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Categories

The following categories features are included in SPSS® Statistics Professional Edition or the Categories
option.

Introduction to Optimal Scaling Procedures for Categorical Data
Categories procedures use optimal scaling to analyze data that are difficult or impossible for standard
statistical procedures to analyze. This chapter describes what each procedure does, the situations in which
each procedure is most appropriate, the relationships between the procedures, and the relationships of
these procedures to their standard statistical counterparts.

Note: These procedures and their implementation in IBM® SPSS Statistics were developed by the Data
Theory Scaling System Group (DTSS), consisting of members of the departments of Education and
Psychology, Faculty of Social and Behavioral Sciences, Leiden University.

What Is Optimal Scaling?
The idea behind optimal scaling is to assign numerical quantifications to the categories of each variable,
thus allowing standard procedures to be used to obtain a solution on the quantified variables.

The optimal scale values are assigned to categories of each variable based on the optimizing criterion of
the procedure in use. Unlike the original labels of the nominal or ordinal variables in the analysis, these
scale values have metric properties.

In most Categories procedures, the optimal quantification for each scaled variable is obtained through an
iterative method called alternating least squares in which, after the current quantifications are used to
find a solution, the quantifications are updated using that solution. The updated quantifications are then
used to find a new solution, which is used to update the quantifications, and so on, until some criterion
is reached that signals the process to stop.

Why Use Optimal Scaling?
Categorical data are often found in marketing research, survey research, and research in the social and
behavioral sciences. In fact, many researchers deal almost exclusively with categorical data.

While adaptations of most standard models exist specifically to analyze categorical data, they often do
not perform well for datasets that feature:
v Too few observations
v Too many variables
v Too many values per variable

By quantifying categories, optimal scaling techniques avoid problems in these situations. Moreover, they
are useful even when specialized techniques are appropriate.

Rather than interpreting parameter estimates, the interpretation of optimal scaling output is often based
on graphical displays. Optimal scaling techniques offer excellent exploratory analyses, which complement
other IBM SPSS Statistics models well. By narrowing the focus of your investigation, visualizing your
data through optimal scaling can form the basis of an analysis that centers on interpretation of model
parameters.

© Copyright IBM Corporation 1989, 2017 1



Optimal Scaling Level and Measurement Level
This can be a very confusing concept when you first use Categories procedures. When specifying the
level, you specify not the level at which variables are measured but the level at which they are scaled. The
idea is that the variables to be quantified may have nonlinear relations regardless of how they are
measured.

For Categories purposes, there are three basic levels of measurement:
v The nominal level implies that a variable's values represent unordered categories. Examples of

variables that might be nominal are region, zip code area, religious affiliation, and multiple choice
categories.

v The ordinal level implies that a variable's values represent ordered categories. Examples include
attitude scales representing degree of satisfaction or confidence and preference rating scores.

v The numerical level implies that a variable's values represent ordered categories with a meaningful
metric so that distance comparisons between categories are appropriate. Examples include age in years
and income in thousands of dollars.

For example, suppose that the variables region, job, and age are coded as shown in the following table.

Table 1. Coding scheme for region, job, and age

Region code Region value Job code Job value Age

1 North 1 intern 20

2 South 2 sales rep 22

3 East 3 manager 25

4 West 27

The values shown represent the categories of each variable. Region would be a nominal variable. There
are four categories of region, with no intrinsic ordering. Values 1 through 4 simply represent the four
categories; the coding scheme is completely arbitrary. Job, on the other hand, could be assumed to be an
ordinal variable. The original categories form a progression from intern to manager. Larger codes
represent a job higher on the corporate ladder. However, only the order information is known--nothing
can be said about the distance between adjacent categories. In contrast, age could be assumed to be a
numerical variable. In the case of age, the distances between the values are intrinsically meaningful. The
distance between 20 and 22 is the same as the distance between 25 and 27, while the distance between 22
and 25 is greater than either of these.

Selecting the Optimal Scaling Level
It is important to understand that there are no intrinsic properties of a variable that automatically
predefine what optimal scaling level you should specify for it. You can explore your data in any way that
makes sense and makes interpretation easier. By analyzing a numerical-level variable at the ordinal level,
for example, the use of a nonlinear transformation may allow a solution in fewer dimensions.

The following two examples illustrate how the "obvious" level of measurement might not be the best
optimal scaling level. Suppose that a variable sorts objects into age groups. Although age can be scaled as
a numerical variable, it may be true that for people younger than 25 safety has a positive relation with
age, whereas for people older than 60 safety has a negative relation with age. In this case, it might be
better to treat age as a nominal variable.

As another example, a variable that sorts persons by political preference appears to be essentially
nominal. However, if you order the parties from political left to political right, you might want the
quantification of parties to respect this order by using an ordinal level of analysis.

Even though there are no predefined properties of a variable that make it exclusively one level or
another, there are some general guidelines to help the novice user. With single-nominal quantification,
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you don't usually know the order of the categories but you want the analysis to impose one. If the order
of the categories is known, you should try ordinal quantification. If the categories are unorderable, you
might try multiple-nominal quantification.

Transformation Plots
The different levels at which each variable can be scaled impose different restrictions on the
quantifications. Transformation plots illustrate the relationship between the quantifications and the
original categories resulting from the selected optimal scaling level. For example, a linear transformation
plot results when a variable is treated as numerical. Variables treated as ordinal result in a nondecreasing
transformation plot. Transformation plots for variables treated nominally that are U-shaped (or the
inverse) display a quadratic relationship. Nominal variables could also yield transformation plots without
apparent trends by changing the order of the categories completely. The following figure displays a
sample transformation plot.

Transformation plots are particularly suited to determining how well the selected optimal scaling level
performs. If several categories receive similar quantifications, collapsing these categories into one category
may be warranted. Alternatively, if a variable treated as nominal receives quantifications that display an
increasing trend, an ordinal transformation may result in a similar fit. If that trend is linear, numerical
treatment may be appropriate. However, if collapsing categories or changing scaling levels is warranted,
the analysis will not change significantly.

Category Codes
Some care should be taken when coding categorical variables because some coding schemes may yield
unwanted output or incomplete analyses. Possible coding schemes for job are displayed in the following
table.

Table 2. Alternative coding schemes for job

Category A B C D

intern 1 1 5 1

sales rep 2 2 6 5

manager 3 7 7 3

Some Categories procedures require that the range of every variable used be defined. Any value outside
this range is treated as a missing value. The minimum category value is always 1. The maximum
category value is supplied by the user. This value is not the number of categories for a variable—it is the
largest category value. For example, in the table, scheme A has a maximum category value of 3 and
scheme B has a maximum category value of 7, yet both schemes code the same three categories.

The variable range determines which categories will be omitted from the analysis. Any categories with
codes outside the defined range are omitted from the analysis. This is a simple method for omitting
categories but can result in unwanted analyses. An incorrectly defined maximum category can omit valid
categories from the analysis. For example, for scheme B, defining the maximum category value to be 3
indicates that job has categories coded from 1 to 3; the manager category is treated as missing. Because no
category has actually been coded 3, the third category in the analysis contains no cases. If you wanted to
omit all manager categories, this analysis would be appropriate. However, if managers are to be included,
the maximum category must be defined as 7, and missing values must be coded with values above 7 or
below 1.

For variables treated as nominal or ordinal, the range of the categories does not affect the results. For
nominal variables, only the label and not the value associated with that label is important. For ordinal
variables, the order of the categories is preserved in the quantifications; the category values themselves
are not important. All coding schemes resulting in the same category ordering will have identical results.
For example, the first three schemes in the table are functionally equivalent if job is analyzed at an
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ordinal level. The order of the categories is identical in these schemes. Scheme D, on the other hand,
inverts the second and third categories and will yield different results than the other schemes.

Although many coding schemes for a variable are functionally equivalent, schemes with small differences
between codes are preferred because the codes have an impact on the amount of output produced by a
procedure. All categories coded with values between 1 and the user-defined maximum are valid. If any of
these categories are empty, the corresponding quantifications will be either system-missing or 0,
depending on the procedure. Although neither of these assignments affect the analyses, output is
produced for these categories. Thus, for scheme B, job has four categories that receive system-missing
values. For scheme C, there are also four categories receiving system-missing indicators. In contrast, for
scheme A there are no system-missing quantifications. Using consecutive integers as codes for variables
treated as nominal or ordinal results in much less output without affecting the results.

Coding schemes for variables treated as numerical are more restricted than the ordinal case. For these
variables, the differences between consecutive categories are important. The following table displays three
coding schemes for age.

Table 3. Alternative coding schemes for age

Category A B C

20 20 1 1

22 22 3 2

25 25 6 3

27 27 8 4

Any recoding of numerical variables must preserve the differences between the categories. Using the
original values is one method for ensuring preservation of differences. However, this can result in many
categories having system-missing indicators. For example, scheme A employs the original observed
values. For all Categories procedures except for Correspondence Analysis, the maximum category value is
27 and the minimum category value is set to 1. The first 19 categories are empty and receive
system-missing indicators. The output can quickly become rather cumbersome if the maximum category
is much greater than 1 and there are many empty categories between 1 and the maximum.

To reduce the amount of output, recoding can be done. However, in the numerical case, the Automatic
Recode facility should not be used. Coding to consecutive integers results in differences of 1 between all
consecutive categories, and, as a result, all quantifications will be equally spaced. The metric
characteristics deemed important when treating a variable as numerical are destroyed by recoding to
consecutive integers. For example, scheme C in the table corresponds to automatically recoding age. The
difference between categories 22 and 25 has changed from three to one, and the quantifications will
reflect the latter difference.

An alternative recoding scheme that preserves the differences between categories is to subtract the
smallest category value from every category and add 1 to each difference. Scheme B results from this
transformation. The smallest category value, 20, has been subtracted from each category, and 1 was
added to each result. The transformed codes have a minimum of 1, and all differences are identical to the
original data. The maximum category value is now 8, and the zero quantifications before the first nonzero
quantification are all eliminated. Yet, the nonzero quantifications corresponding to each category resulting
from scheme B are identical to the quantifications from scheme A.

Which Procedure Is Best for Your Application?
The techniques embodied in four of these procedures (Correspondence Analysis, Multiple
Correspondence Analysis, Categorical Principal Components Analysis, and Nonlinear Canonical
Correlation Analysis) fall into the general area of multivariate data analysis known as dimension
reduction. That is, relationships between variables are represented in a few dimensions—say two or
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three—as often as possible. This enables you to describe structures or patterns in the relationships that
would be too difficult to fathom in their original richness and complexity. In market research
applications, these techniques can be a form of perceptual mapping. A major advantage of these
procedures is that they accommodate data with different levels of optimal scaling.

Categorical Regression describes the relationship between a categorical response variable and a
combination of categorical predictor variables. The influence of each predictor variable on the response
variable is described by the corresponding regression weight. As in the other procedures, data can be
analyzed with different levels of optimal scaling.

Multidimensional Scaling and Multidimensional Unfolding describe relationships between objects in a
low-dimensional space, using the proximities between the objects.

Following are brief guidelines for each of the procedures:
v Use Categorical Regression to predict the values of a categorical dependent variable from a

combination of categorical independent variables.
v Use Categorical Principal Components Analysis to account for patterns of variation in a single set of

variables of mixed optimal scaling levels.
v Use Nonlinear Canonical Correlation Analysis to assess the extent to which two or more sets of

variables of mixed optimal scaling levels are correlated.
v Use Correspondence Analysis to analyze two-way contingency tables or data that can be expressed as a

two-way table, such as brand preference or sociometric choice data.
v Use Multiple Correspondence Analysis to analyze a categorical multivariate data matrix when you are

willing to make no stronger assumption that all variables are analyzed at the nominal level.
v Use Multidimensional Scaling to analyze proximity data to find a least-squares representation of a

single set of objects in a low-dimensional space.
v Use Multidimensional Unfolding to analyze proximity data to find a least-squares representation of

two sets of objects in a low-dimensional space.

Categorical Regression
The use of Categorical Regression is most appropriate when the goal of your analysis is to predict a
dependent (response) variable from a set of independent (predictor) variables. As with all optimal scaling
procedures, scale values are assigned to each category of every variable such that these values are
optimal with respect to the regression. The solution of a categorical regression maximizes the squared
correlation between the transformed response and the weighted combination of transformed predictors.

Relation to other Categories procedures. Categorical regression with optimal scaling is comparable to
optimal scaling canonical correlation analysis with two sets, one of which contains only the dependent
variable. In the latter technique, similarity of sets is derived by comparing each set to an unknown
variable that lies somewhere between all of the sets. In categorical regression, similarity of the
transformed response and the linear combination of transformed predictors is assessed directly.

Relation to standard techniques. In standard linear regression, categorical variables can either be recoded
as indicator variables or be treated in the same fashion as interval level variables. In the first approach,
the model contains a separate intercept and slope for each combination of the levels of the categorical
variables. This results in a large number of parameters to interpret. In the second approach, only one
parameter is estimated for each variable. However, the arbitrary nature of the category codings makes
generalizations impossible.

If some of the variables are not continuous, alternative analyses are available. If the response is
continuous and the predictors are categorical, analysis of variance is often employed. If the response is
categorical and the predictors are continuous, logistic regression or discriminant analysis may be
appropriate. If the response and the predictors are both categorical, loglinear models are often used.
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Regression with optimal scaling offers three scaling levels for each variable. Combinations of these levels
can account for a wide range of nonlinear relationships for which any single "standard" method is
ill-suited. Consequently, optimal scaling offers greater flexibility than the standard approaches with
minimal added complexity.

In addition, nonlinear transformations of the predictors usually reduce the dependencies among the
predictors. If you compare the eigenvalues of the correlation matrix for the predictors with the
eigenvalues of the correlation matrix for the optimally scaled predictors, the latter set will usually be less
variable than the former. In other words, in categorical regression, optimal scaling makes the larger
eigenvalues of the predictor correlation matrix smaller and the smaller eigenvalues larger.

Categorical Principal Components Analysis
The use of Categorical Principal Components Analysis is most appropriate when you want to account for
patterns of variation in a single set of variables of mixed optimal scaling levels. This technique attempts
to reduce the dimensionality of a set of variables while accounting for as much of the variation as
possible. Scale values are assigned to each category of every variable so that these values are optimal
with respect to the principal components solution. Objects in the analysis receive component scores based
on the quantified data. Plots of the component scores reveal patterns among the objects in the analysis
and can reveal unusual objects in the data. The solution of a categorical principal components analysis
maximizes the correlations of the object scores with each of the quantified variables for the number of
components (dimensions) specified.

An important application of categorical principal components is to examine preference data, in which
respondents rank or rate a number of items with respect to preference. In the usual IBM SPSS Statistics
data configuration, rows are individuals, columns are measurements for the items, and the scores across
rows are preference scores (on a 0 to 10 scale, for example), making the data row-conditional. For
preference data, you may want to treat the individuals as variables. Using the Transpose procedure, you
can transpose the data. The raters become the variables, and all variables are declared ordinal. There is no
objection to using more variables than objects in CATPCA.

Relation to other Categories procedures. If all variables are declared multiple nominal, categorical
principal components analysis produces an analysis equivalent to a multiple correspondence analysis run
on the same variables. Thus, categorical principal components analysis can be seen as a type of multiple
correspondence analysis in which some of the variables are declared ordinal or numerical.

Relation to standard techniques. If all variables are scaled on the numerical level, categorical principal
components analysis is equivalent to standard principal components analysis.

More generally, categorical principal components analysis is an alternative to computing the correlations
between non-numerical scales and analyzing them using a standard principal components or
factor-analysis approach. Naive use of the usual Pearson correlation coefficient as a measure of
association for ordinal data can lead to nontrivial bias in estimation of the correlations.

Nonlinear Canonical Correlation Analysis
Nonlinear Canonical Correlation Analysis is a very general procedure with many different applications.
The goal of nonlinear canonical correlation analysis is to analyze the relationships between two or more
sets of variables instead of between the variables themselves, as in principal components analysis. For
example, you may have two sets of variables, where one set of variables might be demographic
background items on a set of respondents and a second set might be responses to a set of attitude items.
The scaling levels in the analysis can be any mix of nominal, ordinal, and numerical. Optimal scaling
canonical correlation analysis determines the similarity among the sets by simultaneously comparing the
canonical variables from each set to a compromise set of scores assigned to the objects.

Relation to other Categories procedures. If there are two or more sets of variables with only one variable
per set, optimal scaling canonical correlation analysis is equivalent to optimal scaling principal
components analysis. If all variables in a one-variable-per-set analysis are multiple nominal, optimal
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scaling canonical correlation analysis is equivalent to multiple correspondence analysis. If there are two
sets of variables, one of which contains only one variable, optimal scaling canonical correlation analysis is
equivalent to categorical regression with optimal scaling.

Relation to standard techniques. Standard canonical correlation analysis is a statistical technique that
finds a linear combination of one set of variables and a linear combination of a second set of variables
that are maximally correlated. Given this set of linear combinations, canonical correlation analysis can
find subsequent independent sets of linear combinations, referred to as canonical variables, up to a
maximum number equal to the number of variables in the smaller set.

If there are two sets of variables in the analysis and all variables are defined to be numerical, optimal
scaling canonical correlation analysis is equivalent to a standard canonical correlation analysis. Although
IBM SPSS Statistics does not have a canonical correlation analysis procedure, many of the relevant
statistics can be obtained from multivariate analysis of variance.

Optimal scaling canonical correlation analysis has various other applications. If you have two sets of
variables and one of the sets contains a nominal variable declared as single nominal, optimal scaling
canonical correlation analysis results can be interpreted in a similar fashion to regression analysis. If you
consider the variable to be multiple nominal, the optimal scaling analysis is an alternative to discriminant
analysis. Grouping the variables in more than two sets provides a variety of ways to analyze your data.

Correspondence Analysis
The goal of correspondence analysis is to make biplots for correspondence tables. In a correspondence
table, the row and column variables are assumed to represent unordered categories; therefore, the
nominal optimal scaling level is always used. Both variables are inspected for their nominal information
only. That is, the only consideration is the fact that some objects are in the same category while others are
not. Nothing is assumed about the distance or order between categories of the same variable.

One specific use of correspondence analysis is the analysis of two-way contingency tables. If a table has r
active rows and c active columns, the number of dimensions in the correspondence analysis solution is
the minimum of r minus 1 or c minus 1, whichever is less. In other words, you could perfectly represent
the row categories or the column categories of a contingency table in a space of dimensions. Practically
speaking, however, you would like to represent the row and column categories of a two-way table in a
low-dimensional space, say two dimensions, for the reason that two-dimensional plots are more easily
comprehensible than multidimensional spatial representations.

When fewer than the maximum number of possible dimensions is used, the statistics produced in the
analysis describe how well the row and column categories are represented in the low-dimensional
representation. Provided that the quality of representation of the two-dimensional solution is good, you
can examine plots of the row points and the column points to learn which categories of the row variable
are similar, which categories of the column variable are similar, and which row and column categories are
similar to each other.

Relation to other Categories procedures. Simple correspondence analysis is limited to two-way tables. If
there are more than two variables of interest, you can combine variables to create interaction variables.
For example, for the variables region, job, and age, you can combine region and job to create a new variable
rejob with the 12 categories shown in the following table. This new variable forms a two-way table with
age (12 rows, 4 columns), which can be analyzed in correspondence analysis.

Table 4. Combinations of region and job

Category code Category definition Category code Category definition

1 North, intern 7 East, intern

2 North, sales rep 8 East, sales rep

3 North, manager 9 East, manager
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Table 4. Combinations of region and job (continued)

Category code Category definition Category code Category definition

4 South, intern 10 West, intern

5 South, sales rep 11 West, sales rep

6 South, manager 12 West, manager

One shortcoming of this approach is that any pair of variables can be combined. We can combine job and
age, yielding another 12-category variable. Or we can combine region and age, which results in a new
16-category variable. Each of these interaction variables forms a two-way table with the remaining
variable. Correspondence analyses of these three tables will not yield identical results, yet each is a valid
approach. Furthermore, if there are four or more variables, two-way tables comparing an interaction
variable with another interaction variable can be constructed. The number of possible tables to analyze
can get quite large, even for a few variables. You can select one of these tables to analyze, or you can
analyze all of them. Alternatively, the Multiple Correspondence Analysis procedure can be used to
examine all of the variables simultaneously without the need to construct interaction variables.

Relation to standard techniques. The Crosstabs procedure can also be used to analyze contingency
tables, with independence as a common focus in the analyses. However, even in small tables, detecting
the cause of departures from independence may be difficult. The utility of correspondence analysis lies in
displaying such patterns for two-way tables of any size. If there is an association between the row and
column variables--that is, if the chi-square value is significant--correspondence analysis may help reveal
the nature of the relationship.

Multiple Correspondence Analysis
Multiple Correspondence Analysis tries to produce a solution in which objects within the same category
are plotted close together and objects in different categories are plotted far apart. Each object is as close
as possible to the category points of categories that apply to the object. In this way, the categories divide
the objects into homogeneous subgroups. Variables are considered homogeneous when they classify
objects in the same categories into the same subgroups.

For a one-dimensional solution, multiple correspondence analysis assigns optimal scale values (category
quantifications) to each category of each variable in such a way that overall, on average, the categories
have maximum spread. For a two-dimensional solution, multiple correspondence analysis finds a second
set of quantifications of the categories of each variable unrelated to the first set, attempting again to
maximize spread, and so on. Because categories of a variable receive as many scorings as there are
dimensions, the variables in the analysis are assumed to be multiple nominal in optimal scaling level.

Multiple correspondence analysis also assigns scores to the objects in the analysis in such a way that the
category quantifications are the averages, or centroids, of the object scores of objects in that category.

Relation to other Categories procedures. Multiple correspondence analysis is also known as
homogeneity analysis or dual scaling. It gives comparable, but not identical, results to correspondence
analysis when there are only two variables. Correspondence analysis produces unique output
summarizing the fit and quality of representation of the solution, including stability information. Thus,
correspondence analysis is usually preferable to multiple correspondence analysis in the two-variable
case. Another difference between the two procedures is that the input to multiple correspondence analysis
is a data matrix, where the rows are objects and the columns are variables, while the input to
correspondence analysis can be the same data matrix, a general proximity matrix, or a joint contingency
table, which is an aggregated matrix in which both the rows and columns represent categories of
variables. Multiple correspondence analysis can also be thought of as principal components analysis of
data scaled at the multiple nominal level.

Relation to standard techniques. Multiple correspondence analysis can be thought of as the analysis of a
multiway contingency table. Multiway contingency tables can also be analyzed with the Crosstabs
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procedure, but Crosstabs gives separate summary statistics for each category of each control variable.
With multiple correspondence analysis, it is often possible to summarize the relationship between all of
the variables with a single two-dimensional plot. An advanced use of multiple correspondence analysis is
to replace the original category values with the optimal scale values from the first dimension and
perform a secondary multivariate analysis. Since multiple correspondence analysis replaces category
labels with numerical scale values, many different procedures that require numerical data can be applied
after the multiple correspondence analysis. For example, the Factor Analysis procedure produces a first
principal component that is equivalent to the first dimension of multiple correspondence analysis. The
component scores in the first dimension are equal to the object scores, and the squared component
loadings are equal to the discrimination measures. The second multiple correspondence analysis
dimension, however, is not equal to the second dimension of factor analysis.

Multidimensional Scaling
The use of Multidimensional Scaling is most appropriate when the goal of your analysis is to find the
structure in a set of distance measures between a single set of objects or cases. This is accomplished by
assigning observations to specific locations in a conceptual low-dimensional space so that the distances
between points in the space match the given (dis)similarities as closely as possible. The result is a
least-squares representation of the objects in that low-dimensional space, which, in many cases, will help
you further understand your data.

Relation to other Categories procedures. When you have multivariate data from which you create
distances and which you then analyze with multidimensional scaling, the results are similar to analyzing
the data using categorical principal components analysis with object principal normalization. This kind of
PCA is also known as principal coordinates analysis.

Relation to standard techniques. The Categories Multidimensional Scaling procedure (PROXSCAL) offers
several improvements upon the scaling procedure available in Statistics Base Edition (ALSCAL).
PROXSCAL offers an accelerated algorithm for certain models and allows you to put restrictions on the
common space. Moreover, PROXSCAL attempts to minimize normalized raw stress rather than S-stress
(also referred to as strain). The normalized raw stress is generally preferred because it is a measure based
on the distances, while the S-stress is based on the squared distances.

Multidimensional Unfolding
The use of Multidimensional Unfolding is most appropriate when the goal of your analysis is to find the
structure in a set of distance measures between two sets of objects (referred to as the row and column
objects). This is accomplished by assigning observations to specific locations in a conceptual
low-dimensional space so that the distances between points in the space match the given (dis)similarities
as closely as possible. The result is a least-squares representation of the row and column objects in that
low-dimensional space, which, in many cases, will help you further understand your data.

Relation to other Categories procedures. If your data consist of distances between a single set of objects
(a square, symmetrical matrix), use Multidimensional Scaling.

Relation to standard techniques. The Categories Multidimensional Unfolding procedure (PREFSCAL)
offers several improvements upon the unfolding functionality available in Statistics Base Edition (through
ALSCAL). PREFSCAL allows you to put restrictions on the common space; moreover, PREFSCAL
attempts to minimize a penalized stress measure that helps it to avoid degenerate solutions (to which
older algorithms are prone).

Aspect Ratio in Optimal Scaling Charts
Aspect ratio in optimal scaling plots is isotropic. In a two-dimensional plot, the distance representing one
unit in dimension 1 is equal to the distance representing one unit in dimension 2. If you change the range
of a dimension in a two-dimensional plot, the system changes the size of the other dimension to keep the
physical distances equal. Isotropic aspect ratio cannot be overridden for the optimal scaling procedures.
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Categorical Regression (CATREG)
Categorical regression quantifies categorical data by assigning numerical values to the categories,
resulting in an optimal linear regression equation for the transformed variables. Categorical regression is
also known by the acronym CATREG, for categorical regression.

Standard linear regression analysis involves minimizing the sum of squared differences between a
response (dependent) variable and a weighted combination of predictor (independent) variables.
Variables are typically quantitative, with (nominal) categorical data recoded to binary or contrast
variables. As a result, categorical variables serve to separate groups of cases, and the technique estimates
separate sets of parameters for each group. The estimated coefficients reflect how changes in the
predictors affect the response. Prediction of the response is possible for any combination of predictor
values.

An alternative approach involves regressing the response on the categorical predictor values themselves.
Consequently, one coefficient is estimated for each variable. However, for categorical variables, the
category values are arbitrary. Coding the categories in different ways yield different coefficients, making
comparisons across analyses of the same variables difficult.

CATREG extends the standard approach by simultaneously scaling nominal, ordinal, and numerical
variables. The procedure quantifies categorical variables so that the quantifications reflect characteristics
of the original categories. The procedure treats quantified categorical variables in the same way as
numerical variables. Using nonlinear transformations allow variables to be analyzed at a variety of levels
to find the best-fitting model.

Example. Categorical regression could be used to describe how job satisfaction depends on job category,
geographic region, and amount of travel. You might find that high levels of satisfaction correspond to
managers and low travel. The resulting regression equation could be used to predict job satisfaction for
any combination of the three independent variables.

Statistics and plots. Frequencies, regression coefficients, ANOVA table, iteration history, category
quantifications, correlations between untransformed predictors, correlations between transformed
predictors, residual plots, and transformation plots.

Categorical Regression Data Considerations

Data. CATREG operates on category indicator variables. The category indicators should be positive
integers. You can use the Discretization dialog box to convert fractional-value variables and string
variables into positive integers.

Assumptions. Only one response variable is allowed, but the maximum number of predictor variables is
200. The data must contain at least three valid cases, and the number of valid cases must exceed the
number of predictor variables plus one.

Related procedures. CATREG is equivalent to categorical canonical correlation analysis with optimal
scaling (OVERALS) with two sets, one of which contains only one variable. Scaling all variables at the
numerical level corresponds to standard multiple regression analysis.

To Obtain a Categorical Regression
1. From the menus choose:

Analyze > Regression > Optimal Scaling (CATREG)...

2. Select the dependent variable and independent variable(s).
3. Click OK.

Optionally, change the scaling level for each variable.
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Define Scale in Categorical Regression

You can set the optimal scaling level for the dependent and independent variables. By default, they are
scaled as second-degree monotonic splines (ordinal) with two interior knots. Additionally, you can set the
weight for analysis variables.

Optimal Scaling Level. You can also select the scaling level for quantifying each variable.
v Spline Ordinal. The order of the categories of the observed variable is preserved in the optimally

scaled variable. Category points will be on a straight line (vector) through the origin. The resulting
transformation is a smooth monotonic piecewise polynomial of the chosen degree. The pieces are
specified by the user-specified number and procedure-determined placement of the interior knots.

v Spline Nominal. The only information in the observed variable that is preserved in the optimally
scaled variable is the grouping of objects in categories. The order of the categories of the observed
variable is not preserved. Category points will be on a straight line (vector) through the origin. The
resulting transformation is a smooth, possibly nonmonotonic, piecewise polynomial of the chosen
degree. The pieces are specified by the user-specified number and procedure-determined placement of
the interior knots.

v Ordinal. The order of the categories of the observed variable is preserved in the optimally scaled
variable. Category points will be on a straight line (vector) through the origin. The resulting
transformation fits better than the spline ordinal transformation but is less smooth.

v Nominal. The only information in the observed variable that is preserved in the optimally scaled
variable is the grouping of objects in categories. The order of the categories of the observed variable is
not preserved. Category points will be on a straight line (vector) through the origin. The resulting
transformation fits better than the spline nominal transformation but is less smooth.

v Numeric. Categories are treated as ordered and equally spaced (interval level). The order of the
categories and the equal distances between category numbers of the observed variable are preserved in
the optimally scaled variable. Category points will be on a straight line (vector) through the origin.
When all variables are at the numeric level, the analysis is analogous to standard principal components
analysis.

Categorical Regression Discretization
The Discretization dialog box allows you to select a method of recoding your variables. Fractional-value
variables are grouped into seven categories (or into the number of distinct values of the variable if this
number is less than seven) with an approximately normal distribution unless otherwise specified. String
variables are always converted into positive integers by assigning category indicators according to
ascending alphanumeric order. Discretization for string variables applies to these integers. Other variables
are left alone by default. The discretized variables are then used in the analysis.

Method. Choose between grouping, ranking, and multiplying.
v Grouping. Recode into a specified number of categories or recode by interval.
v Ranking. The variable is discretized by ranking the cases.
v Multiplying. The current values of the variable are standardized, multiplied by 10, rounded, and have

a constant added so that the lowest discretized value is 1.

Grouping. The following options are available when discretizing variables by grouping:
v Number of categories. Specify a number of categories and whether the values of the variable should

follow an approximately normal or uniform distribution across those categories.
v Equal intervals. Variables are recoded into categories defined by these equally sized intervals. You

must specify the length of the intervals.
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Categorical Regression Missing Values
The Missing Values dialog box allows you to choose the strategy for handling missing values in analysis
variables and supplementary variables.

Strategy. Choose to exclude objects with missing values (listwise deletion) or impute missing values
(active treatment).
v Exclude objects with missing values on this variable. Objects with missing values on the selected

variable are excluded from the analysis. This strategy is not available for supplementary variables.
v Impute missing values. Objects with missing values on the selected variable have those values

imputed. You can choose the method of imputation. Select Mode to replace missing values with the
most frequent category. When there are multiple modes, the one with the smallest category indicator is
used. Select Extra category to replace missing values with the same quantification of an extra category.
This implies that objects with a missing value on this variable are considered to belong to the same
(extra) category.

Categorical Regression Options
The Options dialog box allows you to select the initial configuration style, specify iteration and
convergence criteria, select supplementary objects, and set the labeling of plots.

Supplementary Objects. This allows you to specify the objects that you want to treat as supplementary.
Simply type the number of a supplementary object (or specify a range of cases) and click Add. You
cannot weight supplementary objects (specified weights are ignored).

Initial Configuration. If no variables are treated as nominal, select the Numerical configuration. If at
least one variable is treated as nominal, select the Random configuration.

Alternatively, if at least one variable has an ordinal or spline ordinal scaling level, the usual model-fitting
algorithm can result in a suboptimal solution. Choosing Multiple systematic starts with all possible sign
patterns to test will always find the optimal solution, but the necessary processing time rapidly increases
as the number of ordinal and spline ordinal variables in the dataset increase. You can reduce the number
of test patterns by specifying a percentage of loss of variance threshold, where the higher the threshold,
the more sign patterns will be excluded. With this option, obtaining the optimal solution is not
garantueed, but the chance of obtaining a suboptimal solution is diminished. Also, if the optimal solution
is not found, the chance that the suboptimal solution is very different from the optimal solution is
diminished. When multiple systematic starts are requested, the signs of the regression coefficients for
each start are written to an external IBM SPSS Statistics data file or dataset in the current session. See the
topic “Categorical Regression Save” on page 14 for more information.

The results of a previous run with multiple systematic starts allows you to Use fixed signs for the
regression coefficients. The signs (indicated by 1 and −1) need to be in a row of the specified dataset or
file. The integer-valued starting number is the case number of the row in this file that contains the signs
to be used.

Criteria. You can specify the maximum number of iterations that the regression may go through in its
computations. You can also select a convergence criterion value. The regression stops iterating if the
difference in total fit between the last two iterations is less than the convergence value or if the maximum
number of iterations is reached.

Label Plots By. Allows you to specify whether variables and value labels or variable names and values
will be used in the plots. You can also specify a maximum length for labels.

Categorical Regression Regularization
Method. Regularization methods can improve the predictive error of the model by reducing the
variability in the estimates of regression coefficient by shrinking the estimates toward 0. The Lasso and
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Elastic Net will shrink some coefficient estimates to exactly 0, thus providing a form of variable selection.
When a regularization method is requested, the regularized model and coefficients for each penalty
coefficient value are written to an external IBM SPSS Statistics data file or dataset in the current session.
See the topic “Categorical Regression Save” on page 14 for more information.
v Ridge regression. Ridge regression shrinks coefficients by introducing a penalty term equal to the sum

of squared coefficients times a penalty coefficient. This coefficient can range from 0 (no penalty) to 1;
the procedure will search for the "best" value of the penalty if you specify a range and increment.

v Lasso. The Lasso's penalty term is based on the sum of absolute coefficients, and the specification of a
penalty coefficient is similar to that of Ridge regression; however, the Lasso is more computationally
intensive.

v Elastic net. The Elastic Net simply combines the Lasso and Ridge regression penalties, and will search
over the grid of values specified to find the "best" Lasso and Ridge regression penalty coefficients. For
a given pair of Lasso and Ridge regression penalties, the Elastic Net is not much more computationally
expensive than the Lasso.

Display regularization plots. These are plots of the regression coefficients versus the regularization
penalty. When searching a range of values for the "best" penalty coefficient, it provides a view of how the
regression coefficients change over that range.

Elastic Net Plots. For the Elastic Net method, separate regularization plots are produced by values of the
Ridge regression penalty. All possible plots uses every value in the range determined by the minimum
and maximum Ridge regression penalty values specified. For some Ridge penalties allows you to specify
a subset of the values in the range determined by the minimum and maximum. Simply type the number
of a penalty value (or specify a range of values) and click Add.

Categorical Regression Output
The Output dialog box allows you to select the statistics to display in the output.

Tables. Produces tables for:
v Multiple R. Includes R 2, adjusted R 2, and adjusted R 2 taking the optimal scaling into account.
v ANOVA. This option includes regression and residual sums of squares, mean squares, and F. Two

ANOVA tables are displayed: one with degrees of freedom for the regression equal to the number of
predictor variables and one with degrees of freedom for the regression taking the optimal scaling into
account.

v Coefficients. This option gives three tables: a Coefficients table that includes betas, standard error of
the betas, t values, and significance; a Coefficients-Optimal Scaling table with the standard error of the
betas taking the optimal scaling degrees of freedom into account; and a table with the zero-order, part,
and partial correlation, Pratt's relative importance measure for the transformed predictors, and the
tolerance before and after transformation.

v Iteration history. For each iteration, including the starting values for the algorithm, the multiple R and
regression error are shown. The increase in multiple R is listed starting from the first iteration.

v Correlations of original variables. A matrix showing the correlations between the untransformed
variables is displayed.

v Correlations of transformed variables. A matrix showing the correlations between the transformed
variables is displayed.

v Regularized models and coefficients. Displays penalty values, R-square, and the regression
coefficients for each regularized model. If a resampling method is specified or if supplementary objects
(test cases) are specified, it also displays the prediction error or test MSE.

Resampling. Resampling methods give you an estimate of the prediction error of the model.
v Crossvalidation. Crossvalidation divides the sample into a number of subsamples, or folds.

Categorical regression models are then generated, excluding the data from each subsample in turn. The
first model is based on all of the cases except those in the first sample fold, the second model is based
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on all of the cases except those in the second sample fold, and so on. For each model, the prediction
error is estimated by applying the model to the subsample excluded in generating it.

v .632 Bootstrap. With the bootstrap, observations are drawn randomly from the data with replacement,
repeating this process a number of times to obtain a number bootstrap samples. A model is fit for each
bootstrap sample. The prediction error for each model is estimated by applying the fitted model to the
cases not in the bootstrap sample.

Category Quantifications. Tables showing the transformed values of the selected variables are displayed.

Descriptive Statistics. Tables showing the frequencies, missing values, and modes of the selected
variables are displayed.

Categorical Regression Save
The Save dialog box allows you to save predicted values, residuals, and transformed values to the active
dataset and/or save discretized data, transformed values, regularized models and coefficients, and signs
of regression coefficients to an external IBM SPSS Statistics data file or dataset in the current session.
v Datasets are available during the current session but are not available in subsequent sessions unless

you explicitly save them as data files. Dataset names must adhere to variable naming rules.
v Filenames or dataset names must be different for each type of data saved.

Regularized models and coefficients are saved whenever a regularization method is selected on the
Regularization dialog. By default, the procedure creates a new dataset with a unique name, but you can
of course specify a name of your own choosing or write to an external file.

Signs of regression coefficients are saved whenever multiple systematic starts are used as the initial
configuration on the Options dialog. By default, the procedure creates a new dataset with a unique name,
but you can of course specify a name of your own choosing or write to an external file.

Categorical Regression Transformation Plots
The Plots dialog box allows you to specify the variables that will produce transformation and residual
plots.

Transformation Plots. For each of these variables, the category quantifications are plotted against the
original category values. Empty categories appear on the horizontal axis but do not affect the
computations. These categories are identified by breaks in the line connecting the quantifications.

Residual Plots. For each of these variables, residuals (computed for the dependent variable predicted
from all predictor variables except the predictor variable in question) are plotted against category
indicators and the optimal category quantifications multiplied with beta against category indicators.

CATREG Command Additional Features
You can customize your categorical regression if you paste your selections into a syntax window and edit
the resulting CATREG command syntax. The command syntax language also allows you to:
v Specify rootnames for the transformed variables when saving them to the active dataset (with the SAVE

subcommand).

See the Command Syntax Reference for complete syntax information.

Categorical Principal Components Analysis (CATPCA)
This procedure simultaneously quantifies categorical variables while reducing the dimensionality of the
data. Categorical principal components analysis is also known by the acronym CATPCA, for categorical
principal components analysis.
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The goal of principal components analysis is to reduce an original set of variables into a smaller set of
uncorrelated components that represent most of the information found in the original variables. The
technique is most useful when a large number of variables prohibits effective interpretation of the
relationships between objects (subjects and units). By reducing the dimensionality, you interpret a few
components rather than a large number of variables.

Standard principal components analysis assumes linear relationships between numeric variables. On the
other hand, the optimal-scaling approach allows variables to be scaled at different levels. Categorical
variables are optimally quantified in the specified dimensionality. As a result, nonlinear relationships
between variables can be modeled.

Example. Categorical principal components analysis could be used to graphically display the relationship
between job category, job division, region, amount of travel (high, medium, and low), and job satisfaction.
You might find that two dimensions account for a large amount of variance. The first dimension might
separate job category from region, whereas the second dimension might separate job division from
amount of travel. You also might find that high job satisfaction is related to a medium amount of travel.

Statistics and plots. Frequencies, missing values, optimal scaling level, mode, variance accounted for by
centroid coordinates, vector coordinates, total per variable and per dimension, component loadings for
vector-quantified variables, category quantifications and coordinates, iteration history, correlations of the
transformed variables and eigenvalues of the correlation matrix, correlations of the original variables and
eigenvalues of the correlation matrix, object scores, category plots, joint category plots, transformation
plots, residual plots, projected centroid plots, object plots, biplots, triplots, and component loadings plots.

Categorical Principal Components Analysis Data Considerations

Data. String variable values are always converted into positive integers by ascending alphanumeric order.
User-defined missing values, system-missing values, and values less than 1 are considered missing; you
can recode or add a constant to variables with values less than 1 to make them nonmissing.

Assumptions. The data must contain at least three valid cases. The analysis is based on positive integer
data. The discretization option will automatically categorize a fractional-valued variable by grouping its
values into categories with a close to "normal" distribution and will automatically convert values of string
variables into positive integers. You can specify other discretization schemes.

Related procedures. Scaling all variables at the numeric level corresponds to standard principal
components analysis. Alternate plotting features are available by using the transformed variables in a
standard linear principal components analysis. If all variables have multiple nominal scaling levels,
categorical principal components analysis is identical to multiple correspondence analysis. If sets of
variables are of interest, categorical (nonlinear) canonical correlation analysis should be used.

To Obtain a Categorical Principal Components Analysis
1. From the menus choose:

Analyze > Dimension Reduction > Optimal Scaling...

2. Select Some variable(s) not multiple nominal.
3. Select One set.
4. Click Define.
5. Select at least two analysis variables and specify the number of dimensions in the solution.
6. Click OK.

You may optionally specify supplementary variables, which are fitted into the solution found, or labeling
variables for the plots.
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Define Scale and Weight in CATPCA

You can set the optimal scaling level for analysis variables and supplementary variables. By default, they
are scaled as second-degree monotonic splines (ordinal) with two interior knots. Additionally, you can set
the weight for analysis variables.

Variable weight. You can choose to define a weight for each variable. The value specified must be a
positive integer. The default value is 1.

Optimal Scaling Level. You can also select the scaling level to be used to quantify each variable.
v Spline ordinal. The order of the categories of the observed variable is preserved in the optimally

scaled variable. Category points will be on a straight line (vector) through the origin. The resulting
transformation is a smooth monotonic piecewise polynomial of the chosen degree. The pieces are
specified by the user-specified number and procedure-determined placement of the interior knots.

v Spline nominal. The only information in the observed variable that is preserved in the optimally
scaled variable is the grouping of objects in categories. The order of the categories of the observed
variable is not preserved. Category points will be on a straight line (vector) through the origin. The
resulting transformation is a smooth, possibly nonmonotonic, piecewise polynomial of the chosen
degree. The pieces are specified by the user-specified number and procedure-determined placement of
the interior knots.

v Multiple nominal. The only information in the observed variable that is preserved in the optimally
scaled variable is the grouping of objects in categories. The order of the categories of the observed
variable is not preserved. Category points will be in the centroid of the objects in the particular
categories. Multiple indicates that different sets of quantifications are obtained for each dimension.

v Ordinal. The order of the categories of the observed variable is preserved in the optimally scaled
variable. Category points will be on a straight line (vector) through the origin. The resulting
transformation fits better than the spline ordinal transformation but is less smooth.

v Nominal. The only information in the observed variable that is preserved in the optimally scaled
variable is the grouping of objects in categories. The order of the categories of the observed variable is
not preserved. Category points will be on a straight line (vector) through the origin. The resulting
transformation fits better than the spline nominal transformation but is less smooth.

v Numeric. Categories are treated as ordered and equally spaced (interval level). The order of the
categories and the equal distances between category numbers of the observed variable are preserved in
the optimally scaled variable. Category points will be on a straight line (vector) through the origin.
When all variables are at the numeric level, the analysis is analogous to standard principal components
analysis.

Categorical Principal Components Analysis Discretization
The Discretization dialog box allows you to select a method of recoding your variables. Fractional-valued
variables are grouped into seven categories (or into the number of distinct values of the variable if this
number is less than seven) with an approximately normal distribution, unless specified otherwise. String
variables are always converted into positive integers by assigning category indicators according to
ascending alphanumeric order. Discretization for string variables applies to these integers. Other variables
are left alone by default. The discretized variables are then used in the analysis.

Method. Choose between grouping, ranking, and multiplying.
v Grouping. Recode into a specified number of categories or recode by interval.
v Ranking. The variable is discretized by ranking the cases.
v Multiplying. The current values of the variable are standardized, multiplied by 10, rounded, and have

a constant added such that the lowest discretized value is 1.

Grouping. The following options are available when you are discretizing variables by grouping:
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v Number of categories. Specify a number of categories and whether the values of the variable should
follow an approximately normal or uniform distribution across those categories.

v Equal intervals. Variables are recoded into categories defined by these equally sized intervals. You
must specify the length of the intervals.

Categorical Principal Components Analysis Missing Values
Use the Missing Values dialog box to choose the strategy for handling missing values in analysis
variables and supplementary variables.

Strategy. Choose to exclude missing values (passive treatment), impute missing values (active treatment),
or exclude objects with missing values (listwise deletion).
v Exclude missing values; for correlations impute after quantification. Objects with missing values on

the selected variable do not contribute to the analysis for this variable. If all variables are given passive
treatment, then objects with missing values on all variables are treated as supplementary. If correlations
are specified in the Output dialog box, then (after analysis) missing values are imputed with the most
frequent category, or mode, of the variable for the correlations of the original variables. For the
correlations of the optimally scaled variables, you can choose the method of imputation.
– Mode. Replace missing values with the mode of the optimally scaled variable.
– Extra category. Replace missing values with the quantification of an extra category. This setting

implies that objects with a missing value on this variable are considered to belong to the same
(extra) category.

– Random category. Impute each missing value on a variable with the quantified value of a different
random category number based on the marginal frequencies of the categories of the variable.

v Impute missing values. Objects with missing values on the selected variable have those values
imputed. You can choose the method of imputation.
– Mode. Replace missing values with the most frequent category. When there are multiple modes, the

one with the smallest category indicator is used.
– Extra category. Replace missing values with the same quantification of an extra category. This

setting implies that objects with a missing value on this variable are considered to belong to the
same (extra) category.

– Random category. Replace each missing value on a variable with a different random category
number based on the marginal frequencies of the categories.

v Exclude objects with missing values on this variable. Objects with missing values on the selected
variable are excluded from the analysis. This strategy is not available for supplementary variables.

Categorical Principal Components Analysis Options
The Options dialog box provides controls to select the initial configuration, specify iteration and
convergence criteria, select a normalization method, choose the method for labeling plots, and specify
supplementary objects.

Supplementary Objects. Specify the case number of the object, or the first and last case numbers of a
range of objects, that you want to make supplementary and then click Add. If an object is specified as
supplementary, then case weights are ignored for that object.

Normalization Method. You can specify one of five options for normalizing the object scores and the
variables. Only one normalization method can be used in each analysis.
v Variable Principal. This option optimizes the association between variables. The coordinates of the

variables in the object space are the component loadings (correlations with principal components, such
as dimensions and object scores). This method is useful when you are primarily interested in the
correlation between the variables.

v Object Principal. This option optimizes distances between objects. This method is useful when you
are primarily interested in differences or similarities between the objects.
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v Symmetrical. Use this normalization option if you are primarily interested in the relation between
objects and variables.

v Independent. Use this normalization option if you want to examine distances between objects and
correlations between variables separately.

v Custom. You can specify any real value in the closed interval [–1, 1]. A value of 1 is equal to the
Object Principal method. A value of 0 is equal to the Symmetrical method. A value of –1 is equal to the
Variable Principal method. By specifying a value greater than –1 and less than 1, you can spread the
eigenvalue over both objects and variables. This method is useful for making a tailor-made biplot or
triplot.

Criteria. You can specify the maximum number of iterations the procedure can go through in its
computations. You can also select a convergence criterion value. The algorithm stops iterating if the
difference in total fit between the last two iterations is less than the convergence value or if the maximum
number of iterations is reached.

Label Plots By. You can specify whether variables and value labels or variable names and values are used
in the plots. You can also specify a maximum length for labels.

Plot Dimensions. You can control the dimensions that are displayed in the output.
v Display all dimensions in the solution. All dimensions in the solution are displayed in a scatterplot

matrix.
v Restrict the number of dimensions. The displayed dimensions are restricted to plotted pairs. If you

restrict the dimensions, you must select the lowest and highest dimensions to be plotted. The lowest
dimension can range from 1 to the number of dimensions in the solution minus 1 and is plotted
against higher dimensions. The highest dimension value can range from 2 to the number of dimensions
in the solution and indicates the highest dimension to be used in plotting the dimension pairs. This
specification applies to all requested multidimensional plots.

Rotation. You can select a rotation method to obtain rotated results.

Note: These rotation methods are not available if you select Perform bootstrapping in the Bootstrap
dialog.
v Varimax. An orthogonal rotation method that minimizes the number of variables that have high

loadings on each component. It simplifies the interpretation of the components.
v Quartimax. A rotation method that minimizes the number of components that are needed to explain

each variable. It simplifies the interpretation of the observed variables.
v Equamax. A rotation method that is a combination of the Varimax method, which simplifies the

components, and the Quartimax method, which simplifies the variables. The number of variables that
load highly on a component and the number of components that are needed to explain a variable are
minimized.

v Oblimin. A method for oblique (non-orthogonal) rotation. When delta equals 0, components are most
oblique. As delta becomes more negative, the components become less oblique. Positive values permit
additional component correlation. The value of Delta must be less than or equal to 0.8.

v Promax. An oblique (non-orthogonal) rotation, which allows components to be correlated. It can be
calculated more quickly than a direct Oblimin rotation, so it is useful for large datasets. The amount of
correlation (obliqueness) that is allowed is controlled by the kappa parameter. The value of Kappa
must be greater than or equal to 1 and less 10,000.

Configuration. You can read data from a file that contains the coordinates of a configuration. The first
variable in the file contains the coordinates for the first dimension. The second variable contains the
coordinates for the second dimension, and so on.
v Initial. The configuration in the file that is specified is used as the starting point of the analysis.
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v Fixed. The configuration in the file that is specified is used to fit in the variables. The variables that
are fitted in must be selected as analysis variables, but because the configuration is fixed, they are
treated as supplementary variables (so they do not need to be selected as supplementary variables).

Categorical Principal Components Analysis Output
The Output dialog box controls the display of results.

Object scores. Displays the object scores and has the following options:
v Include Categories Of. Displays the category indicators of the analysis variables selected.
v Label Object Scores By. From the list of variables that are specified as labeling variables, you can

select one to label the objects.

Component loadings. Displays the component loadings for all variables that were not given multiple
nominal scaling levels. You can sort the component loadings by size.

Iteration history. For each iteration, the variance accounted for, loss, and increase in variance accounted
for are shown.

Correlations of original variables. Shows the correlation matrix of the original variables and the
eigenvalues of that matrix.

Correlations of transformed variables. Shows the correlation matrix of the transformed (optimally
scaled) variables and the eigenvalues of that matrix.

Variance accounted for. Displays the amount of variance accounted for by centroid coordinates, vector
coordinates, and total (centroid and vector coordinates combined) per variable and per dimension.

Category Quantifications. Gives the category quantifications and coordinates for each dimension of the
variables that are selected.

Descriptive Statistics. Displays frequencies, number of missing values, and mode of the variables that are
selected.

Categorical Principal Components Analysis Save
The controls in the Save dialog box save discretized data, object scores, transformed values, and other
results to the active dataset, a new dataset in the current session, or an external file.
v Datasets are available during the current session but are not available in subsequent sessions unless

you explicitly save them as data files. Dataset names must adhere to variable naming rules.
v Filenames or dataset names must be different for each type of data saved.
v If you save object scores or transformed values to the active dataset, you can specify the number of

multiple nominal dimensions.
v The options in the Bootstrap Confidence Ellipses group are only available if you select Perform

bootstrapping in the Bootstrap dialog.

Categorical Principal Components Analysis Object Plots
The Object and Variable Plots dialog box allows you to specify the types of plots you want and the
variables for which plots will be produced.

Object points. A plot of the object points is displayed.

Objects and variables (biplot). The object points are plotted with your choice of the variable
coordinates--component loadings or variable centroids.
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Objects, loadings, and centroids (triplot). The object points are plotted with the centroids of multiple
nominal-scaling-level variables and the component loadings of other variables.

Biplot and Triplot Variables. You can choose to use all variables for the biplots and triplots or select a
subset.

Label Objects. You can choose to have objects labeled with the categories of selected variables (you may
choose category indicator values or value labels in the Options dialog box) or with their case numbers.
One plot is produced per variable if Variable is selected.

Categorical Principal Components Analysis Category Plots
The Category Plots dialog box allows you to specify the types of plots you want and the variables for
which plots will be produced.

Category Plots. For each variable selected, a plot of the centroid and vector coordinates is plotted. For
variables with multiple nominal scaling levels, categories are in the centroids of the objects in the
particular categories. For all other scaling levels, categories are on a vector through the origin.

Joint Category Plots. This is a single plot of the centroid and vector coordinates of each selected variable.

Transformation Plots. Displays a plot of the optimal category quantifications versus the category
indicators. You can specify the number of dimensions for variables with multiple nominal scaling levels;
one plot will be generated for each dimension. You can also choose to display residual plots for each
variable selected.

Project Centroids Of. You may choose a variable and project its centroids onto selected variables.
Variables with multiple nominal scaling levels cannot be selected to project on. When this plot is
requested, a table with the coordinates of the projected centroids is also displayed.

Categorical Principal Components Analysis Loading Plots
The Loading Plots dialog box controls the variables that are included in the plot, display of centroids in
the loadings plot, and display of plots of variance accounted for.

Variance accounted for. For each dimension, displays a plot of variance accounted for.

Display component loadings. If selected, a plot of the component loadings is displayed.

Loading Variables. You can choose to use all variables for the component loadings plot or select a subset.

Include centroids. Variables with multiple nominal scaling levels do not have component loadings, but
you can choose to include the centroids of those variables in the plot. You can choose to use all multiple
nominal variables or select a subset.

Categorical Principal Components Analysis Bootstrap
The Bootstrap dialog specifies parameters for bootstrap analysis.

Perform bootstrapping. Performs bootstrap resampling.
v If plots of loadings, categories, or component scores are requested, extra plots are displayed. These

plots display the points for the data sample and the bootstrap estimates. Transformation plots include
confidence regions. A plot for the eigenvalues is also displayed.

v If a two-dimensional solution is specified, confidence ellipse plots for the eigenvalues, the component
loadings, the category points, and the object points are displayed.

v Bootstrap resampling is not available if you specify a rotation method in the Options dialog.
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You can select Balanced or Unbalanced bootstrapping.

Number of samples. The number of bootstrap samples that are used to calculate the bootstrap estimates.
The value must be a positive integer.

Confidence level. The confidence level of the bootstrap estimates, expressed as a percentage. The value
must a be a positive number less than 100.

Matching Method. The two alternatives are Procrustes and Reflection.

Confidence Ellipses. Controls the threshold area for confidence ellipses in plots. For areas greater than (>
operator) the specified value, the number of ellipses decreases as the threshold value increases.
v The settings in this group are only available if the number of dimensions that are specified on the main

dialog is 2.
v Confidence ellipses for loading plots are available only if Display component loadings is selected in

the Loading Plots dialog.
v Confidence ellipses for object plots are available only if Object points is selected in the Object and

Variable Plots dialog.
v Confidence ellipses for category plots are available only if one or more variables are specified in the

Category Plots list in the Category Plots dialog.

Number of ellipse contour points. The number of plot points used to draw each confidence ellipse.
Larger values produce smoother ellipses. The value must be a positive integer less than or equal to 100.

CATPCA Command Additional Features
You can customize your categorical principal components analysis if you paste your selections into a
syntax window and edit the resulting CATPCA command syntax. The command syntax language also
allows you to:
v Specify rootnames for the transformed variables, object scores, and approximations when saving them

to the active dataset (with the SAVE subcommand).
v Specify a maximum length for labels for each plot separately (with the PLOT subcommand).
v Specify a separate variable list for residual plots (with the PLOT subcommand).

See the Command Syntax Reference for complete syntax information.

Nonlinear Canonical Correlation Analysis (OVERALS)
Nonlinear canonical correlation analysis corresponds to categorical canonical correlation analysis with
optimal scaling. The purpose of this procedure is to determine how similar sets of categorical variables
are to one another. Nonlinear canonical correlation analysis is also known by the acronym OVERALS.

Standard canonical correlation analysis is an extension of multiple regression, where the second set does
not contain a single response variable but instead contain multiple response variables. The goal is to
explain as much as possible of the variance in the relationships among two sets of numerical variables in
a low dimensional space. Initially, the variables in each set are linearly combined such that the linear
combinations have a maximal correlation. Given these combinations, subsequent linear combinations are
determined that are uncorrelated with the previous combinations and that have the largest correlation
possible.

The optimal scaling approach expands the standard analysis in three crucial ways. First, OVERALS
allows more than two sets of variables. Second, variables can be scaled as either nominal, ordinal, or
numerical. As a result, nonlinear relationships between variables can be analyzed. Finally, instead of
maximizing correlations between the variable sets, the sets are compared to an unknown compromise set
that is defined by the object scores.
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Example. Categorical canonical correlation analysis with optimal scaling could be used to graphically
display the relationship between one set of variables containing job category and years of education and
another set of variables containing region of residence and gender. You might find that years of education
and region of residence discriminate better than the remaining variables. You might also find that years
of education discriminates best on the first dimension.

Statistics and plots. Frequencies, centroids, iteration history, object scores, category quantifications,
weights, component loadings, single and multiple fit, object scores plots, category coordinates plots,
component loadings plots, category centroids plots, transformation plots.

Nonlinear Canonical Correlation Analysis Data Considerations

Data. Use integers to code categorical variables (nominal or ordinal scaling level). To minimize output,
use consecutive integers beginning with 1 to code each variable. Variables that are scaled at the numerical
level should not be recoded to consecutive integers. To minimize output, for each variable that is scaled
at the numerical level, subtract the smallest observed value from every value and add 1. Fractional values
are truncated after the decimal.

Assumptions. Variables can be classified into two or more sets. Variables in the analysis are scaled as
multiple nominal, single nominal, ordinal, or numerical. The maximum number of dimensions that are
used in the procedure depends on the optimal scaling level of the variables. If all variables are specified
as ordinal, single nominal, or numerical, the maximum number of dimensions is the lesser of the
following two values: the number of observations minus 1 or the total number of variables. However, if
only two sets of variables are defined, the maximum number of dimensions is the number of variables in
the smaller set. If some variables are multiple nominal, the maximum number of dimensions is the total
number of multiple nominal categories plus the number of nonmultiple nominal variables minus the
number of multiple nominal variables. For example, if the analysis involves five variables, one of which
is multiple nominal with four categories, the maximum number of dimensions is (4 + 4 – 1), or 7. If you
specify a number that is greater than the maximum, the maximum value is used.

Related procedures. If each set contains one variable, nonlinear canonical correlation analysis is
equivalent to principal components analysis with optimal scaling. If each of these variables is multiple
nominal, the analysis corresponds to multiple correspondence analysis. If two sets of variables are
involved, and one of the sets contains only one variable, the analysis is identical to categorical regression
with optimal scaling.

To Obtain a Nonlinear Canonical Correlation Analysis
1. From the menus choose:

Analyze > Dimension Reduction > Optimal Scaling...

2. Select either All variables multiple nominal or Some variable(s) not multiple nominal.
3. Select Multiple sets.
4. Click Define.
5. Define at least two sets of variables. Select the variable(s) that you want to include in the first set. To

move to the next set, click Next, and select the variables that you want to include in the second set.
You can add additional sets. Click Previous to return to the previously defined variable set.

6. Define the value range and measurement scale (optimal scaling level) for each selected variable.
7. Click OK.
8. Optionally:
v Select one or more variables to provide point labels for object scores plots. Each variable produces a

separate plot, with the points labeled by the values of that variable. You must define a range for each
of these plot label variables. When you are using the dialog box, a single variable cannot be used both
in the analysis and as a labeling variable. If you want to label the object scores plot with a variable that
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is used in the analysis, use the Compute facility (available from the Transform menu) to create a copy
of that variable. Use the new variable to label the plot. Alternatively, command syntax can be used.

v Specify the number of dimensions that you want in the solution. In general, choose as few dimensions
as needed to explain most of the variation. If the analysis involves more than two dimensions,
three-dimensional plots of the first three dimensions are produced. Other dimensions can be displayed
by editing the chart.

Define Range and Scale
You must define a range for each variable. The maximum value that is specified must be an integer.
Fractional data values are truncated in the analysis. A category value that is outside of the specified range
is ignored in the analysis. To minimize output, use the Automatic Recode facility (available from the
Transform menu) to create consecutive categories beginning with 1 for variables that are treated as
nominal or ordinal. Recoding to consecutive integers is not recommended for variables that are scaled at
the numerical level. To minimize output for variables that are treated as numerical, for each variable,
subtract the minimum value from every value and add 1.

You must also select the scaling to be used to quantify each variable.
v Ordinal. The order of the categories of the observed variable is preserved in the quantified variable.
v Single nominal. In the quantified variable, objects in the same category receive the same score.
v Multiple nominal. The quantifications can be different for each dimension.
v Discrete numeric. Categories are treated as ordered and equally spaced. The differences between

category numbers and the order of the categories of the observed variable are preserved in the
quantified variable.

Define Range
You must define a range for each variable. The maximum value that is specified must be an integer.
Fractional data values are truncated in the analysis. A category value that is outside of the specified range
is ignored in the analysis. To minimize output, use the Automatic Recode facility (available from the
Transform menu) to create consecutive categories beginning with 1.

You must also define a range for each variable that is used to label the object scores plots. However,
labels for categories with data values that are outside of the defined range for the variable do appear on
the plots.

Nonlinear Canonical Correlation Analysis Options
The Options dialog box allows you to select optional statistics and plots, save object scores as new
variables in the active dataset, specify iteration and convergence criteria, and specify an initial
configuration for the analysis.

Display. Available statistics include marginal frequencies (counts), centroids, iteration history, weights
and component loadings, category quantifications, object scores, and single and multiple fit statistics.
v Centroids. Category quantifications, and the projected and the actual averages of the object scores for

the objects (cases) included in each set for those cases belonging to the same category of the variable.
v Weights and component loadings. The regression coefficients in each dimension for every quantified

variable in a set, where the object scores are regressed on the quantified variables, and the projection of
the quantified variable in the object space. Provides an indication of the contribution each variable
makes to the dimension within each set.

v Single and multiple fit. Measures of goodness of fit of the single- and multiple-category
coordinates/category quantifications with respect to the objects.

v Category quantifications. Optimal scale values assigned to the categories of a variable.
v Object scores. Optimal score assigned to an object (case) in a particular dimension.
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Plot. You can produce plots of category coordinates, object scores, component loadings, category
centroids, and transformations.

Save object scores. You can save the object scores as new variables in the active dataset. Object scores are
saved for the number of dimensions that are specified in the main dialog box.

Use random initial configuration. A random initial configuration should be used if some or all of the
variables are single nominal. If this option is not selected, a nested initial configuration is used.

Criteria. You can specify the maximum number of iterations that the nonlinear canonical correlation
analysis can go through in its computations. You can also select a convergence criterion value. The
analysis stops iterating if the difference in total fit between the last two iterations is less than the
convergence value or if the maximum number of iterations is reached.

OVERALS Command Additional Features
You can customize your nonlinear canonical correlation analysis if you paste your selections into a syntax
window and edit the resulting OVERALS command syntax. The command syntax language also allows you
to:
v Specify the dimension pairs to be plotted, rather than plotting all extracted dimensions (using theNDIM

keyword on the PLOT subcommand).
v Specify the number of value label characters that are used to label points on the plots (with thePLOT

subcommand).
v Designate more than five variables as labeling variables for object scores plots (with thePLOT

subcommand).
v Select variables that are used in the analysis as labeling variables for the object scores plots (with the

PLOT subcommand).
v Select variables to provide point labels for the quantification score plot (with the PLOT subcommand).
v Specify the number of cases to be included in the analysis if you do not want to use all cases in the

active dataset (with the NOBSERVATIONS subcommand).
v Specify rootnames for variables created by saving object scores (with the SAVE subcommand).
v Specify the number of dimensions to be saved, rather than saving all extracted dimensions (with the

SAVE subcommand).
v Write category quantifications to a matrix file (using the MATRIX subcommand).
v Produce low-resolution plots that may be easier to read than the usual high-resolution plots (using the

SET command).
v Produce centroid and transformation plots for specified variables only (with the PLOT subcommand).

See the Command Syntax Reference for complete syntax information.

Correspondence Analysis
One of the goals of correspondence analysis is to describe the relationships between two nominal
variables in a correspondence table in a low-dimensional space, while simultaneously describing the
relationships between the categories for each variable. For each variable, the distances between category
points in a plot reflect the relationships between the categories with similar categories plotted close to
each other. Projecting points for one variable on the vector from the origin to a category point for the
other variable describe the relationship between the variables.

An analysis of contingency tables often includes examining row and column profiles and testing for
independence via the chi-square statistic. However, the number of profiles can be quite large, and the
chi-square test does not reveal the dependence structure. The Crosstabs procedure offers several measures
of association and tests of association but cannot graphically represent any relationships between the
variables.
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Factor analysis is a standard technique for describing relationships between variables in a
low-dimensional space. However, factor analysis requires interval data, and the number of observations
should be five times the number of variables. Correspondence analysis, on the other hand, assumes
nominal variables and can describe the relationships between categories of each variable, as well as the
relationship between the variables. In addition, correspondence analysis can be used to analyze any table
of positive correspondence measures.

Example. Correspondence analysis could be used to graphically display the relationship between staff
category and smoking habits. You might find that with regard to smoking, junior managers differ from
secretaries, but secretaries do not differ from senior managers. You might also find that heavy smoking is
associated with junior managers, whereas light smoking is associated with secretaries.

Statistics and plots. Correspondence measures, row and column profiles, singular values, row and
column scores, inertia, mass, row and column score confidence statistics, singular value confidence
statistics, transformation plots, row point plots, column point plots, and biplots.

Correspondence Analysis Data Considerations

Data. Categorical variables to be analyzed are scaled nominally. For aggregated data or for a
correspondence measure other than frequencies, use a weighting variable with positive similarity values.
Alternatively, for table data, use syntax to read the table.

Assumptions. The maximum number of dimensions used in the procedure depends on the number of
active rows and column categories and the number of equality constraints. If no equality constraints are
used and all categories are active, the maximum dimensionality is one fewer than the number of
categories for the variable with the fewest categories. For example, if one variable has five categories and
the other has four, the maximum number of dimensions is three. Supplementary categories are not active.
For example, if one variable has five categories, two of which are supplementary, and the other variable
has four categories, the maximum number of dimensions is two. Treat all sets of categories that are
constrained to be equal as one category. For example, if a variable has five categories, three of which are
constrained to be equal, that variable should be treated as having three categories when determining the
maximum dimensionality. Two of the categories are unconstrained, and the third category corresponds to
the three constrained categories. If you specify a number of dimensions greater than the maximum, the
maximum value is used.

Related procedures. If more than two variables are involved, use multiple correspondence analysis. If the
variables should be scaled ordinally, use categorical principal components analysis.

To Obtain a Correspondence Analysis
1. From the menus choose:

Analyze > Dimension Reduction > Correspondence Analysis...

2. Select a row variable.
3. Select a column variable.
4. Define the ranges for the variables.
5. Click OK.

Define Row Range in Correspondence Analysis
You must define a range for the row variable. The minimum and maximum values specified must be
integers. Fractional data values are truncated in the analysis. A category value that is outside of the
specified range is ignored in the analysis.

All categories are initially unconstrained and active. You can constrain row categories to equal other row
categories, or you can define a row category as supplementary.
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v Categories must be equal. Categories must have equal scores. Use equality constraints if the obtained
order for the categories is undesirable or counterintuitive. The maximum number of row categories
that can be constrained to be equal is the total number of active row categories minus 1. To impose
different equality constraints on sets of categories, use syntax. For example, use syntax to constrain
categories 1 and 2 to be equal and categories 3 and 4 to be equal.

v Category is supplemental. Supplementary categories do not influence the analysis but are represented
in the space defined by the active categories. Supplementary categories play no role in defining the
dimensions. The maximum number of supplementary row categories is the total number of row
categories minus 2.

Define Column Range in Correspondence Analysis
You must define a range for the column variable. The minimum and maximum values specified must be
integers. Fractional data values are truncated in the analysis. A category value that is outside of the
specified range is ignored in the analysis.

All categories are initially unconstrained and active. You can constrain column categories to equal other
column categories, or you can define a column category as supplementary.
v Categories must be equal. Categories must have equal scores. Use equality constraints if the obtained

order for the categories is undesirable or counterintuitive. The maximum number of column categories
that can be constrained to be equal is the total number of active column categories minus 1. To impose
different equality constraints on sets of categories, use syntax. For example, use syntax to constrain
categories 1 and 2 to be equal and categories 3 and 4 to be equal.

v Category is supplemental. Supplementary categories do not influence the analysis but are represented
in the space defined by the active categories. Supplementary categories play no role in defining the
dimensions. The maximum number of supplementary column categories is the total number of column
categories minus 2.

Correspondence Analysis Model
The Model dialog box allows you to specify the number of dimensions, the distance measure, the
standardization method, and the normalization method.

Dimensions in solution. Specify the number of dimensions. In general, choose as few dimensions as
needed to explain most of the variation. The maximum number of dimensions depends on the number of
active categories used in the analysis and on the equality constraints. The maximum number of
dimensions is the smaller of:
v The number of active row categories minus the number of row categories constrained to be equal, plus

the number of constrained row category sets.
v The number of active column categories minus the number of column categories constrained to be

equal, plus the number of constrained column category sets.

Distance Measure. You can select the measure of distance among the rows and columns of the
correspondence table. Choose one of the following alternatives:
v Chi-square. Use a weighted profile distance, where the weight is the mass of the rows or columns.

This measure is required for standard correspondence analysis.
v Euclidean. Use the square root of the sum of squared differences between pairs of rows and pairs of

columns.

Standardization Method. Choose one of the following alternatives:
v Row and column means are removed. Both the rows and columns are centered. This method is

required for standard correspondence analysis.
v Row means are removed. Only the rows are centered.
v Column means are removed. Only the columns are centered.
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v Row totals are equalized and means are removed. Before centering the rows, the row margins are
equalized.

v Column totals are equalized and means are removed. Before centering the columns, the column
margins are equalized.

Normalization Method. Choose one of the following alternatives:
v Symmetrical. For each dimension, the row scores are the weighted average of the column scores

divided by the matching singular value, and the column scores are the weighted average of row scores
divided by the matching singular value. Use this method if you want to examine the differences or
similarities between the categories of the two variables.

v Principal. The distances between row points and column points are approximations of the distances in
the correspondence table according to the selected distance measure. Use this method if you want to
examine differences between categories of either or both variables instead of differences between the
two variables.

v Row principal. The distances between row points are approximations of the distances in the
correspondence table according to the selected distance measure. The row scores are the weighted
average of the column scores. Use this method if you want to examine differences or similarities
between categories of the row variable.

v Column principal. The distances between column points are approximations of the distances in the
correspondence table according to the selected distance measure. The column scores are the weighted
average of the row scores. Use this method if you want to examine differences or similarities between
categories of the column variable.

v Custom. You must specify a value between –1 and 1. A value of –1 corresponds to column principal. A
value of 1 corresponds to row principal. A value of 0 corresponds to symmetrical. All other values
spread the inertia over both the row and column scores to varying degrees. This method is useful for
making tailor-made biplots.

Correspondence Analysis Statistics
The Statistics dialog box allows you to specify the numerical output produced.

Correspondence table. A crosstabulation of the input variables with row and column marginal totals.

Overview of row points. For each row category, the scores, mass, inertia, contribution to the inertia of
the dimension, and the contribution of the dimension to the inertia of the point.

Overview of column points. For each column category, the scores, mass, inertia, contribution to the
inertia of the dimension, and the contribution of the dimension to the inertia of the point.

Row profiles. For each row category, the distribution across the categories of the column variable.

Column profiles. For each column category, the distribution across the categories of the row variable.

Permutations of the correspondence table. The correspondence table reorganized such that the rows and
columns are in increasing order according to the scores on the first dimension. Optionally, you can
specify the maximum dimension number for which permuted tables will be produced. A permuted table
for each dimension from 1 to the number specified is produced.

Confidence Statistics for Row points. Includes standard deviation and correlations for all
nonsupplementary row points.

Confidence Statistics for Column points. Includes standard deviation and correlations for all
nonsupplementary column points.
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Correspondence Analysis Plots
The Plots dialog box allows you to specify which plots are produced.

Scatterplots. Produces a matrix of all pairwise plots of the dimensions. Available scatterplots include:
v Biplot. Produces a matrix of joint plots of the row and column points. If principal normalization is

selected, the biplot is not available.
v Row points. Produces a matrix of plots of the row points.
v Column points. Produces a matrix of plots of the column points.

Optionally, you can specify how many value label characters to use when labeling the points. This value
must be a non-negative integer less than or equal to 20.

Line Plots. Produces a plot for every dimension of the selected variable. Available line plots include:
v Transformed row categories. Produces a plot of the original row category values against their

corresponding row scores.
v Transformed column categories. Produces a plot of the original column category values against their

corresponding column scores.

Optionally, you can specify how many value label characters to use when labeling the category axis. This
value must be a non-negative integer less than or equal to 20.

Plot Dimensions. Allows you to control the dimensions displayed in the output.
v Display all dimensions in the solution. All dimensions in the solution are displayed in a scatterplot

matrix.
v Restrict the number of dimensions. The displayed dimensions are restricted to plotted pairs. If you

restrict the dimensions, you must select the lowest and highest dimensions to be plotted. The lowest
dimension can range from 1 to the number of dimensions in the solution minus 1, and is plotted
against higher dimensions. The highest dimension value can range from 2 to the number of dimensions
in the solution, and indicates the highest dimension to be used in plotting the dimension pairs. This
specification applies to all requested multidimensional plots.

CORRESPONDENCE Command Additional Features
You can customize your correspondence analysis if you paste your selections into a syntax window and
edit the resulting CORRESPONDENCE command syntax. The command syntax language also allows you to:
v Specify table data as input instead of using casewise data (using the TABLE = ALL subcommand).
v Specify the number of value-label characters used to label points for each type of scatterplot matrix or

biplot matrix (with the PLOT subcommand).
v Specify the number of value-label characters used to label points for each type of line plot (with the

PLOT subcommand).
v Write a matrix of row and column scores to a matrix data file (with the OUTFILE subcommand).
v Write a matrix of confidence statistics (variances and covariances) for the singular values and the scores

to a matrix data file (with the OUTFILE subcommand).
v Specify multiple sets of categories to be equal (with the EQUAL subcommand).

See the Command Syntax Reference for complete syntax information.
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Multiple Correspondence Analysis
Multiple Correspondence Analysis quantifies nominal (categorical) data by assigning numerical values to
the cases (objects) and categories so that objects within the same category are close together and objects
in different categories are far apart. Each object is as close as possible to the category points of categories
that apply to the object. In this way, the categories divide the objects into homogeneous subgroups.
Variables are considered homogeneous when they classify objects in the same categories into the same
subgroups.

Example. Multiple Correspondence Analysis could be used to graphically display the relationship
between job category, minority classification, and gender. You might find that minority classification and
gender discriminate between people but that job category does not. You might also find that the Latino
and African-American categories are similar to each other.

Statistics and plots. Object scores, discrimination measures, iteration history, correlations of original and
transformed variables, category quantifications, descriptive statistics, object points plots, biplots, category
plots, joint category plots, transformation plots, and discrimination measures plots.

Multiple Correspondence Analysis Data Considerations

Data. String variable values are always converted into positive integers by ascending alphanumeric order.
User-defined missing values, system-missing values, and values less than 1 are considered missing; you
can recode or add a constant to variables with values less than 1 to make them nonmissing.

Assumptions. All variables have the multiple nominal scaling level. The data must contain at least three
valid cases. The analysis is based on positive integer data. The discretization option will automatically
categorize a fractional-valued variable by grouping its values into categories with a close-to-normal
distribution and will automatically convert values of string variables into positive integers. You can
specify other discretization schemes.

Related procedures. For two variables, Multiple Correspondence Analysis is analogous to
Correspondence Analysis. If you believe that variables possess ordinal or numerical properties,
Categorical Principal Components Analysis should be used. If sets of variables are of interest, Nonlinear
Canonical Correlation Analysis should be used.

To Obtain a Multiple Correspondence Analysis
1. From the menus choose:

Analyze > Dimension Reduction > Optimal Scaling...

2. Select All variables multiple nominal.
3. Select One set.
4. Click Define.
5. Select at least two analysis variables and specify the number of dimensions in the solution.
6. Click OK.

You may optionally specify supplementary variables, which are fitted into the solution found, or labeling
variables for the plots.

Define Variable Weight in Multiple Correspondence Analysis

You can set the weight for analysis variables.

Variable weight. You can choose to define a weight for each variable. The value specified must be a
positive integer. The default value is 1.
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Multiple Correspondence Analysis Discretization
The Discretization dialog box allows you to select a method of recoding your variables. Fractional-valued
variables are grouped into seven categories (or into the number of distinct values of the variable if this
number is less than seven) with an approximately normal distribution unless otherwise specified. String
variables are always converted into positive integers by assigning category indicators according to
ascending alphanumeric order. Discretization for string variables applies to these integers. Other variables
are left alone by default. The discretized variables are then used in the analysis.

Method. Choose between grouping, ranking, and multiplying.
v Grouping. Recode into a specified number of categories or recode by interval.
v Ranking. The variable is discretized by ranking the cases.
v Multiplying. The current values of the variable are standardized, multiplied by 10, rounded, and have

a constant added so that the lowest discretized value is 1.

Grouping. The following options are available when discretizing variables by grouping:
v Number of categories. Specify a number of categories and whether the values of the variable should

follow an approximately normal or uniform distribution across those categories.
v Equal intervals. Variables are recoded into categories defined by these equally sized intervals. You

must specify the length of the intervals.

Multiple Correspondence Analysis Missing Values
The Missing Values dialog box allows you to choose the strategy for handling missing values in analysis
variables and supplementary variables.

Missing Value Strategy. Choose to exclude missing values (passive treatment), impute missing values
(active treatment), or exclude objects with missing values (listwise deletion).
v Exclude missing values; for correlations impute after quantification. Objects with missing values on

the selected variable do not contribute to the analysis for this variable. If all variables are given passive
treatment, then objects with missing values on all variables are treated as supplementary. If correlations
are specified in the Output dialog box, then (after analysis) missing values are imputed with the most
frequent category, or mode, of the variable for the correlations of the original variables. For the
correlations of the optimally scaled variables, you can choose the method of imputation. Select Mode
to replace missing values with the mode of the optimally scaled variable. Select Extra category to
replace missing values with the quantification of an extra category. This implies that objects with a
missing value on this variable are considered to belong to the same (extra) category.

v Impute missing values. Objects with missing values on the selected variable have those values
imputed. You can choose the method of imputation. Select Mode to replace missing values with the
most frequent category. When there are multiple modes, the one with the smallest category indicator is
used. Select Extra category to replace missing values with the same quantification of an extra category.
This implies that objects with a missing value on this variable are considered to belong to the same
(extra) category.

v Exclude objects with missing values on this variable. Objects with missing values on the selected
variable are excluded from the analysis. This strategy is not available for supplementary variables.

Multiple Correspondence Analysis Options
The Options dialog box allows you to select the initial configuration, specify iteration and convergence
criteria, select a normalization method, choose the method for labeling plots, and specify supplementary
objects.
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Supplementary Objects. Specify the case number of the object (or the first and last case numbers of a
range of objects) that you want to make supplementary, and then click Add. Continue until you have
specified all of your supplementary objects. If an object is specified as supplementary, then case weights
are ignored for that object.

Normalization Method. You can specify one of five options for normalizing the object scores and the
variables. Only one normalization method can be used in a given analysis.
v Variable Principal. This option optimizes the association between variables. The coordinates of the

variables in the object space are the component loadings (correlations with principal components, such
as dimensions and object scores). This is useful when you are interested primarily in the correlation
between the variables.

v Object Principal. This option optimizes distances between objects. This is useful when you are
interested primarily in differences or similarities between the objects.

v Symmetrical. Use this normalization option if you are interested primarily in the relation between
objects and variables.

v Independent. Use this normalization option if you want to examine distances between objects and
correlations between variables separately.

v Custom. You can specify any real value in the closed interval [–1, 1]. A value of 1 is equal to the Object
Principal method, a value of 0 is equal to the Symmetrical method, and a value of –1 is equal to the
Variable Principal method. By specifying a value greater than –1 and less than 1, you can spread the
eigenvalue over both objects and variables. This method is useful for making a tailor-made biplot or
triplot.

Criteria. You can specify the maximum number of iterations the procedure can go through in its
computations. You can also select a convergence criterion value. The algorithm stops iterating if the
difference in total fit between the last two iterations is less than the convergence value or if the maximum
number of iterations is reached.

Label Plots By. Allows you to specify whether variables and value labels or variable names and values
will be used in the plots. You can also specify a maximum length for labels.

Plot Dimensions. Allows you to control the dimensions displayed in the output.
v Display all dimensions in the solution. All dimensions in the solution are displayed in a scatterplot

matrix.
v Restrict the number of dimensions. The displayed dimensions are restricted to plotted pairs. If you

restrict the dimensions, you must select the lowest and highest dimensions to be plotted. The lowest
dimension can range from 1 to the number of dimensions in the solution minus 1 and is plotted
against higher dimensions. The highest dimension value can range from 2 to the number of dimensions
in the solution and indicates the highest dimension to be used in plotting the dimension pairs. This
specification applies to all requested multidimensional plots.

Configuration. You can read data from a file containing the coordinates of a configuration. The first
variable in the file should contain the coordinates for the first dimension, the second variable should
contain the coordinates for the second dimension, and so on.
v Initial. The configuration in the file specified will be used as the starting point of the analysis.
v Fixed. The configuration in the file specified will be used to fit in the variables. The variables that are

fitted in must be selected as analysis variables, but, because the configuration is fixed, they are treated
as supplementary variables (so they do not need to be selected as supplementary variables).

Multiple Correspondence Analysis Output
The Output dialog box allows you to produce tables for object scores, discrimination measures, iteration
history, correlations of original and transformed variables, category quantifications for selected variables,
and descriptive statistics for selected variables.

Categories 31



Object scores. Displays the object scores, including mass, inertia, and contributions, and has the
following options:
v Include Categories Of. Displays the category indicators of the analysis variables selected.
v Label Object Scores By. From the list of variables specified as labeling variables, you can select one to

label the objects.

Discrimination measures. Displays the discrimination measures per variable and per dimension.

Iteration history. For each iteration, the variance accounted for, loss, and increase in variance accounted
for are shown.

Correlations of original variables. Shows the correlation matrix of the original variables and the
eigenvalues of that matrix.

Correlations of transformed variables. Shows the correlation matrix of the transformed (optimally
scaled) variables and the eigenvalues of that matrix.

Category Quantifications and Contributions. Gives the category quantifications (coordinates), including
mass, inertia, and contributions, for each dimension of the variable(s) selected.

Note: the coordinates and contributions (including the mass and inertia) are displayed in separate layers
of the pivot table output, with the coordinates shown by default. To display the contributions, activate
(double-click) on the table and select Contributions from the Layer dropdown list.

Descriptive Statistics. Displays frequencies, number of missing values, and mode of the variable(s)
selected.

Multiple Correspondence Analysis Save
The Save dialog box allows you to save discretized data, object scores, and transformed values to an
external IBM SPSS Statistics data file or dataset in the current session. You can also save transformed
values and object scores to the active dataset.
v Datasets are available during the current session but are not available in subsequent sessions unless

you explicitly save them as data files. Dataset names must adhere to variable naming rules.
v Filenames or dataset names must be different for each type of data saved.
v If you save object scores or transformed values to the active dataset, you can specify the number of

multiple nominal dimensions.

Multiple Correspondence Analysis Object Plots
The Object Plots dialog box allows you to specify the types of plots you want and the variables to be
plotted

Object points. A plot of the object points is displayed.

Objects and centroids (biplot). The object points are plotted with the variable centroids.

Biplot Variables. You can choose to use all variables for the biplots or select a subset.

Label Objects. You can choose to have objects labeled with the categories of selected variables (you may
choose category indicator values or value labels in the Options dialog box) or with their case numbers.
One plot is produced per variable if Variable is selected.
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Multiple Correspondence Analysis Variable Plots
The Variable Plots dialog box allows you to specify the types of plots you want and the variables to be
plotted.

Category Plots. For each variable selected, a plot of the centroid coordinates is plotted. Categories are in
the centroids of the objects in the particular categories.

Joint Category Plots. This is a single plot of the centroid coordinates of each selected variable.

Transformation Plots. Displays a plot of the optimal category quantifications versus the category
indicators. You can specify the number of dimensions; one plot will be generated for each dimension. You
can also choose to display residual plots for each variable selected.

Discrimination Measures. Produces a single plot of the discrimination measures for the selected
variables.

MULTIPLE CORRESPONDENCE Command Additional Features
You can customize your Multiple Correspondence Analysis if you paste your selections into a syntax
window and edit the resulting MULTIPLE CORRESPONDENCE command syntax. The command syntax
language also allows you to:
v Specify rootnames for the transformed variables, object scores, and approximations when saving them

to the active dataset (with the SAVE subcommand).
v Specify a maximum length for labels for each plot separately (with the PLOT subcommand).
v Specify a separate variable list for residual plots (with the PLOT subcommand).

See the Command Syntax Reference for complete syntax information.

Multidimensional Scaling (PROXSCAL)
Multidimensional scaling attempts to find the structure in a set of proximity measures between objects.
This process is accomplished by assigning observations to specific locations in a conceptual
low-dimensional space such that the distances between points in the space match the given
(dis)similarities as closely as possible. The result is a least-squares representation of the objects in that
low-dimensional space, which, in many cases, will help you to further understand your data.

Example. Multidimensional scaling can be very useful in determining perceptual relationships. For
example, when considering your product image, you can conduct a survey to obtain a dataset that
describes the perceived similarity (or proximity) of your product to those of your competitors. Using
these proximities and independent variables (such as price), you can try to determine which variables are
important to how people view these products, and you can adjust your image accordingly.

Statistics and plots. Iteration history, stress measures, stress decomposition, coordinates of the common
space, object distances within the final configuration, individual space weights, individual spaces,
transformed proximities, transformed independent variables, stress plots, common space scatterplots,
individual space weight scatterplots, individual spaces scatterplots, transformation plots, Shepard residual
plots, and independent variables transformation plots.

Multidimensional Scaling Data Considerations

Data. Data can be supplied in the form of proximity matrices or variables that are converted into
proximity matrices. The matrices can be formatted in columns or across columns. The proximities can be
treated on the ratio, interval, ordinal, or spline scaling levels.
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Assumptions. At least three variables must be specified. The number of dimensions cannot exceed the
number of objects minus one. Dimensionality reduction is omitted if combined with multiple random
starts. If only one source is specified, all models are equivalent to the identity model; therefore, the
analysis defaults to the identity model.

Related procedures. Scaling all variables at the numerical level corresponds to standard multidimensional
scaling analysis.

To Obtain a Multidimensional Scaling
1. From the menus choose:

Analyze > Scale > Multidimensional Scaling (PROXSCAL)...

This opens the Data Format dialog box.
2. Specify the format of your data:

Data Format. Specify whether your data consist of proximity measures or you want to create
proximities from the data.
Number of Sources. If your data are proximities, specify whether you have a single source or
multiple sources of proximity measures.
One Source. If there is one source of proximities, specify whether your dataset is formatted with the
proximities in a matrix across the columns or in a single column with two separate variables to
identify the row and column of each proximity.
v The proximities are in a matrix across columns. The proximity matrix is spread across a number of

columns equal to the number of objects. This leads to the Proximities in Matrices across Columns
dialog box.

v The proximities are in a single column. The proximity matrix is collapsed into a single column, or
variable. Two additional variables, identifying the row and column for each cell, are necessary. This
leads to the Proximities in One Column dialog box.

Multiple Sources. If there are multiple sources of proximities, specify whether the dataset is
formatted with the proximities in stacked matrices across columns, in multiple columns with one
source per column, or in a single column.
v The proximities are in stacked matrices across columns. The proximity matrices are spread across a

number of columns equal to the number of objects and are stacked above one another across a
number of rows equal to the number of objects times the number of sources. This leads to the
Proximities in Matrices across Columns dialog box.

v The proximities are in columns, one source per column. The proximity matrices are collapsed into
multiple columns, or variables. Two additional variables, identifying the row and column for each
cell, are necessary. This leads to the Proximities in Columns dialog box.

v The proximites are stacked in a single column. The proximity matrices are collapsed into a single
column, or variable. Three additional variables, identifying the row, column, and source for each
cell, are necessary. This leads to the Proximities in One Column dialog box.

3. Click Define.

Proximities in Matrices across Columns
If you select the proximities in matrices data model for either one source or multiple sources in the Data
Format dialog box, then do the following:
1. Select three or more proximities variables. (Be sure that the order of the variables in the list matches

the order of the columns of the proximities.)
2. Optionally, select a number of weights variables equal to the number of proximities variables. (Be sure

that the order of the weights matches the order of the proximities that they weight.)
3. Optionally, if there are multiple sources, select a sources variable. (The number of cases in each

proximities variable should equal the number of proximities variables times the number of sources.)
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Additionally, you can define a model for the multidimensional scaling, place restrictions on the common
space, set convergence criteria, specify the initial configuration to be used, and choose plots and output.

Proximities in Columns
If you select the multiple columns model for multiple sources in the Data Format dialog box, then do the
following:
1. Select two or more proximities variables. (Each variable is assumed to be a matrix of proximities from

a separate source.)
2. Select a rows variable to define the row locations for the proximities in each proximities variable.
3. Select a columns variable to define the column locations for the proximities in each proximities

variable. (Cells of the proximity matrix that are not given a row/column designation are treated as
missing.)

4. Optionally, select a number of weights variables equal to the number of proximities variables.

Additionally, you can define a model for the multidimensional scaling, place restrictions on the common
space, set convergence criteria, specify the initial configuration to be used, and choose plots and output.

Proximities in One Column
If you select the one column model for either one source or multiple sources in the Data Format dialog
box, then do the following:
1. Select a proximities variable. (t is assumed to be one or more matrices of proximities.)
2. Select a rows variable to define the row locations for the proximities in the proximities variable.
3. Select a columns variable to define the column locations for the proximities in the proximities

variable.
4. If there are multiple sources, select a sources variable. (For each source, cells of the proximity matrix

that are not given a row/column designation are treated as missing.)
5. Optionally, select a weights variable.

Additionally, you can define a model for the multidimensional scaling, place restrictions on the common
space, set convergence criteria, specify the initial configuration to be used, and choose plots and output.

Create Proximities from Data
If you choose to create proximities from the data in the Data Format dialog box, then do the following:
1. If you create distances between variables (see the Create Measure from Data dialog box), select at least

three variables. These variables will be used to create the proximity matrix (or matrices, if there are
multiple sources). If you create distances between cases, only one variable is needed.

2. If there are multiple sources, select a sources variable.
3. Optionally, choose a measure for creating proximities.

Additionally, you can define a model for the multidimensional scaling, place restrictions on the common
space, set convergence criteria, specify the initial configuration to be used, and choose plots and output.

Create Measure from Data
Multidimensional scaling uses dissimilarity data to create a scaling solution. If your data are multivariate
data (values of measured variables), you must create dissimilarity data in order to compute a
multidimensional scaling solution. You can specify the details of creating dissimilarity measures from
your data.

Measure. Allows you to specify the dissimilarity measure for your analysis. Select one alternative from
the Measure group corresponding to your type of data, and then select one of the measures from the
drop-down list corresponding to that type of measure. Available alternatives are:
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v Interval. Euclidean distance, Squared Euclidean distance, Chebychev, Block, Minkowski, or
Customized.

v Counts. Chi-square measure or Phi-square measure.
v Binary. Euclidean distance, Squared Euclidean distance, Size difference, Pattern difference, Variance, or

Lance and Williams.

Create Distance Matrix. Allows you to choose the unit of analysis. Alternatives are Between variables or
Between cases.

Transform Values. In certain cases, such as when variables are measured on very different scales, you
want to standardize values before computing proximities (not applicable to binary data). Select a
standardization method from the Standardize drop-down list (if no standardization is required, select
None).

Define a Multidimensional Scaling Model
The Model dialog box allows you to specify a scaling model, its minimum and maximum number of
dimensions, the structure of the proximity matrix, the transformation to use on the proximities, and
whether proximities are transformed within each source separately or unconditionally on the source.

Scaling Model. Choose from the following alternatives:
v Identity. All sources have the same configuration.
v Weighted Euclidean. This model is an individual differences model. Each source has an individual

space in which every dimension of the common space is weighted differentially.
v Generalized Euclidean. This model is an individual differences model. Each source has an individual

space that is equal to a rotation of the common space, followed by a differential weighting of the
dimensions.

v Reduced rank. This model is a generalized Euclidean model for which you can specify the rank of the
individual space. You must specify a rank that is greater than or equal to 1 and less than the maximum
number of dimensions.

Shape. Specify whether the proximities should be taken from the lower-triangular part or the
upper-triangular part of the proximity matrix. You can specify that the full matrix be used, in which case
the weighted sum of the upper-triangular part and the lower-triangular part will be analyzed. In any
case, the complete matrix should be specified, including the diagonal, though only the specified parts will
be used.

Proximities. Specify whether your proximity matrix contains measures of similarity or dissimilarity.

Proximity Transformations. Choose from the following alternatives:
v Ratio. The transformed proximities are proportional to the original proximities. This is allowed only for

positively valued proximities.
v Interval. The transformed proximities are proportional to the original proximities, plus an intercept

term. The intercept assures all transformed proximities to be positive.
v Ordinal. The transformed proximities have the same order as the original proximities. You specify

whether tied proximities should be kept tied or allowed to become untied.
v Spline. The transformed proximities are a smooth nondecreasing piecewise polynomial transformation

of the original proximities. You specify the degree of the polynomial and the number of interior knots.

Apply Transformations. Specify whether only proximities within each source are compared with each
other or whether the comparisons are unconditional on the source.

Dimensions. By default, a solution is computed in two dimensions (Minimum = 2, Maximum = 2). You
choose an integer minimum and maximum from 1 to the number of objects minus 1 (as long as the
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minimum is less than or equal to the maximum). The procedure computes a solution in the maximum
dimensions and then reduces the dimensionality in steps until the lowest is reached.

Multidimensional Scaling Restrictions
The Restrictions dialog box allows you to place restrictions on the common space.

Restrictions on Common Space. Specify the type of restriction you want.
v No restrictions. No restrictions are placed on the common space.
v Some coordinates fixed. The first variable selected contains the coordinates of the objects on the first

dimension, the second variable corresponds to coordinates on the second dimension, and so on. A
missing value indicates that a coordinate on a dimension is free. The number of variables selected must
equal the maximum number of dimensions requested.

v Linear combination of independent variables. The common space is restricted to be a linear
combination of the variables selected.

Restriction Variables. Select the variables that define the restrictions on the common space. If you
specified a linear combination, you specify an interval, nominal, ordinal, or spline transformation for the
restriction variables. In either case, the number of cases for each variable must equal the number of
objects.

Multidimensional Scaling Options
The Options dialog box allows you to select the initial configuration style, specify iteration and
convergence criteria, and select standard or relaxed updates.

Initial Configuration. Choose one of the following alternatives:
v Simplex. Objects are placed at the same distance from each other in the maximum dimension. One

iteration is taken to improve this high-dimensional configuration, followed by a dimension reduction
operation to obtain an initial configuration that has the maximum number of dimensions that you
specified in the Model dialog box.

v Torgerson. A classical scaling solution is used as the initial configuration.
v Single random start. A configuration is chosen at random.
v Multiple random starts. Several configurations are chosen at random, and the configuration with the

lowest normalized raw stress is used as the initial configuration.
v Custom. You select variables that contain the coordinates of your own initial configuration. The

number of variables selected should equal the maximum number of dimensions specified, with the first
variable corresponding to coordinates on dimension 1, the second variable corresponding to
coordinates on dimension 2, and so on. The number of cases in each variable should equal the number
of objects.

Iteration Criteria. Specify the iteration criteria values.
v Stress convergence. The algorithm will stop iterating when the difference in consecutive normalized

raw stress values is less than the number that is specified here, which must lie between 0.0 and 1.0.
v Minimum stress. The algorithm will stop when the normalized raw stress falls below the number that

is specified here, which must lie between 0.0 and 1.0.
v Maximum iterations. The algorithm will perform the number of specified iterations, unless one of the

above criteria is satisfied first.
v Use relaxed updates. Relaxed updates will speed up the algorithm; these updates cannot be used with

models other than the identity model or used with restrictions.
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Multidimensional Scaling Plots, Version 1
The Plots dialog box allows you to specify which plots will be produced. This topic describes the Plots
dialog box if you have the Proximities in Columns data format. For Individual space weights, Original
vs. transformed proximities, and Transformed proximities vs. distances plots, you specify the sources
for which the plots should be produced. The list of available sources is the list of proximities variables in
the main dialog box.

Stress. A plot is produced of normalized raw stress versus dimensions. This plot is produced only if the
maximum number of dimensions is larger than the minimum number of dimensions.

Common space. A scatterplot matrix of coordinates of the common space is displayed.

Individual spaces. For each source, the coordinates of the individual spaces are displayed in scatterplot
matrices. This is possible only if one of the individual differences models is specified in the Model dialog
box.

Individual space weights. A scatterplot is produced of the individual space weights. This is possible only
if one of the individual differences models is specified in the Model dialog box. For the weighted
Euclidean model, the weights are printed in plots, with one dimension on each axis. For the generalized
Euclidean model, one plot is produced per dimension, indicating both rotation and weighting of that
dimension. The reduced rank model produces the same plot as the generalized Euclidean model but
reduces the number of dimensions for the individual spaces.

Original vs. transformed proximities. Plots are produced of the original proximities versus the
transformed proximities.

Transformed proximities vs. distances. The transformed proximities versus the distances are plotted.

Transformed independent variables. Transformation plots are produced for the independent variables.

Variable and dimension correlations. A plot of correlations between the independent variables and the
dimensions of the common space is displayed.

Multidimensional Scaling Plots, Version 2
The Plots dialog box allows you to specify which plots will be produced. This topic describes the Plots
dialog box if your data format is anything other than Proximities in Columns. For Individual space
weights, Original vs. transformed proximities, and Transformed proximities vs. distances plots, you
specify the sources for which the plots should be produced. The source numbers entered must be values
of the sources variable that is specified in the main dialog box and must range from 1 to the number of
sources.

Multidimensional Scaling Output
The Output dialog box allows you to control the amount of displayed output and save some of it to
separate files.

Display. Select one or more of the following items for display:
v Common space coordinates. Displays the coordinates of the common space.
v Individual space coordinates. The coordinates of the individual spaces are displayed only if the model

is not the identity model.
v Individual space weights. Displays the individual space weights only if one of the individual

differences models is specified. Depending on the model, the space weights are decomposed in rotation
weights and dimension weights, which are also displayed.

v Distances. Displays the distances between the objects in the configuration.

38 IBM SPSS Categories 25



v Transformed proximities. Displays the transformed proximities between the objects in the
configuration.

v Input data. Includes the original proximities and, if present, the data weights, the initial configuration,
and the fixed coordinates of the independent variables.

v Stress for random starts. Displays the random number seed and normalized raw stress value of each
random start.

v Iteration history. Displays the history of iterations of the main algorithm.
v Multiple stress measures. Displays different stress values. The table contains values for normalized

raw stress, Stress-I, Stress-II, S-Stress, Dispersion Accounted For (DAF), and Tucker's Coefficient of
Congruence.

v Stress decomposition. Displays an objects and sources decomposition of final normalized raw stress,
including the average per object and the average per source.

v Transformed independent variables. If a linear combination restriction was selected, the transformed
independent variables and the corresponding regression weights are displayed.

v Variable and dimension correlations. If a linear combination restriction was selected, the correlations
between the independent variables and the dimensions of the common space are displayed.

Save to New File. You can save the common space coordinates, individual space weights, distances,
transformed proximities, and transformed independent variables to separate IBM SPSS Statistics data
files.

PROXSCAL Command Additional Features
You can customize your multidimensional scaling of proximities analysis if you paste your selections into
a syntax window and edit the resulting PROXSCAL command syntax. The command syntax language also
allows you to:
v Specify separate variable lists for transformations and residuals plots (with the PLOT subcommand).
v Specify separate source lists for individual space weights, transformations, and residuals plots (with the

PLOT subcommand).
v Specify a subset of the independent variables transformation plots to be displayed (with the PLOT

subcommand).

See the Command Syntax Reference for complete syntax information.

Multidimensional Unfolding (PREFSCAL)
The Multidimensional Unfolding procedure attempts to find a common quantitative scale that allows you
to visually examine the relationships between two sets of objects.

Examples. You have asked 21 individuals to rank 15 breakfast items in order of preference, 1 to 15. Using
Multidimensional Unfolding, you can determine that the individuals discriminate between breakfast
items in two primary ways: between soft and hard breads, and between fattening and non-fattening
items.

Alternatively, you have asked a group of drivers to rate 26 models of cars on 10 attributes on a 6-point
scale ranging from 1="not true at all" to 6="very true." Averaged over individuals, the values are taken as
similarities. Using Multidimensional Unfolding, you find clusterings of similar models and the attributes
with which they are most closely associated.

Statistics and plots. The Multidimensional Unfolding procedure can produce an iteration history, stress
measures, stress decomposition, coordinates of the common space, object distances within the final
configuration, individual space weights, individual spaces, transformed proximities, stress plots, common
space scatterplots, individual space weight scatterplots, individual spaces scatterplots, transformation
plots, and Shepard residual plots.
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Multidimensional Unfolding Data Considerations

Data. Data are supplied in the form of rectangular proximity matrices. Each column is considered a
separate column object. Each row of a proximity matrix is considered a separate row object. When there
are multiple sources of proximities, the matrices are stacked.

Assumptions. At least two variables must be specified. The number of dimensions in the solution may
not exceed the number of objects minus one. If only one source is specified, all models are equivalent to
the identity model; therefore, the analysis defaults to the identity model.

To Obtain a Multidimensional Unfolding
1. From the menus choose:

Analyze > Scale > Multidimensional Unfolding (PREFSCAL)...

2. Select two or more variables that identify the columns in the rectangular proximity matrix. Each
variable represents a separate column object.

3. Optionally, select a number of weights variables equal to the number of column object variables. The
order of the weights variables should match the order of the column objects they weight.

4. Optionally, select a rows variable. The values (or value labels) of this variable are used to label row
objects in the output.

5. If there are multiple sources, optionally select a sources variable. The number of cases in the data file
should equal the number of row objects times the number of sources.

Additionally, you can define a model for the multidimensional unfolding, place restrictions on the
common space, set convergence criteria, specify the initial configuration to be used, and choose plots and
output.

Define a Multidimensional Unfolding Model
The Model dialog box allows you to specify a scaling model, its minimum and maximum number of
dimensions, the structure of the proximity matrix, the transformation to use on the proximities, and
whether proximities are transformed conditonal upon the row, conditional upon the source, or
unconditionally on the source.

Scaling Model. Choose from the following alternatives:
v Identity. All sources have the same configuration.
v Weighted Euclidean. This model is an individual differences model. Each source has an individual

space in which every dimension of the common space is weighted differentially.
v Generalized Euclidean. This model is an individual differences model. Each source has an individual

space that is equal to a rotation of the common space, followed by a differential weighting of the
dimensions.

Proximities. Specify whether your proximity matrix contains measures of similarity or dissimilarity.

Dimensions. By default, a solution is computed in two dimensions (Minimum = 2, Maximum = 2). You
can choose an integer minimum and maximum from 1 to the number of objects minus 1 as long as the
minimum is less than or equal to the maximum. The procedure computes a solution in the maximum
dimensionality and then reduces the dimensionality in steps until the lowest is reached.

Proximity Transformations. Choose from the following alternatives:
v None. The proximities are not transformed. You can optionally select Include intercept, in which case

the proximities can be shifted by a constant term.
v Linear. The transformed proximities are proportional to the original proximities; that is, the

transformation function estimates a slope and the intercept is fixed at 0. This is also called a ratio
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transformation. You can optionally select Include intercept, in which case the proximities can also be
shifted by a constant term. This is also called an interval transformation.

v Spline. The transformed proximities are a smooth nondecreasing piecewise polynomial transformation
of the original proximities. You can specify the degree of the polynomial and the number of interior
knots. You can optionally select Include intercept, in which case the proximities can also be shifted by
a constant term.

v Smooth. The transformed proximities have the same order as the original proximities, including a
restriction that takes the differences between subsequent values into account. The result is a "smooth
ordinal" transformation. You can specify whether tied proximities should be kept tied or allowed to
become untied.

v Ordinal. The transformed proximities have the same order as the original proximities. You can specify
whether tied proximities should be kept tied or allowed to become untied.

Apply Transformations. Specify whether only proximities within each row are compared with each other,
or only proximities within each source are compared with each other, or the comparisons are
unconditional on the row or source; that is, whether the transformations are performed per row, per
source, or over all proximities at once.

Multidimensional Unfolding Restrictions
The Restrictions dialog box allows you to place restrictions on the common space.

Restrictions on Common Space. You can choose to fix the coordinates of row and/or column objects in
the common space.

Row/Column Restriction Variables. Choose the file containing the restrictions and select the variables
that define the restrictions on the common space. The first variable selected contains the coordinates of
the objects on the first dimension, the second variable corresponds to coordinates on the second
dimension, and so on. A missing value indicates that a coordinate on a dimension is free. The number of
variables selected must equal the maximum number of dimensions requested. The number of cases for
each variable must equal the number of objects.

Multidimensional Unfolding Options
The Options dialog box allows you to select the initial configuration style, specify iteration and
convergence criteria, and set the penalty term for stress.

Initial Configuration. Choose one of the following alternatives:
v Classical. The rectangular proximity matrix is used to supplement the intra-blocks (values between

rows and between columns) of the complete symmetrical MDS matrix. Once the complete matrix is
formed, a classical scaling solution is used as the initial configuration. The intra-blocks can be filled via
imputation using the triangle inequality or Spearman distances.

v Ross-Cliff. The Ross-Cliff start uses the results of a singular value decomposition on the double
centered and squared proximity matrix as the initial values for the row and column objects.

v Correspondence. The correspondence start uses the results of a correspondence analysis on the
reversed data (similarities instead of dissimilarities), with symmetric normalization of row and column
scores.

v Centroids. The procedure starts by positioning the row objects in the configuration using an eigenvalue
decomposition. Then the column objects are positioned at the centroid of the specified choices. For the
number of choices, specify a positive integer between 1 and the number of proximities variables.

v Multiple random starts. Solutions are computed for several initial configurations chosen at random,
and the one with the lowest penalized stress is shown as the best solution.

v Custom. You can select variables that contain the coordinates of your own initial configuration. The
number of variables selected should equal the maximum number of dimensions specified, with the first
variable corresponding to coordinates on dimension 1, the second variable corresponding to
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coordinates on dimension 2, and so on. The number of cases in each variable should equal the
combined number of row and column objects. The row and column coordinates should be stacked,
with the column coordinates following the row coordinates.

Iteration Criteria. Specify the iteration criteria values.
v Stress convergence. The algorithm will stop iterating when the relative difference in consecutive

penalized stress values is less than the number specified here, which must be non-negative.
v Minimum stress. The algorithm will stop when the penalized stress falls below the number specified

here, which must be non-negative.
v Maximum iterations. The algorithm will perform the number of iterations specified here unless one of

the above criteria is satisfied first.

Penalty Term. The algorithm attempts to minimize penalized stress, a goodness-of-fit measure equal to
the product of Kruskal's Stress-I and a penalty term based on the coefficient of variation of the
transformed proximities. These controls allow you to set the strength and range of the penalty term.
v Strength. The smaller the value of the strength parameter, the stronger the penalty. Specify a value

between 0.0 and 1.0.
v Range. This parameter sets the moment at which the penalty becomes active. If set to 0.0, the penalty

is inactive. Increasing the value causes the algorithm to search for a solution with greater variation
among the transformed proximities. Specify a non-negative value.

Multidimensional Unfolding Plots
The Plots dialog box allows you to specify which plots will be produced.

Plots. The following plots are available:
v Multiple starts. Displays a stacked histogram of penalized stress displaying both stress and penalty.
v Initial common space. Displays a scatterplot matrix of the coordinates of the initial common space.
v Stress per dimension. Produces a lineplot of penalized stress versus dimensionality. This plot is

produced only if the maximum number of dimensions is larger than the minimum number of
dimensions.

v Final common space. A scatterplot matrix of coordinates of the common space is displayed.
v Space weights. A scatterplot is produced of the individual space weights. This is possible only if one

of the individual differences models is specified in the Model dialog box. For the weighted Euclidean
model, the weights for all sources are displayed in a plot, with one dimension on each axis. For the
generalized Euclidean model, one plot is produced per dimension, indicating both rotation and
weighting of that dimension for each source.

v Individual spaces. A scatterplot matrix of coordinates of the individual space of each source is
displayed. This is possible only if one of the individual differences models is specified in the Model
dialog box.

v Transformation plots. A scatterplot is produced of the original proximities versus the transformed
proximities. Depending on how transformations are applied, a separate color is assigned to each row
or source. An unconditional transformation produces a single color.

v Shepard plots. The original proximities versus both transformed proximities and distances. The
distances are indicated by points, and the transformed proximities are indicated by a line. Depending
on how transformations are applied, a separate line is produced for each row or source. An
unconditional transformation produces one line.

v Scatterplot of fit. A scatterplot of the transformed proximities versus the distances is displayed. A
separate color is assigned to each source if multiple sources are specified.

v Residuals plots. A scatterplot of the transformed proximities versus the residuals (transformed
proximities minus distances) is displayed. A separate color is assigned to each source if multiple
sources are specified.
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Row Object Styles. These give you further control of the display of row objects in plots. The values of
the optional colors variable are used to cycle through all colors. The values of the optional markers
variable are used to cycle through all possible markers.

Source Plots. For Individual spaces, Scatterplot of fit, and Residuals plots—and if transformations are
applied by source, for Transformation plots and Shepard plots—you can specify the sources for which
the plots should be produced. The source numbers entered must be values of the sources variable
specified in the main dialog box and range from 1 to the number of sources.

Row Plots. If transformations are applied by row, for Transformation plots and Shepard plots, you can
specify the row for which the plots should be produced. The row numbers entered must range from 1 to
the number of rows.

Multidimensional Unfolding Output
The Output dialog box allows you to control the amount of displayed output and save some of it to
separate files.

Display. Select one or more of the following for display:
v Input data. Includes the original proximities and, if present, the data weights, the initial configuration,

and the fixed coordinates.
v Multiple starts. Displays the random number seed and penalized stress value of each random start.
v Initial data. Displays the coordinates of the initial common space.
v Iteration history. Displays the history of iterations of the main algorithm.
v Fit measures. Displays different measures. The table contains several goodness-of-fit, badness-of-fit,

correlation, variation, and nondegeneracy measures.
v Stress decomposition. Displays an objects, rows, and sources decomposition of penalized stress,

including row, column, and source means and standard deviations.
v Transformed proximities. Displays the transformed proximities.
v Final common space. Displays the coordinates of the common space.
v Space weights. Displays the individual space weights. This option is available only if one of the

individual differences models is specified. Depending on the model, the space weights are decomposed
in rotation weights and dimension weights, which are also displayed.

v Individual spaces. The coordinates of the individual spaces are displayed. This option is available only
if one of the individual differences models is specified.

v Fitted distances. Displays the distances between the objects in the configuration.

Save to New File. You can save the common space coordinates, individual space weights, distances, and
transformed proximities to separate IBM SPSS Statistics data files.

PREFSCAL Command Additional Features
You can customize your Multidimensional Unfolding of proximities analysis if you paste your selections
into a syntax window and edit the resulting PREFSCAL command syntax. The command syntax language
also allows you to:
v Specify multiple source lists for Individual spaces, Scatterplots of fit, and Residuals plots—and in the

case of matrix conditional transformations, for Transformation plots and Shepard plots—when multiple
sources are available (with the PLOT subcommand).

v Specify multiple row lists for Transformation plots and Shepard plots in the case of row conditional
transformations (with the PLOT subcommand).

v Specify a number of rows instead of a row ID variable (with the INPUT subcommand).
v Specify a number of sources instead of a source ID variable (with the INPUT subcommand).
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See the Command Syntax Reference for complete syntax information.
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Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.
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Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to
non-IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.
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Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.
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A
ANOVA

in Categorical Regression 13

B
biplots

in Categorical Principal Components
Analysis 19

in Correspondence Analysis 28
in Multiple Correspondence

Analysis 32
bootstrapping

Categorical Principal Components
Analysis 20

C
Categorical Principal Components

Analysis 14, 17
bootstrapping 20
command additional features 21
optimal scaling level 16
save variables 19

Categorical Regression 10
command additional features 14
optimal scaling level 11
plots 10
regularization 12
save 14
statistics 10

category plots
in Categorical Principal Components

Analysis 20
in Multiple Correspondence

Analysis 33
category quantifications

in Categorical Principal Components
Analysis 19

in Categorical Regression 13
in Multiple Correspondence

Analysis 31
in Nonlinear Canonical Correlation

Analysis 23
centroids

in Nonlinear Canonical Correlation
Analysis 23

common space coordinates
in Multidimensional Scaling 38
in Multidimensional Unfolding 43

common space plots
in Multidimensional Scaling 38
in Multidimensional Unfolding 42

component loadings
in Categorical Principal Components

Analysis 19
in Nonlinear Canonical Correlation

Analysis 23

component loadings plots
in Categorical Principal Components

Analysis 20
confidence statistics

in Correspondence Analysis 27
correlation matrix

in Categorical Principal Components
Analysis 19

in Multiple Correspondence
Analysis 31

correlations
in Multidimensional Scaling 38

correlations plots
in Multidimensional Scaling 38

Correspondence Analysis 24, 25, 26, 27,
28

command additional features 28
plots 24
statistics 24

D
descriptive statistics

in Categorical Regression 13
dimensions

in Correspondence Analysis 26
discretization

in Categorical Principal Components
Analysis 16

in Categorical Regression 11
in Multiple Correspondence

Analysis 30
discrimination measures

in Multiple Correspondence
Analysis 31

discrimination measures plots
in Multiple Correspondence

Analysis 33
distance measures

in Correspondence Analysis 26
distances

in Multidimensional Scaling 38
in Multidimensional Unfolding 43

E
elastic net

in Categorical Regression 12

F
final common space plots

in Multidimensional Unfolding 42
fit

in Nonlinear Canonical Correlation
Analysis 23

G
generalized Euclidean model

in Multidimensional Unfolding 40

I
identity model

in Multidimensional Unfolding 40
individual space coordinates

in Multidimensional Unfolding 43
individual space weights

in Multidimensional Scaling 38
in Multidimensional Unfolding 43

individual space weights plots
in Multidimensional Scaling 38
in Multidimensional Unfolding 42

individual spaces plots
in Multidimensional Scaling 38
in Multidimensional Unfolding 42

inertia
in Correspondence Analysis 27

initial common space plots
in Multidimensional Unfolding 42

initial configuration
in Categorical Regression 12
in Multidimensional Scaling 37
in Multidimensional Unfolding 41
in Nonlinear Canonical Correlation

Analysis 23
iteration criteria

in Multidimensional Scaling 37
in Multidimensional Unfolding 41

iteration history
in Categorical Principal Components

Analysis 19
in Multidimensional Scaling 38
in Multidimensional Unfolding 43
in Multiple Correspondence

Analysis 31

J
joint category plots

in Categorical Principal Components
Analysis 20

in Multiple Correspondence
Analysis 33

L
lasso

in Categorical Regression 12

M
missing values

in Categorical Principal Components
Analysis 17

in Categorical Regression 12
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missing values (continued)
in Multiple Correspondence

Analysis 30
Multidimensional Scaling 33, 34, 35

command additional features 39
model 36
options 37
output 38
plots 33, 38
restrictions 37
statistics 33

Multidimensional Unfolding 39
command additional features 43
model 40
options 41
output 43
plots 39, 42
restrictions on common space 41
statistics 39

Multiple Correspondence Analysis 29,
30

command additional features 33
optimal scaling level 29
save variables 32

multiple R
in Categorical Regression 13

multiple starts plots
in Multidimensional Unfolding 42

N
Nonlinear Canonical Correlation

Analysis 21, 23
command additional features 24
plots 21
statistics 21

normalization
in Correspondence Analysis 26

O
object points plots

in Categorical Principal Components
Analysis 19

in Multiple Correspondence
Analysis 32

object scores
in Categorical Principal Components

Analysis 19
in Multiple Correspondence

Analysis 31
in Nonlinear Canonical Correlation

Analysis 23
optimal scaling level

in Categorical Principal Components
Analysis 16

in Multiple Correspondence
Analysis 29

P
penalty term

in Multidimensional Unfolding 41
plots

in Categorical Regression 14
in Correspondence Analysis 28

plots (continued)
in Multidimensional Scaling 38
in Nonlinear Canonical Correlation

Analysis 23
PREFSCAL 39
projected centroids plots

in Categorical Principal Components
Analysis 20

proximity transformations
in Multidimensional Unfolding 40

R
regression coefficients

in Categorical Regression 13
relaxed updates

in Multidimensional Scaling 37
residuals plots

in Multidimensional Unfolding 42
restrictions

in Multidimensional Scaling 37
restrictions on common space

in Multidimensional Unfolding 41
ridge regression

in Categorical Regression 12

S
scaling model

in Multidimensional Unfolding 40
scatterplot of fit

in Multidimensional Unfolding 42
Shepard plots

in Multidimensional Unfolding 42
space weights plots

in Multidimensional Unfolding 42
standardization

in Correspondence Analysis 26
stress measures

in Multidimensional Scaling 38
in Multidimensional Unfolding 43

stress plots
in Multidimensional Scaling 38
in Multidimensional Unfolding 42

supplementary objects
in Categorical Regression 12

T
transformation plots

in Categorical Principal Components
Analysis 20

in Multidimensional Scaling 38
in Multidimensional Unfolding 42
in Multiple Correspondence

Analysis 33
transformed independent variables

in Multidimensional Scaling 38
transformed proximities

in Multidimensional Scaling 38
in Multidimensional Unfolding 43

triplots
in Categorical Principal Components

Analysis 19

V
variable weight

in Categorical Principal Components
Analysis 16

in Multiple Correspondence
Analysis 29

variance accounted for
in Categorical Principal Components

Analysis 19

W
weighted Euclidean model

in Multidimensional Unfolding 40
weights

in Nonlinear Canonical Correlation
Analysis 23
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