IMS
15.5.0

Exit Routines
(2024-08-30 edition)

.||I

Note

Before you use this information and the product it supports, read the information in “Notices” on page
785.

2024-08-30 edition.

© Copyright International Business Machines Corporation 1974, 2024.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

ADbOUt this INFOrMAtION...cccieiiiieiritiierieretereetereseasesessasesessesessssesessssesessssessssssessssnsese Xi

PrereqUISIte KNOWLEAZE.uiiiiee ettt et et e et e e te e e ate e e abe e e saaesensae e sseeeensaaaasseesnnsaeennseenn Xi
How new and changed information is identified..........ccuieeiiecciecceceee e Xi
HOW 10 read SYNtaX ia@ramS....ccccuieeeiieeciieceieeecieeeeteeeetee e etee e e teeesteeeebaeesasaeesstaeesssaseansasesnseeesnsasesnseesanes Xi
Accessibility features fOr IMS L5.5. .. ittt e e e e tee e e e e e e sre e e sbe e e ssaeesnseeesnseeeennaeean Xiii
HOW 10 SENA YOU COMMIEBNES....iiiiiiiieecieeecieeectee et e ecteeeeteeeeteesetaeessasee e sbeeessaeesseeessseeassseesnssaesnssaeensseenn Xiii

Part 1. IMS control region exit routines.......cccccceuiiniiniiniiniieiiniieiieiienieccececrcneseeenees 1

Chapter 1. Guidelines for writing IMS eXit rOULINES.......ccccuiiieiieeeieeeciee et eere e et eeeatee e teeeereeeeans 3
INtroduction t0 IMS @Xit FOULINES....uiiiciieiciiecciee ettt e et e s ete e et e e seat e e sereeesestee e saeeseseaesnseeennns 3
EXit routing Naming CONVENTIONS.ciiciiiicciee ettt eeciee e ectre e eee e et e e e stre e sbae e sbaeeebaeesbaeessaeeensasannns 3
Changeable interfaces and control BLOCKS........cccuiiiciiicciii et 3
Refreshable eXit rOULINE tYPES.....uii ittt re e ae e e rae e e aae e eaae e eaae e e nsaeenes 4
IMS standard user eXit ParameEter LiSt.......ccuiicciieiiiieeceeecee et e aae e 5
USING the ISWITCH MACKO...uuiiieiieieieeeeitieeeieeeeteeeeiteeesseeesseeeesseeesssseesssssessasesssssesssssessssessseesssseens 9
o TUN Tl o1 TaTe Il o =Yy g Tor 4] 1T SR 9
Writing IMS routines that access control blocks........cccueeeieeciiiiciiececeece e 10
Extended Terminal Option (ETO) eXit rOULINES......cccccieiieiieieiee e et eetee et e e te e e teeeenaee e 10
APPC/IMS ©XIT FOUTINES e euettreiieieeeeeeeeeeeeettee et e ee e e e e e esesssaabaeeeeeeeeseesessssssssserereseeeesssssssssssssresereses 11
REGISLEIrS ANU SAVE GIrEaS.....ciccciiiieiieeeiieeeiteeetreeetteesrteeesstee e e teeestaeeessesessaeesssseeesseesssseansseensseenn 11
CroSS-mMemMOrY CONSIAEIAtIONS.uiiicieeieieeeeieeeeiee e cteeeeteeee e e eeteeesatee e rteeessteesesteeessteeenseeessseesnnens 12
Exit routine performance recommMENdatioNS.......cccuviieiieiciieeeiee e e ra e e 12
IMS Callable SEIVICES.ciuviiiiieteeiterieecterte ettt ettt e sie e st e sbe e sabe e be e sase e beesabessbaesanesabeessnesaseensaesnses 13
TYPES Of CAllable SEIVICES .. vttt e ee e e aee e s be e e e bae e s bae e s beeeeareas 13
Exit routines eligible for callable SErVICES. ...t e 13
USING CALlable SEIVICES...ciciiiieiiieeieeeeee ettt ettt e e e e et e e e tr e e s at e e s aae e e saeessaeeensseesnsaeens 15
Callable SEIVICES. . iiiiieiiiitirte ettt sttt et st ssbe e s te s be e sab e s be e sase s beesbaesaseenbeesateebaesaseennes 15
IMS Callable STOrage SEIVICES.....uiiiiiieeieeeeiee ettt eeite e ere e e see e s ste e s saee e s tae e e aeeesseeesseeessaeesseeesnnees 20
IMS Callable Control BlOCK SErviCeS reQUESTS.......uiiciieecieeecieeecieeectteecereeecteeeerreeeeraeeseareeeereeeeans 23
IMS Callable ADT SEIVICES.....uiiicieeeiiieeiieeeiteeeiteeesteeesteeestee e atee e sreeessbeessntaeensseeannsaeanssaeannseeennses 29
Callable services return and reaSON COUES........uiiiiiiiiieeiiieeciee et e et e erre e e rreeerateessreeesaseessseesnnseean 30
Return COdEs (CSPLRTRIN).....uiiiiie it eciee et e eetee et e e e e e tte e e ate e s ateeesateeseataessaeesnsaesnsassnssesensens 31
Callable service interface reason codes (CSPLRESN)......cc.uiiciiiiiieeeiieeceieeeereeecvee e vee e vee e 31
Function-specific parameter list reason codes (CSPLRESN).......ccccoeeeiieeecieeeceeeecee e 32
Callable services reqUESst BXaMPLE.....c.uiiiciie ettt ettt e e ste e e re e e ate e ssaseessaeessaeesnseeas 37
(070] 0] 7 o] W o1 0ol AU I-Y- V= LTS 39
CUSTOMIZAtiON EXIt FOULINES......tiiiciiieceeecie ettt e e e ee e e rre e et e e e aae e s ate e e ateeeseeesseeessseeenenas 42
IMS.SDFSSMPL data SEL.uuicuicciiieiiiiieerieeeestestesteeseeseestesteestesseestesssessessessesssesseessesssessesssessesssessessesses 45
Chapter 2. Database Manager eXit FOULINES.........ccceieiieieiiecccee ettt ree e s tee e be e s e aee e e bee e naeas a7
Batch application exit routing (DFSISVIO)ccecciiieeiiiieeiieeciteeeiteeeteeeeteeeeteeeeteeesteeeearaeeesaeesnsaeennes a7
IMS Catalog Definition exit routing (DFS3CDX0).....ccccciiiiiiieeeiieeeieeeereeeereeeereeeetee e ree s raeesasaeseasaes 48
CCTL EXIt FOULINES et etieiteeieeiteste st e st e st e ste s bt e st e sbeesbeesbeesbeesabeesbeesaseebaesasessbeesssesnsaesasessseenssesnsannn 51
Coordinator controller routing attribULES......ccuveiciiiececce e 51
SUSPENT EXIT FOULINE...uiiiiciiiecciie ettt ectte e et e e eette e sebeeesebeeesebeeesbaeesseeesseeesseeesnseessnseeennes 52
RESUME EXIT FOULINE....iiiiiitiiiieiie ettt ettt st te e s b e e be e s b e s beesasesbeesaaesaseensaesnsassaesnsenns 52
CONTIOL EXIt FOULIME. . tiiuiiiiiiiiieeieerte ettt ettt sttt e s te e be e sbe e beesabessbeesasessbaesasesaseensaessseensaesnsenn 53
STALUS EXIT FOULINE.cetieiieiiieeieeree ettt sttt sttt e s e e s be e be e sateebeesabesbaesanesabaesssesnseenseesnseenses 59
Data Capture EXit FOULINE......iiiciieeciee ettt e e e ee e e e e e te e e e bae e e beeeenbeeeeseeeenseeesnseeesnnees 60

Sample Data Capture EXit FOULINE....ciiii ettt e ectre e e e ctee e e e eeree e e s eearee e s seenbaeeeseensseeeesennes 71

Sample Extended Program Communication BLOCK (XPCB).....cccueeciereerciennieenieeieesreevee e eee s 78
Sample Extended Segment Data BLOCK (XSDB).....ccccueeeierrierieenieeieesiesreeseesveeseeeseeesseeseesnseenns 80
Data conversion user exit routing (DFSDBUXZL)......ccccuvreerviernieeieeneesieeseeseessseeseessseesssssssesssessnsennns 81
Data Entry Database Partition Selection exit routine (DBFPSEQOQ).......cceeeceeeecieeecieeecee e 83
Sample data entry database randomizing routines (DBFHDC40 / DBFHDC20 DBFHDC44 /
DBFHDC24 DBFHDC2S).. . e e cctiieeiieeeiteeeeieeeectteeeteeeeteeeeteeeebeeeensaeaesaeaessasasnsasesnsaeessaassseeessaeannes 86
Sample DEDB randomizing routines (DBFHDCA0).......ccceevueeceerierieeneeerieesreeseeesreeseessseessaesnseenns 89
Extended call interface (XCI) OptioN.....c.uicccuiee ettt ettt ettt e etee e te e e e tee e et e e eareeeeareas 89
Data Entry Database Resource Name hash routine (DBFLHSHO).........cccceeeeiiieeciiieecieeeciee e 92
Sample hashing routing result FOrMat.......occiiieiiieiieiee e s 95
Data Entry Database Sequential Dependent Scan utility exit routine (DBFUMSEL)...........ccccuueen..e. 95
Sample DEDB Sequential Dependent Scan utility exit routine (DBFUMSEL)........ccccccveeecnveeennenn. 97
HALDB Partition Selection exit routing (DFSPSEOQQ).......cccceeeeerieecreesieeseeseessieeseeeveeseeesseeseeesseenns 98
Sample partition selection exit routine (DFSPSEODQ)......ccccueeecireecieeeieeecee et eee e 102
Partition exit communication area mapping (DFSPECA).....cuiiciecieeieeeeeieeceeseeeve e eeeesveens 102
Partition definition area mapping (DFSPDA)......ccceiiieeceecieeeeeeeeteesteeste e see e e s eesseeesaaeeneeas 103
HDAM and PHDAM randomizing routines (DFSHDCZA0).......cccceevueeeieerieeieeseeesieeseeeieeseeeseeesseesseeens 104
Sample HDAM and PHDAM generalized randomizing routine (DFSHDCA40).......cccccvveeveereennenne 108
Secondary Index Database Maintenance exit rOULINE........cccccuiieeiicciiee e e veee e 108
Sample Secondary Index Database Maintenance exit routing........cccceeecvieeeecciiieeeeeciiee e, 112
Segment edit/COMPresSiON EXit FOULINES.ccuiiiiiiiriiie ettt essee e s see e ssaeeessaaeessaeeesnnseess 113
Description of sample segment compression/expansion MOAULES......c.c.cevvveerrieeriiieeriieeernineens 123
Hardware data COMPreSSION SUPPOI .. .eiicciiieeeeciteeeeeeitieeeeecrieeeeeerreeeeesnreeessessasesssessssesssssseees 126
Sequential Buffering Initialization exit routine (DFSSBUXO)......c.coovueriiereenieeieeseeseeeseee e esvee e 130
Sample SB initialization FOUTINES......cii ettt eerre e e e eeare e e s eerree e e s e aseaeesennseeeeean 133
Chapter 3. Transaction Manager eXit FOUTINES......cucuieiiiieiiieeriieessie et essreesseeessaeeesssteessseeessnseessnseesas 135
2972/2980 Input edit routing (DFS29800).....ccuutieiieeeiieeeieeeeieeeeieeeeiteeeesreeeesseeessseeesbeeeeaseeeenseeaas 135
4701 Transaction Input Edit routing (DFS36010).......cccciuiieeirieeeiieeeieeeereeeeteeeeieeeereeeesreeeeeaeeeeneas 137
BSEX: Build Security Environment user exit (DFSBSEX0 and other BSEX eXitS)....cccceecvveeecuveeennnen. 138
Conversational Abnormal Termination exit routing (DFSCONEOQ)........cccevvuerveerveerireeneeeieeseeeseeenees 142
Destination Creation exit routing (DFSINSXO)......cccvueecerrieriieeneeeieesreesreeseesaeesseesseeesseesseessessseenns 147
DFSINSXO0 when extended terminal o0ption iS ACtiVE.....cccuuieeeeeciiiee et reee e e e 151
DFSINSXO0 when shared qUEUES Are ACtiVE.......cuiccccuiieeieeciieeeeectie e e eciiee e s eetee e e e e eseee e s eenseeeeeenns 153
DFSINSXO0 when dynamic resource definition is enabled.......ccoccveiiiecciiee e, 153
Fast Path Input Edit/Routing exit routine (DBFHAGUO).......ccceeivuiiieeeiiecieeeieeieeseeeeveesee e e saee e 156
Front-End Switch exit routing (DFSFEBJO)......c.ceiiieiieiieeieeceeete et e seeesveeseesveesreeseeesseesreeeseesnee s 160
Terminal INPUL PrOCESSING . .uiiecitiiiieieiieeeiee ettt stte et e e sree e ste e e sbeessteessbeessaeeessseeessssaesssseesnneeas 163
IBE INPUL PrOCESSING. eiicuteiicuieereireeietteeriteesetteesetteesesteesaseeeseseeesaseessaseaesaseeesaseessastessaseesssseessaseessnne 163
Front-end interface BLOCK......cocuii i e 164
] 0Tl A= Vo o 10N { o 10N i 11=1 o -SSR 167
ROUTING INTOMMIATION.c..tiiiiiiiieie ettt e e s sbe e e s bt e e s bae e sseeesbaeesseaesnseeenn 169
MESSALEE EXPANSION..eiiieiieirrieiritteerirteeriteesitteeassteesssteesssaeesssaessssaeesssaeessseesssseesssseesssseessssaeessseessnse 170
LI 1] = ot 1L Y25 PSS 170
FEIBRPO L INAICATO . uuitiiiiiiiieeie e e ettt ee e e eeeeearreer e e e e e e e e seeseasbsraeaeeeeeeeeesesssnsssssrrereseaesseenan 171
Example of the front-end switch exit routine (DFSFEBJO0).......cccuieeciiieeciieeeeeeeeeeee e 171
Global Physical Terminal (Input) edit routing (DFSGPIX0).....cccouiieiiieeeiieeeieeeeieeeecteeeereeeereeesreeeans 174
Greeting Messages exit routing (DFSGMSGO).......cueeeeerrerreeriieereeeieesreeseeesseeseessseesseesssessseesssesnses 178
IMS Adapter for REXX exit routing (DFSREXXU).....cciiciiiicieeeeiee ettt e etee e e saeeeeeree e e aee e e nee e 180
Initialization exit routing (DFSINTXO0)....cutecieeeieereeeeeeieeseesteesreeste e reeseessseesseeeseesseesseesseesssessseenn 183
Input Message Field edit routine (DFSMEQQQ)........ceccuiieerrieeeeeieeieeseesve e eee e e seaessreesnaeeeeees 188
Calling the Input Message Field edit FOULING......cuiiriiiiriieeceeee e 191
DEfiNING €It FOULINES...ciciiiiiieiiee ettt e st e e st e s be e s ssseesssbee s sbaessnsaessnseesnsseesas 191
Performance CONSIAEIAtioNSccuiiiiiiiiiieeiiiee ettt ettt e sste e ssee e s eaee e seateessseeeseseeessneaesaneaesane 192
Input Message Segment edit routing (DFSMEL27).....cccviecieeieeeieecieeeieeceesreesieesee e esseeseeeseesnnens 192
Calling the Input Message Segment edit rOUTINE.......covviiiiiriiiieiie it see e 195
DEfiNING €It FOULINES...ciiiiiiciieiciteeiee sttt st e st e st e e st e e s s e e ssabee s sbaesssseessnseesnnseenas 196

PerformanCe CONSIAEIATIONS .uuuueeeceeecce s eeesassaaaaneas 196

Logoff eXit routing (DFSLGFX0)...ccuticieeieeieeeieeceeeiesieesteesteeseesssessseesneesseessaessseessessnsessseesnsesnseennes 196
Logon exit routing (DFSLGNXO)......ccccueeierieeeieeiteeseeesieesteestessseesseesseessesssseesseessseessessssesssesssssensessses 199
SeleCting @ LOZON AESCIIPIO . iii ittt ettt sttt sete e s sate e ssateeseseeesntaeseseeesnneaesnes 202
LU 6.2 Edit exit routing (DFSLUEED)......ccccutiiieeieeiteeeieeceeseeeteesreeeteesseeseesseessaesssessseesnsesnsessnsesnsens 203
Message Control/Error exit routine (DFSCMUXD).....cccvevierceenierieesreesieesieesseesseeseesssesssesssssssessnns 208
REIOULING MIESSAEES. ¢ vtiiriiieritiiiriiite sttt ee ittt e s st e s sttt e s stteessseeessbeeessabeesastaessssaessssaesnsseessssaesnssaesnsses 210
Message Control/Error Exit Interface BLOCK (MSNB).....ccceiceirieeiiiniesie e sieeseesee e see e 212
Valid flags and default aCtiONS......ccueiieiiiiiieeiiee et ee e s e s s be e e s bee s sanes 218
Message Switching (Input) edit routing (DFSCNTED)......ccceeeeereeriieeieeieeseeeieeseeeseeeseeesneeseeesneeas 219
Using the sample message switching edit routine (DFSCNTEQ)......cccccveerveeeieeniesieeeesieeveeens 221
NDMX: Non-Discardable Messages user exit (DFSNDMXO0 and other NDMX exits)......ccccceerverevenne 221
OTMA Destination Resolution user exit (DFSYPRX0 and other OTMAYPRX type exits).................. 232
OTMA Input/Output Edit user exit (DFSYIOEOQ and other OTMAIOED type exits)......ccceeecvveeenveenns 237
OTMA User Data Formatting exit routing (DFSYDRUOQ).......ccovueiiirriieeieeieesieesteeseeeeeeseeeseeeseeeseeens 242
OTMARTUX: OTMA Resume TPIPE Security user exit (DFSYRTUX and other OTMARTUX type
EXITS) 1 euteeeurerreesrtessteestees e ese e e teesreeate e beearae e aeearee e teeahee e te e ree e te e beeereeebeeaaee e teeareeenteeneeenteenreeertaans 249
PGMCREAT USEI XIt FOULING TYPC.ciiiiiiiieeicciieee e cettee e eecttee e e ttee e s e satee e e e s nbe e e e s enbeeeeesensaaeeeeenssenesanns 253
Physical Terminal (Input) edit routing (DFSPIXTO)......ceiiiiieeiieeeiieeecieeeecieeeeciee e e e e e caeeeeaee e e reeeeneas 261
Sample Physical Terminal (Input) edit routine (DFSPIXTO)....c.ceeeiieeeiieeeitie et e e 264
Physical Terminal (Output) edit routine (DFSCTTO0).....cccccuieeeiieecieeeceeeeeeeeeeteeeeereeeereeeeereeeeeraeeeans 264
Sample Physical Terminal (Output) edit routine (DFSCTTO0)......ccccveeeereeeiieeeereeeereeeereeeeaeean 267
Queue Space Notification exit routine (DFSQSPCO/DFSQSSPO)......cccccieeeieeeeieeeeteeeeteeeeeeeeeeee e 268
Security Reverification exit routing (DFSCTSEQD)......ccccuiiieiieeeiee e et eete e eeiee e e ee e e ree e e rae e e neas 274
Shared Printer exit routing (DFSSIMLO).....cccueecieriierieerieeieeseeeteestee e e esreesseesreesseesnseesseesseesnseesneean 277
Signoff exit routing (DFSSGFX0)....cciiiieeiieeieerieereeesteestesee et eseessteesseeeteesseesse e seesnsessseesssesnseessenan 279
Signon exit routing (DFSSGNXO)......ucecieeierieeeieerteestesteesreesteesreesseesseesssessseesssesseesssesssesssesssesssees 282
UEY=Y e [T ol g o} o) g 11 (=T o (o o FE SRR 286
Providing queue (LTERM) data......ccceeceeriieieeeie et esee e eseesteestee st e saeesve e ssaesaeesnaeeneesnneenns 287
Signon/off Security exit routing (DFSCSGNO).......ccciiieerciieeieeieeseeeteeseeesteesreeseessreeseesseesseessseenes 289
Time-Controlled Operations (TCO) Communication Name Table (CNT) exit routine (DFSTCNTQ). 292
Time-Controlled Operations (TCO) exit routing (DFSTXITO)......ccccvueeeeiieeeeieeeeieeeereeeeeeeeeieeeeeneeeenns 294
TM and MSC Message Routing and Control User exit routine (DFSMSCEOQ).....cccccvuevveeneerciercieennnen. 297
Transaction Authorization exit routing (DFSCTRNO).....c.cecvuerriierieeieenreeteesee e eseesveeseeeseeeseeesneeas 309
Transaction Code (Input) edit routine (DFSCSMBO)......cccciieeiiiieeiie ettt e tee et e e 314
Sample transaction code (input) edit routine (DFSCSMBO)......ccceteeiiieciieeceeeetee e e 317
Chapter 4. IMS SYStEM @Xit FOUTINES....ciiiiciiieeeccciieee e ectee e eecte e e e ecte e e e eeree e e s e abee e e e eesteeeesenseneseennssnnens 319
Buffer Size Specification facility (DSPBUFFS)........uii ittt e et e e 319
Example of SpPeCIfyiNg DUFEIS.....ui it e s ee e s saae e 320
Command Authorization exit routing (DFSCCMDO).......cecuieriereieeieecieeeeeeseeseesreeseeseeesseesseesseenns 321
DBRC Command Authorization exit routine (DSPDCAXOD).....ccevvuerrerrieeeeseeeieeseeeeeeesieeseeesaeesneens 324
DBRC SCI registration exit routing (DSPSCIX0)......cccvueecierreeeieeceeeieeseeseesseesreeseesssessssesssesssessnses 327
Sample DBRC SCI registration eXit FOUTINE......cocciiiiiieriieeirieeseite ettt e e te e s sveessee e s eee s 329
Dependent Region Preinitialization rOULINES......c.uiiviieiiiieiniieerite sttt ssee e be s re e saee s 330
Dump Override Table (DFSFDOTO).......ueiiiiieeciieeeirieeeitteeeieeeectteeeteeeeesreeessseeesseeeasseesasseeeasseesnnseesnnees 332
Sample Dump Override Table (DFSFDOTO).......ceccciieeiieeeeieeeecieeeecteeeeceeeeeteeeereeeeereeeereeeereeeenns 333
ESAF In-Doubt Notification exit routine (DFSFIDNO).......ccecveervueereeeieeieeseeerieeseeeseeeseeessseesseesneenns 334
ESAF SUDSYSTEM EXIt FOULINES. ..eiiiiiiieiecccieee e cecttee e e et e et e e e e ttee e s e e sbee e e e eensteeessessaneesesnsenesesannes 336
Exit routine interface CoNTrol BLOCKS.......ciiciiiiiieiiieiecee ettt 338
(600]) A o] N o] (ool 4 aT=T] 011 oY -3 PP 339
ADOIt CONtINUE EXIT FOUTINE....uiiiiiiiieeeertee ettt sttt e e s e e e s e e e sbe e e sbeeesbeeessbaeesasaeenn 341
Associate Thread eXit FOUTINE.......iiiiiiirie ettt et e s s be e s s be e s sateesssteessssaesnes 342
ComMMANA EXIT FOUTINE....utiiieiieieiie ittt ettt e st e e s e e s sate e sseeessabeeeseeesssteessssaessnsaesssseesns 344
Commit CONTINUE EXIt FOULINE...cicuiiiiiieeiiiie ettt sttt e s ste e s see e s saee e s sateesssteessbeesansaess 345
ComMMIt Prepare ©Xit FOULINE.......iiiiicciiee e ettt e sectte e eetee e e e e saree e e e eeree e e e seanteee e s nteeessensaneesennssnes 346
ComMIt VErifY ©XIT FOUTINE....uuiiii ettt erree e e e et re e e s e easee e e s esnsteeeesenreeeesennseneeaanns 348
Create Thread eXit FOULINE. ...ttt sttt e s e e s s be e s s be e s sbeessabaessasaeenaseens 349

o] Lol =) 1 A (o UL A1 =T 351

e =T) ALY A=Y L A o1V (] = TSRS 352
INItialiZation EXIt FOULINE...iiiiiiieiieecee ettt e s te e st e e s s be e s ssbe e s sabaeesabaessssaesnns 354
BPEUXCSY fre@ STOrAZE SEIVICE. . uviiiiiieriiiteriieesiieessttesseeesssreessseesssseessseessseessseessssessssseesssees 357
NOIMAL Call EXIt FOULINE..cii ittt e s be e s ee e s saee e s saee e ssaeeessaeeessseeesnneas 358
Resolve INdOUDT EXit FOULINE...ciccuiiiiiieiiiecete ettt sttt e s ee e s s ee e s sateessseaesans 360
TP Lo H =] o 101] 1= TP USRI 362
SISNON EXIT FOUTINE.c.utiiiiiieiciee ettt ettt e s ere e s te e s be e ssateesssbeesesteesastaessntaesassassnsseesnnes 363
Subsystem Not Operational Xit FOUTINE......ccuiiii i e et e e s e eete e e e enns 366
Subsystem Termination Xt FOUTINE......ciiciiie ettt e e e e e e eeraee e e e eneaeeas 369
Terminate Identify EXit FOULINE ... i e e e e e e e e e e nraee s 370
Terminate Thread eXit FOULINE. ...ttt see e s re e s be e s baessabaessaseess 371
ESAF SYNCRIONOUS EXIt FOUTINES. . eeiiiiitiieeecciiee e ettt ectte e e etee e e e e stte e e e e ate e e e sennsaeeeeenseaeeesennsneaeean 372
LOZ SEIVICE EXIT FOUTINE . tiiieiieiriieeeiteee ettt s e st e e st e e s bee e sbee e sbeeessbeeesbtaesseeesssaesssassnsenns 374
MESSAZE SEIVICE EXIT FOULINE...iiiiiiiiiiieieie ettt ettt e sste e st te e sbe e e s ba e e s beeesbaeesbeeesneeesanseean 376
Subsystem Startup SErvice eXit FOUTINE.....cccc i e e e e e e e e e nree e e e eanes 378
Subsystem Termination Service eXit FOULINE.....ccuiiiiicciee e e e e e eerare e e enaee s 380
IMS Command Language Modification facility (DFSCKWDO)......ccceecueereeriierreeeeeeeeseeeveeseesee s 380
Sample IMS Command Language Modification facility.......ccceveerrvieiniieeinieeiieeeeiee e 383
IMS Initialization and TermMination USEI EXit.....cuiiecieeirriieiriiieinieeieieeeereeesreeeseeessreesseeesseeesssseesnns 383
IMS Monitor user eXit (IMSMON)....ccuiicireieereerteeteeseeeeeesteesee e steesee s reesreesbeesseesrseeseesasessseessaennses 385
IMS Fast Monitor User EXit (FASTMON).....cocuiicieiieerieereecteeseesieesteeseeesveessseesseesseeesseessesssesssessnsens 388
Language Environment User exit routing (DFSBXITA).....ccccveeieirieerieiieeseeseeesreeseeesseesseesseessnesneens 393
LOZ ArChIVE EXIT FOULINE...iiiiiiiiiiieiiiee ettt ettt ste e s te e s st e e ssate e s s ateesssteessstaessssaessstaessnseesnnes 394
Sample LOg Archive ©Xit FOULINE....ciiiiiiiiiieiieere ettt s sttt e st s e e s s e e s sbe e s s baeesabaeesaseeens 396
LOGEDIT: Log edit user exit (DFSFLGEO and other LOGEDIT €XitS).....ccccveveerrurereesieeesieeseesseensennns 403
LOGWRT: Logger user exit (DFSFLGX0 and other LOGWRT €XitS).....cccvuerveerrieereeeieeieesieeseeeseeeeens 408
PPUE: Partner Product exit routine (DFSPPUEQ and other PPUE eXitS)....cccccevveereeevenneesieeneeeneens 416
T €= A=Yl A o 101] 1= T PRSPPI 418
RECON I/O eXit roUting (DSPCEXTO) .. .uuuueeeiiiiiieeeieieeeisiiereeeeteeeeeeeessesssssssssseeeesessssssssssssssssssssssssssssnns 420
Minimizing impact to System PerforManCe......ccviiciiiiiiei ittt 429
RASE: Resource Access Security user exit (DFSRAS00 and other RASE exits)......cccoeeecveeeeveeennnen. 429
System Definition Preprocessor exit routine (input phase) (DFSPRE60)........cccoceeecveeecieeecrreeennnn. 436
Sample system definition preprocessor eXit FOUTINE.......ccuviieiecciieee e eeeree e cvee e e 438
System Definition Preprocessor exit routine (name check complete) (DFSPRE70)........cccceeeueeenee 438
Type-1 Automated Operator exit routing (DFSAOQUEQD)......cccuiiiiiieeeeee ettt et et et 440
AO functions and how to IMmplement theM........coo e 451
SEttiNG UP the EXIt FEZISTEIS. vttt sttt e s be e s be e s abeessabeesasaesas 456
User Exit Header BLOCK (UEHB)......icuieiiieieeeeceeeieeste et eseestesteeseeesseesaeesnseesseesnseeseesnaesnseennns 458
Type-2 Automated Operator user exits (DFSAOEQOQ and other AOIE type exit routines)................ 464
Types of messages passed t0 this FOULINE......ovciii i 473
User Message table (DFSCMTUD).....ccciecieeieereeeieeieesee et esteesaessseessseesseesssessseessessnsessssesnsesssesssenns 477
Sample user message table and rOUTINE.......oiiciiiiiieirieeee e e see e 479
XRF Hardware Reserve Notification eXit FOULINE.......ccivciiiiiiieiiiieieitcccite et e s seee e 482

Part 2. Base Primitive Environment-based exit routines......cccccceevevereecerereerereeee... 485

Chapter 5. BPE user-supplied exit routine interfaces and SEIVICES........uuvveecieeeeeciieee e eeciee e 487
Calling subsequent exit routineS IN BPE.........cccviiiiiiiiiiiieccieccte et ssee s see e saee e ssaee e snees 491
BPE user-supplied exit routing eNVIFONMENT.........coiiiiiiiieeccciiee e e e ree e e e eree e e s e ereeeeeeennes 492
BPE user exit routine performance CoONSIderations..........cccveeeeeciiieeeeeciiee e ecceee e ecrre e e ceree e e e earees 493
Abends in BPE user-supplied eXit FOULINES.........cuiieiiiiieeccciieee et e e eeree e e eeveee e e e evere e e e e sasee e e s enrees 493
BPE user-supplied exit routine callable SErVICES.... . 493

BPEUXCSY T STOrage SEIVICE..iicuiiiiiiieiiiieriiteseiteseteesseeesseeessateesssreesssseessseesssseessssaesssseessseens 498
BPEUXCSY fre@ STOrAZE SEIVICE.c.uutiiiiiieiiiteriieesiitessteesseeesssseesssseessssaessseessseesssseessssessssseesssees 500
BPEUXCSYV l0ad MOAULE SEIVICE...uuiiiiiiiiiiie ittt ettt sttt e s see e s ee e s te e s sate e ssaeeessaeaesnneas 501

BPEUXCSY delete MOAULE SEIVICE...uuuuieeteeeeeeee ettt s s e s s e e e e e e e e e e e eeeeeeeeeeeanes 502

BPEUXCSYV create Named STOrage SEIVICE.....uivuiiiiriieiriieeeiteesirteessiteesteessaeesssseessssaessssaessssesesans 503

BPEUXCSYV retrieve Nnamed StOrage SEIVICE...uiuiiiiiiiiiieriitessitessieessieessreessbeessseessseessseessanes 504
BPEUXCSYV destroy Named StOrage SEIVICE.....ccviiciieriieieiteesieeesieessieessieessaeessseeessseessseesnaes 505
BPE callable service example: Sharing data among exit routingS.........ccceeeveeeriieiniieeniieenireesenens 506
Chapter 6. Base Primitive Environment customization eXit roUtiNgS........ccceeecieeeeeeciieeeeeciieeeeeeceeeee e 511
BPE Initialization-Termination user-supplied eXit rOUtINE......c..ueeiieeciiee e e 511
BPE Statistics user-supplied eXit FOULINE.......cciicciiieeiecciiee et e eecreee e e e eare e e e e nbe e e e s e aaeeeaenns 513
2] o Sy L= g T] = 1] ot LT VOSSR 515
Chapter 7. BPE-based DBRC USEr Xit FOULINES.......cceiieciiiieeieciiiee ettt e e eeire e e ecveee e e sveee e s e eveeee s e e nseeeas 531
DBRC REQUESE EXIt FOUTINE..ciiiiciiieeieetiee e e ettt e ecctee e e e eetee e e e e ete e e e eesataae e esesteeeeesnseeeeeeanseeseaeassanesanns 531
DBRC SECUNITY EXIT FOULINE.....uiiiiieeiiieeeecciiee e e et e e e eectee e e s e eter e e e e e treeeeesnbeeeeeenbeaeeeesnssseessesnseeeessnnsenns 533
Sample DBRC Security EXit ROUTINE....c.uiiieicciiiee e ccciiee et e e eete e e s ee e e e s steee s s e ereeeesesnsaeaeseanns 536
OO] N L@ = qE A ¢ TV L {1 3 L= 536
Sample RECON I/O €Xit FOULING....uiiiiiciiieeeceiteeeeecitee e eecttee e s e ectrte e e e e aree e e e seree e e s sensseeesssnsenessennnes 545

D] 2] S O €= 1] {01 U SP 545
Chapter 8. BPE-based CQS user-supplied eXit rOULINES........ccceeecieieiieiiiiee e ceee e e e cvtee e e evaae e e 549
CQS initialization-termination user-supplied exit FOULINE.......cccciieeiieciiiee e, 550
CQS client connection user-supplied eXit FOULINE.......ccccciiieiieciieee e e e e e e 551
CQS Queue overflow user-supplied eXit FOULINE.......cciicciiiee it e e evere e e e areee e 553
CQS structure statistics user-supplied eXit FOULINE........ceeieciiieeieciiiee e e e e evee e e e eaens 555
CQS structure event user-supplied exit FOULINE.......cc i e e e 567
CQS statistics available through the BPE statistics user-supplied eXit......cccccccevvveeriveeiniieennveennne, 574
Chapter 9. Common Service Layer eXit FOULINES........iiiicciieieecciiee e eecitee e eecirre e e eenree e e e enree e e e eebeaeeseennns 577
CSL ODBM USEI EXIt FOULINES. .. .viiiiiieiiiieieiteeeieeesteeesieessteessteesseeessstaeessseessssaessssesssnseesssesssssaesnnes 577
CSL ODBM Initialization and Termination USEr EXit......ccceeveeirvieeiniieririieeenieeeseeesseeesseeessneeessnees 577
CSL ODBM INPUt USEI EXIT FOUTINE...iiiiiiciiieeeeeciieee e ettt e e eetree e e et e e e e esaee e e s enbe e e e e eenseeeeseennseneaeans 579
CSL ODBM OUtpUL USEI EXIT FOUTINE...eiiiiiciiieeiecitiee e eectie e e e et e e e ree e e e e etre e e s e e abe e e e eeabeaeesenanseneas 584
CSL ODBM Client Connect and Disconnect USer exit FOULINE........cevvveeriieeriieeniieessieessieesseeens 587
CSL ODBM statistics available through BPE statistiCs USer eXit......ccocveivvieerieeirieeennieenieeeenee 588
CSL OM USET EXIt FOULINES...cutiiiiiieeiititeeiiee et siteesste e sttt e ssteeessste e s seeessseeesssseessseesssaesnssaesnsseesssseenn 591
CSL OM client CONNECTION USEI EXIT...uuiiieriiiieiiieiriiieeeieieeeiiteesseteessiteesssreesssseesssseesssseesssesesssseessssnens 591
CSL OM Initialization/termination USEr @Xit.......cociiiiiiiiiiieeiiieeeeee e eee e eeee e 593
CSL OM INPUL USEE BXiteeiiiiuiiieiieiiieeeeeeiteeeseectte e e eectreeeeesbereeseesseeeeseaseseessanseeeessssssenesssnsssnasnennnes 595
CSL OM OULPUL USEI BXIteeiiiicuiiieiieiiiieeeeeciiee s e ecttre e e eetee e e eenteeeesesreeeesessseeeesenseseseennssesesssnssenesaans 597
CSL OM SECUNITY USEI BXit.uuureiieeiiieeieeiirireeeeiiiteeeeeeitereesesssteeeseessesesssssssessssssssesssssssssssesssasssessannes 602
CSL OM statistics available through BPE statiStics USer eXit......ccoecveeievieerivieeiiiieeiiieesnieessieennne 605
CSL RM USET EXIT FOULINES. ..tiiiiiieeiiieeiteeeiiees it e sttt essiee e s sieeesbeeessaeeessseeesssbaessseesnssaesnssaesnssnesnnseesnnses 609
CSL RM client CONNECLION USEE EXit..iiicuiiieiieiiiiieeeiieiniteeeiteessiteessiteesseeessaeeessaeeessaeeessseeessneeesseas 609
CSL RM initialization/termination USEI @Xit.... ... e ceeeeeeieieeiieeeeeeeeeeeeeeee s e e s e e e e e e e ees 611
CSL RM statistics available through BPE statistics USer eXit......cceveieeriieeiniieeinieesnieessieesseeenn 613
BPE-based CSL SCI USEr ©XIT FOULINES.....uiieiieieiieiriieeeiteesiteesiteesteessieessseessbaeessaesssaessssaessseesns 618
CSL SCI Client CONNECLION USEE EXit.iiiicieirciieeriiieeriiieeeiiteesirieessiteesssaeessseeessseesssseesssseessssaessssaessnne 618
CSL SCI Initialization/termination USEr @Xit.......coooviiiiiiiiiiiiieeeeeeeee eeeaaaaaens 620
CSL SCI statistics available through BPE statiStiCs USer €Xit......covvvierrvieeieveeiniieeinieesnieessieesnnne 622

Part 3. CQS client exXit routines.....cccceeeiieieiiiinieieiietececeietecececrecececasecececsssececeesss 027

Chapter 10. Client COS EVENT ©XIt FOUTINE......iiiiiiciiieeecciiee e eciee e e e e e eeree e e eearre e e s e sree e e s e nsaeeeeeennrenas 629
Chapter 11. CQS Client Structure Event eXit rOULINE........ceiiecciiie et e e e e e 633
Chapter 12. CQS Client Structure INform eXit FOULINE.......ceiiecciieeiceciiee e e e e e 643

vii

viii

Part 4. CSL SCI IMSplex member exit routines.......ccccccceteienieirececieciceciecececeecees.. 645
Chapter 13. CSL SCI INPUL EXIt FOUTINE..ciiiiciiiee ettt ettt e e e e ae e e e e e abe e e e e erabe e e e e e nraaeeesennreneas 647

Chapter 14. CSL SCI Notify CLIent @Xit FOULINE....cccuiieeeecieeee ettt e ecvree e e ree e e e e eae e e e e anees 651

Part 5. IMS Connect eXit FOULINES....cccvceveiirierreriererereetereeceresesceseseasesessssesescssesesces 05D

Chapter 15. IMS Connect user message eXit FOULINES.....ccviiriieiiriieiriieenieesrieessieeesreessreesseeesseeesnane 657
User message exit routines HWSSMPLO and HWSSMPLL.......ccovviiiriieiniieeniieenee e sssee e see e 657
HWSSMPLO SAMPLE JCL..nutiiiieciiee ettt e ectte e e cteee e e e stee e e s e e tree e e e easaeeessnseeeessenssanesssnsssnasaennnes 659
HWSSMPLL SAMPLE JCL..eetiiiii ettt ettt e e e ctte e e e e sveee e e e s ttee e e s enraeesssnstseessanssenesssnsssnasasnnnes 659
IMS TM Resource Adapter user message exit routine (HWSJAVAD)......ccceeveereeecieereeeieeree e 659
HWSJAVAD SAMPLE JCLuunnniiiiieicciieeeeccieee e ettt e e s tte e e s e ettee e s e eaaeeeesenseeeeesanstaaessanssasessessssnessennnes 660
SOAP Gateway eXit routing (HWSSOAPL).......oii ittt eette e tee e teeeeste e e e ae e e ereeeesaeaesaeasasaeas 661
WSDL-to-PL/I segmentation APIs exit routine (DFSPWSHK).......ccceeeiervieriiecieeceesie e e 661
IBM WebSphere DataPower message exit routing (HWSDPWRL).......cccvvereeriieeneesieeseeseeesveeseeeens 664
IMS Connect OM Command exit routines (HWSCSLOO and HWSCSLOL)....ccceevueevveerveeiieeneeeieenen. 664
IMS Connect Port Message Edit @Xit FOULINE.......ciiciiiriieiiiiee ittt seree e ssree e sree e 666
IMS Connect communications with USer MeSSage EXitS.....ccivciiiriieiiiieirrieeeie e ssree e 668
INIT SUBDOULINE. .o tteieiteeetee ettt ree e st e st e e st ee e s abe e sabe e s sbaessabaesnnseesnnsaesnssaessasens 669
READ SUDTOULINE. .ttiiiiieiciee sttt sttt see e st e st essateessateessteessbee s sseessseesssseesnnseesnnseesnnseesnn 671
b IS0 o] o 10 £ 1= TP 674
TERM SUDTOULINE .. tteieitee ettt sttt sttt e st e s st e s s bt e s sbee s sbeeesabeeesabeeesasaessasaessssaesnnses 676
EXER SUDTOULING. ..ciitieiiiieieiieeeite ettt ettt stt e stee s sbe e e sbae e sbae e sabaessasaesssaeesasaeessnesssanssnn 677
Macros that support IMS Connect USEr MESSAZE EXItS....cccviiiiieiiiieeiiieeiiiee e e seeeeseeesreeesaeeesanes 678
Chapter 16. IMS Connect function-specific eXit roOULINES........cceivcciieeieciieiee e 681
IMS Connect User Initialization exit routine (HWSUINIT)....cccoeeoiiircieeieenieeeeseeeieeseee e evee e eeeas 681
HWSUINIT SAMPLE JCLiuiiiiiiiiiiieciiiee e eettee e eecttee e e eettee e s e ettt e e e s enbeeeeeenbsaeesesnssenesseassenessssnssesessanns 682
IMS Connect DB Routing user exit routine (HWSROUTO)......ccceevueiieereeeieenieeieeseeeeeeseeeseeesvee e 683
IMS Connect DB security user exit routine (HWSAUTHO)........cccooieeeiieeecieeeee ettt e 685
Using the IMS Connect DB security USEr eXit rOUTINE......ccocvueiieieriiieeriieesciee e ssneessieeesiee e 688
IMS Connect sample OTMA User Data Formatting exit routine (HWSYDRUO).......cccceeveercverireennenns 688
HWSYDRUO SAMPLE JCLuutiiiiiiiiee ettt ettt ttte e e ttee e s e e tree e s e s nbee e e s enbeeee s e nraaeesennnaanessensenens 690
z/OS TCP/IP IMS Listener security exit (IMSLSECX).....cciciiieeiieeecie ettt ettt et et tee e 690
IMS Connect Event Recorder exit routing (HWSTECLO)......ccovceeriirieenie e cie e eve e 691
Modifying the HWSTECLO USEE ©Xit..cccciiiriiiiiiieiniiieieieeesiee st esssieessveessteesseeesseeesseaessaeesnaeeas 694
Y= A V4 1= TSP 695
EVENT FECOIA fOMMATS..ci ittt e sete e s eaee e sbee e seaee e sebteesseeesneeesaseaesan 702
Control blocks and DSECTS for eVent reCOrdiNg........ccucveereierieieriiieeiiieenereeseieesseeessveeessneeesane 756
Terminating HWSTECLO.....cocciiiiieiiiieeeite ettt e s st e st e s sree s sbe e s sbaeesabaessaseessnsaessnsasesnsansns 767
IMS Connect Password Change exit routine (HWSPWCHO)........cccvierieiiienieceeree e ssvee e 767

Part 6. REXX SPOC eXit roUtINe....ccctirieieririererereerererrerereeceseseecesesessesessesesescesesesee 109

Chapter 17. CSLULXDO USEE EXit..ciiccciuieeieeiiieeeeeiiiiieeeeeiieeeseeesteessessssessssessessssssssssssesesssesesssssssssssssssnees 771

Part 7. TSO SPOC USer eXit FOULINES...cccvevirieiereererereererereerererseserensesessscesesescesesceses 171D

Chapter 18. EXITPGM USEI EXit.uciiicciiieiieiiiieeeeeiitieeeeectieeeeesvteeessssteeessesssesessesssssesssesssesessssnsssesssssssessennn 777
Chapter 19. EXITCMD USEI EXIT....uuiiieiiiiiiieeiecitieeeeeeiieeeeesireeessesteeeesessseeesesasseesssssnssessssssssesessenssssesssnnnes 779
Chapter 20. Variables in the ISPF shared POOL........cuiiiiiei ettt e e e e 781

Chapter 21. REXX program example using the EXITCMD exit rOUtiNe......cccevvvieeiriiieenriieenieeenieeeseeeenane 783

1 0 4o - TR | - 12
Programming interface iNfOrmMation. ... e s e saees 786
TrAAEMAIKS .. vt eiitee ettt ettt ettt sttt e et e e sttt e sbt e e s bt e e sbeeesabaeesbeeessteesbaeesasaesssaeesaseeesasaeesaseeesnseeesnn 786
Terms and conditions for product doCUMENTAtION........uiiii it ree e 787
IBM ONliNg Privacy Stat@mMENt....cc i eiiee e ceiieee et ectte e e cttee e e e e tee e e e e ette e e s s eateee e s ntaaeesesnsaneeeennnsenansan 787

=11 FT0 Y= - ¥] 1|7 -

L =) SR o & |

About this information

These topics provide reference information for the exit routines that you can use to customize IMS
database, system, transaction management, IMSplex, Base Primitive Environment (BPE), Common Queue
Server (CQS), and IMS Connect environments.

This information is available in IBM® Documentation.

Prerequisite knowledge

Before using this book, you should have knowledge of either IMS Database Manager (DB) or IMS
Transaction Manager (TM), including the access methods used by IMS. You should also understand basic
z/0S® and IMS concepts, your installation's IMS system, and have general knowledge of the tasks involved
in project planning.

To learn about z/0S, see z/0S Basic Skills. For more resources, see IBM Z Education and Training.

To learn about IMS, see the IBM Press publication An Introduction to IMS, the resources listed for IBM
Information Management System, and the variety of options available in IBM Training.

How new and changed information is identified

For most IMS library PDF publications, information that is added or changed after the PDF publication is
first published is denoted by a character (revision marker) in the left margin. The Program Directory and
Licensed Program Specifications do not include revision markers.

Revision markers follow these general conventions:

« Only technical changes are marked; style and grammatical changes are not marked.

« If part of an element, such as a paragraph, syntax diagram, list item, task step, or figure is changed,
the entire element is marked with revision markers, even though only part of the element might have
changed.

« If a topicis changed by more than 50%, the entire topic is marked with revision markers (so it might
seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the information because deleted
text and graphics cannot be marked with revision markers.

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:

« Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following conventions are used:

— The >>--- symbol indicates the beginning of a syntax diagram.
— The ---> symbol indicates that the syntax diagram is continued on the next line.
— The >--- symbol indicates that a syntax diagram is continued from the previous line.
— The --->< symbol indicates the end of a syntax diagram.
« Required items appear on the horizontal line (the main path).

»— required_item —»<

« Optional items appear below the main path.

© Copyright IBM Corp. 1974, 2024 xi

https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/zos-basic-skills
https://www.ibm.com/z/education
https://www.ibm.com/products/ims
https://www.ibm.com/products/ims
https://www.ibm.com/training/search?query=ims

»— required_item >4
L optional_item —J

If an optional item appears above the main path, that item has no effect on the execution of the syntax
element and is used only for readability.

J_ optional_item T

»— required_item >4

« If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.
»— required_item T required_choicel j—N
required_choice2
If choosing one of the items is optional, the entire stack appears below the main path.
»— required_item >4
toptional_choicel j
optional_choice2

If one of the items is the default, it appears above the main path, and the remaining choices are shown
below.

J_ default_choice T
optional_choice j

optional_choice

»— required_item

1]

« An arrow returning to the left, above the main line, indicates an item that can be repeated.

<
<

),.ﬁ

»— required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

<
€

),.ﬁ

»— required_item repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.

- Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the
main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

»— required_item fragment-name

fragment-name

»— required_item >4
L optional_item —J

« InIMS, a b symbol indicates one blank position.

xii About this information

« Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled
exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

« Separate keywords and parameters by at least one space if no intervening punctuation is shown in the
diagram.

« Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the
diagram.

« Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS 15.5

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products, including IMS 15.5. These
features support:

« Keyboard-only operation.
« Interfaces that are commonly used by screen readers and screen maghnifiers.
« Customization of display attributes such as color, contrast, and font size.

Keyboard navigation
You can access IMS 15.5 ISPF panel functions by using a keyboard or keyboard shortcut keys.

For information about navigating the IMS 15.5 ISPF panels using TSO/E or ISPF, refer to the z/0S TSO/E
Primer, the z/0S TSO/E User's Guide, and the z/OS ISPF User's Guide Volume 1. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for IMS 15.5 is available in IBM Documentation.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more information about the
commitment that IBM has to accessibility.

How to send your comments

About this task

Your feedback is important in helping us provide the most accurate and highest quality information. If you
have any comments about this or any other IMS information, you can take one of the following actions:

Procedure

« Submit a comment by using the DISQUS commenting feature at the bottom of any IBM Documentation
topic.

« Send an email to imspubs@us.ibm.com. Be sure to include the book title.
« Click the Contact Us tab at the bottom of any IBM Documentation topic.

About this information xiii

http://www.ibm.com/able
https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/ims

What to do next

To help us respond quickly and accurately, please include as much information as you can about the

content you are commenting on, where we can find it, and what your suggestions for improvement might
be.

xiv IMS : Exit Routines

Part 1. IMS control region exit routines

Use these topics to design and write user-supplied modules for exit routines that are supported by IMS
interfaces and callable services.

© Copyright IBM Corp. 1974, 2024

2 IMS : Exit Routines

Chapter 1. Guidelines for writing IMS exit routines

Use the guidelines in this information to write IMS exit routines, enable IMS exit routines to perform
functions with callable services, and reference all callable service return and reason codes.

Introduction to IMS exit routines

Exit routines that customize IMS must adhere to specific guidelines. Use these guidelines when writing
an IMS exit routine, when using the callable services that IMS provides for these exit routines, and when
analyzing the callable service return and reason codes.

What you can customize
Using IMS-supplied exit routines, you can customize IMS to:

« Edit messages

» Check security

« Edit transaction code input, message switching input, and physical terminal input and output
« Perform additional clean-up

« Initialize dependent regions

« Control the number of buffers the RECON data sets use

- Keep track of segments that have been updated

You can write or include additional routines to customize your IMS system.

Many sample exit routines with default settings are provided in the IMS.SDFSSMPL and IMS.ADFSSMPL
libraries.

Related Reading: For information on how to prevent your exit routines from impacting z/OS system
integrity, see z/0S MVS Programming: Authorized Assembler Services Guide.

You can replace a default exit routine that does not meet your needs by writing one of your own. If you
use IMS macros in your exit routine, you must reassemble the routine with the current release level macro
library.

Exit routine naming conventions

Each routine name should adhere to naming conventions, including both standard z/OS conventions, and
conventions that are specific to the routine.

Using standard z/OS conventions, each routine can have any name up to 8 characters in length. Be sure
that this name is unique and that it does not conflict with the existing members of the data set into which
you place the routine. Because most IMS-supplied routines begin with the prefix "DFS", "DBF", "DSP",
"DXR", "BPE"," CQS", or "CSL", do not choose a name that begins with these letters, unless the specific
routine requires it. Also, specify one entry point for the routine.

Naming requirements or exceptions that are specific to an exit routine are noted in the "Naming the
Routine" topic of each exit routine section.

Changeable interfaces and control blocks

The interfaces that IMS supplies for use by the exit routines, including the ISWITCH macro, might change
in future releases of IMS. IMS control blocks might also change. Therefore, if you write an exit routine that
uses these services or control blocks, you might need to change or reassemble the routine accordingly
when you migrate to a new release of IMS.

This topic contains Diagnosis, Modification, and Tuning information.

© Copyright IBM Corp. 1974, 2024 3

These control blocks include:

DMB
Data management block

PST
Partition specification table

SCD
Systems content directory

VTCB
VTAM® terminal control block

Refreshable exit routine types

For certain types of exit routines, you can designate them as a refreshable exit routine type, which also
allows you to call multiple exit routines of that type at the same exit point. These exit routines can be
used with the REFRESH USEREXIT command to obtain a new copy of an exit routine without bringing
down and restarting IMS.

You can define exit routines for the exit routine types in the EXITDEF parameter in the USER_EXITS
section of the DFSDF xxx member. The QRY USEREXIT command is used to query information about the
routines for the user exit types, and the REFRESH USEREXIT command is used to dynamically refresh the
exit routine types. There are no name restrictions for an exit routine that is associated with a refreshable
exit routine type.

If an exit is defined in IMS with an EXITDEF statement and as a named module in the STEPLIB
concatenation, IMS loads and uses the exit defined in the EXITDEF statement and ignores the module

in the STEPLIB concatenation. For example, if the DFSDFxxx member has a USER_EXITS section with
EXITDEF=(TYPE=PPUE,EXITS=(DFSPPEX0)) and DFSPPUEQ is in a library in the STEPLIB concatenation,
IMS loads and uses DFSPPEXO0 as the PPUE user exit. DFSPPUEQ in the STEPLIB concatenation is ignored.

If an exit routine type is not designated as refreshable, you can call only one exit routine of that type and
typically the name of the exit routine is designated by IMS.

If an exit routine type is defined as refreshable, multiple exit routines of the same type can be

called in sequence. However, any one of the exit routines in the sequence can bypass the remaining
subsequent exit routines and return control to the IMS system by setting the SXPLCNXT exit parameter to
SXPL_CALLNXTN.

IMS supports the following exit routine types:

Build Security Environment User Exit (BSEX)

IMS CQS Event user exit (ICQSEVNT)

IMS CQS Structure Event user exit (ICQSSTEV)

IMS Monitor user exit (IMSMON)
Initialization/Termination user exit (INITTERM)

Log Edit User Exit (LOGEDIT)

Logger User Exit (LOGWRT)

Non-Discardable Messages User Exit (NDMX)

OTMA Input/Output Edit user exit (OTMAIOED)
OTMA Destination Resolution user exit (OTMAYPRX)
OTMA Resume TPIPE Security user exit (OTMARTUX)
Partner Product user exit (PPUE)

Program Creation user exit (PGMCREAT)

Resource Access Security user exit (RASE)

Restart user exit (RESTART)

4 IMS : Exit Routines

« Type-2 Automated Operator User Exit (AOIE)

Related reference
USER_EXITS section of the DFSDFxxx member (System Definition)
REFRESH USEREXIT command (Commands)

“IMS standard user exit parameter list” on page 5
Many of the IMS user exit routines are called with a standard interface, which allows the exit routines to
access IMS control blocks with callable services.

IMS standard user exit parameter list

Many of the IMS user exit routines are called with a standard interface, which allows the exit routines to
access IMS control blocks with callable services.

This interface creates a clearly differentiated programming interface (CDPI) between IMS and the exit
routine. Part of the interface consists of a standard user exit parameter list. The list contains information
such as a pointer to a version number and a pointer to a function-specific parameter list. All standard
user exit parameter lists that have the same version number will contain the same parameters. If a new
parameter is added, it is added to the end of the parameter list and the version number is increased by
one.

There are currently two active versions of the IMS standard user exit parameter list: version 1 and the
current version. The Version 6 standard exit parameter list is the current version. In general, IMS exit
routines that do not use the Version 1 standard exit parameter list use the Version 6 standard exit
parameter list. Refer to the information for each individual exit routine.

Version 1 standard exit parameter list

The version 1 parameter list contains only pointers to the version number and the function-specific
parameter list. The following table shows the content of the Version 1 standard exit parameter list. When
the user exit routine is called, IMS passes it the address of this list in register 1.

Table 1. Version 1 standard exit parameter list (mapped by DFSSXPL)

Field Offset Length Description

SXPL X'00' N/A DSECT label for the IMS standard user exit parameter
list

SXPLVER X'00! X'04' Address of fullword containing version number of
standard exit parameter list

SXPLATOK X'o4' X'04' Reserved

SXPLAWRK X'08' X'04' Reserved

SXPLFSPL X'0C! X'04' Address of function-specific parameter list

SXPLINTX X'10' X'o4' Reserved

SXPLASCD X'14' X'o4' Reserved

The following user exit routines use the Version 1 parameter list:

« “Command Authorization exit routine (DFSCCMDO0)” on page 321

« “Fast Path Input Edit/Routing exit routine (DBFHAGUOQ)” on page 156
« “Greeting Messages exit routine (DFSGMSGO0)” on page 178

« “Initialization exit routine (DFSINTX0)” on page 183

» “Logoff exit routine (DFSLGFX0)” on page 196

« “Logon exit routine (DFSLGNXO0)” on page 199

« “Destination Creation exit routine (DFSINSX0)” on page 147

Chapter 1. Guidelines for writing IMS exit routines 5

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.sdg/ims_dfsdfxxx_proclib_user_exits.htm#ims_dfsdfxxx_proclib_user_exits
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.cr/imscmds/ims_refreshuserexit_ims.htm#ims_cr2refreshuserexit

« “Signoff exit routine (DFSSGFX0)” on page 279
« “Signon exit routine (DFSSGNX0)” on page 282

Version 6 standard exit parameter list

This version is the current version of the parameter list. The Version 6 standard exit parameter list
contains additional fields beyond those in version 1 of the parameter list. The following table shows the
layout of the parameter list. When a user exit routine is called, IMS passes the address of this parameter
list to the exit routine module in register 1.

Table 2. Version 6 standard exit parameter list (mapped by DFSSXPL)

Field Offset Length Description
SXPL X'00' N/A DSECT label for the IMS standard user exit parameter list
SXPLVER X'00! X'04' Address of fullword containing version number of

standard exit parameter list

SXPLATOK X'04' X'04' 0 or the address of a fullword containing the callable
services token for this instance of the routine

SXPLAWRK X'08' X'04' Pointer to a 512-byte work area. This area is intended as
working storage for a user exit routine. The storage is not
initialized, and may contain residual data. The contents
of the storage are not guaranteed to be preserved
between user exit calls. If a work area that is preserved
between calls is required, use the storage pointed to by

SXPLASWA.
SXPLFSPL X'0C! X'04' Address of the function-specific parameter list
SXPLINTX X'10' X'04' Address of the user data table loaded by DFSINTXO

at IMS initialization time. This field is valid only in
IMS environments where DFSINTXO is called. It will be
X'80000000' in any other environment.

SXPLASCD X'14' X'04' Address of the IMS SCD

6 IMS : Exit Routines

Table 2. Version 6 standard exit parameter list (mapped by DFSSXPL) (continued)

Field

Offset

Length

Description

SXPLASWA

X'18'

X'04'

Address of a 256—byte static work area. Each exit routine
is assigned its own static work area and is available for
the exit routine to store data that is preserved from call to
call. The static work area is cleared before the first time
the exit routine is called.

Each exit routine is assigned a separate static work area
that is preserved between calls to that exit routine. This
work area is available for all user exits that use this
version of the standard exit parameter list, regardless of
whether the exit is defined with the EXITDEF parameter
in the USER_EXITS section of the DFSDFxxx member of
the IMS.PROCLIB data set.

If your exit routine can be called concurrently under
different ITASKs, you must consider the results of sharing
a single static work area in the design of your exit routine.

If an exit routine is replaced with the REFRESH
USEREXIT command, the same static work area is

passed to the new version of the exit routine. If an exit
routine is deleted with the command, the static work area
is also deleted. If a new exit routine is added with the
command, a new static work area is allocated.

The same static work area is shared by the old and

new versions of an exit routine until the old exit is
deleted. This must be handled by your exit routine in the
same way as the multiple concurrent executions under
different ITASKs. SXPL_F1SWASHR is set when your exit
is called while the static work area is shared. When the
old exit routine is deleted, SXPL_F1WASHR is no longer
set.

SXPLIMSR

X'1C'

X'04'

Address of the version of IMS that is calling the exit. The
4-byte version data is stored in the following format:

0000vYmm

v
IMS version (SSCDIMSR)

mm
IMS mod (SSCDIMSM)

SXPLIMID

X'20'

X'04'

Address of the IMS ID. Standalone invocation of the
Image Copy Utility and Change Accumulation Utility set
address of the job name.

SXPLRSEN

X'24'

X'o4'

Address of the 8 character Recoverability Service Name
(RSENAME). This name is set using the RSENAME startup
parameter in the DFSHSBxx member. If the control region
is not XRF capable or DBCTL warm standby capable, this
field is blank.

Chapter 1. Guidelines for writing IMS exit routines 7

Table 2. Version 6 standard exit parameter list (mapped by DFSSXPL) (continued)

Field Offset Length Description

SXPLCNXT X'28’ X'04’ Address of a flag byte in storage. The flag indicates if the
next exit routine in the definition list will be called after
this exit routine releases control.

When an exit type is defined as refreshable, multiple exit
routines of the same type can be called in sequence. By
setting this flag to SXPL_CALLNXTN, an exit routine in the
sequence can return control to the IMS system without
calling any subsequently defined exit routine.

SXPL_CALLNXTN
The next exit routine will not be called.

SXPL_CALLNXTY
The next exit routine will be called.

SXPLFLGA x2c’ xXo4’ Address of a full word in storage that contains flags for
the user exit.

SXPL_F1ENHSRV
The exit is called with the enhanced callable services,
including the ability to call multiple exit routines of
the same user exit type.

SXPL_F1SWARFR
Do not use this flag. Instead, use either
SXPL_F1RFRSHD, SXPL_F1SWASHR, or both.

SXPL_FA1RFRSHD
If this flag is set, the exit is refreshed. This flag is
set based on a flag in a control block that represents
the exit routine, and this flag is not reset until the
exit returns to IMS. If the user exit runs in parallel,
multiple calls to the user exit can be made with this
flag set before the control block flag is reset.

SXPL_F1SWASHR
If this flag is set, the static work area whose address
is contained in SXPLASWA is shared and can be
accessed by the old and new versions of the exit
because the old version might still be active. You
should consider this behavior when you use your user
exit if the two versions use different layouts for the
area. When the old exit routine is deleted, this flag
will no longer be set.

If an exit routine is written to use a parameter that was added in a later version, and the exit routine

can execute in an environment in which earlier versions of the parameter list could be received, the exit
routine should check the version of the parameter list it receives to ensure that the data is available to the
exit routine.

Related reference
“Initialization exit routine (DFSINTXO0)” on page 183

8 IMS : Exit Routines

Use the Initialization exit routine (DFSINTXO) to create two user data areas that can be used by some of
your installation's exit routines.

Using the ISWITCH macro

The ISWITCH macro changes execution from the dependent region TCB to the control or DL/I address
space. ISWITCH also exits cross-memory mode. If you executing an ISWITCH macro call, follow the
guidelines in this information.

ISWITCH must have addressability to the SCD and, for the following figure, to the PST. The address of the
SCD is obtained from the PSTSCDAD field in the PST.

For Fast Path exit routines, specify TO=CTL.
The following figure is an ISWITCH example:

ISWITCH example

ISWITCH TO=DLI,ECB=PSTDECB

SLR R1,R1 Get a zero

ST R1,PSTDECB Clean ECB after target memory post
LTR R15,R15 Successful?

BNZ ERR1 No

When a Fast Path exit routine issues an ISWITCH to the control region, it must issue a second ISWITCH
call specifying TO=DEP to return to the dependent region before returning to the caller of the exit routine.
This is done only in an exit routine that is entered from a Fast Path module.

The following is an example of the second ISWITCH call needed for Fast Path:

ISWITCH TO=DEP,ECB=PSTDECB

SLR R1,R1 Get a zero

ST R1,PSTDECB Clean ECB after target memory post
LTR R15,R15 Successful?

BNZ ERR1 No

Exit routines should not use ISWITCH TO=RET, because unpredictable results might occur. (ISWITCH
TO=RET could be used in previous IMS releases.) Ensure that all instances of ISWITCH TO=RET are
changed to ISWITCH TO=DEP.

Routine binding restrictions

If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

Most modules receive control and must return control in AMODE=31, and must be able to execute in
cross-memory and TASK modes.

Recommendations:

« RMODE=ANY is recommended.

- ALl TM exit routines can be entered simultaneously by multiple dispatchable tasks. Therefore, it is highly
recommended that all TM exit routines are coded as reentrant (RENT).

All routines receive control and must return control in 31-bit addressing mode (AMODE 31) and must be
able to execute in RMODE ANY and AMODE 31.

If you bind an exit routine as reentrant (RENT), it must be truly reentrant (for example, it cannot depend
on any information from a previous iteration and it cannot store into itself).

If you bind an exit routine as reusable (REUSE), it must be truly reusable (it cannot depend on any
information in itself from a previous iteration), but it can depend on information that it saves in the
specific block passed to it. If you bind a routine that is serially reusable, it must be used for a single
database only.

Chapter 1. Guidelines for writing IMS exit routines 9

If you bind an exit routine as neither RENT nor REUSE, it can store into itself and depend on the
information saved in the block that is passed to it.

If you bind an exit routine as reentrant, it is loaded in key 0 storage to automatically protect the exit
routine from being accidentally or intentionally modified.

Unless otherwise indicated for a particular exit, all IMS user exits called from the IMS Control, DLI, DBRC,
dependent (including DBCTL threads), and IMS batch regions should be bound in a PDS data set included
in the JOBLIB or STEPLIB DD concatenation. Exits in PDSEs are not supported.

Specific requirements and exceptions are noted in each topic. Refer to the topic on "Binding the Routine"
included in each exit routine section.

Writing IMS routines that access control blocks

Control blocks for databases, programs, transactions, and routing codes are not in contiguous storage.
This is true whether dynamic resource definition is enabled or not. If you have exit routines that depend
on these resources being in contiguous storage, you will have to change them.

These requirements apply specifically to:

- DMB directory entries (DDIR)
« PSB directory entries (PDIR)
« Routing code table entries (RCTE)

« Scheduler message blocks (SMB)
If your routine accesses IMS control blocks, you can find DSECTs for these blocks in the following macros:
Macro
DSECT
ISCD
System content directory (SCD)
DFSDDIR
DMB Directory entry (DDIR)
DFSPDIR
PSB Directory entry (PDIR)
DFSDMB
Data management block (DMB)
DFSPSB
Program specification block (PSB)
DBFESCD
Extended system content directory (ESCD)

DBFRCTE
Routing code table entry (RCTE)

IAPS
Scheduler message block (SMB)

Extended Terminal Option (ETO) exit routines

Unless otherwise stated, all non-LU 6.2 exit routines are available to terminals that are defined both
statically at system definition and dynamically by using the Extended Terminal Option (ETO) feature.

Some exit routines are loaded at initialization if ETO=Y. (If this is the case, it is noted in each in the topic
on Binding or including the routine.) Although these exit routines are loaded only if the ETO feature is
used, they are available for use by static and dynamic ACF/VTAM terminals.

Related Reading: For more information about ETO, see IMS Version 15.5 Communications and
Connections.

10 IMS: Exit Routines

APPC/IMS exit routines

Some exit routines support LU 6.2 devices and are affected by APPC/IMS.

The LU 6.2 Edit exit routine (DFSLUEEQ) is available only to LU 6.2 devices. The following exit routines also
support LU 6.2 devices:

Message Control Error exit routine (DFSCMUXO0)

Conversational Abnormal Termination exit routine (DFSCONEO)

« Transaction Authorization exit routine (DFSCTRNOQ)

Fast Path Routine for Input Edit/Routing exit routine (DBFHAGUO)
Command Authorization exit routine (DFSCCMDOQ)

TM and MSC Message Routing and Control User exit routine (DFSMSCEOQ)

No other exit routines support LU 6.2 devices or are affected by APPC/IMS.

Registers and save areas

IMS exit routines need to save registers in the save area pointed to by Register 13. This save area is
provided at entry. In general, the save area passed to the exit is in 31-bit storage. You should save and
restore registers in 31-bit mode.

There are two types of save areas that exit routines use to save registers:

- A prechained save area passed to the exit routine by IMS or the calling application
« Asingle save area used by exit routines that use the Version 5 standard user exit parameter list

Using the prechained save area

IMS or the application that calls the exit routine passes a prechained save area to the exit. The routine
must step forward to the next save area in the save area set before processing any data.

The save area address given to the exit routine has a prechained forward save area pointer at offset 8 and
a prechained backward pointer at offset 4. The exit routine can use the forward save area pointed to by
offset 8 but must not alter the first three words of the save area.

Before returning control to IMS, the routine must step back to the original save area and restore IMS
registers.

Using the single save area

When an exit routine uses the version 5 standard user exit parameter list, it does not receive a prechained
save area. Instead, the routine points to a single save area in register 13. The exit routine must use this
save area to save registers from IMS or the calling application.

If the exit routine calls other applications or routines, including IMS callable services, the routine must
provide an additional save area. The 512-byte dynamic work area passed to exit routines that use the
Version 6 standard exit parameter list can be used as one or more save areas.

Before returning control to IMS, the exit routine must restore the registers to IMS or the calling
application.

Related reference
“IMS standard user exit parameter list” on page 5

Chapter 1. Guidelines for writing IMS exit routines 11

Many of the IMS user exit routines are called with a standard interface, which allows the exit routines to
access IMS control blocks with callable services.

Cross-memory considerations

Restrictions exist which should be considered when writing an IMS exit routine that will perform while in
cross-memory mode.

Do not issue any SVC (except ABEND) or I/O request.

If the routine runs in the DL/I address space and you need to perform a function that cannot be done
in cross-memory mode, issue an ISWITCH TO=DLI to exit cross-memory. Because of the overhead in
performing a task switch from the dependent address space to the IMS control program, use ISWITCH
infrequently. ISWITCH TO=DLI is not valid for TM exit routines.

If you are not using the DL/I address space option, execution after the ISWITCH continues in the
control address space. With LSO=S, execution continues in the DL/I address space. TO=DLI on ISWITCH
performs the correct switching in all environments.

With LSO=S, DL/I exits cannot address data in the control address space.
Most terminal-related control blocks are not addressable from the DL/I address space.

Sometimes your exit might need to test to determine whether it is running in cross-memory mode before
making a particular function call. In IMS, when an exit is called in cross-memory mode, the primary
address space will always be different from the secondary address space. You can use the instructions
EPAR and ESAR to obtain the primary and secondary address space ASIDs and compare them. If they are
equal, the exit is not in cross-memory mode. If they are unequal, the exit is in cross-memory mode.

The following sample shows an example of checking for running in cross-memory mode. The code issues
a branch-enter WTO macro call when it is in cross-memory mode; it issues a normal SVC WTO when not in
cross-memory mode.

EPAR RO Get primariy ASID

ESAR R1 Get secondary ASID

CLR RO,R1 Primary = Secondary?

BNE BEWTO No, in XM mode, use BE WTO
WTO 'message’ Yes, use SVC WTO

B ENDWTO

BEWTO DS OH
WTO 'message ', LINKAGE=BRANCH
ENDWTO DS OH

Exit routine performance recommendations

Efficiency of exit routines is a prime concern for IMS performance. The amount and type of processing
that is done by exit routines can directly contribute to the total path length and time required to complete
a unit of work.

Most routines are called from the IMS control region and get control in key 7 supervisor state. Some
routines might be called from mainline processing code running under the IMS Control Region task. Other
units of work that must wait to run under a task currently in use by an exit routine can also be affected.
An abend in an exit routine that gets control in the IMS control region can cause the IMS control region to
abend.

Recommendations:

« Code user-written routines in ways that minimize path length and processing time as much as possible.

« Use services such as OS WAITs, SVCs, and I/O sparingly. When an IMS callable service exists, use it
rather than the z/OS equivalent. The IMS callable service is optimized to perform more efficiently in an
IMS subdispatching environment.

- Write IMS exit routines in assembly language rather than high-level languages. IMS does not support
exit routines running under Language Environment® for z/OS.

12 IMS: Exit Routines

IMS callable services

IMS provides IMS callable services for exit routines to provide the user of the exit routine with clearly

defined interfaces.

Types of callable services

IMS callable services may consist of services for storage, control blocks, and the automated operator

interface (AOI).

Storage services support the following functions:

- Get storage

« Free storage

e Load module

« Delete module

Control block services support the following functions:

« Find control block
« Scan control block

AOI services support the following functions:

« Insert message
« Enqueue message
« Cancel message

Exit routines eligible for callable services

An exit routine may use one or more of the three types of callable services: storage, control block, and
AOL. DFSAOEOQQ is the only exit routine that is eligible to use AOI callable services.

The following table shows the exit routines that are eligible for callable services and the types of callable
service that they can use. See the topic for each exit routine for more information on how it uses callable

services.

Table 3. Exit routines and associated callable services

Exit name or user exit

Callable services

type

Storage

Control block AOI

BSEX

X

DBFHAGUO

AOIE

DFSAQUEO

DFSCCMDO

DFSCMLR1

DFSCMPXO0

DFSCNTEO

DFSCONEO

DFSCSGNO

DFSCSMBO

X X| X| X| X| X]| X|X| X]| X

X X| X| X| X| X[X| X

Chapter 1. Guidelines for writing IMS exit routines 13

Table 3. Exit routines and associated callable services (continued)

. . Callable services
Exit name or user exit

type Storage Control block AOI

DFSCTRNO X X

DFSCTSEO

DFSCTTOO

X | X| X

DFSFEBJO

DFSGMSGO

DFSGPIXO0

DFSINSXO

DFSINTXO

DFSI7770

DFSLGFXO0

DFSLGNXO

DFSMEO00

DFSME127

DFSMSCEO

DFSO7770

DFSPIXTO

DFSQSPCO

DFSSGFX0

DFSSGNXO0

DFSSIMLO

DFSS7770

DFSYPRXO

DFSYIOEO

DFSYDRUO

DFSYRTUX

DFS29800

XX XXX XX X|X]| X X|X]|X|X]|X]|X|X| X|X|X] X|X

DFS36010

LOGWRT

NDMX

PGMCREAT

XX XX X| XX X|X]|X|X|X|IX|X]|X|IX]|X|X|X|X|X|X]|X|X|X]|X|X|X]|X| X<

PPUE

14 IMS: Exit Routines

Using callable services

You will need to initialize callable services for your IMS exit routine each time that your exit routine gets
control.

About this task

To use a callable service, do the following:

Procedure

1. Link your exit routine to the callable service interface module (DFSCSI00).

2. Initialize callable services for your exit routine (CALL DFSCSIIO) each time your exit routine gets
control.

3. Initialize the callable services parameter list.
4. Initialize the function-specific parameter list.
5. Invoke the callable service (CALL DFSCSIFO).

Results

Repeat steps 3 through 5 as many times as necessary while your exit routine has control.

Not all exit routines perform all five of the preceding steps. See the section called "Using IMS callable
services " in the description of the specific exit routine you are coding to see which steps apply.

Callable services

To use IMS callable services, an exit routine must invoke one of two IMS callable services entry points in
AMODE 31. The exit routine will receive a control block and a callable services parameter list.

The callable services interface module DFSCSI0OO0 contains two entry points that your exit routine can
invoke: DFSCSIIO and DFSCSIFO.

Entry point DFSCSIIO initializes callable services. To begin initialization, issue CALL DFSCSIIO with the
appropriate registers initialized. DFSCSIIO returns a callable services token and a parameter list address.
The callable services token must be passed to IMS when you invoke one of the callable services. The
parameter list address directs reentrant programs to a storage area in which to build parameter lists
needed to invoke callable services.

Entry point DFSCSIFO invokes one of the callable services. To invoke a callable service, issue CALL
DFSCSIFO with the appropriate information specified. You must tell IMS which service to invoke. You

do this by initializing two parameter lists. The first list, the callable services parameter list, contains
information needed by callable services to route the request to the appropriate service. The second list,
the function-specific parameter list, defines which service is to be used and provides information required
by that service.

When your exit routine receives control back from callable services, register 15 contains a return code
indicating whether the call was successful. The callable services parameter list contains a return code and
a reason code if the call did not complete successfully. The function-specific parameter list can contain
data from a specific callable service.

Exit routine assembler macros

You can use assembler macros to generate parameter list DSECTs for your exit routine.

To generate parameter list DSECTSs, you can use the following assembler macros in your exit routine.

Macro
Description

Chapter 1. Guidelines for writing IMS exit routines 15

DFSCSIPL
Generates the DFSCSPL, DFSCSTRG, DFSCCBLK, and DFSAOQI parameter list DSECTs for an exit
routine.

DFSCSPL
Generates the callable services parameter list DSECT (CSPARMS).

DFSCSTRG
Generates the storage services function-specific parameter list DSECT (CSSTRG).

DFSCCBLK
Generates the control block services function-specific parameter list DSECT (CSBLK).

DFSAOI
Generates the AOI services function-specific parameter list DSECT (DFSAOI).

DFSLOGP
Generates the function-specific parameter list for the IMS Monitor (IMSMON) exit in DSECT
MONEXPL.

Links with your exit routine and DFSCSI00

To use callable services, your exit routine must be linked with the callable service interface module,
DFSCSIO0O0. You need to manually link this module to your exit routine.

Manual linking

To use callable services, you must manually link these exit routines to DFSCSIOO0.

Exit routines or user exit types to be manually Exit routines or user exit types to be manually

linked to DFSCSI00 linked to DFSCSIO0
DFSAOEQO DFSINTXO
AOIE DFSLGFXO0
BSEX DFSLGNXO
DFSCCMDO DFSMSCEQ
DFSCSMBO NDMX
DFSCTSEO PPUE
DFSGMSGO DFSSGFX0
DFSGPIXO DFSSGNXO0
DFSINSXO LOGWRT
DFSCNTEO DFSFEBJO
DFSMEO00 DFSME127
DFSSIMLO

Typically, you must manually link DFSCSIOOQ if your exit routine is a stand-alone module (not linked as part
of another IMS load module). When you perform this binding, include an ENTRY bind control statement
that specifies the entry point of your exit routine. The statement ensures that your exit routine, and not
DFSCSIOO, receives control when IMS calls it.

16 IMS: Exit Routines

Initialization of IMS callable services (DFSCSIIO)

Some exit routines must initialize IMS callable services before using them. To initialize IMS callable
services, you can issue a call to entry point DFSCSIIO. DFSCSIIO returns a callable services token and a
parameter list address.

Exit routines that do not receive the IMS standard user exit parameter list (DFSSXLP) in register 1 on
entry, or that do receive DFSSXPL but with a zero value for field SXPLATOK, must initialize IMS callable
services.

Exit routines that receive DFSSXLP in register 1 with a non-zero value for field SXPLATOK do not need to
initialize callable services. These routines should use the callable services token referenced in SXPLATOK
for all calls to IMS callable services. A routine that receives a token can use the work area pointed to in
SXPLAWRK to get the callable services parameter list.

The callable services token is used to request a specific callable service through a subsequent call to
entry point DFSCSIFO.

The parameter list that is returned in register 1, contains the callable services token. You need to extract
the token and save it, so it does not get overlaid. Then the parameter list can be formatted for your
callable service request. The parameter list is large enough to contain the parameter lists that accompany
your request.

Communicating with IMS

IMS uses the entry registers, parameter list, and exit registers to communicate with your exit routine. The
contents of register O are not preserved on entry and exit.

The following two tables list the content of registers on entry and return to and from DFSCSIIO.

Content of registers on entry to DFSCSIIO

Register Content
1 ECB Address.

On entry, IMS gives the address of an ECB to each exit routine that can issue callable
service requests. The ECB address must be passed on the DFSCSIIO initialization call.
See the section for each exit routine to determine where to find the ECB address for that

exit routine.
13 Address of save area for use by DFSCSIIO.
14 Caller's return address.
15 DFSCSIIO entry point address.

Content of registers on return from DFSCSIIO

Register Content
1 Address of parameter list
Offset
Description
0

Callable services token, which is four bytes long.

Chapter 1. Guidelines for writing IMS exit routines 17

Register Content

15 Return code
Return code
Meaning
0
Request was successful.
4
Callable services are unavailable.
8
Callable services are unavailable. Initialization failed due to insufficient storage.
12
Callable services are unavailable. Initialization failed due to errors in IMS control
blocks.

Callable services parameter list

CSPARMS is the callable services parameter list required for all callable service requests. Callable
services use parameters in the list to route control from the module requesting the service to the service
routine that processes the request. The list is also used to pass return and reason codes from the service
to the exit routine.

Initialize the parameter list with the callable services token and the code of the callable service you want
to use (storage services, control block services, or AOI services). All other fields should be cleared. If the
exit routine issues multiple calls, you can save the callable services token in a register and restore it to
CSPLTOKN on subsequent calls.

Initialize the following fields:

Field Offset Length Description
CSPLTOKN 0 4 IMS callable services token
CSPLSERV 4 4 IMS callable service code. The values are as follows:
1
Storage services
2
Control block services
3

AOI services

Function-specific parameter list initialization

After specifying which service you want to use in the callable services parameter list, indicate which
function of the service you want to use by initializing the appropriate function-specific parameter list.
Related reference

“IMS Callable Storage Services” on page 20

CSSTRG is the function-specific parameter list used for IMS Callable Storage Service requests. It is
defined by the DFSCSTRG macro.

“IMS Callable Control Block Services requests” on page 23
CSCBLK is the function-specific parameter list used for IMS Callable Control Block Service requests. It is
defined by the DFSCCBLK macro.

“IMS Callable AOI Services” on page 29

18 IMS: Exit Routines

DFSCAOI is the function-specific parameter list used for IMS Callable AOI Service requests. The DFSCAOI

macro defines these requests.

IMS callable service (DFSCSIFO0) activation

IMS uses the entry registers, parameter lists, and exit

Communicating with IMS

To activate a callable service, issue CALL DFSCSIFO
function-specific parameter list).

registers to communicate with your exit routine.

(callable services parameter list,

The following tables list the content of registers on entry and exit to and from DFSCSIFO.

Table 4. Content of registers on entry to DFSCSIFO

Register

Content

1

Address of two-word parameter list built by CALL
macro.

Offset
Description
0
Callable services parameter list address

4
Function-specific parameter list address

13

Address of save area for use by DFSCSIFO

15

DFSCSIFO entry point address

Table 5. Content of registers on return to DFSCSIFO

Register

Content

15

Return code
Meaning

0
Request successful

4
Request unsuccessful

If the request is unsuccessful, refer to the return (CSPLRTRN) and reason code (CSPLRESN) fields in the
callable services parameter list described in the following table.

Table 6. Content of registers on return from DFSCSIFO

Field

Description

CSPLRTRN

Return code set with error codes defined in
DFSCSPL. For a list of these codes, refer to “Return
codes (CSPLRTRN)” on page 31.

Chapter 1. Guidelines for writing IMS exit routines 19

Table 6. Content of registers on return from DFSCSIFO (continued)

Field Description

CSPLRESN Reason code set with error codes defined in
DFSCSPL. For a complete description of the reason
codes, see one of the following sections:

Reason code

Reference

a4
See “Callable service interface reason codes
(CSPLRESN)” on page 31.

8

See “Function-specific parameter list reason
codes (CSPLRESN)” on page 32.

IMS Callable Storage Services

CSSTRG is the function-specific parameter list used for IMS Callable Storage Service requests. It is
defined by the DFSCSTRG macro.

The function-specific parameter list contains the information that storage services need to perform the
function you requested (get or free storage, load or delete a module). The function-specific parameter list
is also used to return data to the exit routine.

You must initialize the function-specific parameter list for storage services before calling DFSCSIFO to
activate storage services. All fields that are not used as input to DFSCSIFO should be cleared.

GET storage function

You can obtain user storage for any IMS exit routine that uses IMS callable services by initializing the GET
storage function in CSSTRG.

The storage can be obtained in private storage or CSA with either doubleword or page boundary
alignment. The storage can be requested above (31-bit) or below (24-bit) the 16 MB line.

To request the GET storage function, initialize the following fields in the function-specific parameter list

(CSSTRG):
Field Offset Length Description
CSSTFUNC 0 4 IMS storage service function code value:
1 = GET storage
CSGTLEN 4 4 Length of storage to obtain
CSGTSP 8 4 Storage subpool identifier values:
« 0 = private storage
» X'FFF' = CSA storage
CSGTLOC C 4 Storage location identifier values:
« 0 =31-bit storage
« 1 =24-bit storage
CSGTBNDY 10 4 Storage boundary identifier values:

» 0 = doubleword boundary
« 1 =page boundary

20 IMS: Exit Routines

The following field (in CSSTRG) is returned from the GET storage function:

Field Offset Length Description

CSGTADDR 14 4 Storage address

FREE storage function

You can release user storage previously obtained by the GET storage service by using the FREE storage
function.

The requestor specifies the address of the storage service. The storage subpool (private or CSA) specified
on the FREE request must be the same value specified on the GET request.

To request the FREE storage function, initialize the following fields in the function-specific parameter list
(CSSTRG):

Field Offset Length Description

CSSTFUNC 0 4 IMS storage service function code value:
- 2 =FREE storage

CSFRSTAD 4 4 Address of storage to release
CSFRLEN 8 4 Length of storage to release
CSFRSP C 4 Storage subpool identifier values:
No data is returned » 0 = private storage

from the FREE - X'FFF' = CSA storage

storage service.

LOAD module function

You can load a module for any IMS exit routine that uses IMS callable services by initializing the LOAD
module function in CSSTRG.

The module can be loaded in private storage or CSA. The module can be loaded above (31-bit) or below
(24-bit) the 16 MB line. The name of the module must be specified. If the module was loaded previously
but you want a new copy of the module, you can request a load of a new copy.

The LOAD module function can be requested by callers running in cross memory mode. In this case, the
LOAD module function determines if the primary address space is either CTL or DLI/SAS, and ensures
that the call executes in the proper address space in non-cross memory mode. The LOAD module function
restores the cross memory environment before returning control to the caller.

There might be a noticeable performance impact for cross memory callers issuing the LOAD module
function, because this call requires that the environment be switched from cross memory mode to non-
cross memory mode and then restored. Use of the LOAD module function should be kept to a minimum
for mainline path exit routines.

To use the LOAD module function, initialize the following fields in the function-specific parameter list
(CSSTRG):

Field Offset Length Description

CSSTFUNC 0 4 IMS storage service function code value:
« 5=L0OAD module

CSLDNAME 4 8 Name of module to load

Chapter 1. Guidelines for writing IMS exit routines 21

Field Offset Length Description

CSLDSP C 4 Storage subpool identifier values:

» 0 = private storage
« X'FFF' = CSA storage

CSLDLOC 10 4 Module storage location identifier values:
« 0 =31-bit storage
» 1 =24-bit storage

CSLDUSE 14 4 Module reuse identifier values:

« 0 = use existing copy of module if found
» 1 =load a new copy of module

The following fields are returned from the LOAD module function:

Field Offset Length Description
CSLDMEP 18 4 Module entry point
CSLDMLEN 1C 4 Module length bit O is set to one when the module was

previously loaded

DELETE module function

You can use the DELETE module storage service to delete a module previously obtained by the LOAD
storage service.

The requester specifies either the module name or module address. If more than one copy of the module
was loaded, the address should be used instead of the name to ensure that the correct copy is deleted.
The module storage subpool (private or CSA) specified on the DELETE request must be the same value
specified on the LOAD request.

The DELETE module function can be requested by callers running in cross memory mode. In this case, the
DELETE module function determines if the primary address space is either CTL or DLI/SAS, and ensures
that the call executes in the proper address space in non-cross memory mode. The DELETE module
function restores the cross memory environment before returning control to the caller.

There might be a noticeable performance impact for cross memory callers issuing the DELETE module
function, because this call requires that the environment be switched from cross memory mode to
non-cross memory mode and then restored. Use of the DELETE module function should be kept to a
minimum for mainline path exit routines.

To request the DELETE module function, initialize the following fields in the function-specific parameter
list (CSSTRG):

Field Offset Length Description

CSSTFUNC 0 4 IMS storage service function code value:
6 = DELETE module

CSDLNAME 4 8 Name of module to delete. Either module name or module
address must be specified to delete a module. The unused
field should be cleared. If the module name is not
specified, this field should be cleared and CSDLEP must
be specified.

22 IMS: Exit Routines

Field Offset Length Description

CSDLEP C 4 Address of module to delete. If more than one copy of
the module was loaded, delete the module by specifying
the module entry point. This ensures that the correct copy
of the module is deleted. If both name and address are
specified, the module is deleted using the address. If the
address is not given, the name must be specified and all
copies will be deleted.

CSDLSP 10 4 Storage subpool identifier values:

0 = private storage
X'FFF' = CSA storage

No data is returned from the DELETE module function.

IMS Callable Control Block Services requests

CSCBLK is the function-specific parameter list used for IMS Callable Control Block Service requests. It is
defined by the DFSCCBLK macro.

The function-specific parameter list contains the information control block services need to perform the
function you requested (find or scan a control block). The function-specific parameter list is also used to
return data to the exit routine.

Restriction: Global terminal or user resource information is not available to user exit DFSLGNXO. Callable
services will only return local information for DFSLGNXO.

If an IMSplex is sharing terminal or user information in Resource Manager (RM), callable services
automatically and transparently return global resource information to the exit routine. However, if a
routine scans resources that are only local to the current IMS, it can specify the local option (by setting
CSFDFLG1). For resources that do not have global information such as transactions, the local option
results in the same information as the default.

You must initialize the function-specific parameter list for control block services before calling DFSCSIFO
to activate control block services. All fields that are not used as input to DFSCSIFO should be cleared.

FIND control block function

You can find a specific instance of a control block within any IMS exit routine that uses IMS callable
services by initializing the FIND control block function in the DFSCCBLK macro.

The search type identifies the type of control block to locate. A search type can include more than one
type of control block. A list of the search types is in the description of the CSFDTYPE field in the following
table. The control block name or identifier is used to find a specific instance of the control block.

Initialize the function-specific parameter list before calling DFSCSIFO to activate control block services.
All fields that are not used as input to DFSCSIFO should be cleared.

Initializing the function-specific parameter list for FIND

In all instances, you need to initialize the following three fields:

Field Offset Length Description

CSCBFUNC 0 1 IMS control block services function code value:
« 1 = FIND control block

Chapter 1. Guidelines for writing IMS exit routines 23

Field

Length Description

CSFDTYPE 4 Control block search type values:

1 =FIND CCB

2 =FIND CNT, or LNB

3 =FIND RCNT

4 = FIND CNT, LNB, or RCNT

5 =FIND SPQB

6 = FIND VTCB

7 = FIND CNT descriptor

8 = FIND LOGON descriptor

9 = FIND USER descriptor

10 = FIND transaction

11 = FIND LLB for MSC MSLINK

12 = FIND LCB for MSC MSPLINK
CSFDFLG1 1 Input Flag Byte

CSFDLOC1 EQU X'80'

Indicates that the FIND request is to return local
information only.

Depending on the type of block you want to find, you must initialize the following fields:

Block type to find

Field to initialize

CCB

Specify one of the first two fields, and clear the unused field. The LTERM
name field must always be specified.

CSFDEID EBCDIC CCB identifier
CSFDBID Binary CCB identifier
CSFDNAME = associated LTERM name

CNT or LNB

Use the LTERM name to locate a specific CNT or LNB.

CSFDNAME = LTERM name

RCNT

Use the LTERM name to locate a specific RCNT.

CSFDNAME = LTERM name

CNT, LNB, or RCNT

Use the LTERM name to locate a specific CNT, LNB, or RCNT.

CSFDNAME = LTERM name

SPOB Use the USER name to locate a specific SPQB.
CSFDNAME = USER name
VTCB Either the node name alone or the node and user name are used to locate

a specific VTCB. If the user name is not used on the request, clear the
unused field.

CSFDNODE = Node name
CSFDUSER = User name

24 IMS: Exit Routines

Block type to find Field to initialize

CNT, LOGON, or USER Specify the name of the descriptor you want to locate.

Descriptor

CSFDNAME = CNT, LOGON, or USER descriptor name

Transaction Specify the transaction code you want to find.

CSFDNAME = Transaction name

LLB Use the Link number or Link name of the MSLINK to locate a specific
instance of an LLB.

CSFDNAME = Logical Link name or Link number

If Link name, use an 8-character name.

If Link number, format must be 2 words. The first word is the binary link
number. The second word is zero. So Link 1 format would be:

CSFDNAME

00000001 000000

LCB CSFDNAME

Use the 8-character Physical link name

Output returned from FIND Control Block Services

Depending on the type of search specified, one of the following is returned in the CSFDBLKA field in the

function-specific parameter list:

Search type Output from service
FIND CCB CCB address

FIND CNT or LNB CNT or LNB address
FIND RCNT RCNT address

FIND CNT, LNB, or RCNT CNT, LNB, or RCNT address
FIND SPQB SPOB address

FIND VTCB CLB address

FIND CNT descriptor USRD address

FIND LOGON descriptor CLB address

FIND USER descriptor USRD address

FIND Transaction SMB address

FIND transaction also returns the PDIR address in field

CSFCBLK2.
FIND LLB LLB address
FIND LCB LCB address

Chapter 1. Guidelines for writing IMS exit routines 25

SCAN control block function
You can use the SCAN control block function to scan control blocks of a certain type.

The first time the SCAN function is activated, the current control block address should be 0. SCAN returns
the first control block that meets the search criteria. The SCAN function can be subsequently activated to
locate additional control blocks. Subsequent searches start where the previous scan left off.

On subsequent SCAN requests, the current block address is passed back to the service. The search starts
with the current control block to locate the next control block meeting the criteria. The blocks are not
retrieved in alphabetic sequence.

Subsections:

« “Qualifying the scan” on page 26

- “Initializing the function-specific parameter list for SCAN” on page 26

« “Output returned from SCAN Control Block Services” on page 28

Qualifying the scan

To further qualify the scan, a generic name or a name containing wild cards can be specified for CNT, LNB,
RCNT, SPQB, and VTCB control block types.

« A generic name consists of one or more characters of the name followed by an asterisk. Generic names
must be padded with blanks.

For example, assume valid names are DFSAAAAA, DFSZ7777, and DFSABBBB. Multiple scan requests
using the generic name 'DFSA*' can be used to obtain the control block addresses for DFSAAAAA and
DFSABBBB. In this case, DFSZZZZZ would not be returned to the requester.

« A wild card character is represented by the '%' character. One or more wild cards can replace characters
within the name when that position in the name can be any character.

For example, assume valid names are DFSAABBB, DFSZZBBB, and DFSABCDE. Multiple scan requests
using the name DFS%%BBB containing wild card characters in positions 4 and 5 would return control
block addresses for DFSAABBB and DFSZZBBB. DFSABCDE would not be returned to the requester.

You must initialize the function-specific parameter list before calling DFSCSIFO to activate control block
services. All fields that are not used as input to DFSCSIFO should be cleared.

Initializing the function-specific parameter list for SCAN

To request a SCAN and search type, you always need to initialize the first two fields as follows:

Field Offset Length Description

CSCBFUNC 0 4 IMS control block service function code value:
« 2 =SCAN control block

26 IMS: Exit Routines

Field

Offset Length Description

CSSCTYPE 4 Control block search type indicator values:
1 =SCAN CCB
2 =SCAN CNT or LNB
3 =SCAN RCNT
4 = SCAN CNT, LNB, or RCNT
5=SCAN SPQB
6 =SCAN VTCB
7 = not used
8 = SCAN LOGON descriptor
9 = SCAN USER descriptor
10 = not used
SCAN LLB
SCAN LCB

CSSCFLG1 1 CSSCLOC1 EQU X'80"

Indicates that the SCAN request is to return local
information only

Depending on the type of search you want, you might also need to initialize one or more of the following
fields in the function-specific parameter list.

To scan

Initialize

CcCB

Specify whether you want to scan for the first CCB or to start the scan at the
current CCB.

CSSCCBLK = Current CCB address or zero

CNT or LNB

Specify whether you want to scan for the first CNT or LNB or to start the scan
at the current CNT or LNB. Use the LTERM name to narrow the scope of the
scan. If the LTERM name is not used, clear the field.

CSSCCBLK = Current CNT or LNB address or zero
CSSCNAME = LTERM name

RCNT

Specify whether you want to scan for the first RCNT or to start the scan at the
current RCNT. Use the LTERM name to narrow the output of the scan. If the
LTERM name is not used, clear the field.

CSSCCBLK
CSSCNAME

Current RCNT address or zero
LTERM name

CNT, LNB, or RCNT

Specify whether you want to scan for the first CNT, LNB, or RCNT, or to start
the scan at the current CNT, LNB, or RCNT. Use the LTERM name to narrow the
output of the scan. If the LTERM name is not used, clear the field.

CSSCCBLK = Current CNT, LNB, or RCNT address,
or zero

CSSCNAME LTERM name

SPQB

Specify whether you want to scan for the first SPQB or to start the scan at the
current SPQB. Specify the USER name to narrow the output of the scan. If the
USER name is not specified, clear the field.

CSSCCBLK
CSSCNAME

Current SPQB address or zero
USER name

Chapter 1. Guidelines for writing IMS exit routines 27

To scan Initialize

VTCB Specify whether you want to scan for the first VTCB or to start the scan at
the current CLB. Specify either the NODE name alone, or the NODE and USER
name to narrow the output of the scan. If the name fields are not specified,
clear the fields.

CSSCCBLK = Current CLB address or zero
CSSCNODE = NODE name
CSSCUSER = USER name
LOGON Descriptor Specify whether you want to scan for the first LOGON descriptor or to start the

scan at the current LOGON descriptor.

CSSCCBLK = Current LOGON descriptor address
or zero

USER Descriptor Specify whether you want to scan for the first USER descriptor or to start the
scan at the current USRD.

CSSCCBLK = Current USRD address or zero

LLB Specify whether you want to scan the first MSLINK or start the scan at the
current MSLINK.

CSSCCBLK = Current LLB address or zero

LCB Specify whether you want to scan the first MSPLINK or start the scan at the
current MSPLINK.

CSSCCBLK = Current LCB address or zero

Output returned from SCAN Control Block Services

Depending on the type of scan specified, one of the following is returned in the CSSCNBLK field in the
function-specific parameter list:

Search type Output from service
SCAN CCB Next CCB address

SCAN CNT or LNB Next CNT or LNB address
SCAN RCNT Next RCNT address

SCAN CNT, LNB, or RCNT Next CNT, LNB, or RCNT address
SCAN SPOB Next SPOB address

SCAN VTCB Next CLB address

SCAN LOGON descriptor CLB address of next LGND
SCAN USER descriptor Next USRD address

SCAN LLB Next LLB address

SCAN LCB Next LCB address

28 IMS: Exit Routines

IMS Callable AOI Services

DFSCAOI is the function-specific parameter list used for IMS Callable AOI Service requests. The DFSCAOI
macro defines these requests.

The function-specific parameter list contains the information that AOI services needs to perform the
function you requested (insert, enqueue, or cancel a message). The function-specific parameter list is also
used to return data to your exit routine.

You must initialize this function-specific parameter list before calling DFSCSIFO to activate AOI callable
services. All fields that are not used as input to DFSCSIFO should be cleared.

INSERT function

The INSERT function inserts the first, or a subsequent, message segment into a message buffer. The
message segments are not available to the AO application until an enqueue is issued specifying an AOI
token.

To request the INSERT function, initialize the following fields in the function-specific parameter list:

Field Offset Length Description

CAOIFUNC 0 4 IMS AOI service function code value:
1 = INSERT message segment

CAOIDMTK 4 4 Directed message token
CAINMSEG 8 4 Address of message segment
ENQUEUE function

The ENQUEUE function inserts the last or only message segment into the message buffer, enqueues this
message segment to the AOI token the requester has specified, and then makes the entire message
available to the AO application.

If ENQUEUE is requested with a message segment address of 0, all previously inserted message
segments are made available to the AO application.

To request the ENQUEUE function, initialize the following fields in the function-specific parameter list

(DFSCAOQI):
Field Offset Length Description
CAOIFUNC 0 4 IMS AOI service function code value:
2 = ENQUEUE segment to AOI token
CAOIDMTK 4 4 Directed message token
CAENMSEG 8 4 Address of message buffer
CAENTCNT 12 4 Number of AOI token names in the token list addressed by

the next word in this parameter list

Chapter 1. Guidelines for writing IMS exit routines 29

Field Offset Length Description

CAENTLST 16 4 Address of a token list. Each 12-byte entry in the list
contains the following:

Offset
Description

+0
The 8-byte alphanumeric AOI token name to which the
message is to be enqueued

+8
The 4-byte code from the ENQUEUE function indicating
whether the message was successfully enqueued to the
AOI token. Possible codes are:

Code
Meaning

0
Enqueue to AOI token was successful.

1
Enqueue was unsuccessful. AOI token name was
blanks.

2
Enqueue was unsuccessful. AOI token name
contained invalid characters.

3
Enqueue was unsuccessful. Enqueue could not get
AOQIP storage.

4

Enqueue was unsuccessful. An internal latch error
occurred.

CANCEL function

The CANCEL function cancels messages that have been inserted into the message buffer but not yet
enqueued to the AOI token. Canceled messages are not made available to the application program.

To request the CANCEL function, initialize the following fields:

Field Offset Length Description

CAOIFUNC 0 4 IMS AOI service function code value:
3 = CANCEL message segments

CAOIDMTK 4 4 Directed message token

Callable services return and reason codes

IMS callable services provides return and reason codes that describe why a callable service request did
not complete successfully.

Callable services return and reason codes provide reasons for why function-specific parameter list,
interface, and service processing errors occurred. These codes are in hexadecimal format.

30 IMS : Exit Routines

Return codes (CSPLRTRN)
Return codes in field CSPLRTPN indicate why the request did not complete successfully.

Return codes are in field CSPLRTPN in the callable services parameter list. Following are the return codes
indicating why the request did not complete successfully:

Return code

Meaning

X'04' A callable service interface error occurred. The service request was not processed.

X'08' Function-specific parameter list error. While processing the callable service request, an
error occurred in the function-specific parameter list.

X'20' Service processing error. An error occurred while processing the callable service

request. The error could be a user error or an internal system error.

Callable service interface reason codes (CSPLRESN)

When the return code in the field CSPLRTRN is X'04', callable service interface reason codes in the field
CSPLRESN explain why a callable service interface error occurred.

Following are the callable service interface reason codes:

Reason code

Meaning

X'04'

Callable services token is 0. The field CSPLTOKN in the callable services parameter list
DFSCSPL is 0.

X'08'

Callable services token is invalid. The field CSPLTOKN in the callable services parameter
list DFSCSPL does not contain a valid callable services token.

X'0C'

Service code is not specified. The field CSPLSERV in the callable services parameter list
DFSCSPL is 0.

X'10'

Service code is invalid. The field CSPLSERV in the callable services parameter list
DFSCSPL does not contain a valid callable service code. The service code is too large.

X'14'

Service is not supported. The field CSPLSERV in the callable services parameter list
DFSCSPL contains a value for a callable service code that is not supported in the current
environment or is a reserved function.

X'20'

The callable service token is wrong or the user exit is not eligible to invoke the AOI

or control block callable service. If the callable service token is wrong, it belongs to
another ITASK. Make sure that you have initialized the callable service token by calling
DFSCSIIO, before invoking a callable service by calling DFSCSIFQ. Callable service
tokens are valid only until the user exit returns control. Do not save and reuse a callable
service token across multiple calls to an exit.

X'30'

Function code is not specified. The function code field in the function-specific parameter
listis 0.

X'34'

Function code is invalid. The function code field in the function-specific parameter list
contains a function code that is too large.

X'38'

Function is not supported. The function code field in the function-specific parameter list
contains a value for a callable service function code that is not supported in the current
environment or is a reserved function.

Chapter 1. Guidelines for writing IMS exit routines 31

Function-specific parameter list reason codes (CSPLRESN)

When the return code in the field CSPLRTRN is 8 or 20, an error occurred in the function-specific
parameter list. The function-specific parameter list reason codes are stored in the field CSPLRESN and are
described by service and by function.

GET storage service reason codes

When an error occurs in the GET storage service function-specific parameter list, the return code in the
field CSPLRTRN is 8 or 20. The reason codes are stored in the field CSPLRESN and are described by
service and by function.

Following are the reason codes for GET function parameter errors:

When CSPLRTRN =8

Reason code Meaning

X'4' Invalid subpool parameter. The field CSGTSP in the function-specific parameter list
DFSCSTRG contains an invalid subpool value.

X'8' Invalid location parameter. The field CSGTLOC in the function-specific parameter list
DFSCSTRG contains an invalid storage location value.

X'C' Invalid boundary parameter. The next CSGTBNDY in the function-specific parameter list
DFSCSTRG contains an invalid storage boundary value.

X'10' Length parameter not specified. The field CSGTLEN in the function-specific parameter
list DFSCSTRG is 0.

When CSPLRTRN = 20

If you receive any reason code not listed in the following table, contact IBM Software Support.

Reason code Meaning
X'06 00 00 04' Storage could not be allocated.
X'06 00 00 08! Parameter list error.

FREE storage service reason codes

When an error occurs in the FREE storage service function-specific parameter list, the return code in the
field CSPLRTRN is 8 or 20. The reason codes are stored in the field CSPLRESN and are described by
service and by function.

Following are the reason codes for FREE function parameter errors:

When CSPLRTRN =8

Reason code Meaning

X'4' Invalid subpool parameter. The field CSFRSP in the function-specific parameter list
DFSCSTRG contains an invalid subpool value.

X'8' Address parameter not specified. The field CSFRSTAD in the function-specific parameter
list DFSCSTRGis 0.

X'c' Length parameter not specified. The field CSFRLEN in the function-specific parameter
list DFSCSTRG is 0.

32 IMS : Exit Routines

When CSPLRTRN = 20

If you receive any reason code not listed in the following table, contact IBM Software Support.

Reason code Meaning

X'07 00 00 04' Storage was not released. A value in the second byte of the reason code is provided
by the associated z/OS Service. For example, the 04 in the second byte of reason
code 07 04 00 04 is returned from z/OS FREEMAIN. Additional information can
be found in the IMODULE FREESTOR Return Codes section of IMS Version 15.5
Messages and Codes, Volume 4: IMSComponent Codes.

X'07 00 00 08! Parameter list error.

X'07 00 00 OC' Unable to locate storage descriptor block. Storage address might be invalid or
storage subpool specification might be incorrect.

LOAD storage service reason codes

When an error occurs in the LOAD storage service function-specific parameter list, the return code in
the field CSPLRTRN is 8 or 20. The reason codes are stored in the field CSPLRESN and are described by
service and by function.

Following are the reason codes for LOAD function parameter errors:

When CSPLRTRN =8

Reason code Meaning

X'4' Invalid subpool parameter. The field CSLDSP in the function-specific parameter list
DFSCSTRG contains an invalid subpool value.

X'8' Invalid location parameter. The field CSLDLOC in the function-specific parameter list
DFSCSTRG contains an invalid module location value.

X'C' Invalid use parameter. The field CSLDUSE in the function-specific parameter list
DFSCSTRG contains an invalid module reuse value.

X'10' Name parameter not specified. The field CSLDNAME in the function-specific parameter
list DFSCSTRG does not contain a module name.

X'14' The caller is running in cross memory mode, and the primary address space is not CTL or
DLI.

When CSPLRTRN = 20

If you receive any reason code not listed in the following table, contact IBM Software Support.

Reason code Meaning

X'02 00 00 04" Module was not found.

X'02 00 00 08" DFSMODUO allocation error.

X'02 00 00 OC! BLDL/FETCH allocation error.

X'02 0000 10' FETCH/BLDL I/O error occurred loading the requested module.

X'02 00 00 24' DCB was not open for BLDL.

X'02 0000 28' Caller was authorized, but module was found in unauthorized library.

Chapter 1. Guidelines for writing IMS exit routines 33

DELETE storage service reason codes

When an error occurs in the DELETE storage service function-specific parameter list, the return code in
the field CSPLRTRN is X'8' or X'20". The reason codes are stored in the field CSPLRESN and are described
by service and by function.

Following are the reason codes for DELETE function parameter errors:

When CSPLRTRN =8

Reason code Meaning

X'4' Invalid subpool parameter. The field CSDLSP in the function-specific parameter list
DFSCSTRG contains an invalid subpool value.

X'8' Name and address was not specified. The field CSDLNAME in the function-specific
parameter list DFSCSTRG does not contain a module name, and CSDLEP does not
contain a module address.

X'C' The caller is running in cross memory mode, and the primary address space is not CTL or
DLI.

When CSPLRTRN = 20

If you receive any reason code not listed in the following table, contact IBM Software Support.

Reason code Meaning
X'04 00 00 04' Module was not found.
X'04 00 00 OC' Module storage was not released.

FIND control block service reason codes

When an error occurs in the FIND control block service function-specific parameter list, the return code in
the field CSPLRTRN is 8 or 20.

Following are the reason codes for FIND function parameter errors:

When CSPLRTRN =8

Reason code Meaning

X'4' FIND type was not specified. The field CSFDTYPE in the function-specific parameter list
DFSCCBLK is 0.

X'8' FIND type was invalid. The field CSFDTYPE in the function-specific parameter list
DFSCCBLK does not contain a valid control block search type value. The search type
value is too large.

X'c' CCBID was not specified. The field CSFDEIB in the function-specific parameter list
DFSCSTRG does not contain an EBCDIC CCB identifier, and CSFDBID does not contain a
binary CCB identifier.

X'10' Control block name was not specified. The field CSFDNAME in the function-specific
parameter list DFSCCBLK does not contain a name.

When CSPLRTRN = 20

Following are the reason codes you might get when searching CCB, CNT, LNB, RCNT, SPQB, CNT,
descriptor and USER descriptor control block types:

34 IMS : Exit Routines

Reason code Meaning

X'4' Block was not found.
X'40 00 00
00! CBTS latch held, cannot process request.

Following are the reason codes you might get when searching VTCB and LOGON descriptor control block
types:

Reason code Meaning

X'4' Cannot find CLB with VTAM CID or node/descriptor name.
X'8' NO VTCBs/LGNDs are in system.

X'40 00 00

00! CBTS latch held, cannot process request.

The following are the reason codes that can be encountered when searching for a transaction control
block type.

Reason code Meaning

X'8' Transaction was not found.
X'40 00 00
00! CBTS latch held, cannot process request.

SCAN control block service reason codes

When an error occurs in the SCAN control block service function-specific parameter list, the return code in
the field CSPLRTRN is 8 or 20.

Following are the reason codes for SCAN function parameter errors:

When CSPLRTRN =8

Reason code Meaning

SCAN type was not specified. The field CSSTYPE in the function-specific parameter list
X'4' DFSCCBLK is 0.

SCAN type was invalid. The field CSSCTYPE in the function-specific parameter list
DFSCCBLK does not contain a valid control block search type value. The search type
X'8' value is too large or is a reserved function.

When CSPLRTRN = 20

Following are the reason codes you might get when searching CCB, CNT, LNB, RCNT, SPQB, and USER
descriptor control block types:

Reason code Meaning

X'4' End of queue was found.

X'8' No block is in system.

X'14' Bad INUSE call. Verify that the CSSCCBLK and CSSCNAME fields are properly initialized.
X'18' Bad NOUSE call. Verify that the CSSCCBLK and CSSCNAME fields are properly initialized.
X'40 00 00

00! CBTS latch held, cannot process request.

Chapter 1. Guidelines for writing IMS exit routines 35

Following are the reason codes you might get when searching VTCB and LOGON descriptor control block
types:

Reason code Meaning

X'4' Cannot find VTCB matching arguments.
X'8' No VTAM nodes were in system.

X'40 00 00

00! CBTS latch held, cannot process request.

INSERT AOI service reason codes

When an error occurs in the INSERT AOI service function-specific parameter list, the return code in the
field CSPLRTRN is 8 or 20.

Following are the reason codes for INSERT function parameter errors:

When CSPLRTRN =8

Reason code Meaning

X'4' Directed message token was 0.

X'8' Directed message token was invalid.

X'C' Message segment address was 0.

X'10' Message segment length (LL field) was 0.

When CSPLRTRN = 20

Reason code Meaning

X'4' IMS could not get the storage required to process the call.

ENQUEUE AOI service reason codes

When an error occurs in the ENQUEUE AOI service function-specific parameter list, the return code in the
field CSPLRTRN is 8.

Following are the reason codes for ENQUEUE function parameter errors:

When CSPLRTRN =8

Reason code Meaning

X'4' Directed message token was 0.

X'8' Directed message token was invalid.

X'10' Message segment address was specified, but segment length (LL field) was 0.
X'14' AOI token count field was 0.

X'18' AOI list token address was 0.

X'1C' One or more tokens was processed successfully.

X'20' No tokens were processed successfully.

36 IMS : Exit Routines

CANCEL AOI Service reason codes

When an error occurs in the CANCEL AOI Service function-specific parameter list, the return code in the
field CSPLRTRN is 8.

Following are the reason codes for CANCEL function parameter errors:

When CSPLRTRN =8

Reason code Meaning

X'4' Directed message token was 0.
X'8' Directed message token was invalid.
X'C' No message exists to cancel.

Callable services request example

An exit routine could use IMS callable services using DFSCSIIO.

The following example depicts how an exit routine could use IMS callable services. In the example, the
storage returned from DFSCSIIO is divided into three areas. These areas are for the parameter lists used
for the call to DFSCSIFO. The first area is used for the z/OS CALL parameter list, the second for the IMS
callable service parameter list, and the third for the function specific parameter list. The labels, CSICLLEN
and CSPLPLEN, used in the examples are defined as EQU statements in the macro DFSCSIPL. These
labels represent the length of the z/OS parameter list built by the CALL macro and the length of the IMS
callable services parameter list.

kkkkkkkkkkkkkhkkhkkkhkkhkkkhkkhkhkhkhkkhkkkkkkkx

THIS SUBROUTINE INVOKES IMS callable services TO

GET WORKING STORAGE. THE CALLER PASSES THE REQUIRED
STORAGE LENGTH. THE SUBROUTINE THEN OBTAINS PRIVATE,
31-BIT STORAGE ON A DOUBLEWORD BOUNDARY.

INPUT REGISTERS:

R8 = REQUESTED STORAGE LENGTH
R9 = ECB ADDRESS
R10 = LINKAGE REGISTER

CALLED BY BAL 10,GETSTOR
OUTPUT REGISTERS:

R1 = STORAGE ADDRESS
R9 = ECB ADDRESS
R10 = LINKAGE REGISTER
R15 = RETURN CODE
0 - CALL COMPLETED SUCCESSFULLY
NON-ZERO - STORAGE REQUEST FAILED
RETURN CODE FROM IMS CALLABLE STORAGE
SERVICES - GET STORAGE FUNCTION
REGISTER USAGE:
RO WORK REGISTER
R1 WORK REGISTER

ok K ok ok ok Sk F ok % ok 3k F ok % oF 3k ok ok %k ok ok X ok Xk ok ok X ok * F * X

%k ok ok % ok b Ok ok % ok 3k b b Xk ok 3 Ok ok % ok kO 3k X ok 3k ok ok X ok %k ok ok X ok Xk F *

R

R2 = IMS CALLABLE SERVICE TOKEN

R3 = IMS callable services PARAMETER LIST

R4 = IMS STORAGE SERVICES PARAMETER LIST

R5 = z/0S CALL PARAMETER LIST *

R8 = REQUESTED STORAGE LENGTH *

R9 = ECB ADDRESS *

R14 = WORK REGISTER *

R15 = WORK REGISTER *
*

GETSTOR DS OH
SPACE

Chapter 1. Guidelines for writing IMS exit routines 37

INVOKE CALLABLE SERVICES INITIALIZATION ENTRY POINT
DFSCSIIO, TO OBTAIN THE CALLABLE SERVICE TOKEN AND
PARAMETER LIST STORAGE.

LR 1,9 ECB ADDRESS

CALL DFSCSIIO INVOKE INIT ENTRY POINT
LTR 15,15 CALL SUCCESSFUL?

BNZ GSTREXIT NO, ERROR RETURN

SPACE

R1 CONTAINS A PARAMETER LIST ADDRESS.

OFFSET @ IN THE LIST CONTAINS THE 4-BYTE CALLABLE
SERVICE TOKEN. EXTRACT THE TOKEN FROM THE PARAMETER
LIST FOR USE ON THE GET STORAGE REQUEST.

kkkkkkkkkkkkkkkkkhkkkhkkkhkkkkk

LR 5,1 COPY STORAGE ADDRESS
L 2,0(,5) CALLABLE SERVICE TOKEN

* % ok ok *

R5 CONTAINS THE ADDRESS TO USE FOR THE PARAMETER
LIST FOR THE z/0S CALL MACRO. USING THE EQU LABELS
IN MACRO DFSCSIPL, CARVE THE STORAGE RETURNED BY
DFSCSIIO INTO SEPARATE PARAMETER LISTS TO BE USED
ON THE CALL TO DFSCSIFO.

LA 3,CSICLLEN(,5) CALLABLE SERVICE PARM LIST ADDR
LA 4,CSPLPLEN(, 3) STORAGE SERVICES PARM LIST ADDR
SPACE

PARAMETER LIST RETURNED FROM DFSCSIIO HAS BEEN CARVED INTO
THREE PARTS:

INITIALIZE CALLABLE SERVICE PARAMETER LIST.

ENTIRE LIST IS CLEARED SO ALL RESERVED AND NON-INPUT
FIELDS (SUCH AS THE RETURN AND REASON CODES)

ARE SET TO ZERO. THE CALLABLE SERVICE CODE IS
INITIALIZED TO REQUEST STORAGE SERVICES

AND THE CALLABLE SERVICE TOKEN IS SAVED IN THE LIST.

USING
XC

kkkkkkkkkkkkkhkkkhkkkhkkhkhkhkhkhkkhhhkhkhkhkhkhkhkhkhkkkkkkk

* ok K ok Xk ok * *

CSPARMS, 3 CALLABLE SERVICES PARM LIST DSECT
CSPARMS (CSPLPLEN) ,CSPARMS CLEAR CALLABLE SERVICES LIST

LA 0,CSPLSTRG STORAGE SERVICE CODE
ST 0,CSPLSERV INSERT SERVICE CODE IN LIST
ST 2,CSPLTOKN INSERT CALLABLE SERVICE TOKEN

INITIALIZE STORAGE SERVICE PARAMETER LIST *
*
ENTIRE LIST IS CLEARED SO ALL RESERVED AND NON-INPUT *
FIELDS (SUCH AS THE RETURN AND REASON CODES) *
ARE SET TO ZERO. THE STORAGE SERVICES *
FUNCTION CODE IS INITIALIZED TO REQUEST THE GET STORAGE *
FUNCTION. PARAMETERS ARE INITIALIZED TO OBTAIN 31-BIT, *
PRIVATE STORAGE IN SUBPOOL © ON A DOUBLEWORD BOUNDARY. *
*

USING CSSTRG,4 STORAGE SERVICES PARM LIST DSECT

XC CSSTRG(CSGTPLEN) ,CSSTRG CLEAR STORAGE SERVICES LIST

LA 0,CSSTGET GET STORAGE FUNCTION CODE

ST 0,CSSTFUNC INIT FUNCTION CODE PARAMETER

SPACE

ST 8,CSGTLEN INIT STORAGE LENGTH PARAMETER

SPACE

LA 0,CSGTPRI PRIVATE STORAGE INDICATOR

ST 0,CSGTSP INIT STORAGE SUBPOOL INDICATOR

SPACE

LA 0,CSGT31B 31-BIT STORAGE INDICATOR

ST 0,CSGTLOC INIT STORAGE LOCATION PARAMETER
SPACE

LA 0,CSGTDBLW DOUBLE WORD BOUNDARY INDICATOR

ST 0,CSGTBNDY INIT STORAGE BOUNDARY PARAMETER
SPACE

38 IMS : Exit Routines

* THE CALLABLE SERVICES PARAMETER LIST HAS BEEN INITIALIZED *
* TO INVOKE IMS STORAGE SERVICES. THE STORAGE SERVICES *
* PARAMETER LIST HAS BEEN INITIALIZED TO OBTAIN USER STORAGE. *
* ISSUE THE IMS CALLABLE SERVICE REQUEST TO OBTAIN STORAGE. *

CALL DFSCSIFO, ((3),(4)),MF=(E, (5))

LTR 15,15 STORAGE REQUEST SUCCESSFUL?

BNZ GSTREXIT NO, RETURN TO CALLER

SPACE

L 1,CSGTADDR STORAGE ADDRESS

SPACE
B S S S e e T e e
* RETURN TO CALLER *
GSTREXIT DS OH

BR 10 RETURN TO CALLER

LTORG

DFSCSIPL

Control block usage

Review this directory of the control blocks, their associated fields that are intended for access by exit
routines, and restrictions of their use.

If only certain fields within a control block are intended for your use, they are listed next to the control
block name in the following table. If a field does not appear next to the control block name, it is not
intended for your use. Unless otherwise specified, the only information that is part of the interface for exit
routines is the control block name and any specific fields associated with that control block. For a field
that is part of the interface, the only information that is part of the interface for exit routines is the named
field.

The following control blocks and their associated fields and flags, shown in the following table, are
intended for use as, or as part of, a product-sensitive interface. Flags are enclosed in parenthesis next to
their associated fields.

Table 7. Control blocks and associated fields and flags

Control block name Fields and flags intended for use

CCB CCBNUMB

CIB CIBMNAME, CIBDTYP (CIBDNDS)

CLB CLBNAME, CLBCURR, CLBCNTQB

CNT, LNB CNTDEQCT, CNTENQCT, CNTNAME, CNTDQCT, CNTCTBPT, CNTCNTPT
CTB CTBCTT, CTBTERM, CTBFLAG1 (CTB1SIGN, CTB1PRES), CTBFLAG2

(CTB2LOCK, CTB2TEST, CTB2EXCL), CTBFLAG3 (CTB3SEG1), CTBACTL
(CTBAEOM, CTBAINC), CTBFEAT, CTBINCT, CTBOUTCT, CTBCNT, CTBCIBPT,
CTBPRSTN, CTBCNTPT, CTBFLAG6 (CTB6SDON, CTB6TRNI), CTBUSID,

CTBOUSID

CTT CTTDEVIC (CTTD3286, CTTDTYP1, CTTDLU4), CTTSEND, CTTEDIT, CTTIEDIT,
CTTOPT2 (CTT2DIT), CTTOPT5 (CTT5DYN)

CvB CvBCCMD

DFSPDA PDAPDE, PDANUM, PDADORG, PDALSTRL, PDAUSR1, PDAUSR2, PDAUSR3,
PDAUSR4, PDAUSR5, PDAPLEN

DFSPDAE PDAPN, PDASTRG, PDAPID, PDARAP, PDABLKR, PDASTRGL, PDAFLAG1
(PDAF101), PDAELEN

DFSPECA PECDBN, PECRC, PECFDB, PECFDB2, PECKEY, PECCPID, PECKEYL, PECACT,

PECFLAG1 (PECAINEWP), PECFLAG2, PECUSER

Chapter 1. Guidelines for writing IMS exit routines 39

Table 7. Control blocks and associated fields and flags (continued)

Control block name Fields and flags intended for use

FEIB FEIBOFLG (FEIBRPQ1, FEIBERP, FEIBTMED), FEIBMSGN, FEIBLTRM,
FEIBMSG, FEIBUNID, FEIBNDST, FEIBERPN, FEIBLDST, FEIBULNG FEIBUSER,
FEIBIMID

MFSFLDE FLDFLAG (FLDOPT, FLDEXIT, FLDATTR, FLDEATR), FLDELTH, FLDVECT, FLDLTH,
FLDADDR (OPT3LTH, OPT3ID, OPT3DATA)

MFSSEGE SEGFLAG, SEGOPT (SEGEXIT, SEGECHO), SEGVECT, SEGLTH, SEGFLDRC
(SEGDL)

MSNB MSNFLG1 (MSN1DEQ), MSNFLG3 (MSN3DQND, MSN3DQLM)

PDIR PDIRSYM, PDIRCODE (PDIRLOCK, PDIRNOSC, PDIRSCHD, PDIRDBST,

PDIRBALG), PDIROPTC (PDIRRETN, PDIRGPSB, PDIRDOPT, PDIRPARL,
PDIRBAD), PDIRFLG3 (PDIRIFPR, PDIRIFPM, PDIRIFPU)

RCNT CNTDEQCT, CNTENQCT, CNTNAME, CNTDQCT

SCD SSCDIMID, SCDQTU, SCDQTL, SCDSSTYP (SCDSSDBC, SCDSSDCC), SSCDIMSR,
SSCDIMSL

SMB SMBDEQCT, SMBENQCT, SMBTRNCD, SMBSTATS (SMBSRESP, SMBSMULT,

SMBSNOQU, SMBNOSC, SMBLOCK, SMBSQERR), SMBFLAG1 (SMB1CONYV,
SMB1UPP, SMBCPIC, SMB1NORE, SMB1INIT), SMBFLAG2 (SMB2DRRT,
SMBFPPTX, SMBFPXCL, SMB2SMS, SMB2RMT), SMBFLAG3 (SMBBAD,
SMB3WFI), SMBFLAG5 (SMBINQN, SMB5TLS), SMBPRIOR, SMBCLASS,
SMBSPAL, SMBLMTCT, SMBCOUNT, SMBSIDR, SMBSIDL, SMBMXRGN,
SMBPARLM, SMBAOIFL (SMBTCMDA, SMBNOSCH), SMBPDIRN, SMBRCTEN

SPQB, USRD SPQBHSON

The following table provides a list, by exit, of the control blocks that are intended for use as, or as part of,
a product-sensitive interface:

Table 8. Exit routines and associated control blocks

Exit name or type Associated control blocks

DBFHAGUO SCD
DBFHDC40 none
DBFHDC44 none
DBFUMSE1 none
DBFLHSHO none

AOIE none
DFSAQUEOQ CLB, CTB, SCD
BSEX none
DFSCCMDO CLB, CTB, CTT, CVB, SCD
DFSCKWDO none
DFSCMPXO0 none
DFSCMTUO none
DFSCMUXO0 MSNB

40 IMS : Exit Routines

Table 8. Exit routines and associated control blocks (continued)

Exit name or type

Associated control blocks

DFSCNTEO CLB, CNT, CTB

DFSCONEO CCB, CTB, PDIR, SCD, SPQB, SMB
DFSCSGNO CTB, SCD

DFSCSMBO CLB, CTB

DFSCTRNO CLB, CNT, CTB, PDIR, SCD, SMB
DFSCTSEO CNT, CTB, PDIR, SCD, SMB
DFSCTTOO CLB, CNT, CTB, SCD
DFSFDOTO none

DFSFEBJO FEIB, PDIR, SMB

LOGWRT none

DFSFTFXO0 none

DFSGMSGO none

DFSGPIXO0 PDIR, SMB

DFSHDC40 DMBDACS

DFSINSXO CLB, SCD

DFSINTXO CLB, SCD

DFSI7770 CLB, CNT, CTB, SCD
DFSLGFXO0 CLB, SCD

DFSLGNXO CLB, SCD

DFSLUEEO none

DFSMEO00 MFSFLDE

DFSME127 MFSSEGE, CLB
DFSMSCEO SCD

NDMX none

DFS07770 CLB, CTB, CTT, SCD
DFSPIXTO CTB, PDIR, SMB

PPUE none

DFSPRE60 none

DFSPRE70 none

DFSPSEQO DFSPECA, DFSPDA, DFSPDAE
DFSQSPCO PDIR, SCD, SMB
DFSSBUXO none

DFSSGFX0 CLB, SCD

DFSSGNXO0 CIB, CLB, CTB, CTT, SCD

Chapter 1. Guidelines for writing IMS exit routines 41

Table 8. Exit routines and associated control blocks (continued)

Exit name or type Associated control blocks

DFSSIMLO CLB, CNT, CTB, CTT, SCD
DFSS7770 CLB, CNT, CTB, CTT, SCD
DFSTXITO none

DFSYORUO none

OTMAIOED none

OTMAYPRX none

DFS29800 CLB, CNT, CTB, PDIR, SCD, SMB
DFS36010 CLB, CTB, SCD

DSPCEXTO none

Customization exit routines

IMS provides sample exit routines and programs for most exit points.

The location of the sample exit routines and programs are listed in the following table.

Table 9. Exit routines and their location

Exit routine or user exit Description

type Location

BSEX No sample Build Security Environment exit
routine

DBFHAGUO IMS.SDFSSRC IMS Fast Path Sample User Input Exit

DBFHDC40 / DBFHDC44 IMS.SDFSSRC IMS/FP Randomizing Exit

DBFLHSHO IMS.SDFSSRC Data Entry Database Resource Name
hash routine

DBFUMSE1 Sample provided in IBM DEDB Sequential Dependent Scan

Documentation utility exit routine

DFSAOQEQO IMS.SDFSSMPL Type-2 Automated Operator exit
(AOIE) routine sample

DFSAOQOUEO IMS.SDFSSMPL AOQI User exit routine sample
program

DFSBXITA IMS.SDFSSMPL CEEBXITA Assembler user exit
routine for IMS

DFSCCMDO IMS.SDFSSMPL Command Authorization user exit
routine sample

DFSCKWDO IMS.SDFSSRC Command Keyword Table

DFSCMPXO0 IMS.SDFSSMPL User-data Compression program

DFSCMTUO No sample User Message Table

DFSCMUXO IMS.SDFSSRC Message Control/Error exit routine

DFSCNTEO IMS.SDFSSMPL Sample CNT Destination edit routine

42 IMS : Exit Routines

Table 9. Exit routines and their location (continued)

Exit routine or user exit Description

type Location

DFSCONEO IMS.SDFSSMPL Conversational user exit routine

DFSCSGNO IMS.SDFSSMPL COMM / SIGN exit routine sample

DFSCSMBO IMS.SDFSSMPL Transaction Code (Input) edit routine

DFSCTRNO IMS.SDFSSMPL COMM Transaction Authorization exit
routine sample

DFSCQEXO0 IMS.SDFSSMPL IMS CQS structure event user exit
(ICQSSTEV)

DFSCSTX0 IMS.SDFSSMPL IMS CQS event user exit (ICQSEVNT)

DFSCTSEO No sample Security Reverification exit routine

DFSCTTOO IMS.SDFSSMPL Sample PTERM (Output) edit routine

DFSFDOTO IMS.SDFSSMPL IMS Dump Override table

DFSFEBJO IMS.SDFSSMPL Front End Switch user exit routine

DFSFIDNO IMS.SDFSSMPL ESAF In-Doubt Notification exit
routine

DFSFTFXO0 IMS.SDFSSRC Log Filter exit routine

DFSGMSGO IMS.SDFSSMPL Greeting Messages user exit routine

DFSGPIXO0 No sample Global Physical Terminal (Input) edit
routine

DFSHDC40 IMS.SDFSSRC HDAM and PHDAM randomizing
routine

DFSINSXO IMS.SDFSSMPL Output Destination Creation user exit
routine

DFSINTXO IMS.SDFSSMPL IMS Initialization user exit routine

DFSITRXO IMS.SDFSSMPL IMS Initialization and Termination
user exit INITTERM)

DFSKMPXO0 IMS.SDFSSMPL User Data Compression program

DFSLGFXO0 IMS.SDFSSMPL IMS Logoff user exit routine

DFSLGNXO IMS.SDFSSMPL User Logon exit routine

DFSLUEEO IMS.SDFSSRC LU 6.2 Edit exit routine

DFSME000 IMS.SDFSSRC Input Message Field edit routine

DFSME127 IMS.SDFSSRC Input Message Segment edit routine

DFSMONXO0 IMS.SDFSSMPL IMS Monitor (IMSMON) sample user
exit routine

DFSMSCEOQ IMS.SDFSSMPL TM and MSC Message Routing and
Control user exit routine

DFSPIXTO IMS.SDFSSMPL Physical Termination Input Edit

routine sample

Chapter 1. Guidelines for writing IMS exit routines 43

Table 9. Exit routines and their location (continued)

Exit routine or user exit Description

type Location

DFSPPUEOQ No sample Partner Product exit routine

DFSPRE60 IMS.SDFSSMPL System Definition Preprocessor exit
routine (input phase)

DFSPRE70 IMS.SDFSSMPL System Definition Preprocessor exit
routine (name check complete)

DFSPSEQO IMS.SDFSSMPL Sample Partition Selection exit
routine

DFSQSPCO IMS.SDFSSRC Queue Space Notification exit routine

DFSREXXU IMS.SDFSSMPL REXXTDLI Sample user exit routine

DFSSBUXO No sample Sequential Buffering Initialization
exit routine

DFSSGFX0 IMS.SDFSSMPL Sign-off user exit routine

DFSSGNXO0 IMS.SDFSSMPL Sign-on user exit routine example

DFSSIMLO IMS.SDFSSMPL Shared Printer exit routine

DFSTXITO IMS.SDFSSRC Time-Controlled Operations exit
routine

DFSUSO IMS.SDFSSMPL Sample z/OS IEFUSO SYSOUT limits
exit routine

DFSUTL IMS.SDFSSMPL Sample MVS™ IEFUTL Timeout exit
routine

DFSX09B IMS.SDFSSMPL Sample z/0OS JES2 HASX09B Output
excession options exit routine

DFSYDRUO IMS.SDFSSMPL OTMA User Data Formatting exit

DFS29800 No sample 2972/2980 Input Edit Routine

DFS36010 IMS.SDFSSMPL COMM DEV MOD (3600), Sample
3601 Input edit routine

DSPBUFFS IMS.SDFSSRC Buffer Size Specification facility

DSPCEXTO IMS.SDFSSMPL (sample is named RECON I/O exit routine

DSPCEXT1)

DSPDCAXO IMS.SDFSSMPL Sample DBRC SCI Registration exit
routine

DSPSCIX0 IMS.SDFSSMPL Sample DBRC SCI Registration exit
routine

LOGWRT No sample Logger exit routine

NDMX IMS.SDFSSMPL Non-Discardable Messages (NDMX)
user exit

OTMAIOED IMS.SDFSSMPL OTMA Input/Output Edit user exit

OTMARTUX IMS.SDFSSMPL OTMA Resume TPIPE Security exit

routine

44 IMS : Exit Routines

Table 9. Exit routines and their location (continued)

Exit routine or user exit Description

type Location

OTMAYPRX IMS.SDFSSMPL OTMA Destination Resolution exit
routine

PGMCREAT IMS.SDFSSMPL PGMCREAT User Exit

RASE IMS.SDFSSMPL Resource Access Security exit routine
sample

IMS.SDFSSMPL data set

The IMS.SDFSSMPL data set contains source code modules that you can customize for various purposes.

Table 10. IMS.SDFSSMPL data set exit routines and descriptions

Exit routines Description

DBFMLBXO0 Fast Path MADS I/O Timing user hash routine
DFSAOEQO Type-2 Automated Operator exit (AOIE) routine sample
DFSAOUEO AOQI User exit routine sample program

DFSBXITA CEEBXITA Assembler user exit routine for IMS
DFSCCMDO Command Authorization user exit routine sample
DFSCMPXO0 User-data Compression program

DFSCNTEOQ Sample CNT Destination edit routine

DFSCONEO Conversational user exit routine

DFSCSGNO COMM [/ SIGN exit routine sample

DFSCSMBO Transaction Code (Input) edit routine

DFSCQEXO0 IMS CQS structure event user exit (ICQSSTEV)
DFSCSTXO0 IMS CQS event user exit (ICQSEVNT)

DFSCTRNO COMM Transaction Authorization exit routine sample
DFSCTTOO Sample PTERM (Output) edit routine

DFSFDOTO IMS Dump Override table

DFSFEBJO Front End Switch user exit routine

DFSGMSGO Greeting Messages user exit routine

DFSIDEFO IMS Installation Defaults Block

DFSINSXO Output Destination Creation user exit routine
DFSINTXO IMS Initialization user exit routine

DFSITRXO IMS Initialization and Termination user exit (INITTERM)
DFSKMPXO0 User Data Compression program

DFSLGFXO0 IMS Logoff user exit routine

DFSLGNXO User Logon exit routine

Chapter 1. Guidelines for writing IMS exit routines 45

Table 10. IMS.SDFSSMPL data set exit routines and descriptions (continued)

Exit routines

Description

DFSMSCEO TM and MSC Message Routing and Control user exit routine
DFSMONXO0 IMS Monitor (IMSMON) sample user exit routine

DFSNDMXO0 Non-Discardable Messages (NDMX) user exit

DFSPIXTO Physical Termination Input Edit routine sample

DFSPRE60 System Definition Preprocessor exit routine (input phase)
DFSPRE70 System Definition Preprocessor exit routine (name check complete)
DFSPSEOO Sample Partition Selection exit routine

DFSRASO0 Resource Access Security exit routine sample

DFSREXXU REXXTDLI Sample user exit routine

DFSSGFXO0 Sign-off user exit routine

DFSSGNXO0 Sign-on user exit routine example

DFSSIMLO Shared Printer exit routine

DFSUSO Sample z/OS IEFUSO SYSOUT limits exit routine

DFSUTL Sample MVS IEFUTL Timeout exit routine

DFSX09B Sample z/0OS JES2 HASX09B Output excession options exit routine
DFSYCWAT Sample program that suspends the currently executing task
DFSYDRUO OTMA User Data Formatting exit

DFSYIOEO OTMA Input/Output Edit user exit

DFSYPRX0 OTMA Destination Resolution exit routine

DFS36010 COMM DEV MOD (3600), Sample 3601 Input edit routine
DSPAPSMP Example Program Using the DBRC API

DSPCEXT1 Sample DBRC I/O exit routine

DSPDCAXO0 Sample DBRC Command Authorization user exit routine

DSPSCIX0 Sample DBRC SCI Registration exit routine

PGMCREAT Dynamically create the runtime control block (PDIR) for an application program

when the application program is scheduled by IMS.

46 IMS : Exit Routines

Chapter 2. Database Manager exit routines

Use the database manager exit routines to initialize products that run with IMS, control operations related
to subsystems, and enhance the maintenance and control of segments.

Batch application exit routine (DFSISVIO)

The batch application exit routine (DFSISVIO) routine is called immediately before linking to the batch
application program. The exit routine has no predefined purpose. You can use it to allow the initialization
of products that run with IMS. The exit is called prior to calling the application program.

Subsections:

« “About this routine” on page 47

« “Communicating with IMS” on page 47

About this routine

The Batch Application exit routine is applicable to IMS DB and IMS TM batch environments, and batch
types DBB, DLI, and ULU. The exit routine is called if it is available in IMS.SDFSRESL.

You can link-edit the exit routine as needed, and will process in TASK mode. The exit routine's addressing
mode can be either 24 or 31. It is given control in its defined AMODE and can return control to IMS in
either 24- or 31-bit addressing mode.

Table 11. Batch application exit routine attributes

Attribute Description

IMS environments DB Batch, TM Batch.

Naming convention Must be named DFSISVIO.

Link editing After you compile your routine, include it into IMS.SDFSRESL or into any

operating system-partitioned data set to which access is provided by using a
JOBLIB or STEPLIB JCL statement.

Including the routine No special steps required.

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine location No sample exit routine is provided.

Calling this routine

This exit routine is called using standard linkage conventions.

Communicating with IMS
IMS communicates with this routine through the entry registers, a parameter list, and the exit registers.
Content of Registers on Entry

On entry, the exit routine must save all registers using the provided save area. The registers contain the

following:
Register Content
1 Address of the exit parameter list.
13 Address of a single, standard save area.

© Copyright IBM Corp. 1974, 2024 47

Register

Content

14 Return address to IMS.
15 Entry point of this exit routine.
Parameter list

The following parameter list is provided to the exit routine:

00

Address of the application PCB list.

04

Address of PXPARMS

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for register 15, which contains

the return code.

A return code of 12 indicates that the exit does not want IMS processing to continue.

Return code Meaning

00 Continue normal IMS processing.

04 Undefined. Treated like a return code of 00.
08 Undefined. Treated like a return code of 00.
12 Terminate IMS processing with U0099 abend.

Related reference
“Routine binding restrictions” on page 9

If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this

information.

IMS Catalog Definition exit routine (DFS3CDXO0)

Use the IMS Catalog Definition exit routine (DFS3CDXO0) to provide the settings and attributes of the
IMS catalog to batch application programs. Using this exit routine is an alternative to referencing the
DFSDFxxx member of the IMS.PROCLIB data set in the JCL of batch application programs.

This exit routine is available in batch processing environments only.

About this routine

Table 12. Catalog Definition exit routine attributes

Attribute Description
IMS environments IMS batch
Naming convention Must be named DFS3CDX0

48 IMS : Exit Routines

Table 12. Catalog Definition exit routine attributes (continued)

Attribute Description

Binding « You must bind this exit routine module into IMS.SDFSRESL or a
concatenated library.

« You must code this exit routine module as reentrant.

« IMS batch processing attempts to load this exit routine, then attempts to
load a DFSDFxxx member of the IMS.PROCLIB data set if this exit routine is
not found.

« If you enable the IMS catalog with this exit routine (function code 1), you
must ensure that the catalog resource members (DFSCP000, DFSCDO000,
DFSCX000) have been added to the PSB and DBD libraries with the
appropriate PSB generation or DBD generation utility.

- If the IMS management of ACBs is indicated by X'80" in the DXPL_FUNCV2
field, the IMS management of ACBs must be enabled in the IMS system.

The following example JCL shows how to bind the exit routine module into
IMS.SDFSRESL.

//LINKIT JOB 1,MSGLEVEL=1
//LINK EXEC PGM=IEWL,PARM=RENT
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (20,20))
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL.,DISP=SHR
//0BJIN DD DSN=IMS.USERLIB.,DISP=SHR
//SYSLIN DD *

INCLUDE OBJIN(DFS3CDXO)

MODE AMODE (31) , RMODE (ANY)

NAME DFS3CDX0 (R)

/*
Including the routine No special steps required.
IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine location IMS.SDFSSMPL.

Note: You must customize the sample exit routine before you can compile it.

Communicating with IMS

IMS communicates with this routine through the entry registers, a parameter list, and the exit registers.
The exit routine must save all registers with the provided save area on entry. The exit routine must restore
all registers before returning control to IMS.

Table 13. Contents of registers on entry

Register Content

1 Address of the Version 6 standard exit parameter list.

13 Address of the exit save area. The exit routine must not change the first three words of
the save area. This save area is not chained to any other save area.

14 Return address.

15 Entry point of this exit routine.

Register 1 contains the address of the Version 6 standard exit parameter list. The standard exit parameter
list contains the field SXPLFSPL which is the address of the function-specific parameter list for the Catalog
Definition exit. Some fields in the parameter list are directly equivalent to parameters in the DATABASE
and CATALOG sections of the DFSDFxxx member of the IMS.PROCLIB data set.

Chapter 2. Database Manager exit routines 49

For a description of the fields in the Version 6 standard exit parameter list, see IMS standard user exit

parameter list (Exit Routines).

The function-specific parameter list is mapped by macro DFS3DXP and contains the following fields:

Table 14. Catalog Definition exit routine function-specific parameter list

Field Offset Length Description Equivalent DFSDFxxx parameter
DXPL_PVER X'00' 4 Version number of the function-
specific parameter list:
1
Version 1
2
Version 2. Includes
DXPL_FUNCV2 at offset X'60".
3
Version 3. Includes
DXPL_FUNCV3 at offset X’63".
DXPL_FUNC X'04' 4 Function code: CATALOG=YES (required)
1
Catalog enabled
DXPL_LEN X'08' 4 Parameter list length
DXPL_RGNTYPE X'0C! 4 Region type:
1
Batch region
DXPL_URCATL X'10' 4 Unregistered catalog name list UNREGCATLG (optional)
X'14' 4 Reserved
DXPL_RETNUM X'18' 2 Number of catalog record copies RETENTION VERSIONS (optional)
to retain
DXPL_RETPD X'1A' 2 Record retention period in days RETENTION DAYS (optional)
DXPL_ALIAS X'1C' 4 Alias name prefix ALIAS (required)
X'20' 8 Reserved None
DXPL_DATC X'28' 8 Data class DATACLAS (optional)
DXPL_MGTC X'30' 8 Management class MGMTCLAS (optional)
DXPL_STGC X'38' 8 Storage class STORCLAS (optional)
DXPL_1PCT X'40' 2 Primary data set space allocation SPACEALLOC PRIMARY (optional)
percentage
DXPL_2PCT X'42' 2 Secondary data set space SPACEALLOC SECONDARY
allocation percentage (optional)
X'44' 4 Reserved
X'48' 4 Reserved
X'4C' 4 Reserved
X'50' 4 Reserved
X'54! 4 Reserved

50 IMS: Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.err/ims_exitparmlist.htm#ims_exitparmlist
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.err/ims_exitparmlist.htm#ims_exitparmlist

Table 14. Catalog Definition exit routine function-specific parameter list (continued)

Field Offset Length Description Equivalent DFSDFxxx parameter
X'58' 2 SMS volume count SMSVOLCT (optional)
DXPL_VOL X'5A' 6 Non-SMS primary or secondary IXVOLSER (required when the
index volume catalog data sets are not managed
by SMS)
DXPL_FUNCV2 X'60' 1 X'80' ACBMGMT=CATALOG
IMS management of ACB is
enabled
X'61' 7 Reserved
DXPL_FUNCV3 X63 1 X'80' CATPSBATTACH=YES

Dynamic attach of IMS catalog
PCBs is enabled.

X'63’ 1 X'40" CATPSBATTACH=NO

Dynamic attach of IMS catalog
PCBs is disabled.

Related reference
DFSDFxxx member of the IMS PROCLIB data set (System Definition)

CCTL exit routines

The database resource adapter (DRA) can pass control to four coordinator controller (CCTL) exit routines,
each of which may contain code provided entirely or in part by the CCTL.

If the CCTL passes an address (in the INIT request) of zero for a particular routine, the DRA uses a default
exit routine.

Coordinator controller routine attributes
Coordinator controller (CCTL) routines have certain attributes and requirements.

AllL CCTL exit routines called by the database resource adapter (DRA) have control passed to them in
31-bit addressing mode and must return to the DRA in the same mode. Since much of the DRA has
RMODE=31, registers 13 and 14 can point to locations above the 16 MB line. When the DRA calls the
Control exit routine, the PAPL that it passes can also be above the line.

On entry to a CCTL exit routine, the PAPLTTOK and PAPLUSER fields are the same as they were when
DFSPRRCO first received the PAPL. (For more information on these fields, see IMS Version 15.5 System
Programming APIs.) The CCTL uses the PAPLUSER field to pass information to the exit routines (for
example, the address of the control blocks).

If you want the DRA to use the default exit routines supplied with IMS DB, pass a value of binary 0 as the
address of the exit routine in the INIT request. For more information, see the topic “INIT request” in IMS
Version 15.5 System Programming APIs.

To use the default Suspend exit routine and Resume exit routine, each DRA request must have the field
PAPLTECB set with the address of a CCTL ECB to be used if the thread is waited or posted.

Chapter 2. Database Manager exit routines 51

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

Suspend exit routine

The Suspend exit routine receives control whenever the database resource adapter (DRA) router routine
needs to suspend a DRA request and allows the CCTL to use its own processing technique to suspend its
thread.

The Suspend exit routine can start executing before or after the Resume exit routine starts executing, but
the Suspend exit routine cannot finish executing before the Resume exit routine starts executing. When
you design the Suspend and Resume exit routines, ensure that the Suspend exit routine can determine
whether the Resume exit has started or completed execution. If the Suspend exit routine determines
that the Resume exit routine has not started executing, the Suspend exit routine must not return to the
caller. If the Suspend exit routine determines that the Resume exit routine has started or completed
execution, the Suspend exit routine should return to the Suspend exit caller and consider the suspend
request complete.

The Suspend exit routine executes in the CCTL's environment. The contents of the registers on entry are:

Register
Contents

1
Address of the PAPL

14
Return address

15
Entry point address

This routine can use a PAPL 16-word save area (PAPLSREG) to save the DRA's registers The DRA does not
expect any output from this routine.

Resume exit routine

The Resume exit routine allows the CCTL to use its own processing technique to resume a database
resource adapter (DRA) request suspended by the Suspend exit routine.

The Resume exit routine can start executing before or after the Suspend exit routine starts executing.
When you design the Suspend and Resume exit routines, ensure that the Suspend exit routine can
determine whether the Resume exit has started or completed execution. If the Suspend exit routine
determines that the Resume exit routine has not started executing, the Suspend exit routine must not
return to the caller. If the Suspend exit routine determines that the Resume exit routine has started or
completed execution, the Suspend exit routine should return to the Suspend exit caller and consider the
suspend request complete.

This routine receives control whenever a request has completed its process. The contents of the registers
on entry are:

Register
Contents

1
Address of the PAPL

13
Address of an 18-word save area that this routine can use to save DRA registers

14
Return address

15
Entry point address

The DRA does not expect any output from this routine.

52 IMS: Exit Routines

Control exit routine

The Control exit routine allows the database resource adapter (DRA) to notify the CCTL about events
occurring within the DRA or IMS DB. It also allows the CCTL to notify the DRA how to respond to those
events.

This routine receives control whenever the DRA must notify the CCTL of the following events:
« The DRA successfully identifies itself to IMS DB.

The identify attempt to IMS DB fails.

The CCTL's INIT request is canceled.

The DRA fails.

IMS DB fails.

- IMS DB terminates normally using the /CHECKPOINT FREEZE command.

The DRA terminates due to a Control exit routine request.

The Control exit routine uses a PAPL that belongs to the DRA, never a CCTL PAPL that is a DRA request.

For all of these events (except the last one), the CCTL must tell the DRA what action to execute next. This
is done using a return code that the CCTL places in the PAPLRETC field prior to passing the PAPL back to
the DRA. The DRA then acts accordingly.

The contents of the registers on entry are:

Register
Contents

1
Address of the PAPL

13
Address of standard 18-word save area that the Control exit routine can use

14
Return address

15
Entry point address

A list of possible events about which the DRA notifies the CCTL follows. With each event, the contents of
the PAPL are listed with possible actions for the CCTL to take.

Subsections:

« “The DRA successfully identifies itself to IMS DB” on page 53

« “The identify attempt to IMS DB fails” on page 54

« “The CCTL's INIT request is canceled” on page 55

« “The DRA fails” on page 56

« “IMS DB fails” on page 56

« “IMS DB terminates normally using the /CHECKPOINT FREEZE command” on page 57
« “The DRA terminates due to a Control exit routine request” on page 58

The DRA successfully identifies itself to IMS DB
After the DRA successfully identifies to IMS DB, the contents of the PAPL passed to the CCTL are:

Field
Contents

PAPLFUNC
Resync function code, PAPLRSYN

Chapter 2. Database Manager exit routines 53

PAPLRSLT
Resync list address, list of recovery tokens of indoubt UORs. First 4 bytes in the list is the number of
tokens in the list. Following this number are the actual tokens, each being 16 bytes.

PAPLUSER
User data (passed on the INIT request).

PAPLDBCT
IMS DB identifier.

PAPLMTCB
Minimum thread count specified in the startup table or INIT request.

PAPLJOBN
IMS DB jobname.

PAPLCRC
IMS DB command recognition character.

PAPLIDTK
IMS DB identify token (unique store clock value representing the time the CCTL identified with IMS
DB).

PAPLDSID
IMS DB address space ID (ASID).

PAPLRSEN
DBRSE (IMS DB warm standby name, =DBRSENM, IMS DB execution parameter). See IMS Version
15.5 System Definition for more information.

PAPLRGTY
IMS region type. The possible region types are:

PAPLDBCX
DB/DC with XRF.

PAPLDBCO
DB/DC only.

PAPLDBCL
IMS DB

After the routine has completed analyzing the PAPL, it can insert the following return codes in the
PAPLRETC field to notify the DRA of the next action to take:

Code Returned
Meaning

0
IMS DB environment OK.

4
Terminate the DRA (the Control exit routine is not called again during this DRA session).

The identify attempt to IMS DB fails
After the identify to IMS DB fails, the contents of the PAPL passed to the CCTL are:

Field
Contents

PAPLFUNC
Failure function code
PAPLSFNC
Identify request failed subfunction code

PAPLUSER
User data (passed on the INIT request)

PAPLDBCT
IMS DB identifier

54 IMS: Exit Routines

PAPLRETC
Code returned from subsystem interface or IMS DB

PAPLRCOD

Reason code. The possible reason codes are:
PAPLNTUP

Subsystem exists but is not up
PAPLNOSS

Subsystem does not exist
PAPLINT

IMS DB is in initialization process
PAPLRSTN

IMS DB waiting for restart command
PAPLRST

In restart process
PAPLBRST

DB/DC XRF backup in tracking mode
PAPLTKOV

Backup in takeover mode

After the routine analyzes the PAPL, it can insert the following data in the output fields in the PAPL to
notify the DRA of the next action to take:

Field
Contents

PAPLDBCN
New IMS DB identifier

PAPLRETC
Code returned from the CCTL to the DRA. PAPLRETC is passed to the Control exit routine and must be
reset.

Code Returned
Meaning
0
Issue a DFS0690A message and try to identify IMS DB again.

4
Proceed with DRA termination (the Control exit routine will not be called again).

Reidentify with new IMS DB identifier (in the PAPLDBCN field).

The CCTL's INIT request is canceled
After the DRA INIT request is canceled by a cancel response to the DRF690 message, the contents of
the PAPL passed to the CCTL are:

Field
Contents
PAPLFUNC
Failure function code
PAPLSFNC
Cancelled INIT request subfunction code
PAPLUSER
User data (from the INIT request).

PAPLDBCT
IMS DB identifier.

Chapter 2. Database Manager exit routines 55

PAPLRETC
Code returned from IMS DB.

PAPLRCOD
Reason code. The possible reason codes are:

PAPLDBNZ
IMS DB rejected identify request.

PAPLOPC
Operator responded cancel to DFS690 message.

After the routine has completed analyzing the PAPL, it can insert the following return codes in the
PAPLRETC field to tell the DRA what to do next:

Code Returned
Meaning

0
Wait for a DRA TERM request.
a4
Proceed with DRA termination (the Control exit routine will not be called again).

PAPLRETC is passed to the Control exit routine and must be reset.

The DRA fails
When the DRA fails, the contents of the PAPL passed to the CCTL are:

Field
Contents

PAPLFUNC
Failure function code

PAPLDRAF
DRA failure subfunction code.

PAPLUSER
User data.

PAPLDBCT
IMS DB identifier.

PAPLRCOD
Reason code

The reason codes possible are:
PAPLGMF

GETMAIN failed.
PAPLSSF

Subsystem interface failure.

PAPLDRAA
DRA abend.

PAPLESTF
Unable to establish DRA ESTAE.

The DRA expects no return code in PAPLRETC. The DRA fails and the Control exit routine is not called
when the failure occurs while processing a TERM request. In this case, the PAPL return code of the
returned TERM PAPL contains the failure code.

IMS DB fails

When IMS DB fails, the DRA first issues a U002 abend to all DRA thread TCBs. In some cases, the
DRA itself can also get a U002 abend and call the Control exit routine as in the previous failure event.
Otherwise, the contents of the PAPL passed to the CCTL are:

56 IMS: Exit Routines

Field
Contents

PAPLFUNC
Failure function code.

PAPLDBCF
IMS DB failure subfunction code.

PAPLUSER
User data.

PAPLDBCT

IMS DB identifier.
PAPLRETC

Code returned from IMS DB.
PAPLRCOD

Reason code. The reason code is:

PAPLABND
IMS DB abend.

The DRA expects no return code in PAPLRETC.

After the exit routine analyzes the PAPL, it can insert the following identifier and return codes in the
output fields of the PAPL to notify the DRA of the next action to take:

Field
Contents

PAPLDBCN
New IMS DB identifier.
PAPLRETC
Code returned.
PAPLRETC is passed to the Control exit routine and must be reset.
Code Returned
Meaning
0
Wait for a DRA TERM request.

4
Wait for DRA termination.

Try to identify again with the new IMS DB identifier in the PAPLDBCN field.

IMS DB terminates normally using the /CHECKPOINT FREEZE command
After IMS DB terminates using a /CHECKPOINT FREEZE command, the contents of the PAPL passed to the
CCTL are:

Field
Contents

PAPLFUNC

Failure function code.
PAPLDBCC

IMS DB /CHE FREEZE subfunction code.
PAPLUSER

User data.

PAPLDBCT
IMS DB identifier.

Chapter 2. Database Manager exit routines 57

After the exit routine analyzes the PAPL, it can insert the following identifier and return codes in the
output fields of the PAPL to notify the DRA of the next action to take:

Field
Contents

PAPLDBCN

IMS DB identifier.
PAPLRETC

Code returned.

Code Returned
Meaning

0
Allow the DRA to shut itself down.

4
Terminate DRA immediately.

The current DRA threads are allowed to complete all current calls and are then terminated. The DRA
then reidentifies with the new IMS DB identifier.

After the CCTL sets the return code equal to 0, the DRA follows the rules of the /CHECK FREEZE
command (for example, it allows the current threads to complete their units of work). After the last thread
completes, the DRA terminates. The invocation of the Control exit routine signals the completion of the
DRA shutdown process.

The DRA terminates due to a Control exit routine request

After the DRA terminates due to a Control exit routine request, the contents of the PAPL passed to the
CCTL are:

Field
Contents

PAPLFUNC

Failure function code.
PAPLDRAF

DRA failure subfunction code.
PAPLUSER

User data.

PAPLDBCT
IMS DB identifier.

PAPLRCOD
Reason code.

The possible reason codes are:
PAPLITCF
DRA terminated due to a Control exit routine request.

PAPLMXN2
Statistic #1 (see IMS Version 15.5 System Programming APISs)

PAPLMIN2
Statistic #2 (see IMS Version 15.5 System Programming APIs)

PAPLHIT2
Statistic #3 (see IMS Version 15.5 System Programming APIs)

PAPLTIM2
Statistic #4 (see IMS Version 15.5 System Programming APISs)

Since the DRA terminated, the CCTL does not pass any return codes to IMS DB.

58 IMS: Exit Routines

Control is passed to this exit routine at the end of the DRA cleanup when the DRA termination is due to
a previous Control exit routine request. For example, after being notified of a IMS DB failure or a /CHE
FREEZE command, the Control exit routine terminates the DRA.

Status exit routine

The Status exit routine prevents a z/OS SO0C4 abend from occurring when a CCTL thread attempts to
access nonexistent storage.

The database resource adapter (DRA) passes control to the Status exit routine when a task control block
(TCB) for a DRA thread in a scheduled state is collapsing.

The scheduled state is the time between the DRA's successful processing of a schedule request and the
DRA's successful processing of one of the following thread function requests:

ABTTERM
Abort unit of work.

COMTERM

Commit unit of work.
TERMTHRD

Terminate thread.

Related Reading: Refer to the section on CCTL DRA function requests in IMS Version 15.5 System
Programming APIs for a description of the thread functions.

The status exit is called to:

« Notify CCTL that the DRA thread is about to terminate for a reason other than a request from the CCTL.

« Allow CCTL to stop reference, by the CCTL thread, to storage that IMS DB acquired on behalf of the
thread.

 Notify CCTL to free the storage that IMS DB acquired for the thread.

When a DRA thread successfully processes a schedule request, the address of the storage that IMS DB
acquired in the CCTL's private storage is returned to the CCTL. The storage is acquired and initialized with
the user's PCBLIST and PCBs. The CCTL thread uses the PCBLIST and PCBs to make DL/I requests and to
receive the results of the requests. The storage is referred to as user private storage (UPSTOR).

Related Reading: See the topic on CCTL DRA function requests in IMS Version 15.5 System Programming
APIs for PAPL fields returned to CCTL when the schedule request is completed.

The CCTL thread has access to UPSTOR for the duration of the thread's scheduled state. When the
scheduled state terminates normally by a request from the CCTL, IMS DB manages UPSTOR storage.

Reference to UPSTOR by the CCTL thread after the normal end of a scheduled state can result in a z/OS
S0C4 abend if IMS DB has freed the storage. If IMS DB allocated the same storage to another thread,
reference to UPSTOR can overlay the second thread's data.

When the thread terminates abnormally during the scheduled state, the Status exit routine notifies the
CCTL. The CCTL is responsible for freeing UPSTOR. The responsibility for freeing UPSTOR is assigned to
the CCTL to ensure that UPSTOR is freed at the proper time.

The UPSTOR area is acquired using the GETMAIN macro by DRA thread TCBs out of subpool 0 (subpool
132 if the CCTL application is running with the public key option set).

The default Status exit routine provided by the DRA frees UPSTOR. If the CCTL chooses the default exit
routine, it can incur a program check abend trying to access that storage because the CCTL might execute
after the DRA has freed the storage.

The contents of the registers on entry are:

Register
Contents

Chapter 2. Database Manager exit routines 59

1
Address of the PAPL.

13

Address of standard 18-word save area that the Status exit routine can use.
14

Return address.
15

Entry point address.

If DRA thread termination occurs during processing of a CCTL request, the CCTL's PAPL is passed to the
Status exit routine. Otherwise, the DRA builds a PAPL.

The contents of the PAPL that are significant for the call are:
Field
Contents

PAPLUSR3
The value CCTL passed in PAPLUSR3 on the INIT request.

PAPLTOKT
The thread token set up by the CCTL. This is the token which the CCTL passed, in PAPLTTOK, on the
SCHED request.

PAPLUPSA
Address of UPSTOR.

PAPLUPSL
Length of UPSTOR.

The DRA expects no return code in the field PAPLRETC.

Data Capture exit routine

You can write a Data Capture exit routine that receives control whenever a segment, for which the exit
routine is defined, is updated. Your exit routine processes the data after the DL/I call completes but
before control is returned to the application program.

This topic contains Product-sensitive Programming Interface information.

When an application program updates an IMS database with a DL/I insert, replace, or delete call, the
original and updated data, as applicable, are passed and made available to a Data Capture exit routine.
The DL/I call is considered complete and the PCB status is set when the exit routine is called. The
following figure shows how control passes among the application, the full-function or DEDB database, and
the exit routine.

60 IMS: Exit Routines

Application -

(Full-function
databases or
DEDBs)

Data Capture 4
exit routine

Figure 1. Calling order with data capture

You might want to capture changed data so that you can replicate that data to a Db2 for z/OS database as
shown in the previous figure.

As an alternative to capturing data synchronously, you can also propagate captured data asynchronously
by using either of the following methods:

 Use the logging option on the EXIT= parameter of DBDGEN.
« Use IMS DataPropagator and specify that the data is to be propagated asynchronously.

The following table describes data capture support for IMS environments for both full-function and DEDB
databases.

Table 15. Data capture support for IMS environments

CcICcSs® CICS

DB/CTL Batch IMS Batch IMS IFP IMS BMP IMS MPP
Data Capture Exit No Yes? Yes Yes Yes Yes
EXIT=exit_name
Asynchronous Data Yes Yes? Yes Yes Yes Yes

Capture EXIT=* LOG

Note: IBATCH is a pure IMS batch environment that is available with CICS DB/CTL (no CICS code
executing).

Subsections:

« “About this routine” on page 62

« “Communicating with IMS” on page 64

» “Extended Program Communication Block (XPCB)” on page 66
- “Extended Segment Data Block (XSDB)” on page 68
« “Writing the routine in supported languages” on page 69

« “Storage requirements for Data Capture” on page 70

 “Storage failure” on page 71

 “Data security and integrity” on page 71

Chapter 2. Database Manager exit routines 61

About this routine

The main purpose of capturing updated data and making it available to an exit routine is to propagate
the IMS data to the relational environment of Db2 for z/OS. You can write your own exit routine, use a
separate product, use IBM IMS DataPropagator for z/OS, or write a IMS DataPropagator-supported exit
routine. If you write your own exit routine, you can code it to perform tasks other than data propagation.
The sample Data Capture exit routine provided at the end of this topic only propagates data.

Restriction: This exit routine cannot be used with CICS, because it conflicts with CICS architecture.
(Asynchronous Data Capture does work with DBCTL.) Even though the exit routine works with captured
IMS data, CICS cannot use it.

Attributes of the routine

Regardless of its function, you must write the routine in assembly language, C language, COBOL, or PL/I.
Routines written in high-level languages running under Language Environment for z/OS are not supported.
Sample exit routines are provided in COBOL and PL/I.

Running Data Capture exit routines under Language Environment for z/OS might result in performance
problems unless the dependent region that is running the application that causes the Data Capture
exit routine to execute is pre-initialized in the Language Environment for z/OS. This can be done with
the preinitialization list. Otherwise, every execution of the application in a dependent region causes the
Language Environment for z/OS to be initialized each time the application is invoked and stopped each
time the application terminates.

Binding the routine

If you bind the exit routine as either RENT or REUSE, it remains in storage until the region terminates as
if the exit routine was preloaded. However, non-REUSE exit routines must be loaded each time, because
they are deleted from storage after each call.

Loading the routine

IMS loads the exit routine the first time IMS calls it; preloading the exit routine is not necessary. However,
runtime library routines used by high-level languages should be preloaded. After abnormal termination in
an IMS Fast Path region (IFP) or in a message processing region (MPP), the exit routine is deleted and
must be reloaded. The exit routine must be reloaded when:

« A pseudo or standard abend of the application that is running in the region occurs (regardless of
whether the region itself abends along with the application).

- The data capture routine gets an XPCB return code of 16.
Specifying data options

In addition to the necessary control information, you can have the following data passed to your exit
routine. The data is chained together using pointers.

Physical concatenated key
The fully concatenated key of each segment in the physical hierarchy, including the updated segment.
For logical relationships and secondary indexes, this key differs from the key in the PCB feedback
area.

Physical segment data
The physical segment updated by the application program, without any PSB field sensitivity.

Data before a replace
The data as it looked before it was updated. Your exit routine must determine what fields the
application program changed.

Path data
The physical path data from the root segment to the parent of the updated segment.

Cascade delete data
The data deleted by IMS when an application program deleted a segment that is higher in the
hierarchy.

62 IMS: Exit Routines

The data is in the same format that was returned to the application program, excluding PSB field
sensitivity. For logical children, the segment data follows the logical parent concatenated key. For
segments with compression/edit exit routines defined for them, the data is in its expanded or encoded
form. For variable-length segments, the first two bytes contain the length ('LL') for the segment.

Additional guidelines

The Data Capture exit routine is called whenever a segment is updated that has the exit routine defined,
regardless of the execution environment. The exit routine uses the INQY ENVIRON call to identify the
execution environment (batch or online) and determine what functions are available.

The exit routine can issue any DL/I calls allowed by the PSB using the AIB Interface (AIBTDLI). However,
any updates that the exit routine makes are not captured and do not call an exit routine.

The Data Capture exit routine is treated as an extension of the application program; IMS attributes SQL
or DL/I calls made by the exit routine to the application program. The exit routine and the application run
under the same unit of work. SQL and DL/I updates made by the exit routine are committed or aborted
along with the application program at sync-point time with the same integrity as the application. The exit
routine must follow the same rules as the application program whether the routine makes IMS or Db2 for
z/0S requests.

For data propagation, all DL/I updates must be passed to the exit routine to determine whether to
propagate the change to Db2 for z/OS or not. Both the IMS data and Db2 for z/OS data must be available
and on the same z/0S system for either update to occur.

The Data Capture exit routine is called based on specification in the DBD rather than in the PSB. Unless
otherwise defined, the exit routine is always called: when implemented for any segment or database, all
activity in that segment or database causes IMS to call the exit routine, regardless of which PSB is active.
In this scenario, any performance impact that the exit routine causes occurs across the entire system.
However, if you do not require the Data Capture exit routine to be called for the activity of a specific
CCTL or ODBM address space, you can specify the job name of the CCTL or ODBM address space on the
SUPPDCAPNAME= parameter in the DFSDFxxx member. If a job name of a CCTL or ODBM address space
is specified on the SUPPDCAPNAME= parameter, database updates that are invoked by the job are not
captured, even if a Data Capture exit routine is specified on the DBD.

Defining the routine for segments

The Data Capture exit routine is specified for a particular segment during DBDGEN. Failure to locate the
exit routine during processing results in an application program abend.

DBDGEN supports the parameter, EXIT=, on the DBD and SEGM statements. If specified on the DBD
statement, the parameter applies to all segments within the physical database structure. If specified on
the SEGM statement, you can override the specification on the DBD, or can limit the parameter so that
only selected segments are propagated when updated. As a SEGM parameter, EXIT= does not apply to
other segments; physical children do not inherit the parameters of any of their parents.

You can specify multiple exit routine names, each with different data options, on a single DBD or SEGM
statement.

Multiple exit routines

A single DL/I call might call your exit routine more than once or it might call more than one exit routine.
Multiple exit routines are called when there are:

 Multiple exit routines per segment
« Path calls
- Cascade deletes

Multiple exit routines are called in succession before returning to the application program. The sequence
depends on the reason multiple exit routines are called:

 Multiple exit routines are defined.

Chapter 2. Database Manager exit routines 63

When multiple exit routines are defined for a single physical segment, the routines are called based on
DBDGEN definition order. The first exit routine listed in the DBD or SEGM statement is called, followed
by each subsequent exit routine defined for that segment.

« Multiple segments are updated.

When multiple physical segments are updated in a single call, the routines are called in hierarchical
order. IMS calls the exit routines for the segments in the same order that the segments were physically
updated:

— Top-down for path inserts and path replaces:

Parents must be inserted before dependents. The exit routine for the parent segment must be called
before the dependent segment's exit routine.

— Bottom-up for cascade deletes:

The dependent segment's exit routine is called before the parent's exit routine. The root segment's
exit routine is called last. If the dependent segment has several exit routines defined for it, they are
all called at this time. Calling the exit routines in bottom-up order allows propagation to Db2 for z/OS
without requiring referential integrity.

For each segment type, multiple segment occurrences might be deleted as part of the cascade
delete. Each exit routine is called once for each segment occurrence that is deleted. The order the
exit is called is the same order in which DL/I deleted the segments.

Using IMS callable services with this routine

This exit is not eligible to use IMS callable services.

Communicating with IMS

Each segment that is passed in a dependent region and has the Data Capture exit routine defined for it
has two control blocks available for its use. Both the Extended Program Communication Block (XPCB) and
the Extended Segment Data Block (XSDB) reside in private storage and have key 8. They are passed to the
exit routine according to the AMODE of the exit: above the 16 MB line for AMODE 31, and below the 16 MB
line for AMODE 24.

The order in which the control blocks receive control depends on the type of data updated and passed to
the Data Capture exit routine. The following figure shows how control flows between the XPCB and the
XSDB.

64 IMS : Exit Routines

Reqister 1

|7 XPCB

a b [
! ' |

first
XSDB X5DB XSDB

l

subseqguent
XSDBs

l

last
XSDE

Figure 2. Control block flow with data capture

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The registers contain the
following:

Register Contents

1 Address of the XPCB address
13 Address of save area

14 Return address to IMS

15 Entry point of exit routine

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers. Return and reason codes are placed in
the XPCB.

Return and reason codes

The XPCB contains fields for the exit routine to communicate its status to IMS. These fields are initialized
to binary zeros. The return code set by the exit routine defines the type of condition encountered; the
higher the number, the more severe the error. You can also assign a reason code to return codes of 8 or
greater. The reason code is for your use; IMS uses only the return code.

The following table outlines the return and reason codes that the exit routine returns and places in
the XPCB. If the return code placed in the XPCB is invalid, an abend occurs and an invalid return code
indicator is set.

Table 16. XPCB return codes

Return code Description Action DFS3314
message
0 Good return. Normal completion of exit routine. No

Chapter 2. Database Manager exit routines 65

Table 16. XPCB return codes (continued)

Return code Description Action DFS3314
message
4 Indicates the exit routine wants to Exit routine is not called for any No
ignore the DL/I call. additional segments for this DL/I
call.
8 Exit routine encountered an error DL/I call is terminated without Yes
during the DL/I call and wants to calling any other exit routines and
return to the application. control is returned to application
program.
12 This copy of the exit routine is not Exit routine is deleted from Yes
to be called again. (Used with a storage.
"dummy" exit routine.)
16 Abend the exit routine and the Application program is abended Yes
application program. with a U3314.
20 Do not make further calls to this Terminate data capture for this Yes

routine, or any other Data Capture
routines, for this region.

region.

After an abend in an IFP or MPP region with return code 12 or 20, the interface control blocks are
reinitialized and the exit work area is reset. The exit routine can then be called again.

Extended Program Communication Block (XPCB)

The XPCB identifies the segment and call functions, provides the address of a work area, and contains
additional information that is passed to the exit routine. Every XPCB identifies the physical function
performed by DL/I (insert, replace, or delete) and points to the updated data that is passed to the exit

routine. The following two tables describe the contents of the XPCB.

For reentrant exit routines, the address of a 256-byte work area is passed in the XPCB. The exit routine
can use the work area to save information. One work area exists for each exit routine, and it is initialized to
binary zeros the first time the exit routine is given control.

Table 17. XPCB by offset

Offset Field name Offset Field name Offset Field name

0 Eye catcher 4 Version 6 Release

8 User_Exit_Name 16 Exit_Return_Code 18 Exit_Reason_Code
20 Database_Name 28 DBD_Version_Ptr 32 Segment_Name
40 Call_Function 44 Physical_Function 48 reserved

52 DB_PCB_Ptr 56 DB_PCB_Name 64 INQY_Output_Ptr
68 I0_PCB_Ptr 72 Environment_Flags 73 reserved

74 Conc_Key_Length 76 Conc_Key_Ptr 80 Data_XSDB_Ptr
84 Before_XSDB_Ptr 88 Path_XSDB_Ptr 92 Set_Rols_Token
96 Next_Twin_Ptr 100 Cmd_Codes_Ptr 104 Exit_Work_Ptr
108 Null_Ptr 112 reserved 116 Call_Timestamp

66 IMS : Exit Routines

Table 18. XPCB alphabetically

Field name Offset Data type Length Field description

Before_XSDB_Ptr 84 Pointer 4 Address of XSDB for data before it was replaced.
Zero if not a physical replace or if data not
captured.

Call_Function 40 Character 4 Call used by application to update segment:
ISRT, DLET, REPL, FLD (field), or CASC (cascade).

Call_Timestamp 116 Character 8 Time stamp of completion of DL/I call. Obtained
from Store Clock instruction.

Cmd_Codes_Ptr 100 Pointer 4 Address of command codes. This field points to
a data area that has the same format as the
COMMAND_CODES in the CAPD block format.

Conc_Key_Length 74 Fixed 2 Length of the segment concatenated key for
physical path. Zero if data not captured. Key is
optional.

Conc_Key_Ptr 76 Pointer 4 Address of the segment concatenated key for
physical path. Zero if data not captured. Key is
optional.

Database_Name 20 Character 8 Name of physical database that contains the
updated segment.

Data_XSDB_Ptr 80 Pointer 4 Address of XSDB for segment data. Zero if data
not captured.

DBD_Version_Ptr 28 Pointer 4 Address of variable length character string to
identify the DBD used for update. First 2 bytes
contain length of string, followed by string itself.
String is from DBD VERSION= parameter if it was
used for DBDGEN. Otherwise, string is date/time
of DBDGEN.

DB_PCB_Ptr 52 Pointer 4 Address of database PCB used for DL/I call.

DB_PCB_Name 56 Character 8 The 8-byte name of database PCB used for DL/I
call. Null if name not assigned during PSBGEN
with the label or PCBNAME= parameter.

Environment_Flags 72 Flag byte 1 Flag bits describing execution environment.

Exit_Return_Code 16 Fixed 2 Return code from exit routine.

Exit_Reason_Code 18 Fixed 2 Reason code from exit routine.

Exit_Work_Ptr 104 Pointer 4 Address of 256-byte work area.

Eye catcher 0 Character 4 'XPCB'

INQY_Output_Ptr 64 Pointer 4 Address of output of an INQY ENVIRON call.

I0_PCB_Ptr 68 Pointer 4 Address of I/O PCB.

Next_Twin_Ptr 96 Pointer 4 Address of XSDB for the data of the twin that

follows the segment being inserted. Zero if not a
twin or if no other twins exist for the non-unique
segment.

Chapter 2. Database Manager exit routines 67

Table 18. XPCB alphabetically (continued)

Field name Offset Data type Length Field description

Null_Ptr 108 Pointer 4 Zero address for use as null address for
languages that do not recognize a zero address
as null (such as PL/I).

Path_XSDB_Ptr 88 Pointer 4 Address of XSDB for physical root when path
data option requested. XSDBs for path data
are chained together, in descending hierarchical
order, from physical root to parent of updated
segment. Last XSDB has a zero pointer.

Physical_Function 44 Character 4 Physical call function performed: ISRT, DLET, or
REPL.
Release 6 Character 2 XPCB release indicator. Along with version,

identifies the level of the control block. The
current release is R3.

Segment_Name 32 Character 8 Physical segment name of segment updated.

Sets_Rols_Token 92 Hexadecimal 4 Token that is used to identify the processing
data scope between the SETS and ROLS calls.

User_Exit_Name 8 Character 8 Entry point name of exit routine.

Version 4 Character 2 XPCB version indicator. Along with release,

identifies the level of the control block. The
current version is V1.

Extended Segment Data Block (XSDB)

The XPCB points to the first XSDB. For path data, subsequent XSDBs are chained together. The XSDB
points to the updated data that is passed to the exit routine. It contains additional information that is also
passed. The following two tables describe the contents of the XSDB.

Table 19. XSDB by offset

Offset Field name Offset Field name Offset Field name

0 Eye catcher 4 Version 6 Release

8 Next_Ptr 12 Database_Name 20 Segment_Name
28 Physical_Path 29 CMD_CODE_R 30 reserved

32 Segment_Level 34 Key_Length 36 Key_Ptr

40 LP_Key_Length 42 Segment_Length 44 Segment_Ptr
48 reserved

Table 20. XSDB alphabetically

Field name Offset Datatype Length Field description

CMD_CODE_R 29 Flag byte 1 Subset pointer command codes R1 through R8. Each bit
represents whether or not the corresponding command
code number was specified on the SSA.

Database_Name 12 Character 8 Name of physical database that contains the updated
segment.

68 IMS : Exit Routines

Table 20. XSDB alphabetically (continued)

Field name Offset Data type Length Field description

Eye catcher 0 Character 4 'XSDB'

Key_Length 34 Fixed 2 Length of key for segment. Zero if segment not keyed.

Key_Ptr 36 Pointer 4 Address of key for segment. Zero if segment not keyed.

LP_Key_Length 40 Fixed 2 Length of the concatenated key of a logical parent
segment included in segment data for logical children.

Next_Ptr 8 Pointer 4 Address of next XSDB in chain for path data. Zero for last
XSDB in chain.

Physical_Path 28 Character 1 Access by physical path (Y/N)

Release 6 Character 2 XSDB release indicator. Along with version, identifies
level of control block. The current release is R2.

Segment_Ptr 44 Pointer 4 Address of physical segment data.

Segment_Length 42 Fixed 2 Length of physical segment data.

Segment_Level 32 Fixed 2 Level of segment in physical database.

Segment_Name 20 Character 8 Physical segment name for segment data passed in this
block. Different from segment name in XPCB for path
data.

Version 4 Character 2 XSDB version indicator. Along with release, identifies

level of control block. The current version is V1.

Writing the routine in supported languages

Although the Data Capture exit routine can be written in assembler language, C, COBOL, or PL/I, you must
follow certain guidelines depending on which language you use.

Assembler

The exit routine is entered in primary mode, but the access registers can be nonzero.

(o4

C does not support variable-length character strings using integer lengths, such as those passed in the
XPCB and XSDB. Key and segment data passed to the exit routine is terminated by "null" (binary zero)
values. Any null value in the data itself might result in an invalid string length.

The following declarations and statements are used to locate the XPCB. Declare XPCB_TYPE_PTR as a
pointer to the XPCB structure.

XPCB_TYPE_PTR *TPTR;

TPTR = (XPCB_TYPE_PTR *) __sysplist;
XPCB = *TPTR;

The exit routine must be defined as a main program with the PLIST(IMS) and ENV(IMS) options specified.
Use the following format to specify these options:

#pragma runopt(env(IMS), plist(IMS))

CcoBOL

The exit routine operates under a separate run unit from the application program. The method used to
establish the run unit depends on the compiler or on the RES/NORES compiler option. For all COBOL
programs compiled with newer compilers, and older COBOL programs compiled with resident (RES), the

Chapter 2. Database Manager exit routines 69

exit routine is given control by LINK. For older COBOL programs compiled with nonresident (NORES), it is
given control directly.

Recommendation: Use a compiler with RES and code the exit routine as reentrant (RENT) and AMODE
31. With older compilers and NORES, the routine must be AMODE 24 and it must not be reentrant.

Attention: You can use GOBACK to terminate the exit routine run unit and return to the application
program, but do not use STOP RUN and EXIT PROGRAM because they are not supported and might
cause unpredictable results or abends.

The procedure division is:

exitname USING XPCB

PL/I

The exit routine must be compiled as a main program. The entry point can be PLICALLA, so that the exit
routine can use the assembler interface or use PL/I compile-time option SYSTEM(IMS)

The procedure statement is:

exitname: PROCEDURE(XPCB_PTR) OPTIONS (MAIN);

Storage requirements for Data Capture

As your application program issues a DL/I call to update the database, the updates are stored as required
for use by the Data Capture exit routine or the Asynchronous Data Capture. Because the amount of
storage required can be significant for update functions like a cascade delete, a data space is acquired
for each dependent region that uses the exit routine. The attributes of the data space vary for online and
batch-dependent regions, as illustrated in the following table.

Table 21. Data space characteristics (Data Capture exit routine and Asynchronous Data Capture)

Attribute Online Dependent Region Batch Dependent Region
Number of data spaces 1 per dependent region 1

Data space name SYSDFS01 @SYSDFS1

Storage key Key 7, not fetch protected to allow access from Key 8

dependent region in key 8

Storage size By region controller By region controller.
Default size used if space
requested violates total
size of key 8 data spaces.

Storage obtained During region initialization During region initialization
if exit routines are defined

Storage owned By region controller TCB By batch TCB

Added to access list Dependent region address space, for access by Batch TCB

program controller TCB in message regions. Control
regions SAS address space for access by DL/I in an
IMS DB/DC system when data capture is required.
DEDB capture runs under program controller TCB.

Deleted from access list Dependent region always accessed. Deleted from Not deleted
control region SAS access list during thread
termination if added to access list by data capture.

Data space cleared During normal thread termination for message regions Not cleared
if data space storage was referenced.

70 IMS : Exit Routines

Table 21. Data space characteristics (Data Capture exit routine and Asynchronous Data Capture) (continued)

Attribute Online Dependent Region Batch Dependent Region

Data space deleted At region termination. At z/OS job termination

You can control the use of data spaces with the SMF IEFUSI Step Initiation exit routine for key 8 batch
regions. This exit routine determines the number and size of the data space available for key 8. If you
have batch application programs that call the Data Capture exit routine, the data space specified for key 8
must be large enough to accommodate the data space requirements of data capture.

Storage failure
The two types of storage failure for data capture are:

- Data space not obtained. This type of error occurs in batch regions when a data space is not specified
for each region. Online dependent regions can always obtain data space.

« Insufficient storage in the data space. In online dependent regions, storage space is specified by
the region controller. Some database functions, such as cascade delete, require more than the space
allocated for successful completion. Batch dependent regions can be limited in data space size. You
must specify a data space large enough for data capture to complete successfully.

Either type of storage failure terminates the region with a U814 abend.

Data security and integrity

The Data Capture exit routine is an extension of the application program with the same capabilities as

the application program; the exit routine and the application have equal authorization and limitations. IMS
and Db2 for z/OS resources that the exit routine uses must be authorized in the IMS PSB or DB2° PLAN for
the application program. This behavior ensures that the application program can access any IMS or Db2
for z/OS data that is available to the exit routine.

The data and the exit routine operate in unprotected, key-8 storage. The exit routine is able to modify data
or control blocks that can affect the successful operation of the application program. The data passed to
the exit routine is the physical segment data. With PSB field sensitivity, this data might include data that is
unavailable to the application.

Related concepts

Data Capture exit routines (Database Administration)
Asynchronous data propagation (System Programming APIs)
z/0S: Dynamic Exits Facility

IMS DataPropagator Introduction

Related reference

INQY call (Application Programming APIs)

DATABASE section of the DFSDFxxx member (System Definition)
Examples of the DBDGEN utility (System Utilities)

Related information

0814 (Messages and Codes)

Sample Data Capture exit routine

A Data Capture exit routine can receive control whenever a segment, for which the exit routine is defined,
is updated.

This topic provides examples of the Data Capture exit routine in COBOL and PL/I. The exit routine can also
be written in assembler or C.

Subsections:
« “COBOL” on page 72

Chapter 2. Database Manager exit routines 71

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.dag/ims_datacapexit.htm#ims_datacapexit
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.spr/ims_propogate_captureddata.htm#ims_propogate_captureddata
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieae400/dynexit.htm
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=dd&subtype=sm&appname=ShopzSeries&htmlfid=897/ENUS5696-705
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.apr/ims_inqycall.htm#ims_inqycall
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.sdg/ims_dfsdfxxx_proclib_database.htm#ims_dfsdfxxx_proclib_database
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.sur/ims_dbdexam.htm#ims_dbdexam
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.mc/msgs/0814.htm#imsabend0814

« “PL/I” on page 74

CoBOL

The following example is the Data Capture exit routine in COBOL.

IDENTIFICATION DIVISION.
PROGRAM-ID. DLICDCE.

R *
*REMARKS. *
LT T T *
* DESCRIPTIVE NAME HOSPITAL DATA BASE SEGMENT EXIT *
L G E R T T *
* THIS IS A SAMPLE IMS EXIT. THIS WILL BE CALLED BY IMS. *
* THIS PROGRAM PROPAGATES DATA FROM IMS TO DB2 SYNCHRONOUSLY.=x
* THE NAME OF THIS PROGRAM LOAD MODULE IS SPECIFIED *
* ON SEGM MACRO DURING DBDGEN FOR THE HOSPITAL DATA BASE. *
* *
* THE DATA OPTIONS SELECTED FOR THIS EXIT : *
* EXIT=(KEY,DATA,NOPATH, CASCADE) *
T T *
* INPUT FOR THIS PROGRAM : XPCB, XSDB. *
* *
* OUTPUT: DISPLAY A MESSAGE WHEN THE IMS UPDATE IS NOT *
* ISRT, REPL, DELE, CASC. DISPLAY 'SQLERRM' WHEN *
* SQLERROR OCCURS. *
* *
* UPDATES: UPDATES DB2 ILLNESS TABLE *
R e e *
* LOGIC: THIS PROGRAM IS CALLED BY IMS AFTER THE IMS UPDATE*
* TO ILLNESS SEGMENT AND BEFORE IMS RETURNS TO THE =
* IMS APPLICATION PROGRAM. *
* *
* XPCB IS RECEIVED AS INPUT TO THIS PROGRAM. *
* IF THERE IS NO ADDRESS OF XSDB IN XPCB THIS *
* PROGRAM WILL RETURNS TO IMS OTHERWISE - *
* *
* LOGIC: THIS PROGRAM IS CALLED BY IMS AFTER THE IMS UPDATEx
* WE GET THE ADDRESS OF XSDB FROM XPCB, FROM XSDB *
* WE GET THE ADDRESS OF ILLNESS SEGMENT CONCATENATED=*
* KEY, AND ADDRESS OF THE PHYSICAL SEGMENT DATA *
* *
* UPDATE THE DB2 ILLNESS TABLE WITH THE UPDATED IMS *
* SEGMENT DATA. *
I e *

INSTALLATION. IBM - SANTA TERESA LABORATORY.
DATE-WRITTEN. JANUARY 1990.
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-3090.
OBJECT-COMPUTER. IBM-3090.
DATA DIVISION.

WORKING-STORAGE SECTION.
EXEC SQL
INCLUDE SQLCA
END-EXEC. %*--- DB2 ILLNESS TABLE DECLARATION

EXEC SQL
DECLARE SYSADM.ILLNESS TABLE
(ILLDATE VARCHAR (6) NOT NULL,
PATNO VARCHAR (5) NOT NULL,
ILLNAME VARCHAR (10) NOT NULL)
END-EXEC.
*___

01 W-POINTER POINTER.

01 W-POINTER-R REDEFINES W-POINTER PIC 9(8) COMP.
LINKAGE SECTION.
*--- EXIT SEGMENT CONTROL BLOCK

01 XPCB.
05 EYECATCHER PIC X(04).
05 VERSION PIC X(02).
05 RELEASE-ID PIC X(02).
05 EXIT-NAME PIC X(08).
05 EXIT-RETURN-CODE PIC 9(04) COMP.
05 EXIT-REASON-CODE PIC 9(04) COMP.

72 IMS: Exit Routines

05 DATABASE-NAME
05 DBD-VERSION-PTR
05 SEGMENT-NAME
05 CALL-FUNCTION
05 PHYSICAL-FUNCTION
05 FILLER
05 DB-PCB-PTR
05 DB-PCB-NAME
05 INQY-OUTPUT-PTR
05 I0-PCB-PTR
05 ENVIRONMENT-FLAGS
88 IMS-ENH-SUPPORT
* RRS SUPPORT IS AVAILABLE IN SYSTEM
88 IMS-RRS-ENABLED
* RRS=Y WAS SPECIFIED
88 CALL_AT_COMMIT
% SET BY EXIT - CALL DURING COMMIT
88 XPCB_LOGX_FORMAT
* REDUCED 9904 FORMAT
88 XPCB_EXIT_WAS_CALLED
* INTERNAL FLAG USED BY IMS
88 XPCB_DPROP_EXIT
* SET BY DPROP EXIT ROUTINE
05 FILLER
* RESERVED
05 CONC-KEY-LENGTH
05 CONC-KEY-PTR
05 DATA-XSDB-PTR
05 BEFORE-XSDB-PTR
05 PATH-XSDB-PTR
05 FILLER
05 FILLER
05 FILLER
05 EXIT-WORK-PTR
05 NULL-PTR
05 FILLER
05 TIMESTAMP
x--- EXIT SEGMENT DATA BLOCK

01 DATA-XSDB.

05 EYECATCHER
05 VERSION
05 RELEASE-ID
05 NEXT-PTR
05 DATABASE-NAME
05 SEGMENT-NAME
05 FILLER
05 SEGMENT-LEVEL
05 KEY-LENGTH
05 KEY-PTR
05 FILLER
05 SEGMENT-LENGTH
05 SEGMENT-DATA-PTR
05 FILLER
05 FILLER

*--- ILLNESS SEGMENT DATA

01 LS-SEGMENT.

03 LS-ILLDATE
03 LS-ILLNAME
*--- ILLNESS SEGMENT CONCATENATED KEY

01 XPCB-CONCKEY.

02 LS-PATNO
02 LS-ILLDT
PROCEDURE DIVISION USING XPCB.
SET W-POINTER TO DATA-XSDB-PTR.
*--- LENGTH ZERO IF NOT CAPTURED

PIC

X(08).

POINTER.

PIC
PIC
PIC
PIC

X(08).
X(04).
X(04).
9(08) COMP.

POINTER.

PIC

X(08).

POINTER.
POINTER.

PIC
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE

PIC

PIC

X.
X'80".

X'40'.
X'20".
X'10".
X'08"'.
X'o4'.

X.

9(04) COMP.

POINTER.
POINTER.
POINTER.
POINTER.
POINTER.
POINTER.
POINTER.
POINTER.
POINTER.
POINTER.

PIC

X(08).

PIC X(4).

PIC X(2).

PIC X(2).
POINTER.

PIC X(8).

PIC X(8).

PIC X(4).

PIC 9(4) COMP.
PIC 9(4) COMP.
POINTER.

PIC 9(4) COMP.
PIC 9(4) COMP.
POINTER.
POINTER.
POINTER.

PIC X(6).
PIC X(10).

PIC X(5).
PIC X(6).

* IF W-POINTER-R EQUAL ZEROES GOBACK

* GOBACK
* END-IF
*--=--

SET ADDRESS OF DATA-XSDB TO DATA-XSDB-PTR.
SET ADDRESS OF XPCB-CONCKEY TO CONC-KEY-PTR.
SET ADDRESS OF LS-SEGMENT TO SEGMENT-DATA-PTR.

*----
EXEC SQL
WHENEVER SQLWARNING CONTINUE

Chapter 2. Database Manager exit routines 73

END-EXEC
EXEC SQL
WHENEVER SQLERROR GO TO BADSOQL
END-EXEC
EXEC SQL
WHENEVER NOT FOUND GO TO BADSQL
END-EXEC
*____

IF PHYSICAL-FUNCTION OF XPCB = "ISRT"

EXEC SQL
INSERT INTO SYSADM.ILLNESS
VALUES (::LS-ILLDATE,::LS-PATNO,
::LS-ILLNAME)
END-EXEC ELSE
IF PHYSICAL-FUNCTION OF XPCB = "CASC" OR
PHYSICAL-FUNCTION OF XPCB = "DLET"
EXEC SQL
DELETE FROM SYSADM.ILLNESS
WHERE (PATNO = ::LS-PATNO AND
ILLDATE = ::LS-ILLDATE)
END-EXEC
ELSE

IF PHYSICAL-FUNCTION OF XPCB = "REPL"

EXEC SQL
UPDATE SYSADM.ILLNESS
SET ILLNAME = ::LS-ILLNAME
WHERE (ILLDATE = ::LS-ILLDATE AND
PATNO = ::LS-PATNO)
END-EXEC
ELSE

DISPLAY "FUNCTION WASNT ISRT, REPL, DLET, OR CASC"
DISPLAY "--- NO SQL ACTION WAS TAKEN"

DISPLAY "PHYS FUNCTION IS "

DISPLAY PHYSICAL-FUNCTION OF XPCB

END-IF
END-IF
END-IF.
DISPLAY "SQLCODE " SQLCODE.
GOBACK .
BADSQL.
DISPLAY "SQLERRM".
MOVE 8 TO EXIT-RETURN-CODE OF XPCB.
MOVE SQLCODE TO EXIT-REASON-CODE OF XPCB.
GOBACK .

PL/I
The following example is the Data Capture exit routine in PL/I.

DLI2DB2: PROCEDURE(XPCB_PTR) OPTIONS(MAIN);

/*

= = == e e e e e e e e e e e e e mememmeeeeememmmmem—m—mem-—--ao *
*REMARKS. *
B T e e *
* DESCRIPTIVE NAME HOSPITAL DATA BASE SEGMENT EXIT *
B T e T T *
* THIS IS A SAMPLE IMS EXIT THAT WILL BE CALLED BY IMS. *
* THIS PROGRAM PROPAGATES DATA FROM IMS TO DB2 SYNCHRONOUSLY.=*
* THE NAME OF THIS PROGRAM LOAD MODULE IS SPECIFIED *
* ON SEGM MACRO DURING DBDGEN FOR THE HOSPITAL DATA BASE. *
* *
* THE DATA OPTIONS SELECTED FOR THIS EXIT ARE: *
* EXIT=(DLI2DB2,PATH,DATA, (CASCADE,PATH,DATA,NOKEY) *
H = === m e e e e e e e e e e e e e e eememmeeememmmemmee—m—meme--a-o *
* *
* INPUT FOR THIS PROGRAM : XPCB, XSDB. *
* *
* OUTPUT: DISPLAY 'SQLERRM' WHEN SQLERROR OCCURS. *
* UPDATES: UPDATES DB2 TREATMT TABLE *
* *
* RETURNS REASON CODE 14 RETURN CODE 16 WHEN PATH *
* NOT SPECIFIED ON THE DBDGEN EXIT STATEMENT, *
* RESULTING IN AN ABEND U3314. *

74 IMS : Exit Routines

* X

* X

* LOGIC: THIS PROGRAM IS CALLED BY IMS AFTER AN UPDATE TO *
* THE TREATMT SEGMENT AND BEFORE IMS RETURNS TO *
* IMS APPLICATION PROGRAM. *
* *
* THE ADDRESS OF AN XPCB IS PASSED TO THIS PROGRAM
* FROM IMS. THE XPCB WILL PROVIDE THE ADDRESSES OF =
* THE XSDB FOR DATA, PATH DATA AND BEFORE DATA. *
* *
* UPDATE THE DB2 TREATMT TABLE WITH THE UPDATED IMS =*
* SEGMENT DATA. *
* *
* HOSPITAL Kk kkkkkkkkk *
* DATA BASE *
* * PATIENT = KEY FIELD IS PATNO *
* * *
* *kkkkkkkkkk *
* * *
* * *
* *kkkkkkkkkk *
* * *
* % ILLNESS * KEY FIELD IS ILLDATE *
* * *
* *kkkkkkkkkk *
* * *
* * *
* *kkkkkkkkx* KEY FIELD IS TRTDATE *
* * FIELD, MEDICINE *
* * TREATMT % FIELD, QUANTITY *
* * FIELD, DOCTOR (NOT IN DB2 TABLE) *
* Kkkkkkkkkkk *
* *
* *
* TREATMENT TABLE *
* *
* kkkkkkkkkkkhkkhkkkhkkhkkkhkhkkhkhkhkhkkhkhkkhkkhkhkkhkhkhkhkhkkhkhkkhkkkhkhkhkkhkk *
* % PATNUMB * DATEILL * DATETRT % MEDICAT * AMOUNT =* *
* *khkkkkkkhkhkkhhkkhkhkkkhhkkhhkkhkhkhkhhkkhhkkkhhkhhkkhhkkkhhkhhkkhhkkkhhkhhkkhkkhkkkhhkhkk *
* *
B I T *
*/
J R S S S T e S s */
/* */
/* EXTENDED DATA BASE PCB --XPCB */
/* */
I R 3 T R R L S e S e S T e */
DECLARE
1 XPCB BASED (XPCB_PTR) ,
3 EYECATCHER CHAR(4), /* "XPCB" EYECATCHER */
3 VERSION CHAR(2), /* XPCB VERSION INDICATOR */
3 RELEASE CHAR(2), /* XPCB RELEASE INDICATOR */
3 EXIT_NAME CHAR(8), /* SEGMENT EXIT NAME */
3 EXIT_RETURN_CODE FIXED BINARY (15), /* RETURN CODE */
3 EXIT_REASON_CODE FIXED BINARY (15), /* REASON CODE */
3 ATABASE_NAME CHAR(8), /* PHYSICAL DATA BASE NAME */
3 DBD_VERSION_PTR POINTER, /* ADDRESS OF DBD VERSION ID %/
3 SEGMENT_NAME CHAR(8), /* PHYSICAL SEGMENT NAME */
3 CALL_FUNCTION CHAR(4), /* CALL FUNCTION */
3 PHYSICAL_FUNCTION CHAR(4), /* DL/I PHYSICAL FUNCTION */
3 FILLER1 FIXED BINARY (31), /* RESERVED */
3 DB_PCB_PTR POINTER, /* ADDRESS OF DB PCB */
3 DB_PCB_NAME CHAR(8), /* NAME OF DB PCB */
3 INQY_OUTPUT_PTR POINTER, /* ADDRESS OF "INQY" OUTPUT =/
3 IO_PCB_PTR POINTER, /* ADDRESS OF I/0 PCB */
3 ENVIRONMENT-FLAGS CHAR(1), /* Environment Flags */
/* IMS-ENH-SUPPORT X'80' RRS SUPPORT AVAILABLE IN SYSTEM =%/
/* IMS-RRS-ENABLED X'40' RRS=Y WAS SPECIFIED */
/* CALL_AT_COMMIT X'20' SET BY EXIT-CALL DURING COMMIT =%/
/* XPCB_LOGX_FORMAT X'10' REDUCED 9904 FORMAT */
/* XPCB_EXIT_WAS_CALLED X'©8' INTERNAL FLAG USED BY IMS */
/* XPCB_DPROP_EXIT X'04' SET BY DPROP EXIT ROUTINE */
3 NEWFILLER CHAR(1), /* Reserved */
3 CONC_KEY_LENGTH FIXED BINARY (15), /* LENGTH OF FULLY */
/* CONCATENATED KEY FOR SEGM %/
3 CONC_KEY_PTR POINTER, /* ADDRESS OF PHYSICAL FULLY =%/
/* CONCATENATED KEY FOR SEGM =/
3 DATA_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */
/* PHYSICAL SEGMENT DATA */
3 BEFORE_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */
/* PHYSICAL BEFORE DATA */

Chapter 2. Database Manager exit routines 75

3 PATH_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR
/* PHYSICAL PATH DATA
3 FILLER3 POINTER, /* RESERVED
3 FILLER4 POINTER, /* RESERVED
3 FILLERS POINTER, /* RESERVED
3 EXIT_WORK_PTR POINTER, /* ADDRESS OF 256 BYTE AREA
/* FOR THE EXIT
3 NULL_PTR POINTER, /* NULL POINTER VALUE
3 FILLER6 POINTER, /* RESERVED
3 CALL_TIMESTAMP CHAR(8), /* TIMESTAMP OF CALL
3 FILLER7 POINTER; /* RESERVED FOR NULLS AT END
DECLARE XPCB_PTR POINTER;
R R 3 R e S F S e S e e
/*
/* EXTENDETD SEGMENT DATA --XSDB
/*
I R 3 T R R S S e S S T e
DECLARE
1 XSDB BASED (XSDB_PTR) ,
3 EYECATCHER CHAR(4), /* "XSDB" EYECATCHER
3 VERSION CHAR(2), /* XSDB VERSION INDICATOR
3 RELEASE CHAR(2), /* XSDB RELEASE INDICATOR
3 NEXT_PTR POINTER, /* NEXT XSDB POINTER
3 DATABASE_NAME CHAR(8), /* PHYSICAL DATA BASE NAME
3 SEGMENT_NAME CHAR(8), /* PHYSICAL SEGMENT NAME
3 FILLER1 CHAR(4), /* RESERVED
3 SEGMENT_LEVEL FIXED BINARY (15), /* SEGMENT DATA BASE LEVEL
3 KEY_LENGTH FIXED BINARY (15), /% LENGTH OF PHYSICAL KEY
3 KEY_PTR POINTER, /* ADDRESS OF PHYSICAL KEY
3 FILLER2 FIXED BINARY (15), /* RESERVED
3 SEGMENT_LENGTH FIXED BINARY (15), /% LENGTH OF SEGMENT DATA
3 SEGMENT_DATA_PTR POINTER, /* ADDRESS OF SEGMENT DATA
3 FILLER3 POINTER, /* RESERVED
3 FILLER4 POINTER, /* RESERVED
3 FILLERS POINTER; /* RESERVED FOR NULLS AT END
DECLARE XSDB_PTR POINTER;
DECLARE
1 SEGMENT_XSDB LIKE XSDB BASED(XPCB.DATA_XSDB_PTR);
DECLARE /* TREATMENT SEGMENT */
1 SEGMENT_DATA BASED (SEGMENT_XSDB.SEGMENT_DATA_PTR) ,
3 SEGMENT_DATA_TRTDATE CHAR(6) , /* SEGMENT KEY %/

3 SEGMENT_DATA_MEDICINE CHAR(10),
3 SEGMENT_DATA_QUANTITY CHAR(4),
3 SEGMENT_DATA_DOCTOR CHAR(10) ;
DECLARE
1 BEFORE_XSDB LIKE XSDB BASED(XPCB.BEFORE_XSDB_PTR);
DECLARE /* BEFORE TREATMENT SEGMENT x/
1 BEFORE_DATA BASED(BEFORE_XSDB.SEGMENT_DATA_PTR),
3 BEFORE_DATA_TRTDATE CHAR(6), /* SEGMENT KEY */
3 BEFORE_DATA_MEDICINE CHAR(10),
3 BEFORE_DATA_QUANTITY CHAR(4),
3 BEFORE_DATA_DOCTOR CHAR(10) ;

DECLARE
1 PATH_XSDB LIKE XSDB BASED(PATH_XSDB_PTR) ;
DECLARE /* PATIENT SEGMENT */
1 PATH_DATA BASED (PATH_XSDB.SEGMENT_DATA_PTR),
3 PATHSEG_PATNO CHAR(5), /* SEGMENT KEY %/
3 PATHSEG_NAME CHAR(10),
3 PATHSEG_ADDR CHAR(30); DECLARE
1 PATH2_XSDB LIKE XSDB BASED(PATH2_XSDB_PTR);
DECLARE /* PATIENT SEGMENT */
1 PATH2_DATA BASED (PATH2_XSDB.SEGMENT_DATA_PTR),
3 PATH2SEG_ILLDATE CHAR(6), /* SEGMENT KEY */
3 PATH2SEG_ILLNAME CHAR(10) ;
DECLARE PATH2_XSDB_PTR POINTER;
DECLARE /* TREATMENT TABLE ROW x*/
1 TREATROW BASED (XPCB.EXIT_WORK_PTR),
3 COL_PATNUM CHAR(5), /* FROM LEVEL 1 KEY x/
3 COL_ILLDATE CHAR(6), /* FROM LEVEL 2 KEY x/
3 COL_TRTDATE CHAR(6), /* FROM LEVEL 3 KEY =%/
3 COL_MEDICINE CHAR(10) , /* FROM LEVEL 3 %/
3 COL_QUANTITY CHAR(4) ; /* FROM LEVEL 3 =%/

EXEC SQL
INCLUDE SQLCA;
/* - DB2 TREATMENT TABLE DECLARATION =x/

EXEC SQL
DECLARE SYSADM.TREATMNT TABLE
(PATNUMB VARCHAR (5) NOT NULL,
DATEILL VARCHAR (6) NOT NULL,

76 IMS : Exit Routines

DATETRT VARCHAR (6) NOT NULL,
MEDICAT VARCHAR (10) NOT NULL,
AMOUNT VARCHAR (4) NOT NULL);

DECLARE
INSERT_FUNCTION
DELETE_FUNCTION
REPLACE_FUNCTION
CASCADE_FUNCTION

DECLARE ZERO FIXED BINARY (31) STATIC

INIT(O);
FIXED BINARY (31) STATIC
INIT(16);

DECLARE SIXTEEN

PATH2_XSDB_PTR = PATH_XSDB.NEXT_PTR;
TREATROW.COL_PATNUM = PATH_DATA.PATHSEG_PATNO;

/* CALL FUNCTIONS =x/
CHAR(4) STATIC INIT('ISRT'),
CHAR(4) STATIC INIT('DLET'),
CHAR(4) STATIC INIT('REPL'),
CHAR(4) STATIC INIT('CASC');

TREATROW.COL_TLLDATE = PATH2_DATA.PATH2SEG_ILLDATE;

TREATROW.COL_TRTDATE
TREATROW.COL_MEDICINE
TREATROW.COL_QUANTITY

EXEC SQL

WHENEVER SQLWARNING CONTINUE;
EXEC SQL

WHENEVER SQLERROR GOTO BADSQL;
EXEC SQL

WHENEVER NOT FOUND GOTO BADSQL;
IF XPCB.PATH_XSDB_PTR = XPCB.NULL_PTR

THEN DO;
GOTO BADPATH; /* PATH NOT SPECIFIED */
END; ELSE DO; /* PRE-SET CODES TO ZERO x*/

XPCB.EXIT_RETURN_CODE = ZERO;

XPCB.EXIT_REASON_CODE ZERO;

END;
/* </
/* IF CALLED FOR DELETE OR CASCADE, */
/> PERFORM THE DB2 DELETE. */

/
IF XPCB.PHYSICAL_FUNCTION = DELETE_FUNCTION
THEN DO;

EXEC SQL
DELETE FROM SYSADM.TREATMNT
WHERE PATNUMB = ::TREATROW.COL_PATNUM AND
DATEILL = ::TREATROW.COL_ILLDATE AND
DATETRT = ::TREATROW.COL_TRTDATE;
END;

/*

SEGMENT_DATA.SEGMENT_DATA_TRTDATE;
SEGMENT_DATA.SEGMENT_DATA_MEDICINE;
SEGMENT_DATA.SEGMENT_DATA_QUANTITY;

*/

/* IF CALLED FOR INSERT, DO DB2 INSERT CALL */
- -/

/
IF XPCB.CALL_FUNCTION = INSERT_FUNCTION
THEN DO;
EXEC SQL
INSERT INTO SYSADM.TREATMNT
VALUES (: : TREATROW.COL_PATNUM,
: : TREATROW.COL_ILLDATE,
: : TREATROW.COL_TRTDATE,
: : TREATROW.COL_MEDICINE,
: : TREATROW.COL_QUANTITY) ;
END;

/* </
/* IF CALLED FOR REPLACE, UPDATE THE */
/* THE DB2 ROW, IF A FIELD DESTINED TO x/
/* THE DB2 DATA BASE HAS BEEN CHANGED. x*/

/
IF XPCB.CALL_FUNCTION = REPLACE_FUNCTION
THEN DO; 7% REPLACE */
IF (SEGMENT_DATA.SEGMENT_DATA_MEDICINE =
BEFORE_DATA. BEFORE_DATA_MEDICINE) |
(SEGMENT_DATA.SEGMENT_DATA_QUANTITY =
BEFORE_DATA.BEFORE_DATA_QUANTITY)
THEN DO; /* UPDATE */
EXEC SQL
UPDATE SYSADM.TREATMNT
SET MEDICAT

: :SEGMENT_DATA.SEGMENT_DATA_MEDICINE,

AMOUNT = ::SEGMENT_DATA.SEGMENT_DATA_QUANTITY

WHERE PATNUMB = ::TREATROW.COL_PATNUM AND
DATEILL = ::TREATROW.COL_ILLDATE AND
DATETRT = ::TREATROW.COL_TRTDATE;
END; /* OF UPDATE =*/
END; /* OF REPLACE =x/
STOP;

Chapter 2. Database Manager exit routines 77

BADSQL: DO;
XPCB.EXIT_RETURN_CODE
XPCB.EXIT_REASON_CODE
END;

BADPATH: DO;
XPCB.EXIT_RETURN_CODE
XPCB.EXIT_REASON_CODE
END;

END DLI2DB2B;

DISPLAY (SQLERRM) ;

16;
SQLCODE;

16;
14;

Sample Extended Program Communication Block (XPCB)

The segment that is passed in a dependent region and has the Data Capture exit routine defined for it
can use the XPCB to identify the segment and call functions, provides the address of a work area, and
contains additional information that is passed to the Data Capture exit routine.

This topic provides examples of the XPCB in assembler, COBOL, and PL/I.

Subsections:

« “Assembler” on page 78
« “COBOL” on page 78

e “PL/I” on page 79

Assembler

The following code sample is an example of the XPCB in assembler.

SPACE 3
XPCB DSECT
XPCB_EYECATCHER
XPCB_VERSION
XPCB_RELEASE
XPCB_EXIT_NAME
XPCB_EXIT_RETURN_CODE
XPCB_EXIT_REASON_CODE
XPCB_DATABASE_NAME
XPCB_DBD_VERSION_PTR
XPCB_SEGMENT_NAME
XPCB_CALL_FUNCTION
XPCB_PHYSICAL_FUNCTION

XPCB_DB_PCB_PTR
XPCB_DB_PCB_NAME
XPCB_INQY_OUTPUT_PTR
XPCB_IO_PCB_PTR
XPCB_ENVIRONMENT _FLAGS
XPCB_IMS_ENH_SUPPORT
XPCB_IMS_RRS_ENABLED
XPCB_CALL_AT_COMMIT
XPCB_LOGX_FORMAT
XPCB_EXIT_WAS_CALLED
XPCB_DPROP_EXIT

XPCB_CONC_KEY_LENGTH
XPCB_CONC_KEY_PTR
XPCB_DATA_XSDB_PTR
XPCB_BEFORE_XSDB_PTR
XPCB_PATH_XSDB_PTR
XPCB_SETS_ROLS_TOKEN

XPCB_EXIT_WORK_PTR
XPCB_ZERO_POINTER

XPCB_TIMESTAMP
EJECT

COBOL

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
EQU
EQU
EQU
EQU
EQU
EQU
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

CL4
CL2
CL2
CL8

CL8
CL8

CL4
CL4

OO0
-
o b

CeLrNA®
Rowoooo

OTMI>>TTTEEIZI>IXXXXXXXX>>

—
0o

"XPCB" EYECATCHER

XPCB VERSION INDICATOR
XPCB RELEASE INDICATOR
SEGMENT EXIT NAME
RETURN CODE FROM EXIT
REASON CODE FROM EXIT
PHYSICAL DATA BASE NAME
ADDRESS OF DBD VERSION ID
PHYSICAL SEGMENT NAME
CALL FUNCTION

PHYSICAL CALL FUNCTION

ADDRESS OF
NAME OF DB
ADDRESS OF "INQY" OUTPUT

ADDRESS OF I/0 PCB

ENVIRONMENT FLAGS

RRS SUPPORT IS AVAILABLE IN SYSTEM
RRS=Y WAS SPECIFIED

SET BY EXIT - CALL DURING COMMIT
REDUCED 9904 FORMAT

INTERNAL FLAG USED BY IMS

SET BY DPROP EXIT ROUTINE

RESERVED

LENGTH OF CONCATENATED KEY

ADDRESS OF CONCATENATED KEY
ADDRESS OF XSDB FOR DATA

ADDRESS OF XSDB FOR REPL DATA
ADDRESS OF XSDB FOR PATH DATA
TOKEN FOR SETS-ROLS CALL

RESERVED

RESERVED

ADDRESS OF WORK AREA

ZERO ADDRESS

RESERVED

TIMESTAMP OF CALL

DB PCB
PCB

The following code sample is an example of the XPCB in COBOL.

78 IMS : Exit Routines

01 XPCB.

@5 EYECATCHER PIC X(04).
05 VERSION PIC X(02).
05 RELEASE-ID PIC X(02).
05 EXIT-NAME PIC X(08).
05 EXIT-RETURN-CODE PIC 9(04) COMP.
05 EXIT-REASON-CODE PIC 9(04) COMP.
05 DATABASE-NAME PIC X(08).
05 DBD-VERSION-PTR POINTER.
05 SEGMENT-NAME PIC X(08).
@5 CALL-FUNCTION PIC X(04).
05 PHYSICAL-FUNCTION PIC X(04).
05 FILLER PIC 9(08) COMP.
@5 DB-PCB-PTR POINTER.
05 DB-PCB-NAME PIC X(08).
05 INQY-OUTPUT-PTR POINTER.
@5 T0-PCB-PTR POINTER.
05 ENVIRONMENT-FLAGS PIC X.
88 IMS-ENH-SUPPORT VALUE X'80'.
* RRS SUPPORT IS AVAILABLE IN SYSTEM
88 IMS-RRS-ENABLED VALUE X'40'.
* RRS=Y WAS SPECIFIED
88 CALL_AT_COMMIT VALUE X'20'.
* SET BY EXIT - CALL DURING COMMIT
88 XPCB_LOGX_FORMAT VALUE X'10'.
* REDUCED 9904 FORMAT
88 XPCB_EXIT_WAS_CALLED VALUE X'08'.
* INTERNAL FLAG USED BY IMS
88 XPCB_DPROP_EXIT VALUE X'04'.
* SET BY DPROP EXIT ROUTINE
05 FILLER PIC X.
* RESERVED
05 CONC-KEY-LENGTH PIC 9(04) COMP.
05 CONC-KEY-PTR POINTER.
05 DATA-XSDB-PTR POINTER.
05 BEFORE-XSDB-PTR POINTER.
05 PATH-XSDB-PTR POINTER.
05 FILLER POINTER.
05 FILLER POINTER.
05 FILLER POINTER.
05 EXIT-WORK-PTR POINTER.
05 NULL-PTR POINTER.
05 FILLER POINTER.
05 TIMESTAMP PIC X(08).
PL/I
The following sample is an example of the XPCB in PL/I.
DECLARE
1 XPCB BASED (XPCB_PTR) ,
3 EYECATCHER CHAR(4), /% "XPCB" EYECATCHER */
3 VERSION CHAR(2), /* XPCB VERSION INDICATOR */
3 RELEASE CHAR(2), /* XPCB RELEASE INDICATOR */
3 EXIT_NAME CHAR(8), /* SEGMENT EXIT NAME */
3 EXIT_RETURN_CODE FIXED BINARY (15), /* RETURN CODE */
3 EXIT_REASON_CODE FIXED BINARY (15), /* REASON CODE */
3 ATABASE_NAME CHAR(8), /* PHYSICAL DATA BASE NAME */
3 DBD_VERSION_PTR POINTER, /* ADDRESS OF DBD VERSION ID */
3 SEGMENT_NAME CHAR(8), /* PHYSICAL SEGMENT NAME */
3 CALL_FUNCTION CHAR(4), /% CALL FUNCTION */
3 PHYSICAL_FUNCTION CHAR(4), /* DL/I PHYSICAL FUNCTION */
3 FILLER1 FIXED BINARY (31), /* RESERVED */
3 DB_PCB_PTR POINTER, /* ADDRESS OF DB PCB */
3 DB_PCB_NAME CHAR(8), /x NAME OF DB PCB */
3 INQY_OUTPUT_PTR POINTER, /* ADDRESS OF "INQY" OUTPUT =/
3 IO_PCB_PTR POINTER, /* ADDRESS OF I/0 PCB */
3 ENVIRONMENT-FLAGS CHAR(1), /* Environment Flags */
/* IMS-ENH-SUPPORT X'80' RRS SUPPORT AVAILABLE IN SYSTEM «/
/* IMS-RRS-ENABLED X'40' RRS=Y WAS SPECIFIED */
/* CALL_AT_COMMIT X'20' SET BY EXIT-CALL DURING COMMIT */
/* XPCB_LOGX_FORMAT X'10' REDUCED 9904 FORMAT */
/* XPCB_EXIT_WAS_CALLED X'08' INTERNAL FLAG USED BY IMS */
/* XPCB_DPROP_EXIT X'04' SET BY DPROP EXIT ROUTINE */
3 NEWFILLER CHAR(1), /* Reserved */

3 CONC_KEY_LENGTH FIXED BINARY (15), /% LENGTH OF FULLY x/
/* CONCATENATED KEY FOR SEGM */
/* ADDRESS OF PHYSICAL FULLY =%/

3 CONC_KEY_PTR POINTER,

Chapter 2. Database Manager exit routines 79

/* CONCATENATED KEY FOR SEGM %/

3 DATA_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */

/* PHYSICAL SEGMENT DATA */
3 BEFORE_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */

/* PHYSICAL BEFORE DATA */
3 PATH_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */

/* PHYSICAL PATH DATA */
3 FILLER3 POINTER, /* RESERVED */
3 FILLER4 POINTER, /* RESERVED */
3 FILLER5 POINTER, /* RESERVED */
3 EXIT_WORK_PTR POINTER, /* ADDRESS OF 256 BYTE AREA */

/* FOR THE EXIT */
3 NULL_PTR POINTER, /> NULL POINTER VALUE */
3 FILLER6 POINTER, /* RESERVED */
3 CALL_TIMESTAMP CHAR(8), /* TIMESTAMP OF CALL */
3 FILLER7 POINTER; /* RESERVED FOR NULLS AT END =%/

DECLARE XPCB_PTR POINTER;

Sample Extended Segment Data Block (XSDB)

The segment that is passed in a dependent region and has the Data Capture exit routine defined for it can
use the XSDB, which points to the updated data that is passed to the Data Capture exit routine.

This topic provides examples of the XSDB in assembler, COBOL, and PL/I.
Subsections:

« “Assembler” on page 80
« “COBOL” on page 80
e “PL/I” on page 81

Assembler

The following code sample is an example of the XSDB in assembler.

SPACE 3
XSDB DSECT
XSDB_EYECATCHER DS CL4 "XSDB" EYECATCHER
XSDB_VERSION DS CL2 XSDB VERSION INDICATOR
XSDB_RELEASE DS CL2 XSDB RELEASE INDICATOR
XSDB_NEXT_PTR DS A NEXT XSDB POINTER
XSDB_DATABASE_NAME DS CL8 PHYSICAL DATA BASE NAME
XSDB_SEGMENT_NAME DS CL8 PHYSICAL SEGMENT NAME
DS CL4 RESERVED
XSDB_SEGMENT_LEVEL DS H SEGMENT DATA BASE LEVEL
XSDB_KEY_LENGTH DS H LENGTH OF PHYSICAL KEY
XSDB_KEY_PTR DS A ADDRESS OF PHYSICAL KEY
XSDB_LP_KEY_LENGTH DS H LENGTH OF LOGICAL PARENT KEY
XSDB_SEGMENT_LENGTH DS H LENGTH OF SEGMENT DATA
XSDB_SEGMENT_DATA_PTR DS A ADDRESS OF SEGMENT DATA
DS F RESERVED
DS F RESERVED

COBOL
The following code sample is an example of the XSDB in COBOL.
01 XSDB

05 EYECATCHER PIC X(4).
05 VERSION PIC X(2).
05 RELEASE-ID PIC X(2).
05 NEXT-PTR POINTER.
05 DATABASE-NAME PIC X(8).
05 SEGMENT-NAME PIC X(8).
05 FILLER PIC X(4).
05 SEGMENT-LEVEL PIC 9(4) COMP.
05 KEY-LENGTH PIC 9(4) COMP.
05 KEY-PTR POINTER.
05 LP-KEY-LENGTH PIC 9(4) COMP.
05 SEGMENT-LENGTH PIC 9(4) COMP.
05 SEGMENT-DATA-PTR POINTER.

80 IMS: Exit Routines

05 FILLER POINTER.
05 FILLER POINTER.

PL/I
The following code sample is an example of the XSDB in PL/I.
DECLARE
1 XSDB BASED (XSDB_PTR) ,
3 EYECATCHER CHAR(4), /* "XSDB" EYECATCHER */
3 VERSION CHAR(2) , /* XSDB VERSION INDICATOR */
3 RELEASE CHAR(2), /* XSDB RELEASE INDICATOR */
3 NEXT_PTR POINTER, /* NEXT XSDB POINTER */
3 DATABASE_NAME CHAR(8), /* PHYSICAL DATA BASE NAME */
3 SEGMENT_NAME CHAR(8), /* PHYSICAL SEGMENT NAME */
3 FILLER1 CHAR(4), /* RESERVED */
3 SEGMENT_LEVEL FIXED BINARY (15), /* SEGMENT DATA BASE LEVEL */
3 KEY_LENGTH FIXED BINARY (15), /% LENGTH OF PHYSICAL KEY */
3 KEY_PTR POINTER, /* ADDRESS OF PHYSICAL KEY */
3 LP_KEY_LENGTH FIXED BINARY (15), /% RESERVED */
3 SEGMENT_LENGTH FIXED BINARY (15), /x LENGTH OF SEGMENT DATA */
3 SEGMENT_DATA_PTR POINTER, /* ADDRESS OF SEGMENT DATA */
3 FILLER3 POINTER, /* RESERVED */
3 FILLER4 POINTER, /* RESERVED %/
3 FILLERS POINTER; /* RESERVED FOR NULLS AT END */
DECLARE XSDB_PTR POINTER;

Data conversion user exit routine (DFSDBUX1)

The purpose of the Data Conversion exit routine (DFSDBUX1) is to provide a method for modifying
segment search arguments, the key feedback area, the I/0 area, and the status code.

This topic contains Product-sensitive Programming Interface information.

The Data Conversion user exit routine (DFSDBUX1) gets control at the beginning of a DL/I call and at the
end of the call. In the exit routine, you can modify segment search arguments, the key feedback area, the
I/0 area, and the status code.

Restriction: This exit routine gets control only for calls to full-function databases.
Subsections:

« “About this routine” on page 81

« “Communicating with IMS” on page 82

« “Data security and integrity” on page 83

About this routine
Attributes of the routine

Regardless of its function, the exit routine must be written in assembler language, C language, COBOL,
or PL/I. Routines written in high-level languages running under Language Environment for z/OS are not
supported.

Binding the routine

Bind the exit routine DFSDBUX1 with the RENT attribute into an APF-authorized library. This library can be
either IMS.SDFSRESL, SYS1.LINKLIB, or any partitioned data set that can be accessed by a JOBLIB or a
STEPLIB DD statement for the IMS control, SAS, batch, or CICS region.

Loading the routine

IMS attempts to load the exit routine on the first database call. If the exit routine fails to load, IMS does
not attempt to load it again.

Other considerations

Chapter 2. Database Manager exit routines 81

A DBD generation is not required for IMS to call the exit routine.

Recommendation: Perform a DBD generation with the DATXEXIT=YES parameter for DBDs that require
the exit routine.

If you do not specify the DATXEXIT=YES parameter for a DBD, the call analyzer (DFSDLAQO) issues a
DFS2097I message if the exit routine specifies that it should continue to be called for that DBD. After
issuing message DFS20971, the call analyzer DFSDLAOO dynamically sets the DATXEXIT parameter to YES
for the DBD and continues calling the exit routine. The DFS20971 message appears only once per DBD.

If you bind an exit routine and want to prevent it from being called, remove the DFSDBUX1 exit routine
from the library in which you edited it.

If exit routine DFSDBUX1 is available to IMS, it is called regardless of the DATXEXIT parameter
specification. If the exit routine determines that the exit routine should not be called again for the DBD,
the routine returns abend code X'FF' in the SRCHFLAG field in the JCB (SRCHFLAG EQUA JCBWKR55).
Abend code X'FF' causes call analyzer DFSDLAOQO to dynamically mark the DBD as not requiring the exit
routine. In this case, the exit routine is not called again for that DBD for the duration of the execution of
this IMS or until the DMB is purged from the DMB pool.

If you use exit routine DFSDBUXZ, it is loaded and called on each database call. If you do not want to run
the DFSDBUX1 exit routine for every database, create a table in the DFSDBUX1 exit routine that includes
the names of the databases you want the routine to process every time it is called. When exit routine
DFSDBUX1 is called, it checks the table of database names. If a database name is not in that table,

the DFSDBUX1 exit routine flags that database with a X'FF' value in the JCB when it first calls it, which
indicates that the database is not processed further.

Preloading the exit routine is not necessary. After it is loaded, the exit routine remains loaded until region
termination.

Using IMS callable services with this routine
This exit is not eligible to use IMS callable services.
Issuing SVC calls

In an online environment, the exit routine might be running in cross-memory mode. To prevent OF8
abends, the exit should avoid issuing SVC calls.

Communicating with IMS

IMS uses the general purpose registers and several IMS control blocks to communicate with the
DFSDBUX1 exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The registers contain the

following:

Register Contents

0 The characters 'IN' at the start of the DL/I call and the characters 'OUT' at the end of the
DL/I call.

1 Address of the Partition Specification Table.

3 Address of the Database Program Communication Block (DBPCB).

5 Address of the PSB Directory (PDIR).

6 Address of the System Contents Directory (SCD).

7 Address of the Program Specification Block (PSB).

9 Address of the Job Control Block (JCB).

10 Address of the Segment Descriptor Block (SDB).

82 IMS: Exit Routines

Register Contents

13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.
15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore registers 0 through 14. The value of Register 15
must be a 2-byte or less positive value set as follows:

Register Contents
0 The exit routine has successfully processed the request.
non-0 The exit routine has set a status code or pseudoabend.

Data security and integrity

The exit routine is an extension of the application program with the same capabilities as the application
program; the exit routine and the application have equal authorization and limitations.

In batch, the data and the exit routine operate in unprotected key-8 storage. Online, the data and the exit
routine operate in unprotected key-7 storage. The exit routine is able to modify data or control blocks that
can affect the successful operation of the application program.

Data Entry Database Partition Selection exit routine (DBFPSE00Q)

Use the Data Entry Database (DEDB) Partition Selection exit routine to partition data for HISAM or
SHISAM secondary index databases.

Subsections:

« “About this routine” on page 83

« “Communicating with IMS” on page 85

About this routine

The DEDB Partition Selection exit routine is defined in the primary DEDB database DBD when its
secondary index databases are HISAM or SHISAM databases and user partitioning is required.

A partitioned database contains a range of secondary index keys. The DEDB Partition Selection exit
routine selects an appropriate partition based on the key value of a search key of the secondary index or
other user defined partition selection criteria. The sample partition selection exit routine DBFPSEQQ uses
the high key for each partition to determine partition selection. A DEDB Partition Selection exit routine can
have its own user partition selection criteria.

The PSELRTN= parameter on a XDFLD statement defines a DEDB Partition Selection exit routine for
HISAM or SHISAM secondary index databases.

A logical HISAM or SHISAM partition index database can include one or multiple partitions. The
PSELOPT=MULT|SNGL parameter on either a PCB statement with the PROCSEQD= parameter, or on a
XDFLD statement, determines how partitions are grouped in the index database.

The following naming rules apply to the DEDB Partition Selection exit routine:

 The exit routine name cannot be longer than 8 characters.
 The first character must be alphabetic.
« The remaining characters must be alphabetic, numeric, or #, @, $.

Chapter 2. Database Manager exit routines 83

If the PSELRTN= parameter specifies a DEDB Partition Selection exit routine name that violates one or
more naming rules, the DBDGEN utility terminates with a MNOTE 8 and message XDFLD235.

The DEDB Partition Selection exit routine supports three functions:

« PTDBINIT: Initialization
« PTDBPSEL: Partition database selection
« PTDBTERM: Termination

The PTDBINIT function is driven when a primary DEDB database that has a DEDB Partition Selection exit
routine defined in the PSELRTN= parameter on a XDFLD statement is opened.

The PTDBPSEL function is driven when a primary DEDB database is being accessed or updated using its
HISAM or SHISAM secondary index and user partitioning is requested as defined in the primary DEDB
database DBD. The DEDB Partition Selection exit routine allows you to select a user partition database
among a group of HISAM secondary index databases or a group of SHIASM secondary databases defined
in the NAME= parameter on the LCHILD statement and its corresponding XDFLD statement has the DEDB
Partition Selection exit routine defined in the PSELRTN= parameter in the primary DEDB database DBD.

The PTDBTERM function is driven when a primary DEDB database that has a DEDB Partition Selection exit
routine defined in the PSELRTN= parameter on a XDFLD statement is closed. A DEDB Partition Selection
exit routine has similar attributes as a DEDB randomizing module. Table 22 on page 84 summarizes the
attributes of a DEDB Partition Selection exit routine for HISAM or SHISAM secondary index databases.

Option to access user partition databases in a user partition group as a separate logical database

Each user partition database can be accessed as a separate database. In addition, all user partition
databases in a user partition group can be accessed as a separate logical database using PSELRTN and
PSELOPT=MULT|SNGL parameters.

When ACCESS=DB is specified or defaulted on a PCB statement with the PROCSEQD parameter, the user
partition databases in a user partition group are accessed as a secondary index to access the primary
DEDB database in an alternate sequence.

When ACCESS=INDEX is specified on a PCB statement with the PROCSEQD parameter, the user partition
databases in a user partition group are accessed as one single separate logical database. The PSELRTN
and PSELOPT=MULT|SNGL are used to control which partition database to access, and one or more
subsequent partition databases are in the separate logical database.

The SENSEGS statements in a PCB with the PROCSEQD parameter for both ACCESS=DB and
ACCESS=INDEX are the same even though the primary DEDB database is not accessed when
ACCESS=INDEX is specified. This requirement allows compatibility of PSBGEN utility and ACBGEN utility
for ACCESS=DB and ACCESS=INDEX.

Attributes of the routine

The following table shows the attributes of the Data Entry Database Partition Selection exit routine.

Table 22. Data Entry Database Partition Selection exit routine attributes

Attribute Description
IMS environments DB/DC, DBCTL.
Naming convention The name given to the load module used for partition selection should also

appear in the DBD generation associated with the database. The load module
name must be the value of the "mod" parameter of the PSELRTN= parameter
on the XDFLD statement in the DEDB DBD generation.

Link editing After you compile and test your routine, bind it into IMS.SDFSRESL,
SYS1.LINKLIB, or any operating system partitioned data set that can be
accessed by a JOBLIB or STEPLIB JCL statement for the IMS control and SAS
regions.

84 IMS: Exit Routines

Table 22. Data Entry Database Partition Selection exit routine attributes (continued)

Attribute Description

Including the routine No special steps are needed to include this routine.

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine IMS.SDFSSRC (member name DBFPSEQO0).
location

Loading and deleting the routine

One DEDB Partition Selection exit routine can be shared by both HISAM and SHISAM secondary index
databases. A DEDB Partition Selection exit routine resides in the IMS.SDFSRESL, SYS1.LINKLIB, or any
operating system partitioned data set that can be accessed by a JOBLIB or STEPLIB JCL statement for the
IMS control and SAS regions.

When a primary DEDB database has a DEDB Partition Selection exit routine defined in the PSELRTN=
parameter, IMS loads the exit at IMS initialization or at /START DB or UPDATE DB START(ACCESS)
command if the exit has not been loaded.

When a primary DEDB database is closed, its DEDB Partition Selection exit routine is logically deleted.
When all the primary DEDB databases sharing the DEDB Partition Selection exit routine are closed, the
DEDB Partition Selection exit routine is physically deleted.

When a DEDB Partition Selection exit routine is physically deleted in an IMS system, you can refresh your
DEDB Partition Selection exit routine if you need to update your exit routine. After you have refreshed
your DEDB Partition Selection exit routine in the library where it resides, issue a /STA DB or UPDATE DB
START (ACCESS) command on the primary DEDB database to load the updated DEDB Partition Selection
exit routine.

Communicating with IMS
IMS uses the entry registers, parameter list, and exit registers to communicate with the routine.
Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The registers contain the
following:

Register Contents

1 Address of parameter list mapped by DBFPTDBP macro
13 Address of save area chain for use by this routine.

14 Return address of IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the routine must restore all registers except for register 15, which must contain
one of the following:

Return code Meaning

0 Successful completion

4 Unsuccessful. If the exit function was initialization, this return code indicates that the
primary DEDB is marked unavailable for access. If the exit function was termination, the
primary DEDB is unaffected.

DEDB Partition Selection parameter list

Chapter 2. Database Manager exit routines 85

The following table describes the parameter list for the DEDB Partition Selection exit routine (mapped by
DBFPTDBP). The DBFPTDBP parameter list macro is located in the IMS macro target library SDFSMAC.

Related concepts
DEDB partitioned secondary indexes (Database Administration)

Sample data entry database randomizing routines (DBFHDC40 /
DBFHDC20 DBFHDC44 / DBFHDC24 DBFHDC2S)

A data entry database randomizing module is required for placing root segments in or retrieving them
from a DEDB.

Subsections:

« “About this routine” on page 86

« “Communicating with IMS” on page 87

About this routine
Several DEDBs can share the same routine, but all areas in a DEDB must use the same routine.
If you are using data sharing, you must use the same randomizing routine on both systems.

IMS supplies sample DEDB randomizing modules (DBFHDC40, DBFHDC20, DBFHDC44, and DBFHDC24)
on IMS.ADFSSRC. You can use one of these IMS-supplied routines or you can write your own.

Sample randomizer module DBFHDC2S is in IMS.ADFSSMPL data set. You must understand the key
structure of the database and modify this sample appropriately before you use it.

DBFHDC20 and DBFHDC24 are limited two-stage randomizers that are intended for use with the DEDB
Alter Utility.

DBFHDC20 is a two-stage randomizer that is based on DBFHDC40, and DBFHDC24 is a two-stage
randomizer that is based on DBFHDC44. They have the same attribute and interface as DBFHDC40 and
DBFHDC44.

These randomizers first hash the root key to an area by using an arbitrary 4K RAPs/area, and then re-hash
the key within the selected area by using the standard DBFHDC4x technique. As a result, a key will not
move between areas even if the total number of RAPs in the DEDB changes as a result of changes to the
ROOT or UOW parameters for any particular areas in the DBD.

However, if the number of areas that are defined in the DBD changes, a key might move between areas
across the DBD change. In that sense, they are limited two-stage randomizers because a true two-stage
randomizer would not move a key between areas even if the number of areas that are defined in the DBD
changes. Such randomizers are usually table-driven and require a detailed knowledge of the key structure
and key frequency distribution.

For purposes of the DEDB Alter utility, a DEDB that uses DBFHDC20 or DBFHDC24 can be the target of a
DBD alteration that enlarges or reduces the UOW or ROOT parameters of individual areas, so long as the
number of areas in DBD does not change.

Restrictions: When you first convert from DBFHDC40 or DBFHDC44, a full unload and reload of the DEDB
is required because DBFHDC20 and DBFHDC24 will not randomize keys to the same area or RAP as
DBFHDC40 or DBFHDC44.

DBD can be changed to specify RMNAME=(DBFHDC20,2) or (DBFHDC24,2). However, the restriction on
changing the number of areas must be obeyed because it is not enforced by IMS. Adding or deleting an
area is a database-level change for purposes of online change, even with a randomizer that is defined
as "two stage". If the DBD is changed to add or delete an area, a full unload and reload of the DEDB is
required.

The following table shows the attributes of the Data Entry Database Randomizing routine.

86 IMS : Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.dag/ims_dedbpartsecindex.htm#ims_dedbpartsecindex

Table 23. Data Entry Database randomizing routine attributes

Attribute Description
IMS environments DB/TM, DBCTL
Naming convention The name given to the load module used for randomizing functions with a

specific database should also appear in the DBD generation that is associated
with the database. The load module name must be the value of the "mod"
parameter of the RMNAME= operand on the DBD statement in the DEDB DBD
generation.

Binding After you compile and test your randomizing module, bind it into
IMS.SDFSRESL, SYS1.LINKLIB, or any operating system partitioned data set
that can be accessed by a JOBLIB or STEPLIB JCL statement for the IMS
control and SAS regions.

Including the routine No special steps are needed to include this routine.

IMS callable services This exit is not eligible to use IMS callable services.

Sample routine location IMS.ADFSSRC (member name DBFHDC40) IMS.ADFSSRC (member name
DBFHDC20) IMS.ADFSSRC (member name DBFHDC44) IMS.ADFSSRC
(member name DBFHDC24) IMS.ADFSSMPL (member name DBFHDC2S)

Loading the routine

All randomizing modules are loaded from their resident library by IMS. The name of the module is the
name that you specified in the RMNAME parameter of the DBD statement of the database description
(DBD).

Related Reading: For details on coding the RMNAME parameter, see IMS Version 15.5 System Utilities.

You can use one copy of the randomizing module to service several databases that are concurrently open.
At initialization time, the randomizing module can be placed in the main storage or the LPA (link pack
area). When running under z/0S, the randomizing module is loaded into the Common Service Area (CSA).
If you are to bind with RMODE ANY, you can load it into the Extended Common Service Area (ECSA).

Activating the routine

When an application program issues a Get Unique or Insert call that operates on a root segment of a
DEDB database, the user-supplied randomizing module is activated.

The source of the root key that IMS supplies to the randomizing routine is as follows:

- Foraroot insert, it is taken from the I/O area containing the root to be inserted.
« For a call qualified on the root key, it is the key value in the segment search argument.

Related Reading: For information about processing Get Next (GN) calls qualified on the root key and calls
with root qualification that allow a range of key values, see IMS Version 15.5 Application Programming.

The key is supplied to the randomizing module for conversion to a relative block number and anchor point
number within the database. In addition to the key supplied by an application program, parameters from
the DBD generation associated with the database being used are available to the randomizing module.

Communicating with IMS
IMS uses the entry and exit registers to communicate with the routine.
Contents of registers on entry

On entry to the randomizing module, the registers contain the following:

Register Contents

0 Number of entries in the MRMB (total number of areas in the DEDB).

Chapter 2. Database Manager exit routines 87

Register Contents

1 Address of first MRMB the routine uses.

2 Size of an entry in the MRMB.

3 Address of the root key.

4 Length of the root key in bytes.

5 Total number of RAPs in the DEDB.

6 Address of an eight-word area that the randomizing module can use.
10 Address of the EPST (Extended Partition Specification Table).

11 Address of the ESCD (Extended System Content Directory).

13 Address of save area. The routine must not change the first three words
14 Return address to IMS.

15 Entry point of randomizing module.

The randomizing module must neither change the key value nor modify any control blocks.

Note: When you run z/0OS batch utilities (such as DBFUCDX0 or MSDB-to-DEDB conversion), register 10
contains decimal -1 (X'FFFFFFFF') and register 11 contains zeros. Specific utilities might have additional
communication requirements.

Description of parameters
MRMB

To support the facility of randomizing within an area, the routine is passed the address of a
Randomizing Module Block (MRMB).

Each area has one 3-word entry. MRMB entries are built in the same order as their associated AREA
macros in the DBDGEN for the database. The content of an entry is mapped by DBFMRMB macro and
contains the following;:

MRMB DSECT

MRMBARTD DS OF START IS WORD-ALIGNED

MRMBARTC DS F ADDRESS OF THE AREA SELECTED
MRMBARTI DS F NUMBER OF ANCHOR POINTS IN THIS AREA
MRMBARTN DS F CUMULATIVE NUMBER OF ANCHOR POINTS

* IN ALL AREAS OF THE DEDB UP TO AND

* INCLUDING THIS ONE

MRMBARTZ DS OF END OF THIS ENTRY, START OF NEXT
MRMBARTL EQU MBMBARTZ-MRMBARTD

* LENGTH OF A SINGLE ENTRY

Caller Environment
This field contains 4-byte characters to allow the XCI randomizer to distinguish between the IMS
online or OS batch caller. The value 'IMS ' indicates IMS online caller, and the value 'OS ' indicates OS
batch caller.

Contents of registers on exit

Before returning to IMS, your routine must restore all registers, except for registers 0, 1, and 15, which
must contain the following:

Register Contents

0 Relative root anchor point number within the selected area (O for first root anchor point).
1 DMAC address of the area selected.

15 Return code interpreted as follows:

88 IMS : Exit Routines

Register Contents

Return code Meaning

0 Register 1 contains the address of the area selected. If the area is not
contained in the DMCB or the HSSP sublist, ABENDU1021 is issued.
4 Status 'FM' needs to be issued.

Any other return code causes ABENDU1021 to be issued.

When randomizing through the entire DEDB, the randomizing module must derive an area and a relative
root anchor point number to conform to the exit interface. You can use the third word of the MRMB entry
to accomplish this.

Related concepts

“Guidelines for writing IMS exit routines” on page 3
Use the guidelines in this information to write IMS exit routines, enable IMS exit routines to perform
functions with callable services, and reference all callable service return and reason codes.

Related reference

“Routine binding restrictions” on page 9

If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

Database Description (DBD) Generation utility (System Utilities)

Sample DEDB randomizing routines (DBFHDC40)
You can use the IMS-supplied sample DEDB randomizing modules DBFHDC40 on IMS.ADFSSRC.

The sample exit routine is based on the generalized Randomizing Routine (DFSHDC40) and has been
modified to work with DEDB databases. The modifications are:

1. The module uses the DEDB input and output interfaces.

2. The module can return an anchor point in block 1, because DEDB areas do not use a bit map at this
location.

Extended call interface (XCI) option

The XCI option specifies that this DEDB uses the extended call interface when making calls to the
randomizer.

The extended call interface (XCI) option can be specified in the RMNAME= parameter list in the DBD
statement of a DBDGEN.

Subsections:

« “About this routine” on page 89

e “Communicating with IMS” on page 90

About this routine

The XCI option specifies that this DEDB uses the extended call interface when making calls to the
randomizer. This option allows the XCI randomizer to be called in 3 different ways. On initialization of
IMS, or during a /START DB command, IMS will first load the randomizer and then make an 'INIT' call to
the randomizer to invoke its initialization routines. During a /DBR DB command, IMS will make a 'TERM'
call to the randomizer to invoke the termination routines before unloading the randomizer. The normal
randomizing call is made when the application issues a GU or ISRT call on a root segment. The XCI
randomizer option is valid only for DEDBs.

Attributes of the routine

Chapter 2. Database Manager exit routines 89

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.sur/ims_dbdgen.htm#ims_dbdgen

The attributes of the routine are the same as the non-XCI randomizer.
Invoking the routine

An XCI randomizer is invoked with an initialization call during Fast Path initialization and during a /START
DB command. The XCI randomizer is invoked with a termination call during a /DBR DB command.

Otherwise, a regular randomizing call is made to the XCI randomizer when an application program issues
a GU or ISRT call which operates on a root segment of a DEDB database, just as in a non-XCI randomizer.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the routine.

Note: In an OS batch caller environment, you can set the values of the IMS name and ECB address fields
to zeros. These fields are normally used for randomizing, initialization, and termination calls, but are not
used in an OS batch caller environment.

Contents of registers on entry for a randomizing call

On entry for a randomizing call, register 0 contains the constant 'XCI ' (be sure to include a space after the
'XCIY).

Register 1 contains the address of the parameter list with the following layout.

Table 24. Sample Parameter List for a Randomizing Call

Hex Offset Contents

X'0' 0

X'4' Number of areas

X'8' Address of randomizing module block (MRMB)

X'c' Size of MRMB

X'10' Address of key

X'14' Key length

X'18' Total number of route anchor points (RAPs)

X'1C' Address of work area

X'20' Any user data

X'24' 0 (XCI parameter version field)

X'28' 8-byte IMS name with trailing blanks

X'30' IMS level, specified as the value of the &DFSLEV variable of the DFSLEV macro
X'34' 8-byte PSB name with trailing blanks

X'3C' 8-byte caller environment label with trailing blanks: IMS for an online IMS caller or OS for

an OS batch caller

Contents of registers on entry for an initialization call

On entry for an initialization call, register O contains the constant 'XCI ' (be sure to include a space after
the 'XCI').

Register 1 contains the address of the parameter list with the following layout.

90 IMS : Exit Routines

Table 25. Sample Parameter List for an Initialization Call

Hex Offset Contents

X'0' 4

X'4' Address of the DEDB master control block (DMCB)

X'8' Address of an event control block (ECB)

X'B' Any user data

X'10' 0 (XCI parameter version field)

X'14' 8-byte IMS name with trailing blanks

X'1C' IMS level, specified as the value of the &DFSLEV variable of the DFSLEV macro

X'20' 8-byte caller environment label with trailing blanks: IMS for an online IMS caller or OS for

an OS batch caller

Contents of registers on entry for a termination call

On entry for a termination call, register 0 contains the constant 'XCI ' (be sure to include a space after the
'XCI').

Register 1 contains the address of the parameter list with the following layout.

Table 26. Sample Parameter List for a Termination Call

Hex

Offset Contents

X'0' 8

X'4' Address of the DEDB master control block (DMCB)

X'8' Address of an event control block (ECB)

X'B' Any user data

X'10' 0 (XCI parameter version field)

X'14' 8-byte IMS name with trailing blanks

X'1C! IMS level, specified as the value of the &DFSLEV variable of the DFSLEV macro

X'20' 8-byte caller environment label with trailing blanks: IMS for an online IMS caller or OS for an

OS batch caller

XCI Parameter Version Field

The content of the XCI parameter version field is determined by the version of IMS that is using the XCI
randomizer.

If the XCI randomizer runs on multiple versions of IMS, you must check the XCI version number. The
version number will be incremented when new fields are added. Before accessing fields that are added
with a new version number, the version must be checked to ensure that the fields exist.

Contents of registers on exit from a randomizing call

The contents of registers on exit from a randomizing call are as follows:

Register Contents
0 Relative root anchor point number within the selected AREA (0 for first root anchor
point).

Chapter 2. Database Manager exit routines 91

Register Contents

1 DMAC address of the AREA selected.

15 Return code interpreted as follows:

Return Code Meaning

0 Register 1 contains the address of the area selected. If the area is not
contained in the DMCB or the HSSP sublist, ABENDU1021 is issued.

4 Status 'FM' needs to be issued.

Any other return code causes ABENDU1021 to be issued.

Contents of registers on exit from an initialization call

Register Contents
1 Reason code for a non-zero return code.
15 Return code.

Contents of registers on exit from a termination call

The contents of registers on exit from a termination call are as follows:

Register Contents
1 Reason code for a non-zero return code.
15 Return code.

Data Entry Database Resource Name hash routine (DBFLHSHO)

The IMS DEDB Resource Name hash routine is used with the Internal Resource Lock Manager (IRLM) and
enables IMS and DBCTL to maintain and retrieve information about the control intervals (CIs) used by
sharing subsystems.

Subsections:

« “About this routine” on page 92

« “Communicating with IMS” on page 93

About this routine

The routine performs a hashing function on the high-order three bytes of the relative byte address (RBA)
representing a CI and uses the hashing result as a displacement into the hash table. If you are using IRLM
in your system, the routine IMS supplies (DBFLHSHO) or the replacement routine that you write yourself is
called automatically.

You can write the routine and bind it as reentrant (RENT) like the one supplied by IMS. It receives control
and must return control in 31-bit addressing mode. It must be able to execute in cross-memory and TASK
modes.

Important: All IMS systems sharing data must use the same hashing routine or the contents of DEDBs
might be lost. IMS does not check to ensure that the routines are the same.

Attributes of the routine

The following table shows the attributes of the Data Entry Database Resource Name Hash routine.

92 IMS : Exit Routines

Table 27. Data Entry Database resource name hash routine attributes

Attribute

Description

IMS environments

DB/DC, DBCTL

Naming convention

You must name this exit routine DBFLHSHO.

Binding

After you compile and test the routine, bind it into IMS.SDFSRESL or to the library
specified in the USERLIB= parameter of the IMSGEN macro statement.

Including the routine

At system definition time, you must specify the name of your routine in the UHASH
parameter of the DBC, FDR, or IMS procedure.

Related Reading: For details, see the on the UHASH and the above procedures in
IMS Version 15.5 System Definition.

IMS callable services

This exit is not eligible to use IMS callable services.

Sample routine
location

IMS.SDFSSMPL (member name DBFLHSHO)

Assembling the routine

In a multiple-IMS environment, all IMS systems must use the same hashing routine and compile that
routine at the same time. If you write your own routine, you must store the compile time in the module
using &SYSDATE and &SYSTIME. You also must place the address of the date and time in the first field of
the routine's CSECT.

Communicating with IMS

IMS uses the entry registers and parameter list, and the exit registers to communicate with the routine.

Contents of registers on entry

On entry, the routine must save all registers using the provided save area. The registers contain the

following:

Register Contents

1 Address of Extended Partition Specification Table (EPST).

13 Address of save area. The routine must not change the first three words.
14 Return address to IMS.

15 Entry point of hash routine.

Description of parameters

As input to the hashing routine, you need to supply one of the following:

- the high-order byte of an RBA.
« the names of both a database and an area.

The routine performs an EXCLUSIVELY OR on this input, stores it in a field, and returns a hash value result
to the field EPSTRSHS.

EPST (Extended

Program Specification Table) input to the routine

Register 1 points to the extended program specification table (EPST) that contains this input as follows:

Field name

Content

EPSTRSHS

Hashing routine result. Only the low-order 14 bits are significant.

Chapter 2. Database Manager exit routines 93

Field name Content

EPSTRSID Start of the lock name to be hashed. Lock resource name consists the following are
shown in the following list:

EPSTLKID
A lock identifier. If EPSTLKID = 0O, resource name is for CI. If EPSTLKID is not
zero, name is for the area. 1 byte. See the following figure.

EPSTRBA
Bit 0 through 23 of RBA. 3 bytes.

EPSTDMCB
DB Number as defined by DBRC. 2 bytes.

EPSTAREA
Area number. 1 byte.

EPSTDBNM
Database name. 8 bytes.

EPSTARNM
Area name. 8 bytes.

Cl resource name

EFPSTRBA EPSTAREA

EPSTLKID EPS'EDMGE
Y

EPST 1B| 3B ‘ 2B |1B

X'oo'

Area resource name

EPSTDENM
EPSTLKID EPSTARMM
EPST 1B| 8B ‘ 8B
Monzero

Figure 3. Lock resource name

EPST DSECT

The DSECT of the extended program specification table (EPST) (hame: DBFEPST), and the DEDB area
control list (DMAC) (name: DBFDMAC) can be used. The DMAC address is set at the EPSTDMAA field.

Related concepts

“Guidelines for writing IMS exit routines” on page 3
Use the guidelines in this information to write IMS exit routines, enable IMS exit routines to perform
functions with callable services, and reference all callable service return and reason codes.

Resource name hash routine (Database Administration)

94 IMS : Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.dag/ims_resnamehash.htm#ims_resnamehash

Sample hashing routine result format

Be aware that the IMS-supplied sample hashing routine (DBFLHSHO) has a particular layout and
organization for the segments it contains.

The following figure shows the layout of the hash value stored in EPSTRSHS using the IMS-supplied
routine DBFLHSHO.

0 17 23 27 31
Figure 4. Format of a hash value

The following table describes the segments within a hash value and their sizes.

Table 28. Segments of a hash value

Segment Description Size

A Bits 0 - 17 of EPSTRSHS 18 bits

B Bits 21 - 25 of CI RBN XOR'd COMB value | 5 bits

C Bits 26 - 29 of CIRBN * 4 bits

D Bits 16 - 20 of CI RBN XOR'd COMB value | 5 bits
2

Note:

1. COMB VALUE (bits 3 - 7) = bits 11 - 15 of DMCB XOR'd with bits 7, 6, 5, 4, and 3 of the area number.
2. CIRBN = RBA divided by the CI size.

Data Entry Database Sequential Dependent Scan utility exit
routine (DBFUMSE1)

You can write an exit routine that is used with the DEDB Sequential Dependent Scan utility to copy and
process a subset of the segments that are scanned by the utility.

Subsections:

« “About this routine” on page 95

« “Communicating with IMS” on page 96

About this routine

The DEDB Sequential Dependent Scan utility might change both the content and length of the segments
scanned. You can choose to sort or not to sort the segments.

If you do not write an exit routine, the Scan utility defaults to passing unchanged segment contents
through the range you have specified for scanning. If you do not specify a limit on the range of segments
that the utility can scan, the utility scans and copies all of the dependent segments.

Indoubt segments are not passed to this exit routine.

Related Reading: For guidance-level information to help you determine whether to write an exit routine
for use with the Scan utility, see IMS Version 15.5 Database Utilities.

You can write the routine and bind it as reentrant (RENT) like the one supplied by IMS. The routine
receives control and must return control in 31-bit addressing. The routine must be able to execute in
cross-memory and TASK modes.

Attributes of the routine

Chapter 2. Database Manager exit routines 95

The following table shows the attributes of the Data Entry Database Sequential Dependent Scan Utility
exit routine.

Table 29. Data Entry Database sequential dependent scan utility exit routine attributes

Attribute Description
IMS environments DB/DC, DBCTL.
Naming convention This exit routine has no specific naming requirements or restrictions; standard

naming conventions apply.

Link editing After you compile your routine, include it into IMS.SDFSRESL or into any
operating system partitioned data set to which access is provided with a
JOBLIB or STEPLIB control region JCL statement.

Including the routine No special steps are needed to include this routine.

IMS callable services This exit routine is not eligible to use IMS callable services.

Calling the routine

If you want IMS to call your routine instead of the IMS-supplied routine (DBFUMSEOQ), you must specify
the name of your routine in the EXIT control statement of the SYSIN DD data set of the Scan Utility JCL.

Related Reading: For details, see IMS Version 15.5 Database Utilities.

Communicating with IMS
IMS uses the entry registers, parameter list, and exit registers to communicate with the routine.
Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The registers contain the

following:

Register Contents

1 Address of parameter list. The parameter list is mapped by macro DBFUTDW.
13 Address of save area. The exit routine must not change the first three words.
14 Return address of IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the routine must restore all registers except for register 15, which must contain
one of the following:

Return code Meaning

0 Use segment.

4 Do not use segment.

Related concepts

“Guidelines for writing IMS exit routines” on page 3

Use the guidelines in this information to write IMS exit routines, enable IMS exit routines to perform
functions with callable services, and reference all callable service return and reason codes.

Related reference
“Exit routine naming conventions” on page 3

96 IMS : Exit Routines

Each routine name should adhere to naming conventions, including both standard z/OS conventions, and

conventions that are specific to the routine.

“Routine binding restrictions” on page 9

If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

Sample DEDB Sequential Dependent Scan utility exit routine (DBFUMSE1)

The sample DEDB sequential dependent scan utility exit routine is an example showing entry and exit
code to help you write your own scan routine.

The following code sample is not a usable exit routine provided by IMS nor is it found in IMS.SDFSSMPL
library.

TITLE 'DBFUMSE1 IMS DEDB ONLINE UTILITY SCAN EXIT'

%k ok k% ok ok b bk ok ok b o ok 3 b 3k ok ok % o 3k ok ok % ok bk ok % o 3k Xk ok % oF 3k ok ok % ok 3k Xk ok ¥ ok k Kk ok * ok * Kk ok * o * *

MODULE NAME : DBFUMSE1l
TITLE : STANDARD EXIT FROM SCAN UTILITY

CONTAINS RESTRICTED MATERIALS OF IBM

COPYRIGHT : REFERENCE MODULE DBFCOPYR
ENTRY POINT(S)/PURPOSE : DBFUMSE1l

FUNCTION : THIS IS A SAMPLE OF THE SCAN UTILITY USER EXIT.
ITS PURPOSE IS TO DEFINE THE INTERFACE BETWEEN
THE UTILITY AND THE EXIT. IT IS NOT INTENDED TO
BE A USABLE EXIT. IN THIS EXAMPLE, OUTPUT TO THE
SCAN DATASET IS SUPPRESSED IF THE SEGMENT BEGINS

WITH HEX ZEROES.
ENTRY INTERFACES:

REGISTERS AT ENTRY : R1 ADDRESS OF USER PARAMETER LIST
R13 ADDRESS OF SAVE AREA
R14 ADDRESS OF RETURN POINT
R15 ADDRESS OF ENTRY POINT
REGISTERS ARE SAVED AND RESTORED BY THE

CALLING MODULES.
CONTENT OF PARAMETER LIST (UTDWUSER)

UTDWDATA - ADDRESS OF SEGMENT (FULLWORD)
ZERO AFTER LAST SEGMENT
1. AT ENTRY ADDRESS OF SEGMENT
2. AT EXIT ADDRESS OF DATA TO BE
PICKED UP AND PUT INTO SCAN
OUTPUT DATA SET REFERRED TO
BY SCANCOPY DD CARD.
UTDWMIN - MINIMUM LENGTH OF SEGMENT (HALFWORD)
AS IN DBD-GENERATION
UTDWMAX - MAXIMUM LENGTH OF SEGMENT (HALFWORD)
AS IN DBD-GENERATION
UTDWUFLD - FIELD FOR USER (FULLWORD)
ZERO WITH FIRST SEGMENT,
UNCHANGED BY THE UTILITY
UTDWMOUT - MAXIMUM SEGMENT LENGTH (HALFWORD)

NOTE: THE USER MAY CHANGE LENGTH AND

CONTENT OF THE SEGMENT USING HIS
IF HOWEVER THE LENGTH
EXCEEDS THE LENGTH OF THE SCAN
OUTPUT BUFFER - 8 THE UTILITY IS

OWN WORKSPACE.

TERMINATED.
DATA/OTHER : NONE
EXIT INTERFACES :

REGISTERS AT EXIT : R15 CONTAINS RETURN CODE

RETURN CODES : 00 USE SEGMENT
04 DO NOT USE SEGMENT

DATA/OTHER : NONE
EXTERNAL ROUTINES CALLED : NONE

%k o bk ok Sk o bk ok % ok b K ok 3k b 3k % ok 3 o 3k ok ok % ok bk ok % o 3 Xk ok % ok 3k ok ok % ok %k Xk ok % ok 3k Kk ok Xk ok * Kk ok * o * *

Chapter 2. Database Manager exit routines 97

TABLES/WORKAREAS : NONE

* *
* *
* *
* REGISTER USAGE : R1 PARAMETER LIST *
* R2 SEGMENT ADDRESS *
* R12 MODULE BASE REGISTER *
* R14 RETURN ADDRESS *
* R15 RETURN CODE - 00 WRITE SEGMENT *
* 04 DO NOT WRITE SEGMENT *
* *
* MESSAGE NUMBERS : NONE *
* *
* ABEND CODES : NONE *
* *
* *

kkkkkkkkkkkkkkkkkhkkkhkkkhkkkkk

EJECT ,
*PCODE :
ook ke ok ko ok ke ok ok ke ok ok ok ok ok ok ok ok ke ok ke ok ok ke ok ok ok ok ok ok ok ok ok ok ok ko ok ke ok ok ke ok ok ke ok ok ok ok ok ok ok ok ke ok ok ke ok ok ke ok ok ok
* *
* IF SEGMENT EXISTS *
* IF THE SEGMENT STARTS WITH X'00'S *
* SET RC=4 (DON'T WRITE THE SEGMENT) *
* ELSE *
* SET RC=0 (WRITE THE SEGMENT) *
* ENDIF *
* ELSE *
* SET RC=4 (DON'T WRITE THE SEGMENT) *
* ENDIF *
* RETURN *
* *
*ENDPCODE:

SPACE 10

PRINT NOGEN

REQUATE

DBFUTDW DSECT FOR PARM LIST

SPACE 10
DBFUMSE1 CSECT

USING DBFUMSEZ1,R12 MODULE BASE REGISTER

USING UTDWUSER,R1 PARAMETER LIST BASE REGISTER

L R2,UTDWDATA GET ADDRESS OF SEGMENT

LTR R2,R2 IS THERE A SEGMENT?

BZ NOWRITE NO SEGMENT, DON'T WRITE
*

LA R2,2(,R2) SKIP PAST SEGMENT LENGTH

CLC 0(6,R2),ZEROES DOES SEGMENT START WITH 0'S?

BNE WRITESEG NON-ZERO DATA. WRITE IT.
* OTHERWISE, DON'T WRITE IT.
NOWRITE DS OH

LA R15,4

BR R14

WRITESEG DS OH
XR R15,R15

BR R14
ZEROES DC XL6'00"
END

HALDB Partition Selection exit routine (DFSPSEQ0)

You can develop a HALDB Partition Selection exit routine so that PHDAM, PHIDAM, or PSINDEX databases
can select partitions by criteria other than high key.

This topic contains Product-sensitive Programming Interface information.
Subsections:

« “About this routine” on page 98

« “Communicating with IMS” on page 100

About this routine

You can specify the name of the HALDB Partition Selection exit routine during DBD generation, with the
HALDB Partition Definition utility, or on the DBRC INIT.DB command.

Use one of the following options to specify the name of the exit routine:

98 IMS : Exit Routines

 During DBD generation, use the PSNAME keyword.
- With the HALDB Partition Definition utility, specify the exit routine name as the Partition Selection name.

 Use the PARTSEL keyword on the DBRC INIT.DB command when you register a HALDB database with
DBRC.

If you do not specify an exit routine, IMS selects a partition using the high key method and does not
invoke the HALDB Partition Selection exit routine.

The following table shows the attributes of the HALDB Partition Selection exit routine.

Table 30. HALDB partition selection exit routine attributes

Attribute Description
IMS environments DB/DC, DBCTL.
Naming convention The name given to the load module used for partition selection appears in the

DBD associated with the database, the HALDB Partition Definition utility, or
the DBRC INIT.DB command. The load module name must be the value of the
parameter of the PSNAME operand on the DBD statement, Partition Selection
name in the HALDB Partition Definition utility, or value of the parameter
PARTSEL on the DBRC INIT.DB command.

Binding After you compile and test your exit routine, bind it into IMS.SDFSRESL,
SYS1.LINKLIB, or any operating system partitioned data set that can be
accessed by a JOBLIB or STEPLIB JCL statement for the IMS control and
SAS regions.

Including the routine No special steps are needed to include this routine.

IMS callable services Thjs exit is not eligible to use IMS callable services.

Sample routine location IMS.SDFSSMPL.

Loading and deleting the routine

One HALDB Parttion Selection exit routine can be shared by multiple HALDBs. A HALDB Partition
Selection exit routine can be placed in the IMS.SDFSRESL, SYS1.LINKLIB, or any operating system
partitioned data set that can be accessed by a JOBLIB or STEPLIB JCL statement for the IMS control
region and SAS region.

When a HALDB definition in the RECON data set includes a HALDB Partition Selection exit routine
definition, IMS loads the exit during IMS initialization if the HALDB is resident, during the first application
scheduling if the HALDB is non-resident, or at the /START DB partition_name OPEN or UPDATE DB

NAME (partition_name) START(ACCESS) OPTION(OPEN) command if the exit has not already been loaded.

When a HALDB database is taken offline, the associated HALDB Partition Selection exit routine is logically
deleted from system memory. When all HALDB databases sharing a HALDB Partition Selection exit routine
are offline, the exit routine is physically deleted from system memory. The following commands will
delete the exit routine:

« UPDATE DB NAME(HALDB_master_name) STOP(ACCESS)
- UPDATE DB NAME(HALDB_master_name) STOP(UPDATES)
- /DBR DB HALDB_master_name

- /DBD DB HALDB_master_name

When a HALDB Partition Selection exit routine is not loaded, you can update or refresh the exit routine in
the library where it is stored.

Calling the routine

Chapter 2. Database Manager exit routines 99

IMS loads this routine at IMS initialization time.

The HALDB Partition Selection exit routine receives control during modification of the internal partition
definition control block and when a DL/I call requires the selection of a partition. The following processing
activities activate the HALDB Partition Selection exit routine:

Control block initialization

Control block termination

Control block modification

Selection of first partition

Selection of next partition

Selection of target partition

IMS calls a HALDB Partition Selection exit routine when an exit routine is specified for the database. When
the internal partition definition control blocks are created, modified, or terminated, this call to the exit
routine allows your exit to be aware of the current configuration of the HALDB partitions and to have
some influence on its validity for subsequent DL/I processing. The initialization call that indicates that the
control blocks were created occurs prior to authorizing and opening the partition data sets.

Cross memory mode

The following factors determine whether your HALDB Partition Selection exit routine is called in cross-
memory mode:

« The IMS environment, either online (DLI) or batch (DBB)
« The call type, either control block manipulation or partition selection

Call type Cross memory mode in batch Cross memory mode in online
environment environment

Control block manipulation No No

calls

Partition selection calls No Yes

Communicating with IMS
IMS communicates with the HALDB Partition Selection exit routine through the entry registers.
Contents of registers on entry

The HALDB Partition Selection exit routine is called with the following registers established:

Register
Contents
1
Specifies the address of the parameter list that identifies the call. The parameters are:
1
A full word that contains the number of parameters in the list. The value of 2 is specified.
2
The Exit Communication Area that is mapped by DFSPECA.
3
The Partition Definition Area that is mapped by DFSPDA.
13
Address of a standard save area. Four pre-chained save areas are provided for this exit routine to use.
14

Return address to IMS.

100 IMS : Exit Routines

15
Exit entry point address.

Area mapping

DFSPECA
Partition Exit Communication Area Mapping. Dynamically initialized from static storage.

DFSPDA
Partition Definition Area Mapping. Allocated and initialized during internal partition definition control
block initialization.

Contents of registers on exit

The HALDB Partition Selection exit routine is involved in the processing of internal partition definition
control block initialization, termination, rebuild, and partition selection. The exit routine can identify

some processing and control block conditions as errors, according to your specifications. The exit routine
informs IMS of the response to the error condition by specifying a return code. The return code is returned
in field PECRC of the Partition Exit Communication Area (DFSPECA). The action that IMS takes depends on
both the return code that is supplied by the exit routine and the call reason for invoking the exit routine.
The exit routine can request IMS to stop the database or issue a pseudo abend. The following return
codes can be sent to IMS:

Return code

Description
0
Normal return. No exception processing required.
4
Abnormal return. IMS can stop the database during control block calls, and IMS passes a status code
FM back to the application program.
8

Pseudo abend return. IMS issues user abend 3499.

12
Exception return. No more partitions are available for Select Next processing. IMS treats this condition
as the end of the HALDB.

Depending on the call reason and call history, IMS takes certain actions when return code 12 is received
from the HALDB Partition Selection exit routine. The rules are as follows:

1. When the exit routine is called for control block initialization, termination, or modification (rebuild), the
return codes can be 0, 4, or 8. A return code of 12 or above is not supported. The return code from
a control block termination (PECTERM) call is ignored by IMS if it is 0, 4, or 8 (12 and above are not
supported). IMS terminates the control block in all cases when the return code is 0, 4, or 8 for the
PECTERM call.

2. When the exit routine is called for partition selection, return codes 0, 4, 8, and 12 are supported. If
the partition selection is "Select Next", return code 12 from the exit routine indicates that no partitions
are available. If the partition selection is "Select Target" or "Select First", return code 12 indicates a
request for ABEND 3499.

3. When the exit routine is called for any partition selection, a check is made to see whether any prior
call from the control block initialization, termination, and rebuild has resulted in a pending request for
ABEND 3499. If such a request has been made, ABEND 3499 is issued.

Related tasks
Creating HALDB databases with the HALDB Partition Definition utility (Database Administration)
Related reference

“Routine binding restrictions” on page 9
If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

Database Description (DBD) Generation utility (System Utilities)

Chapter 2. Database Manager exit routines 101

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.dag/ims_createhaldbpartdef.htm#ims_createhaldbpartdef
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.sur/ims_dbdgen.htm#ims_dbdgen

INIT.DB command (Commands)

Sample partition selection exit routine (DFSPSEQ00)

DFSPSEOQOQ contains code that supports control block initialization, termination, and modification calls, as
well as partition selection calls.

Be aware that the actual partition selection processing in the sample DFSPSEQO is based on a high key
value and not a user defined string value. The sample exit is written in assembler language and located in
the IMS Sample library.

The sample exit routine demonstrates the use of the interface and control blocks. The sample exit
performs partition selection processing by using partition high key.

Partition exit communication area mapping (DFSPECA)

The HALDB Partition Selection exit routine uses the DFSPECA communication area to communicate the
result of exit processing.

The DFSPECA storage area is dynamically initialized from static storage for each invocation of the HALDB
Partition Selection exit routine. The DFSPECA DSECT can be obtained by assembling DFSPSEIB.

DFSPECA Field Definitions:
Field
Description
PECDBN
The name of the HALDB.
PECRSWD1
Not used; the contents are unpredictable.
PECRC
Return code indicating the result of exit processing.
PECFDB
Exit feedback area consisting of two halfword fields.
The exit returns the partition ID of the partition selected in field PECFDB2.

PECKEY
Address of the key associated with the DL/I call.

PECCPID
Current Partition ID.

The partition ID of the last partition selected.
PECKEYL

The length of the key minus 1.
PECACT

The invocation action informing the exit what processing is required.
PECFLAG1

IMS control data flag. Defines additional information for exit processing.

PECINEWP
A flag indicating that one or more new partitions were added to the internal partition definition control
block. To indicate that the entry defines a partition that was not previously defined, set flag PDAFLAG1
to PDAF101 in each related PDA entry. Set the flag for the exit REBUILD call and then reset.

PECFLAG2
Flag byte available for exit use.

Note: The user exit can set PECFLAG2 to any value, but that value is not preserved across calls to the
exit routine.

102 IMS : Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.cr/compcmds/ims_initdb.htm#ims_cr3initdb

PECVRSN
A halfword with the value PECURVER that is set by IMS before invoking the partition selection exit.
The user exit can check the version number in PECVRSN with the constant PECURVER to ensure it is
using the same or higher version of the DFSPECA control block passed by IMS. If the PECVRSN value
is less than PECURVER value, a mismatch exists because the exit has been compiled with a higher
version of the DFSPECA than the one used by IMS.

PECUSER

Dynamic work area for exit use. This work area storage is not preserved across calls to the exit
routine.

Partition definition area mapping (DFSPDA)

The HALDB Partition Selection exit routine uses the DFSPDA partition definition area to define internal
partition control blocks.

The DFSPDA storage area is allocated and initialized during initialization of the internal partition definition
control block. DFSPDA storage area is maintained until the control block changes. Any control block
change causes the storage to be released and a new area allocated and initialized. Each invocation of the
HALDB Partition Selection exit routine passes the DFSPDA area. The DFSPDA DSECT can be obtained by
assembling DFSPSEIB.

DFSPDA field definitions

PDAPDE

The address of the first partition definition entry.
PDANUM

The number of DFSPDA entries.
PDARSWD1

Not used; the contents are unpredictable.
PDALSTRL

The length of the longest string that is defined for the partitions.
PDADORG

The database organization: PHDAM, PHIDAM, or PSINDEX.
PDAUSRn

Five words that are available for exit use (PDAUSR1, PDAUSR2, PDAUSR3, PDAUSR4, and PDAUSR5).

The exit routine can use these words to anchor storage that has been allocated by the exit and these
values will be available for use the next time the exit is called. The exit can also use the GETMAIN and
FREEMAIN macros.

PDAPLEN
The length of the Partition Definition Area Prefix.

DFSPDAE field definitions

PDAPN
The name of the associated partition.

PDASTRG
The address of the user-defined Partition String value. If PDASTRG is zero, it indicates a null Partition
String. This 256—byte area contains the string value that you define. You can modify this area during
Structure Initialization processing to assist in selection processing.

PDAPID
The partition ID of the associated partition.

PDARAP
The number of Root Anchor Points defined for the partition. Provided for PHDAM organization only;
otherwise, it contains zeros.

Chapter 2. Database Manager exit routines 103

PDABLKR
The number of blocks containing Root Anchor Points. Provided for PHDAM organization only;
otherwise, it contains zeros.

PDASTRGL
The length of the user string minus 1.

PDAFLAG1
IMS control data flag. Defines unique PDA entry information for exit processing.

PDAF101
A flag within PDAF101 indicating whether this PDA entry defines a new partition that was not
previously defined. When PDAF101 is on for the control block modification call, it indicates that this
entry is for a new partition; when off, PDAF101 indicates a previously defined partition.

PDAELEN
The length of the Partition Definition Area entry.

Length added to the entry address to provide the address of the next entry.

HDAM and PHDAM randomizing routines (DFSHDC40)

The DL/I HDAM and PHDAM access method requires you to supply a randomizing module for placing root
segments in, or retrieving them from, an HDAM and PHDAM database.

This topic contains Product-sensitive Programming Interface information.
Subsections:

« “About these routines” on page 104

« “Communicating with IMS” on page 106
« “Sample HDAM and PHDAM randomizing routines” on page 107

About these routines

Several databases can share the same routine, but each of those databases must be associated with a
single randomizing routine. If you are using data sharing, you must use the same randomizing routine on
all systems that share a given database.

A randomizing module uses a mathematical technique to convert a key into an address. A specific key
always converts to the same address. The randomizing module required by IMS must convert a key field
value into a relative block number and an anchor point number. The result of a randomizing routine is a
relative block number that ranges from 1 to 224-1. The anchor point number ranges from 1 to the number
of anchor points per block as defined in the database's DBD. The maximum is 255.

The key field value is supplied by an application program in the data itself for inserting segments into
the database and in an application program in an SSA (segment search argument) for retrieving segments
from a database.

Four randomizing modules are supplied with IMS. Although four are supplied, DFSHDC4O0 is the only one
recommended for use. You can use this one or write your own randomizing module.

Related Reading: To help you determine the module that best meets your need, see IMS Version 15.5
Database Administration.

If you write your own module, follow the guidelines included in this topic.
Attributes of the routine
The following table shows the attributes of the HDAM and PHDAM Randomizing routine.

Table 31. HDAM and PHDAM randomizing routine attributes

Attribute Description

IMS environments DB/DC and DBCTL.

104 IMS : Exit Routines

Table 31. HDAM and PHDAM randomizing routine attributes (continued)

Attribute Description

Naming convention The name you give to the load module used for randomizing functions with
a specific database must appear in the DBD generation associated with the
database. The load module name must be the value of the "mod" parameter
of the RMNAME= operand on the DBD statement in the HDAM and PHDAM
DBD generation.

Related Reading: For details on coding this parameter, see "Database
description (DBD) generation", in IMS Version 15.5 System Utilities.

Link editing After you compile and test a randomizing module, bind it into IMS.SDFSRESL,
SYS1.LINKLIB, or into any operating system partitioned data set that can be
accessed by a JOBLIB or STEPLIB JCL statement for the IMS control, SAS,
and batch regions.

To ensure that the routines run as they did in prior IMS releases, bind them as
neither reentrant nor reusable.

Including the routine No special steps are needed to include this routine.

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine location For the latest version of the sample routine (DFSHDC40), see IMS.ADFSSRC;
member name is DFSHDC40.

You must write, compile, and bind the randomizing module as one of the following:

REENTRANT
IMS does not serialize the database before calling the routine. A single copy of the routine is used for
the databases.

REUSABLE
IMS serializes the database before calling the routine. If the routine is used for multiple databases, it
must be written and compiled as reentrant, even if it is not bound as reentrant.

NONREUSE
IMS serializes the database before calling the routine. Each database has its own copy of the routine.

All modules receive control and must return control in 31-bit addressing mode. They must be able to
execute in cross-memory and task modes.

Loading the routine

IMS loads all randomizing modules from their resident library when the database is opened. IMS obtains
the name of the randomizing module from the name you have specified in the RMNAME parameter of the
DBD statement of the database description (DBD).

Related Reading: For details on coding the RMNAME parameter, see IMS Version 15.5 Database Utilities.

The necessary randomizing module associated with a specific database is brought into main storage at
the time the associated database is opened. It can also be placed in the LPA (link pack area). This allows
one copy of the module to service several databases that are concurrently open.

If you use any of the Local Storage Options (LSO), the randomizing module is loaded in CTL or DL/I SAS
private storage. Otherwise, the module is loaded into CSA.

Calling the routine

When an application program issues a Get Unique or Insert call that operates on a root segment of an
HDAM and PHDAM database, the randomizing module is called.

The source of the root key that IMS supplies to the randomizing routine is as follows:

Chapter 2. Database Manager exit routines 105

- For aroot insert, IMS takes the key from the I/O area containing the root to be inserted.
« For a call qualified on the root key, IMS uses the key value in the segment search argument.

Related Reading: For information on processing Get Next (GN) calls qualified on the root key and calls
with root qualification that allows a range of key values, see IMS Version 15.5 Application Programming.

The key is supplied to the randomizing module for conversion to a relative block number and anchor point
number within the database. In addition to the key supplied by an application program, parameters from
the DBD generation for the database are available to the randomizing module.

Communicating with IMS
IMS uses the entry and exit registers to communicate with the randomizing routine.
Contents of registers on entry

On entry, the randomizing routine must save all registers using the provided save area. The registers
contain the following:

Register Content

0 Address of Data Management Block (DMB).

1 Address of the DMBDACS CSECT.

7 Address of Partition Specification Table (PST).

9 Address of first byte of key field value supplied by an application program.
13 Address of save area. The exit routine must not change the first three words.
14 Return to IMS address.

15 Entry point of randomizing module.

If an HDAM and PHDAM database does not have a sequence field defined:

« The executable key length field in the CSECT named RDMVTAB is not initialized and must not be used.
« The value in register 9 module contains the address of the first byte of the segment.

If an HDAM and PHDAM database does not have a sequence field defined at the root level, the
randomizing module is given control on an insert call. All retrieval calls result in a scan of the root-level
qualification. On Get Unique (GU) calls, the scan starts at the beginning of the database. On Get Next (GN)
calls, the scan starts at the current root-level position within the database.

The randomizing module is invoked on Get calls, particularly when the database contains a secondary
index or a logical relationship. The randomizing module must produce the same results on the Get call as
it did on the Insert call.

The first eight words of the PST are available to the randomizing module as a work area. These words
are also used by DL/I and must not be used by other exit routines. If an additional work area is needed,
CSECT RDMVTAB can be expanded to provide additional space.

Internal IMS control blocks that can be of value to a randomizing routine are the Partition Specification
Table (PST), the Physical Segment Description Block (PSDB) for the root segment, and the first Field
Description Block (FDB). The FDB is the root segment key field format description.

Description of parameters

The parameters from DBD generation are available to randomizing modules. Their area is described by
the DMBDACS DSECT. It contains information such as the randomizing routine's name, anchor point
information, and the total area length. You can extend the area by an assembly and bind process to
contain any data or algorithm information.

The root 32 bytes of the RDMVTAB CSECT (described by the DMBDACS DSECT) contains constants
defined by DBDGEN. If you extend the area to include additional parameters, this field must be

106 IMS : Exit Routines

duplicated. The DMBDASZE field must be updated to reflect the total length of this area (including the
added parameters).

After assembly, you can bind the expanded RDMVTAB CSECT to replace the old one. Use an ENTRY
statement specifying the name of the DBD and an ORDER statement to make sure the original order of the
multiple CSECTs is maintained. For more information, see information on the z/OS binder and loader in
the z/OS product library.

The following DSECT defines the format of the area pointed to by register 1:

DMBDACS DSECT

DMBDANME DS CL8 NAME OF ADDR ALGORITHM LOAD MODULE
DMBDAKL DS CL1 EXECUTABLE KEY LENGTH OF ROOT

DS CL3
DMBDASZE DS H SIZE OF THIS CSECT
DMBDARAP DS H NUMBER OF ROOT ANCHOR POINTS/BLOCK
DMBDABLK DS F NUM OF HIGHEST BLOCK DIRECTLY ADDRSD
DMBDABYM DS F MAX NUMBER OF BYTES BEFORE OFLOW TO

2NDARY

DMBDARC DS CL1 RETURN CODE FROM RANDOMIZER

DS CL3 RESERVED
DMBDACP DS F RESULT OF LAST ADDRESS CONVERSION

Contents of registers on exit

Before returning to IMS, the randomizing routine must restore all registers. The parameter list pointed to
by register 1 can contain one of the following return codes:

Return code Meaning

0 Continue processing; randomizing properly.
4 Set FM status code and return to caller.
8 U812 abend.

For any randomizing routine that passes these return codes, ensure that application programs that use
the database can accept the return codes.

The return code from a randomizing module can be in either character or binary form. In other words,
X'FO"and X'0" are both valid for a return code of zero. This return code must be placed in the DMBDARC
field of the CSECT addressed by register 1.

You do not need to explicitly set a return code of zero in DMBDARC, because it is the default return code
and the field is preset to zero.

Results of the routine on exit

The result of a randomizing module conversion must be in the form BBBR where BBB is a 3-byte binary
number of the block into which a root segment is inserted or from which it is retrieved and R is a 1-byte
binary number of the appropriate anchor point, within a relative block, within a data set of the database.

This result must be placed in the CSECT addressed by register 1 in the 4-byte fixed name DMBDACP. If
the result exceeds the content of the field DMBDABLK, the result is changed to the highest block and last
anchor point of that block.

Sample HDAM and PHDAM randomizing routines

IMS supplies four randomizing module samples (DFSHDC10, DFSHDC20, DFSHDC30, and DFSHDC40)
to help you write your own HDAM and PHDAM randomizing module. The modules are linked into the
IMS.SDFSRESL data set during system definition. The modules use the following randomizing techniques:

« Modular or division method (DFSHDC10)
« Binary halving method (DFSHDC20)
« Hashing method (DFSHDC30 and DFSHDC40)

Chapter 2. Database Manager exit routines 107

Module DFSHDC40 is recommended; the source code for all four modules resides in the IMS.ADFSSRC
library. The next provides guidelines for using the sample module, DFSHDC40.

Restriction: These routines do not support nonsequenced HDAM and PHDAM databases. They all use the
key length in their calculations.

Related concepts

“Guidelines for writing IMS exit routines” on page 3

Use the guidelines in this information to write IMS exit routines, enable IMS exit routines to perform
functions with callable services, and reference all callable service return and reason codes.

Sample HDAM and PHDAM generalized randomizing routine (DFSHDC40)
You can use the IMS-supplied sample HDAM randomizing modules DFSHDC40 on IMS.ADFSSRC.

If root keys are unique and totally random storage is desired, this routine can be used for any HDAM and
PHDAM database without performing an analysis of key distributions.

This randomizing routine works with the entire key and has the following characteristics:

- Itis reentrant.
« Keys can contain any of the 256 characters, and key length can be from 1 to 256 bytes.
« It converts any key distribution (with unique key values) to a totally random address distribution.

« It never returns an address in block 1, which is always a bit map block in HDAM and PHDAM. You can
specify any number of blocks and RAPs.

« The number of blocks must be in the range between 2 and 224-1; the number of RAPs must be in
the range of 2 to 231-1 when RAPs are multiplied by blocks. The RBN subparameter of the RMNAME=
parameter of the DBD statement must be specified for the upper limit, together with DFSHDC40 as the
"mod" subparameter, if this randomizing routine is chosen.

- It allows the insertion of a dummy root at the highest block-RAP to ensure the formatting of the entire
root addressable area at load time.

The basic logic of the routine is:
1. Convert the key into a 4-byte binary number by translating the key digits twice. Determine the offset
into the translation table using the key length and individual digits. For example:

Key 123456

Digits are used in series of threes. Two work areas are used. In the first pass, the first work area
contains X'F2F3'; the second contains X'F1F2F3".

The first work area is translated into the translation table with a zero point of 4 (key length 2). The
second work area is translated into the translation table with a zero point of X'F5', the fifth digit.
These two translated numbers are multiplied and added into an accumulator. The remaining digits are
converted and added into the accumulator.

The conversion number for key 123456 is X'45683199'.
2. Translate the converted number, and set the top bit to zero to ensure a positive number.

3. Multiply the maximum number of blocks minus one by the number of RAPs. Multiply the result by the
translated key.

4. After adjustment to ensure block 1 is not used, store the result in DMBDACP.

Secondary Index Database Maintenance exit routine

You can use the Secondary Index Database Maintenance exit routine to control the density of a secondary
index by selectively suppress secondary indexing.

Subsections:

« “About this routine” on page 109

108 IMS : Exit Routines

« “Communicating with IMS” on page 110

About this routine

Two options are available to the Database Manager to control the volume of entries in secondary index
databases: the NULLVAL operand and the index maintenance exit routine. To build and maintain a sparse
index, you can use suppression of indexing, the process of withholding a prospective index pointer
segment from the index.

Use the NULLVAL operand to suppress indexing when the entire indexed field contains one specified
character or value. For example, you might want to use NULLVAL to suppress indexing when the indexed
field contains only blanks. A different NULLVAL can be specified for each indexed segment.

Alternatively, secondary indexing allows you to specify, during the DBDGEN, a user-supplied exit routine
that can selectively suppress secondary indexing. One exit routine is allowed for every secondary index;
however, one generalized routine can be written to serve several index relationships.

If you bind this exit routine as reentrant (RENT), it must be truly reentrant (it cannot depend on any
information from a previous invocation and it cannot store into itself).

If you bind this exit routine as reusable (REUSE), it must be truly reusable (it cannot depend on any
information in itself from a previous call), but it can depend on information that it saves in the specific
database segment block that is passed to it. In addition, if the same exit routine is used for two different
segments, the single copy of the exit can be called concurrently for each segment. In this case, the exit
routine must be written as reentrant.

If you bind this exit routine so that it is neither RENT nor REUSE, it can store into itself and depend on the
information saved in the database segment block that is passed to it.

The following table shows the attributes of the Secondary Index Database Maintenance exit routine.

Table 32. Secondary index database maintenance exit routine attributes

Attribute

Description

IMS environments

DB/DC, DBCTL.

Naming convention

Each exit routine must have a name unique with respect to all IMS module names
and to any other exit routines in the IMS libraries. The name of this exit routine

is specified for each DBD with the EXTRTN parameter of the XDFLD statement
submitted to the DBDGEN utility.

Before an index source segment in a database can be loaded or updated, its
EXTRTN routine must be in the system library.

Link editing

After an exit routine has been compiled and tested, it can be placed into the
IMS.SDFSRESL data set, from which it is loaded by IMS. It can also be placed in
SYS1.LINKLIB, or in any operating system partitioned data set to which access is
provided with a JOBLIB or STEPLIB JCL statement.

Including the routine

No special steps are need to include this routine.

IMS callable services

This exit routine is not eligible to use IMS callable services.

Loading the routine

The first time that an exit routine associated with the specific database is referenced, it is loaded into
storage in either the IMS online control program region or batch processing region when the associated
database is opened. The loaded routine will be used by any other databases that require the same exit
routine. This allows one copy of the module to service several databases that are open concurrently. The
routine is not refreshed during the current IMS execution.

When an index maintenance exit routine is used in either the IMS online control region or a DL/I batch
processing region and the exit routine does not exist in LINKPACK, you must provide space in the IMS

Chapter 2. Database Manager exit routines 109

control region or in the DL/I separate address space (DLISAS) to accommodate the exit routines that can
be used for online databases.

Calling the routine

When an application program issues a REPL, ISRT, or DLET call of a segment serving as an index source
segment for one or more indexing relationships, the DL/I index maintenance routine is invoked.

DLET call

In the case of DLET, an indexing segment is built corresponding to the existing index source segment. If
it passes the null value test, the index exit routine is invoked. This routine indicates whether this indexing
segment should appear in the index. If it should appear, the actual indexing segment is retrieved and
deleted; otherwise, no delete is attempted.

ISRT call

In the case of ISRT, the indexing segment is built to correspond to the segment to be inserted, and the
null value test and the exit routine tests are performed. If no suppression of indexing is indicated by
either, it is inserted into the index.

REPL call

A REPL call can be a combination of a DLET call and an ISRT call, a simple replace, or a NOP, depending
on the fields changed in the replace. If a field in the Index Source Segment (ISS) is changed by a REPL
call that changes the indexed data or subsequent data, the existing indexing segment is deleted and a
new one inserted. The index edit routine is invoked for each operation. If the change in the ISS affects a
source data field, a replace operation on the indexing segment is executed, unless the index exit routine
indicated that indexing was suppressed. If the ISS replace made no changes in the indexing segment, no
action is taken.

The suppression of indexing by the exit routine must be consistent. The same indexing segment cannot
be examined at two different times and have suppression indicated only once. If the indexing segment
contains user data, this user data cannot be used to evaluate suppression, since the actual indexing
segment is seen by the exit routine just before the insertion of a new one. In the cases of replace and
delete, only a prototype is passed. The prototype contains the constant, indexed data, subsequence data,
duplicate data, and any symbolic pointer that was added. Therefore, index suppression must not be based
on any user data.

The exit routine issues a return code and indicates either that the present index pointer segment belongs
in the index or that it should be suppressed. The exit routine must not change any IMS control blocks, or
any fields in the indexing segment.

You can include additional information about the segment in the exit routine CSECT. This CSECT is part
of the DBD, and as such can be replaced by a bind. It is of variable-length and contains a fixed-format
header. A separate CSECT is provided for each XDFLD in the DBD for which an exit routine is specified.
The availability of this CSECT is described in the exit routine specifications. You can replace this control
section in the same manner as you can the segment compression control section.

Communicating with IMS
IMS communicates with the exit routine through the entry and exit registers.
Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The registers contain the

following:

Register Contents

1 Address of Partition Specification Table (PST).

2 Address of proposed or existing index segment.

3 Address of Index Maintenance Routine Parameters CSECT.

110 IMS : Exit Routines

Register Contents

4 Address of Index Source Segment.

13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.

15 Entry point of exit routine.

Description of parameters

On entry to the routine, IMS passes the address of the CSECT shown in the following figure.

0
Indexed segment name
2]
Indexed field (XDFLD) name
16
Indexed Maintenance
exit routine name
24
Entry point address
28
CSECT length RSVD
32

User data

Figure 5. Index maintenance exit routine parameter list CSECT

The following DSECT defines the format of this CSECT:

DMBXMPRM DSECT

DMBXMSGN DS CL8 Name of indexed segment

DMBXMXDN DS CL8 Name of indexed field

DMBXMXNM DS CL8 Name of exit routine

DMBXMXEP DS A Entry point addr

DMBXMPLN DS H Total length of CSECT
DS H Not Used

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except register 15, which contains one
of the following return codes:

Return code Meaning

0 The indexing segment should appear in the index for this database segment.

4 Indexing should be suppressed.

Related reference
“Routine binding restrictions” on page 9

Chapter 2. Database Manager exit routines 111

If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

Sample Secondary Index Database Maintenance exit routine

The sample secondary index database maintenance exit routine shows entry and exit code to help you
write your own routine.

The following secondary index database maintenance exit routine example is not a usable exit routine
provided by IMS, nor is it found in the IMS.SDFSSMPL library.

AMPLE ~ TITLE 'SAMPLE OF SECONDARY INDEX EXIT ROUTINE'
kK ok ok ok ok ok ok Kk kK ok ok ok ok ok Kk ok ok ok ok ok ok ok ok ok kK ok ok ok ok ok ok ok ok K

SAMPLE OF SECONDARY INDEX DATA BASE MAINTENANCE EXIT ROUTINE

THIS SAMPLE IS NOT INTENDED TO BE A USABLE EXIT ROUTINE.
IT IS PROVIDED HERE TO SHOW ENTRY AND EXIT CODE.

THIS SAMPLE SUPPRESSES THE INDEX ENTRY IF ALL BYTES OF THE
INDEX KEY ARE BLANK.

S

*

*

*

*

*

*

*

*

*

*

* REGISTERS ON ENTRY

* R1 - PARTITION SPECIFICATION TABLE (PST) ADDRESS
* R2 - ADDRESS OF (PROPOSED OR EXISTING) INDEX SEGMENT
* R3 - ADDRESS OF INDEX MAINTENANCE ROUTINE PARMS CSECT
* R4 - ADDRESS OF INDEX SOURCE SEGMENT
* R13 - SAVE AREA ADDRESS
* R14 - RETURN ADDRESS
* R15 - ENTRY ADDRESS
*

*

*

*

*

*

*

REGISTERS ON EXIT
R15 - © TO NOT SUPPRESS THE INDEX ENTRY
- 4 TO SUPPRESS THE INDEX ENTRY
RO THRU R13 ARE RESTORED

X% % ok ok O O X X 3 3k o O O X X X X % > X X X X

kK ok ok ok ok ok ok kK kK ok ok ok ok ok Kk kK ok ok ok ok ok ok ok ok kK ok ok ok ok ok ok Kk K
SPACE 1

INDEXXIT CSECT
STM R14,R12,12(R13) SAVE REGISTERS 14 THRU 12

L R13,8(R13) SET 13 TO NEXT IMS PRE-CHAINED SAVE SET

LR R12,R15 SET 12 AS BASE

USING INDEXXIT,R12 USE R12 AS BASE FOR PROGRAM

USING PST,R1 USE R1 AS BASE FOR PST

USING XRECORD,R2 USE R2 AS BASE FOR INDEX RECORD

USING DMBXMPRM,R3 USE R3 AS BASE FOR INDEX CSECT

USING XSOURCE,R4 USE R4 AS BASE FOR INDEX SOURCE SEGMENT

SPACE 2
k ok ok ok k ok ok ok ok kK ok ok ok ok ok ok kK ok kK kK ok ok ok ok ok ok Kk ok ok kK ok ok k Kk k k
* *
* LOGIC SHOULD BE PROVIDED HERE TO DECIDE WHETHER THE INDEX RECORD *
* SHOULD BE SUPPRESSED. *
* *
* THE FOLLOWING CODE WILL TEST WHETHER THE KEY OF THE INDEX *
* RECORD IS ALL BLANK. IF THE FIELD IS ALL BLANK, THE INDEX ENTRY *
* WILL BE SUPPRESSED. *
* *
k ok ok ok ok ok kK ok ok kK ok ok ok ok ok ok kK ok kK kK ok ok k ok ok ok Kk ok ok kK ok ok k Kk k k

SPACE 1

CLC XFIELD1,BLANKS IS FIELD BLANK

BE SUPPRESS YES, SUPPRESS INDEX FOR FIELD

B NOSUPP NO, ALLOW INDEX FOR FIELD

SPACE 2
k ok ok ok ok ok kK ok ok kK ok ok ok ok ok ok kK ok kK kK ok ok k ok ok ok k ok kK kK ok ok k Kk k k
* *
* SUPPRESS RETURN, SET 4 IN R15 TO TELL IMS TO SUPPRESS THE ENTRY *
* *
k ok Kk k kK kK kK ok ok kK ok ok kK k ok kK kK ok kK kK k ok kK k ok kK k kK kK k k k *k Kk k *

SPACE 1
SUPPRESS DS OH

L R13,4(R13) BACK UP TO PRIOR SAVE AREA

RETURN (14,12),RC=4 RETURN WITH 4 IN R15

SPACE 2
k ok Kk k ok Kk kK ok ok kK ok ok kK k ok kK kK kK kK kK k ok kK k ok kK k ok kK k k k Kk k k *
* *
* NORMAL RETURN, SET © IN R15 TO TELL IMS TO NOT SUPPRESS THE INDEX *
* *
k ok Kk k ok kK kK ok kK kK k ok kK k ok kK kK ok kK kK k ok kK k kK kK k kK *k k& k x ¥ k kx *

112 IMS: Exit Routines

SPACE 1
NOSUPP DS OH

L R13,4(R13) BACK UP TO PRIOR SAVE AREA
RETURN (14,12),RC=0 RETURN WITH © IN R15
SPACE 2
BLANKS DC CL255" ' CONSTANT OF 255 BLANKS
SPACE 2
k Kk ko ko k Kk Kk Kk Kk Kk Kk Kk * %
* *
* GENERATE DSECT FOR THE INDEX RECORD *
* *
* Kk ok ok ok ok ok ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k k k k %
SPACE 1
XRECORD DSECT
XFIELD1 DS CL5
SPACE 2
k Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk * %
* *
* GENERATE DSECT FOR THE INDEX SOURCE SEGMENT *
* *
* Kk ok ok ok ok ok ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k k k k k %
SPACE 1
XSOURCE DSECT DSECT FOR INDEX SOURCE SEGMENT
XSFIELD1 DS CL5 FIELD 1 OF INDEX SOURCE SEGMENT
SPACE 2
k Kk Kk Kk Kk ok Kk Kk Kk Kk Kk Kk k Kk * %
* *
* DSECT FOR INDEX MAINTENANCE EXIT ROUTINE PARAMETER CSECT *
* *
k Kk k ok ok ok ok ok ok ok ok ok k ok k k *
SPACE 1
DMBXMPRM DSECT
DMBXMSGN DS CL8 NAME OF INDEXED SEGMENT
DMBXMXDN DS CL8 NAME OF INDEXED FIELD
DMBXMXNM DS CL8 NAME OF USER EXIT ROUTINE
DMBXMXEP DS A EXIT ROUTINE ENTRY POINT ADDRESS
DMBXMPLN DS H TOTAL LENGTH OF CSECT
DS H NOT USED
DMBUSERD DS C START OF USER DATA IF ANY
SPACE 2
k Kk Kk Kk k Kk Kk Kk Kk Kk Kk Kk Kk * %
* *
* GENERATE DSECT FOR THE IMS PST WHICH IS PASSED IN R1 *
* *
k Kk k ok ok ok ok k ok k k k k *
SPACE 1
PRINT NOGEN
IDLI PSTBASE=0
PRINT GEN
SPACE 2
k Kk ok ok ok ok ok ok ok ok ok ok k ok k k *
* *
* GENERATE EQUATES FOR SYMBOLIC REGISTERS *
* *
k ko k ok Kk Kk Kk Kk Kk Kk Kk Kk Kk k k Kk Kk k k k k k k k k k k k k k k k k k Kk *
SPACE 1
REQUATE
SPACE 2
END

Segment edit/compression exit routines

You can write a segment edit/compression exit routine to compress and expand segments of data.

This topic describes the segment edit/compression exit routine, its attributes, how to activate it, how the
routine communicates with IMS, and the restrictions that apply. The topic also provides a description of
sample segment compression/expansion modules.

Subsections:

« “About this routine” on page 114

« “Restrictions” on page 119
« “Communicating with IMS” on page 120

Chapter 2. Database Manager exit routines 113

About this routine

Segment compression saves space and can result in reduced logging. You can write an exit routine to:

- Edit or compress both fixed- and variable-length segments

« Accomplish either data edit/compression (DEDBs or full-function databases) or key edit/compression
(full-function databases only).

If you write your own exit routine, you can also allow for editing, such as encoding and decoding segments
for security purposes, and for validating and formatting data. The logic for data encoding and decoding

(or for other desired editing or formatting) can be based on information contained within the user-written
routine itself. It also can be based on information from an external source, such as data provided in the
DBD block, or from tables examined at execution time.

Segment compression is possible for both full-function databases and data entry databases (DEDBSs). You
can use either DFSCMPX0 or DFSKMPXO0, write your own, or generate one which invokes hardware data
compression.

You can apply the same exit routine to multiple segment types within the same or different databases.

Recommendation: Use the DFSCMPXO0 sample routine, because it uses z/0S services.

The segment edit/compression exit routine is optional. No default routine is called. The sample exit
routines only perform segment compression and expansion. The exit routines should be implemented
by those having overall systems or database responsibility for an installation. These routines should be
transparent to the application programs that access the databases.

Related Reading: For a list of the specific full-function databases that are supported and for additional
guidance-level information, see IMS Version 15.5 Database Administration.

Restriction: The DEDB Sequential Dependent Scan utility (DBFUMSCO) provides support for SDEP
segment decompression only if the EXPANDSEG command is specified.

Related Reading: For details on coding the EXPANDSEG command, see IMS Version 15.5 Database
Utilities.

The following table shows the attributes of the segment edit/compression exit routine.

Table 33. Segment edit/compression exit routine attributes

Attribute Description

IMS environments All environments that support databases.

Naming convention According to user's naming convention.

Link editing After an edit routine has been compiled and tested and before it is used by

the IMS system, it must be placed into IMS.SDFSRESL, SYS1.LINKLIB, or into
any operating system partitioned data set to which access is provided with a
JOBLIB or STEPLIB control region JCL statement. You must also specify one
entry point to the exit routine.

Including the routine Routine is specified in the SEGM macro for the DBDGEN.

IMS callable services Tq yse IMS callable services with this routine, you must do the following:

« Issue aninitialization call (DFSCSIIO) to obtain the callable service token
and a parameter list in which to build the function-specific parameter list for
the desired callable service.

« Use the PST address found in register 1 as the ECB.
» Link DFSCSIOO0 with your user exit.

114 IMS : Exit Routines

Table 33. Segment edit/compression exit routine attributes (continued)

Attribute Description

Sample routine location IMS.ADFSSMPL.

Attributes of the Routine

The following list describes the attributes of the segment edit/compression exit routine.

Minimum Authorization
Supervisor state in key 7.

APF Authorization
Must reside in either in IMS.SDFSRESL, SYS1.LINKLIB, or in an authorized PDS library specified in
JOBLIB or STEPLIB. It can also reside in any library specified in LNKLSTxx of SYS1.PARMLIB. It can be
in SYS1.LPALIB only if the library is included in IEAAPFxx of SYS1.PARMLIB.

Cross Memory Mode
Exit can be entered in cross-memory mode in the online environment but not in batch mode.

AMODE, RMODE
Exit resides in 24-bit and can be entered only in 24-bit.

Handling Abnormal Conditions
Any error conditions that are returned by system services on compression/expansion are handled
by the sample routine DFSCMPXO0, which sets register 0 and register 15 with abend code 2990 and
reason code before returning to caller. See the reason codes in Table 26. However, the action modules
normally pseudoabend the application with a U840 abend.

The following attributes of the segment edit/compression exit routine differ depending on the type of
database that uses the routine.

Full-Function Database
The exit routine must be coded to be serially reusable.

IMS does not reload the routine between consecutive calls to the exit. IMS loads the routine once per
segment reference. If the exit is link-edited as reusable (REUS), the same physical copy of the load
module in storage is used to satisfy all load requests.

Because IMS calls the exit by branch and link, there is no operating system serialization of exit calls.
IMS internally serializes calls to full-function database compression exits at the database level. For
HALDB database compression exits, this means that all calls to the database, regardless of which
partition the segments reside in, are serialized through the compression exit.

If the same exit name is used across more than one database or is used in a HALDB database
organization, the exit must either be coded and link-edited (bound) as reentrant and reusable, or it
must be coded as reusable but link-edited as not-reusable. If the exit is link-edited as not-reusable,
a separate copy of the exit is loaded for each segment reference and used only by that segment
reference. Code the exit as logically reentrant so that it is also serially reusable.

DEDB
If the segment edit/compression exit routine is used with DEDBs, you must write it and bind it as
reentrant. In addition, the exit routine is loaded during control region initialization rather than during
the opening of a database (as it is with a full-function database).

Loading the routine

Each time a database is opened, IMS examines each segment description to determine whether edit/
compression has been specified for that segment type. If so, the exit routine is loaded from its resident
library by IMS. IMS obtains the name of the routine from the COMPRTN parameter of the SEGM statement
of the DBD.

An IMS restart is required to refresh the loaded exit routine with a new version.

Chapter 2. Database Manager exit routines 115

Related Reading: For details on coding the COMPRTN parameter, see IMS Version 15.5 System Utilities.
Adequate storage for the edit/compression routine must be provided for both batch and online systems.

How the segment edit/compression facility works

When a segment requiring editing or compression is accessed, IMS gives your edit routine control and
provides it with the following information:

- Address of the data portion of the segment.
« Address of the segment work area.

Definition: Although the exit can be used for functions other than compression, from this point on the use
of the term compression refers to the process of converting the segment from the application program
form to the form written to external storage. The term expansion refers to the process of converting the
segment from the external storage form to the application program form.

Two types of segments can be presented to the routine: fixed length segments, with a data length that
is static and is reflected in control blocks; and variable-length segments, with its data length contained
within a field in the first two bytes of the segment itself. While a routine dealing with a single-segment
type normally does not need to recognize the differences, a more general purpose module involved with
multiple segment types can obtain sufficient information to differentiate between them. This is done by
examining data provided in the segment compression control section.

Segments being processed using the segment edit/compression facility are stored as variable-length
segments in the database. Variable-length segments have a size field in the first two bytes of the data
portion of the segment. This size field defines the length of the data portion of the segment. When
segments are defined to the application program as fixed length, your routine must expand it to the fixed
length expected by the application program. In reverse, if the application program presents a fixed-length
segment, your edit routine must add the size field to the compression segment. If the segment is a
variable-length segment, it must update the size field with the correct segment length.

Example

Although your edit routine can modify the key fields in a segment, the segment's position in the database
is determined by the original key field.

Example: If the key field of a segment type is based on last names and the database has segments
for people named Mclvor, Hurd, and Caldwell, these segments are maintained in alphabetic sequence—
Caldwell, Hurd, and Mclvor. Assume your edit routine encodes the names as follows:

Caldwell ------ > 29665
Hurd ------ > 16552
McIvor ------ > 24938

The encoded value is put in the key field. However, the segments in the database remain in their original
sequence (Caldwell, Hurd, Mclvor) rather than in the numeric sequence of the encoded values (16552,
24938, 29665). Because segments in the database are maintained in their original sequence, application
programs can issue GN calls and retrieve the correct segment even though segments are encoded. This is
also true for secondary index fields contained in index source segments.

Using the DBD table

The DBD control block has a table appended to it in the form of an assembler language CSECT. One CSECT
is filled in for each segment type that specifies the use of the segment edit/compression facility. The
CSECT contains basic information, such as the name of your edit routine and the name of the segment
type. You can extend the CSECT to contain any editing parameters or criteria you want. In other words,
some or all of the logic for editing a segment type can be put in the CSECT. You can perform different
editing operations on different segment types with a single edit routine. If you want additional information
for editing a segment type, any external source can provide it, not just the table in the DBD.

Related Reading: For information on the DBD control statement SEGM, see the section "SEGM
Statement" in IMS Version 15.5 Database Administration.

116 IMS : Exit Routines

Activating the routine

When the application program is activated and begins accessing segments, IMS interfaces with the
segment edit/compression exit routine as described in this section. In all cases, IMS passes an entry
code to the exit routine. Your exit routine must examine this entry code to determine the function to be
performed.

Activating the routine for compression

For compression, regardless of the format at the source address, the segment at the destination address
must be in variable-length format. The following figure shows the input (a fixed- or variable- length
segment) in expanded format that is passed to the edit/compression routine and output (as a variable-
length segment) in compressed format. The first data field of the destination segment is a 2-byte segment
size field.

fixed- or variable-
Input — length segment in
expanded format

v

edit/'compression
routine

.

variable-length

Output —» segment in
compressed format

Figure 6. Segment compression

Segment length

If a fixed- or variable-length segment requires compression, and the data format is such that compression
cannot take place, the addition of control information by your exit routine (indicating the segment could
not be compressed) lengthens the segment beyond the maximum length definition. To allow for this
expansion, and to allow IMS to check the validity of compression results, you can increase the size of your
segment. You can increase the size of fixed-length segments by up to 10 bytes:

- For full-function fixed-length segments, you can increase the segment size by more than 10 bytes if the
value for the COMPRTN parameter of the DBD SEGM statement specifies more. You can increase the
size of a full-function variable length segment up to the maximum defined size.

« You can increase the size of a DEDB variable length segment up to the maximum defined size plus 10
bytes, but it must not exceed 120 bytes less than the control interval (CI) size.

The length of the segment to be moved is provided in one of two places:

- If the segment length specified in the DBD is fixed, the source length is in the DMBCPSGL field.

« If the segment is defined as variable in length, the source length is provided as a binary value in the first
two bytes at the source address.

In either case, the move operation provided by the edit/compression routine must result in a 2-byte
length field, followed by the corresponding quantity of data in the segment work area.

IMS might pad a segment to a length greater than that created by your exit routine. IMS pads full-function
variable-length segments to their minimum length. IMS pads full-function fixed-length segments to their

Chapter 2. Database Manager exit routines 117

pad length if it is specified on the COMPRTN parameter of the DBD SEGM statement. IMS does not pad
DEDB segments.

Activating the routine for expansion

For expansion, the input segment has a variable-length format. The following figure shows the input (a
variable-length segment) in compressed format that is passed to the edit/compression routine and output
(as a fixed- or variable- length segment) in expanded format.

variable-length
Input ——» segment in
compressed format

v

edit/'compression
routine

.

fixed- or variable-
Output —= length segment in
expanded format

Figure 7. Segment expansion

Entry code determination

For segment expansion that occurs during the segment retrieval process, IMS examines the application
program request. If the request is satisfied by a compressed segment, a test is made to determine the
type of compression used, either key or data. Then, depending on the type of retrieval request, either
entry code 4 or 8 is passed to the expansion routine. The following criteria are used as a basis for the
decision:

- If the segment can be accepted without analysis of either a key or data field, control is transferred using
entry code 4. The segment is expanded to the form presented to the user.

- If the value of the segment sequence field requires examination prior to segment selection, an
additional check is performed to determine data or key compression. Data compression requires no
additional processing, while key compression requires activation of entry code 8. If the segment is
qualified for presentation after the key field is validated, IMS formats the segment using entry code 4
and passes it to the exit routine.

- If data field analysis is necessary to properly satisfy the DL/I call, proper expansion of the segment by
entry code 4 occurs. When the correct segment is found, it is passed to the user.

The format of the segment presented through entry codes 4 and 8 of the compression routine is identical
to that of a variable-length segment (a 2-byte segment size field followed by the appropriate quantity of
data). The exit routine must expand the segment at the destination address in correct format, either fixed
or variable-length. In the case of key compression, the exit routine must expand the segment from its
start to the sequence field. For variable-length segments, the segment data length field, after processing
by the key expansion, must reflect the length of the expanded portion of the segment at the destination
address.

Using the routine with tabled data information

You have two options for processing tabled data information:
« Include the tabled data in the DBD module itself.

118 IMS : Exit Routines

For each segment defined during DBDGEN as eligible for edit/compression, an entry is developed in an
assembly language control section. This control section can be extended by assembling and binding it
to contain any desired data or algorithm information.

« Load the tabled data when the exit routine is initialized.

Specifying INIT on the COMPRTN parameter of the SEGM statement in the DBD causes the routine

to be called for initialization processing. The routine can issue IMS callable services calls to provide
functions equivalent to the LOAD/DELETE or GETMAIN/FREEMAIN macro instructions. These calls bring
additional information into storage in the form of modules from IMS.SDFSRESL library. For example,

the routine can maintain a table of substitution characters that is separate from the executable code.
This table can reflect different combinations for different segments, resulting in a general purpose,
table-driven routine capable of processing several segment types.

IMS provides two additional entry codes that allow you to process tabled data information. IMS calls a
segment edit/compression exit routine with these entry codes if you specify the INIT keyword on the
COMPRTN parameter of the SEGM statement. With these codes, IMS passes control to the initialization
and termination subroutines immediately after the full-function database or DEDB area is opened, and
immediately before the full-function database or DEDB area is closed. Any processing required for the
database segments that cannot be directly related to any one segment can be done at this time using
these options. Initialization processing and termination processing can include the loading and deleting of
the compression algorithm table.

Code Description

12 Initialization processing call. Control is obtained for algorithm initialization processing
immediately after the full-function database or DEDB area is opened. Registers 2 and 3
are unpredictable.

16 Termination processing call. Control is obtained for algorithm termination processing
immediately before the full-function database or DEDB area is closed. Registers 2 and 3
are unpredictable.

When control is passed to the exit routine as a result of these two entry codes, execution is not in
cross-memory mode. For online systems, execution is in the control region address space or, if a DL/I
separate address space is used (LSO=S), execution is in the DL/I separate address space.

Restrictions
Keep the following restrictions in mind when using the segment edit/compression Facility:

« Because this routine becomes a part of the IMS control or batch region, any abnormal termination of
this routine terminates the entire IMS region. Any user-written segment edit/compression exit routine
should return to IMS with an abend code and a reason code instead of initiating a standard abend.

 The exit routine cannot use operating system macros such as LOAD, GETMAIN, SPIE, or STAE.

- All editing or compression of segments occurs as the segments are described in a physical database
only. For specific restrictions, see IMS Version 15.5 Database Administration.

 The exit routine must not modify or alter the relative position of a key field in a DEDB segment. If the key
field in a DEDB segment changes or moves during a compress or expand call, IMS issues abend 0799,
subcode 1. For more information about this abend, see IMS Version 15.5 Messages and Codes, Volume
3: IMSAbend Codes.

« When you specify the maximum size of the data portion of the segment in the DBD, if you use the
segment edit/compression exit routine with full-function variable-length segments, you might need to
include extra bytes. These extra bytes are needed if your exit routine makes the segment larger than
its maximum size. For example, if the maximum length of your data is 100 bytes and your exit routine
might add 2 bytes to the segment, specify 102 bytes as the maximum size. Increasing the maximum
size accounts for the size of the segment from the application program (100 bytes) and the 2 bytes
added by the exit routine. This restriction does not apply to full function fixed-length segments or to

Chapter 2. Database Manager exit routines 119

segments in DEDBs. Using the segment edit/compression exit routine for both types of segments might
increase their data sizes to values that are larger than those specified in the DBD.

Communicating with IMS

ALLIMS control blocks provided to the segment edit/compression exit routine are for reference only; no
data can be changed, including the segment at the source area address. The only modification allowed
is the alteration of the segment during the move operation from the source to the destination address.

DSECT addressability to the control blocks is provided by the IMS IDLI macro.

Contents of registers on entry

On entry to the exit routine, the registers contain the following:

Register Contents

0 Set to zero before call to exit routine. Can contain Abend code U2990 on return if the exit
routine detected an error.

1 Address of the Partition Specification Table (PST).

2 Address of the first byte of the segment to be modified (source address).

3 Address where the modified segment is returned (destination address). For DEDB
segments, this area is 10 bytes larger than the maximum segment size. For full-function
fixed-length segments, this area is 10 bytes larger than the maximum segment size,
unless a larger size was specified in the DBD. For full-function variable-length segments,
this area is the maximum segment size.

4 Address of the physical segment description block (PSDB). From this block, the field
description blocks (FDB) can be located. (Register 4 is always zero when a DEDB is
accessed by the exit routine, because the PSDB does not exist for DEDBs.)

5 Address of the segment edit/compression control section.

6 Entry code (detailed in the following section):

0 Segment compression call

4 Entire segment expansion call

8 Partial segment expansion call (full-function databases only)
12 Full-function database or DEDB area open call

16 Full-function database or DEDB area close call

7 For DEDB only, the minimum length as coded in DBD (SDBLMIN). Register 7 is only valid
for function code 0 (segment compression) and function code 4 (segment expansion).

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers.

Compressing and expanding segments

120 IMS : Exit Routines

The following two entry codes are required for segment compression and expansion; they are used when
you specify the DATA compression operand.

Code Description

0 Segment compression call. The source address points to an uncompressed segment
image as it appears in the application program input/output area.

4 Entire segment expansion call. The source address points to a compressed segment.
Application program requests qualified on a data field require the use of entry code 4 for
normal retrieval expansions.

To reduce the amount of processing overhead required with the movement of data, the following third
entry is required when the KEY compression operand is used. The KEY operand is for use with full-
function databases only. Key compression is not supported for DEDBs.

Code Description

8 Partial segment expansion call with the KEY operand (full-function databases only).
Expansion takes place from the start of the segment through the sequence field. This
facility is required if you elect to use key compression, or if you compress any field
that alters the starting position of the key field. All DL/I calls using sequence field
qualification on key compressed segments require the use of this entry code.

Description of entry codes

The entry code that is passed to the exit routine in register 6 indicates the reason IMS called the exit
routine. The five possible entry codes are described in the following sections.

Description of parameters

The length of the segment to be moved is provided in one of two places:

1. If the segment length specified in the DBD is a fixed length, the source length is in the DMBCPSGL
field.

2. If the segment is defined as variable in length, the source length is provided as a binary value in the
first two bytes at the source address.

In either case, the move operation provided by the edit/compression routine must result in a 2-byte
length field, followed by the corresponding quantity of data in the segment work area.

To help you provide parameters to the edit/compression routine, the DBD control block has a table
appended to it that is made up of assembly language control sections. One control section is developed
for each segment type to be edited or compressed. Each control section has a CSECT name equal to that
of the segment name.

These control sections are placed at the end of the DBD module. They contain information such as the
segment edit/compression routine name, the name of the segment, and the total length of that control
section. Each control section can be extended to contain any desired data or algorithm information. A
sample segment control section is shown in the following table.

Table 34. Segment edit/compression control section (DMBCPAC)

Hex offset Contents
+0 Segment name
+8 Routine name

Chapter 2. Database Manager exit routines 121

Table 34. Segment edit/compression control section (DMBCPAC) (continued)

Hex offset Contents
+10 Entry point address Flag byte | Sequence Sequence field
field length offset
-1
+18 Segment length / Total length of CSECT Reserved for exit routine
maximum length
+20 Any user data (length varies)

Information in the various fields shown in the previous code sample are as follows:

DMBCPAC DSECT

DMBCPCNM DS CL8 Segment name

DMBCPCSG DS CL8 edit/compression routine name

DMBCPEP DS A Entry point address

DMBCPFLG DS XL1 Flag byte

DMBCPKEY EQU X'02' Segment has key compression
option

DMBCPNIT EQU X'o1' Initialization processing is
required

DMBCPVLR EQU X'04' Segment is variable-length

DMBCPSEQ EQU X'08' Segment has key sequence field
defined

DMBCPJJD EQU X'10' Exit caller requests a return code
rather than hard abending.

DMBCPSQF DS XL1 Executable length of sequence
field, if defined

DMBCPSQL DS H Sequence field offset

DMBCPSGL DS H For fixed length segments -

segment length; for variable
length segments - maximum
length

DMBCPLNG DS H Total length of CSECT; fixed
length plus length of
user-defined parameters (always
a multiple of 8)

DMBCPUSR DS OF Any quantity of user-defined
data.

The first 28 bytes are constants defined by DBDGEN. When the new table is defined to include additional
parameters, these fields must be duplicated. The only exception to this rule is that the CSECT length

field must be updated to reflect the new length. After an assembly of the new table, bind is done to
exchange the new table for the old one. User-added code should not contain address constants, because
this CSECT is moved after it is loaded. Use an ENTRY statement to specify the name of the DBD when this
operation takes place, as well as an ORDER statement to ensure that the original order of multiple CSECTs
is maintained. For details about this, see the section on automatic CSECT replacement in the z/OS product
library.

If your exit routine references IMS control blocks other than the one shown in Table 34 on page 121, you
need to reassemble the routine using the current release of IMS.

Related reference

“Initialization of IMS callable services (DFSCSIIO)” on page 17

Some exit routines must initialize IMS callable services before using them. To initialize IMS callable
services, you can issue a call to entry point DFSCSIIO. DFSCSIIO returns a callable services token and a
parameter list address.

“Routine binding restrictions” on page 9

122 IMS: Exit Routines

If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

Description of sample segment compression/expansion modules

Use the sample segment compression/expansion modules to compress three, four or more repeated
strings.

Subsections:

« “About this routine” on page 123

« “The compression routine” on page 123

« “The initialization processing routine” on page 124

« “Program messages and codes” on page 124

« “Program assumptions” on page 126

About this routine

Compression/expansion examples are provided as guidance to the IMS system user.

DFSCMPX0 and DFSKMPXO0 can be used by either full-function databases or DEDBs. Both routines
perform segment compression. The only differences are:

« DFSCMPXO0 compresses three or more repeated strings. This exit routine employs z/0S services to
accomplish segment compression and expansion. For more information on these services, see the z/0OS
library. (DFSCMPXO is the recommended compression routine.)

« DFSKMPXO0 compresses four or more repeated strings. This exit routine relies on programming logic to
accomplish segment compression and expansion. (DFSKMPXO0 is not recommended, but it will continue
to be supplied and supported for compatibility reasons.)

When control is given to DFSCMPXO0 or DFSKMPXO, the program checks the entry code passed in register
6. The entry code indicates whether the request is for compression of a segment or for the partial
(full-function databases only) or entire expansion of a compressed segment. It then branches to an
appropriate routine to perform the required task. On normal completion of the task, it returns control to
the IMS Control Program with a return code of O.

Specific rules and restrictions followed in compression and expansion of a segment are detailed in this
topic. For sample code, see the IMS.SDFSSMPL library.

For the latest versions of DFSCMPX0 and DFSKMPXO0, see the IMS.SDFSSMPL library; the member names
are DFSCMPXO0 and DFSKMPXO0. Because DFSCMPXO0 provides improved performance and possibly better
compression, IBM does not recommend the use of DFSKMPXO.

The compression routine

Compression of a segment requires different data handling according to the data organization of the
segment. The two data formats are fixed and variable-length.

You can specify the KEY (full-function databases only) or DATA operand for either of the two data
formats. The following figure shows data before and after compression for both fixed- and variable-length
segments.

Chapter 2. Database Manager exit routines 123

' ™
Data before compression Data after compression
Fixed length: KEY operand (' | p | D ‘ < | b
D ‘ K ‘ D
DATA operand LL'| D | K ‘ P | D
Variable length:
KEY operand LL" [LL ‘ F“ (B} ‘ K'| D
LL ‘ D ‘ K ‘ D
DATA operand LL'| D ‘ K ‘ LL‘ FP| D
b vy

Figure 8. Data handling formats

D
data

K
pointer to the 1st CCB
LL
new statement
LL
original segment length
D'and K'
compressed data and key

Compression of a segment results in one of the four formats listed in the preceding figure, depending on
the original record format and the operand specified.

The initialization processing routine

When specified, IMS gives control to the segment edit/compression routine immediately after the
databases are opened and immediately before the databases are closed.

When a command code is given to branch to the initialization processing routine or to the termination
processing routine in the DFSKMPXO0 program, the DFSKMPXO0 program returns to the calling program. No
processing of particular data is attempted at this stage.

Program messages and codes

When a Segment Edit/Compression exit routine detects a problem and initiates a standard abend, that
abend can bring down the IMS. This severely impacts all other IMS applications running in an online
IMS environment. The Segment Edit/Compression exit routines return to the caller with an abend code
in register 0 and a reason code in register 15. Thus, abends in Segment Edit/Compression exit routines
are converted to IMS abend U0840s so that only the dependent region that the abending application is
running in is brought down.

The following table lists the abend codes.

124 IMS : Exit Routines

Table 35. Program messages and codes - abend codes

User abend Description

2989 A segment data organization is variable-length, but its length field is 2>N>32767
A fixed-length record, but the segment length in Compaction Control Table
indicates: 0>N>32767

2990 A command code passed by the control program is out of a valid range: 0>N>16

1. REASON - D4AD7E701: During a compression request, the input length of the
variable length segment is less than 2 bytes.

2. REASON - DAD7E702: During an expansion request, the input length of the
compressed segment is less than 2 bytes.

3. REASON - D4D7E703: During an expansion request, a non-zero return code was
returned by the z/OS expansion service. (CSRCESRV).

4. REASON - DAD7E704: INIT was not specified in the COMPRTN parameter of the
SEGM statement.

5. REASON - D4D7E705: Invalid function code. A command code passed by the
control program is out of valid range.

6. REASON - DAD7E706: The key field length (sequence field) plus the offset of the
key field within the segment is greater than the segment length indicated in the
segment length field of a Compression Control Table.

7. REASON - DAD7E707: The length of a segment indicated in the segment length
field of a Compression Control Table is negative.

2991 A command code is passed to compress after, or expand up to, a sequence field of a
segment. No sequence field is defined in the segment.
2992

Any of the following conditions results in an abend with this code.
Applicable to both fixed- and variable-length segments:

« AD/K length is greater than an SCL length of a segment.
Applicable only to a variable-length segment:

« AD/K length is greater than a LL length.

« ALL length is greater than an SGL length.
e ALL lengthis less than 2.

« An SGL length is less than 2.

Applicable to a fixed segment:

« An SGL length is a negative value.

D/K length =
A sum of length from the beginning of a segment to the end of a key field
(SEQUENCE FIELD).

SGL length =
A length of a segment indicated in the segment length field of a Compression
Control Table.

LL length =
A length of a variable-length record indicated in the first two bytes of a
precompressed segment.

Chapter 2. Database Manager exit routines 125

Program assumptions

All parameters and data passed by the IMS control program, such as the address of the input segment
data, the output data area address, and the length of an input segment, are considered valid data.

The IMS control program passes an address of an input segment data area in register 2 and an address of
an output data area in register 3.

The size of output data area is:

- A segment length plus two bytes for a fixed-length segment.
« The maximum segment length for a variable-length segment.
- No segment length greater than 32,767 bytes.

All segments processed by the compression routine are treated as variable-length by the IMS system
control program, regardless of their precompression format.

Although no DFSKMPXO0 sample exit routine is provided here, the exit routine is supported and supplied in
the IMS.ADFSMPL library.

Hardware data compression support

You can compress or expand full-function and DEDB databases by using Hardware Data Compression
support.

Hardware Data Compression (HDC) reduces DASD storage requirements for databases, reduces database
I/0, and improves database performance.

With HDC support, you can generate exit routines to activate the hardware-assisted data compression
available on processors. The processors use a compression technique that uses a fixed number of bits to
replace a variable number of bytes.

If compression hardware is installed, the segment is compressed or expanded using the hardware
instruction CMPSC. If compression hardware is not installed, the standard HDC exit routine calls the
z/OS CSRCMPSC macro to compress or expand the segment by activating software simulation.

HDC compresses and expands segment data by calling a compression exit routine that has been specified
on the SEGM statement during DBDGEN. This exit routine is created by binding a user-defined dictionary
and an IMS-supplied base exit routine.

The space saved by compression depends on the user-defined dictionary, which performs the translation
between compressed and uncompressed data. Different dictionaries are built for different sets of data.
You receive the best results by creating a dictionary that compresses the most frequently occurring data
in the largest databases.

If a fixed or variable-length segment requires compression and the data format is such that compression
cannot take place, then the exit routine adds control information which indicates that the segment

could not be compressed. This addition of the control information will lengthen the segment beyond the
maximum length definition. To allow for this expansion and to allow IMS to validity check the compression
results, you can add an arbitrary value of 10 bytes to the segment length.

If the segment length specified in the DBD is variable and the database is a DEDB, the length can exceed
the maximum by up to 10 bytes but must not exceed 120 bytes less than the control interval (CI) size.

If the segment length specified in the DBD is variable and the database is a HIDAM, HISAM, HDAM, or
PHDAM the length cannot exceed the DBDGEN maximum.

126 IMS : Exit Routines

Implementing HDC support

Using the Hardware Data Compression Dictionary (HDCD) utility (DFSZLDUO), you can implement
hardware compression, build a hardware compression dictionary, and compare hardware compression
statistics.

About this task

To implement hardware data compression with HISAM, HIDAM, PHIDAM, HDAM, PHDAM, and DEDB
databases, follow these steps:

Procedure

1. Create an HDC dictionary, using the Hardware Data Compression Dictionary utility (DFSZLDUO).

2. Bind the HDC dictionary to an IMS-supplied base exit routine, which produces a segment edit/
compression routine. The base module is about 1 KB and is bound with 64-KB dictionaries. Therefore,
the user exit routines require slightly more than 64 KB of memory.

3. Inthe DBDGEN SEGM statement COMPRTN parameter, specify the newly created segment edit or
compression routine and the INIT keyword. The name of the routine must not be the same as the
DBDNAME.

4. Unload the database using the old DBD.
. Create the new DBD specifying the new exit routine.
6. Reload the database using the new DBD. (A new DBD requires that you run ACBGEN.)

o1

Results
Building the HDC dictionary

To build the HDC dictionary, use a sequential variable-length file as input to the HDCD utility. This must
be a QSAM file of a variable record format and contain uncompressed segments, which are used to

build the dictionary. You can create this QSAM file with a user-written unload program, or with the HD
Reorganization Unload utility (DFSURGUOQ). Use your own data analysis to determine what uncompressed
segments to use. Use the QSAM data set with the procedure.

Exception: If you use a QSAM file created by the DFSURGUO utility, the dictionary build process includes
(will not ignore) the header and trailer records created by the DFSURGUO utility. Also, the dictionary build
process includes (will not ignore) the prefix added to each data segment by the DFSURGUO utility.

Other HDCD utility functions
In addition to creating the HDC dictionary, the HDCD utility provides:

« Compression statistics program, which is generated from the QSAM input file or from an alternate file.
By using an alternate file, you can compare statistics and evaluate the dictionary's effectiveness.

The compression statistics program:
— Calculates the potential storage savings percentage as follows:
SAVINGS=(100-((average compressed segment size/average precompressed segment size)*100)).

If the potential storage savings do not meet the HDCDCTL default parameter's criteria, a dictionary
object file is not built.

— Prints the following statistics:
- HDCDCTL parameters.
- Number of segments read.
- Smallest precompressed and compressed segment sizes.
- Largest precompressed and compressed segment sizes.
- Average precompressed and compressed segment sizes.

Chapter 2. Database Manager exit routines 127

- Potential storage savings percentage.

The value shown for either the smallest or largest uncompressed segment could represent the length
of the DFSURGUO utility header or trailer segment.

— Produces data integrity validation option.

— Produces an object file for the specific HDC dictionary, provided that the following compression
criteria are met:
- Precompressed data matches expanded data if the data integrity validation option is specified.
- Potential storage savings exceed the user-specified minimum percentage.

Related reference

“Sample JCL procedure” on page 128

To build the hardware compression dictionary, you must create a QSAM data set containing
uncompressed database segments that can be used with JCL procedures.

Sample JCL procedure

To build the hardware compression dictionary, you must create a QSAM data set containing
uncompressed database segments that can be used with JCL procedures.

Use the QSAM data set with the following JCL procedure.

HDCDBLD PROC
HDCDNAM=DFSZHDCD,
QSAMIN="USER.QSAM',

/*USER SUP. DICT NAME,8 CHARSx*/
/* INPUT QSAM FILE NAME */

QSAMIT='USER.QSAMALT', /*
DICTLIB='HDC.DICTLIB', /*
DICTNAM='DFSZHXYZ', /%
CMPXIT='USER.COMPLIB', /*

ALTERNATE QSAM FILE NAMEx/
DICTIONARY LOAD LIBRARY x/
USER DICT. MEMBER NAME =x/
COMPRESSION EXIT LIBRARY*/

CMPMBR="CMPXITO1"', /*
RGN=2048K,

SYS2=,

SOUT=%,

UNIT=SYSDA,

VOLSER=,

/1l
/1]
//
/1l
/1]
//
/1]
// USER EXIT MEMBER NAME */
//
/1]
/1l
//
//

// CYL=TRK, PRIM=5,SEC=2,BLKSZ=3120

R R S S S S S S T
//* CREATE STATISTICS AND HDC DICTIONARY OBJECT FILE. *
R S S S e S T

//HDCDGEN EXEC PGM=DFSZLDU®,REGION=&RGN, PARM=&DICTNAM
//STEPLIB DD DSN=IMS.&SYS2.SDFSRESL, DISP=SHR
//SYSPRINT DD SYSOUT=&SOUT

//SYSUDUMP DD SYSOUT=&SOUT

//HDCDIN DD DSN=&QSAMIN, DISP=SHR;

//HDCDIT DD DSN=&QSAMIT, DISP=SHR;

//HDCDOUT DD DSN=IMS.&HDCDNAM.HDCDOBJ,

// DISP=(,CATLG,DELETE),

// UNIT=&UNIT,

// SPACE=(&CYL, (&PRIM,&SEC) ,RLSE),

// DCB=(LRECL=80,BLKSIZE=&BLKSZ,RECFM=FB)
//HDCDCTL DD DUMMY /* 'DUMMY' USES DEFAULT PARMS x/
A

R R R S S S S e S
//* CREATE LOAD MODULE FROM DICTIONARY OBJECT TEXT DECK. x*
J R S S S e

//LINK1 EXEC PGM=IEWL,COND=(0,NE),

// PARM="'SIZE=(180K, 20K) ,RENT,REFR,NCAL, LET, XREF,LIST"'
//SYSLMOD DD DSN=&DICTLIB(&DICTNAM),DISP=SHR

//SYSUT1 DD UNIT=&UNIT,DISP=(,DELETE),
SPACE=(CYL, (10,1) ,RLSE)

SYSOUT=&SOUT
DSN=IMS.&HDCDNAM.HDCDOBJ,DISP=(0LD,DELETE,KEEP)

/1l

//SYSPRINT DD
//SYSLIN DD
/1%

[[F KKKk kkhhkhkhkhhkkhkhkkkkkkkkkkkkkkkkkkkkkkkkkk*k k%
//* THE USER COMPRESSION EXIT ROUTINE IS BUILT BY LINKING *

128 IMS : Exit Routines

//* MODULE DFSZLDXO® AND THE HDC DICTIONARY TOGETHER. THE =
//* THE HDC DICTIONARY MUST BE THE FIRST CSECT WITHIN THE =

//* USER EXIT ROUTINE AND ALSO BE ON A PAGE BOUNDARY. *
e b
//LINK2 EXEC PGM=IEWL,

// PARM="'SIZE=(180K,20K) ,RENT,REFR,NCAL, LET,XREF,LIST'
//SYSLMOD DD DSN=&CMPXIT (&CMPMBR) ,DISP=SHR

<litdata>

//SYSUT1 DD UNIT=&UNIT,DISP=(,DELETE),

// SPACE=(CYL, (10,1) ,RLSE)

//SYSPRINT DD SYSOUT=&SOUT
//SDFSRESL DD DSN=IMS.&SYS2.SDFSRESL,DISP=SHR
//DICTLIB DD DSN=&DICTLIB,DISP=SHR;

//
//*THE FOLLOWING CONTROL STATEMENTS MUST BE IN THE ORDER AS *

//* ILLUSTRATED. *
//* *
//* DFSZHXYZ: THE HDC DICTIONARY NAME FOR THE SEGMENT. *
//* (&DICTNAM) THIS HAS TO BE CHANGED TO A FIXED NAME OF
//* DFSZHDCD SO THAT THE COMPRESSION EXIT DRIVER =
//* CAN BE LINKED TO IT. *
//* *
//* DFSZLDXO: THE COMPRESSION EXIT DRIVER ROUTINE. *
//* *
//* &CMPMBR: USER SPECIFIED COMPRESSION/EXPANSION EXIT *
//* ROUTINE NAME THAT IS USED ON THE *
//* SEGM COMPRTN= (&CMPMBR,DATA) DBD STATEMENT. *
|] *FkxFkhkkkhkhhkkhhkkhhkkhhkxhhkkhhkhhkkhkkhkxhkxkkxkhkxkhkkkhkkkkx**

//SYSLIN DD %

CHANGE &DICTNAM(DFSZHDCD) (&DICTNAM) DICTIONARY NAME
INCLUDE DICTLIB(&DICTNAM) DICTIONARY MUST BE 1ST CSECT
INCLUDE SDFSRESL (DFSZLDX0) STANDARD COMPRESSION EXIT

PAGE DFSZHDCD
ENTRY DFSZLDXO
NAME &CMPMBR (R) (&CMPMBR) COMPRESSION EXIT

/*
// PEND

Subsection:

« “DD name descriptions” on page 129

DD name descriptions

HDCDIN DD
The input sequential variable length data set that contains the IMS database segment data that you
extracted.

HDCDIT DD
The input sequential variable length data set or an alternate file that is used to calculate the
compression statistics.

HDCDOUT DD
Output HDC dictionary object deck. The z/OS format dictionary is built and converted into a bind
compatible object deck for subsequent use in the dictionary link edit step.

SYSPRINT DD
Compression analysis statistics.

HDCDCTL DD
A data set containing the following control statements. The value specified for a control statement
must conform to the rules described for each control statement. Code the value after the keyword for
the control statement. Use a blank or a comma to separate control statements.

RECS=
The number of input records to be processed. The default is ALL. Specify a number between zero
and 2147483647. If any number outside this range is specified, the default ALL is used.

PERC=
The percentage of storage savings to be realized. The default is 5 percent. One or two digits are
allowed.

Chapter 2. Database Manager exit routines 129

INTEG=
By specifying Y or N, this keyword checks or does not check the data integrity of compressed
segments. The default is N.

Tips for hardware data compression
Hardware data compression (HDC) can help you save I/O and storage.

To decide whether to use HDC, run the HDCD utility and analyze the output statistics to determine how
much storage and I/0 savings you can achieve.

You might want to limit the use of HDC to one time per database, since its implementation requires an
unload and reload of the database.

Recommendation: Evaluate all the segments in a database before implementing compression. If you use
compression for multiple segment types, implement compression for all of them at the same time.

Because uniquely tailored dictionaries yield the most compression, you should use the dictionaries for
high-volume segments to maximize savings.

You can create more generally-tailored dictionaries for other reasons. If you know the type of data in
most segments, you can create dictionaries by using a sampling of similar data from many of those
segments. For example, you might want general dictionaries for upper-case text, mixed-case text,
numeric, alphabetic, and general mixed data. You can use these dictionaries for multiple segment types,
eliminating the need to produce unique dictionaries for each segment type.

Compression usually saves I/O for sequential processing and can also save I/0 for random processing.
Typically, savings for random processing is realized with large database records, especially if the record
is spread over multiple blocks or CIs. Compression can reduce the number of blocks or CIs that must
be read to access a segment. This is likely to apply to twin chains of multiple blocks or Cls, even after
reorganizations.

Return codes from the HDCD utility

The HDCD utility ends and issues one of five return codes.

The following return codes can be issued from the HDCD utility:

Code Description
0 Utility ended successfully and issued the accompanying DFS11701 message.
4 Utility ended successfully and issued the accompanying DFS1171W message, but it did

not build a dictionary because the requested storage savings percentage was not met.

8 Utility ended successfully and issued the accompanying DFS1172E message, but it did
not build a dictionary because data integrity checks were detected between a source
QSAM input record and its equivalent re-expanded record.

12 Utility ended unsuccessfully and issued the accompanying DFS1173W message,
because z/OS CSRCMPSC is not installed on the machine.

16 Utility ended unsuccessfully and issued the accompanying DFS1174E message, because
a logic error occurred during invocation of the CSRCMPSC compression service macro.

Related Reading: For more information about these messages, refer to IMS Version 15.5 Messages and
Codes, Volume 4: IMSComponent Codes.

Sequential Buffering Initialization exit routine (DFSSBUXO0)

This exit routine can dynamically control the use of Sequential Buffering (SB) for online and batch IMS
subsystems, as well as DBCTL.

Subsections:

130 IMS: Exit Routines

« “About this routine” on page 131

« “Communicating with IMS” on page 131

About this routine

By using one of the five sample SB routines that IMS provides or one that you write, you can:

« Disallow the use of SB.

« Specify that SB be conditionally activated by default whenever IMS detects a sequential I/O pattern in
batch or BMP regions.

« Change the IMS default values for the number of buffer sets in each SB buffer pool.

The SB exit routine (DFSSBUXO) is called before each application program or utility. This enables the exit
routine to dynamically change SB options and parameters and dynamically control how your system uses

SB.

The following table shows the attributes of the Sequential Buffering Initialization exit routine.

Table 36. Sequential Buffering initialization exit routine attributes

Attribute

Description

IMS environments

DB/DC, DBCTL.

Naming convention

You must name this exit routine DFSSBUXO.

Binding

After you compile and test your module, bind it into IMS.SDFSRESL, SYS1.LINKLIB,
or into any operating system partitioned data set that can be accessed by a JOBLIB
or STEPLIB JCL statement for the IMS control, SAS, and batch regions.

Including the routine

No special steps are needed to include this routine.

IMS callable services

This exit is not eligible to use IMS callable services.

Loading the routine

IMS loads the routine at IMS initialization time.

Considering performance
DFSSBUXO is called frequently during the scheduling of MPPs and PSBs of CICS in a DBCTL environment.

If you modify an

SB sample routine or write your own routine, code it to minimize overhead during the call

to the routine for these programs.

Communicating with IMS

IMS uses the entry registers, parameter list, and exit registers to communicate with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The registers contain the

following;:

Register Contents

1 Address of parameter list.

10 Address of partition specification table (PST).

11 Address of SCD.

13 Address of save area. The exit routine must not change the first three words.
14 Return address of IMS.

Chapter 2. Database Manager exit routines 131

Register Contents

15 Entry point of exit routine.

Description of parameters

DFSSBUXO receives the address of a parameter area in Register 1. This parameter area is mapped by the
DFSSBUXP macro and contains:

« The region type (batch, BMP, MPP, Fast Path, DBCTL) in the SBPRMREG field.

 The job, program, and PSB names. (Exceptions: IMS utilities executed without a PSB have a DBD name
instead of a PSB name.)

» The message classes of the message region (when running in an MPP region).
« The IMS default values for SB options and parameters.

The following paragraphs describe how DFSSBUXO0 can change the default values of SB options in the SB
parameter area. Each change applies only to the current application program or utility being invoked. The
DSECT of the parameter area is presented at the end of the discussion.

Disallowing the use of SB

The SBPRMPDI hit determines whether the use of SB is disallowed. The default value for this bit is off.
DFSSBUXO can set this bit on, however, to disallow the use of SB and cause IMS to ignore any PSBGEN or
SB control card requests to the contrary. You can set this bit during peak periods of online use to save real
storage space, especially if your system's real-storage is already constrained.

Conditionally activating SB by default

The SBPRMPAD bit determines whether IMS conditionally activates SB by default. The default value for
this bit is off. DFSSBUXO can set this bit on, however, so that IMS samples I/O reference pattern statistics
of batch and BMP application programs. If IMS detects both a sequential I/O pattern and a reasonable
activity rate, IMS activates SB. This occurs only if PSBGEN and SB control cards provide no specifications
to override this process.

Exception: Since statistic sampling has an initialization overhead each time an application program is
scheduled, IMS does not support conditionally activating SB by default for MPPs, Fast Path regions, or
CICS applications.

You might want to use DFSSBUXO to conditionally activate SB by default in the following situations:

« To activate SB for specific batch and BMP programs and for IMS utilities by setting the bit according to
the program, job, or PSB name for a program

- To always set the bit to activate SB for all BMP and batch programs and for utilities for z/OS systems
that are not storage-constrained

« To set the bit depending on the time of day (for example, during night batch processing when most
sequential applications are running and a lot of storage is available for buffering purposes)

Changing the number of SB buffer sets

The SBPRMPNR full word field specifies a default value for the number of buffer sets (BUFSETS) in each
SB buffer pool. The default value for this field is 4. However, DFSSBUXO can set this field to a value
ranging from 1 to 25, inclusive. If this value is greater than 1, SB can anticipate the future database calls
of a BMP or batch program by concurrently reading the next set of blocks while IMS is processing current
database calls.

Recommendation: If your databases are well organized, set a default BUFSETS value of 2 or 3 to save
virtual storage space. If your databases are poorly organized, however, you can set a default BUFSETS
value of 6 or greater to increase the chance that what your application program or utility is looking for is
already in a buffer set.

DFSSBUXO can also change the default BUFSETS value based on the time of day. For example, you might
want DFSSBUXO to choose a small value for BUFSETS during daytime main online processing time and a
larger value during night batch processing time.

132 IMS: Exit Routines

The following DSECT describes the format of the SB parameter area:

SBPRMP DSECT
*

SBPRMP1 ~EQU * *xxxx READ-ONLY INFO FOR EXIT
SBPRMJOB DC cLg' JOBNAME
SBPRMPGM DC cLe* PGM NAME (BLANK FOR CICS)
SBPRMPSB DC cLg' PSB NAME

SBPRMCLA DC CL4' IMS MESSAGE CLASSES
SBPRMREG DC X'00' REGION-TYPE

SBPRMRE1 EQU 1 ...BATCH (EXCLUSIVE CICS)
SBPRMRE2 EQU 2 ...CICS
SBPRMRE3 EQU 3 ...BMP
SBPRMRE4 EQU 4 ...MPP
SBPRMRE5 EQU 5 ...IFP (FAST PATH)

DC XL3'00" RESERVED
*

DS OF
SBPRMP2 EQU * ok MODIFIABLE SB PARMS FOR EXIT
SBPRMPNR DC F'o' NBR OF BUFFER-SETS
SBPRMPFL DC X'00' FLAGS
SBPRMPDI EQU X'80" ...DISALLOW USAGE OF SB
SBPRMPAD EQU X'40' ...CONDITIONAL SB ACTIVATION BY DEFAULT
*
SBPRMPL EQU *-SBPRMP LENGTH OF PARAMETER AREA

Contents of registers on exit
Before returning to IMS, the exit routine must restore all registers.

Related concepts

“Guidelines for writing IMS exit routines” on page 3

Use the guidelines in this information to write IMS exit routines, enable IMS exit routines to perform
functions with callable services, and reference all callable service return and reason codes.

OSAM sequential buffering (Database Administration)
Related reference

“Routine binding restrictions” on page 9
If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

Sample SB initialization routines

Use the sample SB initialization routines in present form, modify, or use as guidelines for writing your own
SB routine.

IMS supplies five SB sample routines. The first module disallows the use of SB; the next four cause IMS to
conditionally activate SB by default.

SB sample Description
routines
DFSSBU1 The sample Sequential Buffering (SB) exit routine disallows the use of SB.

For the latest version of the DFSSBU1 source code, see the IMS.SDFSSMPL library.

DFSSBU2 This sample exit routine causes IMS to activate Sequential Buffering (SB) by default
when IMS detects a sequential I/O reference pattern and reasonable activity rate.
This exit routine can be used for DataRefresher IMS utilities that can benefit from
SB in both batch and BMP regions.

For the latest version of the DFSSBU2 source code, see the IMS.SDFSSMPL library.

Chapter 2. Database Manager exit routines 133

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.dag/ims_osamseqbuffer.htm#ims_osamseqbuffer

SB sample
routines

Description

DFSSBU3

This sample exit routine causes IMS to activate Sequential Buffering (SB) by default
when it detects a sequential I/O reference pattern and reasonable activity rate. In
batch regions, this applies to all application programs and utilities; in BMP regions,
this applies to DataRefresher, as well as those IMS utilities that can benefit from
SB.

For the latest version of the DFSSBU3 source code, see the IMS.SDFSSMPL library.

DFSSBU4

This sample exit routine causes IMS to activate Sequential Buffering (SB) by default
when it detects a sequential I/O reference pattern and reasonable activity rate.
This applies to all application programs and utilities in both batch and BMP regions.

For the latest version of the DFSSBU4 source code, see the IMS.SDFSSMPL library.

DFSSBU9

134 IMS : Exit Routines

This sample exit routine either disallows the use of sequential buffering (SB) or
causes IMS to activate SB by default based on specific times of day. The routine is
coded as follows:

« The time between 1100 hours and 1400 hours is the peak period for processing
online transactions. During this time frame, SB is disallowed.

« During the time between 0900 hours and 1100 hours, and 1400 hours and
1700 hours, SB is neither disallowed nor activated by default for batch and BMP
regions.

» The rest of the time, SB is conditionally activated by default for batch and BMP
regions.

For the latest version of the DFSSBU9 source code, see the IMS.SDFSSMPL library.

Chapter 3. Transaction Manager exit routines

Transaction Manager exit routines provide support for message processing, including specialized routing
and editing of messages. Additional routines perform terminal functions, provide security, and facilitate
sign on and sign off support.

2972/2980 Input edit routine (DFS29800)

The 2972/2980 Input Edit Routine processes each entered message segment after that message
segment has been translated by IMS.

This topic contains Product-sensitive Programming Interface information.
Subsections:

« “About this routine” on page 135

« “Communicating with IMS” on page 136

About this routine

An input edit routine is required to perform terminal-related functions inherent in the design of the
2972/2980 General Banking Terminal system. IMS passes control to the 2972/2980 Input Edit Routine to
process each entered message segment after that message segment has been translated by IMS.

The 2972/2980 Input edit routine must perform the following functions:

1. Determine the IMS destination (SMB or CNT) of messages entered from a 2980 teller or administrative
station.

2. Determine end-of-message of multisegment messages (by setting DECCSWST bit 7 to indicate EOM).

3. Reposition the entered data at the beginning of the input buffer for IMS processing. The entered
segment must be in standard IMS input message format after edit processing; a two-byte length field
is followed by the text.

In addition to performing the preceding required functions, the 2972/2980 Input edit routine can add
input terminal status information to the entered segment, such as the presence or absence of a passbook
or auditor key on the input terminal. The 2972/2980 Input edit routine can initiate retransmission of the
last successfully transmitted message to a 2980 logical terminal by a return code to the calling routine.

The following table shows the attributes of the 2972/2980 Input Edit exit routine.

Table 37. 2972/2980 input edit exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFS29800.

Including the routine Because the Input Edit Routine will be called directly by the IMS 2972/2980

device dependent module (DFSDN110), you must bind the input edit routine with
the IMS control region nucleus.

IMS callable services To use IMS callable services with this routine, you must issue an initialization
call (DFSCSIIO) to obtain the callable service token and a parameter list in which
to build the function-specific parameter list for the desired callable service. Use
the ECB in register 9 for the DFSCSIIO call. This exit is automatically linked to
DFSCSIOO0 by IMS. No additional linking is required to use IMS callable services.

Sample routine location No sample is provided.

© Copyright IBM Corp. 1974, 2024 135

Communicating with IMS

Familiarity with IMS terminal handling procedures and control blocks is required for a user to write an
Input edit routine to interface with IMS routines in the IMS control region. Examination of these control
blocks might be required, but modification of IMS control blocks by a user-written routine seriously
endangers the integrity of the entire system.

Contents of registers on entry

On entry to the exit routine, all registers must be saved using the save area provided. The registers
contain the following;:

Register Contents

0 Length of input buffer.

1 Address of the input area.

2 Length of input data. (The length of the area pointed to in register 1.)
7 Address of CTB.

9 Address of CLB.

11 Base of SCD.

13 Address of save area. The first three words must not be changed.

14 Return address to IMS.

15 Entry point of exit routine.

The format of the data contained in the buffer pointed to by register 1 at entry to the exit routine is as
follows:

1. 9 blanks
2. Terminal address
3. Entered text

If the entered text is from a 2980-4, the first byte of the entry is the teller identification.
Contents of registers on exit

On return to IMS, all registers must be restored except for registers 2, 10, and 15, which must contain the

following:
Register Contents
2 Data length after edit (a zero length signifies a no-data segment).
10 The inputting CNT address if a retransmission of the last successfully outputted message
is required.
15 One of the following return codes:

Return code Meaning

0 Process the entered segment.

4 Re-send the last message to the CNT in register 10.

Related reference

“Routine binding restrictions” on page 9
If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

“Initialization of IMS callable services (DFSCSIIO0)” on page 17

136 IMS : Exit Routines

Some exit routines must initialize IMS callable services before using them. To initialize IMS callable
services, you can issue a call to entry point DFSCSIIO. DFSCSIIO returns a callable services token and a
parameter list address.

4701 Transaction Input Edit routine (DFS36010)

The 4701 Transaction Input Edit routine appends a blank and the eight-byte node name to a transaction
input message. The routine also allows MPP to set up the appropriate change call for output.

This topic contains Product-sensitive Programming Interface information.
Subsections:

« “About this routine” on page 137
« “Communicating with IMS” on page 137

About this routine

This exit is provided as a sample routine that appends a blank and the eight-byte node name to a
transaction input message. If you have established a naming convention that relates node names to
LTERM names, the node name can be used by the MPP to set up the appropriate change call for output.

The following table shows the attributes of the 4701 Transaction Input Edit routine.

Table 38. 4701 transaction input edit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFS36010.

Including the routine No special steps are required to include this routine.

IMS callable services To use IMS callable services with this routine, you must issue an initialization call

(DFSCSIIO) to obtain the callable service token and a parameter list in which to
build the function-specific parameter list for the desired callable service. Use the
ECB found in register 9 for the DFSCSIOO call. This exit is automatically linked to
DFSCSIOO0 by IMS. No additional linking is required to use IMS callable services.

Sample routine location IMS.ADFSSMPL (member name DFS36010).

Communicating with IMS
IMS uses the entry and exit registers to communicate with the exit routine.
Contents of registers on entry

On entry to the exit routine, all registers must be saved using the save area provided. The registers
contain the following:

Register Contents

1 Address of the input buffer
7 Address of CTB

9 Address of CLB

11 Address of SCD

13 Address of save area

15 Entry point of exit routine

Chapter 3. Transaction Manager exit routines 137

Contents of registers on exit

On return to IMS, all registers must be restored except for register 15, which must contain the following
return code:

Return code Meaning

0 Normal processing

Related reference

“Routine binding restrictions” on page 9

If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

“Initialization of IMS callable services (DFSCSIIO0)” on page 17

Some exit routines must initialize IMS callable services before using them. To initialize IMS callable
services, you can issue a call to entry point DFSCSIIO. DFSCSIIO returns a callable services token and a
parameter list address.

BSEX: Build Security Environment user exit (DFSBSEXO0 and other
BSEX exits)

The Build Security Environment user exit provides users with a mechanism to tell IMS whether or not to
build the RACF® or equivalent security environment in an IMS dependent region for an application that has
received its input message from neither OTMA nor an LU 6.2 device.

Use the Build Security Environment user exit to tell IMS whether to build the RACF® or equivalent security
environment in an IMS dependent region for an application that has not received its input message from
OTMA or from an LU 6.2 device.

You can also use this user exit to request that IMS bypass some part of the security processing in the
dependent region when one of the following events occurs for a message that did not originate from an
OTMA or LU6.2 device:

e CHNG call.
e AUTH call.

- Deferred conversational program switch on the local system where the inputting terminal is active.
Security authorization for the deferred conversational program switch occurs only on the local system.

Subsections:

- “About this routine” on page 138
e “Communicating with IMS” on page 139

About this routine

The Build Security Environment user exit receives control before the first or next input message is given to
an IMS application program and the input message is from neither OTMA nor an LU 6.2 device.

This routine executes in key 7, non-cross-memory mode under the dependent region TCB.

The following table shows the attributes of the Build Security Environment user exit.

Table 39. Build security environment user exit attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Note: Also supported in a DBCTL environment for non-message driven BMPs.

138 IMS : Exit Routines

Table 39. Build security environment user exit attributes (continued)

Attribute

Description

Naming convention

You can name this exit routine DFSBSEXO and link it into a library that is
included in the STEPLIB concatenation.

If DFSBSEXO is linked into a library in the STEPLIB concatenation and the
USER_EXITS section of the DFSDFxxx member defines exit routines, the exit
routines defined in the DFSDFxxx member will be loaded. DFSBSEXO is only
loaded if it is listed as one of the exit routines in the DFSDFxxx member.

Alternatively, you can define one or more exit routine modules with the
EXITDEF parameter of the USER_EXITS section of the DFSDFxxx member of
the IMS.PROCLIB data set. The routines are called in the order they are listed
in the parameter.

Binding

You must write this user exit using reentrant coding techniques. You must link
your user exit into the IMS.SDFSRESL library.

If you use IMS callable services, you must link DFSCSIOO0 with your user exit.
The following is an example of the bind JCL statements needed:

INCLUDE LOAD (DFSBSEXO)
INCLUDE LOAD(DFSCSIOO)
ENTRY DFSBSEXO

NAME DFSBSEXO (R)

Including the routine

The module or modules must be included in an authorized library in

the JOBLIB, STEPLIB, or LINKLIST concatenation. No additional steps are
necessary to use a single exit routine that is named DFSBSEXO. If you use
multiple exit routines, specify EXITDEF=(TYPE= BSEX,EXIT=(exit_names)) in
the EXITDEF parameter of the USER_EXITS section of the DFSDFxxx member
of the IMS.PROCLIB data set.

IMS callable services

To use IMS callable services with this user exit, examine the value of the
SXPLATOK field in the “IMS standard user exit parameter list” on page 5:

« If SXPLATOK is zero, you cannot use IMS callable services with this user
exit.

« If SXPLATOK is non-zero, the value is the callable services token for this
user exit. You can use the 256-byte work area addressed by the SXPLAWRK
field to call DFSCSIFO.

Sample routine location No sample exit routine is provided.

Communicating with IMS

IMS uses the entry registers, the Standard User exit parameter list (SXPL), and the Build Security
Environment user exit (BSEX) parameter list to communicate with this routine.

This routine uses register 15 to communicate with IMS.

Contents of registers on entry

The contents of the registers on entry are as follows:

Register Contents
Register Contents
1 Address of the IMS Standard User exit parameter list (SXPL).

Chapter 3. Transaction Manager exit routines 139

Register Contents

13 Address of a single standard z/0S save area.
14 Return address to IMS.
15 Address of BSEX.

All other registers are undefined.
Contents of registers on exit

The contents of the registers on exit are as follows:

Register Contents
15 Return code indicating requested action:
Return Code (decimal)
Meaning
00

IMS is not to build the security environment during the scheduling phase of
the transaction. The security environment can be built later if needed for
processing a CHNG call, AUTH call, or a deferred conversational program
switch.

04
IMS is to build the security environment during the scheduling phase of the
transaction. If the security environment is needed later by a CHNG call,
AUTH call, or a deferred conversational program switch, this same security
environment is used. If the application program does not ever need the
security environment, the build of the security environment is unnecessary.

08
Invoke the SAF interface (RACF, or equivalent product) on a CHNG call, an
AUTH call, and a deferred conversational program switch, but bypass the
dynamic creation of the security environment. If the transaction is running in
the local system, and the user who entered the transaction is still signed on,
the security environment created by SIGNON is used. Otherwise, the default
security environment of the IMS control region or the IMS dependent region
is used for the SAF call. Normally, the security environment of the dependent
region is used. However, if the dependent region is running with LSO=Y or is
a BMP with PARDLI=1 specified, then the security environment of the Control
Region is used.

12
Bypass invoking the SAF interface on a CHNG call, an AUTH call, and a deferred
conversational program switch.

16
Bypass invoking the SAF interface on a CHNG call, an AUTH call, and a deferred
conversational program switch, and bypass the calls to the DFSCTRNO and
DFSCTSEQ user exits.

20
Invoke the SAF interface on a CHNG call, an AUTH call, and deferred
conversational program switch, and bypass the calls to the DFSCTRNO and
DFSCTSEO user exits.

Note:

1. For return codes 08, 12 and 16, IMS does not dynamically build the security environment during
transaction scheduling, or later for a CHNG call, an AUTH call, or a deferred conversational program
switch.

140 IMS : Exit Routines

2. When return code 16 is used, the application gets a status code in the IOPCB of blanks. For the AUTH
call, the status field in the I/O area has the value 24 (X'18"): transaction authorization not active.

All other registers are to be restored by this routine.

“IMS standard user exit parameter list” on page 5

This user exit uses the Version 6 standard exit parameter list. The address of the work area passed to this
user exit in SXPLAWRK can be different each time that this user exit is called.

If your BSEX user exit can be called in an enhanced user exit environment, additional user exit routines
might be called after your routine. When your user exit routine finds a transaction upon which to act, it
can set SXPL_CALLNXTN in the byte that SXPLCNXT points to. This tells IMS to not call additional exit
routines.

Build Security Environment user exit (BSEX) parameter list

The address of the BSEX parameter list (mapped by DFSBSEXP) on entry to this routine is contained
in field SXPLFSPL of the IMS Standard User Exit parameter list. The following table describes the BSEX
parameter list.

Table 40. BSEX parameter list (mapped by DFSBSEXO0)

Offset Field length Description

X'00' 4 bytes Transaction scheduling class.

X'04' 8 bytes Transaction code of the input transaction.
X'oC! 8 bytes PSB name.

X'14' 8 bytes Program name.

X'1C' 8 bytes User ID. Specifies one of the following:

« Actual user ID of the user who entered the transaction.

« LTERM name of the terminal from which the transaction was
entered.

« Blanks.

This is the user ID for which the security environment will be built if
requested by this exit routine.

X'24' 8 bytes Group name.
X'2C' 32 bytes Application parameter (APARM= on dependent region JCL).
X'4C' 64 bytes First 64 bytes of the input message or zeros if the input transaction
is conversational.
X'8C' 8 bytes User ID of the dependent region address space.
X'94' 1 byte Indicator for contents of user ID field:
U
User ID
L
LTERM
P
PSB name
(0]
Other name
X'95! 3 bytes Reserved.

Chapter 3. Transaction Manager exit routines 141

Related reference

“Routine binding restrictions” on page 9

If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

“RASE: Resource Access Security user exit (DFSRASO0 and other RASE exits)” on page 429
The Resource Access Security user exit (RASE) authorizes IMS resources such as transactions, PSBs, or
output LTERM names. This user exit is called after the SAF interface is called.

“IMS callable services” on page 13
IMS provides IMS callable services for exit routines to provide the user of the exit routine with clearly
defined interfaces.

“IMS standard user exit parameter list” on page 5
Many of the IMS user exit routines are called with a standard interface, which allows the exit routines to
access IMS control blocks with callable services.

Conversational Abnormal Termination exit routine (DFSCONEO)

The Conversational Abnormal Termination exit routine (DFSCONEO) provides an application program to
clean up, if required, when a conversation is prematurely terminated.

This topic contains Product-sensitive Programming Interface information.

A conversational process terminates abnormally when:

« A conversation is ended by an /EXIT or /START command.

« A conversational application program terminates abnormally during a conversation.

« A conversational program fails to insert a message into a response PCB or into an alternate PCB that
represents another conversational program.

« A non-correctable IMS conversational error occurs.

If used, the Conversational Abnormal Termination exit routine can be scheduled twice: once when an /
EXIT or /START command is issued, and again either when an application program inserts a SPA, or
when the conversational response is received from a remote system.

Subsections:

« “About this routine” on page 142
« “Communicating with IMS” on page 143

About this routine

You can provide an application program to clean up, if required, when a conversation is prematurely
terminated. On entry, this program's I/O PCB contains the name of the terminal that had its conversation
abended. An exit routine to schedule the application program is required. IMS provides a sample exit
routine named DFSCONEO, or you can write your own. To use the IMS-provided routine, you must:

« Define a transaction code named DFSCONE.
« Write a nonconversational application program to be activated by DFSCONE.

When the sample exit routine (DFSCONEDO) is finished, the IMS conversational processor determines
whether the transaction DFSCONE has been defined. If DFSCONE is not defined, the conversation
terminates and the SPA is discarded. If DFSCONE is defined, the conversational processor schedules the
transaction DFSCONE with the SPA of the terminated conversation as a nonconversational single-segment
message.

As an alternative, you can provide a more tailored exit routine. For example, you might want to interrogate
the conversation control block (CCB) to determine the transaction that was in process when the
conversation terminated, or you might want to inspect the SPA to find out what had occurred before the
conversation terminated. No DL/I calls can be issued by your exit routine. A message processing program

142 IMS : Exit Routines

should be scheduled to handle database inquiries and updates or extensive analysis of the conversation.
The application program can send messages to the terminal associated with the terminated conversation.

To cause your application program to be scheduled, your exit routine must:

« Place the 8-byte name of the nonconversational transaction into the SPA (offset 6 bytes into the SPA).
Set the desired length of the SPA.
Insert information to be communicated to the scheduled program into the SPA.

« Set areturn code of X'10" in register 15.

The transaction code inserted into the SPA must be for a valid, nonconversational transaction. Otherwise,
no transaction will be scheduled, the SPA is discarded, and the response message (if available) is sent to
the input terminal.

If you do not provide a DFSCONEQO exit routine, IMS processing is the same as if an exit routine existed
and it returned a return code of 0. The default IMS action is as follows:

1. Terminate the conversation if it is still active.
2. Discard the SPA.
3. Discard the response message if available.

Attributes of the Routine

The following table shows the attributes for the Conversational Abnormal Termination exit routine.

Table 41. Conversational abnormal termination exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSCONEO.

Binding You must write this routine using reentrant coding techniques. You must link

your routine into the IMS.SDFSRESL library.

If you choose to use IMS callable services, you must link DFSCSIO0 with your
routine. The following is an example of the bind JCL statements needed:

INCLUDE LOAD(DFSCONEO)
INCLUDE LOAD(DFSCSIOO)
ENTRY DFSCONEO

NAME DFSCONEO (R)

Including the routine No special steps are required to include this routine. To use the sample user
exit, you need to define the transaction DFSCONE.

IMS callable services 1 yse IMS callable services with this routine, you must issue an initialization
call (DFSCSIIO) to obtain the callable service token and a parameter list in
which to build the function specific parameter list for the desired callable
service. Use the ECB in Register 9 for IMS callable services.

Sample routine location IMS.ADFSSMPL (member name DFSCONEO).

Communicating with IMS
IMS uses the entry and exit registers to communicate with the exit routine.
Contents of registers on entry

Register O contains a flag that identifies the reason why the conversation was terminated.

Chapter 3. Transaction Manager exit routines 143

Byte Contents

0 Flags
Meaning
x'o1'
Request for termination that is no longer active.
Xx'o2'
The /EXIT or /START command was issued by a different terminal than the one in

conversation; this causes the conversation to be terminated. If this flag is not on, the
request for termination of the conversation is from the terminal in conversation.

X'o4'
The input CNT could not be found. The master terminal of the current system is set as
the input terminal.

Xx'os'
The transaction was discarded by the processing of the /EXIT command.

1 Return Code
Meaning
X'01'
Conversation was terminated previously by an /EXIT, /START, or IMS cold start. The
conversation transaction processed successfully, and IMS is sending (queuing) the
response message to the input terminal.

2 Reserved

144 IMS : Exit Routines

Byte

Contents

A flag byte that indicates the calling reason:

Flag
Reason

X'00'
Conversational application program abended.

X'o4'
Reserved.

X'08'
/EXIT command for input or other (remote) terminal processed.

X'ocC'
/START LINE or NODE command processed for terminal in conversation. The /
START LINE command is valid only if no PTERMs are specified.

X'10'
SPA received for an inactive conversation.

X'14'
Inconsistent conversational definitions found in a multisystem conversation. Execute
the /MSVERIFY command to show the inconsistencies.

X'18'
/EXIT command terminated the conversation and the latest SPA is not currently
available. (It is queued for processing in this system, or it is in the MSC network.)
The SPA passed to the exit routine is either the one from the previous step of the
conversation, or a short SPA with just the header information.

The exit routine is called with vector 10 when the current step in progress completes;
at this time the latest (and last) SPA for the conversation is passed to the exit routine.
This can not occur if an IMS restart results in the loss of the SPA in this or another IMS
system.

x'ac'
The explanation for the /START LINE or NODE command is the same as for Vector
18.

X'20'
A conversational application program terminated without inserting to a response PCB
or an alternate PCB that represents another conversational program.

X'28'
/EXIT command for input or other (remote) ISC terminal processed.

X'30'
The link receive entry point of the TM and MSC Message Routing and Control user exit
routine (DFSMSCEQ) canceled the input transaction.

The contents of the remaining registers are as follows:

Register Contents

1 Address of the SPA.

2 Pointer to a parameter list that contains SPA processing options. See "SPA Options
Parameter List" for a list of the parameters.

6 Address of the CCB for the terminal in conversation, if the conversation is still active.

Zero if the conversation is already terminated.

Chapter 3. Transaction Manager exit routines 145

Register Contents

7 If zero, the conversation is already terminated. If positive, the register contains the
address of the CTB for the terminal in conversation (if the conversation is active). If
negative, the register contains the complemented address of the SPQB for the signed-off
user, which can be the result of the exit being called because of an /EXIT CONV USER
command.

09 Address of the ECB.

11 Address of the SCD.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of DFSCONEQ.

The following table shows the SPA options parameter list. This parameter list is mapped in the sample

exit routine.

Table 42. SPA options parameter list

Field Description

CONESPAH Maximum SPA length

CONESPAL Current SPA length

CONEFLG1 Flag 1. This flag can be set as follows:

CONE1TDO (X'80")
If this flag is set, register 1 points to a SPA buffer that contains the SPA at
the maximum length. If this flag is not set, register 1 points to a SPA that
is the length of the SPA for the current transaction. Truncated data option
is set for the SPA parameter in the TRANSACT macro.

CONE1SQ (X'40")
shared queues are active.

Contents of registers on exit

On return to IMS, all registers must be restored except for register 15, which must contain one of the
following return codes:

Reason code

Meaning

X'00'

Exit has completed all cleanup required; no further action is necessary. IMS does the
following;:

« Terminates the conversation (if still active).
« Discards the SPA.
« Discards the response message (if available).

X'o4'

The conversation is ended. The name field is used as a transaction code for a new
nonconversational transaction. The remaining data in the SPA is used as input data for a
new transaction.

IMS does the following:

« Terminates the conversation (if still active).

- Attempts to queue the SPA to the indicated transaction and schedule it.
« Discards the response message (if available).

146 IMS : Exit Routines

Reason code Meaning

X'08' Exit has completed all cleanup required. No further action is necessary.
IMS does the following:
« Terminates the conversation (if still active).
- Discards the SPA.
« Sends the response message to the input terminal (if available).

X'ocC! The conversation is ended. The name field is used as a transaction code for a new
non-conversational transaction. The remaining data in the SPA is used as input for a new
transaction.

IMS does the following:

« Terminates the conversation (if still active).

- Attempts to queue the SPA to the indicated transaction and schedule it.
« Sends the response message to the input terminal (if available).

X'10' The conversation is ended. The name field is used as a transaction code for a new
non-conversational transaction. The remaining data in the SPA is used as input data for a
new transaction.

IMS does the following:

« Terminates the conversation (if still active).

- Attempts to queue the SPA to the indicated transaction and schedule it.
« Discards the response message (if available).

Notes for Contents of Registers on Exit:

1. If the SPA cannot be queued to the transaction because the transaction is not defined or defined
incorrectly, the response message is still discarded.

2. On entry, if bit 7 in register 0, byte 1, is set on (RO="XX01XXXX'"), the response message is available.
3. If the SPA cannot be queued to the transaction because the transaction is not defined or defined

incorrectly, the response message is not discarded but is sent to the input terminal. On entry, if bit 7 in
register 0, byte 1, is set on (RO="XX01XXXX"), the response message is available.

Related reference

“Initialization of IMS callable services (DFSCSII0)” on page 17

Some exit routines must initialize IMS callable services before using them. To initialize IMS callable
services, you can issue a call to entry point DFSCSIIO. DFSCSIIO returns a callable services token and a
parameter list address.

Destination Creation exit routine (DFSINSXO0)

The Destination Creation exit routine creates an LTERM or a transaction when a destination for a message
does not exist.

This topic contains Product-sensitive Programming Interface information.
Subsections:

« “About this routine” on page 148

« “Restrictions” on page 148
e “Communicating with IMS” on page 149

Chapter 3. Transaction Manager exit routines 147

About this routine

IMS will call the Destination Creation exit routine to create an LTERM or a transaction when a destination
for a message does not exist. DFSINSXO tells IMS which type of destination to create: LTERMs,
transactions for queuing, or transactions for scheduling. LTERM is the default destination.

The following table illustrates the types of destinations that are enabled under specific conditions that are
specified for your environment in the IMS PROCLIB members:

Table 43. Environment specifications and destination types created by DFSINSX0

Environment specification: Destination type:

ETO=Y LTERM

SHAREDQ=name Transaction for queuing
MODBLKS=DYN Transaction for scheduling

Attributes of the routine

The following table shows the attributes of the Destination Creation exit routine.

Table 44. Destination Creation exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSINSXO.
Binding This exit routine must be reentrant.

The exit routine can be called in cross-memory mode.

Including the routine If you want IMS to call the Destination Creation exit routine, include it in an
authorized library in the JOBLIB, STEPLIB, or LINKLIST library concatenated in
front of the IMS.SDFSRESL. If the exit routine is included, IMS automatically loads
it.

IMS callable services To use IMS callable services with this routine, you must do the following:

« Issue an initialization call (DFSCSIIO) to obtain the callable service token and
a parameter list in which to build the function-specific parameter list for the
desired callable service.

» Use the ECB found at offset 0 of the Destination Creation exit routine parameter
list for the DFSCSIIO call.

« Link DFSCSIOO0 with your user exit.

Sample routine location IMS.ADFSSMPL (member name DFSINSXO).

Restrictions
The following restrictions apply to the use of the Destination Creation exit routine (DFSINSXO0):

- DFSINSXO is not called during XRF tracking on an XRF alternate system.

« When DFSINSXO is used to create LTERMs, then DFSINSXO0 and the Signon exit routine (DFSSGNXO0)
are corequisite. If you provide one exit routine to supply queue data for additional LTERMs, you must
provide the other exit routine also. Both exit routines create the user control block structure and
related LTERMs (including multiple LTERMs for a user): DFSINSXO0 using an LTERM name and DFSSGNX0
using the user ID. These exit routines must contain the same logic so that the user structure is
identical, regardless of which exit routine created it. However, DFSINSX0 cannot return the address

148 IMS : Exit Routines

of a user descriptor. The address of a user descriptor can only be provided using the Signon exit routine

(DFSSGNXO).

« When extended terminal option is inactive (ETO=N), you cannot write DFSINSXO to create dynamic
LTERMs. When ETO=N, you can write DFSINSXO only to create dynamic transactions.

« When dynamic resource definition is disabled (MODBLKS=0LC) in the DFSCGxxx or the DFSDFxxx
member of the IMS.PROCLIB members, you can write DFSINSXO to create transactions that can only be
used for queuing messages on the shared queues. You cannot write DFSINSXO to create transactions
that can be scheduled when dynamic resource definition is disabled.

« When shared queues are not active (the SHAREDQ= parameter is not specified on the IMS Procedure),
you cannot use DFSINSXO to supply destinations for queuing transactions.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The registers contain the

following:

Register Contents

1 Address of the “IMS standard user exit parameter list” on page 5 (Version 1)
13 Save area address

14 Return address to IMS

15 Entry point address of exit routine

The following table shows the Destination Creation exit routine parameters. The address of this
parameter list is in the standard exit parameter list field SXPLFSPL.

This parameter list is mapped by DSECT INSXMAIN, which can be found in the DFSINSXP macro.

Table 45. Destination creation exit parameter list

Offset Length Description

+0 4 ECB address.

+4 4 SCD address.

+8 4 User Table address.

+12 4 Address of a buffer for use by the exit routine to return user

ID and queue data. The mapping of the buffer is DSECT
USEQDATA in USEQDATA COPY. For additional details on the
content and format, refer to the prolog in the sample routine
(DFSINSXO in IMS.SDFSSMPL).

The value is zero for the following conditions:

» An XRF alternate system.

» The destination must be a transaction and there is an
indicator at offset +20.

Chapter 3. Transaction Manager exit routines 149

Table 45. Destination creation exit parameter list (continued)

Offset Length Description

+16 4 Address of a buffer for use by the exit routine to return
Autologon Override parameters. The mapping of the buffer is
DSECT ATLGPARM in DFSINSXP macro. For additional details
on the content and format, refer to the prolog in the sample
routine (DFSINSXO in IMS.SDFSSMPL).

The value is zero for the following conditions:

« An XRF alternate system.

« The destination must be a transaction and there is an
indicator at offset +20.

+20 4 Address of a buffer containing destination name, and other
environment flags, including indicators for the following:

« Dynamic resource definition, ETO, or shared queues is
enabled.

« LTERMs or transaction control blocks can be created.

 The exit routine output is an LTERM or a transaction control
block.

The mapping of the buffer is DSECT INSXDATA in DFSINSXP
macro.

+24 4 Address of a buffer for use by the exit routine. The mapping
of the buffer is DSECT INSXTRNQ in DFSINSXP macro. The
buffer returns information that is used to create a transaction
control block if the destination is a transaction, including
transaction attributes. The value is zero if the destination is
an LTERM.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for register 15, which contains
one of the following return codes. If an application INSERT call forced the LTERM creation, IMS ignores
the return code.

Return code Meaning

0 IMS creates the destination.

nonzero IMS rejects the destination creation attempt for alternate PCBs. If an application INSERT
call caused IMS to attempt the destination creation, the nonzero return code is returned
to the application as an 'Al' status code. I/O PCBs force LTERM creation and ignore the
return code.

In addition to the return codes, the exit routine can indicate whether to create an LTERM (set INSXTYPE
equal to INSXCNT in the INSXDATA DSECT) or a transaction (set INSXTYPE equal to INSXSMB in the
INSXDATA DSECT).

Related concepts

Remote LTERMs (Communications and Connections)
MSC descriptors (System Definition)

Related reference

“Routine binding restrictions” on page 9

150 IMS : Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.ccg/ims_msc_ovrvw_011.htm#ims_msc_ovrvw_011
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.sdg/ims_ie0i2tla1041768.htm#ie0i2tla1041768

If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

“Initialization of IMS callable services (DFSCSIIO0)” on page 17

Some exit routines must initialize IMS callable services before using them. To initialize IMS callable
services, you can issue a call to entry point DFSCSIIO. DFSCSIIO returns a callable services token and a
parameter list address.

“Signon exit routine (DFSSGNXO0)” on page 282
IMS calls the Signon exit routine for signon processing if ETO=Y is specified as an execution parameter.

“IMS standard user exit parameter list” on page 5
Many of the IMS user exit routines are called with a standard interface, which allows the exit routines to
access IMS control blocks with callable services.

DFSINSXO0 when extended terminal option is active

When ETO=Y, you can write DFSINSXO to supply queue data that will create local or remote LTERMS,
when the destination does not exist.

You can specify that the extended terminal option is active by stating that ETO=Y in the IMS or DCC
startup procedure.

Based on the selected user descriptor when ETO=Y, DFSINSXO can perform the following tasks:
« If the selected user descriptor is the DFSUSER descriptor,

— Add additional LTERMs to the structure and supply queue data for those additional LTERMs, based
on supplied autologon parameters such as LU name, user ID, logon descriptor name, and mode table
name.

— Override queue data and autologon parameters.
— Override the user ID derived from the user structure.
— Provide the correct user ID for the user receiving messages.

— Use the correct user ID to create the name of the user control block structure, including LTERM
control blocks.

« If the selected user descriptor is a non-DFSUSER descriptor,

— Override queue data and autologon parameters for only one LTERM that is derived from the non-
DFSUSER descriptor.

— Cannot override the user ID.

If no user ID is supplied and extended terminal option is active, the name of the user structure is the
name of the target LTERM. If no user control block structure exists, IMS uses the same name for both the
target LTERM and the selected user descriptor.

IMS creates LTERMs from information in the selected user descriptor, from information that the
Destination Creation exit routine supplies, or, in the case of remote LTERMS, IMS will use Multiple
Systems Coupling (MSC) descriptors. If an LTERM is not available (that is, it is already assigned to another
user), the user control block is created without the LTERM. LTERMs can be added later using the /ASSIGN
command.

Related reading:

« See IMS Version 15.5 Communications and Connections for more information regarding ETO.
« The Destination Creation exit routine creates destinations based on environmental specifications. For
more information on these specifications, see the prolog of sample DFSINSXO.

Providing queue data and autologon parameters

Chapter 3. Transaction Manager exit routines 151

Depending on the user descriptor selected, the Destination Creation exit routine can provide queue data
(LTERM data) and autologon parameters. If the exit routine returns data that it is not allowed to return (as
discussed in the following cases), IMS rejects the LTERM creation attempt.

There are two cases which describe what data the Destination Creation exit routine can supply. The two
cases are based on whether a DFSUSER (Case 1) or a non-DFSUSER (Case 2) descriptor is selected. (For
this exit routine, non-DFSUSER descriptors are descriptors based on the target LTERM name.) Each case is
discussed in the sections that follow.

If the Destination Creation exit routine does not provide data to override the existing queue data, IMS
proceeds as if you did not include the Destination Creation exit routine; IMS uses the information in the
selected user descriptor to create the LTERMs.

Case 1
If the DFSUSER descriptor is selected, the Destination Creation exit routine:

« Can supply any of the fields defined in the interface (including LTERM names). The exit routine can
change LTERM data, but not the actual name of the first LTERM provided.

« Can provide data for additional LTERMs.
- Can provide the correct user ID to override the user ID derived from the target LTERM.

- Can override autologon parameters. If the user structure already exists, the user's existing autologon
parameters are not changed.

Case 2

If a non-DFSUSER descriptor is selected, the Destination Creation exit routine can only specify queue data
to override data derived from the user descriptor. The exit routine:

« Can supply queue data (except LTERM names) to override data that the descriptor provides,

- Can override autologon parameters. If the user structure already exists, the user's existing autologon
parameters are not changed.

« Cannot provide data for additional LTERMs or override the user ID.

In both cases, IMS verifies the additional LTERMs that are specified against the LTERMs that already exist
in the system. IMS automatically allocates the user to the indicated node and attempts to establish a
session with that node. If an LTERM that is specified as an additional LTERM already exists in the system,
IMS assumes that this LTERM has been assigned to a different user, and it is not made part of the user
structure of the user for which messages are queued.

Identifying which user descriptor IMS selected

If the user control block structure already exists for the user for whom messages need queuing but

for which the target LTERM is missing, IMS selects the user descriptor that was used to build the user
structure and calls the exit routine. If IMS locates the target LTERM name, it selects that user descriptor
and calls DFSINSXO.

If IMS does not find a descriptor that contains the target LTERM name, it selects DFSUSER to create

the user structure. IMS renames the descriptor, giving it the name of the target LTERM, and equates the
user ID to this name. IMS then calls DFSINSXO0, which can supply the correct user ID, overriding the one
derived from the target LTERM.

If no user descriptor can be found, including DFSUSER, IMS rejects the LTERM creation request.

Remote LTERM creation for Multiple Systems Coupling

If Multiple Systems Coupling (MSC) is being used, the exit routine can request that a remote LTERM
(RCNT) be built instead of a local ETO LTERM (CNT) if the destination of the message is an LTERM in a
remote system. The exit routine supplies the associated MSC MSNAME and the remote LTERM name in

152 IMS : Exit Routines

field INSXMSN in the INSXDATA input parameter list. This name is a link name (MSNAME) rather than a
descriptor name.

The MSNAME and remote LTERM input creates the RCNT, similar to if an MSC descriptor had been used.
Do not change any other parameter values in the INSXDATA input parameter list. The RCNT is assigned to
the link name (LNB) representing the MSNAME.

Related Reading: For more information on MSC descriptors, see IMS Version 15.5 System Definition.

DFSINSXO0 when shared queues are active

You can use the Destination Creation exit routine (DFSINSXO0), formerly called the Output Creation exit
routine, to create a transaction that queues messages in the shared message queues.

Before enabling dynamic resource definition or shared queues, evaluate any existing DFSINSXO exit
routines. The DFSINSXO0 exit might need to be changed so that it checks whether LTERM creation is
allowed before it accesses the USEQDATA parameter list that is related to LTERM processing. If LTERM
creation is not allowed, the USEQDATA buffer address (INSXAUSQ) is zero.

If you specify that shared queues are active (SHAREDQ=name) in the IMS PROCLIB members, you can
create a transaction that queues messages in the shared message queues and can be processed by
another IMS in the IMSplex. The transaction cannot be scheduled on the local IMS system unless DRD is
also enabled.

When the exit routine indicates that the destination is a transaction, IMS creates a transaction control
block. DFSINSXO returns information to IMS about the transaction, including whether the transaction is
in conversational or response mode, and the SPA size if applicable. The transaction control block is not
deleted until IMS is restarted. IMS can use the same transaction control block if it encounters additional
instances of the undefined transaction input message.

The Destination Creation exit routine creates destinations based on environmental specifications. For
more information about these specifications, see the prolog of sample DFSINSXO.

Related information
DFS3824 (Messages and Codes)

DFSINSX0 when dynamic resource definition is enabled

If dynamic resource definition is enabled, DFSINSXO can create transactions that can be used for queuing
messages and it can create transactions that can be scheduled. When DFSINSXO creates transactions
that can be scheduled, DFSINSXO also has the ability to create programs for those transactions.

Before enabling dynamic resource definition or shared queues, evaluate any existing DFSINSXO exit
routines. The DFSINSXO exit might need to be changed so that it checks whether LTERM creation is
allowed before it accesses the USEQDATA parameter list that is related to LTERM processing. If LTERM
creation is not allowed, the USEQDATA buffer address (INSXAUSOQ) is zero.

If you specify that dynamic resource definition (DRD) is enabled (MODBLKS=DYN) in the IMS PROCLIB
members, DFSINSXO can create a transaction and an application program for scheduling on the local IMS
system.

If inconsistent or invalid transaction attributes are returned, the new transaction is not created, and the
message for that transaction code is rejected as an invalid destination. Any transactions or application
programs created by DFSINSXO inherit the global TRANSTAT parameter, as specified in the DFSDFxxx
IMS.PROCLIB member.

Transactions created for scheduling
Transactions that are created for scheduling can be enqueued, scheduled, and executed. The
DFSINSXO exit routine can set attributes for the transaction and application program in the
appropriate fields in the INSXTRNQ parameter list DSECT.

Transactions created only for queuing
Transactions that are created only for queuing by the DFSINSXO exit routine have a status of DYN.
The purpose of a queue-only transaction is to queue a message to the shared queues. Queue-only

Chapter 3. Transaction Manager exit routines 153

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.mc/msgs/dfs3824.htm#dfs3824

transactions are not recovered at restart unless they are stopped or a checkpoint has not yet occurred
since creation of the transaction.

Before DFSINSXO is called, you do not have to define the application program that is scheduled to process
the transaction. If the application program is not already defined, DFSINSXO can create the program with
specific attributes. The DFSINSXO0 exit routine can set the same attributes as those that are set by the
CREATE TRAN command.

DFSINSXO0 does not require Resource Manager (RM) to dynamically create a transaction. However, if RM
is using a resource structure, and the transaction is created for queuing or scheduling in any IMS system,
the new transaction name is registered with RM. This prevents another IMS system from creating an
LTERM with the same name.

The Destination Creation exit routine (DFSINSX0) exit might fail with a completion code of 1D7 and the
DFS3824 message if the default descriptor is being imported from the IMS change list in the IMSRSC
repository or was not successfully imported from the change list. This error can occur if the default
descriptor is not the IMS system-defined default descriptor.

Subsections:

« “Creating transactions across an IMSplex” on page 154

« “Creating default or duplicate transactions” on page 155
« “Exporting resource definitions to the IMSRSC repository” on page 155

Creating transactions across an IMSplex

DFSINSXO exit routine can create transactions on other IMS systems in an IMSplex in specific
environments. The following table lists these environments, and the options available to DFSINSXO in
these environments.

Table 46. Environments in which the DFSINSXO exit routine can create transactions across an IMSplex

Options that the DFSINSXO exit routine can use to create
Environment transactions

Non-shared queues Dynamic transactions that the DFSINSXO exit routine creates are
always for scheduling. Bit TRNQ_FC_SCHD is ignored; however, if you
set this bit, your exit does not need to be recoded if you move to a
shared queues environment.

Shared queues, without the Dynamic transactions that the DFSINSXO exit routine creates can

Structured Call Interface (SCI) be either for queuing (TRNQ_FC_SCHD = 0) or for scheduling
(TRNQ_FC_SCHD = 1). The transaction is created on the local IMS
system only (the system in which the DFSINSXO exit routine is called).
The dynamic transaction definition is not propagated to other IMS
systems in the IMSplex.

154 IMS : Exit Routines

Table 46. Environments in which the DFSINSXO exit routine can create transactions across an IMSplex
(continued)

Options that the DFSINSXO exit routine can use to create
Environment transactions

Shared queues with SCI Dynamic transactions that the DFSINSXO exit routine creates can
be either for queuing (TRNQ_FC_SCHD = 0) or for scheduling
(TRNQ_FC_SCHD = 1). The transaction can be created for the
following:

Queuing on the local IMS only
If TRNQ_FC_SCHD is set to 0, the transaction is created for
queuing on the local IMS system only. Field TRNQ_IMS is ignored.
This is the default if your exit does not modify bit TRNQ_FC_SCHD.

Scheduling on the local IMS only
If TRNQ_FC_SCHD is set to 1 and no name is set in field
TRNQ_IMS, the transaction is created for scheduling on the local
IMS. It is not created on any other IMS in the IMSplex.

Scheduling on one local IMS and one additional IMS, while
queuing on all other IMS systems
If TRNQ_FC_SCHD is set to 1 and the name (IMSID) of an IMS
is specified in the TRNQ_IMS field, a transaction is created for
scheduling on both the local IMS and on the IMS whose IMSID
is specified in the TRNQ_IMS field. If the IMSID specified in
the TRNQ_IMS field refers to the local IMS, the transaction is
created for scheduling on the local IMS only. In both cases, the
transaction is created for queuing on the other active IMS systems
in the IMSplex. If the transaction is already created for scheduling
on one or more of the other IMS systems in the IMSplex, it will
not be changed to a queuing-only transaction. The transaction will
still be able to be scheduled on those IMS systems.

Scheduling on all IMS systems in the IMSplex
If TRNQ_FC_SCHD is set to 1 with an asterisk (*) in field
TRNQ_IMS, the transaction is created for scheduling on all IMS
systems that are currently active in the IMSplex.

Creating default or duplicate transactions

If you want the DFSINSXO exit routine to create a transaction using the current set of system defaults
(that is, as specified by the current transaction default descriptor), do not set any of the definition bits

in the INSXTRNQ DSECT. If you want the DFSINSXO exit routine to create a transaction that matches an
existing transaction or descriptor, specify the name of the transaction or descriptor in the TRNQ_TRAND
field of the INSXTRNQ DSECT. You may need to specify the program name if the descriptor does not have
a program name defined.

If you create a transaction or program but specify an invalid attribute combination in the INSXTRNQ
parameter list, you will receive message DFS34241 to help diagnose the problem. Message DFS34241
contains the resource name, return code, reason code, and completion code, if applicable.

Exporting resource definitions to the IMSRSC repository

The transaction and program resources that are created by DFSINSXO0 can be defined to be exported
by setting TRNQ_FC_EXPORT=1 on the exit parameter list. If IMS is defined to use the repository, the
resources created by DFSINSXO are exported to the repository when one of the following conditions is
satisfied:

Chapter 3. Transaction Manager exit routines 155

« The names of the resources are specified with the NAME keyword on the EXPORT TARGET (REPO)
command

« An EXPORT DEFN TARGET(REPO) OPTION(CHANGESONLY) command is issued after DFSINSXO
creates the resources

- The resources are created in-between the range specified by the STARTTIME and ENDTIME keywords
on the EXPORT DEFN TARGET (REPO) command

Related reading:

« The Destination Creation exit routine creates destinations based on environmental specifications.
For more information about these specifications, see the prolog of the sample DFSINSX0 module in
IMS.ADFSSMPL.

Related concepts

Monitoring transaction-level statistics (System Administration)
Dynamic resource definition (System Definition)

Related reference

EXPORT command (Commands)

CREATE TRAN command (Commands)

DFSDFxxx member of the IMS PROCLIB data set (System Definition)

Fast Path Input Edit/Routing exit routine (DBFHAGUO)

The Fast Path Input Edit/Routing exit routine (DBFHAGUO) provides the minimum level of support
required for IMS to use Fast Path's Expedited Message Handler (EMH).

IMS systems with a very high transaction rate use EMH. EMH is a performance option that speeds up
message processing by imposing restrictions on message lengths and segmentation. To use EMH, an
edit/routing routine must receive control from the Input exit routine and determine the eligibility of an
incoming message for Fast Path processing. The sample exit provides the minimum level of support
required to use IMS Fast Path.

Subsections:

« “About this routine” on page 156

« “Using the routine with shared EMH queues” on page 157

« “Restrictions” on page 158

« “Communicating with IMS” on page 158

About this routine

The Fast Path EMH buffer is dynamically allocated and might not be present at entry. Therefore,
DBFHAGUO can receive the message in an EMH buffer or queue buffer, depending on the terminal type.
The exit routine is not permitted to move the data out of the input location. If the message isin a

queue buffer at entry, the Fast Path system moves it to an EMH buffer. In editing the input message, the
application should not increase the length beyond a length that fits in any message buffer.

If an EMH buffer cannot be obtained, the following message is sent to the input terminal:

DFS3971 Unable to process Fast Path due to EMH buffer shortage

The following table shows the attributes for the Fast Path Input Edit/Routing exit routine.

Table 47. Fast Path input edit/routing exit routine attributes

Attribute Description
IMS environments DB/DC, DCCTL
Naming convention You must name this exit routine DBFHAGUO.

156 IMS : Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.sag/system_admin/ims_monit_translvlstats.htm#ims_monit_translvlstats
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.sdg/ims_dynamic_system_definition.htm#dynamic_system_definition
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.cr/imscmds/ims_export.htm#ims_cr1export
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.cr/imscmds/ims_createtran.htm#ims_cr1createtran
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

Table 47. Fast Path input edit/routing exit routine attributes (continued)

Attribute Description

Binding This exit routine must be reentrant if APPC/IMS support is active.

Including the routine DBFHAGUO is a separately linked module in the IMS.SDFSRESL. IMS
automatically loads it during Fast Path initialization. If IMS cannot find
DBFHAGUO, IMS terminates abnormally with ABENDU1011 and displays the
following message:

DFS2730A UNABLE TO LOAD FP INPUT ROUTING EXIT: DBFHAGUO

IMS callable services (s IMS callable services with this routine, you must issue an initialization
call (DFSCSIIO) to obtain the callable service token and a parameter list in
which to build the function-specific parameter list for the desired callable
service. Use the ECB found at offset X'0' of the Fast Path Input Edit/Routing
Exit parameter list for the DFSCSIIO call. This exit routine is automatically
linked to DFSCSIOO0 by IMS. No additional linking is required to use callable
services.

Sample routine location IMS.SDFSSMPL (member name DBFHAGUO).

Expanding the routine

A transaction that is not Fast Path-exclusive can be directed to EMH processing by an expanded edit/
routing routine, based on some condition or conditions beyond transaction code. For example, certain
transactions can be routed to EMH if they originate at specified physical or logical terminals or if they
reference the content of some portion of the message (for example, account number). The user-supplied
DBFHAGUO would have to develop appropriate routing codes based on such conditions.

Using the routine with shared EMH queues

If your installation uses shared EMH queues, DBFHAGUO can place messages on the shared-queue
structure for processing by any sharing IMS subsystem in the sysplex.

You can modify the exit routine to specify an application name for the application program used to
process Fast Path input messages. If you do not specify an application name, Fast Path locates the
transaction or routing code in the local IMS subsystem. Fast Path rejects the input message if it cannot
locate the transaction or routing code.

You can also specify a sysplex processing code that determines how a message transaction or routing
code is processed. The following sysplex routing options are available:

Local First
Specifies that the message is processed on the local subsystem if an IFP region is available. If no IFP
region is available, the message is passed to the EMH queue structure. A program name specified in
the exit routine for message processing overrides the transaction or routing code. Local First is the
default.

Local Only
Specifies that Fast Path does not place the message on the EMH queue structure. Fast Path input
messages are processed on the local IMS subsystem.

Global Only
Specifies that Fast Path places the input message on the EMH queue structure. The application
program that processes the input message must be active on all sharing IMS subsystems. If the
application is not active, Fast Path discards the input message and issues an error message. A
program name specified in the exit routine for message processing overrides the transaction or
routing code.

Chapter 3. Transaction Manager exit routines 157

Recommendation: To avoid implicit priority for Local Only messages over Local First messages, process
Local First and Local Only messages under separate program names. IMS places Local Only messages
on the balancing group (BALG) queue and Local First messages on the shared EMH queue. When an IFP
region becomes available, it checks the BALG queue for messages to process before it checks the shared
EMH queue. This sequence gives implicit priority to Local Only messages that are processed in the same
program.

Restrictions

You must rewrite your Fast Path Input Edit/Routing exit routine for this release of IMS, based on the
DBFHAGUO sample (located in the IMS.SDFSSMPL library) and the guidelines in this .

The exit routine cannot move the data out of the input location.

The exit routine must not increase the length of the message beyond a length that fits in any message
buffer.

Communicating with IMS
IMS uses the entry and exit registers, as well as parameter lists, to communicate with the exit routine.
Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The registers contain the

following:

Register Contents

1 Address of Standard Exit Parameter List.
13 Save area address.

14 Return address to IMS.

15 Entry point address of exit routine.

This exit routine uses the Version 1 standard exit parameter list.

The following table lists the Fast Path exit parameters. The address of this parameter list is in the
standard exit parameter list field SXPLFSPL.

Table 48. Fast Path input edit/routing exit parameter list

Offset Length

(decimal) (decimal) Description

+0 4 ECB address.

+4 4 SCD address.

+8 4 Input message.

+12 4 Address of routing code table entry if this is a Fast Path exclusive
transaction, or zero.

+16 4 Eight-character work area to supply a routing code name.

+20 4 Address of ESCD.

+24 4 The length of the EMH Buffer for this application.

+28 4 Address of the DBFHAGUO extended parameter list. This parameter

list exists if shared EMH queues are used. Otherwise, the extended
parameter list is 0.

The following table lists the Extended Parameter list parameters.

158 IMS : Exit Routines

Table 49. DBFHAGUO extended parameter list

Offset Length Description
(decimal) (decimal)
+0 4 Address of the 8-byte PSB name
+4 4 Sysplex processing code (decimal)
0
Local First (Default)
a4
Local Only
8
Global Only
+8 4 Address of the Local PSB name table
+12 4 Address of the Global PSB name table
+16 4 System definition code (decimal)
0
Transaction Defined in local system
a4
Transaction not defined in local system
+20 4 Input message code (decimal)
0
Fast Path exclusive transaction
a4

Fast Path potential transaction

Note:

1. The sample DSECT for the local program name table and the global program name table can be found
in the DBFPGNT macro.

Contents of registers on exit

On return, all registers must be restored except for register 1 and 15, which must contain the following:

Register Contents
1 Message number to send to inputting terminal.
15 One of the following return codes:

Chapter 3. Transaction Manager exit routines 159

Register Contents

Return code Meaning

(decimal)

00 Schedule with Fast Path. Register 3 points to the RCTE to be used.

04 Schedule with Fast Path using transaction code as the routing code.

08 Schedule with Fast Path using the routing code you provide.

12 Return to IMS for processing.

16 Schedule with Fast Path using transaction code if the routing code equal
to transaction code is active; otherwise, let IMS process it.

20 Schedule with Fast Path using routing code provided the routing code is
active; otherwise, let IMS process it. This is the same action as user exit
return code 08.

24 Discard input, send message from user table back to inputting terminal.

28 Discard input, send message from system message table.

Related reference

“Initialization of IMS callable services (DFSCSII0)” on page 17

Some exit routines must initialize IMS callable services before using them. To initialize IMS callable
services, you can issue a call to entry point DFSCSIIO. DFSCSIIO returns a callable services token and a
parameter list address.

“IMS standard user exit parameter list” on page 5
Many of the IMS user exit routines are called with a standard interface, which allows the exit routines to
access IMS control blocks with callable services.

Front-End Switch exit routine (DFSFEBJO)

The Front-End Switch (FES) exit routine allows you to keep the input terminal in response mode while it
is waiting for the reply from the processing system for messages entered in an IMS system by a front-end
switchable VTAM node and processed in another system (such as IMS or CICS).

This topic contains Product-sensitive Programming Interface information.

Subsections:

« “About this routine” on page 160

« “Restrictions” on page 161

« “Communicating with IMS” on page 162

About this routine

You specify the FES exit routine in the IMS startup parameter with the FESEXIT parameter. You specify
which static VTAM nodes can do front-end switching during system definition. You specify which dynamic
VTAM nodes can do front-end switching in the ETO logon descriptors.

The connection between intermediate IMS systems must be through Intersystem Communication (ISC),
although connections with non-IMS back-end systems can be any VTAM protocol that IMS supports,
such as SLUTYPEP or SLUTYPE2. IMS-to-IMS and IMS-to-non-IMS interconnections are referred to as
intermediate/back-end or IBE links, and front-end systems are referred to as FE systems.

Front-End Switch is not related to Multiple Systems Coupling (MSC), and cannot be used with MSC for the
processing of the same transaction. Front-End Switch is designed to connect an IMS network to non-IMS
systems, and MSC is used for homogeneous IMS networks.

160 IMS : Exit Routines

Attributes of the routine

The following table shows the attributes of the Front-End Switch exit routine.

Table 50. Front-end switch exit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

You must name this exit routine DFSFEBJO.

Binding

Prior to IMS 15, DFSFEBJO was linked into the IMS nucleus, which
automatically made it non-reentrant (because the nucleus is non-reentrant).
In IMS 15, DFSFEBJO was removed from the IMS nucleus and is now loaded
as a stand-alone module during IMS initialization. Thus, if you use IMS 15 and
you link this user exit as reentrant, you must ensure that it is not dependent
on any information from a previous iteration and that it does not store into
itself. To learn more, see Migration considerations for removing user exit
routine specification from system definition (Release Planning) and Routine
binding restrictions (Exit Routines).

Including the routine

If you want IMS to call the exit, include it in an authorized library

in the JOBLIB, STEPLIB, or LINKLIST library concatenated in front of
IMS.SDFSRESL. If the exit routine is included, IMS automatically loads it each
time IMS is initialized.

IMS callable services

To use IMS callable services with this routine, you need to issue an
initialization call (DFSCSIIO) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the
desired callable service.

Use the ECB found in Register 9 for IMS callable services. Link DFSCSIO0 with
this exit manually to use callable services.

Sample routine location IMS.ADFSSMPL.

You must code the exit routine for AMODE=31. You can define the RMODE as ANY.

Restrictions

The following restrictions apply to the Front-End Switch exit routine:

« The FES function can be used with the COMM macro statement specifying OPTIONS=BLKREQD or
NOBLANK. However, you must specify a blank following the transaction code regardless of the option

specified.

- If the back-end or intermediate system detects an error for an input transaction, the error message can
not be sent back to the input terminal. It is sent to the MTO of the system detecting the error. It also can
be sent back over the IBE session that sent the original input, or the input message can be sent to an

ERP, if one is specified.

If an error is sent over the ISC session, IMS will CLSDST the session thus making the error more visible
and keep future ones from occurring. This can be valuable during a debugging period of a new FES

exit or application; however, it can prove bothersome during production time. To avoid this, specify a
FEIBERPN when processing input from an ISC session and develop an application to log or process
these errors should they occur.

- Conversational transactions are not supported.

Chapter 3. Transaction Manager exit routines 161

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.rpg/ims_mig_userexit_removal.htm#ims_mig_userexit_removal
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.rpg/ims_mig_userexit_removal.htm#ims_mig_userexit_removal
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.err/ims_bindingroutines.htm#ims_bindingroutines
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.err/ims_bindingroutines.htm#ims_bindingroutines

- If the front-end system is part of an XRF complex, the terminal operator might not get the reply to a
switched message in case of a takeover even if the reply comes in time. The terminal receives an IMS
message instead.

« For alocal transaction defined as full-function, nonresponse mode, the exit routine switches a
transaction (TXNA) to a local transaction (TXNB) and turns on the timer facility. TXNB executes locally
and replies to the originating terminal. However, the terminal is left in response mode. When the
timeout transaction processes, a response is sent to the terminal, which resets the response mode.

« If the back-end system is non-IMS, the reply message that the back-end system sends to IMS must be
asynchronous (nonresponse) and expect no counter-response from IMS. You can do this in one of two

ways:

— End the response with an end bracket (EB).

— Append the FMH6 SCHEDULER header to the FMH5 header at attach time, and use a change direction
(CD) indicator.

Related Reading: For more information, see IMS Version 15.5 Communications and Connections.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The registers contain the

following:

Register Content

1 Address of the FEIB. The FEIB contains all the information necessary for the exit to
function. The exit routine must store additional information in the FEIB which is required
for successful processing.

9 Address of ECB.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for register 15, which must
contain one of the following return codes:

Return code

Meaning

0 No message switching

2 New destination from FE
6 New destination from IBE
8 Reply message

12 User table error

Related reference
“Routine binding restrictions” on page 9

If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this

information.

“Initialization of IMS callable services (DFSCSII0)” on page 17

162 IMS : Exit Routines

Some exit routines must initialize IMS callable services before using them. To initialize IMS callable
services, you can issue a call to entry point DFSCSIIO. DFSCSIIO returns a callable services token and a
parameter list address.

Terminal input processing

By the time the message arrives for terminal input, it already has been edited by routines such as Basic
Edit, ISC (Intersystem Communication), and MFS Edit.

The Front-End Switch exit routine gains control from an IMS system when the first segment of an input
message is received before IMS determines the destination of the message. All input from FES-capable
nodes and from ISC links are processed by this exit routine. Both MFS Edit and Basic Edit can remove
characters that have a value less than X'41".

For a diagram of the relationships among the front-end system, the intermediate system, and the back-
end system with regard to message switching, see the following figure.

This exit routine can do any of the following:

« Indicate a destination change for an input message to an IBE destination or local transaction program
defined in this IMS system. Changing the destination forces the originating terminal to be in response
mode. (Front-end system processing.)

- Indicate a destination change for an input message from an IBE link to another IBE destination or to a
local transaction program defined in this IMS system. (Intermediate system processing.)

- Define a transaction code that can be initiated when a specified time interval expires after switching the
message. (Timeout processing.)

« Specify the message that can be sent directly to the input terminal for timeout processing.
 Provide IMS with additional routing information to expand the original message for any IBE system.

« Specify the name of a transaction program (full-function response mode or Fast Path) that processes or
logs input messages due to user exit routine failures detected in other than the original terminal input
(for example, ISC input).

The exit routine must provide additional routing information to identify the reply to this message when it
comes back to the IMS front-end system. The user can tell IMS to remove the added information before
the reply message is sent to the original terminal.

Intermediate Back-end
Front-end system systems system
[* | . T »
IMS LU6.1: IMS | LU6.1 IMS
Basic DFSFEBJO | ISC 5G| o
LTERM1 or MFS » User exit link__,, ."”—p CICs
message Edit routine . !
origin . '
Message

Figure 9. Message flow with the front-end switch exit routine

In the preceding figure, the reply path is not shown to keep the diagram simple. The reply would usually
follow the same path back through the intermediate system or systems to the front-end, and then to the
originating terminal.

IBE input processing

Correlate the reply message to a previously switched input message as part of IBE input processing. A
reply to an input message, when received from another system, is treated by IMS as an input message.

The exit routine takes control of each message that comes from an ISC or FES-defined link. You must
correlate the reply message to a previously switched input message.

Chapter 3. Transaction Manager exit routines 163

The exit routine at this point can:

- Analyze the message text.

« Copy the LTERM name from the message text into the FEIBLTRM field.

- Copy the message identifier from the message text into the FEIBUNID field.

- Specify a destination for a late reply message in the FEIBLDST field.

« Tell IMS to remove the routing data from the message by specifying a length > 0 in the FEIBULNG field.
- Set the FEIBRPQ1 indicator if the reply message has to be sent directly to the original input terminal.

« Indicate the change of the destination code to a local transaction code (full-function non-response
mode) in the FEIBNDST field.

- Set FEIBRPN to an error processing program (ERP) name that receives the input message if errors are
detected in the verification of the exit parameters. An error message appears on the MTO of the system
detecting the error.

Front-end interface block

A Front-End Interface Block (FEIB) is created for each FES capable terminal. The FEIB is used to
communicate between the Front-End Switch exit routine and IMS.

For a VTAM node (excluding ISC) defined as FES capable (by an OPTIONS=FES on the TERMINAL, or TYPE
macro, or ETO logon descriptor), the FEIB is allocated when the session has been established. The block
is released when the VTAM session terminates and no reply for an FES message is outstanding.

Related Reading: For more information on the Extended Terminal Option (ETO) feature, see IMS Version
15.5 Communications and Connections.

The interface block is also allocated for each ISC parallel session. This is done automatically without
special system definition at LOGON or OPEN DEST time. The interface block is destroyed at LOGOFF time,
at CLOSE DEST time, or at session failure.

If the exit routine is not defined in the system or if the VTAM node is not defined as FES capable, the FEIB
will not be allocated.

Register 1 on entry to the exit contains the address of the interface block.

The FEIB layout is in the following example.

T T *
* FEIB - FRONT END MESSAGE SWITCH INTERFACE BLOCK DSECT *
R e *
FEIB DSECT

FEIBIFLG DS X USER EXIT INPUT FLAGS

FEIBISC EQU X'80' MESSAGE FROM AN ISC LINK

* EQU X'40' RESERVED BY IBM

* EQU X'20' RESERVED BY IBM

* EQU X'10' RESERVED BY IBM

* EQU X'08' RESERVED BY IBM

* EQU X'e4' RESERVED BY IBM

* EQU X'02' RESERVED BY IBM

* EQU X'o1l' RESERVED BY IBM

FEIBOFLG DS X USER EXIT OUTPUT FLAGS

FEIBRPQ1 EQU X'80' QUEUE RESPONSE TO ORIG DEVICE

* ELSE QUEUE SMB NAMED IN FEIBNDST
FEIBERP EQU X'40' ON TIMEOUT CALL ERP, ELSE ERR MSG
* EQU X'20' RESERVED BY IBM

FEIBTMED EQU X'10' TIME RESPONSE WITH SYSDEF VALUE

* EQU X'e8' RESERVED BY IBM

* EQU X'04' RESERVED BY IBM

* EQU X'02' RESERVED BY IBM

* EQU X'e1' RESERVED BY IBM

FEIBMSGN DS H TIMEOUT ERROR MESSAGE NUMBER

* ONLY USED IF FEIBERP OFF

FEIBLTRM DS CL8 LTERM NAME OF ORIGINAL TERMINAL

* ONLY AVAILABLE IF FEIBISC OFF
FEIBMSG DS A POINTER TO INPUT MESSAGE BUFFER

164 IMS : Exit Routines

FEIBUNID
FEIBNDST
FEIBERPN
*

FEIBLDST
FEIBULNG
FEIBUSER
*

FEIBIMID
FEIBTIME

DS
DS
DS

DS
DS
DS

DS
DS

FEIBPRN DS

F UNIQUE ID NUMBER (FULL WORD BIN)

CL8 NAME OF NEW DEST TO QUEUE MESSAGE

CL8 NAME OF ERP TO CALL ON TIMEOUT
ONLY USED IF FEIBERP ON

CL8 NAME OF DEST TO QUEUE LATE MESSAGE

H LENGTH OF DATA IN USER AREA

CL40 USER AREA FOR DATA TO PREFIX MSG
ONLY USED IF FEIBULNG > O.

CL4 IMS IDENTIFIER

H TIMEOUT INTERVAL (SECONDS)

CL8 PRIMARY RESOURCE NAME ADDED

TO USER DATA BY ISC EDIT

Description of the FEIB fields

Correlate the reply message to a previously switched input message by associating message components
with the values in the front-end interface block (FEIB) fields.

The following table provides a description of the FEIB fields.

Table 51. Description of the FEIB fields

Field

Description

FEIBIFLG

Input flag:
FEIBISC (bit 0)
« on: message is from an ISC link
- off: message is from an FES capable device

FEIBISC (bits 1-7)
Reserved

FEIBOFLG

Output flags:

FEIBRPQ1 (bit 0)
- on: reply message has to be sent directly to the original input terminal
- off: reply message has to an SMB named in FEIBNDST

FEIBERP (bit 1)
« on: on timeout, schedule the SMB named in FEIBERPN

« off: on timeout send text of error message defined in FEIBMSGN to the original
input terminal (only used if FEIBTMED is ON.)

FEIBTMED (bit 3)

« on: release terminal from response mode when the timeout value is exceeded
- off: timeout facility is not used for this message

FEIBDELT (bit 4)

- on: defer timeout facility until FP sync—point

- off: timeout facility will be activated immediately at input message processing
(only used if FEIBTMED is ON)

FEIBDELT (bits 2, 5-7)
Reserved

FEIBMSGN

User message number from table (DFSCMTUOQ) which is sent to the original input
terminal in the case of a timeout. The message number can only be specified if the
FEIBERP bit is off. Values range from 1-999. (Binary Number.)

FEIBLTRM

Logical Terminal Name (LTERM) of the input terminal. For a reply message, DFSFEBJO
must store the LTERM name into this field, padding with blanks on the right.

Chapter 3. Transaction Manager exit routines 165

Table 51. Description of the FEIB fields (continued)

Field Description

FEIBMSG Pointer to the DC buffer containing the input message.

FEIBUNID Unique message identifier is only available if the FEIBISC bit is off on input to the exit
routine. The exit routine must store the unique identifier (a binary number) into this
field.

FEIBNDST New destination name for the message. This identify an IBE destination or a

transaction code. (Blank padded on right.)

FEIBERPN Error processing program name (transaction code) to be scheduled in the case of a
timeout. The FEIBERP bit must be set on if the program name is specified. (Blank
padded on right.) This field is also used to specify an optional ERP if the input is from
an IBE session. In this case, FEIBERP need not be set, and the ERP is scheduled with
the input from the IBE session.

FEIBLDST Transaction name that is scheduled when a reply message arrives after timeout.
(Blank padded on right.)

FEIBULNG This field must contain the length of the user data for an input message. It is used by
IMS to expand the original message. This field can contain the length of the user data
to be removed by IMS from the reply message for an output message.

FEIBUSER User data area for routing information that IMS uses to expand the message. This field
is used for input messages only if the FEIBULNG field is greater than zero.

FEIBIMID At input to the exit routine, this field contains the identifier for the IMS system as
specified during system definition on the IMSCTRL macro.

FEIBTIME Timeout interval override (in seconds). This field is used to override the system Front-
End-Switch timeout value as supplied in IMS startup parameters. If a value of O is in
this field, the system default override value is used.

FEIBPRN At input to the exit routine, this field contains the primary resource name that was
added to the user data by ISC edit.

The following table shows the FEIB usage.

Table 52. FEIB usage

Input message processing Reply message processing
Front-end Back-end Intermediate Front-end Intermediate Back-end
t t t t t t

Entry name and system system system system system system
data Type In Out In Out In Out In Out In Out In Out
FEIBMSG DS A X X X N/A- N/A X X
FEIBLTRM DS X X X N/A N/A X X X
CL8
FEIBERPN DS X X N/A N/A X X
CL8
FEIBMSGN DS H X N/A N/A
FEIBNDST DS X X N/A N/A X X
CL8
FEIBUNID DS F X N/A N/A X

166 IMS : Exit Routines

Table 52. FEIB usage (continued)

Input message processing Reply message processing

Front-end Back-end Intermediate Front-end Intermediate Back-end
Entry name and system system system system system system
data Type In Out In Out In Out In Out In Out In Out
FEIBLDST DS N/A N/A X
CL8
FEIBULNG DS H X N/A N/A X
FEIBUSER DS X N/A N/A
CL40
FEIBISC EQU X(0) X(1) X(1) N/A N/A X(1) X(1)
BIT
FEIBRPQ1 EQU N/A N/A X
BIT
FEIBERP EQU X N/A N/A
BIT
FEIBTMED EQU X N/A N/A
BIT
FEIBIMID DS X X X N/A N/A X X
CL4
FEIBTIME DS H X N/A N/A
FEIBPRN DS CL8 X X X N/A N/A
Return code 2-New 6-New 0-Nothing N/A 6-New 8-Reply
(R15) destination destination destination

from FE from IBE from IBE

Note: X(0) = off X(1) = on

Related reference

“Routing information” on page 169
You are responsible for the format and the contents of the routing information.

Input and output fields

Depending on the system, front-end interface block (FEIB) fields will be used for input, which are stored
by IMS, while other FEIB fields will be used for output and stored by the Front-End Switch exit routine.

The following table show the input fields and the output fields

Chapter 3. Transaction Manager exit routines 167

Table 53. FES data flow for input message processing

System

Input

Output

Front-end system

FEIBLTRM (CL8)

FEIBERPM (CL8)

FEIBMSG (A)

FEIBMSGN (H)

FEIBUNID (F)

FEIBNDST (CL8)

FEIBIMID (CL4)

FEIBUSER (CL40)

FEIBPRN (CL8)

FEIBULNG (H)

FEIBTIME (H)

Return codes:

0 - nothing

12 - Table error

Flags: FEIBISC

Flags: FEIBERP, FEIBTMED

Intermediate system

FEIBMSG (A)

FEIBNDST (CL8)

FEIBIMID (CL4)

FEIBERPN (CL8)

FEIBLTRM (CL8)

FEIBPRN (CL8)

Return codes:

6 - New destination from IBE

12 - Table error

Flags: FEIBISC

Flags: N/A

Back-end system

FEIBMSG (A)

FEIBIMID (CL4)

FEIBLTRM (CL8)

FEIBPRN (CL8)

Return codes:

0 - Nothing

Flags: FEIBISC

Flags: N/A

The following table shows the input and output fields for reply message processing.

168 IMS : Exit Routines

Table 54. FES data flow for reply message processing

System Input Output
Front-end system FEIBMSG (A) FEIBLTRM (CL8)
FEIBIMID (CL4) FEIBUNID (F)
FEIBLTRM (CL8) FEIBLDST (CL8)
FEIBNDST (CL8)

FEIBULNG (H)
FEIBERPN (CL8)

Return codes:

0 - nothing

8 - Reply
12 - Table error

Flags: FEIBISC Flags: FEIBRPQ1
Intermediate system FEIBMSG (A) FEIBNDST (CL8)
FEIBIMID (CL4) FEIBERPN (CL8)

FEIBLTRM (CL8)

Return codes:

0 - Nothing

6 - New destination from IBE
12 - Table error
Flags: FEIBISC Flags: N/A
Back-end system N/A N/A

Routing information

You are responsible for the format and the contents of the routing information.

If the value of the FEIBULNG field is greater than zero, IMS adds the user data on an input message from
an FE device to the input message between the old destination and the message text.Both MFS edit and
Basic Edit can remove characters that have a value less than X'41'. As part of the routing information, the
following is required:

- A unique identifier assigned to the input message from the originating terminal. This identifier must be
sent with the user data to identify the reply to this message when it comes back to IMS. For messages
being processed by either MFS or Basic Edit, the identifier value must be translated into unpacked
format.

« The LTERM name of the originating terminal. IMS does not have access to the control blocks of the
originating terminal when the reply to a switched message arrives. Therefore the exit routine must add
the LTERM name of the originating terminal to the user data. This LTERM name is to be rerouted with the
reply from the back-end system and must not be removed or changed by any intermediate system.

When the exit routine gains control from IMS on input of the reply message, it obtains the LTERM name
and the unique identifier from the message text and stores them into the corresponding fields of the
FEIB. IMS then determines the original input terminal and checks if timeout has already occurred. The
destination of the message is determined by the result of this check.

Chapter 3. Transaction Manager exit routines 169

If the timer has not expired, one of the following occurs:

- The message is sent directly to the original input terminal.

« The message is queued to a local transaction, which can cause a reply message to be sent to the
originating LTERM using the I/O PCB.

Be aware that the TPCBTSYM field of the I/O (TPPCB) might contain the ISC LTERM name when the
application does an ISRT reply back to the originating LTERM. This choice is decided by the exit routine.

If the timer has expired, the message is no longer expected at the original terminal, because it is already
released from response mode. The message is then sent to the destination defined by the exit routine for
late reply messages.

Besides required routing information, the routine can store additional information, such as a unique
system identification throughout all connected systems.

Application programs processing FES messages must understand that the input message contains routing
information which must be rerouted to the front-end system. The routing information in all the involved
systems must be in agreement. The routing information in the input message must be included in the
output message.

Message expansion

Combine the original message with the routine information and store it in the new buffer.

Because the DC buffer is not large enough to store the routing information, use the FEIBUSER field of the
FEIB. The length of the user data must be stored in the FEIBULNG field of the FEIB. The maximum length
of user data is 40 bytes. IMS combines the original message with the user data and stores both into the
new buffer. The new destination (FEIBNDST) is also stored into the new buffer.

The following figure shows the original and new buffer formats.
Criginal buffer format

LL| zz| Old_Dest | blank | Msg_Text‘

Buffer format with RC=6
LL| ZZ | New_Dest _ blank | DIcI_Dest| blank| Msg_Text ‘

Butter format with RC=2
LL| 27 _ Mew_Dest | blank | GId_Dest| blank| User_Data | Msg_Text

Figure 10. Old and new buffer formats

New_Dest
New destination from FEIBNDST field

User_Data
User data from FEIBUSER field

The old destination and the new destination are both followed by a blank. You must lay out the routing
information. After IMS has expanded the message, the routing information should precede the original
message text.

Timer facility

The timer facility controls each input message that is routine to a back-end system.

When the specified time interval expires without a reply to the input message, the input terminal is
released from response mode. The timeout value is specified by the FESTIM parameter on the IMS
procedure, and can be overwritten by specifying a non-zero value in the FEIBTIME field during front-end

170 IMS : Exit Routines

processing of an input message. To make use of the timer, set the FEIBTMED flag in the FEIB. In addition,
you must specify the action which has to be taken at timeout. This can be done by specifying either

the name of a program that is to be given control (FEIBERPN field) or a message that is to be issued
(FEIBMSGN field). The message number must be included in the user message table DFSCMTUO. See
DFSCMTUO for more information. The program can send a message to the input terminal using the I/O
PCB. This response releases the terminal from response mode. The message text is directly sent to the
input terminal if you define a message number.

If the reply comes in time, the timer request for the input message is canceled. No timeout can occur if
you do not set the FEIBTMED indicator. If no reply is received, the terminal is not released from response
mode.

If the input terminal is in an active conversation status, the timer facility will not be activated.

When switching to a local Fast Path transaction, the timeout facility can be deferred until Fast Path
sync-point by setting the FEIBDELT flag.

FEIBRPQ1 indicator

The FEIBRPQ1 indicator must be set in the FEIB for a reply message to be sent directly to the original
input terminal.

This indicator can only be set when a reply message has a return code of 8 in register 15. If you do not set
it, you have to store a new destination into the FEIBNDST field of the FEIB. IMS checks the indicator and
sends the message, depending on the values in the FEIB.

If you change the destination code of an input message to a local transaction which sends a message
across a link, the timer supervisor includes the elapsed time for the local transaction.

If the destination of a reply message is changed to a local transaction, the original input terminal is
released from the timer supervisor before the local transaction is scheduled. If the transaction is not
available or if the application program does not send an output message to the original input terminal, the
terminal is not released from response mode.

Example of the front-end switch exit routine (DFSFEBJO)

A front-end switch exit routine allows you to keep the front-end system in response mode while it is
waiting for the reply from the intermediate system for messages entered in a back-end system.

Subsections:

« “Routing scheme” on page 171

 “Description of sample exit routine” on page 173

Routing scheme

In the following figure, three IMS systems are connected by ISC links. SFIMS2 acts as the front-end
system, and LAIMS1 and NYIMS1 can act as a back-end system. In addition, LAIMS1 can act as an
intermediate system.

SFIMSs2 LAIMSA NYIMS1
[= - -
LOC-code LOC-code LOC-code
with I5C with ISC with
2.3 1 . 4,5 | . 0,1,6-9,
IMS 3 IMS 2 MS 1

Figure 11. Routing scheme of front-end switch exit routine example

In each system, you can enter a transaction FESTXZ. This is not defined as a transaction in the system,
but is a special transaction code used by the sample exit routine that identifies this message as an FES

Chapter 3. Transaction Manager exit routines 171

transaction. The exit routine in the front-end system (SFIMS2) changes the transaction code to FESTX2,
which must be defined in the system as a valid transaction.

There is an eight-digit location code (LOC-code) in the user data. The decision as to which system
processes the transaction depends on this LOC-code. If the transaction is to be processed in another
system, the exit routine changes the destination to LAIMS1 so that either LAIMS1 or NYIMS1 processes
the transaction FESTX2.

The following location codes are defined:

System Location code (LOC-code)
SFIMS2 20000000 - 39999999
LAIMS1 40000000 - 59999999
NYIMS1

00000000 - 19999999
60000000 - 99999999

The system that processes the transaction FESTX2 generates an output message containing the
transaction code FESTX3 in front of the message text. As with FESTXZ, this is not defined as a transaction
in the system, but is a special transaction code used by the sample exit routine that identifies this
message as a reply to an FES transaction. This output message has to be routed to the front-end system
where the corresponding FESTX1 transaction was entered which is now the target system for the reply
message.

The following tables show routing information for each system.

Table 55. SFIMS2 tables

SFIMS2 - table I SFIMS2 - table II1
1st digit of LOC-code Next Target Next
system system system
0 LAIMS1 LAIMS1 LAIMS1
1 LAIMS1 NYIMS1 LAIMS1
4 LAIMS1
5 LAIMS1
6 LAIMS1
7 LAIMS1
8 LAIMS1
9 LAIMS1

Note: ! This table is used only if it is an intermediate system

Table 56. LAIMS1 tables

LAIMS1 - table I LAIMS1 - table II
1st digit of LOC-code Next Target Next
system system system

172 IMS : Exit Routines

Table 56. LAIMS1 tables (continued)
LAIMS1 - table I LAIMSA - table 11

NYIMS1 SFIMS2 SFIMS2
NYIMS1 NYIMS1 NYIMS1
SFIMS2
SFIMS2
NYIMS1
NYIMS1
NYIMS1
NYIMS1

O 0OJIOWN O

Table 57. NYIMS1 tables
NYIMS1 - table I NYIMS1 - table II*

1st digit of LOC-code Next Target Next
system system system
2 LAIMS1 LAIMS1 LAIMS1
3 LAIMS1 SFIMS2 LAIMS1
4 LAIMS1
5 LAIMS1

Note: 1 This table is used only if it is an intermediate system

Description of sample exit routine

The example in this section is based on the assumption that ISCEDIT is used for editing the messages
going across ISC links. ISCEDIT removes the first data field of the message text on output to an ISC
destination.

The exit routine is designed to run in each of the three systems without modifying the code. It has to
process different tables with routing information for each system, and has to know the name of the
owning system. This is obtained from the FEIBIMID field. In this example:

« NYIMS1='IMS1' back-end system

« LAIMS1="'IMS2' back-end or intermediate system

e SFIMS2='IMS3' front-end system

The exit routine in each system must analyze the transaction code and the LOC-code in the message text:
- If the transaction code is FESTX1, and

— Change the transaction code to FESTX2.
— Ifthe LOC-codeis in table I:

- Change the transaction code to FESTX2.

- Change the destination to the corresponding destination from table I (FEIBNDST).
- Set the FEIBTMED indicator on, if appropriate.

- Set the FEIBERP indicator on, if appropriate.

- Set the transaction code for ERP (FEIBERPN), if appropriate.

Store the following routing information into the user area of the FEIB (FEIBUSER) as shown in the
following figure.

Chapter 3. Transaction Manager exit routines 173

FE-ID | FEIBLTRM | FEIBUNID

‘ —— Unigue identifier from FEIB
* | TERM name of input terminal from FEIB
*MName of front-end system (input)
or target system (reply)

Figure 12. User area of FEIB (FEIBUSER)

The FEIBUNID value is unpacked into zoned format to prevent MFS Edit or Basic Edit from removing
characters less than X'41".

Set the user data length field to 24 (FIEBULNG).
Set the RC=02 in register 15.

— Else Set RC=00 in register 15.
« If the transaction code is FESTX2 and the LOC-code is in table I:

— Change the destination to the corresponding destination from table I (FEIBNDST).
— Set the RC=06 in register 15.
« If the transaction code is FESTX3:

Analyze the routing information.

If the name of the target system in the routing information (FE-ID) is not the name of the owning
system:

Change the destination to the corresponding destination from table II (FEIBNDST).
Set the RC=06 in register 15.

If the name of the target system is not table II, set RC=12 in register 15.

If the name of the target system in the routing information is the name of the owning;:

Get the LTERM name from the routing information and store it into the interface block (FEIBLTRM).

Get a unique identifier from the routing information, change it from zoned to packed format, and
store it in the interface block (FEIBUNID).

Set the transaction code for a message which comes too late (FEIBLDST).
Set the FEIBRPQ1—indicator.

Set the user data length field to 31 (FIEBULNG).

Set the RC=08 in register 15.

- In all other cases no action is taken by the exit routine.r

Global Physical Terminal (Input) edit routine (DFSGPIXO0)

The Global Physical Terminal (Input) edit routine (DFSGPIXO0) is called before the IMS Basic Edit routine
and eliminates the overhead associated with defining the edit routine for each terminal through system
definition.

This topic contains Product-sensitive Programming Interface information.

This topic describes the Global Physical Terminal Input edit routine. This routine is a user-written edit
routine that performs the same functions as the Physical Terminal Input edit routine (DFSPIXTO).

Subsections:

« “About this routine” on page 175

e “Communicating with IMS” on page 177

1 Inan IMS back—end system, which processes TX2, an application program generates the output message
with TX3.

174 IMS : Exit Routines

About this routine

If you write and include the routine in your system, IMS calls it for all terminals that do not have the
Physical Terminal Input edit routine specified. By using the Global Physical Terminal Input edit routine
instead of the Physical Terminal Input edit routine, you can eliminate the overhead associated with
defining the edit routine for each terminal through system definition.

If the input message is processed by MFS, the Global Physical Terminal (Input) edit routine is not called.
This edit routine is only called when a non-LU 6.2 message is entered from a terminal; it is not called
when the message is inserted by a program-to-program switch.

Message segments are passed one at a time to the Global Physical Terminal (Input) edit routine, and the
edit routine can handle them in one of the following ways:

Accept the segment and release it for further editing by the IMS Basic Edit routine.

Modify the segment (for example, change the transaction code or reformat the message text) and
release it for further editing by the IMS Basic edit routine. Examples of segment modifications that can
be made are:

— changing the transaction code.
- reformatting the message text.

You can make any required modifications within the original segment because IMS has not yet
performed destination or security checking.

You cannot alter the length of this segment.
Cancel the segment.
Cancel the message and request that IMS send a corresponding message to the terminal operator.

Cancel the message and request that IMS send a specific message from the User Message Table to the
terminal operator.

The following table shows the attributes of the Global Physical Terminal (Input) Edit exit routine.

Table 58. Global physical terminal input edit routine attributes

Attribute Description
IMS environments DB/DC, DCCTL.
Naming convention You must name this exit routine DFSGPIXO0.

Including the routine No special steps are required to include this routine.

IMS callable services To use IMS callable services with this routine, you must do the following:

« Issue initialization call (DFSCSIIO) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the
desired callable service.

» Use the ECB found in register 9 for the DFSCSIIO call.
« Link DFSCSIOO0 with your user exit.

Chapter 3. Transaction Manager exit routines 175

Table 58. Global physical terminal input edit routine attributes (continued)

Attribute Description

Sample routine location No sample exit routine is provided. Instead, use the IMS.ADFSSMPL
distribution library (member name DFSPIXTO).

The sample is identical to the Physical Terminal (Input) edit routine
(DFSPIXTO), because the two edit routines perform the same function.

This routine performs the following functions:

» Scans the input message segment for an expected format—TESTEXIT.

« Generates return codes (XX) based on the input request (TESTEXIT,XX).
« Verifies the user message number (YYY) if specified (TESTEXIT,XX,YYY).

» Replaces TESTEXIT with ERROR if return code or message number is invalid
and passes the segment to IMS (return code 0).

Note: The sample exit routine is not reentrant. You must
assemble it with PARM='OBJECT,NODECK,NORENT" and link-edit it with
PARM='NCAL,LET,LIST,XREF,SIZE(880K,64k)".

Bypassing Basic Edit

If the IMS application program supplies DFS.EDTN in the MOD name parameter for the output message,
IMS bypasses the Basic Edit routine, except for transaction code and password validation.

Related Reading: For further information see "MFS Bypass for 3270 or SLU 2" in the "Application
Programming Using MFS" in IMS Version 15.5 Application Programming APIs.

The Physical Terminal Input edit routine must position the transaction code, and optionally the password,
if the terminal is not operating in conversational or preset destination mode. The edit routine should
detect errors and have IMS send a message to the terminal operator if the routine finds any errors.

IMS maintains a flag in the CTB (bit CTB6TRNI in the CTBFLAG® field) to indicate when 3270 MFS bypass,
nonconversational, no preset destination and first segment exist on input to the Global Physical Terminal
(Input) edit routine. This flag notifies the Global Physical Terminal Input edit routine that it can add a
minimum of one byte and a maximum of 18 bytes to the front of the message segment for a transaction
code and optional password. The minimum of one byte to be added to the front of the message segment
consists of a one-byte transaction code. If NOBLANK is not specified at system definition, a minimum of
two bytes is added to the front of the message segment, consisting of a one-byte transaction code and
one blank, which is necessary as a separator. To add a transaction code and optional password, the exit
routine can put a return code of 16 in register 15 and set register 1 to point to an LLZZ field followed by
the data to be added. You cannot, however, alter the length of the segment passed in to the exit. If you
need to insert a transaction or destination code, and an optional password, set register 1 to the address of
a static data field that consists of a halfword length (LL), a halfword of binary zeroes (ZZ), and zero to 14
bytes of user data.

Specifying the routine

You must assemble and bind the edit routine into the IMS execution time library or user library
concatenated in front of the IMS execution time library.

IMS calls the Global Physical Terminal Input edit routine (DFSGPIXO0) for each terminal that does not have
EDIT=(,YES) coded on the TERMINAL macro or ETO logon descriptor.

For terminals that do have EDIT=(,YES) specified on the TERMINAL macro or ETO logon descriptor, IMS
calls the Physical Terminal Input edit routine (DFSPIXTO).

Related Reading:
« For more information on the TERMINAL macro, see IMS Version 15.5 System Definition.

176 IMS : Exit Routines

Communicating with IMS
IMS uses the entry and exit registers to communicate with the exit routine.
Contents of registers on entry

On entry to the edit routine, all registers must be saved using the save area provided. The registers
contain the following;:

Register Content

1 Address of the input message segment buffer. IMS editing has not been performed.
The first two bytes of the buffer contain the segment length (binary length includes the
4-byte overhead). The third and fourth bytes of the buffer are binary zeros. The message
text begins in the fifth byte of the buffer.

If the device was defined with MFS support, but this message is not being processed by
MFS, the first segment of the message has backspace error correction performed before
entry to this edit routine. If escape (**) was entered by the terminal operator, the first
two data bytes have been changed to binary zeros.

7 Address of CTB for the physical terminal from which the message was entered.
9 Address of CLB for the physical terminal from which the message was entered.
13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.

15 Entry point of edit routine.

The edit routine you supply can edit the message segment in the buffer pointed to by register 1.

You can reduce the length of the message segment to any size by replacing the length in the buffer with
the appropriate value. The length field must appear in the same place at exit as at entry, and bytes 3 and
4 must not be changed.

Contents of registers on exit

Before returning to IMS, the edit routine must restore all registers except for register 1, which contains
a message number if register 15 contains a value of 12; otherwise register 1 is ignored. Register 15
contains one of the following return codes:

Return codes Meaning

00 Segment is processed normally.

04 Segment is canceled.

08 Message is canceled and the terminal operator is notified.

12 Message is canceled, and the message identified by register 1 is sent to the terminal.
16 Insert the transaction code and optional password following the LLZZ pointed to by

register 1. This return code is only valid for 3270 MFS bypass terminals.

When the entering terminal is not a 3270 MFS bypass terminal, and the physical
terminal input exit gives a return code of 16, IMS issues an error message, and the
transaction code is not inserted in the message.

Any other return code causes the message to be canceled and the terminal operator to be notified.

Related reference
“Routine binding restrictions” on page 9

Chapter 3. Transaction Manager exit routines 177

If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

“IMS callable services” on page 13
IMS provides IMS callable services for exit routines to provide the user of the exit routine with clearly
defined interfaces.

“Physical Terminal (Input) edit routine (DFSPIXTO0)” on page 261
The Physical Terminal (Input) edit routine (DFSPIXTO) user-written edit routine gains control before the
IMS Basic Edit routine. It is used to accept, modify, and cancel segments and messages.

Greeting Messages exit routine (DFSGMSGO)

The Greeting Messages exit routine (DFSGMSGO) allows you to tailor how IMS handles messages issued
during the logon and signon process.

The exit also allows you to:

Change the MFS Message Output Description (MOD) name without changing the message. (However, if
the terminal is the Master Terminal and is master formatted, the request to change the MOD name is
ignored.)

Change the message without changing the MOD name.

« Send a null message (no data) for formatting purposes.
- Display or process RACF messages that are issued at signon.

Subsections:

« “About this routine” on page 178

« “Communicating with IMS” on page 179

About this routine

IMS builds a message based on the calling module's request. This message, plus information useful to the
exit and a buffer for returning an alternate message built by the exit, are passed as input to the exit. The
exit indicates by a return code if the message built by IMS should be used, or if an alternate message has
been returned and should be used. The message length returned must be at least five bytes (four bytes
for the length field and a one-byte message).

The following table shows the attributes of the Greeting Messages exit routine.

Table 59. Greeting messages exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSGMSGO.

Including the routine You can assemble the sample exit routine, or one that you write (using the

standard IMS macro and copy files), and include it in an authorized library in the
JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the IMS.SDFSRESL.
If the Greeting Messages exit routine is included, IMS automatically loads it each
time IMS is initialized.

IMS callable services To use IMS callable services with this routine, you must do the following:

« Issue an initialization call (DFSCSIIO) to obtain the callable service token and
a parameter list in which to build the function-specific parameter list for the
desired callable service.

» Use the ECB found at offset 0 of the Greeting Messages Exit parameter list.
« Link DFSCSIOO0 with your user exit.

178 IMS : Exit Routines

Table 59. Greeting messages exit routine attributes (continued)

Attribute Description

Sample routine location IMS.ADFSSMPL (member name DFSGMSGO).

The sample exit uses the DFS3649 and DFS2467 messages built by IMS, but it
converts the DFS3650 message to a single-segment message. You can also write
your own exit routine.

Communicating with IMS
IMS uses the entry and exit registers, as well as parameter lists, to communicate with the exit routine.
Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The registers contain the

following:
Register Contents
1 Address of the “IMS standard user exit parameter list” on page 5 (Version 1)
13 Save area address
14 Return address to IMS
15 Entry point address of exit routine

The following table shows the greeting messages exit parameters. The address of this parameter list is in
the standard exit parameter list field SXPLFSPL.

Table 60. Greeting messages exit parameter list

Offset Length Description

+0 4 ECB address.

+4 4 SCD address.

+8 4 Pointer to User Table.

+12 4 Address of parameter list for this exit. For additional details

on the content and the format of these parameters, see the
prolog in the sample routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for register 15, which contains
the return code. The returns codes are as follows:

Chapter 3. Transaction Manager exit routines 179

Register Contents

15 One of the following return codes:

Return code
Meaning
X'oo'
Use the message built by IMS.
X'o4'
Use the message in the alternate buffer (single segment).
X'os'
Use the message in the alternate buffer (multiple segment).
X'ocC'
Send a null message so that the device is formatted with the MFS format specified by
IMS or returned by the exit.
X'10'
Bypass password verification. Valid only for message DFS3656A.

Related reference

“Routine binding restrictions” on page 9

If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

“IMS callable services” on page 13
IMS provides IMS callable services for exit routines to provide the user of the exit routine with clearly
defined interfaces.

Related information
DFS3656A (Messages and Codes)

IMS Adapter for REXX exit routine (DFSREXXU)

The IMS Adapter for REXX exit routine (DFSREXXU) gets control before the environment is built, just
before an exec is executed, and just after it ends.

You can use DFSREXXU with the IMS adapter for the REXX environment. It is optional and can be omitted
from the bind step. The user exit routine is used more for an installation than for a specific execution. The
user exit routine is provided by the IMS adapter for REXX and is called only when a new REXX transaction
is scheduled and ends. The user exit is not associated with the standard REXX exits provided by TSO. A
sample user exit routine (DFSREXXU) is shipped with IMS (in source code only). For the latest version of
the DFSREXXU source code, see the IMS.SDFSSRC distribution library; member name is DFSREXXU.

The routine has the ability to do the following:

 Override the exec name to be executed. This name defaults to the IMS program name.
« Choose not to execute any exec and have the IMS adapter for REXX return to IMS.

It is the exit routine's responsibility to do any required processing such as issuing a GU (Get-Unique) call
if the region type is MPP.

- Issue DL/I calls using the AIB interface as part of its logic in determining what exec to execute.

« Set REXX variables (through IRXEXCOM) before the exec is started. The variables are then available to
the exec.

« Extract REXX variables (through IRXEXCOM) after the exec ends. These variables were set earlier by the
exec or exit routine.

« Change the initial default IMSRXTRC tracing level.

The user exit routine must conform to all of the restrictions that apply to IMS application programs.

180 IMS : Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.mc/msgs/dfs3656a.htm#dfs3656a

Subsections

« “About this routine” on page 181

« “Parameters” on page 181

About this routine
The following table shows the attributes of the IMS Adapter for REXX exit routine.

Table 61. IMS Adapter for REXX exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL.

Naming convention The user exit routine must be named DFSREXXO0.

Binding You must bind the user exit with DFSREXX1 during installation of the IMS
adapter for REXX.

Including the routine No special steps are required to include this routine.

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine location IMS.SDFSSRC distribution library.

The routine must be written to be reentrant (RENT), AMODE 31, RMODE ANY.

Parameters

Entry parameters are:

RO
Pointer to REXX Environment Block as described in z/0S TSO/E REXX Reference.

R1
Pointer to parameter list

R13
Pointer to save area

R14
Return address

R15
Entry point address

On exit, all registers except R15 must be restored. Only the parameters can be altered. The content of
R15 is ignored on exit.

The parameter list contains a list of pointers to the parameters. All character data is left justified
and padded with blanks, if necessary. Omitted fields are set to blanks. All fields are read-only unless
otherwise specified. The following table shows the user exit parameter list format.

Table 62. User exit parameter list

Name Offset Data type Length Description
(decimal) (decimal)
Function 0 Pointer 4 Pointer to one word function type. Func=0 on Setup Call,

Func=1 on Entry Call, Func=2 on Exit Call.

Chapter 3. Transaction Manager exit routines 181

Table 62. User exit parameter list (continued)

Name

Offset
(decimal)

Data type Length

(decimal)

Description

EXECParm

4

Pointer

4

Pointer to 128-byte area containing parameters that are
passed to the REXX interpreter. The format of the area
is a halfword length field that contains the length of the
text string that follows. The first blank separated word
or the entire string if no blanks are present is the exec
name to execute. On entry this field is set to the program
name followed by one blank and the transaction code

if available. The exit can rebuild this field when called
on entry to alter the exec name or parameters that are
passed. The length field can be set to zero indicating no
exec is to be executed.

PgmName

Pointer

Pointer to 8-byte area containing the Program name that
was scheduled.

TranCode

12

Pointer

Pointer to 8-byte area containing the Transaction Code
that was scheduled, if available (MPP,BMP,IFP).

User_ID

16

Pointer

Pointer to 8-byte area containing the current user ID for
the scheduled program, if available (MPP,BMP,IFP).

IMSRXTRC

20

Pointer

Pointer to one word IMSRXTRC level. This value defaults
to 1 at exec startup but can be overridden by the user
exit. See IMS Version 15.5 Application Programming for
more information on values. Note that the level field
here is a FULLWORD and not EBCDIC.

UserArea

24

Pointer

Pointer to 8-byte (word aligned) user area that is passed
on entry and is preserved verbatim on exit. This field

is set to binary zeros whenever the REXX environment

is built in the dependent region. The user area can be
altered by the user exit and is provided as an anchor.

RetCode

28

Pointer

Pointer to one word return code. The return code must
be set to zero.

UseridInd

32

Pointer

Pointer to one-byte User ID Indicator that describes the
content of the user ID field. The indicator can be: U-User
ID, L-LTERM, P-PSBname, or O-Other.

Note:

1. When on a Setup call the next four parameters are not available; their addresses are 0.

For each user exit parameter described in the preceding table, the following table shows the
corresponding DFSREXXU parameter.

Table 63. DFSREXXU parameter list

User exit parameter

DFSREXXU parameter

Function pointer

FUNCTION_CODE DS F FUNC_SETUP EQU 0 FUNC_BEFORE
EQU 1 FUNC_AFTER EQU 2

EXECParm pointer

EXEC_PARM DS 0CL128 EXEC_PARM_LL DS H EXEC_PARM_TXT
DS CL126

PgmName pointer

PGM_NAME DS CL8

182 IMS : Exit Routines

Table 63. DFSREXXU parameter list (continued)

User exit parameter DFSREXXU parameter
TranCode pointer TRAN_CODE DS CL8
User_ID pointer USER_ID DS CL8
IMSRXTRC pointer IMSRXTRC_LEV DS F
UserArea pointer USER_AREA DS 2F
RetCode pointer RETURN_CODE DS F
Useridind pointer USERID_IND DS F

Related concepts
z/0S: Using the environment block

Initialization exit routine (DFSINTXO0)

Use the Initialization exit routine (DFSINTXO) to create two user data areas that can be used by some of
your installation's exit routines.

This topic contains Product-sensitive Programming Interface information.

IMS calls the Initialization exit routine during initialization as a common Transaction Manager exit routine.
Certain IMS user exit routines are called before the DFSINTXO user exit routine is called. These user

exit routines are: DFSPSEQOQ, DFSHINTO, DFSZINTO, RASE, any exit routine of type AOIE, and DFSQSPCO/
DFSSSSPO.

« General user data area

The address of this user data area is passed as part of the IMS standard user exit interface. Any exit
routine that uses this interface will have access to this data area (if it exists). The address of this data
area is also passed as part of the nonstandard interface to the following exit routines:

Command Authorization exit routine (DFSCCMDOQ)
Greeting Messages exit routine (DFSGMSGO)
Logoff exit routine (DFSLGFXO0)

Logon exit routine (DFSLGNXO0)

Destination Creation exit routine (DFSINSXO0)
Signoff exit routine (DFSSGFXO0)

Signon exit routine (DFSSGNXO0)

The general user data area is not available to some IMS user exit routines when they are called during
IMS initialization because the DFSINTXO user exit routine is called during IMS initialization after these
user exit routines are called. The user data area is not available to the following exit routines when they
are called during IMS initialization: DFSPSEQ0, DFSHINTO, DFSZINTO, any exit routine of type AOIE,
RASE, and DFSQSPCO/DFSSSSPO.

Other TM exit routines can address the user data areas through SCDINTXP. See the topic for each exit
routine for information on the routine's parameter list.

« LU 6.2 user data area

The LU 6.2 user data area is not passed as part of the IMS standard user exit interface. It is passed as
part the nonstandard interface to the LU 6.2 Edit exit routine.

You can also use this exit routine to alter the setting for the Extended Terminal Option (ETO) feature. You
can leave ETO activated or override the setting to indicate that ETO is not required, even if you previously
requested it.

Chapter 3. Transaction Manager exit routines 183

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikja300/ebuse.htm

This exit is also used to enable password verification. The IMS default processing is to disable password
verification. With password verification, users signing on to VTAM terminals that change their password
are prompted to verify the new password.

Subsections:

« “About this routine” on page 184
« “Communicating with IMS” on page 185

About this routine

The Initialization exit routine is optional. If the exit is included in the system, IMS calls it before IMS loads
the ETO descriptors and any exit routine that requires ETO to be active. If ETO is required for an exit
routine, the documentation for the routine states that requirement. If the Initialization exit routine returns
a return code indicating that ETO should not be made available, the ETO exit routines and descriptors

will not be loaded. If this exit is not included in the system, IMS proceeds using the setting for the ETO=
keyword that is specified as an EXEC parameter or in the DFSPBxx of IMS.PROCLIB.

The initialization exit routine can optionally enable password verification and an alternate ETO ALOT=0
option by setting the appropriate flags in the exit routine parameter list.

Attributes of the routine

The following table shows the attributes of the Initialization exit routine.

Table 64. Initialization exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSINTXO.
Binding This exit routine must be reentrant.

Including the routine If you want IMS to call the Initialization exit routine, include it in an authorized
library in the JOBLIB, STEPLIB, or LINKLIST library concatenated in front of
the IMS.SDFSRESL. If the exit routine is included, IMS automatically loads it
and calls it at initialization.

IMS callable services DFSINTXO can use callable storage services. To use IMS callable services with
this routine, you must do the following;:

« Issue an initialization call (DFSCSIIO) to obtain the callable service token
and a parameter list in which to build the function-specific parameter list for
the desired callable service.

« Use the ECB found at offset X'0' of the IMS Initialization exit parameter list.
» Link DFSCSIOO0 with your user exit.

The IMS initialization exit (DFSINTXO0) cannot access MSC control blocks
during IMS initialization, because the MSC control blocks are not built until
restart. If the DFSINTXO exit tries to access MSC control blocks, it will not
find any. The MSC control blocks that cannot be found are LLB, LCB, LNB, and
RCNT. The DFSMSCEDQ user exit initialization entry point (which is called at
IMS restart) and the other entry points can access those control blocks with
FIND/SCAN control block callable services. See the prolog of that user exit for
details and samples of those services.

Sample routine location IMS.ADFSSMPL (member name DFSINTXO).

About user data areas

184 IMS : Exit Routines

The user data areas can be used to provide access to user tables that can then be referenced by any user
exit that has access to the data area. An example of the use of general user data area is for ETO. You can
use the general user data area to define access limits for terminals or users by total number, department,
time of day, or other criteria. You can also use the data area to define LTERM-to-user or user-to-terminal
relationships to aid your installation logon and signon exit routine processes.

For APPC, you can use the LU6.2 user data area along with the LU6.2 User Edit exit routine to emulate
MFS. To do so, the LU6.2 user data area is built by DFSINTXO to hold a list of LTERM and MOD names
available to the I/O PCB. IMS then passes the address of the LU6.2 user data area LU 6.2 Edit exit routine
for input and output messages from a LU6.2 destination. The LU 6.2 Edit exit routine can use the list

of LTERM names to redirect output to a non-LU6.2 destination, or the list of MOD names to format a
message.

Communicating with IMS
IMS uses the entry and exit registers, as well as parameter lists, to communicate with the exit routine.
Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The registers contain the
following:

Register Contents

R1 Address of the “IMS standard user exit parameter list” on page 5 (Version 1)
R13 Save area address

R14 Return address to IMS

R15 Entry point address of exit routine

The following table shows the IMS initialization exit parameters. The address of this parameter list is in
the IMS standard user exit parameter list field SXPLFSPL. The Initialization exit routine parameter list is
mapped by macro DFSINTXP.

Table 65. IMS initialization exit parameter list

Offset Length Description

+0 4 CLB address

+4 4 SCD address

+8 4 0, as an indication that no user table exists

+12 4 0, as an indication that no LU 6.2 user table exists

Chapter 3. Transaction Manager exit routines 185

Table 65. IMS initialization exit parameter list (continued)

Offset Length Description
+16 1 Input/Output Flag Byte
X'80’
0

No password verification (default). To enable
password verification, set this flag to 1.

X'40'
1]
Default ETO ALOT=0 process
X'10'
0
Static ISC resource sharing (default)
X'os8'
0
ETO LU type 3 is not allowed to log on as a SLU1
(default)
X'04'
1]

ETO LU type 3 is not allowed to log on as a 3270
printer (default)

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for register 15, which contains
the return code.

The address of the general user data area created by this exit routine can be returned in the Initialization
exit parameter list at +8. If zero, no general user data area was created. If non-zero, IMS saves the
address in the SCD control block at SCDINTXP.

The address of the LU 6.2 user table created by this exit routine can be returned in the Initialization exit
parameter list at +12. If zero, no LU 6.2 user table was created.

Register Contents

15 One of the following return codes:

Return code Meaning

0 Initialization of IMS continues.

4 Regardless of ETO specification, ETO terminal support is not required.
Message DFS3648 is sent to the system console. Setting RC=4 resets
both ETO function and logon user data support.

8 Regardless of ETO specification, ETO terminal support is not required
but logon user data is supported for static terminals. Message DFS3648
is sent to the system console. Setting RC=8 resets ETO function only.

186 IMS : Exit Routines

Table 66. IMS initialization exit parameter list

Offset Length Description
+16 1 Input/Output Flag Byte
X'80’
0
No password verification (default)
1
Enable password verification
X'40'
0
Default ETO ALOT=0 process
1
Alternate ETO ALOT=0 process
X'20'
1]
Default VGR for ISC
1
Disable VGR for ISC
X'10'
0
Normal static ISC resource sharing (default)
1
Disable resource sharing for static ISC terminals in the
IMSplex
X'08'
0
ETO LU type 3 is not allowed to log on as a SLUL
(default)
1
ETO LU type 3 is allowed to log on as a SLU1"1" on page
187
X'04'
1]
ETO LU type 3 is not allowed to log on as a 3270
printer (default)
1

ETO LU type 3 is allowed to log on as a 3270 printer-l”
on page 187

Notes:
1. ETO LU type 3 is allowed to log on either as SLU1 or 3270 printer, but not both.

Related tasks

Using the MOD name and LTERM interface (Communications and Connections)
Related reference

“LU 6.2 Edit exit routine (DFSLUEEOQ)” on page 203

Chapter 3. Transaction Manager exit routines 187

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.ccg/ims_appcad_apps_usingmodname.htm#ims_appcad_apps_usingmodname

The LU 6.2 Edit exit routine (DFSLUEEQ) enables you to edit input and output LU 6.2 messages for
IMS-managed LU 6.2 conversations. It is also called if a message is inserted from an alternate PCB
destined for an LU 6.2 destination.

“IMS callable services” on page 13
IMS provides IMS callable services for exit routines to provide the user of the exit routine with clearly
defined interfaces.

“IMS standard user exit parameter list” on page 5
Many of the IMS user exit routines are called with a standard interface, which allows the exit routines to
access IMS control blocks with callable services.

Input Message Field edit routine (DFSME000)

Use the Input Message Field edit routine (DFSMEOQQO) to perform common editing functions and simplify
programming.

This topic contains Product-sensitive Programming Interface information. \

This topic describes how to write an Input Message Field edit routine. Because this routine is usually
used with the Input Message Segment edit routine, you'll find references to both routines throughout the
following paragraphs.

Subsections:

« “About this routine” on page 188

« “Communicating with IMS” on page 189

About this routine

MFS application designers should consider the use of Input Message Field and Segment edit routines

to perform common editing functions such as numeric validation or conversion of blanks to numeric
zeros. Field and Segment edit routines can simplify programming by using standard field edits to perform
functions that would otherwise have to be coded in each application program.

The following table shows the attributes of the Input Message Field Edit routine.

Table 67. Input message field edit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSMEOQQO.

Binding A Field edit routine must have a CSECT name of DFSMEnnn, where nnn is a number
from 001 to 126 that corresponds with the routine number specified in the MFLD
statement.

In order for IMS to properly load the edit routine during IMS initialization, move the
edit routine to an authorized library in the JOBLIB, STEPLIB, or LINKLIST library
concatenated in front of the IMS.SDFSRESL.

The Field edit routine can only modify the data in the field created by MFS and
must not cause any waits.

Including the routine Move the edit routine to an authorized library in the JOBLIB, STEPLIB, or LINKLIST
library concatenated in front of the IMS.SDFSRESL, or ensure that the library on
the IMSGEN macro is added to the JOBLIB, STEPLIB, or LINKLIST concatenation.

188 IMS : Exit Routines

Table 67. Input message field edit routine attributes (continued)

Attribute Description

IMS callable services To use IMS callable services with this routine, you must issue an initialization call
(DFSCSI0O0) to obtain the callable service token and a parameter list in which to
build the function-specific parameter list for the desired callable service.

Use the ECB found in register 9 for IMS callable services. Manually link this exit
with DFSCSIOO to use callable services. No additional linking is required to use IMS
callable services.

Sample routine location IMS.SDFSSMPL (member name DFSMEQQO).

Communicating with IMS
IMS uses the entry and exit registers, as well as parameter lists, to communicate with the exit routine.
Contents of registers on entry

On entry, the edit routine must save all registers using the provided save area. The registers contain the

following:

Register Contents

1 Address of parameter list.

9 Address of CLB/ECB.

13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.

15 Entry point of edit routine.

Description of parameter list format
IMS.ADFSMAC contains a DSECT of the parameter list addressed by register 1 (use COPY MFSFLDE) as

follows:
Byte Contents
0
Bit Contents
0,1 Message formatting option:
« 00 =option1
« 01 =option 2
« 11 = option 3
2 Zero (Field edit routine)
3 Reserved
4 1 if the first 2 bytes in the field contains attribute information
5 1 if the field contains extended field attribute information
6 Reserved
7 Reserved
1 Zeros

Chapter 3. Transaction Manager exit routines 189

Byte Contents

2 The number of reserved extended field attribute bytes in the field. These bytes appear
immediately after the 3270 attribute bytes, if any.

3 The entry vector in binary (0 to 255).

4-7 The execute length (length-1) of the field as defined in the MFLD statement. If

ATTR=YES is specified, this field contains (length-3).

8-11 The field address after MFS editing (before uppercase translation and null compression
for option 1 and 2 fields). If ATTR=YES is specified, this is the address of the first data
byte after the two attribute bytes. For option 3, this is the address of the 2-byte field
length, which begins the completed option 3 field.

Contents of registers on exit

Before returning to IMS, the edit routine must restore all registers except for register 15, which must
contain one of the following return codes:

Register Contents

15 Return code value from 0 to 255

Function of the sample routine

The functions of this IMS-supplied routine are as follows:

Vector Resulting action
0 Converts blanks to zoned decimal zeros (X'FQ').
1 Converts blanks to zoned decimal zeros (X'FO') and replaces non-zoned decimal

characters with a question mark (?). If ? is inserted, the routine sets a return code of
8 and, if an attribute (ATTR) area is present, sets the CURSOR,HI attributes.

2 Converts the binary cursor address field to zoned decimal if its length is 4 bytes. If the
field is not 4 bytes, a return code of 8 is set.

>2 Sets a return code equal to the entry vector (if the vector is greater than 2).

This routine will handle option 1, 2, and 3 formats. For option 1 and 2, MFLD FILL=NULL and an entry
vector of 1 can produce undesirable results.

Related reference

“Input Message Segment edit routine (DFSME127)” on page 192

The Input Message Segment edit routine (DFSME127) can be used by MFS application designers to
perform common editing functions such as numeric validation or conversion of blanks to numeric zeros.
Field and Segment edit routines can simplify programming by using standard field edits to perform
functions that would otherwise need to be coded in each application program.

“IMS callable services” on page 13
IMS provides IMS callable services for exit routines to provide the user of the exit routine with clearly
defined interfaces.

“Routine binding restrictions” on page 9

190 IMS : Exit Routines

If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

Calling the Input Message Field edit routine
Call the Input Message Field edit routine after MFS editing.

About this task

Field edit routines are given control after MFS editing (before Segment edit routines, uppercase
translation for all options, and null compression for option 1 or 2). The routine can validate or alter

the data and pass a return code to MFS. MFS maintains the highest return code of all Field edit routines
for each segment and passes that code to the Segment edit routine after all fields for that segment are
edited.

Defining edit routines

Assign routine numbers and entry vectors for the Input Message Field edit routine in the MFSEXITF
parameter in the IMS startup parameters.

About this task

Field edit routines are defined in the MID's MFLD statements in terms of a routine number and entry
vector.

Routine numbers identify the routine to be used for this field/segment. Routine numbers range from
000 to 127. IMS-provided routines use numbers 000 (field edit, DFSMEOOQ) and 127 (segment edit,
DFSME127).

If you are using both the Field edit and Segment edit routines with your IMS system, the Field edit routine
should be assigned routine numbers that are lower than the numbers assigned for the Segment edit
routine. Therefore, the Field edit number should be a decimal number greater than or equal to 0, and less
than the default or specified value for the Segment edit routine number parameter. The default for the
Field edit routine is 0.

An installation standard should be established regarding the assignment of routine numbers. For
example, you could assign Field edit routines numbers in ascending sequence from 001 to 063 (and

if you're using Segment edit routines as well, assign them numbers in descending sequence from 126 to
064).

Recommendation: Assign lower numbers to field exit routines and higher number to segment exit
routines.

Entry vectors are passed to the edit routine when it is activated. Entry vector values can range from 0 to
255. The entry vector value can be thought of as an additional qualification of the routine to be activated.
For example, routine number 025 can perform numeric validation of a field; entry vector 0 can replace
leading blanks with zeros, and entry vector 1 can perform numeric validation.

If data is entered from the terminal in lowercase, the data is in lowercase when it is presented to the

edit routine. If data in an input segment is in nongraphic form, GRAPHIC=NO should be specified in the
SEG statement to prevent null compression and uppercase translation. A valid byte value of a binary field
could be equivalent to a null character (X'3F') or some lowercase alphanumeric (for example, a=X'81"). In
this case, GRAPHIC=NO should be specified.

Related Reading: For a description of which characters MFS considers graphic, see the SEG statement
section in IMS Version 15.5 System Utilities.

Related information
COMM macro statement (System Definition)

Chapter 3. Transaction Manager exit routines 191

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.sdg/ims_ie0i2exm1002472.htm#ie0i2exm1002472

Performance considerations

When Field and Segment edit routines are used, extra processing occurs in the IMS control region and, if
used extensively, a measurable performance cost is incurred.

These edit routines also can improve performance by reducing processing time in the message processing
region, by reducing logging and queuing time, and by allowing field verification and correction to be
accomplished without scheduling an application program. Efficiency of these user-written routines should
be a prime concern. Because these routines execute in the IMS control region, an abend in the edit
routine causes the IMS control region to abend.

Input Message Segment edit routine (DFSME127)

The Input Message Segment edit routine (DFSME127) can be used by MFS application designers to
perform common editing functions such as numeric validation or conversion of blanks to numeric zeros.
Field and Segment edit routines can simplify programming by using standard field edits to perform
functions that would otherwise need to be coded in each application program.

This topic contains Product-sensitive Programming Interface information.

This topic describes how to write an Input Message Segment edit routine. Because this routine is usually
used with the Input Message Field edit routine, you will find references to both routines throughout the
following paragraphs.

Subsections:

« “About this routine” on page 192

« “Communicating with IMS” on page 193

« “Function of the sample routine” on page 194

About this routine

The following table shows the attributes of the Input Message Segment edit routine.

Table 68. Input message segment edit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSME127.

binding A Segment edit routine must have a CSECT name of DFSMEnnn, where nnn

is a number from 001 to 126 that corresponds with the routine number
specified in the SEG statement. It must be included in an authorized library in
the JOBLIB, STEPLIB, or LINKLIST concatenation.

Including the routine Thjs exit routine must be included in an authorized library in the JOBLIB,
STEPLIB, or LINKLIST concatenation.

IMS callable services To use IMS callable services with this routine, you must issue an initialization
call (DFSCSIIO) to obtain the callable service token and a parameter list in
which to build the function-specific parameter list for the desired callable
service.

Use the ECB found in register 9 for IMS callable services. Manually link this
exit with DFSCSIOO to use callable services. No additional linking is required
to use IMS callable services.

Sample routine location IMS.ADFSSRC (member name DFSME127)

192 IMS : Exit Routines

Communicating with IMS
IMS uses the entry registers, parameter list, and exit registers to communicate with the edit routine.
Contents of registers on entry

On entry to the edit routine, all registers must be saved using the save area provided. The registers
contain the following;:

Register Contents

0 Address of CLB.

1 Address of parameter list.

9 Address of CLB/ECB.

13 Address of save area. The edit routine must not change the first three words.
14 Return address to IMS.

15 Entry point of edit routine.

Description of parameter list format

IMS.ADFSMAC contains a DSECT of the parameter list addressed by register 1 (use COPY MFSSEGE) as
follows:

Byte Contents
0
Bit Contents
0,1 Message formatting option:
00 = option 1
01 = option 2
11 =option 3
2 1 (Segment edit routine)
3
1 If this message can be routed back to the device by
specifying return code 16. This bit is set on when the
following conditions are met:
« PAGDEL=YES or OPTIONS=(...,PAGDEL,...) is specified
in the TERMINAL macro for this device.
» The device has an output logical terminal.
If the message contains a valid operator logical paging
request, bit 3 can be set on. However, this message is
not returned to the terminal if requested.
4-7 Reserved
1,2 Zeros
3 The entry vector is binary (0 to 255).
4-7 The maximum segment length.
8-11 The segment address.
12-15 The highest return code from the Field edits for this segment.

Chapter 3. Transaction Manager exit routines 193

Byte Contents

16-23 The next MOD name.

The Segment Edit routine can modify only the segment contents, the save area, and the next MOD name
field of the parameter list. The MOD name field name should be changed when the edit routine returns the
input message to the device. If the segment is option 1 or 2, the routine can set the segment length field
to any value from 0 to the maximum segment length. The Segment Edit routine must not cause any waits.

Contents of registers on exit

On return to IMS, all registers must be restored except for register 15, which must contain one of the
following return codes:

Return code Meaning

0 Continue processing.

4 Cancel this segment.

8 Cancel this message (IMS sends the message DFS298 INPUT MESSAGE CANCELED BY
MFS EXIT).

12 Cancel this message and return to the user the message whose number is in register 1.

16 Return this message to the input device. This code is allowed only when bit 3 of byte 0 in

the parameter list is set on.

All segments of a multisegment message are edited before the message is returned to the device (return
code 16); if return code 8 or 12 is specified for a segment other than the final one, the message is
canceled immediately and the remaining segments are not edited.

In IMS releases with ETO, the Input Message Segment edit routine cannot use return code 16 during the
ETO signon process. This is due to the lack of a valid output LTERM.

Function of the sample routine

The functions of this routine are based on the entry vector and the highest Field edit routine return code
(FLD-RC) for the segment. This routine only performs modifications of messages using formatting options
1 and 2. The functions are shown in the following table.

Table 69. Input message segment edit routine functions based on the entry vector

Input
vector FLD-RC Resulting function action SEG-RC
0 <4 None. 0
>=4 Places EBCDIC return code in last 3 bytes of the segment. 0
1 <4 None. 0
>=4 Places EBCDIC return code in last 3 bytes of the segment. 0
<8 None. 4
2 <4 None. 0
=4 <8 Places EBCDIC return code in last 3 bytes of the segment. 0
>=8 None. 8

194 IMS : Exit Routines

Table 69. Input message segment edit routine functions based on the entry vector (continued)

Input
vector FLD-RC Resulting function action SEG-RC
3 <4 None. 0

=4<8 Places EBCDIC return code in last 3 bytes of the segment.

>=8 None. 6
4 ANY Sets FLD-RC as user message number. 12
Notes:

1. To continue processing
2. To cancel this segment
3. To cancel this message
4. To send this message back to the entering terminal

5. To cancel this message and send the user message, whose number is in register 1, back to the
entering terminal

Related reference

“Input Message Field edit routine (DFSME0Q00)” on page 188

Use the Input Message Field edit routine (DFSME0O0O) to perform common editing functions and simplify
programming.

“Routine binding restrictions” on page 9
If you bind DL/I exit routines, you must keep in mind the recommendations and restrictions in this
information.

“IMS callable services” on page 13
IMS provides IMS callable services for exit routines to provide the user of the exit routine with clearly
defined interfaces.

Calling the Input Message Segment edit routine

Segment edit routines are given control when all the MFS editing and editing by Field edit routines is
complete for a message (before uppercase translation, but after null compression for messages using
option 1 and 2, and after field sort for option 3 messages).

About this task

Based on the return code received from Field or Segment edit routine, the Segment edit routine can:
« Continue processing.
- Modify the segment.
 Cancel the segment.

« Cancel the message and IMS will notify the operator using the message DFS298 INPUT MESSAGE
CANCELED BY MFS EXIT.

 Return a predefined message to the terminal.
« Return the input message to the terminal.

Restriction: The following applies only to IMS releases with ETO. During the ETO dynamic terminal signon
process, the Input Message Segment edit routine cannot use return code 16 to return the input message
to the terminal. This is because a valid output LTERM has not yet been established.

Chapter 3. Transaction Manager exit routines 195

Defining edit routines

Assign a routine number and an entry vector for the Input Message Segment edit routine in the MFSEXITS
parameter in the IMS startup parameters.

About this task

Segment edit routines are defined in the MID's SEG statements. Each routine is defined in terms of a
routine number and an entry vector.

Routine numbers identify the routine to be used for this field or segment. Routine numbers range from
000 to 127. IMS-provided routines use numbers 000 (Field edit, DFSMEOOO) and 127 (Segment edit,
DFSME127).

If you are using both the Field edit and Segment edit routines with your IMS system, the Field edit routine
should be assigned routine numbers lower than the numbers assigned for the Segment edit routine.
Therefore, the Field exit number should be a decimal number greater than or equal to 0, and less than the
default or specified value for the Segment exit routine number parameter. The default for the Field edit
routine is 0.

An installation standard should be established regarding the assignment of routine numbers. For
example, you could assign Segment edit routines numbers in descending sequence from 126 to 064
(and if you're using Field edit routines as well, assign them numbers in ascending sequence from 001 to
063).

Recommendation: Assign lower numbers to Field edit routines and higher numbers to Segment edit
routines.

Entry vectors are passed to the edit routine when it is activated. Entry vector values can range from 0 to
255. The entry vector value can be thought of as an additional qualification of the routine to be activated.
For example, routine number 025 can perform numeric validation of a field; entry vector 0 can replace
leading blanks with zeros, and entry vector 1 can perform numeric validation.

If data is entered from the terminal in lowercase, the data is in lowercase when it is presented to the
edit routine. If data in an input segment is in nongraphic form, GRAPHIC=NO should be specified in the
SEG statement to prevent null compression and uppercase translation. A valid byte value of a binary field
could be a null character (X'3F') or some lowercase alphanumeric (for example, a=X'81"). In this case,
GRAPHIC=NO should be specified.

Related reference

SEG statement (System Utilities)

Related information

COMM macro statement (System Definition)

Performance considerations
Efficiency of the Input Message Segment edit routine should be a prime concern.

When Field and Segment edit routines are used, extra processing occurs in the IMS control region and, if
used extensively, a measurable performance cost is incurred. At the same time, these edit routines can
improve performance by reducing processing time in the message processing region, by reducing logging
and queuing time, and by allowing field verification and correction to be accomplished without scheduling
an application program.

Logoff exit routine (DFSLGFXO0)

The Logoff exit routine handles all non-MSC, non-LU 6.2 VTAM nodes with which IMS communicates.
This topic contains Product-sensitive Programming Interface information.

This topic describes how you can use the Logoff exit routine to perform processing that complements the
Logon exit routine (DFSLGNXO0).

196 IMS : Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.sur/ims_mfslangsegstmt.htm#ims_mfslangsegstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.5.0/com.ibm.ims155.doc.sdg/ims_ie0i2exm1002472.htm#ie0i2exm1002472

Subsections:

« “About this routine” on page 197
e “Communicating with IMS” on page 198

About this routine

IMS calls the Logoff exit routine for all non-MSC, non-LU 6.2 VTAM nodes with which IMS communicates
and for all master terminal operator (MTO) logoffs, even if it did not call the Logon exit routine for the
MTO at logon. (Keep this in mind if your installation maintains a logon count.) All attempts to log off of
ACF/VTAM terminals cause IMS to call this exit routine.

Recommendation: Although the Logon exit routine and the Logoff exit routine are optional, if you include
one, you should also include the other to perform any necessary cleanup operations.

The following table shows the attributes of the Logoff exit routine.

Table 70. Logoff exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSLGFXO.

Including the routine If you want IMS to call this exit routine, include it in an authorized library in the

JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the IMS.SDFSRESL.
If the Logoff exit routine is included, IMS automatically loads it each time IMS is
initialized.

IMS callable services To use callable services with this routine, you must do the following:

- Issue an initialization call (DFSCSIO0) to obtain the callable service token and
a parameter list in which to build the function-specific parameter list for the
desired callable service.

» Use the ECB found at offset O of the Logoff user exit parameter list.
 Link DFSCSIOO0 with your user exit.

Sample routine location IMS.ADFSSMPL (member name DFSLGFXO0).

Extended Recovery Facility (XRF) considerations

Each time IMS calls the Logoff exit routine, the exit routine receives information on the XRF status of IMS.
IMS calls the exit routine if XRF tracking fails.

Resetting the significant status
You can use this exit to reset the significant status for a terminal in one of the following states:

Conversational
Exclusive

Test

Preset

MFS test

Full-function response
Fast Path response

Note: Test and preset states are nonrecoverable, so IMS resets the significant status automatically.

A parameter passed to the exit routine indicates the status of the terminal or ETO user at signoff. All users
except ETO terminals can reset the status in the output parameters.

For conversation mode, IMS performs the equivalent of an /EXIT command for the conversation.

Chapter 3. Transaction Manager exit routines 197

Communicating with IMS
IMS uses the entry and exit registers, as well as parameter lists, to communicate with the exit routine.
Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The registers contain the

following:
Register Contents
R1 Address of the “IMS standard user exit parameter list” on page 5 (Version 1)
R13 Save area address
R14 Return address to IMS
R15 Entry point address of exit routine

The following table lists the logoff exit parameters. The address of this parameter list is in the standard
exit parameter list field SXPLFSPL.

Table 71. Logoff exit parameter list

Offset Length Description

+0 4 Current ECB address

+4 4 SCD address

+8 4 Address of User Table

+12 4 Address of the STATUS_IN and STATUS_OUT vectors. The

status vectors are mapped by the DFSSTCHK macro. For the
contents of the STATUS_IN vector see the following table.

Contents of STATUS_IN

The input status vector is a two-byte field that indicates the significant status of a terminal when the exit
routine is called. The second byte of the field is reserved. The first byte of the field contains a value that
indicates the significant status as follows:

Value Description

X'80' Conversation

X'40' Exclusiv