Oracle database user.
This is usually the system user.

password Mandatory; the password of the database user.

-pdb pluggable_database_name Required only when running the script with Oracle
12c with RAC only. Specifies the Oracle 12c
pluggable database name.

populate_db2_database
Use this script to populate the back end NCIM relational database schemas in a Db2 database. You
usually run this script after having created the NCIM relational database using the shell or batch script
create_db2_database.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/scripts/sql/db2/populate_db2_database.sh database_name user_name
 password [-force]

Command-line options
The following table describes the command-line options for the populate_db2_database script.

Table 564. populate_db2_database.sh and populate_db2_database.bat command-line options

Command-line option Description

database_name Mandatory; the name of the database.

user_name Mandatory; the name of the database user.

password Mandatory; the password of the database user.

-force Optional; instructs the script to force any existing
Db2 users off the instance before attempting to
drop the database

912 IBM Tivoli Network Manager IP Edition: Reference

populate_oracle_database
Use this script to populate the back end NCIM relational database schemas in an Oracle database. You
usually run this script after having created the NCIM relational database using the shell or batch script
create_oracle_database. This script must be run as the ncim user, the user created by the
create_oracle_database.sh script.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/scripts/sql/oracle/populate_oracle_database.sh
 user_name password [-pdb pluggable_database_name]

Command-line options
The following table describes the command-line options for the populate_oracle_database script.

Table 565. populate_oracle_database.sh and populate_oracle_database.bat command-line options

Command-line option Description

user_name Mandatory; the name of the database user. This is
usually ncim.

password Mandatory; the name of the database.

-pdb pluggable_database_name Required only when running the script with Oracle
12c with RAC only. Specifies the Oracle 12c
pluggable database name.

restrict_oracle_privileges.sh
This script applies to NCIM databases created using Oracle as RDBMS. This script is typically run once all
Oracle databases and schemas have been created. At that point this script can be used to revoke
database creation privileges from the NCIM database user. Only those operations that are required for
Network Manager during run time will remain granted.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/scripts/sql/oracle/restrict_oracle_privileges.sh user_name
 password [-pdb pluggable_database_name]

Command-line options
The following table describes the command-line options for the restrict_oracle_privileges.sh
script.

Table 566. restrict_oracle_privileges.sh command-line options

Command-line option Description

user_name Mandatory; the name of the database user. This is
usually the system user.

password Mandatory; password of the database user.

-pdb pluggable_database_name Required only when running the script with Oracle
12c with RAC. Specifies the Oracle 12c pluggable
database name.

Chapter 29. Scripts 913

uncatalog_db2_database
Use this script to uncatalog a Db2 database if you have changed the hostname, port, or database name.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/scripts/sql/db2/uncatalog_db2_database.sh database_name

Command-line options
The following table describes the command-line options for the uncatalog_db2_database script.

Table 567. uncatalog_db2_database command-line options

Command-line option Description

database_name Mandatory; the name of the database to uncatalog.

Discovery scripts
Use these scripts to query and control the discovery.

Discovery agent Perl scripts
Some discovery agents are implemented using Perl scripts, and include the following discovery agents. All
of these agents are located in $NCHOME/precision/disco/agents/perlAgents.

• AlcatelVRRP.pl
• Entity.pl
• NATTextFileAgent.pl
• ASAgent.pl
• iprouting_inperl.pl
• NortelPassport.pl
• CiscoSwitchInPerl.pl
• IPv6Interface.pl
• OSInfo.pl
• NATGatewayAgent.pl

audit.pl
Use the audit.pl script to generate a status report for the Discovery engine, ncp_disco. The output is in
html format and reports information about discovery, agents and stitchers. You can set the frequency at
which the status report is generated. The default is 500 seconds.

Description
This script produces a status report for the Discovery engine, ncp_disco. The file containing this report is
output to the following location:

current_directory/audit.html

The status report includes information on the current state of each of the following:

• Discovery mode
• Discovery phase

914 IBM Tivoli Network Manager IP Edition: Reference

• Blackout state
• Cycle count

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/audit.pl
-domain NCOMS [frequency]

Command-line options
The following table describes the command-line options for the script.

Table 568. audit.pl command-line options

Command-line option Description

-domain DomainName Mandatory; the name of the domain on which the
discovery was run.

frequency Optional; the frequency, in seconds, at which the
report generated by the audit script is run. The
default is 500 seconds.

-debug debug_level Optional; specifies required debug level.

-latency latency Optional; the maximum time in milliseconds to wait
between attempts to send a message. This is
needed for busy networks.

-messageLevel messageLevel Optional: The level of messages to be logged (the
default is warn):

• debug
• info
• warn
• error
• fatal

Related reference
disco.status table
Use the disco.status table to monitor the progress of the ncp_disco process during the discovery
process.

BuildSeedList.pl
Use the BuildSeedList.pl Perl script to write a list of seeds to a file.

Description
The BuildSeedList.pl Perl script retrieves the list of hostnames and IP addresses discovered during
the discovery and writes this list to a file. The script also provides the insert that can be used in the file
finder to use this list to seed the discovery. The use of a fully populated seed list for discovery speeds up
discovery time.

The file containing the list of hostnames and IP addresses discovered during the discovery is output to the
following location:

$NCHOME/etc/precision/seedfile.txt

Chapter 29. Scripts 915

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
BuildSeedList.pl

Command-line options
The following table describes the command-line options for the BuildSeedList.pl script.

Table 569. BuildSeedList.pl command-line options

Command-line option Description

-customer customer_name Optional; appends a text field to the output file.

-debug debug_level Optional; specifies required debug level.

-domain DomainName Mandatory; the name of the domain for which the
discovery is running.

-latency latency Optional; the maximum time in milliseconds to wait
between attempts to send a message. This is
needed for busy networks.

-messageLevel messageLevel The level of messages to be logged (the default is
warn):

• debug
• info
• warn
• error
• fatal

-outFile Optional; specifies the name of the file to write to.

discoAgentsUsed.pl
Use the discoAgentsUsed.pl script to determine which discovery agents were used to discover the
most recently discovered devices in the current domain. Results are presented in an HTML file for viewing
using a Web browser.

Description
This script produces a list of agents. The file containing this list is output to the following location:

current_directory/agentList.html

Note: The Discovery engine, ncp_disco, must be running when you run this script.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
discoAgentsUsed.pl -domain NCOMS

Command-line options
The following table describes the command-line options for the script.

916 IBM Tivoli Network Manager IP Edition: Reference

Table 570. discoAgentsUsed.pl command-line options

Command-line option Description

-domain DomainName Mandatory; the name of the domain where the
discovery is running.

-debug debug_level Optional; specifies required debug level.

-latency latency Optional; the maximum time in milliseconds to wait
between attempts to send a message. This is
needed for busy networks.

-messageLevel messageLevel Optional: The level of messages to be logged (the
default is warn):

• debug
• info
• warn
• error
• fatal

disco_profiling_data.pl
Use the disco_profiling_data.pl script to output summary data of all the discoveries run on a
domain or extracted from a given profiling cache. This script includes data on how long it took to transfer
discovery profiling data to the NCIM topology database. Data is sorted by discovery time.

Description
The script is run using the following command line. Optional arguments are shown enclosed in square
brackets.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
disco_profiling_data.pl -domain domain_name [-fromcache]
[-discocachefile discovery_cache_filename] [-modelcachefile model_cache_filename]
 [-last] [-agents] [-debug debug_level]
[-help]

The script reads data from the Topology manager database table, model.profilingData. For more
information on this table see the IBM Tivoli Network Manager IP Edition Administration Guide.

Note: The Discovery engine, ncp_disco, must be running in order for this script to work.

Running the script

To retrieve data from a specified domain, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
disco_profiling_data.pl -domain NCOMS

To retrieve data from cache files, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
disco_profiling_data.pl -domain NCOMS -fromcache

To retrieve data from discovery and model caches, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
disco_profiling_data.pl -domain NCOMS
-discocachefile Disco.Cache.disco.profilingData.NCOMS
-modelcachefile Model.Cache.model.profilingData.NCOMS

Chapter 29. Scripts 917

Command-line options
The following table describes the command-line options for the script.

Table 571. disco_profiling_data.pl command-line options

Command-line option Description

-agents Returns profiling data on running discovery agents.
Displays the following information:

• Agent Name: The name of the agent.
• Despatch: How many entities have been sent to

the agent.
• Interface Records: How many interface

(component) records were in the responses.
• Remote Neighbours: How many remote

connection references were in the responses.

-debug debug_level Optional; specifies required debug level.

-discocachefile discovery_cache_filename Optional; name of a discovery cache file to extract
disco profiling data from. This setting overrides the
-fromcache setting.

-domain DomainName Mandatory; the name of the domain to retrieve
data from.

-fromcache Optional; instructs the script to retrieve data from
the cache files. In this case the Discovery engine,
ncp_disco, and the Topology manager, ncp_model,
do not need to be running.

-help Optional; provides help on this command

-last Optional. This integer specifies the last n
discoveries for which to display statistics.

-latest Optional: only the last discovery or ncp_model
process data is displayed.

-modelcachefile model_cache_filename Optional; name of a model cache file to extract
model profiling data from. This setting overrides -
fromcache setting.

-stitchers Optional: displays a breakdown of how long each
stitcher took to process the topology. Displays the
following information:

• StitcherName: The name of the stitcher.
• Total: The total time in milliseconds that the

stitcher took during the profiling interval, that is,
from the start of phase 1 to the end of phase.

• Executions: The number of times that the stitcher
was run.

• Average: The average time that the stitcher took,
in milliseconds.

• Total: The total percentage of the discovery
processing time that the stitcher took.

918 IBM Tivoli Network Manager IP Edition: Reference

Table 571. disco_profiling_data.pl command-line options (continued)

Command-line option Description

-verbose Optional; provides more information on the screen.

Output
Running the script retrieves output similar to the following:

Domain Date_of_discovery collection processing transfer total

NCOMS 2012-08-24T23:00:00 00:33:26 00:18:02 00:00:00 00:00:00
NCOMS 2012-09-30T23:00:04 00:30:36 00:16:04 00:11:04 00:57:44
NCOMS 2012-09-31T23:00:07 00:28:53 00:16:36 00:10:59 00:56:28

--
entities devices access interfaces discoMem modelMem
--

194328 352 347 93620 729.58 0.00
194925 352 348 93948 729.01 726.38
194997 352 348 93996 725.57 728.89

Table 572. Output columns

Column Description

Domain Domain name.

Date_of_discovery Start date and time of the discovery.

collection Length of time spent collecting data. This is the sum of time spend in discovery
phases 1-3.

processing Length of time spent in the final processing phase of discovery.

transfer Length of time taken for the Topology manager, ncp_model, to update NCIM
following the discovery.

total Total time taken for the discovery. This is the sum of collection, processing and
transfer.

entities Total number of entities discovered as reported by the Discovery engine,
ncp_disco.

devices Number of devices discovered as reported by the Discovery engine, ncp_disco.

access Number of entities to which ncp_disco reported SNMP access interfaces.

interfaces Number of interfaces discovered as reported by the Discovery engine,
ncp_disco.

discoMem Memory usage of the the ncp_disco process in MB.

modelMem Memory usage of the ncp_model process in MB.

Chapter 29. Scripts 919

itnmMetaDiscoAudit.pl
Use the itnmMetaDiscoAudit.pl script to generate a report that contains audit information on device
classification, and missing device metadata. The output also includes templates of SQL inserts that you
can use to rectify missing metadata issues.

Generate a report

To run the script to generate a report, use a command similar to the following example:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
itnmMetaDiscoAudit.pl –domain NCOMS –report > my_report.txt

Generate a report for specific devices
To run the script to generate a report for specific devices use a command similar to the following example

Note: The -entity command-line option can be used multiple times, In this example it is used twice, once
with an entity identifier, and the second time with an IP address.

:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
itnmMetaDiscoAudit.pl –domain NCOMS –report –entity 500 –entity 10.10.10.1
> my_report.txt

Generate a report to exclude specific device classes (AOCs)
To run the script to generate a report that excludes specific device classes, use a command similar to the
following example:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
itnmMetaDiscoAudit.pl –domain NCOMS –report –exclude AIX –exclude Sun

View device membership for specified device classes (AOCs)

To run the script to view device membership for specified device classes, use a command similar to the
following example:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
itnmMetaDiscoAudit.pl –domain NCOMS –showClassCisco –showClassIBM

Command line options
The following table describes the command line options for the script.

Table 573. itnmMetaDiscoAudit.pl command line options

Command line option Description

-domain DomainName Mandatory; the name of the domain where you
want to start, stop, or display status of a discovery.

-report Optional; instructs the script to generate the
output in a report.

-showclass Optional; instructs the script to produce output
that shows device membership for specified device
classes.

Note: The -showclass option cannot be used
with the -report option.

920 IBM Tivoli Network Manager IP Edition: Reference

Table 573. itnmMetaDiscoAudit.pl command line options (continued)

Command line option Description

-version Prints the version and exits.

-entity entity ID | entity name |IP address Optional; instructs the script to produce output for
specific entities only. Entities can be specified by
NCIM topology database entity identifier, by IP
address, or by entity name.

Note: This option can be used multiple times.

-exclude parameter Optional; instructs the script to produce output
that excludes specified parameters from the
output tables; for example, entityId, className, or
sysObjectId.

Note: This option can be used multiple times.

-maxTableRows number Limits the output table sizes to the specified
number of rows. The default is 250 rows.

-timeLimit seconds Limits the tool runtime to the specified number of
seconds. The default is 300 seconds (5 minutes).

-help Displays help.

-debug Runs the script in debug mode.

-v Optional; provides more information on the screen.

Script output
The script generates output in the following distinct sections:
AOC Class Hierarchy and Device Membership

Visualizes the AOC device class tree and indicates how many devices are in each class. The marker
is used to bring specific AOC classes to your attention. For example, consider the following output
snippet:

 1 Core
 5 |--- NetworkDevice 3 device(s) ###
 127 | |--- Redback (Router)
 71 | |--- Dasan (Switch)
 118 | |--- Nortel (NetworkDevice)
 119 | | |--- BayWellfleet (Router)
 120 | | |--- Centillion (Switch)
 121 | | |--- NortelEthernetRoutingSwitch (Router)
 123 | | `-- NortelPassport (Switch)
 124 | | |--- NortelPassport15000 (Switch)
 171 | | |--- NortelPassport8xxx (Switch)
 125 | | `-- NortelPassport7000 (Switch)
 358 | |--- Moxa (NetworkDevice)
 359 | | `-- MoxaNPortExpress (NetworkDevice)
 220 | |--- RANBaseStation (Transmitter)
 11 | |--- Adtran (Router)
 12 | | |--- AdtranMX2800 (Router)
 13 | | `-- AdtranNetVanta (Router)

The second line reads as follows:

 5 |--- NetworkDevice 3 device(s) ###

This line contains the following elements:

Device class identifier
In this line of output, the device class identifier is 5, corresponding to the NetworkDevice class.

Chapter 29. Scripts 921

Device class name
In this line of output, the device class name is NetworkDevice.

Number of devices in this class
This line of output reads 3 device(s). This statement means that the NetworkDevice class
contains 3 devices.

Note: If there is no text after the class name, then there are no devices in the class. For example,
in the preceding output snippet the only class that contains devices is the NetworkDevice class.

Suggestion to reclassify (###)
The presence of the ### marker means that you should consider reclassifying the devices in the
current device class into a more specific class. For example, in this line of output there are 3
devices in the NetworkDevice class. The NetworkDevice class is a container class and ideally
would not directly contain devices: Container classes should contain other device classes rather
than devices. If, for example, the three devices under NetworkDevice were a new type of Cisco
device then these devices should be reclassified into a more specific class, such as Cisco, or,
even better, into a subclass of Cisco.

For information on how to reclassify network devices, see the IBM Tivoli Network Manager IP Edition
Administration Guide.

Device Discovery Audit
Lists the devices with missing MIB data, and highlights the MIB data fields that are missing for each
device listed. For each device, the following identifying information is provided:

• Entity identifier (entityId)
• Entity name
• IP address
• Device class
• MIB system object ID

For each device, the output lists MIB data fields and highlights missing fields with the marker ###.
Metadata Audit

Lists the devices with missing metadata, and highlights the metadata fields that are missing for each
device listed. For each device, the following identifying information is provided:

• Entity identifier (entityId)
• Entity name
• IP address
• Device class
• MIB system object ID

For each device, the output lists metadata fields and highlights missing fields with the marker ###.
Recommended SQL Inserts

Lists recommended SQL insert templates. Use these templates to add the missing metadata to the
database. The templates highlight the information that you need to add to get a working insert. For
example, in the output that follows, you must provide values to replace the following dummy entries:

• __deviceModel__
• __deviceFunction__

INSERT INTO deviceFunction VALUES ('Avocent', '1.3.6.1.4.1.10418',
'1.3.6.1.4.1.10418.7.1.3', '__deviceModel__', '__deviceFunction__');
INSERT INTO deviceFunction VALUES ('Cisco', '1.3.6.1.4.1.9',
'1.3.6.1.4.1.9.1.1642', '__deviceModel__', '__deviceFunction__');
INSERT INTO deviceFunction VALUES ('Extreme Networks', '1.3.6.1.4.1.1916',
'1.3.6.1.4.1.1916.2.93', '__deviceModel__', '__deviceFunction__');

922 IBM Tivoli Network Manager IP Edition: Reference

itnm_disco.pl
Use the itnm_disco.pl script to start and stop network discoveries, and display status of a running
discovery.

Display the current status of network discovery
To run the script to display the current status of network discovery, use a command line similar to the
following.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/itnm_disco.pl
-domain NCOMS -status -delay 5

Start a network discovery
To run the script to start a network discovery, use a command line similar to the following.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/itnm_disco.pl
-domain NCOMS -start

Note: If the ncp_disco process is running, then running the itnm_disco.pl script with the -start
option starts a discovery. If the ncp_disco process is not running, then running the itnm_disco.pl
script with the -start option only starts the ncp_disco process, and does not start a discovery.

Stop a network discovery
To run the script to stop a network discovery, use a command line similar to the following.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/itnm_disco.pl
-domain NCOMS -stop

Command-line options
The following table describes the command-line options for the script.

Table 574. itnm_disco.pl command-line options

Command-line option Description

-domain DomainName Mandatory; the name of the domain where you
want to start, stop, or display status of a discovery.

-status Optional; instructs the scripts to display status of a
discovery.

-start Optional; instructs the scripts to start a discovery.

-stop Optional; instructs the scripts to stop a discovery.

-delay Optional; count in seconds to delay

-v Optional; provides more information on the screen.

listEntities.pl
Use the listEntities.pl script to retrieve device information from the ncimCache.entityData database
table and output the information in HTML format.

Description
This script produces output to the following location:

current_directory/entityListing.html

Chapter 29. Scripts 923

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
listEntities.pl -domain NCOMS [displayMode] [reportFileName]

Command-line options
The following table describes the command-line options for the script.

Table 575. listEntities.pl command-line options

Command-line option Description

-domain DomainName Mandatory; the name of the domain where the
discovery was run.

displayMode Optional; a numerical value that indicates the level
of detail to capture in the HTML file:

• 0: Show just the types of device on the network
• 1: Show each main node (each individual device)
• 2: Show every entity from the

ncimCache.entityData table including interfaces

reportFileName Optional; name of the html file to generate. If not
specified, defaults to entityListing.html.

-debug debug_level Optional; specifies required debug level.

-latency latency Optional; the maximum time in milliseconds to wait
between attempts to send a message. This is
needed for busy networks.

-messageLevel messageLevel Optional: The level of messages to be logged (the
default is warn):

• debug
• info
• warn
• error
• fatal

restart_disco_process.pl
Use the restart_disco_process.pl script to stop the currently running discovery process and start a
new instance. The running discovery process must have been started by ncp_ctrl for the script to take
effect.

Description
The script stops the current discovery process by removing its entry from ncp_ctrl’s services.inTray table.
The script then inserts the entry into services.inTray again using the original argument list, triggering the
process to restart. The -startDiscovery optional argument determines whether or not the script
should wait for the discovery process to start and then initiate a new full discovery.

924 IBM Tivoli Network Manager IP Edition: Reference

Running the script

The script is usually called from the RestartDiscoProcess discovery stitcher. However, you can run the
script directly using the command line, for example:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
restart_disco_process.pl -domain NCOMS -startDiscovery 1

Command-line options
The following table describes the command-line options for the script.

Table 576. restart_disco_process.pl command-line options

Command-line option Description

-domain DomainName Mandatory, the name of the domain on which to
restart the discovery process.

-debug 0-4 Sets the debug level, where 0 is no logging and 4 is
trace level logging.

-help Displays command-line options help.

-latency latency in seconds Time to wait for processing data in seconds.

-startDiscovery 1|0 Optional. If set to 1, then the script triggers a new
full discovery after the new discovery process is
running.

scheduleDiscovery.pl
Use the scheduleDiscovery.pl script to display when the next full discovery is scheduled. You can
also use this script to schedule full discoveries.

Display the current discovery schedule
To display the current discovery schedule, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/
scheduleDiscovery.pl -domain NCOMS -display -v

Set a daily time for discovery
To set a daily time for discovery, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/
scheduleDiscovery.pl -domain NCOMS -time 24_hour_time -v

Set a weekly schedule for discovery
To set a weekly schedule for discovery, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/
scheduleDiscovery.pl -domain NCOMS -day 0..6 -time 24_hour_time -v

Set a monthly schedule for discovery
To set a monthly schedule for discovery, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/
scheduleDiscovery.pl -domain NCOMS -date 0..31 -time 24_hour_time -v

Chapter 29. Scripts 925

Set the discovery schedule to occur at a specified interval
To set the discovery schedule to occur at a specified interval, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/bin/
scheduleDiscovery.pl -domain NCOMS -interval number_of_hours_between_discovery -v

Command-line options
The following table describes the command-line options for the script.

Table 577. scheduleDiscovery.pl command-line options

Command-line option Description

-domain DomainName Mandatory; the name of the domain on which to
schedule the discovery or query the discovery
schedule.

-time 24_hour_time Optional; the time, in 24-hour clock format, at
which to run to run discovery.

-day day(s) of the week Optional; one or more days in a week to run
discovery, where 0 is Sunday and 6 is Saturday.

-date date(s) in the month Optional; one or more dates in the month when
discovery must be run. If the date value is greater
than 28, discovery might not execute in certain
months.

-interval number_of_hours_between_discovery Optional; number of hours between discovery.

-v Turn on Verbose mode.

Example scripts
Use the example OQL and SNMP scripts as a starting point for creating your own scripts.

oql_example.pl
This script provides examples of Perl-scripted queries into the OQL databases. Use these examples as a
starting point when writing your own script that uses the OQL extensions provided by ncp_perl.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
oql_example.pl

Command-line options
There are no command-line options for this script.

926 IBM Tivoli Network Manager IP Edition: Reference

snmp_example.pl
This script provides examples of Perl-scripted SNMP queries into a specified device. Use this example
script as a starting point when writing your own script that uses the SNMP extensions provided by
ncp_perl.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
snmp_example.pl -node <Device>

Command-line options
The following table describes the command-line options for the script.

Table 578. snmp_example.pl command-line options

Command-line option Description

-node Device Mandatory; IP address or hostname for which the
SNMP query.

Network Manager process management scripts
Use these scripts to query and control Network Manager processes.

create_all_control
On UNIX systems, use this script to configure processes to start automatically when your system is
started or restarted, and to set up the itnm_start, itnm_stop, and intm_status scripts for your
installation.

Running the script

Run this script on UNIX systems as the root user.

The following shows an example of using the script to configure your Network Manager processes to start
automatically when your system is started or restarted.

$NCHOME/precision/install/scripts/create_all_control.sh -auto_only

Command-line options
The following table describes the command-line options for the create_all_control script.

Table 579. create_all_control command-line options

Command-line option Description

-auto_only Configures Network Manager processes to start
automatically when your system is started or
restarted.

Chapter 29. Scripts 927

Table 579. create_all_control command-line options (continued)

Command-line option Description

-no_auto Sets up the itnm_start, itnm_stop, and
intm_status scripts for your installation to make
them available to be run manually when required.
Does not configure the processes to start
automatically when your system is started or
restarted.

-deinstall Removes the automatic start up for processes on
system start or restart.

no option entered If no command-line option is used, the script
configures both the automatic start up and sets up
the itnm_start, itnm_stop, and intm_status
scripts for your installation to make them available
to be run manually when required.

register_all_agents
During normal installation, the installation process should register all agents with the ncp_disco process.
If for any reason this fails to happen, the script register_all_agents is provided so that the user can
reregister the installed agent set. It should only be necessary to use this script on rare occasions.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/scripts/register_all_agents.sh

Command-line options
This script has no command-line options.

setup_run_as* scripts
Certain core processes in Network Manager must be run as root. If you installed Network Manager as a
non-root user, then these processes will not be able to run unless you execute either the
setup_run_as_root.sh or the setup_run_as_setuid_root.sh script on the server where the
back-end processes are installed.

The setup_run_as_root.sh and setup_run_as_setuid_root.sh scripts affect which user can run
the scripts that control the startup and shutdown of Network Manager as follows. The scripts affected are
itnm_start, itnm_stop, and itnm_status.

Note: In order for the setup_run_as_root.sh and the setup_run_as_setuid_root.sh scripts to
work correctly, you must be logged on as root when you run them.

Table 580. Who can run itnm_start, itnm_stop, and itnm_status

Installing user Which setup_run_as* script was run User who can run

itnm_start
itnm_stop
itnm_status

root user Not applicable root user only

928 IBM Tivoli Network Manager IP Edition: Reference

Table 580. Who can run itnm_start, itnm_stop, and itnm_status (continued)

Installing user Which setup_run_as* script was run User who can run

itnm_start
itnm_stop
itnm_status

Non-root user None Installing user only

setup_run_as_root.sh root user only

setup_run_as_setuid_root.sh Users who are members of the
same group as the installing user

setup_run_as_root.sh
If you installed Network Manager as a non-root user, and you want to run Network Manager while logged
in as the root user, then you must run the setup_run_as_root.sh script to alter permissions so that
you can run the back-end processes while logged on as the root user.

Note: In order for this script to work correctly, you must be logged on as root when you run it.

Running the script
To run the script, use a command line similar to the following.

Note: You must run this script before starting the Network Manager back-end processes.

$NCHOME/precision/scripts/setup_run_as_root.sh

Command-line options
This script has no command-line options.

setup_run_as_setuid_root.sh
If you installed Network Manager as a non-root user, and you want to run Network Manager while logged
on as the non-root user who installed the product, or another user in the same group, then you must run
the script setup_run_as_setuid_root.sh. The processes that must be run as root have their setuid
permission changed so that they run as root even when started by a non-root user. This procedure has
security implications and must not be done on a server that untrusted users can log in to.

Note: For this script to work correctly, you must be logged on as root when you run it.

Due to the way this script makes certain shared libraries into trusted libraries, only one installation per
server can be set up to be run by a non-root user. If you have multiple installations of Network Manager
on the same server, you must run all of them as root.

Running the script
To run the script, use a command line similar to the following example.

$NCHOME/precision/scripts/setup_run_as_setuid_root.sh

Command line options
This script has no command line options.

Chapter 29. Scripts 929

unsetup_run_as_setuid_root.sh
You can use this script to reverse the effects of the setup_run_as_setuid_root.sh script.

Note: In order for this script to work correctly, you must be logged on as root when you run it.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/scripts/unsetup_run_as_setuid_root.sh

Command-line options
This script has no command-line options.

setup_run_storm_as_non_root.sh
If you installed Network Manager as the root user, then you must run the
setup_run_storm_as_non_root.sh script to enable the historical polling data processes to run. You
do not need to run this script if you installed Network Manager as a non-root user.

Note: In order for this script to work correctly, you must be logged on as root when you run it.

Running the script
To run the script, use a command line similar to the following.

$NCHOME/precision/scripts/setup_run_storm_as_non_root.sh -g group_name

Command-line options
The following table describes the command line options for the setup_run_storm_as_non_root.sh
script.

Table 581. setup_run_storm_as_non_root.sh command line options

Command-line option Description

-g group_name Mandatory; name of the poller aggregation group
that specified when you installed the Network
Manager core components.

Note: When you installed the Network Manager
core components, you specified values for both the
poller aggregation group and the poller aggregation
user, which is a member of the poller aggregation
group. The poller aggregation user is listed in the
$NCHOME/precision/storm/conf/
supervisor.conf configuration file, within the
user field of the [supervisord] section of that
file. For more information, see the IBM Tivoli
Network Manager IP Edition Installation and
Configuration Guide.

-h Displays help text for this script.

930 IBM Tivoli Network Manager IP Edition: Reference

Polling scripts
Use these scripts to control and diagnose network polling,

get_policies.pl
Use the get_policies.pl Perl script to move poll policies and associated data between domains. This
script can also be used to back up all poll policies to file or to load poll policies from a file into a specified
domain. You can also move a subset of poll policies.

Description

Running the script

To run the script to copy policies from one domain to another, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
get_policies.pl -from domain=SOURCE -to domain=DESTINATION -ncim_password NCIM_password
 -ncmonitor_password NCMONITOR_password

To run the script to copy policies from one domain to a file, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
get_policies.pl -from domain=SOURCE -to file=exportedData.xml

Command-line options
The following table describes the command-line options for the script.

Table 582. get_policies.pl command-line options

Command-line option Description

-to domain=domainName Mandatory; This can be a named domain, in which case database
connections are created to the NCIM and NCMONITOR databases
configured for that domain.

-to file=filename Mandatory; This can be a file name, in which case the contents of the
file are expected to have been generated using this script, and have a
format as outlined in the manual pages for NCP::Policies.

-from domain=domainName Optional; This can be a named domain, in which case database
connections are created to the NCIM and NCMONITOR databases
configured for that domain.

Note: If supplied, this considers the same format as -to
domain=domainName. If not supplied, poll policies are taken from the
default set, in $NCHOME/precision/scripts/sql/
monitorDefaultPolicies.xml.

-from file=filename Optional; This can be a file name, in which case the contents of the file
are expected to have been generated using this script, and have a
format as outlined in the manual pages for NCP::Policies.

Note: If supplied, this considers the same format as -to file=filename.
If not supplied, poll policies are taken from the default set, in
$NCHOME/precision/scripts/sql/
monitorDefaultPolicies.xml.

Chapter 29. Scripts 931

Table 582. get_policies.pl command-line options (continued)

Command-line option Description

-password password Optional; the database password used for accessing the NCIM and
NCMONITOR schemas. This is required only if the password is
encrypted in the DbLogins configuration file.

-policy policy name Optional; the policies that are copied and supplied to restrict the set of
policies to write to the destination.

-keep thresholds|policies|
defaultPing

Optional; this script is used to update a policy for one domain that will
be passed on to subsequent domains.

-viewTemplates filename Optional; this option is used to generate the network view information
for policies with device scope defined, and write to a file conforming to
Network Manager autoprovision template format.

-triggerUpdates Optional; this option causes to set the policy.lastUpdate so that poller
picks the changes to configuration if it is running.

-commitPolicies yes|no Optional; when the destination is a database and if this option is set to
yes, then it causes transactions to be committed with each policy
written. If the option is set to no, then all policies are updated within a
single transaction.

-noViewTransfer Optional; this is used to prevent copying of any policyView data to the
target system. This is desirable in cases where the source and target
systems are not likely to share the same viewId data.

-syncToBackup Optional; if a backup system is configured, updates it with changes to
policies and templates on the primary, and delete any policies which
are no longer exist on the primary.

-help Optional; provides help on this command.

itnm_poller.pl
Use this script to enable and disable poll policies, check the status of poll policies and check the polling
status of IP addresses.

You can use the script to monitor the health of ncp_poller processes.

• “Syntax” on page 932
• “Examples” on page 935

Syntax
Run the script with the following syntax:

ncp_perl $NCHOME/precision/scripts/perl/scripts/
itnm_poller.pl -domain domain [-poller pollername]
[-enable policyid|-disable policyid] [-status all|static|realtime]
[-refresh policyid|all] [-chassis ipaddress|filename][-interface ipaddress|filename] [-metrics]
[-window] [-timestamp timestamp] [-help]

The following table describes the options for the script. To obtain poll policy IDs for use with these
options, run the script with the -status option first.

Table 583. itnm_poller.pl options

Command-line option Description

-domain domainName Required: The domain that contains the poll policies of interest.

932 IBM Tivoli Network Manager IP Edition: Reference

Table 583. itnm_poller.pl options (continued)

Command-line option Description

-chassis ipaddress|filename Optional: Displays the polling status of a single chassis ping poller if a
specified IP address is supplied as the argument, or displays the status
of multiple chassis ping pollers if the name of a text file that contains a
list of IP addresses is supplied as the argument. See also; -monitors.

-disable policyid Optional: Disables the poll policy that has the specified poll policy ID

-enable policyid Optional: Enables the poll policy that has the specified poll policy ID.

-help Optional: Displays help text.

-interface ipaddress|filename Optional: Displays the polling status of a single interface ping poller if a
specified IP address is supplied as the argument, or displays the status
of multiple interface ping pollers if the name of a text file that contains
a list of IP addresses is supplied as the argument. See also; -monitors.

-metrics Reads the metrics trace and displays the information on the command-
line interface. The script first looks for the metrics trace file in the
current working directory. If the file is not found, it looks in $NCHOME/
precision/logs. The information is displayed as a bar chart for each
metric. The chart plots the most recent data in the trace file, showing
the past 4 hours of data by default. For each metric, the end time is
determined by the time stamp of the latest entry for the metric in the
trace. Alternatively, the end time can be set by using the -timestamp
option.

There are 5 metrics. For the first metric, which is called Health, a
separate bar chart is displayed for each combination of poll policy and
poll definition that is associated with the poller.

To ensure that the bar charts display correctly, run the script with this
option on a terminal that is no narrower than 140 characters.

Important: Do not use this option with the -status option. If you do,
the script displays a message and terminates.

-monitors ipaddress|filename Optional: Displays the polling status of a single ping poller (either
chassis or interface ping poller) if a specified IP address is supplied as
the argument, or displays the status of multiple ping pollers if the name
of a text file that contains a list of IP addresses is supplied as the
argument.

Chapter 29. Scripts 933

Table 583. itnm_poller.pl options (continued)

Command-line option Description

-poller pollername Optional: For use in environments that use multiple pollers.

Specify the identifier of the poller for which you want to output
information. If you omit the -poller option, information for the
default poller is displayed.

To explicitly specify the default poller, use the value ncp_poller_default.
For example:

$NCHOME/precision/bin/ncp_perl itnm_poller.pl -domain NCOMS
-status static -poller ncp_poller_default

Note: The -poller option is no longer just for use in conjunction with
the -metrics option. From V4.2 onwards, the -poller option is
applicable to all options. If no -poller is specified, then the output
retrieved is as follows:

• If you specify the -metrics option, then the command retrieves
metrics for the default poller only.

• If you specify one of the other options, then the command retrieves
information for all of the pollers.

-refresh policyid|all Optional: Refreshes the policy configuration and its entity list. To
refresh a single policy, specify the policy ID. To refresh all policies, use
the -refresh all option.

-status all|static|realtime Optional: Displays the status of the specified policies, and also the ID of
each poll policy. Possible options are as follows:

• all
• static (default)
• realtime

Important: Do not use this option with the -metrics option. If you do,
the script displays a message and terminates.

-timestamp timestamp Optional: For use with the-metrics option.

Specify the time stamp for the end time, from which to read the metrics
data. This option overrides the default end time of the last time stamp
in the trace for each metric.

Use this option together with the -window option to obtain metrics for
specific periods of time. The -timestamp option can also be used
without the -window option to obtain the default time period of the last
4 hours.

934 IBM Tivoli Network Manager IP Edition: Reference

Table 583. itnm_poller.pl options (continued)

Command-line option Description

-window Optional: For use with the-metrics option.

Specify the time period, in multiples of 4 hours, for which you want to
display metrics data for the poller. The value of this option affects the x-
axis of the bar charts. The default is 4. The time period is calculated
from a specified time stamp or from the most recent time stamp in the
trace file. If you do not specify a multiple of 4, the time period is
rounded up to the nearest 4 hours. The most useful time period is 4-24
hours.

Optionally use this option together with the -timestamp option to
obtain metrics for specific periods of time.

Examples
• “Display poll policy status and ID” on page 935
• “Enable poll policies” on page 935
• “Disable poll policies” on page 935
• “Trigger the refresh of a policy configuration and its entity list” on page 936
• “Display polling status of a chassis ping poller” on page 936
• “Display poller health charts” on page 936

Display poll policy status and ID
The following example displays the status of all poll policies on the NCOMS domain. It also displays the
policy IDs of all poll policies, so it is useful to identify poll policies for subsequent actions, for example,
enabling or refreshing a policy.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
itnm_poller.pl -domain NCOMS -status all

The following example displays the status of the poll policies for the default poller, ncp_poller_default, on
the NCOMS domain:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
itnm_poller.pl -domain NCOMS -status all -poller ncp_poller_default

Enable poll policies
The following example enables a poll policy that has the ID 10 on the NCOMS domain.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
itnm_poller.pl -domain NCOMS -enable 10

Disable poll policies
The following example disables a poll policy that has the ID 10 on the NCOMS domain.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
itnm_poller.pl -domain NCOMS -disable 10

Chapter 29. Scripts 935

Trigger the refresh of a policy configuration and its entity list
The following example triggers a refresh of the policy configuration for a poll policy that has the ID 10 on
the NCOMS domain.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
itnm_poller.pl -domain NCOMS -refresh 10

Display polling status of a chassis ping poller
The following example displays the polling status of the chassis ping poller that has the IP address
10.101.10.10 on the NCOMS domain.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
itnm_poller.pl -domain NCOMS -chassis 10.101.10.10

Display poller health charts
The following example outputs the bar charts with the default settings. The metrics are output for the poll
policies and poll definitions that are associated with the default poller. The time period for the metrics is 4
hours before the most recent set of metrics that were written to the trace, so 4 hours of data are recorded
on the x-axis.

$NCHOME/precision/bin/ncp_perl itnm_poller.pl -domain NCOMS -metrics

The following example outputs the bar charts for a poller that is called 2345_POLL. The time period for
the metrics starts 24 hours before the most recent time stamp.

$NCHOME/precision/bin/ncp_perl itnm_poller.pl -domain NCOMS -metrics
 -poller 2345_POLL -window 24

The following example outputs the bar charts for the default poller. The time period for the metrics starts
from the time stamp that was 4 hours before 09:14 and 59 seconds on December 10, 2013

$NCHOME/precision/bin/ncp_perl itnm_poller.pl -domain NCOMS -metrics
-timestamp 2013-12-10T09:14:59

The following example outputs the bar charts for the poll policies and poll definitions for a poller that is
called 2345_POLL. The time period for the metrics starts from the time stamp that was 8 hours before
09:14 and 59 seconds on December 10, 2013.

$NCHOME/precision/bin/ncp_perl itnm_poller.pl -domain NCOMS -poller 2345_POLL
-metrics -window 8 -timestamp 2013-12-10T09:14:59

For more information about the NCMONITOR polling status tables, including the ncmonitor.expectedIps
table, see the IBM Tivoli Network Manager Reference. For more information about how to ensure that the
important IP addresses in your network are polled as expected, see the IBM Tivoli Network Manager IP
Edition Administration Guide.

ncp_ping_poller_snapshot.pl
This script is used for troubleshooting ping polling of network devices. After the
ncp_upload_expected_ips.pl script has uploaded a plain text file of IP addresses, the
ncp_ping_poller_snapshot.pl script creates and stores a snapshot of the current ping polling status of
these addresses. You can then run a report on these devices using the ncp_polling_exceptions.pl script.

Description
The ncp_ping_poller_snapshot.pl script retrieves the polling status of the uploaded IP addresses; that is,
whether they will be polled by the ncp_poller process. The polling status of devices can change after a
network discovery or a change in polling configuration.

936 IBM Tivoli Network Manager IP Edition: Reference

The data retrieved by this script is stored in the pollLog database table in the NCMONITOR schema, and
can be used to generate reports on the polling status using the ncp_polling_exceptions.pl script.

For more information on ensuring that the important IP addresses in your network are being polled as
expected by Network Manager, see the IBM Tivoli Network Manager IP Edition Administration Guide.

Prerequisites for this script are as follows:

• You must have run the ncp_upload_expected_ips.pl script on a valid file of IP addresses.
• The pollLog and pollLogSummary tables must have been created in the NCMONITOR schema.
• The DbLogins file must be usable for the given domain.
• The domain must exist in the NCIM topology database.
• The Polling engine, ncp_poller, must be running in the given domain.
• There must be at least one active ping poll in the current domain.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ncp_ping_poller_snapshot.pl -domain DOMAIN_NAME -password PASSWORD

Command-line options
The following table describes the command-line options for the script.

Table 584. ncp_ping_poller_snapshot.pl command-line options

Command-line option Description

-domain DOMAIN_NAME Mandatory; the name of the relevant domain.

-password PASSWORD Optional; the database password used to access the NCIM and
NCMONITOR schemas. This is required only if the password is encrypted
in the DbLogins configuration file.

-logdirLOGDIRNAME Optional. The directory in which the log file is generated. A log file called
ncp_ping_poller_snapshot.pl.DOMAIN_NAME.log can be
checked if there are any problems accessing the database. It is
generated in the current directory by default if this option is not given.

-help Optional; provides help on this command

ncp_polling_exceptions.pl
This script is used for troubleshooting ping polling of network devices. After having run the
ncp_upload_expected_ips.pl and ncp_pingpoller_snapshot.pl scripts, use this script to print a report of
polling status of network devices.

Description
After uploading a list of IP addresses that you want to monitor using the ncp_upload_expected_ips.pl
script, and creating a snapshot of the polling status of those devices using the ncp_pingpoller_snapshot.pl
script, use this script to print a report of the snapshot data. The script lists those addresses that are not
being polled using ICMP, and indications why they are not being polled.

For more information on the procedure to ensure that the important IP addresses in your network are
being polled as expected by Network Manager, see the IBM Tivoli Network Manager IP Edition
Administration Guide.

Chapter 29. Scripts 937

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ncp_polling_exceptions.pl -domain DOMAIN_NAME -format list | report

Command-line options
The following table describes the command-line options for the script.

Table 585. ncp_polling_exceptions.pl command-line options

Command-line option Description

-domain DOMAIN_NAME Mandatory; the name of the relevant domain.

-notpolled Optional; outputs a list of IP addresses that are not
polled as compared with the list of expected IP
addresses. This output is in LIST format only.

-format list | report Optional; determines the output format. This can
be report format or a list of IP addresses. If
omitted, defaults to report output.

-help Optional; provides help on this command

ncp_upload_expected_ips.pl
This script is used for troubleshooting ping polling of network devices. Use the
ncp_upload_expected_ips.pl script to upload a plain text file of IP addresses. Use the
ncp_pingpoller_snapshot.pl and ncp_pollingexceptions.pl scripts to check the uploaded addresses.

Description
Use the ncp_upload_expected_ips.pl script as part of the procedure to ensure that the important IP
addresses in your network are being ping polled as expected by Network Manager and, if not, to provide
information to resolve the problem.

The script loads a list of IP addresses to the ncmonitor.expectedIps table. Any data already in the table is
removed.

Run the ncp_upload_expected_ips.pl script before running the ncp_pingpoller_snapshot.pl and
ncp_pollingexceptions.pl scripts. You can run the ncp_pingpoller_snapshot.pl and
ncp_pollingexceptions.pl scripts many times after running the ncp_upload_expected_ips.pl script once.
Run the ncp_upload_expected_ips.pl again when the IP addresses that you want to check have changed.

For more information on the NCMONITOR polling status tables, including the ncmonitor.expectedIps
table, see the IBM Tivoli Network Manager Reference.

For more information on the procedure to ensure that the important IP addresses in your network are
being polled as expected by Network Manager, see the IBM Tivoli Network Manager IP Edition
Administration Guide.

Prerequisites for this script are as follows:

• A plain text file containing IP addresses you want to monitor is available on the local file system.
• The expectedIps table must have been created in the NCMONITOR schema.
• The DbLogins file must be usable for the given domain.
• The domain must exist in the NCIM topology database.

938 IBM Tivoli Network Manager IP Edition: Reference

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ncp_upload_expected_ips.pl -domain DOMAIN_NAME -file FILENAME -password PASSWORD

Command-line options
The following table describes the command-line options for the script.

Table 586. ncp_upload_expected_ips.pl command-line options

Command-line option Description

-domain DOMAIN_NAME Mandatory; the domain that contains the IP addresses
for which you want to check polling status.

-file FILENAME Mandatory; a plain text file of IP addresses, separated
by whitespace (for example, one IP address per line).
The script accepts IPv4 addresses only. The file is
expected to contain just IP addresses in standard dot
notation.

-password PASSWORD Optional; the database password used to access the
NCIM and NCMONITOR schemas. This is required only
if the password is encrypted in the DbLogins
configuration file.

-logdirLOGFILENAME Optional; a log file called
ncp_upload_expected_ips.DOMAIN_NAME.log is
generated that can be checked if there are any
problems accessing the database. It is generated in
the current directory by default if this option is not
given.

-help Optional; provides help on this command

SQL scripts
Use the supplied SQL scripts to perform setup tasks on the Tivoli Netcool/OMNIbus ObjectServer.

create_itnm_triggers.sql
Use this script to set up a Tivoli Netcool/OMNIbus ObjectServer to support the setting of event severity
based on the value of the NmosCauseType field. For example, if NmosCauseType has the value 1 (root
cause), then running this script will cause the event severity to be set to Critical.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/omnibus/bin/nco_sql -server objectserver_name -user user_name -password
 password < $NCHOME/precison/scripts/create_itnm_triggers.sql

Command-line options
The following table describes the command-line options for the create_itnm_triggers.sql script.

Chapter 29. Scripts 939

Table 587. create_itnm_triggers.sql command-line options

Command-line option Description

objectserver_name Mandatory; the name of the database.

user_name Mandatory; the name of the database user.

password Mandatory; the password of the database user.

create_sae_automation.sql
Use this script to set up the Tivoli Netcool/OMNIbus ObjectServer with automations and right-click tools
to support the generation of service-affected events.

Running the script

To run the script, use a command line similar to the following:

$NCHOME/omnibus/bin/nco_sql -server objectserver_name -user user_name
-password password < $NCHOME/precision/scripts/create_sae_automation.sql

Command-line options
The following table describes the command-line options for the create_sae_automation.sql script.

Table 588. create_sae_automation.sql command-line options

Command-line option Description

objectserver_name Mandatory; the name of the database.

user_name Mandatory; the name of the database user.

password Mandatory; the password of the database user.

drop_itnm_triggers.sql
Use this script to set up a Tivoli Netcool/OMNIbus ObjectServer to remove support for setting of event
severity based on the value of the NmosCauseType field. After running this script, the value of
NmosCauseType (for example 1,root cause) has no effect on event severity.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/omnibus/bin/nco_sql -server objectserver_name -user user_name -password
 password < $NCHOME/precison/scripts/drop_itnm_triggers.sql

Command-line options
The following table describes the command-line options for the drop_itnm_triggers.sql script.

Table 589. drop_itnm_triggers.sql command-line options

Command-line option Description

objectserver_name Mandatory; the name of the database.

user_name Mandatory; the name of the database user.

password Mandatory; the password of the database user.

940 IBM Tivoli Network Manager IP Edition: Reference

drop_sae_automation.sql
Use this script to remove from the Tivoli Netcool/OMNIbus ObjectServer the automations and right-click
tools to support the generation of service-affected events.

Running the script

To run the script, use a command line similar to the following:

$NCHOME/omnibus/bin/nco_sql -server objectserver_name -user user_name
-password password < $NCHOME/precision/scripts/drop_sae_automation.sql

Command-line options
The following table describes the command-line options for the drop_sae_automation.sql script.

Table 590. drop_sae_automation.sql command-line options

Command-line option Description

objectserver_name Mandatory; the name of the database.

user_name Mandatory; the name of the database user.

password Mandatory; the password of the database user.

Troubleshooting scripts
Use these scripts to perform troubleshooting tasks.

GetDiscoCache.pl
To generate discovery cache files for a recent discovery as if it had been run in failover mode, use the
GetDiscoCache.pl Perl script. Failover cache files help IBM Support and Development teams to
troubleshoot discovery.

Running the script

After a discovery has finished, you can run the GetDiscoCache.pl script to generate cache files for that
discovery. The ncp_disco process must still be running. If the ncp_disco process has been stopped or
restarted since the discovery finished, you cannot use the GetDiscoCache.pl script to generate cache files
for that discovery. You must either run another discovery in failover mode or run another discovery
normally and then run the GetDiscoCache.pl script.

The script stores the cache files in ITNMHOME/var/precision as
PerlStore.timestamp.Cache.DatabaseName.TableName.DomainName, so that they are ready to
send to IBM Support for troubleshooting purposes. To run the script, use a command line similar to the
following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
GetDiscoCache.pl -domain DomainName

Note: On UNIX systems only, the script also compresses the cache files into a .tar file by default. For
more information, see option -buildtar in the following table.

Command-line options
The following table describes the command-line options for the GetDiscoCache.pl script.

Chapter 29. Scripts 941

Table 591. GetDiscoCache.pl command-line options

Command-line option Description

-domain DomainName Mandatory; the name of the domain you want to
retrieve discovery tables for and build a copy of the
cache files.

-buildtar 0 | 1 On UNIX systems only; sets whether the copy of
the cache files is compressed into a .tar file in the
current directory. The file is called
service.timestamp.DomainName.tar, where service
is the name of the process from which to retrieve
the data.

The default setting is 1, meaning the files are
compressed. Set it to 0 to turn off the creation of
compressed .tar files.

-dbName Optional; specifies the discovery database to cache
(for example, Details).

-debug DebugLevel Optional; the level of detail the debugging output
provides. Values are 1 to 4, where 4 represents the
most detailed output.

-entityNames Optional; filter cache of selected devices.

-largeTables Optional; list of database tables that must be
processed in smaller chunks. Only use when the -
service option is not set, or when the -service
option is set to Disco.

-latency MessageLatency Optional; the maximum time in milliseconds to wait
between attempts to send a message. This is
needed for busy networks.

-service Optional. You can specify the name of the service
to retrieve the cache data from. The default is
Disco for the discovery process. You cannot use
the Objectserver or Ncim services.

-tblName Optional; specifies the discovery table to cache.
Only used if -dbName is set (for example, -dbName
IpRoutingTable -tblName returns).

-help Optional; displays help for command line options
on screen.

The following is an example of using the command-line options for GetDiscoCache.pl on a UNIX
system:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
GetDiscoCache.pl -domain NCOMS -service Disco -buildtar 1

942 IBM Tivoli Network Manager IP Edition: Reference

ncp_db_access.pl
Checks database setup and determines whether access to the databases is being prevented by firewalls.
This script accesses the topology database, historical polling database, and the distributed polling
database.

Running the script

The script uses the domain-specific DbLogins.DOMAIN.cfg and MibDbLogin.DOMAIN.cfg files for
access credentials. If there are no domain-specific versions of these files, then the script uses the
standard DbLogins.cfg and MibDbLogin.cfg files.

To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ncp_db_access.pl -domain NCOMS

Command-line options
The following table describes the command-line options for the script.

Table 592. ncp_db_access.pl command-line options

Command-line option Description

-domain Domain Mandatory; the domain in which to check database
access.

-help Prints help text.

-verbose Prints connection details as the script tries to
connect.

Note: Script default is to simply indicate whether
the connection was successful.

ncp_storm_validate.sh
Use this script as a troubleshooting aid for the Apache Storm realtime computation system, which is used
to aggregate raw poll data into historical poll data.

Syntax
The ncp_storm_validate script uses the following syntax:

$NCHOME/precision/scripts/ncp_storm_validate.sh [storm] testName testArgs

Where:

• storm is an optional argument used to additionally use Storm scripts to trigger Java code. By default,
the Java code is triggered directly to reduce unhelpful messages. Add the optional storm argument to
run this script using the Storm scripts.

• testName is the name of the test to run.
• testArgs are the arguments required by that test.

Examples
Here are some examples of how to run the script:
Display the current default configuration

$NCHOME/precision/scripts/ncp_storm_validate.sh config

Chapter 29. Scripts 943

Display the configuration for the named topology, "NMAnotherTopology"

$NCHOME/precision/scripts/ncp_storm_validate.sh config NMAnotherTopology

Validate access to the NCPOLLDATA database using existing credentials

$NCHOME/precision/scripts/ncp_storm_validate.sh db

Validate access to the NCPOLLDATA database using existing credentials but by additionally using the
Apache Storm scripts

$NCHOME/precision/scripts/ncp_storm_validate.sh storm db

Delete all historical poll data aggregated by Storm

$NCHOME/precision/scripts/ncp_storm_validate.sh clear -aggregate

Command-line options
The following table describes the command-line options for the ncp_storm_validate script. In all
cases, [topology_name] defaults to NMStormTopology if not provided.

Table 593. ncp_storm_validate.sh command-line options

Command-line option Description

clear [topology_name]
[-raw | -aggregate | -all]

Deletes historical poll data. You will be prompted
to confirm this action before any data is deleted.
You can delete the following historical poll data:

• -raw: deletes the raw poll data stored by the
poller, and as yet unprocessed by Storm. In
practice, this is the last hour's data from the
pollData and pollBatch tables within the
NCPOLLDATA database.

• -aggregate - deletes the historical poll data
aggregated by Storm. This is data older than an
hour and includes all of the data in all of the
historical poll data tables in the NCPOLLDATA
database. These are the tables with the prefix
pdEwmaFor; for example pdEwmaForDay.

• -all - deletes both raw and aggregated data.

Warning: This option is intended for use
during setup and testing only, and is not for
use during production use.

config [topology_name] Displays the specified Storm topology. If you do
not specify a topology name, then the command
displays the default topology NMStormTopology.

crypt [topology_name] -password
password [-decrypt]

Encrypts or decrypts a password from logs.
Displays the plain text decrypted password.

Note: This option is not compatible with the
DbLogins.cfg configuration file. Use the ncp_crypt
command for working with that file.

944 IBM Tivoli Network Manager IP Edition: Reference

Table 593. ncp_storm_validate.sh command-line options (continued)

Command-line option Description

db [topology_name] Validates access to the NCPOLLDATA database.
Tries to connect to the database using the existing
credentials. Running this script with this option
produces similar output to the ncp_db_access.pl
script, but also validates the JDBC connection.

dbconfig [topology_name] Displays NCPOLLDATA database configuration.
Identifies the JDBC URLand username used to
access the database. This information is defined by
the DbLogins.cfg configuration file for the named
domain and is potentially overridden by the jdbc.url
value from the backend tnm.properties
configuration file.

dblogins [topology_name] Loads the backend DbLogins.cfg file using JNI.

JNI loading of the DbLogins configuration is a two-
step process.

1. The path to the C++ library (libNcpDbJni.so) is
given in the java.library.path property of the
$NCHOME/precision/storm/conf/
storm.yaml file. That path value should never
need to be modified.

2. To load up the library, the library path
(LD_LIBRARY_PATH on linux, LIBPATH on AIX)
must be set to pick up further C++
dependencies. This should happen by default
based on settings picked up automatically from
$NCHOME/precision/bin/ncp_common.

hb [topology_name] Displays the current status of the Apache Storm
master table in the NCPOLLDATA database. Use
this option to identify the master topology, and
show the current timestamp. By running the script
with this option over a number of minutes, you are
able to display an incrementing batch identifier,
and this indicates that the poller is continuously
storing data.

hbconfig [topology_name] Displays heartbeat configuration for the Apache
Storm master table in the NCPOLLDATA database.

kafkaexport Exports sample data for selected topics. The topic
selected determines the output format. For a full
description of the parameters for this option see
“Exporting sample data using the kafkaexport
option” on page 946.

kafkaimport Listens for data requests on a specified kafka topic
or for a specified number of seconds. For a full
description of the parameters for this option see
“Listening for data requests using the kafkaimport
option” on page 947.

keyfile [keyFileName] Validates an existing encryption key or creates a
new one if no key exists.

Chapter 29. Scripts 945

Exporting sample data using the kafkaexport option

The kafkaexport option uses the following syntax:

kafkaexport [topology_name] -topic topic [-clientid clientid]
[-instanceid monitoredInstanceId] [-objectid monitoredObjectId]
[-value value] [-message messageString]

Here are some examples of how to export sample data using the kafkaexport option.

Note: The topic names are case sensitive. In normal use you do not need to be concerned with topic
names. A scenario in which you do need to take care, however, is when troubleshooting with the
ncp_storm_validate.sh script. In this case be aware that you must type the topic name exactly as
spelled here; that is, all lowercase, for example: nm.monitoredobject.

Export test data to kafka

The format is hard coded based on the topics configured. The following examples show relevant
options for different topic configurations.

ncp_storm_validate.sh kafkaexport -topic nm.polldata

ncp_storm_validate.sh kafkaexport -topic nm.polldata -value 10
-instanceid 4 -objectid 3

ncp_storm_validate.sh kafkaexport -topic nm.monitoredinstance

ncp_storm_validate.sh kafkaexport -topic nm.monitoredinstance -instanceid 4

ncp_storm_validate.sh kafkaexport -topic nm.monitoredobject

ncp_storm_validate.sh kafkaexport -topic nm.monitoredobject -objectid 3

Request a full table dump

The dump option requires Apache Storm to be running. The following examples show relevant options
for different topic configurations.

ncp_storm_validate.sh kafkaexport -topic nm.datarequest
-message monitoredobject

ncp_storm_validate.sh kafkaexport -topic nm.datarequest
-message monitoredinstance

Table 594. Parameters for the kafkaexport option

Command-line option Description

topology_name Exports sample data from the specified Storm
topology. If you do not specify a topology name,
then the command exports sample data from the
default topology NMStormTopology.

-topic topic The topic for which you want to export poll data.

Options are:

• nm.datarequest
• nm.monitoredinstance
• nm.monitoredobject
• nm.polldata

946 IBM Tivoli Network Manager IP Edition: Reference

Table 594. Parameters for the kafkaexport option (continued)

Command-line option Description

-clientid clientid This identifier is autogenerated by the system and
is logged in the relevant Apache Storm log file. You
do not normally need to specify this value.

Note: If you need to troubleshoot issues, then you
can specify a value for clientid by modifying the
value logged in the the relevant Apache Storm log
file.

-instanceid monitoredInstanceId Dummy value that can be specified if an
nm.polldata or nm.monitoredinstance topic was
specified. The value specified here will be
exported.

Note: This value is not used to look up a row in the
NCIM topology database.

-objectid monitoredObjectId Dummy value that can be specified if an
nm.monitoredobject topic was specified.

Note: This value is not used to look up a row in the
NCIM topology database.

-value value Can be used with the topic nm.polldata to specify a
dummy value for test purposes.

-message messageString Can be used with the topic nm.datarequest to
identify the type of data requested. It currently
must be either 'monitoredobject' or
'monitoredinstance', triggering a full dump of the
named table in each case.

Listening for data requests using the kafkaimport option

The kafkaimport option uses the following syntax:

kafkaimport [topology_name] -topic topic [-runseconds runseconds] [-groupid groupId]

Here are some examples of how to listen for data requests using the kafkaimport option. The format of
the output depends on the topics configured.

Note: The topic names are case sensitive. In normal use you do not need to be concerned with topic
names. A scenario in which you do need to take care, however, is when troubleshooting with the
ncp_storm_validate.sh script. In this case be aware that you must type the topic name exactly as
spelled here; that is, all lowercase, for example: nm.monitoredobject.

ncp_storm_validate.sh kafkaimport -topic nm.monitoredinstance

ncp_storm_validate.sh kafkaimport -topic nm.monitoredobject
-runseconds 100000

ncp_storm_validate.sh kafkaimport -topic nm.polldata

Chapter 29. Scripts 947

Table 595. Parameters for the kafkaimport option

Command-line option Description

topology_name Listens for data requests from the specified Storm
topology. If you do not specify a topology name,
then the command listens for data requests on the
default topology NMStormTopology.

-topic topic The topic for which you want to listen for data
requests.

Options are:

• nm.datarequest
• nm.monitoredinstance
• nm.monitoredobject
• nm.polldata

-runseconds runseconds The number of seconds for which you want to
listen for data requests.

-groupid groupId This identifier is autogenerated by the system and
is logged in the relevant Apache Storm log file. You
do not normally need to specify this value.

Note: If you need to troubleshoot issues, then you
can specify a value for groupid by modifying the
value logged in the the relevant Apache Storm log
file.

ncp_validate_ncim_tables.pl
This script compares the created NCIM tables and views with the tables and views defined in the schema
files, to verify that all defined tables and views have been created. Run this script if you suspect that there
are issues with the NCIM database, for example after migration.

Description
Before running this script, you must ensure that NCIM database credentials are available in a
$NCHOME/etc/precision/DbLogins.cfg file for the domain that you want to check.

Running the script

To run the script, use a command line similar to one of the following commands:

Running the script silently and print failures

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ncp_validate_ncim_tables.pl -domain TEST

Printing all created tables and failures

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ncp_validate_ncim_tables.pl -domain TEST -verbose

Command-line options
The following table describes the command-line options for the script.

948 IBM Tivoli Network Manager IP Edition: Reference

Table 596. ncp_validate_ncim_tables.pl command-line options

Command-line option Description

-domain Domain Mandatory; the domain that you want to check.

-help Optional; provides help on this command

-verbose Optional; displays progress to stdout. Prints a list
of all successfully created database tables as well
as tables that could not be created. If this option is
not specified, only failures are logged.

PrintCacheFile.pl
Takes a specified cache file and prints the ROMP contents of the file in a human-readable format. This
script is mostly useful for scripting and debugging purposes.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
PrintCacheFile.pl -domain domain cache_file

Command-line options
The following table describes the command-line options for the script.

Table 597. PrintCacheFile.pl command-line options

Command-line option Description

-domain domain The domain in which you want the script to run.
This option is mandatory.

cache_file The name of the cache file, including the path to
the file. This option is mandatory.

-restore printedCacheFileName Restores a previously printed cache file
printedCacheFileName into the cache file specified
by the cache_file option.

snmp_walk.pl
Performs an SNMP walk of all or part of a device using the SNMP helper.

Description
The snmp_walk.pl script walks the entire device MIB (starting from internet by default) or part of the
MIB.

This script accesses devices through the SNMP Helper. You can configure device access using the
Discovery Configuration GUI.

By default, the script writes output to screen. You can change how the script writes output using the -
format option.

Restriction:

Chapter 29. Scripts 949

Before running this script, ensure that the Helper Server process, ncp_d_helpserv, and either the
master process controller, ncp_ctrl, or the SNMP helper process, ncp_dh_snmp, are running in the
required domain.

Running the script
To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
snmp_walk.pl -domain domain_name [
 -debug] [-format] [-help] [-ignoreInstanceFilters] [-latency] [-quiet]
 IP_address [OID|MIB_variable [community_add_on]]

Note: You can configure this script to ignore SNMP interface filters. For more information on SNMP
interface filtering, see the IBM Tivoli Network Manager IP Edition Administration Guide.

Examples

The following example command line performs a complete walk of a device with IP address 1.2.3.4.
Output is written to screen.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
snmp_walk.pl -domain TEST 1.2.3.4

The following example command line performs a complete walk of a device with IP address 1.2.3.4.
Output is written to screen and to a file.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
snmp_walk.pl -domain TEST -format out -format name 1.2.3.4

The following example command line performs a walk of the ifTable of a device with IP address 1.2.3.4.
The ifTable is specified as a MIB variable. Output is written to screen.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
snmp_walk.pl -domain TEST 1.2.3.4 ifTable

The following example command line performs a walk of the ifTable of a device with IP address 1.2.3.4.
The ifTable is specified as an OID. Output is written to screen.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
snmp_walk.pl -domain TEST 1.2.3.4 1.3.6.1.2.1.2.2

The following example command line performs a walk of the ifTable of a device with IP address 1.2.3.4
with a VLAN context. Output is written to screen.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
snmp_walk.pl -domain TEST -format out 1.2.3.4 ifTable @vlan2

Command-line options
The following table describes the command-line options for the script.

Table 598. snmp_walk.pl command-line options

Command-line option Description

-debug Optional; sets the debug level for the process, from
1 to 4.

-domain Domain Mandatory; the domain containing the device on
which to perform the SNMP walk.

950 IBM Tivoli Network Manager IP Edition: Reference

Table 598. snmp_walk.pl command-line options (continued)

Command-line option Description

-format By default, the script writes output to screen. You
can change this behavior using the -format option.

Possible options are:

• name - writes the retrieved data, by name, to file.
The file is called
IP_address.Starting_OID.MIB_name.

• oid - writes the retrieved data, by OID, to file.
The file is called
IP_address.Starting_OID.OID_name.

• out - writes the retrieved data, by name, to
screen (stdout).

You can specify more than one -format option.

-help Optional; provides help on this script.

-ignoreInstanceFilters Optional; returns all information from the device,
ignoring any interface filters.

IP_address An IP address of the device. The address must be
accessible using SNMP. You cannot use device
names.

-latency Optional; specifies the timeout, in milliseconds, to
wait for a response from the SNMP helper.

OID|MIB_variable Optional; the MIB node from which to begin the
SNMP walk. The node can be expressed as an OID
(for example, 1.3.6.1.2.1.2.2.1.1), or as a MIB
variable (for example, ifIndex). If you do not specify
a starting node, the script performs an SNMP walk
of the entire device, starting at the 'internet' MIB
node.

-quiet Optional; outputs only retrieved data and essential
information.

community_add_on Optional; additional context to the community
string.

Upgrade and backup scripts
These scripts are used as part of the process of upgrading and migrating from previous Network Manager
versions. You can also use the ITNMExportNetworkViews.pl script to back up your network views.

ITNMDataExport.pl
This script exports Network Manager configuration data. You can then import this data into a new Network
Manager system when migrating to that new system.

Running the script

Ensure the NCHOME environment variable is set on the system.

Chapter 29. Scripts 951

To run the script, use a command line similar to the following:

perl $NCHOME/precision/scripts/
upgrade/ITNMDataExport.pl -export -from 4.1.1

Command-line options
The following table describes the command-line options for the script.

Table 599. ITNMDataExport.pl command-line options

Command-line option Description

-export Mandatory. Exports configuration data.

-from Mandatory. Specifies which version of Network
Manager the data is being exported from.
Allowable values are version numbers in the format
v.r.m (version.release.modification), separated by
dots and without a leading letter V. For example:

• 4.2.0
• 4.1.1
• 4.1.0
• 3.9.0

-help Optional. Displays usage information.

ITNMDataImport.pl
This script imports Network Manager configuration data.

Running the script

Ensure the NCHOME environment variable is set on the system. The compressed configuration data
exported from a previous Network Manager system must be in NCHOME/var/precision/export.

To run the script, use a command line similar to the following:

perl $NCHOME/precision/scripts/
upgrade/ITNMDataImport.pl -import -from 3.9

Command-line options
The following table describes the command-line options for the script.

Table 600. ITNMDataImport.pl command-line options

Command-line option Description

-import Mandatory. Imports configuration data.

-from Mandatory. Specifies which version of Network
Manager the data is being imported from.

• 3.9
• 4.1
• 4.1.1
• 4.2

952 IBM Tivoli Network Manager IP Edition: Reference

Table 600. ITNMDataImport.pl command-line options (continued)

Command-line option Description

-help Optional. Displays usage information.

-simulate Optional. Simulates a data import. Shows what
would be done, without importing data.

Importing and exporting network views using the
ITNMExportNetworkViews.pl script

Use the ITNMExportNetworkViews.pl Perl script to back up user created network views and filter
data. Export the views to a file and import the views if they become corrupted.

Description
This script backs up all user created Network Views in a particular domain to a file. If your Network
Views are deleted, you can use the script to restore the Network Views. Do not use the script to import
Network Views if you have existing views: you might get unpredictable results such as duplicate views.
To import views, first delete existing views.

Restriction: Views that were automatically created based on the Dynamic View template are not
exported. These views are automatically recreated on the target installation based on the last discovered
topology.

Running the script

To run the script, use a command line similar to the following:

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/
upgrade/ITNMExportNetworkViews.pl

Command-line options
The following table describes the command-line options for the script.

Table 601. ITNMExportNetworkViews.pl command-line options

Command-line option Description

-export Required. Exports network views for use on
another Network Manager system. You must use
either the -export or the -import option, but not
both at the same time.

-import Required. Imports network views previously
exported from another Network Manager system.
You must use either the -export or the -import
option, but not both at the same time.

-server Required. The type of database. Allowed values
are: oracle, db2.

-dbname Required. The name of the database, Oracle
Service Name.

-host Required. The host name of the database server.

-username Required. User name for accessing the database.

-password Required. Password for accessing the database.

Chapter 29. Scripts 953

Table 601. ITNMExportNetworkViews.pl command-line options (continued)

Command-line option Description

-port Optional. Database port (if not using the default).

-ncimSchema Optional. The name of the NCIM database schema
(if not using the default).

-help Optional. Displays help information for the script.

-domain Optional. The domain to import the views into. The
default is NCOMS.

-fromDomain Optional. When exporting views, the domain to
export from.

-toDomain Optional. When importing views, the domain to
import to.

-noDefaultDomain Optional. Instructs the script not to export the
network view container of the default domain that
was created by the Network Manager installer.

-allocateNewEntityIds Optional. Allocate new entity IDs for devices. If not
specified, entity IDs are preserved.

-oracleService Optional. Specifies that the Oracle database uses
clustering technology and that the system must
connect to the Oracle service name when Oracle
clustering is configured.

This option takes the following values:

• 1: The installed Oracle database uses clustering
technology. Connect to the Oracle service name
when Oracle clustering is configured.

• 0: The installed Oracle database does not use
clustering technology.

ncp_ncim_diff.pl
This script identifies the differences between a customized NCIM database schema and the default NCIM
schema on installation. This is useful if you are upgrading to a later version of Network Manager and you
have made custom changes to the previous NCIM database schema. Once the script has identified these
differences, you can manually update the NCIM schema. Using this script you can also dump the structure
of an NCIM database in a specified domain to a file in XML format. You can also use the script to compare
the contents of a file dump generated by this script to the structure of an NCIM database in a different
domain.

Description
If your deployment requires additional network domains, you must configure process control for the
domains and register the domains with the NCIM topology database. Once you have done this, you can
then use the domain_create.pl Perl script to migrate the configuration and network polls from an
existing domain to the new domain. You must use one instance of ncp_ctrl to run and manage each
domain. The script does not migrate the topology from the original domain.

Running the script

To run the script, use a command line similar to one of the following commands:

954 IBM Tivoli Network Manager IP Edition: Reference

Compare the structure of the NCIM database on the specified domain to the default NCIM structure
on the current system.

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ncp_ncim_diff.pl -domain NCOMS1

Dump the structure of the NCIM database in the specified domain to a file in XML format

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ncp_ncim_diff.pl -domain NCOMS1 -dumpToFile NCIM_NCOMS1.xml

Compare the contents of a file dump generated by this script to the structure of an NCIM database in
a different domain

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ncp_ncim_diff.pl -domain NCOMS2 -file NCIM_NCOMS1.xml

Command-line options
The following table describes the command-line options for the script.

Table 602. ncp_ncim_diff.pl command-line options

Command-line option Description

-domain Domain Mandatory; a domain with whose NCIM structure
you want to perform one of the following actions:

• Compare with the default NCIM structure on the
current system. The script performs this action if
neither the -file nor the -dumpToFile options
are specified.

• Compare with another NCIM structure codified in
a specified XML file. The script performs this
action if the -file option is specified.

• Dump to XML file. The script performs this action
if the -dumpToFile option is specified.

-file Filename Optional; file in XML format describing the
structure of an NCIM database on a particular
domain. The script compares the NCIM structure in
the domain specified with the NCIM structure
described in this file. The file specified here must
have been created previously using this script.

Note: If you use this option, then you cannot use
the -dumpToFile option.

-dumpToFile Filename Optional; dump the structure of the NCIM database
in the specified domain to the named file.

Note: If you use this option, then you cannot use
the -file option.

-verbose Optional; provides more information on the screen.

-help Optional; provides help on this command

Chapter 29. Scripts 955

Table 602. ncp_ncim_diff.pl command-line options (continued)

Command-line option Description

The following rows list optional arguments for connecting to the NCIM database on the specified
domain. By default, the script uses the values in the DbLogins.DOMAIN.cfg configuration file for the
domain to connect to the database. Any or all of the arguments below can be used to override the values
in the DbLogins.DOMAIN.cfg configuration file.

-password password_for_DB_access Optional; almost always required, as it is usually
encrypted in the DbLogins file.

-server db2 | oracle Optional; type of database server. This must be one
of the values shown.

-host DB_server Optional; host name or IP address of the device
running the database server.

-port DB_server_port_number Optional; if not supplied and not read from the
DbLogins.DOMAIN.cfg configuration file, then
the default port number for the server type is used.

-username username_for_DB_access Optional; username for database access.

-schema schema_name Optional; schema name. This is usually NCIM.

-dbname DB_name Optional; database name. This argument is only
really meaningful for Db2, or Oracle servers.

nmExport
Use this script to export customized data for the core components from a previous version of Network
Manager.

The script creates a .pkg file containing discovery configuration data, network views, poll policies and
definitions, other configuration files, and log files containing information about the successful export. If
the export is unsuccessful, log files are saved to the /itnmExportLogs/ directory in your home
directory.

Running the script
To run the script, go to the location on the source server where you extracted the export package
ExportPackage.tar, change to the scripts directory at that location, and use a command line similar
to the following:

./nmExport -n netcool_location -o Location_of_package

Command-line options
The following table describes the command-line options for the nmExport script.

Table 603. nmExport command-line options

Command-line option Description

-l directory Optional; Defines where to store log files for the
export operation triggered by this script. If the
directory does not exist then it will be created. The
default is $HOME/itnmExportLogs/.

956 IBM Tivoli Network Manager IP Edition: Reference

Table 603. nmExport command-line options (continued)

Command-line option Description

-n netcool_location Optional; location of the Network Manager
installation to be migrated. If no value is provided,
the environment variable $NCHOME is used; if it
does not exist, then the script prompts for a value.

-o location of package Optional; full path to and filename of the package
containing the exported data.

nmGuiExport
Use this script to export customized GUI data from a previous version of Network Manager.

The script creates a data.zip file in one of the following directories: $TIPHOME/profiles/
TIPProfile/output/ or $JazzSM_HOME/ui/upgrade/data/. The file contains configuration data,
user roles, and custom Tivoli Integrated Portal pages, views, and roles. Any errors are saved to one of the
following directories: $TIPHOME/profiles/TIPProfile/logs/tipcli.log or $JazzSM_HOME/ui/
logs/consolecli.log.

Running the script

To run the script, go to the location on the source server where you extracted the export package
ExportPackage.tar, change to the scripts directory at that location, and use a command line similar
to the following:

nmGuiExport -u GUI_admin_user_name -p password [-d $TIPHOME|$JazzSM_HOME
]
[–n $NMGUI_HOME]

Command-line options
The following table describes the command-line options for the nmGuiExport script.

Table 604. nmGuiExport command-line options

Command-line option Description

-u GUI_admin_user_name Either the Tivoli Integrated Portal administrative
user name (tipadmin by default) for versions of
Network Manager prior to V4.2, or the Jazz for
Service Management administrative user name
(smadmin by default). If no value is provided, then
the script prompts for a value.

-p password Password for the GUI administrator user. If no
value is provided, then the script prompts for a
value.

-d $TIPHOME|$JazzSM_HOME $TIP_HOME is the location of the Tivoli Integrated
Portal installation to be migrated. For
example: /opt/IBM/tivoli/tipv2.
$JazzSM_HOME is the location of the Jazz for
Service Management installation to be migrated.
For example: /opt/IBM/JazzSM. If no value is
provided, the script uses the locations set by the
appropriate environment variable. If the
environment variables are not set, the script
prompts for a value.

Chapter 29. Scripts 957

Table 604. nmGuiExport command-line options (continued)

Command-line option Description

-n $NMGUI_HOME $NMGUI_HOME is the environment variable that
defines where the Network Manager GUI is
installed.

In Network Manager V4.2, this location
is /opt/IBM/netcool/gui/precision_gui by
default.

In Network Manager V4.1 the equivalent of
$NMGUI_HOME is $NCHOME, which is /opt/IBM/
netcool/core by default. If no value is provided,
the script uses the locations set by the appropriate
environment variable. If the environment variable
is not set, the script prompts for a value.

nmGuiImport
Use this script to import customized GUI data from a previous version of Network Manager.

Running the script
To run the script, go to the location on the target server where you extracted the
ExportPackageGUI.tar file, change to the scripts directory at that location, and use a command line
similar to the following:

nmGuiImport -u smadmin -p password [-f path_to_zip_file] [-d $JazzSM_Home]
[–n $NMGUI_HOME]

Command-line options
The following table describes the command-line options for the nmGuiImport script.

Table 605. nmGuiImport command-line options

Command-line option Description

-u The Jazz for Service Management administrative user
name (smadmin by default). If no value is provided, then
the script prompts for a value.

-p password Password for the Jazz for Service Management
administrator user. If no value is provided, then the script
prompts for a value.

-f path_to_zip_file The path to the data.zip export file that contains the
GUI data. If this option is not specified, the value in the
$NMGUI_HOME/integration/plugins/
ITNM_42.properties file is used.

-d $JazzSM_Home $JazzSM_HOME is the location of the Jazz for Service
Management installation to be migrated. For
example: /opt/IBM/JazzSM. If no value is provided, the
script uses the location set by the environment variable.
If the environment variable is not set, the script prompts
for a value.

958 IBM Tivoli Network Manager IP Edition: Reference

Table 605. nmGuiImport command-line options (continued)

Command-line option Description

-n $NMGUI_HOME The location of the Network Manager GUI components.
By default, this location is /opt/IBM/netcool/gui/
precision_gui. If no value is provided, the script
prompts for a value.

nmImport
Use this script to import customized core components data from a previous version of Network Manager.

Running the script
To run the script, go to the location on the target server where you extracted the
ExportPackageCore.tar file, change to the scripts directory at that location, and use a command
line similar to the following:

./nmImport -n netcool_location

Note: The script asks various questions as part of execution, including the following:

• Enter all migration packages to process.
• Check current server settings.
• Specify NCIM database account password.
• In the case of copying one current system to another: Specify whether to allocate new entity identifiers.

Command-line options
The following table describes the command-line options for the nmImport script.

Table 606. nmImport command-line options

Command-line option Description

-n netcool_location Optional; location of the Network Manager
installation to which the data is to be migrated. If
no value is provided, the environment variable
$NCHOME is used; if it does not exist, then the
script prompts for a value.

Chapter 29. Scripts 959

960 IBM Tivoli Network Manager IP Edition: Reference

Chapter 30. Web Applications configuration
reference

Use this information to support configuration of web applications.

Web application configuration files
There are separate configuration files for the Network Manager web applications and for Topoviz. This
section explains how to change configuration settings in these files.

There are two configuration files. These files are located at $NMGUI_HOME/profile/etc/tnm/. These
files contain all the settings used by the web applications. The configuration files are the following:

• topoviz.properties: Contains settings used by Topoviz.
• status.properties: Contains status display settings for Topoviz and the Structure Browser.
• tnm.properties: Contains settings used by all the other Network Manager web applications.

To change any of the settings in these files, edit the appropriate file.

Backup copies of both of these files, containing default settings, are held at the following
location:$NMGUI_HOME/profile/etc/tnm/default.

Note: The tnm.properties, status.properties, and topoviz.properties files are monitored
every 60 seconds for changes, so these changes are automatically detected by Topoviz.

Topoviz configuration files
The configuration files for IBM Tivoli Network Manager IP Edition Web applications and Topoviz contain all
the settings that are used by each application.

The configuration files are located at $NMGUI_HOME/profile/etc/tnm/. The files are as follows:

• topoviz.properties: Contains settings used by Topoviz.
• status.properties: Contains status display settings for Topoviz and the Structure Browser.
• tnm.properties: Contains settings used by all the other Network Manager Web applications.

To change any of the settings in these files, edit the appropriate file.

Backup copies of both of these files, containing default settings, are stored at the following location:
$NMGUI_HOME/profile/etc/tnm/default/.

The tnm.properties, status.properties, and topoviz.properties files are monitored every 60
seconds for changes, so that these changes are automatically detected by Topoviz.

WebTools configuration files
Each web tool has its own XML configuration file.

These configuration files are held at the following locations: $NMGUI_HOME/profile/etc/tnm/ and
ITNMHOME/scripts/webtools/etc.

The following table lists the configuration files.

© Copyright IBM Corp. 2006, 2021 961

Table 607. WebTool Configuration Files

Type of Tool Name of Tool Name of Associated Configuration
File

General Diagnostic and
Information Retrieval Tools

Advanced Ping Tool AdvancedPing.xml

Advanced Subnet Ping Tool AdvancedSubnetPing.xml

Advanced Traceroute Tool AdvancedTraceroute.xml

Whois Lookup Tool WhoisLookup.xml

DNS Lookup Tool DNSLookup.xml

Cisco Information Retrieval
Tools

Cisco Information Tool CiscoBGPInfo.xml

CiscoInterfaceList.xml

CiscoISISInfo.xml

CiscoMBGPInfo.xml

CiscoMPLSInfo.xml

CiscoOSPFInfo.xml

CiscoRoutingInfo.xml

CiscoVRFList.xml

Cisco Diagnostic Tools Cisco Route Information Tool CiscoShowRoute.xml

Cisco VRF Information Tool CiscoVRFInfo.xml

Cisco Ping Tool CiscoPing.xml

Cisco LSP Ping Tool CiscoLSPPing.xml

Cisco VRF Ping Tool CiscoVRFPing.xml

Cisco Traceroute Tool CiscoTraceroute.xml

Cisco LSP Traceroute Tool CiscoLSPTraceroute.xml

Cisco VRF Traceroute Tool CiscoVRFTraceroute.xml

Juniper Information Retrieval
Tools

Juniper Information Tool JuniperBGPInfo.xml

JuniperInterfaceList.xml

JuniperISISInfo.xml

JuniperMPLSInfo.xml

JuniperOSPFInfo.xml

JuniperRoutingInfo.xml

JuniperVRFList.xml

962 IBM Tivoli Network Manager IP Edition: Reference

Table 607. WebTool Configuration Files (continued)

Type of Tool Name of Tool Name of Associated Configuration
File

Juniper Diagnostic Tools Juniper Route Information
Tool

JuniperShowRoute.xml

Juniper Ping Tool JuniperPing.xml

Juniper Traceroute Tool JuniperTraceroute.xml

WebTools configuration files define all parameters used by WebTools. You should not normally need to
change these parameters.

The only parameters that you might be required to configure are the Telnet login details for the Cisco and
Juniper tools, as described in "Configuring Telnet Login Details".

Note: Passwords specified in the WebTools configuration files are plain-text. If you configure Telnet login
details within these files, then it is recommended that you apply appropriate security measures to the
WebTools directories, $NMGUI_HOME/profile/etc/tnm/ and ITNMHOME/scripts/webtools/etc.

Structure Browser configuration files
The appearance and tools of the Structure Browser are controlled through configuration files.

The following configuration files control the appearance of the Structure Browser window. Both files are
located in $NMGUI_HOME/profile/etc/tnm/.

• The structurebrowser.properties file controls settings that are only related to the Structure
Browser window.

• The status.properties file controls all status indicator settings for both the Topoviz views and the
Structure Browser window.

• The ncp_structurebrowser_menu.xml file controls what tools are available in through the
Structure Browser.

Note: The structurebrowser.properties,status.properties, and
ncp_structurebrowser_menu.xml files are monitored every 60 seconds for changes, so these
changes are automatically detected by the Structure Browser.

The managed status column can be hidden or displayed, and the managed and unmanaged icons are
customizable also. You can set whether the column appears in the Device Structure Tree and change the
icons for the managed and unmanaged states in the structurebrowser.properties file.

URL parameters
Use URL parameters to construct a URL to launch any of the Network Manager Web applications directly
from a Web browser. For example, you can construct a URL to launch the Hop View containing a
predefined network map.

These parameters can be typed directly into the address bar of your browser. Alternatively, you could
write a Tivoli Netcool/OMNIbus Web GUI tool to pass column values for an event to a CGI script. The
script could then call the relevant Web application with these parameters.

Default windows composed of multiple Web applications, such as the Network Health View, cannot be
opened using a URL. The following table lists the Network Manager Web applications that can be opened
using URLs.

Chapter 30. Web Applications configuration reference 963

Table 608. GUI windows that can be opened with URLs

Window URL Takes parameters

Hop View https://host:port/ibm/console/
ncp_topoviz/HopView.do

Yes

MIB Browser https://host:port/ibm/console/
ncp_mibbrowser/Launch.do

Yes

MIB Grapher https://host:port/ibm/console/
ncp_mibbrowser/pages/
mib_graph/
mibgraphview_servlet.jsp

Yes

Network Discovery Configuration https://host:port/ibm/console/
ncp_disco/DiscoConfig.do

No

Network Discovery Status https://host:port/ibm/console/
ncp_disco/DiscoStatus.do

No

Network Views https://host:port/ibm/console/
ncp_topoviz/NetworkView.do

Yes

Path Views https://host:port/ibm/console/
ncp_topoviz/
PathViewNewPath.do

Yes

Top Performers https://<server>:<port>/ibm/
console/NetworkHealth/pages/
performance/nmPerformance.jsp

Yes

Structure Browser https://host:port/ibm/console/
ncp_structureview/Launch.do?

Yes

Web Tools https://host:port/ibm/console/
ncp_webtools/pages/
ncp_wt_index.jsp?

Yes

The following topics explain the URL parameters to use for the different Web applications.

Hop View URL parameters
Use this information to understand how to construct a URL to display layer 1, layer 2, and layer 3
connectivity maps in the Network Hop View.

URL parameters
The following table shows the URL parameters that you can pass to the Hop View to display layer 2 or
layer 3 connectivity maps.

Note: If you specify a seed that has no matches or multiple matches, the search dialogue is displayed.
Multiple matches can occur if no domain is specified and a device with the same name or IP address
exists in more than one domain. Multiple matches can also occur if a domain is specified and more than
one device in that domain has the same name.

964 IBM Tivoli Network Manager IP Edition: Reference

Table 609. URL parameters for Hop View maps

Parameter Description Required?

connectivity This takes an integer or string (case-sensitive) value
corresponding to the entityType of the connectivity. Only
entityTypes of type Topology are allowed, for example, 71
(Layer 1 Topology).

This parameter corresponds to the Connectivity field in the
Hop View toolbar.

Allowed values for the connectivity parameter are given
in “Connectivity parameters” on page 966.

The default value is the default for the Hop View, or 72
(layer 2) if no default is configured.

No

domain The name of the Network Manager domain. This
corresponds to the Domain field in the Hop View toolbar. If
you do not specify a domain, all domains are searched.

No

endNodes This can take one of the following values:

• true: Show end nodes in the map.
• false: Do not show end nodes in the map.

The default is false.

No

hops This is the number of hops from the seed device. This
corresponds to the Hops field in the Hop View toolbar.

The default is 1.

No

layout This can be any of the following:

• hierarchical
• symmetric
• orthogonal
• circular

The default is symmetric.

No

seed An identifier for the seed device. This may be the
EntityName, IPAddress or EntityId of the required
seed device. This corresponds to the Seed field in the Hop
View toolbar.

You can use multiple seed devices in the same Hop View.

Yes

Example 1: URL for layer 2 connectivity map

The following example shows the format of a Topoviz URL for a layer 2 connectivity map. Note that
Topoviz URLs are case-sensitive.

https://host:port/ibm/console/ncp_topoviz/HopView.do?domain=MPLSTEST&type=layer2
&layout=hierarchical&seed=lon-core-cis-h.ibm.com&hops=2&endNodes=true

Chapter 30. Web Applications configuration reference 965

Example 2: URL for layer 3 connectivity map

The following example shows the format of a Topoviz URL for a layer 3 map. Note that Topoviz URLs are
case-sensitive.

https://host:port/ibm/console/ncp_topoviz/HopView.do?domain=MPLSTEST&type=layer3
&layout=symmetric&seed=lon-core-cis-h.ibm.com&HOPS=2&endNodes=true

Example 3: URL for layer 2 connectivity map with multiple seed devices

The following example shows the format of a Topoviz URL for a layer 2 map with two devices. Note that
Topoviz URLs are case-sensitive.

https://host:port/ibm/console/ncp_topoviz/HopView.do?domain=MPLSTEST&type=layer2
&layout=hierarchical&seed=lon-core-cis-h.ibm.com&seed=dub-core-cis-g.ibm.com
&hops=2&endNodes=true

https://host:port/ibm/console/ncp_topoviz/HopView.do?domain=MPLSTEST&type=layer3
&layout=symmetric&seed=lon-core-cis-h.ibm.com&HOPS=2&endNodes=true

Connectivity parameters
The following table shows the integer and string values that you can use for the connectivity
parameter in Topoviz URLs.

Table 610.

Integer String Description

-1 ipsubnets Logical collection that lists the IP
address in a class A, B, or C
subnet.

71 layer1 Grouping of connections which
belong to a Layer 1 topology.

72 layer2 Grouping of connections which
belong to a Layer 2 topology.

73 layer3 Grouping of connections which
belong to a Layer 3 meshed
topology.

74 convergedtopology Based on data available in NCIM,
groups together connections at
the lowest layer for which data is
available.

75 mplste Grouping of connections which
belong to an MPLS TE topology.

77 pseudowire Grouping of connections which
belong to a Pseudo Wire
topology.

78 OSPF Represents an OSPF topology.

81 pim Represents PIM topologies.

83 ipmroute Represents an IP Multicast
Routing topology.

86 microwave Represents a microwave
topology.

966 IBM Tivoli Network Manager IP Edition: Reference

Table 610. (continued)

Integer String Description

87 logicalran Represents a radio access
network topology.

90 ltecontrolplane Represents the devices and
connectivity that make up the LTE
control plane.

91 lteuserplane Represents the devices and
connectivity that make up the LTE
user plane.

92 probe Represents the source/target
connectivity for an IP SLA probe.

MIB Browser URL Reference
You can launch the MIB Browser directly from a web browser. The URL required to launch an empty MIB
Browser is as follows:

https://host:port/ibm/console/ncp_mibbrowser/Launch.do

In this URL:

• host is the IP address of the host on which the Dashboard Application Services Hub server is running.
• port is the port to access on the host on which the Dashboard Application Services Hub server is

running. By default this is 16316.

This URL opens the MIB Browser with the Domain option menu set to the first value in the list, and no
Host or OID values set in the SNMP Query toolbar.

URL Parameters
You can supply the following optional parameters when you launch the MIB Browser:

• domain: name of the Network Manager domain to use to obtain the MIB and SNMP data. The value of
this parameter is used to set the Domain option menu in the Configuration Toolbar.

If you are writing a tool to launch the MIB Browser from the Event Viewer, then you may wish to specify
the name of the ObjectServer rather than the name of the Network Manager domain. Do this by
supplying the parameter $selected_rows.ServerName, where ServerName is the field in the Event
Viewer event that specifies the name of the ObjectServer.

• host: IP address of the target device to be queried for SNMP data. This value is used to populate the
Host field in the SNMP Query Toolbar.

• variable: the MIB object to query. This value can be the OID of the MIB object, such as
1.3.6.1.2.1.1.3 or it can be the name of the MIB object, such as sysUpTime. This value is used to
populate the OID field in the SNMP Query Toolbar.

• resultsOnly: takes one of the values true or false.

– If true, then the MIB Browser is launched in full mode.
– If false, then the MIB Browser is launched in results-only mode.

If you supply the domain, host, and variable parameters, then the MIB Browser launches,
automatically performs the SNMP query specified by these parameters, and then displays the results in
the SNMP Query Results Area. The type of SNMP query performed varies depending on the value of the
variable parameter:

• If the variable parameter is a single MIB object in the MIB tree then the MIB Browser performs an
SNMP Get query on startup.

Chapter 30. Web Applications configuration reference 967

• If the variable parameter is a table in the MIB tree then the MIB Browser performs an SNMP Get
Table query on startup.

• In all other cases, the MIB Browser performs an SNMP Walk query on startup.

Examples of URLs

Some examples of URLS to launch the MIB Browser are shown below:

• https://host:port/ibm/console/ncp_mibbrowser/Launch.do

The MIB Browser opens up with the Domain option menu set to the first value. No host or OID values
are set in the SNMP Query Toolbar.

• https://host:port/ibm/console/ncp_mibbrowser/Launch.do?domain=NCOMS

The MIB Browser opens up with the Domain option menu set to the specified domain.
• https://host:port/ibm/console/ncp_mibbrowser/Launch.do?domain=NCOMS
&host=198.162.3.4

The MIB Browser opens up with the Domain option menu set to the specified domain and the Host field
set to 198.162.3.4.

• https://host:port/ibm/console/ncp_mibbrowser/Launch.do?domain=NCOMS
&host=198.162.3.4&variable=ifTable

The MIB Browser opens up with the Domain option menu, the Host and OID fields set accordingly. In
addition, an SNMP Get Table query will automatically be issued for the MIB object ifTable. The
results will be displayed in the SNMP Query Results Area.

• https://host:port/ibm/console/ncp_mibbrowser/Launch.do?domain=NCOMS
&host=198.162.3.4&variable=sysUpTime&resultsOnly=true

The MIB Browser opens up with the Domain option menu, the Host and OID fields set accordingly. In
addition, an SNMP Get query will automatically be issued for the MIB object sysUpTime. The MIB
Browser opens in results-only mode and contains only the results showing the value of sysUpTime for
the network device with IP address 198.162.3.4.

MIB Grapher URL Reference
You can graph MIB variables for a node or interface by specifying a URL in your Web browser.

The following table shows the parameters for the MIB Grapher.

Table 611. URL parameters for the MIB Grapher

Parameter Description Required?

domain The name of the Network Manager domain. Yes

host The hostname of the node or interface for which you want
to graph MIB variables.

Yes

init Required to be set to true for launching this window. Yes

Example: URL to graph MIB variables for a device

https://host:port/ibm/console/ncp_mibbrowser/pages/mib_graph/mibgraphview_servlet.jsp?
init=true&domain=NCOMS&host=192.168.0.2

968 IBM Tivoli Network Manager IP Edition: Reference

Network Views URL parameters
You can open specific network views by using URL parameters.

URL parameters
The following table shows the URL parameters that you can pass to the network views.

Table 612. URL parameters for network views

Parameter Description Required?

id Each saved network view has a unique ID. To find out the ID
of a particular view, hover the cursor over the name of the
view in the navigation tree. The ID is displayed in the status
bar at the bottom of the browser window, and as a tooltip.

Passing a network view ID in the URL to Network Views
opens that network view. The view is shown without the
navigation tree.

Yes

networkViewDefault
Tab

Set the property to bookview to have the
Bookmarks tab displayed by default when the network view
opens. Set the property to netview to have the Libraries
tab displayed by default.

No

selectNode This is the entity ID of an entity to which you want the
display to zoom in. If you specify this parameter, it enables
the Toggle Overview button on the toolbar.

Optional

showTree By default, this is set to true to display the network view
tree as well as network view. You can set this to false to
stop the network view tree from being displayed.

Yes

URL for a saved network view

The following example shows the format of a Network Views URL containing the parameter id. Note that
Topoviz URLs are case-sensitive.

https://host:port/ibm/console/ncp_topoviz/NetworkView.do?id=10690

Top Performers URL parameters
Use this information to construct a URL to display the historical performance data for a network view, path
view, or device ID, interface ID, or both. The historical performance data displays in a tab or window that
is called Top Performers.

URL parameters
The following table shows the parameters for the Top Performers URL.

Chapter 30. Web Applications configuration reference 969

Table 613. URL parameters for the Top Performers URL.

Parameter Description Allowed
Values

Required?

viewId The path view ID or the network view ID, for
which you want to plot the performance
information. Cannot use this parameter in
partnership with the parameters entityIds
or mainNodeEntityIds

A positive
Integer that
is greater
than 0.

Yes, if you
want to plot
information
for viewId.

mainNodeEntityIds A comma-separated list of device IDs to
render the performance of the entire devices'
membership. You must use this parameter in
partnership with parameter entityIds

1 or more
comma-
separated
positive
integers. Or,
to represent
that there are
no devices in
the selection
ensure that
you do not
enter a value.

Yes, if you
want to plot
information
for the devices
full
containment.

entityIds A comma-separated list of specific
entityIds for which you want to plot the
performance information. entityIds can
represent interfaces or a device chassis. You
must use this parameter in partnership with
the parameter mainNodeEntityIds

1 or more
comma-
separated
positive
integers. Or,
to represent
that there are
no devices in
the selection
ensure that
you do not
enter a value.

Yes, if you
want to plot
information
for specific
chassis or
interfaces, or
both.

Sample URL parameters
• URL for a viewId.

Use this type of URL to plot a performance chart based on a defined network viewId.

https://<server>:<port>/ibm/console/NetworkHealth/pages/performance/
nmPerformance.jsp?viewId=348

• URL for specific devices.

Use this type of URL to plot a performance chart based on a defined comma-separated list of device
IDs, this URL renders the performance information of the entire devices' membership.

https://<server>:<port>/ibm/console/NetworkHealth/pages/performance/
nmPerformance.jsp?mainNodeEntityIds=11596,11628,11551&entityIds=

• URL for pairing interfaces.

970 IBM Tivoli Network Manager IP Edition: Reference

Use this type of URL to plot a performance chart based on a defined comma-separated list of interface
IDs or just the device, exclusive of its containment, this URL renders the performance information of the
specific interfaces.

https://<server>:<port>/ibm/console/NetworkHealth/pages/performance/
nmPerformance.jsp?mainNodeEntityIds=&entityIds=12343,12785

Structure Browser URL reference
When you integrate other products with Network Manager, you can start the Network Manager Structure
Browser directly from a web browser for that device or interface.

Use the following URL to start an empty Structure Browser. https://host:port/ibm/console/
ncp_structureview/Launch.do?. Then, apply the following parameters to start the Structure
Browser based on either the ID or the name of the device or interface for a specific domain. Use the
selectedEntityId or selectedEntityName parameters to drill into a device containment and select
a contained entity such as a VLAN object or an interface.

Structure Browser URL parameters
domain

The domain to which this entity belongs.
entityId

The ID of the entity to consider as the root of the structure view tree.
entityName

The name of the entity to consider as the root of the structure view tree. If you intend on using this
parameter, you must also supply the domain.

selectEntityId
The ID of the selected entity in the structure view tree. This entity might be an interface that is
selected on the overall device containment.

selectEntityName
The name of the selected entity in the structure view tree. This entity might be an interface that is
selected on the overall device containment.

tableMode
The mode in which the Structure Browser opens, when it opens in table mode. Allowed values are:
devicetable, interfacestable, connectivitytable, nodeToNodeConnections.

viewMode
The mode in which the Structure Browser opens. Allowed values are: tree or table.

Structure Browser URL examples
• Example URL for a Structure View of device by ID.

https://host:port/ibm/console/ncp_structureview/Launch.do?entityId=9
• Example URL for a Structure View of device by name and domain.

The domain value must be supplied when you start the Structure Browser by entityName.
https://host:port/ibm/console/ncp_structureview/Launch.do?entityName=ny-p1-
cr28.na.test.lab&domain=AUTO

• Example URL for a Structure View of a VLAN interface within a device by name and domain.

This view is of the interface within the device structure. The domain value must be supplied when
you start the Structure Browser by entityName.
https://host:port/ibm/console/ncp_structureview/Launch.do?entityName=ny-p1-
cr28.na.test.lab&domain=AUTO&selectEntityName=ny-p1-
cr28.na.test.lab[Vl85]

• Example URL for a Structure View of a VLAN interface by name and domain

Chapter 30. Web Applications configuration reference 971

This view is of the interface structure only. The domain value must be supplied when you start the
Structure Browser by entityName.
https://host:port/ibm/console/ncp_structureview/Launch.do?entityName=ny-p1-
cr28.na.test.lab[Vl85]&domain=AUTO&selectEntityName=ny-p1-
cr28.na.test.lab[Vl85]

• Example URL for a Structure View of a VLAN interface within a device by ID.

https://host:port/ibm/console/ncp_structureview/Launch.do?
entityId=9&selectEntityId=1474

• Example URL for a Structure View displayed in table mode with device connectivity displayed.

https://host:port/ibm/console/ncp_structureview/Launch.do?
entityId=85&viewMode=table&tableMode=connectivitytable

Web Tools URL reference
You can also launch WebTools by specifying a URL in your web browser to call up a form-based interface.
This is useful if you want to gain access to WebTools without logging into Topoviz.

To launch WebTools using a URL:

1. Open a supported web browser and enter the following URL:

https://host:port/ibm/console/ncp_webtools/pages/ncp_wt_index.jsp?
domain=domain name&removeHttpHeader=true
&servletDebug=false

In this URL:

• host is the IP address of the host on which the Dashboard Application Services Hub server is
running.

• port is the port to access on the host on which the Dashboard Application Services Hub server is
running. By default this takes the value of 16311.

• domain is the domain you want to access with the tools.

For example,

https://test.itnm.com:16311/ibm/console/ncp_webtools/pages/ncp_wt_index.jsp?
domain=NCOMS&removeHttpHeader=true
&servletDebug=false

The Dashboard Application Services Hub Login page appears in the web browser.
2. Enter your username and password.

Note: Usernames and passwords are case-sensitive.
3. Click the Log In button.

The main WebTools menu appears. This provides access to the following web tools:

• General tools
• Cisco-specific tools
• Juniper-specific tools

Note: It is also possible to launch a web tool from a third-party application, such as a web page. To do
this, launch the desired web tool in Topoviz, copy the URL that Topoviz generates in the Address field of
your browser, and paste this URL to the third-party application.

Path Views URL parameters
You can create a new Path View or find a device in an existing Path View by specifying a URL in your Web
browser.

The following table shows the parameters for Path Views.

972 IBM Tivoli Network Manager IP Edition: Reference

Table 614. URL parameters for Path Views

Parameter Description Required?

domain The name of the Network Manager domain. Yes, to create a
path.

entityID The ID of the entity to find in a path. Yes

Example: URL to create a new path

https://host:port/ibm/console/ncp_topoviz/PathViewNewPath.do?domain=MPLSTEST&entityId=10690

Example: URL to find a device in a path

https://host:port/ibm/console/ncp_topoviz/FindPathView.do?entityId=10690

Cisco and Juniper WebTools commands
Use this information to determine which commands are executed by the Cisco and Juniper WebTools.

The following topics list the relevant commands.

Cisco information tools
Use this information to determine which commands are executed by the WebTools that retrieve
information from Cisco devices.

The following table shows the commands executed by the Cisco information tools, and specifies how to
launch each web tool from a network map within the Hop View or Network Views, and from the main
WebTools menu.

Table 615. Cisco Information Tools Reference

Web Tool Commands executed Right-click menu option Menu option in the
main WebTools menu

Cisco
Information Tool
– BGP

show ip bgp summary

show ip bgp flap-
statistics

show ip bgp dampened-
paths

show ip bgp inconsistent-
as

show ip bgp neighbors

Webtools > Information Tools
> View BGP Information

Cisco Information Tool
> BGP information

Cisco
Information Tool
– Interface

show ip interface brief Webtools > Information Tools
> View Interfaces

Cisco Information Tool
> Interface
information

Cisco
Information Tool
– ISIS

show isis neighbors

show isis topology

Webtools > Information Tools
> View ISIS Information

Cisco Information Tool
> ISIS information

Chapter 30. Web Applications configuration reference 973

Table 615. Cisco Information Tools Reference (continued)

Web Tool Commands executed Right-click menu option Menu option in the
main WebTools menu

Cisco
Information Tool
– MBGP

show ip bgp vpn all flap-
statistics

show ip bgp vpn all
dampened-paths

show ip bgp vpn all
neighbors

show ip bgp vpn all paths

Webtools > Information Tools
> View MBGP Information

Cisco Information Tool
> MBGP information

Cisco
Information Tool
– MPLS

show ip rsvp interface

show ip vrf detail

show mpls l2transport vc

show mpls forwarding-
table

Webtools > Information Tools
> View MPLS Information

Cisco Information Tool
> MPLS information

Cisco
Information Tool
– MPLS TE

show mpls traffic-eng
tunnels brief

show mpls traffic-eng
autoroute

Webtools > Information Tools
> View MPLS TE Information

Cisco Information Tool
> MPLS TE Tunnel
information (general)

Cisco
Information Tool
– MPLS TE
(filtered)

show mpls traffic-eng
tunnels source
source

show mpls traffic-eng
tunnels destination
destination

show mpls traffic-eng
tunnels tunnelInterface

show mpls traffic-eng
tunnels role
[all|head|middle|remote
|tail]

Webtools > Information Tools
> View MPLS TE Information
(filtered)

Not available

Cisco
Information Tool
– MPLS TE Link
Management

show mpls traffic-eng
link-management
summary

show mpls traffic-eng
link-management
interfaces [interface]

Webtools > Information Tools
> View MPLS TE Link
Management Information

Not available

974 IBM Tivoli Network Manager IP Edition: Reference

Table 615. Cisco Information Tools Reference (continued)

Web Tool Commands executed Right-click menu option Menu option in the
main WebTools menu

Cisco
Information Tool
– OSPF

show ip ospf

show ip ospf interface

show ip ospf neighbor

show ip ospf border-
routers

show ip ospf statistics

Webtools > Information Tools
> View OSPF Information

Cisco Information Tool
> OSPF Information

Cisco
Information Tool
– Routing
Summary

show ip protocols

show ip route summary

show ip route static

show ip route eigrp

show ip route ospf

show ip route isis

Webtools > Information Tools
> View Routing Summary
Information

Cisco Information Tool
> Routing summary

Cisco
Information Tool
– VRF List

show ip vrf list

show ip vrf interfaces

Webtools > Information Tools
> View VRF Information

Cisco Information Tool
> VRF list

Cisco diagnostic tools
Use this information to determine which commands are executed by the WebTools that perform diagnosis
on Cisco devices.

The following table shows the commands executed by the Cisco diagnostic tools, and specifies how to
launch each web tool from a network map within the Hop View or Network Views, and from the main
WebTools menu.

Table 616. Cisco and Juniper WebTools Reference

Web Tool Commands Executed Menu Option Menu Option in the
main WebTools menu

Cisco Route
Information
Tool

show ip route target Cisco Tools… Diagnostic
Tools… View a Route…

Cisco Routing
Information

Cisco VRF
Information
Tool

show ip route vrf
vrf_name target

Not available Cisco VRF
Information

Cisco Ping Tool ping target Cisco Tools…

Diagnostic Tools…

Ping from this device…

Cisco Ping

Chapter 30. Web Applications configuration reference 975

Table 616. Cisco and Juniper WebTools Reference (continued)

Web Tool Commands Executed Menu Option Menu Option in the
main WebTools menu

Cisco LSP Ping
Tool

ping mpls ipv4 target
verbose

Cisco Tools…

Diagnostic Tools…

LSP Ping from this device…

Cisco LSP Ping

Cisco VRF Ping
Tool

ping vrf vrf_name ip
target

Cisco Tools…

Diagnostic Tools…

VRF Ping from this device…

Cisco VRF Ping

Cisco
Traceroute Tool

traceroute target Cisco Tools…

Diagnostic Tools…

Traceroute from this
device…

Cisco Traceroute

Cisco LSP
Traceroute Tool

traceroute mpls ipv4
target verbose

Cisco Tools…

Diagnostic Tools…

LSP Traceroute from this
device…

Cisco LSP Traceroute

Cisco VRF
Traceroute Tool

traceroute vrf vrf_name
ip target

Cisco Tools…

Diagnostic Tools…

VRF Traceroute from this
device…

Cisco VRF Traceroute

Juniper information tools
Use this information to determine which commands are executed by the WebTools that retrieve
information from Juniper devices.

The following table shows the commands executed by the Juniper information tools, and specifies how to
launch each web tool from a network map within the Hop View or Network Views, and from the main
WebTools menu.

Table 617. Cisco and Juniper WebTools Reference

Web Tool Commands Executed Menu Option Menu Option in the
main WebTools menu

Juniper
Information
Tool – BGP

show ip bgp summary

show ip bgp flap-
statistics

show ip bgp dampened-
paths

show ip bgp
inconsistent-as

show ip bgp neighbors

Juniper Tools…

Information Tools…

View BGP Information…

Juniper Information
Tool

976 IBM Tivoli Network Manager IP Edition: Reference

Table 617. Cisco and Juniper WebTools Reference (continued)

Web Tool Commands Executed Menu Option Menu Option in the
main WebTools menu

Juniper
Information
Tool –
Interfaces

show ip interface brief Juniper Tools…

Information Tools…

View Interfaces…

Juniper Information
Tool

Juniper
Information
Tool – ISIS

show isis neighbors

show isis topology

Juniper Tools…

Information Tools...

View ISIS Information…

Juniper Information
Tool

Juniper
Information
Tool – MPLS

show ip rsvp interface

show ip vrf detail

show mpls l2transport
vc

show mpls forwarding-
table

Juniper Tools…

Information Tools…

View MPLS Information…

Juniper Information
Tool

Juniper
Information
Tool – OSPF

show ip ospf

show ip ospf interface

show ip ospf neighbor

show ip ospf border-
routers

show ip ospf statistics

Juniper Tools…

Information Tools…

View OSPF Information…

Juniper Information
Tool

Juniper
Information
Tool – Routing
Summary

show ip protocols

show ip route summary

show ip route static

show ip route eigrp

show ip route ospf

show ip route isis

Juniper Tools…

Information Tools…

View Routing Summary
Information…

Juniper Information
Tool

Juniper
Information
Tool – VRF List

show ip vrf list

show ip vrf interfaces

Juniper Tools…

Information Tools…

View VRF Information…

Juniper Information
Tool

Juniper diagnostic tools
Use this information to determine which commands are executed by the WebTools that perform diagnosis
on Cisco devices.

The following table shows the commands executed by the Juniper diagnostic tools, and specifies how to
launch each web tool from a network map within the Hop View or Network Views, and from the main
WebTools menu.

Chapter 30. Web Applications configuration reference 977

Table 618. Juniper Diagnostic Tools

Web Tool Commands Executed Menu Option Menu Option in the
main WebTools menu

Juniper Route
Information
Tool

show route target Juniper Tools…

Diagnostic Tools…

View a Route…

Juniper Routing
Information

Juniper Ping
Tool

ping target Juniper Tools…

Diagnostic Tools…

Ping from this device…

Juniper Ping

Juniper
Traceroute Tool

traceroute target Juniper Tools…

Diagnostic Tools…

Traceroute from this
device…

Juniper Traceroute

978 IBM Tivoli Network Manager IP Edition: Reference

Chapter 31. Report reference
Network Manager reports are grouped by their function. Use this reference to understand the typical uses,
prerequisites, and other properties of each report.

Network Manager data model
Network Manager provides Cognos® data model namespaces, which contain query subjects to use to build
up reports.

Namespaces
The Network Manager data model provides the following namespaces for designing reports.

Event
The Event namespace contains query subjects to create Current Status reports.

Monitoring Data
The Monitoring Data namespace contains query subjects to create Performance reports. The polled
data timestamp has a time dimension relationship to allow time dimension reports. The data for the
Monitoring Data namespace comes from the NCPOLLDATA database.

Network
The Network namespace contains query subjects to create Asset and Troubleshooting reports. The
data for the Network namespace comes from the NCIM database.

Network Views
The Network Views namespace contains query subjects to create reports about network views and
policies updating views. The data for the Network Views namespace comes from the NCPGUI and
NCMONITOR databases.

Path Views
The Path Views namespace contains query subjects to create Path Views reports.

Shared
The Shared namespace contains query subjects that can be shared to prevent query subject
duplicates.

Shared Dimensions
The Shared Dimensions namespace contains query subjects to create reports with Time Dimension.

Performance Value
The Performance Value namespace contains the performance value to build reports based on Time.

Monitoring Dimension
The Monitoring Dimension namespace contains the monitoring information to navigate through its
attributes.

Asset reports
Asset reports provide views on the discovered attributes of the network devices for inventory information.

To access the Asset reports, complete the following steps. Click the Reporting icon and select Common
Reporting. Within the widget, select Network Manager. A list of folders display. These folders contain all
Cognos reports for your access. Then click Asset Reports.

© Copyright IBM Corp. 2006, 2021 979

Card Detail by Device Type report
Displays the results of device discovery operations performed by the entity MIB agent. The report is
organized by device type and is based on the data extracted from the entPhysicalVendorType entity MIB
table.

Report properties
The following table describes the Card Detail by Device Type report.

Table 619. Properties of the Card Detail by Device Type report

Property Description

Typical uses Use this report identify the card details within a
device.

Prerequisites This report uses information from the Entity MIB,
and requires the Entity discovery agent to be
enabled.

Discovery report
Displays the results of the network discovery organized by device vendor. The report displays a list of
vendor names. It lists device classes for each vendor.

Report properties
The following table describes the Discovery report.

Table 620. Properties of the Discovery report

Property Description

Typical uses Use this report to look up interface details on a
device, such as spare ports, or MAC and IP
addresses.

Prerequisites None

Interface Availability report
Displays a table of interface types and statuses broken down by vendor, class name and device. The
report also displays the count of each interface type on the network and the status of those interfaces (up
or down). One report is displayed for each selected domain.

Report properties
The following table describes the Interface Availability report.

Table 621. Properties of the Interface Availability report

Property Description

Typical uses Use this report to determine the counts of each
interface type, both functioning and non-
functioning.

Prerequisites None

980 IBM Tivoli Network Manager IP Edition: Reference

IP Addressing Summary report
Displays information on the IP addresses used in the network grouped according to CIDR notations.

Report properties
The following table describes the IP Addressing Summary report.

Table 622. Properties of the IP Addressing Summary report

Property Description

Typical uses Use this report to identify IPv4 subnets with spare
IP addressing capacity or those subnets over a
specific threshold of allocated IP addresses.

Prerequisites None

Operating System by Device report
Displays information on the operating systems running on the various devices in your network. This report
only shows information for Cisco and Juniper devices.

Report properties
The following table describes the Operating System by Device report.

Table 623. Properties of the Operating System by Device report

Property Description

Typical uses Use this report to show operating system details by
device and vendor. For example, you can locate
devices with a certain operating system that has a
newly released security update.

Prerequisites The OSInfo agent must be run during discovery in
order for the information required for this report to
be available.

Context reports
Context reports show information related to the selected device.

To access Context reports, right-click a device in any topology view and select Reports > Report name.

Bandwidth In Utilization report
Displays the SNMP in bandwidth utilization of a device.

Report properties
This is the Bandwidth Utilization report using snmpInBandwidth poll policy. The following table describes
the Bandwidth In Utilization report.

Table 624. Properties of the Bandwidth In Utilization report

Property Description

Typical uses Use this report to see the bandwidth in use of
selected.

Chapter 31. Report reference 981

Table 624. Properties of the Bandwidth In Utilization report (continued)

Property Description

Prerequisites To use this report, you must enable the
snmpInBandwidth poll policy with the Store Poll
Data option enabled.

IfInDiscards report
Displays the ifInDiscards of the device.

Report properties
This is the Cognos Generic Trend Analysis report using ifInDiscards poll policy. The following table
describes the IfInDiscards report.

Table 625. Properties of the IfInDiscards report

Property Description

Typical uses Use this report to see the trend of the discarded
packets of an interface on a device.

Prerequisites To use this report, you must enable the
ifInDiscards poll policy with the Store Poll Data
option enabled.

Memory usage report
Displays the memory usage of a device.

Report properties
This is the Cognos Generic Trend Analysis report using memoryPoll poll policy. The following table
describes the Memory usage report.

Table 626. Properties of the Memory usage report

Property Description

Typical uses Use this report to see the trend of the memory
usage of a device.

Prerequisites To use this report, you must enable the
memoryPoll poll policy with the Store Poll Data
option enabled.

CPU Usage report
Displays the CPU usage of the device.

Report properties
This is the Cognos Generic Trend Analysis report using cpuBusyPoll poll policy. The following table
describes the CPU Usage report.

Table 627. Properties of the CPU Usage report

Property Description

Typical uses Use this report to see a history of the CPU usage of
a device.

982 IBM Tivoli Network Manager IP Edition: Reference

Table 627. Properties of the CPU Usage report (continued)

Property Description

Prerequisites To use this report, you must enable the
cpuBusyPoll poll policy with the Store Poll Data
option enabled.

Monitoring reports
Monitoring reports provide a list of devices being polled under each monitoring policy to help you verify
that you are polling the correct devices for the correct information.

To access the Monitoring reports, complete the following steps. Click the Reporting icon and select
Common Reporting. Within the widget, select Network Manager. A list of folders display. These folders
contain all Cognos reports for your access. Then click Monitoring Reports.

Monitoring Device Details report
Displays detailed information about the monitoring policies enabled for a device. To run this report you
must have poll policies with the store option enabled.

Report properties
The following table describes the Monitoring Device Details report.

Table 628. Properties of the Monitoring Device Details report

Property Description

Typical uses You would run this report to verify how a particular
device is being monitored by Network Manager by
listing all the policies whose scope matches this
device.

Prerequisites To run this report you must have poll policies with
the store option enabled.

Monitoring Policy Details report
Displays detailed information about a selected monitoring policy. To run this report you must have poll
policies with the store option enabled.

Report properties
The following table describes the Monitoring Policy Details report.

Table 629. Properties of the Monitoring Policy Details report

Property Description

Typical uses Run this report to verify the list of devices being
monitored by this policy.

Prerequisites To run this report you must have poll policies with
the store option enabled.

Chapter 31. Report reference 983

Monitoring Summary report
Also known as the Monitoring Policies report, if it is launched as a right-click report. Displays all the
enabled policies and for each policy all the devices and interfaces that match the scope. To run this report
you must have poll policies with the store option enabled.

Report properties
The following table describes the Monitoring Summary report.

Table 630. Properties of the Monitoring Summary report

Property Description

Typical uses You can run this report to archive the monitoring
configuration for your network, or use it for
reference purposes offline.

Prerequisites To run this report you must have poll policies with
the store option enabled.

Data model Cognos

Network Technology reports
Network Technology reports provide insight into the states of BGP, OSPF, and VLAN networks based on
information gathered during discovery.

Click the Reporting icon and select Common Reporting. Within the widget, select Network Manager. A
list of folders display. These folders contain all Cognos reports for your access. Click Network Technology
Reports.

BGP Details report
Displays detailed information about BGP Sessions and Autonomous Systems.

Report properties
The following table describes the BGP Details report.

Table 631. Properties of the BGP Details report

Property Description

Typical uses Run this report to see the members of each BGP
session and its state for each Autonomous System.
View the details of any route reflectors and their
clients and the state of each member of the
Autonomous Systems.

Prerequisites None

BGP Summary report
Displays charts and tables with BGP Session and Autonomous System Summary information.

Report properties
The following table describes the BGP Summary report.

984 IBM Tivoli Network Manager IP Edition: Reference

Table 632. Properties of the BGP Summary report

Property Description

Typical uses Run this report to see a quick count of the
elements in the BGP environment including the
Autonomous Systems, inter-AS, and sessions per
state.

Prerequisites None

LTE Interfaces report
Displays a list of all LTE interfaces.

Report properties
The following table describes the LTE Interfaces report.

Table 633. LTE Interfaces report

Property Description

Typical uses Run this report to view a list of all LTE interfaces
arranged according to interface type.

Prerequisites None

MPLS VPN Details report
Displays detailed information about discovered MPLS VPNs including VRFs, Route Distinguishers, Route
Targets, and VPWS.

Report properties
The following table describes the MPLS VPN Details report.

Table 634. Properties of the MPLS VPN Details report

Property Description

Typical uses Run this report to see details of the MPLS VPNs
discovered in this domain. See details of the VRF
Route Targets including import/export mismatches,
membership details of VPN and VPWS, as well as
PE/CE connections and PE/P connections.

Prerequisites None

MPLS VPN Summary report
Displays charts and tables with MPLS VPN summary information.

Report properties
The following table describes the MPLS VPN Summary report.

Chapter 31. Report reference 985

Table 635. Properties of the MPLS VPN Summary report

Property Description

Typical uses Run this report to see a quick list and count of the
VPNs, VPWS devices, and associated PE/CE
devices.

Prerequisites None

VLAN Details report
Displays detailed information about VLANs and trunk ports.

Report properties
The following table describes the VLAN Details report.

Table 636. Properties of the VLAN Details report

Property Description

Typical uses Run this report to see a list of VLAN IDs on each
interface of a VLAN supported device, or a list of
interfaces in each VLAN ID.

Prerequisites None

Network Views reports
These reports show details about network views.

To access the Network Views reports, complete the following steps. Click the Reporting icon and select
Common Reporting. Within the widget, select Network Manager. A list of folders display. These folders
contain all Cognos reports for your access. Then click Network Views Reports.

Monitored Network Views report
Displays the poll definitions, policies, and entities that are being monitored for each network view.

Report properties
The following table describes the Monitored Network Views report.

You can drill down from this report to see the devices and interfaces monitored by an individual poll
definition in the Monitored Network Views Drilldown report.

Table 637. Properties of the Monitored Network Views report

Property Description

Typical uses Run this report to see the poll definitions, policies,
and entities that are being monitored.

Prerequisites None

Path Views reports
Path Views reports allow you to view device and routing information for IP and MPLS TE paths.

To access the Path Views reports, complete the following steps. Click the Reporting icon and select
Common Reporting. Within the widget, select Network Manager. A list of folders display. These folders
contain all Cognos reports for your access. Click Path Views Reports.

986 IBM Tivoli Network Manager IP Edition: Reference

IP Path Summary report
Displays all the IP Paths configured.

Report properties
The following table describes the IP Path Summary report.

Table 638. Properties of the IP Path Summary report

Property Description

Typical uses Use this report to view a list of all user created
paths showing ingress and egress information of
the path, status, and path changes. From this
report drill down into any of the paths to check
ingress and egress interface details of each hop.

Prerequisites None

IP Routing Info report
Displays the device and routing information for a specific device or multiple devices on the path.

Report properties
The following table describes the IP Routing Info report.

Table 639. Properties of the IP Routing Info report

Property Description

Typical uses Generate this report from a member device of a
user-created path on a topology map to see details
of the ingress and egress interfaces of the device
for this path.

Prerequisites None

MPLS TE Path Summary report
Displays all the MPLS TE Tunnels that were discovered in the network.

Report properties
The following table describes the MPLS TE Path Summary report.

Table 640. Properties of the MPLS TE Path Summary report

Property Description

Typical uses Use this report to view a list of all MPLS-TE tunnels
showing ingress and egress information of the
tunnel, status, and path changes. From this report
drill down into any of the tunnels to check ingress
and egress interface details of each hop.

Prerequisites None

Chapter 31. Report reference 987

MPLS TE Routing Info report
Displays the device and routing information for a specific device or multiple devices on the tunnel.

Report properties
The following table describes the MPLS TE Routing Info report.

Table 641. Properties of the MPLS TE Routing Info report

Property Description

Typical uses Generate this report from a member device of a
MPLS-TE tunnel on any topology map to see details
of the ingress and egress interfaces of the device
for this tunnel.

Prerequisites None

Performance reports
Performance reports allow you to view the last hour of performance data that has been collected by the
monitoring system for diagnostic purposes. In addition, the Device Summarization, Interface
Summarization, and Interface Availability Summarization reports allow you to view any historical
performance data that has been collected by the monitoring system. View trend and topN charts for data
to gain insight on short term behaviors.

To access the Performance reports, complete the following steps. Click the Reporting icon and select
Common Reporting. Within the widget, select Network Manager. A list of folders display. These folders
contain all Cognos reports for your access. Then click Performance Reports.

Note: The amount of historical data that the system can store and, consequently, the amount of historical
data that the Performance reports can display, is restricted by default to preserve report performance.
You can increase the storage limit for historical performance data; however, this can lead to a degradation
in the performance of the Performance reports.

Bandwidth Top N report
Displays the bandwidth of the top N devices.

Report properties
The following table describes the Bandwidth Top N report.

Table 642. Properties of the Bandwidth Top N report

Property Description

Typical uses Use this report to identify interfaces with the
heaviest bandwidth use, and drill down to see the
usage over time.

Prerequisites None

Bandwidth Utilization report
Displays the bandwidth utilization of a device.

Report properties
The following table describes the Bandwidth Utilization report.

988 IBM Tivoli Network Manager IP Edition: Reference

Table 643. Properties of the Bandwidth Utilization report

Property Description

Typical uses Use this report to see the bandwidth use of
selected devices, and drill down to see the usage
over time per interface.

Prerequisites None

Composite Trending report
Displays a composite chart that contains data for two poll definitions.

Report properties
The following table describes the Composite Trending report.

Table 644. Properties of the Composite Trending report

Property Description

Typical uses Use this report to show a list of selected devices
and drill down to see the trend of up to six data
items.

Prerequisites None

Device Availability Summarization
Displays a summary of device availability for the last seven days. This report uses the historical poll data
tables in the NCPOLLDATA database.

Report properties
The following table describes the Device Availability Summarization report.

Table 645. Properties of the Device Availability Summarization report

Property Description

Typical uses Use this report to see device availability data
collected and summarized over the last seven
days.

Prerequisites To use this report, you must be using Apache
Storm to aggregate raw poll data into historical poll
data.

Device Summarization report
Displays summarization data for devices. This report uses the historical poll data tables in the
NCPOLLDATA database.

Report properties
The following table describes the Device Summarization report.

Chapter 31. Report reference 989

Table 646. Properties of the Device Summarization report

Property Description

Typical uses Use this report to see device level data collected
and summarized over a longer period of time.

Prerequisites To use this report, you must be using Apache
Storm to aggregate raw poll data into historical poll
data.

.Data model Cognos

Historical SNMP Top or Bottom N report
Displays the top or bottom N devices with drilldown to a chart according to device or interface.

Report properties
The following table describes the Historical SNMP Top or Bottom N report.

Table 647. Properties of the Historical SNMP Top or Bottom N report

Property Description

Typical uses Use this report to identify the best or worst
performers, by average value, for any collected
SNMP metric, and drill down to see the trend over
time.

Prerequisites None

Historical SNMP Trend Analysis report
Displays the device summary with drilldown to a chart according to device or interface.

Report properties
The following table describes the Historical SNMP Trend Analysis Report.

Table 648. Properties of the Historical SNMP Trend Analysis Report

Property Description

Typical uses Use this report to see the average values collected
for of a list of selected devices and drilldown to see
the trend over time for that data item.

Prerequisites None

Historical SNMP Trend Quick View report
Displays the device list with drilldown to a chart according to device or interface.

Report properties
The following table describes the Historical SNMP Trend Quick View report.

990 IBM Tivoli Network Manager IP Edition: Reference

Table 649. Properties of the Historical SNMP Trend Quick View report

Property Description

Typical uses Use this report to quickly list a set of selected
devices to be used as an index to drill down to see
a trend graph over time.

Prerequisites None

Interface Availability Summarization report
Displays a summary of interface availability for the last seven days. This report uses the historical poll
data tables in the NCPOLLDATA database.

Report properties
The following table describes the Interface Availability Summarization report.

Table 650. Properties of the Interface Availability Summarization report

Property Description

Typical uses Use this report to see interface availability data
collected and summarized over the last seven
days.

Prerequisites To use this report, you must be using Apache
Storm to aggregate raw poll data into historical poll
data.

Interface Summarization report
Displays summarization data for interfaces. This report uses the historical poll data tables in the
NCPOLLDATA database.

Report properties
The following table describes the Interfaces Summarization report.

Table 651. Properties of the Interfaces Summarization report

Property Description

Typical uses Use this report to see interface level data collected
and summarized over a longer period of time.

Prerequisites To use this report, you must be using Apache
Storm to aggregate raw poll data into historical poll
data.

Data model Cognos

System Availability Summary report
Displays availability summary for devices with drilldown to a chart according to device. This report is
based on the sysUptime data.

Report properties
The following table describes the System Availability Summary report.

Chapter 31. Report reference 991

Table 652. Properties of the System Availability Summary report

Property Description

Typical uses Use this report to see availability statistics as
defined by collected sysUptime data.

Prerequisites None

Troubleshooting reports
Troubleshooting reports help you identify problems while optimizing the discovery of the network as well
as help identify possible problems discovered in the network such as duplex mismatches.

To access the Troubleshooting reports, complete the following steps. Click the Reporting icon and select
Common Reporting. Within the widget, select Network Manager. A list of folders display. These folders
contain all Cognos reports for your access. Then click Troubleshooting Reports.

Connected Interface Duplex Mismatch report
Displays a list of connections where one end of the connection is half-duplex and the other end is full-
duplex.

Report properties
The following table describes the Connected Interface Duplex Mismatch report.

Table 653. Properties of the Connected Interface Duplex Mismatch report

Property Description

Typical uses Diagnosing performance or availability issues.

Tip: The duplex value for the interfaces are learned
at discovery time from the dot3StatsDuplexStatus
value in the EtherLike-MIB.mib. This MIB defines
the values for dot3StatsDuplexStatus as:
unknown(1); halfDuplex(2); and fullDuplex(3). A
value of unknown means that Network Manager
cannot determine the duplex status based on the
available MIB information.

Prerequisites A completed and successful discovery with the
Interface Agent enabled.

Devices Pending Delete on Next Discovery report
Displays information on devices to be deleted from the topology if they are not found during the next
discovery cycle.

Report properties
The following table describes the Devices Pending Delete on Next Discovery report.

992 IBM Tivoli Network Manager IP Edition: Reference

Table 654. Properties of the Devices Pending Delete on Next Discovery report

Property Description

Typical uses If device has been removed from the network, it
will remain in the topology for x more discoveries,
where x is the value of the LingerTime variable for
the device in the topology database. This report
can show devices that you do not expect to be
deleted from the topology, and you can investigate
why they were not discovered.

Prerequisites None

Devices with no SNMP Access report
Displays those devices to which the discovery could not get SNMP access.

Report properties
The following table describes the Devices with no SNMP Access report.

Table 655. Properties of the Devices with no SNMP Access report

Property Description

Typical uses Troubleshooting devices for which no connectivity
information was discovered. There might be a
number of reasons why the discovery agents could
not get SNMP access to these devices, for example,
incorrect SNMP community strings.

Prerequisites None

Devices with Unclassified SNMP Object IDs report
Displays those devices with SNMP Object IDs (OIDs) that have not been assigned to specific classes.

Report properties
The following table describes the Devices with Unclassified SNMP Object IDs report.

Table 656. Properties of the Devices with Unclassified SNMP Object IDs report

Property Description

Typical uses This report shows devices that could not be
classified properly by analyzing the ncim.mappings
table to check whether the sysObjectId is
recognized. You can then investigate whether the
Active Object Classes (AOCs) need to be modified
to be able to classify devices with these OIDs. For
example, the correct agents might not have been
run.

Prerequisites None

Chapter 31. Report reference 993

Devices with Unknown SNMP Object IDs report
Displays those devices with unknown SNMP Object IDs (OIDs).

Report properties
The following table describes the Devices with Unknown SNMP Object IDs report.

Table 657. Properties of the Devices with Unknown SNMP Object IDs report

Property Description

Typical uses Use this report to identify devices with sysObjectId
that were not recognized. For example, Network
Manager might recognize the sysObjectID as
belonging to a specific vendor, but not the specific
model. Such devices are collected in the class
NetworkDevice. Update both the AOC files and the
ncim.mappings table in order to correctly classify
the device.

Prerequisites None

Utility reports
Utility reports display all discovered devices and their interfaces in different views.

To access the Utility reports, complete the following steps. Click the Reporting icon and select Common
Reporting. Within the widget, select Network Manager. A list of folders display. These folders contain all
Cognos reports for your access. Then click Utility Reports.

Discovered Nodes and Interfaces Flat File List report
Displays all discovered devices and interfaces.

Report properties
The following table describes the Discovered Nodes and Interfaces Flat File List report.

Table 658. Properties of the Discovered Nodes and Interfaces Flat File List report

Property Description

Typical uses Use this report to archive discovered devices and
interfaces, or to export to a third party tool such as
a spreadsheet or database.

Prerequisites None

994 IBM Tivoli Network Manager IP Edition: Reference

Notices

This information applies to the PDF documentation set for IBM Tivoli Network Manager IP Edition.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 2006, 2021 995

958/NH04
IBM Centre, St Leonards
601 Pacific Hwy
St Leonards, NSW, 2069
Australia

IBM Corporation
896471/H128B
76 Upper Ground
London
SE1 9PZ
United Kingdom

IBM Corporation
JBF1/SOM1 294
Route 100
Somers, NY, 10589-0100
United States of America

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Trademarks
The terms in Table 659 on page 997 are trademarks of International Business Machines Corporation in
the United States, other countries, or both:

996 IBM Tivoli Network Manager IP Edition: Reference

Table 659. IBM trademarks

AIX® Informix® PR/SM

BNT iSeries System p

ClearQuest Jazz System z

Cognos Lotus Tivoli®

Db2 Netcool® WebSphere

Db2 Universal Database NetView® z/OS®

developerWorks® OMEGAMON® z/VM®

DS8000 Passport Advantage zSeries

Enterprise Storage Server® PowerPC

IBM PowerVM®

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based trademarks are either
registered trademarks or trademarks of Adobe Systems Incorporated in the United States, other
countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Privacy policy considerations
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering's use of cookies is set forth below.

This Software Offering may collect IP addresses, user names and passwords for the purpose of
performing network discovery. Failure to enable the collection of this information would likely eliminate
important functionality provided by this Software Offering. You as customer should seek your own legal
advice about any laws applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for these purposes, See
IBM's Privacy Policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at http://
www.ibm.com/privacy/details, and the section entitled "Cookies, Web Beacons and Other Technologies"
and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/
privacy.

Notices 997

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy
http://www.ibm.com/privacy

998 IBM Tivoli Network Manager IP Edition: Reference

IBM®

Part Number:

Printed in the Republic of Ireland

2021-4213-01

(1
P)
 P

/N
:

	Contents
	About this publication
	Publications
	Accessibility
	Tivoli technical training
	Support and community information

	Part 1. Languages
	Chapter 1. Object Query Language
	Conventions and sample databases
	Features of OQL
	General rules of OQL
	Quotes in OQL
	OQL punctuation
	Logical operators of OQL
	Precedence and association of operators
	Use of regular expressions
	Key differences between OQL and SQL

	Database and table creation
	Datatypes
	Objects and varbinds
	External datatypes

	Column constraints
	Default values
	Unique
	Counter
	Timestamp

	Examples of database and table creation

	Inserting data into a table
	Example of inserting data into a database
	Example of an invalid insert
	Example list and object datatypes

	Selecting data from a table
	Counting rows in a table
	Conditional tests in OQL
	Examples of the like operator
	Example use of the and Operator
	Example use of the or operator
	Example selection based on part of an object

	Use of select to perform subqueries
	Example of using subqueries to search a list
	Examples of selecting based on part of a list

	Selection of data into another table
	Examples of using any, *, and all to perform table joins

	Updates to records in tables
	Examples of updating a list
	Example of updating an object

	Database and table listings
	Deletion of a record from a database table
	Deletion of a database or table
	The eval statement
	Scope of the eval statement
	Quotation marks in eval statements
	Single straight back quotes
	Examples of the eval statement
	Character escape sequences
	Multibyte data type
	Eval statement keywords
	Use of the CAT keyword
	Use of the DELETE statement
	Use of the FIRSTVALID keyword
	Use of the LENGTH keyword
	Use of the LOOKUP keyword
	Use of the IPTOLONG keyword
	Use of the LONGTOIP keyword
	Use of the REGEXPMATCH keyword
	Use of the TIMESTAMP keyword

	Chapter 2. Stitchers and stitcher language
	Stitcher formats
	Stitcher structure
	Stitcher triggers
	Stitcher rules

	Stitcher language
	Stitcher text file structure
	Structure of precompiled stitchers
	Structure of text-based stitchers

	Stitcher trigger conditions
	ActOnDemand();
	ActOnEvent()
	ActOnTableDelete()
	ActOnTableInsert();
	ActOnTableUpdate()
	ActOnTimedTrigger();
	DiscoRequiresAgents();
	DiscoRequiresLastPhase();
	DiscoRequiresPhase();
	RequiresStitchers();
	Examples of timed triggers

	Stitcher rules
	Variables in the stitcher rules
	The RecordList and Record datatypes
	Variable declaration and use
	Accessing fields in records

	Looping within the stitcher rules
	The for loop
	The while Loop
	The if statement
	The foreach Loop

	List of stitcher rules
	General stitcher rules
	CommitSQLTransaction()
	delete()
	ExecEvalOnRecord()
	ExecuteOQL()
	ExecuteSQL()
	ExecuteStitcher()
	Extraction of variable passed to a stitcher

	ExecuteStitcherOnTimer
	FetchLastInsertedIdForSQL()
	GetInScopeRecord()
	GetRecordFromScope()
	IsInSubnet()
	IsRecordInFilter()
	Log()
	MatchPattern()
	String extraction
	Example of pseudowire

	MergeEntities()
	PrepareSQL()
	PrepareSQLAutoColumn()
	Print()
	PrintRecord()
	RaiseEvent()
	RetrieveOQL()
	RetrieveOQLFromService()
	RetrieveSingleOQL()
	RollbackSQLTransaction()
	SendOQLtoService()
	SendAllOQLToService()
	SetReturnValue()
	StandardiseIPv6()
	StartSQLTransaction()
	StitcherTimeCheck()

	Discovery stitcher rules
	AnalyzeSQLStats()
	DiscoReadConfig()
	DncimRecordsDone()
	DiscoRefresh()
	DiscoRetrieveClass()
	DiscoSendOQLToFinder()
	DncimUpdate()
	EnumerationLookup()
	RecordToDncimDb()
	StitcherProfiling()

	Event Gateway stitcher rules
	GwCollects()
	GwConnects()
	GwContains()
	GwDependency()
	GwEnrichEvent()
	GwEntityData()
	GwHostedService()
	GwIpLookup()
	GwIpLookupUsing()
	GwMainNodeLookup()
	GwMainNodeLookupUsing()
	GwManagedStatus()
	GwPipeComposition()
	GwProtocolEndPoint()

	Root-cause analysis stitcher rules
	Standard RCA Stitcher rules
	AmosDeleteEvent()
	AmosReprocessSuppressees()
	AmosSetCause()
	AmosSuppressByPeer()
	AmosSuppressEvents()
	AmosSuppressTrigger()
	AmosTimedEventSuppression()

	RCA stitcher rules for customization
	AmosGetConnectedEntities()
	AmosGetContainedEntities()
	AmosGetContainerEntities()
	AmosGetEvents()
	AmosGetIsolatedEntities()
	AmosRetrieveEntities()
	AmosUpdateEvent()
	AmosUpdateSuppressees()

	Stitcher language building blocks
	Stitcher language comments
	Precedence and association of operators
	OQL quotes in the stitcher language

	Domain-specific stitchers

	Chapter 3. Syntax for poll definition expressions
	eval statement syntax in threshold expressions
	SNMP variables
	Network entity variables
	Poll policy variables
	Poll definition variables

	Operators in threshold expressions

	Chapter 4. AOC files
	Device class hierarchy
	EndNode class
	InferredDevice class
	NetworkDevice class

	AOC syntax
	Components of an AOC file

	Part 2. Perl API reference
	Chapter 5. Perl API overview
	RIV module
	RIV Agent module
	RIV App module
	RIV OQL module
	RIV Param module
	RIV Record module
	RIV RecordCache module
	RIV SnmpAccess module

	NCP modules
	NCP DBI_Factory module overview
	NCP Domain module overview

	Synchronize with message broker
	Install Perl API
	Perl builds
	Obtain SNMP device information
	Perl API modules ref page syntax

	Chapter 6. Writing discovery agents
	Before writing a discovery agent
	Writing a discovery agent
	Example discovery agents
	Discovery agent skeleton
	Network entity discovery agent example
	IP routing discovery agent example

	Prototype agent def file template
	Threads in discovery agents
	Threads example
	Default number of threads

	Chapter 7. Accessing component databases
	Object Query Language
	Differences between OQL and SQL
	Actions performed on component databases
	Example Perl scripts that operate on component databases
	The oql_example.pl example script
	OQL example script

	Chapter 8. Performing SNMP queries
	Use get methods to obtain SNMP device information
	Make synchronous and asynchronous SNMP get requests
	Example SNMP GET access script
	Declare Perl API modules
	Create and initialize a RIV::Param object
	Create and initialize a RIV::App object
	Create and initialize RIV::SnmpAccess object
	Check the device IP address and node name
	Determine which SNMP GET requests to run
	Perform asynchronous SNMP GET requests
	Perform synchronous SNMP GET requests
	Print the SNMP varops

	Chapter 9. Writing and integrating Perl applications with third-party products
	Listeners
	Example Listener script
	Declare Perl API modules
	Create and initialize a RIV::Param object for Listener
	Create and initialize a RIV::App object for Listener
	Bind the RIV::App object to the message broker subject for Listener
	Write database records to a log file for Listener
	Send database records to different applications for Listener

	Chapter 10. RIV Modules Reference
	RIV module reference
	RIV module synopsis
	AddIoHandle
	AddSubject
	AddTimer
	DebugLevel
	DecryptPassword
	EncryptPassword
	Latency
	MessageLevel
	PostInput
	PublishMessage
	PublishMessage
	RemoveIoHandle
	RemoveSubject
	RetryLimit
	RIV::FetchRow
	RIV::GetInput
	RIV::GetResult
	RIV::GetResultSet
	RIV::InputFilter
	RIV::InputQueueLength
	RIV::IsIpNotLoopBackOrMulticast
	RIV::IsIpValid
	RIV::IsIpv4Valid
	RIV::IsIpv6Valid
	RIV::ReadDir
	RIV::RivDebug
	RIV::RivError
	RIV::RivMessage

	RIV::Agent module reference
	RIV::Agent module synopsis
	RIV::Agent Constructor
	ExtGetTelnet
	GetDNSAllIpAddrs
	GetDNSAllNames
	GetDNSFirstIpAddr
	GetDNSFirstName
	GetIpArp
	GetMacArp
	GetMultTelnet
	GetPingIP
	GetPingList
	GetPingSubnet
	GetTelnet
	GetTelnetCols
	GetTraceRoute
	GetXMLRPCData
	GetXMLRPCEntityData
	LockThreads
	PingIP
	PingList
	PingSubnet
	SendNEToDisco
	SendNEToNextPhase
	SnmpGet
	SnmpGetBulk
	SnmpGetNext
	UnLockThreads

	RIV::App module reference
	RIV::App module synopsis
	RIV::App Constructor

	RIV::OQL module reference
	RIV::OQL module synopsis
	RIV::OQL Constructor
	Close
	CreateDB
	CreateTable
	Delete
	Insert
	Print
	Query
	QueryGetResult
	QueryGetResults
	Select
	Send
	Update

	RIV::Param module reference
	RIV::Param module synopsis
	RIV::Param Constructor
	CommandName
	DomainName
	Usage

	RIV::Record module reference
	RIV::Record module synopsis
	RIV::Record Constructor
	AddLocalNeighbour
	AddLocalNeighbourTag
	AddRemoteNeighbour
	AddRemoteNeighbourTag
	GetLocalNeighbours
	GetRemoteNeighbours
	Print

	RIV::RecordCache module reference
	RIV::RecordCache module synopsis
	RIV::RecordCache Constructor
	CacheRecord
	GetRecord
	GetRecords

	RIV::SnmpAccess module reference
	RIV::SnmpAccess module synopsis
	RIV::SnmpAccess Constructor
	ASN1ToOid
	AsyncSnmpGet
	AsyncSnmpGetBulk
	AsyncSnmpGetNext
	GetMibHash
	MaxAsyncConcurrent
	OidToASN1
	SnmpGet
	SnmpGetBulk
	SnmpGetNext
	SnmpWalk
	SplitOidAndIndex

	Chapter 11. NCP Modules Reference
	NCP::DBI_Factory module reference
	NCP::DBI_Factory module synopsis
	createDbHandle
	describeTable
	execute_insert_auto_inc
	extractCmdLineOptions
	extractHashRefOptions
	finish
	insert_auto_inc_row
	insert_row
	prepare_insert_auto_inc
	schema
	setLogHandle
	setLogLevel
	tables
	timeStamp
	toUpper

	NCP::Domain Reference
	NCP::Domain module synopsis
	NCP::Domain Constructor
	clone
	create
	drop
	id
	name
	setLogHandle
	setLogLevel
	summary

	Part 3. Database reference
	Chapter 12. Discovery databases
	Discovery engine database
	disco.agents table
	disco.config table
	disco.convergedTopologies table
	disco.dynamicConfigFiles table
	disco.events table
	disco.filterCustomTags table
	disco.ipCustomTags table
	disco.managedProcesses table
	disco.NATStatus table
	disco.profilingData table
	disco.status table
	disco.tempData table
	Example configuration of the disco.agents table
	Example configuration of the disco.config table
	Example configuration of the disco.managedProcesses table

	Discovery scope database
	disco.scope database schema
	scope.detectionFilter table
	scope.inferMPLSPEs table
	scope.instantiateFilter table
	scope.mplsTe table
	scope.multicastGroup table
	scope.multicastSource table
	scope.special table
	scope.zones table

	Example scope database configuration
	Configuration of the scope.zones table
	Preventing the detection of devices with a filter
	Restricting instantiation based on entity name

	Access databases
	snmpStack database
	snmpStack.accessParameters database table
	snmpStack.multibyteObjects table
	snmpStack.conversionCfg database table
	snmpStack.verSecurityTable database table

	telnetStack database
	telnetStack.passwords database table

	Process management databases
	Configuring the data flow: starting stitchers on-demand
	agents database schema
	agents.definitions table
	agents.sourceInfo table
	agents.status table
	agents.victims table

	Stitchers database schema
	stitchers.triggers table
	stitchers.status table
	stitchers.actions table

	Subprocess databases
	finders database schema
	finders.despatch table
	finders.returns table
	finders.pending table
	finders.processing table
	finders.rediscovery table

	CollectorDetails database schema
	CollectorDetails.despatch table
	CollectorDetails.returns table

	Details database schema
	details.despatch table
	details.returns table

	Finders databases
	collectorFinder database
	collectorFinder.collectorRules database table
	collectorFinder.configuration database table

	dbEntryFinder database
	dbEntryFinder.configuration database table
	dbEntryFinder.dbQueries database table

	fileFinder database
	fileFinder.configuration database table
	fileFinder.parseRules database table

	pingFinder database
	pingFinder.configuration database table
	pingFinder.pingFilter database table
	pingFinder.pingRules database table
	pingFinder.scope database table

	Helper Server databases
	ARPhelper database
	ARPhelper.ARPHelperConfig table
	ARPhelper.ARPHelperTable table
	ARPHelper.configuration table

	DNSHelper database
	DNSHelper.DNSHelperTable table
	DNSHelper.DNSHelperConfig table
	DNSHelper.configuration table
	DNShelper.methods table

	PingHelper database
	PingHelper.configuration table
	PingHelper.PingHelperConfig table
	PingHelper.PingHelperTable table

	snmpHelper database
	snmpHelper.configuration table
	snmpHelper.dependentInstanceFilter database table
	snmpHelper.instanceFilter database table
	snmpHelper.SnmpHelperConfig table
	snmpHelper.SnmpHelperTable table

	snmpFilter database
	snmpFilter.instances database table

	TelnetHelper database
	TelnetHelper.configuration table
	TelnetHelper.deviceConfig table
	TelnetHelper.telnetHelperconfig database table
	TelnetHelper.telnetHelperTable table

	XmlRpcHelper database
	XmlRpcHelper.configuration table
	XmlRpcHelper.XmlRpcHelperConfig table
	XmlRpcHelper.XmlRpcHelperTable table

	Tracking discovery databases
	translations database
	translations.ipToBaseName table
	translations.vlans table
	translations.NAT table
	translations.NATtemp
	translations.NATAddressSpaceIds table
	specialManagementIPs table

	instrumentation database schema
	instrumentation.ipAddresses table
	instrumentation.name table
	instrumentation.subNet table
	instrumentation.vlan table
	instrumentation.frameRelay table
	instrumentation.ciscoFrameRelay table
	instrumentation.hsrp table
	instrumentation.pnniPeerGroup table
	instrumentation.fddi table

	workingEntities database
	workingEntities.finalEntity table
	workingEntities.containment table
	workingEntities.interfaceMapping

	dbModel database
	dbModel.access table
	dbModel.entityDetails table
	dbModel.entityMap table

	Working topology databases
	fullTopology database schema
	fullTopology.entityByNeighbor table

	dNCIM schema

	rediscoveryStore database
	rediscoveryStore.dataLibrary table
	rediscoveryStore.rediscoveredEntities table

	Topology manager databases
	ncimCache database
	ncimCache.collects table
	ncimCache.connectActions table
	ncimCache. connectstable
	ncimCache. containstable
	ncimCache.dependency table
	ncimCache.domainMembers table
	ncimCache.entityActions table
	ncimCache.entityData table
	ncimCache.hostedService table
	ncimCache.lingerTime table
	ncimCache.managedStatus table
	ncimCache.networkPipe table
	ncimCache.pipeComposition table
	ncimCache.protocolEndpoint table

	model database schema
	model.config table
	model.profilingData
	model.statistics table

	Failover database
	Ignored cached data
	The failover database schema
	failover.config table
	failover.status table
	failover.findRateDetails table
	failover.doNotCache table
	failover.restartPhaseAction table

	Example failover database configuration
	Example configuration of the failover.config table
	Example configuration of the failover.doNotCache table

	Agent Template database
	Discovery agent despatch table
	Discovery agent returns table

	Chapter 13. Polling databases
	NCMONITOR databases
	SNMP tables for polling in the ncmonitor database
	ncmonitor.snmpTarget table
	ncmonitor.snmpAccess table
	ncmonitor.snmpv1Sec table
	ncmonitor.snmpv3Sec table
	ncmonitor.snmpUser table

	Ping polling status tables
	expectedIps table
	pollLog table
	pollLogSummary table
	undiscoveredIps view
	unmonitoredIps view
	unmanagedIps view
	unpolledFor15MinutesIps view
	delayedPollPolicies view
	discoveredIps view
	managementInterfaceIps view
	chassisOnlyIps view
	unpollableIps view

	NCPOLLDATA database
	The NCPOLLDATA database
	NCPOLLDATA queries
	Logging in to the NCPOLLDATA database
	Show partitions allocated to a specific raw or historical poll data table
	Show which partitions have recently been detached and dropped
	Show log messages for recently attached and detached partitions

	OQL databases
	config database
	config.properties table
	config.failover table
	config.realTimeControl table
	config.tableMonitor table

	profiling database
	profiling.policy table
	profiling.icmp table
	profiling.snmp table
	profiling.engine table

	Chapter 14. Event enrichment databases
	ncp_g_event
	The config database schema
	config.defaults table
	config.precedence table
	config.eventMaps Table
	config.nco2ncp table
	config.ncp2nco table
	config.failover table

	ncp_g_event plug-ins
	RCA plug-in
	mojo.events events database table
	config.defaults database table

	SAE plug-in database
	config.serviceTypes table

	Plug-in database tables

	Chapter 15. ncp_class
	class.activeClasses table
	class.staticClasses table
	class.classIds table

	Chapter 16. ncp_ctrl
	The services.config Table
	The services.inTray Table
	The services.slaveCtrl Table
	The services.unControlled Table
	The services.unManaged Table

	Chapter 17. ncp_trapMux
	trapMux.command table
	trapMux.config table
	trapMux.sinkHosts table

	Chapter 18. ncp_virtualdomain
	config database schema
	state database schema
	Example Virtual Domain configuration

	Chapter 19. NCIM topology database
	Chapter 20. About NCIM
	Tasks
	Architecture
	Properties
	Topology data
	Domains and entities
	Domains
	Entities
	entityData table and entity view
	Protocol-specific data
	Technology-specific data

	Relationships
	Connectivity data
	Containment data
	VLAN naming
	VLAN trunking
	Customization of the containment model

	Dependencies
	Collection data
	Hosted services

	NCIM cache files
	SQL files for the NCIM schema

	Chapter 21. Topology database queries
	Logging in to NCIM
	Formatting used in the SQL queries
	Techniques used in the SQL queries
	Choice of driving table
	Aliasing
	Table joins

	Use of specific fields and tables in queries
	mainNodeEntityId field
	entityType field
	Protocol endpoint tables

	Queries for domain information
	List all main nodes in a domain
	Count the number of entities in a domain

	Queries for main node information
	List all devices with class name and system object identifier
	List all IP addresses on all main node devices

	Queries for containment information
	List all components on a device
	List all components on a device and show component type
	Display the number of cards on each device
	Find all devices containing Three-Port Gigabit Ethernet cards
	Find entities within all cards

	Queries for port and interface information
	List all interfaces on all devices
	List all interfaces with specific attributes
	List all interfaces on all devices with interface type
	List all IP addresses and the interfaces that implement them

	Queries for connectivity information
	Types of connectivity
	Hierarchy modeling
	Find devices connected to a named device
	Find all devices connected to a named device together with connecting interfaces
	Identify all connections between routers

	Queries for LTE information
	Find specific LTE entity types

	Queries for MPLS TE information
	List all TE tunnels
	Show interfaces utilized by TE tunnels
	Show Traffic Engineered tunnel configuration
	List supporting routers for a TE tunnel
	Show performance data for a TE tunnel

	Queries for RAN information
	Find specific RAN entity types
	Retrieve RAN connectivity
	Find RAN containment
	Find RAN dependencies

	Queries for hosted services
	Find all chassis devices hosting OSPF services

	Queries for collection information
	Show all PIM adjacencies
	Show PIM adjacencies for a device
	Find PIM enabled routers
	Find all devices in each subnet
	Find all devices in a given VPN

	Queries for mapping and enumeration information
	Identify all the device hardware manufacturers listed in the database
	Show all the entity types defined in the database

	Chapter 22. NCIM schemas
	Core schema
	Data schema
	BGP
	Collections
	Containment
	Endpoints
	Geographical location
	IP endpoints
	LTE
	LTE schema
	LTE interfaces
	LTE elements
	Equipment Identity Register
	Evolved NodeB
	Home Subscriber Server
	Mobility Management Entity
	Packet Gateway
	Policy and Charging Rules Function
	Serving Gateway

	MPLS TE
	MPLS VPNs
	OSPF
	Services
	UMTS and GSM
	GSM
	RAN collections
	RAN routing and location areas
	UMTS

	VLANs

	Chapter 23. Data dictionary
	Core tables
	aggregatedLink
	aggregationDomain
	CIDRinfo
	classMembers
	collects
	connectActions
	connects
	connectSpeeds
	contains
	dependency
	deviceFunction
	discoverySource
	domainMembers
	domainMgr
	entityActions
	entityClass
	entityData
	entityDetails
	entityNameCache
	entityType
	enumerations
	hostedService
	manager
	mappings
	networkPipe
	notes
	pipeComposition
	probeTooltip
	protocolEndPoint
	topologyLinks

	Core views
	discoveryOverview
	entity
	interfaceDomain
	interfaces
	mainNodeDetails
	interfaceDomain

	Entity attribute tables
	aggregationGroup
	antennaFunction
	atmEndPoint
	bgpAutonomousSystem
	bgpCluster
	bgpEndPoint
	bgpNetwork
	bgpRouteAttribute
	bgpService
	computerSystem
	controlPlaneViewCollection
	cpu
	discoveryAttributes
	domainSummary
	eirFunction
	emsSystem
	enbFunction
	eUtranCell
	eUtranSector
	frameRelayEndPoint
	genericCollection
	genericRange
	geographicLocation
	geographicRegion
	globalVlan
	gnbFunction
	hsrpGroup
	hssFunction
	igmpEndPoint
	igmpGroup
	igmpService
	ipConnection
	ipEndPoint
	ipMRouteDownstream
	ipMRouteEndPoint
	ipMRouteGroup
	ipMRouteMdt
	ipMRouteService
	ipMRouteSource
	ipMRouteUpstream
	ipPath
	itnmService
	lagEndPoint
	lingerTime
	localVlan
	lteInterface
	ltePool
	managedStatus
	mmeFunction
	mplsTEService
	mplsTETunnel
	mplsTETunnelEndPoint
	mplsTETunnelResource
	mplsLSP
	multiplexer
	netcoolAsmsRunning
	networkInterface
	networkServiceEntityEndPoint
	networkVpn
	nrCellCU
	nrCellDU
	operatingSystem
	ospfArea
	ospfEndPoint
	ospfNetworkLSA
	ospfRoutingDomain
	ospfService
	pcrfFunction
	pgwFunction
	physicalBackplane
	physicalCard
	physicalChassis
	physicalConnector
	physicalFan
	physicalOther
	physicalPowerSupply
	physicalSensor
	physicalSlot
	pimEndpoint
	pimNetwork
	pimService
	plmn
	portEndPoint
	probe
	probeCollection
	probeEndPoint
	probeService
	ranBaseStation
	ranBaseStationController
	ranCircuitSwitchedCore
	ranGGSN
	ranGSMCell
	ranLocationArea
	ranMediaGateway
	ranMobileSwitchingCentre
	ranMSS
	ranNodeB
	ranNodeBLocalCell
	ranPacketControlUnit
	ranPacketSwitchedCore
	ranRadioCore
	ranRadioNetworkController
	ranRoutingArea
	ranSector
	ranSGSN
	ranTransceiver
	ranUtranCell
	rtExportList
	rtImportList
	sgwFunction
	snmpSystem
	subnet
	trackingArea
	transmissionTp
	userPlaneViewCollection
	vlanTrunkEndPoint
	vpnRouteForwarding
	vpwsEndPoint
	vtpDomain
	wlan
	wlanAccessPoint
	wlanChannel
	wlanDot11Interface
	wlanService
	wlanSpec

	Entity attribute views
	backplane
	chassis
	fan
	interface
	module
	other
	psu
	sensor
	slot
	sourceEms

	Common Data Model views

	Chapter 24. Topology API reference
	Overview of the Topology API
	Retrieving device data
	For all chassis devices
	For chassis devices in specified classes
	For chassis devices within a specified network view
	For chassis devices within specified domains
	For a limited set of chassis devices
	Example JSON output for chassis devices

	Retrieving domain data
	Example output for domains

	Retrieving class data
	Example output for classes

	Part 4. Discovery reference
	Chapter 25. Discovery process
	Discovery subprocesses
	Discovery timing
	Discovery stages and phases
	Data processing stage
	Data collection stage
	Advantages of staged discovery
	Effect of discovery multiphasing on network traffic

	Criteria for multiphasing
	Managing the phases

	Discovery cycles
	Discovering device existence
	Discovering device details (standard)
	Discovering device details (context-sensitive)
	Discovering associated device addresses
	Discovering device connectivity
	Creating the topology

	Advanced discovery configuration options
	Configurable discovery data flow
	Partial matching

	Discovery process with EMS integration
	Discovering device existence with collectors
	Discovering basic device information
	Discovering detailed device information

	Rediscovery
	Full and partial rediscovery
	Process flow of the FnderRetProcessing stitcher
	Processing information from discovery agents during rediscovery
	Full rediscoveries

	Rediscovery completion
	Option to rebuild topology layers

	Chapter 26. Discovery agents
	Agents
	Details agent
	Associated Address (AssocAddress) agent
	Interface data retrieved by agents
	Discovery agent definition file keywords

	Types of agents
	Discovery agents that discover connectivity among Ethernet switches
	Connectivity at the layer 3 network layer
	Topology data stored in an EMS
	Discovering connectivity among ATM devices
	Agents for discovering MPLS devices
	Multicast agents
	Discovering NAT gateways
	Discovering containment information
	Entity agent configuration

	Discovery agents for wireless networks
	Discovery agents on other protocols
	Context-sensitive discovery agents
	Task-specific discovery agents
	Discovery agents for IPv6
	Service Level Agreement agents

	Guidance for selecting agents
	Which IP layer agents to use
	Which standard agents to use
	Which specialized agents to run
	Suggested agents for a layer 3 discovery
	Suggested agents for a layer 2 discovery

	Chapter 27. Helper System
	Helpers
	Helper System operation
	Dynamic timeouts

	Chapter 28. Discovery stitchers
	Main discovery stitchers
	DNCIM stitchers
	Cross-domain stitchers

	Part 5. Administrative reference
	Chapter 29. Script reference
	Administration scripts
	AddNode.pl
	domain_create.pl
	domain_drop.pl
	inject_fake_events.pl
	itnm_pathTool.pl
	ITListener.pl
	list_applied_updates.pl
	ManageNode.pl
	ncp_password_update.pl
	ncp_scan_storm_diagnostic_dir.pl
	read_ncp_cfg.pl
	RemoveNode.pl
	set_db_details.pl
	UnmanageNode.pl
	update_db_schemas.pl

	Database scripts
	catalog_db2_database
	configTCR
	create_all_schemas
	create_db2_database
	create_oracle_database
	create_oracle_ncadmin_user
	drop_db2_database
	drop_oracle_database
	populate_db2_database
	populate_oracle_database
	restrict_oracle_privileges.sh
	uncatalog_db2_database

	Discovery scripts
	audit.pl
	BuildSeedList.pl
	discoAgentsUsed.pl
	disco_profiling_data.pl
	itnmMetaDiscoAudit.pl
	itnm_disco.pl
	listEntities.pl
	restart_disco_process.pl
	scheduleDiscovery.pl

	Example scripts
	oql_example.pl
	snmp_example.pl

	Network Manager process management scripts
	create_all_control
	register_all_agents
	setup_run_as* scripts
	setup_run_as_root.sh
	setup_run_as_setuid_root.sh
	unsetup_run_as_setuid_root.sh

	setup_run_storm_as_non_root.sh

	Polling scripts
	get_policies.pl
	itnm_poller.pl
	ncp_ping_poller_snapshot.pl
	ncp_polling_exceptions.pl
	ncp_upload_expected_ips.pl

	SQL scripts
	create_itnm_triggers.sql
	create_sae_automation.sql
	drop_itnm_triggers.sql
	drop_sae_automation.sql

	Troubleshooting scripts
	GetDiscoCache.pl
	ncp_db_access.pl
	ncp_storm_validate.sh
	ncp_validate_ncim_tables.pl
	PrintCacheFile.pl
	snmp_walk.pl

	Upgrade and backup scripts
	ITNMDataExport.pl
	ITNMDataImport.pl
	ITNMExportNetworkViews.pl
	ncp_ncim_diff.pl
	nmExport
	nmGuiExport
	nmGuiImport
	nmImport

	Chapter 30. Web Applications
	Web application configuration files
	Topoviz configuration files
	WebTools configuration files
	Structure Browser configuration files

	URL parameters
	Hop View URL parameters
	MIB Browser URL Reference
	MIB Grapher URL Reference
	Network Views URL parameters
	Top Performers URL parameters
	Structure Browser URL reference
	Web Tools URL reference
	Path Views URL parameters

	Cisco and Juniper WebTools commands
	Cisco information tools
	Cisco diagnostic tools
	Juniper information tools
	Juniper diagnostic tools

	Chapter 31. Report reference
	Network Manager data model
	Asset reports
	Card Detail by Device Type report
	Discovery report
	Interface Availability report
	IP Addressing Summary report
	Operating System by Device report

	Context reports
	Bandwidth In Utilization report
	IfInDiscards report
	Memory usage report
	CPU Usage report

	Monitoring reports
	Monitoring Device Details report
	Monitoring Policy Details report
	Monitoring Summary report

	Network Technology reports
	BGP Details report
	BGP Summary report
	LTE Interfaces report
	MPLS VPN Details report
	MPLS VPN Summary report
	VLAN Details report

	Network Views reports
	Monitored Network Views report

	Path Views reports
	IP Path Summary report
	IP Routing Info report
	MPLS TE Path Summary report
	MPLS TE Routing Info report

	Performance reports
	Bandwidth Top N report
	Bandwidth Utilization report
	Composite Trending report
	Device Availability Summarization
	Device Summarization report
	Historical SNMP Top or Bottom N report
	Historical SNMP Trend Analysis report
	Historical SNMP Trend Quick View report
	Interface Availability Summarization report
	Interface Summarization report
	System Availability Summary report

	Troubleshooting reports
	Connected Interface Duplex Mismatch report
	Devices Pending Delete on Next Discovery report
	Devices with no SNMP Access report
	Devices with Unclassified SNMP Object IDs report
	Devices with Unknown SNMP Object IDs report

	Utility reports
	Discovered Nodes and Interfaces Flat File List report

	Notices
	Trademarks

