Programming and Data Management for
IBM SPSS Statistics: A Guide for IBM
SPSS Statistics and SAS Users

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
287.

Product Information

This edition applies to version 28, release 0, modification 0 of and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation .
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Chapter 1. OVEIVIEW....cccieuieuiieiieiieiieiienienieiescascencssssssssssssssssasssssassssssssssssassassassasses &
L6 = I T = e Yo S 1
DOCUMENTATION RESOUICES...ciiuiieieiieeicieeeeteeeeteeeeteeeetteeeetteeessteeessteesesteesesteesssteesassessasseessssessnssessnssassnsseennns 2

Chapter 2. Data Management........cccciiiiieiieiiiieiiieiiecatesiecastessissssesssssssssssessssessesess 3

Best Practices and EffiCiENCY TIPS .t iiiiiiieeieiie ettt eetee e tee et e et e s te e s e ae e e s beeesabaeessbaesenseeannseeennsneas 3
Working With CoOmMMANT SYNTAX....cicuieieiieeciieeeiee et et es e eere e e ete e e ree e s abee e sbae e nseeesssaeenssaeennseeas 3
Protecting the Original Data........cceeiciieieiieccee ettt e te e e ete e e e e e s te e e ate e e aae e seateeeenseeennes 5
USE EXECUTE SPAINNGLIY.uueiieieeeeieeeeieeeeitieeeieeeeteeesteeesteessseeesssseesssesasssesasssssssssssssssssssssssssssesssesesssesans 7
(01T = 0T o104 1T o £ USSR 9
Using SET SEED to Reproduce Random Samples or ValUES.......cuueecveeecieeeeiieeeeieeeeieeeeiee e vee e 10
Y] Te LY Voo X 0] a o [U= SR P 10

Getting Data into IBM SPSS StAtiSTICS viiivviiiiiiiiiiiiecciie ettt estee e tee e te e e aeeeesaeesaseeeensaeann 12
Getting Data from Databases....ccuui i iieiciee ettt ettt e e te e e te e e rte e s atee s rteesesteesenteeensteeanes 12
Reading IBM SPSS Statistics Data Files with SQL Statements........cccccveeecieeccieeccieeccee e 16
REAAING EXCEL FILES....uiiiiciieeecieecctee ettt ettt ette e s etee e s tee e sbee e s bae e s beeeesbaeesasaeesnsaeaensaeesnseaesnseeennses 18
REAING TEXE DAta FilES.....uiiiiiieieiieeciie ettt et e e e e e e te e e e tee s eteeeebaeeentaeesabaeeenteeesnsaeesnsaeans 22
Reading CompleX TEXt DAta FIlS.....ciuuiiiciiiiciieccieeecite ettt et e e e ta e e s ae e e s sae e e e abaeeensaeesasaeens 30
REAAING SAS Data FileS....uuiiiciieiciieeeiee ettt e et e s te e e ate e e e teesetaeeesteesesteessstaesestaesestesennsesanns 36
REAdiNg Stata Data FileS....uiiiiiiieiiieciie ettt e e e e e rte e e et ae e e tee e eabaeeebaeesnsaeesataseensaeanns 37
Code Page and UNiCOde Data SOUICES.......uiicieeecieeeeieeeciieeeetieeeeteeeeteeeerteesesreesssteessssasssseessnssesssssnennns 37

[E=N @] 01T =V o] o 1T 39
USING MULLIPLE DAtA SOUICES.....uviieiiieeitieeeiieeeitt e ettt e e ste e e ste e e te e e ate e e ateeesabeessaseeesaseeesnsaesnnsaesnnseesnnsens 39
MEIZGING DAta FileS..ciciiiiiiiiieiiiecee et ettt ete e e et e e e te e e e tee e eateeeestaeeesteeesstaeesssaeesssaseasseeeansaeannes 41
ABEIEBatiNG DALA.....uiiieiiiecciiecctee ettt e e e rte e et e e et e e e abe e e beeeeatae e abae e abaeeanbeeeaabaeeanraeennraeeanreas a7
AT E o A A = =Y - VOO 49
ChaNGiNg File STIUCTUI....eiiciiieciie ettt ettt e et ete e e ette e e e te e e eate e s steeesateeestesenteesnaeesnsteesnnens 50

Variable and File PrOPertiES. ... cciee ettt et sete e eete s e etee e e ree e s ate e sesteeeseeeeseeesnneeeeseeennsens 55
R YR EE Yo Lol S o] o1 o 41T PR RNt 55
N e Co o1 o 4TSRS SR 61

Data TranSTOrMAtioNS. .. ciiciiiiieeteeteeteet ettt ettt s e e s be e sbe e sbe e beesabeebaesabessbeesasessbaessaesnseensaesnsenn 62
Recoding CategoriCal Variables........uiciiieiiieeie ettt ettt re e e te e e aae e e aae e s aaee e nsaeeenes 62
BinNiNg SCale Variables.......ooiii ittt ee e et e s te e et e e s rte e e ataeeenteeeentaeeentaeaans 62
Simple NUMEric TranSforMationscccveeccieieciececee et ae e e sare e e rbe e e ab e e enteeeneeeeneas 64
Arithmetic and StatistiCal FUNCHIONS.....c.iiviiiiiiieeieeeeete ettt sar e s beesaa e st e e saaesaseens 64
Random Value and Distribution FUNCLIONS........cuiiciiriiiiienieiieeeesieeee st sre e esieesee e e seaesaeeseneens 65
YT YT o LU E= N o] 3 PO SRS 66
Changing Data Types and String Widths.........ooiiiioiie et e 69
Working With Dates and TIMES.......uiicciieieiieeciie et et iee et e e te e e s bee e s te e e s teeesbaeesssaeeensaeeessaeeensneean 70

Cleaning and Validating DAta........cccueeeiiiieiiieeiieecctee e ctee e st e e teeesre e e ste e e abeeesabaeesabaeesnbaeesssaeesnsesessseesnnses 75
Finding and Displaying INValid VAlUES.........eeiciiiieiieeeieeeeee ettt e te e e ve e e aa e e aa e e anae s 75
Excluding Invalid Data from ANALYSiS.......cccieeicieeicieecciee e e ccte e cere e eeee e eee e e eree e svee e sbee e esreeeereaesnneas 77
Finding and Filtering DUPLICATES. ...cccuuie ettt tee e rtee e e te e e s be e e e bee e e aee e s araeenans 77
Data Preparation OPtiON. ... ettt ee e e tee e etee e s rtee e etaeesabaeeesbaeeessasesnsasesnsasessaeessaeanns 79

Conditional Processing, Looping, and REPEALING.......cccceiiiiiiiciieeciee ettt eeee e evee e e saee e e ree e 81
Indenting Commands in Programming StrUCTUIES........eeiiiieeciieciieeectee et ectee e ere e e sreeeaveessaaee s 81
CONAitiONAL PrOCESSING...ccuvieieiieeeitieectteeetteeertte e ertee e e rtee e e teeeetaeessbeeesbaeessbaeesssaeessasesssesesssesessesessneanns 81
Simplifying Repetitive Tasks With DO REPEATciiciii ettt ettt ssve e esveeeevee s avee s aae s nneens 83
LV/=T o (o] T PP PP PP PPPRRPP 85
LOOP SETUCTUIES .. eeiiiiitietetee ittt ettt e e e s e s s ere e et e et e e e e e s s s aabbaaeaaaeeeeesesssssssseraaaaaeeeessssnsssssssssnaeneees 87

EXPOrting Data and RESULLS....cccuiiiiiiiiiee ettt st ste st e s srte e s be e e s bee s sbee e sbeessabaessabeessasaessnsaesnasens 92

Exporting Data to Other Applications and FOrmMats.......cccoceeriiriienieeieene e 92
Reading IBM SPSS Statistics Data Files in Other Applications........ccocueeceeriiiiiene e 96
EXPOITING RESULES. .ttt sttt ettt st s e st e e b e sae e e b e smeeebeesmeeennes 98
Controlling and Saving OULPUL FIleS.....ccouiiiiiiiieienitee ettt s 114
Scoring data with prediCtive MOdelS. ..o 115
Building @ predictive MOEL. ... ettt s s e 115
APPLYING The MOEL.c..eeieieeeee ettt be e sae e e e sne e smreens 117
Chapter 3. Programming with Python..........ccccccciiiiviiniiiiiiciicicinnicnninninncncne. 119
| aY (o [0 o 4T] s P ST SOU U SOPUSP 119
Getting Started with Python Programming in IBM SPSS StatiStiCSuvvvviiriiiiiiiiieiieeeieeeeeee e 120
The SPSS PYThON MOQULE........ ettt e et e e et te e e e e s aba e e e s enbeeeeeeenseeneeennnes 120
The SpsSCLENT PYThoN MOQULE.......uiiii ettt eeree e e e e e e e e e ra e e e e e e anrees 123
Submitting Commands to IBM SPSS StatiStiCS ..uuiiriiieiriiiiniieinieeeite et esee s see s s 125
Dynamically Creating Command SYNTAX.....cccueirvieeriiiierniiternieessieessieessieessreessseessssessseessseesssseesas 126
Capturing and ACCESSING OULPUL...ciiiiieiiiieeiiteriieeesie st esrte e ssireesreessseeesssteesssteesssseesssaesssaesnnsaesn 127
Modifying PivOt Table OULPUL....ciiiiiiiiieeeeetesrte ettt e s e s s e e s s e e e sbeeesaneas 128
PYTNON SYNTAX RULES.. . eeiiee ettt e et e e s e bree e s e e aree e e s e nsteeeesennsaneeeennssneaesannes 128
Mixing Command Syntax and Program BLOCKS.......c.ccuiiriieriieeiiieeniieessieessieessieesseeessveessseessasees 129
NESTEA Program BLOCKS.cutiiiiiiiciee ettt sttt see e s sree s st e s sbe e s sbe e s sbe e s ssbaeesbaeesabeessaseesnanes 131

(o TaTo] LT a Y=l g o] = F PPN 132
Working with Multiple Versions of IBM SPSS StatiStiCScciiirvieiniieeiniieiriiessieessieesevee e e sseee e 133
Creating a Graphical USer INTEITaCe.uii ittt sttt ee e s saee e s saee e s saeas 133

(CT=) na T oY= T= o T PRSPPI 137
21=E = ot £ o F ST UR U SOPP PR 137
Creating Blocks of Command Syntax within Program BLOCKS........ccccovviiirviiiiniieiniieenieeesieessiee e 137
Dynamically Specifying Command Syntax Using String SUbStItUtioN.......ccccvvvveeirieinicenniee e 138
USINg RAW STHNGS iN PYTNON...c.uiiiiiiiiicieecee ettt sttt ste st e st e e s ebee e sate e sebee e ssaeesnaeesane 139
Displaying Command Syntax Generated by Program BLlOCKS.........cceevuiiriiiiiiieiinieeciee e 140
Creating User-Defined FUNCLIONS iN PYthON.....coi ittt 140
Creating a File Handle to the IBM SPSS Statistics Install DireCtory.....cccoccvveveeievieeiniecineeeesiee e 141
Choosing the Best Programming TECHNOLOZY.....c.utiiriiiiriiiiiiierriee ettt s 142
Using Exception Handling in PYTNON........ciiiiiiiieceieeccee ettt sttt see e s sre e s see e s see e 143
DebUgging PYthOn ProSramS......ccuuiiiieiiiieeiiieeseieeseieessieessieesseeesssseessaseessseessnseesssseesssseesssseesssees 145
Working with Dictionary INfOrmation.......occieiiciiiicieeeieceieeete et seee s st e e sbae e sbee e svaeesnne 146
Summarizing Variables by Measurement LEVEL ...ttt 147
Listing Variables of @ Specified FOrMat......coccuiiiiiiiiiieiiierieesriee sttt sre e st essre e s essneee s 148
Checking If @ Variable EXISTS.....ciiiiiiiiiiieiiieeieiee st seieeseieessee e sesee e seateeseseeesssteessseeessseaesnsseesaseeesans 149
Creating Separate Lists of Numeric and String Variables.........ccvvvieiiiiiniiiniieccecsiecsee e 149
Retrieving Definitions of USer-MiSSING ValUES.........couvuiiiiiiiiiiieiiieeenieeesieessiee e see s vee s vee s 150
Identifying Variables without Value Labels.......c.uuiviiiiiiiiiiecieccecsiecsec e e s 151
Identifying Variables with CuStom AttribULES......uiiiiiiiiiececee e 153
Retrieving Datafile AttriDULES.....ii et e e s e e e sba e e s ra e e sbaeesaee 153
Retrieving MUltiple RESPONSE SETS......uiiiiiiiiiiiiriteerie ettt e s e s see e s s be e s aaeessnseas 154
Using Object-Oriented Methods for Retrieving Dictionary Information.....ccccccceeeveeinveeinveennceeennne, 154
Working with Case Data in the ACtive Dataset.......cucuiiriiiiiiiieeiieereeeste ettt sae e s 159
USINEG the CUMSOT CLasS....uiiiiciieiiiieiiiieieiie e ettt esiee e st e e steessttessreessbeessbeeessaessssaesssaesssseessssaesnsseeenns 159
UsSIiNg the SPSSAata MOAULE......cocuiiiiieiccee ettt e s e e s s be e e s baeesbeeesasaeean 168
Creating and Accessing MULLIPLE DataSetS.....cciviiciiiiiieiiieiniee ettt see e e sae e s ae e s e e s naeeas 178
Getting Started With the Dataset ClasS.....ccccvciiiiciieiiiiee ittt see st esee s s ree s sbee e ans 179
Example: Creating and SaviNg DatasetsS......cciiiciiiiiiieriiieiiiee st ssieessieesseeesseeessaeeesssreesssseesnsseesas 184
Example: Merging Existing Datasets into @ New Dataset.......ccoccvervieieiiieniieeniieenreeseeesseeeeseeeens 185
Example: Modifying Case Values Utilizing a Regular EXPression.......cuueevveernieennieennieesseeessineenns 187
Example: Displaying Value Labels as Cases in @ New Dataset.....cccccvvriierriieeniiiiensiieensiiensieesseeens 188
Retrieving Output from Syntax CoOmMMAaNAS.......ccuiiiiiiiiiiieriieeirieesrie et essre e st essbe e s e e ssareessasaessasees 190

Getting Started With the XML WOTKSPACE......ciiciiiiiiiiiiieeiciee sttt e sete e seieeessteeessateesereeessseeeseseeesane 190

USING the SPSSAUX MOGULE.....ciiiieiiiiee ettt et e e st e e st e e s sbae e sbeessbeeessaeessaeesane 193

(01T Lo T oo Yol Ta (U] =Y TSRO 197
Getting Started With PrOCEAUIES.......uiiiiieiciee ettt see e s see e s sree e ssee e ssaeeessstaessneeesans 198
Procedures with MULtiple Data PasSSeS.. ... iiieeicciieeeceitee e cecrtee e s e ecrre e e e scvee e e s e sveae e s s aaaee s s enneneas 200
Creating Pivot Table OULPUL....ciii ittt sttt e s te e s be e s s be e s s be e s s baeesabaessasaeean 202

Data TranSTOrMATIONS. .. .viiieiie ettt e st e s ste e s s te e s s abe e s ssbaesssbeesssteessssaesasseesnsseesns 206
Getting Started with the trans MOAULE........ccuiiiiiii e s s s 207
Using Functions from the extendedTransforms ModULe.........covviiiriiiiniiiiciiecerecee e 209

Modifying and EXporting OULPUL IEEMIS..cccuiiiicieiciee ettt ettt s e s s be e s s e e s 216
MOITYING PIVOT TADLES...ciiiiieiiiiee ettt s sbee s st e e sbe e e s be e e s e e s sbeessareeesans 216
EXPOrTing OULPUL LEEIMS .. uviiiiiieiciieeeite ettt ettt s st e st e s st e s sbe e s sabe e e s abaesssbaessataessseeesnneens 217

Tips on Migrating Command Syntax and Macro Jobs t0 Python........ccccvceeiiiiiniiiniieceeceee e 220
Migrating Command Syntax JObS t0 PYThON........iiiiiiiiiiiiiiineeceeeecsee e 220
Migrating Macros 10 PYTNON......uii ittt e st e s ate e s aae e s saraesnnee 221

Y0 1=To =Y] o] o3RRS 224
USING REGULAT EXPIrESSIONS. ..ciicieiiiieeietiee ittt eitteesetteesetteessteeeseseeesaseessaseessaseesssseesssseesssseesssseesssseessnsees 224
0Tt 1 L= K U= USRS 226

Chapter 4. Programming With R........ccccciuiiiiiiiiiiiiiiiiiniiiiiiieee . 229

| aY (o 0o 4T] s PSSO U VST 229
Getting Started With R Program BLOCKS........ciiciiiiiiiiiiiei ittt siee s iee s svee s siee s svee s sveessans 229
R SYNIAX RULES ettt et e e e e tee e e e e te e e e senstaeeesensaeeeeeansteeeeeenseeeeaennssanesanns 231
Mixing Command Syntax and R Program BLOCKS.........cccceerciiiriieiniieenieeeseeesiee e eieessveeessveessvee e e 232
Nested Program BLOCKSciiiiiiiiiiiiiieeieeertesse et sst st s st e s be e s st e s sbe e s s e e s s baessabeessnseessanens 233
(CT= na T oY= T= o TSP 233
Retrieving Variable Dictionary INfOrmMation.......ccoccuiiiriiiiiiieiniieecee ettt e s see e s see e s sreeenaee 234
Retrieving Definitions of USer-MiSSING ValUES.........civvuiiiiiiiiiiiiiiiteenieeesieessiee e see s sveessvee s 235
Identifying Variables without Value Labels.......c.uuiiiiiiiiiiiieniecceceiec e 236
Identifying Variables with CuStom AttribULES.....cuiiviiieiieceeee e 236
Retrieving Datafile AttriDULES.....ii ettt e s ra e s sbe e e s ba e e sbaeesaee 237
Retrieving MUltiple RESPONSE SETS.....uuiiiiiiiiiiiiiieecie ettt e s sare e s e e s aaeessaeeas 237
Reading Case Data from IBM SPSS StatiSTiCS .iocuiiiiiiiiiiieriiieniiiesiieesieessie e st e sseeesseeessaeeesssaeessnnee s 238
Using the spssdata.GetDataFromSPSS FUNCLION.....cuiiiiiiiiiiieeite ettt see e s s 238
MISSING DATA..ueeiictieeiitieeiiiee ittt e ettt e st e e ettt e st e e stee e sbt e e s beeesbaeesasteesabaeessaeessaeesssaessasaessnseeesnsaesssseeenns 239
Handling IBM SPSS Statistics Datetime ValUes.......ccoviiiiriiiiniieiiiieceieessiee st e e e seee e 240
Handling Data With SPLItS....cccuiiiriiiieiieeiiecete ettt re s s e s sbee e ssbbe e ssaee e ssaseesnaeaesnneaas 240
Working with Categorical Variables.ottt saaee s 241
Writing Results to a New IBM SPSS StatistiCs Dataset.....cucvieiiiieiiiiiiiiiieinieenrieesieessvee s ssvee e vee e 242
Creating @ NEW DatasSet. . .cuii ittt sttt st ettt e s ste e s s e e s abe e ssabeesssbeessabeessasaesnnseessnsens 242
Specifying Missing Values for NEW Datasets.....ccvciviriiiiniieiniieenieecsieeesiee st essiee s see e sve e s saee s 245
Specifying Value Labels for NewW Datasets......ccceciirriieiniiiinieieieeeite st ssiee s seesssee s sveeessneeessnees 246
Specifying Variable Attributes for NeW Datasets......cccceeiniieiniiinnieceiecsee e 246
Creating PivOt Table OULPUL....oii ittt e e s e e e s ba e e s bae e sbaeesbaeesabaeesnseaenn 247
Using the spsspivottable.Display FUNCLION......occiiiiiiieieetecetecsee st n e e saee s 247
Displaying OUtpUt from R FUNCLIONS.....ccutiiiiieiiieeisiteceiee sttt s st e st e ssee e s saeeessseeessseeessneeesnns 249
Displaying Graphical OULPUL frOM Ru...ciiuiiiiiiiiiiieeeieecte ettt see s siae e s aae e s e e e sbeeessaeesnneesn 249
Retrieving Output from Syntax CoOmMMAaNAS.......ccuiiviiiiriiieiiieenrieessieessiee st e st essre e s e e ssareessasaessssees 250
USING the XML WOTKSPACE. ...ciiicuieiiiieiiieeiciteesciteescitessitesssitesssreeessaeessbeeesseessbeessssaeesseesssseessseesnnses 251
Using a Dataset t0 RetrieVe OULPUL....c..iiiciiiicieiiieecte ettt e stee s sbe e s sbe e s sbe e s saneas 253
RUNNING from an EXTEIrNAl R PrOCESS.....uiiiiiiiiieiiieeceiee sttt ettt ssee s s ite e s siae e ssaee e saee s sseessseeesnneas 254

Chapter 5. Extension Commands......ccccceeieieieiieienieceniennecectecececsecassessecassscsscesscs 257

Introduction to EXtENSION COMMEANGAS......uiiiiiiiriiieiiieesiiee st e et e st e e ste e s siee e s ssreessateessabeessaseessaseessasens 257
XML Specification of the Extension Command SYNTaX......ccccccuieeeieeiiiieeeieciieeeeeccire e e eecreee e e eeveee e e eenneeeas 258
|l o] (=T 0 gT=T ol =\ o] o [6o o [TSR 260
Adding help for an extension COMMEANTG....cuiiiciiiiiiee ettt ssee e sere e seree e sereeesereeesereeessreeesneeesans 263
Deploying an EXteNSion COMMEANG.....cciiiiiiiiiiiiiieritersie st e st e sstee st essteessaeeesssseesssseessnseesssseesssseess 266

vi

Chapter 6. IBM SPSS Statistics for SAS Programmers.......cccceeveieininecneceecsecsenes 267

=T To 1 Y= i D L= RO PRRUPTRRPPPO 267
Reading Database Tables. ...ttt sttt s s e s e e s s e e s sabeeesabaeesanees 267
REAAING EXCEL FILES...uuiiiiiiiiiiiieiciee sttt sttt st e st e s ste e s te e s be e s abe e s sbeessnseesssseesassaesnsseesnnseesn 268
REAAING TEXE DAA..uuiietieieiiiieriiieeiiteeiite st e srte e s rteessteeessteeessbaeessaeeessataesssseesssaesnsseesnssnesnsseesnnseesnnses 269

METEING DAL FIlES..iiiiiiiiiiiiiiieeiiteeet ettt e e st e e st e e s bee e s beeesbeeesbeeessbeeesneeessenesnsseesnees 270
Merging Files with the Same Cases but Different Variables.......ccccvvveeinviiiniiiinieieeec e 270
Merging Files with the Same Variables but Different Cases......cccccvvvveeiiviiiiniiieiniiecree e 271
Performing General MatCh MEIZING.......ccicuiiiiiiiiiiieiiee ettt sree et e e e ssree e s sree s sbeeesseas 271

ABEIEBATING DAlA..uiiiiiieiiiieiiiiee ettt e st e st e s ste e s st e e sbe e s s bt e e sbeessbaessabeeesabaeeaabaesaataeenaaeennraeennees 273

ASSIZNING Variable PrOPErTiES. . .iccuiiie ittt ettt ettt see s see e s ee e s ae e s saae e ssabaessabeesnssaessasaesnasens 273
VariADLE LADELS. ..o ettt s s s b e e r e snee s 274
VAU LADELS. ..ttt st e re e s e e ne e st e r e e snee s 274

Cleaning and Validating Data.......ccccueieceeiriiieiriieeeteseieeeeiee st e s ere e s stee e s be e s sbaessabeesssbaessasaessssaeessensnnee 275
Finding and Displaying INValid ValUES......c..civciiiriiiiiiieiiieestecsite e see s see s siee s svee e svee s svee s sveessaneas 275
FiNding and FIlLEriNg DUPLICATES. ..ccicuiiiiiieriiteeiie sttt sttt s st s st e s ste e s s e e s s beesssbaesssbaessaseesas 276

TranSfOrmMINgG DAta ValUES.....coccuiiiiciiiiciieeciiee ettt ettt ettt e s sbae e s bt e s sbee s sbaeesabteesbaeesbeesssaeesans 276
R CCToloTe T o =31 B - €= VO PP OSSPSR 277
2T oY aTT =S D= = VOSSR 277
NUMEIIC FUNCEIONS. . ttiiieeiteeee ettt ettt se et s e st e s e e s st e be e sas e e beesaseeabeesnneebeesneesareas 278
RaNdom NUMDEr FUNCHIONS.ciiiieieeiecte ettt sttt st s et s e s b e e e eareas 279
Y (] Y= 00o] a[or=\ £=T o F=1 1 o] 3 FO OSSP 279
SETINE PaISINE . eeietieieiiieieitteeittee ettt e ettt e ettt e sttt esbeeeebtee s saeesseeesseeessseeesbaeessseessseesnsseessanessseeesnsseenn 280

WOrking With Dates and TiMIES. .. uuiiiciieriiieeitesiie sttt st e st essaee e ssaee e s sabeessaeeessabaesssseessssaesnssaesnsseas 280
Calculating and Converting Date and Time INtervals......ccccuiiiiieeriiieniieeniee e ssee e 281
Adding to or Subtracting from One Date to Find Another Date.......c.ccvevuveveiiieiniiieiniieeniieesiee e 281
Extracting Date and Time INfOrmation. ..ottt s s s s be e s sae e 282

Custom Functions, Job Flow Control, and Global Macro Variables..........cccccervirceniinieenieinieeneeeieene 282
Creating CUSTOM FUNCHIONS. ...iictiiiciei ettt sttt et e e st e s st e s sbe e s sbe e e sabee s sabeessseessasaessasaesnnses 282
o] ol ol [0V 60731 (o] ST U U STOPRR PSP 283
Creating GLobal Macro Variables. ...ttt ettt ae e s sae e s e s sanees 284
Setting Global Macro Variables to Values from the Environment........cccocveveiieeniieenniecnseeeesee e 285

01 Lo = RN 287

LT [T 4= T T ST PR USSP 288

11T L= P 289

Chapter 1. Overview

This book is divided into several sections:

- Data management using the IBM® SPSS® Statistics command language. Although many of these
tasks can also be performed with the menus and dialog boxes, some very powerful features are
available only with command syntax.

« Programming with IBM SPSS Statistics and Python. The IBM SPSS Statistics - Integration Plug-in for
Python provides the ability to integrate the capabilities of the Python programming language with IBM
SPSS Statistics. One of the major benefits of Python is the ability to add jobwise flow control to the IBM
SPSS Statistics command stream. IBM SPSS Statistics can execute casewise conditional actions based
on criteria that evaluate each case, but jobwise flow control—such as running different procedures for
different variables based on data type or level of measurement, or determining which procedure to
run next based on the results of the last procedure—is much more difficult. The IBM SPSS Statistics -
Integration Plug-in for Python makes jobwise flow control much easier to accomplish. It also provides
the ability to operate on output objects—for example, allowing you to customize pivot tables.

« Programming with IBM SPSS Statistics and R. The IBM SPSS Statistics - Integration Plug-in for R
provides the ability to integrate the capabilities of the R statistical programming language with IBM
SPSS Statistics. This allows you to take advantage of many statistical routines already available in the R
language, plus the ability to write your own routines in R, all from within IBM SPSS Statistics.

- Extension commands. Extension commands provide the ability to wrap programs written in Python,
R, or Java in IBM SPSS Statistics command syntax. Subcommands and keywords specified in the
command syntax are first validated and then passed as argument parameters to the underlying Python,
R, or Java program, which is then responsible for reading any data and generating any results. Extension
commands allow users who are proficient in Python, R, or Java to share external functions with users of
IBM SPSS Statistics command syntax.

- IBM SPSS Statistics for SAS programmers. For readers who may be more familiar with the commands
in the SAS system, Chapter 6, “ IBM SPSS Statistics for SAS Programmers,” on page 267 provides
examples that demonstrate how some common data management and programming tasks are handled
in both SAS and IBM SPSS Statistics.

Using This Book

This book is intended for use with IBM SPSS Statistics release 28 or later. Many examples will work with
earlier versions, but some commands and features are not available in earlier releases.

Most of the examples shown in this book are designed as hands-on exercises that you can perform
yourself. The command files and data files used in the examples are included in the Zip file that contains
this book. All of the sample files are contained in the examples folder.

« /examples/commands contains IBM SPSS Statistics command syntax files.
« /examples/data contains data files in a variety of formats.
« /examples/python contains sample Python files.

All of the sample command files that contain file access commands assume that you have copied the
examples folder to your local hard drive. For example:

GET FILE='/examples/data/duplicates.sav'.
SORT CASES BY ID_house(A) ID_person(A) int_date(A) .
AGGREGATE OUTFILE = '/temp/tempdata.sav'

/BREAK = ID_house ID_person

/DuplicateCount = N.

Many examples, such as the one above, also assume that you have a /temp folder for writing temporary
files.

Python files from /examples/python should be copied to your Python site-packages directory. For SPSS
Statistics version 22 and higher, a local distribution of Python is installed by default with SPSS Statistics
and SPSS Statistics Server as part of IBM SPSS Statistics - Essentials for Python. The location of site-
packages within this local distribution depends on your platform. In the following, <SPSS_HOME> is where
SPSS Statistics is installed and <python version> is the Python version (for example, 3.9).

« For Windows users, the site-packages directory is located under <SPSS_HOME>\Python\Lib; for
example, C:\Program Files\IBM\SPSS\Statistics\28\Python\Lib\site-packages.

« For Mac users, the site-packages directory is located under <SPSS_HOME>/Python/1ib/
python<python version>; for example, /Applications/IBM/SPSS/Statistics/28/
Python/lib/python3.9/site-packages.

« For UNIX users (includes IBM SPSS Statistics for Linux and IBM SPSS Statistics Server for UNIX), the
site-packages directory is located under <SPSS_HOME>/Python/1ib/python<python version>.

If you have a pre-22 version of SPSS Statistics or you installed your own version of Python, then the
location of site-packages is as follows:

« For Windows users, the site-packages directory is located in the Lib directory under the Python
installation directory; for example, C: \Python<python version>\Lib\site-packages.

« For Mac users, the site-packages directory is located at /Library/Frameworks/
Python.framework/Versions/<python version>/1lib/python<python version>/site-
packages.

« For UNIX users (includes IBM SPSS Statistics for Linux and IBM SPSS Statistics Server for UNIX), the
site-packages directory is located in the /1ib/python<python version> directory under the Python
installation directory.

Documentation Resources

The IBM SPSS Statistics Core System User’s Guide documents the data management tools available
through the graphical user interface. The material is similar to that available in the Help system.

The IBM SPSS Statistics Command Syntax Reference, which is installed as a PDF file with the IBM

SPSS Statistics system, is a complete guide to the specifications for each command. The guide provides
many examples illustrating individual commands. It has only a few extended examples illustrating how
commands can be combined to accomplish the kinds of tasks that analysts frequently encounter. Sections
of the IBM SPSS Statistics Command Syntax Reference that are of particular interest include:

« The appendix “Defining Complex Files,” which covers the commands specifically intended for reading
common types of complex files.

« The INPUT PROGRAM—END INPUT PROGRAM command, which provides rules for working with input
programs.

All of the command syntax documentation is also available in the Help system. If you type a command
name or place the cursor inside a command in a syntax window and press F1, you will be taken directly to
the help for that command.

Complete documentation of the functions that are available with the IBM SPSS Statistics - Integration
Plug-in for Python is available in the IBM SPSS Statistics Help system, under Integration Plug-in for
Python Help.

Complete documentation of the functions that are available with the IBM SPSS Statistics - Integration
Plug-in for R is available in the IBM SPSS Statistics Help system, under Integration Plug-in for R Help.

2 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Chapter 2. Data Management

Best Practices and Efficiency Tips

If you haven’t worked with IBM SPSS Statistics command syntax before, you will probably start with
simple jobs that perform a few basic tasks. Since it is easier to develop good habits while working with
small jobs than to try to change bad habits once you move to more complex situations, you may find the
information in this chapter helpful.

Some of the practices suggested in this chapter are particularly useful for large projects involving
thousands of lines of code, many data files, and production jobs run on a regular basis and/or on multiple
data sources.

Working with Command Syntax

You don't need to be a programmer to write command syntax, but there are a few basic things you should
know. A detailed introduction to command syntax is available in the “Universals” section in the Command
Syntax Reference.

Creating Command Syntax Files

An command file is a simple text file. You can use any text editor to create a command syntax file, but
IBM SPSS Statistics provides a number of tools to make your job easier. Most features available in the
graphical user interface have command syntax equivalents, and there are several ways to reveal this
underlying command syntax:

« Use the Paste button. Make selections from the menus and dialog boxes, and then click the Paste
button instead of the OK button. This will paste the underlying commands into a command syntax
window.

« Record commands in the log. Select Display commands in the log on the Viewer tab in the Options
dialog box (Edit menu > Options), or run the command SET PRINTBACK ON. As you run analyses,
the commands for your dialog box selections will be recorded and displayed in the log in the Viewer
window. You can then copy and paste the commands from the Viewer into a syntax window or text
editor. This setting persists across sessions, so you have to specify it only once.

- Retrieve commands from the journal file. Most actions that you perform in the graphical user interface
(and all commands that you run from a command syntax window) are automatically recorded in the
journal file in the form of command syntax. The default name of the journal file is statistics.jnl. The
default location varies, depending on your operating system. Both the name and location of the journal
file are displayed on the General tab in the Options dialog box (Edit > Options).

« Use auto-complete in the Syntax Editor to build command syntax interactively. Starting with version
17.0, the built-in Syntax Editor contains many tools to help you build and debug command syntax.

Using the Syntax Editor to Build Commands

The Syntax Editor provides assistance in the form of auto-completion of commands, subcommands,
keywords, and keyword values. By default, you are prompted with a context-sensitive list of available
terms. You can display the list on demand by pressing CTRL+SPACEBAR and you can close the list by
pressing the ESC key.

The Auto Complete menu item on the Tools menu toggles the automatic display of the auto-complete list
on or off. You can also enable or disable automatic display of the list from the Syntax Editor tab in the
Options dialog box. Toggling the Auto Complete menu item overrides the setting on the Options dialog but
does not persist across sessions.

|£ *readexcel.sps - Syntax Editor g@
File Edit ‘“jew Data Transform Analyze Graphs Uities Bun Toolz Add-ons Windoww Help
=H I e EaBER A B 9% B w5 {,.J|Hr ® % 1 B | sctive: [patazetn |
GET DATA, e reacexcel sps
2 ' GET DATA
3 ITYPE=XLS
4 JFILE=Yexamples/data/sales xls'
g SSHEET=MAME 'Gross Revenue'
5 JCELLRAMGE=RANGE 'A2:115'
7 PO /READ
8 FILE |~
e FIRSTCASE
FILCASE
IMPORTCASE
GILALIFIER B
FEADMNAMES
=HEET
QL
TYPE -— - - S— —
LINENCR Y PTED : | | In7cos|
W ARIAELES -

Figure 1. Auto-complete in Syntax Editor

Running Commands
Once you have a set of commands, you can run the commands in a number of ways:

 Highlight the commands that you want to run in a command syntax window and click the Run button.

« Invoke one command file from another with the INCLUDE or INSERT command. See the topic “Using
INSERT with a primary command syntax file” on page 11 for more information.

« Use the Production Facility to create production jobs that can run unattended and even start unattended
(and automatically) using common scheduling software. See the Help system for more information
about the Production Facility.

« Use IBM SPSS Statistics Batch Facility (available only with the server version) to run command files from
a command line and automatically route results to different output destinations in different formats.
See the IBM SPSS Statistics Batch Facility documentation supplied with the IBM SPSS Statistics server
software for more information.

Syntax Rules
« Commands run from a command syntax window during a typical IBM SPSS Statistics session must
follow the interactive command syntax rules.

- Commands files run via IBM SPSS Statistics Batch Facility or invoked via the INCLUDE command must
follow the batch command syntax rules.

Interactive Rules
The following rules apply to command specifications in interactive mode:

« Each command must start on a new line. Commands can begin in any column of a command line and
continue for as many lines as needed. The exception is the END DATA command, which must begin in
the first column of the first line after the end of data.

« Each command should end with a period as a command terminator. It is best to omit the terminator on
BEGIN DATA, however, so that inline data are treated as one continuous specification.

* The command terminator must be the last nonblank character in a command.

- In the absence of a period as the command terminator, a blank line is interpreted as a command
terminator.

4 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Note: For compatibility with other modes of command execution (including command files run with
INSERT or INCLUDE commands in an interactive session), each line of command syntax should not
exceed 256 characters.

Batch Rules
The following rules apply to command specifications in batch mode:

« All commands in the command file must begin in column 1. You can use plus (+) or minus (=) signs

in the first column if you want to indent the command specification to make the command file more
readable.

If multiple lines are used for a command, column 1 of each continuation line must be blank.
« Command terminators are optional.

« Aline cannot exceed 256 characters; any additional characters are truncated.

Protecting the Original Data

The original data file should be protected from modifications that may alter or delete original variables
and/or cases. If the original data are in an external file format (for example, text, Excel, or database),
there is little risk of accidentally overwriting the original data while working in IBM SPSS Statistics.
However, if the original data are in IBM SPSS Statistics data files (.sav), there are many transformation
commands that can modify or destroy the data, and it is not difficult to inadvertently overwrite the
contents of a data file in IBM SPSS Statistics format. Overwriting the original data file may result in a loss
of data that cannot be retrieved.

There are several ways in which you can protect the original data, including:

- Storing a copy in a separate location, such as on a CD, that can’t be overwritten.

« Using the operating system facilities to change the read-write property of the file to read-only. If you
aren’t familiar with how to do this in the operating system, you can choose Mark File Read Only from
the File menu or use the PERMISSIONS subcommand on the SAVE command.

The ideal situation is then to load the original (protected) data file into IBM SPSS Statistics and do all data
transformations, recoding, and calculations using IBM SPSS Statistics. The objective is to end up with one
or more command syntax files that start from the original data and produce the required results without
any manual intervention.

Do Not Overwrite Original Variables

It is often necessary to recode or modify original variables, and it is good practice to assign the modified

values to new variables and keep the original variables unchanged. For one thing, this allows comparison
of the initial and modified values to verify that the intended modifications were carried out correctly. The
original values can subsequently be discarded if required.

Example

*These commands overwrite existing variables.

COMPUTE varl=varlx2.

RECODE var2 (1 thru 5 = 1) (6 thru 10 = 2).

*These commands create new variables.

COMPUTE varl_new=varl*2.

RECODE var2 (1 thru 5 = 1) (6 thru 10 = 2) (ELSE=COPY)
/INTO var2_new.

The difference between the two COMPUTE commands is simply the substitution of a new variable name
on the left side of the equals sign.

The second RECODE command includes the INTO subcommand, which specifies a new variable to
receive the recoded values of the original variable. ELSE=COPY makes sure that any values not covered
by the specified ranges are preserved.

Chapter 2. Data Management 5

Using Temporary Transformations

You can use the TEMPORARY command to temporarily transform existing variables for analysis. The
temporary transformations remain in effect through the first command that reads the data (for example, a
statistical procedure), after which the variables revert to their original values.

Example

*xtemporary.sps.
DATA LIST FREE /varl var2.
BEGIN DATA

END DATA.
TEMPORARY .
COMPUTE varl=varl+ 5.
RECODE var2 (1 thru 5=1) (6 thru 10=2).
FREQUENCIES
/VARIABLES=varl var2
/STATISTICS=MEAN STDDEV MIN MAX.
DESCRIPTIVES
/VARIABLES=varl var2
/STATISTICS=MEAN STDDEV MIN MAX.

The transformed values from the two transformation commands that follow the TEMPORARY command
will be used in the FREQUENCIES procedure.

The original data values will be used in the subsequent DESCRIPTIVES procedure, yielding different
results for the same summary statistics.

Under some circumstances, using TEMPORARY will improve the efficiency of a job when short-lived
transformations are appropriate. Ordinarily, the results of transformations are written to the virtual active
file for later use and eventually are merged into the saved IBM SPSS Statistics data file. However,
temporary transformations will not be written to disk, assuming that the command that concludes the
temporary state is not otherwise doing this, saving both time and disk space. (TEMPORARY followed by
SAVE, for example, would write the transformations.)

If many temporary variables are created, not writing them to disk could be a noticeable saving with a
large data file. However, some commands require two or more passes of the data. In this situation, the
temporary transformations are recalculated for the second or later passes. If the transformations are
lengthy and complex, the time required for repeated calculation might be greater than the time saved by
not writing the results to disk. Experimentation may be required to determine which approach is more
efficient.

Using Temporary Variables

For transformations that require intermediate variables, use scratch (temporary) variables for the
intermediate values. Any variable name that begins with a pound sign (#) is treated as a scratch
variable that is discarded at the end of the series of transformation commands when IBM SPSS
Statistics encounters an EXECUTE command or other command that reads the data (such as a statistical
procedure).

Example

*scratchvar.sps.

DATA LIST FREE / varl.

BEGIN DATA

12345

END DATA.

COMPUTE factor=1.

LOOP #tempvar=1 TO varl.

- COMPUTE factor=factor * itempvar.
END LOOP.

EXECUTE.

6 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

%] “Untitled2 [] - Data Editor =
File Edit Wiew 2 Daka Transform Analyze Graphs Utilities Add-ons WWindow Help I
1 varl 1
warl factor | vl val var A~

1 1.00 1.00 L

2 2.00 2.00

3 3.00 6.00

4 4.00 24.00

& 5.00 120.00 e
4 » \Data View £ variahle View / [<] 3

Figure 2. Result of loop with scratch variable

« The loop structure computes the factorial for each value of var1 and puts the factorial value in the
variable factor.

« The scratch variable #tempvar is used as an index variable for the loop structure.
« For each case, the COMPUTE command is run iteratively up to the value of varl.

- For each iteration, the current value of the variable factor is multiplied by the current loop iteration
number stored in #tempvar.

« The EXECUTE command runs the transformation commands, after which the scratch variable is
discarded.

The use of scratch variables doesn’t technically “protect” the original data in any way, but it does prevent
the data file from getting cluttered with extraneous variables. If you need to remove temporary variables
that still exist after reading the data, you can use the DELETE VARIABLES command to eliminate them.

Use EXECUTE Sparingly

IBM SPSS Statistics is designed to work with large data files. Since going through every case of a large
data file takes time, the software is also designed to minimize the number of times it has to read the
data. Statistical and charting procedures always read the data, but most transformation commands (for
example, COMPUTE, RECODE, COUNT, SELECT IF) do not require a separate data pass.

The default behavior of the graphical user interface, however, is to read the data for each separate
transformation so that you can see the results in the Data Editor immediately. Consequently, every
transformation command generated from the dialog boxes is followed by an EXECUTE command. So if you
create command syntax by pasting from dialog boxes or copying from the log or journal, your command
syntax may contain a large number of superfluous EXECUTE commands that can significantly increase the
processing time for very large data files.

In most cases, you can remove virtually all of the auto-generated EXECUTE commands, which will speed
up processing, particularly for large data files and jobs that contain many transformation commands.

To turn off the automatic, immediate execution of transformations and the associated pasting of EXECUTE
commands:

1. From the menus, choose:

Edit > Options...
2. Click the Data tab.
3. Select Calculate values before used.

Lag Functions

One notable exception to the above rule is transformation commands that contain lag functions. In a
series of transformation commands without any intervening EXECUTE commands or other commands that
read the data, lag functions are calculated after all other transformations, regardless of command order.
While this might not be a consideration most of the time, it requires special consideration in the following
cases:

Chapter 2. Data Management 7

« The lag variable is also used in any of the other transformation commands.

« One of the transformations selects a subset of cases and deletes the unselected cases, such as SELECT
IF or SAMPLE.

Example

*lagfunctions.sps.
*create some data.
DATA LIST FREE /varl.
BEGIN DATA

12345

END DATA.

COMPUTE var2=varil.

*Lag without intervening EXECUTE.
COMPUTE lagvarl=LAG(varl).
COMPUTE varl=varlx2.

EXECUTE.

xLag with intervening EXECUTE.
COMPUTE lagvar2=LAG(var2).
EXECUTE.

COMPUTE var2=var2x2.

EXECUTE.

%] “Untitled3 [] - Data Editor =2t
File Edit View Data Transform Apalvze Graphs Utilities Add-ons Window_HeIp _”
ward | war2 | lagwarl | lagrar2 | war e
1 200 2.00 . . I
2 4.00 4.00 200 1.00
3 6.00 6.00 4.00 2.00
4 5.00 g.00 £.00 3.00
5 10.00 10.00 §.00 4.00
= =
4 » \Data View A Variahle View / [<]] [>]]

Figure 3. Results of lag functions displayed in Data Editor

« Although varl and var2 contain the same data values, lagvarl and lagvar2 are very different from each
other.

« Without an intervening EXECUTE command, lagvarl is based on the transformed values of var1.

« With the EXECUTE command between the two transformation commands, the value of lagvar2 is based
on the original value of var2.

« Any command that reads the data will have the same effect as the EXECUTE command. For example,
you could substitute the FREQUENCIES command and achieve the same result.

In a similar fashion, if the set of transformations includes a command that selects a subset of cases and
deletes unselected cases (for example, SELECT IF), lags will be computed after the case selection. You
will probably want to avoid case selection criteria based on lag values—unless you EXECUTE the lags first.

Starting with version 17.0, you can use the SHIFT VALUES command to calculate both lags and leads.
SHIFT VALUES is a procedure that reads the data, resulting in execution of any pending transformations.
This eliminates the potential pitfalls you might encounter with the LAG function.

Using $CASENUM to Select Cases

The value of the system variable $CASENUM is dynamic. If you change the sort order of cases, the value of
$CASENUM for each case changes. If you delete the first case, the case that formerly had a value of 2 for
this system variable now has the value 1. Using the value of $CASENUM with the SELECT IF command
can be a little tricky because SELECT IF deletes each unselected case, changing the value of $CASENUM
for all remaining cases.

For example, a SELECT IF command of the general form:

SELECT IF ($CASENUM > [positive value]).

will delete all cases because regardless of the value specified, the value of $CASENUM for the current
case will never be greater than 1. When the first case is evaluated, it has a value of 1 for §CASENUM and is

8 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

therefore deleted because it doesn’t have a value greater than the specified positive value. The erstwhile
second case then becomes the first case, with a value of 1, and is consequently also deleted, and so on.

The simple solution to this problem is to create a new variable equal to the original value of $CASENUM.
However, command syntax of the form:

COMPUTE CaseNumber=$CASENUM.
SELECT IF (CaseNumber > [positive value]).

will still delete all cases because each case is deleted before the value of the new variable is computed.
The correct solution is to insert an EXECUTE command between COMPUTE and SELECT IF,asin:
COMPUTE CaseNumber=$CASENUM.

EXECUTE.
SELECT IF (CaseNumber > [positive value]).

MISSING VALUES Command

If you have a series of transformation commands (for example, COMPUTE, IF, RECODE) followed by
aMISSING VALUES command that involves the same variables, you may want to place an EXECUTE
statement before the MISSING VALUES command. This is because the MISSING VALUES command
changes the dictionary before the transformations take place.

Example

IF (x = 0) y = z*2.
MISSING VALUES x (0).

The cases where x = 0 would be considered user-missing on x, and the transformation of y would
not occur. Placing an EXECUTE before MISSING VALUES allows the transformation to occur before 0 is
assigned missing status.

WRITE and XSAVE Commands

In some circumstances, it may be necessary to have an EXECUTE command after a WRITE or an XSAVE
command. See the topic “Using XSAVE in a Loop to Build a Data File” on page 90 for more information.

Using Comments

It is always a good practice to include explanatory comments in your code. You can do this in several
ways:

COMMENT Get summary stats for scale variables.
* An asterisk in the first column also identifies comments.
FREQUENCIES
VARIABLES=income ed reside
/FORMAT=LIMIT(10) /%avoid long frequency tables
/STATISTICS=MEAN /*arithmetic averagex/ MEDIAN.
* A macro name like !mymacro in this comment may invoke the macro.
/* A macro name like !mymacro in this comment will not invoke the macrox/.

« The first line of a comment can begin with the keyword COMMENT or with an asterisk (*).

« Comment text can extend for multiple lines and can contain any characters. The rules for continuation
lines are the same as for other commands. Be sure to terminate a comment with a period.

Use /* and */ to set off a comment within a command.

The closing */ is optional when the comment is at the end of the line. The command can continue onto
the next line just as if the inserted comment were a blank.

To ensure that comments that refer to macros by name don’t accidently invoke those macros, use
the /* [comment text] =*/format.

Chapter 2. Data Management 9

Using SET SEED to Reproduce Random Samples or Values

When doing research involving random numbers—for example, when randomly assigning cases to
experimental treatment groups—you should explicitly set the random number seed value if you want
to be able to reproduce the same results.

The random number generator is used by the SAMPLE command to generate random samples and is
used by many distribution functions (for example, NORMAL, UNIFORM) to generate distributions of random
numbers. The generator begins with a seed, a large integer. Starting with the same seed, the system will
repeatedly produce the same sequence of numbers and will select the same sample from a given data
file. At the start of each session, the seed is set to a value that may vary or may be fixed, depending on
your current settings. The seed value changes each time a series of transformations contains one or more
commands that use the random number generator.

Example

To repeat the same random distribution within a session or in subsequent sessions, use SET SEED before
each series of transformations that use the random number generator to explicitly set the seed value to a
constant value.

*set_seed.sps.

GET FILE = '/examples/data/onevar.sav'.
SET SEED = 123456789.

SAMPLE .1.

LIST.

GET FILE = '/examples/data/onevar.sav'.
SET SEED = 123456789.

SAMPLE .1.

LIST.

Before the first sample is taken the first time, the seed value is explicitly set with SET SEED.

The LIST command causes the data to be read and the random number generator to be invoked once
for each original case. The result is an updated seed value.

The second time the data file is opened, SET SEED sets the seed to the same value as before, resulting
in the same sample of cases.

Both SET SEED commands are required because you aren’t likely to know what the initial seed value is
unless you set it yourself.

Note: This example opens the data file before each SAMPLE command because successive SAMPLE
commands are cumulative within the active dataset.

SET SEED versus SET MTINDEX

There are two random number generators, and SET SEED sets the starting value for only the default
random number generator (SET RNG=MC). If you are using the newer Mersenne Twister random number
generator (SET RNG=MT), the starting value is set with SET MTINDEX.

Divide and Conquer

A time-proven method of winning the battle against programming bugs is to split the tasks into separate,
manageable pieces. It is also easier to navigate around a syntax file of 200-300 lines than one of 2,000—
3,000 lines.

Therefore, it is good practice to break down a program into separate stand-alone files, each performing a
specific task or set of tasks. For example, you could create separate command syntax files to:

» Prepare and standardize data.
« Merge data files.
« Perform tests on data.

« Report results for different groups (for example, gender, age group, income category).

Using the INSERT command and a primary command syntax file that specifies all of the other command
files, you can partition all of these tasks into separate command files.

10 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Using INSERT with a primary command syntax file

The INSERT command provides a method for linking multiple syntax files together, making it possible
to reuse blocks of command syntax in different projects by using a “primary” command syntax file that
consists primarily of INSERT commands that refer to other command syntax files.

Example

INSERT FILE "/examples/data/prepare data.sps" CD=YES.
INSERT FILE "combine data.sps".

INSERT FILE "do tests.sps".

INSERT FILE = "report groups.sps".

« Each INSERT command specifies a file that contains command syntax.

« By default, inserted files are read using interactive syntax rules, and each command should end with a
period.

« The first INSERT command includes the additional specification CD=YES. This changes the working
directory to the directory included in the file specification, making it possible to use relative (or no)
paths on the subsequent INSERT commands.

INSERT versus INCLUDE

INSERT is a newer, more powerful and flexible alternative to INCLUDE. Files included with INCLUDE
must always adhere to batch syntax rules, and command processing stops when the first error in an
included file is encountered. You can effectively duplicate the INCLUDE behavior with SYNTAX=BATCH
and ERROR=STOP on the INSERT command.

Defining Global Settings

In addition to using INSERT to create modular primary command syntax files, you can define global
settings that will enable you to use those same command files for different reports and analyses.

Example

You can create a separate command syntax file that contains a set of FILE HANDLE commands that
define file locations and a set of macros that define global variables for client name, output language, and
so on. When you need to change any settings, you change them once in the global definition file, leaving
the bulk of the command syntax files unchanged.

*define_globals.sps.

FILE HANDLE data /NAME='/examples/data'.

FILE HANDLE commands /NAME='/examples/commands'.

FILE HANDLE spssdir /NAME='/program files/spssinc/statistics'.
FILE HANDLE tempdir /NAME='d:/temp'.

DEFINE !enddate()DATE.DMY(1,1,2004) !ENDDEFINE.
DEFINE !olang()English!ENDDEFINE.

DEFINE !client()"ABC Inc"!ENDDEFINE.

DEFINE !title()TITLE !client.!ENDDEFINE.

The first two FILE HANDLE commands define the paths for the data and command syntax files. You can
then use these file handles instead of the full paths in any file specifications.

The third FILE HANDLE command contains the path to the IBM SPSS Statistics folder. This path can be
useful if you use any of the command syntax or script files that are installed with IBM SPSS Statistics.

The last FILE HANDLE command contains the path of a temporary folder. It is very useful to define a
temporary folder path and use it to save any intermediary files created by the various command syntax
files making up the project. The main purpose of this is to avoid crowding the data folders with useless
files, some of which might be very large. Note that here the temporary folder resides on the D drive.
When possible, it is more efficient to keep the temporary and main folders on different hard drives.

The DEFINE-!ENDDEFINE structures define a series of macros. This example uses simple string
substitution macros, where the defined strings will be substituted wherever the macro names appear in
subsequent commands during the session.

!enddate contains the end date of the period covered by the data file. This can be useful to calculate
ages or other duration variables as well as to add footnotes to tables or graphs.

Chapter 2. Data Management 11

- lolang specifies the output language.
- !client contains the client’s name. This can be used in titles of tables or graphs.
- !title specifies a TITLE command, using the value of the macro /client as the title text.

The primary command syntax file might then look something like this:

INSERT FILE = "/examples/commands/define_globals.sps".
Ititle.

INSERT FILE = "/data/prepare data.sps".

INSERT FILE = "/commands/combine data.sps".

INSERT FILE = "/commands/do tests.sps".

INCLUDE FILE = "/commands/report groups.sps".

« The first INSERT runs the command syntax file that defines all of the global settings. This needs to be
run before any commands that invoke the macros defined in that file.

« !title will print the client’s name at the top of each page of output.

- "data" and "commands" in the remaining INSERT commands will be expanded to " /examples/
data" and " /examples/commands", respectively.

Note: Using absolute paths or file handles that represent those paths is the most reliable way to make
sure that IBM SPSS Statistics finds the necessary files. Relative paths may not work as you might expect,
since they refer to the current working directory, which can change frequently. You can also use the CD
command or the CD keyword on the INSERT command to change the working directory.

Getting Data into IBM SPSS Statistics

Before you can work with data in IBM SPSS Statistics, you need some data to work with. There are several
ways to get data into the application:

« Open a data file that has already been saved in IBM SPSS Statistics format.
 Enter data manually in the Data Editor.
« Read a data file from another source, such as a database, text data file, spreadsheet, SAS, or Stata.

Opening IBM SPSS Statistics data files is simple, and manually entering data in the Data Editor is not likely
to be your first choice, particularly if you have a large amount of data. This chapter focuses on how to read
data files created and saved in other applications and formats.

Getting Data from Databases

IBM SPSS Statistics relies primarily on ODBC (open database connectivity) to read data from databases.
ODBC is an open standard with versions available on many platforms, including Windows, UNIX, Linux,
and Macintosh.

Installing Database Drivers

You can read data from any database format for which you have a database driver. In local analysis mode,
the necessary drivers must be installed on your local computer. In distributed analysis mode (available
with the Server version), the drivers must be installed on the remote server.

ODBC database drivers are available for a wide variety of database formats, including:
» Access

- Btrieve

- DB2

- dBASE

- Excel

« FoxPro

« Informix

« Oracle

12 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Paradox

Progress

« SOL Base
» SQL Server
« Sybase

For Windows and Linux operating systems, many of these drivers can be installed by installing the Data
Access Pack. You can install the Data Access Pack from the AutoPlay menu on the installation .

Before you can use the installed database drivers, you may also need to configure the drivers. For the
Data Access Pack, installation instructions and information on configuring data sources are located in the
Installation Instructions folder on the installation .

OLE DB

Starting with release 14.0, some support for OLE DB data sources is provided.

To access OLE DB data sources (available only on Microsoft Windows operating systems), you must have
the following items installed:

« .NET framework. To obtain the most recent version of the .NET framework, go to http://
www.microsoft.com/net.

« Data Collection Survey Reporter Developer Kit.
The following limitations apply to OLE DB data sources:

« Table joins are not available for OLE DB data sources. You can read only one table at a time.

« You can add OLE DB data sources only in local analysis mode. To add OLE DB data sources in distributed
analysis mode on a Windows server, consult your system administrator.

« In distributed analysis mode (available with IBM SPSS Statistics Server), OLE DB data sources are
available only on Windows servers, and both .NET and Data Collection Survey Reporter Developer Kit
must be installed on the server.

Database Wizard

It’s probably a good idea to use the Database Wizard (File > Open Database) the first time you retrieve
data from a database source. At the last step of the wizard, you can paste the equivalent commands into
a command syntax window. Although the SQL generated by the wizard tends to be overly verbose, it also
generates the CONNECT string, which you might never figure out without the wizard.

Reading a Single Database Table

IBM SPSS Statistics reads data from databases by reading database tables. You can read information
from a single table or merge data from multiple tables in the same database. A single database table has
basically the same two-dimensional structure as a data file in IBM SPSS Statistics format: records are
cases and fields are variables. So, reading a single table can be very simple.

Example

This example reads a single table from an Access database. It reads all records and fields in the table.

*accessl.sps.

GET DATA /TYPE=0ODBC /CONNECT=
'DSN=Microsoft Access;DBQ=c:\examples\data\dm_demo.mdb; '+
' DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/SQL = 'SELECT = FROM CombinedTable'.

EXECUTE.

« The GET DATA command is used to read the database.

« TYPE=0DBC indicates that an ODBC driver will be used to read the data. This is required for reading
data from any database, and it can also be used for other data sources with ODBC drivers, such as Excel
workbooks. See the topic “Reading Multiple Worksheets” on page 20 for more information.

Chapter 2. Data Management 13

http://www.microsoft.com/net
http://www.microsoft.com/net

- CONNECT identifies the data source. For this example, the CONNECT string was copied from the
command syntax generated by the Database Wizard. The entire string must be enclosed in single or
double quotes. In this example, we have split the long string onto two lines using a plus sign (+) to
combine the two strings.

« The SQL subcommand can contain any SQL statements supported by the database format. Each line
must be enclosed in single or double quotes.

« SELECT * FROM CombinedTable reads all of the fields (columns) and all records (rows) from the
table named CombinedTable in the database.

« Any field names that are not valid variable names are automatically converted to valid variable names,
and the original field names are used as variable labels. In this database table, many of the field names
contain spaces, which are removed in the variable names.

] “Untitled2 [] - Data Editor M=)
File Edit Wiew : Data Transform Analyze Graphs Utilities Add-ons WWindow Helpm]
Mame | Type | Width | Decimals | Label ™

111D Mumeric i 0

2| Age Murneric g 2

3| MaritalStatus Mumeric 8 2 Marital Status

4|Incorme Murneric g 2

5llncomeCategory Mumeric 8 2 Income Category

B Car Murneric g 2

7|[CarCategory Mumeric 8 2 Car Category

8|Education Murneric g 2

3[Employ Mumeric 8 2

Al Fsien e liina i o A =]
41+ |\ Data View) Variable View / Bl u | (=]

Figure 4. Database field names converted to valid variable names

Example

Now we’ll read the same database table—except this time, we’ll read only a subset of fields and records.

*access2.sps.

GET DATA /TYPE=0DBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb; '+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/SQL =
'SELECT Age, Education, [Income Category]'
' FROM CombinedTable'
' WHERE ([Marital Status] <> 1 AND Internet =1)'.

EXECUTE.

- The SELECT clause explicitly specifies only three fields from the file; so, the active dataset will contain
only three variables.

« The WHERE clause will select only records where the value of the Marital Status field is not 1 and the
value of the Internet field is 1. In this example, that means only unmarried people who have Internet
service will be included.

Two additional details in this example are worth noting;:

 The field names Income Category and Marital Status are enclosed in brackets. Since these field names
contain spaces, they must be enclosed in brackets or quotes. Since single quotes are already being used
to enclose each line of the SQL statement, the alternative to brackets here would be double quotes.

« We've put the FROM and WHERE clauses on separate lines to make the code easier to read; however, in
order for this command to be read properly, each of those lines also has a blank space between the
starting single quote and the first word on the line. When the command is processed, all of the lines of
the SQL statement are merged together in a very literal fashion. Without the space before WHERE, the
program would attempt to read a table named CombinedTableWhere, and an error would result. As a
general rule, you should probably insert a blank space between the quotation mark and the first word of
each continuation line.

14 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Reading Multiple Tables

You can combine data from two or more database tables by “joining” the tables. The active dataset can be
constructed from more than two tables, but each “join” defines a relationship between only two of those
tables:

« Inner join. Records in the two tables with matching values for one or more specified fields are included.
For example, a unique ID value may be used in each table, and records with matching ID values are
combined. Any records without matching identifier values in the other table are omitted.

« Left outer join. All records from the first table are included regardless of the criteria used to match
records.

 Right outer join. Essentially the opposite of a left outer join. So, the appropriate one to use is basically a
matter of the order in which the tables are specified in the SQL SELECT clause.

Example

In the previous two examples, all of the data resided in a single database table. But what if the data
were divided between two tables? This example merges data from two different tables: one containing
demographic information for survey respondents and one containing survey responses.

*access_multtablesl.sps.

GET DATA /TYPE=0ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb; '+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
SQL =
'SELECT * FROM DemographicInformation, SurveyResponses'

' WHERE DemographicInformation.ID=SurveyResponses.ID'.
EXECUTE.

« The SELECT clause specifies all fields from both tables.

« The WHERE clause matches records from the two tables based on the value of the ID field in both tables.
Any records in either table without matching ID values in the other table are excluded.

« Theresult is an inner join in which only records with matching ID values in both tables are included in
the active dataset.

Example

In addition to one-to-one matching, as in the previous inner join example, you can also merge tables
with a one-to-many matching scheme. For example, you could match a table in which there are only a
few records representing data values and associated descriptive labels with values in a table containing
hundreds or thousands of records representing survey respondents.

In this example, we read data from an SQL Server database, using an outer join to avoid omitting records
in the larger table that don’t have matching identifier values in the smaller table.

*sqlserver_outer_join.sps.
GET DATA /TYPE=0DBC
/CONNECT= 'DSN=SQLServer;UID=;APP=SPSS Statistics;'
'WSID=USERLAP;Network=DBMSSOCN; Trusted_Connection=Yes'
/SQL =
'SELECT SurveyResponses.ID, SurveyResponses.Internet,'
' [Value Labels].[Internet Label]'
' FROM SurveyResponses LEFT OUTER JOIN [Value Labels]'
' ON SurveyResponses.Internet'
' = [Value Labels].[Internet Value]'.

Chapter 2. Data Management 15

Tﬂl 2:Data in Table 'SurveyResponses’ in 'sql_server_dem... [E[=] I
B Eanm @ ! |22 KIE| B
(] [wireless [Multline [voice [Pager [Intermet =
1 i 1 1 1 0 —
RE 1 o 1 1 i |
e o o o o i
|4 o o o o i
s 0 1 0 0 1
e 1 1 0 0 1
— g él Tﬂl 3:Data in Table "Yalue Labels" in 'sql_serv... [H[=] I
— o e B =l — B B B
PR 1 jie] |Internet ¥alue [Inkternet Label [
KR] 0 Ho
| | |z 1 Yes
a
| 2
[I | 4

Figure 5. SQL Server tables to be merged with outer join

B *Untitled3 [] - Data Editor =1

File Edit Wiew Data Transform Analyze Graphs Utlities add-ons window Help
i)

D | Internet | Internet Label | var | var s
Mo
Mo
Mo
Mo
fes
Yes
Mo
Mo

L R ol RV I w R R N TR S R
L T o o el e s s

Ay
bt = = e e ol =

—

Mo

1
4 » |\ Data View £ variable View [|< »

Figure 6. Active dataset in IBM SPSS Statistics

« FROM SurveyResponses LEFT OUTER JOIN [Value Labels] willinclude all records from the
table SurveyResponses even if there are no records in the Value Labels table that meet the matching
criteria.

« ON SurveyResponses.Internet = [Value Labels].[Internet Value] matches records
based on the value of the field Internet in the table SurveyResponses and the value of the field Internet
Value in the table Value Labels.

- Theresulting active dataset has an Internet Label value of No for all cases with a value of O for Internet
and Yes for all cases with a value of 1 for Internet.

« Since the left outer join includes all records from SurveyResponses, there are cases in the active dataset
with values of 8 or 9 for Internet and no value (a blank string) for Internet Label, since the values of 8
and 9 do not occur in the Internet Value field in the table Value Labels.

Reading IBM SPSS Statistics Data Files with SQL Statements

You can select subsets of variables when you read IBM SPSS Statistics data files with the GET command,
and you can select subsets of cases with SELECT IF. You can also use standard SQL statements to read
subsets of variables and cases using the IBM SPSS Statistics Data File Driver.

The IBM SPSS Statistics data file driver allows you to read IBM SPSS Statistics (.sav and .zsav) data files in
applications that support Open Database Connectivity (ODBC) or Java Database Connectivity (JDBC). IBM

16 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

SPSS Statistics itself supports ODBC in the Database Wizard, providing you with the ability to leverage the
Structured Query Language (SQL) when reading .sav and .zsav data files in IBM SPSS Statistics.

There are three flavors of the IBM SPSS Statistics data file driver, all of which are available for Windows,
UNIX, and Linux:

- Standalone driver. The standalone driver provides ODBC support without requiring installation of
additional components. After the standalone driver is installed, you can immediately set up an ODBC
data source and use it to read .sav and .zsav files.

- Service driver. The service driver provides both ODBC and JDBC support. The service driver handles
data requests from the service client driver, which may be installed on the same computer or on one or
more remote computers. Thus you can configure one service driver that may be used by many clients. If
you put your data files on the same computer on which the service driver is installed, the service driver
can reduce network traffic because all the queries occur on the server. Only the resulting cases are
sent to the service client. If the server has a faster processor or more RAM compared to service client
machines, there may also be performance improvements.

- Service client driver. The service client driver provides an interface between the client application that
needs to read the .sav or .zsav data file and the service driver that handles the request for the data.
Unlike the standalone driver, it supports both ODBC and JDBC. The operating system of the service
client driver does not need to match the operating system of the service driver. For example, you can
install the service driver on a UNIX machine and the service client driver on a Windows machine.

Using the standalone and service client drivers is similar to connecting to a database with any other
ODBC or JDBC driver. After configuring the driver, creating data sources, and connecting to the IBM SPSS
Statistics data file, you will see that the data file is represented as a collection of tables. In other words,
the data file looks like a database source.

Installing the IBM SPSS Statistics Data File Driver

The IBM SPSS Statistics data file driver is available in an eAssembly provided with your IBM SPSS
Statistics product. It is also available on a separate . For additional information, see the IBM SPSS
Statistics Data File Driver Guide.

Using the Standalone Driver

This example uses the ODBC standalone driver to select a subset of variables and cases when reading a
password-protected data file in IBM SPSS Statistics format into IBM SPSS Statistics.

GET DATA
/TYPE=0DBC
/CONNECT=
"DRIVER=IBM SPSS Statistics 22 Data File Driver - Standalone;"
"SDSN=SAVDB; "
"HST=C:\Program Files\IBM\SPSS\StatisticsDataFileDriver\22"

"\Standalone\cfg\oadm.ini;"

"PRT=StatisticsSAVDriverStandalone;"
"CP_CONNECT_STRING=C:\examples\data\demo.sav;"
"CP_UserMissingIsNull=0";
"CP_DBUID=Fred";
"CP_DBPWD=Pass1234";
/SQL="SELECT age, marital, inccat, gender FROM demo.Cases "
"WHERE (age > 40 AND gender = 'm')".

CACHE.

EXECUTE.

APPLY DICTIONARY FROM '/examples/data/demo.sav'.

« DRIVER. Instead of specifying a DSN (data source name), the CONNECT statement specifies the driver
name. You could define DSNs for each IBM SPSS Statistics data file that you want to access with the
ODBC driver (using the ODBC Data Source Administrator on Windows), but specifying the driver and all
other parameters on the CONNECT statement makes it easier to reuse and modify the same basic syntax
for different data files. The driver name is always IBM SPSS Statistics <version> Data File
Driver - Standalone, where <version> is the product version number.

« SDSN. This is set to PASSWORD-PROTECTED-SAVDB to indicate a password-protected data file. If the
file were not password protected, this would be set to SAVDB.

- HST. This specifies the location of the oadm.ini file. It is located in the cfg sub-directory of the driver
installation directory.

Chapter 2. Data Management 17

« PRT. This is always set to StatisticsSAVDriverStandalone.

« CP_CONNECT_STRING. The full path and name of the IBM SPSS Statistics data file. This path cannot
contain an equals sign (=) or semicolon (;).

« CP_UserMissingIsNull. This specifies the treatment of user-defined missing values. If it is set to O,
user-defined missing values are read as valid values. If it is set to 1, user-defined missing values
are set to system-missing for numeric variables and blank for string variables. In this example, the
user-defined missing values will be read as valid values and then the original user-missing definitions
will be reapplied with APPLY DICTIONARY.

« CP_DBUID. The user name for the password-protected data file.
« CP_DBPWD. The password for data file.

« SQL. The SQL subcommand uses standard SQL syntax to specify the variables (fields) to include, the
name of the database table, and the case (record) selection rules.

« SELECT specifies the subset of variables (fields) to read. In this example, the variables age, marital,
inccat, and gender.

« FROM specifies the database table to read. The prefix is the name of the IBM SPSS Statistics data file.
The Cases table contains the case data values.

« WHERE specifies the criteria for selecting cases (records). In this example, males over 40 years of age.

« APPLY DICTIONARY applies the dictionary information (variable labels, value labels, missing value
definitions, and so forth) from the original IBM SPSS Statistics data file. When you use GET DATA /
TYPE=0DBC to read IBM SPSS Statistics data files, the dictionary information is not included, but this is
easily restored with APPLY DICTIONARY.

Reading Excel Files

You can read individual Excel worksheets and multiple worksheets in the same Excel workbook. The basic
mechanics of reading Excel files are relatively straightforward—rows are read as cases and columns are
read as variables. However, reading a typical Excel spreadsheet—where the data may not start in row

1, column 1—requires a little extra work, and reading multiple worksheets requires treating the Excel
workbook as a database. In both instances, we can use the GET DATA command to read the data.

Reading a “Typical” Worksheet

When reading an individual worksheet, IBM SPSS Statistics reads a rectangular area of the worksheet,
and everything in that area must be data related. The first row of the area may or may not contain variable
names (depending on your specifications); the remainder of the area must contain the data to be read.

A typical worksheet, however, may also contain titles and other information that may not be appropriate
for data in IBM SPSS Statistics and may even cause the data to be read incorrectly if you don’t explicitly
specify the range of cells to read.

Example

18 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

£3 Microsoft Excel - sales.xls
J@ Elle Edit Yiew Insert Format Tools Data ‘Window Help Acrobat ;iil ﬂ
DEeES EGRY $BBRC -« @ A& W0H 0 -0
B24 Rl =]

i i D [T E T w e J =

|3 Gross Revenue (in thousands) =
Store

| 2 |Number State Region Housewares Tools Auto Clothing Toys Food Total
gk 119 1L Midwest & 2% 36§ a0 | % 18 % a % 4 & 140
ht 104 Midwest | & 37 % 46 | 5 48 | % 30 % 7% E & 175
L 180 NY East § 40 5 33| % 30 % 1% 9§ 123
|48 B4 CA Wyiest § 26 b 34§ 41 | % 26 % 121 % 10§ 149
LEe 186 GA South b 28 b 34§ 211 % 16 | MA] 10§ 109
el 153 WA, Wyest b 35 b 55 | § 23| % 23 % 12 1 % 4% 155
&L 108 A East b 25 % 30 % 18 | % 10 % R 9% 101
10 172 OR Wyiest § 29 % 27 5 50| % 20 % 119 g & 147
s 17114, Midwest | § 39§ 36 | § 53 | % 159 % 1% 5% 159
(12] 178 ME East b 37§ 26§ 31| % 14 % 14§ 3% 125
5 97 AL Wiest b 25§ 45 | § 2 19 % 718 3% 129
|14 | 105 RI East b 20 % 26 | § 7 % 10 % g % E & 87 —
|15] 107 W Midwest & 23 % 46 5 2108 30 % 12 1 % 5 & 137
| 16 | Total $ 394 8 444 % 434 (%5 263§ 119 % 82 % 1736
IJ | 4» [] Gross Revenue § Location £ Tools £ Auto / 4] | ﬂJJ
Ready Calculate [[[1l I

Figure 7. Typical Excel worksheet

To read this spreadsheet without the title row or total row and column:

*xreadexcel.sps.

GET DATA
/TYPE=XLS
/FILE="'/examples/data/sales.x1ls'
/SHEET=NAME 'Gross Revenue'
/CELLRANGE=RANGE 'A2:I15'
/READNAMES=on .

The TYPE subcommand identifies the file type as Excel 95 or later. For earlier versions, use GET
TRANSLATE. For Excel 2007 or later, user GET DATA /TYPE=XLSX (or XLSM).

The SHEET subcommand identifies which worksheet of the workbook to read. Instead of the NAME
keyword, you could use the INDEX keyword and an integer value indicating the sheet location in the
workbook. Without this subcommand, the first worksheet is read.

The CELLRANGE subcommand indicates that the data should be read starting at column A, row 2, and
read through column I, row 15.

The READNAMES subcommand indicates that the first row of the specified range contains column labels
to be used as variable names.

Chapter 2. Data Management 19

B *Untitled10 [] - Data Editor ==
File Edit Miew Data Transform Analvze Graphs Utlities Add-ons Window Help
16 : StoreMurmber
StareMumber | State | Region | Housewares| Tools | Aute | Clothing | Toys | Food | ‘A

1 119]IL hicharest 27 §36 $50 $18 %5 4|

2 104 | Ml hdicharest 537 %13 549 530 |57 k3]

3 180 MY East F40 . $33 $30 %11 9

4 B4 |CA West $26 $34 541 §26 512 $10

5 186 | GA South 528 534 521 1B MNA $10

B 183 WA West $35 555 $23 $23 512 54

7 108 | hiA, East 525 530 18 10 52 19

=] 172 |0R YWest $29 27 $50 $22 %11 bt

9 171 1A hicharest 539 536 53 515 511 b

10 178 |ME East 537 §26 531 14 514 53

11 97 | AL West 525 545 27 519 |57 53

12 105 |RI East §20 §26 517 10 %8 fe

1ig 107 Wyl Midwest $23 545 521 $30 $12 bl

14 |

15 - v
4 » \Data View £ variahle View [|< m (2]

Figure 8. Excel worksheet read into IBM SPSS Statistics

« The Excel column label Store Number is automatically converted to the variable name StoreNumber,
since variable names cannot contain spaces. The original column label is retained as the variable label.

- The original data type from Excel is preserved whenever possible, but since data type is determined
at the individual cell level in Excel and at the column (variable) level in IBM SPSS Statistics, this isn’t
always possible.

« When mixed data types exist in the same column, the variable is assigned the string data type; so, the
variable Toys in this example is assigned the string data type.

READNAMES Subcommand

The READNAMES subcommand treats the first row of the spreadsheet or specified range as either variable
names (ON) or data (OFF). This subcommand will always affect the way the Excel spreadsheet is read,
even when it isn’t specified, since the default setting is ON.

« With READNAMES=0N (or in the absence of this subcommand), if the first row contains data instead
of column headings, IBM SPSS Statistics will attempt to read the cells in that row as variable names
instead of as data—alphanumeric values will be used to create variable names, numeric values will be
ignored, and default variable names will be assigned.

- With READNAMES=0FF, if the first row does, in fact, contain column headings or other alphanumeric
text, then those column headings will be read as data values, and all of the variables will be assigned
the string data type.

Reading Multiple Worksheets

An Excel file (workbook) can contain multiple worksheets, and you can read multiple worksheets from the
same workbook by treating the Excel file as a database. This requires an ODBC driver for Excel.

20 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

A I D IE=
_ 1 |Store Mumber Ztate Region City
2 | 119 1L Midwest | Chicago
3| 104 MI A | B | e | b | EZ
4 180 MY
g B4/CA |1 |Store Mumber Power Hand ACCcessories
[166 GA 2 119 g & 1
7l 153 wa B 104 B 2 3 T | O N N
B 108 A [4 | 180 T
g | 172 0R | & 54 g 1 |Store Mumber Tires Batteries Gizmaos Dohicke:
0| 17114 (6 186 sl | b4 1 i 4
| 178/ ME 7 | 153 6L a7 9 2 2
z| 97 AL B 108 5.4 | 104 7 E 4
3] 105 R 9 172 5.5 | 105 5 g 3
4] 107w 10 171 10 8 | 107 7 2 2
ﬁ-ll-_{ » | M[3 Location % 1;3 g% 1?3 ; g j
3] 105 8.9 | 153 7 B 1
4 107 g0 171 2 3 4 |
1 - il 172 3 53 1
14| «» [Ml{ Location % Tools ER 175 10 7 i
13 180 4 g 4
14 186 8 =3 3 =
WTalr] M|/ Location /£ Tools » Auto /] 4| | ﬂJJ

Figure 9. Multiple worksheets in same workbook

When reading multiple worksheets, you lose some of the flexibility available for reading individual
worksheets:

 You cannot specify cell ranges.

« The first non-empty row of each worksheet should contain column labels that will be used as variable
names.

« Only basic data types—string and numeric—are preserved, and string variables may be set to an
arbitrarily long width.

Example

In this example, the first worksheet contains information about store location, and the second and third
contain information for different departments. All three contain a column, Store Number, that uniquely
identifies each store, so, the information in the three sheets can be merged correctly regardless of the
order in which the stores are listed on each worksheet.

*readexcel2.sps.
GET DATA
/TYPE=0DBC
/CONNECT=
'DSN=Excel Files;DBQ=c:\examples\data\sales.xls;' +
'DriverId=790;MaxBufferSize=2048;PageTimeout=5;"

/SQL =

'SELECT Location$.[Store Number], State, Region, City,'

' Power, Hand, Accessories,’

' Tires, Batteries, Gizmos, Dohickeys'

' FROM [Location$], [Tools$], [Auto$]'

' WHERE [Tools$].[Store Number]=[Location$].[Store Number]'
' AND [Auto$].[Store Number]=[Location$].[Store Number]'.

If these commands look like random characters scattered on the page to you, try using the Database
Wizard (File > Open Database) and, in the last step, paste the commands into a syntax window.

« Even if you are familiar with SQL statements, you may want to use the Database Wizard the first time to
generate the proper CONNECT string.

The SELECT statement specifies the columns to read from each worksheet, as identified by the column
headings. Since all three worksheets have a column labeled Store Number, the specific worksheet from
which to read this column is also included.

If the column headings can’t be used as variable names, you can either let IBM SPSS Statistics
automatically create valid variable names or use the AS keyword followed by a valid variable name.

Chapter 2. Data Management 21

In this example, Store Number is not a valid variable name; so, a variable name of StoreNumber is
automatically created, and the original column heading is used as the variable label.

« The FROM clause identifies the worksheets to read.

« The WHERE clause indicates that the data should be merged by matching the values of the column Store
Number in the three worksheets.

] *Untitled8 [] - Data Editor =Jo&s
File Edit View Data Transform Analyze Graphs Utiliies Add-ons ‘Window Help
18 : StoreMumber
StnreNumher| State | Region | City | Power | Hand | ACC A

1 £4.00|CA West Los Angeles 8.00 2.00

2 97.00 AL West Tucson 9.00 2.00

3 104.00 | Ml Midwest Dietroit £.00 4.00

4 105.00 |RI East Providence 8.00 5.00

5 107.00 | Wyl Midwest Madison 5.00 3.00

B 105.00 | A East Boston 5.00 2.00

7 119.00 1L hichwest Chicaga 9.00 5.00

&} 153.00 WA, West Seattle £.00 4.00

9 171.00 |14 Midwest Des Maines 10.00 4.00

10 172.00/0R West Eugene 5.00 3.00

11 178.00 ME East Bangor £.00 2.00

12 180.00 | MY East Albany : : o
4+ \Data View £ Variable view [[< >]

SPSS Processor is ready

Figure 10. Merged worksheets in IBM SPSS Statistics

Reading Text Data Files

A text data file is simply a text file that contains data. Text data files fall into two broad categories:

« Simple text data files, in which all variables are recorded in the same order for all cases, and all cases
contain the same variables. This is basically how all data files appear once they are read into IBM SPSS
Statistics.

« Complex text data files, including files in which the order of variables may vary between cases and
hierarchical or nested data files in which some records contain variables with values that apply to one
or more cases contained on subsequent records that contain a different set of variables (for example,
city, state, and street address on one record and name, age, and gender of each household member on
subsequent records).

Text data files can be further subdivided into two more categories:

« Delimited. Spaces, commas, tabs, or other characters are used to separate variables. The variables are
recorded in the same order for each case but not necessarily in the same column locations. This is also
referred to as freefield format. Some applications export text data in comma-separated values (CSV)
format; this is a delimited format.

« Fixed width. Each variable is recorded in the same column location on the same line (record) for each
case in the data file. No delimiter is required between values. In fact, in many text data files generated
by computer programs, data values may appear to run together without even spaces separating them.
The column location determines which variable is being read.

Complex data files are typically also fixed-width format data files.

Simple Text Data Files

In most cases, the Text Wizard (File > Read Text Data) provides all of the functionality that you need to
read simple text data files. You can preview the original text data file and resulting IBM SPSS Statistics
data file as you make your choices in the wizard, and you can paste the command syntax equivalent of
your choices into a command syntax window at the last step.

22 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Two commands are available for reading text data files: GET DATA and DATA LIST. In many cases, they
provide the same functionality, and the choice of one versus the other is a matter of personal preference.
In some instances, however, you may need to take advantage of features in one command that aren’t
available in the other.

GET DATA

Use GET DATA instead of DATA LISTif:
« Thefileis in CSV format.

 The text data file is very large.

DATA LIST

Use DATA LIST instead of GET DATA if:

« The text data is “inline” data contained in a command syntax file using BEGIN DATA-END DATA.

 The file has a complex structure, such as a mixed or hierarchical structure. See the topic “Reading
Complex Text Data Files” on page 30 for more information.

« You want to use the TO keyword to define a large number of sequential variable names (for example,
varl TO varl000).

« You need to specify the encoding of the text file. See the topic “Code Page and Unicode Data Sources”
on page 37 for more information.

Many examples in other chapters use DATA LIST to define sample data simply because it supports the
use of inline data contained in the command syntax file rather than in an external data file, making the
examples self-contained and requiring no additional files to work.

Delimited Text Data

In a simple delimited (or “freefield”) text data file, the absolute position of each variable isn’t important;
only the relative position matters. Variables should be recorded in the same order for each case, but the
actual column locations aren’t relevant. More than one case can appear on the same record, and some
records can span multiple records, while others do not.

Example

One of the advantages of delimited text data files is that they don’t require a great deal of structure. The
sample data file, simple_delimited.txt, looks like this:

P oR
IS
ow3
BN
Sy

The DATA LIST command to read the data file is:

*simple_delimited.sps.
DATA LIST FREE

FILE = '/examples/data/simple_delimited.txt"'

/id (F3) sex (A1) age (F2) opinionl TO opinion5 (5F).
EXECUTE.

« FREE indicates that the text data file is a delimited file, in which only the order of variables matters. By
default, commas and spaces are read as delimiters between data values. In this example, all of the data
values are separated by spaces.

- Eight variables are defined, so after reading eight values, the next value is read as the first variable for
the next case, even if it’s on the same line. If the end of a record is reached before eight values have
been read for the current case, the first value on the next line is read as the next value for the current
case. In this example, four cases are contained on three records.

« If all of the variables were simple numeric variables, you wouldn’t need to specify the format for any of
them, but if there are any variables for which you need to specify the format, any preceding variables
also need format specifications. Since you need to specify a string format for sex, you also need to
specify a format for id.

Chapter 2. Data Management 23

« In this example, you don’t need to specify formats for any of the numeric variables that appear after the
string variable, but the default numeric format is F8.2, which means that values are displayed with two
decimals even if the actual values are integers. (F2) specifies an integer with a maximum of two digits,
and (5F) specifies five integers, each containing a single digit.

The “defined format for all preceding variables” rule can be quite cumbersome, particularly if you have a
large number of simple numeric variables interspersed with a few string variables or other variables that
require format specifications. You can use a shortcut to get around this rule:

DATA LIST FREE

FILE = '/examples/data/simple_delimited.txt'
/id * sex (A1) age opinionl TO opinion5.

The asterisk indicates that all preceding variables should be read in the default numeric format (F8.2). In
this example, it doesn’t save much over simply defining a format for the first variable, but if sex were the
last variable instead of the second, it could be useful.

Example

One of the drawbacks of DATA LIST FREE is that if a single value for a single case is accidently missed
in data entry, all subsequent cases will be read incorrectly, since values are read sequentially from the
beginning of the file to the end regardless of what line each value is recorded on. For delimited files in
which each case is recorded on a separate line, you can use DATA LIST LIST, which will limit problems
caused by this type of data entry error to the current case.

The data file, delimited_list.txt, contains one case that has only seven values recorded, whereas all of the
others have eight:

001 m2812212
002 £2921212
003 £ 453245

128 m 17 1119 4

The DATA LIST command to read the file is:

*delimited_list.sps.
DATA LIST LIST
FILE='/examples/data/delimited_list.txt'
/id(F3) sex (A1) age opinionl TO opinion5 (6F1).
EXECUTE.

%] “Untitled4 [] - Data Editor M=
File Edit “iew Data Transform Analyze Graphs Utilities Add-ons Window Help
8 id Wisible:
id | sex | age | opiniont | opinion2 | opinion3 | opiniond | opinions | A

1 1|m 28 1 2 2 1 2

2 2|f 29 2 1 2 1 2

3 3if 45 3 2 4 f .

4 128 m 17 1 1 1 9 4

k5

b

7 -
4| v | \Data View £ variable view / [< [»

Figure 11. Text data file read with DATA LIST LIST

- Eight variables are defined, so eight values are expected on each line.

« The third case, however, has only seven values recorded. The first seven values are read as the values
for the first seven defined variables. The eighth variable is assigned the system-missing value.

You don’t know which variable for the third case is actually missing. In this example, it could be any
variable after the second variable (since that’s the only string variable, and an appropriate string value

24 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

was read), making all of the remaining values for that case suspect; so, a warning message is issued
whenever a case doesn’t contain enough data values:

>Warning # 1116

>Under LIST input, insufficient data were contained on one record to
>fulfill the variable list.

>Remaining numeric variables have been set to the system-missing
>value and string variables have been set to blanks.

>Command line: 6 Current case: 3 Current splitfile group: 1

CSV Delimited Text Files

A CSV file uses commas to separate data values and encloses values that include commas in quotation
marks. Many applications export text data in this format. To read CSV files correctly, you need to use the
GET DATA command.

Example

The file CSV._file.csv was exported from Microsoft Excel:

ID,Name,Gender,Date Hired,Department
1,"Foster, Chantal",f,10/29/1998,1
2,"Healy, Jonathan",m,3/1/1992,3
3,"Walter, Wendy",f,1/23/1995,2
4,"0liver, Kendall",f,10/28/2003,2

This data file contains variable descriptions on the first line and a combination of string and numeric data
values for each case on subsequent lines, including string values that contain commas. The GET DATA
command syntax to read this file is:

*delimited_csv.sps.
GET DATA /TYPE = TXT
/FILE = '/examples/data/CSV_file.csv'
/DELIMITERS = ","
/QUALIFIER = '"'
/ARRANGEMENT = DELIMITED
/FIRSTCASE = 2
/VARIABLES = ID F3 Name A15 Gender Al
Date_Hired ADATE10 Department F1.

DELIMITERS = ", " specifies the comma as the delimiter between values.

QUALIFIER = '"' specifies that values that contain commas are enclosed in double quotes so that
the embedded commas won’t be interpreted as delimiters.

FIRSTCASE = 2 skips the top line that contains the variable descriptions; otherwise, this line would be
read as the first case.

ADATE10 specifies that the variable Date_Hired is a date variable of the general format mm/dd/yyyy.
See the topic “Reading Different Types of Text Data” on page 28 for more information.

Note: The command syntax in this example was adapted from the command syntax generated by the Text
Wizard (File > Read Text Data), which automatically generated valid variable names from the information
on the first line of the data file.

Fixed-Width Text Data

In a fixed-width data file, variables start and end in the same column locations for each case. No
delimiters are required between values, and there is often no space between the end of one value and
the start of the next. For fixed-width data files, the command that reads the data file (GET DATA or DATA
LIST) contains information on the column location and/or width of each variable.

Example

In the simplest type of fixed-width text data file, each case is contained on a single line (record) in the file.
In this example, the text data file simple_fixed.txt looks like this:

001 m 28 12212
002 £ 29 21212
003 f 45 32145
128 m 17 11194

Chapter 2. Data Management 25

Using DATA LIST, the command syntax to read the file is:

*simple_fixed.sps.
DATA LIST FIXED

FILE='/examples/data/simple_fixed.txt'

/id 1-3 sex 5 (A) age 7-8 opinionl TO opinion5 10-14.
EXECUTE.

The keyword FIXED is included in this example, but since it is the default format, it can be omitted.

The forward slash before the variable id separates the variable definitions from the rest of the command
specifications (unlike other commands where subcommands are separated by forward slashes). The
forward slash actually denotes the start of each record that will be read, but in this case there is only
one record per case.

The variable id is located in columns 1 through 3. Since no format is specified, the standard numeric
format is assumed.

The variable sex is found in column 5. The format (A) indicates that this is a string variable, with values
that contain something other than numbers.

The numeric variable age is in columns 7 and 8.

opinionl TO opinion5 10-14 defines five numeric variables, with each variable occupying a single
column: opinionl in column 10, opinion2 in column 11, and so on.

You could define the same data file using variable width instead of column locations:

*simple_fixed_alt.sps.

DATA LIST FIXED
FILE='/examples/data/simple_fixed.txt'
/id (F3, 1X) sex (A1, 1X) age (F2, 1X)

opinionl TO opinion5 (5F1).

EXECUTE.

« id (F3, 1X) indicates that the variable id is in the first three column positions, and the next column
position (column 4) should be skipped.

« Each variable is assumed to start in the next sequential column position; so, sex is read from column 5.

] “Untitled4 [] - Data Editor =] 2
File Edit View Data Transformn Analyze Graphs Utilities Add-ons window Help
5 id isible:
id | sex | age | opinion1 | opinion2 | opinion3 | opiniond | opinions | Vo

1 11m 25 1 2 2 1 2

2 2|f 28 2 1 2 1 2

3 3if 45 3 2 4 g .

41 128|m 17 1 1 1 4 4

5

]

7 w
4 v |\ Data View £ Variable View f I< [>

Figure 12. Fixed-width text data file displayed in Data Editor

Example

Reading the same file with GET DATA, the command syntax would be:

*simple_fixed_getdata.sps.

GET DATA /TYPE = TXT
/FILE = '/examples/data/simple_fixed.txt'
/ARRANGEMENT = FIXED
/VARIABLES =/1 id 0-2 F3 sex 4-4 Al age 6-7 F2
opinionl 9-9 F opinion2 10-10 F opinion3 11-11 F
opinion4 12-12 F opinion5 13-13 F.

« The first column is column O (in contrast to DATA LIST, in which the first column is column 1).
« There is no default data type. You must explicitly specify the data type for all variables.

26 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

« You must specify both a start and an end column position for each variable, even if the variable occupies
only a single column (for example, sex 4-4).

« All variables must be explicitly specified; you cannot use the keyword TO to define a range of variables.

Reading Selected Portions of a Fixed-Width File

With fixed-format text data files, you can read all or part of each record and/or skip entire records.
Example

In this example, each case takes two lines (records), and the first line of the file should be skipped
because it doesn’t contain data. The data file, skip_first_fixed.txt, looks like this:

Employee age, department, and salary information
John Smith
26 2 40000
Joan Allen
32 3 48000
Bill Murray
45 3 50000

The DATA LIST command syntax to read the file is:

*xskip_first_fixed.sps.
DATA LIST FIXED
FILE = '/examples/data/skip_first_fixed.txt'
RECORDS=2
SKIP=1
/name 1-20 (A)
/age 1-2 dept 4 salary 6-10.
EXECUTE.

« The RECORDS subcommand indicates that there are two lines per case.
« The SKIP subcommand indicates that the first line of the file should not be included.

« The first forward slash indicates the start of the list of variables contained on the first record for each
case. The only variable on the first record is the string variable name.

« The second forward slash indicates the start of the variables contained on the second record for each
case.

%] “Untitledé [] - Data Editor =Jo)&d
File Edit Views Data Transform A&nalyze Graphs Utilities Add-ons Window Help
12 : name
narne | age | dept | salary | var ¥ar

1{John Smith 26 2 40000

2|Joan Allen 32 3 45000

3| Bill Murray 45 3 50000

4

5 hd
4| v |\ Data View A variahle View f [< >

Figure 13. Fixed-width, multiple-record text data file displayed in Data Editor
Example

With fixed-width text data files, you can easily read selected portions of the data. For example, using the
skip_first_fixed.txt data file from the above example, you could read just the age and salary information.

*selected_vars_fixed.sps.
DATA LIST FIXED
FILE = '/examples/data/skip_first_fixed.txt'
RECORDS=2
SKIP=1
/2 age 1-2 salary 6-10.
EXECUTE.

« Asin the previous example, the command specifies that there are two records per case and that the first
line in the file should not be read.

Chapter 2. Data Management 27

- /2 indicates that variables should be read from the second record for each case. Since this is the only
list of variables defined, the information on the first record for each case is ignored, and the employee’s
name is not included in the data to be read.

« The variables age and salary are read exactly as before, but no information is read from columns 3-5
between those two variables because the command does not define a variable in that space—so the
department information is not included in the data to be read.

DATA LIST FIXED and Implied Decimals

If you specify a number of decimals for a numeric format with DATA LIST FIXED and some data

values for that variable do not contain decimal indicators, those values are assumed to contain implied
decimals.

Example

*implied_decimals.sps.

DATA LIST FIXED /varl (F5.2).
BEGIN DATA

123

123.0

1234

123.4

end data.

The values of 123 and 1234 will be read as containing two implied decimals positions, resulting in
values of 1.23 and 12.34.

The values of 123.0 and 123.4, however, contain explicit decimal indicators, resulting in values of
123.0and 123.4.

DATA LIST FREE (and LIST)and GET DATA /TYPE=TEXT do not read implied decimals; so a value of
123 with a format of F5.2 will be read as 123.

Text Data Files with Very Wide Records

Some machine-generated text data files with a large number of variables may have a single, very wide
record for each case. If the record width exceeds 8,192 columns/characters, you need to specify the
record length with the FILE HANDLE command before reading the data file.

*wide_file.sps.
*Read text data file with record length of 10,000.
*This command will stop at column 8,192.
DATA LIST FIXED
FILE='/examples/data/wide_file.txt'
/varl TO varl000 (1000F10).
EXECUTE.
*Define record length first.
FILE HANDLE wide_file NAME = /examples/data/w1de file.txt'
/MODE = CHARACTER /LRECL = 1000
DATA LIST FIXED
FILE = wide_file
/varl TO varl000 (1000F10).
EXECUTE.

Each record in the data file contains 1,000 10-digit values, for a total record length of 10,000
characters.

The first DATA LIST command will read only the first 819 values (8,190 characters), and the remaining
variables will be set to the system-missing value. A warning message is issued for each variable that is
set to system-missing, which in this example means 181 warning messages.

FILE HANDLE assigns a “handle” of wide_file to the data file wide_file.txt.
The LRECL subcommand specifies that each record is 10,000 characters wide.

The FILE subcommand on the second DATA LIST command refers to the file handle wide_file instead
of the actual filename, and all 1,000 variables are read correctly.

Reading Different Types of Text Data

You can read text data recorded in a wide variety of formats.

28 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Table 1. Examples of common formats

Type Example Format specification
Numeric 123 F3

Numeric 123.45 F6.2

Period as decimal indicator, comma as 12,345 COMMAG6
thousands separator

Period as decimal indicator, comma as 1,234.5 COMMA7.1
thousands separator

Comma as decimal indicator, period as 123,4 DOT6
thousands separator

Comma as decimal indicator, period as 1.234,5 DOT7.1
thousands separator

Dollar $12,345 DOLLAR7
Dollar $12,234.50 DOLLAR9.2
String (alphanumeric) Female A6
International date 28-0CT-1986 DATE11
American date 10/28/1986 ADATE10
Date and time 28 October, 1986 23:56 DATETIME22

For more information on date and time formats, see “Date and Time” in the “Universals” section of
the Command Syntax Reference. For a complete list of supported data formats, see “Variables” in the
“Universals” section of the Command Syntax Reference.

Example

*delimited_formats.sps.
DATA LIST LIST (" "
/numericVar (F4) dotVar(DOT7.1) stringVar(a4) dateVar(DATE1l).
BEGIN DATA
1 2 abc 28/10/03
111 2.222,2 abcd 28-0CT-2003
111.11 222.222,222 abcdefg 28-October-2003
END DATA.

] *Untitled7 [] - Data Editor = oEd
File Edit Wiew Data Transform Analyze Graphs Utilities Add-ons window Help
10 numeticar
nurericvar | dotvar | stringvar | datelar [var -

1] 1 20abc | 28-0CT-2003 |

2 111 2222 2|abcd 28-0CT-2003

3 11| 222222 2 abed | 26-0CT-2003 |

;'?: W
4 v \Data View £ variable view / |< [»

Figure 14. Different data types displayed in Data Editor

« All of the numeric and date values are read correctly even if the actual values exceed the maximum
width (number of digits and characters) defined for the variables.

« Although the third case appears to have a truncated value for numericVar, the entire value of 111.11 is
stored internally. Since the defined format is also used as the display format, and (F4) defines a format
with no decimals, 111 is displayed instead of the full value. Values are not actually truncated for display;
they are rounded. A value of 111.99 would display as 112.

Chapter 2. Data Management 29

« The dateVar value of 28-October-2003 is displayed as 28-0CT-2003 to fit the defined width of 11
digits/characters.

- For string variables, the defined width is more critical than with numeric variables. Any string value that
exceeds the defined width is truncated, so only the first four characters for stringVar in the third case
are read. Warning messages are displayed in the log for any strings that exceed the defined width.

Reading Complex Text Data Files
“Complex” text data files come in a variety of flavors, including:

« Mixed files in which the order of variables isn’t necessarily the same for all records and/or some record
types should be skipped entirely.

« Grouped files in which there are multiple records for each case that need to be grouped together.
» Nested files in which record types are related to each other hierarchically.

Mixed Files

A mixed file is one in which the order of variables may differ for some records and/or some records may
contain entirely different variables or information that shouldn’t be read.

Example

In this example, there are two record types that should be read: one in which state appears before city
and one in which city appears before state. There is also an additional record type that shouldn’t be read.

*mixed_file.sps.
FILE TYPE MIXED RECORD = 1-2.
- RECORD TYPE 1.
- DATA LIST FIXED
/state 4-5 (A) city 7-17 (A) population 19-26 (F).
- RECORD TYPE 2.
- DATA LIST FIXED
/city 4-14 (A) state 16-17 (A) population 19-26 (F).
END FILE TYPE.
BEGIN DATA
01 TX Dallas 3280310
01 IL Chicago 8008507
02 Ancorage AK 257808
99 What am I doing here?
02 Casper WY 63157
01 WI Madison 428563
END DATA.

« The commands that define how to read the data are all contained within the FILE TYPE-END FILE
TYPE structure.

« MIXED identifies the type of data file.

« RECORD = 1-2indicates that the record type identifier appears in the first two columns of each record.

- Each DATA LIST command reads only records with the identifier value specified on the preceding
RECORD TYPE command. So if the value in the first two columns of the record is 1 (or 01), state comes
before city, and if the value is 2, city comes before state.

« The record with the value 99 in the first two columns is not read, since there are no corresponding
RECORD TYPE and DATA LIST commands.

You can also include a variable that contains the record identifier value by including a variable name on
the RECORD subcommand of the FILE TYPE command, as in:

FILE TYPE MIXED /RECORD = recID 1-2.

You can also specify the format for the identifier value, using the same type of format specifications as the
DATA LIST command. For example, if the value is a string instead of a simple numeric value:

FILE TYPE MIXED /RECORD = recID 1-2 (A).

30 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Grouped Files

In a grouped file, there are multiple records for each case that should be grouped together based on a

unique case identifier. Each case usually has one record of each type. All records for a single case must be
together in the file.

Example

In this example, there are three records for each case. Each record contains a value that identifies the
case, a value that identifies the record type, and a grade or score for a different course.

* grouped_file.sps.

* A case is made up of all record types.
FILE TYPE GROUPED RECORD=6 CASE=student 1-4.
RECORD TYPE 1.

- DATA LIST /english 8-9 (A).

RECORD TYPE 2.

- DATA LIST /reading 8-10.

RECORD TYPE 3.

- DATA LIST /math 8-10.

END FILE TYPE.

BEGIN DATA
0001 1 B+
0001 2 74
0001 3 83
0002 1 A
0002 3 71
0002 2 10
0003 1 B-
0003 2 88
0003 3 81
0004 1 C
0004 2 94
0004 3 91
END DATA.

« The commands that define how to read the data are all contained within the FILE TYPE-END FILE
TYPE structure.

- GROUPED identifies the type of data file.
« RECORD=6 indicates that the record type identifier appears in column 6 of each record.

« CASE=student 1-4 indicates that the unique case identifier appears in the first four columns and
assigns that value to the variable student in the active dataset.

e The three RECORD TYPE and subsequent DATA LIST commands determine how each record is read,
based on the value in column 6 of each record.

% “Untitled8 [] - Data Editor M= <
File Edit Wew Data Transform Analvze Graphs Ukilities Add-ons Window Help
9 student
student | english | reading | math | war vafa

1 1B+ 74 a3 [

2 214 100 71

3 3B a8 a1

4 41C 94 91

=

53

7 | ¥
4/ » |\ Data View £ variahle view f |< >

Figure 15. Grouped data displayed in Data Editor
Example

In order to read a grouped data file correctly, all records for the same case must be contiguous in the
source text data file. If they are not, you need to sort the data file before reading it as a grouped data file.
You can do this by reading the file as a simple text data file, sorting it and saving it, and then reading it
again as a grouped file.

*grouped_file2.sps.

* Data file is sorted by record type instead of by
identification number.

DATA LIST FIXED
/alldata 1-80 (A) caseid 1-4.

Chapter 2. Data Management 31

BEGIN DATA

0001 1 B+

0002

0003

0004

0001

0002

0003

0004

0001 3 83

0002 3 71

0003 3 81

0004 3 91

END DATA.

SORT CASES BY caseid.

WRITE OUTFILE='/temp/tempdata.txt'
/alldata.

NMNNONNNRERE R R
o

EXECUTE.
* read the sorted file.
FILE TYPE GROUPED FILE='/temp/tempdata.txt'
RECORD=6 CASE=student 1-4.
- RECORD TYPE 1.
DATA LIST /english 8-9 (A).
- RECORD TYPE 2.
DATA LIST /reading 8-10.
- RECORD TYPE 3.
DATA LIST /math 8-10.
END FILE TYPE.
EXECUTE.

The first DATA LIST command reads all of the data on each record as a single string variable.

In addition to being part of the string variable spanning the entire record, the first four columns are read
as the variable caseid.

The data file is then sorted by caseid, and the string variable alldata, containing all of the data on each
record, is written to the text file tempdata.txt.

The sorted file, tempdata.txt, is then read as a grouped data file, just like the inline data in the previous
example.

Prior to release 13.0, the maximum width of a string variable was 255 bytes. So in earlier releases, for
a file with records wider than 255 bytes, you would need to modify the job slightly to read and write
multiple string variables. For example, if the record width is 1,200:

DATA LIST FIXED
/stringl to stringé 1-1200 (A) caseid 1-4.

This would read the file as six 200-byte string variables.

IBM SPSS Statistics can now handle much longer strings in a single variable: 32,767 bytes. So this
workaround is unnecessary for release 13.0 or later. (If the record length exceeds 8,192 bytes, you need
to use the FILE HANDLE command to specify the record length. See the Command Syntax Reference for
more information.)

Nested (Hierarchical) Files

In a nested file, the record types are related to each other hierarchically. The record types are grouped
together by a case identification number that identifies the highest level—the first record type—of the
hierarchy. Usually, the last record type specified—the lowest level of the hierarchy—defines a case. For
example, in a file containing information on a company’s sales representatives, the records could be
grouped by sales region. Information from higher record types can be spread to each case. For example,
the sales region information can be spread to the records for each sales representative in the region.

Example

In this example, sales data for each sales representative are nested within sales regions (cities), and
those regions are nested within years.

*nested_filel.sps.

FILE TYPE NESTED RECORD=1(A).
- RECORD TYPE 'Y'.

- DATA LIST / Year 3-6.

- RECORD TYPE 'R'.

- DATA LIST / Region 3-13 (A).
- RECORD TYPE 'P'.

- DATA LIST / SalesRep 3-13 (A) Sales 20-23.
END FILE TYPE.

BEGIN DATA

Y 2002

R Chicago

P Jones 900

32 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

P Gregory 400
R Baton Rouge

P Rodriguez 300
P Smith 333
P Grau 100
END DATA.
& *Untitled? [] - Data Editor =)oy
File Edit View Data Transform A&nalyee Graphs Utiities Add-ons Window Help
8: Year |
Year | Region | SalesRep | Sales | A
1 2002 | Chicaga Jones 200
2 2002 | Chicago Gregory 400
3 2002 | Baton Rouge Rodriguez 300
4 2002 |Baton Rouge Smith 333
4 2002 |Baton Rouge Grau 100
B w
4 v |\ Data View £ Variable View <l [&]

Figure 16. Nested data displayed in Data Editor

« The commands that define how to read the data are all contained within the FILE TYPE-END FILE

TYPE structure.
« NESTED identifies the type of data file.

« The value that identifies each record type is a string value in column 1 of each record.

« The order of the RECORD TYPE and associated DATA LIST commands defines the nesting hierarchy,
with the highest level of the hierarchy specified first. So, 'Y ' (year) is the highest level, followed by 'R

(region), and finally 'P' (person).

« Eight records are read, but one of those contains year information and two identify regions; so, the
active dataset contains five cases, all with a value of 2002 for Year, two in the Chicago Region and three

in Baton Rouge.

Using INPUT PROGRAM to Read Nested Files

The previous example imposes some strict requirements on the structure of the data. For example, the
value that identifies the record type must be in the same location on all records, and it must also be the

same type of data value (in this example, a one-character string).

Instead of usinga FILE TYPE structure, we can read the same data with an INPUT PROGRAM, which can

provide more control and flexibility.

Example

This first input program reads the same data file as the FILE TYPE NESTED example and obtains the

same results in a different manner.

* nested_inputl.sps.
INPUT PROGRAM.
- DATA LIST FIXED END=#teof /#type 1 (A).
- DO IF fteof.
- END FILE.
- END IF.
- DO IF #type='Y'.
- REREAD.
DATA LIST /Year 3-6.
- LEAVE Year.
- ELSE IF #type='R"'.
REREAD.
DATA LIST / Region 3-13 (A).
- LEAVE Region.
- ELSE IF #type='P"'.
REREAD.
DATA LIST / SalesRep 3-13 (A) Sales 20-23.
END CASE.
- END IF.
END INPUT PROGRAM.
BEGIN DATA
Y 2002
R Chicago
P Jones 900
P Gregory 400
R Baton Rouge
P Rodriguez 300
P Smith 333

Chapter 2. Data Management 33

P Grau 100
END DATA.

« The commands that define how to read the data are all contained within the INPUT PROGRAM structure.

« The first DATA LIST command reads the temporary variable #type from the first column of each
record.

- END=#eof creates a temporary variable named #eof that has a value of 0 until the end of the data file is
reached, at which point the value is set to 1.

« DO IF ifeof evaluates as true when the value of #eof is set to 1 at the end of the file, and an END
FILE command is issued, which tells the INPUT PROGRAM to stop reading data. In this example, this
isn’t really necessary, since we're reading the entire file; however, it will be used later when we want to
define an end point prior to the end of the data file.

« Thesecond DO IF-ELSE IF-END IF structure determines what to do for each value of type.

« REREAD reads the same record again, this time reading either Year, Region, or SalesRep and Sales,
depending on the value of #type.

« LEAVE retains the value(s) of the specified variable(s) when reading the next record. So the value of
Year from the first record is retained when reading Region from the next record, and both of those values
are retained when reading SalesRep and Sales from the subsequent records in the hierarchy. Thus, the
appropriate values of Year and Region are spread to all of the cases at the lowest level of the hierarchy.

« END CASE marks the end of each case. So, after reading a record with a #type value of 'P', the process
starts again to create the next case.

Example

In this example, the data file reflects the nested structure by indenting each nested level; so the values
that identify record type do not appear in the same place on each record. Furthermore, at the lowest level
of the hierarchy, the record type identifier is the last value instead of the first. Here, an INPUT PROGRAM
provides the ability to read a file that cannot be read correctly by FILE TYPE NESTED.

*nested_input2.sps.

INPUT PROGRAM.

- DATA LIST FIXED END=fteof
/#kyr 1 (A) H#reg 3(A) dperson 25 (A).

- DO IF iteof.

- END FILE.

- END IF.

- DO IF #yr='Y'.

- REREAD.

- DATA LIST /Year 3-6.

- LEAVE Year.

- ELSE IF #reg='R'.

- REREAD.

- DATA LIST / Region 5-15 (A).

- LEAVE Region.

- ELSE IF #pexrson='P'.

- REREAD.

- DATA LIST / SalesRep 7-17 (A) Sales 20-23.

- END CASE.

- END IF.

END INPUT PROGRAM.

BEGIN DATA

Y 2002

R Chicago
Jones 900 P
Gregory 400 P

R Baton Rouge
Rodriguez 300 P
Smith 333 P
Grau 100 P

END DATA.
« This time, the first DATA LIST command reads three temporary variables at different locations, one for
each record type.

« The DO IF-ELSE IF-END IF structure then determines how to read each record based on the values
of #yr, #reg, or #person.

« The remainder of the job is essentially the same as the previous example.

Example

34 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Using the input program, we can also select a random sample of cases from each region and/or stop
reading cases at a specified maximum.

*nested_input3.sps.
INPUT PROGRAM.
NUMERIC #count (F8).
- DATA LIST FIXED END=fteof
J/#yr 1 (A) freg 3(A) #person 25 (A).
- DO IF #eof OR d#count = 1000.
- END FILE.
- END IF.
- DO IF #yr='Y'.
- REREAD.
DATA LIST /Year 3-6.
- LEAVE Year.
- ELSE IF #reg='R'.
REREAD.
DATA LIST / Region 5-15 (A).
- LEAVE Region.
- ELSE IF {person='P' AND UNIFORM(1000) < 500.
REREAD.

DATA LIST / SalesRep 7-17 (A) Sales 20-23.
END CASE.
COMPUTE #tcount=#count+1.
- END IF.
END INPUT PROGRAM.
BEGIN DATA
Y 2002
R Chicago
Jones 900 P
Gregory 400 P
R Baton Rouge
Rodriguez 300 P
Smith 333 P
Grau 100 P
END DATA.

« NUMERIC #count (F8) uses a scratch (temporary) variable as a case-counter variable. Scratch
variables are initialized to 0 and retain their values for subsequent cases.

« ELSE IF dfperson='P' AND UNIFORM(1000) < 500 will read a random sample of approximately

50% from each region, since UNIFORM(1000) will generate a value less than 500 approximately 50%
of the time.

« COMPUTE #count=#count+1 increments the case counter by 1 for each case that is included.

« DO IF {eof OR #count = 1000 will issue an END FILE command if the case counter reaches
1,000, limiting the total number of cases in the active dataset to no more than 1,000.

Since the source file must be sorted by year and region, limiting the total number of cases to 1,000 (or any
value) may omit some years or regions within the last year entirely.

Repeating Data

In a repeating data file structure, multiple cases are constructed from a single record. Information
common to each case on the record may be entered once and then spread to all of the cases constructed
from the record. In this respect, a file with a repeating data structure is like a hierarchical file, with two
levels of information recorded on a single record rather than on separate record types.

Example

In this example, we read essentially the same information as in the examples of nested file structures,
except now all of the information for each region is stored on a single record.

*repeating_data.sps.
INPUT PROGRAM.
DATA LIST FIXED
/Year 1-4 Region 6-16 (A) i#numrep 19.
REPEATING DATA STARTS=22 /OCCURS=#numrep
/DATA=SalesRep 1-10 (A) Sales 12-14.
END INPUT PROGRAM.

BEGIN DATA

2002 Chicago 2 Jones 900Gregory 400

2002 Baton Rouge 3 Rodriguez 300Smith 333Grau 100
END DATA.

The commands that define how to read the data are all contained within the INPUT PROGRAM structure.

The DATA LIST command defines two variables, Year and Region, that will be spread across all of the
cases read from each record. It also defines a temporary variable, #numrep.

« Onthe REPEATING DATA command, STARTS=22 indicates that the case starts in column 22.

Chapter 2. Data Management 35

« OCCURS=#numrep uses the value of the temporary variable, #numrep (defined on the previous DATA
LIST command), to determine how many cases to read from each record. So, two cases will be read
from the first record, and three will be read from the second.

« The DATA subcommand defines two variables for each case. The column locations for those variables
are relative locations. For the first case, column 22 (specified on the STARTS subcommand) is read as
column 1. For the next case, column 1 is the first column after the end of the defined column span for
the last variable in the previous case, which would be column 36 (22+14=36).

The end result is an active dataset that looks remarkably similar to the data file created from the
hierarchical source data file.

i i sy
] *Untitled10 [] - Data Editor =)o
File Edit Wew Data Transform Analvze Graphs Ukilities Add-ons Window Help
11 : Year
Year | Region | SalesRep | Sales | v Al
1| 2002 |Chicago Jones 900 g
2 2002 | Chicaga Gregory 400
3 2002 |Baton Rouge Rodriguez 300
4 2002 |Baton Rouge Smith 333
5 2002 | Baton Rouge Grau 100
- —"
4 » \Data View £ variahle view f AN (2]

Figure 17. Repeating data displayed in Data Editor

Reading SAS Data Files
IBM SPSS Statistics can read the following types of SAS files:

SAS long filename, versions 7 through 9

SAS short filenames, versions 7 through 9
« SAS version 6 for Windows

= SAS version 6 for UNIX

« SAS Transport

The basic structure of a SAS data file is very similar to a data file in IBM SPSS Statistics format—rows are
cases (observations), and columns are variables—and reading SAS data files requires only a single, simple
command: GET SAS.

Example

In its simplest form, the GET SAS command has a single subcommand that specifies the SAS filename.

*xget_sas.sps.
GET SAS DATA='/examples/data/demo.sd7"'.

« SAS variable names that do not conform to IBM SPSS Statistics variable-naming rules are converted to
valid variable names.

= SAS variable labels specified on the LABEL statement in the DATA step are used as variable labels in
IBM SPSS Statistics.

Example

SAS value formats are similar to IBM SPSS Statistics value labels, but SAS value formats are saved
in a separate file; so if you want to use value formats as value labels, you need to use the FORMATS
subcommand to specify the formats file.

GET SAS DATA='datafilename.sd7'
/FORMATS="formatsfilename.sd7".

- Labels assigned to single values are retained.

36 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

- Labels assigned to a range of values are ignored.
« Labels assigned to the SAS keywords LOW, HIGH, and OTHER are ignored.

The file specified on the FORMATS subcommand must be a SAS-format catalog file created with the proc
format command. For example:

libname mylib ‘'c:\mydir\' ;

proc format library = mylib ;
value YesNo
0="No"'
1="'Yes' ;
value HighLow
1 = 'Low'
2 = 'Medium’
3 = 'High' ;

options fmtsearch=(mylib);

proc datasets library = mylib ;
modify mydata;

format varl var2 var3 YesNo.;
format var4 var5 var6 HighLow.;
quit;

« libname defines a "library," which is a directory path.

« proc format defines two formats: YesNo and HighLow. Each format defines a set of value labels
associated with data values.

- proc datasets identifies the data file--mydata--and the variables to which each of the defined
formats should be applied. So the YesNo format is applied to variables varl, var2, and var3, and the
HighLow format is applied to the variables var4, vars, and varé.

« This creates the SAS catalog file c:\mydir\formats.sas7bcat.

Reading Stata Data Files

GET STATA reads Stata-format data files created by Stata versions 4 through 8. The only specification is
the FILE keyword, which specifies the Stata data file to be read.

« Variable names. Stata variable names are converted to IBM SPSS Statistics variable names in case-
sensitive form. Stata variable names that are identical except for case are converted to valid variable
names by appending an underscore and a sequential letter (A, _B, _C, ...,_Z, _AA,_AB, ...,and so
forth).

« Variable labels. Stata variable labels are converted to IBM SPSS Statistics variable labels.

- Value labels. Stata value labels are converted to IBM SPSS Statistics value labels, except for Stata
value labels assigned to "extended" missing values. Value labels longer than 120 bytes are truncated.

- String variables. Stata strl variables are converted to string variables. Values longer than 32K bytes are
truncated. Stata strl values that contain blobs (binary large objects) are converted to blank strings.

« Missing values. Stata "extended" missing values are converted to system-missing values.

- Date conversion. Stata date format values are converted to IBM SPSS Statistics DATE format (d-m-y)
values. Stata "time-series" date format values (weeks, months, quarters, and so on) are converted to
simple numeric (F) format, preserving the original, internal integer value, which is the number of weeks,
months, quarters, and so on, since the start of 1960.

Example

GET STATA FILE='/examples/data/statafile.dta’.

Code Page and Unicode Data Sources

Starting with release 16.0, you can read and write Unicode data files.

SET UNICODE NO|YES controls the default behavior for determining the encoding for reading and
writing data files and syntax files.

Chapter 2. Data Management 37

NO. Use the current locale setting to determine the encoding for reading and writing data and command
syntax files. This is referred to as code page mode. The alias is OFF.

YES. Use Unicode encoding (UTF-8) for reading and writing data and command syntax files. This is
referred to as Unicode mode. The alias is ON. This is the default.

You can change the UNICODE setting only when there are no open data sources.
The UNICODE setting persists across sessions and remains in effect until it is explicitly changed.

There are a number of important implications regarding Unicode mode and Unicode files:

Data and syntax files saved in Unicode encoding should not be used in releases prior to 16.0.
When code page data files are read in Unicode mode, the defined width of all string variables is tripled.

The GET command determines the file encoding for IBM SPSS Statistics data files from the file itself,
regardless of the current mode setting (and defined string variable widths in code page files are tripled
in Unicode mode).

For syntax files, the encoding is changed after execution of the block of commands that includes SET
UNICODE. For example, if your are currently in code page mode, you must run SET UNICODE=YES
separately from subsequent commands that contain Unicode characters not recognized by the local
encoding in effect prior to switching to Unicode.

Example: Reading Code Page Text Data in Unicode Mode

*read_codepage.sps.
CD '/examples/data'.
DATASET CLOSE ALL.
NEW FILE.
SET UNICODE YES.
DATA LIST LIST FILE='codepage.txt'
/NumVar (F3) StringVar (A8).
EXECUTE.
DATA LIST LIST FILE='codepage.txt' ENCODING='Locale'
/NumVar (F3) StringVar (A8).
COMPUTE Bytelength=LENGTH(RTRIM(StringVar)).
COMPUTE CharlLength=CHAR.LENGTH(StringVar).
SUMMARIZE
/TABLES=StringVar BytelLength CharlLength
/FORMAT=VALIDLIST /CELLS=COUNT
/TITLE='Unicode Byte and Character Counts'.
DISPLAY DICTIONARY VARIABLES=StringVar.
DATASET CLOSE ALL.
NEW FILE.
SET UNICODE NO.

SET UNICODE YES switches from the default code page mode to Unicode mode. Since you can change
modes only when there are no open data sources, this is preceded by DATASET CLOSE ALL to close all
named datasets and NEW FILE to replace the active dataset with a new, empty dataset.

The text data file codepage.txt is a code page file, not a Unicode file; so any string values that contain
anything other than 7-bit ASCII characters will be read incorrectly when attempting to read the file as if
it were Unicode. In this example, the string value résumé contains two accented characters that are not
7-bit ASCII.

The first DATA LIST command attempts to read the text data file in the default encoding. In Unicode
mode, the default encoding is Unicode (UTF-8), and the string value résumé cannot be read correctly,
which generates a warning:

>Warning # 1158

>An invalid character was encountered in a field read under an A format. 1In

>double-byte data such as Japanese, Chinese, or Korean text, this could be

>caused by a single character being split between two fields. The character
>will be treated as an exclamation point.

ENCODING='Locale' onthe second DATA LIST command identifies the encoding for the text data file
as the code page for the current locale, and the string value résumé is read correctly. (If your current
locale is not English, use ENCODING="'1252".)

LENGTH(RTRIM(StringVar)) returns the number of bytes in each value of StringVar. Note that
résumé is eight bytes in Unicode mode because each accented e takes two bytes.

CHAR.LENGTH(StxringVaxr) returns the number characters in each value of StringVar. While an
accented e is two bytes in Unicode mode, it is only one character; so both résumé and resume contain
six characters.

38 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

« The output from the DISPLAY DICTIONARY command shows that the defined width of StringVar has
been tripled from the input width of A8 to A24. To minimize the expansion of string widths when reading
code page data in Unicode mode, you can use the ALTER TYPE command to automatically set the
width of each string variable to the maximum observed string value for that variable. See the topic
“Changing Data Types and String Widths” on page 69 for more information.

Unicode Byte and Character Counts

Case Mumber | String¥ar | Bytelength | Charl ength
1 1 | régumé 3.00 .00
2 2 | resume f.00 f.00
Total N 2 2 2

Variable Information

Measurarment Column Print Write
Wariable Position Lahel Level Width Alignment Faormat Forrmat
StringVar 2 | =none= | Mominal 26 | Lett A24 £24

Figure 18. String width in Unicode mode

File Operations

You can combine and manipulate data sources in a number of ways, including:

Using multiple data sources
Merging data files
Aggregating data
Weighting data

Changing file structure

Using output as input (For more information, see in.)

Using Multiple Data Sources
Starting with release 14.0, you can have multiple data sources open at the same time.

- When you use the dialog boxes and wizards in the graphical user interface to open data sources, the
default behavior is to open each data source in a new Data Editor window, and any previously open data
sources remain open and available for further use. You can change the active dataset simply by clicking
anywhere in the Data Editor window of the data source that you want to use or by selecting the Data
Editor window for that data source from the Window menu.

« In command syntax, the default behavior remains the same as in previous releases: reading a new
data source automatically replaces the active dataset. If you want to work with multiple datasets using
command syntax, you need to use the DATASET commands.

The DATASET commands (DATASET NAME, DATASET ACTIVATE, DATASET DECLARE, DATASET COPY,
DATASET CLOSE) provide the ability to have multiple data sources open at the same time and control
which open data source is active at any point in the session. Using defined dataset names, you can then:

« Merge data (for example, MATCH FILES, ADD FILES, UPDATE) from multiple different source types (for
example, text data, database, spreadsheet) without saving each one as an external IBM SPSS Statistics
data file first.

- Create new datasets that are subsets of open data sources (for example, males in one subset, females
in another, people under a certain age in another, or original data in one set and transformed/computed
values in another subset).

« Copy and paste variables, cases, and/or variable properties between two or more open data sources in
the Data Editor.

Operations

Chapter 2. Data Management 39

« Commands operate on the active dataset. The active dataset is the data source most recently opened
(for example, by commands such as GET DATA, GET SAS, GET STATA, GET TRANSLATE) or most
recently activated by a DATASET ACTIVATE command.

Note: The active dataset can also be changed by clicking anywhere in the Data Editor window of an open
data source or selecting a dataset from the list of available datasets in a syntax window toolbar.

Variables from one dataset are not available when another dataset is the active dataset.

Transformations to the active dataset--before or after defining a dataset name--are preserved with
the named dataset during the session, and any pending transformations to the active dataset are
automatically executed whenever a different data source becomes the active dataset.

« Dataset names can be used in most commands that can contain references to IBM SPSS Statistics data
files.

- For commands that can create a new dataset or overwrite an existing dataset, you cannot use the
dataset name of the active dataset to overwrite the active dataset. For example, if the active dataset
is mydata, a command with the subcommand /OUTFILE=mydata will result in an error. To overwrite a
named active dataset, use an asterisk instead of the dataset name, as in: /OUTFILE=x.

« Wherever a dataset name, file handle (defined by the FILE HANDLE command), or filename can
be used to refer to IBM SPSS Statistics data files, defined dataset names take precedence over file
handles, which take precedence over filenames. For example, if file1 exists as both a dataset name and
afile handle, FILE=filel in the MATCH FILES command will be interpreted as referring to the dataset
named filel, not the file handle.

Example

*multiple_datasets.sps.

DATA LIST FREE /filelvar.

BEGIN DATA

11 12 13

END DATA.

DATASET NAME filel.

COMPUTE filelVar=MOD(filelVar,10).

DATA LIST FREE /file2Var.

BEGIN DATA

21 22 23

END DATA.

DATASET NAME file2.

+xfile2 is now the active dataset; so the following
command will generate an error.

FREQUENCIES VARIABLES=filelVar.

*now activate dataset filel and rerun Frequencies.

DATASET ACTIVATE filel.

FREQUENCIES VARIABLES=filelVar.

The first DATASET NAME command assigns a name to the active dataset (the data defined by the first
DATA LIST command). This keeps the dataset open for subsequent use in the session after other data
sources have been opened. Without this command, the dataset would automatically close when the
next command that reads/opens a data source is run.

The COMPUTE command applies a transformation to a variable in the active dataset. This transformation
will be preserved with the dataset named file1. The order of the DATASET NAME and COMPUTE
commands is not important. Any transformations to the active dataset, before or after assigning a
dataset name, are preserved with that dataset during the session.

The second DATA LIST command creates a new dataset, which automatically becomes the active
dataset. The subsequent FREQUENCIES command that specifies a variable in the first dataset will

generate an error, because filel is no longer the active dataset, and there is no variable named file1Var
in the active dataset.

DATASET ACTIVATE makes filel the active dataset again, and now the FREQUENCIES command will
work.

Example

*dataset_subsets.sps.
DATASET CLOSE ALL.

DATA LIST FREE /gender.
BEGIN DATA
0011011100
END DATA.

DATASET NAME original.

40 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

DATASET COPY males.
DATASET ACTIVATE males.
SELECT IF gender=0.
DATASET ACTIVATE original.
DATASET COPY females.
DATASET ACTIVATE females.
SELECT IF gender=1.
EXECUTE.

« The first DATASET COPY command creates a new dataset, males, that represents the state of the active
dataset at the time it was copied.

« The males dataset is activated and a subset of males is created.
- The original dataset is activated, restoring the cases deleted from the males subset.

« The second DATASET COPY command creates a second copy of the original dataset with the name
females, which is then activated and a subset of females is created.

- Three different versions of the initial data file are now available in the session: the original version, a
version containing only data for males, and a version containing only data for females.

B *Untitled9 [original] - Data Editor

15 : gender B *Untitled10 [males] - Data Editor

gender
1 .00
2 00| |19 gender BB sntitled11 [females] - Data Editor
3| 10| | gender |
4 1001 0a -
= = 5 o 15 : gender
_8 1.00 3 oo qender | var Yar var var war ~
7 1o0f 4 00 —; 1'38
3 1005 o —= :
— = 3 7.00
=] Tz 4 1.00
BT 5 5 1.00
< v \DataVie o]
10 L7
T B
4| » \Data Viev 5
10
11 M

< v \Data View £ Variable view [|< >

Figure 19. Multiple subsets available in the same session

Merging Data Files

You can merge two or more datasets in several ways:

- Merge datasets with the same cases but different variables
- Merge datasets with the same variables but different cases
« Update values in a primary data file with values from a transaction file

Merging Files with the Same Cases but Different Variables

The MATCH FILES command merges two or more data files that contain the same cases but different
variables. For example, demographic data for survey respondents might be contained in one data file,
and survey responses for surveys taken at different times might be contained in multiple additional data
files. The cases are the same (respondents), but the variables are different (demographic information and
survey responses).

This type of data file merge is similar to joining multiple database tables except that you are merging
multiple IBM SPSS Statistics data files rather than database tables. For information on reading multiple
database tables with joins, see “Reading Multiple Tables” on page 15 in.

One-to-One Matches

The simplest type of match assumes that there is basically a one-to-one relationship between cases in
the files being merged—for each case in one file, there is a corresponding case in the other file.

Chapter 2. Data Management 41

Example 1

This example merges a data file containing demographic data with another file containing survey
responses for the same cases.

*match_filesl.sps.
*xfirst make sure files are sorted correctly.
GET FILE='/examples/data/match_responsel.sav'.
SORT CASES BY id.
DATASET NAME responses.
GET FILE='/examples/data/match_demographics.sav'.
SORT CASES BY id.
*now merge the survey responses with the demographic info.
MATCH FILES /FILE=%
/FILE=responses
/BY id.
EXECUTE.

DATASET NAME is used to name the first dataset, so it will remain available after the second dataset is
opened.

SORT CASES BY idis used to sort both datasets in the same case order. Cases are merged
sequentially, so both datasets must be sorted in the same order to make sure that cases are merged
correctly.

MATCH FILES merges the two datasets. FILE=x indicates the active dataset (the demographic
dataset).

The BY subcommand matches cases by the value of the ID variable in both datasets. In this example,
this is not technically necessary, since there is a one-to-one correspondence between cases in the

two datasets and the datasets are sorted in the same case order. However, if the datasets are not
sorted in the same order and no key variable is specified on the BY subcommand, the datasets will be
merged incorrectly with no warnings or error messages; whereas, if a key variable is specified on the BY
subcommand and the datasets are not sorted in the same order of the key variable, the merge will fail
and an appropriate error message will be displayed. If the datasets contain a common case identifier
variable, it is a good practice to use the BY subcommand.

Any variables with the same name are assumed to contain the same information, and only the variable
from the first dataset specified on the MATCH FILES command isincluded in the merged dataset. In
this example, the ID variable (id) is present in both datasets, and the merged dataset contains the
values of the variable from the demographic dataset--which is the first dataset specified on the MATCH
FILES command. (In this case, the values are identical anyway.)

For string variables, variables with the same name must have the same defined width in both files. If
they have different defined widths, an error results and the command does not run. This includes string
variables used as BY variables.

Example 2

Expanding the previous example, we will merge the same two data files plus a third data file that contains
survey responses from a later date. Three aspects of this third file warrant special attention:

« The variable names for the survey questions are the same as the variable names in the survey response
data file from the earlier date.

- One of the cases that is present in both the demographic data file and the first survey response file is
missing from the new survey response data file.

« The source file is not in IBM SPSS Statistics format; it's an Excel worksheet.

*match_files2.sps.
GET FILE='/examples/data/match_responsel.sav'.
SORT CASES BY id.
DATASET NAME responsel.
GET DATA /TYPE=XLS
/FILE='/examples/data/match_response2.xls"'.
SORT CASES BY id.
DATASET NAME response2.
GET FILE='/examples/data/match_demographics.sav'.
SORT CASES BY id.
MATCH FILES /FILE=x
/FILE=responsel
/FILE=response2
/RENAME opinionl=opinionl_2 opinion2=opinion2_2
opinion3=opinion3_2 opinion4=opinion4_2

42 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

/BY id.
EXECUTE.

« As before, all of the datasets are sorted by the values of the ID variable.

« MATCH FILES specifies three datasets this time: the active dataset that contains the demographic
information and the two datasets containing survey responses from two different dates.

« The RENAME command after the FILE subcommand for the second survey response dataset provides
new names for the survey response variables in that dataset. This is necessary to include these
variables in the merged dataset. Otherwise, they would be excluded because the original variable
names are the same as the variable names in the first survey response dataset.

« The BY subcommand is necessary in this example because one case (id = 184) is missing from the
second survey response dataset, and without using the BY variable to match cases, the datasets would
be merged incorrectly.

« All cases are included in the merged dataset. The case missing from the second survey response
dataset is assigned the system-missing value for the variables from that dataset (opinion1_2-
opinion4_2).

| 5 *match_demographics.sav [- Data Editor -_L_"_']Eﬂ |
Fle Edit View Daba Transformn Analyze Graphs Ubiities Add-ons Window Help
13 1d Vigible: 13 of 13 Mar
id |Age| Gender |Income | Religion| opiniond | opinion2| opinion3| opinicnd] opinion1 2| opinion2 2| opiniond 2 opiniond 2 all
category i
f]150| 55 im 3 4 5 1 3 5 2
170 2901 4 2 2 2 2 1 f
1184 | 42 id]
4{216| 39 F 3 : 1) 4 1
5{227 | B2 im 9 & 2 =] 3 3 : 2
Bl22B) 241 | 2 3 5 1 5] 4 2 4
7o 288 g 4 3 4 5 4
BI299 (900§ 4 ; 3 4 g
333 SUm 2 3 5 1 3 4
1001335] 23im i 4] 3 r]) 4 5 9 3
| 111291 | 58im i 3 5 1 5 3 5 2 5 45
+ v Data View £ Variable View [I<] »

Figure 20. Merged files displayed in Data Editor

Table Lookup (One-to-Many) Matches

A table lookup file is a file in which data for each case can be applied to multiple cases in the other
data file(s). For example, if one file contains information on individual family members (such as gender,
age, education) and the other file contains overall family information (such as total income, family size,
location), you can use the file of family data as a table lookup file and apply the common family data to
each individual family member in the merged data file.

Specifying a file with the TABLE subcommand instead of the FILE subcommand indicates that the file

is a table lookup file. The following example merges two text files, but they could be any combination of
data source formats. For information on reading different types of data, see “Getting Data into IBM SPSS
Statistics ” on page 12 .

*match_table_lookup.sps.

DATA LIST LIST
FILE='/examples/data/family_data.txt'

/household_id total_income family_size region.

SORT CASES BY household_id.

DATASET NAME household.

DATA LIST LIST
FILE='/examples/data/individual_data.txt'
/household_id indv_id age gender education.

SORT CASE BY household_id.

DATASET NAME individual.

MATCH FILES TABLE='household'
/FILE="'individual'

/BY household_id.

EXECUTE.

Chapter 2. Data Management 43

Merging Files with the Same Variables but Different Cases

The ADD FILES command merges two or more data files that contain the same variables but different
cases. For example, regional revenue for two different company divisions might be stored in two separate
data files. Both files have the same variables (region indicator and revenue) but different cases (each
region for each division is a case).

Example

ADD FILES relies on variable names to determine which variables represent the “same” variables in the
data files being merged. In the simplest example, all of the files contain the same set of variables, using
the exact same variable names, and all you need to do is specify the files to be merged. In this example,
the two files both contain the same two variables, with the same two variable names: Region and Revenue.

*add_filesl.sps.

/FILE = '/examples/data/catalog.sav'
/FILE ='/examples/data/retail.sav'

/JIN Division.
EXECUTE.
VALUE LABELS Division O 'Catalog' 1 'Retail Store'.
B “Untitled2 [] - Data Editor M=
File Edit View Data Transform A&nalyze Graphs Utilities Add-ons Window Help
10 : Region
Region | Revenue | Division | war war ~

1 1 $1,234 567 Catalog

2 2 §3 456,789 Catalog

3 3 $2 345 678 Catalog

4 4 5 678,910 Catalog

=3 1 $8.212 457 | Retail Store

=3 2 6333500, Retall Store

7 3 10,400 311 Retail Store

8 4 §7 722858 Retall Store

q -
4/ v |\ Data View £ Variable View [[< >

Figure 21. Cases from one file added to another file

« Cases are added to the active dataset in the order in which the source data files are specified on the
ADD FILES command; all of the cases from catalog.sav appear first, followed by all of the cases from
retail.sav.

« The IN subcommand after the FILE subcommand for retail.sav creates a new variable named Division
in the merged dataset, with a value of 1 for cases that come from retail.sav and a value of O for
cases that come from catalog.sav. (If the IN subcommand was placed immediately after the FILE
subcommand for catalog.sayv, the values would be reversed.)

« The VALUE LABELS command provides descriptive labels for the Division values of 0 and 1, identifying
the division for each case in the merged dataset.

Example

Now that we’ve had a good laugh over the likelihood that all of the files have the exact same structure
with the exact same variable names, let’s look at a more realistic example. What if the revenue variable
had a different name in one of the files and one of the files contained additional variables not present in
the other files being merged?

*add_files2.sps.
**xxfirst throw some curves into the datax*x.
GET FILE = '/examples/data/catalog.sav'.
RENAME VARIABLES (Revenue=Sales).
DATASET NAME catalog.
GET FILE = '/examples/data/retail.sav'.
COMPUTE ExtraVar = 9.
EXECUTE.
DATASET NAME retail.
xkshow default behaviorkxx.
ADD FILES

/FILE = 'catalog'

/FILE = 'retail'

44 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

/IN = Division.
EXECUTE.
*x*now treat Sales and Revenue as same variablex*x.
**%xand drop ExtraVar from the merged filexxx.
ADD FILES
/FILE = 'catalog'
/RENAME (Sales = Revenue)
/FILE = 'retail'
/IN = Division
/DROP ExtraVar
/BY Region.
EXECUTE.

All of the commands prior to the first ADD FILES command simply modify the original data files to
contain minor variations—Revenue is changed to Sales in one data file, and an extra variable, ExtraVar, is
added to the other data file.

The first ADD FILES command is similar to the one in the previous example and shows the default
behavior if nonmatching variable names and extraneous variables are not accounted for—the merged
dataset has five variables instead of three, and it also has a lot of missing data. Sales and Revenue are
treated as different variables, resulting in half of the cases having values for Sales and half of the cases
having values for Revenue—and cases from the second data file have values for ExtraVar, but cases from
the first data file do not, since this variable does not exist in that file.

] “Untitled3 [] - Data Editor =)o
File Edit ‘iew Data Transform Analyze Graphs LUtlities Add-ons Window Help
1: Region 1
Region Sales | Revenue | Ewtravar | Divigion | Vi

1 1] $1234567 0

2 2 §3456789 0

3 3 $2345678 0

4 4 $5678910 : : 0

A 1 $8,212 457 .00 1

5 2 $5,333 500 8.00 1

¥ 3 $10400311 .00 1

g8 4 . §7 722899 8.00 1

& "
4/ » \DataView £ Variahle View f |3 >]

Figure 22. Probably not what you want when you add cases from another file

In the second ADD FILES command, the RENAME subcommand after the FILE subcommand for
catalog will treat the variable Sales as if its name were Revenue, so the variable name will match the
corresponding variable in retail.

The DROP subcommand following the FILE subcommand for temp2.sav (and the associated IN
subcommand) will exclude ExtraVar from the merged dataset. (The DROP subcommand must come
after the FILE subcommand for the file that contains the variables to be excluded.)

The BY subcommand adds cases to the merged data file in ascending order of values of the variable
Region instead of adding cases in file order--but this requires that both files already be sorted in the
same order of the BY variable.

%] “Untitled4 [] - Data Editor == [=] 25
File Edit View Data Transform Analvze Graphs Utiities Add-ons Window Help
10 : Region : -
Region | Revenue | Division | var var s

1 1 51,234 AE7 i}

2 1 §8.212 457 1

3 2 $3 466,789 0

4 2 §5,333 500 1

A 3 §2 345 B78 0

f 3 10 400311 1

7 4 §5 678 910 0

g 4 57 722 899 1

9 b
4 v |\Data View £ variable View / |« >

Figure 23. Cases added in order of Region variable instead of file order

Chapter 2. Data Management 45

Updating Data Files by Merging New Values from Transaction Files

You can use the UPDATE command to replace values in a primary file with updated values recorded in one
or more files called transaction files.

*update.sps.
GET FILE = '/examples/data/update_transaction.sav'.
SORT CASE BY id.
DATASET NAME transaction.
GET FILE = '/examples/data/update_master.sav'.
SORT CASES BY id.
UPDATE /FILE = %

/FILE = transaction

/IN = updated

/BY id.

EXECUTE.

« SORT CASES BY idis used to sort both files in the same case order. Cases are updated sequentially,
so both files must be sorted in the same order.

« The first FILE subcommand on the UPDATE command specifies the primary data file. In this example,
FILE = % specifies the active dataset.

« The second FILE subcommand specifies the dataset name assigned to the transaction file.

« The IN subcommand immediately following the second FILE subcommand creates a new variable
called updated in the primary data file; this variable will have a value of 1 for any cases with updated
values and a value of O for cases that have not changed.

« The BY subcommand matches cases by id. This subcommand is required. Transaction files often contain
only a subset of cases, and a key variable is necessary to match cases in the two files.

B4 *update_master.sav [] - Data Editor g@
File Edit %iew Data Transform Analyze Graphs Utiities Add-ons Window Help
? '] izille 3 of Arighle l
i | sélary | o | ﬁ update_transaction.sav [transaction] - Data Editor E]@
1 101 33000 2 || Eile Edt iew Dsta Transform Anslyze Graphs UWilties Add-ons Window Help
2 02 47250 3 lo:ia | [Visible: 3 of 3 Variables
3 103 22300 ! id salary | depaﬂmem| |
4 104 122150 1 1 103 25000 =
: 201 96020 3 2 201 101200 2 =
B 202 53450 3
: 3] i : [B *update_master.sav [] - Data Editor g@
Data View | “/arisble Yiew | File Edit Wiewe Dsta Transform Analyze Graphs Utities Add-ons wWindow Help
9:id — | |Wizible: 4 of 4 Variables :I:
Cid | salary | department updated |
1 101 33000 2 0 L=
2 102 47250 3 0 .
3 103 25000 1 1
4 104 122150 1 0
5 2m 101200 2 1
B 202 53450 3 0 =
4] G | [»]

Data View | ‘“Yarisble “iew

Figure 24. Original file, transaction file, and update file
« The salary values for the cases with the id values of 103 and 201 are both updated.

« The department value for case 201 is updated, but the department value for case 103 is not updated.
System-missing values in the transaction files do not overwrite existing values in the primary file, so the
transaction files can contain partial information for each case.

46 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Aggregating Data

The AGGREGATE command creates a new dataset where each case represents one or more cases from
the original dataset. You can save the aggregated data to a new dataset or replace the active dataset
with aggregated data. You can also append the aggregated results as new variables to the current active
dataset.

Example 1

In this example, information was collected for every person living in a selected sample of households. In
addition to information for each individual, each case contains a variable that identifies the household.
You can change the unit of analysis from individuals to households by aggregating the data based on the
value of the household ID variable.

*aggregatel.sps.
*xkcreate some sample datakxx.
DATA LIST FREE (" "
/ID_household (F3) ID_person (F2) Income (F8).
BEGIN DATA
101 1 12345 101 2 47321 101 3 500 101 4 O
102 1 77233 102 2 0
103 1 19010 163 2 98277 103 3 0
104 1 101244
END DATA.
**xxnow aggregate based on household idxxx.
AGGREGATE
/OUTFILE = % MODE = REPLACE
/BREAK = ID_household
/Household_Income = SUM(Income)
/Household_Size = N

OUTFILE = x MODE = REPLACE replaces the active dataset with the aggregated data.
« BREAK = ID_household combines cases based on the value of the household ID variable.

Household_Income = SUM(Income) creates a new variable in the aggregated dataset that is the
total income for each household.

Household_Size = N creates a new variable in the aggregated dataset that is the number of original
cases in each aggregated case.

& *Untitled2 [] - Data Editor e
Fis Edit Wiew Dol Tranzform Apalyze Graphs LRiies Add-gns Window Help
12 ID_houszehold Yisible: 3 of 3 Varmblez
ol
: | D _hougeheld | 1D pergon | Income | | | —

1 101 1 12345 — 3
——— 01 5 1700 | B *Untitled3] - Data Editor ||
i 109 oon || Ele Edt View Data Transfort Anahze Graphs LEies Acdons WMndow Help

4 101 4 0 |2 D_household Visihle 3ol 3 Vanabiss

5 102 1 o J D _howsehols Household Income Household Size

B 102 2 0 1 101 4 1=

7 103 1 19010 3 i) 2 ;

B 03 2 88277 3 103 3

a 103 3 0 4 104 1

10 104 1 101244
1 _] |l
| Data View | arisble Visw | 4] i Lk |

Data Wit Wariahie Wiy 5

Figure 25. Original and aggregated data

Example 2

You can also use MODE = ADDVARIABLES toadd group summary information to the original data file.
For example, you could create two new variables in the original data file that contain the number of

Chapter 2. Data Management 47

people in the household and the per capita income for the household (total income divided by number of
people in the household).

*aggregate2.sps.
DATA LIST FREE (" ")
/ID_household (F3) ID_person (F2) Income (F8).
BEGIN DATA
101 1 12345 101 2 47321 101 3 5600 101 4 0
102 1 77233 102 2 0
103 1 19010 103 2 98277 103 3 0
104 1 101244
END DATA.
AGGREGATE
/OUTFILE = % MODE = ADDVARIABLES
/BREAK = ID_household
/per_capita_Income = MEAN(Income)
/Household_Size = N.

As with the previous example, OUTFILE = % specifies the active dataset as the target for the
aggregated results.

Instead of replacing the original data with aggregated data, MODE = ADDVARIABLES will add
aggregated results as new variables to the active dataset.

As with the previous example, cases will be aggregated based on the household ID value.

The MEAN function will calculate the per capita household incomes.

p—y

#] “Untitled8 [] - Data Editor B
File -Euél-i-l.:m;u'iew EJ-;I:.:a“Transléu.::r-l-'E : fnalvze Graphs Uklities Add-ons Window H;p
115 : 1D_househald : ;
ID_househald | ID_person | Income |per_capita_ Huusehnld_{ v_“'.k"
Incame Size o
1 101 1) 12345 1504150 4
2 01| 2| 47321 1504150 4
3 101 3| 500| 15041.80 4|
4 101 40 1504150] 4
5 102 | 1) 77233| 3861650 2]
B 102] 2| 0| 38961650 7]
B 103 1) 19010| 3909567 3|
8 103 2| 98277| 3909567| AT
5| 103 3| 0| 3909567 3|
10| 104 0 ST TP P) S
11 E
4| » \:Dm;1‘luﬁew;{|‘vfariable View <] | E3E|

Figure 26. Aggregate summary data added to original data

Aggregate Summary Functions

The new variables created when you aggregate a data file can be based on a wide variety of numeric and
statistical functions applied to each group of cases defined by the BREAK variables, including:

« Number of cases in each group

« Sum, mean, median, and standard deviation

e Minimum, maximum, and range

« Percentage of cases between, above, and/or below specified values

First and last nonmissing value in each group
« Number of missing values in each group

For a complete list of aggregate functions, see the AGGREGATE command in the Command Syntax
Reference.

48 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Weighting Data

The WEIGHT command simulates case replication by treating each case as if it were actually the number
of cases indicated by the value of the weight variable. You can use a weight variable to adjust the
distribution of cases to more accurately reflect the larger population or to simulate raw data from
aggregated data.

Example

A sample data file contains 52% males and 48% females, but you know that in the larger population
the real distribution is 49% males and 51% females. You can compute and apply a weight variable to
simulate this distribution.

*weight_sample.sps.
**xcreate sample data of 52 males, 48 femalesx*x.
NEW FILE.
INPUT PROGRAM.
- STRING gender (A6).
- LOOP #I =1 TO 100.

DO IF #I <= 52.

COMPUTE gender='Male'.
ELSE.
COMPUTE Gender='Female'.

END IF.

COMPUTE AgeCategory = trunc(uniform(3)+1).

END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.
FREQUENCIES VARIABLES=gender AgeCategory.
**xcreate and apply weightvarx*x.
**xxto simulate 49 males, 51 females*xx.
DO IF gender = 'Male’.
- COMPUTE weightvar=49/52.
ELSE IF gender = 'Female’.
- COMPUTE weightvar=51/48.
END IF.
WEIGHT BY weightvar.
FREQUENCIES VARIABLES=gender AgeCategory.

Everything prior to the first FREQUENCIES command simply generates a sample dataset with 52 males
and 48 females.

The DO IF structure sets one value of weightvar for males and a different value for females. The
formula used here is: desired proportion/observed proportion. For males, it is 49/52 (0.94), and for
females, it is 51/48 (1.06).

The WEIGHT command weights cases by the value of weightvar, and the second FREQUENCIES
command displays the weighted distribution.

Note: In this example, the weight values have been calculated in a manner that does not alter the

total number of cases. If the weighted number of cases exceeds the original number of cases, tests of
significance are inflated; if it is smaller, they are deflated. More flexible and reliable weighting techniques
are available in the Complex Samples add-on module.

Example

You want to calculate measures of association and/or significance tests for a crosstabulation, but all you
have to work with is the summary table, not the raw data used to construct the table. The table looks like
this:

Table 2. Crosstabulation of Income by Gender

Income Male Female Total
Under $50K 25 35 60
$50K+ 30 10 40
Total 55 45 100

You then read the data using rows, columns, and cell counts as variables; then, use the cell count variable

as a weight variable.

*weight.sps.

Chapter 2. Data Management 49

DATA LIST LIST /Income Gender count.

BEGIN DATA

1, 1, 25

i, 2, g5

2, 1, 30

2, 2, 10

END DATA.

VALUE LABELS
Income 1 'Under $50K' 2 '$50K+'
/Gender 1 'Male' 2 'Female'.

WEIGHT BY count.

CROSSTABS TABLES=Income by Gender
/STATISTICS=CC PHI.

The values for Income and Gender represent the row and column positions from the original table, and
count is the value that appears in the corresponding cell in the table. For example, 1, 2, 35 indicates
that the value in the first row, second column is 35. (The Total row and column are not included.)

The VALUE LABELS command assigns descriptive labels to the numeric codes for Income and Gender.
In this example, the value labels are the row and column labels from the original table.

The WEIGHT command weights cases by the value of count, which is the number of cases in each cell of
the original table.

The CROSSTABS command produces a table very similar to the original and provides statistical tests of
association and significance.

Income * Gender Crosstabulation

Gender
flale Female Tata
Income Uncer $501< 25 35 B0
50K+ 30 10 40
Total 55 45 100

Symmetric Measures

Yalue Anprox, Sig.
Mominal by Phi -328 .0
Mominal Cramer's ¥ 328 oo
Contingency Coetficient M2 .0

M of Yalid Cazes 100

Figure 27. Crosstabulation and significance tests for reconstructed table

Changing File Structure

IBM SPSS Statistics expects data to be organized in a certain way, and different types of analysis may
require different data structures. Since your original data can come from many different sources, the data
may require some reorganization before you can create the reports or analyses that you want.

Transposing Cases and Variables

You can use the FLIP command to create a new data file in which the rows and columns in the original

data file are transposed so that cases (rows) become variables and variables (columns) become cases.

Example

Although IBM SPSS Statistics expects cases in the rows and variables in the columns, applications such

as Excel don’t have that kind of data structure limitation. So what do you do with an Excel file in which
cases are recorded in the columns and variables are recorded in the rows?

50 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

£ Microsoft Excel - flip_excel.xls
J@ Filz Edit View Insert Format Tools Data Window Help Acrobat - =] =]
DEeEHS SRy iR - &= A8 o -0 2
=] -] =
BT e E | F | & 3

| Mewton Boris Kendall Dakota Jasper faggie
2 |ID 101 202 303 404 a05 B06
| 3 |Education 12 10 1B 18 14 16

| 4 |Income 25,000 22 300 73,500 122 525 47,000 32,000

| 5 |Age 2 30 4 37 29 B2

5 -
4|« » M Sheetl ; Sheet2 £ Sheet3 / | 1] |+l
Ready I T | | |

Figure 28. Excel file with cases in columns, variables in rows

Here are the commands to read the Excel spreadsheet and transpose the rows and columns:

*flip_excel.sps.

GET DATA /TYPE=XLS
/FILE="'/examples/data/flip_excel.xls'
/READNAMES=0ON .

FLIP VARIABLES=Newton Boris Kendall Dakota Jasper Maggie
/NEWNAME=V1.

RENAME VARIABLES (CASE_LBL = Name).

« READNAMES=0N in the GET DATA command reads the first row of the Excel spreadsheet as variable
names. Since the first cell in the first row is blank, it is assigned a default variable name of V1.

« The FLIP command creates a new active dataset in which all of the variables specified will become
cases and all cases in the file will become variables.

 The original variable names are automatically stored as values in a new variable called CASE_LBL. The
subsequent RENAME VARIABLES command changes the name of this variable to Name.

« NEWNAME=V1 uses the values of variable V1 as variable names in the transposed data file.

] *Untitled2 [] - Data Editor = [=)
File Edit WView Data Transform Analyze Graphs Ukilities Add-ons Window Help
1701 .
w1 | Mewton | Bors | Kendall | Dakota | Jasper | Maggie | w
111D 10 202 303 404 505 B0 | |
2|Education 12 10 16 18 14 16
3|Income 25000 22300 73500 122525 47000 32000
4|Age 2 30 41 37 29 B2
—— B "Untitled3 [] - Data Editor . [=] <
TS \D'ﬂl'ﬂ\." Flle Edit View Data Transform Analyze Graphs Utlities aAdd-ons Window Help -
|10 : Income
Marne | 1D | Education| Income | Age | ar o
1| Mewton 101.00 12.00 25000.00 2200
2|Boris 202.00 10.00 22300.00 30.00
3| Kendall 303.00 16.00 73500.00 41.00
4|Dakota 404.00 18.00 122525.00 37.00
alJasper a05.00 14.00 47000.00 29.00
G| Magyie G0B.00 16.00 32000.00 B2.00
v
4 v | \Data View A variahle view f <1 [>

Figure 29. Original and transposed data in Data Editor

Cases to Variables

Sometimes you may need to restructure your data in a slightly more complex manner than simply flipping
rows and columns.

Chapter 2. Data Management 51

Many statistical techniques in IBM SPSS Statistics are based on the assumption that cases (rows)
represent independent observations and/or that related observations are recorded in separate variables
rather than separate cases. If a data file contains groups of related cases, you may not be able to use

the appropriate statistical techniques (for example, the paired samples t test or repeated measures GLM)
because the data are not organized in the required fashion for those techniques.

In this example, we use a data file that is very similar to the data used in the AGGREGATE example.

See the topic “Aggregating Data” on page 47 for more information. Information was collected for every
person living in a selected sample of households. In addition to information for each individual, each
case contains a variable that identifies the household. Cases in the same household represent related
observations, not independent observations, and we want to restructure the data file so that each group
of related cases is one case in the restructured file and new variables are created to contain the related
observations.

B casestovars.sav [] - Data Editor E.E
File Edit Wiew Data Transform Analvze Graphs Ukiities Add-ons Wwindow Hel[:n_"
g
ID_household | 1D person | Incorme | var war F

1 101 1 12345

2 1071 2 47321 i

3 101 3 500

4 102 1 77233

5 102 2 0

& 103 1 19010

7 103 2 95277

g 104 1 101244

9 104 2 53000

10

= v
4 » |\ Data View £ variable View [<1 [»]]

Figure 30. Data file before restructuring cases to variables

The CASESTOVARS command combines the related cases and produces the new variables.

*casestovars.sps.
GET FILE = '/examples/data/casestovars.sav'.
SORT CASES BY ID_household.
CASESTOVARS
/ID = ID_household
/INDEX = ID_person
/SEPARATOR = "_"
/COUNT = famsize.
VARIABLE LABELS
Income_1 "Husband/Father Income"
Income_2 "Wife/Mother Income"
Income_3 "Other Income".

SORT CASES sorts the data file by the variable that will be used to group cases in the CASESTOVARS
command. The data file must be sorted by the variable(s) specified on the ID subcommand of the
CASESTOVARS command.

The ID subcommand of the CASESTOVARS command indicates the variable(s) that will be used to group
cases together. In this example, all cases with the same value for ID_household will become a single
case in the restructured file.

The optional INDEX subcommand identifies the original variables that will be used to create new
variables in the restructured file. Without the INDEX subcommand, all unique values of all non-ID
variables will generate variables in the restructured file. In this example, only values of ID_person will
be used to generate new variables. Index variables can be either string or numeric. Numeric index
values must be nonmissing, positive integers; string index values cannot be blank.

The SEPARATOR subcommand specifies the character(s) that will be used to separate original variable
names and the values appended to those names for the new variable names in the restructured file.
By default, a period is used. You can use any characters that are allowed in a valid variable name
(which means the character cannot be a space). If you do not want any separator, specify a null string
(SEPARATOR = "").

52 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

« The COUNT subcommand will create a new variable that indicates the number of original cases
represented by each combined case in the restructured file.

« The VARIABLE LABELS command provides descriptive labels for the new variables in the restructured
file.

sl "'casestnvars.sa\r.[_]_ -Data Editor 'L_._'[E,
File Edit Yew [Data Transform Analyze Graphs Uklities Add-ons Window Help
3:1D_househald |
ID household | famsize | Income 1] Income 2| Income 3| var | A

1 101 3 12345 47321 a00 =

2 102 2 77233 0

3 103 2 19010 98277

4 104 2 101244 E3000

5

B e [~
4 v '\ Data View £ variable View [&1 m | [>]]

Figure 31. Data file after restructuring cases to variables

Variables to Cases

The previous example turned related cases into related variables for use with statistical techniques that
compare and contrast related samples. But sometimes you may need to do the exact opposite—convert
variables that represent unrelated observations to variables.

Example

A simple Excel file contains two columns of information: income for males and income for females. There
is no known or assumed relationship between male and female values that are recorded in the same row;
the two columns represent independent (unrelated) observations, and we want to create cases (rows)
from the columns (variables) and create a new variable that indicates the gender for each case.

] “Untitled4 [] - Data Editor =J0ES
File Edit “iew Data Transform Analyze Graphs Utilities Add-ons Window Help
7 Malelncome
Malelncome | Femalelncome | -

1 12345 4731 '

2 77233 0

3 18010 98277

4 101244 53000

5

b v
4 v \Data View £ Variable View / [<] | [#]]

Figure 32. Data file before restructuring variables to cases

The VARSTOCASES command creates cases from the two columns of data.

*xvarstocasesl.sps.
GET DATA /TYPE=XLS

/FILE = '/examples/data/varstocases.xls'
/READNAMES = ON.
VARSTOCASES

/MAKE Income FROM MaleIncome FemaleIncome
/INDEX = Gender.
VALUE LABELS Gender 1 'Male' 2 'Female’.

« The MAKE subcommand creates a single income variable from the two original income variables.

« The INDEX subcommand creates a new variable named Gender with integer values that represent the
sequential order in which the original variables are specified on the MAKE subcommand. A value of 1
indicates that the new case came from the original male income column, and a value of 2 indicates that
the new case came from the original female income column.

Chapter 2. Data Management 53

« The VALUE LABELS command provides descriptive labels for the two values of the new Gender

variable.
%] “Untitled4 [] - Data Editor M=
File Edit Wiew Data Transform Analvze Graphs Utilities Add-ons Window Help
11 : Gender
Gender | Income | var Yar var A~

1 Male 12345

2 Fernale 47321

3 Male 77233

4 Fernale 0

=} Male 15010

53 Female 98277

7 Male 101244

8 Female 53000

£l

10 i
< v |\ Data View A variahle view [|« >

Figure 33. Data file after restructuring variables to cases

Example

In this example, the original data contain separate variables for two measures taken at three separate
times for each case. This is the correct data structure for many procedures that compare related
observations. There are, however, some procedures (for example, MIXED and GENLINMIXED in the
Advanced Statistics option) that require a data structure in which related observations are recorded as
separate cases.

E varstocases.sav [] - Data Editor E]@ -5
File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help
12: 1D “isible: 8 of
D | Age | %1 Timel | %1 Time2 | ¥1 Time3 | v2 Timel | W2 Time2 | %2 Time3 | [a

1 101 35 1 3 4 3 1 2 |

20 20| 47 3 o 10 12 15 9

3| 301 25 1 2 2 4 1 1

4] 401 39 3 3 9 10 4 7

5| 501 55 10 " 12 20 22 14

6| BO1| 7O 15 16 14 35 7 358

7| F01) 19 3 2 2 5 4 2

8| 801 42 9 10 12 12 10 9

9| 91| B3 12 12 18 32 27 23

10] 1001 | 22 2 2 2 3 3 3

11 i
4/ v |\ Data View) variahle view f |< B3

Figure 34. Related observations recorded as separate variables

*varstocases2.sps.
GET FILE = '/examples/data/varstocases.sav'.
VARSTOCASES /MAKE V1 FROM V1_Timel V1_Time2 V1_Time3
/MAKE V2 FROM V2_Timel V2_Time2 V2_Time3
/INDEX = Time
/KEEP = ID Age.

« The two MAKE subcommands create two variables, one for each group of three related variables.

« The INDEX subcommand creates a variable named Time that indicates the sequential order of the
original variables used to create the cases, as specified on the MAKE subcommand.

« The KEEP subcommand retains the original variables ID and Age.

54 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

B *varstocases.sav [1 - Data Editor E]@
File Edit View Data Transform A&nalyee Graphs Utiities Add-ons Window Help
341D
D | Age| Time | 1 | W2 | war var a
1] 101 35 1 1 3 i
20 101 35 2 3 1
3 101 35 3 4 2
40 2001 47 1 3 12
a| 201 47 2 a 15
G| 201 47 3 10 9
7 301 25 1 1 4
gl 301 25 2 2 1
9 30| 25 3 2 1
100 401, 39 1 a 10
11 401, 29 2 a 4
12| 401, 39 3 9 7
13| 501, 55 1 10 20
14] 501, &5 2 11 22
15| 601, &A 3 12 14
16| BO1| 7O 1 15 35 v
4 » \DataView £ Variable View [/ |« >

Figure 35. Related variables restructured into cases

Variable and File Properties

In addition to the basic data type (numeric, string, date, and so forth), you can assign other properties that
describe the variables and their associated values. You can also define properties that apply to the entire
data file. In a sense, these properties can be considered metadata—data that describe the data. These
properties are automatically saved with the data when you save the data in IBM SPSS Statistics data files.

Variable Properties

You can use variable attributes to provide descriptive information about data and control how data are
treated in analyses, charts, and reports.

« Variable labels and value labels provide descriptive information that make it easier to understand your
data and results.

« Missing value definitions and measurement level affect how variables and specific data values are
treated by statistical and charting procedures.

Example

*define_variables.sps.

DATA LIST LIST
/id (F3) Interview_date (ADATE1Q) Age (F3) Gender (A1)
Income_category (F1) Religion (F1) opinionl to opinion4 (4F1).

BEGIN DATA

150 11/1/2002 55 m 3 451 3 1

272 10/24/02 25 £ 39 2 3 4 3

299 10-24-02 900 £ 8 429 3 4

227 10/29/2002 62 m 9 4 2 35 3
216 10/26/2002 39 F 7 3 9 32 1
228 10/30/2002 24 £ 4 23515
333 10/29/2002 30 m 2 3 51 2 3
385 10/24/2002 23 m 4 4 3 3 9 2
170 10/21/2002 29 £ 4222 2 5
391 10/21/2602 58 m 1 3 51 5 3

END DATA.
FREQUENCIES VARIABLES=opinion3 Income_Category.
VARIABLE LABELS
Interview_date "Interview date"
Income_category "Income category"
opinionl "Would buy this product"
opinion2 "Would recommend this product to others"
opinion3 "Price is reasonable"
opinion4 "Better than a poke in the eye with a sharp stick".
VALUE LABELS
Gender "m" "Male" "f" "Female"
/Income_category 1 "Under 25K" 2 "25K to 49K" 3 "50K to 74K" 4 "75K+"
7 "Refused to answer" 8 "Don't know" 9 "No answer"
/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish" 4 "Other" 9 "No answer"
/opinionl TO opinion4 1 "Strongly Disagree" 2 "Disagree" 3 "Ambivalent"
4 "Agree" 5 "Strongly Agree" 9 "No answer".

Chapter 2. Data Management 55

MISSING VALUES

Income_category (7, 8, 9)

Religion opinionl TO opinion4 (9).
VARIABLE LEVEL

Income_category, opinionl to opinion4 (ORDINAL).
FREQUENCIES VARIABLES=opinion3 Income_Category.

opinion3
Cumulative
Freguency Percent Valid Percert Percert
Yalic 1] 100 10.0 100
2 3 300 300 400
3 2 200 200 E00
4 1 100 100 700
B 2 200 200 Q0.0
9 1 100 100 100.0
Total 10 100.0 100.0
Income_category
Cumulative
Freguency Percent alid Percent Percent
Walicd 1 1 100 100 100
2 1 100 100 200
3 2 200 200 400
4 3 30.0 30.0 700
7 1 10.0 100 200
g 1 100 10.0 0.0
q 1 100 10.0 1000
Tatal 10 100.0 100.0

Figure 36. Frequency tables before assigning variable properties
« The first FREQUENCIES command, run before any variable properties are assigned, produces the
preceding frequency tables.

 For both variables in the two tables, the actual numeric values do not mean a great deal by themselves,
since the numbers are really just codes that represent categorical information.

« For opinion3, the variable name itself does not convey any particularly useful information either.

 The fact that the reported values for opinion3 go from 1 to 5 and then jump to 9 may mean something,
but you really cannot tell what.

Price is reasonable

Cumulative
Freguency Percent “alid Percent Percent
“alid Strongly Disagres 1 100 1141 111
Dizagres 3 300 338 44 .4
Ambivalent 2 200 222 BE.Y
Agree 1 1000 1141 g
Strongly Agree 2 200 222 100.0
Total g 900 100.0
Missing Mo answer 1 100
Tatal 10 100.0
Income category
Cumulative
Frecquency Percent Yalid Percert Percent
Walicd Under 25K 1 100 143 14.3
25K to 49K 1 100 143 286
S0K to 74K 2 200 286 ETA|
7oK+ 3 300 429 100.0
Total 7 700 100.0
Mizsing Refuzed to answer 1 100
Dan't know 1 100
Mo answer 1 100
Total 3 300
Total 10 100.0

Figure 37. Frequency tables after assigning variable properties

« The second FREQUENCIES command is exactly the same as the first, except this time it is run after a
number of properties have been assigned to the variables.

56 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

« By default, any defined variable labels and value labels are displayed in output instead of variable
names and data values. You can also choose to display variable names and/or data values or to
display both names/values and variable and value labels. (See the SET command and the TVARS and
TNUMBERS subcommands in the Command Syntax Reference.)

« User-defined missing values are flagged for special handling. Many procedures and computations
automatically exclude user-defined missing values. In this example, missing values are displayed
separately and are not included in the computation of Valid Percent or Cumulative Percent.

- If you save the data as IBM SPSS Statistics data files, variable labels, value labels, missing values, and
other variable properties are automatically saved with the data file. You do not need to reassign variable
properties every time you open the data file.

Variable Labels

The VARIABLE LABELS command provides descriptive labels up to 255 bytes. Variable names can be up
to 64 bytes, but variable names cannot contain spaces and cannot contain certain characters. For more
information, see “Variables” in the “Universals” section of the Command Syntax Reference.

+define_variables.sps.

DATA LIST LIST
/id (F3) Interview_date (ADATE10) Age (F3) Gender (A1)
Income_category (F1) Religion (F1) opinionl to opinion4 (4F1).

BEGIN DATA

150 11/1/2002 55 m 3 4513 1

272 10/24/02 25 £ 39 2 3 4 3

299 10-24-02 900 £ 8 4 2 9 3 4

227 10/29/2002 62 m 9 4 2 35 3
216 10/26/2002 39 F 7 3 9 3 2 1
228 10/30/2002 24 £ 4 23515
333 10/29/2002 30 m 2 3512 3
385 10/24/2002 23 m 4 4 3 3 9 2
170 10/21/2002 29 £ 422225
391 10/21/2002 58 m 1 3 51 5 3

END DATA.
FREQUENCIES VARIABLES=opinion3 Income_Category.
VARIABLE LABELS
Interview_date "Interview date"
Income_category "Income category"
opinionl "Would buy this product"
opinion2 "Would recommend this product to others"
opinion3 "Price is reasonable"
opinion4 "Better than a poke in the eye with a sharp stick".
VALUE LABELS
Gender "m" "Male" "f" "Female"
/Income_category 1 "Under 25K" 2 "25K to 49K" 3 "50K to 74K" 4 "75K+"
7 "Refused to answer" 8 "Don't know" 9 "No answer"
/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish" 4 "Other" 9 "No answer"
/opinionl TO opinion4 1 "Strongly Disagree" 2 "Disagree" 3 "Ambivalent"
4 "Agree" 5 "Strongly Agree" 9 "No answer".
MISSING VALUES
Income_category (7, 8, 9)
Religion opinionl TO opinion4 (9).
VARIABLE LEVEL
Income_category, opinionl to opinion4 (ORDINAL).
FREQUENCIES VARIABLES=opinion3 Income_Category.

- The variable labels Interview date and Income category do not provide any additional information, but
their appearance in the output is better than the variable names with underscores where spaces would
normally be.

- For the four opinion variables, the descriptive variable labels are more informative than the generic
variable names.

Value Labels

You can use the VALUE LABELS command to assign descriptive labels for each value of a variable. This is
particularly useful if your data file uses numeric codes to represent non-numeric categories. For example,
income_category uses the codes 1 through 4 to represent different income ranges, and the four opinion
variables use the codes 1 through 5 to represent level of agreement/disagreement.

*define_variables.sps.
DATA LIST LIST
/id (F3) Interview_date (ADATE1Q) Age (F3) Gender (A1)
Income_category (F1) Religion (F1) opinionl to opinion4 (4F1).
BEGIN DATA
150 11/1/2002 55 m 3 451 3 1
272 10/24/062 25 £ 39 2 3 4
299 10-24-02 900 £ 8 42 9 3 4
227 10/29/2002 62 m 9 4 2 3
216 10/26/2002 39 F 7 3 9 3

w

N

3
1

Chapter 2. Data Management 57

228 10/30/2002 24 £ 423515
333 10/29/2002 30 m 2 3 51 2 3
385 10/24/2002 23 m 4 4 3 3 9 2
170 10/21/2002 29 £ 4222 25
391 10/21/2002 58 m 1 3 51 5 3

END DATA.
FREQUENCIES VARIABLES=opinion3 Income_Category.
VARIABLE LABELS
Interview_date "Interview date"
Income_category "Income category"
opinionl "Would buy this product"
opinion2 "Would recommend this product to others"
opinion3 "Price is reasonable"
opinion4 "Better than a poke in the eye with a sharp stick".
VALUE LABELS
Gender "m" "Male" "f" "Female"
/Income_category 1 "Under 25K" 2 "25K to 49K" 3 "50K to 74K" 4 "75K+"
7 "Refused to answer" 8 "Don't know" 9 "No answer"
/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish" 4 "Other" 9 "No answer"
/opinionl TO opinion4 1 "Strongly Disagree" 2 "Disagree" 3 "Ambivalent"
4 "Agree" 5 "Strongly Agree" 9 "No answer".
MISSING VALUES
Income_category (7, 8, 9)
Religion opinionl TO opiniond (9).
VARIABLE LEVEL
Income_category, opinionl to opinion4 (ORDINAL).
FREQUENCIES VARIABLES=opinion3 Income_Category.

Value labels can be up to 120 bytes.

- For string variables, both the values and the labels need to be enclosed in quotes. Also, remember that
string values are case sensitive; "£" "Female" is not the sameas "F" "Female".

You cannot assign value labels to long string variables (string variables longer than eight characters).
Use ADD VALUE LABELS to define additional value labels without deleting existing value labels.

Missing Values

The MISSING VALUES command identifies specified data values as user-missing. It is often useful to
know why information is missing. For example, you might want to distinguish between data that is missing
because a respondent refused to answer and data that is missing because the question did not apply to
that respondent. Data values specified as user-missing are flagged for special treatment and are excluded
from most calculations.

xdefine_variables.sps.

DATA LIST LIST
/id (F3) Interview_date (ADATE10) Age (F3) Gender (Al)
Income_category (F1) Religion (F1) opinionl to opinion4 (4F1).

BEGIN DATA

150 11/1/2002 55 m 3 4 51 3 1

272 10/24/02 25 £ 3 9 23 4 3

299 10-24-02 900 £ 8 4 2 9 3 4

227 10/29/2002 62 m 9 4 2 35 3
216 10/26/2002 39 F 7 3 9 3 2 1
228 10/30/2002 24 £ 423515
333 10/29/2002 30 m 2 3 51 2 3
385 10/24/2002 23 m 4 4 3 3 9 2
170 10/21/2002 29 £ 4222 25
391 10/21/2002 58 m 1 3 51 5 3

END DATA.
FREQUENCIES VARIABLES=opinion3 Income_Category.
VARIABLE LABELS
Interview_date "Interview date"
Income_category "Income category"
opinionl "Would buy this product"
opinion2 "Would recommend this product to others"
opinion3 "Price is reasonable"
opinion4 "Better than a poke in the eye with a sharp stick".
VALUE LABELS
Gender "m" "Male" "f" "Female"
/Income_category 1 "Under 25K" 2 "25K to 49K" 3 "50K to 74K" 4 "75K+"
7 "Refused to answer" 8 "Don't know" 9 "No answer"
/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish" 4 "Other" 9 "No answer"
/opinionl TO opinion4 1 "Strongly Disagree" 2 "Disagree" 3 "Ambivalent"
4 "Agree" 5 "Strongly Agree" 9 "No answer".
MISSING VALUES
Income_category (7, 8, 9)
Religion opinionl TO opiniond (9).
VARIABLE LEVEL
Income_category, opinionl to opinion4 (ORDINAL).
FREQUENCIES VARIABLES=opinion3 Income_Category.

You can assign up to three discrete (individual) missing values, a range of missing values, or a range plus
one discrete value.

« Ranges can be specified only for numeric variables.
« You cannot assign missing values to long string variables (string variables longer than eight characters).

58 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Measurement Level

You can assign measurement levels (nominal, ordinal, scale) to variables with the VARIABLE LEVEL
command.

*define_variables.sps.

DATA LIST LIST
/id (F3) Interview_date (ADATE1Q) Age (F3) Gender (A1)
Income_category (F1) Religion (F1) opinionl to opinion4 (4F1).

BEGIN DATA

150 11/1/2002 55 m 3 451 3 1

272 10/24/062 25 £ 39 2 3 4 3

299 10-24-02 900 £ 8 42 9 3 4

227 10/29/2002 62 m 9 4 2 3 5 3
216 10/26/2002 39 F 73 9 32 1
228 10/30/2002 24 £ 423515
333 10/29/2002 30 m 2 3 51 2 3
385 10/24/2002 23 m 4 4 3 3 9 2
170 10/21/2002 29 £ 42 2 2 2 5
391 10/21/2002 58 m 1 3 51 5 3

END DATA.
FREQUENCIES VARIABLES=opinion3 Income_Category.
VARIABLE LABELS
Interview_date "Interview date"
Income_category "Income category"
opinionl "Would buy this product"
opinion2 "Would recommend this product to others"
opinion3 "Price is reasonable"
opinion4 "Better than a poke in the eye with a sharp stick".
VALUE LABELS
Gender "m" "Male" "f" "Female"
/Income_category 1 "Under 25K" 2 "25K to 49K" 3 "50K to 74K" 4 "75K+"
7 "Refused to answer" 8 "Don't know" 9 "No answer"
/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish" 4 "Other" 9 "No answer"
/opinionl TO opinion4 1 "Strongly Disagree" 2 "Disagree" 3 "Ambivalent"
4 "Agree" 5 "Strongly Agree" 9 "No answer".
MISSING VALUES
Income_category (7, 8, 9)
Religion opinionl TO opinion4 (9).
VARIABLE LEVEL
Income_category, opinionl to opinion4 (ORDINAL).
FREQUENCIES VARIABLES=opinion3 Income_Category.

- By default, all new string variables are automatically assigned a nominal measurement level, and
numeric variables are automatically assigned either the nominal or scale measurement level, based
on the evaluation of numerous criteria, including number of unique values, presence of non-integer or
negative values, and data format.

« In this example, the default rules work well for many variables, but there is no rule for assigning the
ordinal measurement level, and there are five ordinal variables in the dataset.

« The opinion variables and Income_category are all categorical variables with a meaningful order to the
categories; so we use the VARIABLE LEVEL command to assign the ordinal measurement level to
those variables.

Custom Variable Properties

You can use the VARIABLE ATTRIBUTE command to create and assign custom variable attributes.

Example

xvariable_attributes.sps.
DATA LIST LIST /ID Age Region Incomel Income2 Income3.
BEGIN DATA
1 27 1 35500 42700 40250
2 34 2 72300 75420 81000
3 50 1 85400 82900 84350
END DATA.
COMPUTE AvgIncome=MEAN(Incomel, Income2, Income3).
COMPUTE MaxIncome=MAX(Incomel, Income2, Income3).
VARIABLE ATTRIBUTE
VARIABLES=AvgIncome
ATTRIBUTE=Formula('mean(Incomel, Income2, Income3)"')
/VARIABLES=MaxIncome
ATTRIBUTE=Formula('max(Incomel, Income2, Income3)')
/VARIABLES=AvgIncome MaxIncome
ATTRIBUTE=DerivedFrom[1] ('Incomel')
DerivedFrom[2] ('Income2')
DerivedFrom[3] ('Income3")
/VARIABLES=ALL ATTRIBUTE=Notes('').

« The attributes Formula and DerivedFrom are assigned to the two computed variables. Each variable has
a different value for Formula, which describes the code used to compute the value. For DerivedFrom,
which lists the variables used to compute the values, both variables have the same attribute values.

Chapter 2. Data Management 59

« The attribute DerivedFrom is an attribute array. The value in square brackets defines the position within
the array. The highest value specified defines the total number of array elements. For example,

ATTRIBUTE=MyAtt[20] ('")
would create an array of 20 attributes (MyAtt[1], MyAtt[2], MyAtt[3], ... MyAtt[20]).
 The attribute Notes is assigned to all variables and is assigned a null value.

Use DISPLAY ATTRIBUTES to display a table of all defined attributes and their values. You can also
display and modify attribute values in Variable View of the Data Editor (View menu, Display Custom
Attributes).

% “Untitled11 [] - Data Editor =JoJEd
File Edit Yew [Data Transform Analyze Graphs Ukilities Add-ons Window Help
[DerivedFrom] | [Formula] [Motes]]
1 Empty
2 Empty
3 Empty
4 Empty
5 Ermpty
5 Ermpty
7| Array .. mean(income?, IncomeZ, Income3) Empty
Sl Areay... max(lncomel, Income2, Incomed) Ermpty
9
10
11
12
13 -
41+ |\ Data Wigw) Variable View / ik . >

Figure 38. Custom Variable Attributes in Variable View

« Custom variable attribute names are enclosed in square brackets.
« Attribute names that begin with a dollar sign are reserved and cannot be modified.

« A blank cell indicates that the attribute does not exist for that variable; the text Empty displayed in a
cell indicates that the attribute exists for that variable but no value has been assigned to the attribute
for that variable. Once you enter text in the cell, the attribute exists for that variable with the value you
enter.

- The text Array... displayed in a cell indicates that this is an attribute array--an attribute that contains
multiple values. Click the button in the cell to display the list of values.

Using Variable Properties as Templates

You can reuse the assigned variable properties in a data file as templates for new data files or other
variables in the same data file, selectively applying different properties to different variables.

Example

The data and the assigned variable properties at the beginning of this chapter are saved in the IBM SPSS
Statistics data file variable_properties.sav. In this example, we apply some of those variable properties to
a new data file with similar variables.

*apply_properties.sps.
DATA LIST LIST
/id (F3) Interview_date (ADATE10) Age (F3) Gender (A1) Income_category (F1)
attitudel to attituded(4F1).
BEGIN DATA
456 11/1/2002 55 m 3 51 3 1
789 10/24/02 25 £ 3 2 3 4 3
131 10-24-02 900 £ 8 2 9 3 4
659 10/29/2002 62 m 9 2 3 5
217 10/26/2002 39 £ 7 9 3 2
399 10/30/2002 24 £ 4 3 5 1
end data.
APPLY DICTIONARY
/FROM '/examples/data/variable_properties.sav'
/SOURCE VARIABLES = Interview_date Age Gender Income_category
/VARINFO ALL.

arw

60 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

APPLY DICTIONARY
/FROM '/examples/data/variable_properties.sav'
/SOURCE VARIABLES = opinionl
/TARGET VARIABLES = attitudel attitude2 attitude3 attituded
/VARINFO LEVEL MISSING VALLABELS.

« The first APPLY DICTIONARY command applies all variable properties from the specified SOURCE
VARIABLES in variable_properties.sav to variables in the new data file with matching names and data
types. For example, Income_category in the new data file now has the same variable label, value labels,
missing values, and measurement level (and a few other properties) as the variable of the same name in
the source data file.

« The second APPLY DICTIONARY command applies selected properties from the variable opinion1 in
the source data file to the four attitude variables in the new data file. The selected properties are
measurement level, missing values, and value labels.

« Since it is unlikely that the variable label for opinion1 would be appropriate for all four attitude
variables, the variable label is not included in the list of properties to apply to the variables in the
new data file.

File Properties

File properties, such as a descriptive file label or comments that describe the change history of the data,
are useful for data that you plan to save and store in IBM SPSS Statistics format.

Example

*file_properties.sps.
DATA LIST FREE /varl.
BEGIN DATA
123
END DATA.
FILE LABEL
Fake data generated with Data List and inline data.
ADD DOCUMENT
‘Original version of file prior to transformations.'.
DATAFILE ATTRIBUTE ATTRIBUTE=VersionNumber ('1').
SAVE OUTFILE='/temp/temp.sav'.
NEW FILE.
GET FILE '/temp/temp.sav'.
DISPLAY DOCUMENTS.
DISPLAY ATTRIBUTES.

Hotes

Output Crested O03-Ja0-2006 14:35:54
Comments
Input Data ctempitemp . say
File Lakel Fake dsta generated with Data List and
inline data
Fitter <nones
Wit =Mone=
Split File ZMones
Syrtax CISPLAY DOCUMENTS.
Rezources Elapzed Time 0000000
Document
| 12 | Crriginal werzion of file prior to transformations.

@. Entered 03-Jan-2006

Datafile Attributes

Attribute “alue
“ergiontumber | 1

Figure 39. File properties displayed in output

« FILE LABEL creates a descriptive label of up to 64 bytes. The label is displayed in the Notes table.

- ADD DOCUMENT saves a block of text of any length, along with the date the text was added to the data
file. The text from each ADD DOCUMENT command is appended to the end of the list of documentation.
Use DROP DOCUMENTS to delete all document text. Use DISPLAY DOCUMENTS to display document
text.

Chapter 2. Data Management 61

- DATAFILE ATTRIBUTE creates custom file attributes. You can create data file attribute arrays using
the same conventions used for defining variable attribute arrays. See the topic “Custom Variable
Properties” on page 59 for more information. Use DISPLAY ATTRIBUTES to display custom attribute
values.

Data Transformations

In anideal situation, your raw data are perfectly suitable for the reports and analyses that you need.
Unfortunately, this is rarely the case. Preliminary analysis may reveal inconvenient coding schemes or
coding errors, and data transformations may be required in order to coax out the true relationship
between variables.

You can perform data transformations ranging from simple tasks, such as collapsing categories for
reports, to more advanced tasks, such as creating new variables based on complex equations and
conditional statements.

Recoding Categorical Variables

You can use the RECODE command to change, rearrange, and/or consolidate values of a variable. For
example, questionnaires often use a combination of high-low and low-high rankings. For reporting and
analysis purposes, you probably want these all coded in a consistent manner.

*recode.sps.

DATA LIST FREE /opinionl opinion2.
BEGIN DATA

15

ma s wN
PNWA

ND DATA.
RECODE opinion2
(1=5) (2=4) (4=2) (56=1)
(ELSE = COPY)
INTO opinion2_new.
EXECUTE.
VALUE LABELS opinionl opinion2_new
1 'Really bad' 2 'Bad' 3 'Blah'
4 'Good' 5 'Terrific!'.

The RECODE command essentially reverses the values of opinion2.

ELSE = COPY retains the value of 3 (which is the middle value in either direction) and any other
unspecified values, such as user-missing values, which would otherwise be set to system-missing for
the new variable.

« INTO creates a new variable for the recoded values, leaving the original variable unchanged.

Binning Scale Variables

Creating a small number of discrete categories from a continuous scale variable is sometimes referred
to as binning. For example, you can recode salary data into a few salary range categories. Although it is
not difficult to write command syntax to bin a scale variable into range categories, we recommend that
you try the Visual Binning dialog box, available on the Transform menu, because it can help you make
the best recoding choices by showing the actual distribution of values and where your selected category
boundaries occur in the distribution. It also provides a number of different binning methods and can
automatically generate descriptive labels for the binned categories.

62 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Visual Binning 7
Scanned Yariable List M ame: Lakel:
L | ‘ariable Current Yariable: — zalamy Current Salary
539 Current Salary [salary] Binned Yarisble: zalary_category Current Salary [Binned]
Minimurn: | $15,750 Manmissing alues tawimur: | $135,000

|

L S o Y W By o S M B W e B
FIATF50.00 B3483000 ES391000 EF2.990.00
F25200.00 FMIF000 EG3.450.00 ES82.4530.00

L, LU LS S S e A |
207000 F111,150.00 CF130.230.00
FI01 61000 12063000 F139.770..

Enter interval cutpoints or click Make Cutpoints for automatic intervalz. & cutpoint value
< Y Q of 10, for exarple, defines an interval starting above the previous interval and ending at
| Girid: 10.
Upper Endpoints
Cases Scanned: 474 e L | D.E*-.|] : d
" $25,000 | == $25 000 \#) Included [<=
Mizsing Yalues: 0 B $50,000 |$25,001 - §50,000 () Excluded (<]
13 §75,000 350,001 - §75,000
Copy Bing £ HIGH | 75,001+ take Cutpaints...
15

Make Labels

[Reverse scale

[Qk.] [Pazte l [Heset] [Cancel] [Help]

Figure 40. Visual Binning dialog box

- The histogram shows the distribution of values for the selected variable. The vertical lines indicate the
binned category divisions for the specified range groupings.

- In this example, the range groupings were automatically generated using the Make Cutpoints dialog
box, and the descriptive category labels were automatically generated with the Make Labels button.

 You can use the Make Cutpoints dialog box to create binned categories based on equal width intervals,
equal percentiles (equal number of cases in each category), or standard deviations.

.
Make Cutpoints L

23 Equal "Width [ntervals
Intervals - fill in at least bwo figlds

First Cutpaint Location: $25.000
Mumber of Cutpoints: 3

fidth: 25000

Last Cutpaint Location: $75,000

" Equal Percentiles Based on Scanned Cases
Intervals - fill in either field

) Cutpoints at Mean and Selected Standard Devistions Based on Scanned Cases

A final interval will include all remaining walues: M cutpoints produce

Apply will replace the current cutpoint definitions with thiz zpecification.
@ M+1 intervals.

Figure 41. Make Cutpoints dialog box

Chapter 2. Data Management 63

You can use the Paste button in the Visual Binning dialog box to paste the command syntax for your
selections into a command syntax window. The RECODE command syntax generated by the Binning dialog
box provides a good model for a proper recoding method.

*visual_binning.sps.
**xkxcommands generated by visual binning dialogx*x.
RECODE salary

(MISSING = COPY)

(LO THRU 25000 =1)

(LO THRU 50000 =2)

(LO THRU 75000 =3)

(LO THRU HI = 4)

(ELSE = SYSMIS) INTO salary_category.
VARIABLE LABELS salary_category 'Current Salary (Binned)'.
FORMAT salary_category (F5.0).

VALUE LABELS salary_category
1 ‘<= $25,000"
2 '$25,001 - $50,000'
3 '$50,001 - $75,000'
4 '$75,001+"
(¢} 'missing’'.
MISSING VALUES salary_category (0).
VARIABLE LEVEL salary_category (ORDINAL).
EXECUTE.

The RECODE command encompasses all possible values of the original variable.

MISSING = COPY preserves any user-missing values from the original variable. Without this, user-
missing values could be inadvertently combined into a nonmissing category for the new variable.

The general recoding scheme of LO THRU value ensures that no values fall through the cracks. For
example, 25001 THRU 50000 would not include a value of 25000.50.

Since the RECODE expression is evaluated from left to right and each original value is recoded only once,

each subsequent range specification can start with LO because this means the lowest remaining value
that has not already been recoded.

LO THRU HI includes all remaining values (other than system-missing) not included in any of the other
categories, which in this example should be any salary value above $75,000.

INTO creates a new variable for the recoded values, leaving the original variable unchanged. Since
binning or combining/collapsing categories can result in loss of information, it is a good idea to create a
new variable for the recoded values rather than overwriting the original variable.

The VALUE LABELS and MISSING VALUES commands generated by the Binning dialog box preserve
the user-missing category and its label from the original variable.

Simple Numeric Transformations

You can perform simple numeric transformations using the standard programming language notation for
addition, subtraction, multiplication, division, exponents, and so on.

*xnumeric_transformations.sps.
DATA LIST FREE /varl.

BEGIN DATA

12345

END DATA.

COMPUTE var2 = 1.

COMPUTE var3 = varlx2.

COMPUTE vard = ((varl*2)*%x2)/2.
EXECUTE.

COMPUTE var2 = 1 creates a constant with a value of 1.
COMPUTE var3 varl2 creates a new variable that is twice the value of var1.

COMPUTE vazr4 ((varl*2)=%2) /2 first multiplies varl by 2, then squares that value, and finally
divides the result by 2.

Arithmetic and Statistical Functions

In addition to simple arithmetic operators, you can also transform data with a wide variety of functions,
including arithmetic and statistical functions.

*numeric_functions.sps.
DATA LIST LIST (",") /varl var2 var3 var4d.

64 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

-

BEGIN DATA

5,6, 7,8
912
END DATA.

COMPUTE Square_Root = SQRT(var4).

COMPUTE Remainder = MOD(var4, 3).

COMPUTE Average = MEAN.3(varl, var2, var3, vard).
COMPUTE Valid_Values = NVALID(varl TO var4).
COMPUTE Trunc_Mean = TRUNC(MEAN(varl TO var4)).
EXECUTE.

All functions take one or more arguments, enclosed in parentheses. Depending on the function, the
arguments can be constants, expressions, and/or variable names—or various combinations thereof.

SQRT (var4) returns the square root of the value of var4 for each case.
MOD(var4, 3) returnsthe remainder (modulus) from dividing the value of var4 by 3.

MEAN.3(varl, var2, var3, vard) returnsthe mean of the four specified variables, provided that
at least three of them have nonmissing values. The divisor for the calculation of the mean is the number
of nonmissing values.

NVALID(varl TO var4) returns the number of valid, nonmissing values for the inclusive range of
specified variables. For example, if only two of the variables have nonmissing values for a particular
case, the value of the computed variable is 2 for that case.

TRUNC (MEAN(varl TO vard)) computes the mean of the values for the inclusive range of variables
and then truncates the result. Since no minimum number of nonmissing values is specified for the
MEAN function, a mean will be calculated (and truncated) as long as at least one of the variables has a
nonmissing value for that case.

& “Untitled2 [] - Data Editor e
File Edit Yew [Data Transform Analyze Graphs Uklities Add-ons Window Help
10 : varl
varl | var2 | var3 | ward | Sguare | Remainder| Average | Valid_[Trunc_ | a
Root “alues| hean
1| 1.00 .| 3000 4.00 200 1.00 267 3.000 200
2| 500 600D 700 B.00 283 2.00 650 4.000 B.00
3| 9.00 . .| 12.00 3.46 .00 .| 2.00) 10.00
g
: v
41 v |\ Data View A variable view [|< »]

Figure 42. Variables computed with arithmetic and statistical functions

For a complete list of arithmetic and statistical functions, see “Transformation Expressions” in the

“

Universals” section of the Command Syntax Reference.

Random Value and Distribution Functions

Random value and distribution functions generate random values based on the specified type of
distribution and parameters, such as mean, standard deviation, or maximum value.

*random_functons.sps.

NEW FILE.

SET SEED 987987987.

*create 1,000 cases with random values.

INPUT PROGRAM.

- LOOP #I=1 TO 1000.
COMPUTE Uniform_Distribution = UNIFORM(100).
COMPUTE Normal_Distribution = RV.NORMAL(50,25).
COMPUTE Poisson_Distribution = RV.POISSON(50).
END CASE.

- END LOOP.

- END FILE.

END INPUT PROGRAM.

FREQUENCIES VARIABLES = ALL

/HISTOGRAM /FORMAT = NOTABLE.

The INPUT PROGRAM uses a LOOP structure to generate 1,000 cases.

For each case, UNIFORM(100) returns a random value from a uniform distribution with values that
range from 0 to 100.

Chapter 2. Data Management 65

« RV.NORMAL (50, 25) returns a random value from a normal distribution with a mean of 50 and a
standard deviation of 25.

« RV.POISSON(50) returns a random value from a Poisson distribution with a mean of 50.

« The FREQUENCIES command produces histograms of the three variables that show the distributions of
the randomly generated values.

Uniform_Distribution Normal_Distribution Poisson_Distribution

Figure 43. Histograms of randomly generated values for different distributions

Random variable functions are available for a variety of distributions, including Bernoulli, Cauchy, and
Weibull. For a complete list of random variable functions, see “Random Variable and Distribution
Functions” in the “Universals” section of the Command Syntax Reference.

String Manipulation

Since just about the only restriction you can impose on string variables is the maximum number of
characters, string values may often be recorded in an inconsistent manner and/or contain important bits
of information that would be more useful if they could be extracted from the rest of the string.

Changing the Case of String Values

Perhaps the most common problem with string values is inconsistent capitalization. Since string values
are case sensitive, a value of “male” is not the same as a value of “Male.” This example converts all values
of a string variable to lowercase letters.

*string_case.sps.

DATA LIST FREE /gender (A6).
BEGIN DATA

Male Female

male female

MALE FEMALE

END DATA.

COMPUTE gender=LOWER(gender).
EXECUTE.

The LOWER function converts all uppercase letters in the value of gender to lowercase letters, resulting
in consistent values of “male” and “female.”

You can use the UPCASE function to convert string values to all uppercase letters.

Combining String Values

You can combine multiple string and/or numeric values to create new string variables. For example, you
could combine three numeric variables for area code, exchange, and number into one string variable for
telephone number with dashes between the values.

*concat_string.sps.

DATA LIST FREE /tell tel2 tel3 (3F4).

BEGIN DATA

111 222 3333

222 333 4444

333 444 5555

555 666 707

END DATA.

STRING telephone (A12).

COMPUTE telephone =

CONCAT ((STRING(tel1, N3)), "-",

(STRING (tel2, N3)), "-",
(STRING(tel3, N4))).

EXECUTE.

66 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

The STRING command defines a new string variable that is 12 characters long. Unlike new numeric
variables, which can be created by transformation commands, you must define new string variables
before using them in any transformations.

The COMPUTE command combines two string manipulation functions to create the new telephone
number variable.

The CONCAT function concatenates two or more string values. The general form of the function is

CONCAT (stringl, string2, ...).Eachargumentcan be avariable name, an expression, or a
literal string enclosed in quotes.

« Each argument of the CONCAT function must evaluate to a string; so we use the STRING function to
treat the numeric values of the three original variables as strings. The general form of the function is
STRING (value, format).The value argument can be a variable name, a number, or an expression.
The format argument must be a valid numeric format. In this example, we use N format to support
leading zeros in values (for example, 0707).

« The dashes in quotes are literal strings that will be included in the new string value; a dash will be
displayed between the area code and exchange and between the exchange and number.

] “Untitled5 [] - Data Editor =JIo)ed
File Edit Yew [Data Transform Analyze Graphs Ukilities Add-ons Window Help
10 : tell
tell | tel2 | teld | telephone | war Var a

1 111 222 3333 |111-222-3333

2 222 333 4444 |212-333-4444

3 335 444 5555 |333-444-5565

4 555 BEG 707 |555-666-0707

a

— W
4 » \Data View A variahle View [|< ¥ |

Figure 44. Original numeric values and concatenated string values

Taking Strings Apart
In addition to being able to combine strings, you can also take them apart.

Example

A dataset contains telephone numbers recorded as strings. You want to create separate variables for the
three values that comprise the phone number. You know that each number contains 10 digits--but some
contain spaces and/or dashes between the three portions of the number, and some do not.

*replace_substr.sps.

**xCreate some inconsistent sample numbersxxx.

DATA LIST FREE (",") /telephone (A16).

BEGIN DATA

111-222-3333

222 - 333 - 4444

333 444 5555

4445556666

555-666-0707

END DATA.

*First remove all extraneous spaces and dashes.
STRING #telstr (A16).

COMPUTE #ttelstr=REPLACE(telephone, " ", "").

COMPUTE #telstr=REPLACE (#telstr, "-", "").

*Now extract the parts.

COMPUTE tel1=NUMBER(CHAR.SUBSTR(#telstr, 1, 3), F5).
COMPUTE tel2=NUMBER(CHAR.SUBSTR(#telstr, 4, 3), F5).
COMPUTE tel3=NUMBER (CHAR.SUBSTR (#telstr, 7), F5).
EXECUTE.

FORMATS tell tel2 (N3) tel3 (N4).

The first task is to remove any spaces or dashes from the values, which is accomplished with the two
REPLACE functions. The spaces and dashes are replaced with null strings, and the telephone number
without any dashes or spaces is stored in the temporary variable #telstr.

The NUMBER function converts a number expressed as a string to a numeric value. The basic format
is NUMBER (value, format).The value argument can be a variable name, a number expressed as a
string in quotes, or an expression. The format argument must be a valid numeric format; this format is

Chapter 2. Data Management 67

used to determine the numeric value of the string. In other words, the format argument says, “Read the
string as if it were a number in this format.”

« The value argument for the NUMBER function for all three new variables is an expression using the
CHAR.SUBSTR function. The general form of the function is CHAR.SUBSTR(value, position,
length). The value argument can be a variable name, an expression, or a literal string enclosed in
quotes. The position argument is a number that indicates the starting character position within the
string. The optional length argument is a number that specifies how many characters to read starting
at the value specified on the position argument. Without the length argument, the string is read from
the specified starting position to the end of the string value. So CHAR.SUBSTR("abcd", 2, 2) would
return “bc,” and CHAR.SUBSTR ("abcd", 2) would return “bcd.”

 Fortell, SUBSTR (#telstr, 1, 3) defines asubstring three characters long, starting with the first
character in the original string.

 Fortel2, CHAR.SUBSTR (#telstr, 4, 3) definesasubstring three characters long, starting with the
fourth character in the original string.

- For tel3, CHAR.SUBSTR (#telstr, 7) defines a substring that starts with the seventh character in the
original string and continues to the end of the value.

« FORMATS assigns N format to the three new variables for numbers with leading zeros (for example,

0707).

B “Untitled40 [] - Data Editor =<

File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help

13 : telephone

telephone | tell | tel2 | tel3 [

1] 111-222-3333 111 222 3333 |
2|222 - 333 - 4444 222 333 4444
3[333 444 5555 333 444 5555
44445556660 444 255 55
5|555-BE6-0707 555 BB o7oF
53
g W

4 » |\ Data View £ Variable View |« >

Figure 45. Substrings extracted and converted to numbers

Example

This example takes a single variable containing first, middle, and last name and creates three separate
variables for each part of the name. Unlike the example with telephone numbers, you can't identify the
start of the middle or last name by an absolute position number, because you don't know how many
characters are contained in the preceding parts of the name. Instead, you need to find the location of
the spaces in the value to determine the end of one part and the start of the next--and some values only
contain a first and last name, with no middle name.

*substr_index.sps.

DATA LIST FREE (",") /name (A20).
BEGIN DATA

Hugo Hackenbush

Rufus T. Firefly

Boris Badenoff

Rocket J. Squirrel

END DATA.

STRING #n fname mname lname(a20).
COMPUTE #n = name.

VECTOR vname=fname TO lname.

LOOP #i = 1 to 2.

- COMPUTE #space = CHAR.INDEX(#n," ").
- COMPUTE vname (#i) = CHAR.SUBSTR(#n,1,d#space-1).
- COMPUTE #n = CHAR.SUBSTR(#n,f#space+1).
END LOOP.

COMPUTE lname=in.

DO IF lname="".

- COMPUTE lname=mname.

- COMPUTE mname="".

END IF.

EXECUTE.

« Atemporary (scratch) variable, #n, is declared and set to the value of the original variable. The three
new string variables are also declared.

68 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

« The VECTOR command creates a vector vname that contains the three new string variables (in file
order).

« The LOOP structure iterates twice to produce the values for fname and mname.

« COMPUTE 4#space = CHAR.INDEX(#n," ") creates another temporary variable, #space, that
contains the position of the first space in the string value.

« On the first iteration, COMPUTE vname (#1i) = CHAR.SUBSTR(#n,1,#space-1) extracts everything
prior to the first dash and sets fname to that value.

« COMPUTE #n = CHAR.SUBSTR(#n,ispace+1) then sets #n to the remaining portion of the string
value after the first space.

« On the second iteration, COMPUTE #fspace. .. sets #space to the position of the “first” space in the
modified value of #n. Since the first name and first space have been removed from #n, this is the
position of the space between the middle and last names.

Note: If there is no middle name, then the position of the "first" space is now the first space after the
end of the last name. Since string values are right-padded to the defined width of the string variable,
and the defined width of #n is the same as the original string variable, there should always be at least
one blank space at the end of the value after removing the first name.

« COMPUTE vname (#1i) ... sets mname to the value of everything up to the “first” space in the modified
version of #n, which is everything after the first space and before the second space in the original string
value. If the original value doesn't contain a middle name, then the last name will be stored in mname.
(We'll fix that later.)

« COMPUTE 4En. .. then sets #n to the remaining segment of the string value—everything after the “first”
space in the modified value, which is everything after the second space in the original value.

« After the two loop iterations are complete, COMPUTE lname=#n sets [name to the final segment of the
original string value.

« The DO IF structure checks to see if the value of [name is blank. If it is, then the name had only two
parts to begin with, and the value currently assigned to mname is moved to lname.

B “Untitled41 [] - Data Editor (==
File Edit View Data Transform A&nalyze Graphs Utilities Add-ons ‘Window Help
12 : name
narme | frame | mnarme | Iname =

1|Hugo Hackenbush Hugo Hackenbush

2|Rufus T. Firefly Rufus I Firefly

3|Boris Badenoff Boris Badenoff

4|Rocket J. Squirrel Rocket J. Squirrel

5

&

7 e
1|+ \Data View £ Variable view / [< [#]]

Figure 46. Substring extraction using CHAR.INDEX function

Changing Data Types and String Widths

In release 16.0 or later, you can use the ALTER TYPE command to:

« Change the fundamental data type (numeric or string) of a variable
- Automatically change the width of string variables based on the width of observed values
« Conditionally change variable format for multiple variables based on the current format

Example: Change String Variables to Numeric

*string_to_number.sps.

DATA LIST FREE /StringNumber (A3) StringDate(A10).
BEGIN DATA

123 10/28/2007

abc 10/29/2008

END DATA.

Chapter 2. Data Management 69

VALUE LABELS
StringNumbeI ‘123" 'Numeric value'
‘abc' 'String Value'
MISSING VALUES StrlngNumber ('999' 'def')
ALTER TYPE StringNumber (F3) StringDate (ADATElG)
DISPLAY DICTIONARY.

 StringNumber is converted from a string A3 format to a numeric F3 format.

- StringDate is converted from a string A10 format to a numeric ADATE10 date format.

When converting from string to numeric, values containing characters that are invalid in the specified
numeric format are converted to system-missing, and value labels or missing values definitions for invalid
values are deleted. In this example:

« The string value 'abc' is converted to numeric system-missing.

- The value label for the string value '123" is preserved as the value label for the number 123, while the

value label for 'abc' is deleted.

The user-missing value for the string '999' is converted to a user-missing value for the number 999,
while the user-missing value of 'def' is deleted.

Example: Change String Widths Based on Observed Values

*change_string_width.sps.

DATA LIST LIST /FName (A10) LName (A20).
BEGIN DATA

Robert Terwilliger

Edna Krabappel

Joe Quimby

END DATA.

ALTER TYPE ALL (A=AMIN).

DISPLAY DICTIONARY.

ALTER TYPE ALL (A=AMIN) changes the width of all string variables to the minimum width required
to preserve the observed values without truncation.

FName is changed from A10 to A6, and LName is changed from A20 to A11.

Example: Conditionally Change Type and Format

*change_string_conditional.sps.
DATA LIST LIST
/ID (F3) Gender (A1) Grade (A1) BirthDate (A10) ExamDate (A10).
BEGIN DATA
123 F B 10/28/1986 5/20/2007
456 M C 6/20/1986 8/13/2007
789 F A 10/29/1987 9/10/2007
END DATA.
ALTER TYPE ALL (A10=ADATE10).
DISPLAY DICTIONARY.

In the previous example (A=AMIN) applied to all A format variables. In this example (A10=ADATE10)
applies only to A10 format variables.

The string variables BirthDate and ExamDate are converted to numeric date variables, while the string
variables Gender and Grade are unchanged.

Working with Dates and Times

Dates and times come in a wide variety of formats, ranging from different display formats (for example,
10/28/1986 versus 28-0CT-1986) to separate entries for each component of a date or time (for example,
a day variable, a month variable, and a year variable). Various features are available for dealing with dates
and times, including:

Support for multiple input and display formats for dates and times.

Storing dates and times internally as consistent numbers regardless of the input format, making it
possible to compare date/time values and calculate the difference between values even if they were not
entered in the same format.

Functions that can convert string dates to real dates; extract portions of date values (such as simply the
month or year) or other information that is associated with a date (such as day of the week); and create
calendar dates from separate values for day, month, and year.

70 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Date Input and Display Formats

IBM SPSS Statistics automatically converts date information from databases, Excel files, and SAS files to
equivalent IBM SPSS Statistics date format variables. IBM SPSS Statistics can also recognize dates in text
data files stored in a variety of formats. All you need to do is specify the appropriate format when reading
the text data file.

Table 3. Date format examples

Date format General form Example Date format
specification

International date dd-mmm-yyyy 28-0CT-2003 DATE

American date mm/dd/yyyy 10/28/2003 ADATE

Sortable date yyyy/mm/dd 2003/10/28 SDATE

Julian date yyyyddd 2003301 JDATE

Time hh:mm:ss 11:35:43 TIME

Days and time dd hh:mm:ss 1508:27:12 DTIME

Date and time dd-mmm-yyyy hh:mm:ss 20-JUN-2003 12:23:01 DATETIME

Day of week (name of day) Tuesday WKDAY

Month of year (name of month) January MONTH

Note: For a complete list of date and time formats, see “Date and Time” in the “Universals” section of the
Command Syntax Reference.

Example

DATA LIST FREE(" ")
/StartDate (ADATE) EndDate (DATE).
BEGIN DATA
10/28/26002 28-01-2003
10-29-02 15,03,03
01.01.96 01/01/97
1/1/1997 01-JAN-1998
END DATA.

- Both two- and four-digit year specifications are recognized. Use SET EPOCH to set the starting year for
two-digit years.

« Dashes, periods, commas, slashes, or blanks can be used as delimiters in the day-month-year input.
« Months can be represented in digits, Roman numerals, or three-character abbreviations, and they can

be fully spelled out. Three-letter abbreviations and fully spelled out month names must be English
month names; month names in other languages are not recognized.

- In time specifications, colons can be used as delimiters between hours, minutes, and seconds. Hours
and minutes are required, but seconds are optional. A period is required to separate seconds from
fractional seconds. Hours can be of unlimited magnitude, but the maximum value for minutes is 59 and
for seconds is 59.999....

« Internally, dates and date/times are stored as the number of seconds from October 14, 1582, and times
are stored as the number of seconds from midnight.

Note: SET EPOCH has no effect on existing dates in the file. You must set this value before reading or
entering date values. The actual date stored internally is determined when the date is read; changing the
epoch value afterward will not change the century for existing date values in the file.

Using FORMATS to Change the Display of Dates

Dates in IBM SPSS Statistics are often referred to as date format variables because the dates you see are
really just display formats for underlying numeric values. Using the FORMATS command, you can change

Chapter 2. Data Management 71

the display formats of a date format variable, including changing to a format that displays only a certain
portion of the date, such as the month or day of the week.

Example

FORMATS StartDate(DATE11).

- Adate originally displayed as 10/28/02 would now be displayed as 28-0OCT-2002.
« The number following the date format specifies the display width. DATE9 would display as 28-0OCT-02.

Table 4. Examples of other format options

Original display format New format specification New display format
10/28/02 SDATE11 2002/10/28
10/28/02 WKDAY7 MONDAY

10/28/02 MONTH12 OCTOBER

10/28/02 MOYR9 OCT 2002
10/28/02 QYR6 4Q02

The underlying values remain the same; only the display format changes with the FORMATS command.

Converting String Dates to Date Format Numeric Variables

Under some circumstances, IBM SPSS Statistics may read valid date formats as string variables instead of
date format numeric variables. For example, if you use the Text Wizard to read text data files, the wizard
reads dates as string variables by default. If the string date values conform to one of the recognized date
formats, it is easy to convert the strings to date format numeric variables.

Example

COMPUTE numeric_date = NUMBER(string_date, ADATE)
FORMATS numeric_date (ADATE10).

« The NUMBER function indicates that any numeric string values should be converted to those numbers.

- ADATE tells the program to assume that the strings represent dates of the general form mm/dd/yyyy.
It is important to specify the date format that corresponds to the way the dates are represented in
the string variable, since string dates that do not conform to that format will be assigned the system-
missing value for the new numeric variable.

« The FORMATS command specifies the date display format for the new numeric variable. Without this
command, the values of the new variable would be displayed as very large integers.

In version 16.0 or later, ALTER TYPE provides an alternative solution that can be applied to multiple
variables and doesn't require creating new variables for the converted values. See the topic “Changing
Data Types and String Widths” on page 69 for more information.

Date and Time Functions
Many date and time functions are available, including:

- Aggregation functions to create a single date variable from multiple other variables representing day,
month, and year.

« Conversion functions to convert from one date/time measurement unit to another—for example,
converting a time interval expressed in seconds to number of days.

 Extraction functions to obtain different types of information from date and time values—for example,
obtaining just the year from a date value, or the day of the week associated with a date.

72 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Note: Date functions that take date values or year values as arguments interpret two-digit years based on
the century defined by SET EPOCH. By default, two-digit years assume a range beginning 69 years prior
to the current date and ending 30 years after the current date. When in doubt, use four-digit year values.

Aggregating Multiple Date Components into a Single Date Format Variable

Sometimes, dates and times are recorded as separate variables for each unit of the date. For example,
you might have separate variables for day, month, and year or separate hour and minute variables for
time. You can use the DATE and TIME functions to combine the constituent parts into a single date/time
variable.

Example

COMPUTE datevar=DATE.MDY(month, day, year).

COMPUTE monthyear=DATE.MOYR(month, year).

COMPUTE time=TIME.HMS (hours, minutes).

FORMATS datevar (ADATE10) monthyear (MOYR9) time(TIME9).

- DATE.MDY creates a single date variable from three separate variables for month, day, and year.

- DATE.MOYR creates a single date variable from two separate variables for month and year. Internally,
this is stored as the same value as the first day of that month.

« TIME.HMS creates a single time variable from two separate variables for hours and minutes.
« The FORMATS command applies the appropriate display formats to each of the new date variables.

For a complete list of DATE and TIME functions, see “Date and Time” in the “Universals” section of the
Command Syntax Reference.

Calculating and Converting Date and Time Intervals

Since dates and times are stored internally in seconds, the result of date and time calculations is also
expressed in seconds. But if you want to know how much time elapsed between a start date and an end
date, you probably do not want the answer in seconds. You can use CTIME functions to calculate and
convert time intervals from seconds to minutes, hours, or days.

Example

*date_functions.sps.

DATA LIST FREE (",")
/StartDate (ADATE12) EndDate (ADATE12)
StartDateTime (DATETIME20) EndDateTime (DATETIME20)
StartTime (TIME10) EndTime (TIME10).

BEGIN DATA

3/01/2003, 4/10/2003

01-MAR-2003 12:00, 02-MAR-2003 12:00

09:30, 10:15

END DATA.

COMPUTE days = CTIME.DAYS(EndDate-StartDate).

COMPUTE hours = CTIME.HOURS(EndDateTime-StartDateTime).

COMPUTE minutes = CTIME.MINUTES(EndTime-StartTime).

EXECUTE.

« CTIME.DAYS calculates the difference between EndDate and StartDate in days—in this example, 40
days.

e CTIME.HOURS calculates the difference between EndDateTime and StartDateTime in hours—in this
example, 24 hours.

« CTIME.MINUTES calculates the difference between EndTime and StartTime in minutes—in this
example, 45 minutes.

Calculating Number of Years between Dates

You can use the DATEDIFF function to calculate the difference between two dates in various duration
units. The general form of the function is

DATEDIFF (datetime2, datetimel, “unit”)

Chapter 2. Data Management 73

where datetime2 and datetimel are both date or time format variables (or numeric values that represent
valid date/time values), and “unit” is one of the following string literal values enclosed in quotes: years,
quarters, months, weeks, hours, minutes, or seconds.

Example

*datediff.sps.

DATA LIST FREE /BirthDate StartDate EndDate (3ADATE).

BEGIN DATA

8/13/1951 11/24/2002 11/24/2004

10/21/1958 11/25/2002 11/24/2004

END DATA.

COMPUTE Age=DATEDIFF ($TIME, BirthDate, 'years').

COMPUTE DurationYears=DATEDIFF (EndDate, StartDate, 'years').
COMPUTE DurationMonths=DATEDIFF(EndDate, StartDate, 'months').
EXECUTE.

Age in years is calculated by subtracting BirthDate from the current date, which we obtain from the
system variable $TIME.

The duration of time between the start date and end date variables is calculated in both years and
months.

The DATEDIFF function returns the truncated integer portion of the value in the specified units. In this
example, even though the two start dates are only one day apart, that results in a one-year difference in
the values of DurationYears for the two cases (and a one-month difference for DurationMonths).

Adding to or Subtracting from a Date to Find Another Date

If you need to calculate a date that is a certain length of time before or after a given date, you can use the
TIME.DAYS function.

Example

Prospective customers can use your product on a trial basis for 30 days, and you need to know when the

trial period ends—just to make it interesting, if the trial period ends on a Saturday or Sunday, you want to
extend it to the following Monday.

*date_functions2.sps.
DATA LIST FREE (" ") /StartDate (ADATE10).
BEGIN DATA
10/29/20603 10/30/2003
10/31/2603 11/1/2603
11/2/2003 11/4/2003
11/5/2003 11/6/2003
END DATA.
COMPUTE expdate = StartDate + TIME.DAYS(30).
FORMATS expdate (ADATE10).
**x1f expdate is Saturday or Sunday, make it Monday*xx.
DO IF (XDATE.WKDAY (expdate) = 1).

COMPUTE expdate = expdate + TIME.DAYS(1).
ELSE IF (XDATE.WKDAY (expdate) = 7).

COMPUTE expdate = expdate + TIME.DAYS(2).
END IF.
EXECUTE.

TIME.DAYS(30) adds 30 days to StartDate, and then the new variable expdate is given a date display
format.

The DO IF structure uses an XDATE.WKDAY extraction function to see if expdate is a Sunday (1) or a
Saturday (7), and then adds one or two days, respectively.

Example

You can also use the DATESUM function to calculate a date that is a specified length of time before or after
a specified date.

*datesum.sps.

DATA LIST FREE /StartDate (ADATE).

BEGIN DATA

10/21/2003

10/28/2003

10/29/2004

END DATA.

COMPUTE ExpDate=DATESUM(StartDate, 3, 'years').
EXECUTE.

FORMATS ExpDate (ADATE10) .

74 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

« ExpDate is calculated as a date three years after StartDate.

« The DATESUM function returns the date value in standard numeric format, expressed as the number of

seconds since the start of the Gregorian calendar in 1582; so, we use FORMATS to display the value in
one of the standard date formats.

Extracting Date Information

A great deal of information can be extracted from date and time variables. In addition to using XDATE
functions to extract the more obvious pieces of information, such as year, month, day, hour, and so on, you
can obtain information such as day of the week, week of the year, or quarter of the year.

Example

*date_functions3.sps.
DATA LIST FREE (",")

/StartDateTime (datetime25).
BEGIN DATA
29-0CT-2003 11:23:02
1 January 1998 1:45:01
21/6/2000 2:55:13
END DATA.
COMPUTE dateonly=XDATE.DATE(StartDateTime) .
FORMATS dateonly (ADATE10) .
COMPUTE hour=XDATE.HOUR(StartDateTime).
COMPUTE DayofWeek=XDATE.WKDAY (StartDateTime).
COMPUTE WeekofYear=XDATE.WEEK(StartDateTime).
COMPUTE quarter=XDATE.QUARTER(StartDateTime).
EXECUTE.

] *Untitleds [] -Data Editor =]
File Edit Wiew Data Transform Analvze Graphs Utiities Add-ons Window Help
9 : StartDateTime *isible: & o
StartDateTime | dateonly | hour |Dayofivesk| WWeekoftear | quatter | ‘A
1| 29-0CT-2003 10/20/2003 1 11.00 4.00 44.00 4.00
21 M1-JAN-1998 014011998 1.00 £.00 1.00 1.00
3l 2A-dUN-2000 062172000 2.00 4.00 25.00 200
4
a "
4 ¥ |\ Data View £ variable View [<1]

Figure 47. Extracted date information

« The date portion extracted with XDATE . DATE returns a date expressed in seconds; so, we also include a
FORMATS command to display the date in a readable date format.

« Day of the week is an integer between 1 (Sunday) and 7 (Saturday).

« Week of the year is an integer between 1 and 53 (January 1-7 = 1).

For a complete list of XDATE functions, see “Date and Time” in the “Universals” section of the Command
Syntax Reference.

Cleaning and Validating Data

Invalid—or at least questionable—data values can include anything from simple out-of-range values to
complex combinations of values that should not occur.

Finding and Displaying Invalid Values

The first step in cleaning and validating data is often to simply identify and investigate questionable
values.

Example

All of the variables in a file may have values that appear to be valid when examined individually, but
certain combinations of values for different variables may indicate that at least one of the variables has
either an invalid value or at least one that is suspect. For example, a pregnant male clearly indicates

Chapter 2. Data Management 75

an error in one of the values, whereas a pregnant female older than 55 may not be invalid but should
probably be double-checked.

*invalid_data3.sps.
DATA LIST FREE /age gender pregnant.
BEGIN DATA
25 0 0
121 0
80 1 1
47 0 ©
3401
911
19 0 0
27 0 1
END DATA.
VALUE LABELS gender © 'Male' 1 'Female’
/pregnant @ 'No' 1 'Yes'.
DO IF pregnant = 1.
- DO IF gender = 0.
- COMPUTE valueCheck = 1.
- ELSE IF gender = 1.
DO IF age > 55.
COMPUTE valueCheck = 2.
ELSE IF age < 12.
COMPUTE valueCheck
- END IF.
- END IF.
ELSE.
- COMPUTE valueCheck=0.
END IF.
VALUE LABELS valueCheck
O 'No problems detected'
1 'Male and pregnant'
2 'Age > 55 and pregnant'
3 'Age < 12 and pregnant'.
FREQUENCIES VARIABLES = valueCheck.

I
w

» The variable valueCheck is first set to O.

« The outer DO IF structure restricts the actions for all transformations within the structure to cases
recorded as pregnant (pregnant = 1).

« The first nested DO IF structure checks for males (gender = 0) and assigns those cases a value of 1
for valueCheck.

« For females (gender = 1), asecond nested DO IF structure, nested within the previous one, is
initiated, and valueCheck is set to 2 for females over the age of 55 and 3 for females under the age of
12.

« The VALUE LABELS command assigns descriptive labels to the numeric values of valueCheck, and the
FREQUENCIES command generates a table that summarizes the results.

valueCheck
Cumulative
Freguency Percent “alid Percent Percent

“alicl Mo problems detected 4 0.0 0.0 0.0
Male and pregnant 2 250 250 750
Age = 55 and pregnant 1 125 12458 g7.a
Age =12 and pregnant 1 125 125 1000

Total 5 100.0 100.0

Figure 48. Frequency table summarizing detected invalid or suspect values

Example

A data file contains a variable quantity that represents the number of products sold to a customer, and the
only valid values for this variable are integers. The following command syntax checks for and then reports
all cases with non-integer values.

*invalid_data.sps.

*First we provide some simple sample data.

DATA LIST FREE /quantity.

BEGIN DATA

11.1258.01

END DATA.

*Now we look for non-integers values
in the sample data.

COMPUTE filtervar=(MOD(quantity,1)>0).

FILTER BY filtervar.

SUMMARIZE
/TABLES=quantity
/FORMAT=LIST CASENUM NOTOTAL
/CELLS=COUNT.

FILTER OFF.

76 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Caze Mumber guantity

1 2 110
2 5 8.1
2

Figure 49. Table listing all cases with non-integer values

« The COMPUTE command creates a new variable, filtervar. If the remainder (the MOD function) of the
original variable (quantity) divided by 1 is greater than 0, then the expression is true and filtervar will
have a value of 1, resulting in all non-integer values of quantity having a value of 1 for filtervar. For
integer values, filtervar is set to 0.

« The FILTER command filters out any cases with a value of O for the specified filter variable. In this
example, it will filter out all of the cases with integer values for quantity, since they have a value of 0 for
filtervar.

« The SUMMARIZE command simply lists all of the nonfiltered cases, providing the case number and the
value of quantity for each case, as well as a table listing all of the cases with non-integer values.

« The second FILTER command turns off filtering, making all cases available for subsequent procedures.

Excluding Invalid Data from Analysis

With a slight modification, you can change the computation of the filter variable in the above example to
filter out cases with invalid values:

COMPUTE filtrvar=(MOD(quantity,1)=0).
FILTER BY filtrvar.

« Now all cases with integer values for quantity have a value of 1 for the filter variable, and all cases with
non-integer values for quantity are filtered out because they now have a value of O for the filter variable.

- This solution filters out the entire case, including valid values for other variables in the data file. If, for
example, another variable recorded total purchase price, any case with an invalid value for quantity
would be excluded from computations involving total purchase price (such as average total purchase
price), even if that case has a valid value for total purchase price.

A better solution is to assign invalid values to a user-missing category, which identifies values that should
be excluded or treated in a special manner for that specific variable, leaving other variables for cases with
invalid values for quantity unaffected.

*invalid_data2.sps.

DATA LIST FREE /quantity.

BEGIN DATA

11.1258.01

END DATA.

IF (MOD(quantity,1) > 0) quantity = (-9).
MISSING VALUES quantity (-9).

VALUE LABELS quantity -9 "Non-integer values".

« The IF command assigns a value of -9 to all non-integer values of quantity.

« The MISSING VALUES command flags quantity values of -9 as user-missing, which means that these
values will either be excluded or treated in a special manner by most procedures.

« The VALUE LABELS command assigns a descriptive label to the user-missing value.

Finding and Filtering Duplicates
Duplicate cases may occur in your data for many reasons, including:

« Data-entry errors in which the same case is accidently entered more than once.

 Multiple cases that share a common primary ID value but have different secondary ID values, such as
family members who live in the same house.

« Multiple cases that represent the same case but with different values for variables other than those
that identify the case, such as multiple purchases made by the same person or company for different
products or at different times.

Chapter 2. Data Management 77

The Identify Duplicate Cases dialog box (Data menu) provides a number of useful features for finding
and filtering duplicate cases. You can paste the command syntax from the dialog box selections into a
command syntax window and then refine the criteria used to define duplicate cases.

Example

In the data file duplicates.sav, each case is identified by two ID variables: ID_house, which identifies each
household, and ID_person, which identifies each person within the household. If multiple cases have the
same value for both variables, then they represent the same case. In this example, that is not necessarily
a coding error, since the same person may have been interviewed on more than one occasion.

The interview date is recorded in the variable int_date, and for cases that match on both ID variables, we
want to ignore all but the most recent interview.

* duplicates_filter.sps.
GET FILE='/examples/data/duplicates.sav'.
SORT CASES BY ID_house(A) ID_person(A) int_date(A) .
MATCH FILES /FILE = %
/BY ID_house ID_person /LAST = MostRecent .
FILTER BY MostRecent .
EXECUTE.

SORT CASES sorts the data file by the two ID variables and the interview date. The end result is that
all cases with the same household ID are grouped together, and within each household, cases with
the same person ID are grouped together. Those cases are sorted by ascending interview date; for any
duplicates, the last case will be the most recent interview date.

Although MATCH FILES is typically used to merge two or more data files, you can use FILE = *to
match the active dataset with itself. In this case, that is useful not because we want to merge data files
but because we want another feature of the command—the ability to identify the LAST case for each
value of the key variables specified on the BY subcommand.

BY ID_house ID_person defines a match as cases having the same values for those two variables.
The order of the BY variables must match the sort order of the data file. In this example, the two
variables are specified in the same order on both the SORT CASES and MATCH FILES commands.

LAST = MostRecent assigns a value of 1 for the new variable MostRecent to the last case in each
matching group and a value of 0 to all other cases in each matching group. Since the data file is sorted
by ascending interview date within the two ID variables, the most recent interview date is the last case
in each matching group. If there is only one case in a group, then it is also considered the last case and
is assigned a value of 1 for the new variable MostRecent.

FILTER BY MostRecent filters out any cases with a value of O for MostRecent, which means that all
but the case with the most recent interview date in each duplicate group will be excluded from reports
and analyses. Filtered-out cases are indicated with a slash through the row number in Data View in the

Data Editor.
E'duplicates.sav [] - Data Editor [Z]@
File Edit View Data Transform Analyze Graphs Utilities Add-ons wWindow Help
1:10_house 101
ID house | ID_person | int_date | gender | MostRecent | A

1] 101 1 081342002 0 1

2 101 2 1042142002 1 1

3 101 3 10/28/2003 1 1

4 101 4 1243142002 i 0

5 101 4 1042972003 1 1
/-/'E— 102 1 07072002 0 0
/_//7' 102 1 1041272002 0 0

B 102 1 0141542003 0 1

9 102 2 0941942002 0 1

10 103] 12401/2002 1 1

11 104 1 04,/03/2002 1 1w
4 » \Data View £ Variable View f |<]

Figure 50. Filtered duplicate cases in Data View

78 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Example

You may not want to automatically exclude duplicates from reports; you may want to examine them
before deciding how to treat them. You could simply omit the FILTER command at the end of the
previous example and look at each group of duplicates in the Data Editor, but if there are many variables
and you are interested in examining only the values of a few key variables, that might not be the optimal
approach.

This example counts the number of duplicates in each group and then displays a report of a selected set
of variables for all duplicate cases, sorted in descending order of the duplicate count, so the cases with
the largest number of duplicates are displayed first.

*duplicates_count.sps.

GET FILE='/examples/data/duplicates.sav'.

AGGREGATE OUTFILE = x MODE = ADDVARIABLES
/BREAK = ID_house ID_person
/DuplicateCount = N.

SORT CASES BY DuplicateCount (D).

COMPUTE filtervar=(DuplicateCount > 1).

FILTER BY filtervar.

SUMMARIZE
/TABLES=ID_house ID_person int_date DuplicateCount
/FORMAT=LIST NOCASENUM TOTAL
/TITLE='Duplicate Report'
/CELLS=COUNT.

The AGGREGATE command is used to create a new variable that represents the number of cases for
each pair of ID values.

OUTFILE = % MODE = ADDVARIABLES writes the aggregated results as new variables in the active
dataset. (This is the default behavior.)

The BREAK subcommand aggregates cases with matching values for the two ID variables. In this
example, that simply means that each case with the same two values for the two ID variables will have
the same values for any new variables based on aggregated results.

DuplicateCount = Ncreates anew variable that represents the number of cases for each pair of ID
values. For example, the DuplicateCount value of 3 is assigned to the three cases in the active dataset
with the values of 102 and 1 for ID_house and ID_person, respectively.

The SORT CASES command sorts the data file in descending order of the values of DuplicateCount, so
cases with the largest numbers of duplicates will be displayed first in the subsequent report.

COMPUTE filtervar=(DuplicateCount > 1) creates a new variable with a value of 1 for any
cases with a DuplicateCount value greater than 1 and a value of O for all other cases. So all cases that
are considered duplicates have a value of 1 for filtervar, and all unique cases have a value of 0.

FILTER BY filtervar selects all cases with a value of 1 for filtervar and filters out all other cases. So
subsequent procedures will include only duplicate cases.

The SUMMARIZE command produces a report of the two ID variables, the interview date, and the
number of duplicates in each group for all duplicate cases. It also displays the total number of
duplicates. The cases are displayed in the current file order, which is in descending order of the
duplicate count value.

Duplicate Report

Househald 10 Perzon ID Irterviewy date DuplicateCount
102 07072002
102 100272002
102 01152003
101 1213172002
101 10/29/2003
Tatal i =1 4

h = L k=

[e
oMM W W W

Figure 51. Summary report of duplicate cases

Data Preparation Option

The Data Preparation option provides two validation procedures:

Chapter 2. Data Management 79

VALIDATEDATA provides the ability to define and apply validation rules that identify invalid data values.
You can create rules that flag out-of-range values, missing values, or blank values. You can also save
variables that record individual rule violations and the total number of rule violations per case.

« DETECTANOMALY finds unusual observations that could adversely affect predictive models. The
procedure is designed to quickly detect unusual cases for data-auditing purposes in the exploratory
data analysis step, prior to any inferential data analysis. This algorithm is designed for generic anomaly
detection; that is, the definition of an anomalous case is not specific to any particular application, such
as detection of unusual payment patterns in the healthcare industry or detection of money laundering in
the finance industry, in which the definition of an anomaly can be well-defined.

Example

This example illustrates how you can use the Data Preparation procedures to perform a simple, initial
evaluation of any dataset, without defining any special rules for validating the data. The procedures
provide many features not covered here (including the ability to define and apply custom rules).

*data_validation.sps
*xxcreate some sample dataxxx.
INPUT PROGRAM.
SET SEED 123456789.
LOOP #i=1 to 1000.
- COMPUTE notCategorical=RV.NORMAL(200,40).
- DO IF UNIFORM(100) < 99.8.
- COMPUTE mostlyConstant=1.
- COMPUTE mostlyNormal=RV.NORMAL(50,10).
- ELSE.
COMPUTE mostlyConstant=2.
- COMPUTE mostlyNormal=500.
- END IF.
- END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
VARIABLE LEVEL notCategorical mostlyConstant(nominal).
*xxkHere's the real jobxxxx.
VALIDATEDATA VARIABLES=ALL.
DETECTANOMALY .

The input program creates some sample data with a few notable anomalies, including a variable that is
normally distributed, with the exception of a small proportion of cases with a value far greater than all
of the other cases, and a variable where almost all of the cases have the same value. Additionally, the
scale variable notCategorical has been assigned the nominal measurement level.

VALIDATEDATA performs the default data validation routines, including checking for categorical
(nominal, ordinal) variables where more than 95% of the cases have the same value or more than
90% of the cases have unique values.

DETECTANOMALY performs the default anomaly detection on all variables in the dataset.

Variable Checks

Categorical Cases Constant = 95.0% mostlyConstant
Categaories Containing

One Case = 90.0% notCategoricsl

Each variable iz reported with every check it fails.
Figure 52. Results from VALIDATEDATA

Anomaly Case Index List

Casze Anomaly Indesx
a1 16.296
483 16.296
ar1 16.296

Anomaly Case Reason List

Case Feaszon “ariable “ariable Impact | YWariable Yalue | Variable Morm
a1 mosthyhlormal 800 500,00 51.89
483 mostlyhlarmal 800 500,00 51.89
a7 mosthyhlarmal 300 S00.00 51.89

Figure 53. Results from DETECTANOMALY

80 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

« The default VALIDATEDATA evaluation detects and reports that more than 95% of cases for the
categorical variable mostlyConstant have the same value and more than 90% of cases for the
categorical variable notCategorical have unique values. The default evaluation, however, found nothing
unusual to report in the scale variable mostlyNormal.

« The default DETECTANOMALY analysis reports any case with an anomaly index of 2 or more. In this
example, three cases have an anomaly index of over 16. The Anomaly Case Reason List table reveals
that these three cases have a value of 500 for the variable mostlyNormal, while the mean value for that
variable is only 52.

Conditional Processing, Looping, and Repeating

As with other programming languages, IBM SPSS Statistics contains standard programming structures
that can be used to do many things. These include the ability to:

« Perform actions only if some condition is true (if/then/else processing)
 Repeat actions

« Create an array of elements

« Use loop structures

Indenting Commands in Programming Structures

Indenting commands nested within programming structures is a fairly common convention that makes
code easier to read and debug. For compatibility with batch production mode, however, each IBM SPSS
Statistics command should begin in the first column of a new line. You can indent nested commands by
inserting a plus (+) or minus (=) sign or a period (.) in the first column of each indented command, as in:

DO REPEAT tempvar = varl, var2, var3.

+ COMPUTE tempvar = tempvar/10.

+ DO IF (tempvar >= 100). /*Then divide by 10 again.
+ COMPUTE tempvar = tempvar/10.

+ END IF.

END REPEAT.

Conditional Processing

Conditional processing with IBM SPSS Statistics commands is performed on a casewise basis—each case
is evaluated to determine if the condition is met. This is well suited for tasks such as setting the value of a
new variable or creating a subset of cases based on the value(s) of one or more existing variables.

Note: Conditional processing or flow control on a jobwise basis—such as running different procedures for
different variables based on data type or level of measurement or determining which procedure to run
next based on the results of the last procedure—typically requires the type of functionality available only
with the programmability features discussed in the second part of this book.

Conditional Transformations

There are a variety of methods for performing conditional transformations, including;:

 Logical variables
« One or more IF commands, each defining a condition and an outcome
- If/then/else logicina DO IF structure

Example

*if_doifl.sps.

DATA LIST FREE /varl.
BEGIN DATA

1234

END DATA.

COMPUTE newvarl=(varl<3).
IF (varl<3) newvar2=1.
IF (varl>=3) newvar2=0.
DO IF varil<3.

- COMPUTE newvar3=1.
ELSE.

Chapter 2. Data Management 81

- COMPUTE newvar3=0.
END IF.
EXECUTE.

« The logical variable newvarl will have a value of 1 if the condition is true, a value of O if it is false,
and system-missing if the condition cannot be evaluated due to missing data. While it requires only one
simple command, logical variables are limited to numeric values of 0, 1, and system-missing.

e The two IF commands return the same result as the single COMPUTE command that generated the
logical variable. Unlike the logical variable, however, the result of an IF command can be virtually any
numeric or string value, and you are not limited to two outcome results. Each IF command defines a
single conditional outcome, but there is no limit to the number of IF commands you can specify.

« The DO IF structure also returns the same result, and like the IF commands, there is no limit on the
value of the outcome or the number of possible outcomes.

Example

As long as all the conditions are mutually exclusive, the choice between IF and DO IF may often be a
matter of preference, but what if the conditions are not mutually exclusive?

*if_doif2.sps

DATA LIST FREE /varl var2.
BEGIN DATA

11

21

END DATA.

IF (varl=1) newvarl=1.
IF (var2=1) newvarl=2.
DO IF varl=1.

- COMPUTE newvar2=1.
ELSE IF var2=1.

- COMPUTE newvar2=2.
END IF.

EXECUTE.

The two IF statements are not mutually exclusive, since it's possible for a case to have a value of 1 for
both varl and var2. The first IF statement will assign a value of 1 to newvarl for the first case, and then
the second IF statement will change the value of newvarl to 2 for the same case. In IF processing, the
general rule is "the last one wins."

The DO IF structure evaluates the same two conditions, with different results. The first case meets

the first condition and the value of newvar2 is set to 1 for that case. At this point, the DO IF structure
moves on to the next case, because once a condition is met, no further conditions are evaluated for that
case. So the value of newvar2 remains 1 for the first case, even though the second condition (which
would set the value to 2) is also true.

Missing Values in DO IF Structures

Missing values can affect the results from DO IF structures because if the expression evaluates to
missing, then control passes immediately to the END IF command at that point. To avoid this type of

problem, you should attempt to deal with missing values first in the DO IF structure before evaluating
any other conditions.

*create sample data with missing data.
DATA LIST FREE (",") /a.

BEGIN DATA

i, ,1,,

END DATA.

COMPUTE b=a.

* The following does NOT work since the second condition is never evaluated.
DO IF a=1.

- COMPUTE al=1.

ELSE IF MISSING(a).

- COMPUTE al=2.

END IF.

* On the other hand the following works.
DO IF MISSING(b).

- COMPUTE bi1=2.

ELSE IF b=1.

- COMPUTE bi1=1.

END IF.

EXECUTE.

« The first DO IF will never yield a value of 2 for a, because if a is missing, then DO IF a=1 evaluates
as missing, and control passes immediately to END IF. So al will either be 1 or missing.

82 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

- Inthe second DO IF, however, we take care of the missing condition first; so if the value of b is missing,
DO IF MISSING(b) evaluates as true and b1 is set to 2; otherwise, b1 is set to 1.

In this example, DO IF MISSING (b) will always evaluate as either true or false, never as missing,
thereby eliminating the situation in which the first condition might evaluate as missing and pass control to
END IF without evaluating the other condition(s).

Table 5. DO IF results with missing values

a b al b1
1 1 1 1
missing missing missing 2
1 1 1 1
missing missing missing 2

Conditional Case Selection

If you want to select a subset of cases for analysis, you can either filter or delete the unselected cases.

Example

*filter_select_if.sps.

DATA LIST FREE /varl.

BEGIN DATA

12323

END DATA.

DATASET NAME filter.

DATASET COPY temporary.

DATASET COPY select_if.

*compute and apply a filter variable.
COMPUTE filterVar=(varl ~=3).

FILTER By filterVar.

FREQUENCIES VARIABLES=varl.

*delete unselected cases from active dataset.
DATASET ACTIVATE select_if.

SELECT IF (varl~=3).

FREQUENCIES VARIABLES=varl.
*temporarily exclude unselected cases.
DATASET ACTIVATE temporary.
TEMPORARY .

SELECT IF (varl~=3).

FREQUENCIES VARIABLES=varl.
FREQUENCIES VARIABLES=varl.

The COMPUTE command creates a new variable, filterVar. If var1 is not equal to 3, filterVar is set to 1; if
varlis 3, filterVar is set to 0.

The FILTER command filters cases based on the value of filterVar. Any case with a value other than
1 for filterVar is filtered out and is not included in subsequent statistical and charting procedures. The
cases remain in the dataset and can be reactivated by changing the filter condition or turning filtering
off (FILTER OFF). Filtered cases are marked in the Data Editor with a diagonal line through the row
number.

SELECT IF deletes unselected cases from the active dataset, and those cases are no longer available
in that dataset.

The combination of TEMPORARY and SELECT IF temporarily deletes the unselected cases. SELECT

IF is a transformation, and TEMPORARY signals the beginning of temporary transformations that

are in effect only for the next command that reads the data. For the first FREQUENCIES command
following these commands, cases with a value of 3 for varl are excluded. For the second FREQUENCIES
command, however, cases with a value of 3 are now included again.

Simplifying Repetitive Tasks with DO REPEAT

A DO REPEAT structure allows you to repeat the same group of transformations multiple times, thereby
reducing the number of commands that you need to write. The basic format of the command is:

DO REPEAT stand-in variable = variable or value list
/optional additional stand-in variable(s) ..

Chapter 2. Data Management 83

transformation commands
END REPEAT PRINT.

« The transformation commands inside the DO REPEAT structure are repeated for each variable or value
assigned to the stand-in variable.

 Multiple stand-in variables and values can be specified in the same DO REPEAT structure by preceding
each additional specification with a forward slash.

« The optional PRINT keyword after the END REPEAT command is useful when debugging command
syntax, since it displays the actual commands generated by the DO REPEAT structure.

« Note that when a stand-in variable is set equal to a list of variables, the variables do not have to be
consecutive in the data file. So DO REPEAT may be more useful than VECTOR in some circumstances.
See the topic “Vectors” on page 85 for more information.

Example

This example sets two variables to the same value.

* do_repeatl.sps.

*xkcreate some sample dataxxx.
DATA LIST LIST /varl var3 id var2.
BEGIN DATA

3333

2222

END DATA.

**xreal job starts herexxx.

DO REPEAT v=varl var2.

- COMPUTE v=99.

END REPEAT.
EXECUTE.
& “Untitled8 [] - Data Editor =Joed
File Edit View' Data Transform Analyze Graphs Utilities Add-ons Window HB||;-_-
7 varl
vard | ward | id | var2 | var s
1 | 95.00 3.00 3.00 95.00 =
2 99.00 2.00| 2.00 99.00
5 v
4 r |\ Data View £ Variable View [J<] >]

Figure 54. Two variables set to the same constant value

« The two variables assigned to the stand-in variable v are assigned the value 99.
- If the variables don’t already exist, they are created.
Example

You could also assign different values to each variable by using two stand-in variables: one that specifies
the variables and one that specifies the corresponding values.

* do_repeat2.sps.

*xkcreate some sample datakx.
DATA LIST LIST /varl var3 id var2.
BEGIN DATA

2222

END DATA.

**xxreal job starts herexxx.

DO REPEAT v=varl TO var2 /val=1 3 5 7.
- COMPUTE v=val.

END REPEAT PRINT.

EXECUTE.

84 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

& “Untitled? [] - Data Editor (=Jo&d
'File Edit Viele\;”"Data Transform Analyze Graphs Uklities Add-ons WindD'.:'\.'" Help
5 warl
varl | vard | id | var? e

1 1.00 3.00 5.00 7.00

2 1.00 3.00 5.00 7.00

E — v
4 v \Data View_A variahle view f |« E

Figure 55. Different value assigned to each variable

« The COMPUTE command inside the structure is repeated four times, and each value of the stand-in
variable v is associated with the corresponding value of the variable val.

- The PRINT keyword displays the generated commands in the log item in the Viewer.

>
| Output2 [Document2] - Viewer =&
File Edit View Data Transform Insert Format Analyee Graphs Utiities Add-ons Window Help
= -] Outeut
»qﬁlﬂg
124 +COMPUTE warl=1
+ 125 +COMFPUTE vari=3
126 +COMPUTE id=5
127 +COMPUTE varZ="7
< *
SP35 Processor is ready

Figure 56. Commands generated by DO REPEAT displayed in the log

ALL Keyword and Error Handling

You can use the keyword ALL to set the stand-in variable to all variables in the active dataset; however,
since not all variables are created equal, actions that are valid for some variables may not be valid for
others, resulting in errors. For example, some functions are valid only for numeric variables, and other
functions are valid only for string variables.

You can suppress the display of error messages with the command SET ERRORS = NONE, which can
be useful if you know your command syntax will create a certain number of harmless error conditions
for which the error messages are mostly noise. This does not, however, tell the program to ignore error
conditions; it merely prevents error messages from being displayed in the output. This distinction is
important for command syntax run via an INCLUDE command, which will terminate on the first error
encountered regardless of the setting for displaying error messages.

Vectors

Vectors are a convenient way to sequentially refer to consecutive variables in the active dataset. For
example, if age, sex, and salary are three consecutive numeric variables in the data file, we can define
a vector called VectorVar for those three variables. We can then refer to these three variables as
VectorVar(1), VectorVar(2), and VectorVar(3). This is often used in LOOP structures but can also be used
without a LOOP.

Example

You can use the MAX function to find the highest value among a specified set of variables. But what if you
also want to know which variable has that value, and if more than one variable has that value, how many
variables have that value? Using VECTOR and LOOP, you can get the information you want.

*xvectors.sps.

**xcreate some sample datax*x.
DATA LIST FREE

Chapter 2. Data Management 85

/FirstVar SecondVar ThirdVar FourthVar Fifthvar.
BEGIN DATA
12345
10 98 7 6
14442
END DATA.

*xxreal job starts herexxx.
COMPUTE MaxValue=MAX(FirstVar TO Fifthvar).
COMPUTE MaxCount=0.

VECTOR VectorVar=FirstVar TO FifthVar.

LOOP #cnt=5 to 1 BY -1.

- DO IF MaxValue=VectorVar (#cnt).
COMPUTE MaxVar=dcnt.
COMPUTE MaxCount=MaxCount+1.

- END IF.

END LOOP.

EXECUTE.

For each case, the MAX function in the first COMPUTE command sets the variable MaxValue to the
maximum value within the inclusive range of variables from FirstVar to FifthVar. In this example, that
happens to be five variables.

The second COMPUTE command initializes the variable MaxCount to 0. This is the variable that will
contain the count of variables with the maximum value.

The VECTOR command defines a vector in which VectorVar(1) = FirstVar, VectorVar(2) = the next variable
in the file order, ..., VectorVar(5) = FifthVar.

Note: Unlike some other programming languages, vectors in IBM SPSS Statistics start at 1, not O.

The LOOP structure defines a loop that will be repeated five times, decreasing the value of the
temporary variable #cnt by 1 for each loop. On the first loop, VectorVar(#cnt) equals VectorVar(5), which
equals FifthVar; on the last loop, it will equal VectorVar(1), which equals FirstVar.

If the value of the current variable equals the value of MaxValue, then the value of MaxVar is set to the
current loop number represented by #cnt, and MaxCount is incremented by 1.

The final value of MaxVar represents the position of the first variable in file order that contains the
maximum value, and MaxCount is the number of variables that have that value. (LOOP #cnt = 1 TO 5
would set MaxVar to the position of the last variable with the maximum value.)

The vector exists only until the next EXECUTE command or procedure that reads the data.

] “Untitled11 [] - Data Editor =) B2
File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help
B Firstyar isihle: B of &
Firstvar | Secondvar| Thirdvar | Fourkar | Fifthvar | Maxvaloe | MaxCount | Maxvar | '~
1 1.00 2.00 3.00 4.00 5.00 5.00 1.00 5.00
2 10.00 8.00 .00 7.00 .00 10,00 1.00 1.00
3 1.00 4.00 4.00 4.00 200 4.00 3.00 2.00
4
— w
4 » \Data View A Variahle view f 3 >

Figure 57. Highest value across variables identified with VECTOR and LOOP

Creating Variables with VECTOR

You can use the short form of the VECTOR command to create multiple new variables. The short form is
VECTOR followed by a variable name prefix and, in parentheses, the number of variables to create. For
example,

VECTOR newvar(100).

will create 100 new variables, named newvarl, newvar2, ..., newvar100.

Disappearing Vectors

Vectors have a short life span; a vector lasts only until the next command that reads the data, such as
a statistical procedure or the EXECUTE command. This can lead to problems under some circumstances,
particularly when you are testing and debugging a command file. When you are creating and debugging

86 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

long, complex command syntax jobs, it is often useful to insert EXECUTE commands at various stages
to check intermediate results. Unfortunately, this kills any defined vectors that might be needed for
subsequent commands, making it necessary to redefine the vector(s). However, redefining the vectors
sometimes requires special consideration.

* vectors_lifespan.sps.

GET FILE='/examples/data/employee data.sav'.
VECTOR vec(5).

LOOP #cnt=1 TO 5.

- COMPUTE vec (#cnt)=UNIFORM(1) .

END LOOP.

EXECUTE.

*Vector vec no longer exists; so this will cause an error.
LOOP ftcnt=1 TO 5.

- COMPUTE vec (ffcnt)=vec (#cnt)*10.

END LOOP.

*This also causes error because variables vecl - vec5 now exist.
VECTOR vec(5).

LOOP #cnt=1 TO 5.

- COMPUTE vec (ffcnt)=vec (#cnt)*10.

END LOOP.

* This redefines vector without error.
VECTOR vec=vecl TO vech.

LOOP ftcnt=1 TO 5.

- COMPUTE vec (ffcnt)=vec (#cnt)*10.

END LOOP.

EXECUTE.

The first VECTOR command uses the short form of the command to create five new variables as well as
a vector named vec containing those five variable names: vecl to vec5.

The LOOP assigns a random number to each variable of the vector.

EXECUTE completes the process of assigning the random numbers to the new variables (transformation
commands like COMPUTE aren’t run until the next command that reads the data). Under normal
circumstances, this may not be necessary at this point. However, you might do this when debugging

a job to make sure that the correct values are assigned. At this point, the five variables defined by the
VECTOR command exist in the active dataset, but the vector that defined them is gone.

Since the vector vec no longer exists, the attempt to use the vector in the subsequent LOOP will cause
an error.

Attempting to redefine the vector in the same way it was originally defined will also cause an error, since
the short form will attempt to create new variables using the names of existing variables.

-« VECTOR vec=vecl TO vech redefines the vector to contain the same series of variable names as
before without generating any errors, because this form of the command defines a vector that consists
of a range of contiguous variables that already exist in the active dataset.

Loop Structures

The LOOP-END LOOP structure performs repeated transformations specified by the commands within the
loop until it reaches a specified cutoff. The cutoff can be determined in a number of ways:

*loopl.sps.

*xcreate sample data, 4 vars = 0.

DATA LIST FREE /varl var2 var3 vard vars.
BEGIN DATA

00000

END DATA.

**xLoops start herexxx.

*Loop that repeats until MXLOOPS value reached.
SET MXLOOPS=10.

LOOP.

- COMPUTE varl=varl+l.

END LOOP.

*Loop that repeats 9 times, based on indexing clause.
LOOP #I = 1 to 9.

- COMPUTE var2=var2+1.

END LOOP.

*Loop while condition not encountered.
LOOP IF (var3 < 8).

- COMPUTE var3=var3+1.

END LOOP.

*Loop until condition encountered.

LOOP.

- COMPUTE vard=var4+1.

END LOOP IF (vard >= 7).

*Loop until BREAK condition.

LOOP.

- DO IF (var5 < 6).

Chapter 2. Data Management 87

COMPUTE var5=var5+1.
- ELSE.
BREAK.
- END IF.
END LOOP.
EXECUTE.

< An unconditional loop with no indexing clause will repeat until it reaches the value specified on the SET
MXLOOPS command. The default value is 40.

-« LOOP #I = 1 to 9 specifies anindexing clause that will repeat the loop nine times, incrementing
the value of #I by 1 for each loop. LOOP #tempvar = 1 to 10 BY 2 would repeat five times,
incrementing the value of #tempvar by 2 for each loop.

- LOOP IF continues as long as the specified condition is not encountered. This corresponds to the
programming concept of “do while.”

« END LOOP IF continues until the specified condition is encountered. This corresponds to the
programming concept of “do until.”

« ABREAK command in a loop ends the loop. Since BREAK is unconditional, it is typically used only inside
of conditional structures in the loop, suchas DO IF-END IF.

Indexing Clauses

The indexing clause limits the number of iterations for a loop by specifying the number of times the
program should execute commands within the loop structure. The indexing clause is specified on the
LOOP command and includes an indexing variable followed by initial and terminal values.

The indexing variable can do far more than simply define the number of iterations. The current value of
the indexing variable can be used in transformations and conditional statements within the loop structure.
So it is often useful to define indexing clauses that:

 Use the BY keyword to increment the value of the indexing variable by some value other than the default
of1,asin: LOOP #i = 1 TO 100 BY 5.

« Define an indexing variable that decreases in value for each iteration, as in: LOOP #j = 100 TO 1 BY
-1.

Loops that use an indexing clause are not constrained by the MXLOOPS setting. An indexing clause that
defines 1,000 iterations will be iterated 1,000 times even if the MXLOOPS setting is only 40.

The loop structure described in “Vectors” on page 85 uses an indexing variable that decreases for each
iteration. The loop structure described in “Using XSAVE in a Loop to Build a Data File” on page 90 has

an indexing clause that uses an arithmetic function to define the ending value of the index. Both examples
use the current value of the indexing variable in transformations in the loop structure.

Nested Loops

You can nest loops inside of other loops. A nested loop is run for every iteration of the parent loop. For
example, a parent loop that defines 5 iterations and a nested loop that defines 10 iterations will result in a
total of 50 iterations for the nested loop (10 times for each iteration of the parent loop).

Example

Many statistical tests rely on assumptions of normal distributions and the Central Limit Theorem, which
basically states that even if the distribution of the population is not normal, repeated random samples of a
sufficiently large size will yield a distribution of sample means that is normal.

We can use an input program and nested loops to demonstrate the validity of the Central Limit Theorem.
For this example, we’ll assume that a sample size of 100 is “sufficiently large.”

*xloop_nested.sps.

NEW FILE.

SET RNG=MC SEED=987987987.

INPUT PROGRAM.

- VECTOR UniformVar(100).

- xparent loop creates cases.

- LOOP #I=1 TO 100.

- *nested loop creates values for each variable in each case.
LOOP #J=1 to 100.
COMPUTE UniformVar (#J)=RV.UNIFORM(1,1000).

88 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

- END LOOP.
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.
COMPUTE UniformMean=mean(UniformVarl TO UniformVarl00).
COMPUTE NormalVar=RV.NORMAL (500,100) .
FREQUENCIES
VARIABLES=NormalVar UniformVarl UniformMean
/FORMAT=NOTABLE
/HISTOGRAM NORMAL
/ORDER = ANALYSIS.

The first two commands simply create a new, empty active dataset and set the random number seed to
consistently duplicate the same results.

INPUT PROGRAM-END INPUT PROGRAM is used to generate cases in the data file.

The VECTOR command creates a vector called UniformVar, and it also creates 100 variables, named
UniformVar1, UniformVar2, ..., UniformVar100.

The outer LOOP creates 100 cases via the END CASE command, which creates a new case for each
iteration of the loop. END CASE is part of the input program and can be used only within an INPUT
PROGRAM-END INPUT PROGRAM structure.

For each case created by the outer loop, the nested LOOP creates values for the 100 variables.
For each iteration, the value of #J increments by one, setting UniformVar(#J) to UniformVar(1), then
UniformVar(2), and so forth, which in turn stands for UniformVar1, UniformVar2, and so forth.

The RV.UNIFORM function assigns each variable a random value based on a uniform distribution. This is
repeated for all 100 cases, resulting in 100 cases and 100 variables, all containing random values based
on a uniform distribution. So the distribution of values within each variable and across variables within
each case is non-normal.

The MEAN function creates a variable that represents the mean value across all variables for each
case. This is essentially equivalent to the distribution of sample means for 100 random samples, each
containing 100 cases.

« For comparison purposes, we use the RV.NORMAL function to create a variable with a normal
distribution.

Finally, we create histograms to compare the distributions of the variable based on a normal distribution
(NormalVar), one of the variables based on a uniform distribution (UniformVar1), and the variable that
represents the distribution of sample means (UniformMean).

NormalVar UniformVar1

UniformMean

Figure 58. Demonstrating the Central Limit Theorem with nested loops
As you can see from the histograms, the distribution of sample means represented by UniformMean is

approximately normal, despite the fact that it was generated from samples with uniform distributions
similar to UniformVarl.

Chapter 2. Data Management 89

Conditional Loops

You can define conditional loop processing with LOOP IF or END LOOP IF.The main difference between
the two is that, given equivalent conditions, END LOOP IF will produce one more iteration of the loop
than LOOP IF.

Example

*loop_ifl.sps.
DATA LIST FREE /X.
BEGIN DATA
12345

END DATA.

SET MXLOOPS=10.
COMPUTE Y=0.

LOOP IF (X~=3).

- COMPUTE Y=Y+1.
END LOOP.

COMPUTE Z=0.

LOOP.

- COMPUTE Z=Z+1.
END LOOP IF (X=3).
EXECUTE.

LOOP IF (X~=3) does nothing when Xis 3, so the value of Y is not incremented and remains O for that
case.

END LOOP IF (X=3) williterate once when Xis 3, incrementing Z by 1, yielding a value of 1.

For all other cases, the loop is iterated the number of times specified on SET MXLOOPS, yielding a value
of 10 for both Yand Z.

Using XSAVE in a Loop to Build a Data File

You can use XSAVE in a loop structure to build a data file, writing one case at a time to the new data file.
Example

This example constructs a data file of casewise data from aggregated data. The aggregated data file
comes from a table that reports the number of males and females by age. Since IBM SPSS Statistics
works best with raw (casewise) data, we need to disaggregate the data, creating one case for each person
and a new variable that indicates gender for each case.

In addition to using XSAVE to build the new data file, this example also uses a function in the indexing
clause to define the ending index value.

*xloop_xsave.sps.
DATA LIST FREE
/Age Female Male.
BEGIN DATA
20 2 2
21 0 0
2214
2330
24 0 1
END DATA.
LOOP #cnt=1 to SUM(Female, Male).
- COMPUTE Gender = (#cnt > Female).
- XSAVE OUTFILE="/temp/tempdata.sav"
/KEEP Age Gender.
END LOOP.
EXECUTE.
GET FILE='/temp/tempdata.sav'.
COMPUTE IdVar=$CASENUM.
FORMATS Age Gender (F2.0) IdVar(N3).
EXECUTE.

DATA LIST is used to read the aggregated, tabulated data. For example, the first case (record)
represents two females and two males aged 20.

The SUM function in the LOOP indexing clause defines the number of loop iterations for each case. For
example, for the first case, the function returns a value of 4, so the loop will iterate four times.

On the first two iterations, the value of the indexing variable #cnt is not greater than the number of
females. So the new variable Gender takes a value of O for each of those iterations, and the values 20
and O (for Age and Gender) are saved to the new data file for the first two cases.

During the subsequent two iterations, the comparison #fcnt > Female is true, returning a value of 1,
and the next two variables are saved to the new data file with the values of 20 and 1.

90 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

- This process is repeated for each case in the aggregated data file. The second case results in no loop
iterations and consequently no cases in the new data file, the third case produces five new cases, and
so on.

« Since XSAVE is a transformation, we need an EXECUTE command after the loop ends to finish the
process of saving the new data file.

« The FORMATS command specifies a format of N3 for the ID variable, displaying leading zeros for one-
and two-digit values. GET FILE opens the data file that we created, and the subsequent COMPUTE
command creates a sequential ID variable based on the system variable $CASENUM, which is the current
row number in the data file.

Age Ferale hale Age Gender Idvar
20.00 200 2.00 20 0 001
21.00 .00 .00 20 0 ooz
2200 1.00 4.00 20 1 003
23.00 3.00 .00 20 1 004
24.00 .0n 1.00 22 a 005

22 1 006
22 1 oar
22 1 0og
22 1 0og
23 0 010
23 0 011
23] o1z
24 1 013

Figure 59. Tabular source data and new disaggregated data file

Calculations Affected by Low Default MXLOOPS Setting

A LOOP with an end point defined by a logical condition (for example, END LOOP IF varx > 100) will
loop until the defined end condition is reached or until the number of loops specified on SET MXLOOPS is
reached, whichever comes first. The default value of MXLOOPS is only 40, which may produce undesirable
results or errors that can be hard to locate for looping structures that require a larger number of loops to
function properly.

Example

This example generates a data file with 1,000 cases, where each case contains the number of random
numbers—uniformly distributed between 0 and 1—that have to be drawn to obtain a number less than
0.001. Under normal circumstance, you would expect the mean value to be around 1,000 (randomly
drawing numbers between 0 and 1 will result in a value of less than 0.001 roughly once every thousand
numbers), but the low default value of MXLOOPS would give you misleading results.

* set_mxloops.sps.

SET MXLOOPS=40. /* Default value. Change to 10000 and compare.
SET SEED=02051242.
INPUT PROGRAM.
LOOP cnt=1 TO 1000. /*LOOP with indexing clause not affected by MXLOOPS.
- COMPUTE n=0.
- LOOP.
COMPUTE n=n+1.
- END LOOP IF UNIFORM(1)<.001. /xLoops limited by MXLOOPS setting.
- END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.

DESCRIPTIVES VARIABLES=n
/STATISTICS=MEAN MIN MAX .

All of the commands are syntactically valid and produce no warnings or error messages.

SET MXLOOPS=40 simply sets the maximum number of loops to the default value.
The seed is set so that the same result occurs each time the commands are run.

The outer LOOP generates 1,000 cases. Since it uses an indexing clause (cnt=1 TO 1000), itis
unconstrained by the MXLOOPS setting.

Chapter 2. Data Management 91

The nested LOOP is supposed to iterate until it produces a random value of less than 0.001.

Each case includes the case number (cnt) and n, where n is the number of times we had to draw a
random number before getting a number less than 0.001. There is 1 chance in 1,000 of getting such a
number.

The DESCRIPTIVES command shows that the mean value of n is only 39.2—far below the expected
mean of close to 1,000. Looking at the maximum value gives you a hint as to why the mean is so low.
The maximum is only 40, which is remarkably close to the mean of 39.2; and if you look at the values in
the Data Editor, you can see that nearly all of the values of n are 40, because the MXLOOPS limit of 40
was almost always reached before a random uniform value of 0.001 was obtained.

If you change the MXLOOPS setting to 10,000 (SET MXLOOPS=10000), however, you get very different
results. The mean is now 980.9, fairly close to the expected mean of 1,000.

MXLOOPS = 40
M Minimum | Maximum Mean
n 1000 1.00 40.00 39,2100
YWalid M (listwise) 1000
cnt L MXLOOPS = 10000
1.00 40.00
200 A0 .00 M Minimum | Maximum Mean
=00 2000 h 1000 2.00 8223.00 | 98049090
400 4000 Yalid B (listwise) 1000
5.00 40.00 cnt 1]
G.00 40.00 1.00 309.00
2.00 40.00 2.00 2261.00
2.00 29.00 3.00 s00.00
.00 40.00 4.00 259500
10.00 40.00 5.00 1850.00
G.00 281.00
.00 244.00
o.00 1064.00
9.00 35E.00
10.00 1718.00

Figure 60. Different results with different MXLOOPS settings

Exporting Data and Results

You can export and save both data and results in a variety of formats for use by other applications,
including:

Export data in formats that can be read by other data analysis applications

Write data to databases

Export output in Word, Excel, PDF, HTML, and text format

Export output in IBM SPSS Statistics format and then use it as input for subsequent analysis

Read IBM SPSS Statistics format data files into other applications using the IBM SPSS Statistics data file
driver.

Exporting Data to Other Applications and Formats

You can save the contents of the active dataset in a variety of formats, including SAS, Stata, and Excel.
You can also write data to a database.

92 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Saving Data in SAS Format

With the SAVE TRANSLATE command, you can save data as SAS v6, SAS v7, and SAS transport files. A
SAS transport file is a sequential file written in SAS transport format and can be read by SAS with the
XPORT engine and PROC COPY or the DATA step.

Certain characters that are allowed in IBM SPSS Statistics variable names are not valid in SAS, such as
@, #, and $. These illegal characters are replaced with an underscore when the data are exported.

Variable labels containing more than 40 characters are truncated when exported to a SAS v6 file.

Where they exist, IBM SPSS Statistics variable labels are mapped to the SAS variable labels. If no
variable label exists in the IBM SPSS Statistics data, the variable name is mapped to the SAS variable
label.

SAS allows only one value for missing, whereas IBM SPSS Statistics allows the definition of numerous
missing values. As a result, all missing values in IBM SPSS Statistics are mapped to a single missing
value in the SAS file.

Example

*save_as_SAS.sps.

GET FILE='/examples/data/employee data.sav'.

SAVE TRANSLATE OUTFILE='/examples/data/sas7datafile.sas7bdat"’
/TYPE=SAS /VERSION=7 /PLATFORM=WINDOWS
/VALFILE='/examples/data/sas7datafile_labels.sas' .

The active data file will be saved as a SAS v7 data file.

PLATFORM=WINDOWS creates a data file that can be read by SAS running on Windows operating
systems. For UNIX operating systems, use PLATFORM=UNIX. For platform-independent data files, use
VERSION=X to create a SAS transport file.

The VALFILE subcommand saves defined value labels in a SAS syntax file. This file contains proc
format and proc datasets commands that can be runin SAS to create a SAS format catalog file.

For more information, see the SAVE TRANSLATE command in the Command Syntax Reference.

Saving Data in Stata Format
To save data in Stata format, use the SAVE TRANSLATE command with /TYPE=STATA.

Example

*save_as_Stata.sps.
GET FILE='/examples/data/employee data.sav'.
SAVE TRANSLATE
OUTFILE="'/examples/data/statadata.dta’'
/TYPE=STATA
/VERSION=8
/EDITION=SE.

Data can be written in Stata 5-13 format and in both Intercooled and SE format (version 7 or later).

Data files that are saved in Stata 5 format can be read by Stata 4.
The first 80 bytes of variable labels are saved as Stata variable labels.

For Stata releases 4-8, the first 80 bytes of value labels for numeric variables are saved as Stata value
labels. For Stata release 9 or later, the complete value labels for numeric variables are saved. Value
labels are dropped for string variables, non-integer numeric values, and numeric values greater than an
absolute value of 2,147,483,647.

For versions 7 and later, the first 32 bytes of variable names in case-sensitive form are saved as Stata
variable names. For earlier versions, the first eight bytes of variable names are saved as Stata variable
names. Any characters other than letters, numbers, and underscores are converted to underscores.

IBM SPSS Statistics variable names that contain multi-byte characters (for example, Japanese or
Chinese characters) are converted to generic single-byte variable names.

Chapter 2. Data Management 93

 Forversions 5—6 and Intercooled versions 7 and later, the first 80 bytes of string values are saved. For
Stata SE 7-12, the first 244 bytes of string values are saved. For Stata SE 13 or later, complete string
values are saved, regardless of length.

« Forversions 5—6 and Intercooled versions 7 and later, only the first 2,047 variables are saved. For Stata
SE 7 or later, only the first 32,767 variables are saved.

Table 6. How Stata variable type and format map to IBM SPSS Statistics type and format

IBM SPSS Statistics Variable Stata Variable Type Stata Data Format
Type

Numeric Numeric g

Comma Numeric g

Dot Numeric g

Scientific Notation Numeric g

Date*, Datetime Numeric D m.yY

Time, DTime Numeric g (number of seconds)
Wkday Numeric g (1-7)

Month Numeric g(1-12)

Dollar Numeric g

Custom Currency Numeric g

String String S

*Date, Adate, Edate, SDate, Jdate, Qyr, Moyr, Wkyr

Saving Data in Excel Format
To save data in Excel format, use the SAVE TRANSLATE command with /TYPE=XLS.

Example

*save_as_excel.sps.

GET FILE='/examples/data/employee data.sav'.

SAVE TRANSLATE OUTFILE='/examples/data/exceldata.xls'
/TYPE=XLS /VERSION=8
/FIELDNAMES
/CELLS=VALUES .

« VERSION=8 saves the data file in Excel 97-2000 format.
« FTELDNAMES includes the variable names as the first row of the Excel file.

« CELLS=VALUES saves the actual data values. If you want to save descriptive value labels instead, use
CELLS=LABELS.

Writing Data Back to a Database

SAVE TRANSLATE can also write data back to an existing database. You can create new database tables
or replace or modify existing ones. As with reading database tables, writing back to a database uses
ODBC, so you need to have the necessary ODBC database drivers installed.

The command syntax for writing back to a database is fairly simple, but just like reading data from a
database, you need the somewhat cryptic CONNECT string. The easiest way to get the CONNECT string is
to use the Export to Database wizard (File menu in the Data Editor window, Export to Database), and then
paste the generated command syntax at the last step of the wizard.

For more information on ODBC drivers and CONNECT strings, see “Getting Data from Databases” on page
12in.

94 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Example: Create a New Database Table

This example reads a table from an Access database, creates a subset of cases and variables, and then
writes a new table to the database containing that subset of data.

*write_to_access.sps.
GET DATA /TYPE=0DBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb; '+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/SQL = 'SELECT * FROM CombinedTable'.
EXECUTE.
DELETE VARIABLES Income TO Response.
N OF CASES 50.
SAVE TRANSLATE
/TYPE=0DBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb; '+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/TABLE="'CombinedSubset'
/REPLACE
/UNSELECTED=RETAIN
/MAP.

« The CONNECT string in the SAVE TRANSLATE command is exactly the same as the one used in the GET
DATA command, and that CONNECT string was obtained by pasting command syntax from the Database
Wizard. TYPE=0DBC indicates that the data will be saved in a database. The database must already
exist; you cannot use SAVE TRANSLATE to create a database.

« The TABLE subcommand specifies the name of the database table. If the table does not already exist in
the database, it will be added to the database.

« If a table with the name specified on the TABLE subcommand already exists, the REPLACE
subcommand specifies that this table should be overwritten.

 You can use APPEND instead of REPLACE to append data to an existing table, but there must be an
exact match between variable and field names and corresponding data types. The table can contain
more fields than variables being written to the table, but every variable must have a matching field in
the database table.

UNSELECTED=RETAIN specifies that any filtered, but not deleted, cases should be included in the table.
This is the default. To exclude filtered cases, use UNSELECTED=DELETE.

« The MAP subcommand provides a summary of the data written to the database. In this example, we
deleted all but the first three variables and first 50 cases before writing back to the database, and the
output displayed by the MAP subcommand indicates that three variables and 50 cases were written to
the database.

Data written to CombinedSubset.
3 variables and 50 cases written.

Variable: ID Type: Number Width: 11 Dec: 0
Variable: AGE Type: Number Width: 8 Dec: 2
Variable: MARITALSTATUS Type: Number Width: 8 Dec: 2

Example: Append New Columns to a Database Table

The SQL subcommand provides the ability to issue any SQL directives that are needed in the target
database. For example, the APPEND subcommand only appends rows to an existing table. If you want to
append columns to an existing table, you can do so using SQL directives with the SQL subcommand.

*append_to_table.sps.

GET DATA /TYPE=0DBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb; '+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/SQL = 'SELECT * FROM CombinedTable'.

CACHE.

AUTORECODE VARIABLES=income
/INTO income_rank
/DESCENDING.

SAVE TRANSLATE /TYPE=0DBC
/CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb; "'
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/TABLE = 'NewColumn'
/KEEP ID income_rank
/REPLACE
/SQL="ALTER TABLE CombinedTable ADD COLUMN income_rank REAL'
/SQL="UPDATE CombinedTable INNER JOIN NewColumn ON ' +
‘CombinedTable.ID=NewColumn.ID SET ' +
'CombinedTable.income_rank=NewColumn.income_rank'.

Chapter 2. Data Management 95

« The TABLE, KEEP, and REPLACE subcommands create or replace a table named NewColumn that
contains two variables: a key variable (ID) and a calculated variable (income_rank).

« The first SQL subcommand, specified on a single line, adds a column to an existing table that will
contain values of the computed variable income_rank. At this point, all we have done is create an empty
column in the existing database table, and the fact that both database tables and the active dataset use
the same name for that column is merely a convenience for simplicity and clarity.

« The second SQL subcommand, specified on multiple lines with the quoted strings concatenated with
plus signs, adds the income_rank values from the new table to the existing table, matching rows (cases)
based on the value of the key variable ID.

The end result is that an existing table is modified to include a new column containing the values of the
computed variable.

Example: Specifying Data Types and Primary Keys for a New Table

The TABLE subcommand creates a database table with default database types. This example
demonstrates how to create (or replace) a table with specific data types and primary keys.

*write_db_key.sps
DATA LIST LIST /
ID (F3) numVar (£8.2) intVar (£3) dollarVar (dollarl2.2).
BEGIN DATA
123 123.45 123 123.45
456 456.78 456 456.78
END DATA.
SAVE TRANSLATE /TYPE=0DBC
/CONNECT="DSN=Microsoft Access; '+
' DBQ=c:\examples\data\dm_demo.mdb;DriverId=25; "'+
' FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/SQL="'CREATE TABLE NewTable(ID counter, numVar double, intVar smallint, '+
' dollarVar currency, primary key(ID))'
/REPLACE
/TABLE="tempTable"
/SQL="INSERT INTO NewTable(ID, numVar, intVar, dollarVar) '+
' SELECT ID, numVar, intVar, dollarVar FROM tempTable'
/SQL="'DROP TABLE tempTable'.

« The first SQL subcommand creates a new table with data types explicitly defined for each field and also
specifies that ID is the primary key. For compound primary keys, simply include all the variables that
define the primary key in parentheses after primary key, asin: primary key (idVarl, idVar2).
At this point, this new table contains no data.

« The TABLE subcommand creates another new table that contains variables in the active dataset with
the default database data types. In this example, the original variables have variable formats of F3,
F8.2, F3, and Dollarl2.2 respectively, but the default database type for all four is double.

The second SQL subcommand inserts the data from tempTable into NewTable. This does not affect the
data types or primary key designation previously defined for NewTable, so intVar will have a data type of
integer, dollarVar will have a data type of currency, and ID will be designated as the primary key.

« The last SQL subcommand deletes tempTable, since it is no longer needed.

You can use the same basic method to replace an existing table with a table that contains specified
database types and primary key attributes. Just add a SQL subcommand that specifies DROP TABLE prior
to the SQL subcommand that specifies CREATE TABLE.

Saving Data in Text Format

You use the SAVE TRANSLATE command to save data as tab-delimited or CSV-format text or the WRITE
command to save data as fixed-width text. See the Command Syntax Reference for more information.

Reading IBM SPSS Statistics Data Files in Other Applications

The IBM SPSS Statistics data file driver allows you to read IBM SPSS Statistics (.sav and .zsav) data files in
applications that support Open Database Connectivity (ODBC) or Java Database Connectivity (JDBC). IBM
SPSS Statistics itself supports ODBC in the Database Wizard, providing you with the ability to leverage the
Structured Query Language (SQL) when reading .sav and .zsav data files in IBM SPSS Statistics.

96 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

There are three flavors of the IBM SPSS Statistics data file driver, all of which are available for Windows,
UNIX, and Linux:

- Standalone driver. The standalone driver provides ODBC support without requiring installation of
additional components. After the standalone driver is installed, you can immediately set up an ODBC
data source and use it to read .sav and .zsav files.

- Service driver. The service driver provides both ODBC and JDBC support. The service driver handles
data requests from the service client driver, which may be installed on the same computer or on one or
more remote computers. Thus you can configure one service driver that may be used by many clients. If
you put your data files on the same computer on which the service driver is installed, the service driver
can reduce network traffic because all the queries occur on the server. Only the resulting cases are
sent to the service client. If the server has a faster processor or more RAM compared to service client
machines, there may also be performance improvements.

- Service client driver. The service client driver provides an interface between the client application that
needs to read the .sav or .zsav data file and the service driver that handles the request for the data.
Unlike the standalone driver, it supports both ODBC and JDBC. The operating system of the service
client driver does not need to match the operating system of the service driver. For example, you can
install the service driver on a UNIX machine and the service client driver on a Windows machine.

Using the standalone and service client drivers is similar to connecting to a database with any other
ODBC or JDBC driver. After configuring the driver, creating data sources, and connecting to the IBM SPSS
Statistics data file, you will see that the data file is represented as a collection of tables. In other words,
the data file looks like a database source.

Installing the IBM SPSS Statistics Data File Driver

The IBM SPSS Statistics data file driver is available in an eAssembly provided with your IBM SPSS
Statistics product. It is also available on a separate . For additional information, see the IBM SPSS
Statistics Data File Driver Guide.

Example: Using the Standalone Driver with Excel

This section describes how to use the standalone ODBC driver to read IBM SPSS Statistics data files into
another application. For information on using the driver to read IBM SPSS Statistics data files into IBM
SPSS Statistics, see “Using the Standalone Driver” on page 17 in .

This example describes how to use the standalone ODBC driver with Excel on a Windows operating
system. You can, of course, use SAVE TRANSLATE /TYPE=XLS to save data in Excel format (as
described previously in this chapter), but the ODBC driver enables someone without access to IBM SPSS
Statistics to read IBM SPSS Statistics data files into Excel.

Defining a Data Source

To read IBM SPSS Statistics data files into Excel using the standalone ODBC driver, you first need to define
a data source for each data file.

1. In the Windows Control Panel, choose Administrative Tools, and then choose Data Sources (ODBC).
2. In the ODBC Data Source Administrator, click Add.

3. In the Create New Data Source dialog, select IBM SPSS Statistics 17 Data File Driver - Standalone and
then click Finish.

4. In the Standalone Setup dialog, enter the data source name. In this example, we'll simply use the
name of the IBM SPSS Statistics data file: demo.sav.

5. For Statistics Data File Name, enter the full path and name of the data file. In this example, we'll use
c:\examples\data\demo.sav.

Chapter 2. Data Management 97

Statistics Data File Driver

- Standalone Setup

DataSource Mame

Descripkion

Service Mame

Server DataSource

Statistics Data File Mame:

User Missing values show as Mulls

Cancel |

| demo,sav

| StatisticsSAWDriversStandalone b

|5nVDB

| c:iexamplesidataldemo, sav

|

Figure 61. Standalone data source setup dialog

Note that User Missing Values Show as Nulls is set to 1. This means that user-missing values will be
converted to null or blank. If you change the setting to 0, user-missing values are read as valid values.
System-missing values are always converted to null or blank.

Reading the Data File in Excel

1. In Excel 2003, from the menus choose:

Data > Import External Data > Import Data

2. In the Select Data Source dialog, click New Source.

3. In Excel 2007, from the menu tabs and ribbons, choose:

Data > From Other Sources > From Data Connection Wizard
4. In the Data Connection Wizard (Excel 2003 and 2007), select ODBC DSN, and then click Next.

5. In the Connect to ODBC Data Source step, select the data source name you defined for the IBM SPSS
Statistics data file from the list of ODBC data sources (in this example, demo.sav), and then click Next.

6. In the Select Database and Table step, select the Cases table to read the data values or select the
CasesView table to read the defined value labels. For any values without defined value labels, the data
values are displayed.

| B | ® | D E | F |
age marital address income inccat
a5 Married 12 772|550 - §74
56 Unmarried 29 153 |§75+
28 Married 9 28 §25 - 549
24 Married 4 26§25 - §49
25 Unmarried 2 23 Under §25
45 Married 9 76§75+
42 Unmarried 19 40 525 - 49
35 Unmarried 15 57§50 - 574
45 Unmarried 25 24 Under §25

Figure 62. CasesView table with value labels displayed in Excel

Exporting Results

You can export output in many formats, including: Word, Excel, PowerPoint, PDF, HTML, XML, and IBM
SPSS Statistics data file format. This section covers only a few of the available formats and possibilities.
For more information, see the descriptions of OMS and OUTPUT EXPORT in the Command Syntax

Reference.

OMS vs. OUTPUT EXPORT

98 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS Users

Both OMS and OUTPUT EXPORT provide the ability to export output in numerous formats, and in many
respects both commands offer similar functionality. Here are some guidelines for determining which
command is best for your needs:

« To export to XML or IBM SPSS Statistics data file format, use OMS.
« To export to PowerPoint (Windows operating systems only), use OUTPUT EXPORT.

 To specify sheet names in Excel or append results to existing sheets in a workbook, use OUTPUT
EXPORT.

« To control the treatment of wide tables in Word (wrap, shrink to fit) or control page size and margins,
use OUTPUT EXPORT.

« To selectively export output based on object or table type, use OMS.
« To export output with the Batch Facility (available with IBM SPSS Statistics Server), use OMS.

Exporting Output to Word

Both OUTPUT EXPORT and OMS can export output in Word XML (*.docx) format. OUTPUT EXPORT
provides the ability to control the display of wide tables and set page dimensions. OMS provides the ability
to control which types of output objects are included in the exported document.

Exporting to Word with OUTPUT EXPORT

*export_output_word.sps.

GET FILE='/examples/data/demo.sav'.

OUTPUT NEW.

CROSSTABS TABLES=inccat by ed.

OUTPUT EXPORT
/DOC
DOCUMENTFILE="/temp/wrap.docx'
WIDETABLES=WRAP.

OUTPUT EXPORT
/DOC
DOCUMENTFILE="/temp/shrink.docx"
WIDETABLES=SHRINK.

« All output after the OUTPUT NEW command is exported to the Word document.

« WIDETABLES=WRAP in the first OUTPUT EXPORT command specifies that wide tables should be
wrapped. The table is divided into sections that will fit within the defined document width. Row labels
are repeated for each section of the table.

« WIDETABLES=SHRINK in the second OUTPUT EXPORT command specifies that wide tables should be
scaled down to fit on the page. Font size and column width are reduced so that the table fits within the
document width.

Not coincidentally, the crosstabulation produced by this job is too wide to fit in the default Word
document width.

Chapter 2. Data Management 99

Level of education
Cid not complete| High school
high schoal degree Some college | College degree
Income category in Under §25 323 378 241 186
thausands $25- §49 537 730 511 440
§50- 574 224 326 248 259
75+ 307 502 360 410
Total 13490 1936 1360 1355
Lewel of
education
Post
undergraduate
degree Total

Income category in Under $25 37 1174

thousands §25- §40 120 23885

F60- 574 63 1120

7o+ 139 1718

Total 3549 6400

Figure 63. Wide table wrapped in Word
Level of education
Didl not Post-
complete high | High 2chool undergraduste
school degree Some college [College degree degree Total

Income category in Under §25 322 375 241 196 37 1174
thaussnes $25- 549 537 730 511 490 120| 2388
§50 - $74 224 326 245 259 53 1120
§75+ 307 a02 360 40 138 1715
Tatal 1390 1936 1360 1355 358 6400

Figure 64. Wide table scaled down to fit Word page width

The DOC subcommand also provides keywords for changing the page size and margins. For more
information, see the OUTPUT EXPORT command in the Command Syntax Reference.

Exporting to Word with OMS

*oms_word.sps.
GET FILE='/examples/data/demo.sav'.
OMS SELECT TABLES
/IF SUBTYPES=['Crosstabulation']
/DESTINATION FORMAT=DOC
OUTFILE="'/temp/oms_woxrd.docx"'.
CROSSTABS TABLES=inccat by wireless.
DESCRIPTIVES VARIABLES=age.
CROSSTABS TABLES=marital by retire.
OMSEND.

« The OMS request encompasses all output created by any commands between the OMS and OMSEND
commands.

100 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

« SELECT TABLES includes only pivot tables in the OMS output file. Logs, titles, charts, and other object

types will not be included.

« IF SUBTYPES=['Crosstabulation'] narrows the selection down to crosstabulation tables. Notes
tables and case processing summary tables will not be included, nor will any tables created by the

DESCRIPTIVES command.

« DESTINATION FORMAT=DOC creates an OMS output file in Word (*. docx) format.

The end result is a Word document that contains only crosstabulation tables and no other output.

Income category in thousands *Wireless service Crosstabulation

Count
Wireless service
Mo Tes Total
Income category in Lnder §25 822 352 1174
thosants §25 - 48 1480 808 2388
Fa0- %74 644 476 1120
7o+ 907 811 1718
Total 38453 2547 6400
Marital status * Retired Crosstabulation
Count
Retired
Mo fes Total
Marital status Unmarried 30649 1655 3224
Married 3023 153 3176
Total G092 308 6400

Figure 65. OMS results in Word

Exporting Output to Excel

Both OUTPUT EXPORT and OMS can export output in Excel format. OUTPUT EXPORT provides the ability
to specify sheet names within the workbook, create a new sheet in an existing workbook, and append
output to an existing sheet in a workbook. OMS provides the ability to control which types of output

objects are included in the exported document.
Export to Excel with OUTPUT EXPORT

*output_export_excel.sps.
PRESERVE.
SET PRINTBACK OFF.
GET FILE='/examples/data/demo.sav'.
OUTPUT NEW.
FREQUENCIES VARIABLES=inccat.
OUTPUT EXPORT
/CONTENTS EXPORT=VISIBLE
/XLS DOCUMENTFILE='/temp/output_export.xls'
OPERATION=CREATEFILE
SHEET='Frequencies'.
OUTPUT NEW.
DESCRIPTIVES VARIABLES=age.
OUTPUT EXPORT
/CONTENTS EXPORT=VISIBLE
/XLS DOCUMENTFILE='/temp/output_export.xls'
OPERATION=CREATESHEET
SHEET='Descriptives'.
OUTPUT NEW.
FREQUENCIES VARIABLES=ownpda.
OUTPUT EXPORT
/CONTENTS EXPORT=VISIBLE
/XLS DOCUMENTFILE='/temp/output_export.xls'
OPERATION=MODIFYSHEET
SHEET='Frequencies'
LOCATION=LASTROW.
RESTORE.

« PRESERVE preserves the current SET command specifications.

Chapter 2. Data Management 101

SET PRINTBACK OFF turns off the display of commands in the Viewer. If commands are displayed in
the Viewer, then they would also be included in the output exported to Excel.

All output after each OUTPUT NEW command is exported based on the specifications in the next
OUTPUT EXPORT command.

CONTENTS=VISIBLE in all the OUTPUT EXPORT commands includes only visible objects in the Viewer.
Since Notes tables are hidden by default, they will not be included.

XLS DOCUMENTFILE="'/temp/output_export.xls' creates or modifies the named Excel file.
OPERATION=CREATEFILE in the first OUTPUT EXPORT command creates a new file.
SHEET='Frequencies' creates a named sheet in the file.

The output from all commands after the previous OUTPUT NEW commands is included on the sheet
named Frequencies. This includes all the output from the FREQUENCIES command. If commands are
displayed in the Viewer, it also includes the log of the OUTPUT NEW command--but we have turned off
display of commands in the Viewer.

OPERATION=CREATESHEET combined with SHEET="'Descriptives' inthe second OUTPUT EXPORT
command modifies the named Excel file to add the named sheet. In this example, it modifies the same
Excel file we created with the previous OUTPUT EXPORT command, which will now have two sheets:
Frequencies and Descriptives.

The new sheet in the Excel file will contain the output from the DESCRIPTIVES command.

OPERATION=MODIFYSHEET combined with SHEET="'Frequencies"' in the last OUTPUT EXPORT
command modifies the content of the Frequencies sheet.

LOCATION=LASTROW specifies that the output should be appended at the bottom of the sheet, after
the last row that contains any non-empty cells. In this example, the output from the last FREQUENCIES
command will be inserted to the sheet below the output from the first FREQUENCIES command.

The job ends with a RESTORE command that restores your previous SET specifications.

102 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

L@ Microsoft Excel - output_export.xls g@

@_] Eile Edit “iew Insert Format Tools Data ‘Window Help AdobePDF - & X

N EE S B0 S e @ B -E
H39 - e
Al B [c | b [E [®F T o [N

1 Frequencies m

2

o Statistics

i Income category in thousands

5 | M alid G400

B | Mizsing 0

[7 |

3 Income category in thousands

[Cumulative

g Frequency | Percent alid Percent Percent

10| [wsid Under £25 1174 183 18.3 183

11 $25 - $49 2358 ara a7 3 557

12| $50 - 574 1120 175 175 7a2

13 §75+ 1718 265 268 100.0

14 | Total 400 100.0 100.0

[15|

16| Frequencies

[17]

18 Statistics

| 19| Cwns PDA

a0 m alid 5400

ET Mizzing u]

22

el Owns PDA

i Cumulative

24 Frequency | Percert | ‘alid Percent Percert

(25| [waEid Mo 093 796 796 706

E Yes 1307 204 204 100.0

27 | Tetal 5400 1000 100.0

28] o

4 4 » M[\Frequencies { Descrintives / <] il

Ready

Figure 66. Output Export results in Excel

Export to Excel with OMS

*oms_excel.sps.
GET FILE='/examples/data/demo.sav'.
OMS SELECT TABLES
/IF SUBTYPES=['Frequencies']
/DESTINATION FORMAT=XLS
OUTFILE="'/temp/frequencies.xls'.
OMS SELECT TABLES
/IF SUBTYPES=['Descriptive Statistics']
/DESTINATION FORMAT=XLS
OUTFILE="'/temp/descriptives.xls'.
FREQUENCIES VARIABLES=inccat.
DESCRIPTIVES VARIABLES=age.
FREQUENCIES VARIABLES=ownpda.
OMSEND.

The two OMS requests encompass all output created by any commands between the OMS and OMSEND
commands.

SELECT TABLES in both OMS commands includes only pivot tables in the OMS output file. Logs, titles,
charts, and other object types will not be included.

IF SUBTYPES=['Fzrequencies'] inthe first OMS command selects only frequency tables.

IF SUBTYPES=['Descriptive Statistcs'] inthe second OMS command selects only descriptive
statistics tables.

DESTINATION FORMAT=XLS creates an OMS output file in Excel.

The end result is two Excel files: one that contains the two frequency tables from the two FREQUENCIES
commands, and one that contains the descriptive statistics table from the DESCRIPTIVES command.

Chapter 2. Data Management 103

@ Microsoft Excel - frequencies.xls g@
l’:‘l_] Eile Edit Yiew Insert Format Tools Data Window Help adobe PDF e ol ey
N EE S BB D T AL 100% v._@;.%gnrial vé‘i
L33 - p23
2 e =) []
| 1|
2 Income category in thousands
Walid Cumulative
3 Freguency | Percent Percent Percent
4 YWalid Under §25 1174 18.3 18.3 18.3
g §25- 49 2388 7.3] 557
5] $50- %74 1120 17.48 17.5 732
7 §7a+ 1718 26.89 26.8 100.0
g Total G400 100.0 100.0
| 9 |
10 Owns PDA
Walid Cumulative
11 Freguency | Percent Percent Percent
12 Walid Mo 093 9.6 79.6 T9.6
13 Yes 1307 204 204 100.0
14 Total G400 100.0 100.0
| 15 | e
4 4 » W)Sheetl ' B I i >
Ready

Figure 67. OMS results in Excel

Using Output as Input with OMS

Using the OMS command, you can save pivot table output to IBM SPSS Statistics data files and then use
that output as input in subsequent commands or sessions. This can be useful for many purposes. This
section provides examples of two possible ways to use output as input:

« Generate a table of group summary statistics (percentiles) not available with the AGGREGATE command
and then merge those values into the original data file.

« Draw repeated random samples with replacement from a data file, calculate regression coefficients for
each sample, save the coefficient values in a data file, and then calculate confidence intervals for the
coefficients (bootstrapping).

The command syntax files for these examples are installed with the product.

Adding Group Percentile Values to a Data File

Using the AGGREGATE command, you can compute various group summary statistics and then include
those values in the active dataset as new variables. For example, you could compute mean, minimum, and
maximum income by job category and then include those values in the dataset. Some summary statistics,
however, are not available with the AGGREGATE command. This example uses OMS to write a table of
group percentiles to a data file and then merges the data in that file with the original data file.

The command syntax used in this example is oms_percentiles.sps.

GET

FILE='Employee data.sav'.
PRESERVE.
SET TVARS NAMES TNUMBERS VALUES.
DATASET DECLARE freq_table.

**xxsplit file by job category to get group percentiles.
SORT CASES BY jobcat.
SPLIT FILE LAYERED BY jobcat.

OMS
/SELECT TABLES
/IF COMMANDS=['Frequencies'] SUBTYPES=['Statistics']
/DESTINATION FORMAT=SAV
OUTFILE="'freq_table'
/COLUMNS SEQUENCE=[L1 R2].

FREQUENCIES
VARIABLES=salary
/FORMAT=NOTABLE

104 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

/PERCENTILES= 25 50 75.
OMSEND.

**xrestore previous SET settings.
RESTORE.

MATCH FILES FILE=x
/TABLE="freq_table'
/rename (Varl=jobcat)
/BY jobcat
/DROP command_ TO salary_Missing.
EXECUTE.

The PRESERVE command saves your current SET command specifications.

SET TVARS NAMES TNUMBERS VALUES specifies that variable names and data values, not variable
or value labels, should be displayed in tables. Using variable names instead of labels is not technically
necessary in this example, but it makes the new variable names constructed from column labels
somewhat easier to work with. Using data values instead of value labels, however, is required to make
this example work properly because we will use the job category values in the two files to merge them
together.

SORT CASES and SPLIT FILE are used to divide the data into groups by job category (jobcat). The
LAYERED keyword specifies that results for each split-file group should be displayed in the same table
rather than in separate tables.

The OMS command will select all statistics tables from subsequent FREQUENCIES commands and write
the tables to a data file.

The COLUMNS subcommand will put the first layer dimension element and the second row dimension
element in the columns.

The FREQUENCIES command produces a statistics table that contains the 25th, 50th, and 75th
percentile values for salary. Since split-file processing is on, the table will contain separate percentile
values for each job category.

In the statistics table, the variable salary is the only layer dimension element, so the L1 specification in
the OMS COLUMNS subcommand will put salary in the column dimension.

The table statistics are the second (inner) row dimension element in the table, so the R2 specification
in the OMS COLUMNS subcommand will put the statistics in the column dimension, nested under the
variable salary.

The data values 1, 2, and 3 are used for the categories of the variable jobcat instead of the descriptive
text value labels because of the previous SET command specifications.

The following table shows the contents of the resulting dataset.

Table 7. Dataset from frequency table with variables and statistics moved into the column dimension

Command_ Subtype_ Label_ Varl [salary_v |salary_Mi |salary_2 |salary_ |salary_7
alid ssing 5 50 5
Frequencies Statistics Statistic |1 363 0 22800 26550 [31200
Frequencies Statistics Statistic |2 27 0 30000 30750 [31200
Frequencies Statistics Statistic |3 84 0 51618 60500 |72094

« OMSEND ends all active OMS commands. Without this, we could not access the dataset freq_table in the
subsequent MATCH FILES command because the file would still be open for writing.

-« The MATCH FILES command merges the contents of the dataset created from the statistics table with
the original dataset. New variables from the data file created by OMS will be added to the original data
file.

- FILE=+ specifies the current active dataset, which is still the original data file.

« TABLE="freq_table' identifies the dataset created by OMS as a table lookup file. A table lookup file
is a file in which data for each "case" can be applied to multiple cases in the other data file(s). In this
example, the table lookup file contains only three cases—one for each job category.

Chapter 2. Data Management 105

« In the dataset created by OMS, the variable that contains the job category values is named Varl, but
in the original data file, the variable is named jobcat. RENAME (Varl=jobcat) compensates for this
discrepancy in the variable names.

- BY jobcat merges the two files together by values of the variable jobcat. The three cases in the table
lookup file will be merged with every case in the original data file with the same value for jobcat (also
known as Varl in the table lookup file).

« Since we don't want to include the three table identifier variables (automatically included in every data
file created by OMS) or the two variables that contain information on valid and missing cases, we use the
DROP subcommand to omit these from the merged data file.

The end result is three new variables containing the 25th, 50th, and 75th percentile salary values for each
job category.

Bootstrapping with OMS

Bootstrapping is a method for estimating population parameters by repeatedly resampling the same
sample—computing some test statistic on each sample and then looking at the distribution of the test
statistic over all the samples. Cases are selected randomly, with replacement, from the original sample
to create each new sample. Typically, each new sample has the same number of cases as the original
sample; however, some cases may be randomly selected multiple times and others not at all. In this
example, we

« use a macro to draw repeated random samples with replacement;

run the REGRESSION command on each sample;

use the OMS command to save the regression coefficients tables to a data file;

produce histograms of the coefficient distributions and a table of confidence intervals, using the data
file created from the coefficient tables.

The command syntax file used in this example is oms_bootstrapping.sps.

OMS Commands to Create a Data File of Coefficients

Although the command syntax file oms_bootstrapping.sps may seem long and/or complicated, the OMS
commands that create the data file of sample regression coefficients are really very short and simple:

PRESERVE.

SET TVARS NAMES.

DATASET DECLARE bootstrap_example.

OMS /DESTINATION VIEWER=NO /TAG='suppressall'.

OMS
/SELECT TABLES
/IF COMMANDS=['Regression'] SUBTYPES=['Coefficients']
/DESTINATION FORMAT=SAV OUTFILE='bootstrap_example'
/COLUMNS DIMNAMES=['Variables' 'Statistics']
/TAG="reg_coeff'.

The PRESERVE command saves your current SET command specifications, and SET TVARS NAMES
specifies that variable names—not labels—should be displayed in tables. Since variable names in data
files created by OMS are based on table column labels, using variable names instead of labels in tables
tends to result in shorter, less cumbersome variable names.

DATASET DECLARE defines a dataset name that will then be used in the REGRESSION command.

The first OMS command prevents subsequent output from being displayed in the Viewer until an OMSEND
is encountered. This is not technically necessary, but if you are drawing hundreds or thousands of
samples, you probably don't want to see the output of the corresponding hundreds or thousands of
REGRESSION commands.

The second OMS command will select coefficients tables from subsequent REGRESSION commands.

All of the selected tables will be saved in a dataset named bootstrap_example. This dataset will be
available for the rest of the current session but will be deleted automatically at the end of the session
unless explicitly saved. The contents of this dataset will be displayed in a separate Data Editor window.

The COLUMNS subcommand specifies that both the 'Variables' and 'Statistics' dimension elements
of each table should appear in the columns. Since a regression coefficients table is a simple two-
dimensional table with 'Variables' in the rows and 'Statistics' in the columns, if both dimensions appear

106 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

in the columns, then there will be only one row (case) in the generated data file for each table. This is
equivalent to pivoting the table in the Viewer so that both 'Variables' and 'Statistics' are displayed in the
column dimension.

Sampling with Replacement and Regression Macro

The most complicated part of the OMS bootstrapping example has nothing to do with the OMS command.
A macro routine is used to generate the samples and run the REGRESSION commands. Only the basic
functionality of the macro is discussed here.

DEFINE regression_bootstrap (samples=!TOKENS(1)
/depvar=!TOKENS (1)
/indvars=!CMDEND)

COMPUTE dummyvar=1.
AGGREGATE
/OUTFILE=x MODE=ADDVARIABLES
/BREAK=dummyvar
/filesize=N.
!DO !other=1 !TO !samples
SET SEED RANDOM.
WEIGHT OFF.
FILTER OFF.
DO IF $casenum=1.
- COMPUTE d#samplesize=filesize.
- COMPUTE #filesize=filesize.
END IF.
DO IF (i#samplesize>0 and #filesize>0).
- COMPUTE sampleWeight=rv.binom(#samplesize, 1/#filesize).
- COMPUTE d#samplesize=ftsamplesize-sampleWeight.
- COMPUTE #filesize=i#filesize-1.
E[SSER
- COMPUTE sampleWeight=0.
END IF.
WEIGHT BY sampleWeight.
FILTER BY sampleWeight.
REGRESSION
/STATISTICS COEFF
/DEPENDENT !depvar
/METHOD=ENTER !indvars.
! DOEND
'ENDDEFINE.

GET FILE='/examples/data/Employee data.sav'.
regression_bootstrap
samples=100

depvar=salary
indvars=salbegin jobtime.

- A macro named regression_bootstrap is defined. It is designed to work with arguments similar to IBM
SPSS Statistics subcommands and keywords.

« Based on the user-specified number of samples, dependent variable, and independent variable, the
macro will draw repeated random samples with replacement and run the REGRESSION command on
each sample.

« The samples are generated by randomly selecting cases with replacement and assigning weight values
based on how many times each case is selected. If a case has a value of 1 for sampleWeight, it will be
treated like one case. If it has a value of 2, it will be treated like two cases, and so on. If a case has a
value of O for sampleWeight, it will not be included in the analysis.

e The REGRESSION command is then run on each weighted sample.

« The macro is invoked by using the macro name like a command. In this example, we generate 100
samples from the employee data.sav file. You can substitute any file, number of samples, and/or
analysis variables.

Ending the OMS Requests

Before you can use the generated dataset, you need to end the OMS request that created it, because the
dataset remains open for writing until you end the OMS request. At that point, the basic job of creating the
dataset of sample coefficients is complete, but we've added some histograms and a table that displays
the 2.5th and 97.5th percentiles values of the bootstrapped coefficient values, which indicate the 95%
confidence intervals of the coefficients.

OMSEND.

DATASET ACTIVATE bootstrap_example.

FREQUENCIES
VARIABLES=salbegin_B salbegin_Beta jobtime_B jobtime_Beta
/FORMAT NOTABLE
/PERCENTILES= 2.5 97.5

Chapter 2. Data Management 107

/HISTOGRAM NORMAL.
RESTORE.

« OMSEND without any additional specifications ends all active OMS requests. In this example, there were
two: one to suppress all Viewer output and one to save regression coefficients in a data file. If you don't
end both OMS requests, either you won't be able to open the data file or you won't see any results of
your subsequent analysis.

« The job ends with a RESTORE command that restores your previous SET specifications.

Transforming OXML with XSLT

Using the OMS command, you can route output to OXML, which is XML that conforms to the Output XML
schema. This section provides a few basic examples of using XSLT to transform OXML.

« These examples assume some basic understanding of XML and XSLT. If you have not used XML or XSLT
before, this is not the place to start. There are numerous books and Internet resources that can help you
get started.

« All of the XSLT stylesheets presented here are installed with IBM SPSS Statistics in the Samples folder.
« The Output XML schema is documented in the IBM SPSS Statistics help system.

OMS Namespace

Output XML produced by OMS contains a namespace declaration:

xmlns="http://xml.spss.com/spss/oms"

In order for XSLT stylesheets to work properly with OXML, the XSLT stylesheets must contain a similar
namespace declaration that also defines a prefix that is used to identify that namespace in the stylesheet.
For example:

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0" xmlns:oms="http://xml.spss.com/spss/oms">

This defines "oms" as the prefix that identifies the namespace; therefore, all of the XPath expressions that
refer to OXML elements by name must use "oms:" as a prefix to the element name references. All of the
examples presented here use the "oms:" prefix, but you could define and use a different prefix.

"Pushing" Content from an XML File

In the "push" approach, the structure and order of elements in the transformed results are usually defined
by the source XML file. In the case of OXML, the structure of the XML mimics the nested tree structure

of the Viewer outline, and we can construct a very simple XSLT transformation to reproduce the outline
structure.

This example generates the contents of the outline pane in HTML, but it could just as easily generate a
simple text file. The XSLT stylesheet is oms_simple_outline_example.xsl.

108 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0"
xmlns:oms="http://xml.spss.com/spss/oms">
<xsl:template match="/">
<HTML>
<HEAD>
<TITLE>Outline Pane</TITLE>
</HEAD>
<BODY>

0utput
<xsl:apply-templates/>
</BODY>
</HTML>
</xsl:template>
<xsl:template match="oms:command|oms:heading">
<xsl:call-template name="displayoutline"/>
<xsl:apply-templates/>
</xsl:template>
<xsl:template match="oms:textBlock|oms:pageTitle|oms:pivotTable|oms:chartTitle">
<xsl:call-template name="displayoutline"/>
</xsl:template>
<!--indent based on number of ancestors:
two spaces for each ancestor-->
<xsl:template name="displayoutline">

<xsl:for-each select="ancestor::x">
<xsl:text> </xsl:text>
</xsl:for-each>
<xsl:value-of select="@text"/>
<xsl:if test="not(@text)">
<!--no text attribute, must be page title-->
<xsl:text>Page Title</xsl:text>
</xsl:if>
</xsl:template>

</xsl:stylesheet>
Figure 68. XSLT stylesheet oms_simple_outline_example.xs!

« xmlns:oms="http://xml.spss.com/spss/oms" defines "oms" as the prefix that identifies the
namespace, so all element names in XPath expressions need to include the prefix "oms:".

« The stylesheet consists mostly of two template elements that cover each type of element that can
appear in the outline—command, heading, textBlock, pageTitle, pivotTable, and chartTitle.

« Both of those templates call another template that determines how far to indent the text attribute
value for the element.

« The command and heading elements can have other outline items nested under them, so the template
for those two elements also includes <xsl:apply-templates/> to apply the template for the other
outline items.

« The template that determines the outline indentation simply counts the number of "ancestors" the
element has, which indicates its nesting level, and then inserts two spaces (is a "nonbreaking"
space in HTML) before the value of the text attribute value.

« <xsl:if test="not(@text)"> selects <pageTitle> elements because this is the only specified
element that doesn't have a text attribute. This occurs wherever there is a TITLE command in the
command file. In the Viewer, it inserts a page break for printed output and then inserts the specified
page title on each subsequent printed page. In OXML, the <pageTitle> element has no attributes, so
we use <xsl:text> toinsert the text "Page Title" as it appears in the Viewer outline.

Viewer Outline "Titles"

You may notice that there are a number of "Title" entries in the Viewer outline that don't appear in the
generated HTML. These should not be confused with page titles. There is no corresponding element in
OXML because the actual "title" of each output block (the text object selected in the Viewer if you click
the "Title" entry in the Viewer outline) is exactly the same as the text of the entry directly above the
"Title" in the outline, which is contained in the text attribute of the corresponding command or heading
element in OXML.

"Pulling" Content from an XML File

In the "pull" approach, the structure and order of elements in the source XML file may not be relevant
for the transformed results. Instead, the source XML is treated like a data repository from which selected
pieces of information are extracted, and the structure of the transformed results is defined by the XSLT
stylesheet.

Chapter 2. Data Management 109

The "pull" approach typically uses <xsl:for-each> to select and extract information from the XML.

Simple xsl:for-each "Pull" Example

This example uses <xsl:for-each> to "pull" selected information out of OXML output and create
customized HTML tables.

Although you can easily generate HTML output using DESTINATION FORMAT=HTML on the OMS
command, you have very little control over the HTML generated beyond the specific object types included
in the HTML file. Using OXML, however, you can create customized tables. This example

- selects only frequency tables in the OXML file;
« displays only valid (honmissing) values;

displays only the Frequency and Valid Percent columns;

replaces the default column labels with Count and Percent.
The XSLT stylesheet used in this example is oms_simple_frequency_tables.xsl.

Note: This stylesheet is not designed to work with frequency tables generated with layered split-file
processing.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0" xmlns:oms="http://xml.spss.com/spss/oms">
<!--enclose everything in a template, starting at the root node-->
<xsl:template match="/">
<HTML>
<HEAD>
<TITLE>Modified Frequency Tables</TITLE>
</HEAD>
<BODY>
<!--Find all Frequency Tables-->
<xsl:for-each select="//oms:pivotTable[@subType='Frequencies']">
<xsl:for-each select="oms:dimension[@axis="row']">
<h3>
<xsl:value-of select="@text"/>
</h3>
</xsl:for-each>
<!--create the HTML table-->
<table border="1">
<tbody align="char" char="." charoff="1">
<tr>
<=
table header row; you could extract headings from
the XML but in this example we're using different header text
-->
<th>Category</th><th>Count</th><th>Percent</th>
</tr>
<!--find the columns of the pivot table-->
<xsl:for-each select="descendant::oms:dimension[@axis="'column']">
<!--select only valid, skip missing-->
<xsl:if test="ancestor::oms:group[@text="'Valid']">
<tr>
<td>
<xsl:choose>
<xsl:when test="not((parent::*)[@text='Total'])">
<xsl:value-of select="parent::x/@text"/>
</xsl:when>
<xsl:when test="((parent::*)[@text='Total'])">
<xsl:value-of select="parent::%/@text"/>
</xsl:when>
</xsl:choose>
</td>
<td>
<xsl:value-of select="oms:category[@text='Frequency']/oms:cell/@text"/>
</td>
<td>
<xsl:value-of select="oms:category[@text='Valid Percent']/oms:cell/@text"/>
</td>
</tr>
</xsl:if>
</xsl:for-each>
</tbody>
</table>
<!--Don't forget possible footnotes for split files-->
<xsl:if test="descendant::x/oms:note">
<p><xsl:value-of select="descendant::*/oms:note/@text"/></p>
</xsl:if>
</xsl:for-each>
</BODY>
</HTML>
</xsl:template>
</xsl:stylesheet>

Figure 69. XSLT stylesheet: oms_simple_frequency_tables.xs!

e xmlns:oms="http://xml.spss.com/spss/oms" defines "oms" as the prefix that identifies the
namespace, so all element names in XPath expressions need to include the prefix "oms:".

110 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

« The XSLT primarily consists of a series of nested <xs1:for-each> statements, each drilling down to a
different element and attribute of the table.

« <xsl:for-each select="//oms:pivotTable[@subType='Frequencies']"> selects all tables
of the subtype 'Frequencies".

« <xsl:for-each select="oms:dimension[@axis="'row']"> selects the row dimension of each
table.

« <xsl:for-each select="descendant::oms:dimension[@axis="'column']"> selects the
column elements from each row. OXML represents tables row by row, so column elements are nested
within row elements.

e <xsl:if test="ancestor::oms:group[@text="'Valid']"> selects only the section of the table
that contains valid, nonmissing values. If there are no missing values reported in the table, this will
include the entire table. This is the first of several XSLT specifications in this example that rely on
attribute values that differ for different output languages. If you don't need solutions that work for
multiple output languages, this is often the simplest, most direct way to select certain elements. Many
times, however, there are alternatives that don't rely on localized text strings. See the topic “Advanced
xsl:for-each "Pull" Example” on page 111 for more information.

« <xsl:when test="not((parent::*)[@text="'Total'])"> selects column elements that aren't
in the 'Total' row. Once again, this selection relies on localized text, and the only reason we make the
distinction between total and nontotal rows in this example is to make the row label 'Total' bold.

e <xsl:value-of select="oms:category[@text="'Frequency']/oms:cell/@text"/> getsthe
content of the cell in the 'Frequency' column of each row.

« <xsl:value-of select="oms:category[@text='Valid Percent']/oms:cell/@text"/>
gets the content of the cell in the 'Valid Percent' column of each row. Both this and the previous code for
obtaining the value from the 'Frequency’ column rely on localized text.

Advanced xsl:for-each "Pull" Example

In addition to selecting and displaying only selected parts of each frequency table in HTML format, this
example

« doesn't rely on any localized text;

« always shows both variable names and labels;

- always shows both values and value labels;

« rounds decimal values to integers.

The XSLT stylesheet used in this example is customized_frequency _tables.xsl.

Note: This stylesheet is not designed to work with frequency tables generated with layered split-file
processing.

The simple example contained a single XSLT <template> element. This stylesheet contains multiple
templates:

« A main template that selects the table elements from the OXML

« A template that defines the display of variable names and labels

- Atemplate that defines the display of values and value labels

- Atemplate that defines the display of cell values as rounded integers

The following sections explain the different templates used in the stylesheet.

Main Template for Advanced xsl:for-each Example

Since this XSLT stylesheet produces tables with essentially the same structure as the simple <xsl:for-
each> example, the main template is similar to the one used in the simple example.

Chapter 2. Data Management 111

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0" xmlns:oms="http://xml.spss.com/spss/oms">

<!--enclose everything in a template, starting at the root node-->
<xsl:template match="/">

<HTML>

<HEAD>

<TITLE>Modified Frequency Tables</TITLE>

</HEAD>

<BODY>

<xsl:for-each select="//oms:pivotTable[@subType="'Frequencies']">

<xsl:for-each select="oms:dimension[@axis="row']">
<h3>
<xsl:call-template name="showVarInfo"/>
</h3>
</xsl:for-each>
<!--create the HTML table-->
<table border="1">
<tbody align="char" char="." charoff="1">
<tr> <th>Category</th><th>Count</th><th>Percent</th>
</tr>

<xsl:for-each select="descendant::oms:dimension[@axis="'column']">
<xsl:if test="oms:category[3]">
<tr>
<td>
<xsl:choose>
<xsl:when test="parent::x/@varName">
<xsl:call-template name="showValueInfo"/>
</xsl:when>
<xsl:when test="not(parent::x/@varName)">
<xsl:value-of select="parent::x/@text"/>
</xsl:when>
</xsl:choose>
</td>
<td>
<xsl:apply-templates select="oms:category[1]/oms:cell/@numbex"/>
</td>
<td>
<xsl:apply-templates select="oms:category[3]/oms:cell/@number"/>
</td>
</tr>
</xsl:if>
</xsl:for-each>
</tbody>
</table>
<xsl:if test="descendant::x/oms:note">
<p><xsl:value-of select="descendant::x/oms:note/@text"/></p>
</xsl:if>
</xsl:for-each>
</BODY>
</HTML>
</xsl:template>

Figure 70. Main template of customized_frequency_tables.xs!

This template is very similar to the one for the simple example. The main differences are:

« <xsl:call-template name="showVarInfo"/> calls another template to determine what to
show for the table title instead of simply using the text attribute of the row dimension
(oms:dimension[@axis="xow']). See the topic “Controlling Variable and Value Label Display” on
page 113 for more information.

e <xsl:if test="oms:category[3]"> selects only the data in the 'Valid' section of the table instead
of <xsl:if test="ancestor::oms:group[@text='Valid']">. The positional argument used in
this example doesn't rely on localized text. It relies on the fact that the basic structure of a frequency
table is always the same and the fact that OXML does not include elements for empty cells. Since
the 'Missing' section of a frequency table contains values only in the first two columns, there are no
oms:category[3] column elements in the 'Missing' section, so the test condition is not met for the
'‘Missing' rows. See the topic “XPath Expressions in Multiple Language Environments” on page 114 for
more information.

« <xsl:when test="parent::x/@varName"> selects the nontotal rows instead of <xs1:when
test="not((parent::%)[@text="'Total'])">. Column elements in the nontotal rows in a
frequency table contain a varName attribute that identifies the variable, whereas column elements
in total rows do not. So this selects nontotal rows without relying on localized text.

« <xsl:call-template name="showValueInfo"/> calls another template to determine what to
show for the row labels instead of <xsl:value-of select="parent::x/@text"/>.See the topic
“Controlling Variable and Value Label Display” on page 113 for more information.

« <xsl:apply-templates select="oms:category[1l]/oms:cell/@number"/> selects
the value in the 'Frequency' column instead of <xsl:value-of
select="oms:category[@text="'Frequency']/oms:cell/@text"/>. A positional argument is
used instead of localized text (the 'Frequency' column is always the first column in a frequency table),

112 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

and a template is applied to determine how to display the value in the cell. Percentage values are
handled the same way, using oms:category[3] to select the values from the 'Valid Percent' column.
See the topic “Controlling Decimal Display” on page 113 for more information.

Controlling Variable and Value Label Display

The display of variable names and/or labels and values and/or value labels in pivot tables is determined
by the current settings for SET TVARS and SET TNUMBERS—the corresponding text attributes in the
OXML also reflect those settings. The system default is to display labels when they exist and names or
values when they don't. The settings can be changed to always show names or values and never show
labels or always show both.

The XSLT templates showVarInfo and showValuelnfo are designed to ignore those settings and always
show both names or values and labels (if present).

<!--display both variable names and labels-->
<xsl:template name="showVarInfo">
<p>
<xsl:text>Variable Name: </xsl:text>
<xsl:value-of select="@varName"/>
</p>
<xsl:if test="@label">
<p>
<xsl:text>Variable Label: </xsl:text>
<xsl:value-of select="@label"/>
</p>
</xsl:if>
</xsl:template>
<!--display both values and value labels-->
<xsl:template name="showValueInfo">
<xsl:choose>
<!--Numeric vars have a number attribute,
string vars have a string attribute -->
<xsl:when test="parent::%/@number">
<xsl:value-of select="parent::x/@number"/>
</xsl:when>
<xsl:when test="parent::x/@string">
<xsl:value-of select="parent::x/@string"/>
</xsl:when>
</xsl:choose>
<xsl:if test="parent::x/@label">
<xsl:text>: </xsl:text>
<xsl:value-of select="parent::x/@label"/>
</xsl:if>
</xsl:template>

Figure 71. showVarInfo and showValuelnfo templates

o <xsl:text>Variable Name: </xsl:text> and <xsl:value-of select="@varName"/>
display the text "Variable Name:" followed by the variable name.

e <xsl:if test="@label"> checks to see if the variable has a defined label.

« If the variable has a defined label, <xsl:text>Variable Label: </xsl:text>and<xsl:value-
of select="@label" /> display the text "Variable Label:" followed by the defined variable label.

« Values and value labels are handled in a similar fashion, except instead of a varName attribute, values
will have either a number attribute or a string attribute.

Controlling Decimal Display

The text attribute of a <cell> element in OXML displays numeric values with the default number of
decimal positions for the particular type of cell value. For most table types, there is little or no control
over the default number of decimals displayed in cell values in pivot tables, but OXML can provide some
flexibility not available in default pivot table display.

In this example, the cell values are rounded to integers, but we could just as easily display five or six or
more decimal positions because the number attribute may contain up to 15 significant digits.

<!--round decimal cell values to integers-->
<xsl:template match="@number">

<xsl:value-of select="format-numbexr(.,'#')"/>
</xsl:template>

Figure 72. Rounding cell values
« This template is invoked whenever <apply-templates select="..."/>contains areference to a

number attribute.

Chapter 2. Data Management 113

« <xsl:value-of select="format-number(., '#"')"/> specifies that the selected values should
be rounded to integers with no decimal positions.

XPath Expressions in Multiple Language Environments
Text Attributes

Most table elements contain a text attribute that contains the information as it would appear in a pivot
table in the current output language. For example, the column in a frequency table that contains counts is
labeled Frequency in English but Frecuencia in Spanish.

For XPath expressions that need to work in a multiple language environment, it is recommended

to use the text_eng attribute, whose value is the English value of the text attribute regardless

of the output language. For example, in the case of Frequency discussed above the associated

text_eng attribute would always have the value 'Frequency', so your XPath expression would contain
@text_eng='Frequency' instead of @text="'Frequency'. The OATTRS subcommand of the SET
command specifies whether text_eng attributes are included in OXML output.

Positional Arguments

For many table types you can use positional arguments that are not affected by output language. For
example, in a frequency table the column that contains counts is always the first column, so a positional
argument of categoxry[1] at the appropriate level of the tree structure should always select information
in the column that contains counts.

In some table types, however, the elements in the table and order of elements in the table can vary. For
example, the order of statistics in the columns or rows of table subtype "Report" generated by the MEANS
command is determined by the specified order of the statistics on the CELLS subcommand. In fact, two
tables of this type may not even display the same statistics at all. So category[1] might select the
category that contains mean values in one table, median values in another table, and nothing at all in
another table.

Layered Split-File Processing

Layered split-file processing can alter the basic structure of tables that you might otherwise assume

have a fixed default structure. For example, a standard frequency table has only one row dimension
(dimension axis="row"), but a frequency table of the same variable when layered split-file processing
is in effect will have multiple row dimensions, and the total number of dimensions—and row label columns
in the table—depends on the number of split-file variables and unique split-file values.

Controlling and Saving Output Files

In addition to exporting results in external formats for use in other applications, you can also control how
output is routed to different output windows using the OUTPUT commands.

The OUTPUT commands (OUTPUT NEW, OUTPUT NAME, OUTPUT ACTIVATE, OUTPUT OPEN, OUTPUT
SAVE, OUTPUT CLOSE) provide the ability to programmatically manage one or many output documents.
These functions allow you to:

« Save an output document through syntax.

« Programmatically partition output into separate output documents (for example, results for males in
one output document and results for females in a separate one).

« Work with multiple open output documents in a given session, selectively appending new results to the
appropriate document.

Example

*save_output.sps.

OUTPUT CLOSE NAME=ALL.

DATA LIST LIST /GroupVar SummaryVar.
BEGIN DATA

11

NN R
abhwWN

114 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

26

END DATA.

OUTPUT NEW NAME=groupl.

COMPUTE filterVar=(GroupVar=1).

FILTER BY filterVar.

FREQUENCIES VARIABLES=SummaryVar.
OUTPUT SAVE OUTFILE='/temp/groupl.spv'.
OUTPUT NEW NAME=group2.

COMPUTE filterVar=(GroupVar=2).

FILTER BY filterVar.

FREQUENCIES VARIABLES=SummaryVar.
OUTPUT SAVE OUTFILE='/temp/group2.spv'.
FILTER OFF.

OUTPUT CLOSE NAME=ALL closes all currently open output documents. (It does not save output
documents; anything in those documents not previously saved is gone.)

OUTPUT NEW creates a new output document and makes it the active output document. Subsequent
output will be sent to that document. Specifying names for the output documents allows you to switch
between open output documents (using OUTPUT ACTIVATE, which is not used in this example).

OUTPUT SAVE saves the currently active output document to a file.

In this example, output for the two groups defined by GroupVar is sent to two different output
documents, and then those two output documents are saved.

Scoring data with predictive models

The process of applying a predictive model to a set of data is referred to as scoring the data. IBM

SPSS Statistics has procedures for building predictive models such as regression, clustering, tree, and
neural network models. Once a model has been built, the model specifications can be saved in a file that
contains all of the information necessary to reconstruct the model. You can then use that model file to
generate predictive scores in other datasets. Note: Some procedures produce a model XML file, and some
procedures produce a compressed file archive (.zip file).

Example. The direct marketing division of a company uses results from a test mailing to assign propensity
scores to the rest of their contact database, using various demographic characteristics to identify contacts
most likely to respond and make a purchase.

Scoring is treated as a transformation of the data. The model is expressed internally as a set of numeric
transformations to be applied to a given set of fields (variables)--the predictors specified in the model--in
order to obtain a predicted result. In this sense, the process of scoring data with a given model is
inherently the same as applying any function, such as a square root function, to a set of data.

The scoring process consists of two basic steps:

1. Build the model and save the model file. You build the model using a dataset for which the outcome
of interest (often referred to as the target) is known. For example, if you want to build a model that
will predict who is likely to respond to a direct mail campaign, you need to start with a dataset that
already contains information on who responded and who did not respond. For example, this might be
the results of a test mailing to a small group of customers or information on responses to a similar
campaign in the past.

Note: For some model types there is no target outcome of interest. Clustering models, for example, do
not have a target, and some nearest neighbor models do not have a target.

2. Apply that model to a different dataset (for which the outcome of interest is not known) to obtain
predicted outcomes.

Note: Starting with version 19, scoring is available in the core system. In prior releases, scoring required
access to IBM SPSS Statistics Server.

Building a predictive model

IBM SPSS Statistics provides numerous procedures for building predictive models. This example builds a
binary logistic regression model in which the target outcome of interest has only two possible outcomes.
In this example, the contacts who received the test mailing either responded (made a purchase) or did not
respond (did not make a purchase).

Chapter 2. Data Management 115

This example uses two data files: dmdata2.sav is used to build the model, and then that model is applied
to dmdata3.sav.

To build the model, we use the LOGISTIC REGRESSION procedure.

*build_logistic_model.sps.

GET FILE '/examples/data/dmdata2.sav'.

SET RNG=MT MTINDEX=2000000.

COMPUTE Partition=RV.BERNOULLI(.5).

LOGISTIC REGRESSION VARIABLES Responded
/METHOD=ENTER Age Income Education Reside Gender Married Region
/CONTRAST (Income)=INDICATOR
/CONTRAST (Education)=INDICATOR
/CONTRAST (Gender)=INDICATOR
/CONTRAST (Married)=INDICATOR
/CONTRAST (Region)=INDICATOR
/CRITERIA CUT(0.05)

/SELECT Partition EQ 1
/OUTFILE = PARAMETER ("/temp/logistic_model.xml").

The SET command isn't necessary. It's only included to replicate the results of the following COMPUTE
command.

The COMPUTE command creates a new variable Partition, and the BERNOULLI function randomly
assigns the value 1 to half the cases and 0 to the other half. The values of Partition will be used to
split cases into training and testing samples in the LOGISTIC REGRESSION command.

The LOGISTIC REGRESSION command uses the variable Responded as the target (dependent)
variable. Contacts in the test mailing who responded positively (made a purchase) have a value of
1; those who did not respond have a value of 0.

The CRITERIA subcommand specifies a cut-off value of 0.05. This does not affect the actual scoring
model that will be created. It affects only the results of the classification table which we will use to
evaluate the model. Contacts with a predicted probability of responding that is greater than or equal to
0.05 (5%) will be classified as positive responders.

The SELECT subcommand uses the values of Partition to split the contacts into training and testing
groups. The model will be built with contacts in the training group, and then tested on contacts in the
testing group.

The OUTFILE subcommand saves the model information in an XML file that conforms to PMML
standards. This model file will be used to calculate predicted probabilities for contacts in the other
data file.

Evaluating the model

Before you use the model for scoring purposes, you should evaluate how good the model is. The kind
of results available for evaluating the model depend on the technique used to generate the model.
This example uses the results available with the LOGISTIC REGRESSION procedure, available in the
Regression add-on option.

The direct marketing division has determined that they need a positive response rate of at least 5% for
the campaign to be profitable; so they want to know if the model will identify a group of contacts likely to
result in a 5% positive response rate. The classification table provides useful information in this regard.

Classification Tahle®

Fredicted
Selected Cases? Unselected Cases?
Responded to test offer Responded to test offer
Percentage Fercentage
Ohszerved Mo fes Correct Mo fesg Correct
Step 1 Respondedto Mo 651 249 723 653 267 1.0
test offer
Yes 19 20 51.3 36 22 I78
Crverall Percentage 1.5 69.0

a. Selected cases Partition EG 1
h. Unselected cases Partition NE 1
¢. The cutwalue is 050

Figure 73. Classification table

116 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

- The classification table is divided into two sections: Selected Cases are the contacts in the test mailing
used to build the model, and Unselected Cases are the contacts in the test mailing used to test the
model.

« In the Selected Cases group, 269 (249+20) were classified in the "Yes" group, but only 20 of those
actually responded. That makes the correct classification rate for predicted positive responders 7.3%
(20/269), which is higher than the minimum required response rate of 5%.

- The model built with the Selected Cases is then tested on the remaining cases. For the Unselected
Cases, the correct classification rate for predicted positive responders is 22/(267+22) or 7.6%. This is
fairly close to correct classification rate for the cases used to build the model, and is also over the 5%
minimum response rate. This suggests that the model should be appropriate to identify the group of
contacts likely to yield a 5% or higher positive response rate.

Applying the model

The model can be applied to any data file that contains the same measures used as predictors in the
model file. The variable names don't have to be exactly the same. You can map model variable names to
variable names in the data file you want to score. Since the purpose of applying the model is to predict
values associated with the target variable, the target variable does not need to be present in the data file
you want to score.

In this example, the data file to be scored, dmdata3.sav, contains all the measures used to build the
model, except the variable named Income in the data file used to build the model (and consequently
named Income in the model file) is named IncomeCategory in the data file to be scored. (Note: This
variable represents the same income categories in both files. Otherwise it would not be valid to map
IncomeCategory to Income.)

*score_logistic_model.sps.
GET FILE='/examples/data/dmdata3.sav'.
MODEL HANDLE NAME=logistic_model FILE='/temp/logistic_model.xml'
/MAP VARIABLES=IncomeCategory MODELVARIABLES=Income.
COMPUTE ProbabilityOfResponding=APPLYMODEL (logistic_model, 'PROBABILITY', 1).
EXECUTE.
MODEL CLOSE NAME=logistic_model.

The MODEL HANDLE command specifies the model file to use, which in this example is the model file we
created with the LOGISTIC REGRESSION command.

The NAME assigned to the model is used in the subsequent COMPUTE command to identify which model
to use when computing scores (since you can have multiple models open simultaneously).

The MAP subcommand maps the variable IncomeCategory in the active dataset to Income in the model.
The data file being scored must contain variables that match all variables used in the model, otherwise
scores cannot be computed.

The COMPUTE command specifies the APPLYMODEL function, which has two required arguments: model
name and scoring function.

With the PROBABILITY function used in this example, you can also specify an optional third argument,
which is the target value for which you want the predicted probability. Without this third argument,

the PROBABILITY function returns the probability of the predicted value for each case. But we are
specifically interested in the probability of a positive response, which is represented by the value 1 in
the model. (The available scoring functions depend on the model. For details, search for "applymodel"
in the help system.)

« The optional MODEL CLOSE command closes the model.

A new variable, ProbabilityofResponding, is appended to the end of the active dataset. This contains the
probability, expressed as a proportion, that each contact will respond to the campaign. You could then
create a new dataset that contains only those contacts with a predicted probability of equal to or greater
than 5%, as in:

DATASET COPY Maillist.

DATASET ACTIVATE Maillist.

SELECT IF ProbabilityOfResponding >=.05.
EXECUTE.

Chapter 2. Data Management 117

118 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Chapter 3. Programming with Python

Introduction

The IBM SPSS Statistics - Integration Plug-in for Python is one of a family of Integration Plug-Ins that also
includes R and Java. It provides two separate interfaces for programming with the Python language within
IBM SPSS Statistics on Windows, Linux, and macOS, as well as for IBM SPSS Statistics Server.

spss module. The spss module provides functions that operate on the IBM SPSS Statistics processor
and extend the IBM SPSS Statistics command syntax language with the full capabilities of the Python
programming language. This interface allows you to access IBM SPSS Statistics variable dictionary
information, case data, and procedure output, from within Python code. You can also submit command
syntax to IBM SPSS Statistics for processing, create new variables and new cases in the active dataset,
create new datasets, and create output in the form of pivot tables and text blocks, all from within Python
code. Python code that utilizes the spss module is referred to as a Python program.

SpssClient module. The SpssClient module provides functions that operate on user interface and
output objects. With this interface, you can customize pivot tables, export items such as charts and tables
in a variety of formats, invoke IBM SPSS Statistics dialog boxes, and manage connections to instances of
IBM SPSS Statistics Server, all from within Python code. The SpssClient module provides functionality
similar to what is available with Windows-only Basic scripts. A Python module that, directly or indirectly,
utilizes the SpssClient module, without the presence of the spss module, is referred to as a Python
script. Scripts are concerned with objects in the user interface and the Viewer.

A wide variety of tasks can be accomplished in a programmatic fashion with these interfaces.
Control the Flow of a Command Syntax Job

You can write Python programs to control the execution of syntax jobs based on variable properties, case
data, procedure output, error codes, or conditions such as the presence of specific files or environment
variables. With this functionality, you can:

« Conditionally run command syntax only when a particular variable exists in the active dataset or the
case data meet specified criteria.

- Decide on a course of action if a command fails to produce a meaningful result, such as an iterative
process that doesn't converge.

- Determine whether to proceed with execution or halt a job if an error arises during the execution of
command syntax.

Dynamically Create and Submit Command Syntax

Python programs can dynamically construct command syntax and submit it to IBM SPSS Statistics

for processing. This allows you to dynamically tailor command specifications to the current variable
dictionary, the case data in the active dataset, procedure output, or virtually any other information from
the environment. For example, you can create a Python program to:

« Dynamically create a list of variables from the active dataset that have a particular attribute and then
use that list as the variable list for a given syntax command.

« Perform data management operations on a dynamically selected set of files—for example, combine
cases from all IBM SPSS Statistics data files located in a specified directory.

Apply Custom Algorithms to Your Data

Access to case data allows you to use the power of the Python language to perform custom calculations
on your data. This opens up the possibility of using the vast set of scientific programming libraries
available for the Python language. Python programs can write the results back to the active dataset, to
a new dataset, or as pivot table output directed to the Viewer or exported via the Qutput Management

System (OMS). In short, you can write custom procedures in the Python language that have almost the
same capabilities as IBM SPSS Statistics procedures, such as DESCRIPTIVES and REGRESSION.

Create and Manage Multiple Datasets

In addition to accessing the active dataset, Python programs can concurrently access multiple open
datasets as well as create new datasets. This allows you to create one or more new datasets from existing
datasets, combining the data from the existing datasets in any way you choose. It also allows you to
concurrently modify multiple datasets—perhaps with results from an analysis—without having to explicitly
activate each one.

Customize Pivot Tables

You can write Python scripts that customize just about any aspect of a pivot table, including labels, data
cells, and footnotes. You can run your scripts manually, set them up to run as autoscripts to be triggered
by the creation of specified output objects for selected procedures, or call scripting functions from within
Python programs by first importing the SpssClient module. You can also include your customizations in
the base autoscript, which is applied to all new output objects before any autoscripts for specific output
objects are applied.

Develop and Debug Code Using Third-Party IDEs

You can use the Python IDE of your choice to develop and debug both Python programs and Python
scripts. IDEs typically include a rich set of tools for creating and debugging software, such as editors that
do code completion and syntax highlighting and debuggers that allow you to step through your code and
inspect variable and attribute values. In fact, you can build entire applications based on Python programs
that externally drive IBM SPSS Statistics from a Python IDE or from a separate Python process, such as
the Python interpreter.

Prerequisites

The IBM SPSS Statistics - Integration Plug-in for Python works with IBM SPSS Statistics release 14.0.1 or
later and requires only the Core system. Information on how to get the Integration Plug-in for Python is
available from Core System > Frequently Asked Questions > How to Get Integration Plug-Ins in the SPSS
Statistics Help system.

Note: For version 22 and higher, the Integration Plug-in for Python is installed by default with SPSS
Statistics and SPSS Statistics Server, as part of IBM SPSS Statistics - Essentials for Python.

The chapters that follow include hands-on examples of Python programs and Python scripts and assume
a basic working knowledge of the Python programming language, although aspects of the language are
discussed when deemed necessary. For help getting started with the Python programming language, see
the Python tutorial, available at http://docs.python.org/tut/tut.html.

Additional Plug-Ins

The IBM SPSS Statistics Programmability Extension, included with the Core system, provides a general
framework for supporting external languages through Integration Plug-ins, such as the IBM SPSS
Statistics - Integration Plug-in for Python. In particular, there are also freeware Integration Plug-ins for
R and Java (requires SPSS Statistics version 21 or higher). The IBM SPSS Statistics - Integration Plug-in
for R provides access to the extensive set of statistical routines available in R. For more information, see
Programming with R.

Information on how to get these other Plug-ins is available from Core System > Frequently Asked
Questions > How to Get Integration Plug-Ins in the SPSS Statistics Help system.

Getting Started with Python Programming in IBM SPSS Statistics

The spss Python Module

The spss Python module, installed with the IBM SPSS Statistics - Integration Plug-in for Python, enables
you to:

 Build and run command syntax.

120 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

http://docs.python.org/tut/tut.html

« Get information about data in the current IBM SPSS Statistics session.

« Get data, add new variables, and append cases to the active dataset.

- Create new datasets.

« Concurrently access multiple open datasets.

« Get output results.

« Create custom pivot tables and text blocks.

 Create macro variables.

« Get error information.

- Manage multiple versions of the IBM SPSS Statistics - Integration Plug-in for Python.

The functionality available with the module is accessed by including the Python statement import spss
as the first line in a BEGIN PROGRAM-END PROGRAM program block within command syntax, as in:

BEGIN PROGRAM PYTHON.
import spss

spss.Submit ("SHOW ALL.")
END PROGRAM.

« The keyword PYTHON on the BEGIN PROGRAM command specifies that the program block contains
Python code, specifically Python 2 code. Within a PYTHON program block, you have full access to all of
the functionality of the Python 2 programming language. The keyword PYTHON is the default for BEGIN
PROGRAM and can be omitted. To specify that a program block contains Python 3 code, use BEGIN
PROGRAM PYTHON3. Support for Python 3 requires IBM SPSS Statistics release 24 or higher.

 You need to include the import spss statement only once in a given IBM SPSS Statistics session.
Repeating an impoxt statement in subsequent BEGIN PROGRAM blocks essentially has no effect.

« Asyou'll learn in a subsequent topic, the Submit function allows you to send commands to IBM SPSS
Statistics for processing. The prefix spss in spss.Submit specifies that this function can be found in
the spss module.

Note: To run the above program, simply include the code in the Syntax Editor and run it like any other
block of command syntax.

For functions that are commonly used, like Submit, you can omit the spss prefix by including the
statement from spss import <function name> before the first call to the function. For example:

BEGIN PROGRAM.

import spss

from spss import Submit
Submit ("SHOW ALL.")

END PROGRAM.

When included in a program block, output from the Python print statement is directed to a log item in
the IBM SPSS Statistics Viewer if a Viewer is available, as shown in the following program block.
BEGIN PROGRAM.

print "Hello, world!"
END PROGRAM.

5 Output1 [Document1] - Viewer BE =]
File Edit View Data Transform Insert Formak Analyee Graphs Utiities Add-ons Window Help
= & Cutput = Hello, world!

»LEE Log
< ¥

Figure 74. Output from BEGIN PROGRAM displayed in a log item

Many of the functions in the spss module are used in examples in the sections that follow. A brief
description for a particular function is also available using the Python help function. For example, adding
the statement help(spss.Submit) to a program block results in the display of a brief description of the
Submit function in a log item in the Viewer.

Chapter 3. Programming with Python 121

Complete documentation for the spss module is available in the IBM SPSS Statistics Help system, under
Integration Plug-in for Python Help>Python Integration Package for IBM SPSS Statistics.

Running Your Code from a Python IDE

You can run code utilizing the spss module from any Python IDE (Integrated Development Environment).
IDEs typically include a rich set of tools for creating and debugging software, such as editors that do code
completion and syntax highlighting, and debuggers that allow you to step through your code and inspect
variable and attribute values. Once you've completed code development in an IDE, you can include it in a
BEGIN PROGRAM-END PROGRAM block within command syntax.

To run your code from a Python IDE, simply include an import spss statement in the IDE's code
window. You can follow the import statement with calls to any of the functions in the spss module,
just like with program blocks in command syntax jobs, but you don't include the BEGIN PROGRAM-END
PROGRAM statements. A sample session using the PythonWin IDE (a freely available IDE for working with
the Python programming language on Windows) is shown below, and it illustrates a nice feature of using
an IDE--the ability to run code one line at a time and examine the results.

€. PythonWin =Jo&d

File Edit View Tools ‘Window Help

DEH@ %s 2o tBRBRE & 2

%, Interactive Window E]@
[

>>» import sps=s
>x>» Spss.Submit ("get file='/Jexamples/data/demo.sav' L")

Frrx nwvars = spss.GetVariableCount () |
>>» print "This dataset has "+str (nvars)+" wvariakbles™ | |
Thiz dataset has 29 wvariables i
o

et
el
)

Ready [|num [ooood ozg .

Figure 75. Driving IBM SPSS Statistics from a Python IDE

When you submit syntax commands that would normally generate Viewer output, the output is directed to
the IDE's output window, as shown below. In that regard, when you run code utilizing the spss module
from an external process (such as a Python IDE) the code starts up an instance of the IBM SPSS Statistics
backend, without an associated Viewer.

% PythonWin E]@

File Edit Wiew Tools Window Help

D@ s » o 2B RS & T
‘.. Interactive Window g@@1

>>» spss.3ubmit ("descriptives income.™) "J

o examp lesh datah demwo ., sav

Descriptive Statistics

| | I | | | |

| | M | Minimun | Max i | Hean |5td. Deviation| [

| | | | | | | |

| Household income in thousands| e400|9.00 |1116.00] 69.4745| V8. 71856 | |

| [| [[[e

|Walid N (listwise) | 6400 | | | |

| | | | | | |

i

(i)

Ready [oM |ooozo joos

Figure 76. Output from IBM SPSS Statistics command displayed in a Python IDE

122 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

You can suppress output that would normally go to the IBM SPSS Statistics Viewer by calling the
SetOutput function in the spss module. The code spss.SetQutput ("OFF") suppresses output and
spss.SetOutput ("ON") turns it back on. By default, output is displayed.

It can also be useful to programmatically determine whether the IBM SPSS Statistics backend

is being driven by an external Python process. The check is done with the function
spss.PyInvokeSpss.IsXDriven, which returns 1 if a Python process, such as an IDE, is driving the
IBM SPSS Statistics backend and O if IBM SPSS Statistics is driving the backend.

Note:

« You can drive the IBM SPSS Statistics backend with any separate Python process, such as the Python
interpreter. Once you've installed the IBM SPSS Statistics - Integration Plug-in for Python, you initiate
this mode with the import spss statement, just like driving the IBM SPSS Statistics backend from a
Python IDE.

 For IBM SPSS Statistics version 22 and higher, a local distribution of Python is installed by default with
SPSS Statistics and SPSS Statistics Server, as part of IBM SPSS Statistics - Essentials for Python. You
can use this local distribution of Python for developing and running Python programs or you can use a
Python distribution that you installed. For more information, see the topic "Running IBM SPSS Statistics
from an External Python Process" in the help for the Integration Plug-in for Python, within the SPSS
Statistics Help system (requires version 22 or higher). The topic is under Python Integration Package for
IBM SPSS Statistics>Introduction to Python Programs.

The SpssClient Python Module

The SpssClient Python module, installed with the IBM SPSS Statistics - Integration Plug-in for Python,
enables you to:

« Customize pivot tables and text output

« Export items, such as charts and tables, in a variety of formats
Invoke IBM SPSS Statistics dialog boxes

« Manage connections to instances of IBM SPSS Statistics Server

Note: The SpssClient module provides functionality similar to what is available with Windows-only
Basic scripts. For guidance on choosing the right technology for your task, see “Choosing the Best
Programming Technology” on page 142.

The SpssClient module can be used within a BEGIN PROGRAM-END PROGRAM program block or within
a standalone Python module, referred to as a Python script. When used within a BEGIN PROGRAM-END
PROGRAM block, the module allows you to seamlessly integrate code that customizes output with the code
that generates the output. When used as part of a standalone Python module, the SpssClient module
allows you to create general purpose scripts that can be invoked as needed from the IBM SPSS Statistics
client.

Whether used in a program block or in a standalone module, the basic structure of code that utilizes the
SpssClient module is:

import SpssClient
SpssClient.StartClient()
<Python language statements>
SpssClient.StopClient()

- The import SpssClient statement imports the classes and methods available in the SpssClient
module.

« SpssClient.StartClient () provides a connection to the associated IBM SPSS Statistics client,
enabling the code to retrieve information from the client and to perform operations on objects managed
by the client, such as pivot tables. If the code is run from the IBM SPSS Statistics client, a connection is
established to that client. If the code is run from an external Python process (such as a Python IDE or
the Python interpreter), an attempt is made to connect to an existing IBM SPSS Statistics client. If more
than one client is found, a connection is made to the most recently launched one. If an existing client is

Chapter 3. Programming with Python 123

not found, a new and invisible instance of the IBM SPSS Statistics client is started and a connection to it
is established.

« SpssClient.StopClient () terminates the connection to the IBM SPSS Statistics client and should
be called at the completion of the code that utilizes the SpssClient module.

Using the SpssClient Module in a Program Block

*python_SpssClient_module_in_program_block.sps.
BEGIN PROGRAM.
import spss, SpssClient

Code utilizing the spss module to generate output
spss.StartProcedure("Demo")
textBlock = spss.TextBlock("Sample text block",

"A single line of text.")
spss.EndProcedure ()

Code utilizing the SpssClient module to modify the output
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc ()

OutputItems = OutputDoc.GetOutputItems()

OutputItem = OutputItems.GetItemAt(OutputItems.Size()-1)
LogItem = OutputItem.GetSpecificType()

text = LogItem.GetTextContents()
LogItem.SetTextContents("<html>" + text + "</html>")
SpssClient.StopClient()

END PROGRAM.

The impozxt statement includes both the spss and SpssClient modules.

The first section of the code uses the StartProcedure and TextBlock functions from the spss
module to create a text block in the Viewer.

« The second section of the code uses functions in the SpssClient module to change the style of the
text in the text block to bold.

Using the SpssClient Module in an Extension Command

Extension commands are custom commands that provide the ability to invoke external functions written
in Python or R from command syntax. For extension commands implemented in Python, the underlying
code is processed as part of an implicit BEGIN PROGRAM-END PROGRAM block and thus supports
inclusion of the SpssC1lient module. In other words, the code that implements an extension command
can invoke methods in the SpssClient module that act on the output generated by the command. See
the topic “Introduction to Extension Commands” on page 257 for more information.

Using the SpssClient Module in a Standalone Module

This example iterates through the designated output document and changes the text style of all title
items to italic.

#SamplePythonScript.py
import SpssClient
SpssClient.StartClient()
OutputDoc = SpssClient.GetDesignatedOutputDoc ()
OutputItems = OutputDoc.GetOutputItems()
for index in range(OutputItems.Size()):
OutputItem = OutputItems.GetItemAt(index)
if OutputItem.GetType() == SpssClient.OutputItemType.TITLE:
TitleItem = OutputItem.GetSpecificType()
text = TitleItem.GetTextContents()
TitleItem.SetTextContents("<html><I>" + text + "</I></html>")
SpssClient.StopClient()

Standalone Python modules that directly or indirectly utilize the SpssClient module, without the spss
module, are referred to as Python scripts. The Python script shown above is contained in the module
SamplePythonScript.py, included with the accompanying examples. Python scripts can be created from
File > New > Script (within the IBM SPSS Statistics client) when Python is specified as the default script
language. The default script language is set from the Scripts tab in the Options dialog box and is preset to
Basic on Windows and Python on Linux and macOS.

Invoking Python Scripts
Python scripts can be invoked in the following ways:

« Interactively from Utilities > Run Script by selecting the Python module (.py) file containing the script.

124 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

« Interactively from the Python editor launched from IBM SPSS Statistics (accessed from File > Open
> Script) by selecting the Python module (.py) file containing the script. Running the script from the
Python editor allows you to use the debugging tools available with the editor.

Note: Python programs (code that utilizes the spss module) are not intended to be run from the Python
editor launched from IBM SPSS Statistics.

- Implicitly as an autoscript. Autoscripts are scripts that run automatically when triggered by the creation
of specific pieces of output from selected procedures and are typically used to reformat a particular
table type beyond what you can do by applying a TableLook. For example, you could set up an autoscript
to reformat Statistics tables created by the FREQUENCIES command.

« From an external Python process. You can run a Python script from any external Python process, such as
a Python IDE that is not launched from IBM SPSS Statistics, or the Python interpreter.

« Automatically at the start of each session or each time you switch servers. For more information, see
"Scripting Facility" in the Help system.

Getting Help

- For more general information on Python scripts and autoscripts, see "Scripting Facility" in the Help
system.

« For more examples of scripts, see “Modifying and Exporting Output Items” on page 216.

« Complete documentation for the SpssClient module is available in the IBM SPSS Statistics Help
system, under Integration Plug-in for Python Help.

Submitting Commands to IBM SPSS Statistics

The common task of submitting command syntax from a program block is done using the Submit
function from the spss module. In its simplest usage, the function accepts a quoted string representing a
syntax command and submits the command text to IBM SPSS Statistics for processing. For example,

BEGIN PROGRAM.

import spss

spss.Submit("FREQUENCIES VARIABLES=varl, var2, var3.")
END PROGRAM.

imports the spss module and submits a FREQUENCIES command to IBM SPSS Statistics.

Functions in the spss module enable you to retrieve information from, or run command syntax on, the
active dataset. You can load a dataset prior to a BEGIN PROGRAM block as in:

GET FILE='/examples/data/Employee data.sav'.

BEGIN PROGRAM.

import spss

spss.Submit ("FREQUENCIES VARIABLES=gender, educ, jobcat, minority.")
END PROGRAM.

or you can use the Submit function to load a dataset from within a program block as in:

BEGIN PROGRAM.

import spss

spss.Submit (["GET FILE='/examples/data/Employee data.sav'.",
"FREQUENCIES VARIABLES=gender, educ, jobcat, minority."])

END PROGRAM.

« As illustrated in this example, the Submit function can accept a list of strings, each of which consists of
a single syntax command. A list in Python is indicated by enclosing the items in square brackets.

« For Windows users, notice that the file specification uses the forward slash (/) instead of the usual
backslash (\). Escape sequences in the Python programming language begin with a backslash (\), so
using a forward slash prevents an unintentional escape sequence. And IBM SPSS Statistics always
accepts a forward slash in file specifications. Windows users can include backslashes and avoid escape
sequences by using a raw string for the file specification. See the topic “Using Raw Strings in Python” on
page 139 for more information.

Command syntax generated within a program block and submitted to IBM SPSS Statistics must follow
interactive syntax rules. For most practical purposes, this means that command syntax strings that you
build in a programming block must contain a period (.) at the end of each syntax command. The period

Chapter 3. Programming with Python 125

is optional if the argument to the Submit function contains only one command. If you want to include a
file of commands in a session and the file contains BEGIN PROGRAM blocks, you must use the INSERT
command in interactive mode (the default), as opposed to the INCLUDE command.

When you submit commands for IBM SPSS Statistics procedures from BEGIN PROGRAM blocks, you
can embed the procedure calls in Python loops, thus repeating the procedure many times but with
specifications that change for each iteration. That's something you can't do with the looping structures
(LOOP-END LOOP and DO REPEAT-END REPEAT) available in command syntax because the loop
commands are transformation commands, and you can't have procedures inside such structures.

Example

Consider a regression analysis where you want to investigate different scenarios for a single predictor.
Each scenario is represented by a different variable, so you need repeated runs of the Regression
procedure, using a different variable each time. Setting aside the task of building the list of variables
for the different scenarios, you might have something like:

for var in varlist:
spss.Submit ("REGRESSION /DEPENDENT res /METHOD=ENTER " + var + ".")

- varlist is meant to be a Python list containing the names of the variables for the different scenarios.

« On each iteration of the for loop, var is the name of a different variable in varlist. The value of var
is then inserted into the command string for the REGRESSION command.

Dynamically Creating Command Syntax

Using the functions in the spss module, you can dynamically compose command syntax based on
dictionary information and/or data values in the active dataset.

Example

Run the DESCRIPTIVES procedure, but only on the scale variables in the active dataset.

*python_desc_on_scale_vars.sps.
BEGIN PROGRAM.
import spss
spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")
varList=[]
for i in range(spss.GetVariableCount()):
if spss.GetVariableMeasurementlLevel(i)=='scale':
varlList.append(spss.GetVariableName (1))
if len(varlList):
spss.Submit ("DESCRIPTIVES " + " ".join(varList) + ".")
END PROGRAM.

The program block uses four functions from the spss module:

« spss.GetVariableCount returns the number of variables in the active dataset.

« spss.GetVariableMeasurementlLevel (i) returns the measurement level of the variable with index
value i. The index value of a variable is the position of the variable in the dataset, starting with the index
value O for the first variable in file order. Dictionary information is accessed one variable at a time.

« spss.GetVariableName (i) returns the name of the variable with index value i, so you can build a list
of scale variable names. The list is built with the Python list method append.

« spss.Submit submits the string containing the syntax for the DESCRIPTIVES command to IBM SPSS
Statistics. The set of variables included on the DESCRIPTIVES command comes from the Python
variable varList, which is a Python list, but the argument to the Submit function in this case is a
string. The list is converted to a string using the Python string method join, which creates a string
from a list by concatenating the elements of the list, using a specified string as the separator between
elements. In this case, the separatoris " ", a single space. In the present example, varList has the
value ['id', 'bdate', 'salary', 'salbegin', 'jobtime', 'prevexp']. The completed string is:

DESCRIPTIVES id bdate salary salbegin jobtime prevexp.

When you're submitting a single command to IBM SPSS Statistics, it's usually simplest to call the Submit
function with a string representing the command, as in the above example. You can submit multiple
commands with a single call to Submit by passing to Submit a list of strings, each of which represents a

126 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

single syntax command. You can also submit a block of commands as a single string that spans multiple
lines, resembling the way you might normally write command syntax. See the topic “Creating Blocks of
Command Syntax within Program Blocks” on page 137 for more information.

Capturing and Accessing Output

Functionality provided with the spss module allows you to access IBM SPSS Statistics procedure output
in a programmatic fashion. This is made possible through an in-memory workspace--referred to as the
XML workspace--that can contain an XML representation of procedural output. Output is directed to the
workspace with the OMS command and retrieved from the workspace with functions that employ XPath
expressions. For the greatest degree of control, you can work with OMS or XPath explicitly or you can

use utility functions, available in supplementary modules, that construct appropriate OMS commands and
XPath expressions for you, given a few simple inputs.

Example

In this example, we'll run the Descriptives procedure on a set of variables, direct the output to the XML
workspace, and retrieve the mean value of one of the variables. The example assumes that variables in
labels in Pivot Tables are displayed as the associated variable label (as set from the Output Labels tab on
the Options dialog box).

*python_retrieve_output_value.sps.
BEGIN PROGRAM.
import spss,spssaux
spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")
cmd="DESCRIPTIVES VARIABLES=salary,salbegin,jobtime,prevexp."
desc_table,errcode=spssaux.CreateXMLOutput (
cmd,
omsid="Descriptives")
meansal=spssaux.GetValuesFromXMLWorkspace (
desc_table,
tableSubtype="Descriptive Statistics",
rowCategory="Current Salary",
colCategory="Mean",
cellAttrib="text")
if meansal:
print "The mean salary is: ", meansal[0]
END PROGRAM.

The BEGIN PROGRAM block starts with an import statement for two modules: spss and spssaux.
spssaux is a supplementary module that is installed with the IBM SPSS Statistics - Integration
Plug-in for Python. Among other things, it contains two functions for working with procedure
output: CreateXMLOutput generates an OMS command to route output to the XML workspace,
and it submits both the OMS command and the original command to IBM SPSS Statistics; and
GetValuesFromXMLWorkspace retrieves output from the XML workspace without the explicit use
of XPath expressions.

The call to CxreateXMLOutput includes the command as a quoted string to be submitted to IBM

SPSS Statistics and the associated OMS identifier (available from the OMS Identifiers dialog box on the
Utilities menu). In this example, we're submitting a DESCRIPTIVES command, and the associated OMS
identifier is "Descriptives." Output generated by DESCRIPTIVES will be routed to the XML workspace
and associated with an identifier whose value is stored in the variable desc_table. The variable errcode
contains any error level from the DESCRIPTIVES command—oO if no error occurs.

In order to retrieve information from the XML workspace, you need to provide the identifier associated
with the output--in this case, the value of desc_table. That provides the first argument to the
GetValuesFromXMLWorkspace function.

We're interested in the mean value of the variable for current salary. If you were to look at the
Descriptives output in the Viewer, you would see that this value can be found in the Descriptive
Statistics table on the row for the variable Current Salary and under the Mean column. These same
identifiers--the table name, row name, and column name--are used to retrieve the value from the XML
workspace, as you can see in the arguments used for the GetValuesFromXMLWorkspace function.

In the general case, GetValuesFromXMLWorkspace returns a list of values—for example, the values in
a particular row or column in an output table. Even when only one value is retrieved, as in this example,
the function still returns a list structure, albeit a list with a single element. Since we are interested in
only this single value (the value with index position 0 in the list), we extract it from the list. Note: If the
XPath expression does not match anything in the workspace object, you will get back an empty list.

Chapter 3. Programming with Python 127

See the topic “Retrieving Output from Syntax Commands” on page 190 for more information.

Modifying Pivot Table Output

The SpssClient module provides methods that allow you to customize pivot tables in output
documents.

Example

This example illustrates code that accesses each pivot table in the designated output document and
changes the text style to bold.

#ChangePivotTableTextStyle.py
import SpssClient
SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc ()
OutputItems = OutputDoc.GetOutputItems()

for index in range(OutputItems.Size()):
OutputItem = OutputItems.GetItemAt(index)
if OutputItem.GetType() == SpssClient.OutputItemType.PIVOT:
PivotTable = OutputItem.GetSpecificType()
PivotTable.SelectTable()
PivotTable.SetTextStyle(SpssClient.SpssTextStyleTypes.SpssTSBold)
SpssClient.StopClient()

The GetDesignatedOutputDoc method of the SpssClient class returns an object representing the
designated output document (the current document to which output is routed). The GetOutputItems
method of the output document object returns a list of objects representing the items in the output
document, such as pivot tables, charts, and log items.

The for loop iterates through the list of items in the output document. Pivot tables are identified as an
output item type of SpssClient.OutputItemType.PIVOT.

Once an output item has been identified as a pivot table, you get an object representing the pivot table
by calling the GetSpecificType method on the output item object. In this example, PivotTable is a
pivot table object.

The SelectTable method of the pivot table object selects all elements of the table and the
SetTextStyle method is used to set the text style to bold.

You can include this code with the code that generates the pivot tables or use it as a standalone Python
script that you can invoke in a variety of ways. See the topic “The SpssClient Python Module” on page 123
for more information. For more information about the methods used in this example, see “Modifying and
Exporting Output Items” on page 216.

Python Syntax Rules

Within a program block, only statements and functions recognized by the Python processor are allowed.
Python syntax rules differ from IBM SPSS Statistics command syntax rules in a number of ways:

Python is case-sensitive. This includes Python variable names, function names, and pretty much
anything else you can think of. A Python variable name of myvariable is not the same as MyVariable,
and the Python function spss.GetVariableCount is not the same as SPSS. getvariablecount.

There is no command terminator in Python, and continuation lines come in two flavors:

« Implicit. Expressions enclosed in parentheses, square brackets, or curly braces can continue across
multiple lines (at natural break points) without any continuation character. Quoted strings contained in
such an expression cannot continue across multiple lines unless they are triple-quoted. The expression
continues implicitly until the closing character for the expression is encountered. For example, lists
in the Python programming language are enclosed in square brackets, functions contain a pair of
parentheses (whether they take any arguments or not), and dictionaries are enclosed in curly braces so
that they can all span multiple lines.

« Explicit. All other expressions require a backslash at the end of each line to explicitly denote
continuation.

128 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Line indentation indicates grouping of statements. Groups of statements contained in conditional
processing and looping structures are identified by indentation. There is no statement or character that
indicates the end of the structure. Instead, the indentation level of the statements defines the structure,
asin:
for i in range(varcount):

"""A multi-line comment block enclosed in a pair of

triple-quotes."""

if spss.GetVariableMeasurementlLevel (i)=="scale":

ScaleVarlList.append(spss.GetVariableName(i))

else:
CatVarList.append(spss.GetVariableName (1))

As shown here, you can include a comment block that spans multiple lines by enclosing the text in a pair
of triple-quotes. If the comment block is to be part of an indented block of code, the first set of triple
quotes must be at the same level of indentation as the rest of the block. Avoid using tab characters in
program blocks that are read by IBM SPSS Statistics.

Escape sequences begin with a backslash. The Python programming language uses the backslash (\)
character as the start of an escape sequence; for example, "\n" for a newline and "\t" for a tab. This
can be troublesome when you have a string containing one of these sequences, as when specifying file
paths on Windows, for example. The Python programming language offers a number of options for dealing
with this. For any string where you just need the backslash character, you can use a double backslash

(\V. For strings specifying file paths, you can use forward slashes (/) instead of backslashes. You can also
specify the string as a raw string by prefacing it with an r or R; for example, r"c:\temp". Backslashes in
raw strings are treated as the backslash character, not as the start of an escape sequence. See the topic
“Using Raw Strings in Python” on page 139 for more information.

Python Quoting Conventions

« Strings in the Python programming language can be enclosed in matching single quotes (') or double
quotes ("), as in IBM SPSS Statistics.

« To specify an apostrophe (single quote) within a string, enclose the string in double quotes. For
example,

"Joe's Bar and Grille"
is treated as
Joe's Bar and Grille
« To specify quotation marks (double quotes) within a string, use single quotes to enclose the string, as in

'Categories Labeled "UNSTANDARD" in the Report'

- The Python programming language treats double quotes of the same type as the outer quotes
differently from IBM SPSS Statistics. For example,

'Joe''s Bar and Grille'
is treated as
Joes Bar and Grille

in Python; that is, the concatenation of the two strings 'Joe' and 's Bar and Grille'.

Mixing Command Syntax and Program Blocks

Within a given command syntax job, you can intersperse BEGIN PROGRAM-END PROGRAM blocks with
any other syntax commands, and you can have multiple program blocks in a given job. Python variables
assigned in a particular program block are available to subsequent program blocks, as shown in this
simple example:

*python_multiple_program_blocks.sps.
DATA LIST FREE /varl.

BEGIN DATA

1

END DATA.

DATASET NAME Filel.

BEGIN PROGRAM.

import spss

Chapter 3. Programming with Python 129

FilelN=spss.GetVariableCount()
END PROGRAM.
DATA LIST FREE /varl var2 var3.
BEGIN DATA
123
END DATA.
DATASET NAME File2.
BEGIN PROGRAM.
File2N=spss.GetVariableCount()
if File2N > FilelN:
message="File2 has more variables than Filel."
elif FiledN > File2N:
message="Filel has more variables than File2."
else:

message="Both files have the same number of variables."
print message
END PROGRAM.

- The first program block contains the import spss statement. This statement is not required in the
second program block.

 The first program block defines a programmatic variable, FileIN, with a value set to the number of
variables in the active dataset. The Python code in a program block is executed when the END PROGRAM
statement in that block is reached, so the variable FileIN has a value prior to the second program block.

« Prior to the second program block, a different dataset becomes the active dataset, and the second

program block defines a programmatic variable, File2N, with a value set to the number of variables in
that dataset.

« The value of FileIN persists from the first program block, so the two variable counts can be compared in
the second program block.

Passing Values from a Program Block to Command Syntax

Within a program block, you can define a macro variable that can be used outside of the block in
command syntax. This provides the means to pass values computed in a program block to command
syntax that follows the block. Although you can run command syntax from Python using the Submit
function, this is not always necessary. The method described here shows you how to use Python
statements to compute what you need and then continue on with the rest of your syntax job, making
use of the results from Python. As an example, consider building separate lists of the categorical and
scale variables in a dataset and then submitting a FREQUENCIES command for any categorical variables
and a DESCRIPTIVES command for any scale variables. This example is an extension of an earlier one

where only scale variables were considered. See the topic “Dynamically Creating Command Syntax” on
page 126 for more information.

*python_set_varlist_macros.sps.
BEGIN PROGRAM.
import spss
spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")
catlist=[]
scalist=[]
for i in range(spss.GetVariableCount()):
varName=spss.GetVariableName (i)
if spss.GetVariableMeasurementlLevel(i) in ['nominal', 'ordinal']:
catlist.append(varName)
else:
scalist.append(varName)
if len(catlist):
categoricalVars = " ".join(catlist)
spss.SetMacroValue("!catvars", categoricalVars)
if len(scalist):
scaleVars = " ".join(scalist)
spss.SetMacroValue("!scavars", scaleVars)
END PROGRAM.

FREQUENCIES !catvars.
DESCRIPTIVES !scavars.

The for loop builds separate Python lists of the categorical and scale variables in the active dataset.

The SetMacroValue function in the spss module takes a name and a value (string or numeric) and
creates a macro of that name that expands to the specified value (a numeric value provided as an
argument is converted to a string). The macro is then available to any command syntax following

the BEGIN PROGRAM-END PROGRAM block that created the macro. In the present example, this
mechanism is used to create macros containing the lists of categorical and scale variables. For example,
spss.SetMacroValue("!catvars", categoricalVars) creates a macronamed !catvars that
expands to the list of categorical variables in the active dataset.

Tests are performed to determine if the list of categorical variables or the list of scale variables is empty
before attempting to create associated macros. For example, if there are no categorical variables in the

130 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

dataset, then 1len(catlist) will be 0 and interpreted as false for the purpose of evaluating an if
statement.

« At the completion of the BEGIN PROGRAM block, the macro ! catvars contains the list of categorical
variables and ! scavazrs contains the list of scale variables. If there are no categorical variables, then !
catvars will not exist. Similarly, if there are no scale variables, then ! scavars will not exist.

e The FREQUENCIES and DESCRIPTIVES commands that follow the program block reference the macros
created in the block.

You can also pass information from command syntax to program blocks through the use of datafile
attributes. See the topic “Retrieving Datafile Attributes” on page 153 for more information.

Nested Program Blocks

From within Python, you can submit command syntax containing a BEGIN PROGRAM block, thus allowing
you to nest program blocks. For example, within a Python program block you can submit syntax that
contains an R program block. You can have up to five levels of such nesting. For IBM SPSS Statistics
releases prior to 23, you can submit a nested block only from Python.

One approach for nesting program blocks is to include the nested block in a separate command syntax file
and submit an INSERT command to read in the block.

Example

BEGIN PROGRAM.

import spss

spss.Submit ("INSERT FILE='/myprograms/nested_block.sps'.")
END PROGRAM.

The file /myprograms/nested_block.sps would contain a BEGIN PROGRAM block, as in:

BEGIN PROGRAM PYTHON.
import spss

<Python code>

END PROGRAM.

The above approach, however, is not supported if you need to embed the code that nests a program block
in a Python module that can be imported. For example, you would like to import a Python module that
uses the INSERT command to insert a file containing a program block. This is not supported. If you wish
to encapsulate nested program blocks in a Python module that can be imported, then embed the nesting
code in a user-defined function as shown in the following example.

Example

BEGIN PROGRAM.
import spss, myfuncs
myfuncs.demo()

END PROGRAM.

« myfuncs is a user-defined Python module containing the function (demo) that will submit the nested
program block.

A Python module is simply a text file containing Python definitions and statements. You can create a
module with a Python IDE, or with any text editor, by saving a file with an extension of .py. The name of
the file, without the .py extension, is then the name of the module.

« The impoxrt statement includes myfuncs so that it is loaded along with the spss module. To be sure
that Python can find your module, you may want to save it to your Python site-packages directory. For
help in locating your Python site-packages directory, see .

« The code myfuncs.demo () calls the function demo in the myfuncs module.

Following is a sample of the contents of myfuncs.

import spss

def demo():
spss.Submit ("""

BEGIN PROGRAM PYTHON.

<Python code>

END PROGRAM.""")

Chapter 3. Programming with Python 131

« The sample myfuncs module includes an import spss statement. This is necessary since a function
in the module makes use of a function from the spss module--specifically, the Submit function.

- The nested program block is contained within a Python triple-quoted string. Triple-quoted strings allow
you to specify a block of commands on multiple lines, resembling the way you might normally write
command syntax. See the topic “Creating Blocks of Command Syntax within Program Blocks” on page
137 for more information.

 Notice that spss.Submit is indented but the BEGIN PROGRAM block is not. Python statements, such
as spss.Submit, that form the body of a user-defined Python function must be indented. The BEGIN
PROGRAM block is passed as a string argument to the Submit function and is processed by IBM SPSS
Statistics as a block of Python statements. Python statements are not indented unless they are part of a
group of statements, as in a function or class definition, a conditional expression, or a looping structure.

Variable Scope

Python variables specified in a nested program block are local to that block unless they are specified as
global variables. In addition, Python variables specified in a program block that invokes a nested block
can be read, but not modified, in the nested block. Consider the following simple program block:

BEGIN PROGRAM.
import spss

varl = 0
spss.Submit ("INSERT FILE='/myprograms/nested_block.sps'.")
print "Value of varl from root block after calling nested block: ", varl
try:
print "Value of var2 from root block: ", var2
except:

print "Can't read var2 from root block"
END PROGRAM.

And the associated nested block (contained in the file /myprograms/nested_block.sps):

BEGIN PROGRAM.

print "Value of varl from nested block: ", varl
var2 = 1
varl = 1

END PROGRAM.

The result of running the first program block is:

Value of varl from nested block: 0
Value of varl from root block after calling nested block: 0
Value of var2 from root block: Can't read var2 from root block

« The first line of the result shows that the nested block can read the value of a variable, varl, set in the
calling block.

« The second line of the result shows that a nested block cannot modify the value of a variable set in a
calling block. In other words, varl in the nested block is local to that block and has no relation to the
variable varl in the calling block. If a nested block really needs to modify a variable in the calling block,
that variable must be declared global at the start of the nested block.

« The third line of the result shows that a calling block cannot read the value of a variable set in a nested
block.

Handling Errors

Errors detected during execution generate exceptions in Python. Aside from exceptions caught by the
Python interpreter, the spss module catches three types of errors and raises an associated exception: an
error in executing a syntax command submitted via the Submit function, an error in calling a function in
the spss module (such as using a string argument where an integer is required), and an error in executing
a function in the spss module (such as providing an index beyond the range of variables in the active
dataset).

Whenever there is a possibility of generating an error, it's best to include the associated code in a Python
try clause, followed by an except or £inally clause that initiates the appropriate action.

Example

132 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

Suppose you need to find all .sav files, in a directory, that contain a particular variable. You search for
filenames that end in.sav and attempt to obtain the list of variables in each. There's no guarantee,
though, that a file with a name ending in .sav is actually a data file in IBM SPSS Statistics format, so your
attempt to obtain variable information may fail. Here's a code sample that handles this, assuming that you
already have the list of files that end with .sav:

for fname in savfilelist:

try:
spss.Submit("get file='" + dirname + "/" + fname + "'.")
<test if variable is in file and print file name if it is>
except:

pass

« The first statement in the try clause submits a GET command to attempt to open a file from the list of
those that end with .sav.

- If the file can be opened, control passes to the remainder of the statements in the try clause to test if
the file contains the variable and print the filename if it does.

- If the file cannot be opened, an exception is raised and control passes to the except clause. Since the
file isn't a data file in IBM SPSS Statistics format, there's no action to take, so the except clause just
contains a pass statement.

In addition to generating exceptions for particular scenarios, the spss module provides functions to
obtain information about the errors that gave rise to the exceptions. The function GetLastErrorLevel
returns the error code for the most recent error, and GetLastErrorMessage returns text associated
with the error code.

Working with Multiple Versions of IBM SPSS Statistics

Beginning with version 15.0 of IBM SPSS Statistics, multiple versions of the IBM SPSS Statistics -
Integration Plug-in for Python can be used on the same machine, each associated with a major version of
IBM SPSS Statistics such as 23 or 28. For information on working with multiple versions, see the topic on
the Integration Plug-in for Python in the IBM SPSS Statistics Help system.

Creating a Graphical User Interface

The Custom Dialog Builder, introduced in release 17.0, allows you to create a user interface for your
Python code, whether it's wrapped in an extension command (a custom command implemented in
Python, R, or Java) or simply contained in a BEGIN PROGRAM-END PROGRAM block. You can also create
user interfaces with one of a variety of toolkits available with the Python programming language--such
as the Tkinter module (provided with Python), or wxPython, which is a popular, downloadable toolkit.
Unless you need to drive the user interface from an external Python process or interact with the user at
some intermediate point during execution, use the Custom Dialog Builder. For an example of using the
Custom Dialog Builder, see the tutorial "Working with R" in the SPSS Statistics Help system.

The remainder of this section contains examples of user interface components built with the wxPython
toolkit, which is freely available from http://www.wxpython.org/. The examples are intended to display
the ease with which you can create some of the more common user interface components that might be
useful in Python programs that interact with IBM SPSS Statistics. Although the examples demonstrate
user interface components within Python programs, the same toolkits can be used in Python scripts.

Example: Simple Message Box

« In this example, we'll create a dialog box that prompts for a Yes or No response. This is done using the
MessageDialog class from the wx module.

*python_simple_message_box.sps.
BEGIN PROGRAM.
import wx
app = wx.PySimpleApp ()
dlg = wx.MessageDialog(None, "Ok to reformat hard disk?",
caption="Important Question",
style=wx.YES_NO | wx.NO_DEFAULT | wx.ICON_QUESTION)
ret = dlg.ShowModal()
if ret == wx.ID_YES:
put Yes action code here
print "You said yes"
else:
put No action code here

Chapter 3. Programming with Python 133

http://www.wxpython.org/

print "You said No"

dlg.Destroy()
app.Destroy ()
END PROGRAM.

Important Question

:.:/ Ok ko reformat hard disk?

[Yes] [Mo l

Figure 77. Simple message box

« Once you've installed wxPython, you use it by including an impoxrt statement for the wx module, as
in impoxrt wx. You then create an instance of a wxPython application object, which is responsible for
initializing the underlying GUI toolkit and managing the events that comprise the interaction with the
user. For the simple example shown here, the PySimpleApp class is sufficient.

« The first argument to the MessageDialog class specifies a parent window or None if the dialog box
is top-level, as in this example. The second argument specifies the message to be displayed. The
optional argument caption specifies the text to display in the title bar of the dialog box. The optional
argument style specifies the icons and buttons to be shown: wx . YES_NO specifies the Yes and No
buttons, wx .NO_DEFAULT specifies that the default button is No, and wx . ICON_QUESTION specifies
the question mark icon.

« The ShowModal method of the MessageDialog instance is used to display the dialog box and returns
the button clicked by the user—wx.ID_YES or wx.ID_NO.

* You call the Destroy method when you're done with an instance of a wxPython class. In this example,
you call the Destroy method for the instance of the PySimpleApp class and the instance of the
MessageDialog class.

Example: Simple File Chooser

In this example, we'll create a dialog box that allows a user to select a file, and we'll include a file type
filter for IBM SPSS Statistics .sav files in the dialog box. This is done using the FileDialog class from the
wx module.

*python_simple_file_chooser.sps.

BEGIN PROGRAM.

import wx, os, spss

app = wx.PySimpleApp()

fileWildcard = "sav files (*.sav)|*.sav|" \
"All files (*.x)|*x.x"

dlg = wx.FileDialog(None,
message="Choose a data file",
defaultDir=os.getcwd(),
defaultFile="",
wildcard=fileWildcard,
style=wx.OPEN)

if dlg.ShowModal() == wx.ID_OK:
filespec = dlg.GetPath()
else:
filespec = None

dlg.Destroy()
app.Destroy ()

if filespec:
spss.Submit ("GET FILE='" + str(filespec) + "'.")

END PROGRAM.

134 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

Choose a data file

Lok, it |_} Samples j - £f E-
=
_‘:3 [S)French

My Recent |5 German
Documents) Italian
T IL) Japanese
- |Jkarean
Deskiop [=)Polish
[ZJRussian
| Sirmplified Chinese
|L2) Spanish
|2 Traditional Chinese

7

\\.'

My Documents

e
|
A

N
My Computer

tedy Metwork File name: | j Open |
Places
j Cancel

Files of type: Isav files [*.zaw]

Figure 78. Simple file chooser dialog box

« This example makes use of the getcwd function from the os module (provided with Python), so the
impozrt statement includes it as well as the wx module for wxPython and the spss module.

« The first argument to the FileDialog class specifies a parent window or None if the dialog box is
top-level, as in this example. The optional argument message specifies the text to display in the title
bar of the dialog box. The optional argument defaultDir specifies the default directory, which is set to
the current working directory, using the getcwd function from the os module. The optional argument
defaultFile specifies a file to be selected when the dialog box opens. An empty string, as used here,
specifies that nothing is selected when the dialog box opens. The optional argument wildcard specifies
the file type filters available to limit the list of files displayed. The argument specifies both the wildcard
setting and the label associated with it in the Files of type drop-down list. In this example, the filter
.sav is labeled as sav files (.sav), and the filter x. x is labeled as All files (*.*). The optional
argument style specifies the style of the dialog box. wx . OPEN specifies the style used for a File > Open
dialog box.

« The ShowModal method of the FileDialog instance is used to display the dialog box and returns the
button clicked by the user—wx.ID_OK orwx.ID_CANCEL.

- The GetPath method of the FileDialog instance returns the full path of the selected file.

- If the user clicked OK and a non-empty file path was retrieved from the dialog box, then submit a GET
command to IBM SPSS Statistics to open the file.

Example: Simple Multi-Variable Chooser

In this example, we'll create a dialog box for selecting multiple items and populate it with the scale
variables from a selected dataset. This is done using the MultiChoiceDialog class from the wx module.

*python_simple_multivariable_chooser.sps.
BEGIN PROGRAM.
import wx, spss, spssaux

spssaux.0OpenDataFile ("/examples/data/Employee data.sav")
vardict = spssaux.VariableDict(variablelLevel=['scale'])
choicelist = vardict.variables
if choicelist:
app = wx.PySimpleApp()
dlg = wx.MultiChoiceDialog(None,
"Select one or more variables\nfor analysis",
"Descriptive Statistics",
choices=choicelist)
if dlg.ShowModal() == wx.ID_OK:
vars = dlg.GetSelections()
else:
vars = None

dlg.Destroy()
app.Destroy ()

Chapter 3. Programming with Python 135

if vars:
varlist = [choicelist[i] for i in vars]

spss.Submit("DESCRIPTIVES " + " ".join(varlist))
END PROGRAM.
Descriptive Statistics
Select one o more variables
far analysis
salary
bdate
prevexp
jobtirmne
salbegin

id

(u]4 I Cancel |

Figure 79. Simple multi-variable chooser dialog box

This example makes use of the spssaux module--a supplementary module that is installed with the
IBM SPSS Statistics - Integration Plug-in for Python--so the impoxt statement includes it in addition to
the wx module for wxPython and the spss module.

The OpenDataFile function from the spssaux module opens an external IBM SPSS Statistics data
file. The argument is the file path specified as a string.

VariableDictis aclass in the spssaux module that provides an object-oriented approach to
obtaining information about the variables in the active dataset. The class allows you to specify a subset
of variables whose information is then accessible through the methods and properties of the class. You
can specify variables by name, type (string or numeric), or measurement level, as done here for scale
variables. See the topic “Getting Started with the VariableDict Class” on page 155 for more information.

The variables property of a VariableDict instance provides a list of the names of the variables
described by the instance. In this case, the instance describes the scale variables in Employee data.sav.

The first argument to the MultiChoiceDialog class specifies a parent window or None if the dialog
box is top-level, as in this example. The second argument specifies the message text to display in the
dialog box. Note that the Python escape sequence for a linefeed, “\n", is used. The third argument
specifies the text to display in the title bar of the dialog box. The optional argument choices specifies the
selectable items in the dialog box—in this case, the set of scale variables in Employee data.sav.

The ShowModal method of the MultiChoiceDialog instance is used to display the dialog box and
returns the button clicked by the user—wx .ID_OK or wx.ID_CANCEL.

If the user clicked OK, then get the selected items using the GetSelections method of the
MultiChoiceDialog instance. The method returns the indices of the selected items, starting with
the index O for the first item in the list.

varlist is a Python list of names of the selected variables and is constructed from the index list returned
from GetSelections. If you are not familiar with the method used here to create a list, see the section
"List Comprehensions" in the Python tutorial, available at http://docs.python.org/tut/tut.html .

The DESCRIPTIVES procedure is run for the selected variables using the Submit function from the
spss module. Syntax commands must be specified as strings, so the Python string method join is
used to construct a string of names from the Python list varlist. See the topic “Dynamically Creating
Command Syntax” on page 126 for more information.

136 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

http://docs.python.org/tut/tut.html

Getting Help

Help with using the features of the IBM SPSS Statistics - Integration Plug-in for Python is available from a
number of resources:

« Complete documentation for all of the functions available with the IBM SPSS Statistics - Integration
Plug-in for Python is available in the IBM SPSS Statistics Help system, under Integration Plug-in for
Python Help.

« Once the associated module has been imported, an online description of a particular function, class,
method, or module is available using the Python help function. For example, to obtain a description of
the Submit function in the spss module, use help (spss.Submit) after import spss. To display
information for all of the objects in a module, use help(module name), asin help(spss).When the
help function is used within a BEGIN PROGRAM-END PROGRAM block, the description is displayed in a
log item in the Viewer if a Viewer is available. Note: Help for the SpssClient module is not available
from the Python help function.

« The spss module and the supplementary modules are provided as source code. Once you're familiar
with the Python programming language, you may find that consulting the source code is the best way to
locate the information you need, such as which functions or classes are included with a module or what
arguments are needed for a given function.

« Detailed command syntax reference information for BEGIN PROGRAM-END PROGRAM can be found in
the IBM SPSS Statistics Help system.

- For help in getting started with the Python programming language, see the Python tutorial, available at
http://docs.python.org/tut/tut.html .

« You can also post questions about using Python with IBM SPSS Statistics to the Python Forum on the
IBM SPSS Predictive Analytics community.

Best Practices

This section provides advice for dealing with some common issues and introduces a number of features
that will help you with writing Python code within IBM SPSS Statistics.

Creating Blocks of Command Syntax within Program Blocks

Often, it is desirable to specify blocks of syntax commands on multiple lines within a program block,
which more closely resembles the way you might normally write command syntax. This is best
accomplished using the Python triple-quoted string convention, where line breaks are allowed and
retained as long as they occur within a string enclosed in a set of triple single or double quotes.

Example

*python_triple_quoted_string.sps.
BEGIN PROGRAM.
import spss
spss.Submit ("""
GET FILE='/examples/data/Employee data.sav'.
SORT CASES BY gender.
SPLIT FILE
LAYERED BY gender.
DESCRIPTIVES
VARIABLES=salary salbegin jobtime prevexp
/STATISTICS=MEAN STDDEV MIN MAX.
SPLIT FILE OFF.

END PROGRAM.

The triple double quotes enclose a block of command syntax that is submitted for processing, retaining
the line breaks. You can use either triple single quotes or triple double quotes, but you must use the
same type (single or double) on both sides of the command syntax block.

Notice that the triple-quoted expression is prefixed with the letter r. The r prefix to a string specifies
Python's raw mode. This allows you to use the single backslash (\) notation for file paths on Windows.
That said, it is a good practice to use forward slashes (/) in file paths on Windows, since you may at
times forget to use raw mode, and IBM SPSS Statistics accepts a forward slash for any backslash in a
file specification. See the topic “Using Raw Strings in Python” on page 139 for more information.

Chapter 3. Programming with Python 137

http://docs.python.org/tut/tut.html

« Inthe unusual case that the command syntax block contains a triple quote, be sure that it's not the
same type as the type you are using to enclose the block; otherwise, Python will treat it as the end of
the block.

Wrapping blocks of command syntax in triple quotes within a BEGIN PROGRAM-END PROGRAM block
allows you to easily convert a command syntax job to a Python job. See the topic “Migrating Command
Syntax Jobs to Python” on page 220 for more information.

Dynamically Specifying Command Syntax Using String Substitution

Most often, you embed command syntax within program blocks so that you can dynamically specify
pieces of the syntax, such as variable names. This is best done using string substitution in Python.

For example, say you want to create a split file on a particular variable whose name is determined
dynamically. Omitting the code for determining the particular variable, a code sample to accomplish this
might look like:

epss. Submit(z"""
SORT CASES BY %s.
SPLIT FILE
LAYERED BY %s.
" g% (splitVar,splitVar))

Within a string (in this case, a triple-quoted string), %s marks the points at which a string value is to be
inserted. The particular value to insert is taken from the % expression that follows the string; in this case,
%(splitVar,splitVar). The value of the first item in the % expression replaces the first occurrence
of %s, the value of the second item replaces the second occurrence of %s, and so on. Let's say that the
variable splitVar has the value "gender". The command string submitted to IBM SPSS Statistics would
be:

SORT CASES BY gender.
SPLIT FILE
LAYERED BY gender.

Note: Python will convert the values supplied in the % () expression to the specified format type (the s in
9%s specifies a string) if possible and will raise an exception otherwise.

The above approach can become cumbersome once you have to substitute more than a few values into

a string expression, since you have to keep track of which occurrence of %s goes with which value in the
9% expression. Using a Python dictionary affords an alternative to providing a sequential list of substitution
values.

Example

Let's say you have many datasets, each consisting of employee data for a particular department of

a large company. Each dataset contains a variable for current salary, a variable for starting salary,

and a variable for the number of months since hire. For each dataset, you'd like to compute the

average annual percentage increase in salary and sort by that value to identify employees who may be
undercompensated. The problem is that the names of the variables you need are not constant across the
datasets, while the variable labels are constant. Current salary is always labeled Current Salary, starting
salary is always labeled Beginning Salary, and months since hire is always labeled Months since Hire. For
simplicity, the following program block performs the calculation for a single file; however, everything other
than the file retrieval command is completely general.

*python_string_substitution.sps.
BEGIN PROGRAM.
import spss
spss.Submit ("GET FILE='/examples/data/employee data.sav'.")
for i in range(spss.GetVariableCount()):
label = spss.GetVariablelabel(i).lowex()
if label=='current salary':
cursal=spss.GetVariableName (i)
elif label=='beginning salary':
begsal=spss.GetVariableName (i)
elif label == 'months since hire':
mos=spss.GetVariableName (i)
spss.Submit ("""
SELECT IF %(mos)s > 12.
COMPUTE AVG_PCT_CHANGE =
100* (%(cur)s - %(beg)s)/(%(beg)s * TRUNC(%(mos)s/12)).
SORT CASES BY AVG_PCT_CHANGE (A).

138 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

""" 9%f'cur':cursal, 'beg':begsal, 'mos':mos})
END PROGRAM.

- First, loop through the variables in the active dataset, setting the Python variable cursal to the name of
the variable for current salary; begsal, to the name of the variable for beginning salary; and mos, to the
name of the variable for months since hire.

« The Submit function contains a triple-quoted string that resolves to the command syntax needed to
perform the calculation. The expression

%3'cur':cursal, 'beg' :begsal, 'mos':mos}?

following the triple quotes defines a Python dictionary that is used to specify the string substitution. A
Python dictionary consists of a set of keys, each of which has an associated value that can be accessed
simply by specifying the key. In the current example, the dictionary has the keys cur, beg, and mos
associated with the values of the variables cursal, begsal, and mos, respectively. Instead of using %s to
mark insertion points, you use % (key) s. For example, you insert % (beg) s wherever you want the value
associated with the key beg—in other words, wherever you want the value of begsal.

For the dataset used in this example, cursal has the value 'salary’', begsal has the value 'salbegin’,
and mos has the value ' jobtime'. After the string substitution, the triple-quoted expression resolves to
the following block of command syntax:

SELECT IF jobtime > 12.
COMPUTE AVG_PCT_CHANGE =

100% (salary - salbegin)/(salbegin * TRUNC(jobtime/12)).
SORT CASES BY AVG_PCT_CHANGE (A).

Of course, if any of the variables cursal, begsal, or mos is undefined at the time of the string substitution,
then an exception will occur. It is good practice to add robustness to your programs to try to ensure

that unhandled exceptions do not occur. For instance, in the present example, you could wrap the
spss.Submit functioninatry/except block. See the topic “Using Exception Handling in Python” on
page 143 for more information.

You can simplify the statement for defining the dictionary for string substitution by using the 1ocals
function. It produces a dictionary whose keys are the names of the local variables and whose associated
values are the current values of those variables. For example,

splitVar = 'gender'
spss.Submit ("""
SORT CASES BY %(splitVar)s.
SPLIT FILE
LAYERED BY %(splitVar)s.
' %locals())

splitVar is a local variable; thus, the dictionary created by the 1ocals function contains the key
splitVar with the value 'gendex'. The string' gender ' is then substituted for every occurrence of %
(splitVar)s inthe triple-quoted string.

String substitution is not limited to triple-quoted strings. For example, the code sample

spss.Submit ("SORT CASES BY %s." %(sortkey))

runs a SORT CASES command using a single variable whose name is the value of the Python variable
sortkey.

Using Raw Strings in Python

Python reserves certain combinations of characters beginning with a backslash (\) as escape sequences.
For example, "\n" is the escape sequence for a linefeed and "\t" is the escape sequence for

a horizontal tab. This is potentially problematic when specifying strings, such as file paths on

Windows or regular expressions, that contain these sequences. For example, the Windows path
"c:\temp\myfile.sav" would be interpreted by Python as "c: ", followed by a tab, followed by
"emp\myfile.sav", whichis probably not what you intended.

The problem of backslashes is best solved by using raw strings in Python. When you preface a string
with an r or R, Python treats all backslashes in the string as the backslash character and not as

Chapter 3. Programming with Python 139

the start of an escape sequence. The only caveat is that the last character in the string cannot be a
backslash. For example, filestring = r"c:\temp\myfile.sav" sets the variable filestring to the
string "c:\temp\myfile.sav". Because a raw string was specified, the sequence "\t" is treated as a
backslash character followed by the letter t.

You can preface any string, including triple-quoted strings, with r or R to indicate that it's a raw string.
That is a good practice to employ, since then you don't have to worry about any escape sequences

that might unintentionally exist in a triple-quoted string containing a block of command syntax. IBM
SPSS Statistics also accepts a forward slash (/) for any backslash in a file specification. This provides an
alternative to using raw strings for file specifications on Windows.

Itis also a good idea to use raw strings for regular expressions. Regular expressions define patterns
of characters and enable complex string searches. For example, using a regular expression, you could
search for all variables in the active dataset whose names end in a digit. See the topic “Using Regular
Expressions to Select Variables” on page 158 for more information.

Displaying Command Syntax Generated by Program Blocks

For debugging purposes, it is convenient to see the completed syntax passed to IBM SPSS Statistics by
any calls to the Submit function in the spss module. This is enabled through command syntax with SET
PRINTBACK ON MPRINT ON.

Example

SET PRINTBACK ON MPRINT ON.

BEGIN PROGRAM.

import spss

spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")
varName = spss.GetVariableName (spss.GetVariableCount()-1)
spss.Submit ("FREQUENCIES /VARIABLES=" + varName + ".")

END PROGRAM.

The generated command syntax is displayed in a log item in the IBM SPSS Statistics Viewer, if the
Viewer is available, and shows the completed FREQUENCIES command as well as the GET command. For
example, on Windows, assuming that you have copied the examples folder to the C drive, the result is:

300 M> GET FILE='c:/examples/data/Employee data.sav'.
302 M> FREQUENCIES /VARIABLES=minority.

Creating User-Defined Functions in Python

Undoubtedly, you will eventually want to create generalized code that is specified at run time by a

set of parameters. If you simply want to generalize a block of command syntax so that the submitted
syntax is specified by parameters at run time, then you can include your syntax ina BEGIN PROGRAM-
END PROGRAM block and use string substitution to specify the parameters. See the topic “Dynamically
Specifying Command Syntax Using String Substitution” on page 138 for more information. If you want

to create a general-purpose function that can be called like a subroutine, then you'll want to create a
user-defined Python function. In fact, you may want to construct a library of your standard utility routines
and always import it. The basic steps are:

- Encapsulate your code in a user-defined function. For a good introduction to user-defined
functions in Python, see the section "Defining Functions" in the Python tutorial, available at http://
docs.python.org/tut/tut.html .

« Include your function in a Python module on the Python search path. To be sure that Python can find
your new module, you may want to save it to your Python site-packages directory. For help in locating
your Python site-packages directory, see .

A Python module is simply a text file containing Python definitions and statements. You can create a
module with a Python IDE, or with any text editor, by saving a file with an extension of .py. The name
of the file, without the .py extension, is then the name of the module. You can have many functions in a
single module.

140 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

http://docs.python.org/tut/tut.html
http://docs.python.org/tut/tut.html

« Call your function from within a BEGIN PROGRAM-END PROGRAM block, passing specific parameter
values to your function. The block should contain an impoxrt statement for the module containing the
function (unless you've imported the module in a previous block).

Example

A common scenario is to run a particular block of command syntax only if a specific variable exists in the
dataset. As an example, the following function checks for the existence of a specified variable in the active
dataset or in an optionally specified file. It splits the dataset by the variable if the variable exists.

def SplitIfVarExists(varname, filespec=None):
"""Get the file, if specified, and check for the existence of
the specified variable. Split the dataset by the variable if it exists.

if filespec:

try:

spss.Submit ("GET FILE = '%s'." %(filespec))
except:

raise ValueError("Cannot open file: " + filespec)

for i in range(spss.GetVariableCount()):
name=spss.GetVariableName (i)
if name.lower()==varname.lower():
spss.Submit ("""
SORT CASES BY %s.
SPLIT FILE
LAYERED BY %s.
et % (name, name))
break

- The def statement signals the beginning of a function named SplitIfVarExists. The colon at the
end of the def statement is required.

« The function takes two parameters: varname specifies the variable to check, and filespec specifies an
optional file to check for the existence of the variable. If filespec is omitted, the active dataset is used.

« The function combines Python code with command syntax, which is specified dynamically and
submitted to IBM SPSS Statistics for processing. The values needed to specify the command syntax
come from the function parameters and are inserted into the command string using string substitution.
See the topic “Dynamically Specifying Command Syntax Using String Substitution” on page 138 for
more information.

You include the function in a module named samplelib and now want to use the function. For example,
you are processing datasets containing employee records and want to split them by gender--if a gender
variable exists--to obtain separate statistics for the two gender groups. We will assume that if a gender
variable exists, it has the name gender, although it may be spelled in upper case or mixed case.

*python_split_if var_exists.sps.

BEGIN PROGRAM.

import samplelib
samplelib.SplitIfVarExists('Gendexr','/examples/data/Employee data.sav')
END PROGRAM.

The BEGIN PROGRAM block starts with a statement to import the samplelib module, which contains
the definition for the SplitIfVarExists function. The function is called with a variable name and a file
specification.

Note: To run this program block, copy the module file samplelib.py from the /examples/python folder,
in the accompanying examples, to your Python site-packages directory. For help in locating your Python
site-packages directory, see .

Creating a File Handle to the IBM SPSS Statistics Install Directory

Depending on how you work with IBM SPSS Statistics, it may be convenient to have easy access to files
stored in the IBM SPSS Statistics installation directory. This is best done by defining a file handle to the
installation directory, using a function from the spssaux module.

Example

*python_handle_to_installdir.sps.
BEGIN PROGRAM.
import spss, spssaux

Chapter 3. Programming with Python 141

spssaux.GetSPSSInstallDir ("SPSSDIR")
spss.Submit (r"GET FILE='SPSSDIR/Samples/Employee data.sav'.")
END PROGRAM.

« The program block imports and uses the spssaux module, a supplementary module installed with the
IBM SPSS Statistics - Integration Plug-in for Python.

« The function GetSPSSInstallDir, from the spssaux module, takes a name as a parameter and
creates a file handle of that name pointing to the location of the IBM SPSS Statistics installation
directory.

« The file handle is then available for use in any file specification that follows. Note that the command
string for the GET command is a raw string; that is, it is prefaced by an r. It is a good practice to use
raw strings for command strings that include file specifications so that you don't have to worry about
unintentional escape sequences in Python. See the topic “Using Raw Strings in Python” on page 139 for
more information.

Choosing the Best Programming Technology

With the introduction of the IBM SPSS Statistics - Integration Plug-in for Python, you have a variety

of programming technologies (in addition to command syntax) available for use with IBM SPSS Statistics
—the macro language, Basic scripts, Python scripts, and Python programs. This section provides some
advice on choosing the best technology for your task.

To start with, the ability to use Python programs to dynamically create and control command syntax
renders IBM SPSS Statistics macros mostly obsolete. Anything that can be done with a macro can be
done with a Python user-defined function. For an example of an existing macro recoded in Python, see
“Migrating Macros to Python” on page 221. However, macros are still important for passing information
from a BEGIN PROGRAM block so that it is available to command syntax outside of the block. For more
information, see the section "Passing Values from a Program Block to Command Syntax" in “Mixing
Command Syntax and Program Blocks” on page 129.

Like Basic scripts, Python programs and Python scripts provide solutions for programming tasks that
cannot readily be done with command syntax. In that sense, they are not intended as a replacement for
the command syntax language. Using a Python program or a Python script is, however, almost always the
preferred choice over using a Basic script. For one, Python is a much richer programming language and is
supported by a vast open-source user community that actively extends the basic language with utilities
such as IDEs, GUI toolkits, and packages for scientific computing. In addition, Python programs included
in a command syntax job always run synchronously with the command syntax.

Consider using Python programs for these tasks you may have previously done with Basic scripts:

« Accessing the IBM SPSS Statistics data dictionary

- Dynamically generating command syntax, such as when the particular variables in a dataset are not
known in advance

- Manipulating files and directories
» Retrieving case data to accomplish a data-oriented task outside of command syntax

- Encapsulating a set of tasks in a program that accepts parameters and can be invoked from command
syntax

 Using a custom dialog box to get input from the user and running user-selected tasks on a selected data
file

Consider using Python scripts for these tasks you may have previously done with Basic scripts:

« Manipulating output that appears in the Viewer

« Automatically performing a set of actions when a particular kind of object is created in the Viewer
(referred to as autoscripting)

- Driving IBM SPSS Statistics dialog boxes when operating in distributed mode
Use Basic scripts and the OLE automation interfaces for:

- Integrating Viewer output into applications that support OLE automation, such as Microsoft PowerPoint

142 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

« Controlling IBM SPSS Statistics from an application that supports Visual Basic, such as Microsoft Office
or Visual Basic itself

In addition, consider using the IBM SPSS Statistics - Integration Plug-in for R to create custom algorithms
in R or to take advantage of the vast statistical libraries available with R. The R plug-in is automatically
installed with IBM SPSS Statistics.

Python Programs vs. Python Scripts

Python programs and Python scripts provide two distinct and mostly non-overlapping means for
programming in Python within IBM SPSS Statistics. Python programs operate on the IBM SPSS Statistics
processor and are designed for controlling the flow of a command syntax job, reading from and writing
to datasets, creating new datasets, and creating custom procedures that generate their own pivot table
output. Python scripts operate on user interface and output objects and are designed for customizing
pivot tables, exporting items such as charts and tables, invoking IBM SPSS Statistics dialog boxes,

and managing connections to instances of IBM SPSS Statistics Server. When a given task can be
completed with either a Python program or a Python script, the Python program will always provide
better performance and is preferred.

When working with Python programs and Python scripts, keep the following limitations in mind:

« Python programs cannot be run as autoscripts, so if you want to write an autoscript in Python, use a
Python script.

« Python programs are not intended to be run from Utilities > Run Script within IBM SPSS Statistics.

For detailed information on running Python programs and Python scripts as well as scenarios where one
can invoke the other, see "Scripting Facility" and "Scripting with the Python Programming Language" in the
IBM SPSS Statistics Help system.

Using Exception Handling in Python

Errors that occur during execution are called exceptions in Python. Python includes constructs that allow
you to handle exceptions so that you can decide whether execution should proceed or terminate. You can
also raise your own exceptions, causing execution to terminate when a test expression indicates that the
job is unlikely to complete in a meaningful way. And you can define your own exception classes, making
it easy to package extra information with the exception and to test for exceptions by type. Exception
handling is standard practice in Python and should be freely used when appropriate. For information

on defining your own exception classes, see the Python tutorial, available at http://docs.python.org/tut/
tut.html.

Raising an Exception to Terminate Execution

There are certainly cases where it is useful to create an exception in order to terminate execution. Some
common examples include:

« Arequired argument is omitted in a function call.
« Arequired file, such as an auxiliary Python module, cannot be imported.
- Avalue passed to a function is of the wrong type, such as numeric instead of string.

Python allows you to terminate execution and to provide an informative error message indicating why
execution is being terminated. We will illustrate this by testing whether a required argument is provided
for a very simple user-defined function.

def ArgRequired(arg=None):
if arg is None:
raise ValueError, "You must specify a value."
else:
print "You entered:", arg

- The Python user-defined function ArgRequired has one argument with a default value of None.

- The 1f statement tests the value of arg. A value of None means that no value was provided. In this
case, a ValueError exception is created with the raise statement and execution is terminated. The
output includes the type of exception raised and any string provided on the raise statement. For this
exception, the output includes the line:

Chapter 3. Programming with Python 143

http://docs.python.org/tut/tut.html
http://docs.python.org/tut/tut.html

ValueError: You must specify a value.
Handling an Exception without Terminating Execution

Sometimes exceptions reflect conditions that don't preclude the completion of a job. This can be the case
when you are processing data that may contain invalid values or are attempting to open files that are
either corrupt or have an invalid format. You would like to simply skip over the invalid data or file and
continue to the next case or file. Python allows you to do this with the try and except statements.

As an example, let's suppose that you need to process all .sav files in a particular directory. You build a list
of them and loop through the list, attempting to open each one. There's no guarantee, however, that a file
with a name ending in .sav is actually a data file in IBM SPSS Statistics format, so your attempt to open
any given file may fail, generating an exception. Following is a code sample that handles this:

for fname in savfilelist:

try:
spss.Submit("get file='" + dirname + "/" + fname + "'.")

<do something with the file>
except:

pass

« The first statement in the try clause submits a GET command to attempt to open a file in the list of
those that end with .sav.

- If the file can be opened, control passes to the remainder of the statements in the try clause that do
the necessary processing.

« If the file can't be opened, an exception is raised and control passes to the except clause. Since the
file isn't a data file in IBM SPSS Statistics format, there's no action to take. Thus, the except clause
contains only a pass statement. Execution of the loop continues to the next file in the list.

User-Defined Functions That Return Error Codes

Functions in the spss module raise exceptions for errors encountered during execution and make the
associated error codes available. Perhaps you are dynamically building command syntax to be passed

to the Submit function, and because there are cases that can't be controlled for, the command syntax
fails during execution. And perhaps this happens within the context of a large production job, where you
would simply like to flag the problem and continue with the job. Let's further suppose that you have a
Python user-defined function that builds the command syntax and calls the Submit function. Following is
an outline of how to handle the error, extract the error code, and provide it as part of the returned value
from the user-defined function.

def BuildSyntax(args):
<Build the command syntax and store it to cmd.
Store information about this run to id.>
try:
spss.Submit(cmd)
except:
pass
return (id,spss.GetlLastErrorLevel())

« The Submit function is part of a try clause. If execution of the command syntax fails, control passes to
the except clause.

« In the event of an exception, you should exit the function, returning information that can be logged. The
except clause is used only to prevent the exception from terminating execution; thus, it contains only a
pass statement.

- The function returns a two-tuple, consisting of the value of id and the maximum IBM SPSS Statistics
error level for the submitted commands. Using a tuple allows you to return the error code separately
from any other values that the function normally returns.

The call to BuildSyntax might look something like the following:

id_info, errcode=BuildSyntax(args)
if errcode > 2:
<log an error>

« On return, id_info will contain the value of id and errcode will contain the value returned by

spss.GetLastErrorLevel ().

144 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Differences from Error Handling in Basic

For users familiar with programming in Basic or Visual Basic, it's worth pointing out that Python doesn't
have the equivalent of On Error Resume Next. You can certainly resume execution after an error by
handling it with a try/except block, as in:

try:
<statement>
except:

pass

But this has to be done for each statement where an error might occur.

Debugging Python Programs

Two modes of operation are available for running Python programs: enclosing your code in BEGIN
PROGRAM-END PROGRAM blocks as part of a command syntax job or running it from a Python IDE
(Integrated Development Environment). Both modes have features that facilitate debugging.

Using a Python IDE

When you develop your code in a Python IDE, you can test one or many lines of code in the IDE interactive
window and see immediate results, which is particularly useful if you are new to Python and are still trying
to learn the language. And the Python print statement allows you to inspect the value of a variable or
the result of an expression.

Most Python IDEs also provide debuggers that allow you to set breakpoints, step through code line by
line, and inspect variable values and object properties. Python debuggers are powerful tools and have
a nontrivial learning curve. If you're new to Python and don't have a lot of experience working with
debuggers, you can do pretty well with print statements in the interactive window of an IDE, but for
serious use, it is well worth mastering a debugger.

To get started with the Python IDE approach, see “Running Your Code from a Python IDE” on page 122.
You can use the IDLE IDE, which is provided with Python, or you can use one of several third-party Python
IDEs, a number of which are free. For a link to information and reviews on available Python IDEs, see the
topic "Getting Started with Python" at http://www.python.org/about/gettingstarted/ .

Benefits of Running Code from Program Blocks

Once you've installed the IBM SPSS Statistics - Integration Plug-in for Python, you can start developing
Python code within BEGIN PROGRAM-END PROGRAM blocks in a command syntax job. Nothing else is
required.

One of the benefits of running your code from a BEGIN PROGRAM-END PROGRAM block is that output is
directed to the Viewer if it is available. Although IBM SPSS Statistics output is also available when you are
working with a Python IDE, the output in that case is displayed in text form, and charts are not included.

From a program block, you can display the value of a Python variable or the result of a Python expression
by including a Python print statement in the block. The print statement is executed when you run
command syntax that includes the program block, and the result is displayed in a log item in the IBM
SPSS Statistics Viewer.

Another feature of running Python code from a program block is that Python variables persist from one
program block to another. This allows you to inspect variable values as they existed at the end of a
program block, as shown in the following:

BEGIN PROGRAM.
import spss
spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")
ordlist=[]
for i in range(spss.GetVariableCount()):

if spss.GetVariableMeasurementLevel(i) in ['ordinal']:

ordlist.append(spss.GetVariableName(i))

cmd="DESCRIPTIVES VARIABLES=%s." %(ordlist)
spss.Submit(cmd)
END PROGRAM.

The program block is supposed to create a list of ordinal variables in Employee data.sav but will generate
an error in its current form, which suggests that there is a problem with the submitted DESCRIPTIVES

Chapter 3. Programming with Python 145

http://www.python.org/about/gettingstarted/

command. If you didn't spot the problem right away, you would probably be inclined to check the value
of cmd, the string that specifies the DESCRIPTIVES command. To do this, you could add a print cmd
statement after the assignment of cmd, or you could simply create an entirely new program block to
check the value of cmd. The latter approach doesn't require that you rerun your code. It also has the
advantage of keeping out of your source code print statements that are used only for debugging the
source code. The additional program block might be:

BEGIN PROGRAM.
print cmd
END PROGRAM.

Running this program block after the original block results in the output:

DESCRIPTIVES VARIABLES=['educ', 'jobcat', 'minority'].

Itis displayed in a log item in the Viewer. You now see the problem is that you provided a Python list for
the IBM SPSS Statistics variable list, when what you really wanted was a string containing the list items,
asin:

DESCRIPTIVES VARIABLES=educ jobcat minority.
The problem is solved by using the Python string method join, which creates a string from a list by

concatenating the elements of the list, using a specified string as the separator between elements. In this
case, we want each element to be separated by a single space. The correct specification for cmd is:

cmd="DESCRIPTIVES VARIABLES=%s." %(" ".join(ordlist))

In addition to the above remarks, keep the following general considerations in mind:

« Unit test Python user-defined functions and the Python code included in BEGIN PROGRAM-END
PROGRAM blocks, and try to keep functions and program blocks small so they can be more easily tested.

« Note that many errors that would be caught at compile time in a more traditional, less dynamic
language, will be caught at run time in Python--for example, an undefined variable.

Working with Dictionary Information

The spss module provides a number of functions for retrieving dictionary information from the active
dataset. It includes functions to retrieve:

« The number of variables in the active dataset
- The weight variable, if any

« Variable names

- Variable labels

- Display formats of variables

« Measurement levels of variables

« The variable type (numeric or string)
« The names of any split variables
 Missing values

- Value labels

« Custom variable attributes

- Datafile attributes

« Multiple response sets

Functions that retrieve information for a specified variable use the position of the variable in the dataset
as the identifier, starting with 0 for the first variable in file order. This is referred to as the index value of
the variable.

Example

146 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

The function to retrieve the name of a particular variable is GetVariableName. It requires a single
argument, which is the index value of the variable to retrieve. This simple example creates a dataset with
two variables and uses GetVariableName to retrieve their names.

DATA LIST FREE /varl var2.

BEGIN DATA

1234

END DATA.

BEGIN PROGRAM.

import spss

print "The name of the first variable in file order is (varl): " \
+ spss.GetVariableName(0)

print "The name of the second variable in file order is (var2): " \
+ spss.GetVariableName(1)

END PROGRAM.

Example

Often, you'll want to search through all of the variables in the active dataset to find those with a particular
set of properties. The function GetVariableCount returns the number of variables in the active dataset,
allowing you to loop through all of the variables, as shown in the following example:

DATA LIST FREE /varl var2 var3 var4d.

BEGIN DATA

14 25 37 54

END DATA.

BEGIN PROGRAM.

import spss

for i in range(spss.GetVariableCount()):
print spss.GetVariableName (i)

END PROGRAM.

The Python function range creates a list of integers from 0 to one less than its argument. The sample

dataset used in this example has four variables, so the listis [0,1,2,3]. The for loop then iterates
over these four values.

The function GetVariableCount doesn't take any arguments, but Python still requires you to include a
pair of parentheses on the function call, as in: GetVariableCount ().

In addition to specific functions for retrieving dictionary information, the complete set of dictionary
information for the active dataset is available from an in-memory XML representation of the dictionary
created by the CreateXPathDictionazry function. For an example of this approach, see .

Summarizing Variables by Measurement Level

When doing exploratory analysis on a dataset, it can be useful to run FREQUENCIES for the categorical
variables and DESCRIPTIVES for the scale variables. This process can be automated by using the
GetVariableMeasurementlLevel function from the spss module to build separate lists of the
categorical and scale variables. You can then submit a FREQUENCIES command for the list of categorical

variables and a DESCRIPTIVES command for the list of scale variables, as shown in the following
example:

*python_summarize_by_level.sps.
BEGIN PROGRAM.
import spss
spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")
catlist=[]
scalist=[]
for i in range(spss.GetVariableCount()):
varName=spss.GetVariableName (i)
if spss.GetVariableMeasurementlLevel(i) in ['nominal', 'ordinal']:
catlist.append(varName)
else:
scalist.append(varName)
if len(catlist):
categoricalVars = " ".join(catlist)
spss.Submit ("FREQUENCIES " + categoricalVars + ".")
if len(scalist):
scaleVars = " ".join(scalist)
spss.Submit ("DESCRIPTIVES " + scaleVars + ".")
END PROGRAM.

« Two lists, catlist and scalist, are created to hold the names of any categorical and scale variables,
respectively. They are initialized to empty lists.

« spss.GetVariableName (i) returns the name of the variable with the index value i.

Chapter 3. Programming with Python 147

« spss.GetVariableMeasurementlLevel (i) returns the measurement level of the variable with the
index value i. It returns one of four strings: 'nominal', 'ordinal’, 'scale’, or "unknown'. If the
current variable is either nominal or ordinal, it is added to the list of categorical variables; otherwise, it is
added to the list of scale variables. The Python append method is used to add elements to the lists.

« Tests are performed to determine whether there are categorical or scale variables before running a
FREQUENCIES or DESCRIPTIVES command. For example, if there are no categorical variables in the
dataset, len(catlist) will be zero and interpreted as false for the purpose of evaluating an if

statement.
« " ".join(catlist) uses the Python string method join to create a string from the elements of
catlist, with each element separated by a single space, and likewise for " ".join(scalist).

- The dataset used in this example contains categorical and scale variables, so both a FREQUENCIES and
a DESCRIPTIVES command will be submitted to IBM SPSS Statistics. The command strings passed to
the Submit function are:

'"FREQUENCIES gender educ jobcat minority.'
'"DESCRIPTIVES id bdate salary salbegin jobtime prevexp.'

Listing Variables of a Specified Format

The GetVariableFormat function, from the spss module, returns a string containing the display format
for a specified variable—for example, F4, ADATEL10, DOLLARS8. Perhaps you need to find all variables of

a particular format type, such as all variables with an ADATE format. This is best done with a Python
user-defined function that takes the alphabetic part of the format as a parameter and returns a list of
variables of that format type.

def VarsWithFormat(format):

"""Return a list of variables in the active dataset whose

display format has the specified string as the alphabetic part

of its format, e.g. "TIME".

varList=[]

format=format.uppex()

for i in range(spss.GetVariableCount()):
vimt=spss.GetVariableFormat (i)
if vimt.rstrip("0123456789.")==format:

varList.append(spss.GetVariableName(i))
return varlist

- VarsWithFormat is a Python user-defined function that requires a single argument, format.

« varList is created to hold the names of any variables in the active dataset whose display format has the
specified string as its alphabetic part. It is initialized to the empty list.

« The value returned from GetVariableFormat is in upper case, so the value of format is converted to
upper case bhefore doing any comparisons.

« The value returned from GetVariableFormat consists of the alphabetic part of the format, the
defined width, and optionally, the number of decimal positions for numeric formats. The alphabetic part
of the format is extracted by stripping any numeric characters and periods (.), using the Python string
method rstrip.

Example

As a concrete example, print a list of variables with a time format.

*python_list_time_vars.sps.
DATA LIST FREE
/numvar (F4) timevarl (TIME5) stringvar (A2) timevar2 (TIME12.2).
BEGIN DATA
1 10:05 a 11:15:33.27
END DATA.

BEGIN PROGRAM.

import samplelib

print samplelib.VarsWithFormat ("TIME")
END PROGRAM.

The DATA LIST command creates four variables, two of which have a time format, and BEGIN DATA
creates one sample case.

148 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

« The BEGIN PROGRAM block starts with a statement to import the samplelib module, which contains
the definition for the VarsWithFormat function.

Note: To run this program block, copy the module file samplelib.py from the /examples/python folder, in
the accompanying examples, to your Python site-packages directory. For help in locating your Python
site-packages directory, see .

The result is:

['timevarl', 'timevar2']

Checking If a Variable Exists

A common scenario is to run a particular block of command syntax only if a specific variable exists in the
dataset. For example, you are processing many datasets containing employee records and want to split
them by gender--if a gender variable exists--to obtain separate statistics for the two gender groups. We
will assume that if a gender variable exists, it has the name gender, although it may be spelled in upper
case or mixed case. The following example illustrates the approach using a sample dataset:

*python_var_exists.sps.
BEGIN PROGRAM.
import spss
spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")
for i in range(spss.GetVariableCount()):
name=spss.GetVariableName (i)
if name.lower()=="gender":
spss.Submit ("""
SORT CASES BY %s.
SPLIT FILE
LAYERED BY %s.
et % (name, name))
break
END PROGRAM.

« spss.GetVariableName (i) returns the name of the variable with the index value i.

« Python is case sensitive, so to ensure that you don't overlook a gender variable because of case issues,
equality tests should be done using all upper case or all lower case, as shown here. The Python string
method lowexr converts the associated string to lower case.

 Atriple-quoted string is used to pass a block of command syntax to IBM SPSS Statistics using the
Submit function. The name of the gender variable is inserted into the command block using string
substitution. See the topic “Dynamically Specifying Command Syntax Using String Substitution” on page
138 for more information.

- The break statement terminates the loop if a gender variable is found.

To complicate matters, suppose some of your datasets have a gender variable with an abbreviated name,
such as gen or gndr, but the associated variable label always contains the word gender. You would then
want to test the variable label instead of the variable name (we'll assume that only a gender variable
would have gender as part of its label). This is easily done by using the GetVariablelabel function and
replacing

name.lower()=="gender"
in the if statement with
"gender" in spss.GetVariablelabel(i).lower ()

Since spss.GetVariablelabel (i) returns a string, you can invoke a Python string method directly on
its returned value, as shown above with the lower method.

Creating Separate Lists of Numeric and String Variables

The GetVariableType function, from the spss module, returns an integer value of 0 for numeric
variables or an integer equal to the defined length for string variables. You can use this function to create

Chapter 3. Programming with Python 149

separate lists of numeric variables and string variables in the active dataset, as shown in the following
example:

*python_list_by_type.sps.
BEGIN PROGRAM.
import spss
spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")
numericVars=[]
stringVaIs:[]
for i in range(spss.GetVariableCount()):
if spss.GetVariableType(i) == 0O:
numericVars.append(spss. GetVaIlableName(l))
else:
stringVars.append(spss.GetVariableName(i))
print "String variables:"
print "\n".join(stringVars)
print "\nNumeric variables:"
print "\n".join(numericVars)
END PROGRAM.

The lists numericVars and stringVars are created to hold the names of the numeric variables and string
variables, respectively. They are initialized to empty lists.

spss.GetVariableType (i) returns an integer representing the variable type for the variable with the
index value (. If the returned value is 0, then the variable is numeric, so add it to the list of numeric
variables; otherwise, add it to the list of string variables.

The code "\n".join(stringVars) uses the Python string method join to combine the items in
stringVars into a string with each element separated by "\n", which is the Python escape sequence for
a line break. The result is that each element is displayed on a separate line by the print statement.

Retrieving Definitions of User-Missing Values

The GetVarMissingValues function, from the spss module, returns the user-missing values for a
specified variable.

*python_user_missing_defs.sps.

data 1list list (,)/vl to v4(4f) v5(ad).
begin data.

0,0,0,0,a

end data.

missing values v2(0,9) v3(0 thru 1.5) v4 (LO thru 0, 999) v5(' ').

begin program.

import spss

low, high = spss.GetSPSSLowHigh ()

for i in range(spss.GetVariableCount()):
missList = spss.GetVarMissingValues(i)

if missList[0] == 0 and missList[1] == None:
res = 'no missing values'
else:

res = misslist
res = [x==low and "LO" or x==high and "HIGH" or x for x in res]
print spss.GetVariableName(i), res
end program.

Result

vl no missing values

v2 [0, 0.0, 9.0, None]

v3 [1, 0.0, 1.5, None]

v4 [2, 'LO', 0.0, 999.0]
v5 [0, ' ', None, None]

The GetSPSSLowHigh function, from the spss module, is used to get the actual values IBM SPSS
Statistics uses for LO and HI, which are then stored to the Python variables low and high.

The GetVarMissingValues method returns a tuple of four elements, where the first element
specifies the missing value type: O for discrete values, 1 for a range of values, and 2 for a range of values
and a single discrete value. The remaining three elements in the result specify the missing values.

For variables with no missing values, the result is [0, None,None, None]. Testing that the first element
of the result is @ and the second is None is sufficient to determine the absence of missing values.

For variables with discrete missing values, the second, third, and fourth elements of the result specify
the missing values. The result will contain one or more None values when there are less than three
missing values, as for the variable v2 in the current example.

150 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

- Forvariables with a range of missing values, the second and third elements of the result specify the
lower and upper limits of the range, respectively. In the current example, the range 0 to 1.5 is specified
as missing for the variable v3. The result from GetVarMissingValuesis [1,0.0,1.5,None].

« Forvariables with a range of missing values and a single discrete missing value, the second and third
elements of the result specify the range and the fourth element specifies the discrete value. In the
current example, the range LO to 0 is specified as missing for the variable v4, along with the discrete
value 999. When a missing value range is specified with LO or HI, the result contains the value IBM
SPSS Statistics uses for LO or HI. The list comprehension [x==1ow and "LO" or x==high and
"HIGH" or x for x in res] replaces any values of LO and HI in the result with the strings "LO"
and "HI". In the present case, the displayed resultis [2, 'LO', 0.0, 999.0].

Note: If you are not familiar with list comprehensions, see the section "List Comprehensions" in the
Python tutorial, available at http://docs.python.org/tut/tut.html .

« For string variables, the missing value type is always 0 since only discrete missing values are allowed.
Returned values are right-padded to the defined width of the string variable, as shown for the variable
v5 in the current example. In the case of a long string variable (a string variable with a maximum width
greater than eight bytes), the returned value is right-padded to a width of 8, which is the maximum
width of a missing value for a long string variable.

The Spssdata class in the spssdata module (a supplementary module installed with the IBM

SPSS Statistics - Integration Plug-in for Python) provides a number of convenient functions, built on
GetVarMissingValues, for dealing with missing values when reading data. See the topic “Reading Case
Data with the Spssdata Class” on page 169 for more information.

Identifying Variables without Value Labels

The task of retrieving value label information can be done in a variety of ways. For small datasets, it

is most easily done by using the VariableDict class from the spssaux module (see a reworking of

the example in this section). Alternatively, you can use the valuelLabels property of the Variable

class as long as you don't need to retrieve the information in the context of a procedure. See the topic
“Example: Displaying Value Labels as Cases in a New Dataset” on page 188 for more information. The
approach in this section uses the CreateXPathDictionary function (from the spss module) to create
an in-memory XML representation of the dictionary for the active dataset, from which you can extract
dictionary information. Information can be retrieved with a variety of tools, including the EvaluateXPath
function from the spss module. This approach is best suited for datasets with large dictionaries and can
be used in any circumstance.

As an example, we'll obtain a list of the variables that do not have value labels. The example utilizes the
xml.sax module, a standard module distributed with Python that simplifies the task of working with XML
and provides an alternative to the EvaluateXPath function. The first step is to define a Python class to
select the XML elements and associated attributes of interest. Not surprisingly, the discussion that follows
assumes familiarity with classes in Python.

class valuelabelHandler(ContentHandler):
"""Create two sets: one listing all variable names and
the other listing variables with value labels"""
def __init__(self):
self.varset = set()
self.vallabelset = set()
def startElement(self, name, attr):
if name == u"variable":
self.varset.add(attr.getValue(u"name"))
elif name == u"valuelabelVariable":
self.vallabelset.add(attr.getValue(u"name"))

- The job of selecting XML elements and attributes is accomplished with a content handler class. You
define a content handler by inheriting from the base class ContentHandler that is provided with the
xml.sax module. We'll use the name valueLabelHandler for our version of a content handler.

« The __init__ method defines two attributes, varset and vallabelset, that will be used to store the set
of all variables in the dataset and the set of all variables with value labels. The attributes varset and
vallabelset are defined as Python sets and, as such, they support all of the usual set operations, such
as intersections, unions, and differences. In fact, the set of variables without value labels is just the
difference of the two sets varset and vallabelset.

Chapter 3. Programming with Python 151

http://docs.python.org/tut/tut.html

« The startElement method of the content handler processes every element in the variable dictionary.
In the present example, it selects the name of each variable in the dictionary as well as the name of any
variable that has associated value label information and updates the two sets varset and vallabelset.

Specifying the elements and attributes of interest requires familiarity with the schema for the XML
representation of the IBM SPSS Statistics dictionary. For example, you need to know that variable
names can be obtained from the name attribute of the variable element, and variables with value
labels can be identified simply by retrieving the name attribute from each valueLabelVariable element.
Documentation for the dictionary schema is available in the Help system.

« The strings specifying the element and attribute names are prefaced with a u, which makes them
Unicode strings. This ensures compatibility with the XML representation of the IBM SPSS Statistics
dictionary, which is in Unicode.

Once you have defined a content handler, you define a Python function to parse the XML, utilizing the
content handler to retrieve and store the desired information.

def FindVarsWithoutValuelLabels():
handler = valuelabelHandler()
tag = "D"+ str(random.uniform(0,1))
spss.CreateXPathDictionary(tag)
Retrieve and parse the variable dictionary
xml.sax.parseString(spss.GetXmlUtfl6(tag), handler)
spss.DeleteXPathHandle(tag)
Print a list of variables in varset that aren't in vallabelset
nolabelset = handler.varset.difference(handler.vallabelset)
if nolabelset:
print "The following variables have no value labels:"
print "\n".join([v for v in nolabelset])
else:
print "All variables in this dataset have at least one value label."

« handler = valuelLabelHandlexr () creates an instance of the valuelLabelHandler class and
stores a reference to it in the Python variable handler.

« spss.CreateXPathDictionary(tag) creates an XML representation of the dictionary for the active
dataset. The argument tag defines an identifier used to specify this dictionary in subsequent operations.
The dictionary resides in an in-memory workspace--referred to as the XML workspace--which can
contain procedure output and dictionaries, each with its own identifier. To avoid possible conflicts with
identifiers already in use, the identifier is constructed using the string representation of a random
number.

- The parseString function does the work of parsing the XML, making use of the content handler to
select the desired information. The first argument is the XML to be parsed, which is provided here by
the GetXm1lUt£16 function from the spss module. It takes the identifier for the desired item in the XML
workspace and retrieves the item. The second argument is the handler to use--in this case, the content
handler defined by the valuelLabelHandler class. At the completion of the parseString function,
the desired information is contained in the attributes varset and vallabelset in the handler instance.

» spss.DeleteXPathHandle(tag) deletes the XML dictionary item from the XML workspace.

« As mentioned above, the set of variables without value labels is simply the difference between the sets
varset and vallabelset. This is computed using the difference method for Python sets and the result is
stored to nolabelset.

In order to make all of this work, you include both the function and the class in a Python module along
with the following set of import statements for the necessary modules:

from xml.sax.handler import ContentHandler
import xml.sax

import random, codecs, locale

import spss

Example

As a concrete example, determine the set of variables in Employee data.sav that do not have value labels.

*python_vars_no_value_labels_xmlsax.sps.

BEGIN PROGRAM.

import spss, FindVarsUtility

spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")

152 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

FindVarsUtility.FindVarsWithoutValuelLabels()
END PROGRAM.

The BEGIN PROGRAM block starts with a statement to import the FindVarsUtility module, which

contains the definition for the FindVarsWithoutValuelLabels function as well as the definition for the
valuelabelHandlex class.

Note: To run this program block, copy the module file FindVarsUtility.py, located in the /examples/python
folder of the accompanying examples, to your Python site-packages directory. For help in locating your
Python site-packages directory, see . If you are interested in making use of the xml.sax module, the
FindVarsUtility module may provide a helpful starting point.

Identifying Variables with Custom Attributes

The GetVarAttributeNames and GetVarAttributes functions, from the spss module, allow you to
retrieve information about any custom variable attributes for the active dataset.

Example

A number of variables in the sample dataset employee_data_attrs.sav have a variable attribute named
'DemographicVars'. Create a list of these variables.

*python_var_attr.sps.
BEGIN PROGRAM.
import spss
spss.Submit ("GET FILE='/examples/data/employee_data_attrs.sav'.")
varList=[]
attribute='DemographicVars'
for i in range(spss.GetVariableCount()):
if (attribute in spss.GetVarAttributeNames(i)):
varlList.append(spss.GetVariableName(i))
if varlist:
print "Variables with attribute " + attribute + ":"
print '\n'.join(varList)
else:
print "No variables have the attribute " + attribute
END PROGRAM.

« The GetVarAttributeNames function returns a tuple containing the names of any custom variable
attributes for the specified variable.

- The Python variable varList contains the list of variables that have the specified attribute.

Retrieving Datafile Attributes

The GetDataFileAttributeNames and GetDataFileAttributes functions, from the spss module,
allow you to retrieve information about any datafile attributes for the active dataset.

Example

The sample dataset employee_data_attrs.sav has a number of datafile attributes. Determine if the dataset
has a datafile attribute named 'LastRevised'. If the attribute exists, then retrieve its value.

*python_file_attr.sps.
BEGIN PROGRAM.
import spss
spss.Submit ("GET FILE='/examples/data/employee_data_attrs.sav'.")
for name in spss.GetDataFileAttributeNames():

if (name == 'LastRevised'):

print "Dataset last revised on:", spss.GetDataFileAttributes(name)[0]

END PROGRAM.

The GetDataFileAttributeNames function returns a tuple of names of the datafile attributes, if any,
for the active dataset.

The GetDataFileAttributes function returns a tuple of the values (datafile attributes can consist
of an array of values) for the specified datafile attribute. In the present example, the attribute
'LastRevised' consists of a single value, which is the Oth element of the result.

Passing Information from Command Syntax to Python

Datafile attributes are stored in a dataset's dictionary and apply to the dataset as a whole, rather than to
particular variables. Their global nature makes them suitable for storing information to be passed from

Chapter 3. Programming with Python 153

command syntax (residing outside of program blocks) to program blocks that follow, as shown in this
example:

*python_pass_value_to_python.sps.

GET FILE='/examples/data/Employee data.sav'.
DATAFILE ATTRIBUTE ATTRIBUTE=pythonArg('cheese').
BEGIN PROGRAM.

import spss

product = spss.GetDataFileAttributes('pythonArg') [0]
print "Value passed to Python:",product

END PROGRAM.

Start by loading a dataset, which may or may not be the dataset that you ultimately want to use for an
analysis. Then add a datafile attribute whose value is the value you want to make available to Python. If
you have multiple values to pass, you can use multiple attributes or an attribute array. The attribute(s)
are then accessible from program blocks that follow the DATAFILE ATTRIBUTE command(s). In the
current example, we've created a datafile attribute named pythonArg with a value of 'cheese'.

« The program block following the DATAFILE ATTRIBUTE command uses the

GetDataFileAttributes function to retrieve the value of pythonArg. The value is stored to the
Python variable product.

Retrieving Multiple Response Sets

The GetMultiResponseSetNames and GetMultiResponseSet functions, from the spss module,
allow you to retrieve information about any multiple response sets for the active dataset.

Example

The sample dataset telco_extra_mrsets.sav has a number of multiple response sets. Store the multiple
response sets in a Python dictionary and display the elementary variables associated with each set.

*python_mrset.sps.
BEGIN PROGRAM.
import spss
spss.Submit ("GET FILE='/examples/data/telco_extra_mrsets.sav'.")
dict = §%
for name in spss.GetMultiResponseSetNames():
mrset = spss.GetMultiResponseSet(name)
dict[name]={'label':mrset[0], 'coding':mrset[1], 'counted' :mrset[2],
'type' :mrset[3], 'vars':mrset[4]}
for name, set in dict.iteritems():
print "\nElementary Variables for " + name
print "\n".join(set['vars'])
END PROGRAM.

The GetMultiResponseSetNames function returns a list of names of the multiple response sets, if
any, for the active dataset.

The GetMultiResponseSet function returns the details of the specified multiple response set. The
result is a tuple of five elements. The first element is the label, if any, for the set. The second
element specifies the variable coding--'Categories' or 'Dichotomies’. The third element specifies the
counted value and applies only to multiple dichotomy sets. The fourth element specifies the data
type--'Numeric' or 'String'. The fifth element is a list of the elementary variables that define the set.

The Python variable dict is a Python dictionary whose keys are the names of the multiple response sets.

The value associated with each key is also a Python dictionary and consists of the details of the multiple
response set.

Using Object-Oriented Methods for Retrieving Dictionary Information

The spssaux module, a supplementary module installed with the IBM SPSS Statistics - Integration Plug-

in for Python, provides object-oriented methods that simplify the task of retrieving variable dictionary
information.

154 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Getting Started with the VariableDict Class

The object-oriented methods for retrieving dictionary information are encapsulated in the VariableDict
class in the spssaux module. In order to use these methods, you first create an instance of the
VariableDict class and store it to a variable, as in:

varDict = spssaux.VariableDict()

When the argument to VariableDict is empty, as shown above, the instance will contain information
for all variables in the active dataset. Of course, you have to include the statement import spssaux so
that Python can load the functions and classes in the spssaux module. Note that if you delete, rename,
or reorder variables in the active dataset, you should obtain a refreshed instance of the VariableDict
class.

You can also call VariableDict with a list of variable names or a list of index values for a set of
variables. The resulting instance will then contain information for just that subset of variables. To illustrate
this, consider the variables in Employee data.sav and an instance of VariableDict that contains the
variables id, salary, and jobcat. To create this instance from a list of variable names, use:

varDict = spssaux.VariableDict(['id', 'salary', 'jobcat'])

The same instance can be created from a list of variable index values, as in:

varDict = spssaux.VariableDict([0,5,4])

Remember that an index value of 0 corresponds to the first variable in file order, so the variable id has an
index of O, the variable salary has an index of 5, and the variable jobcat has an index of 4.

The number of variables in the current instance of the class is available from the numvazrs property, as in:

varDict.numvars

A Python list of variables in the current instance of the class is available from the variablesf method,
asin:

varDict.variablesf()

You may want to consider creating multiple instances of the VariableDict class, each assigned to a
different variable and each containing a particular subset of variables that you need to work with.

Note: You can select variables for an instance of VariableDict by variable type (' numeric' or
'string'), by variable measurement level ('nominal’', 'ordinal’, 'scale’, or 'unknown'), or by
using a regular expression; and you can specify any combination of these criteria. You can also specify
these same types of criteria for the variablesf method in order to list a subset of the variables in an
existing instance. For more information on using regular expressions, see “Using Regular Expressions to
Select Variables” on page 158. For more information on selecting variables by variable type or variable
level, include the statement help (spssaux.VariableDict) in a program block, after having imported
the spssaux module.

Retrieving Variable Information

Once you have created an instance of the VariableDict class, you have a variety of ways of retrieving
variable dictionary information.

Looping through the variables in an instance of VariableDict. You can loop through the variables,
extracting information one variable at a time, by iterating over the instance of VariableDict. For
example,

varDict = spssaux.VariableDict()
for var in varDict:
print var, var.VariableName, "\t", var.Variablelabel

« The Python variable varDict holds an instance of the VariableDict class for all of the variables in the
active dataset.

Chapter 3. Programming with Python 155

= On each iteration of the loop, the Python variable var is an object representing a different variable
in varDict and provides access to that variable's dictionary information through properties of the
object. For example, var.VariableName returns the variable name for the variable represented by
the current value of var, and including var by itself returns the index value of the current variable.

Note: A list of all available properties and methods for the VariableDict class can be obtained by
including the statement help(spssaux.VariableDict) in a program block, assuming that you have
already imported the spssaux module.

Accessing information by variable name. You can retrieve information for any variable in the current
instance of VariableDict simply by specifying the variable name. For example, to retrieve the
measurement level for a variable named jobcat, use:

varDict['jobcat'].VariablelLevel

Accessing information by a variable's index within an instance. You can access information for a
particular variable using its index within an instance. When you call VariableDict with an explicit
variable list, the index within the instance is simply the position of the variable in that list, starting from 0.
For example, consider the following instance based on Employee data.sav as the active dataset:

varDict = spssaux.VariableDict(['id', 'salary', 'jobcat'])

The index 0 in the instance refers to id, 1 refers to salary, and 2 refers to jobcat. The code to retrieve, for
example, the variable name for the variable with index 1 in the instance is:

varDict[1].VariableName

The result, of course, is 'salary'. Notice that salary has an index value of 5 in the associated dataset
but an index of 1 in the instance. This is an important point; in general, the variable's index value in the
dataset isn't equal to its index in the instance.

It may be convenient to obtain the variable's index value in the dataset from its index in the instance. As
an example, get the index value in the dataset of the variable with index 2 in varDict. The code is:

varDict[2]

The result is 4, since the variable with index 2 in the instance is jobcat and it has an index value of 4 in the
dataset.

Accessing information by a variable's index value in the dataset. You also have the option of
addressing variable properties by the index value in the dataset. This is done using the index value as

an argument to a method call. For example, to get the name of the variable with the index value of 4 in the
dataset, use:

varDict.VariableName (4)

For the dataset and instance used above, the result is ' jobcat'.
Setting Variable Properties

The VariableDict class allows you to set a number of properties for existing variables in the active
dataset. You can set the variable label, the measurement level, the output format, value labels, missing
values, and variable attributes. For example, to update the variable label of jobtime to '‘Months on the job'
in Employee data.sav, use:

varDict = spssaux.VariableDict()
varDict['jobtime'].VariableLabel="'Months on the job'

For more information, include the statement help(spssaux.Variable) in a program block.

Defining a List of Variables between Two Variables

Sometimes you cannot use references such as varl TO xyz5;you have to actually list all of the
variables of interest. This task is most easily done using the range method from the VariableDict

156 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

class. As a concrete example, print the list of scale variables between bdate and jobtime in Employee
data.sav.

*python_vars_between_vars.sps.

BEGIN PROGRAM.

import spssaux

spssaux.0OpenDataFile('/examples/data/Employee data.sav')
vdict=spssaux.VariableDict()

print vdict.range(start="bdate",6end="jobtime", variableLevel=["scale"])
END PROGRAM.

The OpenDataFile function from the spssaux module is used to open Employee data.sav. The
argument to the function is the file specification in quotes. Although not used here, OpenDataFile
also allows you to associate a dataset name with the opened file. For more information, include the

statement help (spssaux.0OpenDataFile) in a program block, after having imported the spssaux
module.

The range method from the VariableDict class returns a list of variable names (from the current
instance of class) between the variables specified by the arguments start and end. In the current
example, the instance of VariableDict contains all of the variables in the active dataset, in file order.
When the variableLevel argument is used, only those variables with one of the specified measurement
levels will be included in the list. The variables specified as start and end (bdate and jobtime in this
example) are considered for inclusion in the list.

For more information on the range method, include the statement
help(spssaux.VariableDict.range) ina program block.

Specifying Variable Lists with TO and ALL

Sometimes you'll want to specify variable lists with the TO and ALL keywords, like you can with variable
lists in IBM SPSS Statistics command syntax. This is particularly useful if you're writing an extension
command (a user-defined IBM SPSS Statistics command implemented in Python or R) and want to
provide users with the convenience of TO and ALL. Handling TO and ALL is accomplished with the expand
method from the VariableDict class.

Example: Using ALL

*python_ALL_keyword.sps.

BEGIN PROGRAM.

import spssaux
spssaux.0OpenDataFile('/examples/data/Employee data.sav')
vdict=spssaux.VariableDict(variablelLevel=["scale'])
print vdict.expand("ALL")

END PROGRAM.

An instance of the VariableDict class is created for the scale variables in Employee data.sav and
saved to the Python variable vdict.

vdict.expand("ALL") returns a list of all of the variables in the VariableDict instance--in this
case, all of the scale variables in Employee data.sav. The result is:

['salary', 'bdate', 'prevexp', 'jobtime', ‘'salbegin', 'id']

Example: Using TO

*python_TO_keywoxrd.sps.

BEGIN PROGRAM.

import spssaux
spssaux.0OpenDataFile('/examples/data/Employee data.sav')
vdict=spssaux.VariableDict()

print vdict.expand(["educ","T0", "prevexp"])

END PROGRAM.

An instance of the VariableDict class is created for the all of the variables in Employee data.sav and
saved to the Python variable vdict.

vdict.expand(["educ","T0", "prevexp"]) returns a list of all of the variables in the
VariableDict instance between educ and prevexp inclusive. The result is:

['educ', 'jobcat', 'salary', 'salbegin', 'jobtime', 'prevexp']

Chapter 3. Programming with Python 157

You can also specify the range of variables in a character string, as in vdict.expand ("educ

TO prevexp"), and you can include variables in addition to the endpoints of the range, as in
vdict.expand(["gendexr", "educ","TO", "prevexp"]). Finally, variable names specified for the
expand method are not case sensitive.

For more information on the expand method, include the statement
help(spssaux.VariableDict.expand) ina program block.

Identifying Variables without Value Labels

The VariableDict class allows you to retrieve value label information through the Valuelabels
property. The following example shows how to obtain a list of variables that do not have value labels:

*python_vars_no_value_labels.sps.
BEGIN PROGRAM.
import spss, spssaux
spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")
varDict = spssaux.VariableDict()
varlList = [var.VariableName for var in varDict
if not var.Valuelabels]
print "List of variables without value labels:"
print "\n".join(varList)
END PROGRAM.

var.Valuelabels returns a Python dictionary containing value label information for the variable
represented by var. If there are no value labels for the variable, the dictionary will be empty and
var.Valuelabels will be interpreted as false for the purpose of evaluating an 1f statement.

The Python variable varList contains the list of variables that do not have value labels. Note: If you are
not familiar with the method used here to create a list, see the section "List Comprehensions" in the
Python tutorial, available at http://docs.python.org/tut/tut.html .

If you have PRINTBACK and MPRINT on, you'll notice a number of OMS commands in the Viewer log
when you run this program block. The Valuelabels property utilizes OMS to get value labels from the
active dataset's dictionary.

The method used above for finding variables without value labels can be quite expensive when processing
all of the variables in a large dictionary. In such cases, consider using the valuelLabels property of

the Variable class as long as you don't need to retrieve the information in the context of a procedure.
See the topic “Example: Displaying Value Labels as Cases in a New Dataset” on page 188 for more
information.

Using Regular Expressions to Select Variables

Regular expressions define patterns of characters and enable complex string searches. For example,
using a regular expression, you could select all variables in the active dataset whose names end in a digit.
The VariableDict class allows you to use regular expressions to select the subset of variables for an
instance of the class or to obtain a selected list of variables in an existing instance.

Example

The sample dataset demo.sav contains a number of variables whose names begin with 'own', such as
owntv and ownvcr. We'll use a regular expression to create an instance of VariableDict that contains
only variables with names beginning with 'own".

*python_re_1.sps.

BEGIN PROGRAM.

import spss, spssaux

spss.Submit ("GET FILE='/examples/data/demo.sav'.")
varDict = spssaux.VariableDict(pattern=r'own')
print "\n".join(varDict.variablesf())

END PROGRAM.

The argument pattern is used to specify a regular expression when creating an instance of the
VariableDict class. A variable in the active dataset is included in the instance only if the regular
expression provides a match to its name. When testing a regular expression against a name, comparison
starts with the beginning of the name. In the current example, the regular expression is simply the string

158 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

http://docs.python.org/tut/tut.html

"own' and will provide a match to any variable whose name begins with 'own'. Patterns for regular
expressions are always case insensitive.

« Notice that the string for the regular expression is prefaced with r, indicating that it will be treated as a
raw string. It is a good idea to use raw strings for regular expressions to avoid unintentional problems
with backslashes. See the topic “Using Raw Strings in Python” on page 139 for more information.

« The variablesf method of VariableDict creates a Python list of all variables in the current
instance.

Example

In the following example, we create a sample dataset containing some variables with names that end in a
digit and create an instance of VariableDict containing all variables in the dataset. We then show how
to obtain the list of variables in the instance whose names end in a digit.

*python_re_2.sps.
DATA LIST FREE
/id gender age incat region scorel score2 score3.
BEGIN DATA
10 35 3 10 85 76 63
END DATA.
BEGIN PROGRAM.
import spssaux
varDict = spssaux.VariableDict()
print "\n".join(varDict.variablesf(pattern=r'.x\d$'))
END PROGRAM.

The argument pattern can be used with the variablesf method of VariableDict to create a list

of variables in the instance whose names match the associated regular expression. In this case, the
regular expression is the string ' . x\d$'.

- If you are not familiar with the syntax of regular expressions, a good introduction can be found
in the section "Regular expression operations" in the Python Library Reference, available at http://
docs.python.org/lib/module-re.html . Briefly, the character combination' . x" will match an arbitrary
number of characters (other than a line break), and '\d$' will match a single digit at the end of a string.

The combination ' .*\d$"' will then match any string that ends in a digit. For an example that uses a
more complex regular expression, see.

Working with Case Data in the Active Dataset

The IBM SPSS Statistics - Integration Plug-in for Python provides the ability to read case data from
the active dataset, create new variables in the active dataset, and append new cases to the active
dataset. This is accomplished using methods from the Cursor class, available with the spss module.
To concurrently access multiple open datasets, use the Dataset class. See the topic “Creating and
Accessing Multiple Datasets” on page 178 for more information.

Using the Cursor Class

The Cursox class provides three usage modes: read mode allows you to read cases from the active
dataset, write mode allows you to add new variables (and their case values) to the active dataset, and

append mode allows you to append new cases to the active dataset. To use the Cursox class, you first
create an instance of the class and store it to a Python variable, as in:

dataCursor = spss.Cursor(accessType='w')

The optional argument accessType specifies the usage mode: read (' '), write ('w'), orappend ('a').
The default is read mode. Each usage mode supports its own set of methods.

Note: For users of a 14.0.x version of the plug-in who are upgrading to version 15.0 or higher, read mode
is equivalent to the Cursor class provided with 14.0.x versions. No changes to your 14.0.x code for the
Cursor class are required to run the code with version 15.0 or higher.

Chapter 3. Programming with Python 159

http://docs.python.org/lib/module-re.html
http://docs.python.org/lib/module-re.html

Reading Case Data with the Cursor Class
To read case data, you create an instance of the Cursor class in read mode, as in:

dataCursor = spss.Cursor(accessType='r")

Read mode is the default mode, so specifying accessType="x" is optional. For example, the above is
equivalent to:

dataCursor = spss.Cursor()

Invoking Cursor with just the accessType argument, or no arguments, indicates that case data should
be retrieved for all variables in the active dataset.

You can also call Cursoxr with a list of index values for a set of specific variables to retrieve. Index values
represent position in the active dataset, starting with 0 for the first variable in file order. To illustrate this,
consider the variables in Employee data.sav and imagine that you want to retrieve case data for only the
variables id and salary, with index values of 0 and 5, respectively. The code to do this is:

dataCursor = spss.Cursor([0,5])

Note: When working with a subset of the variables in the active dataset, you may consider using the
spssdata module, which allows you to specify a list of variable names, rather than indexes. See the topic
“Using the spssdata Module” on page 168 for more information.

Example: Retrieving All Cases

Once you've created an instance of the Cursor class, you can retrieve data by invoking methods on the
instance. The method for retrieving all cases is fetchall, as shown in the following example:

*python_get_all_cases.sps.
DATA LIST FREE /varl (F) var2 (A2).
BEGIN DATA

11 ab

21 cd

31 ef

END DATA.

BEGIN PROGRAM.

import spss
dataCursor=spss.Cursox()
data=dataCursor.fetchall()
dataCursor.close()

print "Case data:", data
END PROGRAM.

The fetchall method doesn't take any arguments, but Python still requires a pair of parentheses
when calling the method.

The Python variable data contains the data for all cases and all variables in the active dataset.

dataCursor.close() closes the Cursor object. Once you've retrieved the needed data, you should
close the Cursor object, since you can't use the spss.Submit function while a data cursor is open.

Note: When reading from datasets with splits, fetchall returns the remaining cases in the current split.
For more information on working with splits, see the example "Handling Data with Splits" in this section.

Result

Case data: ((11.0, ‘'ab'), (21.0, ‘cd'), (31.0, 'ef'))

« The case data is returned as a list of Python tuples. Each tuple represents the data for one case, and the
tuples are arranged in the same order as the cases in the dataset. For example, the tuple containing the
data for the first case in the datasetis (11.0, 'ab'), the first tuple in the list. If you're not familiar
with the concept of a Python tuple, it's a lot like a Python list--it consists of a sequence of addressable
elements. The main difference is that you can't change an element of a tuple like you can for a list. You
can of course replace the tuple, effectively changing it.

« Each element in one of these tuples contains the data value for a specific variable. When you invoke the

Cursor class with spss.Cursor (), as in this example, the elements correspond to the variables in file
order.

160 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Note: When working with retrieved case data, you may also consider using the spssdata module,
which allows you to address elements of tuples (containing case data) by the name of the associated
variable instead of its index value. See the topic “Using the spssdata Module” on page 168 for more
information.

« By default, missing values are converted to the Python data type None, which is used to signify the
absence of a value. For more information on missing values, see the example on "Missing Data" that
follows.

Note: Be careful when using the fetchall method for large datasets, since Python holds the retrieved
data in memory. In such cases, when you have finished processing the data, consider deleting the variable
used to store it. For example, if the data are stored in the variable data, you can delete the variable with
del data.

Example: Retrieving Cases Sequentially

You can retrieve cases one at a time in sequential order using the fetchone method.

*python_get_cases_sequentially.sps.

DATA LIST FREE /varl (F) var2 (A2).

BEGIN DATA

11 ab

21 cd

END DATA.

BEGIN PROGRAM.

import spss

dataCursor=spss.Cursor()

print "First case:", dataCursor.fetchone()
print "Second case:", dataCursor.fetchone()
print "End of file reached:", dataCursor.fetchone()
dataCursor.close()

END PROGRAM.

Each call to fetchone retrieves the values of the specified variables (in this example, all variables) for the
next case in the active dataset. The fetchone method doesn't take any arguments.

Result

First case: (11.0, 'ab')
Second case: (21.0, 'cd')
End of file reached: None

Calling fetchone after the last case has been read returns the Python data type None.
Example: Retrieving Data for a Selected Variable

As an example of retrieving data for a subset of variables, we'll take the case of a single variable.

*python_get_one_variable.sps.

DATA LIST FREE /varl (F) var2 (A2) var3 (F).
BEGIN DATA

11 ab 13

21 cd 23

31 ef 33

END DATA.

BEGIN PROGRAM.

import spss

dataCursor=spss.Cursor([2])
data=dataCursor.fetchall()
dataCursor.close()

print "Case data for one variable:", data
END PROGRAM.

The code spss.Cursor ([2]) specifies that data will be returned for the single variable with index value
2 in the active dataset. For the current example, this corresponds to the variable var3.

Note: When working with a subset of the variables in the active dataset, you may consider using the
spssdata module, which allows you to specify a list of variable names, rather than indexes. See the topic
“Using the spssdata Module” on page 168 for more information.

Result

Case data for one variable: ((13.0,), (23.0,), (33.0,))

The data for each case is represented by a tuple containing a single element. Python denotes such a tuple
by following the value with a comma, as shown here.

Chapter 3. Programming with Python 161

Example: Missing Data

In this example, we create a dataset that includes both system-missing and user-missing values.

*python_get_missing_data.sps.

DATA LIST LIST (',") /numVar (f) stringVar (a4).
BEGIN DATA

1,a

3.,

9,d

END DATA.

MISSING VALUES numVar (9) stringVar (' ').
BEGIN PROGRAM.

import spss

dataCursor=spss.Cursoxr()
data=dataCursor.fetchall()

dataCursor.close()

print "Case data with missing values:\n", data
END PROGRAM.

Result

Case data with missing values:
((1.0, 'a '), (None, 'b '), (3.0, None), (None, 'd "))

When the data are read into Python, system-missing values are converted to the Python data type None,
which is used to signify the absence of a value. By default, user-missing values are also converted to
None. You can use the SetUserMissingInclude method to specify that user-missing values be treated
as valid, as shown in the following reworking of the previous example.

DATA LIST LIST (',') /numVar (f) stringVar (a4).
BEGIN DATA

1,a

b

3,

9,d

END DATA.

MISSING VALUES numVar (9) stringvar (' ').

BEGIN PROGRAM.

import spss

dataCursor=spss.Cursox()
dataCursor.SetUserMissingInclude(True)
data=dataCursor.fetchall()

dataCursor.close()

print "Case data with user-missing values treated as valid:\n", data
END PROGRAM.

Result

Case data with user-missing values treated as valid:
(1.0, '‘a '), (None, 'b '), (3.0, ' D, (9.0, 'd "))

Example: Handling Data with Splits

When reading datasets in which split-file processing is in effect, you'll need to be aware of the behavior at
a split boundary. Detecting split changes is necessary when you're creating custom pivot tables from data
with splits and want separate results displayed for each split group. The IsEndSplit method, from the
Cursor class, allows you to detect split changes when reading from datasets that have splits.

*python_detect_split_change.sps.
DATA LIST FREE /salary (F) jobcat (F).
BEGIN DATA

21450 1

45000 1

30000 2

30750 2

103750 3

72500 3

57000 3

END DATA.

SPLIT FILE BY jobcat.

BEGIN PROGRAM.
import spss
cur=spss.Cursor()
for i in range(spss.GetCaseCount()):
cur.fetchone()
if cur.IsEndSplit():
print "A new split begins at case", i+l
Fetch the first case of the new split group
cur.fetchone()
cur.close()
END PROGRAM.

162 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

e cur.IsEndSplit() returns a Boolean value—True if a split boundary has been crossed and False
otherwise. For the sample dataset used in this example, split boundaries are crossed when reading the
third and fifth cases.

« The value returned from the fetchone method is None at a split boundary. In the current example, this
means that None is returned when attempting to read the third and fifth cases. Once a split has been
detected, you call fetchone again to retrieve the first case of the next split group, as shown in this
example.

« Although not shown in this example, IsEndSplit also returns True when the end of the dataset has
been reached. This scenario would occur if you replace the for loop withawhile True loop that
continues reading until the end of the dataset is detected. Although a split boundary and the end of the
dataset both result in a return value of True from IsEndSplit, the end of the dataset is identified by a
return value of None from a subsequent call to fetchone.

Handling IBM SPSS Statistics Datetime Values

Dates and times in IBM SPSS Statistics are represented internally as seconds. By default, data retrieved
from IBM SPSS Statistics for a datetime variable is returned as a floating point number representing
some number of seconds and fractional seconds. IBM SPSS Statistics knows how to correctly interpret
this number when performing datetime calculations and displaying datetime values, but without special
instructions, Python doesn't. To illustrate this point, consider the following sample data and code to
retrieve the data:

DATA LIST FREE /bdate (ADATE10).
BEGIN DATA
02/13/2006

END DATA.

BEGIN PROGRAM.
import spss
data=spss.Cursor()
row=data.fetchone()
print row[0]
data.close()

END PROGRAM.

The result from Python is 13359168000. 0, which is a perfectly valid representation of the date
02/13/2006 if you happen to know that IBM SPSS Statistics stores dates internally as the number of
seconds since October 14, 1582. You can, however, specify to convert a datetime value from IBM SPSS
Statistics into a Python datetime object with the cvtDates argument to the spss.Cursox function. The
retrieved value will then render in a recognizable date format within Python and can be manipulated with
functions from the Python datetime module (a built-in module distributed with Python).

The following is a reworking of the previous example, making use of the cvtDates argument.

*python_convert_datetime_values.sps.
DATA LIST FREE /bdate (ADATE10).
BEGIN DATA

02/13/2006

END DATA.

BEGIN PROGRAM.

import spss
data=spss.Cursor(cvtDates="'ALL")
row=data.fetchone()

print row[0]

data.close()

END PROGRAM.

The argument cvtDates is a sequence of index values of the variables to convert or the name "ALL" as in
this example. If a variable specified in cvtDates does not have a date format, it is not converted.

« The result from Python is 2006-02-13 00:00:00, which is the display of a Python datetime object.

Working in Unicode Mode

For IBM SPSS Statistics 16.0 and higher, the IBM SPSS Statistics processor from which you retrieve data
can operate in code page mode (the default) or Unicode mode. In code page mode, strings are returned
to Python in the character encoding of the current locale, whereas in Unicode mode, strings are returned
as Python Unicode objects (more specifically, they are converted by IBM SPSS Statistics from UTF-8 to
UTF-16). This applies to variable dictionary information and string data. Objects in the XML workspace are
always in Unicode.

Chapter 3. Programming with Python 163

Special care must be taken when working in Unicode mode with Python programs. Specifically, Python
string literals used within Python programs in command syntax files need to be explicitly expressed as
UTF-16 strings. This is best done by using the u () function from the spssaux module. The function has
the following behavior:

- If IBM SPSS Statistics is in Unicode mode, the function returns its argument in Unicode.

« If IBM SPSS Statistics is not in Unicode mode or the argument is not a string, the argument is returned
unchanged.

Note: If the u () function or its equivalent is not used, the literal will be encoded in UTF-8 when IBM SPSS
Statistics is in Unicode mode. Therefore, if the string literals in a command syntax file only consist of plain
roman characters (7-bit ASCII), the u () function is not needed.

The following example demonstrates some of this behavior and the usage of the u () function.

set unicode on locale=english.
BEGIN PROGRAM.
import spss, spssaux
from spssaux import u
literal = "abc"
try:
print "literal without conversion:", literal
except:
print "can't print literal"
try:
print "literal converted to utf-16:", u(literal)
except:
print "can't print literal"
END PROGRAM.

Following are the results:

literal without conversion: can't print literal
literal converted to utf-16: abc

Creating New Variables with the Cursor Class

To add new variables along with their case values to the active dataset, you create an instance of the
Cursor class in write mode, as in:

dataCursor = spss.Cursor(accessType='w')

Populating case values for new variables involves reading and updating cases, so write mode also
supports the functionality available in read mode. As with a read cursor, you can create a write cursor
with a list of index values for a set of specific variables (perhaps used to determine case values for the
new variables). For example, to create a write cursor that also allows you to retrieve case data for the
variables with index values 1 and 3 in the active dataset, use:

dataCursor = spss.Cursor([1,3],accessType='w")

Write mode also supports multiple data passes, allowing you to add new variables on any data pass. For
more information, see the example on "Adding Group Percentile Values to a Dataset".

Example

In this example, we create a new string variable and a new numeric variable and populate their case
values for the first and third cases in the active dataset.

*python_add_vars.sps.

DATA LIST FREE /case (A5).

BEGIN DATA

casel

case2

case3

END DATA.

BEGIN PROGRAM.

import spss

cur=spss.Cursor(accessType='w")

Specify new variables
cur.SetVarNameAndType (['numvar', 'strvar'],[0,1])
cur.SetVarLabel ('numvar', 'Sample numeric variable')
cur.SetVarLabel ('strvar', 'Sample string variable')
cur.CommitDictionary ()

Set values for the first case in the active dataset
cur.fetchone()

cur.SetValueNumeric('numvar',1)

164 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

cur.SetValueChar('strvar','a')

cur.CommitCase()

Set values for the third case in the active dataset
cur.fetchmany(2)

cur.SetValueNumeric('numvar',3)
cur.SetValueChar('strvar','c"')

cur.CommitCase()

cur.close()

END PROGRAM.

« New variables are created using the SetVarNameAndType method from the Cursox class. The first
argument is a list or tuple of strings that specifies the name of each new variable. The second argument
is a list or tuple of integers specifying the variable type of each variable. Numeric variables are specified
by a value of O for the variable type. String variables are specified with a type equal to the defined length
of the string (a maximum of 32767). In this example, we create a numeric variable named numvar and a
string variable of length 1 named strvar.

« After calling SetVarNameAndType, you have the option of specifying variable properties (in addition to
the variable type), such as the measurement level, variable label, and missing values. In this example,
variable labels are specified using the SetVarLabel method.

« Specifications for new variables must be committed to the cursor's dictionary before case values can be
set. This is accomplished by calling the CommitDictionary method, which takes no arguments. The
active dataset's dictionary is updated when the cursor is closed.

« To set case values, you first position the record pointer to the desired case using the fetchone or
fetchmany method. fetchone advances the record pointer by one case, and fetchmany advances it
by a specified number of cases. In this example, we set case values for the first and third cases.

Note: To set the value for the first case in the dataset, you must call fetchone as shown in this
example.

 Case values are set using the SetValueNumeric method for numeric variables and the
SetValueChar method for string variables. For both methods, the first argument is the variable name
and the second argument is the value for the current case. A numeric variable whose value is not
specified is set to the system-missing value, whereas a string variable whose value is not specified will
have a blank value. For numeric variables, you can use the value None to specify a system-missing
value. For string variables, you can use stx (None) to specify a blank string.

Values of numeric variables with a date or datetime format should be specified as Python
time.struct_time or datetime.datetime objects, which are then converted to the appropriate
IBM SPSS Statistics value. Values of variables with TIME and DTIME formats should be specified as the
number of seconds in the time interval.

« The CommitCase method must be called to commit the values for each modified case. Changes to the
active dataset take effect when the cursor is closed.

Note: You cannot add new variables to an empty dataset using the Cursor class. If you need to create a
dataset from scratch and you are a user of IBM SPSS Statistics 15.0, use the mode 'n' of the Spssdata
class. For users of IBM SPSS Statistics 16.0 and higher, it is recommended to use the Dataset class

to create a new dataset. See the topic “Example: Creating and Saving Datasets” on page 184 for more
information.

Appending New Cases with the Cursor Class

To append new cases to the active dataset, you create an instance of the Cursozr class in append mode,
asin:

dataCursor = spss.Cursor(accessType='a')

Example

In this example, two new cases are appended to the active dataset.

*python_append_cases.sps.

DATA LIST FREE /case (F) value (Al).
BEGIN DATA

1a

END DATA.

BEGIN PROGRAM.

Chapter 3. Programming with Python 165

import spss
cur=spss.Cursor(accessType='a')
cur.SetValueNumeric('case',2)
cur.SetValueChar('value','b")
cur.CommitCase ()
cur.SetValueNumeric('case',3)
cur.SetValueChar('value','c")
cur.CommitCase()
cur.EndChanges ()

cur.close()

END PROGRAM.

 Case values are set using the SetValueNumeric method for numeric variables and the
SetValueChar method for string variables. For both methods, the first argument is the variable name,
as a string, and the second argument is the value for the current case. A numeric variable whose value is
not specified is set to the system-missing value, whereas a string variable whose value is not specified
will have a blank value. For numeric variables, you can use the value None to specify a system-missing
value. For string variables, you can use str (None) to specify a blank string.

e The CommitCase method must be called to commit the values for each new case. Changes to the active
dataset take effect when the cursor is closed. When working in append mode, the cursor is ready to
accept values for a new case (using SetValueNumeric and SetValueChar) once CommitCase has
been called for the previous case.

« The EndChanges method signals the end of appending cases and must be called before the cursor is
closed or the new cases will be lost.

Note: Append mode does not support reading case data or creating new variables. A dataset must contain
at least one variable in order to append cases to it, but it need not contain any cases. If you need to
create a dataset from scratch and you are a user of IBM SPSS Statistics 15.0, use the mode 'n' of the
Spssdata class. For users of IBM SPSS Statistics 16.0 and higher, it is recommended to use the Dataset
class to create a new dataset. See the topic “Example: Creating and Saving Datasets” on page 184 for
more information.

Example: Counting Distinct Values Across Variables

In this example, we count the distinct values across all variables for each case in the active dataset and
store the results to a new variable. User-missing and system-missing values are ignored in the count of
distinct values.

*python_distinct_values_across_variables.sps.
DATA LIST LIST (',') /varl (F) var2 (F) var3 (F) vard (F).
BEGIN DATA
1,2,3,4
0,1,1,1
2,3, ,2
1,1,3,4
END DATA.
MISSING VALUES varl (0).
BEGIN PROGRAM.
import spss
cur = spss.Cursor(accessType='w')
cur.SetVarNameAndType(['distinct'], [0])
cur.CommitDictionary ()
for i in range(spss.GetCaseCount()):
row = cur.fetchone()
vals = set(zow)
vals.discard(None)
cur.SetValueNumeric('distinct', len(vals))
cur.CommitCase()
cur.close()
END PROGRAM.

Since we need to read from the active dataset as well as write to it, we use an instance of the Cursoxr
class in write mode.

The SetVarNameAndType method is used to create the new variable distinct that will hold the number
of distinct values for each case. The CommitDictionary method is called to commit the new variable
before reading the data.

The fetchone method is used to read each case sequentially. It also has the effect of advancing the
record pointer by one case, allowing you to set the value of distinct for each case.

The Python set function creates a set object containing the distinct elements in row. The discazrd
method of the set object removes the value None, representing any user-missing or system-missing
values.

166 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Example: Adding Group Percentile Values to a Dataset

In this example, we calculate the quartiles for the cases associated with each value of a grouping
variable--in particular, the quartiles for salary grouped by jobcat for the Employee data.sav dataset--and
add the results as new variables. This involves two passes of the data. The first pass reads the data and
calculates the group quartiles. The second pass adds the quartile values as new variables to the active
dataset.

Note: This can also be done with the IBM SPSS Statistics Rank procedure.

*python_add_group_percentiles.sps.

BEGIN PROGRAM.

import spss, math

spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")

Create a cursor that will only read the values of jobcat and salary
cur=spss.Cursor(var=[4,5],accessType="w")
cur.AllocNewVarsBuffer(24)

Accumulate frequencies of salaries for each employment category
salaries={}; counts={}
for i in range(spss.GetCaseCount()):
row=cur.fetchone()
jobcat=row[0]
salary=row[1]
salaries[jobcat]=salaries.get(jobcat,{})
salaries[jobcat] [salary]=salaries[jobcat].get(salary,0) + 1
counts[jobcat]=counts.get(jobcat,0) + 1

Calculate the cutpoint salary value for each percentile for each
employment category
percentiles={}
for jobcat in salaries:
cutpoints = [int(math.ceil(counts[jobcat]*f)) for £ in [.25, .50, .75]]
tempcount=0; pctindex=0
percentiles[jobcat]=[]
salarylist=sorted(salaries[jobcat].keys())
for salary in salarylist:
tempcount+=salaries[jobcat] [salary]
if tempcount>=cutpoints[pctindex]:
percentiles[jobcat].append(salary)
pctindex+=1
if pctindex ==
break

Create and populate new variables for the percentiles
cur.reset()
cur.SetVarNameAndType(['salary_25', 'salary_50', 'salary_75'],[0,0,0])
cur.CommitDictionary ()
for i in range(spss.GetCaseCount()):
row=cur.fetchone()
jobcat=row[0]
cur.SetValueNumeric('salary_25',percentiles[jobcat][0])
cur.SetValueNumeric('salary_50',percentiles[jobcat][1])
cur.SetValueNumeric('salary_75',percentiles[jobcat][2])
cur.CommitCase ()
cur.close()
end program.

The code makes use of the ceil function from the math module, so the import statement includes the
math module.

spss.Cursor(var=[4,5],accessType="w") creates a write cursor. var=[4, 5] specifies that only
values of the variables with indexes 4 (jobcat) and 5 (salary) are retrieved when reading cases with this
cursor.

In the case of multiple data passes where you need to add variables on a data pass other than the first
(as in this example), you must call the AllocNewVarsBuffer method to allocate the buffer size for the
new variables. Each numeric variable requires eight bytes, so 24 bytes are needed for the three new
variables in this example. When used, Al1locNewVarsBuffer must be called before reading any data
with fetchone, fetchmany, or fetchall and before calling CommitDictionary.

The first data pass accumulates the frequencies of each salary value for each employment

category. The Python dictionary salaries has a key for each employment category found in

the case data. The value associated with each key is itself a dictionary whose keys are the

salaries and whose values are the associated frequencies for that employment category. The code
salaries[jobcat].get(salary,0) looks in the dictionary associated with the current employment
category (jobcat) for a key equal to the current value of salary. If the key exists, its value is returned;
otherwise, O is returned.

The Python dictionary percentiles has a key for each employment category found in the case data. The
value associated with each key is a list of the quartiles for that employment category. For simplicity,
when a quartile boundary falls exactly on a particular case number, the associated case value (rather

Chapter 3. Programming with Python 167

than an interpolation) is used as the quartile. For example, for an employment category with 84 cases,
the first quartile falls exactly on case 21.

« The reset method is used to reset the cursor's record pointer in preparation for a second data pass.
When executing multiple data passes, the reset method must be called prior to defining new variables
on subsequent passes.

« A second data pass is used to add the variables salary 25, salary_50, and salary_75, containing the
quartile values, to the active dataset. For each case, the values of these variables are those for the
employment category associated with the case.

EH “Employee data.sav[] -Data Editor =&
File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help
12 : minarity 1 “isible: 13 of 1
salary | salbegin | jobtime | prevexp | minority | salary 25 | salary 50| salary 75 |d\
1 $a7 000 $27 000 93 144 0| 5145000 BO375.00) 70875.00°
2 $40,200 $18,750 93 35 0| 2280000 26550.00| 31200.00
3 $21 450 $12,000 95 381 0| 2230000 26550.00 31200.00
4 $21 900 $13,200 93 190 0| 2280000 26550.00| 31200.00
3 $45 000 $21,000 93 138 0| 2230000 26550.00| 31200.00
B $32,100 $13,500 98 &7 0| 22380000 26550.00| 31200.00
7 $36 000 18,750 93 114 0| 22800.00| 2655000 3120000,
4 » \Data View £ Variahle View f |<] 3]

Figure 80. Percentiles added to original data file as new variables

Using the spssdata Module

The spssdata module, a supplementary module installed with the IBM SPSS Statistics - Integration
Plug-in for Python, builds on the functionality in the Cursozx class to provide a number of features that
simplify the task of working with case data.

« You can specify a set of variables to retrieve using variable names instead of index values, and you can
use VariableDict objects created with the spssaux module to specify variable subsets.

« Once data have been retrieved, you can access case data by variable name.

« When reading case data, you can automatically skip over cases that have user- or system-missing
values for any of the retrieved variables.

The Spssdata class provides four usage modes: read mode allows you to read cases from the active
dataset, write mode allows you to add new variables (and their case values) to the active dataset, append
mode allows you to append new cases to the active dataset, and new mode allows you to create an
entirely new dataset (for users of IBM SPSS Statistics 16.0 or higher, it is recommended to use the
Dataset class to create a new dataset). To use the Spssdata class, you first create an instance of the
class and store it to a Python variable, as in:

data = spssdata.Spssdata(accessType='w")

The optional argument accessType specifies the usage mode: read ('x '), write ('w'), append ('a"'), or
new ('n'). The default is read mode.

Notes

 For users of a 14.0.x version of the plug-in who are upgrading to version 15.0 or higher, read mode
for the Spssdata class (for version 15.0 or higher) is equivalent to the Spssdata class provided with
14.0.x versions. No changes to your 14.0.x code for the Spssdata class are required to run the code
with version 15.0 or higher.

« You can obtain general help for the Spssdata class by including the statement
help(spssdata.Spssdata) ina program block, assuming you've already imported the spssdata
module.

168 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Reading Case Data with the Spssdata Class
To read case data with the Spssdata class, you create an instance of the class in read mode, as in:

data = spss.Spssdata(accessType='zr')

Read mode is the default mode, so specifying accessType="1" is optional. For example, the above is
equivalent to:

data = spss.Spssdata()

Invoking Spssdata without any arguments, as shown here, specifies that case data for all variables in the
active dataset will be retrieved.

You can also call Spssdata with a set of variable names or variable index values, expressed as a Python
list, a Python tuple, or a string. To illustrate this, consider the variables in Employee data.sav and an
instance of Spssdata used to retrieve only the variables salary and educ. To create this instance from a
set of variable names expressed as a tuple, use:

data = spssdata.Spssdata(indexes=('salary', 'educ'))

You can create the same instance from a set of variable index values using

data = spssdata.Spssdata(indexes=(5,3))

since the salary variable has an index value of 5 in the dataset, and the educ variable has an index value of
3. Remember that an index value of O corresponds to the first variable in file order.

You also have the option of calling Spssdata with a variable dictionary that's an instance of the
VariableDict class from the spssaux module. Let's say you have such a dictionary stored to the
variable varDict. You can create an instance of Spssdata for the variables in varDict with:

data = spssdata.Spssdata(indexes=(varDict,))

Example: Retrieving Data

Once you have created an instance of the Spssdata class, you can retrieve data one case at a time by
iterating over the instance of Spssdata, as shown in this example:

*python_using_Spssdata_class.sps.
DATA LIST FREE /sku (A8) qty (F5.0).
BEGIN DATA
10056789 123
10044509 278
10046887 212
END DATA.
BEGIN PROGRAM.
import spssdata
data=spssdata.Spssdata()
for row in data:

print row.sku, row.qty
data.CClose()
END PROGRAM.

The Spssdata class has a built-in iterator that sequentially retrieves cases from the active dataset.
Once you've created an instance of the class, you can loop through the case data simply by iterating
over the instance. In the current example, the instance is stored in the Python variable data and the
iteration is done with a for loop. The Spssdata class also supports the fetchall method from

the Cursor class so that you can retrieve all cases with one call if that is more convenient, as in
data.fetchall().

Note: Be careful when using the fetchall method for large datasets, since Python holds the retrieved
data in memory. In such cases, when you have finished processing the data, consider deleting the
variable used to store it. For example, if the data are stored in the variable allcases, you can delete the
variable with del allcases.

« On each iteration of the loop, the variable row contains the data for a single case. You can access
variable values within the case by variable name or variable index. In the current example, row. sku

Chapter 3. Programming with Python 169

is the value of the variable sku, and row. gty is the value of the variable gty for the current case.
Alternatively, using index values, row[0] gives the value of sku and row[1] gives the value of gty.

« When you're finished with an instance of the Spssdata class, call the CClose method.

Result

10056789 123.0
10044509 278.0
10046887 212.0

Example: Skipping Over Cases with Missing Values

The Spssdata class provides the option of skipping over cases that have user- or system-missing values
for any of the retrieved variables, as shown in this example. If you need to retrieve all cases but also check
for the presence of missing values in the retrieved values, you can use the hasmissing and ismissing

methods described in the next example.

*python_skip_missing.sps.
DATA LIST LIST (',') /numVar (f) stringvar (a4).
BEGIN DATA
0,a
1,b
s®
3,
END DATA.
MISSING VALUES stringVar (' ') numVar(O).
BEGIN PROGRAM.
import spssdata
data=spssdata.Spssdata(omitmissing=True)
for row in data:

print row.numVar, row.stringVar
data.CClose()
END PROGRAM.

1 and 4 contain a user-missing value and case 3 contains a system-missing value.

The sample data in this example contain three cases with either user- or system-missing values. Cases

The optional parameter omitmissing, to the Spssdata class, determines whether cases with missing

values are read (the default) or skipped. Setting omitmissing to True specifies that cases with either

user- or system-missing values are skipped when the data are read.

Result

1.0 b

Example: Identifying Cases and Variables with Missing Values

Sometimes you may need to read all of the data but take specific action when cases with missing values
are read. The Spssdata class provides the hasmissing and ismissing methods for detecting missing

values. The hasmissing method checks if any variable value in the current case is missing (user- or
system-missing), and ismissing checks if a specified value is missing for a particular variable.

*python_check_missing.sps.

DATA LIST LIST (',') /numVar (f) stringVar (a4).
BEGIN DATA

0,a

1,b

@

3,,

END DATA.

MISSING VALUES stringvVar (' ') numVar(O).

BEGIN PROGRAM.
import spssdata
data=spssdata.Spssdata(convertUserMissing=False)
Compile and store missing value information for the variables
in the current cursor.
data.makemvchecker ()
Loop through the cases in the active dataset.
for i,row in enumerate(data):
Check if the current case (row) has missing values.
if data.hasmissing(row):
print "Case: " + str(i+l)
Loop through the variables in the current cursor.
for name in data.varnames():
varvalue = row[data.getvarindex(name)]
if varvalue==None:
print "\tThe value for variable " + str(name) + \
" is system-missing."
elif data.ismissing(name,varvalue):
print "\tThe value for variable " + str(name) + \
" is user-missing."

170 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

data.CClose()
END PROGRAM.

The sample data in this example contain three cases with either user- or system-missing values. Cases
1 and 4 contain a user-missing value and case 3 contains a system-missing value.

convertUserMissing=False specifies that user-missing values are treated as valid data--that is,
they are not converted to the Python data type None.

The makemvchecker method from the Spssdata class gathers missing value information for all of the
variables in the current cursor for use in checking for user- and system-missing values. This method
must be called before calling either the hasmissing or ismissing methods from the Spssdata
class. The results of the makemvchecker method are stored to a property of the current Spssdata
instance and used when needed.

For each case (row), data.hasmissing(row) returns True if the case contains a missing value.

« The varnames method from the Spssdata class returns a list of the variables whose values are being
retrieved for the current cursor.

« The getvarindex method from the Spssdata class returns the index number (in the current cursor)
of the specified variable.

« The ismissing method returns True if the specified value is missing for the specified variable. Since if

varvalue==None will identify system-missing values, user-missing values, in this case, are identified
by a return value of True from ismissing.

Result

Case: 1

The value for variable numVar is user-missing.
Case: 3

The value for variable numVar is system-missing.
Case: 4

The value for variable stringVar is user-missing.

Example: Handling Data with Splits

When reading from datasets with splits, you may want to know when a split boundary has been crossed.
Detecting split changes is necessary when you're creating custom pivot tables from data with splits and

want separate results to be displayed for each split group. In this example, we simply count the number
of cases in each split group.

*python_Spssdata_split_change.sps.

DATA LIST LIST (',') /salary (F) jobcat (F).
BEGIN DATA

21450,1

45000,1

30750,2

103750, 3

57000, 3

72500, 3

END DATA.

SORT CASES BY jobcat.
SPLIT FILE BY jobcat.

BEGIN PROGRAM.
import spss, spssdata
data=spssdata.Spssdata()
counts=[]
first = True
for row in data:
if data.IsStartSplit():
if first:
first = False
else:
counts.append(splitcount)
splitcount=1
else:
splitcount+=1
data.CClose()
counts.append(splitcount)
print counts
END PROGRAM.

The built-in iterator for the Spssdata class iterates over all of the cases in the active dataset, whether
splits are present or not.

Use the IsStartSplit method from the Spssdata class to detect a split change. It returns a Boolean
value—True if the current case is the first case of a new split group and False otherwise.

Chapter 3. Programming with Python 171

« In the current example, the Python variable counts is a list of the case counts for each split group. It is
updated with the count from the previous split once the first case of the next split is detected.

Handling IBM SPSS Statistics Datetime Values

Dates and times in IBM SPSS Statistics are represented internally as the number of seconds from October
14, 1582, which means that data retrieved from IBM SPSS Statistics for a datetime variable is returned

as this number of seconds. IBM SPSS Statistics knows how to correctly interpret this number when
performing datetime calculations and displaying datetime values, but without special instructions, Python
doesn't. Fortunately, the Spssdata class will do the necessary transformations for you and convert a
datetime value into a Python datetime object, which will render in a recognizable date format and can be
manipulated with functions from the Python datetime module (a built-in module distributed with Python).

To convert values from a datetime variable to a Python datetime object, you specify the variable name

in the argument cvtDates to the Spssdata class (in addition to specifying it in indexes), as shown in this
example:

*python_convert_datetime_values_spssdata.sps.
DATA LIST FREE /bdate (ADATE10).

BEGIN DATA

02/13/2006

END DATA.

BEGIN PROGRAM.

import spssdata
data=spssdata.Spssdata(indexes=('bdate',), cvtDates=('bdate',))
row=data.fetchone()

print row[0O]

data.CClose()

END PROGRAM.

- The argument cvtDates can be a list, a tuple, an instance of the VariableDict class from the spssaux
module, or the name "ALL." A tuple containing a single element is denoted by following the value with
a comma, as shown here. If a variable specified in cvtDates does not have a date format, it is not
converted.

« The Spssdata class supports the fetchone method from the Cursor class, which is used here to

retrieve the single case in the active dataset. For reference, it also supports the fetchall method from
the Cursor class.

« The result from Python is 2006-02-13 00:00:00, which is the display of a Python datetime object.

Creating New Variables with the Spssdata Class

To add new variables to the active dataset using the Spssdata class, you create an instance of the class
in write mode, as in:

data = spss.Spssdata(accessType='w')

Like the Cursoxr class, write mode for the Spssdata class supports the functionality available in read
mode. For example, you can create a write cursor that also allows you to retrieve case data for a subset of
variables--perhaps those variables used to determine case values for the new variables, as in:

data = spss.Spssdata(indexes=("'salary', 'educ'),accessType='w")

See the topic “Reading Case Data with the Spssdata Class” on page 169 for more information.

Write mode also supports multiple data passes, allowing you to add new variables on any data pass. For

more information, see the example on "Adding Group Percentile Values to a Dataset with the Spssdata
Class".

Example

*python_Spssdata_add_vars.sps.

DATA LIST FREE /varl (F) var2 (A2) var3 (F).
BEGIN DATA

11 ab 13

21 cd 23

31 ef 33

END DATA.

BEGIN PROGRAM.

import spssdata
data=spssdata.Spssdata(accessType='w")

172 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

data.append(spssdata.vdef('vard',

vlabel='Sample numeric variable',6vimt=["F",2,0]))
data.append(spssdata.vdef('strvar',

vlabel="'Sample string variable',vtype=8))
data.commitdict()
for i,row in enumerate(data):

data.casevalues([4+10%(i+1), 'row' + str(i+1)])

data.CClose()
END PROGRAM.

The append method from the Spssdata class is used to add the specifications for a new variable.
The argument to append is a tuple of attributes that specifies the variable's properties, such as the
variable name, the variable type, the variable label, and so forth. You use the vdef function in the
spssdata module to generate a suitable tuple. vdef requires the variable name, specified as a string,
and an optional set of arguments that specify the variable properties. The available arguments are:
vtype, vlabel, vmeasurelevel, vimt, valuelabels, missingvalues, and attrib.

String variables are specified with a value of vtype equal to the defined length of the string (maximum of
32767), as in vtype=8 for a string of length 8. If vtype is omitted, vimt is used to determine the variable
type. If both vtype and vfmt are omitted, the variable is assumed to be numeric. Numeric variables can
be explicitly specified with a value of O for vtype.

For more information on using the vdef function to specify variable properties, include the statement
help(spssdata.vdef) ina program block once you've imported the spssdata module. Examples of
specifying missing values, value labels, and variable attributes are provided in the sections that follow.

« Once specifications for the new variables have been added with the append method, the commitdict
method is called to create the new variables.

« The casevalues method is used to assign the values of new variables for the current case. The
argument is a sequence of values, one for each new variable, in the order appended. If the sequence is
shorter than the number of variables, the omitted variables will have the system-missing value.

Note: You can also use the setvalue method to set the value of a specified variable for the current

case. For more information, include the statement help (spssdata.Spssdata.setvalue) ina
program block.

« The CClose method closes the cursor. Changes to the active dataset don't take effect until the cursor is
closed.

Note: You cannot add new variables to an empty dataset using write mode from the Spssdata class. If
you need to create a dataset from scratch and you are a user of IBM SPSS Statistics 15.0, use the mode
‘n' of the Spssdata class. For users of IBM SPSS Statistics 16.0 and higher, it is recommended to use
the Dataset class to create a new dataset. See the topic “Example: Creating and Saving Datasets” on

page 184 for more information.

Specifying Missing Values for New Variables

User missing values for new variables are specified with the missingvalues argument to the vdef function.

*python_Spssdata_define_missing.sps.

DATA LIST FREE /varl (F).

BEGIN DATA

1

END DATA.

BEGIN PROGRAM.

import spssdata

data=spssdata.Spssdata(accessType='w")

data.append(spssdata.vdef('var2',missingvalues=[0]))

data.append(spssdata.vdef('var3',
missingvalues=[spssdata.spsslow, "THRU",0]))

data.append(spssdata.vdef('vard',
missingvalues=[9, "THRU", spssdata.spsshigh,0]))

data.append(spssdata.vdef('var5', vtype=2,missingvalues=["' ', 'NA']))

data.commitdict()

data.CClose()

END PROGRAM.

Three numeric variables (var2, var3, and var4) and one string variable (var5) are created. String
variables are specified by a value of vtype greater than zero and equal to the defined width of the
string (vtype can be omitted for numeric variables).

To specify a discrete set of missing values, provide the values as a list or tuple, as shown for the
variables var2 and var5 in this example. You can specify up to three discrete missing values.

Chapter 3. Programming with Python 173

To specify a range of missing values (for a numeric variable), set the first element of the list to the low
end of the range, the second element to the string ' THRU' (use upper case), and the third element to
the high end of the range, as shown for the variable var3. The global variables spsslow and spsshigh
in the spssdata module contain the values IBM SPSS Statistics uses for LO (LOWEST) and HI
(HIGHEST), respectively.

To include a single discrete value along with a range of missing values, use the first three elements
of the missing value list to specify the range (as done for var3) and the fourth element to specify the
discrete value, as shown for the variable var4.

Optionally, you can provide the missing value specification in the same form as that returned by the
GetVarMissingValues function from the spss module--a tuple of four elements where the first
element specifies the missing value type (0 for discrete values, 1 for a range, and 2 for a range and a
single discrete value) and the remaining three elements specify the missing values. The following code
illustrates this approach for the same variables and missing values used in the previous example:

DATA LIST FREE /varl (F).
BEGIN DATA
1
END DATA.
BEGIN PROGRAM.
import spssdata
data=spssdata.Spssdata(accessType='w")
data.append(spssdata.vdef('var2',missingvalues=[0,0,None,None]))
data.append(spssdata.vdef('var3',
missingvalues=[1, spssdata.spsslow,®,Nonel))
data.append(spssdata.vdef('vard',
missingvalues=[2,9, spssdata.spsshigh,0]))
data.append(spssdata.vdef('var5',
vtype=2,missingvalues=[0,' ','NA',Nonel))
data.commitdict()
data.CClose ()
END PROGRAM.

The Python data type None is used to specify unused elements of the 4-tuple. For more information on
the GetVarMissingValues function, see.

Defining Value Labels for New Variables

Value labels are specified with the valuelabels argument to the vdef function.

*python_Spssdata_define_vallabels.sps.
DATA LIST FREE /varl (F).

BEGIN DATA

1

END DATA.

BEGIN PROGRAM.

import spssdata

data=spssdata.Spssdata(accessType='w")

data.append(spssdata.vdef('var2',valuelabels={0:"No",1:"Yes"}))

data.append(spssdata.vdef('var3',
vtype=1,valuelabels={"f":"female", "m":"male"}))

data.commitdict()

data.CClose()

END PROGRAM.

The argument valuelabels is specified as a Python dictionary. Each key in the dictionary is a value with
an assigned label, and the value associated with the key is the label.

Values for string variables--"£" and "m" in this example--must be quoted. String variables are specified
by a value of vtype greater than zero and equal to the defined length of the string.

Defining Variable Attributes for New Variables

Variable attributes are specified with the attrib argument to the vdef function.

*python_Spssdata_define_varattributes.sps.
DATA LIST FREE /varl (F).

BEGIN DATA

1

END DATA.

BEGIN PROGRAM.

import spssdata
data=spssdata.Spssdata(accessType='w")
data.append(spssdata.vdef('minority",

attrib={"demographicVars":"1","binary":"Yes"}))

data.commitdict()
data.CClose()
END PROGRAM.

174 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

- The argument attrib is specified as a Python dictionary. Each key in the dictionary is the name of a new
variable attribute, and the value associated with the key is the attribute value, specified as a string.

« The new variable minority is created, having the attributes demographicVars and binary. The value of
demographicVars is "1" and the value of binary is "Yes".

Setting Values for Date Format Variables

In IBM SPSS Statistics, dates are stored internally as the number of seconds from October 14, 1582.
When setting values for new date format variables, you'll need to provide the value as the appropriate
number of seconds. The spssdata module provides the yrmodasec function for converting from a date
(represented as a four-digit year, month, and day) to the equivalent number of seconds.

*python_set_date_var.sps.

DATA LIST FREE /case (F).

BEGIN DATA

1

END DATA.

BEGIN PROGRAM.

import spssdata

data=spssdata. Spssdata(accessType— w'
data.append(spssdata.vdef('date’ vfmt ["ADATE",10]))
data.commitdict()

data.fetchone()
data.casevalues([spssdata.yrmodasec([2006,10,20])])
data.CClose ()

END PROGRAM.

The vdef function from the Spssdata class is used to specify the properties for a new date format
variable called date. The format is specified as ADATE (American date) with a width of 10 characters.

The append method adds the specifications for this new variable and commitdict creates the
variable.

The fetchone method, available with the Spssdata class, sets the record pointer to the first case.

The casevalues method is used to set the value of date for the first case, using the value returned by
the yrmodasec method. The argument to yrmodasec is a three-element sequence consisting of the
four-digit year, the month, and the day.

Note: The SetValueNumeric method in the Cursor class provides automatic conversion from a Python
datetime object to the equivalent value in IBM SPSS Statistics. See the topic “Creating New Variables with
the Cursor Class” on page 164 for more information.

Appending New Cases with the Spssdata Class

To append new cases to the active dataset with the Spssdata class, you create an instance of the class in
append mode, as in:

data = spss.Spssdata(accessType='a')

Example

*python_Spssdata_add_cases.sps.

DATA LIST FREE /case (F) value (A1).
BEGIN DATA

1a

END DATA.

BEGIN PROGRAM.

import spssdata
data=spssdata.Spssdata(accessType='a')
data.appendvalue('case',2)
data.appendvalue('value','b")
data.CommitCase ()
data.appendvalue('case',3)
data.appendvalue('value','c')
data.CommitCase ()

data.CClose()

END PROGRAM.

 Case values are set using the appendvalue method from the Spssdata class. The first argument is the
variable name, as a string, and the second argument is the value for the current case. A numeric variable
whose value is not specified is set to the system-missing value, whereas a string variable whose value is
not specified will have a blank value. You can also use the variable index instead of the variable name.

Chapter 3. Programming with Python 175

Variable index values represent position in the active dataset, starting with O for the first variable in file
order.

« The CommitCase method must be called to commit the values for each new case. Changes to the active
dataset take effect when the cursor is closed. When working in append mode, the cursor is ready to
accept values for a new case (using appendvalue) once CommitCase has been called for the previous
case.

« When working in append mode with the Spssdata class, the CClose method must be used to close the
cursor.

Note: Append mode does not support reading case data or creating new variables. A dataset must contain
at least one variable in order to append cases to it, but it need not contain any cases. If you need to
create a dataset from scratch and you are a user of IBM SPSS Statistics 15.0, use the mode 'n' of the
Spssdata class. For users of IBM SPSS Statistics 16.0 and higher, it is recommended to use the Dataset
class to create a new dataset. See the topic “Example: Creating and Saving Datasets” on page 184 for
more information.

Example: Adding Group Percentile Values to a Dataset with the Spssdata
Class

This example is a reworking of the code for "Adding Group Percentile Values to a Dataset" “Example:
Adding Group Percentile Values to a Dataset” on page 167, but using the Spssdata class. The example
calculates the quartiles for the cases associated with each value of a grouping variable--in particular, the
quartiles for salary grouped by jobcat for the Employee data.sav dataset--and adds the results as new
variables. This involves two passes of the data. The first pass reads the data and calculates the group
quartiles. The second pass adds the quartile values as new variables to the active dataset.

*python_Spssdata_add_group_percentiles.sps.

BEGIN PROGRAM.

import spss, spssdata, math

spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")

Create a cursor that will only read the values of jobcat and salary
data=spssdata.Spssdata(indexes=["'jobcat', 'salary'],accessType='w')

Accumulate frequencies of salaries for each employment category
salaries={}; counts={}
for row in data:
salaries[row.jobcat]=salaries.get(row.jobcat,{})
salaries[row.jobcat] [row.salary]= \
salaries[row.jobcat].get(row.salary,0) + 1
counts[row.jobcat]=counts.get(row.jobcat,0) + 1

Calculate the cutpoint salary value for each percentile for each
employment category
percentiles={}
for jobcat in salaries:
cutpoints = [int(math.ceil(counts[jobcat]xf)) for f in [.25, .50, .75]]
tempcount=0; pctindex=0
percentiles[jobcat]=[]
salarylist=sorted(salaries[jobcat].keys())
for salary in salarylist:
tempcount+=salaries[jobcat] [salary]
if tempcount>=cutpoints[pctindex]:
percentiles[jobcat].append(salary)
pctindex+=1
if pctindex ==
break

Create and populate new variables for the percentiles

data.restart()

data.append(spssdata.vdef('salary_25'))

data.append(spssdata.vdef('salary_50"'))

data.append(spssdata.vdef('salary_75"'))

data.commitdict()

for row in data:
data.setvalue('salary_25',percentiles[row.jobcat][0])
data.setvalue('salary_50',percentiles[row.jobcat][1])
data.setvalue('salary_75',percentiles[row.jobcat][2])
data.CommitCase()

data.CClose()

end program.

- spssdata.Spssdata(indexes=["'jobcat', 'salary'],accessType="w') creates a write cursor
that also allows you to retrieve case data for the two variables jobcat and salary.

- Aside from the changes introduced by using the Spssdata class, the algorithm is unchanged from
the version that uses the Cursor class. See the topic “Example: Adding Group Percentile Values to a
Dataset” on page 167 for more information.

176 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

» Once the quartile values are determined, the restart method from the Spssdata class is called to
reset the write cursor in preparation for another data pass. restart needs to be called before creating
new variables on subsequent data passes.

- Specifications for the three new variables salary_25, salary_50, and salary_75 are set with the append
method from the Spssdata class. The commitdict method is called to create the new variables. See
the topic “Creating New Variables with the Spssdata Class” on page 172 for more information.

 Case values are set using the setvalue method from the Spssdata class. The first argument to
setvalue is the variable name and the second argument is the associated value for the current case.
For each case, the values of salary_25, salary 50, and salary_75 are those for the employment category
associated with the case. When setvalue is used, you must call the CommitCase method to commit
the changes for each case.

Note

In the case of multiple data passes where you need to add variables on a data pass other than the first
(as in this example), you may need to allocate the buffer size (in bytes) for the new variables, using the
optional argument maxaddbuffer to the Spssdata class. By default, maxaddbuffer is set to 80 bytes,
which is sufficiently large to accommodate 10 numeric variables, and thus large enough to handle the
three new numeric variables created in this example. In the case where you are only adding variables
on the first data pass, the buffer allocation is done automatically for you. The following rules specify the
buffer sizes needed for numeric and string variables:

« Each numeric variable requires eight bytes.

 Each string variable requires a size that is an integer multiple of eight bytes, and large enough to store
the defined length of the string (one byte per character). For example, you would allocate eight bytes for
strings of length 1-8 and 16 bytes for strings of length 9-16.

Example: Generating Simulated Data

It is often necessary (or convenient) to generate data files in order to test the variability of results,
bootstrap statistics, or work on code development before the actual data file is available. The following
Python user-defined function creates a new dataset containing a set of simulated performance ratings
given by each member of a work group to every other member of the group.

Note: For users of IBM SPSS Statistics 16.0 and higher, it is recommended to use the Dataset class
to create a new dataset. See the topic “Example: Creating and Saving Datasets” on page 184 for more
information.

def GenerateData(ngroups,nmembers,maxrating):
"""Generate simulated performance rating data given by each member
of a work group to each other member of the group.
ngroups is the number of groups.
nmembers is the number of members in each group.
maxrating is the maximum performance rating.

cur = spssdata.Spssdata(accessType='n")
cur.append(spssdata.vdef("group",vimt=["F",2,
cur.append(spssdata.vdef("rater",vimt=["F",2,
cur.append(spssdata.vdef("ratee",vimt=["F",2,
cur.append(spssdata.vdef("rating",vimt=["F",2,
cur.commitdict()
for group in range(1,ngroups+1):
for rater in range(l1,nmembers+1):
for ratee in range(1,rater) + range(rater+l,nmembers+1):
cur.appendvalue("group", group)
cur.appendvalue("rater", rater)
cur.appendvalue("ratee", ratee)
cur.appendvalue("rating",
round(random.uniform(@,maxrating) + 0.5))
ur.CommitCase ()

1)
1))
1))

D)

®
cur.CClose()

- GenerateData is a Python user-defined function that requires three arguments that define the
generated dataset.

« To create a new dataset, you use the new mode (accessType="'n") of the Spssdata class.

- Specifications for the variables in the new dataset are set with the append method from the Spssdata
class. The commitdict method is called to create the new variables. See the topic “Creating New
Variables with the Spssdata Class” on page 172 for more information.

Chapter 3. Programming with Python 177

« Case values are set using the appendvalue method from the Spssdata class. See the topic
“Appending New Cases with the Spssdata Class” on page 175 for more information.

« Each new case contains the rating given to one group member (the ratee) by another group member
(the rater), as well as identifiers for the group, the group member providing the rating, and the group
member being rated. Ratings are integers from 1 to maxrating with each integer having an equal
probability. The rating formula makes use of the uniform function from the random module, a standard
module provided with Python. The Python module that contains the GenerateData function includes a
statement to import the random module. Of course, any appropriate distribution formula could be used
instead of the uniform distribution used here.

« The CommitCase method must be called to commit the values for each new case. Changes to the active
dataset take effect when the cursor is closed. The cursor is ready to accept values for a new case (using
appendvalue) once CommitCase has been called for the previous case.

- When creating a new dataset with the Spssdata class, the CClose method must be used to close the
Cursor.

Example

As an example, generate a sample dataset for 10 groups with 6 members each and a maximum score of
7.

*python_generate_data.sps.
BEGIN PROGRAM.

import samplelib
samplelib.GenerateData(10,6,7)
END PROGRAM.

The BEGIN PROGRAM block starts with a statement to import the samplelib module, which contains the
definition for the GenerateData function.

Note: To run this program block, copy the module file samplelib.py from the /examples/python folder,
in the accompanying examples, to your Python site-packages directory. For help in locating your Python
site-packages directory, see .

Ef *Untitled33 [] - Data Editor ==
File Edit View Data Transform Analvze Graphs Utlities Add-ons Window Help
12 : rating 1
group | rater | ratee | rating | ¥ar War sl
1 1 1 2 1 =
2 1 1 3 5
3 1 1 4 5
4 1 1 4 3
5 1 1 G 7
= 1 2 1 7
7 1 2 3 7
g 1 2 4)
) 1 2 3 3
10 1 2 = B e
4|+ '\ Data View 4 Variable view f 3 Bl

Figure 81. Resulting dataset

Creating and Accessing Multiple Datasets

The IBM SPSS Statistics - Integration Plug-in for Python provides the ability to create new datasets and
concurrently access multiple datasets. This is accomplished using the Dataset class, available with the
spss module. You can create one or more new datasets from existing datasets, combining the data from
the existing datasets in any way you choose, and you can concurrently read from or modify case values
and variable properties of multiple datasets without having to explicitly activate each one.

Dataset objects are available within data steps. Data steps set up the environment that allows you to
create new datasets and access multiple datasets. Data steps cannot be initiated if there are pending

178 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

transformations. If you need to access case data while maintaining pending transformations, use the
Cursor class. See the topic “Working with Case Data in the Active Dataset” on page 159 for more
information.

Getting Started with the Dataset Class

To create a Dataset object, you must first initiate a data step. This is best done with the DataStep class
(introduced in version 17.0), which will execute any pending transformations prior to starting the data
step. The DataStep class is designed to be used with the Python with statement, as in the following:

import spss
with spss.DataStep():
<actions to perform within the data step>

-« with spss.DataStep() : initiates a block of code associated with a data step. The data step is
implicitly started after executing any pending transformations. All code associated with the data step
should reside in the block. When the block completes, the data step is implicitly ended, even if an
exception prevents the block from completing normally.

Once a data step has been initiated, you create a Dataset object for an open dataset by specifying the
name of the dataset, as in:

dataset = spss.Dataset(name="DataSetl1")

The Python variable dataset is an instance of the Dataset class and provides access to the case data and
variables in the dataset named DataSet1.

 Specifying "x" for the name argument or omitting the argument creates a Dataset object for the active
dataset.

- Specifying the Python data type None or the empty string ' ' for the name argument creates a new
dataset and an associated Dataset object that will allow you to populate the dataset. The name of
the new dataset is automatically generated by IBM SPSS Statistics and can be retrieved from the name
property of the Dataset object. See the topic “Example: Creating and Saving Datasets” on page 184 for
more information.

Note: An instance of the Dataset class cannot be used outside of the data step in which it was created.

Accessing, Adding, or Deleting Variables

Access to the variables in a dataset, including the ability to add new variables or delete existing
ones, is provided by the Variablelist object associated with the Dataset object. You obtain the
Variablelist object from the varlist property of the Dataset object, as in:

variablelist = dataset.varlist

Note: AVariablelist objectis not a Python list but has some of the functionality of a Python list, such
as the ability to append and insert elements, the ability to iterate over the elements, and the support of
the Python len function. An instance of the Variablelist class cannot be used outside of the data step
in which it was created.

Getting or Setting Variable Properties

From the Variablelist object you can access any existing variable, allowing you to retrieve or modify
any property of the variable, such as the measurement level or custom attributes. To access a variable
from the Variablelist object, you can specify the variable name, as in:

variable = variablelList['salary']

Python is case sensitive, so the variable name must match the case as specified when the variable was
defined in IBM SPSS Statistics. You can also specify the variable by its index value, as in

variable = variablelist[5]

Chapter 3. Programming with Python 179

which accesses the variable with index 5 in the dataset. Index values represent position in the dataset,
starting with O for the first variable in file order. The Python variable variable is an instance of the
Variable class. Properties of the Variable class allow you to get or set properties of the associated
variable. For example,

varLevel = variable.measurementlLevel

gets the measurement level and stores it to the Python variable varLevel, whereas

variable.measurementLevel = 'ordinal’

sets the measurement level. For a complete list of available variable properties, see the topic on the
Variable class in the IBM SPSS Statistics Help system.

Looping through the variables in an instance of VariableList. You can iterate over an instance of the
Variablelist class, allowing you to loop through the variables in the associated dataset, in file order.
For example:

for var in dataset.varlist:
print var.name

« On each iteration of the loop, var is an instance of the Variable class, representing a particular
variable in the Variablelist instance.

The number of variables in a Variablelist instance, which is also the number of variables in the
associated dataset, is available using the Python len function, as in:

len(variablelist)

Adding Variables

You can add a new variable to the dataset using either the append or insert method of the
Variablelist object. The variable is added to the VariablelList object as well as the associated
dataset.

Appending a variable. The append method adds a new variable to the end of the variable list. For
example, the following appends a numeric variable named newvarl:

variablelist.append(name="'newvarl',type=0)

« The arguments to the append method are the name of the new variable and the variable type--0 for
numeric and an integer equal to the defined length (maximum of 32767) for a string variable. The
variable type is optional and defaults to numeric.

Inserting a variable. The insert method adds a new variable at a specified position in the variable
list. For example, the following inserts a string variable of length 10 named newvar2 at position 3 in the
variable list:

variablelist.insert(name="'newvar2',type=10,index=3)

« The arguments to the insert method are the name of the new variable, the variable type (as described
for the append method), and the index position at which to insert the variable. The variable type is
optional and defaults to numeric. The index position is optional--by default, the variable is appended
to the end of the list. When the variable is inserted within the variable list, the index of the variable it
replaces is incremented by 1, as are the indexes of the variables that follow it in the list.

Deleting Variables

You can delete a specified variable from the Variablel ist instance, which results in deleting it from the
associated dataset. The variable to be deleted can be specified by name or index. For example:

del variablelist['salary']

180 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

or

del variablelist[5]

Retrieving, Modifying, Adding, or Deleting Cases

Access to the cases in a dataset, including the ability to add new cases or delete existing ones, is provided
by the Caselist object associated with the Dataset object. You obtain the CaselList object from the
cases property of the Dataset object, as in:

caselist = dataset.cases

Note: A CaselList object is not a Python list but has some of the functionality of a Python list, such as
the ability to append and insert elements, the ability to iterate over the elements, and the support of the
Python 1en function. An instance of the CaselList class cannot be used outside of the data step in which
it was created.

You can loop through the cases in an instance of the CaselList class. For example:

for row in dataset.cases:
print row

« On each iteration of the loop, row is a case from the associated dataset.

« Case values are returned as a list where each element of the list is the value of the associated variable,
in file order.

The number of cases in a CaselList instance, which is also the number of cases in the associated
dataset, is available using the 1en function, as in:

len(caselist)

Retrieving Case Values

From the CaselList object, you can retrieve a specific case or a range of cases, and you can limit the
retrieval to a specified variable or a range of variables within those cases.

« System-missing values are returned as the Python data type None.

« By default, values of variables with date or datetime formats are returned as floating point numbers
representing the number of seconds from October 14, 1582. You can specify to convert values of
those variables to Python datetime objects with the optional cvtDates argument to the Dataset class.
The retrieved datetime value will then render in a recognizable date format within Python and can
be manipulated with functions from the Python datetime module (a built-in module distributed with
Python).

- Values of variables with TIME and DTIME formats are returned as floating point numbers representing
the number of seconds in the time interval.

« The Caselist class does not provide any special handling for datasets with split groups--it
simply returns all cases in the dataset. If you need to differentiate the data in separate split
groups, consider using the Cursor class to read your data, or you may want to use the
spss.GetSplitVariableNames function to manually process the split groups.

Retrieving a single case. Specific cases are retrieved from the CaselList object by specifying the case
number, starting with 0, as in:

oneCase = caselist[0]

Referencing a case number beyond the last one in the dataset raises an exception.

Retrieving a single value within a case. You can get the value for a single variable within a case by
specifying the case number and the index of the variable (index values represent position in the dataset,

Chapter 3. Programming with Python 181

starting with O for the first variable in file order). The following gets the value of the variable with index 1
for case number 0.

oneValue = caselist[0,1]
The result is returned as a list with a single element.

Retrieving a Range of Values

You can use the Python slice notation to specify ranges of cases and ranges of variables within a case.
Values for multiple cases are returned as a list of elements, each of which is a list of values for a single
case.

Retrieve the values for a range of cases. The following retrieves the values for cases 0, 1, and 2.

data = caselist[0:3]

Each element of the resulting list is a list containing the variable values for a single case, as in the
following for a dataset with two numeric variables:

[[51.0, 73.0], [46.0, 123.0], [38.0, 18.0]]

Retrieve the values for a range of variables within a specific case. The following retrieves the values for
variables with index values 0, 1, and 2 for case number 0.

data = caselist[0,0:3]
The result is a list containing the case values of the specified variables, as in:

[15.0, 37.0, 120.0]

Retrieve the values of a specific variable for a range of cases. The following retrieves the values of the
variable with index value 1 for case numbers 0, 1, and 2.

data = caselist[0:3,1]

Each element of the resulting list is a one element list containing the value of the specified variable for a
single case, as in:

[[37.0], [250.0], [180.0]]

Retrieve the values for a range of variables and for a range of cases. The following retrieves the values
for the variables with index values 1, 2, and 3 for case numbers 4, 5, and 6.

data = caselist[4:7,1:4]

Each element of the resulting list is a list containing the values of the specified variables for a single case,
asin:

[[312.0, 144.0, 349.0], [529.0, 178.0, 441.0], [544.0, 120.0, 455.0]]

Negative index values. Case indexing supports the use of negative indices, both for the case number and
the variable index. The following gets the value of the second to last variable (in file order) for the last
case.

value = caselist[-1,-2]

Modifying Case Values

From the CaselList object, you can modify the values for a specific case or a range of cases, and you can
set the value of a particular variable or a range of variables within those cases.

« The specified values can be numeric or string values and must match the variable type of the associated
variable. Values of None are converted to system-missing for numeric variables and blanks for string

182 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

variables. Unicode and string values are converted according to the current mode of the IBM SPSS
Statistics processor (Unicode mode or code page mode).

- Values of numeric variables with a date or datetime format should be specified as Python
time.struct_time or datetime.datetime objects, which are then converted to the appropriate
IBM SPSS Statistics value. Values of variables with TIME and DTIME formats should be specified as the
number of seconds in the time interval.

Setting values for a single case. Values for a single case are provided as a list or tuple of values. The

first element corresponds to the first variable in file order, the second element corresponds to the second
variable in file order, and so on. Case numbers start from 0. The following sets the values for the case with
index 1--the second case in the dataset--for a dataset with eight numeric variables.

caselist[1] = [35,150,100,2110,19,2006,3,4]

Setting a single value within a case. You can set the value for a single variable within a case by
specifying the case number and the index of the variable (index values represent position in the dataset,
starting with O for the first variable in file order). The following sets the value of the variable with index 0
for case number 12 (case numbers start from 0).

caselist[12,0] = 14

Setting a Range of Values

You can use the Python slice notation to specify a range of cases and a range of variables within a case.
Values for multiple cases are specified as a list or tuple of elements, each of which is a list or tuple of
values for a single case.

Set the values for a range of cases. The following sets the values for cases 0, 1, and 2 for a dataset with
four variables, the second of which is a string variable and the rest of which are numeric variables:

caselist[0:3] = ([172,'m',27,34500],[67,'f",32,32500],[121, " 'f"',37,23000])

Set the values for a range of variables within a specific case. The following sets the values for the
variables with index values 5, 6, and 7 for case number 34.

caselist[34,5:8] = [65,2,41]

Set the values of a specific variable for a range of cases. The following sets the values of the variable
with index value 5 for case numbers 0, 1, and 2:

caselist[0:3,5] = [65,22,17]

Set the values for a range of variables and for a range of cases. The following sets the values for the
variables with index values 5 and 6 for case numbers 4, 5, and 6.

caselist[4:7,5:7] = ([61,17],[25,32],[45,21])

Negative index values. Case indexing supports the use of negative indices, both for the case number and
the variable index. The following specifies the value of the second to last variable (in file order) for the last
case.

caselList[-1,-2] = 8

Adding or Deleting Cases
From the CaselList object, you can add or delete cases.
Adding Cases

You can add a new case to the dataset using either the append or insert method of the CaselList
object. The new case is added to the CaselList object as well as the associated dataset.

Chapter 3. Programming with Python 183

« The specified case values can be numeric or string values and must match the variable type of the
associated variable. Values of None are converted to system-missing for numeric variables and blanks
for string variables.

- Values of numeric variables with a date or datetime format should be specified as Python
time.struct_time or datetime.datetime objects, which are then converted to the appropriate
IBM SPSS Statistics value. Values of variables with TIME and DTIME formats should be specified as the
number of seconds in the time interval.

Appending a case. The append method adds a new case to the end of the dataset. For example, the
following appends a case to a dataset consisting of a single numeric variable and a single string variable:

caselist.append([2,'b'])

- The argument to the append method is a tuple or list specifying the case values. The first element in the
tuple or list is the value for the first variable in file order, the second is the value of the second variable
in file order, and so on.

Inserting a case. The insert method adds a new case at a specified position in the dataset. For
example, the following inserts a case at case number 1 (case numbers start from 0) into a dataset
consisting of a single numeric variable and a single string variable:

caselist.insert([2,'b'],1)

« The first argument to the insexrt method is a tuple or list specifying the case values, as described for
the append method. The second argument specifies the position at which the case is inserted and is
optional--by default, the new case is appended to the end of the dataset.

Deleting Cases

You can delete a specified case from the CaselList object, which results in deleting that case from the
associated dataset. Cases are specified by case number, starting with O for the first case in the dataset.
For example:

del caselist[0]

Example: Creating and Saving Datasets

When creating new datasets that you intend to save, you'll want to keep track of the dataset names since
the save operation is done outside of the associated data step. In this example, we split a dataset into
separate datasets--one new dataset for each value of a particular variable. The new datasets are then
saved to the file system.

*python_dataset_save.sps.
DATA LIST FREE /dept (F2) empid (F4) salary (F6).
BEGIN DATA
7 57 57000
23 40200
62 21450
18 21900
21 45000
32100
38 36000
42 21900
11 27900
END DATA.
DATASET NAME saldata.
SORT CASES BY dept.
BEGIN PROGRAM.
import spss
with spss.DataStep():
ds = spss.Dataset()
Create a new dataset for each value of the variable 'dept’

NwNoowwaa
N
O

newds = spss.Dataset(name=None)
newds.varlist. append('dept')
newds.varlist.append('empid"')
newds.varlist. append(salary)
dept = ds.cases[0,0][0
dsNames = {newds.name: dept}
for row in ds.cases:
if (row[0] != dept):
newds = spss.Dataset(name=None)
newds.varlist.append('dept')
newds.varlist.append('empid"')
newds.varlist.append('salary"')
dept = row[0]
dsNames[newds.name] = dept

184 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

newds.cases.append (row)
Save the new datasets
for name,dept in dsNames.iteritems():
strdept = str(dept)
spss.Submit ("""
DATASET ACTIVATE %(name)s.
SAVE OUTFILE='/mydata/saldata_%(strdept)s.sav'.
' %locals())
spss.Submit ("""
DATASET ACTIVATE saldata.
DATASET CLOSE ALL.
"t %locals())
END PROGRAM.

« with spss.DataStep() : initiates a block of code associated with a data step. The data step is
implicitly started after executing any pending transformations. All code associated with the data step
should reside in the with block as shown here. When the block completes, the data step is implicitly
ended.

- spss.Dataset () creates an instance of the Dataset class for the active dataset, which is then stored
to the Python variable ds.

- spss.Dataset (name=None) creates a new dataset and an associated Dataset object, which is then
stored to the Python variable newds. In this example, a new dataset will be created for each value of
the IBM SPSS Statistics variable dept. New datasets are not set as active, so the active dataset is not
changed by this operation.

« The append method of the VariablelList object (obtained from the varlist property of the
Dataset object) is used to add the variables to the new dataset. All of the variables in this example are
numeric so the optional variable type argument to the append method is omitted.

» The code ds.cases[0, 0] returns a list with a single element, which is the value of dept for the first
case in the active dataset. You then extract the value by getting the Oth element of the list.

« When a new dataset is created, the name of the dataset is automatically generated by IBM SPSS
Statistics and is available from the name property of the Dataset object, as in newds . name. The
names of the new datasets are stored to the Python dictionary dsNames. The dictionary keys are the
values of the IBM SPSS Statistics variable dept and the associated values are the names of the new
datasets. In this example, storing the dataset names is necessary since they will be needed after the
data step has been terminated and the Dataset objects no longer available.

- ds.cases is the CaselList object associated with the active dataset, so the first for loop iterates
through the cases in the active dataset. On each iteration of the loop, row is a list consisting of the case
values of the variables arranged in file order. When a new value of dept is encountered from the active
dataset, a new dataset is created.

« The append method of the CaselList object is used to add the current case from the active dataset to
the new dataset.

« The operation of saving the new datasets is done with command syntax, which is submitted with the
Submit function (you can also use the saveDataFile function from the spssaux module to save the
active dataset). The Submit function cannot be used within a data step so it is called after the data step
has ended; that is, outside of the with block. The SAVE command works on the active dataset, so the
DATASET ACTIVATE command is used to activate each new dataset, using the dataset names stored in
dsNames.

Note: For a simpler example of creating a new dataset, see the topic on the DataStep class in the IBM
SPSS Statistics Help system.

Example: Merging Existing Datasets into a New Dataset

Using Dataset objects you can create a new dataset from multiple open datasets, combining the data
from the existing datasets in any way you choose. As an example, the following Python user-defined
function merges the case data from two existing datasets by combining cases that have matching values
of a specified key variable. The function provides similar functionality to the IBM SPSS Statistics MATCH
FILES command but doesn't require that the input datasets be sorted on the key variable, and only cases
with matching values of the key variable in both datasets are retained.

def MergeDs(dsliName, ds2Name, keyvar):
"""Merge the case data from two datasets using a specified key variable.

Chapter 3. Programming with Python 185

A new dataset is created with the merged cases. Only cases with matching
values of the key variable in both datasets are retained. The order of
the cases in the resulting dataset is the order of the cases in the first
specified dataset. Datasets do not need to be sorted on the key variable
before merging.
dsiName and ds2Name are the names of the two datasets.
keyvar is the name of the key variable.
with spss.DataStep():
try:
dsl = spss.Dataset(name=ds1Name)
ds2 = spss.Dataset(name=ds2Name)

dslkeyind = dsil.varlist[keyvar].index
ds2keyind = ds2.varlist[keyvar].index
except:

raise ValueError("Cannot access dataset " + dsiName + or dataset " +
ds2Name + " or one of the datasets does not contain the specified " +
"key variable " + keyvar)
newds = spss.Dataset(name=None)
for var in dsl.varlist:
newds.varlist.append(var.name,var.type)
i# Create a list of the index values of the variables in the second dataset,
excluding the key variable.
ds2varind = [i for i in range(len(ds2.varlist)) if i != ds2keyind]
for i in ds2varind:
newds.varlist.append(ds2.varlist[i].name,ds2.varlist[i].type)
Store the case values of the key variable from the second dataset
keys2 = [item[0] for item in ds2.cases[0:len(ds2.cases),ds2keyind]]
Populate the case values of the new dataset
for row in dsl.cases:
try:
ds2rowindex = keys2.index(row[dslkeyind])
newcase = row
for i in ds2varind:
newcase.append(ds2.cases[ds2rowindex,i] [0])
newds.cases.append(newcase)
except:
pass

- The try clause attempts to create dataset objects for the two datasets specified by the arguments
ds1Name and ds2Name. Each dataset is also checked for the existence of the key variable specifed
by the argument keyvar. The index value of the key variable, if it exists, is obtained from the index
property of the associated Variable object, asindsl.varlist[keyvazr].index.

If either dataset cannot be accessed or does not contain the specified key variable, an exception is
raised.

- spss.Dataset (name=None) creates a new dataset. Variables of the same name and type as those
from the dataset specified by ds1Name are added to the new dataset using the append method of the
associated Variablelist object (obtained from the varlist property of the Dataset object). The
order of the appended variables is the file order of the variables from the dataset ds1Name.

« Variables of the same name and type as those from the dataset specified by ds2Name are then
appended to the new dataset, except for the key variable that has already been added to the new
dataset.

 The case values of the key variable from the dataset ds2Name are stored to the Python list variable
keys2 in case order.

- The for row loop iterates through all of the cases in dataset dsZName. Each case is checked to see
if the value of the key variable from dataset dsIName--given by row[dslkeyind]--can be found in
dataset ds2Name. If the key value exists in both datasets, a case is appended to the new dataset
consisting of the variable values from dataset ds1Name followed by those from ds2Name, excluding the
value of the key variable from ds2Name. If the key value from ds1Name is not found in ds2Name the
case is skipped.

Example

The following example merges two very simple datasets.

*python_dataset_mergeds.sps.
DATA LIST LIST(,)/id vari.
BEGIN DATA

END DATA.
DATASET NAME datal.
DATA LIST LIST(,)/id var2.
BEGIN DATA
2, 22
, 12

O
o
N

’
, 42

186 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

END DATA.

DATASET NAME data2.

BEGIN PROGRAM.

import samplelib
samplelib.MergeDs('datal', 'data2','id"')
END PROGRAM.

The BEGIN PROGRAM block starts with a statement to import the samplelib module, which contains the
definition for the MexgeDs function. The function is called with the names of the two datasets and the
name of the key variable.

Note: To run this program block, copy the module file samplelib.py from the /examples/python folder,
in the accompanying examples, to your Python site-packages directory. For help in locating your Python
site-packages directory, see .

Example: Modifying Case Values Utilizing a Regular Expression

The ability to modify case values of an open dataset allows you to transform your existing data without
creating new variables. As an example, consider a string variable that contains a U.S. telephone number.
The string may or may not contain delimiters (such as parentheses, dashes, periods, or spaces) ora 1
preceding the area code. You would like to remove these extraneous characters to obtain a 10-character
string consisting of the area code, followed by the 3-digit trunk number, followed by the 4-digit number.
For instance, you would like to transform (312) 555-1212 to 3125551212.

*python_dataset_modify_cases_re.sps.
DATA LIST/phone (A20).

BEGIN DATA

(312) 555-1212

3125551212

312-555-1212

13125551212
1 312 555 1212
END DATA.
BEGIN PROGRAM.
import spss, re
phoneRegex = re.compile(x'[1]?(\d{3%)\Dx(\di3})\Dx(\d{4})")
with spss.DataStep():
ds = spss.Dataset()
for i in range(len(ds.cases)):
match = phoneRegex.search(ds.cases[i][0])
if match:
ds.cases[i,0] = "".join(match.groups()).1ljust(ds.varlist[0].type)
END PROGRAM.

This example makes use of the built-in Python module re for working with regular expressions, so the
import statement includes it.

A regular expression will be used to extract the part of the string that contains the telephone number.
The expressionis [1]? (\d$3})\D*(\d$3})\D*x(\d{4%). It will match an optional single occurrence
of the digit 1, followed by three digits (the area code), followed by an arbitrary number of nondigit
characters, followed by three digits (the trunk), followed by an arbitrary number of nondigit characters,
followed by four digits (the number).

Note: If you are not familiar with the syntax of regular expressions, a good introduction can be found
in the section "Regular expression operations" in the Python Library Reference, available at http://
docs.python.org/lib/module-re.html . You can also find information in “Using Regular Expressions” on
page 224.

The compile function from the re module compiles a regular expression. Compiling regular
expressions is optional but increases the efficiency of matching when the expression is used several
times in a single program. The argument is the regular expression as a string. The result of the
compile function is a regular expression object, which in this example is stored to the Python variable
phoneRegex.

Note: The 1 preceding the regular expression specifies a raw string, which ensures that any character
sets specifying Python escape sequences are treated as raw characters and not the corresponding
escape sequence. The current regular expression does not contain any Python escape sequences, but

it is good practice to always use a raw string for a regular expression to avoid unintentional escape
sequences.

- spss.Dataset () creates an instance of the Dataset class for the active dataset, which is then stored
to the Python variable ds.

Chapter 3. Programming with Python 187

http://docs.python.org/lib/module-re.html
http://docs.python.org/lib/module-re.html

« The for loop iterates through all of the cases in the active dataset, making use of the fact that
len(ds.cases) returns the number of cases in the dataset.

« The search method of the compiled regular expression object scans a string for a match to the regular
expression associated with the object. In this example, the string to scan is the value of the IBM SPSS
Statistics variable phone for the current case, which is given by ds.cases[i] [0]. The result of the
search method is stored to the Python variable match.

« The search method returns None if no position in the string matches the regular expression. This will
occur if the value of phone for the current case is system-missing or does not contain the form of a U.S.
telephone number. In either case, no action is taken.

« If a match is found, the value of phone for the current case--specified by ds.cases[i, 0]--is replaced
with the telephone number without a leading 1 and with all delimiters removed. If no match is found, as
for the single case with a missing value of phone, the case is simply skipped and is not modified.

The groups method of the match object returns a Python tuple containing the strings that match
each of the groups defined in the regular expression. In this example, the regular expression contains
the three groups (\d{3%), (\d{3%), and (\d$4}) that contain the area code, trunk, and number
respectively.

.join(match.groups()) collapses the tuple returned by the groups method into a string,
concatenating the elements of the tuple with no separator.

Note: The transformation of the string containing the telephone number can also be done using the sub
function from the re module.

Example: Displaying Value Labels as Cases in a New Dataset

The valuelabels property of the Variable class allows you to easily retrieve the value labels for
any variable in an open dataset. The following Python user-defined function utilizes the valuelLabels
property to create a new dataset whose cases are the value labels from the active dataset.

def CreateVallabDs(filespec=None, dsName=None):
"""Create a new dataset containing those variables from the active dataset
that have value labels. The case values of the new dataset are the value
labels from the active dataset. If the active dataset does not have value
labels, a message to that effect is printed in the log and no dataset
is created.
filespec is the file specification of an optional file to open as the
active dataset.
dsName is the optional name of the new dataset.
if filespec:
try:
spss.Submit ("GET FILE = '%s'." %(filespec))
except:
raise ValueError("Cannot open file:

+ filespec)

with spss.DataStep():
ds = spss.Dataset()
oldname = ds.name
newds = spss.Dataset(name=None)
newname = newds.name
labelsets=[]
i# Retrieve the value labels from the active dataset and create a variable
in the new dataset for each variable in the active one that has value
i labels.
for var in ds.varlist:
if len(var.valuelabels):
labels = var.valuelabels.data.values()
labelsets.append(labels)
maxlabelwidth = max([len(item) for item in labels])
newds.varlist.append(var.name,maxlabelwidth)
Populate the cases of the new dataset
if labelsets:
maxnumvallabs = max([len(item) for item in labelsets])
for i in range(maxnumvallabs):
casevals = []
for j in range(len(newds)):
if i <= len(labelsets[j]) - 1:
vallabel = labelsets[j][i]
casevals.append(vallabel.ljust(newds.varlist[j].type))
else:
casevals.append(None)
newds.cases.append(casevals)
else:
Discard the new dataset if no value labels were found in the active
dataset
newds.close()
print "Active dataset has no value labels."

Set the name of the new dataset to the specified name, if provided

if labelsets and dsName:
spss.Submit ("""

188 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

DATASET ACTIVATE %(newname)s.
DATASET NAME %(dsName)s.
DATASET ACTIVATE %(oldname)s.
"t %locals())

CreateVallabDs is a Python user-defined function with the two optional arguments filespec and
dsName.

The Python variable ds is a Dataset object for the active dataset. The name of the active dataset is
retrieved with the name property and stored to the Python variable oldname.

spss.Dataset (name=None) creates a new dataset and an associated Dataset object, which is then
stored to the Python variable newds. The auto-generated name of the new dataset is stored to the
Python variable newname. It will be needed later in case the user specified a value for the dsName
argument.

The first for loop iterates through the variables in the active dataset. On each iteration of the loop, var
is an instance of the Variable class, representing a particular variable in the active dataset (variables
are accessed in file order).

var.valuelabels is an object representing the value labels for the variable associated with the
current value of var. The object supports the 1en function, which returns the number of value labels.
The data property of the object returns a Python dictionary whose keys are the values and whose
associated values are the value labels. The Python variable labels is then a list consisting of the value
labels for the current variable.

The append method of the VariablelList object (obtained from the varlist property of the
Dataset object) is used to add a string variable to the new dataset. The name of the new variable

is the name of the current variable from the active dataset and is retrieved from the name property of
the current Variable object. The length of the new string variable is the length of the longest value
label for the associated variable from the active dataset.

If the active dataset has value labels, processing continues with populating the new dataset with those
value labels. The for i loop has an iteration for each case in the new dataset. The number of cases is
simply the number of value labels for the variable with the most value labels.

The for 7 loop iterates over the variables in the new dataset. The number of variables in the new
dataset is determined from 1len (newds).

The Python variable casevals is a list containing the case values for a new case. Since some variables
may have fewer value labels than others, some of the case values for such variables will be missing.
This is handled by specifying None for the value, which results in a system-missing value in the dataset.

The append method of the CaselList object (obtained from the cases property of the Dataset
object) is used to add a case to the new dataset.

If the active dataset has no value labels, the new dataset is closed by calling the close method of
the Dataset object. Since the new dataset is not the active one, the effect of the close method is to
discard the dataset.

If the user specified a value for the dsName argument and the active dataset has value labels, then
activate the new dataset using the auto-generated name stored in newname, set the name of the

new dataset to the specified name, and activate the original dataset. The activation and assignment of
the dataset name are done through command syntax, which is submitted with the Submit function.
Although you can activate a dataset within a data step, you cannot change the name of a dataset within
a data step, so command syntax is used. The Submit function cannot be used within a data step so it is
called after the data step has ended; that is, outside of the with block.

Example

As an example, create a new dataset from the value labels in Employee data.sav.

*python_dataset_create_vallabds.sps.

BEGIN PROGRAM.

import spss, samplelib
samplelib.CreateVallabDs(filespec="'/examples/data/Employee data.sav')
end program.

The BEGIN PROGRAM block starts with a statement to import the samplelib module, which contains the
definition for the CreateVallabDs function. The function is called with a file specification.

Chapter 3. Programming with Python 189

Note: To run this program block, copy the module file samplelib.py from the /examples/python folder,

in the accompanying examples, to your Python site-packages directory. For help in locating your Python
site-packages directory, see .

Retrieving Output from Syntax Commands

The spss module provides the means to retrieve the output produced by syntax commands from an
in-memory workspace, allowing you to access command output in a purely programmatic fashion.

Getting Started with the XML Workspace

To retrieve command output, you first route it via the Output Management System (OMS) to an area in
memory referred to as the XML workspace. There it resides in a structure that conforms to the IBM SPSS
Statistics Output XML Schema (xml.spss.com/spss/oms). Output is retrieved from this workspace with
functions that employ XPath expressions.

For users familiar with XPath and desiring the greatest degree of control, the spss module provides a
function that evaluates an XPath expression against an output item in the workspace and returns the
result. For those unfamiliar with XPath, the spssaux module--a supplementary module that is installed
with the IBM SPSS Statistics - Integration Plug-in for Python--includes a function for retrieving output
from an XML workspace that constructs the appropriate XPath expression for you based on a few simple
inputs. See the topic “Using the spssaux Module” on page 193 for more information.

The examples in this section utilize explicit XPath expressions. Constructing the correct XPath expression
(IBM SPSS Statistics currently supports XPath 1.0) obviously requires knowledge of the XPath language.
If you're not familiar with XPath, this isn't the place to start. In a nutshell, XPath is a language for finding
information in an XML document, and it requires a fair amount of practice. If you're interested in learning
XPath, a good introduction is the XPath tutorial provided by W3Schools at http://www.w3schools.com/
xpath/ .

In addition to familiarity with XPath, constructing the correct XPath expression requires an understanding
of the structure of XML output produced by OMS, which includes understanding the XML representation of
a pivot table. You can find an introduction, along with example XML, in the "Output XML Schema" topic in
the Help system.

Example

In this example, we'll retrieve the mean value of a variable calculated from the Descriptives procedure,
making explicit use of the OMS command to route the output to the XML workspace and using XPath to
locate the desired value in the workspace.

*python_get_output_with_xpath.sps.
GET FILE='/examples/data/Employee data.sav'.
*Route output to the XML workspace.
OMS SELECT TABLES
/IF COMMANDS=['Descriptives'] SUBTYPES=['Descriptive Statistics']
/DESTINATION FORMAT=0XML XMLWORKSPACE='desc_table'
/TAG="desc_out'.
DESCRIPTIVES VARIABLES=salary, salbegin, jobtime, prevexp
/STATISTICS=MEAN.
OMSEND TAG='desc_out'.
*Get output from the XML workspace using XPath.
BEGIN PROGRAM.
import spss
handle='desc_table'
context="/outputTree"
xpath="//pivotTable[@subType='Descriptive Statistics'] \
/dimension[@axis="row'] \
/category[@varName="'salary'] \
/dimension[@axis="'column'] \
/category[@text="Mean'] \
/cell/@text"
result=spss.EvaluateXPath(handle,context, xpath)
print "The mean value of salary is:", result[0Q]
spss.DeleteXPathHandle (handle)
END PROGRAM.

The OMS command is used to direct output from a syntax command to the XML workspace. The
XMLWORKSPACE keyword on the DESTINATION subcommand, along with FORMAT=0XML, specifies the
XML workspace as the output destination. It is a good practice to use the TAG subcommand, as done
here, so as not to interfere with any other OMS requests that may be operating. The identifiers used for

190 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

http://www.w3schools.com/xpath/
http://www.w3schools.com/xpath/

the COMMANDS and SUBTYPES keywords on the IF subcommand can be found in the OMS Identifiers
dialog box, available from the Utilities menu.

Note: The spssaux module provides a function for routing output to the XML workspace that doesn't
involve the explicit use of the OMS command. See the topic “Using the spssaux Module” on page 193 for
more information.

« The XMLWORKSPACE keyword is used to associate a name with this output in the workspace. In
the current example, output from the DESCRIPTIVES command will be identified with the name
desc_table. You can have many output items in the XML workspace, each with its own unique name.

« The OMSEND command terminates active OMS commands, causing the output to be written to the
specified destination--in this case, the XML workspace.

« The BEGIN PROGRAM block extracts the mean value of salary from the XML workspace and displays it
in a log item in the Viewer. It uses the function EvaluateXPath from the spss module. The function
takes an explicit XPath expression, evaluates it against a specified output item in the XML workspace,
and returns the result as a Python list.

« The first argument to the EvaluateXPath function specifies the particular item in the XML workspace
(there can be many) to which an XPath expression will be applied. This argument is referred to as the
handle name for the output item and is simply the name given on the XMLWORKSPACE keyword on the
associated OMS command. In this case, the handle name is desc_table.

- The second argument to EvaluateXPath defines the XPath context for the expression and should be
setto "/outputTree" for items routed to the XML workspace by the OMS command.

« The third argument to EvaluateXPath specifies the remainder of the XPath expression (the context
is the first part) and must be quoted. Since XPath expressions almost always contain quoted strings,
you'll need to use a different quote type from that used to enclose the expression. For users familiar
with XSLT for OXML and accustomed to including a namespace prefix, note that XPath expressions for
the EvaluateXPath function should not contain the oms : nhamespace prefix.

- The XPath expression in this example is specified by the variable xpath. It is not the minimal expression
needed to select the mean value of salary but is used for illustration purposes and serves to highlight
the structure of the XML output.

//pivotTable[@subType="'Descriptive Statistics'] selects the Descriptives Statistics table.
/dimension[@axis="row']/category[@varName="'salazry'] selects the row forsalary.

/dimension[@axis="'column']/category[@text="'Mean"'] selects the Mean column within this
row, thus specifying a single cell in the pivot table.

/cell/@text selects the textual representation of the cell contents.

« When you have finished with a particular output item, it is a good idea to delete it from the XML
workspace. This is done with the DeleteXPathHandle function, whose single argument is the name of
the handle associated with the item.

If you're familiar with XPath, you might want to convince yourself that the mean value of salary can also
be selected with the following simpler XPath expression:

//category[@varName="salary']//category[@text="Mean']/cell/@text

Note: To the extent possible, construct your XPath expressions using language-independent attributes,
such as the variable name rather than the variable label. That will help reduce the translation effort if
you need to deploy your code in multiple languages. Also consider factoring out language-dependent
identifiers, such as the name of a statistic, into constants. You can obtain the current language with the
SHOW OLANG command.

You may also consider using text_eng attributes in place of text attributes in XPath expressions.
text_eng attributes are English versions of text attributes and have the same value regardless of the
output language. The OATTRS subcommand of the SET command specifies whether text_eng attributes
are included in OXML output.

Retrieving Images Associated with Qutput

Chapter 3. Programming with Python 191

You can retrieve images associated with output routed to the XML workspace. This is particularly useful
if you are developing an external application that utilizes the IBM SPSS Statistics - Integration Plug-in for
Python to harvest output from IBM SPSS Statistics. In this example, we'll retrieve both a bar chart and

a statistic associated with output from the Frequencies procedure and create a simple html page that
displays the information.

#GetOutputWithXPath.py
import spss, spssaux, tempfile, os.path

{#Generate output from the Frequencies procedure for the variables inccat and
#income from demo.sav, and route the output to the XML workspace. In this example,
f#the output consists of pivot tables and bar charts.
spss.Submit("""GET FILE='/examples/data/demo.sav'.
OMS

/SELECT CHARTS TABLES

/IF COMMANDS=['Frequencies']

/DESTINATION FORMAT=0XML IMAGES=YES

CHARTFORMAT=IMAGE IMAGEROOT='myimages' IMAGEFORMAT=JPG XMLWORKSPACE='demo'.

FREQUENCIES VARIABLES=inccat income
/STATISTICS=MEDIAN
/BARCHART FREQ
/ORDER=ANALYSIS.

OMSEND.
iy

{#fGet the median value of the variable income from the XML workspace.
xpath="//category[@text="Median']//category[@varName="income']/cell/@number"
median=spss.EvaluateXPath('demo','/outputTree', xpath)[0]

#fGet the bar chart for the variable inccat and save it to the user's temporary directory.
xpath="//chartTitle[@text="'Income category in thousands']/chart/@imageFile"
imagename=spss.EvaluateXPath('demo', ' /outputTree', xpath)[0]

image = spss.GetImage('demo',imagename)

f = file(os.path.join(tempfile.gettempdiz(),imagename), 'wb')

f.truncate(image[1])

f.write(image[0])

f.close()

#Generate an html file that displays the retrieved bar chart along with an annotation
#for the median income.

= file(os.path.join(tempfile.gettempdizr(), 'demo.html'), 'w")

.write('<html>")

.write('<head>"')

.write('<title>Sample web page</title>')

.write('</head>")

.write('<body>")

.write('<h2>Sample web page content</h2>")

.write('")
.write('<p>x*xThe median income is ' + median + ' thousand</p>")

.close()

Fh Hh Hh Fh b D E ED R R

The OMS command routes output from the FREQUENCIES command to the XML workspace. The
XMLWORKSPACE keyword specifies that this output will be identified by the name demo.

To route images along with the OXML output, the IMAGES keyword on the DESTINATION subcommand
(of the OMS command) must be set to YES, and the CHARTFORMAT, MODELFORMAT, or TREEFORMAT
keyword must be set to IMAGE.

The first call to the EvaluateXPath function retrieves the median value of the variable income. In this
case, the value returned by EvaluateXPath is a list with a single element, which is then stored to the
variable median.

The second call to the EvaluateXPath function is used to retrieve the name of the image associated
with the bar chart for the variable inccat. The chart is identified by the chart title 'Income category in
thousands' and the name of the image is the value of the imageFile attribute of the associated chart
element.

The GetImage function retrieves the image in binary form.

The first argument to the GetImage function is the name of the handle that identifies the associated
output in the XML workspace. The output in this example is associated with the handle name demo.

The second argument to GetImage is the name associated with the image.

The value returned by the GetImage function is a tuple with 3 elements. The first element is the binary
image. The second element is the amount of memory required for the image. The third element is a
string specifying the image type: “PNG”, “JPG”, “EMF”, “BMP”, or “VML".

« The image is written to an external file in the current user's temporary directory. The name of the file is
the name of the image retrieved from the XML workspace. In that regard, image names in OXML output

192 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

have the form of a filename, including the file extension--for example, myimages_000.jpg. Note also
that the output file is opened in binary mode.

« Asimple html file named demo.html is created in the current user's temporary directory. It contains a
reference to the image file and an annotation for the retrieved value of the median income.

Writing XML Workspace Contents to a File

When writing and debugging XPath expressions, it is often useful to have a sample file that shows the XML
structure. This is provided by the function GetXmlUtf16 in the spss module, as well as by an option on
the OMS command. The following program block recreates the XML workspace for the preceding example
and writes the XML associated with the handle desc_table to the file /temp/descriptives_table.xml.

*python_write_workspace_item.sps.

GET FILE='/examples/data/Employee data.sav'.

*Route output to the XML workspace.

OMS SELECT TABLES
/IF COMMANDS=['Descriptives'] SUBTYPES=['Descriptive Statistics']
/DESTINATION FORMAT=0XML XMLWORKSPACE='desc_table'
/TAG="desc_out"'.

DESCRIPTIVES VARIABLES=salary, salbegin, jobtime, prevexp
/STATISTICS=MEAN.

OMSEND TAG='desc_out'.

*Write an item from the XML workspace to a file.

BEGIN PROGRAM.

import spss

spss.GetXmlUtf16('desc_table','/temp/descriptives_table.xml')

spss.DeleteXPathHandle('desc_table')

END PROGRAM.

The section of /temp/descriptives_table.xm! that specifies the Descriptive Statistics table, including the
mean value of salary, is:

<pivotTable subType="Descriptive Statistics" text="Descriptive Statistics">
<dimension axis="row" displaylLastCategory="true" text="Variables">
<category label="Current Salary" text="Current Salary"
varName="salary" variable="true">
<dimension axis="column" text="Statistics">
<category text="N">
<cell number="474" text="474"/>
</category>
<category text="Mean">
<cell decimals="2" format="dollar" number="34419.567510548"
text="$34,419.57"/>
</category>
</dimension>
</category>

Note: The output is written in Unicode (UTF-16), so you need an editor that can handle this in order to
display it correctly. Notepad is one such editor.

Using the spssaux Module

The spssaux module, a supplementary module that is installed with the IBM SPSS Statistics - Integration
Plug-in for Python, provides functions that simplify the task of writing to and reading from the XML
workspace. You can route output to the XML workspace without the explicit use of the OMS command, and
you can retrieve values from the workspace without the explicit use of XPath.

The spssaux module provides two functions for use with the XML workspace:

e CreateXMLOutput takes a command string as input, creates an appropriate OMS command to route
output to the XML workspace, and submits both the OMS command and the original command to IBM
SPSS Statistics.

« GetValuesFromXMLWorkspace retrieves output from an XML workspace by constructing the
appropriate XPath expression from the inputs provided.

In addition, the spssaux module provides the function CreateDatasetOutput to route procedure
output to a dataset. The output can then be retrieved using the Cursox class from the spss module

or the Spssdata class from the spssdata module. This presents an approach for retrieving procedure
output without the use of the XML workspace.

Example: Retrieving a Single Cell from a Table

Chapter 3. Programming with Python 193

The functions CreateXMLOutput and GetValuesFromXMLWorkspace are designed to be used
together. To illustrate this, we'll redo the example from the previous section that retrieves the mean
value of salary in Employee data.sav from output produced by the Descriptives procedure.

*python_get_table_cell.sps.
BEGIN PROGRAM.
import spss,spssaux
spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")
cmd="DESCRIPTIVES VARIABLES=salary,salbegin,jobtime,prevexp \
/STATISTICS=MEAN."
handle, failcode=spssaux.CreateXMLOutput (
cmd

omsid="Descriptives",
visible=True)
Call to GetValuesFromXMLWorkspace assumes that Output Labels
are set to "Labels", not "Names".
result=spssaux.GetValuesFromXMLWorkspace (
handle,
tableSubtype="Descriptive Statistics",
rowCategory="Current Salary",
colCategory="Mean",
cellAttrib="text")
print "The mean salary is: ", result[0]
spss.DeleteXPathHandle (handle)
END PROGRAM.

As an aid to understanding the code, the CreateXMLOutput function is set to display Viewer output
(visible=Tzrue), which includes the Descriptive Statistics table shown here.

I Meaan
Current Salary 474 F34. 41957
Beginning Salary 474 §17,016.09
Months since Hire 474 1.1
(F'n:envrl]?#;Expenence 474 95,95
Walid b {listwise) 474

Figure 82. Descriptive Statistics table

« The call to CxreateXMLOutput includes the following arguments:

cmd. The command, as a quoted string, to be submitted. Output generated by this command will be
routed to the XML workspace.

omsid. The OMS identifier for the command whose output is to be captured. A list of these identifiers
can be found in the OMS Identifiers dialog box, available from the Utilities menu. Note that by using the
optional subtype argument (not shown here), you can specify a particular table type or a list of table
types to route to the XML workspace.

visible. This argument specifies whether output is directed to the Viewer in addition to being routed
to the XML workspace. In the current example, visible is set to true, so that Viewer output will be
generated. However, by default, CreateXMLOutput does not create output in the Viewer. A visual
representation of the output is useful when you're developing code, since you can use the row and
column labels displayed in the output to specify a set of table cells to retrieve.

Note: You can obtain general help for the CreateXMLOutput function, along with a complete list of
available arguments, by including the statement help (spssaux.CreateXMLOutput) in a program
block.

e CreateXMLOutput returns two parameters—a handle name for the output item in the XML workspace
and the maximum IBM SPSS Statistics error level for the submitted syntax commands (0 if there were
no errors).

« The call to GetValuesFromXMLWorkspace includes the following arguments:
handle. This is the handle name of the output item from which you want to retrieve values. When

GetValuesFromXMLWorkspace is used in conjunction with CreateXMLOutput, as is done here, this
is the first of the two parameters returned by CreateXMLOutput.

tableSubtype. This is the OMS table subtype identifier that specifies the table from which to retrieve
values. In the current example, this is the Descriptive Statistics table. A list of these identifiers can be
found in the OMS Identifiers dialog box, available from the Utilities menu.

194 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

rowCategory. This specifies a particular row in an output table. The value used to identify the row
depends on the optional rowAttrib argument. When rowAttrib is omitted, as is done here, rowCategory
specifies the name of the row as displayed in the Viewer. In the current example, this is Current Salary,
assuming that Output Labels are set to Labels, not Names.

colCategory. This specifies a particular column in an output table. The value used to identify the column
depends on the optional colAttrib argument. When colAttrib is omitted, as is done here, colCategory
specifies the name of the column as displayed in the Viewer. In the current example, this is Mean.

cellAttrib. This argument allows you to specify the type of output to retrieve for the selected table
cell(s). In the current example, the mean value of salary is available as a number in decimal form
(cellAttrib="number") or formatted as dollars and cents with a dollar sign (cel1Attrib="text").
Specifying the value of cellAttrib may require inspection of the output XML. This is available from the
GetXmlUtf16 function in the spss module. See the topic “Writing XML Workspace Contents to a File”
on page 193 for more information.

Note: You can obtain general help for the GetValuesFromXMLWorkspace function,
along with a complete list of available arguments, by including the statement
help(spssaux.GetValuesFromXMLWorkspace) in a program block.

« GetValuesFromXMLWorkspace returns the selected items as a Python list. You can also obtain the
XPath expression used to retrieve the items by specifying the optional argument xpathExpr=Tzrue. In
this case, the function returns a Python two-tuple whose first element is the list of retrieved values and
whose second element is the XPath expression.

- Some table structures cannot be accessed with the GetValuesFromXMLWorkspace function and
require the explicit use of XPath expressions. In such cases, the XPath expression returned by
specifying xpathExpr=True (in GetValuesFromXMLWorkspace) may be a helpful starting point.

Note: If you need to deploy your code in multiple languages, consider using language-independent
identifiers where possible, such as the variable name for rowCategory rather than the variable label

used in the current example. When using a variable name for rowCategory or colCategory, you'll also

need to include the rowAttrib or colAttrib argument and set it to varName. Also consider factoring out
language-dependent identifiers, such as the name of a statistic, into constants. You can obtain the current
language with the SHOW OLANG command.

Example: Retrieving a Column from a Table

In this example, we will retrieve a column from the Iteration History table for the Quick Cluster procedure
and check to see if the maximum number of iterations has been reached.

*python_get_table_column.sps.
BEGIN PROGRAM.
import spss, spssaux
spss.Submit ("GET FILE='/examples/data/telco_extra.sav'.")
cmd = "QUICK CLUSTER\
zlnlong zlntoll zlnequi zlncard zlnwire zmultlin zvoice\
zpager zinterne zcallid zcallwai zforward zconfer zebill)
/MISSING=PAIRWISE\
/CRITERIA= CLUSTER(3) MXITER(10) CONVERGE(0)\
/METHOD=KMEANS (NOUPDATE) \
/PRINT INITIAL."
mxiter = 10
handle,failcode=spssaux.CreateXMLOutput (
cmd,
omsid="Quick Cluster",
subtype="Iteration History",
visible=Tzrue)
result=spssaux.GetValuesFromXMLWorkspace (
handle,
tableSubtype="Iteration History",
colCategory="1",
cellAttrib="text")
if len(zresult)==mxiter:
print "Maximum iterations reached for QUICK CLUSTER procedure"
spss.DeleteXPathHandle (handle)
END PROGRAM.

As an aid to understanding the code, the CreateXMLOutput function is set to display Viewer output
(visible=Tzxue), which includes the Iteration History table shown here.

Chapter 3. Programming with Python 195

Change in Cluster Centers
Iteration 1 2 3
1 3.2498 3.5490 3491
2 1.016 AT A3
3 ATT 320 420
4 240 80 195
a 114 125 08
& 093 Rl 027
7 0649 054 032
8 0549 051 018
9 035 085 063
10 0z5 3549 333

Figure 83. Iteration History table

« The call to CreateXMLOutput includes the argument subtype. It limits the output routed to the XML
workspace to the specified table--in this case, the Iteration History table. The value specified for this
parameter should be the OMS table subtype identifier for the desired table. A list of these identifiers can
be found in the OMS Identifiers dialog box, available from the Utilities menu.

« By calling GetValuesFromXMLWoxrkspace with the argument colCategory, but without the argument
rowCategory, all rows for the specified column will be returned. Referring to the Iteration History table
shown above, the column labeled 1, under the Change in Cluster Centers heading, contains a row for
each iteration (as do the other two columns). The variable result will then be a list of the values in this
column, and the length of this list will be the number of iterations.

Example: Retrieving Output without the XML Workspace

In this example, we'll use the CreateDatasetOutput function to route output from a FREQUENCIES
command to a dataset. We'll then use the output to determine the three most frequent values for a
specified variable--in this example, the variable jobtime from Employee data.sav.

*python_output_to_dataset.sps.

BEGIN PROGRAM.

import spss, spssaux, spssdata

spss.Submit ("""

GET FILE='/examples/data/Employee data.sav'.
DATASET NAME employees.

)
cmd = "FREQUENCIES jobtime /FORMAT=DFREQ."
datasetName, err = spssaux.CreateDatasetOutput(
cmd,
omsid='Frequencies',
subtype='Frequencies"')
spss.Submit ("DATASET ACTIVATE " + datasetName + ".")
data = spssdata.Spssdata()
print "Three most frequent values of jobtime:\n"
print"Months\tFrequency"
for i in range(3):
row=data. fetchone()
print str(row.Var2) + "\t\t" + str(int(row.Frequency))
data.close()
END PROGRAM.

As a guide to understanding the code, a portion of the output dataset is shown here.

EH *Untitled2 [S0.162369647657x] - Data Editor =&
File Edit Yew [Data Transform Analyze Graphs Ukilities Add-ons Window Help
1: Command_ Frequencies “isible: 8
Command Subtype | Label | wart | War2 | Frequency |w
1|Frequencies |Frequencies |Months since Hire Walid |31 23 =
2|Frequencies Frequencies Muonths since Hire “alid |93 23
3|Frequencies Frequencies Maonths since Hire Walid |78 22 i
4|[v \\Data View 4 Variable view f 1] ¥

Figure 84. Resulting dataset from CreateDatasetOutput

« In order to preserve the active dataset, the CreateDatasetOutput function requires it to have a
dataset name. If the active dataset doesn't have a name, it is assigned one. Here, we've simply assigned
the name employees to the active dataset.

196 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

The call to CreateDatasetOutput includes the following arguments:

cmd. The command, as a quoted string, to be submitted. Output generated by this command will be
routed to a new dataset.

omsid. The OMS identifier for the command whose output is to be captured. A list of these identifiers
can be found in the OMS Identifiers dialog box, available from the Utilities menu.

subtype. This is the OMS table subtype identifier for the desired table. In the current example, this is
the Frequencies table. Like the values for omsid, these identifiers are available from the OMS Identifiers
dialog box.

Note: You can obtain general help for the CreateDatasetOutput function, along with a complete
list of available arguments, by including the statement help (spssaux.CreateDatasetOutput) ina
program block.

CreateDatasetOutput returns two parameters—the name of the dataset containing the output and
the maximum IBM SPSS Statistics error level for the submitted syntax commands (0 if there were no
errors).

Once you have called CreateDatasetOutput, you need to activate the output dataset before you

can retrieve any data from it. In this example, data is retrieved using an instance of the Spssdata
class from the spssdata module, a supplementary module (installed with the IBM SPSS Statistics -
Integration Plug-in for Python) that provides a number of features that simplify the task of working with
case data. The instance is stored to the Python variable data.

Using /FORMAT=DFREQ for the FREQUENCIES command produces output where categories are sorted
in descending order of frequency. Obtaining the three most frequent values simply requires retrieving
the first three cases from the output dataset.

Cases are retrieved one at a time in sequential order using the fetchone method, as in
data.fetchone(). On each iteration of the foxr loop, row contains the data for a single case. Referring
to the portion of the output dataset shown in the previous figure, Var2 contains the values for jobtime
and Frequency contains the frequencies of these values. You access the value for a particular variable
within a case by specifying the variable name, as in row.Var2 or row.Frequency.

For more information on working with the Spssdata class, see “Using the spssdata Module” on page
168.

Creating Procedures

The IBM SPSS Statistics - Integration Plug-in for Python enables you to create user-defined Python
programs that have almost the same capabilities as IBM SPSS Statistics procedures, such as
FREQUENCIES or REGRESSION. Since they behave like built-in IBM SPSS Statistics procedures, we'll
refer to such Python programs as procedures. A procedure can read the data, perform computations on
the data, add new variables and/or new cases to the active dataset, and produce pivot table output and
text blocks. Procedures are the natural approach in a variety of situations, for instance:

You have a statistical analysis that can be done by combining various built-in procedures and/or
transformations, but it requires logic to determine which procedures and transformations to run and
when to run them. In addition, it may need to use output from one procedure or transformation in
another. Since you can submit syntax commands from Python, you can write a procedure that uses
Python logic to drive the IBM SPSS Statistics program flow. The program flow might depend on the data
as well as a set of input parameters to the procedure.

You have a custom algorithm--perhaps a statistical analysis that isn't provided by IBM SPSS Statistics--
that you want to apply to IBM SPSS Statistics datasets. You can code the algorithm in Python and
include it in a procedure that reads the data from IBM SPSS Statistics and applies the algorithm. You
might even use the powerful data transformation abilities of IBM SPSS Statistics to transform the data
before reading it into Python--for instance, aggregating the data. The results can be written as new
variables or new cases to the active dataset or as pivot table output directed to the Viewer or exported
via the Output Management System (OMS).

Chapter 3. Programming with Python 197

Getting Started with Procedures

Procedures are simply user-defined Python functions that take advantage of the IBM SPSS Statistics -
Integration Plug-in for Python features to read the data, write to the active dataset, and produce output.
Since they're written in Python, procedures have access to the full computational power of the Python
language. As a simple example, consider a procedure that reads the active dataset and creates a pivot
table summarizing the number of cases with and without missing values.

def MissingSummary(filespec):

"""Summarize the cases with and without missing values in
the active dataset.
filespec is a string that identifies the file to be read.

spss.Submit ("GET FILE='%s'." %(filespec))
Read the data and check for missing values
data=spssdata.Spssdata()
data.makemvchecker ()
nvalid = 0; nmissing = 0
for row in data:
if data.hasmissing(xow):
nmissing += 1
else:

nvalid +=1
data.close()
Create pivot table and text block output
spss.StartProcedure("myorganization.com.MissingSummazry")
table = spss.BasePivotTable("Case Summary","OMS table subtype")
table.SetDefaultFormatSpec (spss.FormatSpec.Count)
table.SimplePivotTable(rowlabels=['Valid', 'Missing'],

collabels=["'Count'],
cells = [nvalid,nmissing])

spss.TextBlock("Sample Text Block","A line of sample text in a text block")
spss.EndProcedure ()

Python functions are defined with the keyword def, followed by the name of the function and a list of
parameters enclosed in parentheses. In this example, the name of the function is MissingSummazry,
and it requires a single argument specifying the file to be read. The colon at the end of the def
statement is required.

The Submit function is used to submit a GET command to open the file passed in as filespec.

The code to read the data and identify cases with missing values makes use of the Spssdata class from
the spssdata module (a supplementary module installed with the IBM SPSS Statistics - Integration
Plug-in for Python). The Spssdata class builds on the functionality in the Cursoxr class (provided with
the spss module) to simplify the task of working with case data. For our purposes, the Spssdata class
contains convenient methods for identifying missing values. See the topic “Reading Case Data with the
Spssdata Class” on page 169 for more information.

The close method closes the cursor used to read the data. You must close any open cursor before
creating output with the StartProceduzre function discussed below.

To create output in the form of pivot tables or text blocks, you first call the StartProceduxe function
from the spss module. The single argument to the StartProcedure function is the name to associate
with the output. This is the name that appears in the outline pane of the Viewer associated with

output produced by the procedure, as shown in Figure 85 on page 199. It is also the command name
associated with this procedure when routing output from this procedure with OMS (Output Management
System).

In order that names associated with output do not conflict with names of existing
syntax commands (when working with OMS), it is recommended that they have the form
yourorganization.com.procedurename, as done here.

Pivot tables are created with the BasePivotTable class. For simple pivot tables consisting of a single
row dimension and a single column dimension, you can use the SimplePivotTable method of the
BasePivotTable class, as done here. In the current example, the pivot table has one row dimension
with two rows and one column dimension with a single column. See the topic “Creating Pivot Table
Output” on page 202 for more information.

Text blocks are created with the TextBlock class. This example includes a text block consisting of a
single line of text, although the TextBlock class also supports multiline text blocks.

Note: You can also use the Python print statement to write text output to Python's standard output,
which is directed to a log item in the IBM SPSS Statistics Viewer, if a Viewer is available.

You call the EndProceduzre function to signal the end of output creation.

198 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

To use a procedure you've written, you save it in a Python module. For instance, the definition of
MissingSummazry can be found in the Python module samplelib.py, located in the /examples/python
folder of the accompanying examples. A Python module is simply a text file containing Python definitions
and statements. You can create a module with a Python IDE, or with any text editor, by saving a file with
an extension of .py. The name of the file, without the .py extension, is then the name of the module. You
can have many functions in a single module.

Since we're concerned with Python functions that interact with IBM SPSS Statistics, our procedures

will probably call functions in the spss module, and possibly functions in some of the supplementary
modules like spssaux and spssdata, as in this example. The module containing your procedures will
need to include import statements for any other modules whose functions are used by the procedures.

Finally, you must ensure that the Python interpreter can find your module, which means that the location
of the module must be on the Python search path. To be sure, you can save the module to your Python
site-packages directory.

To run a procedure, you import the module containing it and call it with the necessary arguments. As an
example, we'll run the MissingSummazry procedure on the demo.sav dataset.

*python_missing_summary.sps.

BEGIN PROGRAM.

import samplelib

samplelib.MissingSummary ("/examples/data/demo.sav")
END PROGRAM.

Note: To run this program block, copy the module file samplelib.py from the /examples/python folder,
in the accompanying examples, to your Python site-packages directory. For help in locating your Python
site-packages directory, see .

Result
8 Output1 [Document1] - Viewer =olE
File Edit Wiew Data Transform Insert Format Analyze Graphs Utlities Add-ons Window Help
= -] outout = myorganization.com.MissingSummary
= EI myorganization.com MissingSummay
+(E] Title

- 1
Motes oY exawp lesh datal demo . sav
L[Active Dataset

-Lg Case Summary
Sample Text Block
Case Summary

Count
Walid E145
Ii=sing 255

L line of sample text in a text block

5 items selected (1 hiddenfcollapsed)

Figure 85. Output from the MissingSummary procedure

Alternative Approaches

Instead of including your procedure's code in a Python function, you can simply include it in a BEGIN
PROGRAM-END PROGRAM block, although this precludes you from invoking the code by name or passing
arguments. For example, a trivial piece of code to retrieve the case count from the active dataset and
create a text block with that information is:

BEGIN PROGRAM.

import spss

spss.Submit ("GET FILE='/examples/data/demo.sav'.")
ncases=spss.GetCaseCount()

spss.StartProcedure ("myorganization.com.MyProcedure")
spss.TextBlock("Total Case Count","Case Count: " + str(ncases))
spss.EndProcedure ()

END PROGRAM.

Chapter 3. Programming with Python 199

By creating a command syntax file that contains this program block, you can effectively associate a
name--the name of the command syntax file--with the program block. You run the program block by using
the INSERT command to include the command syntax file (containing the block) in a session.

As a further alternative to creating a procedure as a Python function, you can embed your code in a
Python class. For more information, see the topic on the BaseProcedure class in the IBM SPSS Statistics
Help system.

Procedures with Multiple Data Passes

Sometimes a procedure requires more than one pass of the data, for instance, a first pass to calculate
values that depend on all cases and a second one to create new variables based on those values.

The following example illustrates the use of a two-pass procedure. The first pass reads the data to
compute group means, and the second pass adds the mean values as a new variable in the active dataset.
A listing of the group means is displayed in a pivot table.

def GroupMeans(groupVar,sumVar):
"""Calculate group means for a selected variable using a specified
categorical variable to define the groups. Display the group means
in a pivot table and add a variable for the group means to the
active dataset.
groupVar is the name of the categorical variable (as a string) used
to define the groups.
sumVar is the name of the variable (as a string) for which means are
to be calculated.

data=spssdata.Spssdata(indexes=(groupVar, sumVar),accessType='w',
omitmissing=True)
Counts=1};Sums={}
First data pass
for item in data:
cat=int(item[0])
Counts[cat]=Counts.get(cat,0) + 1
Sums[cat]=Sums.get(cat,0) + item[1]
for cat in sorted(Counts):
Sums[cat]=Sums[cat]/Counts[cat]
data.restart()
data.append(spssdata.vdef('mean_'+sumVar+'_by_'+groupVar))
data.commitdict()
i# Second data pass
for item in data:
data.casevalues([Sums[int(item[0])]])
data.close()
spss.StartProcedure("myorganization.com.GroupMeans")
table = spss.BasePivotTable("Mean " + sumVar + " by " + groupVar,
"OMS table subtype")
table.SimplePivotTable (rowdim=groupVar,
rowlabels=[cat for cat in sorted(Counts)],
collabels=["'mean ' + sumVar],
cells = [Sums[cat] for cat in Sums])

spss.EndProcedure ()

« GroupMeans is a Python user-defined function containing the procedure that calculates the group
means. The arguments required by the procedure are the names of the grouping variable (groupVar) and
the variable for which group means are desired (sumVar).

« Aninstance of the Spssdata class is created that provides write access to the active dataset and also
allows you to retrieve case data for the variables specified as groupVar and sumVar. The argument
omitmissing=True specifies that cases with missing values are skipped. The Spssdata class is part
of the spssdata module--a supplementary module installed with the IBM SPSS Statistics - Integration
Plug-in for Python. See the topic “Using the spssdata Module” on page 168 for more information.

« The two Python dictionaries Counts and Sums are built dynamically to have a key for each value of
the grouping variable found in the case data. The value associated with each key in Counts is the
number of cases with that value of groupVar, and the value for each key in Sums is the cumulative
value of sumVar (the variable for which means are calculated) for that value of groupVar. The code
Counts.get(cat,0) and Sums.get(cat,0) gets the dictionary value associated with the key given
by the value of cat. If the key doesn't exist, the expression evaluates to 0.

« At the completion of the first data pass, the cumulative values of sumVar (stored in the Python
dictionary Sums) and the associated counts (stored in the Python dictionary Counts) are used to
compute the mean of sumVar for each value of groupVar found in the data. The Python dictionary
Sums is updated to contain the calculated means.

200 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

« The restart method from the Spssdata class is called to reset the write cursor in preparation for
another data pass. restart needs to be called before creating new variables on subsequent data
passes.

« The append method from the Spssdata class is used to create a new variable that is set to the mean
for the group associated with each case. The case values are set on the second data pass. Since cases
with missing values are skipped, such cases will have the value SYSMIS for the new variable.

« The StartProcedure function signals the beginning of output creation for the procedure. Output will
be associated with the name myorganization.com.GroupMeans.

« A pivot table displaying the group means is created using the SimplePivotTable method from the
BasePivotTable class. See the topic “Creating Pivot Table Output” on page 202 for more information.

Running the Procedure

As an example, we'll calculate the mean salary by educational level for the Employee data.sav dataset.
The grouping variable is educ, and salary is the variable for which group means will be calculated.

*python_group_means.sps.

BEGIN PROGRAM.

import spss, samplelib

spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")
samplelib.GroupMeans("educ", "salary")

END PROGRAM.

The BEGIN PROGRAM block starts with a statement to import the samplelib module, which contains the
definition for the GroupMeans function.

Note: To run this program block, copy the module file samplelib.py from the /examples/python folder,
in the accompanying examples, to your Python site-packages directory. For help in locating your Python
site-packages directory, see .

Results
Mean salary by educ
educ mean salary
8 24395 0487
12 25887148
14 31625.000
15 31685.000
16 48225832
17 AQ52T 273
18 GE127.778
19 VTi520.370
20 G4312.500
21 Ga000.000

Figure 86. Pivot table output from the GroupMeans procedure

EH *Employee data.sav[] - Data Editor =/o/E
File Edit View Data Transform Analyze Graphs Utlities Add-ons Window Help
1:id 1 Yisible: 11 of 11
educ Jobcat ‘ salary salbegin Jobtime prevexp minority |mean_salary_by educ]a
1 13 3 $a7 000 ¥27 000 93 144 0 31685.00
2 16 1 $40,200 §15,750 93 36 0 48225.93
3 12 1 $21 450 $12,000 93 3581 0 25887 .16
4 8 1 £21.900 %13 200 98 190 0 24399.08
9 15 1 $45,000 $21,000 93 138 0 31635.00 |,
4 » \Data View £ Variahle View f |<] | >

Figure 87. New variable mean_salary_by educ created by the GroupMeans procedure

Chapter 3. Programming with Python 201

Creating Pivot Table Output

Procedures can produce output in the form of pivot tables, which can be displayed in the IBM SPSS
Statistics viewer or written to an external file using the IBM SPSS Statistics Output Management System.
The following figure shows the basic structural components of a pivot table.

Layer dimension Column dimension
Column dimension
category
Minority Classification: No l
Emproymerlrt Category
Clerical Custodial Manager Total

Row dimension —ps Gender Female 166 0 10 176
Male 110 14 70 194
Total T 276 14 ..tl a0 370

Row dimension

Cell value
category

Figure 88. Pivot table structure

Pivot tables consist of one or more dimensions, each of which can be of the type row, column, or layer.
Each dimension contains a set of categories that label the elements of the dimension--for instance, row
labels for a row dimension. A layer dimension allows you to display a separate two-dimensional table
for each category in the layered dimension--for example, a separate table for each value of minority
classification, as shown here. When layers are present, the pivot table can be thought of as stacked in
layers, with only the top layer visible.

Each cell in the table can be specified by a combination of category values. In the example shown here,
the indicated cell is specified by a category value of Male for the Gender dimension, Custodial for the
Employment Category dimension, and No for the Minority Classification dimension.

Pivot tables are created with the BasePivotTable class. For the common case of creating a pivot table
with a single row dimension and a single column dimension, the BasePivotTable class provides the
SimplePivotTable method. As a simple example, consider a pivot table with static values.

Example

import spss
spss.StartProcedure("myorganization.com.SimpleTableDemo")
table = spss.BasePivotTable("Sample Pivot Table",

"OMS table subtype",

caption="Table created with SimplePivotTable method")

table.SimplePivotTable(rowdim = "Row",

rowlabels = [1,2],

coldim = "Column",

collabels = ["A","B"],

cells = ["1A","1B","2A","28"])
spss.EndProcedure ()

Result

202 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

| Output2 [Document2] - Viewer ==

File Edit View Data Transform Insert Format Analyze Graphs Utiities Add-ons Window Help

= - {E] output myorganization.com.SimpleTableDemo

< | bl S I >

I_Eé-is wisible

= EI myarganization.com.SimpleTableDetno
~[E] Title
1
Mates [DataSets]
L[Active Dataset

+[5 Sample Pivat Takle

Sample Pivot Table

Column

Riovy A B
=3

1 14 18

2 24 =]

Takle crested with SimplePivotTable method

Figure 89. Viewer output of simple pivot table

The pivot table output is associated with the name myorganization.com.SimpleTableDemo. For
simplicity, we've provided the code while leaving aside the context in which it might be run. See the
topic “Getting Started with Procedures” on page 198 for more information.

To create a pivot table, you first create an instance of the BasePivotTable class and assign the
instance to a Python variable. In this example, the Python variable table contains a reference to a pivot
table instance.

The first argument to the BasePivotTable class is a required string that specifies the title that
appears with the table. Each table created by a given StartProcedure call should have a unique title.
The title appears in the outline pane of the Viewer as shown in Figure 89 on page 203.

The second argument to the BasePivotTable class is a string that specifies the OMS (Output
Management System) table subtype for this table. Unless you are routing this pivot table with OMS
or need to write an autoscript for this table, you will not need to keep track of this value, although the
value is still required. Specifically, it must begin with a letter and have a maximum of 64 bytes.

Notice that the item for the table in Figure 89 on page 203 is one level deeper than the root item for the
name associated with output from this StartProceduzre call. This is the default behavior. You can use
the optional argument outline (to the BasePivotTable class) to create an item in the outline pane of
the Viewer that will contain the item for the table.

The optional argument caption used in this example specifies a caption for the table, as shown in Figure

89 on page 203.

Once you've created an instance of the BasePivotTable class, you use the SimplePivotTable
method to create the structure of the table and populate the table cells. The arguments to the
SimplePivotTable method are as follows:

rowdim. An optional label for the row dimension, given as a string. If empty, the row dimension label is
hidden.

rowlabels. An optional list of items to label the row categories. Labels can be given as nhumeric values
or strings, or you can specify that they be treated as variable names or variable values. Treating labels
as variable names means that display settings for variable names in pivot tables (names, labels, or
both) are honored when creating the table. And treating labels as variable values means that display
settings for variable values in pivot tables (values, labels, or both) are honored. See the topic “Treating
Categories or Cells as Variable Names or Values” on page 204 for more information.

Note: The number of rows in the table is equal to the length of rowlabels, when provided. If rowlabels is
omitted, the number of rows is equal to the number of elements in the argument cells.

coldim. An optional label for the column dimension, given as a string. If empty, the column dimension
label is hidden.

collabels. An optional list of items to label the column categories. The list can contain the same types of
items as rowlabels described above.

Chapter 3. Programming with Python 203

Note: The number of columns in the table is equal to the length of collabels, when provided. If collabels
is omitted, the number of columns is equal to the length of the first element of cells.

« cells. This argument specifies the values for the cells of the pivot table and can be given as a one- or
two-dimensional sequence. In the current example, cells is given as the one-dimensional sequence
["1A","1B","2A","2B"]. It could also have been specified as the two-dimensional sequence
I:I:II:I-AII , IllBII] , [II2AII , II2BII:|:|.

Elements in the pivot table are populated in row-wise fashion from the elements of cells. In the current
example, the table has two rows and two columns (as specified by the row and column labels), so the
first row will consist of the first two elements of cells and the second row will consist of the last two
elements. When cells is two-dimensional, each one-dimensional element specifies a row. For example,
with cells given by [["1A","1B"], ["2A","2B"]], the first rowis ["1A","1B"] and the second row
is I:II2AII , IIZBII].

Cells can be given as numeric values or strings, or you can specify that they be treated as variable
names or variable values (as described for rowlabels above). See the topic “Treating Categories or Cells
as Variable Names or Values” on page 204 for more information.

If you require more functionality than the SimplePivotTable method provides, there are a variety of
methods for creating the table structure and populating the cells. If you're creating a pivot table from data
that has splits, you'll probably want separate results displayed for each split group. For more information,
see the topics on the BasePivotTable class and the SplitChange function in the IBM SPSS Statistics
Help system.

Treating Categories or Cells as Variable Names or Values

The BasePivotTable class supports treating categories (row or column) and cell values as variable
names or variable values. Treating categories as variable names means that display settings for variable
names in pivot tables (names, labels, or both) are honored when creating the table, and treating
categories as variable values means that display settings for variable values in pivot tables (values, labels,
or both) are honored.

Example

In this example, we create a pivot table displaying the gender with the highest frequency count for each
employment category in the Employee data.sav dataset. Row categories and cell values are specified as
variable values and the single column category is specified as a variable name.

*python_ptable_VarValue_VarName.sps.
BEGIN PROGRAM.
import spss, spssdata
spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")
data=spssdata.Spssdata(indexes=("'jobcat', 'gender'),omitmissing=True)
data.makemvchecker ()
jobcats=§1:{'f':0,'m':0},2:{'f':0, 'm':0},3:{'f':0, 'm':0}}
Read the data and store gender counts for employment categories
for row in data
cat=int(row.jobcat)
jobcats[cat] [row.gendexr]+=1
data.CClose()
Create a list of cell values for the pivot table
cell list=[]
for cat in sorted(jobcats):
testval = cmp(jobcats[cat]['f'],jobcats[cat]['m'])
if testval==0:
cell_list.append("Equal")
else:
cell_list.append(spss.CellText.VarValue(1,41:'f',-1:'m'}[testvall))
i# Create the pivot table
spss.StartProcedure("myorganization.com.SimpleTableDemo")
table = spss.BasePivotTable("Majority " + spss.GetVariablelLabel(1) + \
" by " + spss.GetVariablelabel(4),
"OMS table subtype")
table.SimplePivotTable(rowdim = spss.GetVariablelabel(4),
rowlabels = [spss.CellText.VarValue(4,1),
spss.CellText.VarValue(4,2),
spss.CellText.VarValue(4,3)],
collabels = [spss.CellText.VarName(1)],
cells = cell_list)
spss.EndProcedure ()
END PROGRAM.

Results

204 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

Majority Gender by Employment Category

Employment Category Gender
Clerical Female
Custadial hiale
Manager ale

Figure 90. Variable names shown as labels and variable values shown as value labels

Majority Gender by Employment Category

Employment Category gender

1 f
2 m
3 m

Figure 91. Variable names shown as names and variable values shown as values

The code makes use of the Spssdata class from the spssdata module (a supplementary module
installed with the IBM SPSS Statistics - Integration Plug-in for Python) to read the data (only the values
for jobcat and gender are read) and skip over cases with missing values. See the topic “Using the
spssdata Module” on page 168 for more information.

The Python dictionary jobcats holds the counts of each gender for each employment category. On each
iteration of the first for loop, the Python variable row contains the data for the current case, so that
row.jobcat is the employment category and row. gender is the gender. These values are used as
keys to the appropriate element in jobcats, which is then incremented by 1.

The second for loop iterates through the employment categories and determines the gender with

the highest frequency, making use of the Python built-in function cmp to compare the counts for

each gender. The result is appended to a list of cell values to be used in the SimplePivotTable
method. Other than the case of a tie (equal counts for each gender), values are given as
spss.CellText.VarValue objects, which specifies that they be treated as variable values.
spss.CellText.VarValue objects require two arguments, the index of the associated variable (index
values represent position in the active dataset, starting with O for the first variable in file order) and the
value. In the current example, the variable index for gender is 1 and the value is either '£' or 'm".

The StartProceduzre function signals the beginning of output creation. Output will be associated with
the name myorganization.com.SimpleTableDemo.

The row categories for the table are the employment categories from Employee data.sav and are
specified as variable values using spss.CellText.VarValue objects. The index of jobcat (the
employment category) in Employee data.sav is 4, and the three employment categories have values
1, 2,and 3.

The single column category is the name of the gender variable, given as a spss.CellText.VarName
object, which specifies that it be treated as a variable name. spss.CellText.VarName objects
require one argument, the index of the associated variable. The index for gender in Employee data.sav is
1.

Figure 90 on page 205 and Figure 91 on page 205 show the results for two different settings of output
labels for pivot tables (set from Edit > Options > Output Labels). Figure 90 on page 205 shows the case
of variable names displayed as the associated variable label and variable values as the associated value
label. Figure 91 on page 205 shows the case of variable names displayed as they appear in the data
editor and variable values given as the raw value.

Specifying Formatting for Numeric Cell Values

You can change the default format used for displaying numeric values in pivot table cells and category
labels, or override it for selected cells or categories.

Example: Changing the Default Format

*python_ptable_change_format.sps.

BEGIN PROGRAM.

import spss

spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")

Chapter 3. Programming with Python 205

spss.StartProcedure ("myorganization.com.Demo")
table = spss.BasePivotTable("Table Title","OMS table subtype")
table.SetDefaultFormatSpec (spss.FormatSpec.Count)
table.SimplePivotTable(collabels=["Integer Value"],

cells = [1,2])
spss.EndProcedure ()
END PROGRAM.

Result

Integer Walde
o] 1

rowy] 2

Figure 92. Integer cells formatted with the Count format

« The SetDefaultFormatSpec method from the BasePivotTable class is used to change the default
format for numeric cells. The argument is of the form spss.FormatSpec.format where format
is one of those listed in the topic on the Number class--for example, spss.FormatSpec.Count.
The selected format is applied to all cells. A list of available formats, as well as a brief guide
to choosing a format, is provided in the documentation for the Numbex class in the IBM SPSS
Statistics Help system. Instances of the BasePivotTable class have an implicit default format of
spss.FormatSpec.GeneralStat.

« This example also illustrates that default row or column categories are provided when one or the other
are omitted, as done here for row categories.

Example: Overriding the Default Format for Selected Cells

*python_ptable_override_format.sps.
BEGIN PROGRAM.
import spss
spss.Submit ("GET FILE='/examples/data/Employee data.sav'.")
spss.StartProcedure("myorganization.com.Demo")
table = spss.BasePivotTable("Table Title","OMS table subtype")
table.SimplePivotTable(rowlabels=["Default overridden", "Default used"],
collabels=["Numeric value"],
cells = [spss.CellText.Number(1.2345,spss.FormatSpec.Count),
2.34])
spss.EndProcedure ()
END PROGRAM.

Result
Mumeric
value
Default overridden 1
Default used 2.340

Figure 93. Default format overridden for selected cell

You override the default format for a cell or category by specifying the value as an
spss.CellText.Numbex object. The arguments are the numeric value and the name of a format
specification, given as spss.FormatSpec.format.

Data Transformations

The Python module trans, a supplementary module available for download from the IBM SPSS
Predictive Analytics community at https://www.ibm.com/community/spss-statistics , provides the
framework for using Python functions as casewise transformation functions to be applied to a dataset.
This enables an essentially limitless extension to the set of functions that can be used to transform data.
You can use functions from the standard Python library, third-party Python libraries, or your own custom
Python functions.

« Casewise results are stored as new variables (modification of existing variables is not supported).
 Multiple transformation functions can be applied on a single data pass.
« Results of a transformation function can be used in subsequent transformation functions.

206 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

https://www.ibm.com/community/spss-statistics

Note: To run the examples in this chapter, download the following modules from the IBM SPSS

Predictive Analytics community and save them to your Python site-packages directory: trans and
extendedTransforms.

Getting Started with the trans Module

The Tfunction class, in the trans module, is used to specify a set of Python functions to be applied

in a given data pass and to execute the data pass on the active dataset. Each Python function creates
one or more new variables in the active dataset using existing variables or Python expressions as inputs.
For example, consider applying the hyperbolic sine function (available with Python but not with IBM
SPSS Statistics) from the math module (a standard module included with Python) as well as a simple
user-defined function named strfunc. For simplicity, we've included the definition of strfuncina
BEGIN PROGRAM-END PROGRAM block.

*python_trans_demo.sps.

DATA LIST LIST (,) /nvar (F) first (A30) last (A30).
BEGIN DATA

0,Rick,Arturo

1,Nancy,McNancy

-1,Yvonne,Walker

END DATA.

BEGIN PROGRAM.
import trans, math

def strfunc(pre,x,y):
" Concatenate a specified prefix and the first character
of each argument. """
return pre+"_"+x[0]+y[0]

tproc = trans.Tfunction()
tproc.append(strfunc, 'strout', 'a8', [trans.const('cust'), 'first', 'last'])
tproc.append(math.sinh, ‘numout', 'f',['nvar'])

tproc.execute()

END PROGRAM.

The import statement includes the trans module and any modules that contain the Python functions

you're using. In this example, we're using a function from the math module, which is always available
with the Python language.

trans.Tfunction() creates an instance of the Tfunction class, which is then stored to the Python
variable tproc.

The append method from the Tfunction class is used to specify the set of Python functions to be
applied on the associated data pass. Functions are executed in the order in which they are appended.

The first argument is the function name. Functions from an imported module must be specified with

the module name, as in the current example, unless they were imported using from module import
<function>.

The second argument is a string, or a sequence of strings, specifying the names of the variables that will
contain the results of the function.

The third argument specifies the format(s) for the resulting variable(s). Formats should be given as
strings that specify IBM SPSS Statistics variable formats--for example, '£8.2"' or 'a8'--except 'f'
without explicit width or decimal specifications.

The fourth argument is a sequence of strings naming the inputs to the function. These may be the
names of variables in the active dataset, variables created by preceding functions applied in the same

data pass, or Python expressions. The inputs must be compatible with the inputs expected by the
function, both in number and type.

« In the present example, the Python function strfunc requires three arguments, so the call to append
for strfunc contains a list with three elements, one for each argument. The first argument specifies
the string constant 'cust'. Python string expressions, to be passed as arguments, are specified
as trans.const(expression) to distinguish them from strings representing variable names. The
remaining two arguments specify variable names. The active dataset is assumed to contain the string
variables first and last. The result is stored to the new string variable strout, which has a width of 8.

Chapter 3. Programming with Python 207

Note: You may want to include the statement from trans import const, which allows you to

use const(expression) instead of trans.const(expression) when specifying scalar arguments
such as string constants.

« The Python function sinh from the math module requires a single argument. In this example, the
argument is the variable nvar, which is assumed to be numeric. The result--the hyperbolic sine of the
input variable--is stored to the new numeric variable numout.

« The execute method from the Tfunction class initiates a data pass, applying the specified functions
to the active dataset. Any pending transformations are executed on the same data pass before applying
the specified functions.

EH *Untitled7 [] - Data Editor ME) =
File Edit Yew D[ata Transform Analvze Graphs Ukilities Add-ons Window Help
5 : strout
rvar | first | last | strout | nurmout |~
1 0 Rick Artura cust_RA 0ot
2 1 Mancy McMancy cust_NM 1.18
3 -1 vanne Walker cust_ A 11810
4+ \Data View 4 Variable View / <] E[

Figure 94. Resulting dataset

Missing Values
The Tfunction class provides options for handling missing values encountered in the case data.

- By default, the Tfunction class converts user-missing values to the Python data type None before
applying the specified functions to the data (system missing values are always converted to None). You
can override the conversion by using Tfunction(convertUserMissing=False) when instantiating
the class.

« By default, the specified functions are applied to each case in the active dataset (filtered for any
case selection), regardless of whether any variables used as inputs are system- or user-missing. You
can specify that cases with system- or user-missing input values, in variables used by the functions,
are excluded by using Tfunction(listwiseDeletion=True) when instantiating the class. When
listwiseDeletion=True, output variables are set to system-missing for cases with missing input
values. If you choose to use the default behavior, it is your responsibility to handle any system missing
values in the case data--they are represented in Python as None.

« Python None values are converted to system-missing for output variables specified with a numeric
format and to blanks for output variables specified with a string format.

In addition, you can use the ismissing function (included in the trans module) in your Python
functions to identify missing values, allowing you to take specific actions when such values are
encountered.

*python_trans_ismissing.sps.

DATA LIST FREE /nvarl (F) nvar2 (F).
BEGIN DATA

1,2

3,4

5,

7,8
END DATA.

BEGIN PROGRAM.
import trans

def demo(vall,val2):
""" Return the sum of the arguments. Arguments for which the
case value is user- or system-missing are set to 0.

if trans.ismissing(trans.getargnames()[0],vall):
vall=0

if trans.ismissing(trans.getargnames()[1],val2):
val2=0

return vall + val2

tproc = trans.Tfunction()

tproc.append(demo, 'result','f', ['nvarl', 'nvar2'])
tproc.execute()

END PROGRAM.

208 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

« The Python function demo returns the sum of its two input values. A value of 0 is used in place of
any input value that is user- or system-missing. For simplicity, the function definition is included in the
BEGIN PROGRAM-END PROGRAM block.

« The ismissing function is included in demo to detect missing values. It requires two arguments: the
name of the variable being tested for missing values and the value being tested. It returns True if the
value is user- or system-missing and False otherwise.

« In this example, the variables being tested for missing values are those used as inputs to demo. The
names of these variables are obtained from the getargnames function, which returns a list containing
the names of the arguments to the function currently being executed in the data pass controlled by the
Tfunction class. In this case, trans.getargnames() [0] is 'nvarl' and trans.getargnames()

[1]is 'nvar2’'.
EH *Untitled2 [] - Data Editor =/alEd
File Edit Yew D[ata Transform Analvze Graphs Ukilities Add-ons Window Help
marl | rwar2 | result | var var | var
1 1 2 3.00
2 3 4 7.00
3 5 5.00
4 7 8 15.00 o
v \Data View A Wariable View TR

Figure 95. Resulting dataset

Performing Initialization Tasks before Passing Data

Sometimes a function used to transform data needs to be initialized before the data are passed. You can
create a class that does this initialization and creates or contains the function to be applied to the cases.
After the constructor call, the class must contain a function named 'func’taking the same argument list as
the constructor. For an example, see the source code for the subs function in the extendedTransforms
module, available from the IBM SPSS Predictive Analytics community.

Tracking Function Calls

By default, a variable attribute recording each function call (for a given instance of Tfunction) is
created for each output variable. The attribute name is $Py.Function. The attribute value contains the
name of the function and the names of the input variables. You can disable this feature by setting
autoAttrib=False when creating an instance of the Tfunction class.

For more information on the Tfunction class, use help(trans.Tfunction) after importing the
trans module.

Using Functions from the extendedTransforms Module

The Python module extendedTransforms, available for download from the IBM SPSS Predictive
Analytics community, includes a number of functions that provide transformations not available with the
IBM SPSS Statistics transformation system. These functions are intended for use with the framework
provided by the Tfunction class in the trans module but can also be used independently. It is
suggested that you read the section “Getting Started with the trans Module” on page 207 before using
these functions with the framework in the trans module.

The search and subs Functions

The search and subs functions allow you to search for and replace patterns of characters in case data
through the use of regular expressions. Regular expressions define patterns of characters that are then
matched against a string to determine if the string contains the pattern. For example, you can use a
regular expression to identify cases that contain a sequence of characters, such as a particular area code
or Internet domain, or perhaps you want to find all cases for a specified string variable that contain one or
more of the decimal digits 0-9.

Chapter 3. Programming with Python 209

Regular expressions are a powerful, specialized programming language for working with patterns of
characters. For example, the regular expression [0-9] specifies a single decimal digit between 0 and 9
and will match any string containing one of these characters. If you are not familiar with the syntax of
regular expressions, a good introduction can be found in the section "Regular expression operations" in
the Python Library Reference, available at http://docs.python.org/lib/module-re.html.

Note: The search and subs functions are automatically locale sensitive.

Using the search Function

The search function applies a regular expression to a string variable and returns the part of the string
that matches the pattern. It also returns the starting position of the matched string (the first character is
position 0) and the length of the match, although these values can be ignored in the calling sequence. By

default, the search is case sensitive. You can ignore case by setting the optional parameter ignorecase to
True.

Example

In this example, we'll use the search function to extract the five-digit zip code from an address that is
provided as a single string.

*python_extendedTransforms_search.sps.
DATA LIST /address (A50).

BEGIN DATA

374 Main St., Sunville, NV 45768-8765
25647 Longview Rd., Plainville, MT 78987
1121 Carmel Circle, Peru, IN, 37432

END DATA.

BEGIN PROGRAM.

import trans, extendedTransforms

from trans import const

tproc = trans.Tfunction()

tproc.append(extendedTransforms.search,
Tzip',

A5',
['address',const(z"\b\d{5%\b(-\d{43})?\s*x\Z2")])
tproc.execute()
END PROGRAM.

The first argument to the search function is the string to search, and the second argument is the
regular expression. In this example, the search function is used with the Tfunction class so that the
search can be performed in a casewise fashion. Values of the variable address in the active dataset will

be searched for a match to the regular expression \b\d$53\b(-\d$4})?\s*\Z. The result is stored to
the new variable zip.

When used as an argument to the append method of the Tfunction class, a regular expression is
specified as a string expression using const (expression). The r preceding the regular expression
in this example specifies a raw string, which ensures that any character sets specifying Python escape

sequences--such as \ b, which is the escape sequence for a backspace--are treated as raw characters
and not the corresponding escape sequence.

The regular expression used here will match a sequence of five digits set off by white space or a
non-alphanumeric and non-underscore character (\b\d{5%\b), followed by an optional five-character
sequence of a dash and four digits ((-\d{4%) ?), optional white space (\sx*), and the end of the string

(\2).
EH] *Untitled4 [] - Data Editor =& =
File Edit View Data Transform A&nalyze Graphs Utiities Add-ons Window Help
i
address | zip |w~
11374 Main St., Sunville, NY 45768-8765 45768
2|25647 Longview Rd., Plainville, MT 78957 7asey
31121 Carmel Circle, Perg, IN, 37432 37432 =
4> \Data View A Variahle View / il (2]

SPSS Processor is reac.ly.

Figure 96. Resulting dataset

210 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

http://docs.python.org/lib/module-re.html

To obtain the starting location (the first position in the string is 0) and length of the matched string, use
three output variables for the function, as in:

tproc.append(extendedTransforms.search,
['zip', 'location', 'length'],
['A5",'F', '],
['address',const(x"\b\d{53\b(-\d{4})?\sx\2")]1)

For more information on the search function, use help (extendedTransforms.search) after
importing the extendedTransforms module.

Using the subs Function

The subs function searches a string for a match to a regular expression and replaces matched
occurrences with a specified string. By default, the search is case sensitive. You can ignore case by
setting the optional parameter ignorecase to True.

Example

In this example, we'll use the subs function to create a string that has the form '<last name>,
<first name>' from one of the form '<first name> <last name>'.

*python_extendedTransforms_subs.sps.
DATA LIST /var (A30).

BEGIN DATA

Ari Prime

Jonathan Poe

Gigi Sweet

END DATA.

BEGIN PROGRAM.
import trans, extendedTransforms
from trans import const
tproc = trans.Tfunction()
tproc.append(extendedTransforms.subs,
'newvar',
'A20"',
['var',
const(r' (?P<first>\S+)\s+(?P<last>\S+)'),
const(r'\g<last>, \g<first>')])
tproc.execute()
END PROGRAM.

The first argument to the subs function is the string on which to perform substitutions, the second
argument is the regular expression, and the third argument is the string to substitute for matched
values. In this example, the subs function is used with the Tfunction class so that the substitution
can be performed in a casewise fashion.

When used as an argument to the append method of the Tfunction class, a regular expression is
specified as a string expression using const (expression). The r preceding the regular expression
in this example specifies a raw string, which ensures that any character sets specifying Python escape
sequences are treated as raw characters and not the corresponding escape sequence.

Values of the variable var in the active dataset will be searched for a match to the regular expression
(?P<first>\S+)\s+(?P<last>\S+), which will match two words separated by white space. The
general regular expression code (?P<name>\S+) matches a sequence of nonwhitespace characters
and makes the matched string accessible via the specified name. In this example, the first word is
accessible via the name first and the second word is accessible via the name last.

The replacement string is given by the expression \g<last>, \g<first>.The general code
\g<name> will substitute the string matched by the expression associated with the specified name.

In this example, \g<last> will substitute the second word and \g<first> will substitute the first
word from the original string.

By default, all occurrences in a given string are replaced. You can specify the maximum number of
occurrences to replace with the optional parameter count to the subs function.

Chapter 3. Programming with Python 211

EF] *Untitled11 [] - Data Editor =@

File Edit View Data Transform Analvze Graphs Utiities Add-ons Window Help
war | newear |A
1| A Prirme Prirne, Ari
2l Jonathan Poe Poe, Jonathan
3| Gigi Sweet Sweet, Gigi pee
4 v ‘\Data View A Variahle View f <1 2]

Figure 97. Resulting dataset

For more information on the subs function, use help (extendedTransforms. subs) afterimporting
the extendedTransforms module.

The templatesub Function

The templatesub function substitutes variable values or constants into the template for a string and
returns the completed string.

Example

In this example, the templatesub function is used to create string variables derived from a dynamically
determined set of variables from the active datatset. The template used to construct the strings uses
variable values and a variable label.

*python_extendedTransforms_templatesub.sps.

DATA LIST FREE / storel (A1l5) store2 (A1l5) weekday (A10).
BEGIN DATA

gorgonzola jarlsberg mondays

roquefort cheddar tuesdays

stilton gouda wednesdays

brie edam thursdays

camembert parmesan fridays

END DATA.

VARIABLE LABELS storel 'Main St.' store2 'Village Green'.

BEGIN PROGRAM.
import trans, extendedTransforms, spssaux
from trans import const
varDict = spssaux.VariableDict()
storelList = varDict. varlablesf(pattern r'store'
template = "The $loc store is out of $type on $day
tproc = trans.Tfunction()
for store in storelist:
loc = varDict[store].VariablelLabel
tproc.append(extendedTransforms.templatesub,
store+'_news',

A6O",
[const(template),const(loc),store, 'weekday'])
tproc.execute()
END PROGRAM.

This example makes use of the VariableDict class from the spssaux module (a supplementary
module installed with the IBM SPSS Statistics - Integration Plug-in for Python) to obtain the list of
variables from the active dataset whose names begin with the string ' stoxre'. The list is stored to the
Python variable storeList. See the topic “Getting Started with the VariableDict Class” on page 155 for
more information.

The for loop iterates through the list of variables in storeList. Each iteration of the loop specifies the
creation of a new string variable using the templatesub function. The templatesub function is used
with the Tfunction class so that the substitution can be performed in a casewise fashion. The new
variables are created when the data pass is executed with tproc.execute ().

The code varDict[store].VariablelLabel is the variable label associated with the value of store.
The label contains the store location and is stored to the Python variable loc.

The first argument to the templatesub function is the template, specified as a string. A template
consists of text and field names that mark the points at which substitutions are to be made. Field names
are strings starting with $. In this example, the template is stored in the Python variable template.
Values will be substituted for the fields $loc, $type, and $day in the template. Fields in the template are
matched in order with the sequence of variables or constants following the template, in the argument
set passed to the templatesub function. The first field in the template matches the first variable or
constant, and so on. If a field name occurs more than once, its first occurrence determines the order.

212 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

« On each iteration of the loop, the value of the Python variable loc is substituted for the template field
$loc, casewise values of the variable specified by store will be substituted for $type, and casewise
values of the variable weekday will be substituted for $day. The resulting string is stored to a

new variable whose name is dynamically created by the expression store+'_news'--for example,
storel_news.

B *UntitledZ [] - Data Editor ===
File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help
7 stored “isible: 5 of 5°
storel | store2 | weekday | store2_news .
1|gorgonzaola jarlsbery mondays The Yillage Green store is out of jarlsbery on mondays.
2| roguefort cheddar tuesdays The Yillage Green stare is out of cheddar on tuesdays.
3| stilton gouda wednesday |The Village Green store is out of gouda on wednesdays.
4|brie edam thursdays |The %illage Green store is out of edam on thursdays.
a|camembert parmesan |fridays The Yillage Green store is out of parmesan on fridays. =
4 [v \Data View 4 Variable View f Il 3 (2]

Figure 98. Resulting dataset
Notes

- If afield name in the template is followed by text that might be confused with the name, enclose the
field namein $3%, asin $idayt.

- Field values are converted to strings if necessary, and trailing blanks are trimmed.

For more information on the templatesub function, use help (extendedTransforms.templatesub)
after importing the extendedTransforms module.

The levenshteindistance Function

The levenshteindistance function calculates the Levenshtein distance between two strings, after
removing trailing blanks. The Levenshtein distance between two strings is the minimum number of
operations (insertion, deletion, or substitutions) required to transform one string into the other. Case is

significant in counting these operations. Identical strings have distance zero, and larger distances mean
greater differences between the strings.

Example

*python_extendedTransforms_levenshtein.sps.
DATA LIST FREE /strl (A8) str2 (A8).

BEGIN DATA

untied united

END DATA.

BEGIN PROGRAM.
import trans, extendedTransforms
tproc = trans.Tfunction()
tproc.append(extendedTransforms.levenshteindistance,
'ldistance’,
)
['strl', 'str2'])
tproc.execute()
END PROGRAM.

The levenshteindistance function takes two arguments, the two strings to compare. In this example,
the function is used with the Tfunction class so that the analysis can be performed in a casewise

fashion. The result is stored to the new variable [distance. For the single case shown here, the Levenshtein
distance is 2.

For more information on the 1evenshteindistance function, use

help(extendedTransforms.levenshteindistance) afterimporting the extendedTransforms
module.

Chapter 3. Programming with Python 213

The soundex and nysiis Functions

The soundex and nysiis functions implement two popular phonetic algorithms for indexing names by
their sound as pronounced in English. The purpose is to encode names having the same pronunciation to
the same string so that matching can occur despite differences in spelling.

Example

*python_extendedTransforms_soundex.sps.
DATA LIST FREE /name (A20).

BEGIN DATA

Abercromby

Abercrombie

END DATA.

BEGIN PROGRAM.

import trans, extendedTransforms

tproc = trans.Tfunction(listwiseDeletion=True)
tproc.append(extendedTransforms.soundex, 'soundex', 'A20',['name'])
tproc.append(extendedTransforms.nysiis, 'nsyiis', 'A20',['name'])
tproc.execute ()

END PROGRAM.

The single argument to the soundex and nysiis functions is the string to encode. In this example, the
function is used with the Tfunction class so that the analysis can be performed in a casewise fashion.
The results are stored to the new variables soundex and nsyiis.

The two spellings Abercromby and Abercrombie are phonetically the same and are encoded to the same

value.
EH *Untitled17 [] - Data Editor (==
File Edit View Data Transform Analvze Graphs Utiities Add-ons Window Help
5 nsyiis
narne | soundex | nsyiis |A
1| Abercromby A1E2 ABARCRANBY
2| Abercrambie ANE2 ABARCRAMNBY
4 » |\ Data View A Variahle View [[l 2N >
SPSS Processor is ready

Figure 99. Resulting dataset

If you need to encode strings containing multiple words, consider using the soundexallwords
function. It transforms each word in a string of free text into its soundex value
and returns a string of blank-separated soundex values. For more information, use

help(extendedTransforms.soundexallwords) after importing the extendedTransforms
module.

The strtodatetime Function

The strtodatetime function converts a string value to a datetime value according to a specified pattern.
If a value does not match the pattern, the function returns None. Patterns are constructed from a set of
format codes representing pieces of a datetime specification, such as day of month, year with century,
hour, and so on. The large set of available format codes and the ability to specify which formats are used
in a given pattern greatly extends the limited set of datetime formats available with command syntax.

Example

*python_extendedTransforms_strtodatetime.sps.
DATA LIST FIXED/strdatetime (A20).

BEGIN DATA

DEC 7, 2006 12:31

END DATA.

BEGIN PROGRAM.
import spss, extendedTransforms, trans
from trans import const
tproc = trans.Tfunction()
tproc.append(extendedTransforms.strtodatetime,
'datetime’,
'DATETIMEL17',
['strdatetime',const("%b %d, %Y %H:%M ")])
tproc.execute ()
END PROGRAM.

214 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

 The first argument to the strtodatetime function is the string to convert. The second argument
is the pattern describing the datetime format, given as a string. In this example, we're converting
a string variable containing dates of the form 'mmm dd, yyyy hh:mm'. The associated pattern is
"%b %d, %Y %H:%M ".Delimiters, such as commas, contained in the string to convert should also
be included in the pattern as was done here. A single blank in the pattern matches any amount
of white space. In particular, the single blank at the end of the pattern is required to match any
trailing blanks in the string. A partial list of the allowed patterns, along with more usage detalils, is
provided in the documentation for the strtodatetime function, which can be viewed by including the
statement help (extendedTransforms.strtodatetime) in a program block, after importing the
extendedTransforms module.

« Inthis example, the strtodatetime function is used with the Tfunction class so that the
substitution can be performed in a casewise fashion. The converted string values are stored
to the datetime variable datetime with a format of DATETIMEL7. The pattern argument to the
strtodatetime function is a string constant, so it is specified with const ().

The datetimetostr Function

The datetimetostzx function converts a datetime value to a string according to a specified pattern.
Values that can't be converted are returned as a blank. Patterns are constructed from a set of format
codes representing pieces of a datetime specification, such as day of month, year with century, hour, and
so on. The large set of available format codes and the ability to specify which formats are used in a given
pattern greatly extends the limited set of datetime formats available with command syntax.

Example

*python_extendedTransforms_datetimetostr.sps.
DATA LIST FIXED/dtime (DATETIME17).

BEGIN DATA

06-DEC-2006 21:50

END DATA.

BEGIN PROGRAM.
import spss, extendedTransforms, trans
from trans import const
tproc = trans.Tfunction()
tproc.append(extendedTransforms.datetimetostr,
'strdtime’,
'A30"',
['dtime',const("%b %d, %Y %I:%M %p")1)
tproc.execute()
END PROGRAM.

The first argument to the datetimetostz function is the datetime value to convert. The second
argument is the pattern describing the resulting string. In this example, we're converting a

datetime variable with a date and time format to a string of the form 'mmm dd, yyyy hh:mm

p', where p specifies AM or PM (or the current locale's equivalent). The associated pattern

is "%b %d, %Y %IL:%M %p".Delimiters, such as commas, included in the pattern will be

included in the result, as in this example. A partial list of the allowed patterns is provided

in the documentation for the strtodatetime function, which can be viewed by including the
statement help (extendedTransforms.strtodatetime) in a program block, after importing the
extendedTransforms module.

« In this example, the datetimetostr function is used with the Tfunction class so that the
substitution can be performed in a casewise fashion. The converted datetime values are stored to

the string variable strdtime. The pattern argument to the datetimetostxr function is a string constant
so it is specified with const ().

The lookup Function

The 1lookup function performs a table lookup given a key value and a Python dictionary containing keys
and associated values.

Example

In this example, we look up state names given the two-letter state code.

*python_extendedTransforms_lookup.sps.

Chapter 3. Programming with Python 215

DATA LIST LIST (",")/street (A30) city (A30) st (A2) zip(A10).
BEGIN DATA

222 Main St,Springfield,IL,12345

919 Locust Lane,Treeville,IN,90909

11 Linden Lane,Deepwoods, ,44074

47 Briar Patch Parkway,Riverdale,MD,07000

END DATA.

BEGIN PROGRAM.

import extendedTransforms, trans

from trans import const

statedict = {"IL":"Illinois", "IN":"Indiana","MD":"Maryland",
"DC":"District of Columbia","CT":"Connecticut",
"RI":"Rhode Island","MA":"Massachusetts"?}

tproc = trans.Tfunction(autoAttrib=False)

tproc.append(extendedTransforms.lookup,
‘statename’,
‘a4’

['st':const(statedict),const(””)])
tproc.execute ()
END PROGRAM.

The Python variable statedict is a Python dictionary whose keys are the two-letter states codes and
whose values are the associated state names.

The first argument to the 1ookup function is the key whose value is to be returned. If it is a string,
trailing blanks are removed. In this example, the argument is the two-letter state code given by the
variable st. The second argument is the Python dictionary containing the keys and associated values.

The third argument is the value to return if the key is not found in the dictionary--in this example, a
blank string.

In this example, the 1ookup function is used with the Tfunction class so that the substitution can be
performed in a casewise fashion. The full state name returned from the table lookup is stored to the
string variable statename. Both the second and third arguments to the 1ookup function are specified
with const (), which is used to distinguish scalar arguments from variable names. In this case, there
are two scalar arguments--the name of the Python dictionary statedict and the blank string.

The optional argument autoAttrib to the Tfunction class is set to False to suppress the creation of

a variable attribute associated with the output variable statename. Variable attributes are provided for
tracking purposes but can become very verbose when associated with the 1lookup function because the
attribute contains the full dictionary used for the lookup. An alternative to suppressing the attribute is to
specify a maximum length, as in autoAttrib=50.

For more information, use help (extendedTransforms.lookup) after importing the
extendedTransforms module.

Modifying and Exporting Output Items

The IBM SPSS Statistics - Integration Plug-in for Python provides the ability to customize pivot tables
and export items, such as charts and tables, in a variety of formats. This is accomplished using the
SpssClient module.

The SpssClient module can be used in a standalone Python script that you can manually invoke as
needed or it can be used within a Python program to modify or export output generated by the program.
See the topic “The SpssClient Python Module” on page 123 for more information.

Modifying Pivot Tables

The SpssPivotTable class, from the SpssClient module, provides methods to customize pivot tables
in output documents. As an example, we'll create a Python script that changes the text style of specified
column labels to bold for a chosen set of pivot tables. In particular, we'll change the column label Mean to
bold for all Descriptive Statistics tables in the designated output document.

{#MakeCollLabelBold.py.
import SpssClient
SpssClient.StartClient()

itemlabel = "Descriptive Statistics"

collabel = "Mean"

OutputDoc = SpssClient.GetDesignatedOutputDoc ()
OutputItems = OutputDoc.GetOutputItems()

for index in range(OutputItems.Size()):
OutputItem = OutputItems.GetItemAt(index)
if (OutputItem.GetType() == SpssClient.OutputItemType.PIVOT) and \
(OutputItem.GetDescription() == itemlabel):

216 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

PivotTable = OutputItem.GetSpecificType()
SpssLabels = PivotTable.ColumnLabelArray ()
for i in range(SpsslLabels.GetNumRows()):

for j in range(SpssLabels.GetNumColumns()):

if SpsslLabels.GetValueAt(i,j)==collabel:
SpssLabels.SelectLabelAt(i,j)
PivotTable.SetTextStyle(SpssClient.SpssTextStyleTypes.SpssTSBold)
SpssClient.StopClient()

« The GetDesignatedOutputDoc method of the SpssClient class returns an object representing the
designated output document (the current document to which output is routed). The GetOutputItems
method of the output document object returns a list of objects representing the items in the output
document, such as pivot tables, charts, and log items.

« The for loop iterates through the list of items in the output document. The GetType method of
an output item object returns the type of item. Pivot tables are identified as an output item type
of SpssClient.OutputItemType.PIVOT. The GetDescription method of an output item object
returns the name of the output item as it appears in the outline pane of the Viewer.

« If a Descriptive Statistics table is found, you call the GetSpecificType method on the output item
object to get an object representing the pivot table. In this example, the Python variable PivotTable is an
instance of the SpssPivotTable class.

« The ColumnLabelArray method of the pivot table object returns an object that provides access to the
column label array. The GetNumRows and GetNumColumns methods of the object return the number of
rows and columns in the column label array.

- The inner for loops indexed by i and j iterate through the elements in the column label array. The
GetValueAt method is used to access the value of a specified column label. If the label matches the
specified value of Mean, the label cell is selected using the SelectLabelAt method.

« The SetTextStyle method of the pivot table object is called to set the text style of any selected labels
to bold.

Note: You may also want to consider using the SPSSINC MODIFY TABLES extension command to
customize your pivot table output. For release 22 and higher, you can also use the OUTPUT MODIFY
syntax command.

Exporting Output Items

Using the SpssClient module, you can export multiple items, including charts and tables, to a single file
in a variety of formats, including: Word, Excel, PowerPoint (Windows operating systems only), PDF, and
HTML. You can also export chart items to individual image files in many formats, including: JPG, PNG,
TIFF, and BMP.

This section covers only a few of the available formats and options. For more information, see the
descriptions of the ExportDocument and ExportCharts methods in the IBM SPSS Statistics Help
system. You can also export output items using the OUTPUT EXPORT or OMS commands within command
syntax. See the topic “Exporting Results” on page 98 for more information.

Example: Exporting All Items

In this example, we create a Python script to export the contents of the designated output document to a
PDF file.

{#fExportAl1ToPDF.py

import SpssClient, sys

SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc ()
try:

OutputDoc.ExportDocument (SpssClient.SpssExportSubset.SpssAll,
"/temp/outputl.pdf",
SpssClient.DocExportFormat.SpssFormatPdf)

except:

print sys.exc_info()[1]

SpssClient.StopClient()

« The script utilizes the standard module sys (used here to extract information about an exception), so it
includes sys in the impoxrt statement.

« The ExportDocument method of the output document object performs the export. The first argument
specifies whether all items, all selected items, or all visible items are exported. In this example,

Chapter 3. Programming with Python 217

all items are exported, as specified by SpssClient.SpssExportSubset.SpssAll. The second
argument specifies the destination file. The third argument specifies the export format--in this example,
PDF, as specified by SpssClient.DocExportFormat.SpssFormatPdf.

- If the save attempt fails for any reason, the except clause is invoked. sys.exc_info () returns a
tuple of three values that provides information about the current exception. The value with an index of 1
contains the most descriptive information.

You can export a specified output item using the ExportToDocument (nonchart items) and
ExportToImage (chart items) methods from the SpssOutputItem class.

Example: Exporting All Charts

In this example, we create a Python script to export all charts in the designated output document to PNG
files.

H#fExportChartsToPNG. py

import SpssClient, sys

SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc ()
try:

y:
OutputDoc.ExportCharts(SpssClient.SpssExportSubset.SpssAll,
"/temp/chart_",
SpssClient.ChartExportFormat.png)
except:
print sys.exc_info()[1]
SpssClient.StopClient()

The ExportCharts method of the output document object performs the export. The first argument
specifies whether all items, all selected items, or all visible items are exported. In this example,

all items are exported, as specified by SpssClient.SpssExportSubset.SpssAll. The second
argument specifies the path and prefix for the destination files (each chart is exported to a

separate file). The third argument specifies the export format--in this example, PNG, as specified by
SpssClient.ChartExportFormat.png.

You can export a specified chart using the ExportToImage method from the SpssOutputItem class.

Example: Exporting To Excel

When exporting to Excel, you can specify the sheet name in a new workbook, create a new sheet in an
existing workbook, or append output to an existing sheet. In this example, we will export any output from
the Descriptives and Frequencies procedures to worksheets named Descriptives and Frequencies in a new
workbook.

#ExportToExcel.py

import SpssClient,sys

SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc ()
OutputDoc.ClearSelection()

i# Create a new workbook and export all Descriptives output to a worksheet

named Descriptives.

OutputDoc.SetOutputOptions(SpssClient.DocExportOption.ExcelOperationOptions,

"CreateWorkbook")

OutputDoc.SetOutputOptions(SpssClient.DocExportOption.ExcelSheetNames,

"Descriptives")
OutputItems = OutputDoc.GetOutputItems()
for index in range(OutputItems.Size()):
OutputItem = OutputItems.GetItemAt(index)
if (OutputItem.GetType() == SpssClient.OutputItemType.HEAD and
OutputItem.GetDescription() == "Descriptives"):
OutputItem.SetSelected(True)

try:

OutputDoc.ExportDocument (SpssClient.SpssExportSubset.SpssSelected,
"/temp/myexport.xls",
SpssClient.DocExportFormat.SpssFormatXls)

except:

print sys.exc_info()[1]
OutputDoc.ClearSelection()

Export all Frequencies output to a new worksheet named Frequencies.
OutputDoc.SetOutputOptions(SpssClient.DocExportOption.ExcelOperationOptions,
"CreateWorksheet")
OutputDoc.SetOutputOptions(SpssClient.DocExportOption.ExcelSheetNames,
"Frequencies")
for index in range(OutputItems.Size()):
OutputItem = OutputItems.GetItemAt(index)
if (OutputItem.GetType() == SpssClient.OutputItemType.HEAD and
OutputItem.GetDescription() == "Frequencies"):
OutputItem.SetSelected(True)

try:

OutputDoc.ExportDocument (SpssClient.SpssExportSubset.SpssSelected,
"/temp/myexport.xls",
SpssClient.DocExportFormat.SpssFormatXls)

except:

218 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

print sys.exc_info()[1]
OutputDoc.ClearSelection()
SpssClient.StopClient()

The SetOutputOptions method of the output document object specifies details of the export such
as whether output will be written to a new or existing worksheet as well as specifying the name of
the worksheet. The first step is to specify a new workbook and to direct export to a worksheet named
Descriptives in that workbook. This is accomplished by the first two calls to SetOutputOptions.

The first argument to SetOutputOptions specifies the type of option and the second argument
specifies the value of the option. SpssClient.DocExportOption.ExcelOperationOptions
indicates whether a new workbook is created, a new worksheet is created, or an existing worksheet
is modified. The associated value "CreateWorkbook" specifies a new workbook.

The option SpssClient.DocExportOption.ExcelSheetNames specifies the name of the
worksheet to which export is directed. The associated value specifies the worksheet named
Descriptives.

The first for loop iterates through all of the items in the output document and selects all header items
named "Descriptives”. For descriptions of the methods used in the loop, see “Modifying Pivot Tables” on
page 216.

The selected items are then exported using the ExportDocument method. The first argument specifies
to export all selected items, as given by SpssClient.SpssExportSubset.SpssSelected. The
second argument specifies the destination file. The third argument specifies export to Excel, as given by
SpssClient.DocExportFormat.SpssFormatXls.

The ClearSelection method deselects all selected output items in preparation for selecting the
“Frequencies" items.

The SetOutputOptions method is then called twice. The first call specifies that output will be
directed to a new worksheet, and the second call specifies that the name of the worksheet is
Frequencies. Note that these calls to SetOutputOptions override the previous settings.

The second for loop iterates through all of the items in the output document and selects all header
items named "Frequencies”. The selected items are then exported to the new worksheet using the
ExportDocument method.

Example: Handling Export of Wide Tables

When exporting to Word or PowerPoint, you can control the display of wide tables. In this example, we
will export any output from the Crosstabs procedure to a Word document, and specify that wide tables be
reduced to fit within the document width.

#ExportToWord. py

import SpssClient,sys

SpssClient.StartClient()

OutputDoc = SpssClient.GetDesignatedOutputDoc ()

OutputDoc.ClearSelection()

OutputDoc.SetOutputOptions(SpssClient.DocExportOption.WideTablesOptions,

"WT_Shrink")
OutputItems = OutputDoc.GetOutputItems()
for index in range(OutputItems.Size()):
OutputItem = OutputItems.GetItemAt(index)
if (OutputItem.GetType() == SpssClient.OutputItemType.HEAD and
OutputItem.GetDescription() == "Crosstabs"):
OutputItem.SetSelected(True)

try:

OutputDoc.ExportDocument (SpssClient.SpssExportSubset.SpssSelected,
"/temp/myexport.docx",
SpssClient.DocExportFormat.SpssFormatDoc)

except:

print sys.exc_info()[1]

OutputDoc.ClearSelection()
SpssClient.StopClient()

The option SpssClient.DocExportOption.WideTablesOptions tothe SetOutputOptions
method specifies the handling of pivot tables that are too wide for the document width. The value
WT_Shxrink specifies that font size and column width are reduced so that tables fit within the document
width.

The for loop iterates through all of the items in the output document and selects all header items
named "Crosstabs”. For descriptions of the methods used in the loop, see “Modifying Pivot Tables” on

page 216.

Chapter 3. Programming with Python 219

« The selected items are then exported using the ExportDocument method. The first argument specifies
to export all selected items. The second argument specifies the destination file. The third argument
specifies export to Word, as given by SpssClient.DocExportFormat.SpssFormatDoc.

The SetOutputOptions method also provides settings for specifying page dimensions. For details, see
the IBM SPSS Statistics Help system.

Tips on Migrating Command Syntax and Macro Jobs to Python

Exploiting the power that the IBM SPSS Statistics - Integration Plug-in for Python offers may mean
converting an existing command syntax job or macro to Python. This is particularly straightforward for
command syntax jobs, since you can run command syntax from Python using a function from the spss
module (available once you install the plug-in). Converting macros is more complicated, since you need
to translate from the macro language, but there are some simple rules that facilitate the conversion. This
chapter provides a concrete example for each type of conversion and any general rules that apply.

Migrating Command Syntax Jobs to Python

Converting a command syntax job to run from Python allows you to control the execution flow based
on variable dictionary information, case data, procedure output, or error-level return codes. As an
example, consider the following simple syntax job that reads a file, creates a split on gender, and uses
DESCRIPTIVES to create summary statistics.

GET FILE="/examples/data/Employee data.sav".
SORT CASES BY gender.
SPLIT FILE
LAYERED BY gender.
DESCRIPTIVES
VARIABLES=salary salbegin jobtime prevexp
/STATISTICS=MEAN STDDEV MIN MAX.
SPLIT FILE OFF.

You convert a block of command syntax to run from Python simply by wrapping the block in triple quotes
and including it as the argument to the Submit function in the spss module. For the current example, this
looks like:

spss.Submit ("""
GET FILE='/examples/data/Employee data.sav'.
SORT CASES BY gender.
SPLIT FILE
LAYERED BY gender.
DESCRIPTIVES
VARIABLES=salary salbegin jobtime prevexp
/STATISTICS=MEAN STDDEV MIN MAX.
SPLIT FILE OFF.
Wy

e The Submit function takes a string argument containing command syntax and submits the syntax to
IBM SPSS Statistics for processing. By wrapping the command syntax in triple quotes, you can specify
blocks of commands on multiple lines in the way that you might normally write command syntax. You
can use either triple single quotes or triple double quotes, but you must use the same type (single or
double) on both sides of the expression. If your syntax contains a triple quote, be sure that it's not
the same type that you are using to wrap the syntax; otherwise, Python will treat it as the end of the
argument.

Note also that Python treats doubled quotes, contained within quotes of that same type, differently

from IBM SPSS Statistics. For example, in Python, "string with ""quoted"" text" istreated

asstring with quoted text.Python treats each pair of double quotes as a separate string and
simply concatenates the strings as follows: "string with "+"quoted"+" text".

« Notice that the triple-quoted expression is prefixed with the letter x. The r prefix to a string specifies
Python's raw mode. This allows you to use the single backslash (\) notation for file paths on Windows.
That said, it is a good practice to use forward slashes (/) in file paths on Windows, since you may at
times forget to use raw mode, and IBM SPSS Statistics accepts a forward slash (/) for any backslash in a
file specification. See the topic “Using Raw Strings in Python” on page 139 for more information.

Having converted your command syntax job so that it can run from Python, you have two options:
include this ina BEGIN PROGRAM block and run it from IBM SPSS Statistics, or run it from a Python

220 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

IDE (Integrated Development Environment) or shell. Using a Python IDE can be a very attractive way to
develop and debug your code because of the syntax assistance and debugging tools provided. See the
topic “Running Your Code from a Python IDE” on page 122 for more information. To run your job from
IBM SPSS Statistics, simply enclose it ina BEGIN PROGRAM-END PROGRAM block and include an import
spss statement as the first line in the program block, as in:

BEGIN PROGRAM.
import spss
spss.Submit ("""
GET FILE='/examples/data/Employee data.sav'.
SORT CASES BY gender.
SPLIT FILE
LAYERED BY gender.
DESCRIPTIVES
VARIABLES=salary salbegin jobtime prevexp
/STATISTICS=MEAN STDDEV MIN MAX.
SPLIT FILE OFF.

)
END PROGRAM.

You have taken a command syntax job and converted it into a Python job. As it stands, the Python job does
exactly what the IBM SPSS Statistics job did. Presumably, though, you're going to all this trouble to exploit
functionality that was awkward or just not possible with standard command syntax. For example, you may
need to run your analysis on many datasets, some of which have a gender variable and some of which do
not. For datasets without a gender variable, you'll generate an error if you attempt a split on gender, so
you'd like to run DESCRIPTIVES without the split. Following is an example of how you might extend your
Python job to accomplish this, leaving aside the issue of how you obtain the paths to the datasets. As in
the example above, you have the option of running this from IBM SPSS Statistics by wrapping the code in
a program block, as shown here, or running it from a Python IDE.

*python_converted_syntax.sps.
BEGIN PROGRAM.
import spss
filestring = r'/examples/data/Employee data.sav'
spss.Submit ("GET FILE='%s'."%(filestring))
for i in range(spss.GetVariableCount()):
if spss.GetVariablelLabel(i).lower()=="'gender"':
genderVar=spss.GetVariableName (i)
spss.Submit ("""
SORT CASES BY %s.
SPLIT FILE
LAYERED BY %s.
""" %(genderVar, genderVar))
break
spss.Submit ("""
DESCRIPTIVES
VARIABLES=salary salbegin jobtime prevexp
/STATISTICS=MEAN STDDEV MIN MAX.
SPLIT FILE OFF.

)
END PROGRAM.

The string for the GET command includes the expression 9%s, which marks the point at which a string
value is to be inserted. The particular value to insert is taken from the % expression that follows the
string. In this case, the value of the variable filestring replaces the occurrence of %s. Note that the same
technique (using multiple substitutions) is used to substitute the gender variable name into the strings
for the SORT and SPLIT FILE commands. See the topic “Dynamically Specifying Command Syntax
Using String Substitution” on page 138 for more information.

The example uses a number of functions in the spss module, whose names are descriptive of their
function: GetVariableCount, GetVariablelabel, GetVariableName. These functions access the
dictionary for the active dataset and allow for conditional processing based on dictionary information.

« A SORT command followed by a SPLIT FILE command is run only when a gender variable is found.

Note: When working with code that contains string substitution (whether in a program block or a Python
IDE), it's a good idea for debugging to turn on both PRINTBACK and MPRINT with the command SET
PRINTBACK ON MPRINT ON. This will display the actual command syntax that was run.

Migrating Macros to Python

The ability to use Python to dynamically create and control command syntax renders IBM SPSS Statistics
macros obsolete for most purposes. Macros are still important, however, for passing information from

a BEGIN PROGRAM block so that it is available to command syntax outside of the block. See the topic
“Mixing Command Syntax and Program Blocks” on page 129 for more information. You can continue to

Chapter 3. Programming with Python 221

run your existing macros, but you may want to consider converting some to Python, especially if you've
struggled with limitations of the macro language and want to exploit the more powerful programming
features available with Python. There is no simple recipe for converting a macro to Python, but a few
general rules will help get you started:

- The analog of a macro in IBM SPSS Statistics is a Python user-defined function. A user-defined function
is a named piece of code in Python that is callable and accepts parameters. See the topic “Creating
User-Defined Functions in Python” on page 140 for more information.

« A block of command syntax within a macro is converted to run in a Python function by wrapping the
block in triple quotes and including it as the argument to the Submit function in the spss module.
Macro arguments that form part of a command, such as a variable list, become Python variables whose
value is inserted into the command specification using string substitution.

As an example, consider converting the following macro, which selects a random set of cases from a data
file. Macro arguments provide the number of cases to be selected and the criteria used to determine
whether a given case is included in the population to be sampled. We'll assume that you're familiar with
the macro language and will focus on the basics of the conversion to Python.

SET MPRINT=0FF.
DEFINE !SelectCases (
nb=!TOKENS (1) /crit=!ENCLOSE('(',")")
/FPath=!TOKENS (1) /RPath=!TOKENS(1))
GET FILE=!FPath.
COMPUTE casenum=$CASENUM.
DATASET COPY temp_save.
SELECT IF !crit.
COMPUTE draw=UNIFORM(1).
SORT CASES BY draw.
N OF CASES !nb.
SORT CASES BY casenum.
MATCH FILES FILE=x
/IN=ingrp
/FILE=temp_save
/BY=casenum
/DROP=draw casenum.
SAVE OUTFILE=!RPath.
DATASET CLOSE temp_save.
'ENDDEFINE.

SET MPRINT=ON.

!SelectCases nb=5 crit=(gender='m' AND jobcat=1 AND educ<16)
FPath= '/examples/data/employee data.sav'
RPath= '/temp/results.sav'.

- The name of the macro is SelectCases, and it has four arguments: the number of cases to select, the
criteria to determine if a case is eligible for selection, the name and path of the source data file, and the
result file.

« In terms of the macro language, this macro is very simple, since it consists only of command syntax,
parts of which are specified by the arguments to the macro.

- The macro call specifies a random sample of five cases satisfying the criteria specified by crit. The name
and path of the source data file and the result file are provided as FPath and RPath, respectively.

The macro translates into the following Python user-defined function:

def SelectCases(nb,crit,FPath,RPath):
"""Select a random set of cases from a data file using a
specified criteria to determine whether a given case is
included in the population to be sampled.
nb is the number of cases to be selected.
crit is the criteria to use for selecting the sample population.
FPath is the path to the source data file.
RPath is the path to the result file.
spss.Submit ("""
GET FILE='%(FPath)s'.
COMPUTE casenum=$CASENUM.
DATASET COPY temp_save.
SELECT IF %(crit)s.
COMPUTE draw=UNIFORM(1).
SORT CASES BY draw.
N OF CASES %(nb)s.
SORT CASES BY casenum.
MATCH FILES FILE=x
/IN=ingrp
/FILE=temp_save
/BY=casenum
/DROP=draw casenum.
SAVE OUTFILE="%(RPath)s".
DATASET CLOSE temp_save.
"tt%locals())

222 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

The def statement signals the beginning of a function definition--in this case, the function named
SelectCases. The colon at the end of the def statement is required.

The function takes the same four arguments as the macro. Note, however, that you simply specify

the names of the arguments. No other defining characteristics are required, although Python supports
various options for specifying function arguments, such as defining a default value for an optional
argument.

The body of the macro consists solely of a block of command syntax. When converting the macro to
Python, you simply enclose the block in triple quotes and include it as the argument to the Submit
function. The Submit function--a function in the spss module--takes a string argument containing
command syntax and submits the syntax to IBM SPSS Statistics for processing. Enclosing the command
syntax in triple quotes allows you to specify a block of commands that spans multiple lines without
having to be concerned about line continuation characters.

Notice that the code within the Python function is indented. Python uses indentation to specify the
grouping of statements, such as the statements in a user-defined function. Had the code not been
indented, Python would process the function as consisting only of the def statement, and an exception
would occur.

The points in the command syntax where macro arguments occurred, such as SELECT IF !crit,
translate to specifications for string substitutions in Python, such as SELECT IF %(crit)s. To make
the conversion more transparent, we've used the same names for the arguments in the Python function
as were used in the macro. Using the 1ocals function for the string substitution, as in %locals (),
allows you to insert the value of any locally defined variable into the string simply by providing

the name of the variable. For example, the value of the variable crit is inserted at each occurrence

of the expression %(crit)s. See the topic “Dynamically Specifying Command Syntax Using String
Substitution” on page 138 for more information.

Once you've translated a macro into a Python user-defined function, you'll want to include the function

in a Python module on the Python search path. You can then call your function from within a BEGIN
PROGRAM-END PROGRAM block in IBM SPSS Statistics, as shown in the example that follows, or call it
from within a Python IDE. To learn how to include a function in a Python module and make sure it can be
found by Python, see “Creating User-Defined Functions in Python” on page 140. To learn how to run code
from a Python IDE, see “Running Your Code from a Python IDE” on page 122.

Example

This example calls the Python function SelectCases with the same parameter values used in the call to the
macro SelectCases.

*python_select_cases.sps.

BEGIN PROGRAM.

import samplelib

crit="(gender='m' AND jobcat=1 AND educ<16)"

samplelib.SelectCases(5,crit,
r'/examples/data/Employee data.sav',
r'/temp/results.sav')

END PROGRAM.

Once you've created a user-defined function and saved it to a module file, you can call it from

a BEGIN PROGRAM block that includes the statement to import the module. In this case, the
SelectCases function is contained in the samplelib module, so the program block includes the
import samplelib statement.

Note: To run this program block, copy the module file samplelib.py from the /examples/python folder, in
the accompanying examples, to your Python site-packages directory. For help in locating your Python
site-packages directory, see .

Runtime Behavior of Macros and Python Programs

Both macros and Python programs are defined when read, but when called, a macro is expanded before
any of it is executed, while Python programs are evaluated line by line. This means that a Python program
can respond to changes in the state of the IBM SPSS Statistics dictionary that occur during the course of
its execution, while a macro cannot.

Chapter 3. Programming with Python 223

Special Topics

Using Regular Expressions

Regular expressions define patterns of characters that are matched against a string to determine if

the string contains the pattern. In addition to identifying matches, you can extract the part of a string
matching the pattern, replace the matched part with a specified string, or split the string apart wherever
the pattern matches, returning a list of the pieces. As implemented in the Python programming language,
regular expressions provide a powerful tool for working with strings that greatly extends the built-in string
operations supplied with the language.

Constructing regular expressions in Python requires learning a highly specialized programming language
embedded within the Python language. The example in this section uses a number of elements of this
language and is meant to demonstrate the power of regular expressions rather than serve as a tutorial
on them. A good introduction to regular expressions in the Python language can be found in the section

"Regular expression operations" in the Python Library Reference, available at http://docs.python.org/lib/
module-re.html .

Example

In this example, we'll use a regular expression to extract the two-character state code from an address

that is provided as a single string. A table lookup is used to obtain the state name, which is then added as
a new variable to the active dataset.

B addresses.sav [DataSet2] - Data Editor =0/
File Edit View Data Transform Analvze Graphs Utiities Add-oms Window Help

5

address ”
121 Main St, Springfield, IL 12345
apt 113, Harrison Ave, Panama City, FL 32405
44 Moon Rd, Spruce St, Lake Forest GA
99 Hickory Lane, Treeville, CA, 90903
Cak Path, Burnham Wood, ME
Briar Patch, Toms River M 07000
7 [Linden Lane, Deepwoods, 44074
4|+ \\Data View 4 Variable View / [<] >

(x| ra]—

Figure 100. Dataset with addresses containing state codes

*python_re_state_lookup.sps.

BEGIN PROGRAM.

import spss, spssaux, spssdata, re
spssaux.0OpenDataFile('/examples/data/addresses.sav')

statecodeRegexObj = re.compile(x"\b([A-Z]{23})\b,?\s*x\dx\sx\Z")

stateCodes = §"IL":"Illinois", "NJ":"New Jersey","GA":"Georgia",
"CA":"California","ME":"Maine"?

curs = spssdata.Spssdata(accessType='w')

curs.append(spssdata.vdef("stateName", vimt=("A", 24)))

curs.commitdict()

for case in curs:
try:
matchObj=statecodeRegex0bj.search(case.address.rstrip())
code=matchObj.groups() [0]
curs.casevalues([stateCodes[code]])
except (AttributeError, KeyError):
pass
curs.close()
END PROGRAM.

This example makes use of the built-in Python module re for working with regular expressions, so the
impozrt statement includes it. The example also makes use of the spssaux and spssdata modules--
supplementary modules installed with the IBM SPSS Statistics - Integration Plug-in for Python.

The OpenDataFile function from the spssaux module opens an external IBM SPSS Statistics data
file. The argument is the file path specified as a string. In this example, we use the addresses.sav
dataset. It contains the single variable address from which state codes will be extracted.

224 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

http://docs.python.org/lib/module-re.html
http://docs.python.org/lib/module-re.html

« The regular expression for matching state codes is \b([A-Z]$2})\b, ?\sx\d*\s*\Z. It is written to
be as robust as possible to variations in the address field and will match a sequence of two uppercase
letters set off by punctuation or white space, followed by an optional comma, optional white space, an
optional string of digits, more optional white space, and the end of the string.

Briefly, [A-Z]{2% matches two uppercase letters and \ b matches the empty string at the beginning
or end of a word, so \b[A-Z]$2%\b will match a word consisting of two uppercase letters. The
parentheses enclosing [A-Z] 2% specify the start and end of a group. The contents of a group--in this
case, the two-character state code--can be retrieved after a match has been performed.

The sequence , ?\s*\d*\s*\Z specifies the pattern of characters that must follow a two-letter word in
order to provide a match. It specifies an optional comma (, ?), optional white space (\s*), an optional
string of digits (\d*), more optional white space (\sx*), and the end of the string (\2).

« The compile function from the re module compiles a regular expression. Compiling regular
expressions is optional but increases the efficiency of matching when the expression is used several
times in a single program. The argument is the regular expression as a string. The result of the
compile function is a regular expression object, which in this example is stored to the Python variable
statecodeRegexObj.

Note: The r preceding the regular expression specifies a raw string, which ensures that any character
sets specifying Python escape sequences--such as \ b, which is the escape sequence for a backspace--
are treated as raw characters and not the corresponding escape sequence.

« The variable stateCodes is a Python dictionary. A Python dictionary consists of a set of keys, each of
which has an associated value that can be accessed simply by specifying the key. In this example, the
keys are the state codes and the associated values are the full state names.

» The code spssdata.Spssdata(accessType="'w') creates an instance of the Spssdata class (from
the spssdata module), which allows you to add new variables to the active dataset. The instance in
this example is stored to the Python variable curs.

« In this example, we'll add a string variable of width 24 bytes for the full state name. The specifications
for the new variable stateName are created with the append method from the Spssdata class, and the
variable is created with the commitdict method. See the topic “Using the spssdata Module” on page
168 for more information.

- The for loop iterates through each of the cases in the active dataset. For each case, the Python variable
case contains the values of the variables for that case. The Python code to extract the state code and
obtain the associated state name generates an exception if no state code is found or the code doesn't
exist in stateCodes. These two exception types are handled by the try and except statements. In
the case of an exception, there is no action to take so the except clause simply contains the pass
statement and processing continues to the next case.

« The search method of the compiled regular expression object scans a string for a match to the regular
expression associated with the object. In this example, the string to scan is the value of the variable
address, which is given by case.address. The string method rstrip is used to strip trailing blanks
from the address. The result of the search method is a match object, which in this example is stored to
the Python variable matchObj.

- The groups method of the match object returns a Python tuple containing the strings that match each
of the groups defined in the regular expression. In this example, the regular expression contains a single
group for the two-letter state code--that is, ([A-Z]$2})--which is then stored to the Python variable
code.

« The casevalues method of the Spssdata class is used to assign the values of new variables for the
current case. The argument is a sequence of values, one for each new variable, in the order created.
In this example, casevalues is used to assign the value of the variable stateName for the current
case. The full state name is obtained by looking up the two-letter state code in the Python dictionary
stateCodes. For example, stateCodes['GA'] is 'Georgia'.

For an example of using regular expressions to select a subset of variables in the active dataset, see . For
examples of using regular expressions to search for and replace patterns of characters in case data, see.

Chapter 3. Programming with Python 225

Locale Issues

For users who need to pay attention to locale issues, a few initial points are noteworthy.

« When used with IBM SPSS Statistics, the Python interpreter runs in the same locale as IBM SPSS
Statistics.

« Although the Python language provides the built-in module 1ocale for dealing with locale issues, you
should only change the locale with SET LOCALE command syntax. You may, however, want to use the
locale module to retrieve information about the current locale.

Displaying Textual Output

In the Python language, the locale setting can affect how text is displayed in the output, including Python
output displayed in the IBM SPSS Statistics Viewer. In particular, the result of a Python print statement
may include hex escape sequences when the expression to be printed is something other than a string,
such as a list. For IBM SPSS Statistics 16.0 and higher, the situation is further complicated because the
IBM SPSS Statistics processor can operate in code page mode (the default) or Unicode mode. This simple
example illustrates the behavior and the general approach, for both Unicode mode and code page mode,
for some accented characters.

BEGIN PROGRAM.

import spss, spssaux

from spssaux import u

spss.Submit ("SET LOCALE='english'.")
Tist=[u("a"),u("6"),u("é")]

print list

print " ".join(list)

END PROGRAM.

Result for Code Page Mode

g‘g‘é "\xf4', "\xe9']

« Python string literals used in command syntax files, as done here, require special handling when
working in Unicode mode. Specifically, they need to be explicitly expressed as UTF-16 strings. The u
function from the spssaux module handles any necessary conversion for you, returning the appropriate
value whether you are working in Unicode mode or code page mode. Unless your string literals only
consist of plain Roman characters (7-bit ASCII), you should always use the u function for string literals
in command syntax files. See the topic “Working in Unicode Mode” on page 163 for more information.

Note: Although Unicode mode was introduced in IBM SPSS Statistics 16.0, the u function is compatible
with earlier IBM SPSS Statistics versions.

« The expression used for the first print statement is a list whose elements are strings. The accented
characters in the strings are rendered as hex escape sequences in the output. When conversions to text
are required, as with rendering a list in textual output, the Python interpreter produces output that is
valid for use in Python syntax, and as this example shows, may not be what you expect.

« Inthe second print statement, the list is converted to a string using the Python string method join,
which creates a string from a list by concatenating the elements of the list, using a specified string as
the separator between elements. In this case, the separator is a single space. The print statement
renders the resulting string as you would expect.

In general, if items render with hex escape sequences in output, convert those items to strings before
including them on a print statement.

Regular Expressions

When working with regular expressions in the Python language, special sequences such as \w do not, by
default, take into account characters specific to the current locale. For example, in French, the expression
\w will match the alphanumeric characters a-z, A-Z, 0-9, and the underscore (_), but not accented
characters such as 6 and é. You can use the LOCALE flag with the compile, search, match, and
findall functions from the Python re module to specify that all alphanumeric characters specific to the
current locale be included in matches. For example:

SET LOCALE = 'German'.
BEGIN PROGRAM.

226 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

import spss, re
s = "abcud"
print(" ".join(re.findall("\w+", s)))
print(" ".join(re.findall("\w+", s, re.LOCALE)))
END PROGRAM.
« The first findall returns ['abc'] while the second one gets all of the characters in the Python

variable s.

Note: The extendedTransforms module, available from the IBM SPSS Predictive Analytics community,
has a subs function that automatically applies the re. LOCALE flag.

Chapter 3. Programming with Python 227

228 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Chapter 4. Programming with R

Introduction

The IBM SPSS Statistics - Integration Plug-in for R is one of a family of Integration Plug-Ins that also
includes Python and Java. It extends the IBM SPSS Statistics command syntax language with the full
capabilities of the R programming language and is available on Windows, Linux, and macOS, as well as
for IBM SPSS Statistics Server. With this feature, R programs can access IBM SPSS Statistics variable
dictionary information, case data, and procedure output, as well as create new datasets and output in the
form of pivot tables and R graphics.

Using this technology, you can write custom procedures in R that read the case data from the active
dataset, apply algorithms written in R to the data, and write the results back as a new dataset or as

pivot table output directed to the Viewer or exported via the Output Management System (OMS). You can
analyze your data with an R function that you write or you can use a function from the extensive set of
statistical routines available with R, all from within IBM SPSS Statistics.

Prerequisites

The IBM SPSS Statistics - Integration Plug-in for R works with IBM SPSS Statistics release 16.0 or later
and only requires the Core system. Information on how to get the Integration Plug-in for R is available
from Core System > Frequently Asked Questions > How to Get Integration Plug-Ins in the SPSS Statistics
Help system.

The chapters that follow include hands-on examples of R programs and assume a basic working
knowledge of the R programming language, although aspects of the language are discussed when
deemed necessary. For help getting started with the R programming language, see "An Introduction to R,"
available at http://cran.r-project.org/.

Additional Plug-Ins

The IBM SPSS Statistics Programmability Extension, included with the Core system, provides a general
framework for supporting external languages through Integration Plug-ins, such as the IBM SPSS
Statistics - Integration Plug-in for R. In particular, there are also freeware Integration Plug-ins for Python
and Java (requires SPSS Statistics version 21 or higher). The IBM SPSS Statistics - Integration Plug-in for
Python provides interfaces for extending the IBM SPSS Statistics command syntax language with the full
capabilities of the Python programming language and for operating on user interface and output objects.
For more information, see Programming with Python.

Information on how to get these other Plug-ins is available from Core System > Frequently Asked
Questions > How to Get Integration Plug-Ins in the SPSS Statistics Help system.

Getting Started with R Program Blocks

Once you've installed R and the IBM SPSS Statistics - Integration Plug-in for R, you have full access to
all of the functionality of the R programming language and any installed R packages from within BEGIN
PROGRAM R-END PROGRAM program blocks in command syntax. The basic structure is:

BEGIN PROGRAM R.
R statements
END PROGRAM.

Within an R program block, the R processor is in control, so all statements must be valid R statements.
Even though program blocks are part of command syntax, you can't include syntax commands as
statements in a program block. For example,

BEGIN PROGRAM R.
FREQUENCIES VARIABLES=varl, var2, var3.
END PROGRAM.

http://cran.r-project.org/

will generate an error because FREQUENCIES is not an R command. As an example of a valid R program
block, here is the classic "Hello, world!":

BEGIN PROGRAM R.
cat("Hello, world!")
END PROGRAM.

The example uses the R cat function to write output to R's standard output, which is directed to a
log item in the IBM SPSS Statistics Viewer if a Viewer is available. Likewise, the result of the R print
function, which also writes to R's standard output, is directed to a log item.

%= *Output1 [Document1] - Viewer =/o/&
File Edit “iew Data Transform Insett Format Analvze Graphs LWilities Add-ons Window Help
eHEAR B E 60 EnBEH Q© 5 G9s &

« + - B@ 5%

=] Output Hello, world!
L8 Lo

[4] ik | [»]

| | Processor is resdy | ||

Figure 101. Output from BEGIN PROGRAM R displayed in a log item

Displaying Output from R

For IBM SPSS Statistics version 18 and higher, and by default, console output and graphics from R are
redirected to the IBM SPSS Statistics Viewer. This includes implicit output from R functions that would be
generated when running those functions from within an R console--for example, the model coefficients
and various statistics displayed by the g1lm function, or the mean value displayed by the mean function.
You can toggle the display of output from R with the spsspkg.SetOutput function.

Submitting commands to IBM SPSS Statistics

For IBM SPSS Statistics release 23 and higher, you can submit command syntax from a program block
with the spsspkg.Submit function. For example, if you create a new SPSS Statistics dataset with the
results of an R program, you can save the new dataset to an external file from within the program block.
For more information, see the example on saving new datasets in “Creating a New Dataset” on page 242.

Accessing R Help Within IBM SPSS Statistics

You can access help for R functions from within IBM SPSS Statistics. Simply include a call to the R help
function ina BEGIN PROGRAM R-END PROGRAM block and run the block. For example:

BEGIN PROGRAM R.
help(paste)
END PROGRAM.

to obtain help for the R paste function.

You can access R's main html help page with:

BEGIN PROGRAM R.
help.start()
END PROGRAM.

Debugging

For IBM SPSS Statistics version 18 and higher, you can use the R browser, debug, and undebug
functions within BEGIN PROGRAM R-END PROGRAM blocks, as well as from within implementation code
for extension commands implemented in R. This allows you to use some of the same debugging tools
available in an R console. Briefly, the browsex function interrupts execution and displays a console
window that allows you to inspect objects in the associated environment, such as variable values and
expressions. The debug function is used to flag a specific R function--for instance, an R function that
implements an extension command--for debugging. When the function is called, a console window is
displayed and you can step through the function one statement at a time, inspecting variable values and
expressions.

230 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

 Results displayed in a console window associated with use of the browser or debug function are
displayed in the IBM SPSS Statistics Viewer after the completion of the program block or extension
command containing the function call.

Note: When a call to a function that generates explicit output--such as the R print function--precedes
acall to browser or debug, the resulting output is displayed in the IBM SPSS Statistics Viewer after
the completion of the program block or extension command containing the function call. You can cause
such output to be displayed in the R console window associated with browser or debug by ensuring
that the call to browsexr or debug precedes the function that generates the output and then stepping
through the call to the output function.

« Use of the debug and browsex functions is not supported in distributed mode.

« On Windows, you might need to set the system locale to match the SPSS Statistics output language to
properly display extended characters in an R console window, even in Unicode mode.

For more information on the use of the debug and browsex functions, see the R help for those functions.
R Functions that Read from stdin

Some R functions take input data from an external file or from the standard input connection stdin. For
example, by default, the scan function reads from stdin but can also read from an external file specified
by the file argument. When working with R functions within BEGIN PROGRAM R-END PROGRAM blocks,
reading data from stdin is not supported, due to the fact that R is embedded within IBM SPSS Statistics.
For such functions, you will need to read data from an external file. For example:

BEGIN PROGRAM R.
data <- scan(file="/Rdata.txt")
END PROGRAM.

R Integration Package

The R Integration Package for SPSS Statistics, which is installed with the IBM SPSS Statistics - Integration
Plug-in for R, contains the IBM SPSS Statistics-specific R functions that enable the process of using the R
programming language from within IBM SPSS Statistics command syntax. The package provides functions
to:

- Read case data from the active dataset into R.

- Get information about data in the active dataset.

« Get output results from IBM SPSS Statistics syntax commands.

= Write results from R back to IBM SPSS Statistics.

Display R graphics in the IBM SPSS Statistics Viewer.

« Submit IBM SPSS Statistics syntax commands (requires IBM SPSS Statistics release 23 or higher).

BEGIN PROGRAM R-END PROGRAM blocks automatically load the correct version of the R Integration
Package for SPSS Statistics, so there is no need to use the R 1ibrary command to load the package.

R Syntax Rules

R is case-sensitive. This includes variable names, function names, and pretty much anything else
you can think of. A variable name of myRvariable is not the same as MyRVariable, and the function
GetCaseCount () cannot be written as getcasecount().

R uses a less-than sign followed by a dash (<-) for assignment. For example:

varl <- var2+1l

Note: In most contexts, you can also use an equals sign (=) for assignment.

R commands are terminated with a semicolon or new line; continuation lines do not require special
characters or indentation. For example,

varl <- var2+
]

Chapter 4. Programming with R 231

is read as varl<-var2+3, since R continues to read input until a command is syntactically complete.
However,

varl <- var2
+3

will be read as two separate commands, and varl will be set to the value of var2.

Groupings of statements are indicated by braces. Groups of statements in structures such as loops,
conditional expressions, and functions are indicated by enclosing the statements in braces, as in:

while (!spssdata.IslLastSplit()){
data <- spssdata.GetSplitDataFromSPSS ()
cat("\nCases in Split: ",length(datal[,1]))

R Quoting Conventions

« Strings in the R programming language can be enclosed in matching single quotes (') or double quotes
("), as in IBM SPSS Statistics.

« To specify an apostrophe (single quote) within a string, enclose the string in double quotes. For
example,

"Joe's Bar and Grille"
is treated as
Joe's Bar and Grille

You can also use all single quotes, escaping the quote to be used as an apostrophe, asin 'Joe\'s Bar
and Grille'

« To specify quotation marks (double quote) within a string, use single quotes to enclose the string, as in
'Categories Labeled "UNSTANDARD" in the Report'

 In the R programming language, doubled quotes of the same type as the outer quotes are not allowed.
For example,

'Joe''s Bar and Grille'
results in an error.

File Specifications. Since escape sequences in the R programming language begin with a backslash (\)--
such as \n for newline and \ t for tab--it is recommended to use forward slashes (/) in file specifications
on Windows. In this regard, IBM SPSS Statistics always accepts a forward slash in file specifications.

spssRGraphics.Submit("/temp/R_graphic.jpg")

Alternatively, you can escape each backslash with another backslash, as in:

spssRGraphics.Submit ("\\temp\\R_graphic.jpg")

Mixing Command Syntax and R Program Blocks

Within a given command syntax job, you can intersperse BEGIN PROGRAM R-END PROGRAM blocks with
any other syntax commands, and you can have multiple R program blocks in a given job. R variables
assigned in a particular program block are available to subsequent program blocks as shown in this
simple example:

Example

*R_multiple_program_blocks.sps.
DATA LIST FREE /varl.

BEGIN DATA

1

END DATA.

DATASET NAME Filel.

BEGIN PROGRAM R.

FilelN <- spssdata.GetCaseCount()
END PROGRAM.

DATA LIST FREE /varl.

232 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

BEGIN DATA
1

2
END DATA.
DATASET NAME File2.
BEGIN PROGRAM R.
File2N <- spssdata.GetCaseCount()
{if (File2N > FilelN)
message <- "File2 has more cases than Filel."
else if (FilelIN > File2N)
message <- "Filel has more cases than File2."
else
message <- "Both files have the same number of cases."

%
cat(message)
END PROGRAM.

The first program block defines a programmatic variable, FileIN, with a value set to the number of cases
in the active dataset.

The first program block is followed by command syntax that creates and names a new active dataset.
Although you cannot execute IBM SPSS Statistics command syntax from within an R program block,

you can have multiple R program blocks separated by command syntax that performs any necessary
actions.

The second program block defines a programmatic variable, File2N, with a value set to the number
of cases in the IBM SPSS Statistics dataset named File2. The value of FileIN persists from the first
program block, so the two case counts can be compared in the second program block.

- The R function cat is used to display the value of the R variable message. Output written to R's

standard output--for instance, with the cat or print function--is directed to a log item in the IBM SPSS
Statistics Viewer.

Note: To minimize R memory usage, you may want to delete large objects such as IBM SPSS Statistics
datasets at the end of your R program block--for example, rm(data).

Nested Program Blocks

From within R, you can submit command syntax that contains a BEGIN PROGRAM block, thus allowing you
to nest program blocks. For example, within an R program block you can submit syntax that contains a
Python program block. To nest a program block, include the nested block in a separate command syntax
file and submit an INSERT command to read in the block as in:

spsspkg.Submit ("INSERT FILE='/myprograms/nested_block.sps'.")

The file /myprograms/nested_block.sps would contain a BEGIN PROGRAM block, as in:

BEGIN PROGRAM.
<Python code>
END PROGRAM.

Note:

« This feature requires the ability to submit command syntax from R, which requires IBM SPSS Statistics
release 23 or higher.

« You can have up to five levels of nesting.

« Rvariables (except variables that are specified within functions) that are specified in a nested R
program block are global.

» Nested program blocks can be R program blocks or Python program blocks.

Getting Help

Help with using the features of the IBM SPSS Statistics - Integration Plug-in for R is available from the
following resources:

« Complete documentation for all of the functions available with the IBM SPSS Statistics - Integration
Plug-in for R is available in the IBM SPSS Statistics Help system, under Integration Plug-in for R Help,

along with simple examples of performing the common tasks of retrieving data and writing results back
as pivot table output or new datasets.

Chapter 4. Programming with R 233

« Detailed command syntax reference information for BEGIN PROGRAM-END PROGRAM can be found in
the IBM SPSS Statistics Help system.

« Help for getting started with the R programming language can be found in "An Introduction to R,"
available at http://cran.r-project.org/.

« You can also post questions about using R with IBM SPSS Statistics to the R Forum on the IBM SPSS
Predictive Analytics community.

Retrieving Variable Dictionary Information

The IBM SPSS Statistics - Integration Plug-in for R provides a number of functions for retrieving dictionary
information from the active dataset. It includes functions to retrieve:

- Variable names

- Variable labels

« Variable type (numeric or string)
- Display formats of variables

« Measurement levels of variables
« Names of any split variables

« Missing values

« Value labels

- Custom variable attributes

« Datafile attributes

« Multiple response sets

« Weight variable, if any

Basic information for each of the variables in the active dataset is available from the
spssdictionary.GetDictionaryFromSPSS function, shown in the following example. Functions that
retrieve a specific variable property, such as the variable label or the measurement level, are also
available. See the topic on the Integration Plug-in for R in the IBM SPSS Statistics Help system for details.

Example

*R_GetDictionaryFromSPSS. sps.
DATA LIST FREE /id (F4) gender (Al) training (F1).
VARIABLE LABELS id 'Employee ID'
/training 'Training Level'.
VARIABLE LEVEL id (SCALE)
/gender (NOMINAL)
/training (ORDINAL).
VALUE LABELS training 1 'Beginning' 2 'Intermediate' 3 'Advanced'
/gender 'f' 'Female' 'm' 'Male’.
BEGIN DATA
18 m 1
37 £ 2
10 £ 3
END DATA.
BEGIN PROGRAM R.
vardict <- spssdictionary.GetDictionaryFromSPSS()
print(vardict)
END PROGRAM.

Result
X1 X2 X3
varName id gender training
varlLabel Employee ID Training Level
varType (¢} 1 (¢}
varFormat F4 Al F1
varMeasurementlLevel scale nominal ordinal

The result is an R data frame. Each column of the data frame contains the information for a single variable
from the active dataset. The information for each variable consists of the variable name, the variable
label, the variable type (0 for numeric variables and an integer equal to the defined length for string
variables), the display format, and the measurement level.

Working with the Data Frame Representation of a Dictionary

234 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

http://cran.r-project.org/

The data frame returned by the GetDictionaryFromSPSS function contains the row labels varName,
varLabel, varType, varFormat, and varMeasurementLevel. You can use these labels to specify the
corresponding row. For example, the following code extracts the variable names:

varNames <- vardict["varName",]

It is often convenient to obtain separate lists of categorical and scale variables. The following code shows
how to do this using the data frame representation of the IBM SPSS Statistics dictionary. The results are
stored in the two R vectors scaleVars and catVars.

scaleVars<-vardict["varName",][vardict["varMeasurementLevel",6]=="scale"]
catVars<-vardict["varName",][vardict["varMeasurementLevel",6]=="nominal" |
vardict["varMeasurementLevel",]=="ordinal"]

Retrieving Definitions of User-Missing Values

The spssdictionary.GetUserMissingValues function returns the user-missing values for a
specified variable.

*R_user_missing_defs.sps.

data 1list list (,)/vl to v4(4f) v5(a4d)
begin data.

0,0,0,0,a

end data.

missing values v2(0,9) v3(0 thru 1.5) v4 (0 thru 1.5, 9) v5("' ').

BEGIN PROGRAM R.
dict <- spssdictionary.GetDictionaryFromSPSS()
varnames <- dict["varName",]
for (name in varnames){
vals <- spssdictionary.GetUserMissingValues(name)
{if (is.nan(vals$missing[[1]]) | is.na(vals$missing[[1]1]1))+{
res <- "no missing values"}
else
res <- vals

i

if (is.null(vals$type))
vals$type <- "NULL"

cat(name,":", vals$type, "\n")

print(vals$missing)

i
END PROGRAM.

Result

vl : Discrete

[1] NaN NaN NaN

v2 : Discrete

[1] © 9 NaN

v3 : Range

[1] 0.0 1.5 NaN

v4 : Range Discrete
[1] 0.0 1.5 9.0

2 L
a1 " " NA NA

The GetDictionaryFromSPSS function is used to obtain the variable names from the active dataset,
which are stored to the R variable varnames.

The GetUserMissingValues function returns a list containing any user-missing values for the
specified variable. The argument specifies the variable and can be a character string consisting of the
variable name (as shown here) or an integer specifying the index value of the variable (index values
represent position in the dataset, starting with O for the first variable in file order). Variable names must
match case with the names as they exist in the active dataset's dictionary.

The list returned by GetUserMissingValues consists of the two named components type and
missing. type is a character string specifying the missing value type: 'Discrete’ for discrete numeric
values, 'Range' for a range of values, 'Range Discrete' for a range of values and a single discrete value,

and NULL for missing values of a string variable. The component missing is a vector containing the
missing values.

For variables with no missing values, the first element of missing is NaN for a numeric variable and NA
for a string variable. Testing the first element of missing is then sufficient to determine the absence of
missing values, as is the case for the IBM SPSS Statistics variable v1.

Chapter 4. Programming with R 235

« For numeric variables with discrete missing values, the elements of missing specify the missing values.
The result will contain one or more NaN values when there are less than three missing values, as for the
variable v2 in the current example.

For variables with a range of missing values, the first and second elements of missing specify the lower
and upper limits of the range respectively. In the current example, the range 0 to 1.5 is specified as
missing for the variable v3.

 Forvariables with a range of missing values and a single discrete missing value, the first and second
elements of missing specify the range and the third element specifies the discrete value. In the current
example, the range 0 to 1.5 is specified as missing for the variable v4, along with the discrete value 9.

« For string variables, type is always NULL (converted to the string "NULL" in the displayed result). The
vector missing will contain one or more NA values when there are less than three missing values, as for
the variable v5 in the current example. The returned values are right-padded to the defined width of the

string variable. In the current example, the single missing value is a blank string, so the returned value is
a string of width 4 consisting of blanks.

Identifying Variables without Value Labels

The spssdictionary.GetValuelabels function returns the value labels for a specified variable. The
following example shows how to obtain a list of variables that do not have value labels.

*R_vars_no_value_labels.sps.
BEGIN PROGRAM R.
novallabellist <- vector()
dict <- spssdictionary.GetDictionaryFromSPSS()
varnames <- dict["varName",]
for (name in varnames){
if (length(spssdictionary.GetValuelLabels(name)$values)==0)
novallabellist <- append(novallabellist,name)

I

{if (length(novallabellist) > 0) {
cat("Variables without value labels:\n")
cat(novallabellist,sep="\n")}

else
cat("All variables have value labels")

i
END PROGRAM.

The GetDictionaryFromSPSS function is used to obtain the variable names from the active dataset,
which are stored to the R variable varnames.

The GetValuelabels function returns a list containing any value labels for the specified variable. The
argument specifies the variable and can be a character string consisting of the variable name (as shown
here) or an integer specifying the index value of the variable (index values represent position in the
dataset, starting with O for the first variable in file order). Variable names must match case with the
names as they exist in the active dataset's dictionary.

The list returned by GetValuelabels consists of the two named components values and labels. values
is a vector of values that have associated labels and labels is a vector with the associated labels. If there
are no value labels, the returned list contains empty vectors, so checking the length of either of the
vectors is sufficient to determine the absence of value labels.

Identifying Variables with Custom Attributes

The spssdictionary.GetVariableAttributeNames and

spssdictionary.GetVariableAttributes functions allow you to retrieve information about any
custom variable attributes for the active dataset.

Example

A number of variables in the sample dataset employee_data_attrs.sav have a variable attribute named
'DemographicVars'. Create a list of these variables.

*R_var_attr.sps.

GET FILE='/examples/data/employee_data_attrs.sav'.
BEGIN PROGRAM R.

varlList <- vector()

attribute <- "DemographicVars"

dict <- spssdictionary.GetDictionaryFromSPSS()
varnames <- dict["varName",]

236 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

for (name in varnames){

if (any(attribute==spssdictionary.GetVariableAttributeNames (name)))
varlList <- c(varList,name)

I
iif (length(varList) > 0)%
cat(paste("Variables with attribute ",attribute,":\n"))

cat(varlList,sep="\n")}
el

se
cat(paste("No variables have the attribute ",attribute))

END PROGRAM.

- The GetDictionaryFromSPSS function is used to obtain the variable names from the active dataset,
which are stored to the R variable varnames.

- The GetVariableAttributeNames function returns a vector containing the names of any variable
attributes for the specified variable. The argument specifies the variable and can be a character string
consisting of the variable name (as shown here) or an integer specifying the index value of the variable
(index values represent position in the dataset, starting with 0 for the first variable in file order). Variable
names must match case with the names as they exist in the active dataset's dictionary.

Retrieving Datafile Attributes

The spssdictionary.GetDataFileAttributeNames and

spssdictionary.GetDataFileAttributes functions allow you to retrieve information about any
datafile attributes for the active dataset.

Example

The sample dataset employee_data_attrs.sav has a number of datafile attributes. Determine if the dataset
has a datafile attribute named 'LastRevised'. If the attribute exists, retrieve its value.

*R_file_attr.sps.
GET FILE='/examples/data/employee_data_attrs.sav'.
BEGIN PROGRAM R.
names <- spssdictionary.GetDataFileAttributeNames()
for(attr in names)
if (attr == 'LastRevised')
cat("Dataset last revised on:"

spssdictionary.GetDataFiieAttributes(attrName = attr))
END PROGRAM.

The GetDataFileAttributeNames function returns a vector consisting of the names of any datafile
attributes for the active dataset.

The GetDataFileAttributes function returns a vector of the values for the specified attribute
(datafile attributes can consist of an array of values). The argument attrName is a string that specifies

the name of the attribute--for instance, a name returned by GetDataFileAttributeNames, as in this
example.

Retrieving Multiple Response Sets

The spssdictionary.GetMultiResponseSetNames and

spssdictionary.GetMultiResponseSet functions allow you to retrieve information about any
multiple response sets for the active dataset.

Example

The sample dataset telco_extra_mrsets.sav has a number of multiple response sets. Display the
elementary variables associated with each set.

*R_mrset.sps.

GET FILE='/examples/data/telco_extra_mrsets.sav'.
BEGIN PROGRAM R.

names <- spssdictionary.GetMultiResponseSetNames()
for (set in names)
1

mrset <- spssdictionary.GetMultiResponseSet(mrsetName = set)
cat("\nElementary variables for:",set,"\n")
cat(mrset$vars,sep="\n")

i
END PROGRAM.

« The GetMultiResponseSetNames function returns a vector of names of the multiple response sets, if
any, for the active dataset.

Chapter 4. Programming with R 237

« The GetMultiResponseSet function returns the details of the specified multiple response set.
The argument mrsetName is a string that specifies the name of the multiple response set--for
instance, a name returned by GetMultiResponseSetNames, as in this example. The result is a list
with the following named components: label (the label, if any, for the set), codeAs ("Dichotomies"
or "Categories"), countedValue (the counted value--applies only to multiple dichotomy sets), type
("Numeric" or "String"), and vars (a vector of the elementary variables that define the set).

Reading Case Data from IBM SPSS Statistics

The IBM SPSS Statistics - Integration Plug-in for R provides the ability to read case data from IBM SPSS
Statistics into R. You can choose to retrieve the cases for all variables or a selected subset of the variables
in the active dataset.

Using the spssdata.GetDataFromSPSS Function

The spssdata.GetDataFromSPSS function is used to read case data and is intended for use
with datasets that do not have split groups. If you need to read from a dataset with splits, use

the spssdata.GetSplitDataFromSPSS function (see “Handling Data with Splits” on page 240).
When retrieving case data from IBM SPSS Statistics the following rules apply, whether you use
GetDataFromSPSS or GetSplitDataFromSPSS:

- String values are right-padded to the defined width of the string variable.

« Values retrieved from IBM SPSS Statistics variables with time formats are returned as integers
representing the number of seconds from midnight.

When reading categorical data, note that the analogue of a categorical variable in IBM SPSS Statistics is a
factor in R. See “Working with Categorical Variables” on page 241 for details. For the handling of missing
values, see “Missing Data” on page 239.

Example: Retrieving Cases for All Variables

*R_get_all_cases.sps.

DATA LIST FREE /age (F4) income (F8.2) car (F8.2) employ (F4).
BEGIN DATA.

55 72 36.20 23

56 153 76.90 35

28 28 13.70 4

END DATA.

BEGIN PROGRAM R.

casedata <- spssdata.GetDataFromSPSS()
print(casedata)

END PROGRAM.

Result

age income car employ
1 55 72 36.2 23
2 56 153 76.9 35
3 28 28 13.7 4

The result from the GetDataFromSPSS function is an R data frame. In that regard, unlike IBM SPSS
Statistics, the data retrieved by GetDataFromSPSS (or GetSplitDataFromSPSS) are held in memory.
Each column of the returned data frame contains the case data for a single variable from the active
dataset (for string variables, the columns are factors). The column name is the variable name (in the same
case as stored in the IBM SPSS Statistics dictionary) and can be used to extract the data for that variable,
asin:

income <- casedata$income

The R variable income is a vector containing the case values of the IBM SPSS Statistics variable of the
same name. You can iterate over these case values, as in:

for (value in income) print(value)

238 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Each row of the returned data frame contains the data for a single case. By default, the rows are labeled
with consecutive integers. You can iterate over the rows of the data frame, effectively iterating over the
cases, as in:

for (i in c(1:spssdata.GetCaseCount())) print(casedatal[i,]$age)

« The spssdata.GetCaseCount function returns the number of cases in the active dataset. The R c ()
function is then used to create a vector of row labels—in this case, just the integers from 1 to the
number of cases.

« On each iteration of the loop, casedatal[i,] is a list with a named component for each of the variables
in the data frame, so casedatal[i,]$age is the value of age for the current case.

Note: When calling GetDataFromSPSS, you can include the optional argument row.label to specify a
variable from the active dataset whose case values will be the row labels of the resulting data frame. The
specified variable must not contain duplicate values.

Example: Retrieving Cases for Selected Variables

*R_get_specified_variables.sps.

DATA LIST FREE /age (F4) income (F8.2) car (F8.2) employ (F4).

BEGIN DATA.

55 72 36.20 23

56 153 76.90 35

28 28 13.70 4

END DATA.

BEGIN PROGRAM R.

casedata <- spssdata.GetDataFromSPSS(variables=c("age","income", "employ"))
END PROGRAM.

The argument variables to the GetDataFromSPSS function is an R vector specifying a subset of variables
for which case data will be retrieved. In this example, the R function c () is used to create a character
vector of variable names. The names must be specified in the same case as the associated variables in
the dictionary for the active dataset. The resulting R data frame (casedata) will contain the three columns
labeled age, income, and employ.

You can use the TO keyword to specify a range of variables as you can in IBM SPSS Statistics—for
example, variables=c("age TO car"). Unlike the variable names, the case of the TO keyword does
not matter. If you prefer to work with variable index values (index values represent position in the dataset,
starting with O for the first variable in file order), you can specify a range of variables with an expression
such as variables=c(0:2).The R code c(0:2) creates a vector consisting of the integers between 0
and 2 inclusive.

Missing Data

By default, user-missing values for numeric variables are converted to the R NaN value, and user-missing
values of string variables are converted to the R NA value. System-missing values are always converted
to the R NaN value. In the following example, we create a dataset that includes both system-missing and
user-missing values.

*R_get_missing_data.sps.

DATA LIST LIST (',') /numVar (f) stringVar (a4).
BEGIN DATA

1,a

,b

3.,

9,d

END DATA.

MISSING VALUES numVar (9) stringvar (' ').
BEGIN PROGRAM R.

data <- spssdata.GetDataFromSPSS()
cat("Case data with missing values:\n")
print(data)

END PROGRAM.

Result

Case data with missing values:
numVar stringVar
1

1 a
2 NaN b

Chapter 4. Programming with R 239

3 3 <NA>
4 NaN d

Note: You can specify that missing values of numeric variables be converted to the R NA value, with the
missingValueToNA argument, as in:

data<-spssdata.GetDataFromSPSS (missingValueToNA=TRUE)

You can specify that user-missing values be treated as valid data by setting the optional argument
keepUserMissing to TRUE, as shown in the following reworking of the previous example.

DATA LIST LIST (',') /numVar (f) stringVar (a4).

BEGIN DATA

1,a

,b

3.,

9,d

END DATA.

MISSING VALUES numVar (9) stringVar (' ').

BEGIN PROGRAM R.

data <- spssdata.GetDataFromSPSS(keepUserMissing=TRUE)
cat("Case data with user-missing values treated as valid:\n")
print(data)

END PROGRAM.

Result

Case data with user-missing values treated as valid:

numVar stringVar
1 a
NaN b

3
9 d

BwNPR

Handling IBM SPSS Statistics Datetime Values

When retrieving values of IBM SPSS Statistics variables with date or datetime formats, you'll most
likely want to convert the values to R date/time (POSIXt) objects. By default, such variables are not
converted and are simply returned in the internal representation used by IBM SPSS Statistics (floating
point numbers representing some number of seconds and fractional seconds from an initial date and
time). To convert variables with date or datetime formats to R date/time objects, you use the rDate
argument of the GetDataFromSPSS function.

*R_retrieve_datetime_values.sps.

DATA LIST FREE /bdate (ADATE10).

BEGIN DATA

05/02/2009

END DATA.

BEGIN PROGRAM R.
data<-spssdata.GetDataFromSPSS(rDate="POSIXct")
data

END PROGRAM.

Result
bdate
1 2009-05-02

Handling Data with Splits

When reading from IBM SPSS Statistics datasets with split groups, use the
spssdata.GetSplitDataFromSPSS function to retrieve each split separately. The first call to
GetSplitDataFromSPSS returns the data for the first split group, the second call returns the data
for the second split group, and so on. In the case that the active dataset has no split groups,
GetSplitDataFromSPSS returns all cases on its first call.

*R_get_split_groups.sps.

DATA LIST FREE /salary (F6) jobcat (F2).
BEGIN DATA

21450 1

45000 1

30000 2

30750 2

103750 3

72500 3

57000 3

240 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

END DATA.

SORT CASES BY jobcat.

SPLIT FILE BY jobcat.

BEGIN PROGRAM R.

varnames <- spssdata.GetSplitVariableNames()
if(length(varnames) > 0)

{

while (!spssdata.IslLastSplit())+{
data <- spssdata.GetSplitDataFromSPSS()
cat("\n\nSplit variable values:")
for (name in varnames) cat("\n",name,":"

as.character(aata[l,name]))
cat("\nCases in Split: ",length(datal,1]))

spssdata.CloseDataConnection()

END PROGRAM.

Result

Split variable values:
jobcat : 1
Cases in Split: 2

Split variable values:
jobcat : 2
Cases in Split: 2

Split variable values:
jobcat : 3
Cases in Split: 3

« The GetSplitVariableNames function returns the names of the split variables, if any, from the active
dataset.

e The IsLastSplit function returns TRUE if the current split group is the last one in the active dataset.

« The GetSplitDataFromSPSS function retrieves the case data for the next split group from the active
dataset and returns it as an R data frame of the same form as that returned by GetDataFromSPSS.
GetSplitDataFromSPSS returns NULL if there are no more split groups in the active dataset.

« The CloseDataConnection function should be called when the necessary split groups have been
read. In particular, GetSplitDataFromSPSS implicitly starts a data connection for reading from split
files and this data connection must be closed with CloseDataConnection.

As with the GetDataFromSPSS function, you can include the variables argument in
GetSplitDataFromSPSS to specify a subset of variables to retrieve, the row.label argument to specify

the row labels of the returned data frame, and the keepUserMissing argument to specify how to handle
user-missing values.

Working with Categorical Variables

If you're reading categorical data into R and need to retain the categorical nature for your R analysis, you'll
want to convert the retrieved data to R factor variables.

*R_handle_catvars.sps.
DATA LIST FREE /id (F4) gender (A1) training (F1).
VARIABLE LABELS id 'Employee ID'
/training 'Training Level'.
VARIABLE LEVEL id (SCALE)
/gender (NOMINAL)
/training (ORDINAL).
VALUE LABELS training 1 'Beginning' 2 'Intermediate' 3 'Advanced'
/gender 'f' 'Female' 'm' 'Male’.
BEGIN DATA
18 m 1
37 £ 2
10 £ 3
22 m 2
END DATA.
BEGIN PROGRAM R.
casedata <- spssdata.GetDataFromSPSS(factorMode="labels")
casedata
END PROGRAM.

The factorMode argument of the GetDataFromSPSS function converts categorical variables from IBM
SPSS Statistics to R factors.

The value "labels" for factorMode, used in this example, specifies that categorical variables are
converted to factors whose levels are the value labels of the variables. Values for which value labels do
not exist have a level equal to the value itself. The alternate value "levels" specifies that categorical
variables are converted to factors whose levels are the values of the variables.

Chapter 4. Programming with R 241

Result

id gender training
1 18 Male Beginning
2 37 Female Intermediate
3 10 Female Advanced
4 22 Male Intermediate

If you intend to write factors retrieved with factorMode="1abels" to a new IBM SPSS Statistics
dataset, special handling is required. For details, see the example on "Writing Categorical Variables Back
to IBM SPSS Statistics" in “Writing Results to a New IBM SPSS Statistics Dataset” on page 242.

Writing Results to a New IBM SPSS Statistics Dataset

The IBM SPSS Statistics - Integration Plug-in for R provides the ability to write results from R to a new
IBM SPSS Statistics dataset. You can create a dataset from scratch, explicitly specifying the variables and
case values, or you can build on a copy of an existing dataset, adding new variables or cases.

Creating a New Dataset

The steps to create a new dataset are:

1. Create the dictionary for the new dataset. Dictionaries for IBM SPSS Statistics datasets are
represented by a data frame. You can create the data frame representation of the dictionary
from scratch using the spssdictionary.CreateSPSSDictionary function or you can build
on the dictionary of an existing dataset using the spssdictionary.GetDictionaryFromSPSS
function. The new dataset based on the specified dictionary is created with the
spssdictionary.SetDictionaryToSPSS function.

2. Populate the case data using the spssdata.SetDataToSPSS function.

Note: When setting values for a IBM SPSS Statistics variable with a date or datetime format, specify the

values as R POSIXt objects, which will then be correctly converted to the values appropriate for IBM SPSS
Statistics.

Example: Adding Variables to a Copy of the Active Dataset

This example shows how to create a new dataset that is a copy of the active dataset with the addition of a
single new variable. Specifically, it adds the mean salary to a copy of Employee data.sav.

*R_copy_dataset_add_var.sps.

GET FILE='/examples/data/Employee data.sav'.

BEGIN PROGRAM R.

dict <- spssdictionary.GetDictionaryFromSPSS()
casedata <- spssdata.GetDataFromSPSS()

varSpec <- c("meansal","Mean Salary",0,"F8","scale")
dict <- data.frame(dict,varSpec)
spssdictionary.SetDictionaryToSPSS("results",dict)
casedata <- data.frame(casedata,mean(casedata$salary))
spssdata.SetDataToSPSS("results", casedata)
spssdictionary.EndDataStep ()

END PROGRAM.

The GetDictionaryFromSPSS function returns an R data frame representation of the dictionary for

the active dataset. The GetDataFromSPSS function returns an R data frame representation of the case
data from the active dataset.

To create a variable for a new dataset, you first specify the basic properties of the variable

in an R vector, as in varSpec in this example. All of the following components of the vector

are required and must appear in the specified order: variable name, variable label (can be a

blank string), variable type (0 for numeric, and an integer equal to the defined length, with a
maximum of 32,767, for a string variable), the display format of the variable, and measurement
level ("nominal", "ordinal", or "scale"). For information on display formats, see the help for

the spssdictionary.CreateSPSSDictionary function, available in the IBM SPSS Statistics Help
system.

The code data.frame(dict,varSpec) uses the R data.frame function to create a data frame
representation of the new dictionary, consisting of the original dictionary and the new variable. To
add more than one variable, simply add the specification vectors for the variables to the data.frame

242 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

function, asin data.frame(dict, varSpecl, varSpec?2). The position of the variables in the new
dataset is given by their order in the data frame. In the current example, the new dataset consists of the
original variables from Employee data.sav, followed by meansal.

« The SetDictionaryToSPSS function creates the new dataset. The arguments to

SetDictionaryToSPSS are the name of the new dataset and a data frame representation of the
dictionary.

The code data.frame (casedata,mean(casedata$salary)) creates a new data frame consisting
of the data retrieved from the active dataset and the data for the new variable. In this example, the
new variable is the mean of the variable salary from the active dataset. You can build data frames

from existing ones, as done here, or from vectors representing each of the columns. For example,
data.frame(varil,var2,var2) creates a data frame whose columns are specified by the vectors
varl, var2, and var3, which must be of equal length. For data frame representations of case data, the
order of the columns in the data frame should match the order of the associated variables in the new
dataset. In particular, the data in the first column of the data frame populates the case data for the first
variable in the dataset, data in the second column of the data frame populates the case data for the
second variable in the dataset, and so on.

« The SetDataToSPSS function populates the case data of the new dataset. Its arguments are the name
of the dataset to populate and a data frame representation of the case data, where the rows of the data
frame are the cases and the columns represent the variables in file order.

« The EndDataStep function should be called after completing the steps for creating the new dataset. If
an error causes the EndDataStep function not to be executed, you can run another BEGIN PROGRAM
R-END PROGRAM block that calls only the EndDataStep function.

Example: Creating a Variable Dictionary from Scratch

This example shows how to create the variable dictionary for a new dataset without use of an existing
dictionary.

*R_create_dataset.sps.

GET FILE='/examples/data/Employee data.sav'.

BEGIN PROGRAM R.

casedata <- spssdata.GetDataFromSPSS()

stats <- summary(casedata$sa1ary)

min <- c(min","",0,"F8.2" scale)

ql <- c("q1", "Ist Quartlle ,0,"F8.2","scale")

median <- c(" medlan ,0, F8 2" scale“)

mean <- c(“mean 0 "Fgl 2" scale)

q3 <- c(" q3 3Id Quartlle 0 "F8.2","scale")

max <- c(" max” ,0,"F8.2" "scale”)

dict <- spssdlctlonary CIeateSPSSchtlonaIy(min,ql,median,mean,q3,max)

spssdictionary.SetDictionaryToSPSS("summary",dict)

data <- data.frame(min=stats[1],ql=stats[2],median=stats[3],
mean=stats[4],q3=stats[5],max=stats[6])

spssdata.SetDataToSPSS ("summary", data)

spssdictionary.EndDataStep ()

END PROGRAM.

The example uses data from Employee data.sav, so the GET command is called (prior to the R program
block) to get the file. The case data are read into R and stored in the variable casedata.

The R summary function is used to create summary statistics for the variable salary from Employee
data.sav. casedata$salary is an R vector containing the case values of salary.

Specifications for six variables are stored in the R vector variables min, g1, median, mean, g3, and max.

The CreateSPSSDictionary function is used to create a data frame representation of a dictionary
based on the six variable specifications. The order of the arguments to CreateSPSSDictionary is the
file order of the associated variables in the new dataset.

The SetDictionaryToSPSS function creates a new dataset named summary, based on the dictionary
from CreateSPSSDictionary. The arguments to SetDictionaryToSPSS are the name of the new
dataset and a data frame representation of the dictionary.

The R data. frame function is used to create a data frame representation of the case data for the new
dataset, which consists of a single case with the summary statistics. The labels (min, g1, etc.) used in
the arguments to the data.frame function are optional and have no effect on the case data passed to
IBM SPSS Statistics. The SetDataToSPSS function is then used to populate the case data of the new
dataset.

Chapter 4. Programming with R 243

Example: Adding Cases to a Copy of the Active Dataset

This example shows how to create a new dataset that is a copy of the active dataset but with additional
cases.

*R_copy_dataset_add_cases.sps.

DATA LIST FREE /numvar (F) strvar (A2).

BEGIN DATA

1a

END DATA.

BEGIN PROGRAM R.

dict <- spssdictionary.GetDictionaryFromSPSS()
casedata <- spssdata.GetDataFromSPSS ()

numvar <- c(casedata$numvar,2,3)

strvar <- c(as.vector(casedata$strvar),format("b",width=2),format("c",width=2))
spssdictionary.SetDictionaryToSPSS("results",dict)
casedata <- data.frame(numvar,strvar)
spssdata.SetDataToSPSS("results", casedata)
spssdictionary.EndDataStep ()

END PROGRAM.

- To create a copy of the dataset, but with additional cases, you create vectors containing the desired
case data for each of the variables and use those vectors to create a data frame representing the
case data. In this example, the R variables numvar and strvar contain the case data from the active
dataset with the addition of the values for two new cases. Case values of string variables from IBM SPSS

Statistics are returned as a factor, so the R as.vector function is used to convert the factor to a vector
in order to append values.

« The vectors are used to populate a data frame representing the case data. The order of the vectors in

the data.frame function is the same as the order in which their associated variables appear in the
dataset.

Example: Writing Categorical Variables Back to IBM SPSS Statistics

When reading categorical variables from IBM SPSS Statistics with factorMode="1abels" and writing
the associated R factors to a new IBM SPSS Statistics dataset, special handling is required because
labeled factors in R do not preserve the original values. In this example, we read data containing
categorical variables from IBM SPSS Statistics and create a new dataset containing the original data
with the addition of a single new variable.

*R_read_write_catvars.sps.

DATA LIST FREE /id (F4) gender (A1) training (F1) salary (DOLLAR).
VARIABLE LABELS id 'Employee ID'

/training 'Training Level'.

VARIABLE LEVEL id (SCALE)

/gender (NOMINAL)

/training (ORDINAL)

/salary (SCALE).

VALUE LABELS training 1 'Beginning' 2 'Intermediate' 3 'Advanced'
/gender 'm' 'Male' 'f' 'Female'.

BEGIN DATA

18 m 3 57000

37 £ 2 30750

10 £ 1 22000

22 m 2 31950

END DATA.

BEGIN PROGRAM R.

dict <- spssdictionary.GetDictionaryFromSPSS()

casedata <- spssdata.GetDataFromSPSS(factorMode="labels")

catdict <- spssdictionary.GetCategoricalDictionaryFromSPSS()

varSpec <- c("meansal","Mean Salary",Q,"DOLLAR8","scale")
dict<-data.frame(dict,varSpec)
casedata<-data.frame(casedata,mean(casedata$salary))
spssdictionary.SetDictionaryToSPSS("results",dict,categoryDictionary=catdict)
spssdata.SetDataToSPSS("results",casedata,categoryDictionary=catdict)
spssdictionary.EndDataStep ()

END PROGRAM.

The GetCategoricalDictionaryFromSPSS function returns a structure (referred to as a category
dictionary) containing the values and value labels of the categorical variables from the active dataset.

The category dictionary stored in catdict is used when creating the new dataset with the
SetDictionaryToSPSS function and when writing the data to the new dataset with the
SetDataToSPSS function. The value labels of the categorical variables are automatically added to

the new dataset and the case values of those variables (in the new dataset) are the values from the
original dataset.

244 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Note: If you rename categorical variables when writing them back to IBM SPSS Statistics, you must use

the spssdictionary.EditCategoricalDictionazry function to change the name in the associated
category dictionary.

Saving New Datasets

To save a new dataset that is created from within an R program block, you first set the dataset as the
active dataset. To make a new dataset the active one, use the spssdictionary.SetActive function
from within the program block, as shown in this example. You then use command syntax--such as SAVE or
SAVE TRANSLATE--to save the active dataset to an external file.

For IBM SPSS Statistics release 23 and higher, you can execute the save operation from within the R
program block, as shown in the following example.

*R_save_dataset.sps.

BEGIN PROGRAM R.

varlSpec <- c("id","",0,"F2","scale")

var2Spec <- c("qty","",0,"F2","scale")

varl <- c(13,21,43)

var2 <- c(25,57,42)

dict <- spssdictionary.CreateSPSSDictionary(varlSpec,var2Spec)
spssdictionary.SetDictionaryToSPSS("newds",dict)
casedata <- data.frame(varl,var2)
spssdata.SetDataToSPSS("newds", casedata)
spssdictionary.SetActive("newds")
spssdictionary.EndDataStep ()

spsspkg.Submit ("SAVE OUTFILE='/temp/filel.sav'.")
END PROGRAM.

A new dataset named newds is created. After populating the case data with the SetDataToSPSS
function, the SetActive function is called to make it the active dataset.

The new dataset is saved to the file system by submitting a SAVE command with the spsspkg.Submit
function.

In releases prior to 23, the spsspkg.Submit function is not available. In this case, you submit the SAVE
command after the BEGIN PROGRAM R - END PROGRAM block, as in:

BEGIN PROGRAM R.

<R statements>

END PROGRAM.

SAVE OUTFILE='/temp/filel.sav'.

Specifying Missing Values for New Datasets

User-missing values for new variables are specified with the spssdictionary.SetUserMissing
function. The function must be called after spssdictionary.SetDictionaryToSPSS and before
calling spssdictionary.EndDataStep.

*R_specify_missing_values.sps.
BEGIN PROGRAM R.

varlSpec <- c("varl","",0,"F8.2","scale")
var2Spec <- c("var2","",0,"F8.2","scale")
var3Spec <- c("var3","",0,"F8.2","scale")
var4Spec <- c("vard","",2,"A2","nominal")
dict <- spssdictionary.CreateSPSSDictionary(varlSpec,var2Spec,var3Spec,

var4Spec)
spssdictionary.SetDictionaryToSPSS("newds",dict)
spssdictionary.SetUserMissing("newds", "varl",missingFormat["Discrete"],
c(0,9,99))
spssdictionary.SetUserMissing("newds","var2",missingFormat["Range"],
c(9,99))
spssdictionary.SetUserMissing("newds", "var3",missingFormat["Range Discrete"],
c(9,99,0))
spssdictionary.SetUserMissing("newds", "vard",missingFormat["Discrete"],
c(" "LUNAMY)
spssdictionary.EndDataStep ()
END PROGRAM.

The vectors varlSpec, var2Spec, var3Spec, and var4Spec provide the specifications for four new
variables, the first three of which are numeric and the last of which is a string. A new dataset named
newds consisting of these four variables is created.

The SetUserMissing function is called after SetDictionaryToSPSS to specify the missing values.
The first argument to the function is the dataset name and the second argument is the name of the
variable whose missing values are being set.

Chapter 4. Programming with R 245

 The third argument to SetUserMissing specifies the missing value type:
missingFormat["Discrete"] for discrete missing values of numeric or string variables,
missingFormat["Range"] for arange of missing values, and missingFormat["Range

Discrete"] for arange of missing values and a single discrete value. String variables can have only
discrete missing values.

The fourth argument to SetUserMissing is a vector specifying the missing values. For discrete
missing values, the vector can contain up to three values, as shown for varl and var4. For a range

of missing values, as for var2, provide a vector whose first element is the start of the range and whose
second element is the end of the range. For a range of missing values and a single discrete value, as for

var3, the first two elements of the vector specify the range and the third element specifies the discrete
value.

Note: Missing values for string variables cannot exceed eight bytes. Although string variables can have a
defined width of up to 32,767 bytes, defined missing values cannot exceed eight bytes.

Specifying Value Labels for New Datasets

Value labels are set with the spssdictionary.SetValuelabel function. The function must be called
after spssdictionary.SetDictionaryToSPSS and before calling spssdictionary.EndDataStep.

*R_specify_value_labels.sps.

BEGIN PROGRAM R.

varlSpec <- c("varl","Minority",0,"F1","ordinal")

var2Spec <- c("var2","Gender",1,"A1","nominal")

dict <- spssdictionary.CreateSPSSDictionary(varlSpec,var2Spec)
spssdictionary.SetDictionaryToSPSS("newds",dict)
spssdictionary.SetValuelabel ("newds","varl",c(0,1),c("No","Yes"))
spssdictionary.SetValuelLabel ("newds","var2",c("m","f"),c("male", "female"))
spssdictionary.EndDataStep ()
END PROGRAM.

The vectors varl1Spec and var2Spec provide the specifications for a new numeric variable and a new
string variable. A new dataset named newds consisting of these two variables is created.

The SetValuelabel function is called after SetDictionaryToSPSS to specify the value labels. The
first argument to the function is the dataset name, and the second argument is the name of the variable
whose value labels are being set. The third argument to SetValuelabel is a vector specifying the
values that have associated labels, and the fourth argument is a vector with the associated labels.

Specifying Variable Attributes for New Datasets

Variable attributes are specified with the spssdictionary.SetVariableAttributes function.

The function must be called after spssdictionary.SetDictionaryToSPSS and before calling
spssdictionary.EndDataStep.

*R_specify_var_attr.sps.

BEGIN PROGRAM R.

varlSpec <- c("varl","Minority",0,"F1","ordinal")

dict <- spssdictionary.CreateSPSSDictionary(varlSpec)
spssdictionary.SetDictionaryToSPSS("newds",dict)
spssdictionary.SetVariableAttributes("newds","varl",K DemographicVars="1",
Binary="Yes")
spssdictionary.EndDataStep ()
END PROGRAM.

The vector var1Spec provides the specifications for a new numeric variable. A new dataset named
newds and consisting of this variable is created.

The SetVariableAttributes function is called after SetDictionaryToSPSS to specify the variable
attributes. The first argument to the function is the dataset name, and the second argument is the name
of the variable whose attributes are being specified. The remaining arguments specify the attributes and
are of the form attrName=attxrValue, where attrName is the name of the attribute and attrValue
is either a single character value or a character vector. Specifying a vector results in an attribute array.
An arbitrary number of attribute arguments can be specified.

246 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Creating Pivot Table Output

The IBM SPSS Statistics - Integration Plug-in for R provides the ability to render tabular output from R as
a pivot table that can be displayed in the IBM SPSS Statistics Viewer or written to an external file using
the IBM SPSS Statistics Output Management System (OMS). Although you can use the R print or cat
functions to send output to a log item in the IBM SPSS Statistics Viewer, rendering tabular output as a
pivot table provides much nicer looking output.

Pivot tables are created with the BasePivotTable class or the spsspivottable.Display function.
The BasePivotTable class allows you to create pivot tables with an arbitrary number of row, column,
and layer dimensions, whereas the spsspivottable.Display function is limited to creating pivot
tables with a single row dimension and a single column dimension. If you only need a pivot table with one
row dimension and one column dimension then consider using the spsspivottable.Display function.

Using the spsspivottable.Display Function

Example

*R_ptable_demo.sps.

BEGIN PROGRAM R.

demo <- data.frame(A=c("1A","2A"),B=c("1B","2B"),row.names=c(1,2))

spsspkg.StartProcedure("Sample Procedure")

spsspivottable.Display (demo,
title="Sample Pivot Table",
rowdim="Row",
hiderowdimtitle=FALSE,
coldim="Column",
hidecoldimtitle=FALSE)

spsspkg.EndProcedure ()

END PROGRAM.

Result

H *Output1 [Document1] - Viewer

SR

File Edit ieww Data Transform Insert Fortmat Analyze Direct Matketing Graphs Custom Uiities Add-ons Window Help
BEHeA ¢ B Ky BELT 9 & BB B

: . % = =

e« + - BE 2aa=

B {&] output <

Sample Procedure

[DataZetl]
q Active Dataset
[Gample Pivot Table :
Sample Pivot Table
R Caolurmn
A B
1 18 1B
2 a8 2B

L!_ilIIIlHlill-IIIlHlHIIIﬁHﬂﬁlliﬂill.lllllillllﬂﬂﬂi!

|Processor iz ready

[*]

Figure 102. Viewer output of sample pivot table

« The contents of a pivot table can be represented by an R data frame or any R object that can be

converted to a data frame such as a matrix. In this example, the contents are provided as a data frame
created with the R data. frame function. The rows of the data frame represent the rows of the pivot
table, and the columns of the data frame—specified by the component vectors A and B in this example—
represent the columns of the pivot table.

« By default, the row and column names of the provided data frame (or equivalent R object) are used as
the row and column names for the resulting pivot table. In this example, the pivot table has columns
named A and B and rows named 1 and 2. You can specify the row and column names explicitly using the
rowlabels and collabels arguments of the Display function, as described below.

Chapter 4. Programming with R 247

The spsspkg.StartProcedure-spsspkg.EndProcedure block groups output under a common
heading, allowing you to display custom output in the same manner as built-in IBM SPSS Statistics
procedures such as DESCRIPTIVES or REGRESSION. You can include multiple pivot tables and text
blocks in a given spsspkg.StartProcedure-spsspkg.EndProcedure block.

The argument to the StartProcedure function is a string and is the name that appears in the
outline pane of the Viewer associated with the output. It is also the command name associated

with this output when routing it with OMS (Output Management System), as used in the COMMANDS
keyword of the OMS command. In order that names associated with output not conflict with names of
existing IBM SPSS Statistics commands (when working with OMS), consider using names of the form
yourorganization.com.procedurename.

Use of the StartProcedure function is optional when creating pivot tables with the
spsspivottable.Display function. If omitted, the pivot table will appear under an item labeled
R in the outline pane of the Viewer.

The only required argument for the spsspivottable.Display function is the R object specifying the
contents of the pivot table--in this example, the R data frame demo.

The full set of arguments to the Display function is as follows:

X. The data to be displayed as a pivot table. It may be a data frame, matrix, table, or any R object that
can be converted to a data frame.

title. A character string that specifies the title that appears with the table. The default is Rtable.

templateName. A character string that specifies the OMS (Output Management System) table subtype
for this table. It must begin with a letter and have a maximum of 64 bytes. The default is Rtable. Unless
you are routing this pivot table with OMS and need to distinguish subtypes, you do not need to specify a
value.

When routing pivot table output from R using OMS, the command name associated with this output is
R by default, as in COMMANDS=['R"'] for the COMMANDS keyword on the OMS command. If you wrap the
pivot table output in a StartProcedure-EndProcedure block, then use the name specified in the
StartProcedure call as the command name.

outline. A character string that specifies a title (for the pivot table) that appears in the outline pane of
the Viewer. The item for the table itself will be placed one level deeper than the item for the outline title.
If omitted, the Viewer item for the table will be placed one level deeper than the root item for the output
containing the table, as shown in the above figure.

caption. A character string that specifies a table caption.

isSplit. A logical value (TRUE or FALSE) specifying whether to enable split file processing for the table.
The default is TRUE. Split file processing refers to whether results from different split groups are
displayed in separate tables or in the same table but grouped by split, and is controlled by the SPLIT
FILE command.

rowdim. A character string specifying a title for the row dimension. The default is row.
coldim. A character string specifying a title for the column dimension. The default is column.

hiderowdimtitle. A logical value (TRUE or FALSE) specifying whether to hide the row dimension title.
The default is TRUE.

hiderowdimlabel. A logical value specifying whether to hide the row labels. The default is FALSE.

hidecoldimtitle. A logical value specifying whether to hide the column dimension title. The default is
TRUE.

hidecoldimlabel. A logical value specifying whether to hide the column labels. The default is FALSE.

rowlabels. A numeric or character vector specifying the row labels. If provided, the length of the vector
must equal the number of rows in the argument x. If omitted, the row names of x will be used. If x does
not have row names, the labels rowl, row2, and so on, will be used. If a numeric vector is provided, the
row labels will have the format specified by the argument format.

collabels. A numeric or character vector specifying the column labels. If provided, the length of the
vector must equal the number of columns in the argument x. If omitted, the column names of x will be

248 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

used. If x does not have column names, the labels col1, col2, and so on, will be used. If a numeric vector
is provided, the column labels will have the format specified by the argument format.

- format. Specifies the format to be used for displaying numeric values, including cell values, row labels,
and column labels. The default format is GeneralStat, which is most appropriate for unbounded, scale-
free statistics. The argument format is of the form formatSpec.format where format is the name of
a supported format like GeneralStat, as in formatSpec.GeneralStat. The list of available formats is
provided in the help for the spsspivottable.Display function, available in the IBM SPSS Statistics
Help system.

Displaying Output from R Functions

Typically, the output from an R analysis--such as a generalized linear model--is an object whose attributes
contain the results of the analysis. You can extract the results of interest and render them as pivot tables
in IBM SPSS Statistics.

Example

In this example, we read the case data from demo.sav, create a generalized linear model, and write
summary results of the model coefficients back to the IBM SPSS Statistics Viewer as a pivot table.

*R_ptable_glm.sps.
GET FILE='/examples/data/demo.sav'.
BEGIN PROGRAM R.
casedata <- spssdata.GetDataFromSPSS(variables=c("car","income","ed", "marital"))
model <- glm(car~income+ed+marital,data=casedata)
res <- summary (model)
spsspivottable.Display(res$coefficients,
title="Model Coefficients")
END PROGRAM.

Result
Estimate Std. Error tvalue Pri=|i
{Intercept) 13.698 4449 30477 aon
incorme 220 0oz 103.083 Rululi]
ed A78 140 3.390 0ot
rmarital - 162 335 -.484 F28

Figure 103. Model coefficients

- The R variable model contains the results of the generalized linear model analysis.

« The R summaxry function takes the results of the GLM analysis and produces an R object with a number
of attributes that summarize the model. In particular, the coefficients attribute contains a matrix of the
model coefficients and associated statistics.

Note: You can obtain a list of the attributes available for an object using attributes(object). To
display the attributes from within IBM SPSS Statistics, use print(attributes(object)).

- The spsspivottable.Display function creates the pivot table. In the present example, the content
for the pivot table is provided by the coefficients matrix.

Displaying Graphical Output from R

The IBM SPSS Statistics - Integration Plug-in for R provides the ability to display graphical output from R
in the IBM SPSS Statistics Viewer, allowing you to leverage the rich graphics capabilities available with R.

Example

By default, graphical output from R is rendered in the IBM SPSS Statistics Viewer. In this example,
we read the data for the categorical variables inccat and ed from demo.sav and create a mosaic plot
displaying the relationship between the variables.

*R_graphic.sps.

GET FILE='/examples/data/demo.sav'.

BEGIN PROGRAM R.

dt <- spssdata.GetDataFromSPSS(variables=c("inccat","ed"))
mosaicplot(~ ed + inccat, xlab="Level of Education",

Chapter 4. Programming with R 249

ylab="Income Category", main="Income Level by Education",
data = dt, cex.axis=1)
END PROGRAM.

Result
it *Output1 [Document1] - Viewer g@
File Edit “iew Data Transform Insett Format Analvze Graphs LWiities Add-ons Window Help
CHAR B W O BnEE Q0 & K96 #es + - A0 =5 §|
=] Output B
i=—{&] RGraph RGraph
= Title
2 Motes
L RGraphic y
i HEIeR Income Level by Education
1 2 3 4 g
fang
[=]
fa1)
A L
[u:] PP
&}
[=1]
£
=]
Z L
o
=T
Level of Education
[4] i | [»]
B !Processorisready ! ! ! i

Figure 104. R graphic displayed in the Viewer

You can turn display of R graphics on or off using the spssRGraphics.SetOutput function. You
can display an R graphic file (PNG, JPG, or BMP format) in the IBM SPSS Statistics Viewer using the
spssRGraphics.Submit function. For information about using these functions, see the topic on the
Integration Plug-in for R in the IBM SPSS Statistics Help system.

Note: R graphics displayed in the IBM SPSS Statistics Viewer cannot be edited and do not use the graphics
preference settings in IBM SPSS Statistics.

Retrieving Output from Syntax Commands

The IBM SPSS Statistics - Integration Plug-in for R provides the means to retrieve the output produced

by syntax commands, allowing you to access command output in a purely programmatic fashion. To
retrieve command output, you first route it via the Output Management System (OMS) to an in-memory
workspace, referred to as the XML workspace, or to a new dataset. Qutput routed to the XML workspace
is accessed with XPath expressions, while output routed to a dataset is accessed by reading the case data
from the dataset.

250 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Using the XML Workspace

Output routed to the XML workspace is stored as an XPath DOM that conforms to the IBM SPSS Statistics

Output XML Schema (xml.spss.com/spss/oms). Output is retrieved from the XML workspace with functions
that employ XPath expressions.

Constructing the correct XPath expression (IBM SPSS Statistics currently supports XPath 1.0) requires
knowledge of the XPath language. If you're not familiar with XPath, this isn't the place to start. In a
nutshell, XPath is a language for finding information in an XML document, and it requires a fair amount
of practice. If you're interested in learning XPath, a good introduction is the XPath tutorial provided by
W3Schools at http://www.w3schools.com/xpath/ .

In addition to familiarity with XPath, constructing the correct XPath expression requires an understanding
of the structure of XML output produced by OMS, which includes understanding the XML representation of
a pivot table. You can find an introduction, along with example XML, in the "Output XML Schema" topic in
the Help system.

Note: When constructing XPath expressions, it is best to work from a copy of the XML that you're trying
to parse. You can route the XML (referred to as OXML) to a file using the OUTFILE keyword of the
DESTINATION subcommand of OMS.

Example: Retrieving a Single Cell from a Table

In this example, we'll use output from the DESCRIPTIVES command to determine the percentage of valid
cases for a specified variable.

*R_get_output_with_xpath.sps.
GET FILE='/examples/data/demo.sav'.
OMS SELECT TABLES
/IF SUBTYPES=['Descriptive Statistics']
/DESTINATION FORMAT=0XML XMLWORKSPACE="'desc_table'
/TAG="desc_out"'
DESCRIPTIVES VARIABLES internet.
OMSEND TAG='desc_out'
*Get output from the XML workspace using XPath.
BEGIN PROGRAM R.
handle <- “desc _table"
context <- /outputTIee
xpath <- paste(//plvotTable[@subType Descrlptlve Statistics']"
"/dimension[@axis=" Tow e
"/category[@varName= "internet']"
"/dimension[@axis='column']",
"/category[@text="N"]",
"/cell/@number")
res <- spssxmlworkspace.EvaluateXPath(handle,context,xpath)
ncases <- spssdata.GetCaseCount()
cat("Percentage of valid cases for varlable internet: "
round(100%as.integer(res)/ncases),’
spssxmlworkspace. DeleteXmlWorkspaceOb]ect(handle)
END PROGRAM.

The OMS command is used to direct output from a syntax command to the XML workspace. The
XMLWORKSPACE keyword on the DESTINATION subcommand, along with FORMAT=0XML, specifies the
XML workspace as the output destination. It is a good practice to use the TAG subcommand, as done
here, so as not to interfere with any other OMS requests that may be operating. The identifiers available
for use with the SUBTYPES keyword on the IF subcommand can be found in the OMS Identifiers dialog
box, available from the Utilities menu in IBM SPSS Statistics.

The XMLWORKSPACE keyword is used to associate a name with this XPath DOM in the workspace.

In the current example, output from the DESCRIPTIVES command will be identified with the name
desc_table. You can have many XPath DOMs in the XML workspace, each with its own unique name.
Note, however, that reusing an existing name will overwrite the contents associated with that name.

The OMSEND command terminates active OMS commands, causing the output to be written to the
specified destination--in this case, the XML workspace.

You retrieve values from the XML workspace with the EvaluateXPath function. The function takes an
explicit XPath expression, evaluates it against a specified XPath DOM in the XML workspace, and returns
the result as a vector of character strings.

The first argument to the EvaluateXPath function specifies the XPath DOM to which an XPath
expression will be applied. This argument is referred to as the handle name for the XPath DOM and

is simply the name given on the XMLWORKSPACE keyword on the associated OMS command. In this case
the handle name is desc_table.

Chapter 4. Programming with R 251

http://www.w3schools.com/xpath/

« The second argument to EvaluateXPath defines the XPath context for the expression and should be
setto "/outputTree" for items routed to the XML workspace by the OMS command.

« The third argument to EvaluateXPath specifies the remainder of the XPath expression (the context
is the first part) and must be quoted. Since XPath expressions almost always contain quoted strings,
you'll need to use a different quote type from that used to enclose the expression. For users familiar
with XSLT for OXML and accustomed to including a namespace prefix, note that XPath expressions for
the EvaluateXPath function should not contain the oms : namespace prefix.

- The XPath expression in this example is specified by the variable xpath. It is not the minimal expression
needed to select the value of interest but is used for illustration purposes and serves to highlight the
structure of the XML output.

//pivotTable[@subType="'Descriptive Statistics'] selects the Descriptives Statistics table.

/dimension[@axis="row']/category[@varName='internet'] selects the row for the variable
internet.

/dimension[@axis="'column']/category[@text="N"] selects the column labeled N (the
number of valid cases), thus specifying a single cell in the pivot table.

/cell/@text selects the textual representation of the cell contents.

« When you have finished with a particular output item, it is a good idea to delete it from the XML
workspace. This is done with the DeleteXmlWorkspaceObject function, whose single argument is
the name of the handle associated with the item.

If you're familiar with XPath, you might want to convince yourself that the number of valid cases for
internet can also be selected with the following simpler XPath expression:

//category[@varName="internet']//category[@text="'N']/cell/@text

Note: To the extent possible, construct your XPath expressions using language-independent attributes,
such as the variable name rather than the variable label. That will help reduce the translation effort if
you need to deploy your code in multiple languages. Also, consider factoring out language-dependent
identifiers, such as the name of a statistic, into constants. You can obtain the current language used for
pivot table output with the spsspkg.GetOutputLanguage () function.

You may also consider using text_eng attributes in place of text attributes in XPath expressions.
text_eng attributes are English versions of text attributes and have the same value regardless of the
output language. The OATTRS subcommand of the SET command specifies whether text_eng attributes
are included in OXML output.

Example: Retrieving a Column from a Table

In this example, we will retrieve a column from the iteration history table for the Quick Cluster procedure
and check to see if the maximum number of iterations has been reached.

*R_get_table_column.sps.
GET FILE='/examples/data/telco_extra.sav'.
OMS SELECT TABLES
/IF COMMANDS=['Quick Cluster'] SUBTYPES=['Iteration History']
/DESTINATION FORMAT=0XML XMLWORKSPACE='iter_table'
/TAG="iter_out'.
QUICK CLUSTER
zlnlong zlntoll zlnequi zlncard zlnwire zmultlin zvoice
zpager zinterne zcallid zcallwai zforward zconfer zebill
/MISSING=PAIRWISE
/CRITERIA= CLUSTER(3) MXITER(10) CONVERGE(0)
/METHOD=KMEANS (NOUPDATE)
/PRINT INITIAL.
OMSEND TAG='iter_out'.
*Get output from the XML workspace using XPath.
BEGIN PROGRAM R.
mxiter = 10
handle <- "iter_table"
context <- "/outputTree"
xpath <- paste("//pivotTable[@subType='Iteration History']",
"//dimension[@axis="'column']",
"/category[@number="1"']",
"/cell/@text")
res <- spssxmlworkspace.EvaluateXPath(handle,context,xpath)
if (length(res)==10) cat("Maximum iterations reached for QUICK CLUSTER procedure")
spssxmlworkspace.DeleteXmlWorkspaceObject (handle)
END PROGRAM.

252 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

As an aid to understanding the code, the iteration history table produced by the QUICK CLUSTER
command in this example is shown below.

Change in Cluster Centers
Iteration 1 2 3
1 3.2498 3.5490 3491
2 1.016 AT A3
3 ATT 320 420
4 240 80 195
a 114 125 08
& 093 Rl 027
7 0649 054 032
8 0549 051 018
9 035 085 063
10 0z5 3549 333

Figure 105. Iteration history table

To further aid in constructing the XPath expression, the OXML representing the first row from the iteration
history table is shown below.

<pivotTable subType="Iteration History" text="Iteration History">
<dimension axis="row" text="Iteration">
<category number="1" text="1">
<dimension axis="column" text="Change in Cluster Centers">
<category number="1" text="1">
<cell decimals="3" format="g" number="3.2980427720769" text="3.298" />
</category>
<category number="2" text="2">
<cell decimals="3" format="g" number="3.5899546987871" text="3.590" />
</category>
<category number="3" text="3">
<cell decimals="3" format="g" number="3.4907178202949" text="3.491" />
</category>
</dimension>
</category>

« The XPath expression in this example selects the values in the column labeled 1, under the Change in
Cluster Centers heading, in the iteration history table.

//pivotTable[@subType="'Iteration History'] selects the iteration history table.

//dimension[@axis="'column'] selects all dimension elements that represent a column
dimension. In the current example, there is one such element for each row in the table.

/category[@number="1"] selects the category element, within the dimension element,
corresponding to the column labeled 1.

/cell/@text selects the textual representation of the cell contents.

« The returned value from the EvaluateXPath function is an R vector, consisting of the values from
column 1 in the iteration history table. Testing the length of the vector determines if the maximum
number of iterations has been reached.

Using a Dataset to Retrieve Output

As an alternative to routing output to the XML workspace, you can route it to a new dataset. You can then
retrieve values from the dataset using the spssdata.GetDataFromSPSS function.

Example

In this example, we'll route output from a FREQUENCIES command to a dataset. We'll then use the output
to determine the three most frequent values for a specified variable--in this example, the variable jobtime
from Employee data.sav.

*R_output_to_dataset.sps.

GET FILE='/examples/data/Employee data.sav'.

DATASET NAME employees.

DATASET DECLARE result.

OMS SELECT TABLES
/IF COMMANDS=['Frequencies'] SUBTYPES=['Frequencies']
/DESTINATION FORMAT=SAV OUTFILE='result'
/TAG="freq_out'.

FREQUENCIES jobtime /FORMAT=DFREQ.

OMSEND TAG='freq_out'.

Chapter 4. Programming with R 253

DATASET ACTIVATE result.

BEGIN PROGRAM R.

data <- spssdata.GetDataFromSPSS(cases=3,variables=c("Var2","Frequency"))
print(data)

END PROGRAM.

As a guide to understanding the code, a portion of the output dataset is shown here.

] *Untitled2 [result] - Data Editor BEx)
File Edit “iew Data Transform Analyze Graphs Uilities Add-ons Window Help

eHE @ o0 =Bk & B4 E0F 09|

5 Command_ Frequencies “izible: 9 of 9 Variahles
Command_ Subtype_ Lahel_ “ar Warl Frequency
1 Freguencies Freguencies Manths since Hire “alid g1 23|~
Freguencies Fraquencies Months since Hire Yalid &3 23
3 Frequencies Freguencies Wonths since Hire Walid 78 22
4 e [[»]

Data View Wariakle Wigw:
Processor is ready

Figure 106. Dataset containing output from FREQUENCIES

- The DATASET NAME command is used to name the dataset containing Employee data in order to
preserve it when the output dataset is created.

« The DATASET DECLARE command creates a dataset name for the new dataset.

« The FORMAT=SAV and OUTFILE="'result' specifications on the DESTINATION subcommand specify
that the output from the OMS command will be routed to a dataset named result.

 Using /FORMAT=DFREQ for the FREQUENCIES command produces output where categories are sorted
in descending order of frequency. Obtaining the three most frequent values simply requires retrieving
the first three cases from the output dataset.

« Before case data from result can be read into R, the dataset must be activated, as in DATASET
ACTIVATE result.

« The GetDataFromSPSS function is used to read the data. The argument cases specifies the number
of cases to read and the variables argument specifies the particular variables to retrieve. Referring to
the portion of the output dataset shown in the previous figure, Var2 contains the values for jobtime and
Frequency contains the frequencies of these values.

Running from an External R Process

Beginning with IBM SPSS Statistics release 23, you can run R programs that use functions in the R
Integration Package for IBM SPSS Statistics from any external R process, such as an R IDE or the R
interpreter. In this mode, the R program starts up a new instance of the IBM SPSS Statistics processor
without an associated instance of the IBM SPSS Statistics client. You can use this mode to debug your R
programs using the R IDE of your choice.

To drive the IBM SPSS Statistics processor from an R IDE, simply include a 1library (spssstatistics)
statement in the IDE's code window, followed by a call to the spsspkg.StartStatistics function.
You can then call any of the functions in the R Integration Package for IBM SPSS Statistics, just like with
program blocks in command syntax jobs, but you do not wrap your R code in BEGIN PROGRAM R-END
PROGRAM statements.

Note: The spssstatistics R library is installed to the location of R that is specified during the
installation of IBM SPSS Statistics - Essentials for R.

When you submit syntax commands that would normally generate Viewer output, the output is
directed to the IDE’s output window, where it is displayed as standard output. In that regard, charts
and classification trees from IBM SPSS Statistics are not included in output that is displayed in

the IDE. You can control whether output from IBM SPSS Statistics is displayed in the IDE with

254 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

the spsspkg.SetStatisticsOutput function. Use spsspkg.SetStatisticsOutput ("OFF") to
suppress output and spsspkg.SetStatisticsOutput ("ON") to display output.

It can also be useful to programmatically determine whether the IBM SPSS Statistics backend is being
driven by an external R process. The check is done with the spsspkg.IsXDxriven function, which

returns TRUE if an R process, such as an IDE, is driving the IBM SPSS Statistics backend and FALSE if IBM
SPSS Statistics is driving the backend.

When you are working from an external R process, you can access help for the R Integration Package from
help(spssstatistics).

Chapter 4. Programming with R 255

256 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Chapter 5. Extension Commands

Introduction to Extension Commands

Extension commands wrap programs that are written in the Python programming language, R, or Java in
custom IBM SPSS Statistics command syntax. You design the syntax for your extension command based
on the parameters that are required by the underlying Python, R, or Java code. When syntax for your
command is run, the values that are specified in the syntax are passed to the underlying code. Extension
commands require the SPSS Statistics Integration Plug-in for the language in which the command is
implemented (Python, R, or Java).

The following figure provides an overview of the extension command mechanism. Briefly, command
syntax for an extension command is submitted by a user and is parsed by SPSS Statistics, based on an
XML representation of the syntax for the extension command. The parser calls the implementation code
(written in Python, R, or Java) to process the parsed syntax and perform the requested actions, which
might include generating tabular or graphical output.

user
input
(syntax)

implementation
code

XML
specification
of syntax

Figure 107. Overview of the extension command mechanism

As an author of an extension command, you are responsible for creating the XML specification of the
syntax for the command and the implementation code. If you plan to share the extension command with
other users, then you probably want to include documentation for the command. Information on creating
the XML specification, the implementation code, and the documentation is provided in the sections that
follow.

You can also create a custom dialog that generates the command syntax for your extension command so
that users who do not typically use command syntax can easily run your extension command. Extension
commands and custom dialogs can be packaged in extension bundles, which can be easily installed by
users. For an example of creating a custom dialog for an extension command, which is implemented in R,
see the tutorial "Working with R" in the SPSS Statistics Help system.

How you approach the task of creating an extension command depends somewhat on what you

are implementing. For example, if you are wrapping an R package, then you might start with the
implementation code, and then design the syntax for the extension command based on the parameters
that you are supporting in the underlying R functions. However, if you are developing all of the

implementation code yourself then you might start at the higher-level of the syntax or custom dialog
design. If you do plan to create a custom dialog for your extension command, then you might want to
design the custom dialog before you design the syntax because it is possible to design syntax that is

difficult to generate from a custom dialog.

Integration Plug-ins

To develop the implementation code, you need the Integration Plug-in for the programming language in
which the extension command is implemented. Information on how to get the Plug-ins for Python and R is
available from Core System > Frequently Asked Questions > How to Get Integration Plug-Ins in the SPSS
Statistics Help system.

« Forversion 22 and higher, the Integration Plug-in for Python is installed by default with SPSS Statistics
and SPSS Statistics Server, as part of IBM SPSS Statistics - Essentials for Python.

« The Integration Plug-in for Java™ (requires SPSS Statistics version 21 or higher) is installed with SPSS
Statistics and SPSS Statistics Server and requires no separate installation or configuration.

XML Specification of the Extension Command Syntax

To create an extension command, you must specify the syntax for the command. The syntax consists
of the subcommands, keywords, and keyword values that define the command. Syntax for extension
commands is specified with XML. As an example, consider a Python extension command that gets an
Excel file from a user-specified URL and opens a specified sheet from the Excel file in IBM SPSS Statistics.

The inputs to this example command are as follows:

« URL: Required parameter that specifies the URL of the Excel file.

« FILETYPE: Optional parameter that specifies the file type. Possible values are XLS or XLSX, and the
default is XLS.

« SHEETNUMBER: Optional parameter that specifies the number of the sheet to open in SPSS Statistics.
The default is sheet 1.

« READNAMES: Optional parameter that specifies whether to use values in the first row of the sheet as
variable names in the resulting SPSS Statistics dataset. Possible values are "ON" and "OFF", where "ON"
specifies to use the values in the first row and is the default.

Before you create the XML representation of the syntax, it's always a good idea to construct a syntax chart
for your command. The syntax chart specifies the command name, keywords, and keyword values that are
available with the command. In that regard, the documentation for every native SPSS Statistics command
includes a syntax chart, which provides a quick reference of the specifications for the command.

The syntax chart for the example command is as follows:

MYORG GETURL EXCEL URL = "URL specification"
[/OPTIONS]
[FILETYPE = {XLSx*%]

$XLSX %
[SHEETNUMBER = $1%% 3]
iinteger}

[READNAMES = $ON**%]

sOFF %

« The name of the command is MYORG GETURL EXCEL.

« The command contains a single subcommand that is named OPTIONS that contains the optional inputs.
Subcommands are preceded by a forward slash.

e The OPTIONS subcommand includes the following keywords: FILETYPE, SHEETNUMBER, and
READNAMES. Curly brackets in syntax charts indicate a set of mutually exclusive choices for a keyword.
For example, the FILETYPE keyword can have the value XLS or XLSX. A double asterisk in a syntax

258 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

chart indicates the default value for a keyword. Square brackets in syntax charts indicate optional
elements of the syntax.

Notation conventions for syntax charts are described in the Commands topic, under Reference >
Command Syntax Reference > Universals, in the SPSS Statistics Help system.

The XML representation of the syntax chart for the MYORG GETURL EXCEL extension command is as
follows:

<Command xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://www-01.ibm.com/software/analytics/
spss/xml/extension-1.0.xsd"

Name="MYORG GETURL EXCEL" Language="Python">

<Subcommand Name="" IsArbitrary="False" Occurrence="Optional">
<Parameter Name="URL" ParameterType="TokenList"/>
</Subcommand>

<Subcommand Name="OPTIONS" Occurrence="Optional">
<Parameter Name="FILETYPE" ParameterType="Keyword"/>
<Parameter Name="SHEETNUMBER" ParameterType="Integer"/>
<Parameter Name="READNAMES" ParameterType="Keyword"/>
</Subcommand>
</Command>

The top-level element, Command, names the command. Subcommands are children of this element. The
Name attribute is required and specifies the command name. The command name can consist of up to
three words that are separated by spaces, as in MY EXTENSION COMMAND, and is not case-sensitive.
Command names are restricted to 7-bit ascii characters. The Language attribute is optional and
specifies the implementation language. The default is the Python programming language (Python 2).
The choices for Language are Python, R, and Java. For Python code that is implemented in Python

3, specify Language="Python" LanguageVersion="3". Support for Python 3 requires IBM SPSS
Statistics release 24 or higher.

« Subcommands are specified with the Subcommand element, which is a child of the Command element.
In this example, the first Subcommand element has an empty string for a name. Because it doesn't
have a name, it is referred to as the anonymous subcommand. A command can have only a single
anonymous subcommand. The anonymous subcommand is typically used to specify global keywords
for the command. In this example, the anonymous subcommand contains the single keyword URL that
specifies the URL of the Excel file. Many native SPSS Statistics commands, such as the FREQUENCIES
command, contain an anonymous subcommand.

« Keywords are specified with the Parameter element, which is a child of the Subcommand element. The
Parameter element for the URL keyword is specified as a TokenList, which is an arbitrary list of comma
separated or blank separated values. Although the actual URL is a single string, a URL that exceeds the
allowed length of a string literal needs to be broken up into a set of strings.

A complete specification of the XML schema for defining extension commands is provided in the

SPSS Statistics Help system under Reference > Extension Schema. A copy of the extension schema,
extension-1.0.xsd, is installed with SPSS Statistics, at the root of the installation directory. Numerous
XML specification files for extension commands are installed with IBM SPSS Statistics - Essentials for
Python and IBM SPSS Statistics - Essentials for R and might be useful as examples. The files are in the
location where extension commands are installed on your computer. To view the location, run the SHOW
EXTPATHS syntax command from within SPSS Statistics. The output displays a list of locations under the
heading "Locations for extension commands". The files are installed to the first writable location in the
list.

Naming conventions and name conflicts

« Extension commands take priority over built-in command names. For example, if you create an
extension command that is named MEANS, the built-in MEANS command is replaced by your extension.
Likewise, if an abbreviation is used for a built-in command and the abbreviation matches the name of

Chapter 5. Extension Commands 259

an extension command, the extension command is used. Abbreviations are not supported for extension
commands.

 To reduce the risk of naming conflicts with built-in commands or commands that are created by other
users, you might want to use two- or three-word command names, where the first word specifies your
organization.

« There are no naming requirements for the file that contains the XML specification of the syntax. As with
choosing the name of the extension command, take care when you choose a hame to avoid conflicting
XML file names. A useful convention is to use the same name as the Python module, R source file, or
Java class file (or JAR file) that implements the command.

« The installed extension commands are read when SPSS Statistics is launched, but they can also be
defined during a session with the EXTENSION command.

Color coding and auto-completion in the syntax editor

The XML syntax specification file contains all of the information that is needed to provide color coding and
auto-completion for your extension command in the SPSS Statistics Syntax Editor. Both color coding and
auto-completion are available after the extension command is installed.

Implementation Code

The implementation code receives the parsed syntax and then performs the requested actions. The code
(whether written in Python, R, or Java) must contain a function that is named Run with a single argument
that accepts the parsed syntax.

The contents of the Python module for the example MYORG GETURL EXCEL extension command, which
was discussed in the preceding section, is shown in the code sample that follows. The code includes
import statements for the spssaux and extension Python modules that are used by the code and that
are installed with IBM SPSS Statistics - Essentials for Python. The Python module itself must be named
MYORG_GETURL_EXCEL . py, as required by the naming conventions that are described in what follows.

The module contains two functions: Run and geturlexcel. The Run function takes the parsed syntax,
validates it, extracts the values of the keywords, and then calls geturlexcel to implement the
requested actions. Separating the implementation code into a Run function that processes the submitted
syntax and a main implementation function that performs the requested actions is a general feature of all
extension commands that are created by IBM SPSS.

import spssaux
from extension import Template, Syntax, processcmd

def Run(args):
oobj = Syntax([
Template("URL", subc="", ktype="literal", var="url", islist=Tzxue),
Template("FILETYPE", subc="OPTIONS", ktype="str", var="filetype",
vallist=["x1ls",6 "x1lsx"]),
Template ("SHEETNUMBER", subc="OPTIONS", ktype="int", var="sheetnumber"),
Template ("READNAMES", subc="OPTIONS", ktype="str", var="readnames",
vallist=["on","off"])]1)
args = args[args.keys()[0]]
processcmd (oobj, args, geturlexcel)

def geturlexcel(url, filetype="xls", sheetnumber=1, readnames="ON"):
kwargs = {%
url = "".join(url)
kwargs["filetype"] = filetype
kwargs["sheetid"] = sheetnumber
kwargs["readnames"] = readnames
spssaux.openDataFileFromUrl (url, *xkwargs)

The Run function uses the Template class, the Syntax class, and the processcmd function. These
functions are designed to be used together and greatly simplify the task of working with the parsed
syntax, which is contained in the args parameter to the Run function.

260 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

« The Template class specifies how to process a particular keyword in the syntax for an extension
command. Each keyword of each subcommand must have an associated instance of the Template
class.

The first argument to the Template class constructor is the name of the keyword.

The argument subc specifies the name of the subcommand that contains the keyword. If the keyword
belongs to the anonymous subcommand, the argument subc can be omitted or set to the empty
string as shown here for the URL keyword.

The argument ktype specifies the type of keyword, such as whether the keyword specifies a variable
name, a string, or a floating point number.

The argument var specifies the name of the argument to the implementation function (geturlexcel
in this example) that receives the value that is specified for the keyword.

The argument vallist, that is used for FILETYPE and READNAMES, specifies the list of allowed values
for the keyword. For keywords that are specified as ktype="stx" in the Template constructor,
submitted values of the keyword are converted to lowercase before validation, so the list of allowed
values is specified in lowercase.

« The Syntax class validates the syntax that is specified by the Template objects. The class is
instantiated with a sequence of one or more Template objects as shown in this example.

« The processcmd function extracts the values of the keywords from the submitted syntax and then calls
the implementation function to carry out the requested actions.

The first argument to the processcmd function is the Syntax object for the command.

For Python, the parsed syntax is passed to the Run function in a complex nested Python dictionary
that has a single top-level entry. The second argument to processcmd is this top-level entry, which
is given by the expression args[args.keys () [0]].

The third argument to processcmd is the name of the implementation function. The values of the
keywords that are specified by the Template objects are passed to the implementation function as a
set of keyword arguments. In this example, the implementation function geturlexcel is called with
the following signature:

geturlexcel (URL=<URL>,filetype=<FILETYPE>, sheetnumber=<SHEETNUMBER>, readnames=<READNAMES>)

where <URL> is the value that is specified for the URL keyword, and likewise for the other keywords.
Note:

- If a Python exception is raised in the implementation function, the Python traceback is suppressed,
but the error message is displayed. To display tracebacks, set the SPSS_EXTENSIONS_RAISE
environment variable to "true".

- If the signature of the implementation function does not have a default value for a parameter, then
an error is raised if the submitted syntax does not include a value for the parameter.

The geturlexcel function receives the values that were specified for the keywords in the submitted
syntax, and then opens the requested Excel file. The function calls the openDataFileFromUxrl function
from the spssaux module, which is installed with IBM SPSS Statistics - Essentials for Python, to open the

file.

Help for the Template class, the Syntax class, and the processcmd function is provided with the
extension module, which is installed with IBM SPSS Statistics - Essentials for Python. You can access
the help from help (extension) after you import the extension module.

Although the preceding example is for Python, the same approach for creating the implementation code
can be used for extension commands in R or Java.

« For an example of creating an extension command in R, see the tutorial "Working with R" in
the IBM SPSS Statistics Help system. Help for the spsspkg.Template, spsspkg.Syntax, and
spsspkg.processcmd functions in R (the equivalents of the Python functions used in the previous

Chapter 5. Extension Commands 261

example) is available under Integration Plug-in for R Help > R Integration Package for IBM SPSS
Statistics, in the Help system.

« For Java, see the topic "Creating IBM SPSS Statistics extension commands in Java" under Integration
Plug-in for Java User Guide > Getting started with the Integration Plug-in for Java, in the SPSS Statistics
Help system. Help for the Template, Syntax, and processcmd functions in Java is included in the
help for the Extension class under Integration Plug-in for Java API Reference, in the Help system.

« Numerous implementation code files for extension commands are installed with IBM SPSS Statistics
- Essentials for Python and IBM SPSS Statistics - Essentials for R, and might be useful as examples.
The files are in the location where extension commands are installed on your computer. To view the
location, run the SHOW EXTPATHS syntax command from within SPSS Statistics. The output displays a
list of locations under the heading "Locations for extension commands". The files are installed to the
first writable location in the list.

Naming conventions

The Python module, R source file, or Java class file (or JAR file) that contains the Run function for an
extension command must adhere to the following naming conventions:

« Python. The Run function must reside in a Python module file with the same name as the command--
for instance, in the Python module file MYCOMMAND.py for an extension command that is named
MYCOMMAND. The name of the Python module file must be in upper case, although the command name
itself is case insensitive. For multi-word command names, replace the spaces between words with
underscores. For example, for an extension command with the name MY COMMAND, the associated
Python module is MY_COMMAND.py.

« R. The Run function must reside in an R source file or R package with the same name as the command--
for instance, in a source file named MYRFUNC.R for an extension command that is named MYRFUNC.
The name of the R source file or package must be in upper case, although the command name itself is
case insensitive. For multi-word command names, replace the spaces between words with underscores
for R source files and periods for R packages. For example, for an extension command with the name
MY RFUNC, the associated R source file is MY_RFUNC.R, whereas an R package that implements the
command is named MY.RFUNC.R. The source file or package should include any 1ibrary function calls
required to load R functions that are used by the code.

- Java. The Run function must reside in a Java class file or JAR file with the same name as the
command--for instance, in a class file named MYCOMMAND.class for an extension command that is
named MYCOMMAND. The name of the Java class file or JAR file must be in upper case, although
the command name itself is case insensitive. For multi-word command names, replace spaces
between words with underscores when constructing the name of the Java class file or JAR file. For
example, for an extension command with the name MY COMMAND, the associated Java class file is
MY_COMMAND.class.

Command syntax errors

Syntax errors, like not providing an integer for a parameter that is specified as Integer, are handled by
IBM SPSS Statistics and stop the module from running. In that regard, the implementation code does not
need to handle deviations from the XML specification of the syntax for the extension command.

Generating output
Generating and sending output to IBM SPSS Statistics is handled by the implementation code.

« For Python and Java, the implementation code is responsible for specifying the procedure name
(associated with the extension command) that labels pivot table output in the Viewer. In other words,
unlike built-in IBM SPSS Statistics procedures such as FREQUENCIES, there is no automatic association
of the extension command name with the name that labels pivot table output from the command. For
Python, the procedure name is the first argument to the spss.StartProcedure function that wraps
the statements that generate the output. For Java, the procedure name is the first argument to the
StatsUtil.startProceduzre function that wraps the statements that generate the output.

262 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

« For R, the default name that is associated with pivot table output from an extension command is R.
For IBM SPSS Statistics version 18 and higher, the name can be customized by wrapping the output
statements in an spsspkg.StartProcedure - spsspkg.EndProcedure block. The procedure
name is then the first argument to the spsspkg.StartProcedure function.

Globalization

You can globalize messages and output that is produced by the implementation code. For Python, see
the topic "Localizing Output from Python Programs" under Integration Plug-in for Python Help > Python
Integration Package for IBM SPSS Statistics > Introduction to Python Programs, in the SPSS Statistics
Help system. For R, see the topic "Localizing Output from R" under Integration Plug-in for R Help > Using
the R Integration Package for IBM SPSS Statistics, in the SPSS Statistics Help system.

Adding help for an extension command

Providing help for an extension command is optional. However, if you plan to share the command with
other users then you probably want to include help for it. Two approaches for including and displaying
help for an extension command are presented. The help that is discussed here is independent of any help
that you provide for a custom dialog that is associated with the extension command.

Both approaches use the convention of displaying the extension command help (and doing nothing else)
when the submitted syntax contains the HELP subcommand. This convention is used by all extension
commands that are installed with IBM SPSS Statistics - Essentials for Python and IBM SPSS Statistics -
Essentials for R. To implement this convention, the XML specification of the extension command syntax
must contain the HELP subcommand.

The modified XML, that includes a HELP subcommand, for the example MYORG GETURL EXCEL
command is as follows:

<Command xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://www-01.ibm.com/software/analytics/
spss/xml/extension-1.0.xsd"

Name="MYORG GETURL EXCEL" Language="Python">

<Subcommand Name="" IsArbitrary="False" Occurrence="Optional">
<Parameter Name="URL" ParameterType="TokenList"/>
</Subcommand>

<Subcommand Name="OPTIONS" Occurrence="Optional">
<Parameter Name="FILETYPE" ParameterType="Keyword"/>
<Parameter Name="SHEETNUMBER" ParameterType="Integer"/>
<Parameter Name="READNAMES" ParameterType="Keyword"/>
</Subcommand>
<Subcommand Name="HELP" Occurrence="Optional"/>
</Command>

HTML help

You can create an HTML help file for your extension command and include it with the extension bundle
for the command. When the extension bundle is installed, the HTML file is installed along with the other
files in the bundle. In the implementation code, you can include a simple function that finds and opens
the HTML file in the default browser. By convention, the name of the function is helper and is defined as
follows for Python:

def helper():
import webbrowser, os.path
path = os.path.splitext(__file__)[0]
helpspec = "file://" + path + os.path.sep + "markdown.html"
browser = webbrowser.get()
if not browser.open_new(helpspec):
print("Help file not found:" + helpspec)

try:

Chapter 5. Extension Commands 263

from extension import helper
except:
pass

« The helper function assumes that the name of the extension bundle (as specified in the Name field
on the Create Extension Bundle dialog, or Extension Properties dialog if you created the extension
bundle from the Custom Dialog Builder for Extensions in version 24 or higher) is the same as the
name of the implementation code file (except that the bundle name might have spaces where the
code file has underscores). Using the same name for the extension bundle and the code file is the
recommended convention. When the extension bundle is installed, the help file (and any other auxiliary
files) is installed in a folder with the same name as the extension bundle, and that folder is directly
under the folder where the implementation code is installed. In this example, the extension bundle is
named MYORG GETURL EXCEL and the code file is named MYORG_GETURL_EXCEL . py, so the help file
is installed in a folder that is named MYORG_GETURL _EXCEL, which is directly under the folder that
contains the code file.

« The helper function in this example assumes that the name of the HTML file is markdown . html. Given
the relationship between the name of the code file and the location of the help file, it is simple to locate
the help file, as shown in the example code. In that regard, most extension commands that are installed
with IBM SPSS Statistics - Essentials for Python and IBM SPSS Statistics - Essentials for R use the
convention of markdown . html for the name of the help file and the convention of the equality of the
name of the extension bundle and the name of the code file.

- For IBM SPSS Statistics version 23 and higher, the helper function is included with IBM SPSS Statistics
- Essentials for Python, and is part of the extension module. The try block in this code segment
attempts to import the helpex function from the extension module. If the function is not available
in the local copy of the extension module, then the version of the function that is included with the
implementation code is used.

You can incorporate the helper function into the Run function of the implementation code by calling the
helper function when the HELP subcommand is specified, as shown in the following code sample:

if args.has_key("HELP"):
helper ()
else:
processcmd(oobj, args, geturlexcel)

For R, the helper function is shown in the following code segment:

helper = function(cmdname) {
fn = gsub(" ", "_", cmdname, fixed=TRUE)
thefile = Find(file.exists, file.path(.libPaths(), fn, "markdown.html"))
if (is.null(thefile)) %
print("Help file not found")
1 else §
browseURL (paste("file://", thefile, sep=""))

¥

if (exists("spsspkg.helper")) 1
assign("helper", spsspkg.helper)
%

« For R, the helpexr function requires the name of the extension command. Although not shown here, the
name is given by args[[1]], where args is the argument that is passed to the Run function.

« As with Python, the helpexr function in R assumes that the name of the implementation code file is the
same as the name of the extension bundle. The code also uses the convention of markdown . html for
the name of the help file.

= As with Python, you can incorporate the helpex function into the Run function by calling the helper
function when the HELP subcommand is specified. In R, you can check for the HELP subcommand as
follows:

"HELP" %in% attr(args,"names")

264 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

- For IBM SPSS Statistics version 23 and higher, the helper function is included with IBM SPSS Statistics
- Essentials for R and is named spsspkg.helpexr. The if block that follows the helpex function
attempts to assign the name helper to this spsspkg. helper function. If the spsspkg.helper
function is not available, the version of the helper function that is included with the implementation
code is used.

Note:

- For IBM SPSS Statistics version 23 and higher, the help is displayed by pressing the F1 key in a Syntax
Editor window when the cursor is positioned within the associated extension command. The help is also
displayed if the submitted syntax contains the HELP subcommand.

- If you have a style sheet for your HTML file, you can include it in the extension bundle with the HTML
file. When the extension bundle is installed, the style sheet is installed under the same folder as the
HTML file. For version 23 and higher, all extension commands that are installed with IBM SPSS Statistics
- Essentials for Python and IBM SPSS Statistics - Essentials for R have HTML help and an associated
style sheet that you might want to use. The style sheet is also available from the IBM SPSS Predictive
Analytics Community (Docs>SPSS Statistics>Programmability>Extensions, Tools and Utilities for SPSS
Statistics>Utilities). The name of the style sheet file is extsyntax.css.

- The helper function cannot be used in distributed mode, and raises an error message if it is used in
distributed mode.

Plain text help

You can embed the help in a string variable that is defined in the implementation code file and then
display the string when the HELP subcommand is specified. With this approach, the string is displayed in a
Log item in the SPSS Statistics Viewer, and works in distributed mode.

For Python, you can embed the help text in a triple-quoted string to preserve formatting. An example of
help text that just contains the syntax chart for the MYORG GETURL EXCEL command is as follows:

helptext = """MYORG GETURL EXCEL URL = "URL specification"
[/OPTIONS]
[FILETYPE = {XLS**}]

IXLSX %
[SHEETNUMBER = {1%% 1]
{integer?}

[READNAMES = {ONx*x%]

10FF %

[/HELP]

An example of code that is added to the Run function to conditionally display the help text when the HELP
subcommand is specified is as follows:

if args.has_key("HELP"):
print helptext
else:
processcmd(oobj, args, geturlexcel)

For R, you include the help text in a string variable and then conditionally display it with the writelLines
function.

Help contents
Help for an extension command should contain the following content:

« A brief description of the extension command.

« A syntax chart that specifies the command name, subcommands, keywords, keyword values, and
default values of keywords.

« A simple example of the syntax.
« Descriptions for each of the subcommands, keywords, and keyword values.

Chapter 5. Extension Commands 265

All of the extension commands that are installed by IBM SPSS Statistics - Essentials for Python and

IBM SPSS Statistics - Essentials for R include help and might be useful as examples. For release 22

and earlier, the help is in plain text format and is contained in the implementation code file for the
extension command. For release 23 and higher, the help is in HTML format and is contained in the file
markdown.html. For a particular extension command, the file markdown.html is in a folder with the
same name as the command and directly under the folder where the implementation code is installed. If
you have release 22 or earlier, you can obtain the HTML format help by installing the latest version of the
associated extension command from the IBM SPSS Predictive Analytics community.

Deploying an Extension Command

You can easily deploy an extension command (with or without an associated custom dialog) on your
computer, or share it so that it can be deployed by other users. To deploy an extension command, you
first create an extension bundle that includes the XML specification file and the implementation code.
You or your users then install the extension bundle from within IBM SPSS Statistics. For version 24 and
higher, install the extension bundle from Extensions> Install Local Extension Bundle. For versions before
24, install the extension bundle from Utilities > Extension Bundles > Install Local Extension Bundle.

« The recommended convention is to use the same name for the extension bundle as the name of the
extension command. For example, for an extension command that is named MYORG GETURL EXCEL,
the value of the Name field in the Create Extension Bundle dialog (or Extension Properties dialog if you
created the extension bundle from the Custom Dialog Builder for Extensions in version 24 or higher) is
also MYORG GETURL EXCEL.

« If you create a custom dialog for your extension command, then be sure that the custom dialog
specification file (. cfe or . spd) is included in the extension bundle.

- If you create an HTML help file for your extension command, then include the file in the extension
bundle. If your HTML file uses a style sheet, then include the style sheet in the extension bundle.

« If the implementation code consists of multiple code files (for example, multiple Python modules), then
include all of the files in the extension bundle.

« For extension commands that are implemented in R, list the names of any R packages from the CRAN
package repository that are required by your code. Required R packages are listed on the Optional tab
of the Create Extension Bundle dialog (or Optional tab of the Extension Properties dialog if you created
the extension bundle from the Custom Dialog Builder for Extensions in version 24 or higher). When
the extension bundle is installed, SPSS Statistics checks if the required R packages exist on the user's
computer and attempts to download (from CRAN) and install any that are missing.

- If you are globalizing output and messages for your extension command, then include the folder that
contains the translated resources. To add the folder, specify the path to the folder in the Translation
Catalogues Folder field on the Optional tab of the Create Extension Bundle dialog (or Optional tab of
the Extension Properties dialog if you created the extension bundle from the Custom Dialog Builder for
Extensions in version 24 or higher).

« If you or your users plan to run the extension command in distributed mode, then be sure to install the
extension bundle on both the client and server computers.

For version 24 and higher, help on creating and installing extension bundles is available under Core
System > Extensions, in the SPSS Statistics Help system. For versions before 24, help is available under
Core System > Utilities > Extension Bundles. An example of creating an extension bundle is provided in
the tutorial "Working with R", in the SPSS Statistics Help system.

266 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Chapter 6. IBM SPSS Statistics for SAS Programmers

This chapter shows the IBM SPSS Statistics code and SAS equivalents for a number of basic data
management tasks. It is not a comprehensive comparison of the two applications. The purpose of this
chapter is to provide a point of reference for users familiar with SAS who are making the transition to IBM
SPSS Statistics; it is not intended to demonstrate how one application is better or worse than the other.

Reading Data

Both IBM SPSS Statistics and SAS can read data stored in a wide variety of formats, including numerous
database formats, Excel spreadsheets, and text files. All of the IBM SPSS Statistics examples presented in
this section are discussed in greater detail in “Getting Data into IBM SPSS Statistics ” on page 12.

Reading Database Tables

Both SAS and IBM SPSS Statistics rely on Open Database Connectivity (ODBC) to read data from
relational databases. Both applications read data from databases by reading database tables. You can
read information from a single table or merge data from multiple tables in the same database.

Reading a Single Database Table

The structure of a database table is very similar to the structure of a data file in IBM SPSS Statistics
format or an SAS dataset: records (rows) are cases, and fields (columns) are variables.

accessl.sps.

GET DATA /TYPE=0ODBC /CONNECT=
'DSN=MS Access Database;DBQ=/examples/data/dm_demo.mdb; '+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/SQL = 'SELECT * FROM CombinedTable'.

EXECUTE.

proc sql;
connect to odbc(dsn=dm_demo uid=admin pwd=admin);
create table sasdatal as

select *

from connection to odbc(

select *
from CombinedTable
)i
quit;

The IBM SPSS Statistics code allows you to input the parameters for the name of the database and the
path directly into the code. SAS assumes that you have used the Windows Administrative Tools to set

up the ODBC path. For this example, SAS assumes that the ODBC DSN for the database /examples/data/
dm_demo.mdb is defined as dm_demo.

Another difference you will notice is that IBM SPSS Statistics does not use a dataset name. This is
because once the data is read, it is immediately the active dataset in IBM SPSS Statistics. For this
example, the SAS dataset is given the name sasdatal.

In IBM SPSS Statistics, the CONNECT string and all SQL statements must be enclosed in quotes.

SAS converts the spaces in field names to underscores in variable names, while IBM SPSS Statistics
removes the spaces without substituting any characters. Where SAS uses all of the original variable
names as labels, IBM SPSS Statistics provides labels for only the variables not conforming to IBM SPSS
Statistics standards. So, in this example, the variable ID will be named ID in IBM SPSS Statistics with

no label and will be named ID in SAS with a label of ID. The variable Marital Status will be named
Marital_Status in SAS and MaritalStatus in IBM SPSS Statistics, with a label of Marital Status in both IBM
SPSS Statistics and SAS.

Reading Multiple Tables

Both IBM SPSS Statistics and SAS support reading and merging multiple database tables, and the code in
both languages is very similar.

*access_multtablesl.sps.

GET DATA /TYPE=0DBC /CONNECT=
'DSN=MS Access Database;DBQ=/examples/data/dm_demo.mdb; '+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
SQL =

'SELECT * FROM DemographicInformation, SurveyResponses'
' WHERE DemographicInformation.ID=SurveyResponses.ID'.
EXECUTE.

proc sql;
connect to odbc(dsn=dm_demo uid=admin pwd=admin);
create table sasdata2 as
select *
from connection to odbc(
select *
from DemographicInformation, SurveyResponses
where DemographicInformation.ID=SurveyResponses.ID
i
quit;

Both languages also support left and right outer joins and one-to-many record matching between
database tables.

*xsgqlserver_outer_join.sps.
GET DATA /TYPE=0DBC
/CONNECT= 'DSN=SQLServer;UID=;APP=SPSS For Windows;'
'WSID=ROLIVERLAP;Network=DBMSSOCN;Trusted_Connection=Yes'
/SQL =
'SELECT SurveyResponses.ID, SurveyResponses.Internet,'
' [Value Labels].[Internet Label]'
' FROM SurveyResponses LEFT OUTER JOIN [Value Labels]'
' ON SurveyResponses.Internet'
' = [Value Labels].[Internet Value]'.
proc sql;
connect to odbc(dsn=sql_survey uid=admin pwd=admin);
create table sasdata3 as
select *
from connection to odbc(
select SurveyResponses.ID,
SurveyResponses.Internet,
"Value Labels"."Internet Label"
from SurveyReponses left join "Value Labels"
on SurveyReponses.Internet =
"Value Labels"."Internet Value"

quit; '
The left outer join works similarly for both languages.

« The resulting dataset will contain all of the records from the SurveyResponses table, even if there is not
a matching record in the Value Labels table.

« IBM SPSS Statistics requires the syntax LEFT OUTER JOIN and SAS requires the syntax left jointo
perform the join.

« Both languages support the use of either quotes or square brackets to delimit table and/or variable
names that contain spaces. Since IBM SPSS Statistics requires that each line of SQL be quoted, square
brackets are used here for clarity.

Reading Excel Files

IBM SPSS Statistics and SAS can read individual Excel worksheets and multiple worksheets in the same
Excel workbook.

Reading a Single Worksheet

As with reading a single database table, the basic mechanics of reading a single worksheet are fairly
simple: rows are read as cases, and columns are read as variables.

*readexcel.sps.

GET DATA
/TYPE=XLS
/FILE='/examples/data/sales.xls'
/SHEET=NAME 'Gross Revenue'
/CELLRANGE=RANGE 'A2:I15'
/READNAMES=on .

268 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

proc import datafile='/examples/data/sales.xls'
dbms=excel2000 replace out=SASdata4;
sheet="Gross Revenue";
range="A2:I15";
getnames=yes;
run;

Both languages require the Excel filename, worksheet name, and cell range.

Both provide the choice of reading the top row of the range as variable names. IBM SPSS Statistics
accomplishes this with the READNAMES subcommand, and SAS accomplishes this with the getnames
option.

« SAS requires an output dataset name. The dataset name SASdata4 has been used in this example. IBM
SPSS Statistics has no corresponding requirement.

Both languages convert spaces in variable names to underscores. SAS uses all of the original variable
names as labels, and IBM SPSS Statistics provides labels for the variable names not conforming to
IBM SPSS Statistics variable naming rules. In this example, both languages convert Store Number to
Store_Number with a label of Store Number.

The two languages use different rules for assigning the variable type (for example, numeric, string, or
date). IBM SPSS Statistics searches the entire column to determine each variable type. SAS searches
to the first nonmissing value of each variable to determine the type. In this example, the Toys variable
contains dollar-formatted data with the exception of one record containing a value of “NA.” IBM SPSS
Statistics assigns this variable the string data type, preserving the “NA” in record five, whereas SAS
assigns it a numeric dollar format and sets the value for Toys in record five to missing.

Reading Multiple Worksheets
Both IBM SPSS Statistics and SAS rely on ODBC to read multiple worksheets from a workbook.

*readexcel2.sps.
GET DATA
/TYPE=0DBC
/CONNECT=
'DSN=Excel Files;DBQ=c:\examples\data\sales.xls;"' +
'DriverId=790;MaxBufferSize=2048;PageTimeout=5;"
/SQL =
'SELECT Location$.[Store Number], State, Region, City,'
' Power, Hand, Accessories,'
' Tires, Batteries, Gizmos, Dohickeys'
' FROM [Location$], [Tools$], [Auto$]'
' WHERE [Tools$].[Store Number]=[Location$].[Store Number]'
' AND [Auto$].[Store Number]=[Location$].[Store Number]'.

proc sql;
connect to odbc(dsn=salesxls uid=admin pwd=admin);
create table sasdata5 as
select *
from connection to odbc(
select Location$."Store Number", State, Region, City,
Power, Hand, Accessories, Tires, Batteries, Gizmos,
Dohickeys
from "Location$", "Tools$", "Auto$"
where "Tools$"."Store Number"="Location$"."Store Number"
and "Auto$"."Store Number"="Location$"."Store Number"
)5
quit;;

« For this example, both IBM SPSS Statistics and SAS treat the worksheet names as table names in the
From statement.
« Both require the inclusion of a “$” after the worksheet name.

« As in the previous ODBC examples, quotes could be substituted for the square brackets in the IBM SPSS
Statistics code and vice versa for the SAS code.

Reading Text Data

Both IBM SPSS Statistics and SAS can read a wide variety of text-format data files. This example shows

how the two applications read comma-separated value (CSV) files. A CSV file uses commas to separate

data values and encloses values that include commas in quotation marks. Many applications export text
data in this format.

ID,Name,Gender,Date Hired,Department
1,"Foster, Chantal",f,10/29/1998,1
2,"Healy, Jonathan",m,3/1/1992,3

Chapter 6. IBM SPSS Statistics for SAS Programmers 269

3,"Walter, Wendy",f,1/23/1995,2

*delimited_csv.sps.
GET DATA /TYPE = TXT
/FILE = /examples/data/CSV file.csv'
/DELIMITERS = "
/QUALIFIER = '"'
/ARRANGEMENT = DELIMITED
/FIRSTCASE = 2
/VARIABLES = ID F3 Name A1l5 Gender Al
Date_Hired ADATE10 Department F1.

data csvnew;
infile /examples/data/csv file.csv" DLM=',' Firstobs=2 DSD;
informat name $charl5. gender $1. date_| hired mmddyy10. ;
input id name gender date_hired department;
run;

The IBM SPSS Statistics DELIMITERS and SAS DLM values identify the comma as the delimiter.

SAS uses the DSD option on the infile statement to handle the commas within quoted values, and
IBM SPSS Statistics uses the QUALIFIER subcommand.

IBM SPSS Statistics uses the format ADATEL0, and SAS uses the format mmddyy10 to properly read the
date variable.

The IBM SPSS Statistics FIRSTCASE subcommand is equivalent to the SAS Firstobs specification,
indicating that the data to be read start on the second line, or record.

Merging Data Files

Both IBM SPSS Statistics and SAS can merge two or more datasets together.

Merging Files with the Same Cases but Different Variables

One of the types of merges supported by both applications is a match merge: two or more datasets

that contain the same cases but different variables are merged together. Records from each dataset are
matched based on the values of one or more key variables. For example, demographic data for survey
respondents might be contained in one dataset, and survey responses for surveys taken at different
times might be contained in multiple additional datasets. The cases are the same (respondents), but the
variables are different (demographic information and survey responses).

GET FILE='/examples/data/match_responsel.sav'
SORT CASES BY id.
DATASET NAME responsel
GET FILE='/examples/data/match_response2.sav'.
SORT CASES BY id.
DATASET NAME response2.
GET FILE='/examples/data/match_demographics.sav'
SORT CASES BY id.
MATCH FILES /FILE=
/FILE="'responsel’
/FILE='response2'
/RENAME opinionl=opinionl_2 opinion2=opinion2_2
opinion3=opinion3_2 opinion4=opinion4_2
/BY id.
EXECUTE.

libname in "/examples/data";
proc sort data=in.match_responsel;
by id;
run;
proc sort data=in.match_response2;
by id;
run;
proc sort data=in.match_demographics;
by id;
run;
data match_new;
merge match_demographics
match_responsel
match_response2 (rename=(opinionl=opinioni_2
opinion2=opinion2_2 opinion3=opinion3_2
opiniond=opinion4_2));
by id;
run;

- IBM SPSS Statistics uses the GET FILE command to open each data file prior to sorting. SAS uses
libname to assign a working directory for each dataset that needs sorting.

« Both require that each dataset be sorted by values of the BY variable used to match cases.

270 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

« In IBM SPSS Statistics, the last data file opened with the GET FILE command is the active data file.
So, inthe MATCH FILES command, FILE=x* refers to the data file match_demographics.sav, and the
merged working data file retains that filename. If you do not explicitly save the file with the same
filename, the original file is not overwritten. SAS requires a dataset name for the data step. In this
example, the merged dataset is given the name match_new.

« Both IBM SPSS Statistics and SAS allow you to rename variables when merging. This is necessary
because match_responsel and match_response2 contain variables with the same names. If the
variables were not renamed for the second dataset, then the variables merged from the first dataset
would be overwritten.

The IBM SPSS Statistics example presented in this section is discussed in greater detail in “Merging Files
with the Same Cases but Different Variables” on page 41.

Merging Files with the Same Variables but Different Cases

You can also merge two or more datasets that contain the same variables but different cases, appending
cases from each dataset. For example, regional revenue for two different company divisions might be
stored in two separate datasets. Both files have the same variables (region indicator and revenue) but
different cases (each region for each division is a case).

*add_filesl.sps.
ADD FILES
/FILE = '/examples/data/catalog.sav'
/FILE ='/examples/data/retail.sav'
/IN = Division.
EXECUTE.
VALUE LABELS Division O 'Catalog' 1 'Retail Store'.
libname in "/examples/data";
proc format;
value divimt
0='Catalog'
1='Retail Store' ;
run;
data append_new;
set in.catalog (in=a) in.retail (in=b);
format division divfmt.;
if a then division=0;
else if b then division=1;
run;

« In the IBM SPSS Statistics code, the IN subcommand after the second FILE subcommand creates
a new variable, Division, with a value of 1 for cases from retail.sav and a value of O for cases from
catalog.sav. To achieve this same result, SAS requires the format procedure to create a user-defined
format where O represents the catalog file and 1 represents the retail file.

« In SAS, the set statement is required to append the files so that the system variable in can be used in
the data step to assist with identifying which dataset contains each observation.

« The IBM SPSS Statistics VALUE LABELS command assigns descriptive labels to the values 0 and 1 for
the variable Division, making it easier to interpret the values of the variable that identifies the source file
for each case. In SAS, this would require a separate formats file.

The IBM SPSS Statistics example presented in this section is discussed in greater detail in “Merging Files
with the Same Variables but Different Cases” on page 44.

Performing General Match Merging

In addition to the simple match merge discussed in “Merging Files with the Same Cases but Different
Variables” on page 270, both applications can handle more complex examples of match merging. For
instance, you want to merge two datasets, keeping all records from the first one and only those from the
second one that match on the key variable. However, the key variable in the second dataset presents the
following complexities: its values are a transformation of the values of the key variable in the first dataset;
it contains duplicate values and you only want to merge values from one of the duplicate records.

As an example, consider data from a study on new relaxation therapies for reducing blood pressure. Blood
pressure readings are taken after each of several treatments and recorded in a primary file that includes
all readings for all participants in the study. A number of patients from a particular medical group are
enrolled in the study, and the medical group would like to merge the final readings from the study with

Chapter 6. IBM SPSS Statistics for SAS Programmers 271

their patient's records. This requires merging only those records from the primary file that correspond

to patients from the medical group and keeping only the most recent record for each such patient. For
privacy purposes, patients in the study are identified by the last five digits of their social security number,
whereas the records maintained by the medical group use the full social security number as the patient
identifier.

*python_dataset_mergeds2.sps.
GET FILE='/examples/data/merge_study.sav'.
SORT CASES BY id date (D).
DATASET NAME study.
GET FILE='/examples/data/merge_patients.sav'.
DATASET NAME patients.
BEGIN PROGRAM.
import spss
spss.StartDataStep ()
dsl = spss.Dataset(name="'patients')
dsl.varlist.append('bps_study')
dsl.varlist.append('bpd_study"')
ds2 = spss.Dataset(name="'study"')
id2vals = [item[0] for item in ds2.cases[0:len(ds2.cases),
ds2.varlist['id'].index]]
for i in range(len(dsl.cases)):
try:

y:
idl = dsl.cases[i,dsl.varlist['id'].index][0]
rownum=id2vals.index(id1[-ds2.varlist['id'].type:])
dsl.cases[i,-2]=ds2.cases[rownum,ds2.varlist['sys'].index][0]
dsl.cases[i,-1]=ds2.cases[rownum,ds2.varlist['dia'].index][0]

except:
pass
spss.EndDataStep()

END PROGRAM.

libname in "/examples/data";
data _null_;
set in.merge_study;
call symput('id_len',6length(id));
run;
data temp;
set in.merge_patients;
tempid = substr(id,length(id)+1-symget('id_len'),symget('id_len'));
run;
proc sort data=temp;
by tempid;
run;
proc sort data=in.merge_study;
by id date;
run;
data merge_new;
merge temp(in=c)
in.merge_study(drop=date
rename=(id=tempid sys=bps_study dia=bpd_study));
by tempid;
if ¢ & last.tempid;
drop tempid;
run;

To perform more general match merging in IBM SPSS Statistics than is possible with the MATCH FILES
command, you initiate a data step. Data steps in IBM SPSS Statistics offer similar functionality to what
is available with the SAS DATA step. They are initiated with the spss.StartDataStep () function
from within a BEGIN PROGRAM-END PROGRAM block and require the IBM SPSS Statistics - Integration
Plug-in for Python. Statements within a BEGIN PROGRAM-END PROGRAM block are written in the
Python programming language.

Once a data step has been initiated in IBM SPSS Statistics, you can access any open dataset and

create new datasets using the Dataset class--a Python class provided with the IBM SPSS Statistics -
Integration Plug-in for Python. Each instance of the class provides access to the cases and variables

in a particular dataset. In this example, an instance of the Dataset class is created for the datasets
patients and study, as in spss.Dataset(name="'patients') and spss.Dataset(name="'study"').

The Dataset class does not require that the data are sorted. In this example, for IBM SPSS Statistics,
it is convenient to sort the data from the study by the key variable id and in descending order by date.
This simplifies the task of extracting the most recent record for a given patient. For SAS, both datasets
are sorted before performing the merge with the MERGE statement.

As with the MATCH FILES command, merging data with the Dataset class does not require the
creation of a new dataset. In this example, data from the study will be merged to the existing dataset
patients.

In a SAS DATA step, you use specific syntax statements such as INPUT, SET, and MERGE to accomplish
your goals. There are no equivalents to these statements for a data step in IBM SPSS Statistics. IBM
SPSS Statistics data steps are written in the Python programming language and utilize a set of IBM SPSS
Statistics-specific classes--such as the Dataset class--and functions to accomplish data management
tasks. See the topic “Creating and Accessing Multiple Datasets” on page 178 for more information.

272 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

« For a data step in IBM SPSS Statistics, there is no equivalent to the SAS RUN statement. A data step in
IBM SPSS Statistics is executed along with the BEGIN PROGRAM-END PROGRAM block that contains it.

Aggregating Data

IBM SPSS Statistics and SAS can both aggregate groups of cases, creating a new dataset in which the
groups are the cases. In this example, information was collected for every person living in a selected
sample of households. In addition to information for each individual, each case contains a variable
that identifies the household. You can change the unit of analysis from individuals to households by
aggregating the data based on the value of the household ID variable.

*aggregate2.sps.
DATA LIST FREE (" ")
/ID_household (F3) ID_person (F2) Income (F8).
BEGIN DATA
101 1 12345 101 2 47321 101 3 500 101 4 0
102 1 77233 102 2 0O
103 1 19010 103 2 98277 103 3 0
104 1 101244
END DATA.
AGGREGATE
/OUTFILE = % MODE = ADDVARIABLES
/BREAK = ID_household
/per_capita_Income = MEAN(Income)
/Household_Size = N.

data tempdata;
informat id_household 3. id_person 2. income 8.;
input ID_household ID_person Income @@;

cards;

101 1 12345 101 2 47321 101 3 500 101 4 0

102 1 77233 102 2 0

103 1 19010 103 2 98277 103 3 0

104 1 101244

run;
proc sort data=tempdata;
by ID_household;
run;
proc summary data=tempdata;
var Income;
by ID_household;
output out=aggdata
mean=per_capita_Income
n=Household_Size;
run;
data new;
merge tempdata aggdata (drop=_type_ _freq_);
by ID_Household;
run;

SAS uses the summaxry procedure for aggregating, whereas IBM SPSS Statistics has a specific command
for aggregating data: AGGREGATE.

The IBM SPSS Statistics BREAK subcommand is equivalent to the SAS By Variable command.

In IBM SPSS Statistics, you specify the aggregate summary function and the variable to aggregate
in a single step, as in per_capita_Income = MEAN(Income). In SAS, this requires two separate
statements: var Income and mean=pexr_capita_Income.

To append the aggregated values to the original data file, IBM SPSS Statistics uses the subcommand /
OUTFILE = = MODE = ADDVARIABLES. With SAS, you need to merge the original and aggregated
datasets, and the aggregated dataset contains two automatically generated variables that you probably
don’t want to include in the merged results. The SAS merge command contains a specification to delete
these extraneous variables.

Assigning Variable Properties

In addition to the basic data type (numeric, string, date, and so on), you can assign other properties

that describe the variables and their associated values. In a sense, these properties can be considered
metadata—data that describe the data. The IBM SPSS Statistics examples provided here are discussed in
greater detail in “Variable Properties” on page 55.

Chapter 6. IBM SPSS Statistics for SAS Programmers 273

Variable Labels

Both IBM SPSS Statistics and SAS provide the ability to assign descriptive variable labels that have less
restrictive rules than variable naming rules. For example, variable labels can contain spaces and special
characters not allowed in variable names.

VARIABLE LABELS
Interview_date "Interview date"
Income_category "Income category"
opinionl "Would buy this product"
opinion2 "Would recommend this product to others"
opinion3 "Price is reasonable"
opinion4 "Better than a poke in the eye with a sharp stick".

label Interview_date = "Interview date"
Income_category = "Income category"
opinionl="Would buy this product"
opinion2="Would recommend this product to others"
opinion3="Price is reasonable"
opinion4="Better than a poke in the eye with a sharp stick";

- In IBM SPSS Statistics, you define variable labels with the VARIABLE LABELS command. In SAS, you
use the 1abel statement.

« In IBM SPSS Statistics, VARIABLE LABELS commands can appear anywhere in the command stream,
and the labels are attached to the variables at that point in the command processing. So you can
assign labels to newly created variables and/or change labels for existing variables at any time. In SAS,
label statements can be contained in a data step or a proc step. When used in a data step, the labels
are permanently associated with the specified variables. When used in a proc step, the association is
temporary.

Value Labels

You can also assign descriptive labels for each value of a variable. This is particularly useful if your data
file uses numeric codes to represent non-numeric categories. For example, income_category uses the
codes 1 through 4 to represent different income ranges, and the four opinion variables use the codes 1
through 5 to represent levels of agreement/disagreement.

VALUE LABELS
Gender "m" "Male" "f" "Female"
/Income_category 1 "Under 25K" 2 "25K to 49K"
3 "50K to 74K" 4 "75K+" 7 "Refused to answer"
8 "Don't know" 9 "No answer"
/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish"
4 "Other" 9 "No answer"
/opinionl TO opinion4 1 "Strongly Disagree" 2 "Disagree"
3 "Ambivalent" 4 "Agree" 5 "Strongly Agree" 9 "No answer".

proc format;
value $genfmt
'm'="'Male’
‘f'="'Female"'

value incfmt
1="'Under 25K'
2="'25K to 49K'
4="75K+" 3='50K to 74K’
7="'Refused to answer'
8='Don' 't know'
9="No answer'

value relfmt
1="'Catholic"
2='Protestant’
3="'Jewish"
4="'0ther"
9="'No answer'

value opnfmt
1="Strongly Disagree'
2='Disagree’
3="'Ambivalent'
4="'Agree'
5='Strongly Agree'
9="'No answer'

run;
data new;
format Gender $genfmt.
Income_category incfmt.
Religion relfmt.
opinionl opinion2 opinion3 opinion4 opnfmt.;
input Gender $ Income_category Religion opinionl-opinion4;
cards;
m345131
£f302343

274 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

;
run;

- In IBM SPSS Statistics, assigning value labels is relatively straightforward. You can insert VALUE
LABELS commands (and ADD VALUE LABELS commands to append additional value labels) at any
point in the command stream; those value labels, like variable labels, become metadata that is part of
the data file and saved with the data file.

« In SAS, you can define a format and then apply the format to specified variables within a data step.

Cleaning and Validating Data

Real data frequently contain real errors, and IBM SPSS Statistics and SAS both have features that can
help identify invalid or suspicious values. All of the IBM SPSS Statistics examples provided in this section
are discussed in detail.

Finding and Displaying Invalid Values

All of the variables in a file may have values that appear to be valid when examined individually, but
certain combinations of values for different variables may indicate that at least one of the variables has
either an invalid value or at least one that is suspect. For example, a pregnant male clearly indicates

an error in one of the values, whereas a pregnant female older than 55 may not be invalid but should
probably be double-checked.

*invalid_data3.sps.
DATA LIST FREE /age gender pregnant.
BEGIN DATA
25 0 0
1210
80 11
47 0 0
3401
911
19 0 0
27 0 1
END DATA.
VALUE LABELS gender © 'Male' 1 'Female’

/pregnant © 'No' 1 'Yes'.
DO IF pregnant = 1.
- DO IF gender = 0.
= COMPUTE valueCheck = 1.
- ELSE IF gender = 1.
DO IF age > 55.

COMPUTE valueCheck = 2.
ELSE IF age < 12.

COMPUTE valueCheck = 3.
= END IF.
- END IF.
ELSE.
- COMPUTE valueCheck=0.
END IF.
VALUE LABELS valueCheck

O 'No problems detected'

1 'Male and pregnant'

2 'Age > 55 and pregnant'

3 'Age < 12 and pregnant'.
FREQUENCIES VARIABLES = valueCheck.

proc format;
value genfmt

0="'Male'
1="'Female'

vaiue pregfmt
0="No"
1="Yes'

value vchkfmt
0="'No problems detected’
1='Male and pregnant'
2="'Age > 55 and pregnant'
3="Age < 12 and pregnant'

run;
data new;
format gender genfmt.
pregnant pregfmt.
valueCheck vchkfmt.

input age gender pregnant;
valueCheck=0;
if pregnant then do;
if gender=0 then valueCheck=1;
else if gender then do;
if age > 55 then valueCheck=2;
else if age < 12 then valueCheck=3;
end;
end;
cards;
25 0 0

Chapter 6. IBM SPSS Statistics for SAS Programmers 275

TNPOWROE
~ 0 ANON
jojo) (ool ol
(<l PORP O

run;

proc freq data=new;
tables valueCheck;
run;

DO IF pregnant = 1inIBM SPSS Statistics is equivalentto if pregnant then doin SAS. As
in the SAS example, you could simplify the IBM SPSS Statistics code to DO IF pregnant, since this
resolves to Boolean true if the value of pregnant is 1.

END IF inIBM SPSS Statistics is equivalent to end in SAS in this example.

To display a frequency table of valueCheck, IBM SPSS Statistics uses a simple FREQUENCIES command,
whereas in SAS you need to call a procedure separate from the data processing step.

Finding and Filtering Duplicates

In this example, each case is identified by two ID variables: ID_house, which identifies each household,
and ID_person, which identifies each person within the household. If multiple cases have the same value
for both variables, then they represent the same case. In this example, that is not necessarily a coding
error, since the same person may have been interviewed on more than one occasion. The interview date is
recorded in the variable int_date, and for cases that match on both ID variables, we want to ignore all but
the most recent interview.

The IBM SPSS Statistics code used in this example was generated by pasting and editing command syntax
generated by the Identify Duplicate Cases dialog box (Data menu > Identify Duplicate Cases).

* duplicates_filter.sps.
GET FILE='/examples/data/duplicates.sav'.
SORT CASES BY ID_house(A) ID_person(A) int_date(A) .
MATCH FILES /FILE = %

/BY ID_house ID_person /LAST = MostRecent .
FILTER BY MostRecent .
EXECUTE.
libname in "/examples/data";
proc sort data=in.duplicates;

by ID_house ID_person int_date;

run;
data new;

set in.duplicates;

by ID_house ID_person;

if last.ID_person;

run;

« Like SAS, IBM SPSS Statistics is able to identify the last record within each sorted group. In this
example, both assign a value of 1 to the last record in each group and a value of O to all other records.

« SAS uses the temporary variable last. to identify the last record in each group. This variable is available
for each variable in the by statement following the set statement within the data step, but it is not
saved to the dataset.

« IBM SPSS Statistics uses a MATCH FILES command with a LAST subcommand to create a new
variable, MostRecent, that identifies the last case in each group. This is not a temporary variable, so
it is available for future processing.

« Where SAS uses an if statement to select the last case in each group, IBM SPSS Statistics uses a
FILTER command to filter out all but the last case in each group. The new SAS data step does not
contain the duplicate records. IBM SPSS Statistics retains the duplicates but does not include them in
reports or analyses unless you turn off filtering (but you can use SELECT IF to delete rather than filter
unselected cases). IBM SPSS Statistics displays these records in the Data Editor with a slash through
the row number.

Transforming Data Values

In both IBM SPSS Statistics and SAS, you can perform data transformations ranging from simple tasks,
such as collapsing categories for reports, to more advanced tasks, such as creating new variables based

276 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

on complex equations and conditional statements. All of the IBM SPSS Statistics examples provided here
are discussed in greater detail in “Data Transformations” on page 62.

Recoding Data

There are many reasons why you might need or want to recode data. For example, questionnaires often
use a combination of high-low and low-high rankings. For reporting and analysis purposes, however, you
probably want these all coded in a consistent manner.

*recode.sps.

DATA LIST FREE /opinionl opinion2.
BEGIN DATA

15

PNWA

2
3
4
5]
END DATA.
RECODE opinion2
(1=5) (2=4) (4=2) (56=1)
(ELSE = COPY)
INTO opinion2_new.
EXECUTE.
VALUE LABELS opinionl opinion2_new
1 'Really bad' 2 'Bad' 3 'Blah’
4 'Good' 5 'Terrific!'.

proc format;
value opfmt
1="'Really bad'
2="'Bad’
3='Blah’
4="Good"
5='Terrific!"

H
value conv

run;

data recode;
input opinionl opinion2;
length opinion2_new 8;
opinion2_new=input(put(opinion2,conv.),1.);

format opinionl opinion2_new opfmt.;
datalines;

cOaBbWNE
PNWbhO

H
run;

IBM SPSS Statistics uses a single RECODE command to create a new variable, opinion2_new, with the
recoded values of the original variable, opinion2.

The recoding can be accomplished in SAS by defining a format--conv in the example--that specifies the
recoding scheme and applying the format with the put function.

ELSE = COPY in the IBM SPSS Statistics RECODE command covers any values not explicitly specified
and copies the original values to the new variable.

Binning Data

Creating a small number of discrete categories from a continuous scale variable is sometimes referred to
as binning or banding. For example, you can bin salary data into a few salary range categories.

Although it is not difficult to write code in IBM SPSS Statistics or SAS to bin a scale variable into range
categories, in IBM SPSS Statistics we recommend that you use the Visual Binning dialog box, available
on the Transform menu, because it can help you make the best recoding choices by showing the actual
distribution of values and where your selected category boundaries occur in the distribution. It also
provides a number of different binning methods and can automatically generate descriptive labels for the
binned categories. The IBM SPSS Statistics command syntax in this example was generated by the Visual
Binning dialog box.

*visual_binning.sps.
**xkcommands generated by visual binning dialogxxx.
RECODE salary

Chapter 6. IBM SPSS Statistics for SAS Programmers 277

MISSING = COPY)
LO THRU 25000 =1)
LO THRU 50000 =2)
LO THRU 75000 =3)
LO THRU HI = 4)
ELSE = SYSMIS) INTO salary_category.
VARIABLE LABELS salary_category 'Current Salary (Binned)'.
FORMAT salary_category (F5.0).
VALUE LABELS salary_category
1 ‘<= $25,000"
2 '$25,001 - $50,000'
3 '$50,001 - $75,000'
4 '$75,001+"
¢} 'missing’'.
MISSING VALUES salary_category (0).
VARIABLE LEVEL salary_category (ORDINAL).
EXECUTE.

A~~~

libname in "/examples/data";
proc format;
value salfmt

1="<= $25,000"
2="'$25,001 - $50,000'
3='$50,001 - $75,000'
4="'$75,001+"
0='missing’'

i

run;
data recode;
set in.employee_data;
format salary_category salfmt.;
label salary_category = "Current Salary (Binned)";
select;
when (O<salary<=25000) salary_category=1;
when (25000<salary<=50000) salary_category=2;
when (50000<salary<=75000) salary_category=3;
when (salary>75000) salary_category=4;
otherwise salary_category=salary;
end;
run;

The IBM SPSS Statistics Visual Binning dialog box generates RECODE command syntax similar to the
code in the previous recoding example. It can also automatically generate appropriate descriptive value
labels (as in this example) for each binned category.

The recoding is accomplished in SAS with a series of when statements in a select group.

The IBM SPSS Statistics RECODE command supports the keywords LO and HI to ensure that no values
are left out of the binning scheme. In SAS, you can obtain similar functionality with the standard <, <=,
>, and >= operators.

Numeric Functions

In addition to simple arithmetic operators (for example, +, -, /, *), you can transform data values in
both IBM SPSS Statistics and SAS with a wide variety of functions, including arithmetic and statistical
functions.

*numeric_functions.sps.

DATA LIST LIST (",") /varl var2 var3 var4d.
BEGIN DATA

1, , 3, 4

COMPUTE Square_Root = SQRT(var4).

COMPUTE Remainder = MOD(var4, 3).

COMPUTE Average = MEAN.3(varl, var2, var3, var4).
COMPUTE Valid_Values = NVALID(varl TO vard).
COMPUTE Trunc_Mean = TRUNC(MEAN(varl TO var4)).
EXECUTE.

data new;
input varl-var4;
Square_Root=sqrt(var4);
Remainder=mod(var4,3);
x=n(of varl-vard);
if x >= 3 then Average=mean(of varl-var4);
Valid_Values=x;
Trunc_Mean=int(mean(of varl-var4d));

cards;

1.34

5678

9 . .12

i
Iun;

« IBM SPSS Statistics and SAS use the same function names for the square root (SQRT) and remainder
(MOD) functions.

278 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

- IBM SPSS Statistics allows you to specify the minimum number of nonmissing values required to
calculate any numeric function. For example, MEAN. 3 specifies that at least three of the variables (or
other function arguments) must contain nonmissing values.

« In SAS, if you want to specify the minimum number of nonmissing arguments for a function calculation,
you need to calculate the number of nonmissing values using the function n and then use this
information in an 1f statement prior to calculating the function.

« The IBM SPSS Statistics NVALID function returns the number of nonmissing values in an argument list.
« The SAS int function is the analogue of the IBM SPSS Statistics TRUNC function.

Random Number Functions

Random value and distribution functions generate random values based on various distributions.

*random_functons.sps.

NEW FILE.

SET SEED 987987987.

*create 1,000 cases with random values.

INPUT PROGRAM.

- LOOP #I=1 TO 1000.
COMPUTE Uniform_Distribution = UNIFORM(100).
COMPUTE Normal_Distribution = RV.NORMAL(50,25).
COMPUTE Poisson_Distribution = RV.POISSON(50) .
END CASE.

- END LOOP.

- END FILE.

END INPUT PROGRAM.

FREQUENCIES VARIABLES = ALL

/HISTOGRAM /FORMAT = NOTABLE.

data new;

seed=987987987;

do i=1 to 1000;
Uniform_Distribution=100%ranuni(seed);
Normal_Distribution=50+25*rannor(seed);
Poisson_Distribution=ranpoi(seed,50);
output;
end;

run;

- Both SAS and IBM SPSS Statistics allow you to set the seed to start the random number generation
process.

« Both languages allow you to generate random numbers using a wide variety of statistical distributions.
This example generates 1,000 observations using the uniform distribution with a mean of 100, the
normal distribution with a mean of 50 and standard deviation of 25, and the Poisson distribution with a
mean of 50.

- IBM SPSS Statistics allows you to provide parameters for the distribution functions, such as the mean
and standard deviation for the RV.NORMAL function.

= SAS functions are generic and require that you use equations to modify the distributions.

- IBM SPSS Statistics does not require the seed as a parameter in the random number functions as does
SAS.

String Concatenation

You can combine multiple string and/or numeric values to create new string values. For example, you
can combine three numeric variables for area code, exchange, and number into one string variable for
telephone number with dashes between the values.

*concat_string.sps.

DATA LIST FREE /tell tel2 tel3 (3F4).

BEGIN DATA

111 222 3333

222 333 4444

333 444 5555

555 666 707

END DATA.

STRING telephone (A12).

COMPUTE telephone =

CONCAT ((STRING (tell, N3))

(STRING(tel2, N3))
(STRING (tel3, N4))

EXECUTE.

’

).

o
’

data new;
input tell 4. tel2 4. tel3 4.;
telephone=

Chapter 6. IBM SPSS Statistics for SAS Programmers 279

cat(put(tell,z3.),"-",put(tel2,z3.),"-", put(tel3, z4.));
cards;
111 222 3333
222 333 4444
333 444 5555
555 666 707

;
run;

- IBM SPSS Statistics uses the CONCAT function to concatenate strings and SAS uses the cat function for
concatenation.

« The IBM SPSS Statistics STRING function converts a numeric value to a character value, like the SAS
put function.

- The IBM SPSS Statistics N format converts spaces to zeroes. The SAS z format adds leading zeroes to fill
the specified width.

String Parsing

In addition to being able to combine strings, you can take them apart. For example, you can take apart
a 12-character telephone number, recorded as a string (because of the embedded dashes), and create
three new numeric variables for area code, exchange, and number.

DATA LIST FREE (",") /telephone (A16).
BEGIN DATA
111-222-3333
222 - 333 - 4444
333-444-5555
444 - 555-6666
555-666-0707
END DATA.
COMPUTE tell =

NUMBER (SUBSTR(telephone, 1, CHAR.INDEX(telephone, "-")-1), F5).
COMPUTE tel2 =

NUMBER (SUBSTR(telephone, CHAR.INDEX(telephone, "-")+1,

CHAR.RINDEX(telephone, "-")-(CHAR.INDEX(telephone, "-")+1)), F5).
COMPUTE tel3 =

NUMBER (SUBSTR (telephone, CHAR.RINDEX(telephone, "-")+1), F5).
EXECUTE.

FORMATS tell tel2 (N3) tel3 (N4).

data new;
input telephone $16.;
format tell tel2 3. tel3 z4.;
tell=input (substr(compress(telephone,'- '),1,
tel2=input (substr(compress(telephone,'- '),4,
tel3=input (substr(compress(telephone,'- '),7

»ww

)
).
)

hww

)i
o))
)i

cards;
111-222-3333

222 - 333 - 4444
333-444-5555

444 - 555-6666
555-666-0707

;
run;

IBM SPSS Statistics uses substring (SUBSTR) and index (CHAR . INDEX, CHAR . RINDEX) functions to
search the string for specified characters and to extract the appropriate values.

SAS allows you to name the characters to exclude from a variable using the compress function and
then take a substring (substz) of the resulting value.

- The IBM SPSS Statistics N format is comparable to the SAS z format. Both formats write leading zeros.

Working with Dates and Times

Dates and times come in a wide variety of formats, ranging from different display formats (for example,
10/28/1986 versus 28-0CT-1986) to separate entries for each component of a date or time (for example,
a day variable, a month variable, and a year variable). Both IBM SPSS Statistics and SAS can handle

date and times in a variety of formats, and both applications provide features for performing date/time
calculations.

280 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Calculating and Converting Date and Time Intervals

A common date calculation is the elapsed time between two dates and/or times. Assuming you have
assigned the appropriate date, time, or date/time format to the variables, IBM SPSS Statistics and SAS
can both perform this type of calculation.

*date_functions.sps.

DATA LIST FREE (",")
/StartDate (ADATE12) EndDate (ADATE12)
StartDateTime (DATETIME20) EndDateTime (DATETIME20)
StartTime (TIME10) EndTime (TIME10).

BEGIN DATA

3/01/2003, 4/10/2003

01-MAR-2003 12:00, 02-MAR-2003 12:00

09:30, 10:15

END DATA.

COMPUTE days = CTIME.DAYS(EndDate-StartDate).

COMPUTE hours = CTIME.HOURS(EndDateTime-StartDateTime).

COMPUTE minutes = CTIME.MINUTES(EndTime-StartTime).

EXECUTE.

data new;
1nflle cards dlm="',' n=3;
input StartDate : MMDDYYlG. EndDate : MMDDYY10.
#2 StartDateTime : DATETIMEL17. EndDateTime : DATETIME17.
#3 StartTime : TIME5. EndTime : TIMES.

days=EndDate-StartDate;
hours=intck("hour",StartDateTime,EndDateTime) ;
minutes=intck("minute",StartTime,EndTime);

cards;

3/01/2003, 4/10/2003

01-MAR-2003 12:00, 02-MAR-2003 12:00

09:30, 10:15

H
run;

« IBM SPSS Statistics stores all date and time values as a number of seconds, and subtracting one date
or time value returns the difference in seconds. You can use CTIME functions to return the difference as
number of days, hours, or minutes.

« In SAS, simple dates are stored as a number of days, but times and dates with a time component are
stored as a number of seconds. Subtracting one simple date from another will return the difference
as a number of days. Subtracting one date/time from another, however, will return the difference as a
number of seconds. You can obtain the difference in some other time measurement unit by using the
intck function.

Adding to or Subtracting from One Date to Find Another Date

Another common date/time calculation is adding or subtracting days (or hours, minutes, and so forth)
from one date to obtain another date. For example, let’s say prospective customers can use your product
on a trial basis for 30 days, and you need to know when the trial period ends—just to make it interesting, if
the trial period ends on a Saturday or Sunday, you want to extend it to the following Monday.

*date_functions2.sps.

DATA LIST FREE (" ") /StartDate (ADATE10).
BEGIN DATA

10/29/2603 10/30/2003

10/31/2003 11/1/2003

11/2/2003 11/4/2003

11/5/2003 11/6/2003

END DATA.

COMPUTE expdate = StartDate + TIME.DAYS(30).
FORMATS expdate (ADATE10) .

*xxif expdate is Saturday or Sunday, make it Monday*xx.
DO IF (XDATE.WKDAY (expdate) =

- COMPUTE expdate = expdate + TIME DAYS(1) .
ELSE IF (XDATE.WKDAY (expdate) = 7).

- COMPUTE expdate = expdate + TIME.DAYS(2).
END IF.

EXECUTE.

data new;
format expdate datel0.;
input StartDate : MMDDYY10. @@ ;
expdate=StartDate+30;;
if weekday(expdate)=1 then expdate+1;
else if weekday(expdate)=7 then expdate+2;
cards;
10/29/2603 10/30/2003
10/31/2003 11/1/2003
11/2/2003 11/4/2003
11/5/2003 11/6/2003

;
run;

Chapter 6. IBM SPSS Statistics for SAS Programmers 281

« Since all IBM SPSS Statistics date values are stored as a number of seconds, you need to use the
TIME.DAYS function to add or subtract days from a date value. In SAS, simple dates are stored as a
number of days, so you do not need a special function to add or subtract days.

« The IBM SPSS Statistics XDATE . WKDAY function is equivalent to the SAS weekday function, and both
return a value of 1 for Sunday and 7 for Saturday.

Extracting Date and Time Information

A great deal of information can be extracted from date and time variables. For example, in addition to the
day, month, and year, a date is associated with a specific day of the week, week of the year, and quarter.

*date_functions3.sps.
DATA LIST FREE (",")

/StartDateTime (datetime25).
BEGIN DATA
29-0CT-2003 11:23:02
1 January 1998 1:45:01
21/6/2000 2:55:13
END DATA.
COMPUTE dateonly=XDATE.DATE(StartDateTime) .
FORMATS dateonly(ADATE10) .
COMPUTE hour=XDATE.HOUR(StartDateTime).
COMPUTE DayofWeek=XDATE.WKDAY (StartDateTime) .
COMPUTE WeekofYear=XDATE.WEEK(StartDateTime).
COMPUTE quarter=XDATE.QUARTER(StartDateTime) .
EXECUTE.

data new;
format dateonly mmddyy10.;
input StartDateTime & : DATETIME25. ;
dateonly=datepart(StartDateTime);
hour=hour (StartDateTime) ;

DayofWeek=weekday (dateonly) ;
quarter=qtr(dateonly);
cards;
29-0CT-2003 11:23:02

run;

IBM SPSS Statistics uses one main function, XDATE, to extract the date, hour, weekday, week, and
quarter from a datetime value.

SAS uses separate functions to extract the date, hour, weekday, and quarter from a datetime value.

The IBM SPSS Statistics XDATE . DATE function is equivalent to the SAS datepart function. The IBM
SPSS Statistics XDATE.HOUR function is equivalent to the SAS houz function.

SAS requires a simple date value (with no time component) to obtain weekday and quarter information,
requiring an extra calculation, whereas IBM SPSS Statistics can extract weekday and quarter directly
from a datetime value.

Custom Functions, Job Flow Control, and Global Macro Variables

The purpose of this section is to introduce users familiar with SAS to capabilities available with the IBM
SPSS Statistics - Integration Plug-in for Python that allow you to:

« Write custom functions as you would with %macro.

« Control job flow as you would with call execute.

- Create global macro variables as you would with symput.
 Pass values to programs as you would with sysparm.

The IBM SPSS Statistics - Integration Plug-in for Python works with release 14.0.1 or later and requires
only the Core system. The IBM SPSS Statistics examples in this section assume some familiarity with
Python and the way it can be used with command syntax. See the topic “Getting Started with Python
Programming in IBM SPSS Statistics ” on page 120 for more information.

Creating Custom Functions

Both IBM SPSS Statistics and SAS allow you to encapsulate a set of commands in a named piece of code
that is callable and accepts parameters that can be used to complete the command specifications. In

282 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

SAS, this is done with %maczro, and in IBM SPSS Statistics, this is best done with a Python user-defined
function. To demonstrate this functionality, consider creating a function that runs a DESCRIPTIVES
command in IBM SPSS Statistics or the means procedure in SAS on a single variable. The function has two
arguments: the variable name and the dataset containing the variable.

def prodstats(dataset product) :
spss.Submit (xr""
GET FILE='%(dataset)s'.
DESCRIPTIVES %(product)s.
"" %locals())

libname mydata '/data';
%macro prodstats(dataset=, product=);
proc means data=&dataset;
var &product;

un;
omend prodstats

%prodstats(dataset=mydata.sales, product=milk)

The def statement signals the beginning of a Python user-defined function (the colon at the end of the
def statement is required). From within a Python function, you can execute syntax commands using
the Submit function from the spss module. The function accepts a quoted string representing a syntax
command and submits the command text to IBM SPSS Statistics for processing. In SAS, you simply
include the desired commands in the macro definition.

The argument product is used to specify the variable for the DESCRIPTIVES command in IBM

SPSS Statistics or the means procedure in SAS, and dataset specifies the dataset. The expressions
%(product)sand %(dataset)s in the IBM SPSS Statistics code specify to substitute a string
representation of the value of product and the value of dataset, respectively. See the topic “Dynamically
Specifying Command Syntax Using String Substitution” on page 138 for more information.

In IBM SPSS Statistics, the GET command is used to retrieve the desired dataset. If you omit this
command, the function will attempt to run a DESCRIPTIVES command on the active dataset.

To run the SAS macro, you simply call it. In the case of IBM SPSS Statistics, once you've created a
Python user-defined function, you typically include it in a Python module on the Python search path.
Let's say you include the prodstats function in a module named myfuncs. You would then call the
function with code such as,

myfuncs.prodstats("/data/sales.sav","milk")

assuming that you had first imported myfuncs. Note that since the Python function prodstats makes
use of a function from the spss module, the module myfuncs would need to include the statement
import spss prior to the function definition.

For more information on creating Python functions for use with IBM SPSS Statistics, see “Creating User-
Defined Functions in Python” on page 140.

Job Flow Control

Both IBM SPSS Statistics and SAS allow you to control the flow of a job, conditionally executing selected
commands. In SAS, you can conditionally execute commands with call execute. The equivalent in
IBM SPSS Statistics is to drive command syntax from Python using the Submit function from the spss
module. Information needed to determine the flow is retrieved from IBM SPSS Statistics into Python. As
an example, consider the task of conditionally generating a report of bank customers with low balances
only if there are such customers at the time the report is to be generated.

BEGIN PROGRAM.
import spss, spssdata
spss.Submit ("GET FILE='/data/custbal.sav'
dataObj=spssdata.Spssdata(indexes=[" acctbal])
report=False
for row in dataObj:

if row.acctbal<200:

report=True

brea
dataObj.close()
if report:
spss.Submit ("""
TEMPORARY .
SELECT IF acctbal<200.
SUMMARIZE
/TABLES=custid custname acctbal
/FORMAT=VALIDLIST NOCASENUM NOTOTAL
/TITLE='Customers with Low Balances'.

Chapter 6. IBM SPSS Statistics for SAS Programmers 283

vy
END PROGRAM.

libname mydata '/data';
data lowbal;
set mydata.custbal end=final;
if acctbal<200 then
do;
n+l;
output;
end;
if final and n then call execute

proc print data=lowbal;

var custid custname acctbal;

title 'Customers with Low Balances';
run;
O)F

run;

Both IBM SPSS Statistics and SAS use a conditional expression to determine whether to generate the
report. In the case of IBM SPSS Statistics, this is a Python if statement, since the execution is being
controlled from Python. In IBM SPSS Statistics, the command syntax to run the report is passed as an
argument to the Submit function in the spss module. In SAS, the command to run the report is passed
as an argument to the call execute function.

The IBM SPSS Statistics code makes use of functions in the spss and spssdata modules, so an import
statement is included for them. The spssdata module is a supplementary module installed with the
IBM SPSS Statistics - Integration Plug-in for Python. It builds on the functionality available in the spss
module to provide a number of features that simplify the task of working with case data. See the topic
“Using the spssdata Module” on page 168 for more information.

The SAS job reads through all records in custbal and writes those records that represent customers
with a balance of less than 200 to the dataset lowbal. In contrast, the IBM SPSS Statistics code does
not create a separate dataset but simply filters the original dataset for customers with a balance less
than 200. The filter is executed only if there is at least one such customer when the report needs to

be run. To determine if any customers have a low balance, data for the single variable acctbal (from
custbal) is read into Python one case at a time, using the Spssdata class from the spssdata module.
If a case with a low balance is detected, the indicator variable report is set to true, the break statement
terminates the loop used to read the data, and the job proceeds to generating the report.

Creating Global Macro Variables

Both IBM SPSS Statistics and SAS have the ability to create global macro variables. In SAS, this is

done with symput, whereas in IBM SPSS Statistics, this is done from Python using the SetMacroValue
function in the spss module. As an example, consider sales data that has been pre-aggregated into

a dataset--let's call it regionsales--that contains sales totals by region. We're interested in using these
totals in a set of analyses and find it convenient to store them in a set of global variables whose names are
the regions with a prefix of region_.

BEGIN PROGRAM.
import spss, spssdata
spss.Submit ("GET FILE='/data/regionsales.sav'.")
dataObj=spssdata.Spssdata()
data=dataObj.fetchall()
dataObj.close()
for row in data:
macroValue=row.total
macroName="!region_" + row.region
spss.SetMacroValue(macroName, macroValue)
END PROGRAM.

libname mydata '/data';
data _null_;
set mydata.regionsales;
call symput('region_'||region,trim(left(total)));
run;

The SetMacroValue function from the spss module takes a name and a value (string or numeric)

and creates a macro of that name that expands to the specified value (a numeric value provided as an
argument is converted to a string). The availability of this function from Python means that you have
great flexibility in specifying the value of the macro. Although the SetMacroValue function is called
from Python, it creates a macro that is then available to command syntax outside of a BEGIN PROGRAM
block. The convention in IBM SPSS Statistics--followed in this example--is to prefix the name of a macro
with the ! character, although this is not required.

284 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

- Both SetMacroValue and symput create a macro variable that resolves to a string value, even if the
value passed to the function was numeric. In SAS, the string is right-aligned and may require trimming
to remove excess blanks. This is provided by the combination of the 1eft and trim functions. IBM
SPSS Statistics does not require this step.

« The SAS code utilizes a data step to read the regionsales dataset, but there is no need to create a
resulting dataset, so _null_ is used. Likewise, the IBM SPSS Statistics version doesn't need to create a
dataset. It uses the spssdata module to read the data in regionsales and create a separate IBM SPSS
Statistics macro for each case read. For more information on the spssdata module, see “Using the
spssdata Module” on page 168.

Setting Global Macro Variables to Values from the Environment

IBM SPSS Statistics and SAS both support obtaining values from the operating environment and storing
them to global macro variables. In SAS, this is accomplished by using the syspaxrm option on the
command line to pass a value to a program. The value is then available as the global macro variable
&sysparm. In IBM SPSS Statistics, you first set an operating system environment variable that you can
then retrieve using the Python os module--a built-in module that is always available in Python. Values
obtained from the environment can be, but need not be, typical ones, such as a user name. For example,
you may have a financial analysis program that uses the current interest rate as an input to the analysis,
and you'd like to pass the value of the rate to the program. In this example, we're imagining passing a rate
that we've set to a value of 4.5.

BEGIN PROGRAM.

import spss,os

val = os.environ['rate']
spss.SetMacroValue("!rate",val)
END PROGRAM.

sas /Work/SAS/progl.sas -sysparm 4.5

In the IBM SPSS Statistics version, you first include an impoxrt statement for the Python os module.
To retrieve the value of a particular environment variable, simply specify its name in quotes, as in:
os.environ['rate'].

With IBM SPSS Statistics, once you've retrieved the value of an environment variable, you can set it
to a Python variable and use it like any other variable in a Python program. This allows you to control
the flow of a command syntax job using values retrieved from the environment. And you can use the
SetMacroValue function (discussed in the previous example) to create a macro that resolves to the
retrieved value and can be used outside of a BEGIN PROGRAM block. In the current example, a macro
named ! rate is created from the value of an environment variable named rate.

Chapter 6. IBM SPSS Statistics for SAS Programmers 285

286 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products

and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform

for which the sample programs are written. These examples have not been thoroughly tested under

all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© Copyright IBM Corp. 2021. Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. 1989 - 2021. All rights reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

288 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS
Users

http://www.ibm.com/legal/us/en/copytrade.shtml

Index

Special Characters

$casenum
with SELECT IF command 8

A

active dataset
appending cases from Python 159, 165
creating a new dataset from Python 177
creating new variables from Python 159, 164, 166, 167
reading into Python 159, 160
reading into R 238
ADD DOCUMENT (command) 61
ADD FILES (command) 44
ADD VALUE LABELS (command) 57
AGGREGATE (command) 47
aggregating data 47
ALL (keyword)
in Python 157
AllocNewVarsBuffer method (Python) 167
ALTER TYPE (command) 69
APPLY DICTIONARY (command) 60
APPLYMODEL (function) 117
average
mean 64

BEGIN PROGRAM (command)
nested program blocks 131
binning scale variables 62
bootstrapping
with OMS 106

c

case
changing case of string values 66
case number
system variable $casenum 8
Caselist class (Python) 181
cases
case number 8
weighting cases to replicate crosstabulation 49
CASESTOVARS (command) 51
categorical variables 59
CHAR.INDEX (function) 67
CHAR.SUBSTR (function) 67
cleaning data 75, 79
code page
reading code page data sources 37
combining data files 41
command syntax
invoking command file with INSERT command 11
syntax rules for INSERT files 11

COMMENT (command)
macro names 9
comments 9
COMPUTE (command) 64
CONCAT (function) 66
concatenating string values 66
conditional loops 90
conditional transformations 81
connect string
reading databases 13
CreateDatasetOutput (Python) 193
CreateSPSSDictionary (R) 242
CreateXMLOutput (Python) 193
CreateXPathDictionary (Python) 151
CSV data 25
CTIME.DAYS (function) 73
CTIME.HOURS (function) 73
CTIME.MINUTES (function) 73
Cursor class (Python)
AllocNewVarsBuffer method 167
IsEndSplit method 160

data
accessing variable properties from Python 179
appending cases from Python 159, 165, 181
creating a new dataset from Python 177,179, 184, 185
creating a new dataset from R 242
creating new variables from Python 159, 164, 166, 167,
179
inserting cases from Python 181
modifying cases from Python 181, 187
reading active dataset into Python 159, 160
reading active dataset into R 238
reading case data into Python 181

data files
activating an open dataset 39
aggregating 47
making cases from variables 53
making variables from cases 51
merging 41, 44
multiple open datasets 39
read-only 5
saving output as IBM SPSS Statistics data files 104
transposing 50
updating 46

DATA LIST (command)
delimited data 23
fixed-width data 25
freefield data 23

data step
accessing existing datasets from Python 179
accessing variable properties from Python 179
appending cases from Python 181
creating new datasets from Python 179, 184, 185
creating new variables from Python 179

Index 289

data step (continued)
inserting cases from Python 181
modifying cases from Python 181, 187
reading case data into Python 181
data types 149, 234
database driver 96
databases
connect string 13
Database Wizard 13
GET DATA (command) 13
installing drivers 12
outer joins 15
reading data 12
reading multiple tables 15
selecting tables 13
SOQL statements 13
writing data to a database 94
DATAFILE ATTRIBUTE (command) 61
datafile attributes
retrieving from Python 153
retrieving from R 237
DATASET ACTIVATE (command) 39
Dataset class (Python) 179
DATASET COPY (command) 39
DATASET NAME (command) 39
DATE.MDY (function) 73
DATE.MOYR (function) 73
dates
combining multiple date components 73
computing intervals 73
extracting date components 75
functions 72
input and display formats 71
reading datetime values into Python 160, 169
reading datetime values into R 240
setting date format variables from Python 172
days
calculating number of 74
DeleteXPathHandle (Python) 190
DETECTANOMALY (command) 79
dictionary
CreateXPathDictionary (Python) 151

reading dictionary information from Python 151, 154,

158
DO IF (command)

conditions that evaluate to missing 82
DO REPEAT (command) 83
duplicate cases

filtering 77

finding 77

E

error handling in Python 132, 143
error messages in Python 132
EvaluateXPath (Python) 190
EvaluateXPath (R) 250
Excel

reading Excel files 18

saving data in Excel format 94
EXECUTE (command) 7
executing syntax commands in Python 125
exporting

data and results 92

290 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

exporting (continued)
data in Excel format 94
data in SAS format 93
data in Stata format 93
data to a database 94
output document contents from Python 217

F

fetching data in Python 159, 160
FILE HANDLE (command)
defining wide records with LRCL 28
FILE LABEL (command) 61
file properties 61
FILTER (command) 77, 83
filtering duplicates 77
FLIP (command) 50
format of variables
retrieving from Python 148
retrieving from R 234
FORMATS (command) 71
functions
arithmetic 64
date and time 72
random distribution 65
statistical 64

G

GET DATA (command)

TYPE=ODBC subcommand 13

TYPE=TXT subcommand 25

TYPE=XLS subcommand 18
GetDataFileAttributeNames (Python) 153
GetDataFileAttributeNames (R) 237
GetDataFileAttributes (Python) 153
GetDataFileAttributes (R) 237
GetDataFromSPSS (R) 238
GetDictionaryFromSPSS (R) 234
GetMultiResponseSet (Python) 154
GetMultiResponseSet (R) 237
GetMultiResponseSetNames (Python) 154
GetMultiResponseSetNames (R) 237
GetSplitDataFromSPSS (R) 240
GetSplitVariableNames (R) 240
GetSPSSInstallDir (Python) 141
GetUserMissingValues (R) 235
GetValuelabels (R) 236
GetValuesFromXMLWorkspace (Python) 127,193
GetVarAttributeNames (Python) 153
GetVariableAttributeNames (R) 236
GetVariableCount (Python) 146
GetVariableFormat (Python) 148
GetVariableLabel (Python) 149
GetVariableMeasurementLevel (Python) 147
GetVariableName (Python) 146
GetVariableType (Python) 149
GetVarMissingValues (Python) 150
GetXmlUtf16 (Python) 151, 193
graphical output from R 249
grouped text data 31

H

hierarchical text data 32

I

IBM SPSS Statistics data driver 16, 96
IDE
using a Python IDE to drive IBM SPSS Statistics 122
IF (command) 81
if/then/else logic 81
importing data
Excel 18
SAS format 36
text 22
INSERT (command) 11
INSERT files
command syntax rules 11
invalid values
excluding 77
finding 75
IsEndSplit method (Python) 160
IsLastSplit (R) 240

J
JDBC driver 96

L

labels
value 57,151, 158, 188
variable 57, 149
LAG (function) 7
LAST (subcommand)
MATCH FILES (command) 77
leading zeros
preserving with N format 66
level of measurement 59
locales 226
logical variables 81
long records
defining with FILE HANDLE command 28
lookup file 43
loops
conditional 90
default maximum number of loops 91
indexing clause 88
LOOP (command) 86
nested 88
using XSAVE to build a data file 90
LOWER (function) 66

M

macro variables in Python 129
macros

macro names in comments 9
MATCH FILES (command)

LAST (subcommand) 77
MEAN (function) 64
measurement level

retrieving from Python 147

measurement level (continued)
retrieving from R 234
merging data files
same cases, different variables 41
same variables, different cases 44
table lookup file 43
missing values
identifying cases with missing values in Python 169
in DO IF structures 82
retrieving user missing value definitions from Python
150
retrieving user missing value definitions from R 235
skipping cases with missing values in Python 169
specifying from Python 172
specifying from R 245
user-missing 58
when reading data into Python 160
when reading data into R 239
MISSING VALUES (command) 9, 58
mixed format text data 30
MOD (function) 64
MODEL HANDLE (command) 117
modulus 64
multiple data sources 39
multiple response sets
retrieving from Python 154
retrieving from R 237

N

N format 66
names of variables
retrieving from Python 146
retrieving from R 234
nested loops 88
nested text data 32
nominal variables 59
normal distribution 65
NUMBER (function) 67, 72
Number class (Python) 205
number of variables from Python 146
numeric variables 149, 234
NVALID (function) 64

o

ODBC
IBM SPSS Statistics data driver 16, 96
installing drivers 12

OLEDB 13

OMS
bootstrapping 106
using XSLT with OXML 108

ordinal variables 59

outer joins
reading databases 15

output
modifying pivot table output in Python 128
reading output results in Python 127, 190, 193
reading output results in R 250
using as input with OMS 104

output documents 114

Output Management System (OMS) 104

Index 291

OXML
reading output XML in Python 127, 190, 193
reading output XML in R 250

P

parsing string values 67
PERMISSIONS (subcommand)
SAVE (command) 5
pivot tables
creating from Python 202
creating from R 247
formatting numeric cells from Python 205
modifying in Python 128, 216
using variable names or values for categories or cells in
Python 204
Poisson distribution 65
procedures 198
protecting data 5
Python
creating Python modules 140
creating user-defined functions 140
debugging 145
displaying submitted command syntax in the output log
140
error handling 132, 143
file specifications 125, 139
passing information from Python 129
passing information to Python 153
print statement 120
programs 119, 120
programs vs. scripts 142
raw strings 128, 137, 139
regular expressions 158, 187, 209, 224
scripts 119, 123,128
string substitution 138
syntax rules 128
triple-quoted strings 128, 137
using a Python IDE to drive IBM SPSS Statistics 122
using TO and ALL in variable lists 157

cat function 229

print function 229

syntax rules 231
random distribution functions 65
random samples

reproducing with SET SEED 10
raw strings in Python 128, 137, 139
reading data

code page 37

database tables 12

Excel 18

SAS format 36

Stata format 37

text 22

Unicode 37
RECODE (command)

INTO (keyword) 62
recoding

categorical variables 62

recoding (continued)
scale variables 62
records
defining wide records with FILE HANDLE 28
system variable $casenum 8
regular expressions 158, 187, 209, 224
remainder 64
repeating text data 35
REPLACE (function) 67
running syntax commands in Python 125
RV.NORMAL (function) 65
RV.POISSON (function) 65

SAS

reading SAS format data 36

saving data in SAS format 93
SAS vs. IBM SPSS Statistics

%MACRO equivalent 282

aggregating data 273

arithmetic functions 278

binning scale data 277

calculating date/time differences 281

CALL EXECUTE equivalent 283

cleaning and validating data 275

dates and times 280

extracting date/time parts 282

finding duplicate records 276

finding invalid values 275

merging data files 270

random number functions 279

reading database tables 267

reading Excel files 268

reading text data files 269

recoding categorical data 277

statistical functions 278

string concatenation 279

string parsing 280

SYMPUT equivalent 284

SYSPARM equivalent 285

value labels 274

variable labels 274
SAVE (command)

PERMISSIONS (subcommand) 5
SAVE TRANSLATE (command) 92
saving

data in SAS format 93

data in Stata format 93
scale variables

recoding (binning) 62
scoring

applying a predictive model 117

building a predictive model 115
scratch variables 6
SELECT IF (command)

with $casenum 8
selecting subsets of cases 83
SET (command)

SEED (subcommand) 10
SetDataToSPSS (R) 242
SetDefaultFormatSpec method (Python) 205
SetDictionaryToSPSS (R) 242
SetMacroValue (Python) 129

292 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

SetUserMissing (R) 245
SetValuelabel (R) 246
SetVariableAttributes (R) 246
SHIFT VALUES (command) 7
SimplePivotTable method (Python) 202
split-file processing
reading datasets with splits in Python 160, 169
reading from IBM SPSS Statistics datasets with splits in
R 240
split variables in R 240
spss module 120
spssaux module
reading dictionary information 154
reading output results 193
SpssClient module 123, 128
Spssdata class (Python) 168
spssdata functions (R)
GetDataFromSPSS 238
GetSplitDataFromSPSS 240
GetSplitVariableNames 240
IsLastSplit 240
SetDataToSPSS 242
spssdata module 168
spssdictionary functions (R)
CreateSPSSDictionary 242
GetDataFileAttributeNames 237
GetDataFileAttributes 237
GetDictionaryFromSPSS 234
GetMultiResponseSet 237
GetMultiResponseSetNames 237
GetUserMissingValues 235
GetValueLabels 236
GetVariableAttributeNames 236
SetDictionaryToSPSS 242
SetUserMissing 245
SetValuelabel 246
SetVariableAttributes 246
spsspivottable.Display (R) 247
spv files 114
SOL
reading databases 13
SORT (function) 64
square root 64
StartProcedure (Python) 198
Stata
reading Stata data files 37
saving data in Stata format 93
string substitution in Python 138
string values
changing case 66
combining 66
concatenating 66
converting numeric strings to numbers 67
converting string dates to date format numeric values
72
parsing 67
substrings 67
string variables
changing width 69
Submit (Python) 125
substrings 67

T

table lookup file 43
TEMPORARY (command) 6, 83
temporary transformations 6
temporary variables 6
text data
comma-separated values 25
complex text data files 30
CSV format 25
delimited 22
fixed width 22, 25
GET DATA vs. DATA LIST 22
grouped 31
hierarchical 32
mixed format 30
nested 32
reading text data files 22
repeating 35
wide records 28
TextBlock class (Python) 198
TIME.DAYS (function) 74
TIME.HMS (function) 73
times
computing intervals 73
functions 72
input and display formats 71
TO (keyword)
in Python 157
transaction files 46
transformations
date and time 70
numeric 64
statistical functions 64
string 66
using Python functions 206
transposing cases and variables 50
triple-quoted strings in Python 128, 137
TRUNC (function) 64
truncating values 64

U

Unicode
reading Unicode data 37
Unicode mode 163
UNIFORM (function) 65
uniform distribution 65
UPCASE (function) 66
UPDATE (command) 46
updating data files 46
user-missing values 58
using case weights to replicate crosstabulations 49

\'

valid cases
NVALID (function) 64
VALIDATEDATA (command) 79
validating data 75, 79
value labels
adding 57
retrieving from Python 151, 158, 188

Index 293

value labels (continued)
retrieving from R 236
specifying from Python 172
specifying from R 246
VALUE LABELS (command) 57
valueLabels property (Python)
Variable class 188
Valuelabels property (Python) 158
VARIABLE ATTRIBUTE (command) 59
variable attributes
retrieving from Python 153
retrieving from R 236
specifying from Python 172
specifying from R 246
Variable class (Python)
valuelabels property 188
variable count from Python 146
variable format
retrieving from Python 148
retrieving from R 234
variable labels
retrieving from Python 149
retrieving from R 234
VARIABLE LABELS (command) 57
VARIABLE LEVEL (command) 59
variable names
retrieving from Python 146
retrieving from R 234
VariableDict class (Python) 155
VariableList class (Python) 179
variables
creating with VECTOR command 86
making variables from cases 51
measurement level 59
VarName class (Python) 204
VARSTOCASES (command) 53
VarValue class (Python) 204
VECTOR (command)
creating variables 86
short form 86
vectors
errors caused by disappearing vectors 86
versions
using multiple versions of the IBM SPSS Statistics -
Integration Plug-in for Python 133
visual binning 62

w

WEIGHT (command) 49
weighting data 49
wide records
defining with FILE HANDLE command 28
WRITE (command) 9

X

XDATE.DATE (function) 75
XML
OXML output from OMS 108
XML workspace
writing contents to an XML file 193
XPath expressions 190, 250

294 Programming and Data Management for IBM SPSS Statistics: A Guide for IBM SPSS Statistics and SAS

Users

XSAVE (command)

building a data file with LOOP and XSAVE 90
XSLT

using with OXML 108

Y

years
calculating number of years between dates 73

y4

zeros
preserving leading zeros 66

	Contents
	Chapter 1. Overview
	Using This Book
	Documentation Resources

	Chapter 2. Data Management
	Best Practices and Efficiency Tips
	Working with Command Syntax
	Creating Command Syntax Files
	Using the Syntax Editor to Build Commands

	Running Commands
	Syntax Rules

	Protecting the Original Data
	Do Not Overwrite Original Variables
	Using Temporary Transformations
	Using Temporary Variables

	Use EXECUTE Sparingly
	Lag Functions
	Using $CASENUM to Select Cases
	MISSING VALUES Command
	WRITE and XSAVE Commands

	Using Comments
	Using SET SEED to Reproduce Random Samples or Values
	Divide and Conquer
	Using INSERT with a primary command syntax file
	INSERT versus INCLUDE

	Defining Global Settings

	Getting Data into IBM SPSS Statistics
	Getting Data from Databases
	Installing Database Drivers
	OLE DB

	Database Wizard
	Reading a Single Database Table
	Reading Multiple Tables

	Reading IBM SPSS Statistics Data Files with SQL Statements
	Installing the IBM SPSS Statistics Data File Driver
	Using the Standalone Driver

	Reading Excel Files
	Reading a “Typical” Worksheet
	READNAMES Subcommand

	Reading Multiple Worksheets

	Reading Text Data Files
	Simple Text Data Files
	Delimited Text Data
	CSV Delimited Text Files

	Fixed-Width Text Data
	Reading Selected Portions of a Fixed-Width File
	DATA LIST FIXED and Implied Decimals

	Text Data Files with Very Wide Records
	Reading Different Types of Text Data

	Reading Complex Text Data Files
	Mixed Files
	Grouped Files
	Nested (Hierarchical) Files
	Using INPUT PROGRAM to Read Nested Files

	Repeating Data

	Reading SAS Data Files
	Reading Stata Data Files
	Code Page and Unicode Data Sources

	File Operations
	Using Multiple Data Sources
	Merging Data Files
	Merging Files with the Same Cases but Different Variables
	One-to-One Matches
	Table Lookup (One-to-Many) Matches

	Merging Files with the Same Variables but Different Cases
	Updating Data Files by Merging New Values from Transaction Files

	Aggregating Data
	Aggregate Summary Functions

	Weighting Data
	Changing File Structure
	Transposing Cases and Variables
	Cases to Variables
	Variables to Cases

	Variable and File Properties
	Variable Properties
	Variable Labels
	Value Labels
	Missing Values
	Measurement Level
	Custom Variable Properties
	Using Variable Properties as Templates

	File Properties

	Data Transformations
	Recoding Categorical Variables
	Binning Scale Variables
	Simple Numeric Transformations
	Arithmetic and Statistical Functions
	Random Value and Distribution Functions
	String Manipulation
	Changing the Case of String Values
	Combining String Values
	Taking Strings Apart

	Changing Data Types and String Widths
	Working with Dates and Times
	Date Input and Display Formats
	Using FORMATS to Change the Display of Dates
	Converting String Dates to Date Format Numeric Variables

	Date and Time Functions
	Aggregating Multiple Date Components into a Single Date Format Variable
	Calculating and Converting Date and Time Intervals
	Calculating Number of Years between Dates
	Adding to or Subtracting from a Date to Find Another Date
	Extracting Date Information

	Cleaning and Validating Data
	Finding and Displaying Invalid Values
	Excluding Invalid Data from Analysis
	Finding and Filtering Duplicates
	Data Preparation Option

	Conditional Processing, Looping, and Repeating
	Indenting Commands in Programming Structures
	Conditional Processing
	Conditional Transformations
	Missing Values in DO IF Structures

	Conditional Case Selection

	Simplifying Repetitive Tasks with DO REPEAT
	ALL Keyword and Error Handling

	Vectors
	Creating Variables with VECTOR
	Disappearing Vectors

	Loop Structures
	Indexing Clauses
	Nested Loops
	Conditional Loops
	Using XSAVE in a Loop to Build a Data File
	Calculations Affected by Low Default MXLOOPS Setting

	Exporting Data and Results
	Exporting Data to Other Applications and Formats
	Saving Data in SAS Format
	Saving Data in Stata Format
	Saving Data in Excel Format
	Writing Data Back to a Database
	Saving Data in Text Format

	Reading IBM SPSS Statistics Data Files in Other Applications
	Installing the IBM SPSS Statistics Data File Driver
	Example: Using the Standalone Driver with Excel

	Exporting Results
	Exporting Output to Word
	Exporting Output to Excel
	Using Output as Input with OMS
	Adding Group Percentile Values to a Data File
	Bootstrapping with OMS
	OMS Commands to Create a Data File of Coefficients
	Sampling with Replacement and Regression Macro
	Ending the OMS Requests

	Transforming OXML with XSLT
	"Pushing" Content from an XML File
	"Pulling" Content from an XML File
	Simple xsl:for-each "Pull" Example
	Advanced xsl:for-each "Pull" Example
	Main Template for Advanced xsl:for-each Example
	Controlling Variable and Value Label Display
	Controlling Decimal Display

	XPath Expressions in Multiple Language Environments
	Layered Split-File Processing

	Controlling and Saving Output Files

	Scoring data with predictive models
	Building a predictive model
	Evaluating the model

	Applying the model

	Chapter 3. Programming with Python
	Introduction
	Getting Started with Python Programming in IBM SPSS Statistics
	The spss Python Module
	Running Your Code from a Python IDE

	The SpssClient Python Module
	Submitting Commands to IBM SPSS Statistics
	Dynamically Creating Command Syntax
	Capturing and Accessing Output
	Modifying Pivot Table Output
	Python Syntax Rules
	Mixing Command Syntax and Program Blocks
	Nested Program Blocks
	Handling Errors
	Working with Multiple Versions of IBM SPSS Statistics
	Creating a Graphical User Interface
	Getting Help

	Best Practices
	Creating Blocks of Command Syntax within Program Blocks
	Dynamically Specifying Command Syntax Using String Substitution
	Using Raw Strings in Python
	Displaying Command Syntax Generated by Program Blocks
	Creating User-Defined Functions in Python
	Creating a File Handle to the IBM SPSS Statistics Install Directory
	Choosing the Best Programming Technology
	Using Exception Handling in Python
	Debugging Python Programs

	Working with Dictionary Information
	Summarizing Variables by Measurement Level
	Listing Variables of a Specified Format
	Checking If a Variable Exists
	Creating Separate Lists of Numeric and String Variables
	Retrieving Definitions of User-Missing Values
	Identifying Variables without Value Labels
	Identifying Variables with Custom Attributes
	Retrieving Datafile Attributes
	Retrieving Multiple Response Sets
	Using Object-Oriented Methods for Retrieving Dictionary Information
	Getting Started with the VariableDict Class
	Defining a List of Variables between Two Variables
	Specifying Variable Lists with TO and ALL
	Identifying Variables without Value Labels
	Using Regular Expressions to Select Variables

	Working with Case Data in the Active Dataset
	Using the Cursor Class
	Reading Case Data with the Cursor Class
	Working in Unicode Mode

	Creating New Variables with the Cursor Class
	Appending New Cases with the Cursor Class
	Example: Counting Distinct Values Across Variables
	Example: Adding Group Percentile Values to a Dataset

	Using the spssdata Module
	Reading Case Data with the Spssdata Class
	Creating New Variables with the Spssdata Class
	Appending New Cases with the Spssdata Class
	Example: Adding Group Percentile Values to a Dataset with the Spssdata Class
	Example: Generating Simulated Data

	Creating and Accessing Multiple Datasets
	Getting Started with the Dataset Class
	Accessing, Adding, or Deleting Variables
	Retrieving, Modifying, Adding, or Deleting Cases
	Retrieving Case Values
	Modifying Case Values
	Adding or Deleting Cases

	Example: Creating and Saving Datasets
	Example: Merging Existing Datasets into a New Dataset
	Example: Modifying Case Values Utilizing a Regular Expression
	Example: Displaying Value Labels as Cases in a New Dataset

	Retrieving Output from Syntax Commands
	Getting Started with the XML Workspace
	Writing XML Workspace Contents to a File

	Using the spssaux Module

	Creating Procedures
	Getting Started with Procedures
	Procedures with Multiple Data Passes
	Creating Pivot Table Output
	Treating Categories or Cells as Variable Names or Values
	Specifying Formatting for Numeric Cell Values

	Data Transformations
	Getting Started with the trans Module
	Using Functions from the extendedTransforms Module
	The search and subs Functions
	Using the search Function
	Using the subs Function

	The templatesub Function
	The levenshteindistance Function
	The soundex and nysiis Functions
	The strtodatetime Function
	The datetimetostr Function
	The lookup Function

	Modifying and Exporting Output Items
	Modifying Pivot Tables
	Exporting Output Items

	Tips on Migrating Command Syntax and Macro Jobs to Python
	Migrating Command Syntax Jobs to Python
	Migrating Macros to Python

	Special Topics
	Using Regular Expressions
	Locale Issues

	Chapter 4. Programming with R
	Introduction
	Getting Started with R Program Blocks
	R Syntax Rules
	Mixing Command Syntax and R Program Blocks
	Nested Program Blocks
	Getting Help

	Retrieving Variable Dictionary Information
	Retrieving Definitions of User-Missing Values
	Identifying Variables without Value Labels
	Identifying Variables with Custom Attributes
	Retrieving Datafile Attributes
	Retrieving Multiple Response Sets

	Reading Case Data from IBM SPSS Statistics
	Using the spssdata.GetDataFromSPSS Function
	Missing Data
	Handling IBM SPSS Statistics Datetime Values
	Handling Data with Splits
	Working with Categorical Variables

	Writing Results to a New IBM SPSS Statistics Dataset
	Creating a New Dataset
	Specifying Missing Values for New Datasets
	Specifying Value Labels for New Datasets
	Specifying Variable Attributes for New Datasets

	Creating Pivot Table Output
	Using the spsspivottable.Display Function
	Displaying Output from R Functions

	Displaying Graphical Output from R
	Retrieving Output from Syntax Commands
	Using the XML Workspace
	Using a Dataset to Retrieve Output

	Running from an External R Process

	Chapter 5. Extension Commands
	Introduction to Extension Commands
	XML Specification of the Extension Command Syntax
	Implementation Code
	Adding help for an extension command
	Deploying an Extension Command

	Chapter 6. IBM SPSS Statistics for SAS Programmers
	Reading Data
	Reading Database Tables
	Reading a Single Database Table
	Reading Multiple Tables

	Reading Excel Files
	Reading a Single Worksheet
	Reading Multiple Worksheets

	Reading Text Data

	Merging Data Files
	Merging Files with the Same Cases but Different Variables
	Merging Files with the Same Variables but Different Cases
	Performing General Match Merging

	Aggregating Data
	Assigning Variable Properties
	Variable Labels
	Value Labels

	Cleaning and Validating Data
	Finding and Displaying Invalid Values
	Finding and Filtering Duplicates

	Transforming Data Values
	Recoding Data
	Binning Data
	Numeric Functions
	Random Number Functions
	String Concatenation
	String Parsing

	Working with Dates and Times
	Calculating and Converting Date and Time Intervals
	Adding to or Subtracting from One Date to Find Another Date
	Extracting Date and Time Information

	Custom Functions, Job Flow Control, and Global Macro Variables
	Creating Custom Functions
	Job Flow Control
	Creating Global Macro Variables
	Setting Global Macro Variables to Values from the Environment

	Notices
	Trademarks

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

