IMS
15.4.0

Database Administration
(2024-09-02 edition)

.||I

Note

Before you use this information and the product it supports, read the information in “Notices” on page
845.

2024-09-02 edition.

© Copyright International Business Machines Corporation 1974, 2022.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

ADOUt this INFOrMAtION...cciiiiieiiiiriiirieieterereetesesseresessesesessesessasesessssesssasessssasesssseas XV

PrereqUISIte KNOWLEAGE. ...c.c.viiiiee ettt e ee e st e e s ba e e e be e e e beeeebaeeensteessaeeenseeeenseeesnnens XV
How new and changed information is identified........ccceiieiieicie e e XV
HOW 10 read SYNtaX ia@ramS.cccuieieieeeeciieeecieeeeiee e e etee e e te e e e tee e eteeeetaeesbaeeeasaeesssesesnsaeesnsaeesnsesesssenans XV
Accessibility features fOr IMS 5. 4. ...ttt et e et e et e e te e e ate e e ate e e sbaeesntaeennseesnnenas Xvii
HOW 10 SENA YOU COMMIEBNTS....uiiiiiiieeiiieecieeeteeeetee et e e etee e beeeebeeesbae e s baeessbaseesbaeaessesaensasesnseessnsesennsens XVii

Part 1. General database concepts, standards, and procedures........ccccevvvevrececnannan. 1

Chapter 1. Introduction to IMS databases.......cccceiicieiiciii ettt ree e s vee e 3
Information roadmap for database Creation........c.co et 3
Database adminiStration OVEIVIEW......uivcuiiiieeriiiieirte st et e ste et e sresreeseestessaaesteesteesasesbaesasesnseenseens 4

) RS TRPRPR 4
08 L 01 TSR 4
(] =108 IR Vo o N 01 03 I PSP 4
Open Database ACCESS (ODBA)... ittt et ertee e ee e etee e e tee e s tee e e tae e s baeestaeesbaeesssaeesnseeesnsaeennsens 5
Database administration taSKS.......ccveieiiieriierieirie ittt e e s be e s e e sbe e saa e saeesaaesareenaae s 5
Database concepts and tErMINOLOZY......cccuiiiciiiiiiie ettt eere e eete e serte e serte e e rteesereeesseeesseaeaans 7
How data is stored in @ database.......ccceciiirieiieiiiiiieeee ettt sie e b e sbe e savesbeesane s 7
The hierarchy in @ database rECOIU.......uiiiiiiiciiieciecee e ettt e e are e e ate e searaeennes 9
TYPES Of IMS databases......uiiiiiiieiieciee ettt ettt et eete e st e e s ate e s ate e e e abeeesnseesnnseeennsaeans 12
The database FECOIT....uiiiiiiiieierie ettt ettt e st e sbe e st e s bt e sase s beesbaesaseesbaesaseensaesssesnsenn 13
Bl A TSRTT= {0 =T o SRSt 14
Overview of optional database fUNCHIONS........cccuui i e e e 18
How databases are defined 10 IMS......ccuiiiieiiiiiinieneeee ettt sb e s e s e sbe e saa e saseenbaesane s 19
How application programs view the database........ccueivciieeiiieciiieccieeccee et 20

Chapter 2. Standards, procedures, and naming conventions for IMS databases........cccccccovveecveeernenee. 21
Standards and procedures for database SYStEMS.......cccciiiciiiiciie e 21
General naming conventions for IMS databases........cccueecieeeiiieeciieccee e 23

General rules for establishing Nnaming CONVENTIONS.......cuiieiiiiciieecee et 23
Naming conventions for HALDB partitions, ddnames, and data Sets........cccoccevvverrieeniieniieeneennenn 24

Chapter 3. Review process for database development........couvi e iciee e e 27

THE AESIZN FEVIEWuiiiiiiee ettt ettt eee e tee et e e e tae e etee e sbee e s bae e sabaeesabaeesssaeeanseeesssaesansaeennsaeennsens 27
Role of the database administrator in deSigN rEVIEWS......c.ueecciieeiieeeiieeeciee e e e 27
General information @DOUL FEVIEWS.......ciciiiiiiiieniiiitente ettt ettt sie e sreesbe e sae s beesaaesveesaneens 27

DESIZN FEVIEW L....viiiiiiieciieecitee ettt e ectteeeetteesetteesetteesebaeesbaeesseaesseae s saeesssaessaeesasseesssessasseesassessnssesnnns 28

DESISN FEVIEW 2...eeiiiiiiieeciieeeciteeeetteeeetteeeetteesetteesesteesabeeesasaeesstaessseesseeesstaessasesassessastessaseessnssessnssesnnns 28

DESIZN FEVIEW 3...etiiiiiiiecciteeccitee ettt e eetteeeetteesetteesetteesabeeesabaeesseeesseee s seeesseaessaeesassessstessasseesnssessnssesnnns 28

DESIZN FEVIEWoiieiieeeiieectiee ettt e eette e e ette e s ettee s tteesebaeesabaeesbteessaee s saeesseaessaeesasseesssassseeesassessassesnnns 29

[07oTo [l T Ty o1=Tor 4o 10 TP 30
Who attends code INSPECTION L....ocicuiiiiciieeceeecceee ettt e rtee e e tae e et e s e bae e e bae e s abaeeenes 30

(070 To [l T Ty o1=Tor4]o] 107U 30

Y=Y o N A YA =] 0 1= Tox £ o] o [T S 31

POSt-IMPLEMENTALION FEVIEWS......eiiiciiieciee ettt et rtte e e tre e s ette e e b e e s bae e svaeesbaeesseaesasaaesans 31

Chapter 4. Database SECUNLY....cccciiiicieeeieeieiee et eetee e teeeetee e e steeeeteeeeteeestaeesseeesssaeesnsasesnsaeeanseeesseenan 33
Restricting the SCOPE Of data ACCESS...uiiiiiiiiieiecee ettt et e e e e s e e e et e e e e ateeeenraeeans 33
Restricting proCesSiNg @UthOItY......ii it rrre e e bre e s rae e e rae e eaee e enes 33

Restricting access by NON=IMS PrOZramiS.....ccuuiiciiiicieeiiieeieieessieessree st e seeeeseseeeseaeeeseneeessnsesssnseesane 35

Protecting data With VSAM PasSWOIAS......cuciiiiriiiiiiieiriie et e st e s see e s steesseeesssaesnnes 35
ENCrypting YOUT database....c.ciiiiiiiiiieiciee ettt ettt see s s ee e s iee e sbee s s e e s s e e s sbeessaneas 36
SECUNILY TOr IMS DD Luiiiiiiiieecciete ettt e e ettt e e e et e e e e e cbe e e e s e bt eeeseestaeeeseensteeeesanssasesssnsasasssnnssnnesesnnes 36
Using a dictionary to help establiSh SECUTITY......civiiiriiiieee e 37

Part 2. IMS catalog......cccciiuiiiiiiiiiiiniieiieiieiiniiniiiiiiisisiesiesiesisiiscscsssessessessesss 39

Chapter 5. Overview of the IMS Catalog.....ccuuiiiiiiriiiiiiiierieecteeee st e e s be e s 41
Chapter 6. Backup and recovery of the IMS Catalog......c.eeveiiiiiieiiiiiiicieesciee et snee e 43
Backup methods for the IMS Catalog.......cocviiviiiiiiiieiieeetcceeee e s e 44
Recovering the IMS catalog when IMS manages ACBS......cccuiivcieiriieeiiieeniee e screeesseteessaeeessreeesane 45
Recovering the IMS catalog from ACBLIB when IMS manages ACBS.......cccccveieiiiieenieeceneeennee 46
Recovering the IMS catalog from image copies when IMS manages ACBS........cccoceverveeeencveennne 46
Chapter 7. Cleaning up the IMS directory data SEtS.....cccvciiiriiiiriieiiie ettt 49
Chapter 8. Maintaining the IMS Catalog......cceiiciiiiiiiiiieeciec ettt sree s sbe e e s be e e 51
Chapter 9. Removing DBD and PSB instances from the IMS catalog........cccccveveiriieiiiienniienniieeeeeeee, 53
Chapter 10. Using HALDB utilities with an unregistered IMS catalog........cccceveeiriiiinieeinieeeree e 55
Chapter 11. Format of records in the IMS catalog database.......cccccvveveiiiieiiniieiinieccecce e 57
HEADER SEEMENT fOMMAT.....iiiiiiiiiiiieiiiie ettt sttt s e e s s e s be e s be e s s be e s sabe e s s beessabaeesaseessnnens 57
DBD record SEZMENT fOrMIATS.....ciiiiiieiieriieeerie ettt see e s saee e s ae e s saee e sssbeessaeeessaseesnaneas 59
AREA se8mMent tYPe fOrMAT.....cii ittt sttt et e s ee e s ste e s sbe e ssateesssbeessnsaesnnes 59
AREARMK segmMent tYPe FOrMAL...cciiciiiiiiiieiieieee ettt ettt et ae e s ae e s saee e s saeas 60
CAPXDBD segment tyPe fOrMat......ciiiiiiiiiiiiiieriiesite ettt s st s s s s ae e s sba e e s baeessaeeas 61
CAPXSEGM segment type fOrMat....cuiiiiiiiiieeiiecee ettt et e s e s 63

CASE segment tyPe TOrMIAL....cciiiiiiiieeiiee ettt stee s sbe e s st e s s e e s s e e s sbaesnaneas 64
CASERMK s€gMeNt TYPE FOrMAt...ciiciiiiiiieiciee ittt ettt see e st e s saee s saee e saneas 65

CFLD Se8mMeNnt tyPe fOMMAt. . ccuiiiiiiiiciieieiee ettt sttt e st e s ste e s saee e s sate e ssataessstaessntaesnes 66
CFLDRMK segment type fOrMAL.....coccieiiiiieiiieeeieecite ettt stte s see s svee s sve e s sbee s sreessbaeesavaeesnns 68
CMAR segment tyPe fOrMIAL....cciiiiiiiieiiiee ettt e s sbe e e s e e s s be e s sabeeenans 68
CMARRMK segMeNt tYPE FOrMAL...ciiciieieiieiiiieieiee ettt sttt e s e s see e s see e s s eeessaraesnnee 69
CPROP segMent tYPe FOrMAL...ciiiciiiieiieieiieieite ettt sttt te e s e s sae e s sbe e s sbae s sbaesssbeeenans 70

DBD Se8mMeNnt tyPe fOIMAat. . uiiiiiieiiieeiee ettt see e s see e s ee e s saee e s saee e ssaee e saeeesaeeesnneas 71
DBDRMK segment type fOrMIal.....coiciiiiciiiiieieies sttt sttt see sttt sbe e s sae e s beessaeeas 73
DBDVEND segment type fOrMAT......occiiiiiieiiiieiiiie ettt ssiee st e s ste e s saee e s ste e ssseeessseessaseesnnes 74

DSET S€8MENT TYPE FOIMAL..ciiiiiiieiieiiiieiete ettt be e s be e e s e e e sbaeesbeeessaeeas 74
DSETRMK s€8mMent tyPe fOrMAat....c.uiiiiiiieiiiecieeciecete ettt ettt ae e s e saae e saaeesaeae s 77

FLD S€8MENt tYPE FOIMAL.cciiciiiiiieiiciee ettt srte st sree s sbee s st e s sbe e s s be e e sabeessabeesnans 78
FLDRMK S€8mMeNnt tyPe fOrMat. . cuiiiiiiiiciieieiieieite ettt sttt s st e ste e st e s sate e s sateessseeessssaesnes 80
LCH2IDX segmMeNnt tyPe fOrMIATL....cciciiiieiieiiieieiieeeiie sttt et e s ee s st s s e e saee e ssaae e ssaeessneas 80
LCHILD se8MeNt tYPe fOIMAt..ciiiiiiieiieieiieeeiie sttt sttt ettt e s te e s sbe e s sbaessbaesssbeessasaesnnns 81
LCHRMK segment type fOrMIAL.....ccociiiiiiiiiiiieiieeeitessie ettt s st s e st s e e s sbe e s sbe e s sbeessans 83

MAP SegMENT tYPE TOMMIAT.....iiiiiiieiiieeiteee e s s e s s e e s s e e s sabe e s sabeessaseas 84
MAPRMK s€8MeNT tYPE FOrMAL...ciiciiiiiiiiiiieeiiiect ettt e s s e s s e s s e e e sneas 85

MAR SEEMENT TYPE FOIMAL ...ttt ettt e s te e s s e e ssate e s aee e ssaeeesneas 85
MARRMK segment type fOrMal.....coociiiiiieiiiei ettt see s st e s e e s sbe e s sbee s ans 86

PROP segment tyPe fOrMat.....ciiiiiiiiiieiiieiiee sttt sttt ee e ssste e ssateesssteessseeesnneaesnnes 87

SEGM Se8MENT TYPE FOIMAL..ciiiiiiieiiiieiieeeiie ettt et e ssaee e s sate e s saaaessaeeesaeeas 87
SEGMRMK s€8mMent tyPe fOIMAat....c.uiiiiieiieeetecite sttt s s sbe e s sbe e s s bee s s 91
XDFLD S€8MeNt tyPe fOrMat. ccuiiieiiieiiieeiie ettt ettt e s aee e s sate e ssaee e ssaeaesneas 92
XDFLDRMK se8ment type fOrMat......ciiiiiiiiiieiiiieeieessie ettt sbe e st e s s s be e s sbae s s e e s saneas 94

PSB record SEZMENT fOIMAatS....c.uii ittt et s st e st e s s e e s s e e s sabee e sabeessaseessanes 95

DBDXREF segment type fOrMat.....ccicciiiiiiiiiieiieeieiee sttt e sste e sete e ssaee e seateessseeessaeeessneaesnns 96
PCB Se8MENt tYPe fOrMIAT. . .iiiiiiiieiiiieiieeete ettt sttt see e s see e ssaee e s saee e s sabeessaeaessseeesnaeeas 96
PCBRMK segMeNnt tyPe FOrMAT....ciiiiiiiiiieiiieeiiteeite sttt e s ee s ie e s e s sbe e s saeesssbeessaneas 99
PSB se8MENT TYPE FOMMIAt...iiiciiiiiiiiiciieeciteete sttt st e s e st e e s aee e s sbeesabaesnasaess 100
PSBVEND se8mMent tyPe fOrMat. . .c.uiiiiiiieiiieeieieiieeete ettt s e e s saee e s saae e s aae e s e 102
PSBRMK s€8MeNnt tyPe fOrMat. .. cuiiieiieiciieieiecete ettt st aee e s e s saae e ssaee s 102
SF SEZ8MENT TYPE FOIMIAL.ciii ittt ettt e s ste e s s e e e s te e s sbaessasaeesabaeenane 103
SFRMK s€8mMeNnt tyPe fOrMAat....c.uiiiiiieiciee ettt e sire e saee e sree e sbaeesneeesane 103
SS SEZMENT TYPE FOMMIAL..ciiiiiiiiiiiiite ettt e st e s s te e s sate e s sataessataessneaesans 104
SSRMK S€8MENt tYPE FOIMAL..cciciiiiiiiiicieeectt ettt e s e e s saae e saeeesaeeeeas 106
Chapter 12. IMS catalog SECONAANY INAEX..iccuuiieiiiiriiieeiieeriie ettt et see e siee e s ste e ssaeeessaeeessaeeessaeeas 109
Chapter 13. IMS catalog aCtiVity FECOIUS....cuiiiriieieiieiriterrit ettt sttt e st e s s be e s be e s s beessbaessasaeeas 111

Part 3. Database types and functions.......ccccciieieiiniiieiiieiieniceniececiecnececcecseceenss 113

Chapter 14. Summary of IMS database types and fUNCLIONS.......ccvieiieeiiiee i 115
Chapter 15. Full-function database tYPES.....ccuiiiei ettt e e re e e reae e e e e eneaeeeeeas 117
Sequential STOrage MEthOd.o be e s be e e s be e s s beeesasaeens 118
Direct Storage MEthOG.iiiiiiiieeeee et e s e s s e e e s e e e s bee e sbeeessseeesaneas 118
Databases supported With DBCTL.......uuiiiiiciiiieeieciiieeeeeieee et e e e ecvtee e e e e earae e e s esante e e s sensanessesananeeeean 118
Databases supported With DCCT L. ...uii i iieeiccciieee ettt e ctee e e tre e e e eeare e e e e e sabae e e e e e sree e e e eanrees 119
Performance CONSIAErations OVEIVIEW......ciccviiriieiriieeeiieeeiteesieeesiteesstteesseeeessraeessseeessaeesseeessseens 119
Nonrecoverable full-funCtion databases........occiiiiiiiirieirieee e 123
[ST Y (e X = Lo T YT TP 124
WHEN 10 USE HSAM...eiiiiieicte ettt ettt et e s te e s te e s sabe e s sabe e s sabeeesabaeesasaeesasaessasaeannes 124
HOW an HSAM reCord iS STOMEA.....iiiciieiiiieeeiieeeite ettt ette et ste e sre e e sbe e s sbae e sbaessbaesssaeesane 124
DL/I calls against an HSAM database.......ccceiiiiiiiiiiniiiieccec e 126
HISAM dAtabaSeS...uiiieiiiieiiiiiie ittt sttt sttt e e e s e e st e e s bt e e s bae e s beeessbeeesseeesnseeesnsenesnnes 127
Criteria for SELECTING HISAMottt e s be e s st e s s bee s s be e s naeeas 128
How @ HISAM record iS STOTEA......iiiiiiiiiiieiiieeieite st e st e st e s e st e s s te e s be e s s beessbaessabaessssaenns 128
ACCESSING SEEMENTS.c..ttiiiiieieiiteritieerite e sttt e sttt e sttt essaeessseeesaseeesassaessssaesasseesnsseesnsseesnsseesssseessnses 131
Inserting root segMENTS USING VSAM ... ittt ettt sttt et ste e s sbe e e s bae s sbae e ssaeesane 131
Inserting dependent SEEMENTS......c.iii ittt et e e e ste e s saee e s ae e s saeeesaeas 133

DL =] =R Y=Y = g =T) £ U UPRT 135
REPLACING SEEIMENTS...ii ittt ettt sttt sste e sstte e s bee e sbte e sabteesabeeesaseeesasteesseeesaseeesaseeesane 136
SHSAM, SHISAM, and GSAM databases........cccvirviiiiiiiiiiieicieccte sttt see s sae e s 137
SHSAM databases.....uiieiiiiiiieieiieeeiteeete ettt et e s s sbe e e sba e e s bt e e sbae e sbae e s baeesbaeesraeenane 138
SHISAM databases. ... uuiiiiiiiiiiiiiieeecie ettt ettt siee e s ae e s saee e s bt e e s sateessteessteesaseeesssaesssseesn 138
GSAM datAD@SES. . .iiiiiiiieiieeeteece ettt et e st e st e e s ate e s bea e s ateesataeen 139
HDAM, PHDAM, HIDAM, and PHIDAM databases......ccccecvutiriiieriiieiiieesiieesnieessieeeseeesseeessveessaeeas 141
Maximum Sizes Of HD databases.......cuuiiiiiiiiiiiiieicieecciecrce ettt e e e ssaee e sneeesane 142
DL/I calls that can be issued against HD databases.......ccccevveiiiiiiieiiiieeicieenciee e sreessieee e 143
When to use HDAM and PHDAM.....cocuiiiiieiieecitesste sttt e s sae e st e s s e e s s b e sssba e ssabaessasae s 143
When to use HIDAM and PHIDAM......ciiiiiiiiiiiteiite sttt e st e s aee s sve e s be e s be e s sba e ssabaeesvaeeas 144
POINtErs iN HD databasSes....civcuiiiriiiiiiiieeiieeeie sttt ettt et ee e s ae e s sate e s saae e ssabeessasaessaeeas 144
General format of HD databases and use of special fields.......cccevireciiiiiiccieeeeecee e, 155
How HDAM and PHDAM records are STOred.....c.uiiiieirierinieeirieesiieessieessieesseeessseeessneesssneesssnee 158
When not enough root Storage ro0M EXIStS....iuuiiieriiiiiriieirieerieeeriee et e et e e sre e s sreesseeesseeesnnee 161
How HIDAM and PHIDAM records are StOred.......cceecieiieieiiiieiiiieesieessieeesieeesveeesveessveessnens 161
ACCESSING SEEMENTS.c..ttiieiieieitteritieeeitr e ettt e sttt e sttt e s et e ssseaessseeesassaesassaesssseesassaesnsseesnssnessaseessses 165
INSErtiNG rOOT SEEMENTS. . uiiiiciiiieieeectee ettt ettt e s sate e s bt e e s sateesateesseeessaeesssaesnseenn 166
Inserting dependent SEEMENTS......cuii ittt s ee e s ee e s see e s saee e s ae e s saeeesaeas 168

DL =] =R Y=Y = g =T) £ PR 169

REPLACING SEEIMENTS...iiiciiiiiiiei ittt rte e srte e s ete e serte e s bee e sebte e sbteesabeeesbteesaseeesseessaseeesaseessane 169

How the HD space search algorithm WOrKS.......c.ciiviiiiniiiiniieiieeceiee et ssee e s 170

(o Tol 4T a Y= 1] o Tolo] =TT 171
Backup and recovery of HIDAM and PHIDAM primary iNdeXES......ccuveeeeecrvieeeeecrireeeecneeeeeeenenns 174
Partitions in PHDAM, PHIDAM, and PSINDEX databases........ccccceevueiriieiriieniiieeniee e sceeesieee e 174
HALDB partition Names and NUMDEIS.........uiiiiiciee ettt e e e e e e e sbre e e s e brae e s s nreeeas 174
HALDB partition iNitialiZation........ccccuiiiee ettt e e et e e e ree e e e e naae e e e e nnaneas 177
HALDB Partition data@ SEtS....uiiiiiiiieeieciieeeccciiee ettt e e cree e e e et e e s e evre e e s e aaeeeseeenteeeeeeennseeessnnnenns 177
HALDB Partition SELECTION. ciii ittt ettt et e eete e e e e rre e e s e sate e e e e esbe e e e sennbaeeesensaneeeennsseneas 179
How application programs process HALDB partitioned databases........cccccevevieirvieiniiennieennnne 180
IMS utilities SUPPOItEd DY HALDB.....cio ettt ettt ertree e e e ente e e e e e are e e s s e nbee e e s eensaeeeaenns 184
Database I/O error ManagemeENT.. ... uieiiiieriiieeritesrieessttessree s st e ssbeessaeessseesssseessssaesssseesssseessnnes 185
Chapter 16. Fast Path database tyPeS....uuuiii ettt e e e rae e e e et e e e e e 187
DL ==) Ve P 2= o F= YT USRS 187
(D] 1B 2 (U] od AT o T3P 188
DEDB GIBaS. .. etttieuutteeeeettte e e ettt e sttt e e s e ett e e e e s sat e e e e e nrteee e e an b e e e e e e nreeeeeaenneeeee s areteeaeesnaeeeeenreeas 188
Fixed- and variable-length segments in DEDBS......cccccviriieiiiieiniieenieeeee e essee s e see e s 194
PartS OF @ DEDB @Ia....cciccutiieiieiiiieieitteisiieesitteesttessstesssseesssseessaeessseessssseessssesssssessssesessssessssseens 195
ROOT SEEMENT STOMAZE. ... ittt et e e et ee e sttt e e st e e e s s seee e e e ennneeas 200
Direct dependent SEZMENT STOrAZE. . .cuiiiiiiiriiieriteerie ettt et e e e s s e e s s e e s sbeessabeessaneas 200
Sequential dependent SEZMENT STOrAZE. . ..ccuiiiiiiiiiiieiriee ettt e e ste e ssee e s ee e s sateessaeaesans 200
Enqueue level 0f SEEMENT CIS......ciiiiiiiiiieiiiieirieeeeiee sttt e st e s see e s ste e sseeessaeesssseessssaesnns 201
DEDB space search algorithmi....c..ci ittt s e s baeeas 202
DEDB iNSert algOrthm....ci ettt sttt ee s s sae e s s bee s s e e s sbee e s baeesanes 203
DEDB free Space algorithme.. .. ittt ettt st e st ae e s be e e 204
Managing unusable space With IMS t00LS........cceciiiriiiiriiiiinieceie e 205
DL/I calls @gainst @ DEDB......c..ciiiitiiiiieeiiiiesiieeseieessieessieeesseeessneeesssseesssseesssseesssseesssseesssseesssees 205
MIXEA MOAE PrOCESSING . eeeierieierieiriieeiritteeeitteesteeesteessteessteessseesssseessseessseesssseessssessssseessssessnnes 205
Main storage databases (MSDBS).....c.cccuieieereeeieerieeeieesreeseeereesreesseesseeseeesseesnsesseesseesssesssessnsesnses 206
WHEN 10 USE @N MSDB......ueiiiiiiiiiiiteecie ettt ettt e st e s be e s s baessbeessabaessaseesssseessasaessases 207
MSDBS STOIAEE. .. etieiieieteieeete ettt ettt e et et e e et e e e ettt e e s ab e e e e e e easeeeeeeeneeeessenneeeesennrneeeaanns 207
YD1 S =Yoo T e) (o] =Y =(= T PR 209
SaVING MSDBS fOr FESTAIM..ciicuiiiiiieiiciee ettt seee e s bte e st e e sebee e sbeeesasaeesaseeesseaesane 209
DL/I calls @gainst an MSDB......ccccuiiiiiieiiiieiite sttt e st e s ste e s s te e s teessbeessbeesssbeessasaesssseessssaesas 209
RULES FOF USING @N SSA. ..ottt ettt s e st e s bt e e s bee e sbee e s beaesseeesnseaesnneaesnnes 209
Insertion and deletion Of SEEMENTS.......ii ittt s e s be e s e 210
Combination of binary and direct access Methods........cccecciiiiiecciiee e, 210
POSITION 1N @N MSDB....iiiiiiiiiteeeitee ettt ettt et e e sebte e s sbte e s beeesbteesabeeesbeeesaseeesasaeesaseeesaseassans 211

Bl 1= =1 e o= OO 212
Call SEQUENCE FBSULLS. . uuiieeieiiiieecccitte e eeetee e e eectee e e e e cre e e e e bt ee e e sesbeeeeesenstseessenstaeeeaensssneesennsseneeaan 212
Fast Path Virtual STOrage OptioN....cucicieiicieiciee st site et see s sree st e s ssaee s s e e s sbee s saee s sbeessasaesnans 212
Restrictions for USING VSO DEDB Aras......ccvieceeiiiieiriiieeniieeesieeesieessseeesssseesssseessseesssseessssessnnes 213
DefiNiNg @ VSO DEDB GIEa....ccccuttritiieriireriieeriieesiieesnieessssaesssssessssessseesssssesssseesssseesssseesssseessssees 214
Sharing Of VSO DEDB @r@as.......ccuccuieiiiieiiiiieiiiiessieessieessieessieesssseessseessseesssseessssessssessssseessnens 216
Defining @a VSO DEDB cache StruCtUIE NAME....cccuiiieiieieiieieiieeeiiteeeiireesireesseeeesseeeessreeessaeesseeens 219
Acquiring and accessing data spaces for VSO DEDB @r€as.......ccccveeveerevieerniieersieeeesieesssseesssneenns 221
Resource CoNtrol and LOCKINE.c.uiiruieieiiiieiieeeite ettt et e st e e sie e e s srae e seeeesbeeesbaeesseeesanneenn 222
Preopen areas and VSO areas in a data sharing environment........cccvevieeirveeinieennvieessieessieesnne 223
Input and output processing With VSO.....ccciiiiciieiiiiiiiiiieeeiie ettt se e sre e s saae s sreeesaee 224
Castout thresholds for CIS iN VSO @rEas......cuccuierrieeriiiiernirierniieessiieessreesssseesssseesssseesssseessssesssssees 226

(6 =Tol [{aTo] a1 A o] (o Tol=Y1-1] o= SO 226
VSO 0ptions ACroSS IMS FESTAI.....uiiiiieciiiee ettt e et e e e e erer e e s e et e e e s e e nbeeeeeeensaeeeeenns 226
EMErgENCY reStart PrOCESSING......uiiicieiriieeiiieeiitieeeite e ettt e sstteessteeesbtessseeessaeessseesssseesssseessssaesnns 226
VSO0 0ptioNs WIth XRFttt e e e et e e s e e e e e e e ntbe e e e esanbaeeesenseeeesennnnes 227
Fast Path synChronization POINTS.... i ciieei et e e e e e e s e e e e s e rea e e e e enneneas 228
T I A o TU T (o I oY= o =Tolo] (e FOS USRS 228

Phase 2 - write reCord t0 SYSTEM LOZ....ciiiviiiiiiiiiiiiereiteerite ettt e e s e s be e s sbaeesasae s 228

Managing I/O errors and LONG Wait tIMES.....cciciiiirriiiiiiieieieeeeie ettt essee e s seeesseeessaeaesnee 228

Registering Fast Path databases iN DBRC.......c.ccovciiiiiiiiiiieinte ettt st see e s see e s e saeas 229
Chapter 17. Creating logical relationShips....c..iicciiiriiiiiiiiirieeeieese et ee e s see e s saae e s saeees 231
Secondary indexes versus logical relationShiPsS......cccvii it 232
LOgiCal relatioNShip 1Y PES. ...uiiiiiieiciee ettt e s ete e st e e st e e serae e seateeseseeessntaesaneaesan 233
Logical relationShip POINTEE tYPES......iiiiiieieiieeeteeete ettt ssba e e s aa e e s be e e s beeessaeeas 238
Paths in l0gIical relatioNSNIPS. ..ottt s e sre e s sare e st e e s aaeesaeeas 245
The 10gIcal Child SEEMENT....cii ittt et s e e s sbe e e sbe e s sbaessareessaseas 247
Segment prefix information for logical relationShips.......cceveiiiriiiiiiii e 248
B) (T Y= Tot { o] a [F- | - OO OO URRPPPRIOt 249
Recursive structures: same database logical relationships.....c.ccccvecieiniieiniieiniieeceeeee e 251
Defining sequence fields for logical relationShips.......cccvieeiiiiriiieniiiieece e 254
PSBs, PCBs, and DBDs in logical relationShips.......ccovcieiiiieiiiieinieesee et se e 255
Specifying logical relationships in the phySiCal DBD........ccccovvtiirvieiiniieeinieecieeciee e ssee e ssee e 256
Specifying bidirectional logical relationShips.......ccciiriiiiiinie e 259
Checklist of rules for defining logical relationships in physical databases.......c..ccccceveeirvieennnnen. 260
Specifying logical relationships in the logical DBD........ccccveiiiiiiieiiiiensieessieessiee e ssveesseee s 260
Checklist of rules for defining logical databases.........cccvvvviieirviiiiriieinieeree e 262
Choosing replace, insert, and delete rules for logical relationships.......ccocceevevieeriienicieeniieeicieenns 266
Insert, delete, and replace rules for logical relationShips.......cceeceerrciieriiieinee e 268
Specifying rules in the PhySiCal DBD.........ccieiiiiriiieiniieieiieseiteesite st e s e e e e e e sseeesbeeessaesssseeens 268
IS FULES ettt ettt ettt et st e e st e e s bee e sbee e sabteesbeeesbaeesabteessaeessaeessenesane 269
=T 0] = ot U] (=SS 273
DELETE FTULES . ..tte ittt ettt s e s st e e e st e e s s bt e e s ba e e st e e e e bae e e bae e e baeeebaeenbaeenaee 279
USING The DLET Callicuiiiiiieiiieeiiieesciee sttt ettt ste e seite e sate e sate e sbee e snee e ssteesnaeesannaesasenesan 302
The segmMeNnt delete DYLe. ... et sre e e 305
Insert, delete, and replace rules SUMMAIY......cc.uiiiieciiiie e e e e e e e nreee e 306
Logical relationships and HALDB databases........cccvuiiirieiiiiieiniiieiniee e ssieessieessneeessseeessseeessneeesnns 309
Performance considerations for logical relationships.......cocciveiiiiiiiniiieiriereececsee e 310
Chapter 18. Creating SECONUArY INAEXES....ciucuiiriiieriiteriitesrieeesieesseeessreessreessaeessseessseesssaesssseessanes 313
The purpose of SECONAANY INUEXES.......uuiiiiiciieeeccciee e eete e s e et e e e e rte e e s esare e e e ssnseeeeeeenseeeenanns 313
Characteristics 0f SECONAANY INAEXES....ccii et eerre e e e ere e e s e sate e e e e snbeeeeseensaaeeeens 314
Segments used fOr SECONAANY INAEXES....ccccuiiirriiiiiiieiriee ettt et esseeessreessteesssreesssaesssseesnnes 316
How secondary indexes restructure the hierarchy of databases.......ccccoccveeieccieeiiccciiee e, 319
How secondary indexes restructure the hierarchy of full-function databases..........ccccecuveeennn. 319
How secondary indexes restructure the hierarchy of DEDB databases.......ccccceccvieeeecciieeeeenns 321
How a secondary iNAEX iS STOIU.......uuiiiiicciiie ettt e et e e e e eae e e e e esbee e e e eessaeeesenseneessnnns 323
Format and use of fields in @ POINtEr SEEMENT....ccccciiiiiiiiiciee e see e seaee e 324
Fields in the HISAM secondary iNdeX POINTET.......ccccciiieiieiiieeeccciiee e eeiee e eerre e eesveee e s e evaeee e e 326
Fields in the SHISAM secondary iNdeX POINTEL......ccciicciieeieeciieee et e e ree e e e ree e e e e eneaeeas 328
Making keys unique using system related flelds.. ... 329
How sparse indexing SUPPresses iNAEX ENTIES.....ciiiiiiiieiriierreesrieessreessreesseeesreesssseesssseessses 331
SPECITYING @ SPATSE INUEX...uiiicuiiiiiiiieiiiieriite et e st e st e s sreessbtessbeessabeessbeesssbeesssseesssseessseesssees 332
How the secondary index is MaiNTaiNEd.........uviiiieciiieee e e e e e e s e e aree e e e e eanaeeee s 332
Processing a secondary index as a separate database.......cccccvvvvieiiiiieiniieiniiecnee e 333
Sharing secondary iNdeX databases.....cccuiiiiiiiiiiiiiiieeriee s e s essaree s 334
F D (O ST o T- U =10 41 = PR 338
Using secondary indexes with logical relationShips........ccoeciiiriieiniiieniiecciecee e 340
Using secondary indexes with variable-length segments.......cccocvvivieiniiiiniieinieee e, 340
Considerations when using secondary iINAEXING.......ccccieirrieiriiiereiieeniee e e eseeessreeeesreesssseeesssaessnns 341
Example of defining SeCONdary INAEXES......coccuiiiriiiiiiieiree ettt sre e s see e s see e s see e s saeees 341
DEDB partitioned SECONAAry INAEXES....cccuiiieeieciiieeeeeiiteeeeecttee e e eectteeeseeeareeeeeeesteeesssnssaeessssnssnsessannes 343
Multiple index entries for Fast Path secondary iINAEXES.....cccuuieeieecrieieieciiiee et eecrere e eevre e e 347
Considerations for HALDB partitioned secondary iNdeXES.........ceeeecciereeeeccieeeeeeciieeeeecrieeeeeecneeeeens 348
Chapter 19. Database VEISIONING.....cccuiiiiiieriiieriiteeiie e st e ssee e s et esseeessieeessseeessseaesssseesssseessssaessseessnses 349

vii

viii

Database VEIrSIONING OVEIVIEW.......iiiiiiiiiieeiiieeisieessieessieessieeessseesssseesssseesssseessseesssseessnseessseessssees 349

IMS catalog support for database VErSiONING......cccevivieiiiieiiiiee ittt see e sree e sree s saee e sanees 350
Database modifications supported by database versioning........ccccovveevrveennieeinieennieeeeee e 351
Database versioning, existing free space, and New fieldS.......ccvviiiiiiiniieiniieceee e 352
System default for database VErSIONING......ccuiiiiiiiiiieiiiereerie et see e s e e s sbeessaeaeeas 353
Implementing database VErSIONING.......coiciiiriiiiiieieie ettt s sre e s sre e s sre e s s beeesaeeas 354
Logical relationships, secondary indexes, and database versioning........ccccccvvvveerrveennieeniieennneenns 356
Chapter 20. Optional database FUNCHIONS........c.uiiii i rre e e e e aree e 357
Variable-length SEEMENTS....c..ii et e st e st e s e e s e e eas 357
How to specify variable-length SEgmMENTS......cocuiiiiiiiiiiiieeee e 357
How variable-length segments are stored and ProCeSSEd.......oocviirviiiiriieeriieeniieencreesseeessaeeen 358
When to use variable-length SEEMENTS......c.ii i 359
What application programmers need to know about variable-length segments.........ccccoeuennne 360
Segment Edit/CompPression eXit FOULINE......iuiiiiiiiiiiiieeiiee sttt et s e s e e s sbe e s sbeessbaessanees 360
Considerations for using the Segment Edit/Compression exit routing......cc.cccceecvveerviernsieernneen. 361
Specifying the Segment Edit/Compression exit rOULINE........cocciiiieieeiiiieeiriee e seiee e 363
Data Capture EXIT FOUTINES. .. .uiiiiiciiee ettt e e e e et e e e e be e e e s e eabeeeeeesnsteaeesensraeeesessenessennnsnns 364
DBD parameters for Data Capture eXit rOULINES........cciiecciieeeeeciieeeeectee e ecrree e eecree e e e e eneeeeeeeanes 364
Call sequence of Data Capture eXit FOUTINES....ccccuiiieieciiee et e et e e e e e vere e e e raee e e e eneees 366
Data passed to and captured by the Data Capture exit routing........ccceeeeciieeeiecciieeeeeccreee e, 367
Data Capture Call fUNCLIONS...cc ittt e eree e e e e e e e e e beee e e e enreeeeeeenneeeesennnenns 367
Cascade delete when crossing logical relationShips......ccceeeieeniieeniieineceecee e 368
Data Capture exit routines and logically related databases........ccecuvereviieiiieeiniieeiniieessiee e 368
Suppressing a Data Capture eXit FOULING....cuiiii ittt e st e s sbe e s sbeessaaae s 369
Field-1eVEL SENSITIVITY..eiiiiciiiee ittt et e e et e e e et e e e e s abee e e e e nsteeeesanstaeeeeanssaneaseanseneennan 370
How to specify use of field-level sensitivity in the DBD and PSB.......ccccccoiveeiecieee e, 371
Retrieving segments using field-level SENSITIVITY.....cccvcviiiiiiieiicieeccieccrecree e 372
Replacing segments using field-level SENSITIVITY....ccovviiircieiiiieieeec e 372
Inserting segments using field-level SENSITIVIY. ...t 373
Using field-level sensitivity when fields overlap....ccciiiiiiieenieenieeiecseese e 374
Using field-level sensitivity when path calls are issued........ccoocvevriieiniiiiniienicieccie e 374
Using field-level sensitivity with logical relationShips.......cccciieviiirriiincieicieeeeee e 374
Using field-level sensitivity with variable-length segments.....c.cccccvviiiiriiiniiiinniienneeeeeen, 375
General considerations for using field-level SENSITIVItY......cccvevieircieiriieieee e 379
MULLIPLE dATA SEE BIOUPS.ccuiiiicieiiiee ettt e sttt ste e srte e s tee e sbee e s bt e e s bee e sbee e sabeeesabaeessbaessaseessaseessnsens 380
When to use multiple data SEt GrOUPS....cocciiircieirie ettt s sae e s e e 380
HD databases using multiple data Set SrOUPS......cocieiriieiriieeiiee ettt ssee e sree e sree e 382
VSAM KSDS CI reclaim for full-function databases.......ccccceveiiiiiiiiniieinieceeceec e 388

Part 4. Database design and implementation........ccccccvvireiiniiniiniincincinicnccicnennes. 389

Chapter 21. Analyzing data reqQUIrEMENTS.....ccciiiicie ittt e st e e st e e sbee e sbaessraesssaeasaes 391
LOCAL VIEW Of @ DUSINESS PrOCESS. . iiiiiiiiieecciiieeececttee e e ctee e e e ectee e e e eette e e s sesteeeeesstesessennseeeseennseeeenan 391
Designing a conceptual data STIUCTUME.....oiiiii ittt ee e s see e s ste e s saeeessaeeeenns 396
Implementing a data Structure With DL/T.......ciiiiiiiiiieiieerieeesiee sttt s s ssbe e ssre e ssareeeas 397

Assigning data elements t0 SEEMENTS.....c.uii it s s 398
ReSOLVING data CONTLICTS...uuiiiiiiiiiee ettt st e s abe e s be e ssaaeesneaesas 398

Chapter 22. Designing full-function databases........ccveiiiiriiiiiiiiiiriieciec e 401
Specifying free space (HDAM, PHDAM, HIDAM, and PHIDAM ONLY)....ccciieveeriueeireenieeieeneeeieeseeens 401
Estimating the size of the root addressable area (HDAM or PHDAM ONLY)....c.covvveevreeneercieeseeseeenes 402
Determining which randomizing module to use (HDAM and PHDAM 0Nly).....cccceevveeeeercieeseeesneenne 403
Choosing HDAM OF PHDAM OPTIONS.c.cuuitiiciieiiittieiteeeitessitessiee s steessteessaeessbeessssaessseaessnseessasnesnnes 404
Choosing a logical record length for a HISAM database........cccceveieiivieiniiiiniieicieceeeee e 405
Choosing a logical record length for HD databases.......ccceveuiiiriiiiniiiiiniienrieeesee e 408
Determining the size of CIS and DLOCKS.....ccccuiiiiiiiiiiiiiiece et 409

Recommendations for specifying sizes for blocks, CIs, and records........ccccoevveeirveeiriieenseeesieeennne 409

Number of open full-function database data SetS........cccvvviieciiiei e 410
Uy =T gT Y= 0o o] 4 To]a OO OO PRRTPR 410
Multiple buffers in VIrtUal STOraZe.....occuiiiriieiiieiriteeite st e e s bee e s e e snees 410
SYU] o] oo o] o100 i =Y gRUE=T= N ol -1 o PR 411
A= 01T =T T TaTe | 1= PRSP SPRRPPR 411
BackgroUund WHTE OPTION....uiiiiiiiiiite ittt sttt e s e s e s s e e s s be e s s beessbeesssbeeesaseessnnens 411
Shared rESOUICE POOLS....cciiiiieie ettt e e e e eete e e e e etee e s s et teeeeeesseeeeesnbeeeeeennseeeeeennssenesanns 411
USING SEParate SUDPOOLS......ciiiciieiiiiiiete ettt sttt e s e s s e e s aa e s aeesaeas 411
HIPEIrSPaCe DUTTEIING. .o eiiiiciiii ettt e s e e s s be e e s be e e s be e s sabae s s baesnaeas 412
U (=Y T4 = TP U SRTPR 412
NUM D BT OF DUTTEIS . ..eiieieece et s e e s be e s sbe e s sabaeenaeeas 412
VSAM DUTEE SIZES . utiiiiiiiiiiteecte ettt st et e st e s bt e s be e s s abe e s abeessabeessasaessaseessasens 413

(O Y AN o0 4 (=T = =T ORI 413
SPECITYING DU IS ..eiiiteeee et e s e e s sbee e s aee e ssaeeesneas 414
OSAM seqUENTIAl DUFFEIING...ciicuiiiiiieicte ettt s e s s e e s s be e s sabe e s saraessaeas 415
Sequential buffering INTrOAUCTION.......ccuii i s s ee e s 415
Benefits of sequential BUffErNG......coviiiiiii e s s 416
FLEXIDILITY OF SB USE..uiiiiicciiiieeecctieee et ee e eecttee e e et e e e e e te e e e e eabe e e e e e bt eeeeesnsaeaeeeessaeeesesstnseesnnsenns 416
HOW SB DUTFEIS Aata. . uiiiiiiiiiiiieiiiieeceese ettt ettt s st e st essate e ssabe e ssabaessasaesnasaen 417
Virtual storage considerations fOr SB.......iuciiiiiiiiiiiiiec et ssaee e s 418
HOW t0 reqUueSt the USE OF SB...uii ettt e e e e e e raee e e e e nree e e s enneeeee s 419
RV AN Ko} o1 £ o 1= USRS 422
Optional functions specified in the POOLID, DBD, and VSRBF control statements................... 425
Optional functions specified in the Access Method Services DEFINE CLUSTER command....... 425
(017 2 1] o) 4o 1= SRSt 426
DUMP 0ptioN (DUMP PAramMEtEI)..ccuiiecceieeceiiieeeiiee ettt e et e eetteeeetteeeetteesesteeeesteesesseesesseesasseasasseesasseesnns 427
Planning for MaiNtENANCE. ...coiuiiiiiierte ettt sttt e s s e s st e s s be e e s beeessbeessseeesseassnsens 427
Chapter 23. Designing Fast Path databases......cuuiviiiieiiiiniiiinieeeteceitecste et 429
Design guidelines fOr DEDBS.......coociiiiieiiiec ettt ettt s e e s ee s s bee s s bee e sbee s sbee s sans 429
DEDB deSigN SUIAELINES . .uiiieiieiiiieiiieeisite st e seiee st e st esste e ssabeesssbeessbeessabeesssseessssaesssseesnnseesan 429
DEDB area design SUIAELINES.....ciivciiiriieieiee ettt sste e sste e ssee e ssee e sssee s ssaee s ssaeeessaeeesseessnnens 430
Determining the Size OF The Cl.....iiiiciiicieeeee ettt ettt te e s ee e s ae e s saee s 431
Determining the Size 0f the UOW.....couiiiiiiiieectecete ettt ae e s 431
SDEP CI preallocation and rePOItiNg.....c.ue i ieiecieieieeseiteeesieeessieesseeeseeesseeessreesssaessasaessseesns 432
Automatic management of Fast Path DEDB SDEP DUFfers......ccccvvcieiiiiiincieirieceeeceee e 432
Processing option P (PROCOPTEP).....ciciieieecieeieestesie et e stessteeseeesaeesseesseesseesnseeseesssessesssnenns 433
DEDB randomizing roUting dESIZN....c.cueiiiieriiiieeiiieeeiieesiteessieeesereessseesssseessseessseessaseesssseessnes 434
Multiple copies of an area data SEt....uiiiiiiiiie i e s rae s 434
(=Yoo T4 e (=T Tox 117 VA o] o OO PPTPRTRR 435
Physical Child last POINTEIS...cii e cee e e e e s are e e e e e abe e e e s e baeeeeeensaeeeesanes 435
YUl 01Tl A oY1 1= 5SS 436
Designing a main storage database (MSDB).......cccierieriiierienieereeeteetee et seeeee e sreeeteesvaeseeeeeas 436
Calculating virtual storage requirements for an MSDB........cccvviiiiriieeniieensieeeee e 436
Understanding resource allocation, a key to performance........cccevcveerciieniieesiieensieessieesseeenn 437
Designing to Minimize resource CONTENTION.....ciiiciiieiie it eeee ettt e sre e s e s sbeessaeeas 438
Choosing MSDBs 10 load and Page=TiX....cccveveiirieiirieeiiieesriee st ssreessee e ssee e ssaeeessreeeseaeeesseeesane 440
Auxiliary storage requirements for an MSDB.........coocviiiiiiieriiieniitesiee et e e sseeessaeeessaeee s 441
High-speed sequential processing (HSSP).....ccciicirecierieeeeceeeie et e et e e e seeesre e sraeeeeesaee s 442
Benefits of the HSSP fUNCLION.....ociiiiieecee e s ee e saeas 442
Limitations and restrictions When USING HSSP.......ccuiiiiiiiiiiiiieiiecee st 442
USINE HSSP ...ttt ettt ettt ettt et e st e s st e e s s abe e e s abe e s sabaesssbaessabaessssaesnnsaesnssaesnnees 443
HSSP processing option H (PROCOPT=H)...c.uiiiiieiiecieeieeeeeie ettt ete e sveesaee e sseesnaesne e 444

| E=T (R olo] o) YA e] o] {To] o TN PSSR 444
UOW LOCKING. .. tttiiiieieiieeeitt ettt ettt s et s st te e sttt e s ae e e s bt e e sasteesabeeesasbeesastaessseesnseaesnsaesnsenenn 445
RN L= 010N (=T oYY SRSt 445
Designing a DEDB or MSDB bUffer POOL......ciiciiiiiiiiiiieriiecsitessee ettt 445

(R T A s L T o U £ (=T G 1T T 446

Fast Path 64-bit BUffer Mana@er.....ccii ittt ae e s sbe e s seaeeens 446
Normal buffer allocation (NBA).......ceicieecierie et esteeeeste e e et eseeeste e sreesae e s e e sseesseesrseenseesnneenes 447
Overflow buffer allocation (OBA).....cuicieiceeeieeceeeieeste e et ee e ste e ee s aeesreesaeesreessseesreesrneenseenns 448
Fast Path buffer allocation algorithm.......occii i e 448
Fast Path buffer allocation when the DBFX parameter is USed......cccceecveeeeeeciiieececciiieeeeecvieeeeenne 448
Determining the Fast Path buffer POOL SIZe.......cc.iiiiiiiiiiiiiiiiiicieeeee e 449
Fast Path buffer performance CONSIdErations........cicccuieeieeciiiiie e e 449
The NBA Limit @anNd SYNC POINT...cii et eetee e e e e ree e e e eebee e e s senreee e sensreeeeesnsreeaanan 450
The DBFX value and the low activity @nVIFrONMENT..........cvviieciiieeiccieee et 450
Designing a DEDB buffer pool in the DBCTL enviroNmMeNt.......ccovciiiriieiiiieiniteereecseessiee e 451
Fast Path buffer uses in @ DBCTL €NVIFONMENT......cciiiiiiiiiiiiiiee it eee e see e see e siee e see e svee s v 451
Normal buffer allocation for BMPs in @ DBCTL €NVIrONMENT.....cccciiiriiieiriiieinieeenieesseeeeseee e 452
Normal buffer allocation for CCTL regions and threads......c.ccccvvveeriieeiniieeenieeenee e 452
Overflow buffer allocation fFOr BMPS.......occiiiiiiectete ettt 452
Overflow buffer allocation for CCTL threadS.......cuiivcieiriieeiiiieecieesiieeerie e sseeessaeeessaeee s 453
Fast Path buffer allocation algorithm for BMPS........ccociiiiiiiiiiiiecrieeciee s e e 453
Fast Path buffer allocation algorithm for CCTL threads........ccccevveieiiiienniieieiieeeeeesee e 453
Fast Path buffer allocation in DBCTL €nVIFONMENTS.....c.uiiiiiiiiiieeiiieeriieescreessireeseveeeseveeesereee e 454
Determining the size of the Fast Path buffer pool for DBCTL....cccccuevriiiriiieeinieeinieecneeesiee e 454
Fast Path buffer performance considerations for DBCTL.....cccuvevieeciiieeeeeciiieeeecvreeeeeereee e 454
The NBA/FPB limit and sync point in @ DBCTL €NVIFONMENT.......ceiieeciiieeeecieeeeccieee e eecveee e e 455
Low activity and the DBFX value in @ DBCTL €nVIrONMENTt.......c..uveeieeciiieeeeciieeeeecieeeeeecvreee e e e 455
Fast Path buffer allocation in IMS FEZIONS.....cccuiiiiiiiiiiieiiee ettt e e e s seeessseeesnee 456
Chapter 24. Implementing database deSiZN.......ccuciiiiriiiiriieirieeree et s e e s rae s 457
Using DDL to define databases and program VIEWS........ccucueeieieeinieeiniieeseieessieesseeesseeesseeessseeesnns 457
DT o T 7 1 TS 458
Automation options for DDL CREATE Statements.......ceeeieeciieeieeciieee et eeree e eeree e e evaeee e 459
Preventing UNauthoriZEd DDL.......coccuieiriieieieeiiieesnieessieessieessieessteesseeesssteesssseessssaessssasssnseesnnes 460
Submitting DDL through the IMS Explorer for Development........ccocveeviiiiniiieniieessieeeieeseeenn 460
Activating DDL-defined resources with the IMPORT DEFN command.......cccecceeerieeeneeesneeennnne 460
Submitting DDL through the SQL BatCh Utility....cccceeiiiiiiiiieiiieiciencecce e 460
Defining databases With DDL.......occuiiiiiiiiiieiineeceite ettt see e s sre e s ee e s saee e s ee e s aeeesneas 461
Defining program VIEWS WIth DDL......uiiiciiiiiiiiiiieesiieessieessieessteesseeessieeessseeesssseesssseesssseessnseesas 484
Using the IMS generation utilities to design IMS databases......cccoccvvvvieiriiiiniiennieeenee e 488
Coding database descriptions as input for the DBDGEN Utility.....ccccevevieeiivieeniiieinieeirieecsieennne 488
Coding program specification blocks as input to the PSBGEN Utility......ccccovvverrieeiniiennieennnnen. 494
Building the application control blocks (ACBGEN).......cccueevueeeeerieeieesieeciee e eeee e eeeesveeeee s 497
Defining DBD and PSB metadata to the generation UtilitieS......cccceevveeriieiniiiiniiiescieceieeeeen, 500
IMplementing HALDB AESISN....cciiciiiiiieieiieieiteesite st esstee e st e st e s steessbeessaeeessasaessssaesssseessnsaesnnees 509
Creating HALDB databases with the HALDB Partition Definition utility......cccccccevvveiriveinneennnnen. 510
ALLOCALING AN ILDS.... . eiiieiieeeieeete ettt ettt et e st e e s bt e e s b eeesbee e s seeesseeesasaeessaeesstaesannaenn 513
Defining generated program specification blocks for SQL applications........cccvecveevevieernvieeriiieennnens 515
Introducing databases int0 ONlINE SYSTEMIS.....ciiiiiiiiiieiieeeteee e e s e s 515
Adding databases dynamically to an onling IMS SyStemM.......ccccevrvieiriieiniieeniieeeee e seee e 516
Adding MSDB databases dynamically to an online IMS system......ccccccevvieeriieennieesnieeeeniee e 517
Provision a Fast Path DEDB database With Z/OSMF ...t 517
Chapter 25. Developing test databases.....cccuv ittt sre e s see e s seeeeenee 519
LI T LU LT =] 0= SR 519
Disabling DBRC security for the RECON data set in test environments.......ccocceeveeeercveenieeenieennnne 520
Designing, creating, and loading a test database........ccveueeiriieiiiieiiiecseeee e 521
USING tESTING STANAAITS. .. .viiieiieieiieeete ettt s e e s ee e s saae e ssate e saeeesnaeaesnneeas 522
Using IBM programs to develop a test database.......ccocveiviieiiiiiiiiiieicieecieccrec et 522

Part 5. Database administrative tasks....ccccceereeiereriererereerereecererencereseecesessecesesceses 325

Chapter 26. Loading databases.......uiiiiiiiiiiiiiiee ettt ettt see e s ee e ssate e ssaee e ssaeaessseessneeesnnens 527

Estimating the minimum size of the database.......occviviiiriiiinii e 527
Step 1. Calculate the size of an average database record.........ccoccvvvvieiiiieiniieiniecceceee e, 528
Step 2. Determine overhead needed for CI F@SOUICES......ccvteeeieciieeeeeciieee e eereee e eeerre e e e e esaeeeeea 531
Step 3. Determine the number of CIs or blocks needed..........cccoueeieeciiieiecciieee e, 531
Step 4. Determine the number of blocks or CIs needed for free space......cccceecvveeeeccvieeeeeennnenn. 534
Step 5. Determine the amount of space needed for BitMaps.....cccccveeeiecciiee e, 535

Allocating database data SETS.....uuiiiiiiiiieitert e s e s ee e saees 535
Using OSAM as the access Method.....c..iiiiiiiiieicieeee e s 536
AlLLOCAtING OSAM data SEIS...uiiiiiiiiiiieiiite ettt ste e s see e s ste e s sate e s steessateesssteessseaessnsaesnnes 538
Using VSAM as the access Method......iiiiiiiieiieitectcete e s 542

gl aY=a- W o= Ta [oY o Y=1 = 1o o SRS 543
Status codes fOr l0ad PrOZramS....c.u i iieriiieriite ettt ertt e st e st e st essbeessbeessbeessbeessssaesssseessanes 546
USING SSAS iN @ L0A PrOSIram...ciiciieicieeiiiieriieessiee st e st e ssieeessateesssteesssbeessnsaesssseessssaessnseessnseens 546
Loading a sequence of segments with the D command code........cccvvvuiiinviiiniieinieeinieennieeenne 547
Two types oOf iNitial Load ProSrami. ... ettt et eseree e saee e sereeeseseeeseneeesans 547
JCL for the initial load Programi. ... ettt ettt sree s ree s saee e s see e ssaeeessaeeessseaessaseesnneeas 553
Loading @ HISAM database......cccuiiiiiiiiiiinieccecceerre ettt e st e s aae e ssaae e s saeesas 553
Loading @ SHISAM database......coccuiiiiiiiiriiiiiieesitecsie sttt s e s s e s s bee e s sae e saees 553
LOAdiNg @ GSAM database....cccuiiriiieiiiieieiteerit sttt s st s s e e s s e e s s e e e s bee e s reeesaeeesneas 553
Loading an HDAM or @ PHDAM database.......ccuevriiiiiiiiiniieiitecitesee st 553
Loading @ HIDAM or @ PHIDAM database.......coccuiiieiiiiiiieiieesieessiee et e sseeesseeesseeessseeesane 554
Loading a database with logical relationships or secondary iNdexes........ccccveceeervieinseeenseennnne 554

Loading Fast Path databases......c.uiiiciiiiiiiieiiceieceteeete ettt e s saa e e s essee e sneee s 554
LOAAING QN MSDB....ciiiiiiiieeiiieeete ettt ettt e e s saae e s saee e sateesasteesbeeesssteessteessteesasseesnssaesnsseesn 554
[oX-Ta [T oY== T B =11 RSP SPRRPR 554
Loading sequential dependent SEEMENTS......cocvviicieiiiiei ittt s 556

Loading HALDBs that have secondary INAEXES......cccuiiviiiiiiiiiiiiienieesriee st e e essieeesseeessaeee s 557

Chapter 27. Database backup and FECOVETY......uiiiiccuiiieeeccieee e eectee e ectee e e eerree e e s e sbaee e e e e ssaeeeeesnseneesennes 559

Database fAILUIES....iiiiieieiieeeeeeet e s e e st e e s ee e s aee e s bae e s b ee e s ree e s aeeeeneas 559
Database WITTE BITOIS.cciuiiiieiieiiieeieiee st et e s st e s ste e seteessbeessateesssteessseeessateessssaessssaesnssassassessns 559
BN [o LTyl (=T (o [=T o] £ SRR 560

D =Y o VTN e [U =T of =TSSR 560

Making database DaCKUP COPIES.....uiiiiiiiiiiecieecite ettt ettt e s sbe e e sbe e s sabe e s sbeeesaeeas 564
Image copies and the IMS image COPY ULILITIES......uiiriiirieiieeetecee e 564
HSSP IMAEE COPIES..utiiitieeiitieeiiieeeciteesste e sttt e sttt e stteesbaeesasteessaeessaeesseeesastessaseessnseessasnessaseeesnns 568
Creating image copy data sets for fULUIE USE......ciuciiiiiiiiicieecieccrec e 568
Recovery period of image COPY data SETS.....cuiiiiiiiiiiinieerite sttt e s e s saaee s 569
ReUSING iMage COPY ata SETS...iiviiiiiiiiieiteeie ettt ettt s s e s sae e s sate e ssaee e ssaeeessaeaesnaeeas 571
HISAM copies (DFSURULO and DFSURRLO)......ceterttiienieienteieetesie ettt st 572
Nonstandard image COPY data SEIS.....iiiiiiiiiiiiiciieriiierre ettt ssee e sre e s sare e ssateessaeeesneeesas 573
Frequency and retention for backUp COPIES.......uuiiiiiciiei i 574

B CTolo)Y =T VAo le - €= o = Y= T F S 575
RECOVEIY and data SEIS......uiiiiiiciiiee ettt e et e e e e e e e e s s bt e e e s s nrraeeeeenneeeeeennes 577
Planning your database recovery Strat@gy......ccuviiiriiiiriiiiniiierie et aee s aee s 577
Supervising recovery USING DBRC.......ccuviviiiiiiiieeiiieerieessieessie e s seeessaeesseeessaeesseeesssseesssseessans 579
Overview of recovery Of databases......ccuuiiiiicciiiee e e ree e e e seee e e e e nre e e e enns 581
Example: recovering a HIDAM database in a non-data-sharing environment........cccoeceevevieenne 582
Recovering a PHIDAM database in a non-data-sharing environment........cccoccceveeeeinieenncieennnne 584
Recovering a PHIDAM database in a data sharing environment........ccccoveveeviieeniieenieeesseeeene 587
Example: recovering a single HALDB partition in a non-data-sharing environment.................. 588
Example: recovering a HIDAM database in a data-sharing environment.......ccccoeveeinveeinceeennnee. 589
CONCUITENT IMAZE COPY FMECOVETY .ccuuviiiriureerrieeserteesitteesarteessseeesaseeesastessaseesssseeessseesssseesssseesssseessane 591
HSSP IMaEE COPY FECOVETY..eiiurieriuiieriitersrtessttessteessseessseessseesssseessseesssseesssseesssseesssseesssseessssens 591
DL/I I/O €IrOrS QN0 FECOVEIY....uuiiieeeecuiereeeeeieeeeeeeitteeeeessteeeseesssesseseanseesssssssesesssassesesssssssessssssnees 592
(600] g =Tor (1 p Y=l o - Lo [o o] al {=Y 3 TSRO P R SPTPT 593

xi

Chapter 28. Database DaCKOUL..........uiiiiiciiiie ettt eee e e tre e e s e e are e e e s enbee e e s e nseaeeseenseneeans 595

D)=L a T ToAl o= T 2o 11 SRR 595
Dynamic backouts and COMMIT POINTS....cccccuiiiiiiciee e e e e e ebre e e e be e e e e nnes 595
Dynamic backoUt iN DATCN....cc. e e 596

Database batCh DaCKOUT........coo it st 597
When to use the BatCh BaCKOUT Utility.....cceeecviieeieciiiee et ree e e e eeee e e e 597
System failure during DACKOUT.......ccviiiiiie ittt re e s be e s sbeeeeaee 598

DL/IT/O errors during DACKOUL.......uiiiiieieiieieie ettt sttt ste e s ee e st e s sae e s saee e ssaee e ssaeaesanas 598
Errors during dynamiC DacCKOUL.......ciiiiiiiiiieiiieceectceee et 598
Recovering from errors during dynamic backoUL.........cevvvuieiriiiiiniieniecreceee e 599
Errors during batCh DaCKOUT......cocviiiiiieecceee et s s s e s 599
Errors on log during batch BackoUT.......cuiiiiiiiiiiiiiiecceccece e s 599
Errors during emergency restart DACKOUL.......cciiiiiiiniiiiete ettt s 600

Chapter 29. Monitoring databases.......ccueiiciiiiiiiiicieeciee ettt e s se e e sbee s sbe e e sbaessbaeesas 601

L8N IS 7 o] a1 (o PSPPSR 601

IMS MONITOF USEI EXIT.uieiueirtieiieeieeeee ettt sttt sttt sttt se e et e st e e b e sse e e b e e s se e e s e e neesmreeneesnresaneas 603

MoNiItoring Fast Path SYSTEMS......uiiiiiiiieeteee et be e e s e e s ba e e sbaeeas 603
Fast Path L0g analySis ULILITY ... cueiiciiieieeciee ettt see st e sie e s sra e e saae e sraeesane 603
Interpreting Fast Path analySis rePOrtS. ... ittt ssre e srre e ssree e ssreeesraeesane 606

Chapter 30. TUNING databases......ciuciiiiiiiiiiiieeieecc ettt st e st e s re e s sbe e seabeesssaeesssaess 607

Reorganizing the database.......cuui i 607
When you should reorganize a database.......coucueiicieiiiieiiiieccciecse e s 608
Reorganizing databases OffliNe........iiiiiiiee e e 608
Protecting your database during an offline reorganization......c..cccceveerrveenniiennieensieessee e 608
REOIgANIZATION ULILITIES.civiiieiiieeiieieeeeet et ssaee e s ba e e sbe e e s baeessaeesaneeean 609
Reorganizing HISAM, HD, and index databases offline........cccocvvirvieiniiiiniieinccceee e 626

Reorganizing HALDB databasSes. ...ccccuiiiriiiiiiiiiniieiiteseite st et e st sse e s ste e s te e s s aaessbaessbaeessneens 627
HALDB Offline re0rganiZation......cocuiiiciieriiieriieeesiee st e st e st e st e st e s sbe e s s e e s sbeessssaesssseessans 627
HALDB 0ONliNE rEOrganiZatiON.....cciicieiicieiiiieeeciteesciteesiteseettessaeeestte s saee e sbeessbeessseessseessnseessanes 633
The HALDB self-healing pOinter PrOCESS......civciiiriieiriieirte et estee st e sre e see e s see e s see e s saeeesnaeas 652

Changing the hierarchical structure of database records........cccvvueiriieinieiniieineee e 657
Changing the sequence Of SEZMENT LY PES...civuiiiiiiiiriiiirie et saee e s 657
COMDBINING SEEMENES.c.utiiiiieiiciteerie ettt ettt e st e st essabe e s s bt e ssabeessabeessasaesssbeesssseessnseessnsees 658
Changing the hierarchical structure of a HALDB database.......cccccceveiiiiiiiiiniieiniecrieecnee e, 658

Changing direCt-access STOrage UEVICES. ...cuiuiiiiiiiriiierriterritesrtte st e ssreessteessaeessreesssbeessnbeesnaseeas 659

Tuning OSAM sequential DUFFEIING.....cciiii it e s 660
Example of a well-organized database.......ccvivciiiriiiiiiiiiciecce e 660
Example of a badly organized database.......ccccccevveieiiiieiiiiii e 660
Ensuring a well-organized database.......ccocveiiiiiieiieiiiecieecee et 661

Adjusting HDAM and PHDAM OPTIONS....uuiiiiiieiriieiiitessite st e st e ssreessteessseessteessseessssaesssseesssseesas 661

AJUSTING DUTTEIS ..ttt s e e s bt e e s abe e sateessteessteessseesnsaenn 662
Overview of dynamic database buffer POOLS.........ccuiii e 662
VSAM DUTFEIS ettt ettt et et b e st st e b e sar e e b e saeeebeesaeesaneenne 664
OSAM DUTTIS .ttt sttt e st et e st e bt e s et e s b e e s re e sareebeesneeenbeesnes 666
Adjusting OSAM and VSAM database bUffers.......ccciiiiiirviiiniieiieecee et e e 666
Usage data for OSAM sequential BUFfEriNG.......civriiiiiiiieeeeeee e 670
Adjusting seqUENTIAl DUTTEIS.....cii i s s 670

AdJUSTING VSAM OPTIONS.cetiiiiiieieiteeete et eite et e st e st e st e s ste e s sbeessteessabeessasaessssaesssseesnsseesnnsans 671
Adjusting VSAM options specified in the OPTIONS control statement........ccoeceeirveeinveenncieennnns 671
Adjusting VSAM options specified in the Access Method Services DEFINE CLUSTER

(ole] 30 aT=12 e IS SRS PR RPN 672

AdJUSTING OSAM OPTIONS . tiiieiieieiie ettt et e st e st e e ste e s s bt e e s beessbeessbeeessbaesssseesssaeessaeesnsaeennee 672

Changing the amount of SPace alloCated.......cccevviiiiriiiiiiiieeieeeeeee e s e 673

Changing operating system access MEthOUS......coivviiiiiiiiiiieiiecree ettt e s see e s see e 674

TUNINEG FaSt Path SYSTEMS ..ttt sste e st e e s be e s abe e s sbaesssbeesnnseesan 675

Transaction volume to a particular Fast Path application program........cccecceeeeveernvieeinseennvieenns 675

DEDB StruCture CONSIAEIAtiONS. ...ciicviiieciiiiriieeeiteeeteesite e eree e sree e sree e sbeessaeessreesssaesssaesssanesnne 676
Usage of buffers from a Fast Path buffer pooLl.......c.cccoeciiiiiiiniiiiie e 676
Contention for DEDB controlinterval (CI) r@SOUICES.....cuveuerrereeerieeneeeieesreeseeesreeseesseesseeenees 678
Exhaustion Of DEDB DASD SPACE....cccccuuiteeeetireeeeeiiteeeeectteeeseetaeeeseessseessesasseesssssssessessessssssssssnnes 679
Utilization of available real STOrage.......uiuiiiiiiiiniiierieceee ettt 679
Synchronization point processing and physical logging.........cccvvvieiriiieiniieiniieeeee e 679
Contention for OULPUL thrEads........uuiii i e e e e e e e e e e naaeeeeeas 680
Overhead resulting froM FEPrOCESSING.....cvitiririeriiierriieerrteesiteesreeesee s s sreeesbeeessreeesreeesseesssses 680
Dispatching priority of processor-dominant and I/O-dominant tasks........ccceeceercveerrieerrireennne 680
DASD contention due 10 I/O 0N DEDBS....coueuuuiiiiceeceeee ettt s s e e e e e e e aees 680
Maintaining read performance for multiple area data SetsS.....cccccvvveeriiieniiieniieeeeeeee e 681
Resource locking considerations with block-level data sharing........ccccovvveiviieiniiiniennieeeen, 681
ResoUrce NAme hash FOULINE.....oiciiiiiieeiee ettt e s e saeeessteesaeae s 681
Chapter 31, Modifying databases...cccuiiiiiiiiiieiiie ittt s s e s be e s s sbe e e s bee e sabeeesneas 683
MOdITYING rECOIA SEEMENTS. . uiiiiciiiiiieeriiee ettt e st e srte e st essabeessabe e s sbeesssbeesssseesassaesassaesanseens 683
AdAING SEEMENT TYPES.utiiieiiiieiie ittt ettt et e s st e s st e s sbe e e ssbeesssbeesssteessssaessssaesssaesssseesnne 684
DElEtiNg SEEMENT LY PES . uiiiiiiiieiieieiee ettt sttt e s te e s st e s sate e s s abeesssteessstaessntaesastaessnsaesnnee 686
MOVING SEEMENT 1Y PES. e viiiiiieeiiieeictee sttt e sttt esette e setteesebteesebteesbteesbteesasteesstessseessaseeesaseeesaseessane 687
Changing SEEMENT SIZE....ciiviiiiiiieiciee ettt st e e eee e s bee e sbee e s bt e e sbeeesbeeesabeeesseessaseeenases 687
Adding or converting to variable-length SEgMENTS.......ccccciiviiiiiiiiiiiiee e 688
Changing data in a segment (except for data at the end of a segment).....cccccceeevevcveeveeneennnen, 690
Changing the position of data in @ SEEMENT.....cccciii it saee s 690
Changing the Name Of @ SEEMENT.......ciiiiiiiiieiecee et e s sre e s s ae e s ssteessataesans 690
Adding Logical relatioNShiPS....cii ittt e st e st e s ba e s e e s araeean 691
Examples of adding logical relationShips.......cceivcieiiiieiiieiceeete e 691
Altering IMS 10gical relatioNSNIPS....coccviiiriierieieteee e s s ee e s aes 703
Some restrictions on modifying existing logical relationships.......ccecvevriieiniieiniieenieeeeeeeee, 708
Summary on use of utilities when adding logical relationships.......cccccecveeriiiiniiieniieeniieeneen, 710
Converting a logical parent concatenated key from virtual to physical or physical to virtual......... 711
ALLEINEG IMS INAEXES. . tieieiieeiitee sttt sttt e sstte e sette e ssbeeesbteesabteesabaeesabeeessaeesseeesseessnseessaseessnn 711
Adding a secondary index to a full-function database......cccccccvviiiriiiiniiieniiieeee e 712
Adding a secondary index to a new primary DEDB.........cccccviriiiinieeinieeenieesieesseee e e sseeessaees 712
Adding a secondary iNdeX t0 @ DEDB......cccutiiiiiiniieinieecete st siee e s ae e s saee e snees 713

(B o] o] o 1aY=i- T T o e 1= GO RPN 714
Changing the numMber of data SET GroUPS. ..ottt be e e saee s 715
Example flow for simple HD databases.........eeiieciiieeiecciiieecceciee ettt e e s 716
Example flow for modifying HISAM databases with the reorganization utilities.........ccccceeenueen. 718
Example flow for HD databases with logical relationships or secondary indexes.........cccccueeu.u. 719
Converting to the Segment Edit/Compression exit FOULINE........covcieiicviericiieeicieercie e e seee e 722
Converting databases for Data Capture exit routines and Asynchronous Data Capture................. 722
Modifying ONLINE databasEs......cocciiiiiiiiiieiree e e s aee e s sare e ssate e s aeee s aneas 723
Altering the definition of an online HALDB database......cccccceveviiiiniiiiiniiiiinieeirieecee e 723
Altering the definition of an online DEDB database with the DEDB Alter utility......ccccceeveeeneen. 737
Changing databases dynamically in onling SYStEMS......cuuiirviiiriiiieiieerece e 754
Online activation of new and changed database resources when IMS manages ACBs............. 757
Activating database changes by using the online change function..........ccoecevviiieeniieeniiieenieenn. 757
Extending DEDB independent overflow onling........ooiiiiieiiiiiiniieeciecciecse e 769
Modifying HALDB databases.......coccueiriieiiiiiiniieerieeseite st e s siee s see e s ste e s ste e s see e s saeeessaeesneeessseaesnneas 771
Overview of modifying HALDB databasSes......ccccvirvuieiriiiiiniieinieeceiee st se e svee s sae e s 771
Changing the high key of @ Partition.......c.ceviiirieiee e s see e see e 780
Adding partitions to an existing HALDB database.......ccccvcveiiiiiiiiieiiiieiniecctecscee e 781
Disabling and enabling HALDB PartitioNS........ccceirvieiniiieinieeinieeerieessieessieesseeesseeessseeessneeesneas 785
Deleting partitions from an existing HALDB database......c..ccccvvcuieriiieniiiiiniiieiieessiee e 788
Changing the name of @ HALDB PartitiON.......ccceiiiieiriieinieieieecsieeeseeesieeeseeessee e s saeessaeessaeees 792
Modifying the number of root anchor points in @ PHDAM partition.......cccceveevriieinieennsieennsneenn. 793
Modifications to HALDB reCord SEEMENTS.....ccuiiiciiiriieirieeenieessteessreeesieessee e sseeesseeessaeeessaeeas 794

Modifying HALDB partition data SEIS.....ccivviiiiriiiiiieirite ettt et e see et e s see e ssaee e s ae e s e 794

The maximum size of OSAM data sets and HALDB databases........cccccvvuerieenienienneenienneeeen. 795
Exit routine modifications and HALDB databases........c.ccoueeiieniiiiieieenieeeeeeeeeeeeeee e 797
Adding a secondary index to a HALDB database.......ccccveviiriiiiniiiiiiieeciecceceee e 800
Modifying a HALDB partitioned seCoONdary iINAEX.....c.cceecueeriiieriieeniieeniieessieesseeessieeessveeessneeens 800
Chapter 32. Converting database tYPeS....c.uuiiciiiicieiicieeeiee et ee e s ee e st e e sbee s s bee e sbeessans 803
Converting a database from HISAM 10 HIDAM........uiiiiiiiiiieiniieesiec st ste s ssvee s siee s ssveesssvaeesraeesane 804
Converting a database from HISAM 10 HDAM........oiiiiiiiiiieiniiennite st ssiee st e s siee s see s e s svee s svees 805
Converting a database from HIDAM t0 HISAM........uiiiiiiiiiieiniiee e ete s sste e ssiee s sieesssvee s sveesssvaeesane 806
Converting a database from HIDAM t0 HDAM......uiiiiiiiiiieeitecitesciee sttt siae s siae e ssaee e ssaenesaae s 807
Converting a database from HDAM t0 HISAM........iiiiiiiiiieiiteete ettt s svee s sbee s vee s s 808
Converting a database from HDAM t0 HIDAM......uiiiiiiiiiiieeitccitesctee st siee e ssiae e ssaae e s saenesnea s 809
Converting HDAM and HIDAM databases t0 HALDB........ccccueircieiicieenieeeteeeee et vee e svee e 810
Parallel unload for migration t0 HALDB.......cooiiiiiiiiiiiceeeee ettt e s 811
Backing up existing database information........ccccivcieiicieiiiiece e 811
Converting simple HDAM or HIDAM databases to HALDB PHDAM or PHIDAM.........cccecvvevnunen. 812
Converting HDAM or HIDAM databases with secondary indexes to HALDB.........c.cccceevveennnnn. 818
Converting logically related HDAM or HIDAM databases to HALDB........ccccoeveeircieeinieennieeennnen. 831
Changing the database name when converting a simple database to HALDB..........ccceccveevneen. 838
Restoring a non-HALDB database after CONVErsioN......coccieviieiiiieineeeee e 839
Converting databases t0 DEDB.......ccocuiiiiiiiieecce ettt st e s s e s s be e s s e e s sneas 842

[\ 0] o =Y - TR - £ -3

Programming interface iNformMation. ... e s e s e 846
TrAAEMAIKS .. teietteeecitee ettt ettt e et e e s bt e e s bt e e s bteesbeee s beeesbeeessteesasaeesasaeesseeessaeesasaeesaseeesnseeesnn 846
Terms and conditions for product doCUMENTAtION........uiviieciiiie e e e e 847
IBM ONliNE Privacy Stat@mMENt....ci i eiiee e cccieee ettt e cttee e s e eree e e e e eree e e e s nae e e e s ntaaeesesnsaneesennnsenensan 847

=11 FT0 == ¥] 1) 7PN -7 L

L =) R 1. |

xiv

About this information

[Search title: IMS 15.4 - Database administration - About this information |

These topics describe IMS database types and concepts, and also describe how to design, implement,
maintain, modify, back up, and recover IMS databases.

This information is available in IBM® Documentation.

Prerequisite knowledge

[Search title: IMS 15.4 - Database administration - Prerequisite knowledge |
Before using this book, you should understand basic z/OS® and IMS concepts and your installation's IMS
system. IMS can run in the following environments: DB Batch, DCCTL, TM Batch, DB/DC, DBCTL. You
should understand the environments that apply to your installation. The IMS concepts that are explained
in this information pertain only to administering an IMS database. You should know how to use DL/I calls
and languages such as assembler, COBOL, PL/I, and C.

To learn about z/0S, see z/0S Basic Skills. For more resources, see IBM Z Education and Training.

To learn about IMS, see the IBM Press publication An Introduction to IMS, the resources listed for IBM
Information Management System, and the variety of options available in IBM Training.

How new and changed information is identified

For most IMS library PDF publications, information that is added or changed after the PDF publication is
first published is denoted by a character (revision marker) in the left margin. The Program Directory and
Licensed Program Specifications do not include revision markers.

Revision markers follow these general conventions:

« Only technical changes are marked; style and grammatical changes are not marked.

- If part of an element, such as a paragraph, syntax diagram, list item, task step, or figure is changed,
the entire element is marked with revision markers, even though only part of the element might have
changed.

« If a topicis changed by more than 50%, the entire topic is marked with revision markers (so it might
seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the information because deleted
text and graphics cannot be marked with revision markers.

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:

» Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following conventions are used:

— The >>--- symbol indicates the beginning of a syntax diagram.
— The ---> symbol indicates that the syntax diagram is continued on the next line.
— The >--- symbol indicates that a syntax diagram is continued from the previous line.
— The --->< symbol indicates the end of a syntax diagram.
« Required items appear on the horizontal line (the main path).

»— required_item -»<

« Optional items appear below the main path.

© Copyright IBM Corp. 1974, 2022 XV

https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/zos-basic-skills
https://www.ibm.com/z/education
https://www.ibm.com/products/ims
https://www.ibm.com/products/ims
https://www.ibm.com/training/search?query=ims

»— required_item >4
L optional_item —J

If an optional item appears above the main path, that item has no effect on the execution of the syntax
element and is used only for readability.

J_ optional_item T

»— required_item >4

« If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.
»— required_item T required_choicel j—N
required_choice2
If choosing one of the items is optional, the entire stack appears below the main path.
»— required_item >4
toptional_choicel j
optional_choice2

If one of the items is the default, it appears above the main path, and the remaining choices are shown
below.

J_ default_choice T
optional_choice j

optional_choice

»— required_item

1]

« An arrow returning to the left, above the main line, indicates an item that can be repeated.

<
<

),.ﬁ

»— required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

<
€

),.ﬁ

»— required_item repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.

- Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the
main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

»— required_item fragment-name

fragment-name

»— required_item >4
L optional_item —J

« InIMS, a b symbol indicates one blank position.

xvi About this information

« Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled
exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

« Separate keywords and parameters by at least one space if no intervening punctuation is shown in the
diagram.

« Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the
diagram.

« Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS 15.4

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products, including IMS 15.4. These
features support:

« Keyboard-only operation.
« Interfaces that are commonly used by screen readers and screen maghnifiers.
« Customization of display attributes such as color, contrast, and font size.

Keyboard navigation
You can access IMS 15.4 ISPF panel functions by using a keyboard or keyboard shortcut keys.

For information about navigating the IMS 15.4 ISPF panels using TSO/E or ISPF, refer to the z/0S TSO/E
Primer, the z/0S TSO/E User's Guide, and the z/OS ISPF User's Guide Volume 1. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for IMS 15.4 is available in IBM Documentation.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more information about the
commitment that IBM has to accessibility.

How to send your comments

About this task

Your feedback is important in helping us provide the most accurate and highest quality information. If you
have any comments about this or any other IMS information, you can take one of the following actions:

Procedure

« Submit a comment by using the DISQUS commenting feature at the bottom of any IBM Documentation
topic.

« Send an email to imspubs@us.ibm.com. Be sure to include the book title.
« Click the Contact Us tab at the bottom of any IBM Documentation topic.

About this information xvii

http://www.ibm.com/able
https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/ims

What to do next

To help us respond quickly and accurately, please include as much information as you can about the

content you are commenting on, where we can find it, and what your suggestions for improvement might
be.

xviii IMS: Database Administration

Part 1. General database concepts, standards, and
procedures

[Search title: IMS 15.4 - Database administration - General database concepts, standards, and procedures

The following topics provide an introduction to the administration of databases using IMS Database
Manager, including a general discussion of IMS databases, basic standards and procedures used when
working with IMS databases, the basic design and review process, and database security.

© Copyright IBM Corp. 1974, 2022

2 IMS: Database Administration

Chapter 1. Introduction to IMS databases

[Search title: IMS 15.4 - Database administration - Introduction to IMS databases |
The introduction to IMS databases describes the tasks of database administration and discusses the key
concepts and terms used when administering IMS Database Manager.

Information roadmap for database creation

[Search title: Information roadmap for database creation |

This roadmap contains a general introduction to IMS databases and step-by-step instruction on how to
create a database.

Database overview

IMS databases fall into two types, full-function and Fast Path. Each type can be further divided into
several subtypes.

Full-function database types
IMS full-function databases are hierarchical databases that are accessed by using DL/I calls.

Chapter 16, “Fast Path database types,” on page 187
Fast Path databases include data entry databases (DEDBs) and main storage databases (MSDBs).
Both DEDB and MSDB use the direct method of storing data.

Creating a database
Follow the instructions to design and create a database:

Prerequisite: Before you start creating a database, familiarize yourself with users' processing and
data requirements. Develop a conceptual data structure to satisfy the data requirements. For more
information, see Chapter 21, “Analyzing data requirements,” on page 391.

1. Design a database.
For more information, see the following topics:

« Chapter 22, “Designing full-function databases,” on page 401

« Chapter 23, “Designing Fast Path databases,” on page 429

2. Implement database design.

If you enabled IMS management of application control blocks (ACBs), you can also use industry
standard Data Definition Language (DDL) to implement your design.

- If you choose the IMS generation utilities to create databases, see “Using the IMS generation
utilities to design IMS databases” on page 488

« If you choose DDL to create databases, see “Using DDL to define databases and program views” on
page 457

- If you choose both DDL and IMS generation utilities to create databases, see IMS Catalog Library
Builder utility (DFS3LUQO) (System Utilities) for details about how to keep your IMS catalog,
directory, DBDLIB, PSBLIB, and ACBLIB data sets in sync for tools and processes that still require
the IMS generation data sets. It is up to users to put a process in place to coordinate changes using
DDL and ACBGEN.

3. Register the databases in the RECON data set.
If you want DBRC to control database recovery, you must register the databases in the RECON data
set. For more information, see Registering databases and database data sets (System Administration).

4. Load the databases.
For more information, see Chapter 26, “Loading databases,” on page 527.

© Copyright IBM Corp. 1974, 2022 3

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_catalog_dfs3lu00.htm#ims_catalog_dfs3lu00
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_catalog_dfs3lu00.htm#ims_catalog_dfs3lu00
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/dbrc_admin/ims_dbrc_regis_dbs.htm#ims_dbrc_regis_dbs

5. Create image copies for the databases.
Database recovery requires backup image copies of databases. Make a backup copy of the database
after you initially load it, and make new backup copies at regular intervals. For more information, see
Database backup copies (System Administration).

Database administration overview

[Search title: IMS 15.4 - Database administration - Database administration overview

The task of database administration is to design, implement, and maintain databases.

This information describes the tasks involved in administering the Information Management System
Database Manager (IMS DB). IMS is composed of two parts: IMS Database Manager and IMS Transaction
Manager. IMS Database Manager manages the physical storage of records in the database. IMS
Transaction Manager manages the terminal network, the input and output of messages, and online
system resources. The administration of IMS Transaction Manager is covered in IMS Version 15.4 System
Administration. IMS networking is covered in IMS Version 15.4 Communications and Connections.

This book presents the database administration tasks in the order in which you normally perform the
tasks. You perform some tasks in a specific sequence in the database development process while other
tasks are ongoing. It is important for you to grasp not only what the tasks are, but also how they
interrelate.

This first part of the book provides important concepts and procedures for the entire database
administration process. The second part contains the chapters corresponding to particular tasks of
database administration.

Related concepts

“Database administration tasks” on page 5
The database administration tasks relevant to IMS databases are listed in this topic.

DL/I

[Search title: IMS 15.4 - Database administration - DL/I

Data Language/I (DL/I) is the IMS data manipulation language, which is a common high-level interface
between a user application and IMS.

DL/I calls are invoked from application programs written in languages such as PL/I, COBOL, VS Pascal, C,
and Ada. It also can be invoked from assembler language application programs by subroutine calls. IMS
lets the user define data structures, relate structures to the application, load structures, and reorganize
structures.

Related concepts

Application programming for IMS DB (Application Programming)
Related reference

Database management (Application Programming APIs)

CICS

[Search title: IMS 15.4 - Database administration - CICS

Customer Information Control System (CICS®) accesses IMS databases through the database resource
adapter (DRA).

CICS or other transaction management subsystems (excluding IMS Transaction Manager) can access IMS
full-function databases and data entry databases (DEDBs) in a DB/DC or DBCTL environment through the
DRA.

Whenever tasks differ for CICS users, a brief description about the differences is included.

DBCTL and DCCTL

[Search title: IMS 15.4 - Database administration - DBCTL and DCCTL

4 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/dbrc_admin/ims_dbbackups.htm#ims_dbbackups
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_appdb.htm#ims_appdb
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apr/ims_dlicallsfordbmanagement.htm#ims_dlicallsfordbmanagement

Database Control (DBCTL) supports non-message-driven batch message processing (BMP) programs.
Data Communications Control (DCCTL) is a transaction management subsystem that does not support
full-function DEDBs or MSDBs (main storage databases), but does support GSAM databases in BMP
regions.

DBCTL has its own log and participates in database recovery. Locking is provided by IMS program isolation
(PI) or the internal resource lock manager (IRLM).

To access databases in a DCCTL environment, DCCTL must connect to an external subsystem that
provides database support.

Open Database Access (ODBA)

|Search title: IMS 15.4 - Database administration - Open Database Access (ODBA)

Any program that runs in a z/OS address space can access IMS DB through the Open Database Access
(ODBA) callable interface.

Any z/OS application program running in a z/OS address space that is managed by z/OS Resource
Recovery Services (RRS) can access IMS full-function databases and data entry databases (DEDBs). z/OS
application programs that use the ODBA interface are called ODBA applications.

From the perspective of IMS, the z/OS address space involved appears to be another region called the
z/OS application region.

Types of programs that can call the ODBA interface include:

« Db2 for z/OS stored procedures, including COBOL, PL/I, and Java™ procedures
« Enterprise Java Beans running in WebSphere® Application Server for z/0S

« Other z/OS applications

Related tasks
Accessing IMS databases through the ODBA interface (Communications and Connections)

Database administration tasks

[Search title: IMS 15.4 - Database administration - Database administration tasks
The database administration tasks relevant to IMS databases are listed in this topic.

Participating in design reviews
Design reviews are a series of formal meetings you attend in which the design and implementation of
the database are examined. Design reviews are an ongoing task during the design and implementation
of a database system. They are also held when new applications are added to an existing system.

Analyzing data requirements
After the users at your installation identify their data processing requirements, you will construct data
structures. These structures show what data will be in your database and how it will be organized.
This task precedes the actual design of the database.

Designing your database
After data structures are identified, the next step is to design your database. Database design
involves:

« Choosing how to physically organize your data
« Deciding which IMS processing options you need to use

« Making a series of decisions about design that determine how well your database performs and uses
available space

Developing a test database
Before the applications that will use your database are cut over to production status, they should be
tested. Depending on the form of your existing data, you can use one or more of the IMS Database
Design Aids to design, create, load, and test your test database.

Chapter 1. Introduction to IMS databases 5

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.ccg/ims_odba_config_01.htm#ims_odba_config_01

Implementing your database design
After your database is designed, implement the design by describing to IMS the database's
characteristics and how application programs will use the database.

If your IMS system is enabled to manage application control blocks by using the catalog, you can
use the IMS Enterprise Suite Explorer for Development to issue SQL statements that describe the
databases and how applications use it.

However, if your IMS system uses an ACB library, this task consists of coding database descriptions
(DBDs) and program specification blocks (PSBs), both of which are a series of macro statements.
Another part of implementing the database design is determining whether to prebuild application
control blocks (ACBs) of the database or to build the ACBs dynamically.

Loading your database
After database characteristics are defined, write an initial load program to put your data into the
database. After you load the database, application programs can be run against it.

Monitoring your database
When the database is running, routinely monitor its performance. A variety of tools for monitoring the
IMS system are available.

Tuning your database
Tune your database when performance degrades or utilization of external storage is not optimum.
Routine monitoring helps you determine when the system needs to be tuned and what type of tuning
needs to be done. Like monitoring, the task of tuning the database is ongoing.

Modifying your database
As new applications are developed or the needs of your users change, you might need to make
changes to your database. For example, you can change database organization, database hierarchies
(or the segments and fields within them), and you can add or delete one or more partitions. Like
monitoring and tuning, the task of modifying the database is ongoing.

Recovering your database
Database recovery involves restoring a database to its original condition after it is rendered invalid
by some failure. The task of developing recovery procedures and performing recovery is an important
one. However, because it is difficult to separate data recovery from system recovery, the task of
recovery is treated separately in IMS Version 15.4 Operations and Automation.

You can use Database Recovery Control (DBRC) to support the recovery of your databases. If your
databases are registered in the RECON data set, DBRC gains control during execution of these IMS
utilities:

« Database Image Copy

« Online Database Image Copy

 Database Image Copy 2

« Change Accumulation

« Database Recovery

» Log Recovery

 Log Archive

- DEDB area data set create

- HD and HISAM Reorganization Unload and Reload

« HALDB Index/ILDS Rebuild

You must ensure that all database recoveries use the current IMS utilities, rather than those of earlier
releases.

Establishing security
You can keep unauthorized persons from accessing the data in your database by using program
communication blocks (PCBs). With PCBs, you can control how much of the database a given user can
see, and what can be done with that data. In addition, you can take steps to keep non-IMS programs
from accessing your database.

6 IMS: Database Administration

Setting up standards and procedures
It is important to set standards and procedures for application and database development. This is
especially true in an environment with multiple applications. If you have guidelines and standards,
you will save time in application development and avoid problems later on such as inconsistent
naming conventions or programming standards.

Related concepts

“Database administration overview” on page 4
The task of database administration is to design, implement, and maintain databases.

Related reference
Log Archive utility (DFSUARCO) (System Utilities)
Log Recovery utility (DFSULTRO) (System Utilities)

Database concepts and terminology

|Search title: IMS 15.4 - Database administration - Database concepts and terminology |

This topic discusses the terms and concepts you need to understand to perform IMS database
administration tasks.

To understand this topic, you must know what a DL/I call is and how to code it. You must understand
function codes and Segment Search Arguments (SSAs) in DL/I calls and know what is meant when a call is
referred to as qualified or unqualified (explained in IMS Version 15.4 Application Programming).

How data is stored in a database

[Search title: IMS 15.4 - Database administration - How data is stored in a database |
The data in a database is grouped into a series of database records. Each database record is composed of
smaller groups of data called segments. A segment is the smallest piece of data IMS can store. Segments,
in turn, are made up of one or more fields.

The following figure shows a record in a school database. Each of the boxes is a segment or separate
group of data in the database record. The segments in the database record contain the following
information:

COURSE
The name of the course

INSTR
The name of the teacher of the course

REPORT
A report the teacher needs at the end of the course

STUDENT
The names of students in the course

GRADE
The grade a student received in the course

PLACE
The room in which the course is taught

Chapter 1. Introduction to IMS databases 7

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_logarchive.htm#ims_logarchive
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_logrecovery.htm#ims_logrecovery

Parentof INSTR >

COURSE

Child of
COURSE —— |INSTR
and

parent of
REPORT

REPORT

STUDENT

GRADE

PLACE

Figure 1. Segment types in the school database record

The segments within a database record exist in a hierarchy. A hierarchy is the order in which segments are
arranged. The order implies something. The school database is storing data about courses that are taught.
The COURSE segment is at the top of the hierarchy. The other types of data in segments in the database

record would be meaningless if there was no COURSE.

Root segment

Boot

Dependents

[Search title: IMS 15.4 - Database administration - Root segment

Only one root segment exists within a database record. All other segments in the database record are

called dependent segments.

In the example shown in “How data is stored in a database” on page 7, the COURSE segment is the root

segment. The segments INSTR, REPORT, STUDENT, GRADE, and PLACE are the dependent segments. The
existence of dependent segments hinges on the existence of a root segment. For example, without the
root segment COURSE, there would be no reason for having a PLACE segment stating in which room the

course was held.

The third level of dependent segments, REPORT and GRADE, is subject to the existence of second level
segments INSTR and STUDENT. For example, without the second level segment STUDENT, there would be
no reason for having a GRADE segment indicating the grade the student received in the course.

Parent and child segment

[Search title: IMS 15.4 - Database administration - Parent and child segment

Another set of words used to refer to how segments relate to each other in a hierarchy is parent segment
and child segment. A parent segment is any segment that has a dependent segment beneath it in the

hierarchy.

In the figure shown in “How data is stored in a database” on page 7, COURSE is the parent of INSTR, and

INSTR is the parent of REPORT. A child segment is any segment that is a dependent of another segment
above it in the hierarchy. REPORT is the child of INSTR, and INSTR is the child of COURSE. Note that
INSTR is both a parent segment in its relationship to REPORT and a child segment in its relationship to

COURSE.

Segment type and occurrence

|Search title: IMS 15.4 - Database administration - Segment type and occurrence

The terms segment type and segment occurrence distinguish between a type of segment in the database

and a specific segment instance.

This is in contrast to the terms root, dependent, parent, and child, which describe the relationship

between segments.

8 IMS: Database Administration

The database shown in “How data is stored in a database” on page 7 is actually the design of the
database. It shows the segment types for the database. “Relationship between segments” on page 9
shows the actual database record with the segment occurrences.

A segment occurrence is a single specific segment. Math is a single occurrence of the COURSE segment
type. Baker and Coe are multiple occurrences of the STUDENT segment type.

Relationship between segments

[Search title: IMS 15.4 - Database administration - Relationship between segments

One final term for describing segments is twin segment. Twin (like root, dependent, parent, and child)
describes a relationship between segments. Twin segments are multiple occurrences of the same
segment type under a single parent.

In the following figure, the segments Baker and Coe are twins. They have the same parent (Math), and are
of the same segment type (STUDENT). Pass and Inc are not twins. Although Pass and Inc are the same
segment type (GRADE), they do not have the same parent. Pass is the child segment of Baker, and Inc is
the child segment of Coe.

Math rAnucnurrenneuithe
| I COURSE segment type

Coe o

James Baker Boom2
|
ReporiB e Two occurrences of the
HeportA Pass STUDENT segment type

Coeand Baker are also twins

Figure 2. Segment occurrences in a school database record

The following topic discusses the hierarchy in more detail. Subsequent topics describe the objects in a
database, what they consist of and the rules governing their existence and use. These objects are:

The database record
The segments in a database record
The fields within a segment

The hierarchy in a database record

[Search title: IMS 15.4 - Database administration - The hierarchy in a database record

A database is composed of a series of database records. Records contain segments, and the segments
are arranged in a hierarchy in the database record.

Numbering sequence in a hierarchy: top to bottom

|Search title: IMS 15.4 - Database administration - Numbering sequence in a hierarchy: top to bottom

Chapter 1. Introduction to IMS databases 9

When a database record is stored in the database, the hierarchical arrangement of segments in the
database record is the order in which segments are stored.

Starting at the top of a database record (at the root segment), segments are stored in the database in the
sequence shown by the numbers in the following figure.

The sequence goes from the top of the hierarchy to the bottom in the first (left most) path or leg of

the hierarchy. When the bottom of the database is reached, the sequence is from left to right. When all
segments have been stored in that path of the hierarchy, the sequencing begins in the next path to the
right, again proceeding from top to bottom and then left to right. (In the second leg of the hierarchy there
is nothing to go to at the right.) The sequence in which segments are stored is loosely called "top to
bottom, left to right."

The following figure shows sequencing of segment types for the school database shown in “How data is
stored in a database” on page 7. The sequence of segment types are stored in the following order:

1. COURSE (top to bottom)

2. INSTR
3. REPORT
4. STUDENT (left to right)
5. GRADE (top to bottom)
6. PLACE (left to right)
Top
to Math 1
Bottom :
y i]
LJElmesE ——+» Baker - ——» Room?2
L 3 .: i-
ReportdA —— Pass ——
v P 3 5
Left
to »
Right

Figure 3. Hierarchical sequence of segment types for a school database

The following figure shows the segment occurrences for the school database record as shown in
“Relationship between segments” on page 9. Because there are multiple occurrences of segment types,
segments are read "front to back" in addition to "top to bottom, left to right." The segment occurrences for
the school database are stored in the following order:

1. Math (top to bottom)

. James

. ReportA

. ReportB (front to back)
. Baker (left to right)

. Pass (top to bottom)

. Coe (front to back)

N o oA WON

10 IMS: Database Administration

8. Inc (top to bottom)
9. Room?2 (left to right)

Math
1
, Coe :
' H 7 '
James »* —
2 Baker5 I Flﬂnng
| .
ReportB ! Inc -
Ports ! 8
Report A Front Pass 6
3 to
Back

Figure 4. Hierarchical sequence of segment occurrences for school database

Note that the numbering sequence is still initially from top to bottom. At the bottom of the hierarchy,
however, observe that there are two occurrences of the REPORT segment.

Because you are at the bottom of the hierarchy, both segment occurrences are picked up before you move
to the right in this path of the hierarchy. Both reports relate to the instructor segment James; therefore

it makes sense to keep them stored together in the database. In the second path of the hierarchy, there
are also two segment occurrences in the student segment. You are not at the bottom of the hierarchical
path until you reach the grade segment Pass. Therefore, sequencing is not "interrupted" by the two
occurrences of the student segment Baker and Coe. This makes sense because you are keeping student
and grade Baker and Pass together.

Note that the grade Inc under student Coe is not considered another occurrence under Baker. Coe and
Inc become a separate path in the hierarchy. Only when you reach the bottom of a hierarchical path is

the "top to bottom, left to right" sequencing interrupted to pick up multiple segment occurrences. You can
refer to sequencing in the hierarchy as "top to bottom, front to back, left to right", but "front to back" only
occurs at the bottom of the hierarchy. Multiple occurrences of a segment at any other level are sequenced
as separate paths in the hierarchy.

As noted before, this numbering of segments represents the sequence in which segments are stored
in the database. If an application program requests all segments in a database record in hierarchical
sequence or issues Get-Next (GN) calls, this is the order in which segments would be presented to the
application program.

Numbering sequence in a hierarchy: movement and position

[Search title: IMS 15.4 - Database administration - Numbering sequence in a hierarchy: movement and position |
The terms movement and position are used when talking about how segments are accessed when an
application program issues a call. They are used to help describe the numbering sequence in a hierarchy.

When talking about movement through the hierarchy, it always means moving in the sequence implied
by the numbering scheme. Movement can be forward or backward. When talking about position in the
hierarchy, it means being located (positioned) at a specific segment.

A segment is the smallest piece of data IMS can store. If an application program issues a Get-Unique (GU)
call for the student segment BAKER (see Figure 4 on page 11), the current position is immediately after
the BAKER segment occurrence. If an application program then issues an unqualified GN call, IMS moves
forward in the database and returns the PASS segment occurrence.

Chapter 1. Introduction to IMS databases 11

Numbering sequence in a hierarchy: level

|Search title: IMS 15.4 - Database administration - Numbering sequence in a hierarchy: level
In a hierarchy, level is the position of a segment in the hierarchy in relation to the root segment. The root
segment is always on level one.

The following figure illustrates levels of the database record shown in “Relationship between segments”

on page 9.
Math
Level1
Coe
James Baker Room 2
Level 2
ReportB Inc
ReportA Pass
Level3

Figure 5. Levels in the database

Types of IMS databases

[Search title: IMS 15.4 - Database administration - Types of IMS databases |
IMS allows you to define many different database types. You define the database type that best suits your
application's processing requirements.

You need to know that each IMS database has its own access method, because IMS runs under control of
the z/OS operating system. The operating system does not know what a segment is because it processes
logical records, not segments. IMS access methods therefore manipulate segments in a database record.
When a logical record needs to be read, operating system access methods (or IMS) are used.

The following table lists the IMS database types you can define, the IMS access methods they use and the
operating system access methods you can use with them. Although each type of database varies slightly
in its access method, they all use database records.

Table 1. Types of IMS databases and their z/OS access methods

Type of IMS IMS or operating system access
database Full name of database type methods that can be used
DEDB 1 Data Entry Database Media Manager
GSAM Generalized Sequential Access Method QSAM/BSAM or VSAM
HDAM Hierarchical Direct Access Method VSAM or OSAM
HIDAM Hierarchical Indexed Direct Access Method VSAM or OSAM
HISAM Hierarchical Indexed Sequential Access VSAM
Method
HSAM Hierarchical Sequential Access Method BSAM or QSAM
MSDB 2 Main Storage Database N/A
PHDAM Partitioned Hierarchical Direct Access Method VSAM or OSAM

12 IMS: Database Administration

Table 1. Types of IMS databases and their z/OS access methods (continued)

Type of IMS IMS or operating system access
database Full name of database type methods that can be used
PHIDAM Partitioned Hierarchical Indexed Direct Access VSAM or OSAM

Method
PSINDEX Partitioned Secondary Index VSAM
SHSAM Simple Hierarchical Sequential Access Method BSAM or QSAM
SHISAM Simple Hierarchical Indexed Sequential VSAM

Access Method

Table notes:

1. For DBCTL, available only to BMPs
2. Not applicable to DBCTL

The databases listed in the above table are divided into two categories: Full-function database types and
Fast Path database types. DEDB and MSDB are the only two Fast Path database types. All other databases
in the above table are considered full-function database types.

Related concepts

“Database types and functions” on page 113

IMS databases come in two general classes: full-function and Fast Path. Each class includes different
types of databases and each database type can have different functions and characteristics.

“Summary of IMS database types and functions” on page 115
The following table provides a summary of characteristics, functions, and options of the different types of
IMS databases.

The database record

[Search title: IMS 15.4 - Database administration - The database record |
A database consists of a series of database records, and a database record consists of a series of
segments.

Another thing to understand is that a specific database can only contain one kind of database record.
In the school database, for example, you can place as many school records as desired. You could not,
however, create a different type of database record, such as the medical database record shown in the
following figure, and put it in the school database.

PATIENT

I l
ILLNESS BILLING HOUSHOLD

TREATMNT PAYMENT

Figure 6. An example of a medical database record

The only other thing to understand is that a specific database record, when stored in the database, does
not need to contain all the segment types you originally designed. To exist in a database, a database
record need only contain an occurrence of the root segment. In the school database, all four of the
records shown in the following figure can be stored.

Chapter 1. Introduction to IMS databases 13

Database Record 1 Database Record 2

COURSE COURSE
INSTR STUDENT PLACE PLACE
REPORT GRADE
Database Record 3 Database Record4
COURSE COURSE
I
INSTR STUDENT
| STUDENT

REPORT

Figure 7. Example of records that can be stored in the school database

However, no segment can be stored unless its parent is also stored. For example, you could not store the
records shown in the following figure.

COURSE COURSE

or

GRADE REPORT

Figure 8. Records that cannot be stored in the school database

Occurrences of any of the segment types can later be added to or deleted from the database.

The segment

[Search title: IMS 15.4 - Database administration - The segment

14 IMS: Database Administration

A database record consists of one or more segments, and the segment is the smallest piece of data IMS
can store.

Here are some additional facts you need to know about segments:

- A database record can contain a maximum of 255 segment types. The space you allocate for the
database limits the number of segment occurrences.

 You determine the length of a segment; however, a segment cannot be larger than the physical record
length of the device on which it is stored.

- The length of segments is specified by segment type. A segment type can be either variable or fixed in
length.

Segments consist of two parts (a prefix and the data), except when using a SHSAM or SHISAM database.
In SHSAM and SHISAM databases, the segment consists of only the data. In a GSAM database, segments
do not exist.

The following figure shows the format of a fixed-length segment.

Prefix | Fixed length data portion
Segment | Delete | Pointer and | Sequence | Other data fields
code byte counter area | field
[
Bytes 1 1 Varies Specified for

segment type

Figure 9. Format of fixed-length segments

The following figure shows the format of a variable-length segment.

Prefix Variable length data portion
I |1
Segment | Delete | Pointer and | Size | Sequence -
code byte counter area | field | field Other fields
I [
Bytes 1 1 Varies 2 Varies based
on a minimum and

maximum size specified
for segment type

Figure 10. Format of variable-length segments

IMS uses the prefix portion of the segment to "manage" the segment. The prefix portion of a segment
consists of: segment code, delete byte, and in some databases, a pointer and counter area. Application
programs do not "see" the prefix portion of a segment. The data portion of a segment contains your data,
arranged in one or more fields.

Related concepts

“SHSAM, SHISAM, and GSAM databases” on page 137

You typically use simple hierarchical sequential access method (SHSAM), simple hierarchical indexed
sequential access method (SHISAM), and generalized sequential access method (GSAM) databases either
when converting a non-database system to IMS or when passing data from one application program to
another.

“Main storage databases (MSDBs)” on page 206
The MSDB structure consists of fixed-length root segments only, although the root segment length can
vary between MSDBs.

“Data entry databases” on page 187

Chapter 1. Introduction to IMS databases 15

Data entry databases (DEDBs) provide efficient storage for and access to large volumes of data. DEDBs
also provide a high level of availability of that data.

Segment code

[Search title: IMS 15.4 - Database administration - Segment code |
IMS needs a way to identify each segment type stored in a database. It uses the segment code field for
this purpose.

When loading a segment type, IMS assigns it a unique identifier (an integer from 1 to 255). IMS assigns
numbers in ascending sequence, starting with the root segment type (humber 1) and continuing through
all dependent segment types in hierarchical sequence.

Delete byte

[Search title: IMS 15.4 - Database administration - Delete byte |
When an application program deletes a segment from a database, the space it occupies might or might
not be immediately available to reuse.

Deletion of a segment is described in the discussions of the individual database types. For now, know that
IMS uses this prefix byte to track the status of a deleted segment.

Related reference

“Bits in the delete byte” on page 305
The meaning of the delete byte is determined by which bits within the byte are turned on.

Pointer and counter area

[Search title: IMS 15.4 - Database administration - Pointer and counter area
The pointer and counter area exists in HDAM, PHDAM, HIDAM, and PHIDAM databases, and, in some
special circumstances, HISAM databases.

The pointer and counter area can contain two types of information:

« Pointer information consists of one or more addresses of segments to which a segment points.
« Counter information is used when logical relationships, an optional function of IMS, are defined.

The length of the pointer and counter area depends on how many addresses a segment contains and
whether logical relationships are used. These topics are covered in more detail later in this book.

The data portion

[Search title: IMS 15.4 - Database administration - The data portion |
The data portion of a segment contains one or more data elements. The data is processed and unlike the
prefix portion of the segment, seen by an application program.

The application program accesses segments in a database using the name of the segment type. If an
application program needs to reference part of a segment, a field name can be defined to IMS for that part
of the segment. Field names are used in segment search arguments (SSAs) to qualify calls. An application
program can see data even if you do not define it as a field. But an application program cannot qualify an
SSA on the data unless it is defined as a field.

The maximum number of fields that you can define for a segment type is 255. The maximum number of
fields that can be defined for a database is 1000. Note that 1000 refers to types of fields in a database,
not occurrences. The number of occurrences of fields in a database is limited only by the amount of
storage you have defined for your database.

The three data portion field types

|Search title: IMS 15.4 - Database administration - The three data portion field types

16 IMS: Database Administration

You can define three field types in the data portion of a segment: a sequence field, data fields, and for
variable-length segments, a size field stating the length of the segment.

The first two field types contain your data, and an application program can use both to qualify its calls.
However, the sequence field has some other uses besides that of containing your data.

You can use a sequence field, often referred to as a key, to keep occurrences of a segment type in key
sequence under a given parent. For example, in the database record shown in the following figure, there
are three segment occurrences of the STUDENT segment, and the STUDENT segment has three data
elements.

COURSE
STUDENT
STUDENT
STUDENT

Data Fields inthe
STUDENT segment

NAME‘ ADDRESS ‘ 1D

Figure 11. Three segment occurrences and three data elements of the STUDENT segment

Suppose you need the STUDENT segment, when stored in the database, to be in alphabetic order by
student name. If you define a field on the NAME data as a unique sequence field, IMS stores STUDENT
segment occurrences in alphabetical sequence. The following figure shows three occurrences of the
STUDENT segment in alphabetical sequence.

Math

James
Coe

Baker

Figure 12. Example of STUDENT segments stored in alphabetic order

When you define a sequence field in a root segment of a HISAM, HDAM, PHDAM, HIDAM, or PHIDAM
database, an application program can use it to access a specific root segment, and thus a specific
database record. By using a sequence field, an application program does not need to search the database
sequentially to find a specific database record, but can retrieve records sequentially (for HISAM, HIDAM,
and PHIDAM databases).

Chapter 1. Introduction to IMS databases 17

You can also use a sequence field in other ways when using the IMS optional functions of logical
relationships or secondary indexing. These other uses are discussed in detail later in this book.

The important things to know now about sequence fields are that:

« You do not always need to define a sequence field. This book describes cases where a sequence field is
necessary.

« The sequence field value can be defined as unique or non-unique.
- The data or value in the sequence field is called the "key" of the segment.

Overview of optional database functions

[Search title: IMS 15.4 - Database administration - Overview of optional database functions

IMS has several optional functions you can use for your database.
The functions include:

Logical relationships
Logical relationships is a function you can use to let an application program access a logical database
record. A logical database record can consist of segments from one or more physical database
records. Physical database records can be stored in one or more databases. Thus, a logical database
record lets an application program view a database structure that is different from the physical
database structure.

For example, if a logical data structure contains segments from two different physical databases, a
segment can be accessed from two different paths:

« A segment can be physically stored in the path where it is most frequently used and where the most
urgent response time is required.

« A pointer containing the location of the segment can be physically stored in the alternate path
needed by another application program.

Secondary indexing
Secondary indexing is a function you can use to access segments in a database in a sequence other
than the one defined in the sequence field.

Variable-length segments
Variable-length segments is a function you can use to make the data portion of a segment type
variable in length. Use variable-length segments when the size of the data portion of a segment type
varies greatly from one segment occurrence to the next. With variable-length segments, you define
the minimum and maximum length of a segment type. Defining both minimum and maximum length
saves space in the database whenever a segment is shorter than the maximum length.

Field-level sensitivity
Field-level sensitivity is a function you can use to:

- Deny an application program access to selected fields in a segment for security purposes.

« Allow an application program to use a subset of the fields that make up a segment (and not process
fields it does not use) or use fields in a segment in a different order. Use field-level sensitivity in this
way to accommodate the differing needs of your application programs.

Segment edit/compression
Segment edit/compression is a function you can use with segments to:

« Encode or "scramble" segment data when it is on the device so only application programs with
access to the segment receive the data in decoded form.

- Edit data so application programs can receive data in a format other than the one in which it is
stored.

« Compress data when writing a segment to the device, so the Direct Access Storage Device (DASD) is
better used.

18 IMS: Database Administration

A Data Capture exit routine
A Data Capture exit routine is used to capture segment data when an application program updates IMS
databases with an insert, replace, or delete call. This is a synchronous activity that happens within
the unit of work or application update. Captured data is used for data propagation to Db2 for z/OS
databases. You can also use Data Capture exit routines to perform tasks other than data propagation.

Asynchronous Data Capture
Asynchronous Data Capture is a function you use to capture segment data when an application
program updates IMS databases with an insert, replace, or delete call. This is an asynchronous
activity that happens outside of the unit of work or application update. Captured data is used for data
propagation to Db2 for z/OS databases asynchronously. You can also use Asynchronous Data Capture
to perform tasks other than data propagation.

IMS DataPropagator allows you to propagate the changed data to or from IMS and Db2 for z/OS both
synchronously and asynchronously.

Related reading: For more information on IMS DataPropagator see IMS DataPropagator for z/OS: An
Introduction.

Multiple data set groups
Multiple data set groups is a function you can use to put some segments in a database record in data
sets other than the primary data set. This can be done without destroying the hierarchical sequence of
segments in a database record.

One reason to use multiple data set groups is to accommodate the differing needs of your
applications. By using multiple data set groups, you can give an application program fast access to the
segments in which it is interested. The application program simply bypasses the data sets containing
unnecessary segments. Another reason for using multiple data set groups is to improve performance
by, for example, separating high-use segments from low-use segments. You might also use multiple
data set groups to save space by putting segment types whose size varies greatly from the average in
a separate data set group.

Related concepts

“Optional database functions” on page 357

In addition to logical relationships and secondary indexes, which are described in separate topics, IMS
databases support a variety of optional functions that you can choose to implement depending on the
database type you are using and the needs of your installation.

How databases are defined to IMS

[Search title: IMS 15.4 - Database administration - How databases are defined to IMS

If your IMS system manages runtime application control blocks by using the catalog, you can define
databases to IMS by issuing industry standard SQL statements. However, if your IMS system uses ACB
libraries, you must code a macro that generates a DBD.

A DBD (database descriptor) is a series of macro instructions that describes the organization and access
methods for a database, the segments and fields in a database record, and the relationship between
types of segments. The use of macros to generate DBDs is required only for IMS systems that use ACB
libraries.

If you enable the IMS system to manage application control blocks by using the catalog, you do not need
to code and generate a DBD. Instead, you can use the IMS Enterprise Suite Explorer for Development to
model the attributes of your database and issue DDL statements to update the IMS catalog. IMS uses the
catalog data to manage the database descriptions internally.

Certain databases, such as IMS partitioned hierarchic direct databases, known collectively as High
Availability Large Databases (HALDB), require you to define additional database characteristics in the
RECON data set.

If you have the IBM DB/DC (database/data communication) Data Dictionary, you can use it to define your
database (except for DEDBs and MSDBs). The DB/DC Data Dictionary may contain all the information you
need to produce a DBD.

Chapter 1. Introduction to IMS databases 19

How application programs view the database

|Search title: IMS 15.4 - Database administration - How application programs view the database

You control how an application program views your database.

An application program might not need use of all the segments or fields in a database record. And an
application program may not need access to specific segments for security or integrity purposes. An
application program may not need to perform certain types of operations on some segments or fields. For
example, an application program needs read access to a SALARY segment but not update access.

You control which segments and fields an application can view and which operations it can perform on

a segment by defining a program view. You can define program views in one of two ways. If support for
SQL DDL and the IMS management of ACBs is enabled in your IMS system, you can define program views
by using DDL statements. You can also define program views by coding and generating a PSB (program
specification block) with the PSB Generation utility.

A PSB is a series of macro instructions that describe an application program's access to segments in the

database. A PSB consists of one or more program communication blocks (PCB), and each PCB describes

the application program's ability to read and use the database. For example, an application program can

have different views and uses of the same database. An application program can access several different
databases and can have several PCBs in its PSB.

A program view that is defined by using DDL is functionally the same as a program view that is defined
by using PSB macro instructions. When defining a new program view with DDL, it might be helpful to
understand that the PSBGEN macro instruction that is used to define a PSB is generally equivalent to
the CREATE PROGRAMVIEW DDL statement. Similarly, the PSB macro instructions that define PCBs are
generally equivalent to the CREATE SCHEMA DDL statement.

If you have the IBM DB/DC Data Dictionary, you can use it to define an application program's access to the
database. It can contain all the information needed to produce a program view.

20 IMS: Database Administration

Chapter 2. Standards, procedures, and naming
conventions for IMS databases

Search title: IMS 15.4 - Database administration - Standards, procedures, and naming conventions for IMS
databases

Well planned standards and procedures and a good understanding of IMS conventions provide guidance
to administrators, operators, and programmers improve the reliability and efficiency of your installation.

Standards and procedures for database systems

|Search title: IMS 15.4 - Database administration - Standards and procedures for database systems

You must develop standards and procedures for your database system.

Adequate standards and procedures improve:

You must set up and test procedures and standards for database design, application development,

The quality of application systems, because setting up and following standards and procedures gives
you greater control over your entire application development process

The productivity in application and database design, because guidelines for design decisions exist
The productivity of application coding, because coding standards and procedures exist

The communication between you and application developers, because you each have clearly defined
responsibilities

The reliability and recoverability in operations, because you have clear and well-understood operating
procedures

application programs' use of the database, application design, and for batch operation. These standards

are guidelines that change when installation requirements change.

You can establish standard practices for the following aspects of database design:

 Database structure and segmentation

Number of segments within a database
Placement of segments

Size of segments

Use of variable-length segments

When to use segment edit/compression
When to use secondary data set groups
Number of databases within an application
When and how to use field-level sensitivity
Database size

« Access methods

When to use HISAM

Choice of record size for HISAM

HISAM organization using VSAM

When to use GSAM

Use of physical child/physical twin pointers

Use of twin backward pointers

Use of child last pointers

HIDAM or PHIDAM index organization using VSAM
HIDAM or PHIDAM pointer options at the root level
Sequencing twin chains

© Copyright IBM Corp. 1974, 2022

21

Use of HD free space

When to use HDAM or PHDAM

Processing an HDAM or a PHDAM database sequentially
Use of the "byte limit count" for HDAM or PHDAM

Use of twin backward pointer for HDAM or PHDAM roots
Use of free space with HDAM or PHDAM

When to use DEDBs

Processing DEDBs sequentially

Use of DEDB parameters

Use of subset pointers

Use of multiple area data sets

Secondary indexing

For sequential processing

On volatile segments

In HISAM databases

Use of unique secondary indexes

Use of sparse indexing

Processing of the secondary index as a separate database

Logical relationships

Use of direct pointers versus symbolic pointers
Avoidance of long logical twin chains
Sequencing of the logical twin chain
Placement of the real logical child segment

You can also establish standards for the ways in which application programs use the database, for
example:

Requiring update and read functions to be in separate programs
How many transaction types to allow per application program

When applications are to issue a deliberate abnormal termination and the range of abend codes that is
permitted to applications

Whether application programs are permitted to issue messages to the master terminal

The method of referencing data in the IOAREA, and referencing IMS variables (such as PCBs and SSAs)
Use of predefined structures, such as PCB masks, SSAs, or database segment formats, by applications
Use of GU calls to the message queue

Re-usability of MPP and BMP programs

Use of qualified calls and SSAs

Use of path calls

Use of the CHANGE call

Use of the system calls: PURG, LOG, STAT, SNAP, GCMD, and CMD

Establish procedures to govern the following aspects of application design:

The interaction between you and the application designer
Use of the dictionary or COPY or STRUCTURE libraries for data elements and structures
The requirement of design reviews and inspections

For operations, consider developing:

Procedures to limit access to computer facilities
A control point, to ensure that:

22 IMS: Database Administration

— Jobs contain complete and proper submittal documentation

— Jobs are executed successfully on schedule

— Correct input and output volumes are used, and output is properly distributed
— Test programs are executed only in accordance with a defined test plan

— Anincident report is maintained to ensure that all problems are recorded and reported to the
responsible parties

« Normal operating procedures, including operations schedules, procedures for cold start, warm start,
and shutdown, and scheduling and execution of batch programs.

« Procedures for emergency situations. During an emergency, the environment is one of stress.
Documented procedures provide step-by-step guidance to resolve such situations. Include procedures
for emergency restart, database backout, database recovery, log recovery, and batch program restart.

« A master terminal operator's guide for the installation. This guide should be supplemented by IMS
Version 15.4 Operations and Automation.

- A master operations log. This log could contain a record of system availability, time and type of failure,
cause of the failure, recovery steps taken, and type of system termination if normal.

- A system maintenance log. This log could contain a record of all release and modification levels, release
dependencies, program temporary fixes (PTFs) applied, the status of APARs and date submitted, and
bypass solutions.

General naming conventions for IMS databases

[Search title: IMS 15.4 - Database administration - General naming conventions for IMS databases |
Naming conventions help users identify and manage the many resources in an IMS system. Some naming
conventions are defined by IMS, while many others can be defined by you.

General rules for establishing naming conventions

[Search title: IMS 15.4 - Database administration - General rules for establishing naming conventions |
Good naming conventions are mandatory in a data processing project, especially in an environment with
multiple applications.

A good naming convention includes the following general rules:

« Each name must be unique. If names are not unique, unpredictable errors can occur.

- Each name must be meaningful and identify to all personnel the type of resource that the named
element is.

The following table provides an example of basic naming conventions. These conventions are only an
example, and you can establish your own naming conventions.

Table 2. Example of basic naming conventions

Resource type Convention

SYSTEM S as first letter
JOB J as first letter
PROGRAM

P as first letter if this is an IMS program (to match PSB)
G as first letter otherwise

MODULE M as first letter

COPY C as first letter for a member that contains the segment structure A as first letter for
a member that contains all the SSAs for the segment Other members must be the
same as the segment name

Chapter 2. Standards, procedures, and naming conventions for IMS databases 23

Table 2. Example of basic naming conventions (continued)

Resource type Convention

TRANSACTION T as first letter

PSB P as first letter

PCB Same name as PSB Note: The PCB occurrence number indicates the position of the
PCB in the PSB

DATABASE D as first letter with the subsequent characters identifying the type of database and
its relationship to other databases. For example, Dtaaann, in which the characters
taaann indicate the following;:

Character Meaning

t Database type. The database can be one of the following types:
P
Physical
L
Logical
X
Primary index
Y
Secondary index
aaa A unique database identifier common to all logical and index
databases based on the same physical database
nn A unique identifier, if there are multiple logical or secondary index
databases
SEGMENT S, R, or O as first letter with the subsequent characters identifying the type of

segment and its relationship to its database. An R identifies 'segments' that are
non-DL/I file record definitions. An O identifies any other data areas, for example,
terminal I/O areas, control blocks, report lines, and so on. For example, Saaabbbb,
in which the characters aaabbbb indicate the following:

Character Meaning

aaa A unique database identifier; same as the physical database in which
the segment occurs

Note: Concatenated segments should have an aaa value
corresponding to the aaa of the logical child segment.

bbbb An identifier for the user name

ELEMENT E as first letter

Naming conventions for HALDB partitions, ddnames, and data sets

Search title: IMS 15.4 - Database administration - Naming conventions for HALDB partitions, ddnames, and
data sets

HALDB naming conventions for partitions, ddnames, and data set names simplify the management of
numerous partitions and data sets in HALDB PHDAM, PHIDAM, and PSINDEX databases.
Related concepts

“Data set naming conventions for HALDB Online Reorganization” on page 639

24 IMS: Database Administration

The data sets for HALDB partitions use a specified naming convention. HALDB Online Reorganization
extends this naming convention to include a second set of data sets.

Related tasks

“Allocating logically related database data sets” on page 836
Allocate the database data sets, including the indirect list data set for each partition and the primary
index for PHIDAM databases.

“Allocating the indexed database data sets” on page 828
Allocate the database data sets for each partition in the indexed database.

“Allocating database data sets” on page 816
You need to allocate the database data sets that are used by the databases.

Naming convention for HALDB partitions

|Search title: IMS 15.4 - Database administration - Naming convention for HALDB partitions
You assign names to each partition. Partition names are 1-7 bytes in length.

These names must be unique among the database names, partition names, and Fast Path area names
that are registered in the RECON data set. You can use partition names to describe the data in the
partition, but choose such names carefully. If you add or delete partitions or modify their boundaries, data
might move from one partition to another. This movement can make the assignment of meaningful names
difficult. You cannot change the name of an existing partition without deleting it and redefining it as a new
partition.

Naming convention for HALDB data definition names (ddnames)

Search title: IMS 15.4 - Database administration - Naming convention for HALDB data definition names
(ddnames)
IMS defines HALDB data definition names (ddnames) by appending a 1-byte suffix to the partition name.
The suffix indicates the type of data set and, if you use multiple data set groups, differentiates the data
sets within the group.

The following table shows the HALDB data set types and the corresponding ddname suffixes.

Table 3. Suffixes for HALDB ddnames by data set type

Data set type Ddname suffix Additional suffixes if HALDB Online
Reorganization is used

Database data set A-J M-V
Primary index (PHIDAM only) X Y
Indirect list data set (PHDAM and L L (the suffix for the ILDS does not change)

PHIDAM only)

If you use multiple data set groups, the A through J suffixes are the values that you would specify on the
DSGROUP parameter in either a SEGM statement or, if support for DDL is enabled, a CREATE or ALTER
TABLE DDL statement. The letter A identifies the first database data set (DBDS), the letter B identifies the
second, and so forth, up to the letter J. If you do not use multiple data set groups, you do not specify the
DSGROUP parameter and the ddname for the single data set that contains the record segments has the
suffix A.

The suffixes M=V and Y are created automatically for the integrated HALDB Online Reorganization
function of IMS. You do not need to specify them in the DBD. If you have never used the HALDB Online
Reorganization function to reorganize a given partition, the suffixes M-V and Y are not used in that
partition.

In PSINDEX databases, each partition contains only one data set. The suffix A is used for the ddname that
corresponds to that data set.

Chapter 2. Standards, procedures, and naming conventions for IMS databases 25

For example, a PHIDAM database partition named PART1 would have ddnames of PART1A for its first
DBDS, PART1B for the second DBDS, up to PART13J for the tenth DBDS. The indirect list data set (ILDS)
and the primary index of partition PART1 would have ddnames of PART1L and PART1X, respectively. And
a PSINDEX database partition named PARSI would have a ddname of PARSIA for its data set.

When reorganizing a partition, the integrated HALDB Online Reorganization function of IMS uses an
additional data set for each data set that is active prior to starting the online reorganization process. For
example, a ddname of PART1M is created to correspond to the active data set PART1A. A PART1IN is
created for PART1B, and so on, up to PART1V for PART1J, if it exists.

The ddnames must be unique among the database names, partition names, and Fast Path area names
that are registered in the RECON data set.

Naming convention for HALDB data set names

[Search title: IMS 15.4 - Database administration - Naming convention for HALDB data set names

You define a part of HALDB data set names and IMS creates the rest.

When you define a partition, you define a data set name prefix of up to 37 characters for the partition. A
data set name prefix cannot be a duplicate of a data set name prefix in any other HALDB database, but it
can be duplicated within a single HALDB database. Because partition IDs are unique, the suffix that IMS
appends to each data set name prefix makes the data set names unique for the different partitions within
a HALDB database. There is no required correlation between the partition name and the names of its data
sets.

To create the lowest-level qualifier, IMS appends a 6-character suffix to the prefix to form the data set
name. The first character of the IMS-supplied suffix is an alphabetic character: either A-J, L, and X, or
M-V, L, and Y. The 6-character suffix is separated from the preceding data set name qualifiers by a period.

The first character of the data set name suffix matches the character that is used as the suffix in the
ddname. The remaining five digits of the suffix represent the partition ID number, which is assigned by
DBRC and you cannot change. For example:

« A suffix of AO0O0OO1 indicates the first or only DBDS in a partition with partition ID 1

« A suffix of J00004 indicates the tenth DBDS in a partition with partition ID 4

« A suffix of LOO007 indicates the ILDS in a partition with partition ID 7

« A suffix of X00011 indicates the primary index in a PHIDAM partition with partition ID 11

26 IMS: Database Administration

Chapter 3. Review process for database development

[Search title: IMS 15.4 - Database administration - Review process for database development |
One of the best ways to make sure a good database design is developed and effectively implemented is to
review the design at various stages in its development.

The types of reviews are that are typically conducted during development of a database system are
described in the following topics.

Design reviews 1, 2, 3, and 4
Code inspections 1 and 2
Security inspection
Post-implementation review

The designh review

[Search title: IMS 15.4 - Database administration - The design review |
Design reviews ensure that the functions being developed are adequate, the performance is acceptable,
the installation standards met, and the project is understood and under control.

Hold reviews during development of the initial database system and, afterward, whenever a program or
set of programs is being developed to run against it.

Role of the database administrator in design reviews

[Search title: IMS 15.4 - Database administration - Role of the database administrator in design reviews |
The role of a database administrator in the review process is to ensure that a good database design is
developed and then effectively implemented. The role is ongoing and provides a supporting framework for
the other database administration tasks.

The role of database administration in the review process is an important one. Typically, a member of

the database administration staff, someone not associated with the specific system being developed,
moderates the reviews. The moderator does more than just conduct the meeting. The moderator also
looks to see what impact development of this system has on existing or future systems. You, the database
administrator responsible for developing the system, need to participate in all reviews.

General information about reviews

[Search title: IMS 15.4 - Database administration - General information about reviews |
During system development, development groups typically hold a series of reviews that are common to
most development projects.

For purposes of simplicity, "system" describes the object under review. In actuality, the "system" could
be a program, set of programs, or an entire database system. The number of reviews, who attends them,
and their specific role in the review will differ slightly from one installation to the next. What you need

to understand is the importance of the reviews and the tasks performed at them. Here is some general
information about reviews:

« People attending all reviews (in addition to database administrators) include a review team and the
system designer. The review team generally has no responsibility for developing the system. The review
team consists of a small group of people whose purpose is to ensure continuity and objectivity from one
review to the next. The system designer writes the initial functional specifications.

« At the end of each review, make a list of issues raised during the review. These issues are generally
change requirements. Assign each issue to a specific person for resolution, and set a target date for
resolution. If certain issues require major changes to the system, schedule other reviews until you
resolve all major issues.

© Copyright IBM Corp. 1974, 2022 27

« If you have a data dictionary, update it at the end of each review to reflect any decisions that you made.
The dictionary is an important aid in keeping information current and available especially during the first
four reviews when you make design decisions.

Design review 1

[Search title: IMS 15.4 - Database administration - Design review 1

The purpose of design review 1 is to ensure that all user requirements have been identified and that
design assumptions are consistent with objectives.

The first design review takes place after initial functional specifications for the system are complete. No
detailed design for the system is or should be available at this point. The review of the specifications
will determine whether the project is ready to proceed to a more detailed design. When design review 1
concludes successfully, its output is an approved set of initial functional specifications.

People who attend design review 1, in addition to the regular attendees, include someone from the
organization that developed the requirement and anyone participating in the development of detailed
design. You are at the review primarily for information. You also look at:

The relationship between data elements
Whether any of the needed data already exists

Designh review 2

[Search title: IMS 15.4 - Database administration - Design review 2
Your role in design review 2 is primarily to gather information.

The second design review takes place after final functional specifications for the system are complete.
This means the overall logic for each program in the system is defined, as well as the interface and
interactions between programs. Audit and security requirements are defined at this point, along with
most data requirements. When design review 2 is successfully concluded, its output is an approved set of
final functional specifications.

Everyone who attended design review 1 should attend design review 2. People from test and maintenance
groups attend as observers to begin getting information for test case design and maintenance. Those
concerned with auditing and security can also attend.

Your role in this review is still primarily to gather information. You also look at:

« Whether the specifications meet user requirements

Whether the relationship between data items is correct

« Whether any of the required data already exists

« Whether audit and security requirements are consistent with user requirements
« Whether audit and security requirements can be implemented

Design review 3

[Search title: IMS 15.4 - Database administration - Design review 3
Your role in design review 3 is to ensure that the flow of transactions is consistent with the database
design you are creating.

The third design review takes place after initial logic specifications for the system are complete. At this
point, high level pseudo code or flowcharts are complete. These can only be considered complete when
major decision points in the logic are defined, calls or references to external data and modules are
defined, and the general logic flow is known. All modules and external interfaces are defined at this
point, definition of data requirements is complete, and database and data files are designed. Initial test
and recovery plans are available; however, no code has been written. When design review 3 concludes
successfully, its output is an approved set of initial logic specifications.

28 IMS: Database Administration

Everyone who attended design review 2 should attend design review 3. If the project is large, those
developing detailed design need only be present during the review of their portion of the project.

Itis possible now that logic specifications are available.

At this point in the design review process, you are designing hierarchies and starting to design the
database.

Related concepts

“Analyzing data requirements” on page 391
One of the early steps of database design is developing a conceptual data structure that satisfies your end
user's processing requirements.

“Full-function database types” on page 117
IMS full-function databases are hierarchical databases that are accessed through DL/I calls. IMS makes it
possible for application programs to retrieve, replace, delete, and add segments to IMS databases.

“Optional database functions” on page 357

In addition to logical relationships and secondary indexes, which are described in separate topics, IMS
databases support a variety of optional functions that you can choose to implement depending on the
database type you are using and the needs of your installation.

“Designing full-function databases” on page 401

After you determine the type of database and optional functions that best suit your application's
processing requirements, you need to make a series of decisions about database design and use of
options.

Design review 4

[Search title: IMS 15.4 - Database administration - Design review 4
The primary objective of design review 4 is to make sure that system performance will be acceptable.

The fourth design review takes place after design review 3 is completed and all interested parties are
satisfied that system design is essentially complete. No special document is examined at this review,
although final functional specifications and either initial or final logic specifications are available.

At this point in the development process, sufficient flexibility exists to make necessary adjustments to the
design, since no code exists but detailed design is complete. Although some design changes undoubtedly
occur once coding is begun, these changes should not impact the entire system. Although no code exists
at this point, you can and should run tests to check that the database you have designed will produce the
results you expect.

When design review 4 concludes successfully, database design is considered complete.

The people who attend all design reviews (moderator, review team, database administrator, and system
designer) should attend design review 4. Others attend only as specific detail is required.

At this point in the review process, you are almost finished with the database administration tasks along
with designing and testing your database.

Related concepts

“Analyzing data requirements” on page 391
One of the early steps of database design is developing a conceptual data structure that satisfies your end
user's processing requirements.

“Full-function database types” on page 117
IMS full-function databases are hierarchical databases that are accessed through DL/I calls. IMS makes it
possible for application programs to retrieve, replace, delete, and add segments to IMS databases.

“Developing test databases” on page 519

Chapter 3. Review process for database development 29

Before the application programs accessing your database are transferred to production status, they must
be tested. To avoid damaging a production database, you need a test database.

Code inspection 1

[Search title: IMS 15.4 - Database administration - Code inspection 1 |
The objective of code inspection 1 is to ensure that the correctly developed logic interprets the functional
specification. Code inspection 1 also provides an opportunity to review the logic flow for any performance
implications or problems.

The first code inspection takes place after final logic specifications for the system are complete.

At this point, no code is written but the final functional specifications have been interpreted. Both pseudo
code and flowcharts have a statement or logic box for every 5 to 25 lines of assembler language code, 5 to
15 lines of COBOL code, or 5 to 15 lines of PL/I code that needs writing. In addition, module prologues are
written, and entry and exit logic along with all data areas are defined.

When code inspection 1 successfully concludes, its output is an approved set of final logic specifications.

Who attends code inspection 1

[Search title: IMS 15.4 - Database administration - Who attends code inspection 1 |
Code inspection 1 is attended primarily by those doing the coding. People who attend all design reviews
(moderator, review team, database administrator, and system designer) also attend the code inspection 1.
Testing people present the test cases that will be used to validate the code, while maintenance people are
there to learn and evaluate maintainability of the database.

Your role in this review is now a less active one than it has been. You are there to ensure that everyone
adheres to the use of data and access sequences defined in the previous reviews.

At this point in the review process, you are starting to implement database design, to develop test
databases, and to load databases.

Related concepts
“Implementing database design” on page 457

After you design your databases and application programs you must describe their characteristics to IMS
before you can use them.

“Developing test databases” on page 519
Before the application programs accessing your database are transferred to production status, they must
be tested. To avoid damaging a production database, you need a test database.

“Loading databases” on page 527

After you implement your database design, you are ready to write and load your database. However,
before writing a load program, you must estimate the minimum size of the database and allocate data
sets.

Code inspection 2

[Search title: IMS 15.4 - Database administration - Code inspection 2 |
The objective of the second code inspection is to make sure module logic matches pseudo code or
flowcharts. Interface and register conventions along with the general quality of the code are checked.
Documentation and maintainability of the code are evaluated.

The code inspection 2 takes place after coding is complete and before testing by the test organization
begins.

Everyone who attended code inspection 1 should attend code inspection 2.
Your role in this review is the same as your role in code inspection 1.

At this point in the review process, you are almost finished with the database administration tasks of
developing a test database, implementing the database design, and loading the database.

30 IMS: Database Administration

During your testing of the database, you should run the DB monitor to make sure your database still meets
the performance expectations you have established.

Related concepts

“Monitoring databases” on page 601
You can use a number of IMS tools to monitor the performance of your databases.

Security inspections

[Search title: IMS 15.4 - Database administration - Security inspections |
The purpose of a security inspection review is to look for any code that violates the security of system
interfaces, secured databases, tables, or other high-risk items.

The security inspection is optional but highly recommended if security is a significant concern. Security
inspections can take place at any appropriate point in the system development process. Define security
strategy early, and check its implementation during design reviews. This particular security inspection
takes place after all unit and integration testing is complete.

People who attend the security inspection review include the moderator, system designer, designated
security officer, and database administrator. Because the database administrator is responsible for
implementing and monitoring the security of the database, you might, in fact, be the designated security
officer. If security is a significant concern, you might prefer that the review team not attend this
inspection.

During this and other security inspection, you are involved in the database administration task of
establishing security.
Related concepts

“Database security” on page 33
Database security has two aspects: user verification and user authority.

Post-implementation reviews

[Search title: IMS 15.4 - Database administration - Post-implementation reviews |
A post-implementation review is typically held about six months after the database system is running. Its
objective is to make sure the system is meeting user requirements.

Recommendation: Conduct a post-implementation review.

Everyone who has been involved in design and implementation of the database system should attend the
post-implementation review. If the system is not meeting user requirements, the output of this review
should be a plan to correct design or performance problems to meet user requirements.

Chapter 3. Review process for database development 31

32 IMS: Database Administration

Chapter 4. Database security

[Search title: IMS 15.4 - Database administration - Database security |
Database security has two aspects: user verification and user authority.

User verification refers to how you establish that the person using an online database is in fact the person
you have authorized.

User authority refers to how you control what users can see and what the users can do with what they see
after you verify the user's identity.

These topics deal primarily with how you can control a user's view of data and the user's actions with
respect to the data.

Related reading: If you use CICS, see CICS Transaction Server for z/0S RACF Security Guide for
information on establishing security.

Related concepts

“Security inspections” on page 31
The purpose of a security inspection review is to look for any code that violates the security of system
interfaces, secured databases, tables, or other high-risk items.

Restricting the scope of data access

[Search title: IMS 15.4 - Database administration - Restricting the scope of data access |

You can restrict a user's access to (and even knowledge of) elements of a database by limiting the view of
a database that you define for an application program.

About this task

A schema or a PCB defines a program's (and therefore the user's) view of the database. You can think of a
schema as a "mask" that can be placed on top of the defined data structure of a database to hide certain
parts of the data structure.

In “Restricting processing authority” on page 33, the top of the first figure shows the hierarchical
structure for a PAYROLL database as seen by you in the definition of the database. For certain
applications, it is not necessary (nor desirable) to access the SALARY segment. By omitting sensitivity to
the SALARY segment from the DDL SCHEMA statement or PCB macro statement that defines the view of
the database for the application, you can make it seem that this segment simply does not exist. By doing
this, you have denied unauthorized users access to the segment, and you have denied users knowledge of
its very existence.

For this method to be successful, the segment being masked off must not be in the search path of an
accessed segment. If it is, then the application is made aware of at least the key of the segment to be
"hidden."

With field-level sensitivity, you can achieve the same masking effect at the field level. If SALARY and
NAME were in the same segment, you could still restrict access to the SALARY field without denying
access to other fields in the segment.

Restricting processing authority

[Search title: IMS 15.4 - Database administration - Restricting processing authority |
After you have controlled the scope of data a user has access to, you can also control authority within that
scope.

Controlling authority allows you to decide what processing actions against the data a given user is
permitted. For example, you could give some application programs authority only to read segments in a
database, while you give others authority to update or delete segments.

© Copyright IBM Corp. 1974, 2022 33

Control processing authority with the PROCOPT parameter

You can control the processing actions of a user through the PROCOPT parameter when you define a
program view (PSB). The PROCOPT parameter tells IMS what actions you permit against the database. A
program can do what is declared in the PROCOPT.

If your IMS system is enabled to support DDL, the PROCOPT parameter can be specified on the CREATE
PROGRAMVIEW statement. If you are defining a program view by using macro instructions for the PSB
Generation utility, you can specify the PROCOPT parameter on SENSEG and PCB statements.

Limit program sensitivity to only required segments

In addition to restricting access and authority, you can limit the segments to which an application
program is sensitive. The number of sensitive segments and the processing option specified can have
an impact on data availability. To achieve maximum data availability, the PSB should be sensitive only to
the segments required and the processing option should be as restrictive as possible.

For example, the database definition in the following macro instructions for the DBD Generation utility
describes a payroll database that stores the name, address, position, and salary of employees. The
hierarchical structure of the database record is shown in figure following the code.

Figure 13. Example database definition for a payroll database

DBD NAME=PAYROLL, . ..

DATASET ...
SEGM NAME=NAME, PARENT=0. . .
FIELD NAME=
SEGM NAME=ADDRESS, PARENT=NAME, . . .
FIELD NAME=
SEGM NAME=POSITION,PARENT=NAME, ...
FIELD NAME=
SEGM NAME=SALARY, PARENT=NAME, . ..
FIELD NAME=

NAME
ADDRESS POSITION SALARY

Figure 14. Payroll database record without a mask

If an application needs access to the name, address, and position of employees, but not the salary, you
can use the SENSEG statement in the DB PCB macro instructions for the PSB Generation utility to make
the application sensitive to only the name, address, and position segments. The SENSEG statements on
the DB PCB creates a mask over the database record hiding segments from application. The following
code shows the DB PCB that masks the SALARY segment of the payroll database from the application.

Figure 15. Example PCB for a payroll database

PCB TYPE=DB.DBDNAME=PAYROLL, ...
SENSEG NAME=NAME,PARENT=0, ...

SENSEG NAME=ADDRESS, PARENT=NAME, ...
SENSEG NAME=POSITION,PARENT=NAME, ...

If you are using DDL, you can achieve the same result as the preceding macro instruction statements by
using the CREATE SCHEMA statement:

34 IMS: Database Administration

CREATE SCHEMA pcb@1 USING payroll AS pch01 (
CREATE SENSEGVIEW name,
CREATE SENSEGVIEW address,
CREATE SENSEGVIEW position,

.
Figure 16. Example DDL program view schema for a payroll database

The following figure shows what the payroll database record looks like to the application based on the
preceding program view definitions. It looks just like the database record in the preceding figure except
that the SALARY segment is hidden.

MAME

ADDRESS FOSITION

Figure 17. Payroll database record with SALARY segment masked

Restricting access by non-IMS programs

|Search title: IMS 15.4 - Database administration - Restricting access by non-IMS programs
One potential security exposure is from people attempting to access IMS data sets with non-IMS
programs. Two methods of protecting against this exposure are data set password protection and
database encryption.

About this task

Protecting data with VSAM passwords

[Search title: IMS 15.4 - Database administration - Protecting data with VSAM passwords |
You can take advantage of VSAM password protection to prevent non-IMS programs from reading VSAM
data sets on which you have your IMS databases.

About this task

To protect data with VSAM passwords, enable password protection for your VSAM data sets by coding
either PASSWD=YES on the DBD statement or, if support for DDL is enabled, PASSWDYES in the CREATE
or ALTER DATABASE DDL statement. IMS then passes the DBD name as the password. If you do not
enable password protection for your VSAM data sets, the console operator is prompted to provide a
password to VSAM each time the data set is opened.

This method is only useful in the batch environment, and VSAM password checking is bypassed entirely in
the online system. (If you have RACF® installed, you can use it to protect VSAM data sets.)

Related reference

DBD statements (System Utilities)

CREATE DATABASE (Application Programming APIs)
ALTER DATABASE (Application Programming APIs)

Chapter 4. Database security 35

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_dbdstmt.htm#ims_dbdstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apr/ims_sql_create_database.htm#ims_sql_create_database
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apr/ims_sql_alter_database.htm#ims_sql_alter_database

Encrypting your database

|Search title: IMS 15.4 - Database administration - Encrypting your database

You can encrypt DL/I databases to help prevent non-IMS programs from reading.

About this task

You can encrypt DL/I segments using your own encryption routine, entered at the segment edit/
compression exit. Before segments are written on the database, IMS passes control to your routine, which
encrypts them. Then, each time they are retrieved, they are decrypted by your routine before presentation
to the application program.

Do not change the key or the location of the key field in index databases or in root segments of HISAM
data bases.
Related concepts

“Segment Edit/Compression exit routine” on page 360
The Segment Edit/Compression exit routine allows you to encode, edit, or compress the data portion of a
segment.

Security for IMS DDL

[Search title: IMS 15.4 - Database administration - Security for IMS DDL

There are three different security considerations; security for issuing the DDL, security for activating
the DDL, for example issuing the IMPORT command, and security for the resources create, altered, and
deleted by DDL.

Security for issuing the DDL

You can set up security around who can issue the DDL and make changes to resources. For example, you
might not want Application Developers to make DB changes, only PSB changes.

Security for activating the DDL

You can set up less security around who can issue the DDL to make changes but more security around
who activates them. For example, you might have Application Developers make the changes but only
System Programmers or DBAs activate the changes after analyzing the impact of the changes, meaning,
reorganizing or application outages.

Security for resources

You might want to consider what the DDL does under the covers as part of that change. For example,
DDL for DROP DATABASE will eventually try to delete data sets, however, you might have RACF restricting
those data sets. In this case, ensure that IMS is authorized so that it can actually perform the task.

When setting up security in a DDL flow, you can:

In IMS Enterprise Suite Explorer for Development, you can restrict who can submit DDL to IMS.
For more information, see Submitting DBD field changes to IMS with IMS 14.

In IMS, you can restrict who can access a given PSB.
This uses existing security mechanisms for PSBs. You can secure the PSB named DFSCP001 to
restrict who can issue DDL. For more information, see Security for ODBA application programs
(System Administration).

In IMS, you can restrict who can issue the IMPORT DEFN command for IMS Explorer security.
IMPORT is a type-2 command; the command security is the existing type-2 command security in OM.
The security is based on IMPORT DEFN, therefore, you will need to write OM security exit to have
granular security based on SOURCE(CATALOG). For more information, see CSL OM command security
(System Administration).

36 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/system_admin/ims_secur_odbaappls.htm#ims_secur_odbaappls
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/system_admin/ims_secur_odbaappls.htm#ims_secur_odbaappls
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/system_admin/ims_omcommandsecurity.htm#ims_omcommandsecurity
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/system_admin/ims_omcommandsecurity.htm#ims_omcommandsecurity

Using a dictionary to help establish security

|Search title: IMS 15.4 - Database administration - Using a dictionary to help establish security

A dictionary, such as the IBM DB/DC Data Dictionary, monitors relationships among entities in your
computing environment (such as, which programs use which data elements), making it an ideal tool to
administer security.

You can use the dictionary to define your authorization matrixes. Through the extensibility feature, you
can define terminals, programs, users, data, and their relationships to each other. In this way, you can
produce reports that show: dangerous trends, who uses what from which terminal, and which user gets
what data. For each user, the dictionary could be used to list the following information:

« Programs that can be used

Types of transactions that can be entered
Data sets that can be read

Data sets that can be modified
- Categories of data within a data set that can be read

Categories of data that can be modified

Chapter 4. Database security 37

38 IMS: Database Administration

Part 2. IMS catalog

[Search title: IMS 15.4 - Database administration - IMS catalog

The following topics describe the purpose and content of the IMS catalog database and administrative
tasks to maintain the IMS catalog.

© Copyright IBM Corp. 1974, 2022

39

40 IMS: Database Administration

Chapter 5. Overview of the IMS catalog

[Search title: IMS 15.4 - Database administration - Overview of the IMS catalog |
The IMS catalog contains trusted metadata and definitions of the IMS databases and application program
views that are defined to IMS.

If the IMS management of ACBs is enabled, the IMS catalog also determines the active databases and
program views (PSBs) in the IMS system, because ACB libraries are not used. When IMS uses ACB
libraries, the ACB library determines which databases and program views are active, and you must ensure
that the IMS catalog is always in synch with the ACB library.

The IMS catalog is itself a HALDB PHIDAM database. Each database and application program view that is
defined to IMS is stored in a separate record in the IMS catalog. In each record, the root header segment
identifies the type of resource that it contains: either a database definition (DBD) or a program view (PSB).

The header segment is followed in the hierarchy by a DBD or a PSB segment. The DBD or PSB segment
and its dependent segments store the definition and metadata of the database or program view.

Subsequent definitions of a database or program view are stored in the same record as the previous
definitions of the database or program view by inserting more instances of the DBD or PSB segment and
its dependents. The different instances of a database or program view are differentiated by a time stamp.

The database and program view instances in a record can include an active instance that is being used by
the online IMS system, previously defined instances, and draft instances that were never activated.

If database versioning is used, the DBD segments for a previous version of a database must be retained in
the DBD record in the IMS catalog to provide application programs access to the previous version of the
database.

Depending on whether you enable the IMS management of application control blocks (ACBs), you have
different options for how you define databases and program views, add them to the IMS catalog, and
activate them in the IMS system.

When IMS manages the ACBs, you can define databases and program views either by using SQL data
definition language (DDL) statements or by using the input macros of the DBD Generation utility and PSB
Generation utility.

When you use DDL statements, IMS can add the database and program view definitions to the IMS
catalog, build the required runtime control blocks, and, in some cases, load them into the online IMS
system automatically.

When you use the DBD and PSB Generation utilities to define databases and program views in an IMS
system that manages ACBs, after you run the utilities, you must also run the ACB Generation and Populate
utility (DFS3UACB) or equivalent utilities to build the ACBs, update the IMS catalog, and load the ACBs
into the IMS system.

In an IMS system that manages ACBs, the IMS catalog completely replaces DBD, PSB, and ACB libraries
as the component that determines which database and program view definitions are used by the online
IMS system and by batch application programs.

When the IMS management of ACBs is disabled, you cannot use DDL to define databases and program
views. Instead, you must define them by using the DBD and PSB Generation utilities, you must generate
members into an ACB library, and you must use the online change process to activate the ACB library. You
must also make sure that the IMS catalog remains in sync with the active ACB libraries.

Important: If the IMS catalog is not enabled in the DFSDFxxx IMS PROCLIB member for the IMS system,
no catalog information is created during ACBGEN. Also, the IMS catalog must be enabled to enable the
IMS management of ACBs.

Data is stored in the IMS catalog database as hexadecimal (type X) for numeric values, or Cp1047
EBCDIC character data. In some cases, values are truncated to save space. If a field contains blanks (for

© Copyright IBM Corp. 1974, 2022 41

character data), that indicates that the field does not apply to that database or program specification
block. Individual field definitions might indicate other meanings for a blank field.

IMS provides a skeletal COBOL copybook and skeletal PL/I program for accessing the catalog database.
The COBOL copybook is called DFS3DCBL and can be found in IMS.ADFSISRC. The PL/I sample
application is named DFS3DPL1 and can be found in the IMS sample library, IMS.ADFSSMPL.

When the catalog is enabled in the DFSDFxxx member of the IMS.PROCLIB data set, IMS automatically
adds a PCB list for the IMS catalog to each user PSB at run time.

IMS provides two DBDs for the IMS catalog, one for the main IMS catalog database and the other for the
secondary index. IMS provides several PSBs for the IMS catalog for different purposes and application
program types. The DBDs and PSBs for the IMS catalog are defined as resident.

The catalog database segment types are grouped into four different data set groups (A - D) based on how
frequently that segment type is accessed in database queries. The root segment type (HEADER) and the
DBD and PSB segment types are in data set group A. The least frequently accessed segment types, such
as user remarks, are grouped in data set D.

As a HALDB PHIDAM database, the IMS catalog can be queried with standard DL/I processing, with DL/I
processing through the Universal DL/I driver, and with SQL through the Universal JDBC driver. IMS catalog
database records cannot be updated, replaced, inserted, or deleted except with the provided utilities.

Related concepts

IMS catalog definition and tailoring (System Definition)
Related tasks

Installing the IMS catalog DBDs and PSBs (System Definition)
Related reference

IMS catalog data set groups (System Definition)

IMS catalog utilities (System Utilities)

The IMS Catalog Redpaper

42 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_catalog_definition.htm#ims_catalog_definition
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_catalog_res_install.htm#ims_catalog_res_install
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_cat_db_dsgs.htm#ims_cat_db_dsgs
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_catalogutilities.htm#ims_catalogutilities
http://www.redbooks.ibm.com/abstracts/redp4812.html?Open

Chapter 6. Backup and recovery of the IMS catalog

|Search title: IMS 15.4 - Database administration - Backup and recovery of the IMS catalog |
The IMS catalog is a HALDB database, so you can use standard HALDB backup and recovery procedures
to back up and recover an IMS catalog, but you must make sure that the records in the recovered IMS
catalog match that application control blocks (ACBs) that are active in the IMS system.

For certain IMS functions, such as the IMS management of ACBs or database versioning, the ability to
recover the IMS catalog from back up copies is required. If these functions are not used, you can recover
the IMS catalog by using one of the population utilities to rebuild it from ACB, DBD, and PSB libraries.

One of the functions that requires backup copies for recovery is the IMS management of ACBs. When IMS
manages ACBs, the IMS catalog is the only repository for ACBs, DBDs, and PSBs in the IMS system and
contains the only record of which of those resources are active.

Another function that requires backup copies for recovery is database versioning. When database
versioning is used in IMS systems that use an ACB library, the DBDs for previous versions of a database
exist only in the IMS catalog and cannot be repopulated from the ACB library. Only the version of the
database definition (DBD) that is designated as active can be repopulated from the active ACB library.

IMS catalog data sets

The IMS catalog is a HALDB partitioned HIDAM (PHIDAM) database with a primary index data set, an
indirect list data set (ILDS). The IMS catalog includes a HALDB partitioned secondary index (PSINDEX)
database.

If the IMS management of ACBs is enabled, the IMS catalog also uses one or more IMS directory data
sets. If any database or program view changes are pending activation, the IMS directory data sets might
also include a staging data set.

Coordinating IMS catalog recovery with the active ACBs

In IMS systems that use IMS-managed ACBs, when you recover the IMS catalog from backup image
copies, you must ensure that the DBD and PSB resource instances that are flagged as active in the
recovered IMS catalog match the active ACBs in the IMS directory data set.

One way to ensure that the active instances in the recovered IMS catalog match the active ACBs in the
IMS directory data set is to rebuild the IMS directory by using the IMS Catalog Directory Recovery utility
(DFS3RUO00).

However, because rebuilding IMS directory data sets can take a long time, consider creating backup
copies of the IMS directory data sets that correspond to the image copies you create of the IMS catalog.

In IMS systems that use ACB libraries, when you recover the IMS catalog from backup image copies, you
must ensure that the recovered IMS catalog contains the DBD and PSB instances that match the ACBs in
the active ACB library. The time stamps of the records in the IMS catalog must match the time stamps of
the corresponding ACB members in the active ACB library.

DBRC, the IMS recovery utilities, and the IMS catalog

All standard IMS utilities can run on the catalog data sets, including the image copy and database
recovery utilities that are provided with IMS.

When the IMS catalog is managed by DBRC, the utilities that are provided with IMS create recovery
information in the log data sets when the IMS catalog is updated. DBRC manages the logs, image
copies, and JCL required for recovery of the IMS catalog. You can perform a full database recovery or a
point-in-time recovery for the IMS catalog partitions.

© Copyright IBM Corp. 1974, 2022 43

When DBRC is not used with the IMS catalog, the IMS catalog can be recovered by using the standard
backup and recovery processes that are used for other HALDB databases. However, you must have
processes in place to manage the logs, image copies, JCL, and so on.

Recovery by repopulation

If your installation does not use either the IMS management of ACBs or database versioning, as an
alternative to recovering the IMS catalog from image copies and log records, you can re-create the

IMS catalog from your ACB, DBD, and PSB libraries by running either the IMS Catalog Populate utility
(DFS3PUO00) or the ACB Generation and Catalog Populate utility (DFS3UACB) to reload the IMS catalog.

Re-creating the IMS catalog from ACB, DBD, and PSB libraries by using one of the population utilities
restores only the record segments in the IMS catalog that are in the libraries. Use this method only if you
do not need record segments for past instances of your DBDs and PSBS or the historical metadata that
those segment instances contain.

An initial load of the catalog by either of the population utilities does not create any database recovery
information in the log data sets. Create an image copy immediately after the IMS catalog is loaded to
ensure that the image copy is consistent with the active ACB library.

Recovering the IMS catalog secondary index

In a data-sharing environment, recovering the secondary index is required in a full recovery for the IMS
catalog. Recover the secondary index by using an image copy. Besides, you can also rebuild the secondary
index by using IMS Tools, such as IMS Index Builder.

Recovering the IMS catalog directory data sets

When the IMS management of ACBs is enabled, you can use the IMS Catalog Directory Recovery utility
(DFS3RUO0O) to recover the IMS directory data sets from database image copies after the recovery of IMS
catalog. The IMS Catalog Directory Recovery utility rebuilds the IMS directory data sets and recovers the
ACBs of IMS databases and programs to the directory by reading active resources from the IMS catalog.

Related concepts

“Making database backup copies” on page 564

This topic explains how to make backup copies of your databases. It describes the utilities and how they
affect IMS operations.

“Recovery of databases” on page 575

If a database is physically lost or damaged in such a way that records in it become inaccessible, you can
reconstruct the database from the information you have been keeping: image copies, logs, and so forth.
This type of recovery is known as forward recovery.

“Database backup and recovery” on page 559
The successful recovery of a database after a failure depends on the planning and preparation you do
before an error ever occurs. Making database backup copies is a critical part of that preparation.

Related reference
IMS catalog utilities (System Utilities)

Backup methods for the IMS catalog

[Search title: IMS 15.4 - Database administration - Backup methods for the IMS catalog |
Because the IMS catalog is a HALDB PHIDAM database, you can use the IMS image copy utilities to back
up the partition data sets of the main database and the secondary index.

Like the recovery of other HALDB databases, the recovery of the IMS catalog does not use image copies
of the primary index data set or the indirect list data set (ILDS). Instead, these data sets are recovered by
rebuilding them by using the HALDB Index/ILDS Rebuild utility (DFSPRECO).

44 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_catalogutilities.htm#ims_catalogutilities

If the IMS management of ACBs is enabled, the IMS catalog also uses additional system data sets to
manage the ACBs:

« One more IMS directory data sets that contain the ACBs that are active in the IMS system
« A bootstrap data set
- Astaging data set that stores new or changed ACBs that are not yet active in the IMS system.

The names of these data sets are derived by IMS from the high-level qualifier of the IMS catalog.

These additional system data sets are PDSE data sets and cannot be backed up by using the IMS image
copy utilities. Instead, you can rebuild them from the recovered IMS catalog database data sets by using
the IMS Catalog Directory Recovery utility (DFS3RUQ0O), which recreates the data sets and loads the active
ACBs into the IMS directory. Rebuilding the IMS catalog PDSEs by using this utility ensures that they
match the current IMS catalog.

Alternatively, you can backup the ACBs in the IMS directory data sets to an ACBLIB data set by using

the IMS Catalog Library Builder utility (DFS3LUQO). During recovery, you rebuild the IMS directory from
the backup ACBLIB by running the IMS Catalog Populate utility (DFS3PU00) with MANAGEDACBS=SETUP
specified on the SYSINP DD statement.

You can also make backup copies of the additional IMS catalog data sets by using your preferred method
of copying PDSE data sets. If you use backup copies of the IMS directory that are not created by IMS, you
are responsible for ensuring that the copies match the current or recovered IMS catalog database.

Regardless of the method you use to back up the IMS directory, the active ACBs in the backup copy of the
IMS directory must match exactly the active ACBs that are in the corresponding image copy of the IMS
catalog database data sets that you would use for recovery.

When the IMS image copy utilities are used and the IMS catalog is managed by DBRC, the image copies
and the required log data sets are managed by DBRC.

If the IMS catalog is shared between IMS systems, the IMS Catalog must be added to a change
accumulation (CA) group so that the logs from all of the IMS systems can be merged before a recovery.

Related concepts

“Making database backup copies” on page 564

This topic explains how to make backup copies of your databases. It describes the utilities and how they
affect IMS operations.

“Database backup and recovery” on page 559
The successful recovery of a database after a failure depends on the planning and preparation you do
before an error ever occurs. Making database backup copies is a critical part of that preparation.

IMS directory data sets (System Definition)
Related reference

Backup utilities (Database Utilities)

IMS catalog utilities (System Utilities)

Recovering the IMS catalog when IMS manages ACBs

[Search title: IMS 15.4 - Database administration - Recovering the IMS catalog when IMS manages ACBs |
When the IMS management of ACBs is enabled, the IMS directory data sets must be recovered in addition
to the other HALDB database data sets that are associated with the IMS catalog.

About this task
Depending on your system configuration, you can recover the IMS catalog data sets with either of the two
methods:

» Recovering from the backup ACBLIB by using the IMS Catalog Populate (DFS3PUQOQ) utility.

» Recovering from database image copies and the log data sets when the backup ACBLIB cannot be
created.

Chapter 6. Backup and recovery of the IMS catalog 45

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_catalog_directory.htm#ims_catalog_directory
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dur/ims_dur03.htm#ims_dur-gen2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_catalogutilities.htm#ims_catalogutilities

Related reference
IMS Catalog Directory Recovery utility (DFS3RUQO) (System Utilities)
IMS Catalog Populate utility (DFS3PUOQOQ) (System Utilities)

Recovering the IMS catalog from ACBLIB when IMS manages ACBs

[Search title: IMS 15.4 - Database administration - Recovering the IMS catalog when IMS manages ACBs

When IMS™ manages ACBs, you can recover the IMS catalog from a backup ACB library by running the
IMS Catalog Populate utility (DFS3PU0O). The backup ACB library can be created either when the SQL
data definition language (DDL) is not used, or under strictly controlled conditions when the DDL is used.

Before you begin
You must have a backup ACBLIB that was created by the IMS Catalog Library Builder utility (DFS3LUQO).

Procedure

1. If DDL is used, check whether the RECON data sets contain any recovery or backout records for the
IMS catalog HALDB database. Clean up the related records or flags by issuing the DELETE command to
prevent record inconsistency in the RECON data sets.

2. Run the IMS Catalog Populate utility (DFS3PU0O) as a batch job with the PSB DFSCPLOO to rebuild
the IMS catalog from the backup ACBLIB. Ensure that you specify the MANAGEDACBS=SETUP control
statement on the SYSINP DD statement and the backup ACBLIB as input on the IMSACB DD
statement.

The IMS Catalog Populate utility allocates the IMS directory data sets automatically and loads the
ACBs into the IMS directory by using load mode.

3. Restart IMS.

Related concepts

“HALDB partition initialization” on page 177

After you define a partition and allocate its data sets, you must initialize the partition.
Related tasks

“Creating HALDB databases with the HALDB Partition Definition utility” on page 510
The HALDB Partition Definition utility (%DFSHALDB) is an ISPF application that allows you to manage IMS

HALDB partitions.

Related reference

HALDB Partition Definition utility (%DFSHALDB) (Database Utilities)
Database Description (DBD) Generation utility (System Utilities)
IMS Catalog Populate utility (DFS3PUOQOQ) (System Utilities)

Recovering the IMS catalog from image copies when IMS manages ACBs

Search title: IMS 15.4 - Database administration - Recovering the IMS catalog from image copies when IMS
manages ACBs

When IMS™ manages ACBs, if the SQL data definition language (DDL) is used and you cannot create a
backup ACB library, you can recover the IMS™ catalog only from an image copy of the main database data
sets combined with the log data sets that are created since that image copy.

Before you begin

You must have an image copy of the main database data sets of the IMS catalog and the log data sets that
are created since that image copy.

46 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_catalog_dfs3ru00.htm#ims_catalog_dfs3ru00
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_catalog_pop_utility.htm#ims_catalog_pop_utility
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dur/ims_dfshaldb.htm#ims_dfshaldb
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_dbdgen.htm#ims_dbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_catalog_pop_utility.htm#ims_catalog_pop_utility

Procedure

1. Recover the IMS catalog database by using one of the following PHIDAM recovery procedures that is
appropriate to your IMS catalog;:

« “Recovering a PHIDAM database in a non-data-sharing environment” on page 584

« “Recovering a PHIDAM database in a data sharing environment” on page 587

2. Run the IMS Catalog Directory Recovery utility (DFS3RUOO) to rebuild the IMS directory data sets.
Before you run the DFS3RUQO utility, ensure that the IMS catalog DBDs (DFSCD000, DFSCX000) and
PSBs (DFSCP000, DFSCP001) are recovered so that the utility can be rerun in case of recovery failure.

The IMS Catalog Directory Recovery utility does not support main storage databases (MSDB) and
shared secondary index databases. The utility requires access to the DFSDFxxx member of the
IMS.PROCLIB data set.

Note: If you want to recover the IMS catalog HALDB but keep the current directory data sets, you can
run the IMS Catalog Directory Recovery utility to check whether the recovered HALDB matches the
existing directory data sets.

3. Restart IMS

Related reference
IMS Catalog Directory Recovery utility (DFS3RUQQ) (System Utilities)

Chapter 6. Backup and recovery of the IMS catalog 47

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_catalog_dfs3ru00.htm#ims_catalog_dfs3ru00

48 IMS: Database Administration

Chapter 7. Cleaning up the IMS directory data sets

[Search title: IMS 15.4 - Database administration - Cleaning up the IMS directory data sets

In an IMS-managed ACBs environment, the Catalog Directory Recovery utility (DFS3RUOQQ) can also be
used to clean up the IMS directory data sets when the directory online updates aborted abnormally.

Procedure

1. Ensure that no DDL definition activation process or the IMPORT DEFN SOURCE (CATALOG) command
is in progress of updating the directory data sets. You can use one of the following options:

« Enable internal resource lock manage (IRLM) in the JCL and in the IMS system to avoid process
conflicts. This method is recommended.

« IfIRLMis not used, issue the QUERY MEMBER TYPE (IMS) SHOW() command to check the status
of the IMPORT and DDL definition activation processing.

2. Run the IMS Catalog Directory Recovery utility.

Related concepts

“Activating DDL-defined resources with the IMPORT DEFN command” on page 460

In many cases, DDL-defined resources are not activated automatically, but instead stored in a pending
state in a staging data set of the IMS catalog. To activate pending DDL-defined resources use the IMPORT
DEFN SOURCE (CATALOG) command.

Related reference
IMS Catalog Directory Recovery utility (DFS3RUQQ) (System Utilities)
QUERY MEMBER command (Commands)

© Copyright IBM Corp. 1974, 2022 49

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_catalog_dfs3ru00.htm#ims_catalog_dfs3ru00
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_querymember.htm#ims_cr2querymember

50 IMS: Database Administration

Chapter 8. Maintaining the IMS catalog

|Search title: IMS 15.4 - Database administration - Maintaining the IMS catalog

The IMS catalog is an IMS HALDB full-function database, so even though it should not require much
maintenance, the same maintenance considerations that apply to other HALDB full-function databases
apply to the IMS catalog.

How often you need to reorganize or otherwise maintain the IMS catalog depends on how often your
installation adds or updates the PSB and DBD records in the IMS catalog for new or changed databases
and application programs in your IMS environment.

To reorganize the IMS catalog, use HALDB Online Reorganization (OLR) to avoid taking the IMS catalog
offline. Because the IMS catalog is smaller than the typical HALDB database, running OLR on the IMS
catalog should not significantly impact performance or resources.

If you can take the IMS catalog offline, you can reorganize the IMS catalog by using the HD Reorganization
Unload utility (DFSURGUO) and the HD Reorganization Reload utility (DFSURGLO).

To clean out instances of PSBs and DBDs that are no longer needed from the IMS catalog, you can use the
IMS Catalog Record Purge utility (DFS3PU10).

Related concepts

“Removing DBD and PSB instances from the IMS catalog” on page 53

You can remove the segments that represent individual DBD and PSB instances from the DBD and PSB
records in the IMS catalog by using the IMS Catalog Record Purge utility (DFS3PU10).

Related reference

HD Reorganization Unload utility (DFSURGUO) (Database Utilities)

HD Reorganization Reload utility (DFSURGLO) (Database Utilities)

IMS Catalog Record Purge utility (DFS3PU10) (System Utilities)

© Copyright IBM Corp. 1974, 2022 51

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dur/ims_dfsurgu0.htm#ims_dfsurgu0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dur/ims_dfsurgl0.htm#ims_dfsurgl0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_catalog_cleanuputility.htm#ims_catalog_cleanuputility

52 IMS: Database Administration

Chapter 9. Removing DBD and PSB instances from
the IMS catalog

|Search title: IMS 15.4 - Database administration - Removing DBD and PSB instances from the IMS catalog

You can remove the segments that represent individual DBD and PSB instances from the DBD and PSB
records in the IMS catalog by using the IMS Catalog Record Purge utility (DFS3PU10).

You can also use the IMS Catalog Record Purge utility to delete all DBD instances of a particular DBD
version from a DBD record in the IMS catalog. When a DBD version is deleted, all DBD instances of the
DBD version are deleted from the DBD record. After deletion, the version of the DBD no longer exists in
the IMS catalog.

When the IMS management of ACBs function is enabled, the IMS Catalog Record Purge utility deletes
from the IMS directory the DBD and PSB instances that are also deleted from the IMS catalog. The DBD
and PSB instances that are deleted from the IMS directory are also deleted from the directory staging
data set.

The IMS Catalog Record Purge utility issues a CHKP (checkpoint) call to commit updates to the IMS
catalog after every 200 updates. After 200 updates are made, the updates are committed to the IMS
catalog only after the DBDs and PSBs that were identified for deletion since the previous CHKP call are
deleted from the IMS directory.

To help avoid the unintentional deletion of DBD or PSB segments that you still need, you can define
retention criteria for the DBD and PSB records in the IMS catalog. Based on the retention criteria in effect
for each record in the catalog, the analysis function of the IMS Catalog Record Purge utility identifies and
creates DELETE statements for the DBD or PSB segment instances that are eligible for deletion.

Retention criteria specific to a DBD or PSB record is set by the UPDATE control statement of the IMS
Catalog Record Purge utility and are stored in the HEADER segment of the record. If no retention criteria is
specified for a given record, catalog records are subject to the default retention criteria that is set by the
RETENTION statement in the CATALOG section of the DFSDFxxx member of the IMS.PROCLIB data set.

The retention criteria includes the minimum number of segment instances IMS must retain in a DBD or
PSB record and the minimum period of time segment instances must be retained before they can be
deleted. By default, IMS retains a minimum DBD and PSB instances a record. There is no default for the
period of time an instance must be retained. Periods of time are measured in days.

For example, if the number of instances of DBD or PSB segments in a record is equal to or less than the
retention number that is set for the record, no instances can be deleted. If the number of days that a DBD
or PSB instance has been in the IMS catalog is equal to or less than the retention period defined for the
DBD or PSB record that contains it, the DBD or PSB instance cannot be deleted.

When you define your retention criteria for the segment instances in DBD and PSB records, keep in mind
that each additional instance increases the amount of storage that is required for the IMS catalog.

Related reference

“HEADER segment format” on page 57

The IMS catalog HEADER segment type, also called the resource header, is the root segment type for the
IMS catalog database.

IMS Catalog Record Purge utility (DFS3PU10) (System Utilities)

CATALOG and CATALOGxxxx sections of the DFSDFxxx member (System Definition)

© Copyright IBM Corp. 1974, 2022 53

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_catalog_cleanuputility.htm#ims_catalog_cleanuputility
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_dfsdfxxx_proclib_catalog.htm#ims_dfsdfxxx_proclib_catalog

54 IMS: Database Administration

Chapter 10. Using HALDB utilities with an
unregistered IMS catalog

|Search title: IMS 15.4 - Database administration - Using HALDB utilities with an unregistered IMS catalog |

AllLHALDB utilities are supported for an IMS catalog database that is registered in the RECON data set and
managed by DBRC. Some restrictions apply to an unregistered catalog.

About this task

You can use the IMS Catalog Partition Definition Data Set utility to configure an IMS catalog database that
is not managed by DBRC. Some of the standard HALDB utilities can be used with an unregistered catalog
database, with certain restrictions.

Database Image Copy utility (DFSUDMPO)
You can use this utility to make batch image copies of an unregistered IMS catalog database.
Concurrent image copying is not supported for unregistered IMS catalog databases. Additionally, you
must specify the Datain DD statement because dynamic data set allocation is not supported for an
unregistered catalog database.

Note: See Chapter 6, “Backup and recovery of the IMS catalog,” on page 43 for more information
about recovering the IMS catalog database.

Batch Backout utility (DFSBB0O00)

Database Recovery utility (DFSURDBO)

HALDB Index/ILE Dataset Rebuild utility (DFSPRECO)

HD Reorganization Unload utility (DFSURGUO)

HD Reorganization Reload utility (DFSURGLO)
You can use these utilities with an unregistered IMS catalog database, but you must include the
DFSDF= parameter for the utility EXEC statement. The DFSDF parameter specifies the 3-character
suffix of the DFSDFxxx member of the IMS.PROCLIB dataset that specifies unregistered IMS catalog
databases. The DFSDFxxx member specifies unregistered IMS catalog database names with the
UNREGCATLG parameter of the DATABASE statement.

HALDB Partition Data Set Initialization utility (DFSUPNTO)
This utility is not compatible with an unregistered IMS catalog database. The Catalog Populate utility
(DFS3PUO00) provides analogous support for registered and unregistered IMS catalog databases.

Related reference

HALDB Index/ILDS Rebuild utility (DFSPRECO) (Database Utilities)
HD Reorganization Unload utility (DFSURGUO) (Database Utilities)
HD Reorganization Reload utility (DFSURGLO) (Database Utilities)
Database Recovery utility (DFSURDBO) (Database Utilities)
Database Image Copy utility (DFSUDMPO) (Database Utilities)
IMS catalog utilities (System Utilities)

© Copyright IBM Corp. 1974, 2022 55

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dur/ims_dfsprec0.htm#ims_dfsprec0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dur/ims_dfsurgu0.htm#ims_dfsurgu0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dur/ims_dfsurgl0.htm#ims_dfsurgl0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dur/ims_dfsurdb0.htm#ims_dfsurdb0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dur/ims_dfsudmp0.htm#ims_dfsudmp0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_catalogutilities.htm#ims_catalogutilities

56 IMS: Database Administration

Chapter 11. Format of records in the IMS catalog
database

[Search title: IMS 15.4 - Database administration - Format of records in the IMS catalog database |
The IMS catalog database contains a unique record for each PSB and DBD defined during ACB generation.
Each type of record, and each type of segment within a record, has a predefined format.

The catalog database segment types are grouped into four different data set groups (A - D) based on how
frequently that segment type is accessed in database queries. The most frequently accessed segment
types, such as the root segment type (HEADER), are located in data set group A. The least frequently
accessed segment types, such as user remarks segments, are grouped in data set D.

Some segment types in the catalog database, such as DBDHXXX, are not currently used and are
reserved for future development. The segment definitions are included in the catalog to allow for the
implementation of future service and development enhancements without an unload and reload of the
catalog database.

Related reference
IMS catalog data set groups (System Definition)

HEADER segment format

[Search title: IMS 15.4 - Database administration - HEADER segment format |

The IMS catalog HEADER segment type, also called the resource header, is the root segment type for the
IMS catalog database.

The resource header for an IMS catalog database record contains information about the type of metadata
that is stored in that record. The resource header indicates whether a specific IMS catalog record contains
DBD or PSB metadata and includes the IMS name and alias name of the resource that the catalog record
describes.

The root key for a catalog record is the value of the RHDRSEQ field in this segment. This key value is
generated by the IMS catalog populate utility (DFS3PUOO) or the ACB generation and catalog populate
utility (DFS3UACB). The value is created by concatenating the record type and the IMS member name of
the resource. The record type is eight characters long and is right-padded with blank characters. The IMS
member name is always eight characters long.

For example, this is the root key for a DBD record with the name ACF12000:

DBD ACF12000

This is the root key for a PSB record with the name MXG88888:

PSB MXG88888

The root key value is also used to sort catalog records into database partitions if your catalog database
consists of more than one partition. The partition high key for the last partition in the database must be
high enough to contain the highest-key record in the catalog.

Segment name
HEADER

Parent name
Not applicable

Sequence field
RHDRSEQ

Segment length
56 bytes

© Copyright IBM Corp. 1974, 2022 57

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_cat_db_dsgs.htm#ims_cat_db_dsgs

Table 4. HEADER segment map

Offset (bytes)

Length Data
(bytes) type

Field name

Description

Uniqu
e key
field

1

2

X

LEN

Length of this resource header segment

2

CTL

Control field

2

SEQNUM

Segment sequence number

3
5
9

16

RHDRSEQ

Sequence field, type = U

TYPE

Type of resource metadata in this catalog record

17

O|lo]lo] X | X

IMSNAME

Name of the resource described in this catalog
record

25

RETNINST

The minimum number of instances of the DBD or
PSB that must be kept in this record when record
segments are deleted. This value is modified with
the UPDATE statement of the IMS Catalog Record
Purge utility. If you do not provide a value for this
field, the utility uses the value specified on the
RETENTION statement in the CATALOG section of
the DFSDFxxx member of the IMS.PROCLIB data
set.

29

X

RETNDAYS

Minimum number of days to keep each instance of
the DBD or PSB in this record before the instances
is eligible for deletion. This value is modified with
the UPDATE statement of the IMS Catalog Record
Purge utility. If you do not provide a value for this
field, there are two possible scenarios:

- If the RETNINST field contains a value of 1 or
greater, the IMS Catalog Record Purge utility
does not purge instances of this DBD or PSB
based on their age.

 If the RETINST field contains 0, the IMS Catalog
Record Purge utility uses the values specified
in the DFSDFxxx member to determine the
retention criteria for the DBD or PSB instances
in this record.

33

FILLER1

Reserved

41

ACTTS

Active record timestamp in packed format.
Identifies the timestamp of the active member.

48

PNDTS

Pending record timestamp in packed format.
Identifies the timestamp of the pending member.

55

FILLER2

Reserved

57

13

PACTTS

Active record timestamp in expanded printable
format. Identifies the timestamp of the active
member.

70

13

PPNDTS

Pending record timestamp in expanded printable
format. Identifies the timestamp of the pending
member.

58 IMS: Database Administration

DBD record segment formats

[Search title: IMS 15.4 - Database administration - DBD record segment formats

The DBD record segments in the IMS catalog are used to store information about an IMS database
definition (DBD).

The following figure shows the high level organization of an IMS catalog record for a DBD:

HEADER
OBD
} ' ' } ' }
CAFPXDED DBEDRMEK DSET AHREA SEGM DBDVEMD
I
¥ b 4

DSETRMEK AREARME

l l ; ; —

CAPXSEGM | | SEGMBME FLD LCHILD MAP
I
I er————
¥ ¥ ¥ ¥ ¥
FLDRAME MAR LCHRMEK LCHZ21DX XDFLD
! I
¥ ¥ ¥
MARRME PROP XDFLDAMK l
MAPRME CASE M
CASERMK CFLD
— l
CFLDRME CMAR
CMARRME CPROP

Figure 18. Format of an IMS catalog record for a database description

AREA segment type format

[Search title: IMS 15.4 - Database administration - AREA segment type format

Chapter 11. Format of records in the IMS catalog database 59

The IMS catalog AREA segment type contains information about a database area in a Fast Path database.

This segment type is used only in IMS catalog records for Fast Path databases.

Segment name
AREA

Parent name
DBD

Sequence field
AREASEQ

Segment length
40 bytes

Table 5. AREA segment type format

Uniqu
Length Data e key

Offset (bytes) (bytes) type Field name Description field

1 2 X LEN Length of this segment.

3 2 X CTL Control field.

5 2 X AREASEQ Sequence field, type = U. X

5 2 X SEQNUM Sequence number.

9 8 C DD1 The data set name of this database area.

17 2 X SIZE The size of the control interval of this database
area in bytes.

19 2 X uowil The number of control intervals in a unit of work
for this database area.

21 2 X uowz The number of control intervals in the overflow
section of a unit of work for this database area.

23 2 X ROOT1 The total space allocated to the root addressable
section of this database area. This value is given in
number of units of work (UOW) for the UOW size
given in field UOWL1.

25 2 X ROOT2 The total space allocated for independent
overflow in this database area. This value is given
in number of units of work (UOW) for the UOW size
given in field UOW2.

27 14 C FILLER Reserved.

Related concepts

“AREA statement overview” on page 490

The AREA statement defines an area of a Fast Path data entry database (DEDB).

Related reference
AREA statement (System Utilities)

AREARMK segment type format

|Search title: IMS 15.4 - Database administration - AREARMK segment type format

The IMS catalog AREARMK segment type contains user comments about a database area definition for a

Fast Path database.

This segment is a direct child of the AREA segment instance that the comments pertain to.

60 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_areastmt.htm#ims_areastmt

Segment name
AREARMK

Parent name
AREA

Sequence field
ARCMSEQ

Segment length
264 bytes

Table 6. AREARMK segment map

Uniqu

Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X ARCMSEQ Sequence field, type=U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved
9 256 C REMARKS User comments for this database area

CAPXDBD segment type format

|Search title: IMS 15.4 - Database administration - CAPXDBD segment type format

The IMS catalog CAPXDBD segment contains information about a Data Capture exit routine used by a

DBD.

The metadata in this segment includes the name of the exit routine and processing options. Multiple
DBDs can reference a single data capture exit, and a single DBD can reference multiple data capture exits.
In the latter case, there are multiple child instances of this segment type for a single parent DBD segment

instance.

Segment name
CAPXDBD

Parent name
DBD

Sequence field
DDCAPSEQ

Segment length
32 bytes

Table 7. CAPXDBD segment map

Uniqu

Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Segment length
3 2 X CTL Control field
5 2 X DDCAPSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

9 8 C EXITNAME The module name of this data capture exit routine

Chapter 11. Format of records in the IMS catalog database 61

Table 7. CAPXDBD segment map (continued)

Uniqu
Length Data e key

Offset (bytes) (bytes) type Field name Description field

17 1 C LOG Indicates if the data capture exit routine control
blocks and data are written to the IMS system log

18 1 C KEY Indicates if the data capture exit routine is passed
the physical concatenated key of the segment that
was updated when the exit routine is called

19 1 C PATH Indicates if the exit routine is passed the data
from each segment in the hierarchical path of the
physical root segment

20 1 C DATA Indicates if the physical segment data is passed to
the data capture exit routine

21 1 C BEFORE Indicates if Before data is included in type X'99'
log records written for REPL calls

22 1 C DLET Indicates if type X'99' log records are written for
DLET calls

23 1 C CASCADE Indicates if this data capture exit routine is called
when a DL/I call deletes this segment as a result
of deleting a parent segment

24 1 C CKEY Indicates if the physical concatenated key is
passed to the exit routine during a call that
resulted from a cascade delete operation

25 1 C CPATH Indicates if the data from each segment in the
hierarchical path of the physical root segment
is passed to the exit routine during a call that
resulted from a cascade delete operation

26 1 C CDATA Indicates if the physical segment data is passed to
the exit routine during a call that resulted from a
cascade delete operation

27 1 C CBEFORE Indicates if Before data is included in type X'99'
log records written for REPL calls for a DEDB

28 1 C CDLET Indicates if type X'99' log records are written for
DLET calls for a DEDB

29 4 C FILLER Reserved

Related concepts

“Data Capture exit routines” on page 364

Data Capture exit routines capture segment-level data from a DL/I database for propagation to Db2 for
z/0S databases. Installations running IMS and Db2 for z/OS databases can use Data Capture exit routines
to exchange data across the two database types.

Related tasks

“DBD parameters for Data Capture exit routines” on page 364

Using Data Capture exit routines requires specification of one or two DBD parameters and subsequent
DBDGEN.

Related reference

DBD statements (System Utilities)

62 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_dbdstmt.htm#ims_dbdstmt

CAPXSEGM segment type format

|Search title: IMS 15.4 - Database administration - CAPXSEGM segment type format
The IMS catalog CAPXSEGM segment type contains information about a Data Capture exit routine
specified for a database segment.

The metadata in this segment includes the name of the exit routine and processing options. Multiple
segments can reference a single data capture exit, and a single segment can reference multiple data
capture exits. In the latter case, there are multiple child instances of this segment type for a single parent
SEGM segment instance.

Segment name
CAPXSEGM

Parent name
SEGM

Sequence field
SDCAPSEQ

Segment length
32 bytes

Table 8. CAPXSEGM segment map

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X SDCAPSEQ Sequence field, type = U X
5 2 X SEQNUM Sequence number
9 8 C EXITNAME The module name of this exit routine
17 1 C LOG Indicates whether the data capture exit routine
control blocks and data are written to the IMS
system log
18 1 C KEY Indicates whether the data capture exit routine

is passed the physical concatenated key of the
segment that was updated when the exit routine is
called

19 1 C PATH Indicates whether the exit routine is passed the
data from each segment in the hierarchical path of
the physical root segment

20 1 C DATA Indicates whether the physical segment data is
passed to the data capture exit routine

21 1 C BEFORE Indicates whether before data is included in type
X'99' log records written for REPL calls

22 1 C DLET Indicates whether type X'99' log records are
written for DLET calls

23 1 C CASCADE Indicates whether this data capture exit routine
is called when a DL/I call deletes this segment
as a result of deleting a parent segment (during a
cascade delete operation)

Chapter 11. Format of records in the IMS catalog database 63

Table 8. CAPXSEGM segment map (continued)

Length Data
Offset (bytes) (bytes) type Field name

Description

Uniqu
e key
field

24 1 C CKEY

Indicates whether the physical concatenated key
is passed to the exit routine during a call that
resulted from a cascade delete operation

25 1 C CPATH

Indicates whether the data from each segment in
the hierarchical path of the physical root segment
is passed to the exit routine during a call that
resulted from a cascade delete operation

26 1 C CDATA

Indicates whether the physical segment data is
passed to the exit routine during a call that
resulted from a cascade delete operation

27 1 C CBEFORE

Indicates whether Before data is included in type
X'99' log records written for REPL calls for a DEDB

28 1 C CDLET

Indicates whether type X'99' log records are
written for DLET calls for a DEDB

29 4 C FILLER

Reserved

Related concepts
“Data Capture exit routines” on page 364

Data Capture exit routines capture segment-level data from a DL/I database for propagation to Db2 for

z/0S databases. Installations running IMS and Db2 for z/OS databases can use Data Capture exit routines

to exchange data across the two database types.

Related tasks

“DBD parameters for Data Capture exit routines” on page 364

Using Data Capture exit routines requires specification of one or two DBD parameters and subsequent

DBDGEN.

Related reference
SEGM statements (System Utilities)

CASE segment type format

[Search title: IMS 15.4 - Database administration - CASE segment type format

The IMS catalog CASE segment type contains information about a specific case for a mapping of an IMS

database segment.

Segment name
CASE

Parent name
MAP

Sequence field
CASESEQ

Segment length
656 bytes

64 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_segmstmt.htm#ims_segmstmt

Table 9. CASE segment type format

Lengt
h Uniqu
(bytes Data e key
Offset (bytes)) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X CASESEQ Sequence field, type =U X
5 2 X SEQNUM Sequence number
7 2 C FILLER Reserved
9 1 C CASETYPE The encoding type of the CASEID field. This field
specifies either C for Cp1047 EBCDIC encoding or
X for a hexadecimal binary representation.
10 7 C FILLERO1 Reserved
17 128 C CASENAME The name of this case
145 128 C FILLERO2 Reserved
273 128 C MAPNAME Name of the segment type mapping that this case
belongs to
401 256 C CASEID The unique identifier for this case. Interpret this

field based on the value of the CASETYPE field.

Related reference
DFSCASE statements (System Utilities)

CASERMK segment type format

|Search title: IMS 15.4 - Database administration - CASERMK segment type format

The IMS catalog CASERMK segment type contains user-specified comments about a case for a segment

type mapping.

This segment is a direct child of the CASE segment instance that the comments pertain to.

Segment name
CASERMK

Parent name
CASE

Sequence field
CASCMSEQ

Segment length
264 bytes

Table 10. CASERMK segment map

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X CASCMSEQ Sequence field, type = U X

Chapter 11. Format of records in the IMS catalog database 65

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_dfscasestmt.htm#ims_dfscasestmt

Table 10. CASERMK segment map (continued)

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
5 2 X SEQNUM Sequence number
7 2 C FILLER Reserved
9 256 C REMARKS User comments for the case definition described

by the parent CASE segment

CFLD segment type format

|Search title: IMS 15.4 - Database administration - CFLD segment type format

The IMS catalog CFLD segment type contains information about a field in a particular segment type

format case.

Each instance of the CFLD segment describes a field for one case in a segment type format. The
information in a CFLD segment instance is valid for a user database segment only if that segment is
mapped with the mapping case defined in the parent CASE segment instance.

Segment name

CFLD

Parent name
CASE

Sequence field

FIELDSEQ

Segment length

904 bytes

Table 11. CFLD segment type format

Uniqu

Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X FIELDSEQ Sequence field, type=U X

5 2 X SEQNUM Sequence number
9 8 C IMSNAME The 8-character IMS name of this field
17 3 C NAMESEQ Indicates if this field is a sequence field
20 1 C SEQUM Indicates whether this field is a unique sequence
field (U) or non-unique (M)

21 2 BYTES The length of this field in bytes
23 2 START The starting offset of this field from the beginning

of the segment, in bytes. If this field contains data,
the STARTAFT field is not used.

66 IMS: Database Administration

Table 11. CFLD segment type format (continued)

Uniqu
Length Data e key

Offset (bytes) (bytes) type Field name Description field

25 1 C TYPE Indicates what type of binary data IMS uses to
pad empty space in this field:

X
Left-padded, X'00".
P
Left-padded, X'00".
c
Right-padded, X'40'".
F
Binary fullword data. Only used for MSDBs.
H
Binary halfword data. Only used for MSDBs.

26 15 C FILLERO1 Reserved

41 9 C DATATYPE The external (non-IMS) data type of the field

50 3 C FILLERO2 Reserved

53 2 X PRECISN The precision of a field with a decimal data type

55 2 X SCALE The scale of a field with a decimal data type

57 4 X MINOCCURS The minimum number of elements in a
DATATYPE=ARRAY field

61 4 X MAXOCCURS The maximum number of elements in a
DATATYPE=ARRAY field

65 4 X MAXBYTES The maximum number of bytes in
a DATATYPE=ARRAY field orin a
DATATYPE=STRUCT field that contains an array

69 4 X RELSTART The relative starting position of the field in bytes

73 128 NAME The external alias name of this field

201 128 C PARENT The external alias name of another field that this
field is nested under

329 128 C REDEFINE The external alias name of another field that this
field can be redefined as. The field defined by this
instance of the CFLD segment type and the field
with the name specified in the REDEFINE field can
be processed with a REDEFINES statement in a
COBOL application.

457 128 C DEPENDON The mapping selector field that the field defined
by this instance of the CFLD segment type
depends on

585 128 C CASENAME The name of the mapping case that this field

belongs to

Chapter 11. Format of records in the IMS catalog database 67

Table 11. CFLD segment type format (continued)

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field

713 128 C STARTAFT The external alias name of the field that directly
precedes this field in the segment. If this field
contains data, the START field does not.

841 64 C FILLERO3 Reserved

Related reference
FIELD statements (System Utilities)
DFSMARSH statements (System Utilities)

CFLDRMK segment type format

|Search title: IMS 15.4 - Database administration - CFLDRMK segment type format

The IMS catalog CFLDRMK segment type contains user comments for a database field that is part of a
specific segment type format case.

This segment is a direct child of the CFLD segment instance that the comments pertain to.

Segment name
CFLDRMK

Parent name
CFLD

Sequence field
CFLDCSEQ

Segment length
264 bytes

Table 12. CFLDRMK segment map

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X CFLDCSEQ Sequence field, type=U X
5 2 X SEQNUM Segment code
7 2 C FILLER Reserved
9 256 C REMARKS User comments for the parent CFLD segment

CMAR segment type format

|Search title: IMS 15.4 - Database administration - CMAR segment type format

The IMS catalog CMAR segment type contains information about a field marshaller definition in an IMS
database that applies only to a specific case of a segment type format.

Each CASEFLD segment can have a CMAR child segment that contains data marshalling properties for the
field.

Segment name
CMAR

68 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_fieldstmt.htm#ims_fieldstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_dfsmarshstmt.htm#ims_marshalstmt

Parent name
CFLD

Sequence field
MARSHSEQ

Segment length
704 bytes

Table 13. CMAR segment type format

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X MARSHSEQ Sequence field, type = U X
5 2 X SEQNUM Sequence number
9 8 C OVERFLOW Reserved
17 1 C SIGN For data with the data type of DECIMAL
(data that uses either the PACKEDDECIMAL or
ZONEDDECIMAL internal type converter), this field
indicates if the data is a signed decimal value.
18 6 C FILLERO1 Reserved
24 25 ENCODING Identifies the encoding type (code page) of the
data in the field identified by the parent FLD
segment
49 50 C PATTERN Identifies the pattern mask to convert the data in
the field identified by the parent FLD segment into
a Java date object
99 30 C ITYPCONV Identifies the internal type converter for the
parent FLD segment. If this field contains data, the
UTYPCONV field contains blanks. The internal type
converter is used to convert IMS data to a specific
type of Java data object.
129 256 C UTYPCONV Identifies the user type converter for the parent
FLD segment. If this field contains data, the
ITYPCONV field contains blanks.
385 256 URL Reserved
641 64 C FILLERO2 Reserved

Related reference
DFSMARSH statements (System Utilities)

DFSCASE statements (System Utilities)

CMARRMK segment type format

|Search title: IMS 15.4 - Database administration - CMARRMK segment type format

The IMS catalog CMARRMK segment type contains user-specified comments about a field marshaller
definition in a specific case of a segment type mapping.

This segment is a direct child of the CMAR segment instance that the comments pertain to.

Chapter 11. Format of records in the IMS catalog database 69

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_dfsmarshstmt.htm#ims_marshalstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_dfscasestmt.htm#ims_dfscasestmt

Segment name
CMARRMK

Parent name
CMAR

Sequence field
CMARCSEQ

Segment length
264 bytes

Table 14. CMARRMK segment map

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X CMARCSEQ Sequence field, type=U X
5 2 X SEQNUM Sequence number
7 2 C FILLER Reserved
9 256 C REMARKS User comments for marshalling properties that are

defined in the parent CMAR segment

CPROP segment type format

|Search title: IMS 15.4 - Database administration - CPROP segment type format

The IMS catalog CPROP segment type contains user-defined marshaller properties for a particular case of

an IMS segment type mapping.

Segment name
CPROP

Parent name
CMAR

Sequence field
CPROSEQ

Segment length
304 bytes

Table 15. CPROP segment type format

Length Uniqu
(bytes Data e key
Offset (bytes)) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X CPROSEQ Sequence field, type = U X
5 2 X SEQNUM Sequence number
9 128 C NAME Name of this user-defined marshalling property
137 128 C VALUE User-defined value of this marshalling property
265 40 C FILLER Reserved

70 IMS: Database Administration

Related reference

DFSCASE statements (System Utilities)

DFSMARSH statements (System Utilities)

DBD segment type format

[Search title: IMS 15.4 - Database administration - DBD segment type format

The IMS catalog DBD segment type contains metadata about an IMS user database.

This information is collected from the parameters submitted to the DBDGEN utility during system

definition.
Segment name
DBD

Parent name
HEADER

Sequence field
DBDSEQ

Segment length
552 bytes

Table 16. DBD segment type format

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X SEQNUM Sequence number
9 17 X DBDSEQ Sequence field, type=U X
9 4 X CATVERS Version number of the database definition that
is recorded by this DBD segment and its
dependents.
13 13 C TSVERS ACB generation timestamp for this version, in the
following format: yyDDDHHmmssff
26 1 C FILLER Reserved
27 2 X RLVL ACB generation utility release level
29 7 C ACCESS DL/I database type for this database
36 4 C OSACC Access method for this database
40 6 C PROT In a secondary index database, this field indicates

if integrity protection is used for index pointer
segments.

« If this field contains PROT, a delete operation
that removes an index pointer segment also
removes the target segment pointer but the
source segment is not deleted.

« If this field contains NOPROQOT, an application
program can replace all fields within a pointer
segment except the constant, search, and
subsequence control fields.

Chapter 11. Format of records in the IMS catalog database 71

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_dfscasestmt.htm#ims_dfscasestmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_dfsmarshstmt.htm#ims_marshalstmt

Table 16. DBD segment type format (continued)

Uniqu

Length Data e key

Offset (bytes) (bytes) type

Field name

Description

46 7 C

DOSCOMP

Indicates that this database is a DLI/DOS index
and that a DLI/DOS segment code is included
in the prefix of segments in this database. IMS
preserves the code during segment processing
and provides a new code when segments are
inserted.

53 8 C

PSNAME

The name of the HALDB Partition Selection exit
routine for this database.

61 8 C

RMNAME

The module name of the randomizing exit routine
for an HDAM or PHDAM database, or a Fast Path
data entry database (DEDB).

69 4 X

RMRBN

The maximum relative block number that the
randomizing exit routine produces for this HDAM
or PHDAM database. This value is also the
number of control blocks or intervals in the root
addressable area of the database.

73 4 X

RMBYTES

The maximum number of bytes of user data that
can be stored in the root addressable area of
this database by an unbroken sequence of insert
operations. A database record that exceeds this
size is partially stored in the overflow area.

77 2 X

RMANCH

The meaning of this field is different for Fast
Path DEDB databases and full-function HDAM or
PHDAM databases.

For DEDB databases, indicates the type of
randomizer: a value of 1 indicates a one-stage
randomizer. A value of 2 indicates a two-stage
randomizer.

For HDAM and PHDAM databases, this value
indicates the number of root anchor points in each
control block or interval in the root addressable
area of the HDAM or PHDAM database.

79 1 C

RMXCI

Indicates if this DEDB uses the Extended Call
Interface (XCI) when it calls the randomizing exit
routine.

80 3 C

FILLERO1

Reserved

83 1

PASSWD

Indicates if this database uses a default VSAM
password (the DBD name) to prevent accidental
database operations by programs other than IMS.

84 1 C

DATXEXIT

Indicates if this database uses the Data
Conversion user exit routine DFSDBUX1.

85 1 C

FPI

Indicates if this database is a secondary index for
a Fast Path database.

72 IMS: Database Administration

Table 16. DBD segment type format (continued)

Uniqu
Length Data e key

Offset (bytes) (bytes) type Field name Description field
86 255 C VERSION User-supplied version information for this

database
341 2 C FILLERO2 Reserved
343 2 X IDXCNT Number of shared secondary indexes
345 8 C IDXNMO1 Shared secondary index hame
353 8 C IDXNMO02 Shared secondary index name
361 8 C IDXNMO3 Shared secondary index name
369 8 C IDXNMO04 Shared secondary index name
377 8 C IDXNMO05 Shared secondary index name
385 8 C IDXNMO06 Shared secondary index name
393 8 C IDXNMO7 Shared secondary index nhame
401 8 C IDXNMO08 Shared secondary index name
409 8 C IDXNMO09 Shared secondary index name
417 8 C IDXNM10 Shared secondary index name
425 8 C IDXNM11 Shared secondary index name
433 8 C IDXNM12 Shared secondary index name
441 8 C IDXNM13 Shared secondary index name
449 8 C IDXNM14 Shared secondary index name
457 8 C IDXNM15 Shared secondary index name
465 8 C IDXNM16 Shared secondary index name
473 8 C CREATEBY Reserved
481 25 C ENCODING Code page used to encode all character data

in this database. Individual segment and field
definitions can override this value.

506 47 C FILLERO3 Reserved

DBDRMK segment type format

|Search title: IMS 15.4 - Database administration - DBDRMK segment type format

The IMS catalog DBDRMK segment type contains user-specified comments about a database definition.
This segment is a direct child of the DBD segment instance that the comments pertain to.

Segment name
DBDRMK

Parent name
DBD

Sequence field
DBDCMSEQ

Chapter 11. Format of records in the IMS catalog database 73

Segment length
264 bytes

Table 17. DBDRMK segment map

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X DBDCMSEQ Sequence field, type=U X
5 2 X SEQNUM Sequence number
7 2 C FILLER Reserved
9 256 C REMARKS User comments for this DBD
DBDVEND segment type format
|Search title: IMS 15.4 - Database administration - DBDVEND segment type format
The IMS catalog DBDVEND segment type contains a short header followed by a large block of
unformatted space.
This segment type is reserved for use by vendor-supplied tools.
Segment name
DBDVEND
Parent name
DBD
Sequence field
DVNDSEQ
Segment length
4000 bytes
Table 18. DBDVEND segment map
Length Uniqu
(bytes Data e key
Offset (bytes)) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X SEQNUM Segment sequence number
7 2 C FILLER Reserved
9 3992 X DATA Vendor product DBD data
5 2 X DVNDSEQ Sequence field, type = U X

DSET segment type format

[Search title: IMS 15.4 - Database administration - DSET segment type format

The IMS catalog DSET segment type contains metadata about a data set group specification for an IMS

database.

The information in this segment is generated based on the parameters of the DATASET statement of the

DBDGEN utility. All DBD catalog records have at least one child DSET segment instance.

74 IMS: Database Administration

Segment name
DSET

Parent name
DBD

Sequence field
DSETSEQ

Segment length
96 bytes

Table 19. DSET segment type format

Uniqu

Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X DSETSEQ Sequence field, type=U X

5 2 X SEQNUM Sequence number
9 8 c bD1 The name of the first data set in this data set
group.

» For HSAM, SHSAM and GSAM databases, this
field is the name of the input data set.

« For HISAM. SHISAM and INDEX databases, this
field is the name of the primary data set.

« For Fast Path databases, this field is the name of
a defined data area.

MSDBs and logical databases do not use this field.

17 8 C DD2 The name of the output data set for HSAM,
SHSAM, and GSAM databases. If no name is
specified for a GSAM database, DD1 is used as the
output data set.

25 8 C OVERFLOW The name of the overflow data set in this group.

33 2 X BLOCK1 Blocking factor 1 for the data set group. See
the DATASET statement of the DBDGEN utility for
usage information.

35 2 X BLOCK2 Blocking factor 2 for the data set group. See
the DATASET statement of the DBDGEN utility for
usage information.

37 2 X SIZE1 Block size 1 for the data set group. See the
DATASET statement of the DBDGEN utility for
usage information.

39 2 X SIZE2 Block size 2 for the data set group. See the
DATASET statement of the DBDGEN utility for
usage information.

41 2 X RECORD1 Record size 1 for the data set group. See the
DATASET statement of the DBDGEN utility for
usage information.

Chapter 11. Format of records in the IMS catalog database 75

Table 19. DSET segment type format (continued)

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field

43 2 X RECORD2 Record size 2 for the data set group. See the
DATASET statement of the DBDGEN utility for
usage information.

45 2 X SCAN The number of DASD cylinders that are scanned
for free storage during a segment insert operation.
Used only for HIDAM and HDAM databases.

47 2 X SEARCHA The type of algorithm used to search for free
storage during a segment insert operation. Used
only for HIDAM and HDAM databases. The
different type codes and meanings are:

0
IMS chooses which algorithm to use.
1
IMS does not search for space in the second-
most desirable block or control interval.
2
IMS includes a search for space in the second-
most desirable block or control interval.
49 2 C RECFM The format of records in this data set group for a
GSAM database:
F
Fixed-length
FB
Fixed-length and blocked
Vv

Variable-length

VB
Variable-length and blocked

u
Undefined length

51 2 X FRSPFBFF The number data blocks per block of free space
that are allocated in an HDAM or HIDAM database.

53 2 X FRSPFSPF The minimum percentage of free space in each
control block or interval in this data set group.
Used only for HDAM and HIDAM databases.

76 IMS: Database Administration

Table 19. DSET segment type format (continued)

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
55 8 C REL1 The terminal relationship type and segment
ownership type in an MSDB:
NO
Non-terminal-related without terminal keys
TERM
Non-terminal-related with the LTERM name as
the key
FIXED

Terminal-related with the LTERM name as the
key, with segment insertions and deletions
disabled

DYNAMIC
Terminal-related with the LTERM name as a
key, with segment insertions and deletions
enabled

63 8 C REL2 The name of the pseudo-sequence field for a
keyed MSDB. Segment search arguments can use
the name of this pseudo-field and the LTERM
name as the key value.

71 26 C FILLER Reserved

DSETRMK segment type format

|Search title: IMS 15.4 - Database administration - DSETRMK segment type format
The IMS catalog DSETRMK segment type contains user-specified comments about a data set group
definition.

This segment is a direct child of the DSET segment instance that the comments pertain to.

Segment name
DSETRMK

Parent name
DSET

Sequence field
DSCMSEQ

Segment length
264 bytes

Table 20. DSETRMK segment map

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X DSCMSEQ Sequence field, type=U X
5 2 X SEQNUM Sequence number

Chapter 11. Format of records in the IMS catalog database 77

Table 20. DSETRMK segment map (continued)

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
7 2 C FILLER Reserved
9 256 C REMARKS User comments for this DSET
FLD segment type format

[Search title: IMS 15.4 - Database administration - FLD segment type format

The IMS catalog FLD segment type contains metadata about a field in an IMS database.

Each instance of the FLD segment describes a field for one segment in a database. This information is
collected during system generation from the FIELD statement of the DBDGEN utility.

Segment name
FLD

Parent name
SEGM

Sequence field
FLDSEQ

Segment length
904 bytes

Table 21. FLD segment type format

Uniqu

Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X FLDSEQ Sequence field, type=U X

5 2 X SEQNUM Sequence number
9 8 C IMSNAME The 8-character IMS name of this field
17 3 C NAMESEQ Indicates if this field is a sequence field
20 1 C SEQUM Indicates whether this field is a unique sequence
field (U) or a non-unique sequence field (M)

21 2 X BYTES The length of this field in bytes
23 2 X START The starting offset of this field from the beginning

of the segment, in bytes. If this field contains data,
the STARTAFT field is not used.

78 IMS: Database Administration

Table 21. FLD segment type format (continued)

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
25 1 C TYPE Indicates what type of binary data IMS uses to
pad empty space in this field:
X
Left-padded, X'00'
P
Left-padded, X'00'
C
Right-padded, X'40'
F
Binary fullword data. Used only for MSDBs.
H
Binary halfword data. Used only for MSDBs.
26 15 C FILLERO1 Reserved
41 9 C DATATYPE The external data type of the field
50 3 C FILLERO2 Reserved
53 2 X PRECISN The precision of a field with a decimal data type
55 2 X SCALE The scale of a field with a decimal data type
57 4 X MINOCCURS The minimum number of elements in a
DATATYPE=ARRAY field.
MINOCCURS is defined as MINOCCUR in the
catalog DBD DFSCDOOQO definition.
61 4 X MAXOCCURS The maximum number of elements in a
DATATYPE=ARRAY field.
MAXOCCURS is defined as MAXOCCUR in the
catalog DBD DFSCDOOQO definition.
65 4 X MAXBYTES The maximum number of bytes in
a DATATYPE=ARRAY field orin a
DATATYPE=STRUCT field that contains an array
69 4 X RELSTART The relative starting offset in bytes from the end
of a dynamic array or struct if an array or struct
occurs in the parent segment before this field
73 128 C NAME The external alias name of this field
201 128 PARENT The external alias name of another field that this
field is nested under
329 128 C REDEFINE The external alias name of another field that
this field can be redefined as. This field and
the field indicated with the REDEFINE field can
be processed with a REDEFINES statement in a
COBOL application.
457 128 C DEPENDON This field contains blanks

Chapter 11. Format of records in the IMS catalog database 79

Table 21. FLD segment type format (continued)

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
585 128 C CASENAME This field contains blanks
713 128 C STARTAFT The external alias name of the field that directly
precedes this field in the segment. If this field
contains data, the START field does not.
841 64 C FILLERO3 Reserved
FLDRMK segment type format
|Search title: IMS 15.4 - Database administration - FLDRMK segment type format
The IMS catalog FLDRMK segment type contains user comments for a database field.
This segment is a direct child of the FLD segment instance that the comments pertain to.
Segment name
FLDRMK
Parent name
FLD
Sequence field
FLDCMSEQ
Segment length
264 bytes
Table 22. FLDRMK segment map
Uniqu
Length Data e Key
Offset (bytes) (bytes) type Field name Description Field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X FLDCMSEQ Sequence field, type=U X
5 2 X SEQNUM Sequence number
7 2 C FILLER Reserved
9 256 C REMARKS User comments for the parent FLD

LCH2IDX segment type format

|Search title: IMS 15.4 - Database administration - LCH2IDX segment type format

80 IMS: Database Administration

The IMS catalog LCH2IDX segment type contains information about a Fast Path secondary index specified

on the LCHILD statement defined in the parent LCHILD segment.

Segment name

LCH2IDX

Parent name
LCHILD

Sequence field

LCH2ISEQ

Segment length
24 bytes

Table 23. LCH2IDX segment map

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X LCH2ISEQ Sequence field, type=U X
5 2 X SEQNUM Sequence number
7 2 C FILLERO1 Reserved
9 8 C IMSNAME IMS name
17 8 C DBDNAME Target secondary index name

LCHILD segment type format

[Search title: IMS 15.4 - Database administration - LCHILD segment type format |

The IMS catalog LCHILD segment type contains information about a relationship between segment types.

Segment name

LCHILD
Parent name
SEGM
Sequence field
LCHLDSEQ
Segment length
72 bytes
Table 24. LCHILD segment map
Length Data Unique
Offset (bytes) (bytes) type Field name Description key field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X LCHLDSEQ Sequence field, type = U X
5 2 X SEQNUM Sequence number
9 8 C IMSNAME Name of the segment type that is associated with the parent
segment type in this logical relationship
17 8 C DBNAME Name of the database that contains the segment identified by

the IMSNAME field

Chapter 11. Format of records in the IMS catalog database 81

Table 24. LCHILD segment map (continued)

Length Data
Offset (bytes) (bytes) type

Field name

Description

Unique
key field

25 4 C

PTR

Identifies the type of pointer used in this logical relationship:

SNGL
Indicates that a logical child first pointer field is reserved
in the parent segment type. This field is used in one of
three ways:

« For alogical parent relationship, the pointer field
contains a direct address pointer to the first occurrence
of a logical child segment type.

« For a HIDAM primary index database relationship, the
pointer field contains a direct address pointer to a
HIDAM root database segment.

« For a secondary index relationship, the pointer field
contains a direct address pointer to an index target
segment.

DBLE
Indicates that two 4-byte pointer fields are reserved in
the logical parent segment type. The first pointer field
contains the address of the first occurrence of the logical
child segment type, and the second pointer field contains
the address of the last occurrence of the logical child
segment type.

NONE
No pointer fields are reserved in the logical parent
segment type. The relationship between the logical
parent and logical child is either not implemented or is
maintained with physically paired segments.

INDX
For the first logical child relationship in a HIDAM
database, this value indicates that the parent segment is
the root segment type in a HIDAM database and the target
segment is the root segment of the primary index for
the database. For subsequent logical child relationships
in a HIDAM database and for other databases, this value
indicates that the target segment type is a secondary
index target for this database.

SYMB
This value indicates that the pointer field in the primary
database does not contain direct target addresses to
the target segments in the secondary index database.
Instead, the pointer field contains the concatenated key
of the target segment. In a secondary index database,
this value indicates that no space is reserved in the index
pointer segments for the address of the target segment.

29 8 C

PAIR

Name of the segment paired with the segment identified in the
IMSNAME field in a bidirectional logical relationship

37 8 C

INDEX

The name of the sequence field of the root segment type of
the HIDAM database that this database is the primary index
for. This field contains data only if this database is the primary
index for a HIDAM database.

82 IMS: Database Administration

Table 24. LCHILD segment map (continued)

Length Data Unique
Offset (bytes) (bytes) type Field name Description key field
45 5 C RULES Indicates how virtual logical child segments are sequenced

during a DL/I insert operation when they do not include a
sequence field or use a non-unique sequence field:

FIRST
If no sequence field exists, new segment instances are
inserted before the first existing instance of the logical
child. If a non-unique sequence field exists, new segment
instances are inserted before all existing instances that
have the same key value as the new instance.

LAST
If no sequence field exists, new segment instances are
inserted after the last existing instance of the logical
child. If a non-unique sequence field exists, new segment
instances are inserted after all existing instances with the
same key value as the new instance.

HERE
The new instance is inserted at the location of the cursor
after the last DL/I call. If there is no current position,
FIRST is used instead.

50 1 C MULTI Indicates whether the LCHILD statement is a member of a
multiple secondary index segment group

51 2 C FILLERO1 Reserved

53 4 X RKSIZE The root key size of the target databases. This field is only used

for partitioned secondary index databases.

57 16 C FILLERO2 Reserved

Related concepts

“Logical relationship types” on page 233
Three types of logical relationships are discussed in this topic.

“The logical child segment” on page 247
When defining a logical child in its physical database, the length specified for it must be large enough to
contain the concatenated key of the logical parent.

Related reference
LCHILD statements (System Utilities)

LCHRMK segment type format

[Search title: IMS 15.4 - Database administration - LCHRMK segment type format
The IMS catalog LCHRMK segment type contains user-specified comments about a logical child
relationship in an IMS database.

This segment is a direct child of the LCHILD segment that comments pertain to.

Segment name
LCHRMK

Parent name
LCHILD

Sequence field
LCHCMSEQ

Segment length
264 bytes

Chapter 11. Format of records in the IMS catalog database 83

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_lchildstmt.htm#ims_lchildstmt

Table 25. LCHRMK segment map

Uniqu

Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X LCHCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved
9 256 C REMARKS User comments for this logical relationship
MAP segment type format

[Search title: IMS 15.4 - Database administration - MAP segment type format

The IMS catalog MAP segment type contains information about a segment type mapping in an IMS

database segment.

Segment name

MAP

Parent name
SEGM

Sequence field

MAPSEQ

Segment length

520 bytes

Table 26. MAP segment type format

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X MAPSEQ Sequence field, type = U X
5 2 X SEQNUM Sequence number
7 2 C FILLER Reserved
9 128 C NAME Name of this map
137 128 C DEPENDON The external name of the control field (found in
the NAME field of the FLD catalog record) that
determines which map case is used for each
mapped segment instance in the user database.
The control field is within this segment or in
the segment that is specified on the CTLSEGNM
parameter.
265 8 C CTLSEGNM The name of the segment whose key feedback
data is used to determine the map case to use for
a segment instance.
273 248 C FILLER Reserved

84 IMS: Database Administration

Related reference
DFSMAP statements (System Utilities)

MAPRMK segment type format

[Search title: IMS 15.4 - Database administration - MAPRMK segment type format

The IMS catalog MAPRMK segment type contains user comments for a segment type mapping definition.

Segment name
MAPRMK

Parent name
MAP

Sequence field
MAPCMSEQ

Segment length
264 bytes

Table 27. MAPRMK segment map

Uniqu

Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X MAPCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved
9 256 C REMARKS User comments for the parent MAP segment
MAR segment type format

[Search title: IMS 15.4 - Database administration - MAR segment type format

The IMS catalog MAR segment type contains information about a field marshaller definition in an IMS
database.

Each FLD segment can have a MAR child segment that contains data marshalling properties for the field.
The information in this segment type is generated from the input parameters of the DFSMARSH statement
of the DBDGEN utility.

Segment name
MAR

Parent name
FLD

Sequence field
MARSEQ

Segment length
704 bytes

Table 28. MAR segment type format

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field

1 2 X LEN Length of this segment

Chapter 11. Format of records in the IMS catalog database 85

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_dfsmapstmt.htm#ims_dfsmapstmt

Table 28. MAR segment type format (continued)

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
3 2 X CTL Control field
5 2 X MARSEQ Sequence field, type=U X
5 2 X SEQNUM Sequence number
7 2 C FILLER Reserved
9 8 C OVERFLOW Reserved
17 1 C SIGN For data with the data type of DECIMAL
(data that uses either the PACKEDDECIMAL or
ZONEDDECIMAL internal type converter), this field
indicates if the data is a signed decimal value.
18 6 C FILLERO1 Reserved
24 25 ENCODING Identifies the encoding type (code page) of the
data in the field identified by the parent FLD
segment
49 50 C PATTERN Identifies the pattern mask to convert the data in
the field identified by the parent FLD segment into
a Java date object
99 30 C ITYPCONV Identifies the internal type converter for the
parent FLD segment. If this field contains data,
the UTYPCONV field contains blanks. The internal
type converter is used to convert IMS data into a
specific type of Java data object.
129 256 C UTYPCONV Identifies the user type converter for the parent
FLD segment. If this field contains data, the
ITYPCONV field contains blanks.
385 256 URL Reserved
641 64 C FILLERO2 Reserved

MARRMK segment type format

[Search title: IMS 15.4 - Database administration - MARRMK segment type format

86 IMS: Database Administration

The IMS catalog MARRMK segment type contains user comments for a field marshaller definition.

Segment name

MARRMK

Parent name
MAR

Sequence field
MARCMSEQ

Segment length

264 bytes

Table 29. MARRMK segment map

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X MARCMSEQ Sequence field, type = U X
5 2 X SEQNUM Sequence number
7 2 C FILLER Reserved
9 256 C REMARKS User comments for the parent MAR segment
PROP segment type format
[Search title: IMS 15.4 - Database administration - PROP segment type format
The IMS catalog PROP segment type contains a user-defined marshaller property definition.
Segment name
PROP
Parent name
MAR
Sequence field
PROPSEQ
Segment length
304 bytes
Table 30. PROP segment type format
Length Uniqu
(bytes Data e key
Offset (bytes)) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X PROPSEQ Sequence field, type = U X
5 2 X SEQNUM Sequence number
9 128 C NAME Name of this user-defined marshaller property
137 128 C VALUE User-defined marshaller property information
265 40 C FILLER Reserved

Related reference

DFSMARSH statements (System Utilities)

SEGM segment type format

|Search title: IMS 15.4 - Database administration - SEGM segment type format

The IMS catalog SEGM segment type contains metadata about an IMS database segment.

This information is generated based on the parameters of the SEGM statement of the DBDGEN utility.

Segment name
SEGM

Chapter 11. Format of records in the IMS catalog database 87

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_dfsmarshstmt.htm#ims_marshalstmt

Parent name
DBD

Sequence field
SEGMSEQ

Segment length
376 bytes

Table 31. SEGM segment type format

Uniqu
Length Data e key

Offset (bytes) (bytes) type Field name Description field

1 2 X LEN Length of this segment.

3 2 C CTL Control field.

5 2 X SEGMSEQ Sequence field, type = U.

5 2 X SEQNUM Sequence number.

9 8 C IMSNAME Name of this segment.

17 8 C PARPHY Name of the physical parent of this segment.

25 4 C PARTYPE Type of physical child pointers (SNGL or DBLE)
that are included in all occurrences of the physical
parent of this segment.

29 8 C PARLOG Name of the logical parent of this segment.

37 8 C PARCHK Indicates whether the concatenated key of the
logical parent is virtual or physical.

45 8 C DBNAME Name of the database that the logical parent of
this segment is defined in.

53 4 X BYTEL Maximum length of a variable-length segment in
bytes, or the number of bytes in the data area of a
fixed-length segment.

57 4 X BYTE2 Minimum length of a variable-length segment in
bytes. If this field contains data, this segment type
is variable-length.

61 8 C FILLERO1 Reserved.

69 3 C RULE1 Path type that must be used to insert, delete, or
replace an instance of this segment type. This field
contains three characters. The first character is
the path type for insert operations, the second
character is the path type for delete operations,
and the third character is the path type for replace
operations.

72 5 C RULE2 The rule that IMS uses when adding a new

instance of a segment type that does not have a
unigue sequence field:

88 IMS: Database Administration

Table 31. SEGM segment type format (continued)

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field

77 8 C SRCSEG1 In a catalog record for a virtual logical child
segment type, this is the name of the real logical
child that corresponds with this virtual logical
child.

In a catalog record for a segment type in a logical
database, this is the name of the source segment
in a physical database that is being defined as a
logical segment type.

85 4 c SRCFBK1 In a catalog record for a virtual logical child
segment type, this field indicates if only the key
of the real logical child or both the key and
data portions of the real logical child are used to
construct this segment type in the user I/O area.

This field is only used for segments in logical
databases.

89 8 C SRCDBN1 Name of the database that contains the segment
type identified in the SRCSEG1 field.

97 8 c SRCSEG2 In a catalog record for a concatenated virtual
logical child segment type, this is the name of the
physical parent of the real logical child segment.

In a catalog record for a segment in a logical
database, this is the name of the logical or physical
parent segment in a physical database that is used
to construct the destination parent section of this
logical concatenated segment.

If this field contains data, this segment is a logical
concatenated segment.

105 4 c SRCFBK2 In a catalog record for a concatenated virtual
logical child segment type, this field indicates if
only the key of the real logical child or both the
key and data portions of the real logical child are
used to construct this segment type in the user I/O
area.

The key value of a concatenated segment is either
the value in the physical twin sequence field or the
logical twin sequence field, depending on which
path the logical child is accessed from.

This field is used only for concatenated segments
in logical databases.

109 8 C SRCDBN2 Name of the database that contains the segment
type identified in the SRCSEG?2 field.
117 8 C COMPRTN Name of the Segment Edit/Compression exit

routine used for this segment.

Chapter 11. Format of records in the IMS catalog database 89

Table 31. SEGM segment type format (continued)

Length Data
Offset (bytes) (bytes) type

Field name

Description

Uniqu
e key
field

125 4 C

COMPDATA

Indicates whether the Segment Edit/Compression
exit routine for this segment only condenses or
modifies data fields and not sequence fields.

129 4 C

COMPINIT

Indicates if initialization and termination
processing control is required for the Segment
Edit/Compression exit routine identified in the
COMPRTN field.

133 4 X

COMPMAX

Indicates the maximum expansion size (in bytes)
for this segment when it is modified by the
Segment Edit/Compression exit routine identified
in the COMPRTN field.

137 3 C

COMPPAD

Indicates that a segment instance will be
padded to the size given in the COMPMAX field
if the Segment Edit/Compression exit routine
compresses it to a smaller size.

140 1

FILLERO2

Reserved.

141 7 C

PTR1

Indicates if pointer fields are reserved in the
segment prefix for a HIER (hierarchic forward
pointer), HIERBWD (hierarchic forward and
backward pointers), TWIN (twin forward pointer),
TWINBWD (twin forward and backward pointers),
or NOTWIN (no reserved field for physical

twin pointers) relationship. See the POINTER=
parameter of the SEGM statement in the DBDGEN
utility for more details about these values.

148 8 C

PTR2

Indicates if pointer fields are reserved in the
segment prefix for a LTWIN (logical twin forward
pointer) or LTWINBWD (logical twin forward and
backward pointers) relationship.

156 6 C

PTR3

Indicates if a pointer field is reserved in the
segment prefix for a LPARNT (pointer to a logical
parent segment) relationship.

162 3 C

PTR4

Indicates if a 4-byte field is reserved in the
segment prefix for a logical relationship counter.

165 6 C

PTR5

Indicates if this segment type is part of a
bidirectional logical relationship.

171 2 X

SSPTR

The number of subset pointers. A value of 0 in this
field indicates that subset pointers are not used in
this segment type.

173 3 C

TYPE

Indicates the type of DEDB dependent segment
for this segment type, either sequential or
dependent.

176 1 C

DSGRP

The data set group identifier for this segment. This
field is only used for segments in a HALDB.

90 IMS: Database Administration

Table 31. SEGM segment type format (continued)

Length Data
Offset (bytes) (bytes) type Field name

Description

Uniqu
e key
field

177 2 X DSGHAL Reserved for internal use.

179 10 C FREQ Estimated number of times that this segment
occurs for each instance of the physical parent.
This value is used by IMS to determine the logical
record length and physical storage block sizes for
data set groups in the database that contains this
segment type.

189 128 C NAME The external alias name for this segment.

317 25 C ENCODING The code page used to encode all character data in
this segment.

342 35 C FILLERO3 Reserved.

Related concepts
“SEGM statement overview” on page 490

The SEGM statement defines a segment type in the database, the position of the segment in the hierarchy,
the physical characteristics of the segment, and the relationship of the segment to other segments.

Related reference
SEGM statements (System Utilities)

SEGMRMK segment type format

[Search title: IMS 15.4 - Database administration - SEGMRMK segment type format

The IMS catalog SEGMRMK segment type contains user comments for a database segment.

Segment name
SEGMRMK

Parent name
SEGM

Sequence field
SGMCMSEQ

Segment length
264 bytes

Table 32. SEGMRMK segment map

Uniqu

Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X SGMCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved
9 256 C REMARKS User comments for the parent SEGM

Chapter 11. Format of records in the IMS catalog database 91

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_segmstmt.htm#ims_segmstmt

XDFLD segment type format

|Search title: IMS 15.4 - Database administration - XDFLD segment type format

The IMS catalog XDFLD segment type contains metadata about an indexed field in a secondary index
relationship.

Each XDFLD segment instance is a direct child of an LCHILD segment instance that defines a secondary
index relationship.

Segment name
XDFLD

Parent name
LCHILD

Sequence field
XDFLDSEQ

Segment length
200 bytes

Draft Comment by bhavadharani.kannan@ibm.com:

The following corrections have been made in the table: the field name at offset 175 has been changed to
NAME instead of FILLER, the CTL field's data type has been corrected to C instead of X, the description
for IMSNAME field has been edited and the draft tag has been removed from the table body as this was

causing the table to disappear from 15.x builds.

Table 33. XDFLD segment type format

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment.
3 2 C CTL Control field.
5 2 X XDFLDSEQ Sequence field, type = U. X
5 2 X SEQNUM Sequence number.
9 8 C IMSNAME Name of this segment.
17 8 C SEGMENT Indicates the name of the index source segment
type for the secondary index relationship.
25 8 C SRCH1 Indicates one of up to five fields in the index
source segment that can be used as search fields
in the secondary index.
33 8 C SRCH2 Indicates one of up to five fields in the index
source segment that can be used as search fields
in the secondary index.
41 8 C SRCH3 Indicates one of up to five fields in the index
source segment that can be used as search fields
in the secondary index.
49 8 C SRCH4 Indicates one of up to five fields in the index
source segment that can be used as search fields
in the secondary index.
57 8 C SRCH5 Indicates one of up to five fields in the index

source segment that can be used as search fields
in the secondary index.

92 IMS: Database Administration

Table 33. XDFLD segment type format (continued)

Length Data

Offset (bytes) (bytes) type Field name

Uniqu
e key

Description field

65 8 C SUBSEQ1

Indicates one of up to five fields in the index
source segment that are used as the subsequence
field of the secondary index.

73 8 C SUBSEQ2

Indicates one of up to five fields in the index
source segment that are used as the subsequence
field of the secondary index.

81 8 C SUBSEQ3

Indicates one of up to five fields in the index
source segment that are used as the subsequence
field of the secondary index.

89 8 C SUBSEQ4

Indicates one of up to five fields in the index
source segment that are used as the subsequence
field of the secondary index.

97 8 C SUBSEQ5

Indicates one of up to five fields in the index
source segment that are used as the subsequence
field of the secondary index.

105 8 C DDATA1

Indicates one of up to five fields in the index
source segment that are used as the duplicate
data field of the secondary index.

113 8 C DDATA2

Indicates one of up to five fields in the index
source segment that are used as the duplicate
data field of the secondary index.

121 8 C DDATA3

Indicates one of up to five fields in the index
source segment that are used as the duplicate
data field of the secondary index.

129 8 C DDATA4

Indicates one of up to five fields in the index
source segment that are used as the duplicate
data field of the secondary index.

137 8 C DDATAS

Indicates one of up to five fields in the index
source segment that are used as the duplicate
data field of the secondary index.

145 8 C EXITRTN

The name of the user-supplied Secondary Index
Database Maintenance exit routine for this
secondary index relationship.

153 8 C PSELRTN

The name of the user-supplied Partition Selection
exit routine that is used when user partitioning

is requested for this HISAM or SHISAM database

that is defined as secondary index for a Fast Path

primary database.

Chapter 11. Format of records in the IMS catalog database 93

Table 33. XDFLD segment type format (continued)

Length Data

Offset (bytes) (bytes) type Field name

Description

161 1 C PSELOPT

Indicates how partition databases in a user
partition group are logically grouped for GN calls
that can process past the end of the first partition:

M (multiple grouping)
The selected user partition and subsequent
partitioned databases are included in the
group as they are defined in the NAME field
of the LCHILD segment instance in the primary
DEDB catalog record.

S (single grouping)
Only the selected user partition database is
used.

162 3 FILLERO1

Reserved.

165 5 C CONSTANT

Indicates a character that identifies every index
pointer in a particular secondary index. This value
differentiates pointers for different secondary
indexes that are stored in the same database.

170 5 X NULLVAL

The pointer suppression value for index search
fields. No index pointers are created when all
of the SRCH fields of the index source segment
contain this value.

175 26 C NAME

Indicates the name of the data field of an index
target segment.

Related concepts
“Creating secondary indexes” on page 313

Secondary indexes are indexes that process a segment type in a sequence other than the one that

is defined by the segment's key. A secondary index can also process a segment type based on a

qualification in a dependent segment.

Related reference
XDFLD statements (System Utilities)

Secondary Index Database Maintenance exit routine (Exit Routines)

XDFLDRMK segment type format

[Search title: IMS 15.4 - Database administration - XDFLDRMK segment type format

The IMS catalog XDFLDRMK segment type contains user-specified comments about the XDFLD segment

type defined by the parent XDFLD segment instance.

Segment name
XDFLDRMK

Parent name
XDFLD

Sequence field
XDFRMSEQ

Segment length
264 bytes

94 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_xdfldstmt.htm#ims_xdfldstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_secondindexdbmaint.htm#ims_secondindexdbmaint

Table 34. XDFLDRMK segment map

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X XDFRMSEQ Sequence field, type = U X
5 2 X SEQNUM Sequence number
7 2 X RMKLEN Remarks length
9 256 C REMARKS User-specified comments for the parent XDFLD

statement definition

PSB record segment formats

[Search title: IMS 15.4 - Database administration - PSB record segment formats |
The PSB record segments in the IMS catalog are used to store information about application program
views and schemas of IMS databases, otherwise known as program specification blocks (PSBs) and
program communication blocks (PCBs).

The following figure shows the high-level organization of an IMS catalog record for a PSB:

HEADER
PSB
DESCX000 Secondary
Index
&
' ' b '
PSBRMK PCB DBDXREF PSBVEND
; l
PCBRMK S5
I
v v
SSRMK SF
|
v
SFRMK

Figure 19. Format of an IMS catalog record for a program specification block

Chapter 11. Format of records in the IMS catalog database 95

DBDXREF segment type format

|Search title: IMS 15.4 - Database administration - DBDXREF segment type format

The IMS catalog DBDXREF segment type contains metadata about a DBD in the intent list of a program

specification block (PSB).

Segment name
DBDXREF

Parent name
PSB

Sequence field
DBDXSEQ

Segment length
48 bytes

Table 35. DBDXREF segment map

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length
3 2 X CTL Control field
5 2 X DBDXSEQ Sequence field, type = U X
5 2 X SEQNUM Sequence number
9 4 X CATVERS Catalog version number
13 13 C TSVERS ACB generation timestamp for this version, in the
following format: yyDDDHHmmssff
26 FILLER Reserved
29 8 C IMSNAME Name of the DBD
37 8 C PSBNAME Name of the PSB that includes the DBD named in
the IMSNAME field in the PSB intent list
Related concepts
“IMS catalog secondary index” on page 109
The IMS catalog secondary index provides a short processing path for determining which PSBs refer to a
specific DBD.
PCB segment type format

|Search title: IMS 15.4 - Database administration - PCB segment type format

The IMS catalog PCB segment type contains metadata about a program control block definition.

Information in this segment type is generated based on the parameters of the PCB statement of the

PSBGEN utility.

Segment name
PCB

Parent name
PSB

Sequence field
PCBSEQ

96 IMS: Database Administration

Segment length
288 bytes

Table 36. PCB segment type format

Length Data
Offset (bytes) (bytes) type Field name

Uniqu
e key
Description field

1 2 X LEN

Length of this segment

3 CTL

Control field

5 PCBSEQ

Sequence field, type=U X

SEQNUM

Sequence number

O X | X | X

2
2
5 2
8 IMSNAME

The name of the physical or logical DBD that is the
primary source of database segments for this PCB.
Other databases may be added to the logical data

structure for this PCB with secondary indexes and

cross references.

In an alternate PCB, this field is the name of the
LTERM that the output message is sent to.

17 8 C PCBNAME

8-character IMS name of this PCB based on
the PCBNAME or LABEL parameter of the PCB
statement.

25 8 C LABEL

8-character IMS name of this PCB based on the
PCB label parameter. If this field contains data,
the PCBNAME field contains blanks.

33 4 C TYPE

Identifies whether this PCB is a standard or
alternate PCB. A standard PCB returns its output
message to the source of the input message. An
alternate PCB returns the message to a different
destination such as a terminal or transaction
queue.

DB
Standard PCB

TP
Alternate PCB

37 4 C PROCOPT

Identifies the processing options for this

PCB. Processing options define what types of
operations an application program using the PCB
can perform. There can be up to four options for
one PCB.

41 8 C PROCSEQ

The name of a secondary index for the database
identified in the IMSNAME field. Application
programs that use this PCB use the processing
sequence of the secondary index rather than the
primary database.

49 8 C PROCSEQD

The name of a secondary index for the Fast
Path database identified in the IMSNAME field.
Application programs that use this PCB use the
processing sequence of the secondary index
rather than the primary Fast Path database.

Chapter 11. Format of records in the IMS catalog database 97

Table 36. PCB segment type format (continued)

Uniqu

Length Data e key

Offset (bytes) (bytes) type

Field name

Description

57 2 X

KEYLEN

The number of bytes in the longest concatenated
key for a hierarchical path of sensitive segments
used in the data structure accessed with this PCB.

59 2 X

COPIES

The number of runtime copies that exist for this
PCB. This value is used for XQUERY processing.

61 4 C

VIEW

Identifies that this PCB for a Fast Path database
uses either the DEDB commit view or the MSDB
commit view.

65 1 C

ALTRESP

Identifies if this alternate PCB can be used instead
of the standard I/O PCB for terminal response
messages in response mode, conversational
mode, or exclusive mode.

66 1 C

EXPRESS

Identifies whether queued messages are sent (Y)
or backed out (N) by this alternate PCB if the
application program using it abends.

67 1 C

MODIFY

Specifies if the destination name for this alternate
PCB can be dynamically modified.

68 1 C

SAMETRM

Identifies if IMS verifies that the destination
logical terminal for this alternate PCB is the
same as the logical terminal that sent the input
message.

69 1 C

SB

Identifies if this PCB is buffered with sequential
buffering when possible.

70 1 C

POS

Identifies whether this PCB uses single (S)
or multiple (M) positioning in the target data
structure.

71 1 C

LIST

Identifies if this PCB is included in the PCB list
passed to an application program when it is given
control.

98 IMS: Database Administration

Table 36. PCB segment type format (continued)

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field

72 1 C PSELOPT Indicates how this PCB logically groups user
partition databases for qualified GN calls without
SSA processing before the end of the data is
reached in the user partition databases:

M
The selected user partition database and
subsequent user partition databases within a
user data partition are grouped as they are
physically defined in the NAME field of the
LCHILD definition of the primary Fast Path
database DBD.

Only the selected user partition database is
used by the PCB. Subsequent user partition
databases are not added to the logical group.

This field is only used for Fast Path secondary
index databases.

73 1 C FILLERO1 Reserved

74 7 C ACCESS Indicates whether this PCB accesses the target
database using the normal secondary index or a
separate logical database.

81 128 C NAME External alias name of this PCB
209 13 C DBDTS DBDGEN timestamp

222 4 X DBVER Requested DBD version

226 63 N/A N/A Reserved bytes

Related concepts

“Coding program specification blocks as input to the PSBGEN utility” on page 494

A PSB is a series of macro instructions that describes an application program's characteristics, its use of
segments and fields within a database, and its use of logical terminals.

Related reference
Full-function or Fast Path database PCB statement (System Utilities)
Alternate PCB statement (System Utilities)

PCBRMK segment type format

[Search title: IMS 15.4 - Database administration - PCBRMK segment type format |

The IMS catalog PCBRMK segment type contains user-specified comments about an IMS program control
block.

This segment is a direct child of the PCB segment instance that the comments pertain to.

Segment name
PCBRMK

Parent name
PCB

Chapter 11. Format of records in the IMS catalog database 99

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_psbgendlipcbstmt.htm#ims_psbgendlipcbstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_psbgenaltpcbstmt.htm#ims_psbgenaltpcbstmt

Sequence field
PCBCMSEQ

Segment length
264 bytes

Table 37. PCBRMK segment map

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X PCBCMSEQ Sequence field, type=U X
5 2 X SEQNUM Sequence number
7 2 C FILLER Reserved
9 256 C REMARKS User comments for this PCB
PSB segment type format
|Search title: IMS 15.4 - Database administration - PSB segment type format
The IMS catalog PSB segment type contains metadata about an IMS program specification block.
Segment name
PSB
Parent name
HEADER
Sequence field
PSBSEQ
Segment length
88 bytes
Table 38. PSB segment type format
Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X SEQNUM Sequence number
9 17 X PSBSEQ Sequence field, type = U X
9 4 X CATVERS Catalog version number
13 13 C TSVERS ACB generation timestamp for this version, in the
following format: yyDDDHHmmssff
26 1 FILLER Reserved
27 2 X RLVL ACB generation utility release level
29 4 X SSASIZE Maximum total length of all SSAs that are used by

the application

100 IMS: Database Administration

Table 38. PSB segment type format (continued)

Uniqu
Length Data e key

Offset (bytes)

(bytes) type

Field name

Description

33

4

X

IOASIZE

Size in bytes of the largest I/O area that are used
by the application program

37

LANG

Compiler language for the message or batch
processing program used by this application

43

IOERCC

The condition code returned to the operating
system when IMS terminates normally and one or
more errors occurred on any database during the
execution of a program that used this PSB. If this
value is 451 and the IMS abend code is U451, IMS
terminates with a U451 abend instead of issuing

a condition code. If the IMS abend code is not
U451, IMS also issues a DFS04261 message.

45

IOERWTOR

Indicates if IMS issues a WTOR DFS0451A error
message and waits for the operator to respond
with the ABEND command before terminating
after a database error.

49

MAXQ

The maximum number of database calls with Qx
command codes between synchronization points
that can be issued with this PSB.

51

LOCKMAX

The maximum number of locks that can
application program can obtain at one time with
this PSB. The value is in thousands of locks. A
value of 0 indicates that there is no limit on the
number of locks that an application program can
obtain with this PSB.

53

CMPAT

Indicates if the PSB is always treated as if it has
an I/O PCB even if it is being executed in Batch-
DL/I

54

OLIC

Indicates if users of this PSB can execute
the Online Database Image Copy utility or the
Surveyor utility

55

GSROLBOK

Indicates whether an internal ROLB call (Y) or a
type 777 user abend (N) is issued for non-GSAM
databases when the following conditions are true:
« The application is a non-message-driven BMP

« The PSB contains a GSAM PCB

« DB2° for z/OS reports a deadlock either on a
thread create or on an SQL call

56

DBLEVEL

Requested default DBD version

57

FILLERO1

Reserved

65

CREATEBY

Reserved

73

16

O|jlo|lo|o

FILLERO3

Reserved

Chapter 11. Format of records in the IMS catalog database 101

Related concepts

“Coding program specification blocks as input to the PSBGEN utility” on page 494

A PSB is a series of macro instructions that describes an application program's characteristics, its use of
segments and fields within a database, and its use of logical terminals.

Related reference
Program Specification Block (PSB) Generation utility (System Utilities)

PSBVEND segment type format

[Search title: IMS 15.4 - Database administration - PSBVEND segment type format |
The IMS catalog PSBVEND segment type contains a short header followed by a large block of unformatted
space.

This segment type is reserved for use by vendor-supplied tools.

Segment name
PSBVEND

Parent name
PSB

Sequence field
PVNDSEQ

Segment length
4000 bytes

Table 39. PSBVEND segment map

Length Uniqu
(bytes Data e key

Offset (bytes)) type Field name Description field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X SEQNUM Segment sequence number

7 2 C FILLER Reserved

9 3992 X DATA Vendor product PSB data

5 2 X PVNDSEQ Sequence field, type=U X

PSBRMK segment type format

[Search title: IMS 15.4 - Database administration - PSBRMK segment type format
The IMS catalog PSBRMK segment type contains user-specified comments about an IMS program
specification block.

This segment is a direct child of the PSB segment instance that the comments pertain to.

Segment name
PSBRMK

Parent name
PSB

Sequence field
PSBCMSEQ

Segment length
264 bytes

102 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_psbgen.htm#ims_psbgen

Table 40. PSBRMK segment map

Uniqu

Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X PSBCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved
9 256 C REMARKS User comments for this PSB

SF segment type format

[Search title: IMS 15.4 - Database administration - SF segment type format
The IMS catalog SF segment type contains information about a sensitive field definition for a sensitive
segment in a program control block (PCB).

Segment name
SF

Parent name
SS

Sequence field
SENFLSEQ

Segment length
40 bytes

Table 41. SF segment type format

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X SENFLSEQ Sequence field, type = U X
5 2 X SEQNUM Sequence number
9 8 C IMSNAME The IMS name of the field as defined in the FLD
catalog record
17 2 X START The offset of the field from the beginning of the
segment as returned in the user I/O area
19 1 C REPL Indicates if the field can be altered on a replace
call
20 21 C FILLER Reserved

SFRMK segment type format

|Search title: IMS 15.4 - Database administration - SFRMK segment type format
The IMS catalog SFRMK segment type contains user comments for a sensitive field definition.

This segment is a direct child of the SF segment instance that the comments pertain to.

Chapter 11. Format of records in the IMS catalog database 103

Segment name
SFRMK

Parent name
SF

Sequence field
SENFLSEQ

Segment length
264 bytes

Table 42. SFRMK segment type format

Uniqu

Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X SENFLSEQ Sequence field, type=U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved
9 256 C REMARKS User comments for the parent SEGM
SS segment type format

|Search title: IMS 15.4 - Database administration - SS segment type format

The IMS catalog SS segment type contains information about a sensitive segment definition for a program

control block (PCB).

Segment name
SS

Parent name
PCB

Sequence field
SENSGSEQ

Segment length
328 bytes

Table 43. SS segment type format

Uniqu

Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment.
3 2 X CTL Control field.
5 2 X SENSGSEQ Sequence field, type = U. X

5 2 X SEQNUM Sequence number.

9 8 C IMSNAME Name of the sensitive segment type.
17 8 C PARENT Name of the direct parent of the sensitive segment

type. If the value of this field is 0, this is a
sensitive root segment type.

104 IMS: Database Administration

Table 43. SS segment type format (continued)

Uniqu

Length Data e key

Offset (bytes) (bytes) type Field name Description

25 4 C PROCOPT The processing options that are valid for use with
this sensitive segment.

29 2 X IDXCNT The number of secondary indexes with a valid
path to this sensitive segment type.

31 2 X SSPTRCNT The number of subset pointers for this sensitive
segment.

33 256 C INDICES A list of up to 32 DBD names of secondary index
databases that have valid path to this sensitive
segment type.

289 2 X SSPNUMO1 Order in which this subset pointer was specified in
the PSB source.

291 1 C SSPSENO1 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

292 1 SSPFILL1 Reserved.

293 2 X SSPNUMO02 Order in which this subset pointer was specified in
the PSB source.

295 1 C SSPSENO02 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

296 1 C SSPFILL2 Reserved.

297 2 X SSPNUMO03 Order in which this subset pointer was specified in
the PSB source.

299 1 C SSPSENO03 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

300 1 SSPFILL3 Reserved.

301 2 X SSPNUMO0O4 Order in which this subset pointer was specified in
the PSB source.

303 1 C SSPSENOQ4 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

304 1 C SSPFILL4A Reserved.

305 2 X SSPNUMO5 Order in which this subset pointer was specified in
the PSB source.

307 1 C SSPSENO5 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

308 1 SSPFILL5 Reserved.

309 2 X SSPNUMO06 Order in which this subset pointer was specified in
the PSB source.

311 1 C SSPSENO06 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

312 1 C SSPFILL6 Reserved.

Chapter 11. Format of records in the IMS catalog database 105

Table 43. SS segment type format (continued)

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
313 2 X SSPNUMO07 Order in which this subset pointer was specified in
the PSB source.
315 1 C SSPSENQ7 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.
316 1 C SSPFILL7 Reserved.
317 2 X SSPNUMO8 Order in which this subset pointer was specified in
the PSB source.
319 1 C SSPSENO08 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.
320 1 C SSPFILL8 Reserved.
321 8 C FILLER Reserved.

Related concepts
“The SENSEG statement” on page 496

The SENSEG statement defines a segment type in the database to which the application program is

sensitive.

Related reference
SENSEG statement (System Utilities)

SSRMK segment type format

[Search title: IMS 15.4 - Database administration - SSRMK segment type format

The IMS catalog SSRMK segment type contains user-specified comments about a sensitive segment

definition.

This segment is a direct child of the SS segment instance that the comments pertain to.

Segment name
SSRMK

Parent name
SS

Sequence field
SENSGSEQ

Segment length
264 bytes

Table 44. SSRMK segment type format

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
1 2 X LEN Length of this segment
3 2 X CTL Control field
5 2 X SENSGSEQ Sequence field, type=U X
5 2 X SEQNUM Sequence number

106 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_psbgensensegstmt.htm#ims_psbgensensegstmt

Table 44. SSRMK segment type format (continued)

Uniqu
Length Data e key
Offset (bytes) (bytes) type Field name Description field
7 2 C FILLER Reserved
9 256 C REMARKS User comments for this sensitive segment
definition

Chapter 11. Format of records in the IMS catalog database 107

108 IMS: Database Administration

Chapter 12. IMS catalog secondary index

[Search title: IMS 15.4 - Database administration - IMS catalog secondary index |
The IMS catalog secondary index provides a short processing path for determining which PSBs refer to a
specific DBD.

Overview

The IMS application environment can contain an arbitrary number of databases that are each accessed
through one or many IMS PSBs. Before an IMS database can be safely changed or removed, the database
administrator must know which applications have a dependency on the database. The IMS catalog
secondary index provides a fast processing path for determining which PSBs have a dependency on a
specific DBD.

The IMS catalog secondary index (DFSCX000) root segment type, DBDPSB, is logically linked to the
DBDXREF segment type in the IMS catalog database. The DFSC prefix is replaced with the catalog alias
prefix, if one is defined to IMS.

The IMSNAME field of the DBDXREF segment type is indexed as the DBD2PSB XDFLD for the secondary
index relationship. The IMSNAME field contains the 8-character IMS name for the DBD that is referenced
by the PSB described by the catalog record. You can search the DBDXREF segment on the IMSNAME (the
DBD name), PSBNAME, or TSVERS fields.

Usage
You can use the IMS catalog secondary index to process the IMS catalog metadata in the following ways:

« Use the DFSCATSX PCB to process the primary catalog database (DFSCD000) with
PROCSEQ=DFSCX000. The DBDXREF segment type is the only segment type defined as a sensitive
segment in this PCB.

« Use the DFSCATXO0 PCB to directly process the catalog secondary index. The secondary index root
segment type (DBDPSB) is the only segment type in the secondary index.

Both PCBs are included in the IMS catalog PSBs, DFSCPxxx, that are dynamically attached to user PSBs
when the IMS catalog is active.

Related concepts

“Creating secondary indexes” on page 313

Secondary indexes are indexes that process a segment type in a sequence other than the one that
is defined by the segment's key. A secondary index can also process a segment type based on a
qualification in a dependent segment.

Application programming with the IMS catalog (Application Programming)
Related reference

“DBDXREF segment type format” on page 96
The IMS catalog DBDXREF segment type contains metadata about a DBD in the intent list of a program
specification block (PSB).

© Copyright IBM Corp. 1974, 2022 109

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_catalog_prog.htm#ims_catalog_prog

110 IMS: Database Administration

Chapter 13. IMS catalog activity records

[Search title: IMS 15.4 - System definition - IMS catalog activity records |

Certain types of activity against the IMS catalog can be logged in z/OS System Management Facility (SMF)
as a type-29, subtype-3 record.

System programmers and administrators can use the activity record in SMF to review IMS catalog
activities.

The type-29 record is exclusive to IMS, and its subtype-3 record is exclusive to the IMS catalog activity
record feature.

Related concepts
Activity records for the IMS catalog (System Definition)

© Copyright IBM Corp. 1974, 2022 111

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_catalog_activity_record.htm#ims_catalog_activity_record

112 IMS: Database Administration

Part 3. Database types and functions

[Search title: IMS 15.4 - Database administration - Database types and functions

IMS databases come in two general classes: full-function and Fast Path. Each class includes different
types of databases and each database type can have different functions and characteristics.

Related concepts

“Types of IMS databases” on page 12

IMS allows you to define many different database types. You define the database type that best suits your
application's processing requirements.

© Copyright IBM Corp. 1974, 2022 113

114 IMS: Database Administration

Chapter 14. Summary of IMS database types and
functions

|Search title: IMS 15.4 - Database administration - Summary of IMS database types and functions |
The following table provides a summary of characteristics, functions, and options of the different types of
IMS databases.

Table 45. Summary of database characteristics and options for database types
Characteristic HSAM HISAM HDAM PHDAM HIDAM PHIDAM DEDB MSDB
N

Hierarchical structures Y Y Y Y Y Y

Direct access storage

Multiple data set groups

Logical relationships

Variable-length segments

Segment Edit/Compression

Data Capture exit routines

Field-level sensitivity

Primary index

Secondary index

zlz|lz|l<|z|lz|lz|z|z]|<
<|=<|=<|=<|=<|=<|=<|=<|z]|=<
<|=<lzl=<|=<|=<|=<|=<]|=<]|=<
<|=<lzl=<|=<|=<|=<|=<]|=<]|=<
<|=<[=<|=<|=<|=<|=<|=<|=<]|=<
<|=<|=<|=<|=<|=<|=<|=<]|=<]|=<
<|=<|lz|lz|l=<|=<|=<|z]lz|=<]|<
<|lzlzlz|lz|lz|lz|z|z2]|=z

Logging, recovery, offline
reorganization

VSAM
OSAM
QSAM/BSAM

N/A
N/A
N/A

Boolean operators

Command codes

Subset pointers

Uses main storage

Z|lZ2|lZ2|1 < <2 <<
Z| Z2|Z2| << Z2| <] <

High parallelism (field call)

Z|I<|I<|Z2|2|Z2

Compaction Y Y

<|=<lzlz|lz|=<|=<|=<|z]|=z
<|=<lzlz|lz|=<|=<|z]|z2]|<
<|=<lzlz|lz|=<|=<|z]|=<]|<
<|=<lzlz|=<|=<|=<|z]|z]|<

DBRC support Required™® N/A

” on page 116

Required

Partitioning support Y

Data sharing

Partition sharing

<|lz|=<|=
<|lz|=<|=z
<|lz|=<|=z
<[=<|[=<|=<
zlz|=z|=z=

Block level sharing
Area sharing N/A N/A N/A N/A N/A N/A
Record deactivation N N N N N N

N/A
N/A

<
<|=<[=<[=<[=<|=<

© Copyright IBM Corp. 1974, 2022 115

Table 45. Summary of database characteristics and options for database types (continued)

Characteristic HSAM HISAM HDAM PHDAM HIDAM PHIDAM DEDB MSDB
Database size med med med lg med lg lg sml
Online utilities N N N N N N Y N
Online reorganization N N N Y N Y Y N
Batch Y Y Y Y Y Y N N

Table notes:

1. The IMS catalog is a PHIDAM database. Unlike other HALDB databases, the IMS catalog PHIDAM
database does not require DBRC support. However, DBRC support is strongly recommended outside of
test and development environments.

Related concepts

“Types of IMS databases” on page 12

IMS allows you to define many different database types. You define the database type that best suits your
application's processing requirements.

“Fast Path database types” on page 187

Fast Path databases include data entry databases (DEDBs) and main storage databases (MSDBs). DEDBs
provide efficient storage for and access to large volumes of data. DEDBs also provide a high level of
availability to that data. MSDBs store and provide access to an installation's most frequently used data.

“Full-function database types” on page 117
IMS full-function databases are hierarchical databases that are accessed through DL/I calls. IMS makes it
possible for application programs to retrieve, replace, delete, and add segments to IMS databases.

“Performance considerations overview” on page 119

The functional and performance characteristics of IMS databases vary from one type of IMS databases to
another. You will want to make an informed decision regarding the type of database organizations which
will best serve your purposes.

116 IMS: Database Administration

Chapter 15. Full-function database types

|Search title: IMS 15.4 - Database administration - Full-function database types

IMS full-function databases are hierarchical databases that are accessed through DL/I calls. IMS makes it

possible for application programs to retrieve, replace, delete, and add segments to IMS databases.

IMS allows you to define twelve database types. Each type has different organization processing
characteristics. Except for DEDB and MSDB, all the database types are discussed in this chapter.

Understanding how the database types differ enables you to choose the type that best suits your
application's processing requirements.

Each database type has its own access method. The following table shows each database type and its
access method:

Table 46. Database types and their access methods

Type of database = Access method

HSAM Hierarchical Sequential Access Method

HISAM Hierarchical Indexed Sequential Access Method
SHSAM Simple Hierarchical Sequential Access Method
SHISAM Simple Hierarchical Indexed Sequential Access Method
GSAM Generalized Sequential Access Method

HDAM Hierarchical Direct Access Method

PHDAM Partitioned Hierarchical Direct Access Method

HIDAM Hierarchical Indexed Direct Access Method

PHIDAM Partitioned Hierarchical Indexed Direct Access Method
PSINDEX Partitioned Secondary Index Database

DEDB Data Entry Database (Hierarchical Direct Access)
MSDB Main Storage Database (Hierarchical Direct Access)

Based on the access method used, the various databases can be classified into two groups: sequential

storage and direct storage.

Related concepts
“Summary of IMS database types and functions” on page 115

The following table provides a summary of characteristics, functions, and options of the different types of

IMS databases.
“Data entry databases” on page 187

Data entry databases (DEDBSs) provide efficient storage for and access to large volumes of data. DEDBs

also provide a high level of availability of that data.
“Main storage databases (MSDBs)” on page 206

The MSDB structure consists of fixed-length root segments only, although the root segment length can

vary between MSDBs.

“Design review 3” on page 28
Your role in design review 3 is to ensure that the flow of transactions is consistent with the database
design you are creating.

“Design review 4” on page 29

© Copyright IBM Corp. 1974, 2022

117

The primary objective of design review 4 is to make sure that system performance will be acceptable.

Sequential storage method

[Search title: IMS 15.4 - Database administration - Sequential storage method |
HSAM, HISAM, SHSAM, and SHISAM databases use the sequential method of accessing data.

With this method, the hierarchical sequence of segments in the database is maintained by putting
segments in storage locations that are physically adjacent to each other. GSAM databases also use the
sequential method of accessing data, but no concept of hierarchy, database record, or segment exists in
GSAM databases.

Direct storage method

[Search title: IMS 15.4 - Database administration - Direct storage method |
HDAM, PHDAM, HIDAM, DEDB, MSDB, and PHIDAM databases use the direct method of accessing data.
With this method, the hierarchical sequence of segments is maintained by putting direct-address pointers
in each segment's prefix.
Related concepts
“Performance considerations overview” on page 119
The functional and performance characteristics of IMS databases vary from one type of IMS databases to
another. You will want to make an informed decision regarding the type of database organizations which
will best serve your purposes.

Databases supported with DBCTL

|Search title: IMS 15.4 - Database administration - Databases supported with DBCTL
Database Control (DBCTL) configuration of IMS supports all IMS full-function databases.

The full-function databases supported by DBCTL include:

HSAM
HISAM
SHSAM
SHISAM
HDAM
PHDAM
HIDAM
PHIDAM
PSINDEX

Databases can be accessed through DBCTL from IMS BMP regions, as well as from independent
transaction-management subsystems. Only batch-oriented BMP programs are supported because DBCTL
provides no message or transaction support.

CICS online programs can access the same IMS database concurrently; however, an IMS batch program
must have exclusive access to the database (if you are not participating in IMS data sharing).

If you have batch jobs that currently access IMS databases through IMS data sharing, you can convert
them to run as BMPs directly accessing databases through DBCTL, thereby improving performance. You
can additionally convert current batch programs to BMPs to access DEDBs.

Related concepts

Batch processing online: batch-oriented BMPs (Application Programming)
Related reference

EXEC parameters for IMS batch message processing regions (System Definition)

118 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_bmpprocessingbatchoriented.htm#ims_bmpprocessingbatchoriented
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_i2hcprp.htm#i2hcprp

Databases supported with DCCTL

[Search title: IMS 15.4 - Database administration - Databases supported with DCCTL |
The DCCTL configuration of IMS supports several database and dependent region combinations.

The database and dependent region combinations supported by the DCCTL configuration of IMS include:

« GSAM databases for BMP regions

« Db2 for z/OS databases for BMP, MPP, and IFP regions through the External Subsystem attachment
facility (ESAF)

« Db2 for z/OS databases for IMP and JBP regions through the DB2 Recoverable Resource Manager
Services attachment facility (RRSAF)
Restriction: DCCTL does not support full-function or Fast Path databases.

Related reading: For more information on RRSAF, see DB2 for z/OS Application Programming and SQL
Guide.

Related concepts

“GSAM databases” on page 139
GSAM databases are sequentially organized databases that are designed to be compatible with z/OS data
sets.

External Subsystem Attach Facility (ESAF) (Communications and Connections)
Related tasks

DB2 Attach Facility (Communications and Connections)

Related reference

IMS system exit routines (Exit Routines)

Performance considerations overview

[Search title: IMS 15.4 - Database administration - Performance considerations overview |
The functional and performance characteristics of IMS databases vary from one type of IMS databases to
another. You will want to make an informed decision regarding the type of database organizations which
will best serve your purposes.

The following lists briefly summarize the performance characteristics of the various full-function database
types, highlighting efficiencies and deficiencies of hierarchical sequential, hierarchical direct, and general
sequential databases.

General sequential (GSAM)
 Supported by DCCTL
« No hierarchy, database records, segments, or keys
e No DLET or REPL
« ISRT adds records at end of data set
« GN and GU processed in batch or BMP applications only
« Allows IMS symbolic checkpoint calls and restart from checkpoint (except VSAM-loaded databases)
- Good for converting data to IMS and for passing data
 Not accessible from an MPP or JMP region
» Space efficient
« Not time efficient
VSAM

- Fixed- or variable-length records are usable
« VSAM ESDS DASD stored

Chapter 15. Full-function database types 119

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.ccg/ims_esaf.htm#ims_esaf
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.ccg/ims_db2af.htm#ims_db2af
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_systemexitroutines.htm#systemexitroutines

« IMS symbolic checkpoint call allowed
« Restart from checkpoint not allowed
BSAM/QSAM
« Fixed-, variable-, or undefined-length records are usable
« BSAM/QSAM DS tape or DASD stored
« Allows IMS symbolic checkpoint calls and restart from checkpoint

Hierarchical sequential
Segments are linked by physical contiguity

HSAM

» Supported by DBCTL

- Physical sequential access to roots and dependents stored on tape or DASD
« ISRT allowed only when database is loaded

« GU, GN, and GNP allowed

- Database update done by merging databases and writing new database

« QSAM and BSAM accessible

» Space efficient but not time efficient

« Sequential access

HISAM

« Supported by DBCTL

« Hierarchical indexed access to roots

» Sequential access to dependents

 Stored on DASD

« VSAM accessible

« All DL/I calls allowed

« Index is on root segment sequence field

« Good for databases not updated often

» Not space efficient with many updates

« Time efficient with SSA-qualified calls
SHSAM

« Supported by DBCTL

« Simple hierarchical sequential access method to root segments only
« ISRT allowed only when database is loaded

« GU, GN, and GNP allowed

« Database update done by reloaded database

« QSAM and BSAM accessible

« Allows IMS symbolic checkpoint calls and restart from checkpoint (except VSAM-loaded
databases)

« Good for converting data to IMS and for passing data
» Not accessible from an MPP or JMP region

 Space efficient

« Not time efficient

120 IMS: Database Administration

SHISAM

Supported by DBCTL

Simple hierarchical indexed access to roots only
Stored on DASD

VSAM accessible

All DL/I calls allowed

Good for converting data to IMS and for passing data
Not space efficient

Time efficient

Hierarchical direct
Segments are linked by pointers

HDAM

Supported by DBCTL

Hashing access to roots

Sequential access by secondary index to segments

All DL/I calls allowed

Stored on DASD in VSAM ESDS or OSAM data set

Good for direct access to records

Hierarchical pointers allowed

— Hierarchical sequential access to dependent segments
— Better performance than child and twin pointers

— Less space required than child and twin pointers

Child and twin pointers allowed

— Direct access to pointers

— More space required by additional index VSAM ESDS database

HIDAM

Supported by DBCTL

Indexed access to roots

Pointer access to dependent segments

All DL/I calls allowed

Stored on DASD in VSAM ESDS or OSAM data set

Good for random and sequential access to records

Good for random access to segment paths

Hierarchical pointers allowed

— Hierarchical sequential access to dependent segments
— Better performance than child and twin pointers

— Less space required than child and twin pointers

Child and twin pointers allowed

— Direct access to pointers

— More space required by additional index VSAM ESDS database

HALDB partitioned hierarchical direct
Segments are linked by pointers. HALDB databases contain one to 1 001 partitions. HALDB databases
are the best choice for large databases

Chapter 15. Full-function database types 121

PHDAM

» Supported by DBCTL

» Supports up to 1 001 partitions

« Partitions support up to 10 database data sets and one indirect list data set (ILDS)
« Maximum size for OSAM data sets is 4 or 8 GB and for VSAM data sets is 4 GB

- Partitions within the database can be allocated, authorized, processed, reorganized, and
recovered independently of the other partitions in the database

- Parallel processing of partitions reduces reorganization times
« Each partition can have a different root addressable area (RAA)
- Indirect pointers are used for logical relationships and secondary indexes, which:

— Allow for the automatic update, or self healing, of indirect pointers after database
reorganizations

— Require an ILDS for each partition
« Hashing access to roots
« Sequential access by secondary index to segments
« ALl DL/I calls allowed
 Stored on DASD in VSAM ESDS or OSAM data sets
« Good for direct access to records
- Direct pointers are used in logical relationships, and symbolic pointers are not supported
« No hierarchical pointers
« Child and twin pointers allowed

— Direct access to pointers
— More space required by additional index VSAM ESDS database

PHIDAM

» Supported by DBCTL
« Supports up to 1 001 partitions

« Partitions support up to 10 database data sets, one primary index data set, and one indirect list
data set (ILDS)

« Maximum size for OSAM data sets is 4 or 8 GB and for VSAM data sets is 4 GB

- Partitions within the database can be allocated, authorized, processed, reorganized, and
recovered independently of the other partitions in the database

- Parallel processing of partitions reduces reorganization times
- Indirect pointers are used for logical relationships and secondary indexes, which:

— Allow for the automatic update, or self healing, of indirect pointers after database
reorganizations

— Require an ILDS for each partition
« Indexed access to roots

« Primary index is a nonrecoverable database, so database update logs are smaller, even before
they are compressed when moved to the SLDS

» Record keys are stored in sequence within each partition; whether the sequence of records is
maintained across partitions depends on the method of partition selection used

« Pointer access to dependent segments
 ALLDL/I calls allowed
 Stored on DASD in a VSAM ESDS or OSAM data set

122 IMS: Database Administration

» Good for random and sequential access to records

« Good for random access to segment paths

- Direct pointers are used in logical relationships and symbolic pointers are not supported
« No hierarchical pointers

« Child and twin pointers allowed

— Direct access to pointers
— More space required by additional index VSAM ESDS database

HALDB partitioned secondary index
PSINDEX

« Supported by DBCTL

» Supports up to 1 001 partitions

- Partitions support only a single data set
 Stored on DASD in VSAM KSDS data set

e Maximum size of the VSAM data set is 4 GB

« Do not need to rebuild after reorganizations of the indexed database because of the HALDB
self-healing pointer process

« Partitions within the partitioned secondary index (PSINDEX) can be allocated, authorized,
processed, reorganized, and recovered independently of the other partitions in the database

« Segments have a larger prefix than non-partitioned secondary indexes to accommodate both a
28-byte extended pointer set (EPS) and the length of the root key of the secondary index target
segment

 Does not support shared secondary indexes
« Does not support symbolic pointers
» Requires that the secondary index record segments have unique keys

Related concepts

“Summary of IMS database types and functions” on page 115
The following table provides a summary of characteristics, functions, and options of the different types of
IMS databases.

“Data entry databases” on page 187
Data entry databases (DEDBSs) provide efficient storage for and access to large volumes of data. DEDBs
also provide a high level of availability of that data.

“Main storage databases (MSDBs)” on page 206
The MSDB structure consists of fixed-length root segments only, although the root segment length can
vary between MSDBs.

“Direct storage method” on page 118

HDAM, PHDAM, HIDAM, DEDB, MSDB, and PHIDAM databases use the direct method of accessing data.
With this method, the hierarchical sequence of segments is maintained by putting direct-address pointers
in each segment's prefix.

Nonrecoverable full-function databases

[Search title: IMS 15.4 - Database administration - Nonrecoverable full-function databases

You can define a full-function database as nonrecoverable in the RECON data set by using DBRC
commands.

When a full-function database is defined as nonrecoverable, each time the data in the database is
updated, IMS logs only the data as it exists before the update. IMS does not log the data as it exists after
the update. For this reason, you can backout updates to a nonrecoverable full-function database, but you
cannot recover a database by reapplying updates to a prior image copy of the database.

Chapter 15. Full-function database types 123

This "before" image of the data from nonrecoverable full-function databases is logged in type X'50' log
records.

You can use the NONRECQV keyword on either of the DBRC commands INIT.DB or CHANGE.DB to define
a database as nonrecoverable.

Related tasks

Making databases recoverable or nonrecoverable (Operations and Automation)

Related reference

INIT.DB command (Commands)

CHANGE.DB command (Commands)

HSAM databases

[Search title: IMS 15.4 - Database administration - HSAM databases |
Hierarchical sequential access method (HSAM) databases use the sequential method of accessing data.
All database records and all segments within each database record are physically adjacent in storage.

An HSAM database can be stored on tape or on a direct-access storage device. They are processed

using either basic sequential access method (BSAM) or queued sequential access method (QSAM) as the
operating system access method. Specify your access method on the PROCOPT= parameter in the PCB. If
you specify PROCOPT=GS, QSAM is always used. If you specify PROCOPT=G, BSAM is used.

HSAM data sets are loaded with root segments in ascending key sequence (if keys exist for the root) and
dependent segments in hierarchical sequence. You do not need to define a key field in root segments. You
must, however, present segments to the load program in the order in which they must be loaded. HSAM
data sets use a fixed-length, unblocked record format (RECFM=F), which means that the logical record
length is the same as the physical block size.

HSAM databases can only be updated by rewriting them. Delete (DLET) and replace (REPL) calls are

not allowed, and insert (ISRT) calls are only allowed when the database is being loaded. Although the
field-level sensitivity option can be used with HSAM databases, the following options cannot be used with
HSAM databases:

« Multiple data set groups

- Logical relationships

- Secondary indexing

- Variable-length segments

- Segment edit/compression exit routine
« Data Capture exit routines

« Asynchronous data capture

- Logging, recovery, or reorganization

Multiple positioning and multiple PCBs cannot be used in HSAM databases.

When to use HSAM

[Search title: IMS 15.4 - Database administration - When to use HSAM |
HSAM is used for applications requiring sequential processing only.

The uses of HSAM are limited because of its processing characteristics. Typically, HSAM is used for
low-use files. These are files containing, for example, audit trails, statistical reports or files containing
historical or archive data that has been purged from the main database.

How an HSAM record is stored

[Search title: IMS 15.4 - Database administration - How an HSAM record is stored

124 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.oag/ims_makedb_recover.htm#ims_makedb_recover
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/compcmds/ims_initdb.htm#ims_cr3initdb
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/compcmds/ims_chgdb.htm#ims_cr3chgdb

Segments in an HSAM database are loaded in the order in which you present them to the load program.

You should present all segments within a database record in hierarchical sequence. If a sequence
field has been defined for root segments, you should present database records to the load program
in ascending root key sequence.

The following figure shows an example HSAM database.

SKILL
1
| NAME ‘
NAME |3
NAME |2
1
v .
.| ExPR }
EXPR |4 .| EDUC
.| Expr |3 .| Ebuc 3]
EXPR |2 EDUC |2

1 1

Figure 20. Example HSAM database

The following figure shows how the example HSAM database shown in the preceding figure would be
stored in blocks.

Block1 Block 2 Block?3
SKILL1 MNAME1 EXPR1 | EDUCH MAME 2 EXPRZ | EXPR3 | EXPAR4 NAMED | EDUC2 EDLICE
i e,
/ e
/ . .
ra m\\ Beginning of next
;’f “\x\ database record
i
/ .
Prefix Data |
|
Segment | Delete MAME1 data
code byba

11
Figure 21. Example HSAM database stored in blocks

In the data set, a database record is stored in one or more consecutive blocks. You define what the block
size will be. Each block is filled with segments of the database record until there is not enough space left
in the block to store the next segment. When this happens, the remaining space in the block is padded
with zeros and the next segment is stored in the next consecutive block. When the last segment of a
database record has been stored in a block, any unused space, if sufficient, is filled with segments from
the next database record.

In storage, an HSAM segment consists of a 2-byte prefix followed by user data. The first byte of the prefix
is the segment code, which identifies the segment type to IMS. This number can be from 1 to 255. The
segment code is assigned to the segment by IMS in ascending sequence, starting with the root segment
and continuing through all dependents in hierarchical sequence. The second byte of the prefix is the
delete byte. Because DLET calls cannot be used against an HSAM database, the second byte is not used.

Chapter 15. Full-function database types 125

DL/I calls against an HSAM database

|Search title: IMS 15.4 - Database administration - DL/I calls against an HSAM database

Initial entry to an HSAM database is through GU or GN calls. When the first call is issued, the search for
the desired segment starts at the beginning of the database and passes sequentially through all segments

stored in the database until the desired segment is reached.

After the desired segment is reached, its position is used as the starting position for any additional calls

that process the database in a forward direction.

After position in an HSAM database has been established, the way in which GU calls are handled depends
on whether a sequence field is defined for the root segment and what processing options are in effect.
The following figure shows a flow chart of the actions taken based on whether a sequence field is defined

and what processing options are in effect.

GUcall
Issued

Root

segment Mo

sequence field
defined?

Searchforward
SSAKey<SSAKey from current
onlastcall? positionin
database

PSEFROCOPT= GS

Search forward
from beginning

of database

|a

Backspace 2 blocks
read forward 1

Figure 22. GU calls against an HSAM database

No sequence field defined

[Search title: IMS 15.4 - Database administration - No sequence field defined

126 IMS: Database Administration

If no sequence field has been defined, each GU call causes the search for the desired segment to start at
the beginning of the database regardless of current position.

This allows direct processing of the HSAM database. The processing, however, is restricted to one volume.

Sequence field defined

[Search title: IMS 15.4 - Database administration - Sequence field defined |
If a sequence field has been defined and the GU call retrieves a segment that is forward in the database,
the search starts from the current position and moves forward to the desired segment.

If access to the desired segment requires backward movement in the database, the PROCOPT=
parameters G or GS (specified during PSBGEN) determine how backward movement is accomplished.

If you specify PROCOPT=GS (that is, the database is read using QSAM), the search for the desired
segment starts at the beginning of the database and moves forward. If you specify PROCOPT=G (that is,
the database is read using BSAM), the search moves backward in the database. This is accomplished by
backspacing over the block just read and the block previous to it, then reading this previous block forward
until the wanted segment is found.

Because of the way in which segments are accessed in an HSAM database, it is most practical to access
root segments sequentially and dependent segments in hierarchical sequence within a database record.
Other methods of access, involving backspacing, rewinding of the tape, or scanning the data set from the
beginning, can be time consuming.

As stated previously, DLET and REPL calls cannot be issued against an HSAM database. ISRT calls are
allowed only when the database is being loaded. To update an HSAM database, you must write a program
that merges the current HSAM database and the update data. The update data can be in one or more
files. The output data set created by this process is the new updated HSAM database. The following figure
illustrates this process.

Existing HSAM database

Iﬁ or ":i | Mew (upated)

Tape DASD HSAM database

I
|

ljﬂ
o

Update file "= Tape DASD
— Application
Q_9 or 1 program
Tape DASD ‘

Figure 23. Updating an HSAM database

HISAM databases

[Search title: IMS 15.4 - Database administration - HISAM databases
In a hierarchical indexed sequential access method (HISAM) database, as with an HSAM database,
segments in each database record are related through physical adjacency in storage.

Unlike HSAM, however, each HISAM database record is indexed, allowing direct access to a database
record. In defining a HISAM database, you must define a unique sequence field in each root segment.
These sequence fields are then used to construct an index to root segments (and therefore database
records) in the database.

Chapter 15. Full-function database types 127

HISAM databases are stored on direct-access devices. They can be processed using the virtual storage
access method (VSAM) utility. Unlike HSAM, all DL/I calls can be issued against a HISAM database. In
addition, the following options are available for HISAM databases:

- Logical relationships
« Secondary indexing

Variable-length segments

Segment edit/compression exit routine

Data Capture exit routines

Field-level sensitivity
- Logging, recovery, and reorganization

Criteria for selecting HISAM

[Search title: IMS 15.4 - Database administration - Criteria for selecting HISAM |
You should use HISAM when you need sequential or direct access to roots and sequential processing of
dependent segments in a database record.

HISAM is a good choice of data organization when your database has most, or all, of the following
characteristics.

« Each root has few dependents.

Root segment access is indexed, and is therefore fast. Dependent segment access is sequential, and is
therefore slower.

« You have a small number of delete operations against the database.

Except for deleting root segments, all delete operations result in the creation of space that is unusable
until the database is reorganized.

« Your applications depend on a small volume of root segments being inserted within a narrow key range
(VSAM).

Root segments inserted after initial load are inserted in root key sequence in the appropriate CI in the
KSDS. If many roots have keys within a narrow key range, many CI splits can occur. This will degrade
performance.

» Most of your database records are about the same size.

The similar sizes allow you to pick logical record lengths and CI sizes so most database records fit on
the primary data set. You want most database records to fit on the primary data set, because additional
read and seek operations are required to access those parts of a database record on the overflow

data set. Additional reads and seeks degrade performance. If, however, most of the processing you do
against a database record occurs on segments in the primary data set (in other words, your high-use
segments fit on the primary data set), these considerations might not be as important.

Having most of your database records the same size also saves space. Each database record starts at
the beginning of a logical record. All space in the logical records not used by the database record is
unusable. This is true of logical records in both the primary and overflow data set. If the size of your
database records varies tremendously, large gaps of unused space can occur at the end of many logical
records.

How a HISAM record is stored

[Search title: IMS 15.4 - Database administration - How a HISAM record is stored |
HISAM database records are stored in two data sets: a primary data set and an overflow data set.

The primary data set contains an index and all segments in a database record that can fit in one logical
record. The index provides direct access to the root segment (and therefore to database records). The
overflow data set, contains all segments in the database record that cannot fit in the primary data set. A

128 IMS: Database Administration

key-sequenced data set (KSDS) is the primary data set and an entry-sequenced data set (ESDS) is the
overflow data set.

There are several things you need to know about storage of HISAM database records:

« You define the logical record length of both the primary and overflow data set (subject to the rules
listed in this topic). The logical record length can be different for each data set. This allows you to
define the logical record length in the primary data set as large enough to hold an "average" database
record or the most frequently accessed segments in the database record. Logical record length in the
overflow data set can then be defined (subject to some restrictions) as whatever is most efficient given
the characteristics of your database records.

- Logical records are grouped into control intervals (CIs). A control interval is the unit of data transferred
between an I/0 device and storage. You define the size of CIs.

- Each database record starts at the beginning of a logical record in the primary data set. A database
record can only occupy one logical record in the primary data set, but overflow segments of the
database record can occupy more than one logical record in the overflow data set.

 Each logical record in the overflow data set contains segments from only one database record. Any free
space in the logical record can only be used for inserts into the same database record. This can make
the sizing of logical records difficult when database records vary in size. Large logical record sizes tend
to waste space. Small sizes tend to spread database records over more logical records. This requires
IMS to do more I/Os to process the database.

« Segments in a database record cannot be split and stored across two logical records. Because of this
and because each database record starts a new logical record, unused space exists at the end of many
logical records. When the database is initially loaded, IMS inserts a root segment with a key of all X'FF's
as the last root segment in the database.

The following figure shows four HISAM database records.
SKILL
SKILL 4

SKILL 3
SKILL | 2

l J’N,e:nlle

NAME ‘4
| NAME |3
NAME |2
1
* EDUC
} » EDUC |6
——+ EDUC |5
. l » EDUC |4
SALARY » EDUC 3
_ SALARY ‘E » EDUC |2
1 1 1

Figure 24. Example HISAM database records

Chapter 15. Full-function database types 129

The following figure shows the four records from the preceding figure as they are initially stored on the
primary and overflow data sets. In storage, a HISAM segment consists of a 2-byte prefix followed by

user data. The first byte of the prefix is the segment code, which identifies the segment type to IMS.

This number can be from 1 to 255. The segment code is assigned to the segment by IMS in ascending
sequence, starting with the root segment and continuing through all dependents in hierarchical sequence.
The second byte of the prefix is the delete byte.

Primary data set Overflow data set

SKILLZ |5KILL4 |

—t= EDUC2 | EDUCE [MAME2 |EXPR1 —~

SKILL1 | NAME1 | EDUCA

e EXPRZ | SALARY

SKILLZ | MAME3 | EXPR3

L, SALARY|namE4 |EDUCE [EDUCS —

SKILL3 + 1
EDUCE
SKILLA
. S »
M e

“‘f—h______ _x_ﬁ_ﬁ.___f — o
Prefix Data
Segment [relate .
coda bryte ESKILLA data

1
Figure 25. Example HISAM database records in storage

Each logical record in the primary data set contains the root plus all dependents of the root (in
hierarchical sequence) for which there is enough space. The remaining segments of the database record
are put in the overflow data set (again in hierarchical sequence). The two "parts" of the database record
are chained together with a direct-address pointer. When overflow segments in a database record use
more than one logical record in the overflow data set, as is the case for the first and second database
records in the preceding figure, the logical records are also chained together with a direct-address pointer.
Note in the figure that HISAM indexes do not contain a pointer to each root segment in the database.
Rather, they point to the highest root key in each block or CI.

The following figure illustrates the following points regarding the structure of a logical record in a HISAM
database:

- In alogical record, the first 4 bytes are a direct-address pointer to the next logical record in the
database record. This pointer maintains all logical records in a database record in correct sequence. The
last logical record in a database record contains zeros in this field.

« Following the pointer are one or more segments of the database record in hierarchical sequence.

- Following the segments is a 1-byte segment code of 0. It says that the last segment in the logical record
has been reached.

130 IMS: Database Administration

RBA Segment Segment | Segment
code

of 0

|

Bytes 4 Varies i

Figure 26. Format of a logical record in a HISAM database

HISAM does not support multiple data set groups. You may define only two data sets, the primary (KSDS)

and the overflow (ESDS), for a HISAM database.

Accessing segments

Unused
space

Varies

[Search title: IMS 15.4 - Database administration - Accessing segments

When accessing a segment in a HISAM database, the application program follows a set search sequence.

In HISAM, when an application program issues a call with a segment search argument (SSA) qualified on

the key of the root segment, the segment is found by:

1. Searching the index for the first pointer with a value greater than or equal to the specified root key (the

index points to the highest root key in each CI)
2. Following the index pointer to the correct CI

3. Searching this CI for the correct logical record (the root key value is compared with each root key in the

CI)

4. When the correct logical record (and therefore database record) is found, searching sequentially

through it for the specified segment

If an application program issues a GU call with an unqualified SSA for a root segment or with an SSA
qualified on other than the root key, the HISAM index cannot be used. The search for the segment starts
at the beginning of the database and proceeds sequentially until the specified segment is found.

Inserting root segments using VSAM

[Search title: IMS 15.4 - Database administration - Inserting root segments using VSAM

After an initial load, root segments inserted into a HISAM database are stored in the primary data set in

ascending key sequence.

The CI might or might not contain a free logical record into which the new root can be inserted. Both

situations are described next.

A free logical record exists

[Search title: IMS 15.4 - Database administration - A free logical record exists

This example shows how insertion takes place when a free logical record exists.

In the following figure, the new root is inserted into the CI in root key sequence. If there are logical
records in the CI containing roots with higher keys, they are "pushed down" to create space for the new

logical record.

Chapter 15. Full-function database types 131

Before
e ™

] KsDs [7] ESDS

— Root21 |

|j0 Dependent | Dependent Dapendant|
Dependent | Depandent |

& | Aoot14 | Dependent | Dependent

—= | Root21 | Dependent | Dependent

;‘[|D&p&nﬂant Dependent|

Insert Root 16

After

"] ksDs [7] ESDS

— Root21 |

Ij' Dependent | Depandant Dependant|
Dependent | Dapandant Dapendant|

‘> & Rooctid | Dependent | Dependent

—# | Root 16 | Dependent | Dependent
Root 21

Y

Dependent

Depandant | ‘

Dependent

b >

Figure 27. Inserting a root segment into a HISAM database (free logical record exists in the CI)

No free logical record exists

[Search title: IMS 15.4 - Database administration - No free logical record exists

This example shows how insertion takes place when no free logical record exists in the CI.

The Cl is split forming two new CIs, both equal in size to the original one. Where the CI is split depends on
what you have coded in the INSERT=parameter on the OPTIONS statement in the DFSVSAMP data set for
batch environments or the DFSVSMxx PROCLIB member for online environments.

The split can occur at the point at which the root is inserted or midpoint in the CI. After the CI is split, free
logical records exist in each new CI and the new root is inserted into the proper CI in root key sequence.
If, as was the case in the figure shown in “A free logical record exists” on page 131, logical records in the
new CI contained roots with higher keys, those logical records would be "pushed down" to create space
for the new logical record.

132 IMS: Database Administration

When adding new root segments to a HISAM database, performance can be slightly improved if roots are
added in ascending key sequence.

BEFORE

KsDS

>

>

ESDS

Root 21 |
|:1 Ty i Dependent | Dependant |Dependenl
Root14 | Dependent | Dependent I:_.
Dapendent Dapanden1|
Rootié |Dependent | Dapendent
’—I Root21” | Dependent | Dependent
] » | Dependent Dependen1|
[|—b- Dependent
____—‘—‘_ﬁ_ﬂ___ﬂ_f"f \\‘—_‘_‘_‘—__.__444—‘/
1 Containing Index
3 LogicalRecords
InsertRoot15

AFTER

KsSDS

< >

l

< >

ESDS

Logical Records

]
Root 16 |Root21 |
|: 1 * Dependent | Dependant |Depandanl
Root14 | Dependent | Dependent I:_’
Dapandent Depandem|
Root1s | Dependent
TF’maHE Dependent | Dependeant
L Dapeandent Depanden1|
L l| Root 21 IDepandanl Dapendent |'" Dapandemnt
MNew Cl
Containing 3

Figure 28. Inserting a root segment into a HISAM database (no free logical record exists in the CI)

Related reference
DFSVSMxx member of the IMS PROCLIB data set (System Definition)

DD statements for IMS procedures (System Definition)

Inserting dependent segments

[Search title: IMS 15.4 - Database administration - Inserting dependent segments

Chapter 15. Full-function database types 133

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_dfsvsmxx_proclib.htm#ims_dfsvsmxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_dd_statements.htm#ims_dd_statements

Dependent segments inserted into a HISAM database after initial load are inserted in hierarchical
sequence. IMS decides where in the appropriate logical record the new dependent should be inserted.

Two situations are possible. Either there is enough space in the logical record for the new dependent or
there is not.

The following figure shows how segment insertion takes place when there is enough space in the logical
record. The new dependent is stored in its proper hierarchical position in the logical record by shifting the
segments that hierarchically follow it to the right in the logical record.

[j Primary or overflow

‘ Root14 ‘ DependentA | DependentD

Insert segment B

E Primary or overflow

Root14 | DependentA | DependentB | DependentD

Figure 29. Inserting a dependent segment into a HISAM database (space exists in the logical record)

The following figure shows how segment insertion takes place when there is not enough space in the
logical record. As in the previous case, new dependents are always stored in their proper hierarchical
sequence in the logical record. However, all segments to the right of the new segment are moved to the
first empty logical record in the overflow data set.

134 IMS: Database Administration

Before

After

Clorblock containing two logical records

~

D Primary

Root 14

Root 16

Dependent A
Dapendent A

DependentB | DependentD

DepandentB | Dependent D

j Overflow

Depandant |

DependentH | DepandentF N

Deapandant M

Fy

Dapendent K | DepandantJ

Drapendent X

Insert dependent segment G

for root 14

-
D Primary

| Root 14

Depandent A

DepandentB | Dependent [

| Root 16

Dapandent A

DepandentB | Dependent D

j Overflow

¥

-

Dependent G | DependentF [*

-

Deapandent b

re

Dependent K | DepandantJ

Drapresrvdert X

NS

DependentH | Dependent |

i

Figure 30. Inserting a dependent segment into a HISAM database (no space exists in the logical record)

Deleting segments

[Search title: IMS 15.4 - Database administration - Deleting segments

When segments are deleted from a HISAM database, they are marked as deleted in the delete byte in
their prefix. They are not physically removed from the database; the one exception to this is discussed
later in this topic.

Dependent segments of the deleted segment are not marked as deleted, but because their parent is, the
dependent segments cannot be accessed. These unmarked segments (as well as segments marked as
deleted) are deleted when the database is reorganized.

Chapter 15. Full-function database types 135

One thing you should note is that when a segment is accessed that hierarchically follows deleted
segments in a database record, the deleted segments must still be “searched through”. This concept
is shown in the following figures.

Segment B2 is deleted from this database record. This means that segment B2 and its dependents (C1,
C2, and C3) can no longer be accessed, even though they still exist in the database.

Cc3
cz

c1

Figure 31. The hierarchical segment layout on the database

A request to access segment D1 is made. Although segments B2, C1, C2, and C3 cannot be accessed,
they still exist in the database. Therefore they must still be “searched through” even though they are
inaccessible as shown in the following figure.

ol l‘l‘l‘l

A B1 B2 c1

c2 C3 DA

Figure 32. Accessing a HISAM segment that hierarchically follows deleted segments

In one situation, deleted segments are physically removed from the database. If the deleted segment is a
root, the logical record containing the root is erased, provided neither the root nor any of its dependents
is involved in a logical relationship. The default is ERASE=YES, and no "mark buffer altered" takes place.
Thus a PROCOPT=G read job will not have to wait for locks after another job has set the delete byte,

and will return a segment not found condition. To be consistent with other DB types, use ERASE=NO to
cause a wait for physical delete prior to attempted read. The ERASE parameter is specified on the DBD
statement of the DFSVSMxx PROCLIB member.

After the logical record is removed, its space is available for reuse. However, any overflow logical record
containing dependents of this root is not available for reuse. Except for this special condition, you must
unload and reload a HISAM database to regain space occupied by deleted segments.

Related concepts

“Locking to provide program isolation” on page 171
For all database organizations, the basic item locked is the database record.

Replacing segments

|Search title: IMS 15.4 - Database administration - Replacing segments

136 IMS: Database Administration

Replacing segments in a HISAM database is straightforward as long as fixed length segments are being
used. The data in the segment, once changed, is returned to its original location in storage. The key field in
a segment cannot be changed.

When variable-length segments are used there are other implications to consider.

Related concepts

“Variable-length segments” on page 357

Variable-length segments are simply segments whose length can vary in occurrence of some segment
types.

SHSAM, SHISAM, and GSAM databases

[Search title: IMS 15.4 - Database administration - SHSAM, SHISAM, and GSAM databases |
You typically use simple hierarchical sequential access method (SHSAM), simple hierarchical indexed
sequential access method (SHISAM), and generalized sequential access method (GSAM) databases either
when converting a non-database system to IMS or when passing data from one application program to
another.

When converting from a non-database system to IMS, SHSAM, SHISAM, and GSAM databases allow
existing programs, using z/OS access methods, to remain usable during the conversion to IMS. This is
possible because the format of the data in these databases is the same as in the z/OS data sets.

When a database (or non-database) application program passes data to a database (or non-database)
application program, it first puts the data in a SHSAM, SHISAM, or GSAM database. The database (or
non-database) application program then accesses the data from these databases.

If you have application programs that need access to both IMS and z/0S data sets, you can use
SHSAM, SHISAM, or GSAM. Which one you use depends on what functions you need. The following table
compares the characteristics and functions available for each of the three types of databases.

Table 47. Comparison of SHSAM, SHISAM, and GSAM databases

Characteristics and functions SHSAM SHISAM GSAM
Uses hierarchical structure NO NO NO
Uses segment prefixes NO NO NO
Supports variable-length records NO NO YES
Supports checkpoint/restart NO YES? YES?
Compatible with non-IMS data sets YES YES YES
Supports VSAM as the operating system access method NO YES YES
Supports BSAM as the operating system access method YES NO YES
Accessible from a batch region YES YES YES
Accessible from a batch message processing region YES YES YES
Accessible from a message processing region YES YES NO
Supports logging support NO YES NO
Supports GET calls YES YES YES
Supports ISRT calls YES? YES YES3
Supports CICS-DBCTL YES YES NO
Supports DCCTL NO NO YES
Note:

Chapter 15. Full-function database types 137

1. Using symbolic checkpoints
2. To load database only
3. Allowed only at the end of the data set

Related concepts

“The segment” on page 14
A database record consists of one or more segments, and the segment is the smallest piece of data IMS
can store.

SHSAM databases

[Search title: IMS 15.4 - Database administration - SHSAM databases

A simple HSAM (SHSAM) database is an HSAM database containing only one type of segment, a root
segment. The segment has no prefix, because no need exists for a segment code (there is only one
segment type) or for a delete byte (deletes are not allowed).

SHSAM databases can be accessed by z/OS BSAM and QSAM because SHSAM segments contain user
data only (no IMS prefixes). The ISRT, DLET, and REPL calls cannot be used to update. However, ISRT

can be used to load an SHSAM database. Only GET calls are valid for processing an SHSAM database.
These allow retrieval only of segments from the database. To update an SHSAM database, it must be
reloaded. The situations in which SHSAM is typically used are explained in the introduction to this topic.
Before deciding to use SHSAM, read the topic on GSAM databases, because GSAM has many of the same
functions as SHSAM. Unlike SHSAM, however, GSAM files cannot be accessed from a message processing
region. GSAM does allow you to take checkpoints and perform restart, though.

Although SHSAM databases can use the field-level sensitivity option, they cannot use any of the following
options:

« Logical relationships

« Secondary indexing

 Multiple data set groups

« Variable-length segments

« Segment edit/compression exit routine

« Data Capture exit routines

« Logging, recovery, or reorganization

SHISAM databases

[Search title: IMS 15.4 - Database administration - SHISAM databases

A simple HISAM (SHISAM) database is a HISAM database containing only one type of segment, a root
segment.

SHISAM databases have the following restrictions:

- They have no dependent segments. Only root segments are allowed.

- They cannot have secondary indexes.

« They cannot have logical relationships.

- All segments are fixed length. They do not support variable length segments.
« Compression is not allowed.

The segment has no prefix, because no need exists for a segment code (there is only one segment type)
or for a delete byte (deletes are done using a VSAM erase operation). SHISAM databases must be KSDSs;
they are accessed through VSAM. Because SHISAM segments contain user data only (no IMS prefixes),
they can be accessed by VSAM macros and DL/I calls. All the DL/I calls can be issued against SHISAM
databases.

138 IMS: Database Administration

Since SHISAM segments have no prefix and SHISAM requires only one data set, it requires less space
than a root-only HISAM, HIDAM, or PHIDAM database.

To select SHISAM, specify ACCESS=SHISAM on the DBD statement. To process a KSDS with fixed length
records as an IMS database, define it as SHISAM.

SHISAM IMS symbolic checkpoint call

[Search title: IMS 15.4 - Database administration - SHISAM IMS symbolic checkpoint call |
SHISAM is also useful if you need an application program that accesses z/0S data sets to use the IMS
symbolic checkpoint call.

The IMS symbolic checkpoint call makes restart easier than the z/OS basic checkpoint call. If the z/OS
data set the application program is using is converted to a SHISAM database data set, the symbolic
checkpoint call can be used. This allows application programs to take checkpoints during processing and
then restart their programs from a checkpoint. The primary advantage of this is that, if the system fails,
application programs can recover from a checkpoint rather than lose all processing that has been done.
One exception applies to this: An application program for initially loading a database that uses VSAM as
the operating system access method cannot be restarted from a checkpoint. Application programs using
GSAM databases can also issue symbolic checkpoint calls. Application programs using SHSAM databases
cannot.

Before deciding to use SHISAM, you should read the next topic on GSAM databases. GSAM has many of
the same functions as SHISAM. Unlike SHISAM, however, GSAM files cannot be accessed from a message
processing region.

SHISAM databases can use field-level sensitivity and Data Capture exit routines, but they cannot use any
of the following options:

- Logical relationships

Secondary indexing

Multiple data set groups

Variable-length segments

Segment edit/compression exit routine

GSAM databases

[Search title: IMS 15.4 - Database administration - GSAM databases |
GSAM databases are sequentially organized databases that are designed to be compatible with z/OS data
sets.

GSAM databases have no hierarchy, database records, physical segments, or keys. GSAM databases
can be in a data set previously created or in one later accessed by the z/OS access methods VSAM or
QSAM/BSAM. GSAM data sets can use fixed-length or variable-length records when VSAM is used, or
fixed-length, variable-length, or undefined-length records when QSAM/BSAM is used.

Optionally, you can define a single virtual segment with multiple non-searchable fields in a GSAM DBD
to add field metadata from COBOL copybooks to the GSAM DBD record in the IMS catalog. IMS ignores
the virtual segment and the non-searchable fields, but application programs and products, such as IMS
Enterprise Suite Explorer for Development, can retrieve the metadata from the IMS catalog when they
access the GSAM database through the IMS Universal drivers.

If VSAM is used to process a GSAM database, the VSAM data set must be entry sequenced and on a DASD.
If QSAM/BSAM is used, the physical sequential (DSORG=PS) data set can be placed on a DASD or tape
unit. If BSAM is used, the GSAM data sets can be defined as z/0S large format data sets by specifying
DSNTYPE=LARGE on the DD statements.

GSAM supports DFSMS striped extended-format data sets for both VSAM and BSAM.

Chapter 15. Full-function database types 139

GSAM databases with the BSAM data set access method support zEDC compression. For more
information on zEDC compression, see z/OS DFSMS Using the zEnterprise Data Compression (zEDC)
enhancements.

GSAM database data sets can be allocated in the extended addressing space (EAS) of an extended
address volume (EAV).

Restriction: GSAM databases cannot be used with CICS applications.

Because GSAM databases are supported in a DCCTL environment, you can use them when you need to
process sequential non-IMS data sets using a BMP program.

GSAM databases are loaded in the order in which you present records to the load program. You cannot
issue DLET and REPL calls against GSAM databases; however, you can issue ISRT calls after the database
is loaded but only to add records to the end of the data set. Records are not randomly added to a GSAM
data set.

Although random processing of GSAM and SHSAM databases is possible, random processing of a GSAM
database is done using a GU call qualified with a record search argument (RSA). This processing is
primarily useful for establishing position in the database before issuing a series of GN calls.

Although SHSAM and SHISAM databases can be processed in any processing region, GSAM databases
can only be processed in a batch or batch message processing region.

The following IMS options do not apply to GSAM databases:

- Logical relationships

« Secondary indexing

- Segment edit/compression exit routine
« Field-level sensitivity

- Data Capture exit routines

- Logging or reorganization

 Multiple data set groups

For more information about GSAM data sets and access methods, including information about the
GSAM use of striped extended-format data sets, see "Processing GSAM databases" in IMS Version 15.4
Application Programming.

For more information about z/OS data sets, see z/0S DFSMS: Using Data Sets, as well as the z/0OS
DFSMShsm, DFSMSdss, and DFSMSdfp storage administration guides and references.

Related concepts

“Databases supported with DCCTL” on page 119
The DCCTL configuration of IMS supports several database and dependent region combinations.

GSAM IMS symbolic checkpoint call

[Search title: IMS 15.4 - Database administration - GSAM IMS symbolic checkpoint call

Among its other uses, GSAM is also useful if you need an application program that accesses z/0S data
sets to use the IMS symbolic checkpoint call.

The IMS symbolic checkpoint call makes restart easier than the z/OS basic checkpoint call. This IMS
symbolic checkpoint call allows application programs to take checkpoints during processing, thereby
allowing programs to restart from a checkpoint. A checkpoint call forces any GSAM buffers with inserted
records to be written as short blocks. The primary advantage of taking checkpoints is that, if the system
fails, the application programs can recover from a checkpoint rather than lose all your processed data.
However, any application program that uses VSAM as an operating system access method and initially
loads the database cannot be restarted from a checkpoint.

In general, always use DISP=0LD for GSAM data sets when restarting from a checkpoint even if you used
DISP=MOD on the original execution of the job step. If you use DISP=0LD, the data set is positioned at its
beginning. If you use DISP=MOD, the data set is positioned at its end.

140 IMS: Database Administration

https://www.ibm.com/docs/en/zos/2.4.0?topic=v2r1-using-zenterprise-data-compression-zedc-enhancements
https://www.ibm.com/docs/en/zos/2.4.0?topic=v2r1-using-zenterprise-data-compression-zedc-enhancements

HDAM, PHDAM, HIDAM, and PHIDAM databases

[Search title: IMS 15.4 - Database administration - HDAM, PHDAM, HIDAM, and PHIDAM databases

A hierarchical direct (HD) database is a database that maintains the hierarchical sequence of its segments
by having segments point to one another (instead of by physically storing the segments in the hierarchical
sequence).

HD databases are stored on direct-access devices in either a VSAM ESDS or an OSAM data set.

In most cases, each segment in an HD database has one or more direct-address pointers in its prefix.
When direct-address pointers are used, database records and segments can be stored anywhere in the
database. After segments are inserted into the database, they remain in their original positions unless the
segments are deleted or until the database is reorganized. During database update activity, pointers are
updated to reflect the hierarchical relationships of the segments.

HD databases also differ from sequentially organized databases because space in HD databases can be
reused. If part or all of a database record is deleted, the deleted space can be reused when new database
records or segments are inserted.

HD databases access the root segments that they contain in one of two ways: by using a randomizing
module or by using a primary index. HD databases that use a randomizing module are referred to as
hierarchical direct access method (HDAM) databases. HD databases that use a primary index are referred
to as hierarchical indexed direct access method (HIDAM) databases.

HD databases can also be partitioned. A partitioned HD database that uses a randomizing module to
access its root segments is referred to as a partitioned HDAM (PHDAM) database. A partitioned HD
database that uses a primary index to access its root segments is referred to as a partitioned HIDAM
(PHIDAM) database. PHDAM and PHIDAM databases, along with partitioned secondary index (PSINDEX)
databases, are collectively referred to as High Availability Large Database (HALDB) type databases.

The storage organization in HD databases that use a randomizing module and in HD databases that use a
primary index is basically the same. The primary difference is in how their root segments are accessed. In
HDAM or PHDAM databases, the randomizing module examines the root's key to determine the address
of a pointer to the root segment. In HIDAM or PHIDAM databases, each root segment's storage location
is found by searching the index. In HIDAM databases, the primary index is a database that IMS loads

and maintains. In PHIDAM databases, the primary index is a data set that IMS loads and maintains. The
advantage of a randomizing module is that the I/O operations that are required to search an index are
eliminated.

In PHDAM and PHIDAM databases, before IMS uses either the randomizing module or the primary index,
IMS must determine which partition the root segments are stored in by using a process called partition
selection. You can have IMS perform partition selection by assigning a range of root keys to a partition or
by using a partition selection exit routine.

The following figure compares a logical view of an HDAM database with the logical view of a PHDAM
database.

~ HDAM T, _— PHDAM T
~—_ database - f_ database i
Partition 1 Partition 2 Partition 3
10 LDS ILDS ILDS Partition
N
1 | T .+ 10 - 10
data set - “ .
data sat data set data set
\.\ -
/ r
e— ____,.-"'/ \““-u.______________ __d__#__,//

Figure 33. A comparison of the logical views of HDAM and PHDAM databases

Chapter 15. Full-function database types 141

The following figure compares a logical view of a HIDAM database with the logical view of a PHIDAM

database.
—HDAM T~ _— PHDAM
~—__ database | . database R
Partition 1 Partition 2 Partition 3
10 Indax ILos ILDS ILDS -
‘1 FPartition
Data set | v 10 :ﬂ [.- TJ N
i 1 1
Data set Data set Data set
y ., Index Index Indecx ra
‘-""-\-______ __'__,_.a'f/f \H\"“'-\.______________ ___'__;f__.-'f/

Figure 34. A comparison of the logical views of HIDAM and PHIDAM databases

Related concepts

“HALDB partition selection” on page 179

IMS must select the correct HALDB partition whenever it accesses a database record. The selection
process is called partition selection.

Maximum sizes of HD databases

[Search title: IMS 15.4 - Database administration - Maximum sizes of HD databases

The maximum possible size of HDAM, PHDAM, HIDAM, and PHIDAM databases is based on the number
of data sets the database can hold and the size of the data sets. The maximum possible size of a data set
differs depending on whether VSAM or OSAM is used and whether the database is partitioned.

The following table lists the maximum data set size, maximum number of data sets, and maximum
database size for HDAM, PHDAM, HIDAM, and PHIDAM databases.

Table 48. Maximum sizes for HDAM, HIDAM, PHDAM, and PHIDAM databases

Data set type Maximum data set size Maximum number of Maximum database

data sets size
OSAM HDAM or HIDAM 8 GB 10 data sets 80 GB
Database
VSAM HDAM or HIDAM 4GB 10 data sets 40 GB
Database
OSAM PHDAM or 4 or 8 GB? 10 010 data sets (10 40 040 0or 80 080 GB
PHIDAM Database data sets per partition;
1001 partitions per
database)
VSAM PHDAM or 4GB 10 010 data sets (10 40 040 GB

PHIDAM Database

data sets per partition;
1001 partitions per
database)

Note:

1. The maximum size depends on how the HALDB is registered with DBRC. By default, the maximum size

of the OSAM data sets is 4 GB.

Related concepts

“Using OSAM as the access method” on page 536

142 IMS: Database Administration

OSAM is a special access method supplied with IMS. Other z/OS access methods (VSAM and SAM) are
used in addition to OSAM for physical storage of data.

DL/I calls that can be issued against HD databases

|Search title: IMS 15.4 - Database administration - DL/I calls that can be issued against HD databases

AlLDL/I calls can be issued against HD databases.
In addition, the following options are available:

« Multiple data set groups

« Logical relationships

- Secondary indexing

« Variable-length segments

« Segment edit/compression exit routine

- Data Capture exit routines

« Field-level sensitivity

« Logging, recovery, and offline reorganization
« Online reorganization for HALDB partitions

Related concepts

“Database backup and recovery” on page 559
The successful recovery of a database after a failure depends on the planning and preparation you do
before an error ever occurs. Making database backup copies is a critical part of that preparation.

Logging (System Administration)

“HALDB online reorganization” on page 633

The integrated HALDB Online Reorganization function of IMS allows HALDB partitions to remain online
and available for IMS application programs during a database reorganization.

When to use HDAM and PHDAM

[Search title: IMS 15.4 - Database administration - When to use HDAM and PHDAM

HDAM and PHDAM databases are typically used for direct access to database records.

The randomizing module provides fast access to the root segment (and therefore the database record).
HDAM and PHDAM databases also give you fast access to paths of segments as specified in the DBD in

a database record. For example, in the following figure, if physical child pointers are used, they can be
followed to reach segments B, C, D, or E. A hierarchical search of segments in the database record is
bypassed. Segment B does not need to be accessed to get to segments C, D, or E. And segment D does
not need to be accessed to get to segment E. Only segment A must be accessed to get to segment B or C.
And only segments A and C must be accessed to get to segments D or E.

Chapter 15. Full-function database types 143

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/system_intro/ims_logging_over.htm#ims_logging_over

RBoot A

DependentB DependentC

DependentD DependentE

Figure 35. Example database record

When to use HIDAM and PHIDAM

[Search title: IMS 15.4 - Database administration - When to use HIDAM and PHIDAM
HIDAM and PHIDAM databases are typically used when you need both random and sequential access to
database records and random access to paths of segment in a database record.

Access to root segments (and therefore database records) is not as fast as with HDAM (or PHDAM),
because the HIDAM (or PHIDAM) index database has to be searched for a root segment's address.
However, because the index keeps the address of root segments stored in key sequence, database
records can be processed sequentially.

Pointers in HD databases

[Search title: IMS 15.4 - Database administration - Pointers in HD databases |

Before looking in detail at how HD databases are stored and processed, you need to become familiar with
the pointers that are used in HD databases.

Types of pointers you can specify

[Search title: IMS 15.4 - Database administration - Types of pointers you can specify |
In the HD access methods, segments in a database record are kept in hierarchical sequence using
direct-address pointers.

Except for a few special cases, each prefix in an HD segment contains one or more pointers. Each pointer
is 4 bytes long and consists of the relative byte address of the segment to which it points. Relative, in this
case, means relative to the beginning of the data set.

Several different types of direct-address pointers exist, and you will see how each works in the topics that
follow in this section. However, there are three basic types:

« Hierarchical pointers, which point from one segment to the next in either forward or forward and
backward hierarchical sequence

- Physical child pointers, which point from a parent to each of its first or first and last children, for each
child segment type

144 IMS: Database Administration

 Physical twin pointers, which point forward or forward and backward from one segment occurrence of a
segment type to the next, under the same parent

When segments in a database record are typically processed in hierarchical sequence, use hierarchical
pointers. When segments in a database record are typically processed randomly, use a combination of
physical child and physical twin pointers. One thing to keep in mind while reading about pointers is that
the different types, subject to some rules, can be mixed within a database record. However, because
pointers are specified by segment type, all occurrences of the same segment type have the same type of
pointer.

Each type of pointer is examined separately in this topic. In the subtopics in this topic, each type of
pointer is illustrated, and the database record on which each illustration is based is shown in the following
figure.

COURSE
COURSE
STUDENT
LOC STUDENT
INSTR LOC STUDENT
|
EDUC EXPR

Figure 36. Example database record for illustrating pointers

Related concepts

“Mixing pointers” on page 152

Because pointers are specified by segment type, the various types of pointers can be mixed within
a database record. However, only hierarchical or physical, but not both, can be specified for a given
segment type.

“Converting database types” on page 803
If the characteristics of your applications have changed over a period of time, performance might be
improved by changing to another DL/I access method.

“Physical child first pointers” on page 148
With physical child first (PCF) pointers, each parent segment in a database record points to the first
occurrence of each of its immediately dependent child segment types.

“Physical child first and last pointers” on page 148

With physical child first and last pointers (PCF and PCL), each parent segment in a database record points
to both the first and last occurrence of its immediately dependent child segment types.

Related tasks

“Converting a database from HIDAM to HDAM” on page 807

Chapter 15. Full-function database types 145

Converting a database from HIDAM to HDAM can be performed in a few steps; however, you need to
perform a number of preliminary steps also.

Hierarchical forward pointers

[Search title: IMS 15.4 - Database administration - Hierarchical forward pointers

With hierarchical forward (HF) pointers, each segment in a database record points to the segment that
follows it in the hierarchy.

The following figure shows hierarchical forward pointers:

COURSE

J STUDENT
COURSE

STUDENT —T

LOC — STUDENT J

INSTR LoOC ‘T

¥

EDUC —* EXPR

Figure 37. Hierarchical forward pointers

When an application program issues a call for a segment, HF pointers are followed until the specified
segment is found. In this sense, the use of HF pointers in an HD database is similar to using a sequentially
organized database. In both, to reach a dependent segment all segments that hierarchically precede it in
the database record must be examined. HF pointers should be used when segments in a database record
are typically processed in hierarchical sequence and processing does not require a significant number

of delete operations. If there are a lot of delete operations, hierarchical forward and backward pointers
(explained next) might be a better choice.

Four bytes are needed in each dependent segment's prefix for the HF pointer. Eight bytes are needed in
the root segment. More bytes are needed in the root segment because the root points to both the next
root segment and first dependent segment in the database record.

If you are defining your database with DBD generation macro statements, HF pointers are specified by
coding PTR=H in the SEGM statement in the DBD.

If you are defining your database by using DDL statements, HF pointers are specified by coding the HIER
parameter in a CREATE or ALTER TABLE statement.

Restriction: HALDB databases do not support HF pointers.

Hierarchical forward and backward pointers

[Search title: IMS 15.4 - Database administration - Hierarchical forward and backward pointers

146 IMS: Database Administration

With hierarchical forward and backward pointers (HF and HB), each segment in a database record points
to both the segment that follows and the one that precedes it in the hierarchy (except dependent
segments do not point back to root segments).

HF and HB pointers must be used together, since you cannot use HB pointers alone. The following figure
shows how HF and HB pointers work.

COURSE
STUDENT

COURSE ‘] J
STUDENT

LOC +— STUDENT J

INSTR LOC QI

)

h 4

EDUC +—* EXPR

Figure 38. Hierarchical forward and backward pointers

HF pointers work in the same way as the HF pointers that are described in “Hierarchical forward pointers”
on page 146.

HB pointers point from a segment to one immediately preceding it in the hierarchy. In most cases, HB
pointers are not required for delete processing. IMS saves the location of the previous segment retrieved
on the chain and uses this information for delete processing. The backward pointers are useful for delete
processing if the previous segment on the chain has not been accessed. This happens when the segment
to be deleted is entered by a logical relationship.

The backward pointers are useful only when all of the following are true:

« Direct pointers from logical relationships or secondary indexes point to the segment being deleted or
one of its dependent segments.

- These pointers are used to access the segment.
« The segment is deleted.

Eight bytes are needed in each dependent segment's prefix to contain HF and HB pointers. Twelve bytes
are needed in the root segment. More bytes are needed in the root segment because the root points:

« Forward to a dependent segment
« Forward to the next root segment in the database
« Backward to the preceding root segment in the database

If you are defining your database with DBD generation macro statements, HF and HB pointers are
specified by coding PTR=HB in the SEGM statement in the DBD.

If you are defining your database by using DDL statements, HF and HB pointers are specified by coding
the HIERBWD parameter in a CREATE or ALTER TABLE statement.

Restriction: HALDB databases do not support HF and HB pointers.

Chapter 15. Full-function database types 147

Physical child first pointers

|Search title: IMS 15.4 - Database administration - Physical child first pointers

With physical child first (PCF) pointers, each parent segment in a database record points to the first
occurrence of each of its immediately dependent child segment types.

The following figure shows PCF pointers:

PCF COURSE PCF
STUDENT
PCF
STUDENT
LOC
Y STUDENT
INSTR —— LOC
PCF PCF
L J
EDUC » EXPR

Figure 39. Physical child first pointers

With PCF pointers, the hierarchy is only partly connected. No pointers exist to connect occurrences of
the same segment type under a parent. Physical twin pointers can be used to form this connection. Use
PCF pointers when segments in a database record are typically processed randomly and either sequence
fields are defined for the segment type, or if not defined, the insert rule is FIRST or HERE. If sequence
fields are not defined and new segments are inserted at the end of existing segment occurrences, the
combination of PCF and physical child last (PCL) pointers (explained next) can be a better choice.

Four bytes are needed in each parent segment for each PCF pointer.

PCF pointers are specified by coding PARENT=((name,SNGL)) in the SEGM statement in the DBD. This is
the SEGM statement for the child being pointed to, not the SEGM statement for the parent. Note, however,
that the pointer is stored in the parent segment.

If you are using DDL, PCF pointers are specified by coding the FOREIGN KEY clause in the CREATE TABLE
statement for the database as FOREIGN KEY REFERENCES table_name SINGLE. This is the table for the
child being pointed to, not the table for the parent. Again, note that the pointer is stored in the parent
segment.

Related concepts

“Types of pointers you can specify” on page 144

In the HD access methods, segments in a database record are kept in hierarchical sequence using
direct-address pointers.

How logical relationships affect your programming (Application Programming)
Related reference

ISRT call (Application Programming APIs)

CREATE TABLE (Application Programming APIs)

SEGM statements (System Utilities)

Physical child first and last pointers

|Search title: IMS 15.4 - Database administration - Physical child first and last pointers

148 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_logicalrelationshipsaffects.htm#ims_logicalrelationshipsaffects
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apr/ims_isrtcall.htm#ims_isrtcall
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apr/ims_sql_create_table.htm#ims_sql_create_table
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_segmstmt.htm#ims_segmstmt

With physical child first and last pointers (PCF and PCL), each parent segment in a database record points
to both the first and last occurrence of its immediately dependent child segment types.

PCF and PCL pointers must be used together, since you cannot use PCL pointers alone. The following
figure shows PCF and PCL pointers:

PCF PCL
COURSE !
PCF STUDENT
PCL
STUDENT
k
LOC
v) STUDENT
INSTR LOC
PCF| |PCL
_—
EDUC EXPR
R

PCL
Figure 40. Physical child first and last pointers

Note that if only one physical child of a particular parent segment exists, the PCF and PCL pointers both
point to the same segment. As with PCF pointers, PCF and PCL pointers leave the hierarchy only partly
connected, and no pointers exist to connect occurrences of the same segment type under a parent.
Physical twin pointers can be used to form this connection.

PCF and PCL pointers (as opposed to just PCF pointers) are typically used when:

« No sequence field is defined for the segment type.

« New segment occurrences of a segment type are inserted at the end of all existing segment
occurrences.

On insert operations, if the ISRT rule of LAST has been specified, segments are inserted at the end of all
existing segment occurrences for that segment type. When PCL pointers are used, fast access to the place
where the segment will be inserted is possible. This is because there is no need to search forward through
all segment occurrences stored before the last occurrence. PCL pointers also give application programs
fast retrieval of the last segment in a chain of segment occurrences. Application programs can issue calls
to retrieve the last segment by using an unqualified SSA with the command code L. When a PCL pointer is
followed to get the last segment occurrence, any further movement in the database is forward.

A PCL pointer does not enable you to search from the last to the first occurrence of a series of dependent
child segment occurrences.

Four bytes are needed in each parent segment for each PCF and PCL pointer.

PCF and PCL pointers are specified by coding the PARENT= operand in the SEGM statement in the DBD
as PARENT=((name,DBLE)). This is the SEGM statement for the child being pointed to, not the SEGM
statement for the parent. Note, however, that the pointers are stored in the parent segment.

If you are using DDL, PCF and PCL pointers are specified by coding the FOREIGN KEY clause in the
CREATE TABLE statement for the database as FOREIGN KEY REFERENCES table_name DOUBLE. This
is the table for the child being pointed to, not the table for the parent.

A parent segment can have SNGL specified on one immediately dependent child segment type and DBLE
specified on another.

Chapter 15. Full-function database types 149

The following example DBD statement specifies PCF and PCL pointers.

DBD

SEGM A

SEGM B PARENT=((name.SNGL)) (specifies PCF pointer only)
SEGM C PARENT=((name.DBLE)) (specifies PCF and PCL pointers)

The following example shows the same PCF and PCL pointer specifications as specified by using DDL.

CREATE DATABASE ...
CREATE TABLE A ...
CREATE TABLE B (
FOREIGN KEY REFERENCES table name SINGLE (specifies PCF pointer only)
)
CREATE TABLE C (

FOREIGN KEY REFERENCES table name DOUBLE (specifies PCF and PCL pointers)
)

The following figure shows the result of specifying PCF and PCL pointers in a database definition.

Seg A

PCF PCF PcLl

e Seg C3

Seg B2 Seg C2

v v

Seg B1 Seg C1

Figure 41. Specifying PCF and PCL pointers

Related concepts

“Types of pointers you can specify” on page 144

In the HD access methods, segments in a database record are kept in hierarchical sequence using
direct-address pointers.

How logical relationships affect your programming (Application Programming)
Related reference

ISRT call (Application Programming APIs)

CREATE TABLE (Application Programming APIs)

SEGM statements (System Utilities)

Physical twin forward pointers

[Search title: IMS 15.4 - Database administration - Physical twin forward pointers

With physical twin forward (PTF) pointers, each segment occurrence of a given segment type under the
same parent points forward to the next segment occurrence.

Note that, except in PHIDAM databases, PTF pointers can be specified for root segments. When this is
done in an HDAM or PHDAM database, the root segment points to the next root in the database chained
off the same root anchor points (RAP). If no more root segments are chained from this RAP, the PTF
pointer is zero.

When PTF pointers are specified for root segments in a HIDAM database, the root segment does not point
to the next root in the database.

If you specify PTF pointers on a root segment in a HIDAM database, the HIDAM index must be used for all
sequential processing of root segments. Using only PTF pointers increases access time. You can eliminate
this overhead by specifying PTF and physical twin backward (PTB) pointers.

150 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_logicalrelationshipsaffects.htm#ims_logicalrelationshipsaffects
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apr/ims_isrtcall.htm#ims_isrtcall
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apr/ims_sql_create_table.htm#ims_sql_create_table
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_segmstmt.htm#ims_segmstmt

You cannot use PTF pointers for root segments in a PHIDAM database. PHIDAM databases only support
PTF pointers for dependent segments.

With PTF pointers, the hierarchy is only partly connected. No pointers exist to connect parent and child
segments. Physical child pointers can be used to form this connection. PTF pointers should be used
when segments in a database record are typically processed randomly, and you do not need sequential
processing of database records.

Four bytes are needed for the PTF pointer in each segment occurrence of a given segment type.

If you are defining your database with DBD generation macro statements, PTF pointers are specified by
coding PTR=T in the SEGM statement that defines the segment that contains the pointer.

If you are defining your database by using DDL statements, PTF pointers are specified by coding the TWIN
parameter in a CREATE or ALTER TABLE statement that defines the segment that contains the pointer.

The following figure show PTF pointers:

COURSE
COURSE
R —— j ___________________________ STUDENT
E E LOC E STUDENT—j
INSTR oc STUDENT

EDUC EXPR

Figure 42. Physical twin forward pointers

Related concepts

“Use of RAPs in a HIDAM database” on page 164
RAPs are used differently in HIDAM databases than they are in HDAM or PHDAM databases.

“Physical twin forward and backward pointers” on page 151

With physical twin forward and backward (PTF and PTB) pointers, each segment occurrence of a given
segment type under the same parent points both forward to the next segment occurrence and backward
to the previous segment occurrence.

“General format of HD databases and use of special fields” on page 155

The way in which an HD database is organized is not particularly complex, but some of the special

fields in the database used for things like managing space make HD databases seem quite different from
sequentially organized databases.

Physical twin forward and backward pointers

|Search title: IMS 15.4 - Database administration - Physical twin forward and backward pointers

Chapter 15. Full-function database types 151

With physical twin forward and backward (PTF and PTB) pointers, each segment occurrence of a given
segment type under the same parent points both forward to the next segment occurrence and backward
to the previous segment occurrence.

PTF and PTB pointers must be used together, since you cannot use PTB pointers alone. The following
figure illustrates how PTF and PTB pointers work.

COURSE
COURSE <+
R —— j ___________________________ STUDENT
E E LOC é STUDENT*j
INSTR oc STUDENT]

mzsssassssssssdessss s snssma

EDUC EXPR

Figure 43. Physical twin forward and backward pointers

Note that PTF and PTB pointers can be specified for root segments. When this is done, the root segment
points to both the next and the previous root segment in the database. As with PTF pointers, PTF and
PTB pointers leave the hierarchy only partly connected. No pointers exist to connect parent and child
segments. Physical child pointers (explained previously) can be used to form this connection.

PTF and PTB pointers (as opposed to just PTF pointers) should be used on the root segment of a HIDAM
or a PHIDAM database when you need fast sequential processing of database records. By using PTB
pointers in root segments, an application program can sequentially process database records without IMS
having to refer to the HIDAM or PHIDAM index. For HIDAM databases, PTB pointers improve performance
when deleting a segment in a twin chain accessed by a virtually paired logical relationship. Such twin-
chain access occurs when a delete from the logical access path causes DASD space to be released.

Eight bytes are needed for the PTF and PTB pointers in each segment occurrence of a given segment type.

If you are defining your database with DBD generation macro statements, PTF and PTB pointers are
specified by coding PTR=TB in the SEGM statement in the DBD.

If you are defining your database by using DDL statements, PTF and PTB pointers are specified by coding
the TWINBWD parameter in a CREATE or ALTER TABLE statement.

Related concepts

“Physical twin forward pointers” on page 150

With physical twin forward (PTF) pointers, each segment occurrence of a given segment type under the
same parent points forward to the next segment occurrence.

Mixing pointers

[Search title: IMS 15.4 - Database administration - Mixing pointers

Because pointers are specified by segment type, the various types of pointers can be mixed within
a database record. However, only hierarchical or physical, but not both, can be specified for a given
segment type.

The types of pointers that can be specified for a segment type are:

152 IMS: Database Administration

HF
Hierarchical forward

HF and HB
Hierarchical forward and backward

PCF
Physical child first

PCF and PCL
Physical child first and last

PTF
Physical twin forward

PTF and PTB
Physical twin forward and backward

The figure below shows a database record in which pointers have been mixed. Note that, in some cases,
for example, dependent segment B, many pointers exist even though only one type of pointer is or can be
specified. Also note that if a segment is the last segment in a chain, its last pointer field is set to zero (the
case for segment E1, for instance). One exception is noted in the rules for mixing pointers. The figure has
a legend that explains what specification in the PTR= or PARENT= operand causes a particular pointer to
be generated.

The rules for mixing pointers are:

« If PTR=H is specified for a segment, no PCF pointers can exist from that segment to its children. For a
segment to have PCF pointers to its children, you must specify PTR=T or TB for the segment.

- If PTR=H or PTR=HB is specified for the root segment, the first child will determine if an H or HB pointer
is used. All other children must be of the same type.

« If PTR=H is specified for a segment other than the root, PTR=TB and PTR=HB cannot be specified for
any of its children. If PTR=HB is specified for a segment other than the root, PTR=T and PTR=H cannot
be specified for any of its children.

That is, the child of a segment that uses hierarchical pointers must contain the same number of pointers
(twin or hierarchical) as the parent segment.

« If PTR=T or TB is specified for a segment whose immediate parent used PTR=H or PTR=HB, the last
segment in the chain of twins does not contain a zero. Instead, it points to the first occurrence of the
segment type to its right on the same level in the hierarchy of the database record. This is true even if
no twin chain yet exists, just a single segment for which PTR=T or TB is specified (dependent segment B
and E2 in the figure illustrate this rule).

- If PTR=H or HB is specified for a segment whose immediate parent used PTR=T or TB, the last segment
in the chain of twins contains a zero (dependent segment C2 in the figure illustrates this rule).

The following figure shows an example of mixing pointers in a database record.

Chapter 15. Full-function database types 153

Usage of the twin forward Aoot A1 Root A2

pointer position —— 7 [
Segments pointed 10 ———» 42| B1
Motes below ——» 1 | 1

PTR=H | Dependent B1 PTR=T [Dependent G1 |

H Dependent B2 H |PcE
1| H o | H1
2 G 2| s
| 2

PTR=T | Dependant H1
PTR=T T |PEE Depandant H2
- T

Dapendent C1 PTR=H | Dependent F1 Hz| I
H [PcFPCFlPoL DependentC2 | DependentF2 || 2| 5 o
c2|D1 | E1 |E2 . F2 | - :
2|3 |44 F1 2 ez

L 12 L 12

PTR=H| Dependent 11

FTR=H PTR=T H
Parent=SMNGL Parent=DBLE —
Depandant D1 | Depandant E1 a_|
H Dependent D2 H Dependent E2 2
b2 M e _|H
a 0 5 0
| 2 2

Figure 44. Mixing pointers

Notes for Figure:

1. These pointers are generated when you specify PTR=H on the root segment.

2. If you specify PTR=H, usage is hierarchical (H); otherwise usage is twin (T).

3. These pointers are generated when you specify PTR=T on segment type C and PARENT=SNGL on
segment type D

4. These pointers are generated when you specify PTR=T on segment type C and PARENT=DBLE on
segment type E

5. These pointers are generated when you specify PTR=T on this segment type

Related concepts

“Types of pointers you can specify” on page 144
In the HD access methods, segments in a database record are kept in hierarchical sequence using

direct-address pointers.

Related tasks

“Determining segment size” on page 528
Segment size here is physical segment size, and it includes both the prefix and data portion of the

segment.

Sequence of pointers in a segment's prefix

|Search title: IMS 15.4 - Database administration - Sequence of pointers in a segment's prefix

154 IMS: Database Administration

When a segment contains more than one type of pointer, pointers are put in the segment's prefixin a
specific sequence.

The pointers are put in the segment's prefix in the following sequence:

1. HF
2.HB

Or:

1. PTF
2. PTB
3. PCF
4. PCL

General format of HD databases and use of special fields

[Search title: IMS 15.4 - Database administration - General format of HD databases and use of special fields |
The way in which an HD database is organized is not particularly complex, but some of the special
fields in the database used for things like managing space make HD databases seem quite different from
sequentially organized databases.

The databases referred to here are the HDAM or PHDAM and the HIDAM or PHIDAM databases. HIDAM
and PHIDAM each have an additional database, the primary index database, for which you must allocate
a data set. For HIDAM databases, the primary index database must be defined with its own set of
statements. For PHIDAM databases, the primary index database does not need to be defined by its own
set of statements. For both, IMS maintains the index. This topic examines the index database when
dealing with the storage of HIDAM records. The following figure shows the general format of an HD
database and some of the special fields used in it.

[j VSAM ESDS or OSAM

—+ FSEAP | Anchor point area Bitmap |

— FSEAP | Anchor point area Segments | FSE Free space |

4 FSEAP | Anchor peoint area | ESE | Free space | Segments | FSE | Free space |

**FSEAF' Anchor point area | Segments | FSE Free space | Segments |

Blocks
ar Cls

Figure 45. Format of an HD database and special fields in it

HD databases use a single data set, that is either a VSAM ESDS or an OSAM data set. The data set
contains one or more CIs (VSAM ESDS) or blocks (OSAM). Database records in the data set are in
unblocked format. Logical record length is the same as the block size when OSAM is used. When VSAM is
used, logical record length is slightly less than CI size. (VSAM requires some extra control information in
the CI.)

You can either specify logical record length yourself or accept the IMS defaults. IMS generates logical
record lengths equal to a quarter, third, half, or full track block.

All segments in HD Databases begin on a halfword boundary. If a segment's total length is an odd number,
the space used in an HD database will be one byte longer than the segment. The extra byte is called a
"slack byte".

Note that the database in the figure above contains areas of free space. This free space could be the
result of delete or replace operations done on segments in the data set. Remember, space can be reused

Chapter 15. Full-function database types 155

in HD databases. Or it could be free space you set aside when loading the database. HD databases allow
you to set aside free space by specifying that periodic blocks or CIs be left free or by specifying that a
percentage of space in each block or CI be left free.

Examine the four fields illustrated in the above figure. Three of the fields are used to manage space in the
database. The remaining one, the anchor point area, contains the addresses of root segments. The fields
are:

« Bitmap

- Free space element anchor point

« Free space element

« Anchor point area

Related concepts

“Physical twin forward pointers” on page 150
With physical twin forward (PTF) pointers, each segment occurrence of a given segment type under the
same parent points forward to the next segment occurrence.

Related tasks

“Step 5. Determine the amount of space needed for bitmaps” on page 535
In HDAM, HIDAM, PHDAM, and PHIDAM databases, you need to add the amount of space required for
bitmaps to your calculations.

Bitmaps

[Search title: IMS 15.4 - Database administration - Bitmaps

Bitmaps contain a string of bits. Each bit describes whether enough space is available in a particular
control interval (CI) or block to hold an occurrence of the longest segment defined in the data set group.

The first bit says whether the CI or block that the bitmap is in has free space. Each consecutive bit says
whether the next consecutive CI or block has free space. When the bit value is one, it means the CI or
block has enough space to store an occurrence of the longest segment type you have defined in the data
set group. When the bit value is zero, not enough space is available.

The first bitmap in an OSAM data set is in the first block of the first extent of the data set. In VSAM

data sets, the second CI is used for the bitmap and the first CI is reserved. The first bitmap in a data

set contains n bits that describe space availability in the next n-1 consecutive CIs or blocks in the data
set. After the first bitmap, another bitmap is stored at every nth CI or block to describe whether space is
available in the next group of CIs or blocks in the data set.

For a HALDB partition, the first bitmap block stores the partition ID (2 bytes) and the reorganization
number (2 bytes). These are stored before the FSEAP at the beginning of the block.

An example bitmap is shown in the following figure.

156 IMS: Database Administration

O indicates that there isinsufficient
free space in the bit map block

1indicatesthatthereisfree spaceinthe
third Cl or block

Oindicatesthat there isinsufficientfree
space in the fifth Cl or block

Bytes ! Varies
Figure 46. Bitmap for HD databases

Free space element anchor point (FSEAP)

|Search title: IMS 15.4 - Database administration - Free space element anchor point (FSEAP) |
Free space element anchor points (FSEAP) are made up of two 2-byte fields.

The first field contains the offset, in bytes, to the first free space element (FSE) in the CI or block.

FSEs describe areas of free space in a block or CI. The second field identifies whether this block or CI
contains a bitmap. If the block or CI does not contain a bitmap, the field is zeros. One FSEAP exists at the
beginning of every CI or block in the data set. IMS automatically generates and maintains FSEAPs.

An FSEAP is shown in the following figure.
Oftset to the first FSE in this Cl or block

Flag indicating whether this Cl or block contains a bit map
{0 = no bit map)

Bytes 2|E}

Figure 47. An FSEAP

The FSEAP in the first bitmap block in an OSAM data set has a special use. It is used to contain the DBRC
usage indicator for the database. The DBRC usage indicator is used at database open time for update
processing to verify usage of the correct DBRC RECON data set.

Free space element (FSE)

|Search title: IMS 15.4 - Database administration - Free space element (FSE)
An FSE describes each area of free space in a CI or block that is 8 or more bytes in length.

IMS automatically generates and maintains FSEs. FSEs occupy the first 8 bytes of the area that is free
space. FSEs consist of three fields:

« Free space chain pointer (CP) field. This field contains, in bytes, the offset from the beginning of this CI
or block to the next FSE in the CI or block. This field is 2 bytes long. The CP field is set to zero if this is
the last FSE in the block or CI.

« Available length (AL) field. This field contains, in bytes, the length of the free space identified by this
FSE. The value in this field includes the length of the FSE itself. The AL field is 2 bytes long.

Chapter 15. Full-function database types 157

« Task ID (ID) field. This field contains the task ID of the program that freed the space identified by the
FSE. The task ID allows a given program to free and reuse the same space during a given scheduling
without contending for that space with other programs. The ID field is 4 bytes long.

An FSE is shown in the following figure.

Offset to the next FSE in this Cl or block

Length of the free space following this FSE,
including the length of this FSE

l—Task ID of the program that freed the space

CP | AL

Bytes | 2 2 ‘ 4
Figure 48. An FSE

Anchor point area

[Search title: IMS 15.4 - Database administration - Anchor point area

The anchor point area is made up of one or more 4-byte root anchor points (RAPs).

Each RAP contains the address of a root segment. For HDAM, you specify the number of RAPs you need
on the RMNAME parameter in the DBD statement. For PHDAM, you specify the number of RAPs you need
on the RMNAME parameter in the DBD statement, or by using the HALDB Partition Definition utility, or

on the DBRC INIT.PART command. For HIDAM (but not PHIDAM), you specify whether RAPs exist by
specifying PTR=T or PTR=H for a root segment type. Only one RAP per block or Cl is generated. How RAPs
are used in HDAM, PHDAM, and HIDAM differs.

An anchor point area in an HDAM or PHDAM database is shown in the following figure.

Anchor point area containing, in this case, two RAPs

RAP | RAP

Bytes 4 ‘ 4
Figure 49. An HDAM or PHDAM anchor point area

Related concepts

“How HDAM and PHDAM records are stored” on page 158
HDAM or PHDAM databases consist of two parts: a root addressable area and an overflow area.

“How HIDAM and PHIDAM records are stored” on page 161

A HIDAM database is actually composed of two databases. One database contains the database records
and the other database contains the HIDAM index. HIDAM uses the index to get to a specific root segment
rather than the root anchor points that HDAM and PHDAM use.

How HDAM and PHDAM records are stored

[Search title: IMS 15.4 - Database administration - How HDAM and PHDAM records are stored

158 IMS: Database Administration

HDAM or PHDAM databases consist of two parts: a root addressable area and an overflow area.

The root addressable area contains root segments and is the primary storage area for dependent
segments in a database record. The overflow area is for the storage of segments that do not fit in the

root addressable area. You specify the size of the root addressable area in the relative block number
(RBN) operand of the RMNAME parameter in the DBD statement. For PHDAM, you can also use the HALDB
Partition Definition utility to specify the size of the root addressable area. You also specify the maximum
number of bytes of a database record to be stored in the root addressable area by using the BYTES
operand of the RMNAME parameter in the DBD statement. For PHDAM databases, you can use the HALDB
Partition Definition utility to specify the maximum number of bytes in the root addressable area.

The following figure shows example SKILL database records.

SKILL a

SKILL ’

4| NAME
| NAME
HFF NAME
NAME _
EXPR |+
4]
EXPR _
\— 3
EXPR _ <
2]
EXPR _ f

Figure 50. Two example SKILL records in an HD database

The following figure shows how these records are stored in a HDAM or HIDAM database.

Chapter 15. Full-function database types 159

VSAMESDS orOSAM

.-"-f -\-\-\-HH\
*
H\h d_d_i_ﬂ_,,-'
"“-——______ ____;__d___d_
K 2 [v [v [¥
» RAP| AAP| SKILL3 ‘NAMEJ;‘ EDUGJ!‘ EDUCE‘EDUCE Free space
Raot
addressable » RAP| RAP Freespace
araa
» RAP| RAP| SKILLA ‘NAME1 EXPR1 | EDUC1 |MAMEZ| Free space
I
vy [+ v [v [+ [¥
Overflow ————» EXPR2 ‘EXPR3|EKPF’=4 MAMES | EDUC2 | EDUCS | Free space
area
. .
- e
H\EE-\-\.) .'-"'"'Fﬂ-f
-____‘_______ __'___'_,_:—'—"_F
Prefix Data \
1
Segment Delate)
cods | byte HF pointer

Figure 51. HDAM or PHDAM database records in storage

When the database is initially loaded, the root and each dependent segment are put in the root
addressable area until the next segment to be stored will cause the total space used to exceed the
amount of space you specified in the BYTES operand. At this point, all remaining dependent segments in
the database record are stored in the overflow area.

In an HDAM or a PHDAM database, the order in which you load database records does not matter. The
user randomizing module determines where each root is stored. However, as with all types of databases,
when the database is loaded, all dependents of a root must be loaded in hierarchical sequence following
the root.

To store an HDAM or a PHDAM database record, the randomizing module takes the root's key and,

by hashing or some other arithmetic technique, computes an RBN or CI number and a RAP number
within the block or CI. The module gives these numbers to IMS, and IMS determines where in the root
addressable area to store the root. The RBN or CI tells IMS in which CI or block (relative to the beginning
of the data set) the RAP will be stored. The RAP number tells which RAP in the CI or block will contain the
address of the root. During load, IMS stores the root and as many of its dependent segments that will fit
(based on the bytes operand) in the root addressable area.

When the database is initially loaded, it puts the root and segments in the first available space in the
specified CI or block, if this is possible. IMS then puts the 4-byte address of the root in the RAP of the CI
or block designated by the randomizing module. RAPs only exist in the root addressable area. If space is
not available in the root addressable area for a root, it is put in the overflow area. The root, however, is
chained from a RAP in the root addressable area.

Related concepts
“When not enough root storage room exists” on page 161

160 IMS: Database Administration

If the CI or block specified by the randomizing module does not contain enough room to store the root,
IMS uses the HD space search algorithm to find space.

“Anchor point area” on page 158
The anchor point area is made up of one or more 4-byte root anchor points (RAPS).

“Inserting root segments into an HDAM or PHDAM database” on page 166
After initial load, root segments are inserted into an HDAM or PHDAM database in exactly the same way
they are inserted during initial load.

When not enough root storage room exists

[Search title: IMS 15.4 - Database administration - When not enough root storage room exists
If the CI or block specified by the randomizing module does not contain enough room to store the root,
IMS uses the HD space search algorithm to find space.

When insufficient space exists in the specified CI or block to store the root, the algorithm finds the closest
available space to the specified CI or block. When space is found, the address of the root is still stored in
the specified RAP in the original block or CI generated by the randomizing module.

If the randomizing module generates the same relative block and RAP number for more than one root,
the RAP points to a single root and all additional roots with the same relative block and RAP number are
chained to each other using physical twin pointers. Roots are always chained in ascending key sequence.
If non-unique keys exist, the ISRT rules of FIRST, LAST, and HERE determine the sequence in which roots
are chained. All roots chained like this from a single anchor point area are called synonyms.

“How HDAM and PHDAM records are stored” on page 158 shows two HDAM or PHDAM database records
and how they appear in storage after initial load. In this example, enough space exists in the specified
block or CI to store the roots, and the unique relative block and RAP numbers for each root generated by
the randomizing module. The bytes parameter specifies enough space for five segments of the database
record to fit in the root addressable area. All remaining segments are put in the overflow area. When
HDAM or PHDAM database records are initially loaded, dependent segments that cannot fit in the root
addressable area are simply put in the first available space in the overflow area.

Note how segments in the database record are chained together. In this case, hierarchical pointers are
used instead of the combination of physical child/physical twin pointers. Each segment points to the next
segment in hierarchical sequence. Also note that two RAPs were specified per CI or block and each of the
roots loaded is pointed to by a RAP. For simplicity, “How HDAM and PHDAM records are stored” on page
158 does not show the various space management fields.

An HDAM or PHDAM segment in storage consists of a prefix followed by user data. The first byte of the
prefix is the segment code, which identifies the segment type to IMS. This number can be from 1 to 255.
The segment code is assigned to the segment type by IMS in ascending sequence, starting with the root
segment and continuing through all dependents in hierarchical sequence. The second byte of the prefix
is the delete byte. The third field in the prefix contains the one or more addresses of segments to which
this segment is pointing. In this example, hierarchical forward pointers are used. Therefore, the EXPR4
segment contains only one address, the address of the NAME3 segment.

Related concepts

“How the HD space search algorithm works” on page 170
The general rule for inserting a segment into an HD database is to store the segment (whether root or
dependent) in the most desirable block or CI.

“How HDAM and PHDAM records are stored” on page 158
HDAM or PHDAM databases consist of two parts: a root addressable area and an overflow area.

Related reference
ISRT call (Application Programming APIs)

How HIDAM and PHIDAM records are stored
[Search title: IMS 15.4 - Database administration - How HIDAM and PHIDAM records are stored

Chapter 15. Full-function database types 161

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apr/ims_isrtcall.htm#ims_isrtcall

A HIDAM database is actually composed of two databases. One database contains the database records
and the other database contains the HIDAM index. HIDAM uses the index to get to a specific root segment
rather than the root anchor points that HDAM and PHDAM use.

Related concepts

“Anchor point area” on page 158

The anchor point area is made up of one or more 4-byte root anchor points (RAPs).

How a HIDAM or PHIDAM database is loaded

[Search title: IMS 15.4 - Database administration - How a HIDAM or PHIDAM database is loaded

Root segments in a HIDAM or PHIDAM database must have a unique key field, because an index entry
exists for each root segment based on the root's key.

When initially loading a HIDAM or a PHIDAM database, you should present all root segments to the load
program in ascending key sequence, with all dependents of a root following in hierarchical sequence.
The figure below shows how the two Skills database records shown in Figure 50 on page 159 appear

in storage after initial load. Note that HIDAM and PHIDAM, unlike HDAM and PHDAM, have no root
addressable or overflow area, just a series of blocks or CIs.

Restriction: Load programs for PHIDAM databases must run in a DLI region type. Load programs for
HIDAM databases do not have this restriction.

When database records are initially loaded, they are simply loaded one after another in the order in which
they are presented to the load program. The space in the following figure at the end of each block or CI is
free space specified when the database was loaded. In this example, 30% free space per block or CI was
specified.

] VSAM ESDS or OSAM

[¥ [¥ I ;
SKILL1 | NAME1 | EXPR1 | EDUC1 | NAME2z | Freespace |

l [+ [¥ [¥ [¥

EXPR2 | EXPR3 | EXPR4 | NAME3 | EDUC2 | Free space |
[]

¥ [¥ [+ ¥ [+

EDUC3 | SKILL3 | NAME4 | EDUC4 | EDUCS | Freespace |
J

EDUCE l Free space l

\

| Segmentcode | Delele byte | HF pointer | - |
Prefix Data

Figure 52. HIDAM database records in storage

Note how segments in a database record are chained together. In this case, hierarchical pointers were
used instead of the combination of physical child/physical twin pointers. Each segment points to the next
segment in hierarchical sequence. No RAPs exist in the figure above. Although HIDAM databases can have
RAPs, you probably do not need to use them.

In storage, a HIDAM or PHIDAM segment consists of a prefix followed by user data. The first byte of

the prefix is the segment code, which identifies the segment type to IMS. This number can be from 1 to

255. The segment code is assigned to the segment by IMS in ascending sequence, starting with the root
segment and continuing through all dependents in hierarchical sequence. The second byte of the prefix

is the delete byte. The third field in the prefix contains the one or more addresses of segments to which

162 IMS: Database Administration

this segment is pointing. In this example, hierarchical forward pointers are used. The EDUC6 segment
contains only one address, the address of the root segment of the next database record (not shown here)
in the database.

Related concepts

“Use of RAPs in a HIDAM database” on page 164
RAPs are used differently in HIDAM databases than they are in HDAM or PHDAM databases.

Creating an index segment

[Search title: IMS 15.4 - Database administration - Creating an index segment

As each root is stored in a HIDAM or PHIDAM database, IMS creates an index segment for the root and
stores it in the index database or data set.

The index database consists of a VSAM KSDS. The KSDS contains an index segment for each root in the
database or HALDB partition. When initially loading a HIDAM or PHIDAM database, IMS will insert a root
segment with a key of all X'FF's as the last root in the database or partition.

The format of an index segment is shown in the following figure.

Prefix Data I |
Delete | Address of the Key of the
byte root segment root segment
Bytes 1 g l !

Varies

Figure 53. Format of an index segment

The prefix portion of the index segment contains the delete byte and the root's address. The data

portion of the index segment contains the key field of the root being indexed. This key field identifies
which root segment the index segment is for and remains the reason why root segments in a HIDAM or
PHIDAM database must have unique sequence fields. Each index segment is a separate logical record.
The following figure shows the index database that IMS would generate when the two database records in
Figure 50 on page 159 were loaded.

=] vsAM KsDs

SKILL1| Key | $SKILL3| Key
1 [1|
l

] vsam ESDS

» SKILL1 | NAME1 | EXPR1 | EDUC1| NAME2 | Free space

| EXPR2 | EXPR3 | EXPR4 | NAMES | EDUC2 | Free space

v

| EXPR3 | SKILL3 | NAME4 | EDUC4 | EDUCS | Free space

| EDUCSH Free space

Figure 54. HIDAM or PHIDAM index databases

Chapter 15. Full-function database types 163

Use of RAPs in a HIDAM database

[Search title: IMS 15.4 - Database administration - Use of RAPs in a HIDAM database

RAPs are used differently in HIDAM databases than they are in HDAM or PHDAM databases.

In HDAM or PHDAM, RAPs exist to point to root segments. When the randomizing module generates roots
with the same relative block and RAP number (synonyms), the RAP points to one root and synonyms are
chained together off that root.

In HIDAM databases, RAPs are generated only if you specify PTR=T or PTR=H for a root segment. When
either of these is specified, one RAP is put at the beginning of each CI or block, and root segments within
the CI or block are chained from the RAP in reverse order based on the time they were inserted. By this
method, the RAP points to the last root inserted into the block or CI, and the hierarchical or twin forward
pointer in the first root inserted into the block or CI is set to zero. The hierarchical or twin forward pointer
in each of the other root segments in the block points to the previous root inserted in the block.

The figure below shows what happens if you specify PTR=T or PTR=H for root segments in a HIDAM
database. The figure uses the following abbreviations:

FSE
Free space element
RAP
Root anchor point
SC
Segment code
DB
Delete byte
TF
Twin forward
H
Hierarchical forward
Paointed in from second root segment inserted
B 1 ! ——
FSE | RAP | 5C DB | TForH Data sC DE| TFeorH |Data
POINTER=0 POINTER=0 i |
First root segment inserted in Root Last root segment inserted in Root
block or C segment Dlock or CI sagmeant

Figure 55. Specifying PTR=T or PTR=H for root segments in a HIDAM database

Note that if you specify PTR=H for a HIDAM root, you get an additional hierarchical pointer to the first
dependent in the hierarchy. In the preceding figure, a "1" indicates where this additional hierarchical
pointer would appear.

The implication of using PTR=T or PTR=H is that the pointer from one root to the next cannot be used

to process roots sequentially. Instead, the HIDAM index must be used for all sequential root processing,
and this increases access time. Specify PTR=TB or PTR=HB for root segments in a HIDAM database. Then
no RAP is generated, and GN calls against root segments proceed along the normal physical twin forward
chain. If no pointers are specified for HIDAM root segments, the default is PTR=T.

Related concepts
“How a HIDAM or PHIDAM database is loaded” on page 162

Root segments in a HIDAM or PHIDAM database must have a unique key field, because an index entry
exists for each root segment based on the root's key.

“Physical twin forward pointers” on page 150

164 IMS: Database Administration

With physical twin forward (PTF) pointers, each segment occurrence of a given segment type under the
same parent points forward to the next segment occurrence.

Accessing segments

[Search title: IMS 15.4 - Database administration - Accessing segments |

The way in which a segment in an HD database is accessed depends on whether the DL/I call for the
segment is qualified or unqualified.

Qualified calls

[Search title: IMS 15.4 - Database administration - Qualified calls |
When a call is issued for a root segment and the call is qualified on the root segment's key, the way in
which the database record containing the segment is found depends on whether the database is HDAM,
PHDAM, HIDAM, or PHIDAM.

In an HDAM or a PHDAM database, the randomizing module generates the root segment's (and therefore
the database record's) location. In a HIDAM or a PHIDAM database, the HIDAM or PHIDAM index is
searched until the index segment containing the root's key is found.

Once the root segment is found, if the qualified call is for a dependent segment, IMS searches for

the dependent by following the pointers in each dependent segment's prefix. The exact way in which
the search proceeds depends on the type of pointers you are using. The following figure shows how a
dependent segment is found when PCF and PTF pointers are used.

PCF Ad | PCF
C3
B2 c2 1 et
L J L
Bi —T C1 _T FTF
PTF

Figure 56. How dependent segments are found using PCF and PTF pointers

Unqualified calls

[Search title: IMS 15.4 - Database administration - Unqualified calls |

When an unqualified call is issued for a segment, the way in which the search proceeds depends several
different factors.

The factors include:

« Whether the database is HDAM, PHDAM, HIDAM, or PHIDAM
« Whether a root or dependent segment is being accessed

« Where position in the database is currently established

- What type of pointers are being used

« Where parentage is set (if the call is a GNP)

Because of the many variables, it is not practical to generalize on how a segment is accessed.

Chapter 15. Full-function database types 165

Inserting root segments

[Search title: IMS 15.4 - Database administration - Inserting root segments

The way in which a root segment is inserted into an HD database depends on whether the database is
HDAM, PHDAM, HIDAM, or PHIDAM.

For PHDAM or PHIDAM databases, partition selection is first performed based on the key of the root
segment.

Inserting root segments into an HDAM or PHDAM database

[Search title: IMS 15.4 - Database administration - Inserting root segments into an HDAM or PHDAM database
After initial load, root segments are inserted into an HDAM or PHDAM database in exactly the same way
they are inserted during initial load.

Related concepts
“How HDAM and PHDAM records are stored” on page 158
HDAM or PHDAM databases consist of two parts: a root addressable area and an overflow area.

Inserting root segments into a HIDAM or PHIDAM database

[Search title: IMS 15.4 - Database administration - Inserting root segments into a HIDAM or PHIDAM database
Root segments are inserted into HIDAM and PHIDAM databases in ascending root sequence.

After initial load, root segments are inserted into a HIDAM or PHIDAM database as follows:

1. The HIDAM or PHIDAM index is searched for an index segment with a root key greater than the key of
the root to be inserted.

2. The new index segment is inserted in ascending root sequence.

3. Once the index segment is created, the root segment is stored in the database at the location specified
by the HD space search algorithm.

The following figure shows the insertion of a root segment, SKILL2, into the database first shown in Figure
54 on page 163.

] vSAM KSDS

'e|SKILL1 | g SKILL2| |9 sKILL3

] vsAM ESDS

» SKILL1 | NAME1 | EXPR1 | EDUCT | NAME2 | Free Space

| ExPR2 | EXPR3 | EXPR4 | NAMES | EDUC2 | Free Space

¥ Ld

Free
‘EXF‘HE SKILL3 | NAME4 | EDUC4 | EDUCS | SKILL2 Space

| EDUCE Free Space

Figure 57. Inserting a root segment into a HIDAM or PHIDAM database

166 IMS: Database Administration

Related concepts

“How the HD space search algorithm works” on page 170
The general rule for inserting a segment into an HD database is to store the segment (whether root or
dependent) in the most desirable block or CI.

Updating the space management fields when a root segment is inserted

Search title: IMS 15.4 - Database administration - Updating the space management fields when a root segment
is inserted

When a root segment is inserted into an HD database, the space management fields need to be updated.

The following figure illustrates this process. The figure makes several assumptions so real values could be
put in the space management fields. These assumptions are:

The database is HDAM or PHDAM (and therefore has a root addressable area).

VSAM is the access method; therefore there are CIs (not blocks) in the database. Because VSAM is
used, each logical record has 7 bytes of control information.

Logical records are 512 bytes long.
« One RAP exists in each CI.
The root segment to be inserted (SKILL1) is 32 bytes long.

The "before" picture shows the CI containing the bitmap (in VSAM, the bitmap is always in the second CI
in the database). The second bit in the bitmap is set to 1, which says there is free space in the next CI. In
the next CI (CI #3):

« The FSEAP says there is an FSE (which describes an area of free space) 8 bytes from the beginning of
this CI.

« The anchor point area (which has one RAP in this case) contains zeros because no root segments are
currently stored in this CI.

« The FSE AL field says there is 497 bytes of free space available starting at the beginning of this FSE.

The SKILL1 root segment to be inserted is only 32 bytes long; therefore CI #3 has plenty of space to store
SKILLI.

The "after" picture shows how the space management fields in CI #3 are updated when SKILL1 is
inserted.

- The FSEAP now says there is an FSE 40 bytes from the beginning of this CI.
« The RAP points to SKILL1. The pointer value in the RAP is derived using the following formula:

Pointer value = (CI size)*(CI number - 1) + Offset within the CI to the root segment

In this case, the pointer value is 1032 (pointer value = 512 x 2 + 8).

« The FSE has been "moved" to the beginning of the remaining area of free space. The FSE AL field says
there is 465 bytes (497 - 32) of free space available, starting at the beginning of this FSE.

Chapter 15. Full-function database types 167

Before

"] ESDS
Anchor
polnt
Clz FSEAP area Bitmap - -
212 byt
(512 bytes) |~ g | 01 | 0000 | 001101 ------ .. 10100
T T { | 1
Sal lo 1 means Bit zet 1o 1 means that there is
that this is a free space in tha next Cl
bitmap block
Root
addressable
araa
Anchor FSE
point
FSEAP area cr| AL | ID .
08 | OO | ODODO | OO 1F1 Free space
Cl3 { |
(512 bytes)))
8 bytes from tha beginning 497 bytas of free space ara avallable
of Cl there s an FSE starting at the beginning of this FSE
Insert root SKILLA
(32 bytes)
After +
] esps
Anchor FSE
point
FSEAP | area , ce| AL | D
Cla | 28 ‘ 00 | 208 | SKILLA l oo | 1D1 Free space l - ‘
40 bytes from the Mew root 465 bytes of free space available
beginning of the Cl segment starting at the beginning of the FSE

thera is an FSE

Figure 58. Updating the space management fields in an HDAM or PHDAM database

Related concepts

“Deleting segments” on page 169

When a segment is deleted in an HD database, it is physically removed from the database. The space it
occupied can be reused when new segments are inserted.

“Inserting dependent segments” on page 168
After initial load, dependent segments are inserted into HD databases using the HD space search
algorithm.

Inserting dependent segments

[Search title: IMS 15.4 - Database administration - Inserting dependent segments

168 IMS: Database Administration

After initial load, dependent segments are inserted into HD databases using the HD space search
algorithm.

As with the insertion of root segments into an HD database, the various space management fields in the
database need to be updated.

Related concepts

“How the HD space search algorithm works” on page 170
The general rule for inserting a segment into an HD database is to store the segment (whether root or
dependent) in the most desirable block or CI.

“Updating the space management fields when a root segment is inserted” on page 167
When a root segment is inserted into an HD database, the space management fields need to be updated.

Deleting segments

[Search title: IMS 15.4 - Database administration - Deleting segments

When a segment is deleted in an HD database, it is physically removed from the database. The space it
occupied can be reused when new segments are inserted.

As with the insertion of segments into an HD database, the various space management fields need to be
updated.

« The bitmap needs to be updated if the block or CI from which the segment is deleted now contains
enough space for a segment to be inserted. (Remember, the bitmap says whether enough space exists
in the block or CI to hold a segment of the longest type defined. Thus, if the deleted segment did not
free up enough space for the longest segment type defined, the bitmap is not changed.)

« The FSEAP needs to be updated to show where the first FSE in the block or CI is now located.

« When a segment is deleted, a new FSE might be created or the AL field value in the FSE that
immediately precedes the deleted segment might need to be updated.

- If the deleted segment is a root segment in an HDAM or a PHDAM database, the value in its PTF pointer
is put in the RAP or in the PTF pointer that pointed to it. This maintains the chain off the RAP and
removes the deleted segment from the chain.

If a deleted segment is next to an already available area of space, the two areas are combined into one
unless they are created by an online task that has not yet reached a sync point.
Related concepts

“Updating the space management fields when a root segment is inserted” on page 167
When a root segment is inserted into an HD database, the space management fields need to be updated.

Replacing segments

[Search title: IMS 15.4 - Database administration - Replacing segments
Replacing segments in HD databases is straightforward as long as fixed-length segments are used.

The segment data, once changed, is simply returned to its original location in storage. The key field in a
segment cannot be replaced.

Provided sufficient adjacent space is available, the segment data is returned to its original location when
avariable-length segment is replaced with a longer segment. If adjacent space is unavailable, space is
obtained from the overflow area for the lengthened data portion of the segment. This segment is referred
to as a "separated data segment." It has a 2-byte prefix consisting of a 1-byte segment code and a 1-byte
delete flag, followed by the segment data. The delete byte of the separated data segment is set to X'FF',
indicating that this is a separated data segment. A pointer is built immediately following the original
segment to point to the separated data. Bit 4 of the delete byte of the original segment is set ON to
indicate that the data for this segment is separated. The unused remaining space in the original segment
is available for reuse.

Chapter 15. Full-function database types 169

How the HD space search algorithm works

[Search title: IMS 15.4 - Database administration - How the HD space search algorithm works
The general rule for inserting a segment into an HD database is to store the segment (whether root or
dependent) in the most desirable block or CI.
Related concepts
“When not enough root storage room exists” on page 161
If the CI or block specified by the randomizing module does not contain enough room to store the root,
IMS uses the HD space search algorithm to find space.

“Inserting dependent segments” on page 168
After initial load, dependent segments are inserted into HD databases using the HD space search
algorithm.

“Inserting root segments into a HIDAM or PHIDAM database” on page 166
Root segments are inserted into HIDAM and PHIDAM databases in ascending root sequence.
Related tasks

“Specifying free space (HDAM, PHDAM, HIDAM, and PHIDAM only)” on page 401
Dependent segments inserted after an HD database is loaded are put as close as possible to the
segments to which they are related.

Root segment

[Search title: IMS 15.4 - Database administration - Root segment |
The most desirable block depends on the access method.

For HDAM or PHDAM roots, the most desirable block is the one containing either the RAP or root segment
that will point to the root being inserted. For HIDAM or PHIDAM roots, if the root does not have a twin
backward pointer, the most desirable block is the one containing the root with the next higher key. If the
root has a twin backward pointer, the most desirable block is the root with the next lower key.

Dependent segment

[Search title: IMS 15.4 - Database administration - Dependent segment |
The most desirable block is the one containing the segment that points to the inserted segment.

If both physical child and physical twin pointers are used, the most desirable block is the one containing
either the parent or the immediately-preceding twin. If hierarchical pointers are used, the most desirable
block is the one containing the immediately-preceding segment in the hierarchy.

Second-most desirable block

[Search title: IMS 15.4 - Database administration - Second-most desirable block |
When it is not possible to store one or more segments in the most desirable block because, for example,
space is not available, the HD space search algorithm searches for the second-most desirable block or CI.

This search is done only if the block is in the buffer pool or contains free space according to the bitmap.
The second-most desirable block or CI is a block or CI that was left free when the database was loaded or
reorganized.

You can specify that every nth block or CI be left free. If you do not specify that every nth block or CI be
left free, the HD space search algorithm does not search for the second-most desirable block or CI.

For HDAM or HIDAM databases, you can enter your free space specifications by using the FRSPC=
keyword in the DATASET macro of the DBDGEN utility.

For PHDAM or PHIDAM databases, you can enter your free space specifications for each partition
separately in the DBRC RECON data set by using either the HALDB Partition Definition utility or the
FBFF(value) and FSPF(value) parameters of the DBRC batch commands INIT.PART or CHANGE.PART.

170 IMS: Database Administration

All search ranges defined in the HD space search algorithm, excluding steps 9 and 10, are limited to the
physical extent that includes the most desirable block. When the most desirable block is in the overflow
area, the search ranges, excluding steps 9 and 10, are restricted to the overflow area.

The steps in the HD space search algorithm follow. They are arranged in the sequence in which they are
performed. The first time any one of the steps in the list results in available space, the search is ended
and the segment is stored.

The HD space search algorithm looks for space in the following order:

1. In the most desirable block (this block or CI is in the buffer pool).
2. In the second-most desirable block or CI.

3. Inany block or CI in the buffer pool on the same cylinder.

4

. In any block or CI on the same track, as determined by consulting the bitmap. (The bitmap says
whether space is available for the longest segment type defined.)

5. In any block or CI on the same cylinder, as determined by consulting the bitmap.

6. In any block or CI in the buffer pool within plus or minus n cylinders. Specify n in the SCAN= keyword
in the DATASET statement in the DBD.

For HALDB databases, the value of the SCAN= keyword is always 0.
7. In any block or CI plus or minus n cylinders, as determined by consulting the bitmap.
8. In any block or CI in the buffer pool at the end of the data set.

9. In any block or CI at the end of the data set, as determined by consulting the bitmap. The data sets
will be extended as far as possible before going to the next step.

10. In any block or CI in the data set where space exists, as determined by consulting the bitmap. (This
step is not used when a HIDAM or PHIDAM database is loaded.)

Some of the above steps are skipped in load mode processing.

If the dependent segment being inserted is at the highest level in a secondary data set group, the place
and the way in which space is found differ:

- First, if the segment has no twins, steps 1 through 8 in the HD space search algorithm are skipped.

« Second, if the segment has a twin that precedes it in the twin chain, the most desirable block is the one
containing that twin.

« Third, if the segment has only twins that follow it in the twin chain, the most desirable block is the one
containing the twin to which the new segment is chained.

Locking protocols

[Search title: IMS 15.4 - Database administration - Locking protocols
IMS uses locks to isolate the database changes made by concurrently executing programs.

Locking is accomplished by using either the Program Isolation (PI) lock manager or the IRLM. The PI lock
manager provides only four locking levels and the IRLM supports eleven lock states.

The IRLM also provides support for "feedback only" and "test" locking required, and it supplies feedback
on lock requests compatible with feedback supplied by the PI lock manager.

Locking to provide program isolation

[Search title: IMS 15.4 - Database administration - Locking to provide program isolation
For all database organizations, the basic item locked is the database record.

The database record is locked when position is first obtained in it. The item locked is the root segment,
or for HDAM or PHDAM, the anchor point. Therefore, for HDAM or PHDAM, all database records chained
from the anchor are locked. The processing option of the PCB determines whether or not two programs
can concurrently access the same database record. If the processing option permits updates, then no

Chapter 15. Full-function database types 171

other program can concurrently access the database record. The database record is locked until position
is changed to a different database record or until the program reaches a commit point.

When a program updates a segment with an INSERT, DELETE, or REPLACE call, the segment, not the
database record, is locked. On an INSERT or DELETE call, at least one other segment is altered and
locked.

Because data is always accessed hierarchically, when a lock on a root (or anchor) is obtained, IMS
determines if any programs hold locks on dependent segments. If no program holds locks on dependent
segments, it is not necessary to lock dependent segments when they are accessed.

The following locking protocol allows IMS to make this determination. If a root segment is updated,

the root lock is held at update level until commit. If a dependent segment is updated, it is locked at
update level. When exiting the database record, the root segment is demoted to read level. When a
program enters the database record and obtains the lock at either read or update level, the lock manager
provides feedback indicating whether or not another program has the lock at read level. This determines
if dependent segments will be locked when they are accessed. For HISAM, the primary logical record is
treated as the root, and the overflow logical records are treated as dependent segments.

These lock protocols apply when the PI lock manager is used; however, if the IRLM is used, no lock is
obtained when a dependent segment is updated. Instead, the root lock is held at single update level
when exiting the database record. Therefore, no additional locks are required if a dependent segment is
inserted, deleted, or replaced.

Related concepts

“Deleting segments” on page 135

When segments are deleted from a HISAM database, they are marked as deleted in the delete byte in
their prefix. They are not physically removed from the database; the one exception to this is discussed
later in this topic.

Locking for Q command codes

|Search title: IMS 15.4 - Database administration - Locking for Q command codes

When a Q command code is issued for a root or dependent segment, a Q command code lock at share
level is obtained for the segment. This lock is not released until a DEQ call with the same class is issued,
or until commit time.

If a root segment is returned in hold status, the root lock obtained when entering the database record
prevents another user with update capability from entering the database record. If a dependent segment
is returned in hold status, a Q command code test lock is required. An indicator is turned on whenever

a Q command code lock is issued for a database. This indicator is reset whenever the only application
scheduled against the database ends. If the indicator is not set, then no Q command code locks are
outstanding and no test lock is required to return a dependent segment in hold status.

Resource locking considerations with block level sharing

[Search title: IMS 15.4 - Database administration - Resource locking considerations with block level sharing

Resource locking can occur either locally in a non-sysplex environment or globally in a sysplex
environment.

In a non-sysplex environment, local locks can be granted in one of three ways:
- Immediately because of one of the following reasons:

IMS was able to get the required IRLM locks, and there is no other interest on this resource.
The request is compatible with other holders or waiters.

- Asynchronously because the request could not get the required IRLM latches and was suspended.
(This can also occur in a sysplex environment.) The lock is granted when latches become available and
one of three conditions exist:

No other holders exist.
The request is compatible with other holders or waiters.

172 IMS: Database Administration

The request is not compatible with the holders or waiters and was granted after their interest was
released. (This could also occur in a sysplex environment.)

In a sysplex environment, global locks can be granted in one of three ways:
- Locally by the IRLM because of one of the following reasons:

There is no other interest for this resource.
This IRLM has the only interest, this request is compatible with the holders or waiters on this system,
and XES already knows about the resource.

« Synchronously on the XES CALL because of one of the following reasons:

XES shows no other interest for this resource.
XES shows only SHARE interest for the hash class.

« Asynchronously on the XES CALL because of one of three conditions:

Either XES shows EXCLUSIVE interest on the hash class by an IRLM, but the resource names do not
match (FALSE CONTENTION by RMF).

Or XES shows EXCLUSIVE interest on the hash class by an IRLM and the resource names match,

but the IRLM CONTENTION EXIT grants it anyway because the STATES are compatible (IRLM FALSE
CONTENTION).

Or the request is incompatible with the other HOLDERs and is granted by the CONTENTION Exit after
their interest is released (IRLM REAL CONTENTION).

Data sharing impact on locking

[Search title: IMS 15.4 - Database administration - Data sharing impact on locking |
When you use block-level data sharing, the IRLM must obtain the concurrence of the sharing system
before granting global locks.

Root locks are global locks, and dependent segment locks are not. When you use block-level data sharing,
locks prevent the sharing systems from concurrently updating the same buffer. The buffer is locked before
making the update, and the lock is held until after the buffer is written during commit processing. No
buffer locks are obtained when a buffer is read.

If a Q command code is issued on any segment, the buffer is locked. This prevents the sharing system
from updating the buffer until the Q command code lock is released.

Locking in HDAM, PHDAM, HIDAM, and PHIDAM databases

|Search title: IMS 15.4 - Database administration - Locking in HDAM, PHDAM, HIDAM, and PHIDAM databases |
If you access a HIDAM or PHIDAM root through the index, a lock is obtained on the index, using the RBA
of the root segment as the resource name. Consequently, a single lock request locks both the index and
the root.

When NOTWIN pointers are specified on a PHIDAM root, a lock on the next higher non-deleted root is
required to provide data integrity. IMS obtains the additional lock by reading the index until a non-deleted
index entry is found and then locking the RBA of the root segment as the resource name.

When you access an HDAM or a PHDAM database, the anchor of the desired root segment is locked as
long as position exists on any root chained from that anchor. Therefore, if an update PCB has position on
an HDAM or PHDAM root, no other user can access that anchor. When a segment has been updated and
the IRLM is used, no other user can access the anchor until the user that is updating commits. If the PI
lock manager is used and an uncommitted unit of work holds the anchor, locks are needed to access all
root and dependent segments chained from the anchor until the user that is updating commits.

Locking for secondary indexes

[Search title: IMS 15.4 - Database administration - Locking for secondary indexes

Chapter 15. Full-function database types 173

When a secondary index is inserted, deleted or replaced, it is locked with a root segment lock.

When the secondary index is used to access the target of the secondary index, depending on what the
index points to, it might be necessary to lock the secondary index.

Backup and recovery of HIDAM and PHIDAM primary indexes

|Search title: IMS 15.4 - Database administration - Backup and recovery of HIDAM and PHIDAM primary indexes|

The backup and recovery of HD primary indexes differs depending on whether the database is a HIDAM or
a PHIDAM database.

You back up and recover HIDAM primary indexes in the same way as you do most other database data
sets: by using image copies and database change records from the logs. Create image copies of the
primary index data sets as often as you create image copies of the database data sets of the indexed
HIDAM database. During recovery, after you restore the primary index from image copies, you apply the
database change records from the logs by using the Database Recovery utility (DFSURDBO). If you do not
create image copies of the primary index, your only recovery alternative is to rebuild the HIDAM primary
index by using a separately priced index builder tool, such as the IBM IMS Index Builder for z/OS.

You do not back up or recover PHIDAM primary indexes. PHIDAM primary indexes are rebuilt after the
recovery of the indexed database data sets by using the HALDB Index/ILDS Rebuild utility (DFSPRECO).

Related concepts

“Database backup and recovery” on page 559
The successful recovery of a database after a failure depends on the planning and preparation you do
before an error ever occurs. Making database backup copies is a critical part of that preparation.

Related reference
Backup utilities (Database Utilities)
Recovery utilities (Database Utilities)

Partitions in PHDAM, PHIDAM, and PSINDEX databases

[Search title: IMS 15.4 - Database administration - Partitions in PHDAM, PHIDAM, and PSINDEX databases |
You can view a HALDB database, whether it is a PHDAM, PHIDAM, or a PSINDEX database, as a single
database whose records are divided into manageable sections called partitions.

A partition is a subset of a HALDB database. The maximum size of a partition depends on the maximum
number of data sets per partition and the maximum size of the data sets.

In many cases, each partition can be administered independently from the other partitions in the
database. The division of records across partitions in a HALDB database is transparent to application
programs, unless you choose to process partitions selectively.

HALDB partitions include unique features that allow IMS to manage them and that make them easier for
you to use, as well. The HALDB partition structure also offers unique functions that are unavailable with
non-partitioned databases, such as selective partition processing.

HALDB partition names and numbers

[Search title: IMS 15.4 - Database administration - HALDB partition names and numbers |

Each HALDB partition has a name, an ID number, a change version number, and a reorganization number.
You define the partition name and IMS assigns and manages the numbers.

The partition ID numbers, change version numbers, and reorganization numbers are critical to the
management of HALDB partitions by IMS and to the integrity of the data that the partitions contain.

In addition to being stored in each partition record in the RECON data set, these numbers are also stored
in the HALDB master database record. IMS uses the numbers in the HALDB master database record to
help manage the partitions and to access the data that the partitions contain.

174 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dur/ims_dur03.htm#ims_dur-gen2
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dur/ims_dur04.htm#ims_dur-gen3

If you delete a HALDB master database record, the partition numbers it contains are lost and the
partitions associated with the deleted HALDB master database record can no longer be accessed. The
partition numbers cannot be reproduced by redefining the HALDB master database record.

Deleting a HALDB master database record can also result in the loss of access to data in logically related
HALDB databases, because the extended pointer set (EPS) of the logically related segments becomes
invalid when the partition ID and reorganization number of the target segments are lost.

For these reasons, never delete a HALDB master database record from the RECON data set unless you
are permanently deleting the HALDB database and all of its data, as well as all references to the HALDB
database being deleted that are in any logically related or secondary index databases.

Related concepts

“Partition definition control blocks and partition definitions in the RECON data set” on page 776

The online IMS system creates an internal partition definition control block for each HALDB partition that
you define.

HALDB partition names

[Search title: IMS 15.4 - Database administration - HALDB partition names
The HALDB partition name is a unique, 7-character alphanumeric identifier that you define and control.

Unless you delete the HALDB master database or the partition, the partition name does not change. The
partition name does not necessarily correspond to the records that the partition contains.

Tip: If you want the partition names in a HALDB database to reflect the record keys that each partition
contains, and if you want to keep the partition names in sequence over the life of the database, assign
names to your partitions that provide room for new partitions to be added to the database without
breaking the naming sequence.

For example, you could define the following partition names: ABC100, ABC200, ABC300, ABC400,
ABC500, and so forth, to conform to the key range sequence of the records they contain. If partition
ABC300 later becomes too large and you need to split its records by adding a new partition, you can name
the new partition ABC250 without breaking the naming sequence.

You can specify a partition name instead of a master database name in many commands to restrict the
command to the specified partition.
HALDB partition ID numbers

[Search title: IMS 15.4 - Database administration - HALDB partition ID numbers
IMS assigns a partition ID number to each new partition when you define the partition.

IMS generates each new partition ID number by incrementing by one the last partition ID number
assigned. Because you do not have control over the partition ID numbers, you cannot assume that the
partition IDs in a database will stay in order.

For example, if you defined the partitions ABC100, ABC200, ABC300 in order, partition ABC100 would
have partition ID number 1 and partition ABC300 would have partition ID number 3. Later, if you define a
new partition ABC250, IMS assigns to it partition ID number 4.

HALDB change version numbers

[Search title: IMS 15.4 - Database administration - HALDB change version numbers
IMS assigns a change version number to each partition and to the HALDB master database.

IMS uses the change version number to ensure that internal partition definition control blocks match the
HALDB definitions that are stored in the RECON data set.

You do not have control over the change version numbers, although they are displayed in some reports
that are generated by the DBRC LIST command. Every time you change the definitions of a HALDB
partition, DBRC increments the change version numbers that are stored in the RECON data set for both

Chapter 15. Full-function database types 175

the partition and the HALDB master database. When IMS detects that DBRC has incremented the number,
IMS updates the control blocks of the HALDB database to reflect the new changes.

HALDB partition reorganization numbers

[Search title: IMS 15.4 - Database administration - HALDB partition reorganization numbers

IMS assigns and maintains a reorganization number for each partition to ensure the integrity of data
across database reorganizations.

IMS also uses the reorganization number in the HALDB self-healing pointer process after reorganizations
of HALDB partitions that use either logical relationships or secondary indexes.

The reorganization number is stored in the following places in each partition:

« In the first block of the first database data set in each partition
« Inthe indirect list key (ILK) included in every segment in the partition
« In the extended pointer set (EPS) of each secondary index entry and each logical child segment

« In each indirect list entry (ILE) in the ILDS for each secondary index target segment and each logical
parent segment

Attention: If the reorganization number of a partition becomes corrupted, future reorganizations or
modifications of the partitions in the HALDB database might produce duplicate segment ILKs and data
will be lost.

Reorganization numbers can become corrupt if the HALDB reorganization number verification function
is not enabled and either a reorganization fails to increment the reorganization number of a partition
correctly or a segment that has a low reorganization number in its EPS is moved into a partition and
lowers the reorganization number of the destination partition.

A corrupt reorganization number is difficult to detect. If you do not use logical relationships or secondary
indexes, a corrupt reorganization number does not cause any immediate problems. However, if you

later add either logical relationships or secondary indexes to a HALDB database that has a corrupt
reorganization number, you are likely to lose data.

To ensure the consistency of partition reorganization numbers, enable the HALDB reorganization number
verification function. The HALDB reorganization number verification function records the reorganization
number of each partition in the RECON data set and ensures that reorganization numbers are always
incremented properly. When enabled, the HALDB reorganization number verification function applies to
all HALDB databases that are recorded in the RECON data set.

To enable the HALDB reorganization number verification function:

« Issue either of the DBRC commands INIT.RECON REORGV or CHANGE .RECON REORGV or either of the
type-1 commands /RMINIT DBRC='RECON REORGV' or /RMCHANGE DBRC='RECON REORGV'.

« Run a program that updates at least one record in each partition in each HALDB database that is
registered in the RECON data set.

When you enable the HALDB reorganization number verification function, the reorganization numbers for
all HALDB partitions in the RECON data set are reset to zero. Accessing a record in each partition updates
the RECON data set with the current reorganization number that is stored in each partition.

Related concepts

“Record distribution and high key partitioning” on page 774

If you use key range partitioning, you can change the distribution of records across HALDB partitions by
changing the high key of one or more partitions. The high key of a partition specifies the highest root key
of a record that a partition can contain.

“The HALDB self-healing pointer process” on page 652

Reorganizations of HALDB databases with logical relationships and secondary indexes do not require the
execution of utilities to update pointers. Instead, HALDB uses a self-healing pointer process to correct
logical relationship and secondary index pointers.

Initializing and maintaining the RECON data sets (System Administration)

176 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/dbrc_admin/ims_recon_int_maint.htm#ims_recon_int_maint

Related tasks

“Changing the high key of a partition” on page 780

You can change the high key of a partition to either increase or decrease the number of records the
partition contains.

Related reference
/RMxxxxxx commands (Commands)
DBRC commands (Commands)

HALDB partition initialization

[Search title: IMS 15.4 - Database administration - HALDB partition initialization |
After you define a partition and allocate its data sets, you must initialize the partition.

The initialization process makes a partition usable, but does not place any database segments in the
partition. After the initialization process, a partition is empty.

To initialize HALDB partitions, you can use either the HALDB Partition Data Set Initialization utility
(DFSUPNTO) or the Database Prereorganization utility (DFSURPRO).

Partition initialization writes the partition ID number and the initial reorganization number in PHDAM and
PHIDAM partitions. The initial reorganization number is set to one, unless HALDB reorganization number
verification is enabled, in which case the reorganization number is incremented by one from the existing
reorganization number that is stored in the RECON data set.

The partition ID number and the reorganization numbers are written in the first 4 bytes of the first block of
the first data set. This first block is called the bitmap block.

For PHDAM partitions, partition initialization writes and deletes a dummy record.
For PHIDAM partitions, partition initialization writes a high key record of all X'FF's in each partition.

For PSINDEX partitions, partition initialization writes and deletes a dummy record, which makes the
high-used-RBA non-zero.

HALDB partition data sets

[Search title: IMS 15.4 - Database administration - HALDB partition data sets |
HALDB databases, regardless of type, can contain 1 to 1 001 partitions; however, the number of data sets
per partition depends on the type of HALDB database and whether or not the integrated HALDB Online
Reorganization function is used.

HALDB partitions contain the following types of data sets:

Database data sets
The database data sets contain the segment data for PHDAM and PHIDAM databases. Database data
sets can be OSAM or VSAM entry sequenced data sets (ESDS).

Index data sets
Index data sets can be a primary index in a PHIDAM database or a secondary index data set in a
PSINDEX partition. Index data sets are VSAM key sequenced data sets (KSDS).

Indirect list data set (ILDS)

ILDSs contain indirect list entries (ILE) that are used to manage pointers when logical relationships
and PSINDEXes are used. ILDSs are VSAM KSDSs.

Number of data sets in a HALDB partition

[Search title: IMS 15.4 - Database administration - Number of data sets in a HALDB partition |
The minimum and maximum number of data sets a HALDB partition can contain depends on the type of
HALDB database and whether or not you use the integrated HALDB Online Reorganization function.

For the integrated HALDB Online Reorganization function, IMS creates an additional data set for each
database data set and PHIDAM primary index data set in the partition being reorganized. The additional

Chapter 15. Full-function database types 177

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_rmxxxxx.htm#ims_cr2rmxxxxx
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/compcmds/ims_dbrccmds.htm#ims_cr3_gen3

data sets are used by the reorganization process and might or might not be active, or even present,
depending on whether an online reorganization is currently in progress and, if a reorganization is not in
progress, whether the inactive data sets were deleted after the last online reorganization completed.

The following table lists the minimum and maximum number of data sets a HALDB partition can contain.

Table 49. Minimum and maximum number of data sets for each HALDB partitions

HALDB Minimum number of data sets Maximum number of data sets
type
PHDAM Two or three: an OSAM or VSAM ESDS for the Eleven or twenty one: ten OSAM or VSAM

database data set, a KSDS for the ILDS, and, ESDSs for the database data sets, one
if the integrated HALDB Online Reorganization KSDS for the ILDS, and, if the integrated

function is used, a second OSAM or VSAM HALDB Online Reorganization function is
ESDS. used, ten additional OSAM or VSAM ESDSs.
PHIDAM Three or five: an OSAM or VSAM ESDS for Twelve or twenty three: ten OSAM or VSAM
the database data sets, a KSDS for the ESDSs for the database data sets, one
ILDS, a KSDS for the primary index, and, if KSDS for the ILDS, one KSDS for the
the integrated HALDB Online Reorganization primary index, and, if the integrated HALDB
function is used, a second OSAM or VSAM Online Reorganization function is used, ten
ESDS and a second KSDS for the primary additional OSAM or VSAM ESDSs and a
index. second KSDS for the primary index.
PSINDEX One: a KSDS One: a KSDS

Indirect list data sets and HALDB partitions

[Search title: IMS 15.4 - Database administration - Indirect list data sets and HALDB partitions
Every HALDB PHDAM and PHIDAM partition that uses a secondary index or logical relationships must
have an indirect list data set (ILDS) allocated to it.

The HALDB self-healing pointer process uses the ILDS to update secondary index pointers and logical
relationship pointers after database reorganizations.

In a batch environment, even the partitions in a PHDAM or PHIDAM database that do not use secondary
indexes or logical relationships must have an ILDS allocated.

In an online environment, IMS does not need to allocate an ILDS for partitions that do not use a
secondary index or logical relationships.

Like all data sets in HALDB databases, the maximum size of an ILDS is 4 GB. Each ILE in an ILDS is 50
bytes. Consequently, an ILDS cannot support more that 85 000 000 logical parent segments or secondary
index target segments in a single partition. It is very unlikely that you might reach the ILE limit, but if you
do, you can split the single partition into two or more partitions.

When you convert a database to HALDB, reorganize the database data sets in a partition, or perform a
recovery of the database data sets in a partition, the ILDS is updated or rebuilt to reflect the changes to
the physical location of the target segments of the ILEs in the ILDS. The IMS utilities that can update or
rebuild the ILDS are:

« The HD Reorganization Reload utility (DFSURGLO)
« The HALDB Index/ILDS Rebuild utility (DFSPRECO)

Both of these utilities provide options for rebuilding the ILDS by using either VSAM update mode or
VSAM load mode. VSAM load mode, which adds the free space called for in the VSAM DEFINE statement
that defines the ILDS, can improve the performance of both the current execution of the utility and of
subsequent reorganizations and recoveries.

HALDB partition data sets and recovery

|Search title: IMS 15.4 - Database administration - HALDB partition data sets and recovery

178 IMS: Database Administration

The recovery of HALDB databases is performed by recovering each partition. You recover the database
data sets in each partition the same way you recover the database data sets in a non-HALDB database.

After the database data sets in the partition are recovered, you can then rebuild the primary index, if it
exists, and the ILDS. HALDB primary indexes and ILDSs are not backed up or recovered.

To rebuild HALDB primary indexes and ILDSs, use the HALDB Index/ILDS Rebuild utility, which provides
options for building the ILDS by using either VSAM update mode or VSAM load mode. VSAM load mode,
which includes the free space called for in the VSAM KSDS DD statement that defines the ILDS, can
improve the performance of both the current execution of the utility and of subsequent reorganizations
and recoveries.

Related concepts

“Database backup and recovery” on page 559
The successful recovery of a database after a failure depends on the planning and preparation you do
before an error ever occurs. Making database backup copies is a critical part of that preparation.

HALDB partition selection

[Search title: IMS 15.4 - Database administration - HALDB partition selection |

IMS must select the correct HALDB partition whenever it accesses a database record. The selection
process is called partition selection.

Partition selection determines the partitions in which the root segments are placed and the order in which
partitions are processed.

IMS performs partition selection by using either key range partitioning, which is based on the high root
keys of the partitions, or by using a partition selection exit routine, which uses selection criteria that you
define.

IMS assigns database records to partitions based on the key of the root segment.
For batch, BMP, and JBP programs, a PCB can be restricted to access one or more partitions.

Related concepts

“HDAM, PHDAM, HIDAM, and PHIDAM databases” on page 141

A hierarchical direct (HD) database is a database that maintains the hierarchical sequence of its segments
by having segments point to one another (instead of by physically storing the segments in the hierarchical
sequence).

Partition selection using high keys

|Search title: IMS 15.4 - Database administration - Partition selection using high keys |

If you use high-key partitioning, high keys define the partition boundaries and determine how the records
are distributed across your partitions.

IMS performs partition selection based on the high key that is defined for each partition. The high key

of a partition also defines the range of keys that the partition contains. IMS assigns a root segment to
the partition with the lowest high key that is greater than or equal to the key of the root segment. For
example, suppose that there are three partitions with high keys of 1000, 2000, and 3000. Root segment
keys of 1001 through 2000 are in the partition with a high key of 2000.

The high keys of the partitions also define the order of the partitions within the HALDB database.

High-key partitioning is the simpler method to implement because you do not have to write an exit
routine. You only need to assign a high key to each partition.

In PHIDAM and PSINDEX databases that use high-key partitioning, the records are in key sequence
across the entire database, just as they are in HIDAM and non-HALDB secondary index databases. In
PHIDAM or PSINDEX databases that use a partition selection exit routine, records are in key sequence
within a partition, but not necessarily across partitions, which makes these databases inconsistent with
HIDAM and non-HALDB secondary index databases. Application programs that require database records

Chapter 15. Full-function database types 179

to be in key sequence across partitions do not work correctly when a partition selection exit routine is
used.

Recommendation: When you use high-key partitioning, specify a high key value of all X'FF's for the
partition that has the highest high key in the database. A high key value of all X'FF's ensures that all keys
can be assigned to a partition. If the last partition (the partition with the highest key specified) has a key
value other than all X'FF's, any attempt to access or insert a database record with a key higher than the
high key specified results in an FM status code for the call. Application programs written for non-HALDB
databases are unlikely to be able to process the FM status code.

Partition selection using a partition selection exit routine

[Search title: IMS 15.4 - Database administration - Partition selection using a partition selection exit routine

If you need to select partitions by some criteria other than their high keys, you can use a partition
selection exit routine.

IMS provides a sample HALDB Partition Selection exit routine (DFSPSE0QO0), which assigns records to
partitions based on the key of the root segment. The exit routine also determines the order in which
sequential processing accesses the partitions. You can also write your own partition selection exit routine.

For a PHIDAM database, a partition selection exit routine can distribute the records in a key sequence
within a partition that is out of sequence with the key sequences of the other partitions in the database.
For example, a partition selection exit routine that uses the rightmost portion of a key to select the
partition can conform to the characteristics of a HDAM database on data retrieval calls. Partition PARTA
might include records in the following sequence: A001, BO01, C001, DOOL. Partition PARTB might include
records in this sequence: A010, B010, C010, D010. As in a HDAM database, a sequential retrieval call to
find a segment with a key of C010 fails if partition PARTA is selected.

You can also use a partition selection exit routine to isolate certain database records by their
characteristics. For example, if the sizes of most records in a PHDAM database are fairly uniform, except
for a few records that are very large, the unusually large records can cause space usage problems within
partitions. If the keys of the large records are known, an exit routine could recognize their keys and place
them in a partition with different space characteristics. The partition might have many fewer records
spread across the same amount of space or have its own specialized randomization routine.

The IBM IMS HALDB Conversion and Maintenance Aid for z/OS includes the IHCPSELO exit routine, which
can perform this type of partition selection. If you use the IHCPSELO exit routine, you do not need to write
an exit routine. You need only to specify the part of the key that is to be used and the values for each
partition.

You can find more information about the IBM IMS HALDB Conversion and Maintenance Aid for z/OS on the
IBM DB2 and IMS Tools website at www.ibm.com/software/data/db2imstools.

How application programs process HALDB partitioned databases

Search title: IMS 15.4 - Database administration - How application programs process HALDB partitioned
databases
Unless their processing is restricted, application programs process the data in partitioned HALDB
databases in the same way that they process non-partitioned full-function databases, without regard
to the partitions in which the data is stored.

Application programs that process data sequentially proceed across the partitions in a HALDB database
in partition selection order. Application programs that process data randomly access the partitions in

a HALDB database randomly as well. Application programs and the PCBs they use to access HALDB
databases are not required to account for the partitions in the HALDB database that they access.

Note: The BMP application can have an unlimited number of databases and HALDB partitions without
committing the changes.

HALDB selective partition processing

|Search title: IMS 15.4 - Database administration - HALDB selective partition processing

180 IMS: Database Administration

You can restrict BMP, JBP, and batch application programs to a single HALDB partition or a subset of
HALDB partitions.

Restricting an application program to a subset of partitions allows multiple instances of the application
program to process HALDB partitions in parallel, independently from the other application programs. The
independent processing of partitions by application programs is similar to the independent processing of
partitions by utilities.

To restrict processing to a subset of partitions, restrict the database PCB to the partition by specifying in
a DFSHALDB DD statement the partition name and either the label name of the database PCB or the nth
position of the database PCB.

For more information about the DFSHALDB DD statement, see IMS Version 15.4 System Definition.

Logical relationships and selective partition processing
|Search title: IMS 15.4 - Database administration - Logical relationships and selective partition processing |

BMP, JBP, and batch-processing applications can selectively process a subset of one or more contiguous
partitions that have logical relationships.

If a logical child is in a partition to which an application program's processing has been restricted and
the logical parent is in another partition that the application does not have access to, the application can
process the logical parent anyway. Because of a logical relationship, an application with restricted access
can process a partition that it does not have direct access to.

Secondary indexes and selective partition processing
|Search title: IMS 15.4 - Database administration - Secondary indexes and selective partition processing

You can restrict BMP, JBP, and batch-processing applications programs to a subset of one or more
contiguous partitions of a HALDB partitioned secondary index (PSINDEX).

To specify selective partitions for processing, specify the name of the PSINDEX partition in the DFSHALDB
statement

You can process the partitions of a PSINDEX selectively regardless of whether your application program
processes your PSINDEX as a standalone database or as an alternate processing sequence for a PHDAM
or PHIDAM database.

The partitions in a PSINDEX do not correspond to the partitions in the PHDAM or PHIDAM database

that the PSINDEX indexes. Consequently, when you specify selective partition processing for a PSINDEX,
selective partition processing applies only to the PSINDEX partition, not to the partitions of the PHDAM
or PHIDAM database. The target segments can be in any partition in the indexed PHDAM or PHIDAM
database.

Similarly, if you specify selective partition processing for a PHDAM or PHIDAM database, the selective
partition processing does not restrict access to any of the partitions in any associated PSINDEXs.

Regardless of whether you are using selective partition processing with a PSINDEX or with an indexed
PHDAM or PHIDAM database, selective partition processing does not affect the internal updating of a
secondary index by IMS when a target segment is updated. For example, if an application program is
restricted to a single partition of the PSINDEX and inserts a segment into the indexed PHDAM or PHIDAM
database, the corresponding new index entry can be inserted in any partition of the PSINDEX.

Partition selection when processing is restricted to a single partition
Search title: IMS 15.4 - Database administration - Partition selection when processing is restricted to a single
partition
If you use high key partitioning, IMS selects partitions by using the root key that is used in the DL/I call
and the high key that is defined for the partition. When access is restricted to a single partition and the
root key is outside of the key range of the partition, IMS returns an FM or GE status code.

If you use a partition selection exit routine to select partitions, the routine is called when the DL/I call
provides a specific root key. The exit routine selects a partition based on the specified root key. If the

Chapter 15. Full-function database types 181

partition that is selected is different from the one that the application has access to, IMS returns an FM or
GE status code.

When access is restricted to a single partition, the first partition is always the partition to which access is
restricted, and the next partition does not exist. The exit routine is not called to select a first partition or
the next partition.

Recommendation: When restricting processing to a single partition, include in the SSA only the root keys
that are in the key range of the partition.

Examples of single partition processing

|Search title: IMS 15.4 - Database administration - Examples of single partition processing
The following examples illustrate the circumstances in which the FM, GE, and GB status codes are
returned to an application program that is restricted to processing a single partition.

In all of the examples, the DB PCB usage is restricted to a HALDB partition that contains records with root
keys 201 through 400.

GU rootkey=110
The root key 110 is outside the range of root keys for the partition. IMS returns an FM status code.

GU rootkey=240 GN rootkey=110
The processing moves forward from root key 240 to find a key that is equal to 110. Because 110 is
lower than 240, IMS returns a GE status code.

GU rootkey=240 GN rootkey>=110
The processing moves forward from root key 240 to find a key that is equal to or greater than 110. If a
key is not found before reaching the end of the partition, IMS returns a GB status code.

GN rootkey>=110
The processing attempts to start the search at key 110. Because the key is outside of the root key
range of the partition, IMS returns an FM status code.

Examples of single partition processing of a PSINDEX

|Search title: IMS 15.4 - Database administration - Examples of single partition processing of a PSINDEX
The following examples illustrate the circumstances in which the FM, GE, and GB status codes are
returned to an application program that is restricted to processing a single partition of a HALDB
partitioned secondary index (PSINDEX).

In all of the examples, the DB PCB usage is restricted to a partition that contains records with secondary
index keys 201 through 400. Partition 2 of the PSINDEX references multiple partitions in the indexed
HALDB database.

GU xdfldkey=110
The root key 110 is outside the range of root keys for the partition. IMS returns an FM status code.

GU xdfldkey=240 GN xdfldkey=110
The processing moves forward from root key 240 to find a key that is equal to 110. Because 110 is
lower than 240, IMS returns a GE status code.

GU xdfldkey=240 GN xdfldkey>=110
The processing moves forward from root key 240 to find a key that is equal to or greater than 110. If
the key is not found before reaching the end of the partition, IMS returns a GB status code.

GN xdfldkey>=110
The processing attempts to start the search at key 110. Because the key is outside of the root key
range of the partition, IMS returns an FM status code.

Partition selection when processing is restricted to a range of partitions

Search title: IMS 15.4 - Database administration - Partition selection when processing is restricted to a range of
partitions

182 IMS: Database Administration

A partition is selected by using the root key for the DL/I call and the high key that is defined for the
partition.

When access is restricted to a range of consecutive partitions and the root key is outside the key range of
any of the partitions, status code FM or GE is returned.

If you use a partition selection exit routine, the routine is called when the DL/I call provides a specific root
key. The exit routine selects a partition based on the root key given. If the partition selected is not one
that the application has access to, status code FM or GE is returned. The exit routine is not called to select
a first partition or next partition.

When access is restricted to a range of partitions, the first partition is always the partition named in the
DFSHALDB statement and the next partition selected depends on the partition selection order as defined
by either the partition high keys or the partition selection exit routine.

Recommendation: When you are restricting processing to a range of partitions, the SSA should include
only the root keys that are in the key ranges of the partitions.

Examples of selectively processing a range of partitions

|Search title: IMS 15.4 - Database administration - Examples of selectively processing a range of partitions |
For the following examples, the DB PCB usage is restricted to a range of three HALDB partitions: A, B, and
C. The DFSHALDB statement specifies partition A and NUM=3.

The partitions contain the following root key ranges:

- Partition A contains the records with the root keys 201 through 400.
- Partition B contains the records with the root keys 401 through 600.
« Partition C contains the records with the root keys 601 through 800.

GU rootkey=110
The root key 110 is outside of the range of root keys in the partitions. IMS returns an FM status code.
GU rootkey=240 GN rootkey=110
The processing moves forward from root key 240 to find a key that is equal to 110. Because 110 is
lower than 240, IMS returns a GE status code.
GU rootkey=240 GN rootkey>=110
The processing moves forward from root key 240 to find a key that is equal to or greater than 110. If a
key is not found before reaching the end of the partition, IMS returns a GB status code.
GN rootkey>=110
The processing attempts to start the search at key 110. Because the key is outside of the root key
range of the partitions, IMS returns an FM status code.

GU rootkey=810
The root key 810 is outside of the range of root keys for the range of partitions. IMS returns an FM
status code.

GU rootkey=440 GN rootkey>=110
The processing moves forward from root key 440 to find a key that is equal to or greater than 110. If a
key is not found before the end of the partition is reached, IMS returns a GB status code.

Parallel partition processing

[Search title: IMS 15.4 - Database administration - Parallel partition processing |
Using selective partition processing, different instances of your application programs can process
different partitions of a database in parallel in both the batch environment and the online environment.

DBRC authorizes application programs to process individual partitions rather than the entire HALDB
database. Processing partitions in parallel can reduce the time that is required for the processing.

In the batch environment, batch application programs are authorized to process individual partitions one
at a time, rather than the entire HALDB database. IRLM is not required.

In the online environment, multiple dependent regions can process records in the same or in different
partitions. Data sharing is not required.

Chapter 15. Full-function database types 183

If you use block-level data sharing, you can easily process different partitions in parallel with multiple
subsystems. The subsystems can be online systems or batch jobs. To use block-level data sharing,
you must use IRLM and you must register the databases in DBRC as allowing block level data sharing.
For more information about block-level data sharing, see the DBRC information and the data sharing
information in IMS Version 15.4 System Administration.

To enable multiple instances of an application program to process partitions in parallel, restrict the
database PCB of each instance to the partitions by specifying in a DFSHALDB DD statement the partition
name and either the label name of the database PCB or the nth position of the database PCB.

You might also need to make one or more of the following modifications to the input, output, or
processing logic of the application program:

- Split the application program input to feed multiple instances of the application program.
« Consolidate the output of multiple instances of the application program.

« Modify the application program to respond correctly to the unavailability of the partitions it cannot
access.

For more information about the DFSHALDB DD statement, see IMS Version 15.4 System Definition.

IMS utilities supported by HALDB

[Search title: IMS 15.4 - Database administration - IMS utilities supported by HALDB

IMS provides several utilities developed specifically to support HALDB partitioned databases. HALDB
partitioned databases also support many of the same utilities supported by other full-function database
types.

Database Recovery Control (DBRC) is required for execution of any utility operating on a HALDB database.
Each utility checks for the presence of DBRC. If DBRC is not present, the utility issues an error message
and terminates.

Image copy utilities reject any attempt to image copy HALDB ILDSs or PHIDAM primary index data sets.
Recovery utilities reject any attempt to recover HALDB ILDSs or PHIDAM primary index data sets. Both
image copy and recovery utilities can run only against a particular data set of a HALDB partition.

The following table lists all of the database utilities that can be used with HALDB databases.

Table 50. Utilities that can run against HALDB databases

Utility Description Comment

DFSMAIDO HALDB Migration Aid

DFSPRECO HALDB Index/ILDS Rebuild

DFSUPNTO HALDB Partition Data Set Initialization

%DFSHALDB HALDB Partition Definition Invocation of the utility by

a c-list. %DFSHALDB is the
TSO invocation of module

DSPXPDDU.

DFSURULO HISAM Reorganization Unload

DFSURRLO HISAM Reorganization Reload

DFSURGUO HD Reorganization Unload Applies to PHDAM, PHIDAM,
and PSINDEX

DFSURGLO HD Reorganization Reload Applies to PHDAM, PHIDAM,
and PSINDEX

DFSURPRO Prereorganization

DFSUDMPO Image Copy

184 IMS: Database Administration

Table 50. Utilities that can run against HALDB databases (continued)

Utility Description Comment
DFSUICPO Online Image Copy

DFSUDMTO Database Image Copy 2

DFSUCUMO Change Accumulation

DFSURDBO Database Recovery

DFSBBO0O Batch Backout

Database I/0 error management

[Search title: IMS 15.4 - Database administration - Database I/O error management |
When a database I/0 error occurs, IMS copies the buffer contents of the error block/control interval (CI)
to a virtual buffer. A subsequent DL/I request causes the error block/CI to be read back into the buffer
pool.

The write error information and buffers are maintained across restarts, deferring recovery to a convenient
time. I/O error retry is automatically performed at database close time. If the retry operation is
successful, the error condition no longer exists and recovery is not needed.

When a database I/O error occurs in a sysplex environment, the local system maintains the buffer and
informs all members of the data-sharing group with registered interest in the database that the ClL is
unavailable. Subsequent DL/I requests for that CI receive a failure return code as long as the I/O error
persists.

Although you do not have to register your databases with DBRC in order for error handling to work,
registration is required for HALDB databases and highly recommended for all other types of full-function
databases.

The integrated HALDB Online Reorganization function can help eliminate the HALDB I/O errors on sharing
systems. If an online reorganization is started on the system that owns the write error EEQE, the online
reorganization function can take the local copy of the buffer and write it out to the output data sets. After
the buffer is written to the output data sets, the updates in the buffer are available to all sharing systems
again.

Attention: If an error occurs on a database registered with DBRC and the system stops, the database
could be damaged if the system is restarted and a /DBR command is not issued prior to accessing the
database. The restart causes the error buffers to be restored as they were when the system stopped. If
the same block had been updated during the batch run, the batch update would be overlaid.

Chapter 15. Full-function database types 185

186 IMS: Database Administration

Chapter 16. Fast Path database types

[Search title: IMS 15.4 - Database administration - Fast Path database types |
Fast Path databases include data entry databases (DEDBs) and main storage databases (MSDBs). DEDBs
provide efficient storage for and access to large volumes of data. DEDBs also provide a high level of
availability to that data. MSDBs store and provide access to an installation's most frequently used data.

Both DEDBs and MSDBs use the direct method of storing data. With the direct method, the hierarchical
sequence of segments is maintained by putting direct-address pointers in each segment's prefix.

Each IMS environment supports Fast Path databases as follows:

« DB/DC supports both DEDBs and MSDBs.
« DBCTL supports DEDBs, but does not support MSDBs.
« DCCTL does not support DEDBs or MSDBs.

Related concepts

“Summary of IMS database types and functions” on page 115
The following table provides a summary of characteristics, functions, and options of the different types of
IMS databases.

Data entry databases

[Search title: IMS 15.4 - Database administration - Data entry databases |
Data entry databases (DEDBSs) provide efficient storage for and access to large volumes of data. DEDBs
also provide a high level of availability of that data.

Several characteristics of DEDBs also make DEDBs useful when you must gather detailed and summary
information. These characteristics include:

Area format

Area data set replication
Record deactivation
Non-recovery option

A DEDB is a hierarchical database that contains up to 127 segment types: a root segment, an optional
sequential dependent segment, and 0 to 126 direct dependent segments. If an optional sequential
dependent segment is defined, you can define no more than 125 direct dependent segments. A DEDB
structure can have as many as 15 hierarchical levels. Instances of sequential dependent segments for
an area are stored in chronological order, regardless of the root on which they are dependent. Direct
dependent segments are stored hierarchically, which allows for rapid retrieval.

Recommendation: Because ETO terminals cannot access terminal-related MSDBs, you should develop
any new Fast Path databases as DEDBs instead of as MSDBs. You should also consider converting any of
your existing non-terminal-related MSDBs with non-terminal-related keys to VSO DEDBs. You can use the
MSDB-to-DEDB Conversion utility to do so.

Related concepts

“Full-function database types” on page 117

IMS full-function databases are hierarchical databases that are accessed through DL/I calls. IMS makes it
possible for application programs to retrieve, replace, delete, and add segments to IMS databases.

“Performance considerations overview” on page 119

The functional and performance characteristics of IMS databases vary from one type of IMS databases to
another. You will want to make an informed decision regarding the type of database organizations which
will best serve your purposes.

“The segment” on page 14

© Copyright IBM Corp. 1974, 2022 187

A database record consists of one or more segments, and the segment is the smallest piece of data IMS
can store.

Related reference
MSDB-to-DEDB Conversion utility (DBFUCDBO) (Database Utilities)

DEDB functions

[Search title: IMS 15.4 - Database administration - DEDB functions
DEDBs and MSDBs have many similar functions.

The common functions include:

Virtual storage

The field (FLD) call

Fixed length segments
MSDB or DEDB commit view

In addition, DEDBs have the following functions and support:
 Full DBRC support
- Block-level sharing of areas available to
- DBCTL
— LU 6.2 applications
— DB/DC applications
e HSSP support
- DEDB utilities
« Online database maintenance
 Afull hierarchical model, including support of INSERT and DELETE calls
« Arandomizer search technique
« Secondary index support

DEDB areas

[Search title: IMS 15.4 - Database administration - DEDB areas |
A DEDB can be organized into one or more data sets called areas. Areas increase the efficiency, capacity,
and flexibility of DEDBs. This topic discusses DEDB areas and how to work with them.

Areas and the DEDB format

[Search title: IMS 15.4 - Database administration - Areas and the DEDB format |
A DEDB can use multiple data sets, called areas, with each area containing the entire data structure.

The physical format of DEDBs makes the data they contain more readily available. In a hierarchical IMS
database that does not use areas, the logical data structure is spread across the entire database. If
multiple data sets are used, the data structure is broken up on a segment basis.

Each area in a DEDB is a VSAM data set. A DEDB record (a root and its dependent segments) does not
span areas. A DEDB can be divided into as many as 9999 such areas. This organization is transparent to
the application program.

The maximum size of a DEDB area is 4 GB. The maximum number of areas per database is 9999; thus, the
maximum size of a DEDB database is 39996 GB (approximately 40 TB).

Run the DEDB Initialization utility (DBFUMINO) to format each area to DBD specifications. Root-
addressable and independent-overflow parts are allocated accordingly. The space left in the VSAM cluster
is reserved for the sequential-dependent part. Up to 9999 areas can be specified in one utility run;

188 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dur/ims_dbfucdb0.htm#ims_dbfucdb0

however, the area initializations are serialized. After you run the utility, check the statistical information
report against the space calculation results.

If the total number of DEDB areas after the ADDAREA function exceeds 9999 DEDB areas, the DEDB Alter
utility terminates.

IMS does not enforce a limit on the number of area data sets that can be open at the same time by
multiple DEDB databases. However, the resources available at your installation and the consumption of
those resources by both your IMS configuration and the other z/OS subsystems that your installation
might be running, such as Db2 for z/0OS, could potentially limit the number of area data sets that you can
open.

For area data sets, one of the resources that could become constrained with a very large number of
open data sets is storage in the extended common service area (ECSA) and the extended private storage
(EPVT).

The randomizing module is used to determine which records are placed in each area. Because of the area
concept, larger databases can exceed the limitation of 232 bytes for a single VSAM data set. Each area can
have its own space management parameters. You can choose these parameters according to the message
volume, which can vary from area to area. DEDB areas can be allocated on different volume types.

Initialization, reorganization, and recovery of DEDBs are done on an area basis. Resource allocation is
done at the control interval (CI) level. Multiple programs, optionally together with one online utility, can
access an area concurrently within a database, as long as they are using different CIs. CI sizes can be 512
bytes, 1 K, 2 K, 4 K, and up to 28 K in 4 K increments. The media manager and Integrated Catalog Facility
catalog of Data Facility Storage Management Subsystem (DFSMS) are required.

Related concepts

“Enqueue level of segment CIs” on page 201
Allocation of CIs involves three different enqueue levels.

Opening and preopening DEDB areas

[Search title: IMS 15.4 - Database administration - Opening and preopening DEDB areas

By default, IMS does not open a DEDB area until an eligible application accesses the area.

About this task

Although this prevents unneeded areas from being opened at startup, the first application that accesses
a DEDB area incurs some additional processing overhead. Multiple calls to multiple areas immediately
following a startup process can increase this burden significantly.

You can limit the overhead of opening areas by preopening your DEDB areas. You can also distribute
this overhead between the startup process and online operation by preopening only those areas that
applications use the most and by leaving all other areas closed until an application first accesses them.

You specify the preopen status of an area using the PREOPEN and NOPREO parameters of the DBRC
commands INIT.DBDS or CHANGE . DBDS.

By default IMS preopens all DEDB areas that have been assigned preopen status during the startup
process; however, preopening a large number of DEDB areas during the startup process can delay data
processing. To avoid this delay, you can have IMS preopen DEDB areas after the startup process and
asynchronously to the execution of your application programs. In this case, if IMS has not preopened a
DEDB area when an application program attempts to access the area, IMS opens the DEDB area at that
time. You can specify this behavior by using the FPOPN= keyword in the IMS and DBC startup procedures.
Specifically, FFOPN=P causes IMS to preopen DEDB areas after startup and asynchronous to application
program execution.

The FPOPN= keyword determines how IMS reopens DEDB areas for both normal restarts (/NRE) and
emergency restarts (/ERE).

DEDB areas can also be opened by issuing either of the following type-2 commands with the
OPTION(OPEN) keyword:

Chapter 16. Fast Path database types 189

- UPDATE AREA NAME(areaname) START(ACCESS) OPTION(OPEN)
- UPDATE DB NAME(dedbname) AREA(*) START(ACCESS) OPTION(OPEN)

Note: The OPTION(OPEN) process is not logged for either the UPDATE AREA command or the UPDATE
DB command. If IMS is restarted after using this option, IMS does not automatically re-open DEDB areas
that were previously opened by using these UPDATE commands.

Related reference

Parameter descriptions for IMS procedures (System Definition)

Reopening DEDB areas during an emergency restart
|Search title: IMS 15.4 - Database administration - Reopening DEDB areas during an emergency restart |

You can specify how IMS reopens DEDB areas during an emergency restart by using the FPOPN= keyword
in the IMS procedure or DBC procedure.

The following list describes how the FPOPN= keyword affects the reopening of DEDB areas during an
emergency restart:

FPOPN=N
During the startup process, IMS opens only those areas that have preopen status. This is the default.

FPOPN=P
After the startup process completes and asynchronous to the resumption of application processing,
IMS opens only those areas that have preopen status.

FPOPN=R
After the startup process completes and asynchronous to the resumption of application processing,
IMS opens only those areas that were open prior to the abnormal termination. All DEDB areas that
were closed at the time of the abnormal termination, including DEDB areas with a preopen status, will
remain closed when you restart IMS.

FPOPN=D
Suppresses the preopen process. DEDB areas that have a preopen status are not preopened and
remain closed until they are first accessed by an application program or until they are manually
opened with a /START AREA command.

FPOPN=D overrides, but does not change, the preopen status of DEDB areas as set by the PREOPEN
parameter of the DBRC commands INIT.DBDS and CHANGE . DBDS.

Related concepts

“Emergency restart processing” on page 226

Recovery of VSO areas across IMS or z/0S failures is similar to recovery of non-VSO areas. IMS examines
the log records, from a previous system checkpoint to the end of the log, to determine if there are any
committed updates that were not written to DASD before the failure.

Related reference

Parameter descriptions for IMS procedures (System Definition)
DBC procedure (System Definition)

IMS procedure (System Definition)

Stopping DEDBs and DEDB areas

[Search title: IMS 15.4 - Database administration - Stopping DEDBs and DEDB areas |
You can stop access to a DEDB or stop the scheduling of application programs against a DEDB at the
database level or the area level by issuing the appropriate command.

The database-level commands include the type-1 commands /STOP DB and /DBRECOVERY DB and the
type-2 command UPDATE DB STOP (ACCESS|SCHD).

The area-level commands include the type-1 commands /STOP AREA and /DBRECOVERY AREA and the
type-2 command UPDATE AREA STOP(ACCESS|SCHD).

190 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_parameter_descriptions_for_procedures.htm#ims_procedure_parm_descriptions
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_parameter_descriptions_for_procedures.htm#ims_procedure_parm_descriptions
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_dbc_procedure.htm#ims_dbc_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_ims_procedure.htm#ims_ims_procedure

The type-1 command /STOP DB and the type-2 command UPDATE DB STOP (SCHD) have an equivalent
effect in that they both stop the scheduling of new application programs against the DEDB. The
commands /DBRECOVERY DB and UPDATE DB STOP(ACCESS) both stop all access to the DEDB. The
area-level type-1 and type-2 commands have similar equivalencies.

Starting DEDBs and DEDB areas

[Search title: IMS 15.4 - Database administration - Starting DEDBs and DEDB areas

You can start access to a DEDB or start the scheduling of application programs against a DEDB at the
database level or the area level.

The database-level commands include the type-1 command /START DB and the type-2 command
UPDATE DB START(ACCESS).

The area-level commands include the type-1 command /START AREA and the type-2 command UPDATE
AREA START(ACCESS).The /START AREA command does not open areas unless you have specified
them as PREOPEN or PRELOAD areas.

You can start all areas of a DEDB at once by using the AREA(*) parameter of the type-2 command UPDATE
DB START(ACCESS). The AREA(*) parameter is useful if you have stopped access to a DEDB at the
database-level by issuing the type-1 command /DBRECOVERY DB or the type-2 command UPDATE DB
STOP (ACCESS). Note that specifying an area name, for example AREA(area_name), is invalid.

You can use the AREA(*) parameter with the SET(ACCESS) parameter of the type-2 command UPDATE DB
START (ACCESS) to start all areas at once and to change the access type for the DEDB at the same time.

You can also open DEDB areas when you start them by specifying the OPTION(OPEN) keyword on the
either of the type-2 commands UPDATE AREA START(ACCESS) or UPDATE DB START(ACCESS).

Restarting and reopening areas after an IRLM failure

[Search title: IMS 15.4 - Database administration - Restarting and reopening areas after an IRLM failure

The internal resource lock manager (IRLM) ensures the integrity of databases in a data sharing
environment.

To avoid compromising the integrity of the data in DEDB areas when an IRLM fails, all DEDB areas under
the control of the failed IRLM are stopped. After you correct the failure and reconnect IRLM to the IMS
system, you must restart and reopen the DEDB areas that the IRLM controls.

You can specify how IMS restarts and reopens DEDB areas after the IRLM reconnects, by using the
FPRLM= keyword in the IMS and DBC procedures.

Related concepts

Using IRLM with database-level sharing (System Administration)
Recovery involving IRLM (System Administration)

Restart after IMS failure (System Administration)

IRLM failures (Operations and Automation)

Related reference

DBC procedure (System Definition)

Parameter descriptions for IMS procedures (System Definition)
IMS procedure (System Definition)

Read and write errors in DEDB areas

[Search title: IMS 15.4 - Database administration - Read and write errors in DEDB areas
This topic describes how IMS handles read and write errors that occur in DEDB areas.

Read error
[Search title: IMS 15.4 - Database administration - Read error

Chapter 16. Fast Path database types 191

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/system_admin/ims_usingirlm.htm#ims_usingirlm
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/system_admin/ims_recoveryinvolvingirlm.htm#ims_recoveryinvolvingirlm
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/system_admin/ims_restartafterimsfailure.htm#ims_restartafterimsfailure
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.oag/ims_irlm_failure.htm#ims_irlm_failure
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_dbc_procedure.htm#ims_dbc_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_parameter_descriptions_for_procedures.htm#ims_procedure_parm_descriptions
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_ims_procedure.htm#ims_ims_procedure

When a read error is detected in an area, the application program receives an AO status code.

An Error Queue Element (EQE) is created, but not written to the second CI nor sent to the sharing system
in a data sharing environment. Application programs can continue to access that area; they are prevented
only from accessing the CI in error. After read errors on four different Cls, the area data set (ADS) is
stopped. The read errors must be consecutive; that is, if there is an intervening write error, the read EQE
count is cleared. This read error processing only applies to a multiple area data set (MADS) environment.

Werite error
[Search title: IMS 15.4 - Database administration - Write error |

When a write error is detected in an area, an EQE is created and application programs are allowed access
to the area until the EQE count reaches 11.

Even though part of a database might not be available (one or more areas are stopped), the database is
still logically available and transactions using that database are still scheduled. If multiple data sets make
up the area, chances are that one copy of the data will always be available.

If your DEDB is nonrecoverable, write errors are handled differently, compared to recoverable DEDBs.
When there is a write error in an area, an EQE is created. When there are 10 EQEs for an area, DBRC
marks it "Recovery Needed" and IMS stops the area. If the area is shared, then all IMS systems in the
sharing group are notified and they also stop the area. When a DEDB is marked "Recovery Needed", you
must restore it, such as from an image copy. Incorporate this recovery procedure into your operational
procedures.

When a write error occurs to a DEDB using MADS, an EQE is created for the ADS that had the write error.
In this environment, when the maximum of 10 EQEs is reached, the ADS is stopped.

When a write error to a recoverable DEDB area using a single ADS occurs, IMS invokes the I/0 toleration
(IOT) processing. IMS allocates a virtual buffer in ECSA and copies the control interval in error from the
Fast Path common buffer to the virtual buffer. IMS records the creation of the virtual buffer with an X'26'
log record. If the database is registered with DBRC, an Extended Error Queue Element (EEQE) is created
and registered in DBRC. The EEQE identifies the control interval in error. In a data sharing environment
using IRLM, all sharing partners are notified of the creation of the EEQE.

The data that is tolerated is available to the IMS system that created the EEQE. The sharing partner will
get an 'AQ' status when it requests that CI because the data is not available. When a request is made for
a control interval that is tolerated, the data is copied from the virtual buffer to a common buffer. When an
update is performed on the data, it is copied back to the virtual buffer. A standard X'5950' log record is
generated for the update.

Every write error is represented by an EEQE on an area basis. The EEQEs are maintained by DBRC and
logged to the IMS log as X'26' log records. There is no logical limit to the number of EEQEs that can exist
for an area. There is a physical storage limitation in DBRC and ECSA for the number of EEQEs that can be
maintained. This limit is installation dependent. To make sure that we do not overextend DBRC or ECSA
usage, a limited number of EEQEs are allowed for a DEDB. The limit is 100. After 100 EEQEs are created
for an area, the area is stopped.

During system checkpoint, /STO, and /VUN commands, IMS attempts to write back the CIs in error. If the
write is successful, the EEQE is removed. If the write is unsuccessful, the EEQE remains.

Related concepts

“Non-recovery option” on page 193

By specifying a VSO or non-VSO DEDB as nonrecoverable, you can improve online performance and
reduce database change logging of your DEDBs.

Record deactivation

[Search title: IMS 15.4 - Database administration - Record deactivation

192 IMS: Database Administration

If an error occurs while an application program is updating a DEDB, it is not necessary to stop the
database or even the area. IMS continues to allow application programs to access that area.

IMS only prevents the application programs from accessing the control interval in error by creating an
EQE for the error CI. If there are multiple copies of the area, chances are that one copy of the data will
always be available. It is unlikely that the same control interval will be in error in all copies of the area.
IMS automatically makes an area data set unavailable when a count of 11 errors has been reached for
that data set.

Record deactivation minimizes the effect of database failure and errors to the data in these ways:

« If multiple copies of an area data set are used, and an error occurs while an application program is
trying to update that area, the error does not need to be corrected immediately. Other application
programs can continue to access the data in that area through other available copies of that area.

« If a copy of an area has a number of I/O errors, you can create a new copy from existing copies of the
area using the DEDB Area Data Set Create utility. The copy with the errors can then be destroyed.

Non-recovery option

[Search title: IMS 15.4 - Database administration - Non-recovery option
By specifying a VSO or non-VSO DEDB as nonrecoverable, you can improve online performance and
reduce database change logging of your DEDBs.

IMS does not log any changes from a nonrecoverable DEDB, nor does it keep any updates in the DBRC
RECON data set. All areas are nonrecoverable in a nonrecoverable DEDB.

Unlike full-function nonrecoverable databases, which support backout, nonrecoverable DEDBs are truly
nonrecoverable and cannot REDO during restart or XRF takeover. IMS writes a single log record, X'5951',
once for every area at each sync point to indicate that nonrecoverable suppression has taken place.

The X'5951' log and DMAC flags determine the integrity of an area during an emergency restart or XRF
takeover. Nonrecoverable DEDB write errors can happen during restart or XRF takeover. If there are errors
found in a nonrecoverable DEDB during an XRF takeover or an emergency restart, message DFS3711W is
issued and the DEDB is not stopped.

Nonrecoverable DEDBs must register with DBRC. To define a DEDB as nonrecoverable, use the command
INIT.DB DBD() TYPEFP NONRECOV. The default is RECOVABL for recoverable DEDB.

Before changing the recoverability of a DEDB, issue a /STOP DB, /STO AREA, or /DBR DB command.
To change a recoverable DEDB to a nonrecoverable DEDB, use the DBRC command CHANGE .DB DBD ()
NONRECOQV. To change nonrecoverable DEDB to a recoverable DEDB, use the command CHANGE . DB
DBD() RECOVABL.

To restore a nonrecoverable DEDB, use the GENJCL.RECOV RESTORE command. The recovery utility
restores the database to the last image copy taken. If the DEDB had been changed from a recoverable
DEDB to a nonrecoverable DEDB, the recovery utility will apply any updates from the logs up to the point
when the change was made (if no image copy was made after the change to nonrecoverable).

Related concepts

“Write error” on page 192

When a write error is detected in an area, an EQE is created and application programs are allowed access
to the area until the EQE count reaches 11.

“Fast Path log reduction” on page 604
To reduce log volume you can use the LGNR parameter, which is specified on the DBC, FDR, and IMS
startup procedures.

Area data set replication

[Search title: IMS 15.4 - Database administration - Area data set replication

Chapter 16. Fast Path database types 193

A data set can be copied, or replicated, up to seven times, increasing the availability of the data to
application programs.

The DEDB Area Data Set Create utility (DBFUMRIO) produces one or more copies of a data set
representing the area without stopping the area. All copies of an area data set must have identical CI
sizes and spaces but can reside on different devices. The utility uses all the current copies to complete
its new data set, proceeding to another copy if it detects an I/O error for a particular record. In this way,
a clean copy is constructed from the aggregate of the available data. Current updates to the new data set
take effect immediately.

The Create utility can create its new copy on a different device, as specified in its job control language
(JCL). If your installation was migrating data to other storage devices, then this process could be carried
out while the online system was still executing, and the data would remain current.

To ensure all copies of a DEDB remain identical, IMS updates all copies when a change is made to only
one copy.

If an ADS fails open during normal open processing of a DEDB with multiple data sets (MADS), none of the
copies of the ADS can be allocated, and the area is stopped. However, when open failure occurs during
emergency restart, only the failed ADS is unallocated and stopped. The other copies of the ADS remain
available for use.

DEDBs and data sharing

[Search title: IMS 15.4 - Database administration - DEDBs and data sharing |
You can specify different levels of data sharing for DEDBs. The specifications you make for a DEDB apply
to all the areas in the DEDB.

If you specify that a DEDB does not allow data sharing, only one IMS system can access a DEDB area at a
time; however, other IMS systems can still access the other areas in the DEDB.

If you specify that a DEDB allows data sharing, multiple IMS systems can access the same DEDB area at
the same time. Sharing a single DEDB area is equivalent to block-level sharing of full-function databases.

You can specify the level of data sharing that a DEDB allows by using the SHARELVL parameter in the
DBRC commands INIT.DB and CHANGE.DB. If any IMS has already authorized the database, changing
the SHARELVL does not modify the database record. The SHARELVL parameter applies to all areas in a
DEDB.

You can share DEDB areas directly from DASD or from a coupling facility structure using the Virtual
Storage Option (VSO).

Related concepts

“Fast Path Virtual Storage Option” on page 212

The Fast Path Virtual Storage Option (VSO) allows you to map data into virtual storage or a coupling
facility structure.

“Sharing of VSO DEDB areas” on page 216

Sharing of VSO DEDB areas allows multiple IMS systems to concurrently read and update the same VSO
DEDB area. The three main participants are the coupling facility hardware, the coupling facility policy
software, and the XES and z/OS services.

Data sharing in IMS environments (System Administration)
Related reference
DBRC commands (Commands)

Fixed- and variable-length segments in DEDBs

|Search title: IMS 15.4 - Database administration - Fixed- and variable-length segments in DEDBs

194 IMS: Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/system_admin/ims_datasharing.htm#ims_datasharing
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/compcmds/ims_dbrccmds.htm#ims_cr3_gen3

DEDBs support fixed-length segments. Thus you can define fixed-length or variable-length segments for
your DEDBs. This support allows you to use MSDB applications for your DEDBs.

To define fixed-length segments, specify a single value for the BYTES= parameter during DBDGEN in the
SEGM macro. To define variable-length segments, specify two values for the BYTES= parameter during
DBDGEN in the SEGM macro.

Application programs for fixed-length-segment DEDBs, like MSDBs, do not see the length (LL) field at the
beginning of each segment. Application programs for variable-length-segment DEDBs do see the length
(LL) field at the beginning of each segment, and must use it to process the segment properly.

Fixed-length-segment application programs using REPL and ISRT calls can omit the length (LL) field.

Examples of defining segments

[Search title: IMS 15.4 - Database administration - Examples of defining segments |

The following examples show how to use the BYTES= parameter to define variable-length or fixed-length
segments.

Defining a variable-length segment

ROOTSEG SEGM NAME=ROOTSEG1, ©
PARENT=0, ©
BYTES=(390,20)

Defining a fixed-length segment

ROOTSEG SEGM NAME=ROOTSEG1, ©
PARENT=0, ©
BYTES=(320)

Parts of a DEDB area

[Search title: IMS 15.4 - Database administration - Parts of a DEDB area
A DEDB area consists of three parts.

The parts are:

» Root addressable part
« Independent overflow part
» Sequential dependent part

The following figure shows these parts of a DEDB area.

Chapter 16. Fast Path database types 195

Area
Area
Area
Independent Sequential
Root addrazsable part averflow part depandant part
T He— L
Cl Cl Cl
Cl | Cl
Cl Cl Cl
Base Ci Cl Cl
seclicn
of Cl cl cl
oW
Cl Cl Cl
Cl Cl Cl
Cl Cl Cl
Cl Cl Cl
Depandent
avearflow
section Cl Cl Cl
of UOW
Cl |- cr |} cl |
L - . |
J !
\\ One a
~. LIOW -

Figure 59. Parts of a DEDB area in storage

When a DEDB data set is initialized by the DEDB initialization utility (DBFUMINO), additional CIs are
created for internal use, so the DEDB area will actually contain more CIs than are shown in the preceding
figure. These extra Cls are referred to as the Reorganization UOW. Although IMS does not use the extra
CIs, DBFUMINO creates them for compatibility purposes.

Root addressable part

[Search title: IMS 15.4 - Database administration - Root addressable part

The root addressable part is divided into units-of-work (UOW), which are the basic elements of space
allocation.

A UOW consists of a user-specified number of CIs located physically contiguous.

Each UOW in the root addressable part is further divided into a base section and an overflow section. The
base section contains CIs of a UOW that are addressed by the randomizing module, whereas the overflow
section of the UOW is used as a logical extension of a CI within that UOW.

196 IMS: Database Administration

Root and direct dependent segments are stored in the base section. Both can be stored in the overflow
section if the base section is full.

Independent overflow part

[Search title: IMS 15.4 - Database administration - Independent overflow part |
The independent overflow part contains empty ClIs that can be used by any UOW in the area.

When a UOW gets a CI from the independent overflow part, the CI can be used only by that UOW. A

Cl in the independent overflow part can be considered an extension of the overflow section in the root
addressable part as soon as it is allocated to a UOW. The independent overflow CI remains allocated to a
specific UOW unless, after a reorganization, it is no longer required, at which time it is freed.

Sequential dependent part

|Search title: IMS 15.4 - Database administration - Sequential dependent part |
The sequential dependent part holds sequential dependent segments from roots in all UOWSs in the area.

Sequential dependent segments are stored in chronological order without regard to the root or UOW that
contains the root. When the sequential dependent part is full, it is reused from the beginning. However,
before the sequential dependent part can be reused, you must use the DEDB Sequential Dependent
Delete utility (DBFUMDLO) to delete a contiguous portion or all the sequential dependent segments in that
part.

CI and segment formats

[Search title: IMS 15.4 - Database administration - CI and segment formats
The format of DEDB control intervals (CIs) and segments are shown in the following tables and figures.

This topic contains Diagnosis, Modification, and Tuning information.
The following series of diagrams show the following formats:

 CIformat
« Root segment format

Sequential dependent segment format

Direct dependent segment format

The tables that follow each figure describe the sections of the CI and segments in the order that the
sections appear in the graphic.

FSE AP ‘ CITYP ‘ RAF | Segments and FSEs | CUSN ‘ REA ‘ RDF ‘ CIDF

" Cl prefix | Cl suffix 'l

Figure 60. CI format

Table 51. CI format

Number of
CIsection bytes Explanation
FSE AP 2 bytes Offset to the first free space element. These 2 bytes are unused if the CI is
in the sequential dependent part.
CI TYP 2 bytes Describes the use of this CI and the meaning of the next 4 bytes.

Chapter 16. Fast Path database types 197

Table 51. CI format (continued)

Number of

CI section bytes Explanation

RAP 4 bytes Root anchor point if this CI belongs to the base section of the root
addressable area. All root segments randomizing to this CI are chained
off this RAP in ascending key sequence. Only one RAP exists per CI.
Attention: In the dependent and independent overflow parts, these
4 bytes are used by Fast Path control information. No RAP exists in
sequential dependent Cls.

CUSN 2 bytes CI Update Sequence Number (CUSN). A sequence number maintained in
each CL. It is increased with each update of the particular CI during the
synchronization process.

RBA 4 bytes Relative byte address of this CI.

RDF 3 bytes Record definition field (contains VSAM control information).

CIDF 4 bytes CI definition field (contains VSAM control information).

Prefix DATA L

SC |PD | PTF | SPCF | PCF |PCL | SSP PCF| LL
PTR|PTR |PTR |PTR | PTR PTR
1 1 4 8 4 4 4 ' 4 | o

Bytes

Figure 61. Root segment format (with sequential and direct dependent segments with subset pointers)

Table 52. Root segment format

Segment Number of

section bytes Explanation

SC 1 byte Segment code.

PD 1 byte Prefix descriptor.

PTF 4 bytes Physical twin forward pointer. Contains the RBA of the next root in key
sequence.

SPCF 8 bytes Sequential physical child first pointer. Contains the cycle count and RBA of
the last inserted sequential dependent under this root. This pointer will not
exist if the sequential dependent segment is not defined.

PCF 4 bytes Physical child first pointer. PCF points to the first occurrence of a direct
dependent segment type. There can be up to 126 PCF pointers or 125 PCF
pointers if there is a sequential dependent segment. PCF pointers will not
exist if direct dependent segments are not defined.

PCL 4 bytes Physical child last pointer. PCL is an optional pointer that points to the
last physical child of a segment type. This pointer will not exist if direct
dependent segments are not defined.

SSP 4 bytes Subset pointer. For each child type of the parent, up to eight optional
subset pointers can exist.

LL 2 bytes Variable length of this segment.

198 IMS: Database Administration

Prefix
SC | UN

1 1
Bytes

Data

SPTF| LL
PTR

Suffix

TIMESTAMP

| B8

Figure 62. Sequential dependent segment format

Table 53. Sequential dependent segment format

Segment Number of

section bytes Explanation

SC 1 byte Segment code.

UN 1 byte Prefix descriptor.

SPTF 8 bytes Sequential physical twin forward pointer. Contains the cycle count and the
RBA of the immediately preceding sequential dependent segment under
the same root.

LL 2 bytes Variable length of this segment.

Prefix Data L

SC|UN| PTF|PCF | PCL|SSP| LL

FTR| PTR | PTR|PTR
11 4 4 4 L
Bytes

Figure 63. Direct dependent segment format

Table 54. Direct dependent segment format

Segment Number of

section bytes Explanation

SC 1 byte Segment code.

UN 1 byte Unused.

PTF 4 bytes Physical twin forward pointer. Contains the RBA of the next occurrence of
this direct dependent segment type.

PCF 4 bytes Physical child first pointer. PCF points to the first occurrence of a direct
dependent segment type. In a direct dependent segment there can be
up to 125 PCF pointers or 124 PCF pointers if there is a sequential
dependent segment. PCF pointers will not exist if direct dependent
segments are not defined.

PCL 4 bytes Physical child last pointer. PCL is an optional pointer that points to the
last physical child of a segment type. This pointer will not exist if direct
dependent segments are not defined.

SSP 4 bytes Subset pointer. For each child type of the parent, up to eight optional
subset pointers can exist.

LL 2 bytes Variable length of this segment.

Related concepts
“DEDB insert algorithm” on page 203

Chapter 16. Fast Path database types 199

The DEDB insert algorithm searches for additional space when space is not available in the most desirable
block.

Root segment storage

[Search title: IMS 15.4 - Database administration - Root segment storage

DEDB root segments are stored as prescribed by the randomizing routine, and are chained in ascending
key sequence from each anchor point.

Each CI in the base section of a UOW in an area has a single anchor point. Sequential processing using GN
calls processes the roots in the following order:

1. Ascending area number
2. Ascending UOW
3. Ascending key in each anchor point chain

Each root segment contains, in ascending key sequence, a PTF pointer containing the RBA of the next
root.

Related reference

Sample data entry database randomizing routines (DBFHDC40 / DBFHDC20 DBFHDC44 / DBFHDC24
DBFHDC2S) (Exit Routines)

Direct dependent segment storage

|Search title: IMS 15.4 - Database administration - Direct dependent segment storage

The DEDB maintains processing efficiency while supporting a hierarchical physical structure with direct
dependent segment types.

A maximum of 127 segment types are supported (up to 126 direct dependent segment types, or 125 if a
sequential dependent segment is present).

Direct dependent (DDEP) segment types can be efficiently retrieved hierarchically, and the user has
complete online processing control over the segments. Supported processing options are insert, get,
delete, and replace. With the replace function, users can alter the length of the segment. DEDB space
management logic attempts to store an inserted direct dependent in the same CI that contains its
root segment. If insufficient space is available in that CI, the root addressable overflow and then the
independent overflow portion of the area are searched.

DDEP segments can be defined with or without a unique sequence field, and are stored in ascending key
sequence.

Physical chaining of direct dependent segments consists of a physical child first (PCF) pointer in the
parent for each defined dependent segment type and a physical twin forward (PTF) pointer in each
dependent segment.

DEDBs allow a PCL pointer to be used. This pointer makes it possible to access the last physical child
of a segment type directly from the physical parent. The INSERT rule LAST avoids the need to follow a
potentially long physical child pointer chain.

Subset pointers are a means of dividing a chain of segment occurrences unde