
Writing IBM SPSS Statistics Extension
Commands

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
27.

Contents

Chapter 1. Introduction to Extension Commands.. 1

Chapter 2. XML Specification of the Extension Command Syntax.............................3

Chapter 3. Implementation Code... 7

Chapter 4. Adding help for an extension command... 11

Chapter 5. Deploying an Extension Command...15

Chapter 6. Extension Schema Element Reference... 17
Command element.. 17
Parameter element.. 18

EnumValue element... 22
Subcommand element.. 22
Working with Arbitrary Tokens.. 24
Examples..24

Notices..27
Trademarks.. 28

 iii

iv

Chapter 1. Introduction to Extension Commands

Extension commands wrap programs that are written in the Python programming language, R, or Java in
custom IBM® SPSS® Statistics command syntax. You design the syntax for your extension command based
on the parameters that are required by the underlying Python, R, or Java code. When syntax for your
command is run, the values that are specified in the syntax are passed to the underlying code. Extension
commands require the SPSS Statistics Integration Plug-in for the language in which the command is
implemented (Python, R, or Java).

The following figure provides an overview of the extension command mechanism. Briefly, command
syntax for an extension command is submitted by a user and is parsed by SPSS Statistics, based on an
XML representation of the syntax for the extension command. The parser calls the implementation code
(written in Python, R, or Java) to process the parsed syntax and perform the requested actions, which
might include generating tabular or graphical output.

Figure 1. Overview of the extension command mechanism

As an author of an extension command, you are responsible for creating the XML specification of the
syntax for the command and the implementation code. If you plan to share the extension command with
other users, then you probably want to include documentation for the command. Information on creating
the XML specification, the implementation code, and the documentation is provided in the sections that
follow.

You can also create a custom dialog that generates the command syntax for your extension command so
that users who do not typically use command syntax can easily run your extension command. Extension
commands and custom dialogs can be packaged in extension bundles, which can be easily installed by
users. For an example of creating a custom dialog for an extension command, which is implemented in R,
see the tutorial "Working with R" in the SPSS Statistics Help system.

How you approach the task of creating an extension command depends somewhat on what you
are implementing. For example, if you are wrapping an R package, then you might start with the
implementation code, and then design the syntax for the extension command based on the parameters
that you are supporting in the underlying R functions. However, if you are developing all of the
implementation code yourself then you might start at the higher-level of the syntax or custom dialog
design. If you do plan to create a custom dialog for your extension command, then you might want to

design the custom dialog before you design the syntax because it is possible to design syntax that is
difficult to generate from a custom dialog.

Integration Plug-ins
To develop the implementation code, you need the Integration Plug-in for the programming language in
which the extension command is implemented. Information on how to get the Plug-ins for Python and R is
available from Core System > Frequently Asked Questions > How to Get Integration Plug-Ins in the SPSS
Statistics Help system.

• For version 22 and higher, the Integration Plug-in for Python is installed by default with SPSS Statistics
and SPSS Statistics Server, as part of IBM SPSS Statistics - Essentials for Python.

• The Integration Plug-in for Java™ (requires SPSS Statistics version 21 or higher) is installed with SPSS
Statistics and SPSS Statistics Server and requires no separate installation or configuration.

2 Writing IBM SPSS Statistics Extension Commands

Chapter 2. XML Specification of the Extension
Command Syntax

To create an extension command, you must specify the syntax for the command. The syntax consists
of the subcommands, keywords, and keyword values that define the command. Syntax for extension
commands is specified with XML. As an example, consider a Python extension command that gets an
Excel file from a user-specified URL and opens a specified sheet from the Excel file in IBM SPSS Statistics.

The inputs to this example command are as follows:

• URL: Required parameter that specifies the URL of the Excel file.
• FILETYPE: Optional parameter that specifies the file type. Possible values are XLS or XLSX, and the

default is XLS.
• SHEETNUMBER: Optional parameter that specifies the number of the sheet to open in SPSS Statistics.

The default is sheet 1.
• READNAMES: Optional parameter that specifies whether to use values in the first row of the sheet as

variable names in the resulting SPSS Statistics dataset. Possible values are "ON" and "OFF", where "ON"
specifies to use the values in the first row and is the default.

Before you create the XML representation of the syntax, it's always a good idea to construct a syntax chart
for your command. The syntax chart specifies the command name, keywords, and keyword values that are
available with the command. In that regard, the documentation for every native SPSS Statistics command
includes a syntax chart, which provides a quick reference of the specifications for the command.

The syntax chart for the example command is as follows:

MYORG GETURL EXCEL URL = "URL specification"
[/OPTIONS]
 [FILETYPE = {XLS**}]
 {XLSX }
 [SHEETNUMBER = {1** }]
 {integer}
 [READNAMES = {ON**}]
 {OFF }

• The name of the command is MYORG GETURL EXCEL.
• The command contains a single subcommand that is named OPTIONS that contains the optional inputs.

Subcommands are preceded by a forward slash.
• The OPTIONS subcommand includes the following keywords: FILETYPE, SHEETNUMBER, and
READNAMES. Curly brackets in syntax charts indicate a set of mutually exclusive choices for a keyword.
For example, the FILETYPE keyword can have the value XLS or XLSX. A double asterisk in a syntax
chart indicates the default value for a keyword. Square brackets in syntax charts indicate optional
elements of the syntax.

Notation conventions for syntax charts are described in the Commands topic, under Reference >
Command Syntax Reference > Universals, in the SPSS Statistics Help system.

The XML representation of the syntax chart for the MYORG GETURL EXCEL extension command is as
follows:

<Command xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www-01.ibm.com/software/analytics/
spss/xml/extension-1.0.xsd"
Name="MYORG GETURL EXCEL" Language="Python">
 <Subcommand Name="" IsArbitrary="False" Occurrence="Optional">

 <Parameter Name="URL" ParameterType="TokenList"/>
 </Subcommand>
 <Subcommand Name="OPTIONS" Occurrence="Optional">
 <Parameter Name="FILETYPE" ParameterType="Keyword"/>
 <Parameter Name="SHEETNUMBER" ParameterType="Integer"/>
 <Parameter Name="READNAMES" ParameterType="Keyword"/>
 </Subcommand>
</Command>

• The top-level element, Command, names the command. Subcommands are children of this element. The
Name attribute is required and specifies the command name. The command name can consist of up to
three words that are separated by spaces, as in MY EXTENSION COMMAND, and is not case-sensitive.
Command names are restricted to 7-bit ascii characters. The Language attribute is optional and
specifies the implementation language. The default is the Python programming language (Python 2).
The choices for Language are Python, R, and Java. For Python code that is implemented in Python
3, specify Language="Python" LanguageVersion="3". Support for Python 3 requires IBM SPSS
Statistics release 24 or higher.

• Subcommands are specified with the Subcommand element, which is a child of the Command element.
In this example, the first Subcommand element has an empty string for a name. Because it doesn't
have a name, it is referred to as the anonymous subcommand. A command can have only a single
anonymous subcommand. The anonymous subcommand is typically used to specify global keywords
for the command. In this example, the anonymous subcommand contains the single keyword URL that
specifies the URL of the Excel file. Many native SPSS Statistics commands, such as the FREQUENCIES
command, contain an anonymous subcommand.

• Keywords are specified with the Parameter element, which is a child of the Subcommand element. The
Parameter element for the URL keyword is specified as a TokenList, which is an arbitrary list of comma
separated or blank separated values. Although the actual URL is a single string, a URL that exceeds the
allowed length of a string literal needs to be broken up into a set of strings.

A complete specification of the XML schema for defining extension commands is provided in the
SPSS Statistics Help system under Reference > Extension Schema. A copy of the extension schema,
extension-1.0.xsd, is installed with SPSS Statistics, at the root of the installation directory. Numerous
XML specification files for extension commands are installed with IBM SPSS Statistics - Essentials for
Python and IBM SPSS Statistics - Essentials for R and might be useful as examples. The files are in the
location where extension commands are installed on your computer. To view the location, run the SHOW
EXTPATHS syntax command from within SPSS Statistics. The output displays a list of locations under the
heading "Locations for extension commands". The files are installed to the first writable location in the
list.

Naming conventions and name conflicts
• Extension commands take priority over built-in command names. For example, if you create an

extension command that is named MEANS, the built-in MEANS command is replaced by your extension.
Likewise, if an abbreviation is used for a built-in command and the abbreviation matches the name of
an extension command, the extension command is used. Abbreviations are not supported for extension
commands.

• To reduce the risk of naming conflicts with built-in commands or commands that are created by other
users, you might want to use two- or three-word command names, where the first word specifies your
organization.

• There are no naming requirements for the file that contains the XML specification of the syntax. As with
choosing the name of the extension command, take care when you choose a name to avoid conflicting
XML file names. A useful convention is to use the same name as the Python module, R source file, or
Java class file (or JAR file) that implements the command.

• The installed extension commands are read when SPSS Statistics is launched, but they can also be
defined during a session with the EXTENSION command.

4 Writing IBM SPSS Statistics Extension Commands

Color coding and auto-completion in the syntax editor
The XML syntax specification file contains all of the information that is needed to provide color coding and
auto-completion for your extension command in the SPSS Statistics Syntax Editor. Both color coding and
auto-completion are available after the extension command is installed.

Chapter 2. XML Specification of the Extension Command Syntax 5

6 Writing IBM SPSS Statistics Extension Commands

Chapter 3. Implementation Code

The implementation code receives the parsed syntax and then performs the requested actions. The code
(whether written in Python, R, or Java) must contain a function that is named Run with a single argument
that accepts the parsed syntax.

The contents of the Python module for the example MYORG GETURL EXCEL extension command, which
was discussed in the preceding section, is shown in the code sample that follows. The code includes
import statements for the spssaux and extension Python modules that are used by the code and that
are installed with IBM SPSS Statistics - Essentials for Python. The Python module itself must be named
MYORG_GETURL_EXCEL.py, as required by the naming conventions that are described in what follows.

The module contains two functions: Run and geturlexcel. The Run function takes the parsed syntax,
validates it, extracts the values of the keywords, and then calls geturlexcel to implement the
requested actions. Separating the implementation code into a Run function that processes the submitted
syntax and a main implementation function that performs the requested actions is a general feature of all
extension commands that are created by IBM SPSS.

import spssaux
from extension import Template, Syntax, processcmd

def Run(args):
 oobj = Syntax([
 Template("URL", subc="", ktype="literal", var="url", islist=True),
 Template("FILETYPE", subc="OPTIONS", ktype="str", var="filetype",
vallist=["xls","xlsx"]),
 Template("SHEETNUMBER", subc="OPTIONS", ktype="int", var="sheetnumber"),
 Template("READNAMES", subc="OPTIONS", ktype="str", var="readnames",
vallist=["on","off"])])
 args = args[args.keys()[0]]
 processcmd(oobj, args, geturlexcel)

def geturlexcel(url, filetype="xls", sheetnumber=1, readnames="ON"):
 kwargs = {}
 url = "".join(url)
 kwargs["filetype"] = filetype
 kwargs["sheetid"] = sheetnumber
 kwargs["readnames"] = readnames
 spssaux.openDataFileFromUrl(url, **kwargs)

The Run function uses the Template class, the Syntax class, and the processcmd function. These
functions are designed to be used together and greatly simplify the task of working with the parsed
syntax, which is contained in the args parameter to the Run function.

• The Template class specifies how to process a particular keyword in the syntax for an extension
command. Each keyword of each subcommand must have an associated instance of the Template
class.

– The first argument to the Template class constructor is the name of the keyword.
– The argument subc specifies the name of the subcommand that contains the keyword. If the keyword

belongs to the anonymous subcommand, the argument subc can be omitted or set to the empty
string as shown here for the URL keyword.

– The argument ktype specifies the type of keyword, such as whether the keyword specifies a variable
name, a string, or a floating point number.

– The argument var specifies the name of the argument to the implementation function (geturlexcel
in this example) that receives the value that is specified for the keyword.

– The argument vallist, that is used for FILETYPE and READNAMES, specifies the list of allowed values
for the keyword. For keywords that are specified as ktype="str" in the Template constructor,
submitted values of the keyword are converted to lowercase before validation, so the list of allowed
values is specified in lowercase.

• The Syntax class validates the syntax that is specified by the Template objects. The class is
instantiated with a sequence of one or more Template objects as shown in this example.

• The processcmd function extracts the values of the keywords from the submitted syntax and then calls
the implementation function to carry out the requested actions.

– The first argument to the processcmd function is the Syntax object for the command.
– For Python, the parsed syntax is passed to the Run function in a complex nested Python dictionary

that has a single top-level entry. The second argument to processcmd is this top-level entry, which
is given by the expression args[args.keys()[0]].

– The third argument to processcmd is the name of the implementation function. The values of the
keywords that are specified by the Template objects are passed to the implementation function as a
set of keyword arguments. In this example, the implementation function geturlexcel is called with
the following signature:

geturlexcel(URL=<URL>,filetype=<FILETYPE>,sheetnumber=<SHEETNUMBER>,readnames=<READNAMES>)

where <URL> is the value that is specified for the URL keyword, and likewise for the other keywords.

Note:

- If a Python exception is raised in the implementation function, the Python traceback is suppressed,
but the error message is displayed. To display tracebacks, set the SPSS_EXTENSIONS_RAISE
environment variable to "true".

- If the signature of the implementation function does not have a default value for a parameter, then
an error is raised if the submitted syntax does not include a value for the parameter.

The geturlexcel function receives the values that were specified for the keywords in the submitted
syntax, and then opens the requested Excel file. The function calls the openDataFileFromUrl function
from the spssaux module, which is installed with IBM SPSS Statistics - Essentials for Python, to open the
file.

Help for the Template class, the Syntax class, and the processcmd function is provided with the
extension module, which is installed with IBM SPSS Statistics - Essentials for Python. You can access
the help from help(extension) after you import the extension module.

Although the preceding example is for Python, the same approach for creating the implementation code
can be used for extension commands in R or Java.

• For an example of creating an extension command in R, see the tutorial "Working with R" in
the IBM SPSS Statistics Help system. Help for the spsspkg.Template, spsspkg.Syntax, and
spsspkg.processcmd functions in R (the equivalents of the Python functions used in the previous
example) is available under Integration Plug-in for R Help > R Integration Package for IBM SPSS
Statistics, in the Help system.

• For Java, see the topic "Creating IBM SPSS Statistics extension commands in Java" under Integration
Plug-in for Java User Guide > Getting started with the Integration Plug-in for Java, in the SPSS Statistics
Help system. Help for the Template, Syntax, and processcmd functions in Java is included in the
help for the Extension class under Integration Plug-in for Java API Reference, in the Help system.

• Numerous implementation code files for extension commands are installed with IBM SPSS Statistics
- Essentials for Python and IBM SPSS Statistics - Essentials for R, and might be useful as examples.
The files are in the location where extension commands are installed on your computer. To view the
location, run the SHOW EXTPATHS syntax command from within SPSS Statistics. The output displays a
list of locations under the heading "Locations for extension commands". The files are installed to the
first writable location in the list.

Naming conventions
The Python module, R source file, or Java class file (or JAR file) that contains the Run function for an
extension command must adhere to the following naming conventions:

8 Writing IBM SPSS Statistics Extension Commands

• Python. The Run function must reside in a Python module file with the same name as the command--
for instance, in the Python module file MYCOMMAND.py for an extension command that is named
MYCOMMAND. The name of the Python module file must be in upper case, although the command name
itself is case insensitive. For multi-word command names, replace the spaces between words with
underscores. For example, for an extension command with the name MY COMMAND, the associated
Python module is MY_COMMAND.py.

• R. The Run function must reside in an R source file or R package with the same name as the command--
for instance, in a source file named MYRFUNC.R for an extension command that is named MYRFUNC.
The name of the R source file or package must be in upper case, although the command name itself is
case insensitive. For multi-word command names, replace the spaces between words with underscores
for R source files and periods for R packages. For example, for an extension command with the name
MY RFUNC, the associated R source file is MY_RFUNC.R, whereas an R package that implements the
command is named MY.RFUNC.R. The source file or package should include any library function calls
required to load R functions that are used by the code.

• Java. The Run function must reside in a Java class file or JAR file with the same name as the
command--for instance, in a class file named MYCOMMAND.class for an extension command that is
named MYCOMMAND. The name of the Java class file or JAR file must be in upper case, although
the command name itself is case insensitive. For multi-word command names, replace spaces
between words with underscores when constructing the name of the Java class file or JAR file. For
example, for an extension command with the name MY COMMAND, the associated Java class file is
MY_COMMAND.class.

Command syntax errors
Syntax errors, like not providing an integer for a parameter that is specified as Integer, are handled by
IBM SPSS Statistics and stop the module from running. In that regard, the implementation code does not
need to handle deviations from the XML specification of the syntax for the extension command.

Generating output
Generating and sending output to IBM SPSS Statistics is handled by the implementation code.

• For Python and Java, the implementation code is responsible for specifying the procedure name
(associated with the extension command) that labels pivot table output in the Viewer. In other words,
unlike built-in IBM SPSS Statistics procedures such as FREQUENCIES, there is no automatic association
of the extension command name with the name that labels pivot table output from the command. For
Python, the procedure name is the first argument to the spss.StartProcedure function that wraps
the statements that generate the output. For Java, the procedure name is the first argument to the
StatsUtil.startProcedure function that wraps the statements that generate the output.

• For R, the default name that is associated with pivot table output from an extension command is R.
For IBM SPSS Statistics version 18 and higher, the name can be customized by wrapping the output
statements in an spsspkg.StartProcedure - spsspkg.EndProcedure block. The procedure
name is then the first argument to the spsspkg.StartProcedure function.

Globalization
You can globalize messages and output that is produced by the implementation code. For Python, see
the topic "Localizing Output from Python Programs" under Integration Plug-in for Python Help > Python
Integration Package for IBM SPSS Statistics > Introduction to Python Programs, in the SPSS Statistics
Help system. For R, see the topic "Localizing Output from R" under Integration Plug-in for R Help > Using
the R Integration Package for IBM SPSS Statistics, in the SPSS Statistics Help system.

Chapter 3. Implementation Code 9

10 Writing IBM SPSS Statistics Extension Commands

Chapter 4. Adding help for an extension command

Providing help for an extension command is optional. However, if you plan to share the command with
other users then you probably want to include help for it. Two approaches for including and displaying
help for an extension command are presented. The help that is discussed here is independent of any help
that you provide for a custom dialog that is associated with the extension command.

Both approaches use the convention of displaying the extension command help (and doing nothing else)
when the submitted syntax contains the HELP subcommand. This convention is used by all extension
commands that are installed with IBM SPSS Statistics - Essentials for Python and IBM SPSS Statistics -
Essentials for R. To implement this convention, the XML specification of the extension command syntax
must contain the HELP subcommand.

The modified XML, that includes a HELP subcommand, for the example MYORG GETURL EXCEL
command is as follows:

<Command xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www-01.ibm.com/software/analytics/
spss/xml/extension-1.0.xsd"
Name="MYORG GETURL EXCEL" Language="Python">
 <Subcommand Name="" IsArbitrary="False" Occurrence="Optional">
 <Parameter Name="URL" ParameterType="TokenList"/>
 </Subcommand>
 <Subcommand Name="OPTIONS" Occurrence="Optional">
 <Parameter Name="FILETYPE" ParameterType="Keyword"/>
 <Parameter Name="SHEETNUMBER" ParameterType="Integer"/>
 <Parameter Name="READNAMES" ParameterType="Keyword"/>
 </Subcommand>
 <Subcommand Name="HELP" Occurrence="Optional"/>
</Command>

HTML help
You can create an HTML help file for your extension command and include it with the extension bundle
for the command. When the extension bundle is installed, the HTML file is installed along with the other
files in the bundle. In the implementation code, you can include a simple function that finds and opens
the HTML file in the default browser. By convention, the name of the function is helper and is defined as
follows for Python:

def helper():
 import webbrowser, os.path
 path = os.path.splitext(__file__)[0]
 helpspec = "file://" + path + os.path.sep + "markdown.html"
 browser = webbrowser.get()
 if not browser.open_new(helpspec):
 print("Help file not found:" + helpspec)

try:
 from extension import helper
except:
 pass

• The helper function assumes that the name of the extension bundle (as specified in the Name field
on the Create Extension Bundle dialog, or Extension Properties dialog if you created the extension
bundle from the Custom Dialog Builder for Extensions in version 24 or higher) is the same as the
name of the implementation code file (except that the bundle name might have spaces where the
code file has underscores). Using the same name for the extension bundle and the code file is the
recommended convention. When the extension bundle is installed, the help file (and any other auxiliary
files) is installed in a folder with the same name as the extension bundle, and that folder is directly

under the folder where the implementation code is installed. In this example, the extension bundle is
named MYORG GETURL EXCEL and the code file is named MYORG_GETURL_EXCEL.py, so the help file
is installed in a folder that is named MYORG_GETURL_EXCEL, which is directly under the folder that
contains the code file.

• The helper function in this example assumes that the name of the HTML file is markdown.html. Given
the relationship between the name of the code file and the location of the help file, it is simple to locate
the help file, as shown in the example code. In that regard, most extension commands that are installed
with IBM SPSS Statistics - Essentials for Python and IBM SPSS Statistics - Essentials for R use the
convention of markdown.html for the name of the help file and the convention of the equality of the
name of the extension bundle and the name of the code file.

• For IBM SPSS Statistics version 23 and higher, the helper function is included with IBM SPSS Statistics
- Essentials for Python, and is part of the extension module. The try block in this code segment
attempts to import the helper function from the extension module. If the function is not available
in the local copy of the extension module, then the version of the function that is included with the
implementation code is used.

You can incorporate the helper function into the Run function of the implementation code by calling the
helper function when the HELP subcommand is specified, as shown in the following code sample:

 if args.has_key("HELP"):
 helper()
 else:
 processcmd(oobj, args, geturlexcel)

For R, the helper function is shown in the following code segment:

helper = function(cmdname) {
 fn = gsub(" ", "_", cmdname, fixed=TRUE)
 thefile = Find(file.exists, file.path(.libPaths(), fn, "markdown.html"))
 if (is.null(thefile)) {
 print("Help file not found")
 } else {
 browseURL(paste("file://", thefile, sep=""))
 }
}

if (exists("spsspkg.helper")) {
assign("helper", spsspkg.helper)
}

• For R, the helper function requires the name of the extension command. Although not shown here, the
name is given by args[[1]], where args is the argument that is passed to the Run function.

• As with Python, the helper function in R assumes that the name of the implementation code file is the
same as the name of the extension bundle. The code also uses the convention of markdown.html for
the name of the help file.

• As with Python, you can incorporate the helper function into the Run function by calling the helper
function when the HELP subcommand is specified. In R, you can check for the HELP subcommand as
follows:

"HELP" %in% attr(args,"names")

• For IBM SPSS Statistics version 23 and higher, the helper function is included with IBM SPSS Statistics
- Essentials for R and is named spsspkg.helper. The if block that follows the helper function
attempts to assign the name helper to this spsspkg.helper function. If the spsspkg.helper
function is not available, the version of the helper function that is included with the implementation
code is used.

Note:

• For IBM SPSS Statistics version 23 and higher, the help is displayed by pressing the F1 key in a Syntax
Editor window when the cursor is positioned within the associated extension command. The help is also
displayed if the submitted syntax contains the HELP subcommand.

12 Writing IBM SPSS Statistics Extension Commands

• If you have a style sheet for your HTML file, you can include it in the extension bundle with the HTML
file. When the extension bundle is installed, the style sheet is installed under the same folder as the
HTML file. For version 23 and higher, all extension commands that are installed with IBM SPSS Statistics
- Essentials for Python and IBM SPSS Statistics - Essentials for R have HTML help and an associated
style sheet that you might want to use. The style sheet is also available from the IBM SPSS Predictive
Analytics Community (Docs>SPSS Statistics>Programmability>Extensions, Tools and Utilities for SPSS
Statistics>Utilities). The name of the style sheet file is extsyntax.css.

• The helper function cannot be used in distributed mode, and raises an error message if it is used in
distributed mode.

Plain text help
You can embed the help in a string variable that is defined in the implementation code file and then
display the string when the HELP subcommand is specified. With this approach, the string is displayed in a
Log item in the SPSS Statistics Viewer, and works in distributed mode.

For Python, you can embed the help text in a triple-quoted string to preserve formatting. An example of
help text that just contains the syntax chart for the MYORG GETURL EXCEL command is as follows:

helptext = """MYORG GETURL EXCEL URL = "URL specification"
[/OPTIONS]
 [FILETYPE = {XLS**}]
 {XLSX }
 [SHEETNUMBER = {1** }]
 {integer}
 [READNAMES = {ON**}]
 {OFF }
[/HELP]
"""

An example of code that is added to the Run function to conditionally display the help text when the HELP
subcommand is specified is as follows:

 if args.has_key("HELP"):
 print helptext
 else:
 processcmd(oobj, args, geturlexcel)

For R, you include the help text in a string variable and then conditionally display it with the writeLines
function.

Help contents
Help for an extension command should contain the following content:

• A brief description of the extension command.
• A syntax chart that specifies the command name, subcommands, keywords, keyword values, and

default values of keywords.
• A simple example of the syntax.
• Descriptions for each of the subcommands, keywords, and keyword values.

All of the extension commands that are installed by IBM SPSS Statistics - Essentials for Python and
IBM SPSS Statistics - Essentials for R include help and might be useful as examples. For release 22
and earlier, the help is in plain text format and is contained in the implementation code file for the
extension command. For release 23 and higher, the help is in HTML format and is contained in the file
markdown.html. For a particular extension command, the file markdown.html is in a folder with the
same name as the command and directly under the folder where the implementation code is installed. If
you have release 22 or earlier, you can obtain the HTML format help by installing the latest version of the
associated extension command from the IBM SPSS Predictive Analytics community.

Chapter 4. Adding help for an extension command 13

14 Writing IBM SPSS Statistics Extension Commands

Chapter 5. Deploying an Extension Command

You can easily deploy an extension command (with or without an associated custom dialog) on your
computer, or share it so that it can be deployed by other users. To deploy an extension command, you
first create an extension bundle that includes the XML specification file and the implementation code.
You or your users then install the extension bundle from within IBM SPSS Statistics. For version 24 and
higher, install the extension bundle from Extensions> Install Local Extension Bundle. For versions before
24, install the extension bundle from Utilities > Extension Bundles > Install Local Extension Bundle.

• The recommended convention is to use the same name for the extension bundle as the name of the
extension command. For example, for an extension command that is named MYORG GETURL EXCEL,
the value of the Name field in the Create Extension Bundle dialog (or Extension Properties dialog if you
created the extension bundle from the Custom Dialog Builder for Extensions in version 24 or higher) is
also MYORG GETURL EXCEL.

• If you create a custom dialog for your extension command, then be sure that the custom dialog
specification file (.cfe or .spd) is included in the extension bundle.

• If you create an HTML help file for your extension command, then include the file in the extension
bundle. If your HTML file uses a style sheet, then include the style sheet in the extension bundle.

• If the implementation code consists of multiple code files (for example, multiple Python modules), then
include all of the files in the extension bundle.

• For extension commands that are implemented in R, list the names of any R packages from the CRAN
package repository that are required by your code. Required R packages are listed on the Optional tab
of the Create Extension Bundle dialog (or Optional tab of the Extension Properties dialog if you created
the extension bundle from the Custom Dialog Builder for Extensions in version 24 or higher). When
the extension bundle is installed, SPSS Statistics checks if the required R packages exist on the user's
computer and attempts to download (from CRAN) and install any that are missing.

• If you are globalizing output and messages for your extension command, then include the folder that
contains the translated resources. To add the folder, specify the path to the folder in the Translation
Catalogues Folder field on the Optional tab of the Create Extension Bundle dialog (or Optional tab of
the Extension Properties dialog if you created the extension bundle from the Custom Dialog Builder for
Extensions in version 24 or higher).

• If you or your users plan to run the extension command in distributed mode, then be sure to install the
extension bundle on both the client and server computers.

For version 24 and higher, help on creating and installing extension bundles is available under Core
System > Extensions, in the SPSS Statistics Help system. For versions before 24, help is available under
Core System > Utilities > Extension Bundles. An example of creating an extension bundle is provided in
the tutorial "Working with R", in the SPSS Statistics Help system.

16 Writing IBM SPSS Statistics Extension Commands

Chapter 6. Extension Schema Element Reference

This section provides a reference for all elements in the extension schema. Each topic lists the valid
attributes for an element and its parent and child elements.

Command element
The top-level element, also known as the document or root element. The Command element contains a
complete command syntax specification of an extension command.

Table 1. Command attributes

Attribute Use Description Valid Values

Language optional The programming
language in which
the command is
implemented. Defaults
to Python.

Python

R

Java

Mode optional Specifies whether the
implementation code
is contained in an R
source file or an R
package. Only applies
for Language="R".
Defaults to Source.

Source

Package

Name required The name of the
command. The name
can consist of up
to three words (case
insensitive) separated
by spaces. Command
names are restricted
to 7-bit ASCII
characters. For multi-
word command names,
ensure that the first
word as well as the first
two words do not match
the name of another
command. For example,
do not use the name
CMD NEW if there is a
command named CMD.
Likewise, do not use
the name MY CMD NEW
if there is a command
named MY CMD.

any

XML representation
<xs:element name="Command" type="command-content">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded" ref="Subcommand"></xs:element>
 </xs:sequence>

 <xs:attribute name="Name" use="required"></xs:attribute>
 <xs:attribute name="Language">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="Python"></xs:enumeration>
 <xs:enumeration value="R"></xs:enumeration>
 <xs:enumeration value="Java"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="Mode">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="Source"></xs:enumeration>
 <xs:enumeration value="Package"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:element>

Child elements
“Subcommand element” on page 22

Parameter element
A parameter controls a specific piece of a command’s functionality. There are many parameter types;
the Parameter element is flexible enough to cover the different types of functionality provided by
parameters. Subcommands contain zero or more parameters.

Table 2. Parameter attributes

Attribute Use Description Valid Values

Name required The name of the
parameter. Parameter
names are restricted to
7-bit ASCII characters
and must start with a
letter or one of the
characters @, #, or $.
Subsequent characters
can be any combination
of letters, numbers, non-
punctuation characters,
and a period (.).

any

ParameterType required DatasetName.
Specifies a dataset
name. The value
will be checked for
syntax correctness (the
same rules as for
variable names) but not
existence. The case is
preserved when passed
to the Run function.

18 Writing IBM SPSS Statistics Extension Commands

Table 2. Parameter attributes (continued)

Attribute Use Description Valid Values

Integer. A number
with no fractional
part after conversion.
Optionally, you can
specify a set of allowed
keyword values for
an Integer parameter,
using EnumValue
elements.

IntegerList. A blank
or comma separated list
of Integer types.

Keyword. Specifies a
value that adheres to
the same rules as
the Name attribute of
a Parameter element.
The value is passed in
uppercase to the Run
function. You can specify
the set of allowed values
using EnumValue
elements. Keyword type
parameters must be
assigned values. To
specify a keyword
without an associated
value, use the
LeadingToken type.

KeywordList.
Specifies a comma or
blank separated list
of values that adhere
to the same rules as
the Name attribute of
a Parameter element.
To specify a list of
values not bound by
these rules, use the
TokenList type. You
can specify the set of
allowed values using
EnumValue elements.

Chapter 6. Extension Schema Element Reference 19

Table 2. Parameter attributes (continued)

Attribute Use Description Valid Values

LeadingToken.
Specifies a parameter
that has a name (given
by the Name attribute
of the Parameter
element) but no
associated value. The
name is passed in
uppercase to the Run
function.

Number. A number,
possibly in scientific
notation using e or
E. Optionally, you can
specify a set of allowed
keyword values for
a Number parameter,
using EnumValue
elements.

NumberList. A blank or
comma separated list of
Number types.

QuotedString. A string
enclosed in single or
double quotes. The
case is preserved when
passed to the Run
function. Optionally, you
can specify a set
of allowed keyword
values (unquoted)
for a QuotedString
parameter, using
EnumValue elements.

TokenList. Specifies
a comma or blank
separated list of values.
Case is preserved when
values are passed
to the Run function.
The TokenList type
is similar to the
KeywordList type
but TokenList values
are not bound by
the rules required of
KeywordList values.

20 Writing IBM SPSS Statistics Extension Commands

Table 2. Parameter attributes (continued)

Attribute Use Description Valid Values

VariableName.
Specifies a variable
name. The value will
be checked for syntax
correctness (see the
rules for variable names
in the Command Syntax
Reference) but not
existence. The case is
preserved when passed
to the Run function.

VariableNameList.
Specifies a list of
variable names. Each
name in the list
will be checked for
syntax correctness but
not existence. Case is
preserved when values
are passed to the Run
function. The TO and
ALL keywords are not
supported.

InputFile. A file
specification for an input
file. The specified file
must exist. The case is
preserved when passed
to the Run function.

OutputFile. A file
specification for an
output file. The specified
directory path must
exist and either the
specified file does not
exist, or if it exists
it must be writable.
The case is preserved
when passed to the Run
function.

XML representation
<xs:element name="Parameter" type="parameter-content">
 <xs:sequence maxOccurs="unbounded" minOccurs="0">
 <xs:element name="EnumValue"></xs:element>
 </xs:sequence>
 <xs:attribute name="Name" use="required"></xs:attribute>
 <xs:attribute name="ParameterType" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="DatasetName"></xs:enumeration>
 <xs:enumeration value="Integer"></xs:enumeration>

Chapter 6. Extension Schema Element Reference 21

 <xs:enumeration value="IntegerList"></xs:enumeration>
 <xs:enumeration value="Keyword"></xs:enumeration>
 <xs:enumeration value="KeywordList"></xs:enumeration>
 <xs:enumeration value="LeadingToken"></xs:enumeration>
 <xs:enumeration value="Number"></xs:enumeration>
 <xs:enumeration value="NumberList"></xs:enumeration>
 <xs:enumeration value="QuotedString"></xs:enumeration>
 <xs:enumeration value="TokenList"></xs:enumeration>
 <xs:enumeration value="VariableName"></xs:enumeration>
 <xs:enumeration value="VariableNameList"></xs:enumeration>
 <xs:enumeration value="InputFile"></xs:enumeration>
 <xs:enumeration value="OutputFile"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:element>

Parent elements
“Subcommand element” on page 22

Child elements
“EnumValue element” on page 22

EnumValue element
EnumValue is used to enumerate a set of allowed values. EnumValue elements are ignored except
for the Keyword, KeywordList, Number, Integer, and QuotedString parameters. When used with
Keyword or KeywordList parameters, the specified EnumValue elements represent the complete set
of allowed values. When used with Number, Integer, or QuotedString parameters, the specified
EnumValue elements represent a set of valid keywords in addition to the specified type. For example, the
value AUTO can be specified as an allowed keyword value for an Integer parameter. The parameter can
then be specified as an integer or the unquoted string AUTO.

Table 3. EnumValue attributes

Attribute Use Description Valid Values

Name required The enumerated value.
Case is ignored.

any

XML representation
<xs:element name="EnumValue">
 <xs:attribute name="Name" use="required"></xs:attribute>
</xs:element>

Parent elements
“Parameter element” on page 18

Subcommand element
Subcommands divide a command’s functionality into distinct groups. Typical subcommands include SAVE
for specifying variables to be saved to the active dataset, PRINT for specifying tabular output, and PLOT
for specifying chart output. A subcommand can only be specified once per command. The name of a
subcommand must be preceded by a forward slash when specified in command syntax.

22 Writing IBM SPSS Statistics Extension Commands

Table 4. Subcommand attributes

Attribute Use Description Valid Values

IsArbitrary optional Allows arbitrary tokens
on the subcommand.
This is useful, for
example, for specifying
variable lists and model
effect lists.

True

False

Yes. Equivalent to True.

No. Equivalent to False.

Name required The name of
the subcommand.
Subcommand names are
restricted to 7-bit ASCII
characters and start
with a letter or one
of the characters @,
#, or $. Subsequent
characters can be
any combination of
letters, numbers, non-
punctuation characters,
and a period (.).
Use Name="" to
specify the anonymous
subcommand.

any

Occurrence optional Specifies whether the
subcommand must be
included in a syntax job
for the command to run.

Required

Optional

XML representation
<xs:element name="Subcommand" type="subcommand-content">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded" ref="Parameter"></xs:element>
 </xs:sequence>
 <xs:attribute name="Name" use="required"></xs:attribute>
 <xs:attribute name="Occurrence">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="Required"></xs:enumeration>
 <xs:enumeration value="Optional"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="IsArbitrary">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="True"></xs:enumeration>
 <xs:enumeration value="False"></xs:enumeration>
 <xs:enumeration value="Yes"></xs:enumeration>
 <xs:enumeration value="No"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:element>

Parent elements
“Command element” on page 17

Chapter 6. Extension Schema Element Reference 23

Child elements
“Parameter element” on page 18

Working with Arbitrary Tokens
TokenList parameter types and Subcommand elements with IsArbitrary=True consist of arbitrary
tokens, such as character strings, literals (strings delimited by single or double quotes), and operators
like '>'. Typical scenarios where arbitrary tokens are required include variable lists that may contain BY or
WITH specifications and model effects lists. For example, a subcommand that allows arbitrary tokens for
specifying model interaction effects might be given as:

/MODEL var1*var2(var3)

When parsed, this results in the following list of six tokens passed to the Run function of the
implementation code.

['var1','*','var2','(','var3',')']

Likewise, an anonymous subcommand that allows arbitrary tokens to specify variables with optional BY or
WITH keywords might be specified as:

DepVar BY A B WITH X Y

When parsed, this results in the following list of seven tokens passed to the Run function of the
implementation code.

['DepVar','BY','A','B','WITH','X','Y']

When working with arbitrary tokens you'll want to test the various forms of input that your
implementation function will need to handle, since the tokens that result from the specified input may not
always be what you expect. For example, a TokenList parameter named TOKENS might be specified as:

TOKENS = 1a 2b

When parsed, this results in the following list of four tokens passed to the Run function of the
implementation code.

['1','a','2','b']

The result reflects the standard way that IBM SPSS Statistics tokenizes command syntax. In particular,
when a set of digits precedes a set of characters, the digits are treated as a separate token. You can force
a set of characters to be passed as a single token by enclosing them in quotes. For example, specifying
TOKENS = '1a' '2b' results in the token list ['1a','2b']. The same applies if you need to specify
multi-word phrases and have each phrase passed as a single token. For example, TOKENS = 'two
words' results in the single token 'two words'.

Examples
Using the Keyword Type

The Keyword type is used to specify a parameter that takes a single value. As an example, consider an
OPTIONS subcommand with a parameter for controlling missing values, and represented in the syntax
diagram as:

/OPTIONS MISSING={PAIRWISE}
 {LISTWISE}

The specification of MISSING is best handled with a Keyword type parameter. The XML syntax
specification for the OPTIONS subcommand is:

<Subcommand Name="OPTIONS">
 <Parameter Name="MISSING" ParameterType="Keyword">
 <EnumValue Name="PAIRWISE"/>
 <EnumValue Name="LISTWISE"/>
 </Parameter>
</Subcommand>

24 Writing IBM SPSS Statistics Extension Commands

An example of command syntax containing the OPTIONS subcommand is:

/OPTIONS MISSING=LISTWISE

The Keyword type always requires the parameter name, followed by an equals sign, followed by a single
value.

Using the KeywordList Type

The KeywordList type is used to specify a parameter that can take on multiple values. As an example,
consider an OPTIONS subcommand with a parameter for specifying one or more file types from a fixed
set, and represented in the syntax diagram as:

/OPTIONS FILETYPES=[SAV SAS STATA]

The specification of FILETYPES is best handled with a KeywordList type parameter. The XML syntax
specification for the OPTIONS subcommand is:

<Subcommand Name="OPTIONS">
 <Parameter Name="FILETYPES" ParameterType="KeywordList">
 <EnumValue Name="SAV"/>
 <EnumValue Name="SAS"/>
 <EnumValue Name="STATA"/>
 </Parameter>
</Subcommand>

An example of command syntax containing the OPTIONS subcommand is:

/OPTIONS FILETYPES=SAV SAS

The KeywordList type always requires the parameter name, followed by an equals sign, followed by one
or more values.

Using the LeadingToken Type

The LeadingToken type is used to specify a parameter that has a name but no associated value. As an
example, consider a PLOT subcommand for specifying types of plots to include in output, and represented
in the syntax diagram as:

/PLOT OBSERVED FORECAST FIT

The specification of PLOT is best handled with a set of LeadingToken type parameters. The XML syntax
specification for the PLOT subcommand is:

<Subcommand Name="PLOT">
 <Parameter Name="OBSERVED" ParameterType="LeadingToken"/>
 <Parameter Name="FORECAST" ParameterType="LeadingToken"/>
 <Parameter Name="FIT" ParameterType="LeadingToken"/>
</Subcommand>

An example of command syntax containing the PLOT subcommand is:

/PLOT OBSERVED FIT

Using the TokenList Type

The TokenList type is used to specify a parameter that can take on multiple values. It is similar to the
KeywordList type but TokenList values are not bound by the rules required of KeywordList values.
As an example, consider a MODEL subcommand with a parameter for specifying model interaction effects,
and represented in the syntax diagram as:

/MODEL EFFECTS=effect-list

The specification of the effects list is handled with a TokenList type parameter. The XML syntax
specification for the MODEL subcommand is:

<Subcommand Name="MODEL">
 <Parameter Name="EFFECTS" ParameterType="TokenList"/>
</Subcommand>

Chapter 6. Extension Schema Element Reference 25

An example of command syntax containing the MODEL subcommand is:

/MODEL EFFECTS=A*B C(D)

26 Writing IBM SPSS Statistics Extension Commands

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the GNU GENERAL PUBLIC LICENSE Version 2.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

28 Writing IBM SPSS Statistics Extension Commands

http://www.ibm.com/legal/us/en/copytrade.shtml

IBM®

	Contents
	Chapter 1. Introduction to Extension Commands
	Chapter 2. XML Specification of the Extension Command Syntax
	Chapter 3. Implementation Code
	Chapter 4. Adding help for an extension command
	Chapter 5. Deploying an Extension Command
	Chapter 6. Extension Schema Element Reference
	Command element
	Parameter element
	EnumValue element

	Subcommand element
	Working with Arbitrary Tokens
	Examples

	Notices
	Trademarks

