IMS
15.4.0

Communications and Connections
(2024-08-30 edition)

.||I

Note

Before you use this information and the product it supports, read the information in “Notices” on page
967.

2024-08-30 edition.

© Copyright International Business Machines Corporation 1974, 2022.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this Information.......ccccieiieiiiiiiiiiiiiiiiiciccccccssresrssecsecseeseeseees XX
PrereqUISIte KNOWLEBAZE.c..vii ettt ettt e e te e et e e et e e sbae e s steesesteessseessaeesseeesnsenesnns xxiii
How new and changed information is identified..........ccuiieiiieiiecccie e XXiii
HOW 10 read SYNtaX dia@ramS. .. .cccuiieccieeeiiieeiiee et e et e este e erte e e ste e e aaeeesare e e abee e saaeennsaeesasaeaensaeennseeennsns xxiii
Accessibility features fOr IMS 5. 4. ...ttt et e et e et e e te e e ate e e ate e e sbaeesntaeennseesnnenas XXV
HOW 10 SENA YOU COMMIEBNTS....uiiiiiiieeiiieecieeeteeeetee et e e etee e beeeebeeesbae e s baeessbaseesbaeaessesaensasesnseessnsesennsens XXV

Part 1. Configuring external Java environment connections.......cccccccerecreiieiieccenenae. 1

Chapter 1. IMS Universal drivers: configuring connections to IMS.......cccoiiiciieeciei et 3
Configuring WebSphere Application Server for EJB development with the IMS Universal drivers..... 3
IMS Universal drivers: WebSphere Application Server type-4 connections......ccccceeeecveeeevieeeeveeseneenn. 4

Installing a type-4 IMS Universal Database resource adapter on WebSphere Application
T=T Y= S PP PPPTPP 5
Defining a connection factory for a type-4 IMS Universal Database resource adapter on
WebSphere APPLICAtION SEIVET.......uii ettt ettt e e ae e e ste e e tee e s baeesnsae e nsaeennees 6
Installing an EAR file that uses a type-4 IMS Universal Database resource adapter on
WebSphere APPLICAtiON SEIVET...c...uii ettt e e ae e e s te e e bee e s beeesnsaeenasaeennnes 7
IMS Universal drivers: WebSphere Application Server for z/OS type-2 connections........cccceeecveeenneee. 8
Installing a type-2 IMS Universal Database resource adapter on WebSphere Application
T VT (o] B4 O S TR 9
Optional: set the WebSphere Application Server for z/OS classpath for applications that
use a type-2 IMS Universal Database resource adapter.....cccceeecieeecieeecieesiieeecieeecveeeeveens 10
Defining a connection factory for a type-2 IMS Universal Database resource adapter on
WebSphere Application SErver for Z/OS....... ettt e e e 10
Installing an EAR file that uses a type-2 IMS Universal Database resource adapter on
WebSphere Application SErver for Z/OS....... ettt e e 12
IMS Universal drivers: WebSphere Application Server Liberty type-4 connections..........ccccveeeunee. 13
WebSphere Application Server Liberty type-4 connections sample server.xml configuration
11 LT OO O ORI PRUPPRRUPPRRPPO 15
IMS Universal drivers: WebSphere Application Server Liberty type-2 connections........cc.cceeeenueene 16
WebSphere Application Server Liberty type-2 connections sample server.xml configuration
11 LT OO OO PRSP PRUPPRRUPRRPPO 19
The IMS Universal drivers: CICS CONNECLIONS.....cccciieiirrieerieriteentesiteseesteeseesnessteesssesseessaesssessseenns 20
Configuring CICS for the type-2 IMS Universal drivers........ceevieeneenienneeniessieeseessieeseeesneenvees 21
Running applications on CICS that use the type-2 IMS Universal drivers........ccocveveereercieenieenne 22

Part 2. CPI Communications and APPC/IMS.......ccicterererererererererercrcecececececesesecececes 2D

Chapter 2. CPI CoOmMMUNICATIONS....uuiiiiiieeiiieeiteeeiteeeiteeesteeesreesssseeessseeessaessssaeessseeensseessnseeessseesnnseesnnses 27
CPI-C driven appliCation ProSramS.....c.uiiccuieecieeeeiieeecieeeeiteeeeteeessteeesteeessaeesssaeessseesssaeesssseessesessseens 27
SAA resource recovery COMMIt PrOCESSING....cccuiieiieeeiieeeiieeeireeeiteeeeteeesseeessseessseeessessssesennees 27
NOFMAL tEIMINATION...eiitiiieeieeree ettt ettt e s e e s be e be e st e e be e sabeebeesasesabeesssesnseenssesnsesnses 27

T Tod (o] A o o o=t [V 27
ADNOIrMAL 1EIMINATION. .. tiiieeiieeie ettt ettt e st e e e s te et e st e s beessaessbeesseesaseenseessseensaens 28
SESSION TAILUIE...eiutiieieiieeete ettt sttt se e e sbe e st e st e e sab e sabeesbaesabe e baesaseenbaesssesnseenses 28
RETUIN COUBS...eiuiiiieiiteeieert ettt ettt ettt st e e e st e st e e saaesabeesbeesase e baesaseentaesssesnseesaesnsesnsens 28
System restart/resolve-in-doubt ProCESSING.......uiiciiiiiiie ettt e et eeenteeenes 28
CPI-C application Program FECOVEIY...ccuiiicieeeeiieeeeitteeeieeeeitteestreesssreesseeessseeesseeessesesnssaesnssessnsens 29
Programming rEQUITEMENTS ..eccuiiiiiieeeiieecctee et e ecteeesteeeetteesesaeesssteessseesssseessseessseesasseesnssessnnseenn 29

Y= TU Lo (o])Y a1 1] (= TS 29

RRS and distributed syncpoint/protected CONVErsations.........ccccvueeeeicciieeeecciee e eeceee e e 29
The two-phase COMMIL PrOTOCOL.....uuii it e e e e e s e eree e e e e s neeeeeeennns 30
Local-resource recovery versus distributed-reSouUrce reCOVEIY....cuuimriiriiieeeeeeciireeeecreeeeeeeneens 31
IMS @S @ FESOUICE MANAZE .cciicueiteteeiitteeeeeirtee e e ettt e e ettt e e s eaueeteeseeseteeseensteeseeanseeeeaesnsreeeeesnseeens 32

Activating protected CONVEISATIONS......uiii ittt ettt sre e s sree e s aee e s saaeesbeeesbaeesneeens 32

Chapter 3. Administering APPC/IMS and LU 6.2 dEVICES......ccccutirriieriiieiiieeerieeesieeeseeesseeesseee s eee s 35

F N O B S o XY= AL Z U 35

PN d = OF A (S5 (oo [oo] o} { fo)] NSRS 36

APPC/IMS application program iNtErfaCe......cuuuiiiiieiiiieiiecree sttt see s e s s be e s s saee e sneas 37

APPC/IMS appliCation PrOZIamMS.....uciccueeieiieeriirteriireeeiireessseesseeessseeesssseessseesssseesssssesssssessssesssssssssans 37
Standard IMS appliCation PrOZramIS.....ccucueiiiieriiieeiiieeerteesrrteeserteessreeessreeessreeessseesssseesssseessssaessnns 38
MSC and standard IMS appliCation ProgramsS.......cucueerieerrieernieesrreeesieesseeesseeesseeesseeessseessses 38
Modified IMS appliCation PrOSramS......cceiicieiirieeirieessie e eete e este e ssee e seeeessaeeesree e ssbeessseessneeesnsens 39
MSC and modified IMS appliCation PrOgramiS.....c.cuuiicreeriieeriieesiieesireessreesseeesseeessseeessseeessneeess 40
CPI Communications driven appliCation Programs........c.eeieieerrieeresieersiieessieessreessseeesseeessssessnns 40
Using the MOD name and LTERM INTEITACE......cuiiiiiiiiiiccieccecee ettt 41

ESTabliShing APPC/IMS....cio ettt sttt e st e st e e s sate e s s te e ssateessataessataessseaessstessnsseesssseesnnes 42
LI R o o] 11T RTURN 42
APPC/MVS Administration utility (ATBSDFMU) eXample......ccccueeecieeecieeeireeccreeeceee e e e 43
(O] 4o U] oo I MUY oT=Tox) s o=\ { o] o PSR 45
Outbound Side INFOrMALION.....ciiciii et e s e e sbe e s sbe e s saae s sbeessaeeas 45
PARMLIB MBMIDEI ittt ettt st e st e st e s te e s e e s sabe e s sabaessaeeessaeeessasaesnseaesnsseesneeas 46
APPC/MVS TIMEOUL SEIVICE.cuetttttetiteeeeeeee ettt e ettt ettt ettt et eessasseeseeeeaesseeeeeesessessssssssnnes 47
APPC/MVS Error EXIIaCt SEIVICE...oiiiiiiiiiiieeeeeteetere et eae s s s sesseeseeeeaaasaees 47

Initializing and changing LU 6.2 deSCIIPLOIS....ccicuiiiiiieiiiieriieerrieessteessieeesseeesseeessseeesssreesssseessnseenas a7

Using MSC in an APPC/IMS ENVIFONMENT.....c.itiiiiitiiiieeniteeeiteeeieesereeesieeesteeesveeessaessseessssesssaesnnne 48

Recovering APPC transactions in an MSC eNVIrONMENT......cciiiiiiiiniieeiiieenrieeseieessieeseeeesseeesseeesnee 49
Recoverable versus nonrecoverable tranSactionS........ccvivcieiieieeiiieesrie et see s 49
Local APPC transaction discardability versus nondiscardability........ccccccovveeiieciiieiincciieeeecieee, 50
Transaction processing POiNt Of TAIlUE.......iiiiiiiiiiieieee e 50
Recoverability flows of LU 6.2 tranSaCtioNS.....ccccciiiieicciiee ettt eecvee e eetee e e e e e e e e vae e e s eerneee s 52

TranSaction retry CharaCtEriSTICS. .uuiiiiiiciieeeecciee e eccie et e e e eeee e e e et e e e e e e ree e e e e enbeeeesenstaeeasensanens 54

QUALITYING NETWOTK LU NAMES....iiiiiiiiiiieeiiiesrrtessitessree st ssbee s s e e s s e e s s bee s sbeeesbeeesbeeessseessnneessnnens 54

Managing multiple LUS for a SINgle IMS SYSTEML......cccivcieiiiieiiiieieeeeste et sae e s 55

Reassigning an LU t0 another IMS SYSTEML.....cc.iiiiiiiiriiiiieiieenitecsite sttt e sae e sbe e s be s be e s snaeens 55

DFSAPPC SYSEEM SEIVICE..cccuutiieeeeeiiieeeeeitteeeeeeiteeesesetteeeesssteeeessssseaesseassaesseaassesessessesessssasssnesssnssens 56
MESSAZE SWITCHING.cceviiiiciiiiiiei ettt ettt see st e e st e s st e s s bee e sbee s sabaeesaseeesabaessasaessaseesnnses 56
ASYNChroNoUS OUTPUL AELIVEIYeeiiee ettt e e e e e e e e e e eaee e e s e sraneeeennes 58

JAN O { - TaToY= Tox d o AT =T ol U1 1 /5SS 59

Part 3. Extended Terminal Option (ETO).....ccccceteiieieiencenceeceecsecsecrescacsacescascencanesees 61

Chapter 4. Overview of the Extended Terminal OptioN.......ccccciieeieciiiee e errre e e vree e e e e 63
ETO tEIMINOLOZY ... tiiiiieiieieeietie ettt sttt e st e e s s ate e s s ate e s sate e s s ateesssteessstaessstaessssaesnnsaesnssaessnseesnns 63

o O e L=Y T od] o) (o] T USRSt 65

| 1O o] g ol= | =TSRRI 67
DesCriptors and eXit FOUTINES.uiii et e eetee e e e e etre e e e e sate e e e e e nbe e e s senbaeeesennsanaeaenns 67

How descriptors are created and USEd..........uuiiiiiciiie et erre e e tee e e e e enaee e e e e ennees 68
Summary of ETO implementation... ... ettt eeree e ree e e e veee e s eenree e e e e nnaeeee s 68
Chapter 5. Administering the Extended Terminal Option.......ccccveuiirriierniiienniessee e e ssie e e eeeeseee s 71
PLaNNINg FOF ETO....uiiiiieiiiieeieiieseiee st e st e sete e s ste e st e e ssate e ssateesesteesesteessstaessssaessstaessssaesnssaessnsassnnsaesns 71
Identifying YOUT FEQUITEMENTS. .. .iiiicieirie ettt eeite e ete sttt e st e s see e s stee s sabeeesabeesssbeeesasaessasaesnaseas 72

S OB =T (ot Ao = F TP OPPRRTRPRRTPTRRNt 72
Defining PhysiCal terMINALS....cccuiiieteecee e sre e s re e s see e s sabe e s saaeessaeeas 72

Identifying VTAM device types, screen sizes, and MOdelS......cccvvvveeiriiieinieeinieeeniee e sseee e 76

Planning a high-security environment With ETO.......ccciiiiiiiiiiiiiiiiieniecciecsre e siee e 81
g L T oY= (o T 7 TP U PTTS 81
PLANNING USEE IDS...iiiiiiiiiiieieiie sttt sette et e s st e s st e s bt e s ste e s sbe e s sbeessbeessabaessssaessnseessnsaesssseesssensnnes 82
Planning USEr QUEUE NAMES...ccccuiiiiiieiiiieeriiteesitteesereeessteeessseesssseesssseessssesssssessssseesssseesssseesssseesssees 82
(e Tl a1 g Y =R o] 01T = YA Te] o TSP SPSP 82
Planning for MSC support With ETO......ciiciiiiiiieiiiieniieesiee st et e st e sseeesseeessseeesseeesssseessnseesas 83
COAING ETO dESCIIPLOIS. c.uuiiiieieeiiieeieieesetee sttt e seiteesereeesesteesssteesssteessseaessseeesaseaesaseasssseesssssesssnsesssseessne 83
Creating descriptors using the system definition ProCess......ccccvvveeirieeiniee et 84
SEOTING S CTIPIONS. e i iutieieiie ittt sttt et e e e s st e s te e s sabeessste e s steesssteessstaessstaessssaesaseaesnssaesnnes 84
OIC=T LA aT=l (oT={o] ale [=1-Tol iT o] (o] =TSO 84
Creating USEr S CIIPIONS. .o iiiieiieeeciteeettt ettt et s et e s stee e sttt essbee e s beeessaeeessbaesnaseesnssaesnnsaesnnees 87
Creating MFS deViCe dESCIIPIOIS. ...iiiciiiiciee ettt ettt ectte e ste e st e e sstte e srbee e sbaeesbeeesbeeessaessnseessnseassnns 90
Creating MSC dESCIIPIONS. .uiiiiiii et ieiee st e sttt e st e seteesstteesesteesesteesseeesaseeesaseeesaseassaseesssseeessssessans 92
D qL A o 10 4] =T TP P PSPPSR 92
) 2= L 4] =3 = 1O T PR 92
LOZEING ONTO ETO TEIMINALS...cuviiieiieieieeeiie ettt ettt ee e s bee e s aee e s sate e s saeaessneaesnaeaesnenas 93
Limiting dynamic logon to specific terminal tYPeS......covviiiecieiriieieieeeee et seee e 94
Creating and reusing LTERM CONTrol BLOCKS.......cciouiiiiiiiiiiieirieeciee et 94
Using default CINIT or BIND user data formatsS......ccccevvieiriieiniienniee e eeee e siee s sveessvee s 94
Signing on and queue LTERM alloCatioN.......ciiiiiiiriieriiieiiieesnieessitessieessiee s siee s sieessiee s sbeeesseeessneas 95
Providing SISNON at.....cccueiecieiiiieeeiieeeiieeeite e site s esttesstteesstee e srteeessbeessbaesssaesssaeessaeesssessnsaeennns 95
Providing signon data for ISC, SLU-P, Finance, and output-only deviCes........cccevueerrieerieeernuneen. 95
SigNING ON MUUIPLE TIMES...iiiiiiiiiiiei ettt e st e e sre e e sbe e e sbaeesbaeesasaeesasaeenns 96
Receiving DFS3649A, the Signon required MEeSSAZE.....ccuiiiriiiiiriieiiieeirieeeriee e e sseeesseeesseeesnee 97
Receiving DFS3650I, the seSSion Status MESSAZE....cccuiiriiiiriieeriieeeiieeenteeesee e seeessieeesseeessaeees 97
ETO terminal-LTERM relationShip. ... ittt et e et e e e e e e 97
How IMS determines which queues t0 alloCate......cuuuiieiiccciieeeecceee e 98
Setting special ProCESSING MOUES.....ccuiiiiieeriiierrieerrie et srie et essrreesseeesssteessseeessssaesssseesasseesas 98
Printers WIth ETO..ciuiiiiiiiieiieicte ettt sttt st e st e s ste e s ste e s sae e s s abeessataessneeessneeessnsaesnnsaesnseens 99
(B =Yot a1 a4 o =S PP 99
ASSOCIATE PIINTING..uviiieiiieiiiieete ettt e e e s sbee e s ae e e ssabe e s s abeessataessseeesnssaesnssaesnaseesnnses 99
DETINING YOUE PIINEEIS e iiieiiciiee ittt sttt ettt et e e serte e s stee e sbee e sbteesbeeesseeesaseeesseeesaseeesaseeesans 101
Sharing Printers USING ETO..cccuiiiiiiiiiiieriieeisieeseiee st e st e ssteessateessaeeessteessaseesssseesssseesssseessnseess 101
(0] o1 =X (o] gtoTo] a1 a2 =T L =SSRt 102
System definition parameters fOr ETO. .. ciiee et eetiee e eeetree e s e ette e e e eenre e e s senbaee e s e seeeeeenns 102
Setting DEADQ status time with the DLOQT parameter.....ccccvcveeiiieeiniieeinieeenreeeseeeseeesiee s 102
FN U o1 F={aTo i A NS O 1 1 TP 103
FAY U o] (oY =0o i A Y K) TSRS 104
Autosignoff and autOlogOff tIMEI.....cii it 105
LAY U1 (o] o} =0 PO PSPPSR 105
ASSIGNING OULPUL.ceietieieiieieitee ettt et e et e et e s sate e e sbe e s sbeeesateesssbeeesssaeessbaessssaessssaesssaeesssaeennee 106
FANSYY [l 1o aTo YU TSI LU f o LU R 106
Delivering output messages to non-originating terminalS........ccecveeviieeiiieennieenneeeee e 107
Inadvertent outpuUt data StrEAMS...ccccuuiiie et ree e e e e e e e s e ree e e s e nseneeeenanes 107
YT T La =4] i SO PRSPPI 108
(0T =4 =] Y= 00§ F PR 108
Improving performance by deleting ETO control BLOCKS........civiviiiiiiiiiiieniieenrieesiee e 108
L TG0 I = Yo = ot 1 L Y25 USSR 109
ETO and LU 6.1 (ISC) tEIMINGALS...ccuvieceieeieeceeeteeseeseestessteesteesteestesteesseesaeessaessseesseesnsessseesssesssenns 109
ETO and STSN tEIMINGALS....eiieciiiieiieieiieeete ettt ettt e s essbee e ssaeeessaee e ssaeeesssbaessneeessssaesnssaesnnsens 109
SNA STSN terminal CONSIAEratiONS.......iiieiiiiieiieeeie ettt see e s saee e s ee e s saeeesaeas 110
ETO and 3600/FINANCE @NA SLU P..ueeeeiiiiiieeeeeeeeeeeeeeeeee saessaaaaaanaaas 110
/SIGN support for ETO STSN devices: ISC, Finance, and SLU P........cceviiiiiiiee e 110
Conversation mode and response mode With ETO....c.cccuuiiiiieciiiee et cecrieee e ecreee e eerre e e s enaee e 111

Part 4. External subsystem attach facilities.......ccccceruiiuiiniiniiiiiccicrnncieniecinnne. 113

vi

Chapter 6. DB2 Attach FACIliTY ...cc.ueieiieiiiee ettt eetee e e s e tte e e e s e are e e s sesaeeeeesnsseeeeseanes 115

Preparing your system to use the DB2 Attach FacCility......ccccvevieiievieiiiieiiiiecciecceecece e 115
Managing how your Java dependent regions access Db2 for z/OS.........ccovievvviiiniienniienniiensieen, 115
Chapter 7. External Subsystem Attach Facility (ESAF).......oo ittt 117
What the external subsystem MUSE Provide..... ..o iiie i e e e 118
How external subsystems are specified t0 IMS ... e e 118
The basics Of attaCh PrOCESSING.....c.uiiiciiiiiei ittt re e s sbee e s e e s sbee e sraeesbaeesane 119
SUDSYSTEM CONNECTIONS. .. .tiiiiieciiiee ettt e et e et e e e rtee e e s e tte e e s eesteeesesnseseeeenseeeseennssenasennnes 120
ApPPLICAtioN Call PrOCESSING....uiiiiiiiriiieiiite ettt et e st e s teessteesssbeesssbeessasaessssaessnseesas 122
RESOUICE COOMTINATION. .iiiutitiitieieiiee ettt e ettt st e sttt e s stte e s bt eesbeeesabeeessbaeesseaesasseesseeessseesnssnenn 122
External subsystem command SUPPOIT.......uuiiiieciiieeieciitee e eccree e e e e e ecrre e e e e raee e e eesaaeeesennaneas 123
IMS services available t0 the ESAP.........i ettt s sae e 123
Chapter 8. Creating the external subsystem module table.......c.ccvviiiriiiiniiiiniieeeeee e 125
DFSEMODL MACKO. . uutttetieiitteeeeeiitee e e et te e e ettt e e e sabteeeesauseteeesaneeteeaeaseteeeesnseeeesenneeeesennnaeesesnneeeas 125
DFSEWAL MACKO. . utttteteeittee e ettt e e e ettt e e ettt e e e e b et e e e s e nst e e e s e st eeeeeaseeee e e e nseeeeesanneaaeesanseaeesasannaeenann 128
Chapter 9. IMS External Subsystem Attach Facility ProCeSSiNg.....c.cceecveeriieeriiieriieeriieessieessieesseeens 133
Loading the External Subsystem Attachment Package......cccccevvvuieiriieiniieinienneeeeee e 133
Creating the EEVT CONtroL BLOCK......oocuiiiiiiiete ettt 133
Loading external SUDSYSTEM MOAULES......cciiircieirieerite ettt ee e s e e 134
Creating Work areas for the ESAP........i ettt sae e s saee e sbae e saaee s 135
Initiating the external SUDSYSTEM CONNECTION.......cuiiiiiiiicieece e e 135
Deferring the control region ideNtify.. ... ssre e 136
Using the IMS Subsystem Startup SEIVICE.....ciiiiciiiicieecte ettt see e s 136
Establishing dependent region CONNECTIONS. ...c.ccviiiriiiriiiieriite ettt e ssre e s e s essbeessaeeens 136
NOTITY NS SAEE. . et i etee ittt ittt ettt sttt et e s ete e s sate e s bte e ssaee e s bee e s bee e s beeesbeeesseeesseessnsensssenssnsens 137
Application program reqUEST SUPPOIM ... uiii ittt rsee st e st e ssreessbeessreessbeessseessnsaessssaessaseens 138
Language interface defiNitiON. ...ttt ee e s ae e s saee s 138
Language interface entry points unique to external SUbSYStEMS......cccccvvivviiiiiiiiiniiiiniiecrieee 138
Accessing multiple external SUDSYSTEMS.....cuiuiiiiiiiiieiieeee e e e s 139
RESOUICE FECOVEIY TOKEN eiiiee ettt e ettt ctee e e e ttee e e e ettt e e e e e beeeeesesseeeseesnssaeeeesnnseaeeeennseeeesennsens 139
Terminating the external SUDSYStEM CONNECTION....ccccviiiiiiiiiieeee et 140
Termination requested by the external SUDSYStEM.....cc.uviiiiicciiiee e 140
Dependent region CONNECTIONS.c.uiiiiiierieeree ettt see s e s ee e s sbee e s aee e s saeeessseaesnsenesnneas 141
EXplanation Of STOPPEA STATUS...cciiciiiieiecctiee e e e sre e e e e e e e e s e ae e e e e e enreeeeean 141

Part 5. IMS Connect and TCP/IP communiCationsS.....cccceeeeeerececececececececececececenenese 143

Chapter 10. OVErvieW Of IMS CONNECT....cccuiiieececiiiee ettt e eette e e e eete e e e serre e e s e rae e e e e enbeeeesensaeesesnnsaeneas 145
B\ Y o] = Toa Aol L= oL ATV T o] o o U SRN 146
IMS Connect support for aCCess t0 IMS DB.....ciiiicciiiieeccciiiee ettt eecree et e e s e vae e e s e reee e e e eanes 149

IMS Connect support for the IMS TM Resource Adapter......cooceeeccieeeeeecieeee e 150

IMS Connect support for command requests to Operations Manager (OM)......ccccceeveereerveenne 151

IMS Connect support for ISC TCP/IP COMMUNICAtIONS...cccccuiieeieciiieeeceieee e eecteee e eecreee e e e eveeeeeeennes 152
IMS Connect support for IMS-t0-IMS TCP/IP commUNICAtiONS......ccceeciuieeeeeeiiieeeeeciiee e e ecveee e e 154
MSC and IMS-10-IMS TCP/IP COMMUNICAtIONS...uuuuiieeeeieeieeeeeeeeeeeeeeeeee et e e e e e e e e 155

OTMA and IMS-10-IMS TCP/IP COMMUNICAtIONS...uuuuetiiceeeeeeeeeeeee e 157
Overview of IMS Connect XML CONVEISION SUPPOIt......cuvieeieciuiieeeeeirieeeeecieeeeeecveeeeeesvreeeeseenseneeeeas 158
IMS Connect support for z/OS SyspleX DiStribULOr....cccccciiie et 159
Overview of IMS CONNECT SECUITY..iiiiiiiiieiiecieiee ettt e eecttee e e e cree e e e s seree e e e eenbteeesseastaeeeseensesessennssneennan 160
Overview of defining and iNnvOKIiNG IMS CONNECT....c.cciiiiiiiriiieiiieerie et e s e saee s 161
Chapter 11. Overview of IMS CONNECt EXit FOULINES.......uuieiiecieieececieee e eectee e eeerer e e e ecrre e e e e vreee s e e enaeeeas 163
Overview of USer MesSage EXit FOULINES.....ccuiiiiiieiiiieirieeeriee st et e st e s see e sseeessteessseeesssteesssseesnns 164

Security and the IMS Connect user message exit FOULINES......ccvvvcieercieeiiiee e ssieesseeesseee e 165

USEr-AefiNEad MESSAZES. . iiiiiiiieiieiiiie ettt st et et e st e s st e sste e s sateesssbeesssteessssaessssaesnssaesnnseesnnes 165
Overview of fuNCtion-SPECITIC EXIt FOUTINES.....ciiiiciiieeeecee s e e et e e e raee e 166
Macros that support IMS CoNNECT eXit FOUTINES.......uiiiiicciiieececiiee e e e eeree e e e ree e e e e eaneeeee s 166
L]) (=T = (ot o] Lo Yol & T PP 167

XIB exit interface block for connections t0 IMS TM......cciivviiiiiieiiiieiriee e 167

XIBDS exit interface block for IMS TM data store information........ccceccveeveieeiiiieeniieencieeseieennns 168

XIB1 exit interface block for connections t0 IMS DB......ccocciiiiiiiiiviiiniieeciecciec e 171

XIBOD exit interface block for ODBM and IMS DB data store information.......ccceccceeevieeviveennnen. 172

Chapter 12. IMS Connect support for IMSplex and shared qUEUES.........cccecceiieeeeccieiee e 177
IMS Connect SUPPOIt FOr IMSPLEX.cciiiiiiieeeeciiiie ettt e e e et e e e seree e e e e nbaa e e e e nsaneeeean 177
ATy o1Ey TV o] o To T =T a1V T o1 1 /0= o | SR 177
Installing IMS Connect SUPPOIt fOr IMSPLEX....cuiiiiiiiiiiieiriee ittt sttt e ere e s e s seeessee e ssaeeesnns 178
Retrieving ALTPCB output in a shared queues environmMeNTt.........cccvvvcieeicieeriieeniieessieesseeesseeesane 179

Chapter 13. IMS CONNECE SECUNITY SUPPOIM . uuiieiicciieeeeectireeeeeiteeeesectteeeeesreseesessseeeseesssenessssnsenessesnsseaes 181
IMS ConNECt SUPPOIT FOr RACFE ettt eee e e etere e e e et e e e e e nbe e e e s eenbtaeeseessaeeeeensenens 181

Enabling generic return codes or message for RACF verifications.......ccocceeveveeinvieeinieesncieeenee, 182

Enabling RACF security checking in IMS CONNECT......cccciiiiiiiiiieeniiee ettt ssveeeseveeesveeesane 182

Enabling RACF security statistics for IMS CONNECT......cccciiiiviiiiniieieiecere e 183

IMS Connect default RACFE USEE ID.....iciii ettt see s siee s siee s siee s siee s sree s snee s snaeesanes 184

IMS Connect RACF USEr ID CACNB..ciuiiiiiieitee ettt sttt sttt e s e e s sbe e s saaaeeas 184
IMS Connect security for clients 0f IMS DB.....ccouuiiiiicciiie et eectree e eere e e e e e e e e aaeee e 185
Passing network security credentials through IMS Connect......ccccevvciiiriiiiiiieiniieeciecee e 186
Securing IMS-t0-IMS TCP/IP CONNECTIONS.....cctiiiiieirietiniteeeieeesiee st e sseeessteesseeessaeeessaeeessaeaessneas 187
IMS CONNECT SECUTITY EXIt FOULINE .. i tiiieeecciiee ettt et e et e e e et e e e e e e e e e e enbeee e e e nseaeeeensreneanns 189
IMS Connect security and the OTMARTUX USEI EXit...cccccuuieeieeiiieeeeeciieeeeeciireeesereeeeseeseeeeseessneeeeas 189
HWSSMPLO and HWSSMPLL SECUNItY @CTIONS...ccuviieeieeiiieeeeecirieeeeectieeeeesrtreeeeesseeeeseenreeessennsaneeeenns 190

IMS Connect responses to errors on RACROUTE calls from the sample exits......ccccceeeevveeennnes 192
IMS Connect passWord Man@gemMENT.......ue i iierriieerieesite st esseeeeseeessieeessreeessseeessaeeessseeessseaesnseens 196

Changing RACF passwords by USing ClieNt MESSAZES...ccccuiiriierriieiriieesieeseieeesieeesseesssaeeesaees 196

Changing RACF password phrases by using client MesSages.......ccccvvveieerrieeriieeinvieessieessreeenns 197

Enabling mixed-case pasSWOrd SUPPOI.....c.iiiiiieiriieirieeeeieeseieessieesseeesseeessseeessteessssaessnseesnnee 198

IMS Connect support for RACF PasSSTICKET........uiiiiieiieee ettt e evree e e vree e e e nrae e e 199
Trusted-user support for IMS CONNECT MESSAZES.uuiiriiiiriiteriiteeritessree st e s e e e e e s sbeessaeessaseas 205
Specifying an OTMA ACEE aging value in the IMS Connect configuration member.........ccccveevnnenn. 206

Chapter 14. IMS Connect support for CalloUt reQUESTS.....cuuiiiii ittt reee e 207
Configuring user-written IMS Connect clients for synchronous callout requests.......ccccccceerueeennnen. 207

Format of synchronous callout MESSAZES.ccucuiiiiiiiiiiieiiiie ettt essaeeessreeesane 209

Retrieving synchronous callout requests with RESUME TPIPE........cccccovviiiniiiernieeniieesnieesneeens 210

Acknowledging receipt of synchronous callout MeSSages.......cuuvvvierriieiniieiniieinee e 212

Returning callout reSponSses 10 IMSottt 214

Returning an error reSPONSE 10 IMS.....ci i ittt e s e s 215

Chapter 15. IMS Connect XML MeSSage CONVEISION....ccicvutiiiiietirieeesieessteessreeessseeessseesssseessssessssseesssens 217
IMS CONNECT XML CONVEITRIS.cccneniiieieeetteee ettt e e eette e e ettt e e e s et e e e st e e e e s e abeeesesnreeeeeeenneeeessennreeenas 218
SEruCtUre Of the XML MESSAZE...ciiciiiiiiieriiteecteeete ettt st et e s e s s e e s be e s s be e ssabeessasaesnanas 218
MeESSAgE CONVEISION EXAMPLE. . tiiiiciieieiieietie ettt e ettt e st e e stteesteeesteeesbeeessbeessssaessssaeesseeesseessssnesnns 220

Chapter 16. IMS Connect MESSAZE STIUCTUIES....uuiiiiiieiiieeriitesritessite st sseessieessbe e s s be e s s beessbeessans 221
IRM structures for IMS Connect CLIENt MESSAZES. ..ccivvuiiirriieiriieiriee ettt esee e esee e s see e s saeeeseaees 221

Format of fixed portion of IRM in messages sent to IMS CoNNeCt......ccccvvveeercieirceennieeescieennnne 222

Format of user portion of IRM for HWSSMPLO, HWSSMPL1, and user-written message exit

FOUTIMES e titieiee e ettt e ettt e ettt e ettt e s bt e e ste e e e bt e e s abeeesabeeesubaeessbaeessbaeesssaessnseeeansaessnsaesansaesnnseesssaesnne 226
FOrmat Of IRM EXEENSIONS...ccuviiiiiieiiiieriee sttt st ste e ssaee e s sateessite e s sbeessseeesssseesasseesasseesansaess 235
Output Structure from CLHENT EXit...cccciiiee e e e e e e e e ba e e e e nrees 237

vii

viii

Other IMS CONNECE StIUCTUIES....uuvieeeietieeeeeee e e et e ee e e ee et ee et eeaab s esseseseesseeeasaseseseesessssses 237

Message structures and IMS Connect user message exit FOULINES........cevvveereieeiniieeinieensieeesseeenane 239
INput MEeSSagES frOM CLIENT...ci ittt e st e e s s re e s saeeessaeaesnee 239
OULPUL MESSALE 10 CLIENT...iiiiiiiiiteeete st e s aae e ssateessasaesnaeeas 240
MESSAEE STIUCTUIES. ...ttt ettt e e e e e e e s e e et e e e e e e e e e e s anmsrneneeeeeeeeenes 241

Examples of message structures in a simple iNteraction.......cccvcceeeicieinieeeniieenree e 256

Chapter 17. OTMA header fields used by IMS CONNECT........uuiiiicciieeecctee e rre e 259

OTMA message-control fields used by IMS CONNECT.....ccccvivciiiriiiiiieeete ettt 259

OTMA state data fields used by IMS CONNECT........uiii i e ee e e vaee e e 265

OTMA security data fields used by IMS CONNECT........oiii ittt 278

OTMA user data fields used by IMS CONNECT.......uivi ittt e e e errre e s eree e e e e eaees 282

Notes t0 OTMA header tables......couiiiiiic e st e s srte e sesee e ssneeesans 289

Chapter 18. IMS CONNECE PrOtOCOLS. .. .uuieiieciiieeeeciee e e eecitre e eecere e e eetre e e s e s srbeeeeesnbeeeesesnsteeeesssseeessnnnssnes 291

Transaction restrictions and liMIitationS. ... e s 291

Commit mode and synchronization level definitionS........ccceevcciiieieecieee e 291

IMS CONNECT PrOtOCOL LEVEL .ceineeeieeee ettt et e e e e e e e et e e s e e e e e s sesraeeeeennneeeee s 292

IMS Connect conversatioNal SUPPOIT........uuieiieciiieeeecciiee e e cctee e e eerre e e e eerre e e s e esreeeeesnbeeeesennsseeesennens 293
OTMA conversational ProtOCOLS.....cicuiiii ittt e e eere e e e re e e e s e aae e e e e nnaeeas 293
IMS Connect conversational ProtOCOLS.......uiiccciieei ittt e e e e e e e e e e e e e nraeeeeeas 295

Purging undeliverable commit-then-send OUTPUL.......coiviiiiiiiiiiece e 299
Specifying the purge function for undeliverable commit-then-send output......c.cccceveveirneennee. 300
When IMS purges undeliverable commit-then-send outpuUL......cccccveiieiiiieiniieccecceee e, 300

Rerouting commit-then-Send OULPUL.......covcuiiiiiiiiiieece et re e e sraeesaee 301
Specifying the reroute function for commit-then-send output.......cccocceviriiiiiiiiinieineeeeee, 301
Specifying a destination for rerouted OULPUL......cociiiiiiiiriiicece e 302
When IMS reroutes commit-then-send OUTPUL.......coocciiiii i e 302

Recoverable IMS tranSaCtioNS......cciiicieiiiiee ettt see e s iee s st e e sbee e sbee e s bee e sbeessbeeesnsens 303

Y= 1 aTe R] o VAN o o) o oXo | FON SRR 304
Send-only with acknowledgment ProtoCoL.........iuciiiiiiiniieinieeeee e 305
Send-only With €rror ProtOCOL.... . i e e e ree e e e e eae e e s e nnaeeas 306
Send-only protocol with serial delivery protoCoL..........uicccciiie e 306
Send-only protocol for synchronous callout reSPONSES......cccccvieeiieciiiee e e 307

SYolol (=] folo]] a=Tox £ o] F=J PRSI 308
PErSISTENT SOCKETS. .. tiiiiiieieiie ettt e e e s te e e st e e e s be e e sbaeesbaeesbaeesbaeesnraeennee 308
TranSACTION SOCKETS.....uiiiiiiiiriteect ettt et e st e s st e e s s abe e s s abeeesabaessaseessnseas 309
NON-PEISISTENT SOCKETS. . ueiiiiiiiee ettt e e e et ree e e e s b e e e e s baeee s e staseesennseneas 309
Setting socket types fOr IMS TM CLIENTS......ciiiiiiiiiieiiiecete e 309
Socket connections for IMS-t0-IMS TCP/IP commMUNICAtIONS...ccciiiiiiiiiiiiiieieeeeeeeeeeevee e 310
Socket Processing for tranSACTIONS.c.iii ittt see e s see e s ae e s sae e s saeeas 311
Managing the NUMDBEr Of SOCKETS......ciiiiiiiieeiee e s s e e 312
ReSOLVING AUPLICATE CLIENT IDS...ciiiiiiieiieiiieeeieeesit sttt e e e s e e e st e s s b e e s beeessneeesaneas 315
IMS Connect override for the z/OS TCP/IP KeepAlive interval........ccccoccvieeeiecciieeeccciieeeeecieeen, 317
O A L o =11 L T 318

IMS Connect timeout SPECITICAtIONS.......uuiiiiecciiee e e e e e e e e e e e e s e be e e e e eearaeee s 318
Timeout specifications fOr IMS DB CLENTS.......cuuiiiiiciiee e et svree e e e aree e e 318
Timeout specifications fOr IMS TM CLIENTS......uiii i eee e e raae e e e nees 318
Timeout specifications for IMS-t0-IMS CONNECLIONS......cccviieiicciiiee et eeree e 328

IMS Connect transaction eXpiration SUPPOIt......cccciiieeieciiieeeecciee e e eectree e e ectree e s eesaeeeeeeessaeeeeeenssneeeas 329
Setting a transaction expiration time with IMS CONNECT......cccccvviiiiiiiiieiiiieceececeee e 330

Retrieval of output on OTMA tpipe hold QUEUES......cii ettt e e e 331
RESUME TPIPE/reCeiVE ProtOCOL...cii i ciieieiccciieeeeecitieeeecttee e s e ecttte e e e eevee e e e seveeee s senteeesseenseneeeennnes 332
Implementing asynchronous OULPUL SUPPOIT.....cccceiiiiiiiiieeirieeerte et ssee e see e siee e ssee e s saee e sneas 334
Retrieving output with parallel RESUME TPIPE reqUESTS.......cccccvviieeriiieriieeriieessieessieeessaeeenns 335
Managing the retrieval Of OUIPUL MESSAZES...civciiiiriiieiieeeee ettt sre e seee e 338
Retrieving output from alternate OTMA tpipe hold QUEUES........coivieiiriiiiriiecieeciee e 344
Defining groups for shared asynchronous OUTPUL......c.ciiiciiiriieiniieiree et 345

Asynchronous oUtPUt MESSAZE FLOW......iiiciiiiiiee ettt 346

IMS CoNNECE CLIENT CAll TLOWS...ciiiiiieiiieeiieeeite ettt st s e e e s ba e e sbaeesbeeesaseaean 347
IMS Connect dead letter queue (HWSSDLQ)....icoveieeceeeerieeeenieeeesteetesteeteseeteseesseeaessesssessnensesns 351
Ping SUPPOIt fOr IMS CONNECT.....utiiiiiieiiiieeete ettt ettt s e e e s sbe e e s sbae e s beeesbaeesbaeesseeesaseeenn 351
Chapter 19. IMS Connect two-phase COMMIT SUPPOIt....cccicciieeeieciiieeeecctreeeeecrreeeeesrreeeeeeereeeeeeenneeeeeas 353
Overview of two-phase COMMIt PrOtOCOL......ciii i e e ereee e e e e aree e e e eanes 353
Distributed two-phase COMMIT SUPPOI....ciicciiieeccciiee et ceceee et e e et e e e e e be e e e s e baee e s sennaneeas 354
SUpport for the IMS UNIVErSal AriVEIS. i ettt eectee e e e sevee e e e e sbae e e e e snrae e e s enneees 354
Global (XA) transactions with the IMS Universal drivers........ccoceeeceeceerieeceesee e svee s 354
One-phase commit global transactions with the IMS Universal drivers......c.cccccevveernieenneeennnen. 357
Support for the IMS TM ReSOUICE AQAPTEr . .uuiiiic ettt e e e e e e e e ae e e e e saeeeeeaas 360
Global (XA) transactions with IMS TM Resource Adapter.......cocecceeeeceeeecieececiee e e 360
One-phase commit global transactions with IMS TM Resource Adapter.......cccecvvevrvvenncieernneen. 364
Chapter 20. Unicode considerations for IMS CONNECT.....ccccccuuieeiieciiiee et eecvtee e s ecree e e eaee e e eneeee s 367
MESSALE trANSIATION.cc.utiiieiiiietieeette ettt s e e s e e s bee e st be e s bbe e s aee e s ata e s ateeenaraesnaes 367
Chapter 21. TCP/IP settings for IMS CONNECT.....ciiciiiiiiiiiiiieeeiteeete ettt sre e ste e s sre e s saaessraeesaee 369

Part 6. IMS VTAM network administration....c.ccceceeeiecereeiererereecereerererenceceseeceresenees 371

Chapter 22. Introduction to the IMS Transaction Manager NEtWOrK........coccueerrieerriieeriiieenniieessieesseeens 373
IMS TM NETWOIK OVEIVIEW...eiiuiiiieiiieeiieeeiteeesiieeeiieessieeessieeessaeeesssseessseeesssseessssaessssaessnseessnseesnsseessses 373
IMS TranSaction Manager SEIVICES. .iiuuiiircieieiteeeitteeeitteesiteessrteessreesssseesstaessseessssaesssaesssseesssseessnees 377
The Data Communication Control (DCCTL) ENVIFONMENT......c.cicierciieeierieeceeeeeeseeseeeeeeseeeeeeseeens 379
Operating an IMS NETWOTK.....ciicuiiiiiee ettt e e srbee e sbe e e sbae e sbeeesbaeesbaeessaeesans 379
The shared-qUeUES ENVIFONMENT.......cii ettt e e e e e e eree e e seree e e ssesteeeseenbeeeeeennseneeeensses 380

Benefits of USING Shared QUEUES.....cccuuiiiiiiicitieeteeete ettt ssrae e ssbee e saeee s 382
Required components of a shared-queues enViroNMENTt.......ccccvieeeieciiiee e e 382
Overview of the COMMON QUEUE SEIVETccuccccrririieieeeeeeeeeeeceiirirreereeeeeeeesessssssseseeeseseeeesessesnnnes 383
Balancing sessions With SENEIIC FESOUICES.......cuiuiiiriiieriiieerieeesteesrtesssreeeseessbee e s beeesbeeesbeessneas 384
IMSplex terminal ManaBEMENT.... ..o ittt ettt sre e s see e s saeeessabeessabeessaraessaseesnsseesnsseas 385
Benefits of managing resources with a resource StruCtUre......ocuvivcveercieercieeecieeecee e 386
SNATEA TM FESOUICES. .. .uiiicieeiiiee ettt sttt e sttt eseteeseeeessaeeesseeesesteesabeessseessseessseessseesssseessaseesssees 386
RESOUICE NAME UNIGQUENESS. .. .utiieeeeiiiiieeeeectteeeeeeiutreeeeeeateseesessseesesaassessesesssssssssssssssessessssnsessnnssens 386
RESOUICE tYPE CONSISTENCY . uuiiiiieiiiiieeecieee e ettt e e eecttee e e eetee e e e esabeeeseenbeeeesesnseeeeesssseeasssnsseesessanes 387
Fast Path expedited Message NandLler.... ...t s s 387

Chapter 23. Planning the NETWOIK.......civiiiiiiiieeieescie ettt ettt see e s saee s ste e s be e s s be e s saraessaraessaneas 391
Planning for Nnetwork adminiStration......ccccieieeiriiieiniieiree sttt sre e s e e s s e e s s e e e s e e e sseeeas 391
Documenting network and terminal reqUIr€mMENTS......ccuiivciiiicieeiriee e e e e seeessaeeesane 392
IMS terMINAL NETWOTK c.eveiiiee ettt see e st e e st e e s e e e sbee s sbeessabeeesans 392

Terminal coNNECTIONS t0 IMS... ... se e s ebe e e sbee e sbeeesnaeesans 393
Logical terminals (LTERMS)..c.uiiiieiieeceecieeetee et et e steeieeseee e veesreesteessaeesseesseesnseesseesnseenseesnsesnnes 393
APPC/IMS and LU 6.2 terminal SUPPOIT.......uiieieeiieeececitieecectiee s e ecrte e e s eeatee e e s nreee s s ensaee e s e eanreeas 393
IMS messages and their SCheAULING......cocviiiiii e 394
Message flow within the IMS onling SYStEM......ciiciiiiiiiiicieceecte e 396
Conversational traNSACTIONS.iiiiiiiiiee ittt ettt e st e et e e st e e s te e e sbeessabeessabaeessseessnseeeas 397
MESSAEE SWITCNES...uiiiiciiiiette ettt st ee e st e e s sate e s s ate e ssaeeessaeeessaeeesnseeessseeesnnes 398
Designing logical terminal NETWOIKS.....cuiiiiiiiriiieriee ettt sttt s st e s be e s s e e s sba e s sbaessnaeeas 398
LOgIcal-termiNal CRAiNS.....ii ittt ettt e s st e s st e s s ba e e s abeessabaeesabaeesasaess 399
LOZICAl-TErMINAL QUEBUES.iii ittt ettt ae e st e st e e s e e s st e e s sabeessabeessasaessaseesnans 400
Separating input and OULPUL AEVICES.....ciicuiiiciiiiiee ittt st siee s s e s sbee e sbee s sanees 400
Logical and physical terminal relatioNShiPS......cc.ii it see e 401
T (=T (=T g a1 T | TP 401
Master terminals in an XRF COMPLEX...ciiiii ittt e re e e e e e e aaae e s e nnaee s 401

N IO I =10 oYL =1 T 402

ReSOUrce MOdes and STALES.....cuiiiierereeee ettt sttt sb e s e e ne e smeeeans 402
Terminal and user operating MOUES.......civcciiiiiiiiiiee et e e s e e s sre e s sbee s sbeeesans 402
Terminal aNd USEr STAtES....cuiiiii ettt st st s e s be e e e sre e 404
RESOUICE STATUS FECOVEIY . ciitiittitiiiicieeeeee et e et eeeeeeee ettt reee s rr e s e sssssaeseesaaeeaeeesesaeeseseessssnnns 405

PLanNINg fOr SECUNTY . ceutiiieiiieeiieeecie ettt ettt st e st e s sae e e s s abe e s abeessabeesssbeesnssaesnsseesnnseessnses 409
Authorizing transactions in @ TM NETWOIK........ciciiiiiiiiriieerite et s e e s seee s 409
Authorizing commands iN @ TM NETWOIK......eiirciiiiiieeiiie ettt s see e s saee e s 410
Transaction COMMANT SECUITY....uutiiieciiieeeeeiiieeeeectreeeeeeteeeeeestteeeeeesbeeeeseenbeeeesesnseessesssssenesnasnnes 410
PASSWOIT SECUITY.ceiiiiiiiiieieiiite e eccttee e ee e e e eete e e e e e e e e e eeeabaeeeeessseeeesssseeaeeeanseeeeeesssenesasasssneennnn 411
SECUNILY TOr APPC/IMS ...ttt cte e e e e e s et e e s s et te e e e e s asteeeeeensseeeeeenbeseeeennsseeasnnns 411
S Y=To10) 4V (o]l = I SR 411

Planning for Fast Path terminals.........ei it e e s 411

Planning for Rapid Network Reconnect (RNR)........cccuieeieeiiecireieeceee e eeeseeesteesreeste e e e snaesneesnee s 412
SPECITYING VLS OF SUPPOIT .. tiiiiieieieeete ettt ee s ssbee e s aee e s sbee e s saeesnneas 413
Persistent SESSION TraCKING. .. .cviiecieieiie ittt ettt e see e st e s sae e e saee e s ate e ssateessaeeessseaesnneas 413
IMS Shutdown and RNR ...ttt sttt et s e e ne e smee e 414
USING RNR WITh VGR ...ttt sttt st sttt sbe et s bt et st e beseenaean 414
Terminal reCONNECE PrOtOCOLS.uiiii e e et et e e eere e e e e e e e e be e e e e e e breeeeeenaeeeeeennsenes 415
SIBNON SECUIITY . ciitieiiiieieiite et e ettt e ettt e ettt e sttt e ettt e s aae e s tteesbteesabeeesseeessseesseaessseessseesssaesnssnesn 415

Chapter 24. DefiniNg the NETWOIK....c.uiii ittt sttt sra e e s et e sbaeessseeesbeeesbaeesasneens 417

Preparing for the operational NEtWOIK........cieciiiriieeecee e s s 417

Coordinating IMS definition and network definitioN........cceveiiieieeniieeee e 418
UsiNg IMS as @ hOST SUDSYSTEM...cciiiiiiiiiiiiiieceite ettt see e s ste e s te e s sate e s saeeesnnee 418
DEfiNING VTAM NOUES. ... ittt sttt et sete e s ste e s ste e ssate e ssateessstaesaseaesntaesassaesnnseesnnes 418
Estimating VTAM Storage reqUIrEMENTS......cuivcieiriieiiiieiniieeesieeesieeesieeesreesseeessseesseeesssseessaeas 419
Determining VTAM buffer POOL VAlUES........uiiiiiiiiieeiiccteceteeee et 419
Determining the NCP buffer POOL ValUES......c..ciiiiiiiiiiiiiienitenieesie ettt 419
Determining static and dynamic terminal Signon requiremMeNntS.......ccevvveerereenniieennieeessieeessieeens 419
Checking requirements for LOGON MODE tables.......cccciirviiiniiiiniieiieecieceiee e 420
Specifying initial VTAM CONfIGUIAtIONS. ...ccccuiiiiieeiiieeeciee ettt ree e s aee e s e e s 422
Using SON/COS SUPPOIEIN IMS..iuiiiiiieictee ettt ettt ettt e s s be e s sbe e s s e e s s beessaneas 422

StArting aN IMS NETWOTK...ciiciiiiiiiee ettt ettt e st e e st e e sbee e sbaeesabaeesbaeesaseeesasaesssaeenas 423
SESSION INTTIATION. .ttt st e st e bt e sae e e b e sae e s b e e sneesareenneesn 423

IMS transaction types and tranSaction StAtES......ciiiccieeeiecieee e e et e e e rre e e e e nree s 424
Determining tranSaction STAES. ... ittt e saee e s ee e s saee e saeas 425

Defining VTAM for Rapid Network Reconnect (RNR).......cccveriirieeiieeiesiecsieesee e eseee e sveesee e 425
Defining the level of persistent SUPPOIt.....c.iii ettt s 426
Defining the level 0of RNR SUPPOIT.....cocciiiiiieicteeciteeete ettt 426

Chapter 25. Editing and formatting IMS mMESSagES.....ccuvviiiriiiiniieinirieisieeesieeesreeesreessreeesseesssseessnens 427

MESSALEE FOIMAL SEIVICE. . uiiiiiieiiiieieiie ettt ertte et e st e e st e s st e s s bee s sbeessabeessateeesssaessssaesnssaesnnsens 427
N YooY] oTeT aT=T o) &P 428
AdMINISTEIING MFES...ciiiiiiiee ettt s te e s see e s sate e s s aee e ssaeeessseeessseeesaseeesseessnses 432
Advantages t0 USING MFES.....coiiiiieiieerteeste et e s e s s ae e s bae e ssbee s s sbae e s saeessseae s seeesnnes 433
MES CONTIOL DLOCKS. .. eeeiieieeee ettt s st s b e s e eanes 434

Creating MFS formats With SDF IL........ciiiiiiiiiiiiiiiienrieessiee st ssiee s eee s sbe e s sbe e s e e s s beessbeeesbeeessnees 435

=T (ol =Ta [} S PSSP TSOPR 436

IMS editing for Intersystem Communication (ISC)cceceeevierreeriieeseesieecteeseeseesreeseeeseeeseeesseeens 437

B Ua 1] oF U =T a3 VAo o1 o] o FON SRS 438

U]a] o1 0] (=Toa (=Te Yol ¢=1=TaTo] o)A To] o VORI 438

BYPASSING MFS @AITING..ciutiiieiiiieiieieiieeete ettt et see e st e e st e e s sbee e ssaee e ssaeeessaeesnseaesnnsaesnsenesnnsens 438
Locking and unlocking the terminal Keyboard.........ccccevvieiiiiieiiiieiiieenieesieessie e 439

IMS sensitivity to Nnongraphic MesSage data......cccecieiecieieiieirie et sre e sreeeeaee 439
Output message SEEMENT EAITING.....ccccciiiriieriiiee e see e see e st e e s sree e sbee s ssbeeesans 439
Editing of input message segments DY MFS... ...ttt aee s 439

Editing of input message segments by basiC edit.......cceciiiriiiiiiiiiniiieieeee e 440

CoNtrolling OUTPUL ABVICES. ... vttt sttt ettt s st e s aee e s sabe e ssateessbeesssbaesassaesnsaenn 440

SNl DU O BVICES. . ittt sttt e s te e s s aee e s s ateessateeseseaessstaesaneeesans 441
(03T a1 4 o] 1L aF = o TV { o 11) SO U 441
(O T == Wol aTa) (=1 oTo] 0 ol o To] 1 1=101 SRS 442
SPOOLEd OULPUL CONTIOLciiineiiiiei ettt e e e e et e e e e e b e e e s e ebreeeseesseeeeeenseeaessnnes 442
Using printer components of the IBM 3270 Information Display System......cccccccevvvveeriieennneen. 442
SpPeCifying CaNidate PriNTEIS.....ii ittt e s st e s s e e s s e e s s beessabeeesans 443
Operational CONSIAEIATIONS. ...cciiciiieeeccieee e cceee e ceee e e eee e e e e scte e e e e enbeeeesenbeaeeseesseeeeesnnseneessnnns 443
Sharing printers DETWEEN SYSTEMS..cccuiiiiiiiectieete ettt ee e s saee e s saaeessaeeas 443

Part 7. Intersystem Communication (ISC).....cccccceurruirnirerieiecencenceecnecsecencsncanceee. 445

Chapter 26. Overview of Intersystem COmMMUNICATION......cciicciiieeeecieee et e e e e e e e 447
Comparison Of ISC aNd MSC......uuuiii ettt e e et e e e e e atee e e e e e abte e e e sssbeeeesesasteeeeensseeeenan 448
IMS facilities available t0 ISC.....uiiiiieeieeceeee e s s saee e s saee e ssate e ssaeeesnaneas 449
Sample system CONTIGUIATIONS......iiiiiiiiriieeete ettt s e e st e e s e e e s be e e s baeesbaeessseeean 452
JIS O U o7 ool i {0l IO o SR 454
ISC between IMS and CICS.......ciiiiiiiiiieieteeeite ettt sree st e st e s stee s s bee s sabe e s ssbeesssaaesssseesnnsaesnnns 454

Terminal device-dependent data.. ... uieee i e e s brre e e e e e e e nnes 455
Passing CICS data to IMS.. ...ttt sttt et e ste e sbee e saee e sebee e seseeesnaeesareaesane 455

Chapter 27. VTAM facilities used for ISC CONNECTIONS......uuiiiecciiieeeeciiee ettt e et e e crre e e e e e s e 457
VTAM commands and INAICALOIS....uuiiiiiiiiiieriiie et ssie e st e st e st essreessbeessbeessbeessbaessaseessaseessnnes 458
Using the VTAM application programming iNterface......cc.ccccvevieiiveiiniieeinieecsieeeseee e e ssee e 459
Specifying logon modes when establishing a conNeCtioN........cccvvviieiiiiiniieeneecee e 459
Design considerations for secondary logiCal UNitS.......ccviiiiiiiiiiniieiniieireeeee e 460

Chapter 28. IMS facilities affected DY ISC....uu et e e e nre e e 461
Lo L] = g =TT == S USSP 461
Issuing IMS commands from an ISC SESSION.....ccciiiiiiieiiiieiriteeriee et esre e s sreessbee s s e e s sbeessbaessans 462
EffECts ON PArallel SESSIONS.uuiiiicciieee ettt e e ree e e e e sree e e e e bt e e e e s steeeeeessaseesennssneesennnes 462
Using IMS test mode fOr ISC VTAM SESSIONS....ccicciiiirieiirieeisieessieessteessieeessieeessseeessseesssseesssseesssnens 462
IMS control block storage on ISC parallel SESSIONS......ciuciiiriieiriieinieceie e s 463
Relationship of ISC and IMS eXeCULION MOUES.....cccuuiiiiieciiieeeecitee e eeetre e e eree e e e esree e e e e baee e s e esaeeeas 463

External specification of eXeCUtion MOAES.........ceeiiiciiiei e e e e e rree e 463
Internal definition of @XeCULION MOAE.....iiciiiiiiiiiieeeee e s 464
Resultant processing mode during ISC VTAM commuUNiCatioNS......ccvviieirvieerniieeinieessieesseeesnee 464
LTERM users (sUbpools) and COMPONENTS.....cccciieeciieecieeceieeeeteeetteeeetteeeetreeeeseeeeeseeeeeseeeeeseeeeans 466

Chapter 29. Designing communications using the ISC protoCoLl.......c.ccevcvieiriieiniieeniieinieeeeeeeee e 469
Determining OULPUL PrOTOCOLS....ciiiiii ittt ettt ettt ettt e et e s s e s s e e s s be e s s be e s sabeeesabaeesaneas 469
Accessing existing application programs With ISC........ccccevviiiriiiiniieisiienreessee e seeesaee e 470

Accessing programs that USE MFSottt e s bae s 470
Accessing programs that do NOt USE MFS.......cciiiiiiiiiiieietecre et ae e aee s 471
ROUTINE NS SAZES. ottt etiiieiitieitteerittee ettt sttt e sttt e s tteesasteesaseeesasseesseeessseeessseesssaessseesaseaesnsseesnsseenn 471
Considerations for IMS-10-IMS ISC SESSIONS.....cccctiirieiriieerrieeseieeseteessieeessreeessreesssreesssreesssnens 480
Statically defining an ISC NOAE t0 IMS.....ii ittt s saae e s e sbae e saaaeas 482
Choosing parameters: system design CONSIAErationS......coccveveieerriieerniiennieesseesseessreessveesssseeens 484
COMM MACKO STAtEMENT.. .. ettt ettt e e et e e e e ssr e e e e e s anee e e e senneeeeesanne 484
NAME MACTO. ¢ttt ettt ettt ettt e ettt e e e ettt e e e e s ab e e e e e s st e e e e s nnbeeeeaeansateeeeanneteessennraaeeaesanreeens 485
SUBPOOL MACKD..ettttiauittteeeeittteeeeeitte e s et e e e e easeeeeeeaareteessassteeessanseeeessanneeeesseneeaesaeanseaeesassseeesann 485
TERMINAL MACTOD..ettttieittteteeiitee e e ettt e e sttt e e sttt e e s e e net e e e e e st teeeessseeeeesnseeeeesanneeeessansaeeesaansneeas 485
System defiNitioN SUMMAIY ... i ceceee e et e e et e e e s e ette e e s e s abeeeesenbeeeesesasseeeesennssnnennn 487

Chapter 30. ISC protocols for VTAM CONNECTIONS.......uutiiieeiiieeececiteeeeeccttee e s eecree e e e sereeeeesessaeessesssaneeeean 489

OPErating the NETWOIK....cccuiiiiiei ettt ettt e st e s sbe e s s te e s sbeessabeessabeeesareessasaesnssaesnssens 489
MaKING IMS FEAAY .. .vtiiiiiieiieieiiteeitt ettt sttt e s sate e s saee e s abe e s s sbe e s sbeessabeesssseessasaessssaessssnessnses 489

xi

xii

Starting an IMS NetWOIK fOr ISC.....uiiiiiiiiiiieeiteeie ettt e s re e s sbe e s abeessaeeas 489

Shutting down an IMS NetWOrK fOr ISC....ouiiiiiiiiiieiiee ettt 490
Controlling the session (s€sSion CONtrol ProtOCOLS).....ciceeeiercereieeieeseeeie e see e eee e e seeeeeas 490
Initiating an ISC VTAM SESSION.....tiiiiiiiiiieiiitessiteseieessteesseeessteesssteesssseesssseesssseesssseesssseesssseesas 490
BiNAING The SESSION.cccuiiiiiiiiiiieeee ettt st e st e e s s te e s be e s s beessabeessabeesssseesassaessnseesnaseens 491
RESYNCNIONIZING SESSIONS..cciutiiiiiieiiiieisiee ettt sttt sste e st e s steessbeessabeesssbeessbeesssseesasseessssaesssseessssees 493
Designing restart resynchronization ProCeAUIES.........cuvvvcieircieeniiee e eee e see e see e sbee e 494
Determining session synchronism USING STSN.....ccciiiriiiiiiiiieiiiie it seieessieesereesseeesseeesnee 498
Performing the resyNChroniZation..........ciiiiiieiiecece e e e e 499
Completing SESSION INITIATION....ciiciiriiierciee ettt ettt e s te e st essbeessabeesssbaesssbeesnssaessssaens 500
RUNNING The SESSION .ttt ettt ettt e st e e sttt e st e s e e s sbeesssbeessabeessssaesssseeenaseessnses 501
Terminating an ISC VTAM SESSION....ciiiiiiiiieeiciee it e sttt eseite e site e srte s sseesssbeessbeeessseessseessaseessaseessnnes 501
USIiNg STSN t0 reSYNChIONIZE SESSIONS...cccuuiiiciieeicieeriteesiteeseiteeseiteesereeessreesssreeessreeessseessaseessseeesses 502
Primary-to-secondary flOW MatriX......cccieeei et eecee e e e ecvree e s e e aree e s e e nseeeeeeanns 502
Secondary-to-primary flOW MatriX.. ... cuieeeeeciieee et e e e ere e e e eearr e e e s e nbee e e s e nraeeeeenns 503

SN RS] I ele]aaTaat- TaTo I o150 - U SU RPN 505
Handling IMS response mode or conversational OUTPUL EITOrS......civvveiriieiiiieeniieesieeeee e 506
=] 0T a Tt =N oo [T =Y o o =SSRt 507
ConVersational MOTE EITOIS......iiiiiieiriieerteerte ettt ee st e e s e e s s bee e s sbe e e sbeeesbeeesreessseeesnses 507
Normal conversation termination extension With ISC.........ccccvviiiriiiiiiienniienrie et 508
Keeping half SeSSioNs SYNCATONIZE.iiiiiiiiieiiiee ettt see e s be e s s e s sbee e sans 508
Sync points requested on INPUETO IMS. ..o it e e e e e e e eanes 509
Sync points requested on oUtPUL BY IMS.... ..o 510
Sync point and reSPONSE FEQUINEMENTS....ccccccuiieeeeeciieeeeeeiireeeeeitreeeeesreeeesesseeeessessseessesssseseessnnns 510
SyNC-poiNt INAICAtOrS ON MESSAZES. ..iicuteiieieiriieeriieeriteesrteessteesstesssteeesseeessseeessseesssseessseessnses 512
Data flow control ProtOCOl FEfEIrENCE...cic e e e st e e e e rrae e e e nnes 516
] o]] ool | F RSN 516
Bracket and half-dUupleX ProtOCOL......uiiiii ettt e e e e e e e e e ee e s e eanees 516
(0711104 =1 I o] o} o Tod o | F USSRt 525

(0 A F= Yl a1 a Y= T4 0] o Tolo | FES O PPRTOTON 525

(O AN = o] o) (oo o) RSSOt 526
ERP PUIBING. ...ttt ettt ettt e st e e st e st e s st e e s s sbe e s s beeesabeesssbaesassaessnteeasssaesssseessnseesnsaesnns 526
(IS AN WU S o] o] oot | F USSR 530
Paged MESSAZES ERP.....cooiiiiiieicte ettt sttt e s e st s st e s ae e s beeenaeas 532
(== To VA (o R = Tot =TV o] o] (o od o | FE U 533
L8] o LU I o o) (o oo Y SRR 533
SELECTIVE FECEIVEN ERP...coiiiiiiiee ettt sttt ste s s aee e st e s s e e e sbee e sbeeesneeesaneas 533
IST=T 0o [T] PSPPSR 538
Sense COAESs that IMS FECEIVES.......iivciiieieeeeeete ettt ee e s aee e s saae e ssate e ssaeaesnneeas 540
Sense cOdes that IMS SENAS......ciiviii it ee st e s s e e st e s sbee s sbeeesaneas 541

Y (TN AN I o] o) (ool o USRS 541
Symmetrical session shutdown for LU 6.1 (SBI and BIS).....cccceeecieeeciieeeiiieecee et 542
Function Management NEAAEIS.uuiviiiiieice ettt e s ae e s s e e s sbe e s sabeeesaeas 543
Using FM headers t0 INVOKE ISC @diT.....ccicviiiiiieiiiiie ittt see s siee s see s s vee s e 544
Initiating a process: ATTACH FM hEAEN.......iiiiiiiiiiiiiiieciee ettt essee e ssaeeessaeeesane 544
Error recovery procedure FM hEAUE.....uicuiiie ittt ettt e e et e e e vtee e e vaae e e e nnae s 545
Resetting the active process: RAP FM hader......cocuiiiiiiiiiiiiiiieiiecciec e see e s 546
Requesting asynchronous transaction processing: SCHEDULER FM header........cccocceeevveennnnen. 546
System message process (SYSMSG) and related FM headers.......cocveveercieeceescieeceeseeeieeseeeees 547
Chapter 31. USiNg MFS WIth ISC....ccccuiiiiiiiiiieiiiie sttt s see s sree s be e s s bee s s e e s s e e e ssbeesssbaeesaneessnnens 549
Activating MFS iNPUE fOrMatting....c.ceieciiiiieieieeeite ettt e s s te e s sbe e s sabeeesaeas 549
Activating MFS output formatting for ISC......cciiiiiiiiiieiteerte ettt s 549
MFS Distributed Presentation Management (DPM) MESSAZES....uuuurrrrerrreesreerseeseerireeseesseesseeseens 550
MFS Page delete FUNCIION. ..ottt ettt sae e s sbe e s aae e s aee e ssaeaesaeas 550
Lol T aT= N =T g fo] e 1= {=Tox £ o] o R PSPPSRI 551
The ATTACH and SCHEDULER FM headers under MFS.......coociiiiiiiniieiiecee e see s 552
BE | =W [T ol T o) dol ol ol A g == o [T U 553

Input data descriptor FM NBAEuuiii ettt e e e e e e e e s e e e e naees 553

Output data descriptor FM NEAEuiiii ettt e et e e e va e e e e e ee e e e eanes 553
Controlling demand-paged messages: QMODEL FM headers........ccccvveieeriiieniiieennieennieensieesseeenns 554
Request (input) QMODEL FM NBAUEIS.......uuieeiiieeiieeetee ettt et e tee e ctte e e taeeeate e e aae e e aaeeeeataeensaeennes 555

QGETN FM NBAUE ..uvvteeeeeeiiii ettt ettt e e e e e e e eesssbabaaaeeeeeeeeesessassssssseseeeseeseesessnnssnnes 555

(01T = I o T=F- T =T USRS 555

QPURGE FM NBAUE uueeeiiiiii ittt eeeeecctate e e e e e e e e e e e saaababaeeeeeeeeesesessssssssssseeseseseseesassnssnnes 556
Reply (output) QMODEL FM hEAUEIS.....ccceiee ettt tte e e tte et e e e tee e e aee e e eaee e e aeeeeneas 556

(0) (o S S\l a[=T= Yo [T USROS 556

OSTATUS FM RBAUET .. uvvveieeeeiee ettt eeeecerae e e e e e e e e e e s ssabbaaeereeeeeeseeeassssssaeseeseeseessennnns 556
The RAP FM header UNAEIr MFS... ...ttt ettt st s it e st be e s sbe e s s be e s sbe e s saaee s sasaessanas 557

Chapter 32. FM header format referENCE.....uui ettt e e e e raee e e e raaeeeeeas 559
ATTACH FM header fOrMat...ciiciei ettt see e see s s aee s st e e sbee s sbee e sbee s sneessabeeesnnens 559

L SRS 561

L 0 ST 562

ATTDBA . ettt et te et et e s teesbe e e te e beessee e seeas e e st eeaseeenseeaseesnseaseesnseesseessseesseassseenseesseesnsennns 562

L 101 USSR 563

L 8 S 564

ATTRDPN and ATTRPRN......otiiieeieeittesieesteesteesteesteestessseesteesseesssesseesssesseessesssseessessssesssessnsesses 565

ATTDON @NA ATTDP..eceieecieeeieeeeeeeee et e s rte et eete e beesaee e beessseesseesseesseesseesnseesseesnseenseesnsesnseesneenn 566

L Y T USPPPR 567
Data descriptor FM header fOrmMats.....cui ittt tee e e et e e e tae e e e e ente e e e s eeassaeeeenanes 567
Error recovery procedure (ERP) FM hEAdEN.......cccuuiieeiieeee ettt ettt 568
(0117 [0]0] = I = 7 o T=T= Vo [USSP 569

QOGET FM header fOrMat....ccciecciiiiiiiieie ettt e e e eeeeeabrree e e e e e e eeseesssssssaeeeseseessessessnsssnnnns 569

QGETN FM header fOrMAt.....uuuiiiiieiieiiieeeeeccititieee et e e e e e s eessassbaareereeeeeesesessssssssessneees 570

QPURGE FM header fOrMat.....uuueeieeiiiiiieeeciiiirieiee e e e eeeecarreeeeeeeeeeeeeeessanssssseseeeeeeeeesessnssssessessees 571

QOSTATUS FM header fOrMat......ccuveiiiiieiie ettt e e e e e e e se e asraaeeeeeeeeeseeeesnssnnanes 572

(0) (o S S\l a[=T= Yo [T o (T 1 T | SRRSO 573
Reset attached process (RAP) FM header format......cccoeccieeeciiecceie ettt 575
SCHEDULER FM hEader fOrMat.....cciiiicieieiiieeiieieiteseiteeeitesste e s sieessteessreessbeesssseesssseessasaessasaesnnne 575
SYSMSG PrOCESS NBAUEIS. .. ceiiciiiee ettt e e e e e e et e e e s e atte e e s essteeeesssseeeeeesnsseeeesasseeneean 577

Chapter 33. Examples using ISC edit ATTACH Parameters......ccccvcueeriieeriieeniieesiieessreesseeesssseessnnes 579
ATTACH and SCHEDULER parameters With ISC edit........cccceeciiieeieciiiee et eee e 579
ATTACH parameters with the IMS SYSMSG PrOCESS.......uuvieieeciieeeeeciieeeeeeiree e eecreeeeesereeeeeeesseeeeeas 581
ATTACH and SCHEDULER parameters With IMS MFS.......uiiiii ettt eeree e 583

Chapter 34. How IMS and CICS use the ISC iNterfaCe.....cccuiiiiieciiiiei ettt eevre e e svaee e 589
Functions available t0 the ISC SESSION.....cuciii ittt ettt sre e seree e ssbeeesbee e sbeeessaeesane 589

Overview of CICS synchronous and asynchronous processing for ISC........ccceeveevrvienriiensiieennne 589

Functions available 10 an ISC TCP/IP SESSION......cciiiiiiiiiiieieetieeeeeeeseee e e e e e e e e eeeeeeeeeeeessesssssaaaaaas 591

Functions available t0 an ISC VTAM SESSION......uiiiiiiiiiiiieiiieeesieessieessteesseeesseeesseeessseaessseeesnne 592
ISC communication With CICS OVEN TCP/IP..... ittt s eeeeeeaseaaaes 595

OVErview Of ISC TCP/IP SUPPOI ... uuiiieiecciieeeeectieee s ectte e e eectte e e s eettee e e e e ate e e s senbaaeesesasseeeeesnnsenseaan 595

Requirements Of ISC TCP/IP SUPPOIt...ciicccieieeeeiiieeeeeciteeeeeciteeeeesrareeeeessreeeesesnseeeesennseeeesesssseees 596

Restrictions fOr ISC TCP/IP SUPPOI.....uu i ecteee e eecttee e eesttre s e e re e e e eenbe e e s senbaeeeesensaeeeaeennnns 597

Security for ISC TCP/IP CONNECIIONS. ..ciiictiieieccciiee e ecctite e eeetre e e e eee e e e esreee e e s steeesesnsenesessnssenaens 597

Setting up an ISC TCP/IP connection With CICS.........ccoeviiiiiiiiniieenirecete e esaee e 598

Starting a session with CICS on an ISC TCP/IP LiNK...cciieiiiiriiiiiiieeieesieeeieeeee e 604

Terminating an ISC TCP/IP SESSION...cccciiiiiieircieerteeeteesiteesseeeseeesreeesaeessbeesseaessasaessasaesnaes 606

Restarting an ISC TCP/IP SESSION.....uiiiiciiiieieeiiieessteessieeseteesseeessseeessseeesssteessseeessseaessseeessseeesnne 607

CICS front-end transaction types supported by ISC over TCP/IP......cccoeveieciiiee e eeecneeeeene 608
General flow of CICS EXEC commands within a CICS application.........cccueeeeeecieeeeeecciieeeeeieeeeeees 608

CICS to IMS using SEND/RECEIVE EXEC COMMANAS....cccciiiriiririieiniieenieeesieeesieeeseeesseeeesaeeas 608

CICS to IMS using the SEND LAST EXEC COMMANG.....cciiiiiiriiiiiiieiiiieeneeesieeesneeesveessveeesanees 610

IMS to CICS using the RECEIVE EXEC COMMANT.....cciiiiiiriiiiiiieeiiieesiteesiteessvneesveeessvneesneeesane 611

xiv

Coding aSYNCRIONOUS MESSAZES. . .uiiiciiiiriiiiriiieriitesrtee st e st e st essaeessaaeessabeesssbeessabeessaseesnssaessasens 612

CICS to IMS using the START/RETRIEVE EXEC COMMANAS.....cocvuiiriieeriiieriieeeineesiieessieeessneeens 613
IMS to CICS using the RETRIEVE EXEC COMMANG......ciiiiiiiiiiiieiiiieinieennieessieessveessveessveessveens 615
Commands that should not be used 0n an ISC SESSION......c.ciirviiiiriiiiiriieiriee et seeesseeeeans 615
Selecting appropriate CICS installation options for ISC.......cccccviriiiiriieiniieireeeeee e 616
Coding CICS system definition OPLiONS.....cuciiiiiiiiiiiierrieerrie et e sste e s e e s see e s steesssbeesssseessnseesas 616
Preparing CICS resource definitioN. ... ettt e st sae e s e s sae e s ee e ssaseeesanas 616
Defining IMS-CICS LU 6.0 LINKS....ccieiieiiiieeeiiteeiiteenite et seiee s siteessteessaeessraesssaeessseessaeesseeessseenn 616
Defining compatible IMS and CICS NOUES......ccuiiiriiiiiieeiieeeeiee et ssee e ssee e ssaee e s see s sree e sbeeesnees 617
YA (T T AT L =P 617
NUM DO Of SESSIONS...eiiiciieiiiieeiciee ettt st sere e stee e setee e sbee e sesee e sbeeessteesaseeesseaesasseesaseassane 618
SESSION NAIMES. ..tiiitieieiteeeitteeeiteeerteeesstteessteeesbeessbeessaeessssaessseesssaessssaesssseesssseesssseesssseesssseesnsses 618
OTher SESSION PAIAMETELS. .. .uiiiii et e ccctee e e eerre e e ee e e e e estte e e s e estreeeeesassteeessansteaesssssssesssasseneenans 618
Defining multiple links t0 an IMS SYSTEM.....uiiiiiiiiiiieiiiecree sttt ee e st e ssaeeessaeeesane 621
Defining CICS transactions for IMS=CICS ISCi.......ccccciriiiiriieiiiieiniieesieeesieeeseeessveessveessseessseesnnns 623
Defining CICS backout in-doubt ProCESSING......ueivcieiriieiriiee ittt sire e ere e ssre e ssree e ssaeeesveeesane 623
Defining CICS transactions for asynchronous communication to IMS........cccccvvviiviieeriieeninenn. 623
Initiating and allocating a session from CICS.......c..oiiiiiiiiiiiniieeeie e s 623
Other ways of iNItiating @ SESSION....ciiiiiiriiieriierrteere et e e e e e s bee s s beeesbaeesbeessnsens 624
Terminating a sesSioN frOM CICS.....cociiiiiiiiiiiecieeeee et e s be e e s e e e s e e s s be e e saseas 624
Designing CICS applications fOr ISC.....ccuiciiiiiiiiiiiieiiiieeritesrieesseessee s ree s s bee s e s sbeessbeessanes 625
PAVo] o] 1Tot=N o] a Ll £ F=1 {=Te X oTo] g LY o) €TSS 626
Subsystem design: direct-control VErsus QUEUEM......coccuiiiriieiiiieinieeenieeeeieesseeeseeeesseeesseee e 626
Synchronous and asynchronous processing on ISC VTAM LiNKS......coccvvvivieiniieinieennieeeneeee 626
Principal and alternate faCility.....ccecciiee et e e e e e e bree e e s nnre s 628
CICS versus IMS conversation MOGE.....cocuiiiriierriieinitenreessite st eesee s sieessbeessbeesssreeessneessneas 629
Sending IMS commands from CICS......coccuiiiiiiiiniieerie ettt ssee e s see e s saee e s saeeessaeeessaeeas 630
)Y ATl 0T 11) £ SRR 631
Coding function management headers fOr CICS.......c.iiiiiiiiiiiiieeniteeseesse e re e s saee s 632
ATTACH function management NEAUEiu ittt e s e s e s 633
SCHEDULER function management hEadEr.......occuiiviiiiiiiiinieeiteeee st e s sve e 636
Queue model function ManagemMeNnt hEAUEIS......ccuviviiiirieiiec e 638
Data descriptor function management hEAET.....ccuiivciiiicieiiieeeteeeee e sare e 638
System message process (SYSMSG) function management header.......cccveveeeceeieeecieeceennenns 638
Error recovery procedure function management header........oocievvvieieieniieennieenreeenee e 639
Recovery and reStart CONCEPIS. ... it cciiee ettt e et eectrre e e eee e s e e etr e e e e senbte e e e eensaeessesnseaeesennnsens 639
LOZICAL UNIT OF WOTK...tiiiiiieieiie ittt et e st e s st e e s sabe e s sabe e s sstaessstaessasaessnseesnnes 639
Recovering outstanding message traffic after a failure......cccocveeeiieeniiiiniicceeee e, 640
Handling transaction @bENAS.......oocueiiiiiiciie ettt e s st e s s e e e sbee s sbeeesans 643
Coding CICS applications fOr FESTAI....cuiiieiieiciie ettt ettt e ere e e e s ste e s sbae s saaaeeens 644
Chapter 35. ISC data flow CONtrol @XampPLles.......ueeiieciiieeiceieeee et e e e e e e s ra e e e e e eeeeeeean 647
Non-MFS bracket and half-duplex protocol eXxamples.........cccecciieeiieciieee e e, 647
MFS bracket and half-duplex protocol @Xamples..........ueiiiccieiei e e e e e e 648
MES OULPUL EXAMPLES ... ieiiie ettt et ettee e e e e cree e e e e bte e e e s staeeseessaaeeeesnssaeeseennseneessnnnes 648
MES INPUL EXAMPLES... . eiiieiieciiee ettt e e rtte e e e e eee e e e eente e e e eeaseeeeeesastaeeeesnnseeeeeennseaeeeenssenes 652
SBI/BIS EXAMPLES..ciiiiiiiiee ittt ettt ecttee e e e cttee e e e e ttee e e e s bee e e e seataeeeaaansraeeeaartaeeeeanbteeeeeanraeeeeaanres 653
SigNAl ProtOCOL EXAMPLE. . i uiii ittt ettt st e e st e s sbee s sbee e sbe e e sabeeesabaessabeessaseeenases 655
Chapter 36. ISC error recovery procedure €XampPLleS......cccceeieecueeeeeeciieeeeeciere e eecrrre e e eerrree e e e e sseee e e eenneees 657
Sender-detected error EXAMPLES........uiiii ittt ecee e e e et re e e e ebrre e e e e aaee e e e eenreeeeeennns 657
Receiver-detected error EXaAMPLES.uuii i ciiiee e eccitee e eecree e eectre e e eecree e e s e e rreeeeeesnbeeeesssnsseeeesennsenesaaan 658
Chapter 37. Sample program for IMS-CICS ISC.....ccctiiiiiriiiiriieeriieessieessteessneessteessaeeessreessaseessaseesas 661
BN S] =YL= AT] g I o oot =Te [= TR 661
IMS sample program (DFSISCO0)....ccutiiiieieeieeeieeeestessteesreeesseesseesseessesssesssessssessseessesssseessesssseenns 662
Job control statements for the SAMPLE Programi....c..cee i e s saeee e 664
IMS system definition STATEMENTS.......iii i e s e ee e e et ee e e e e nnaeeeeenns 665

LS (0] 1 4= £ T PP OPPRRPUPRRPPRRRRE 666
Program specification block (PSB) generation for the sample program......cccceeceeeveeeceeseesieeeseenns 667
Application control block (ACB) ENEratioN.......ccceccveeceeerierceesieeceeseeeteesteesee e e saeeseesreeeeeeseesnes 668

Part 8. Multiple Systems Coupling (MSC)......c.ccceieuiiuniinncinnirniinesianciacrnscsessacssaccess 669

Chapter 38. Overview of Multiple Systems COUPLING.......ccvvcuiirriiiiriieiriieerte et ese e sie e ee e vee s 671
Multiple Systems COUPLING CONCEPIS....uuiiiciiiriieiriie ettt ettt sre e see e s s e e s ste e s s aeessaeeessaeaesnaeas 671
NI O o] 21 VZT or=Y I 1T a1 S 671
MSC LOBICAL LINKS..eeiitieiiiieieiiee ettt ettt sttt stt e e sbee e s bee e sbaeesbteesabaesssteesaseeessaeessaessasenesnns 673
MSC LOGICAL LINK PALNS .ottt sttt s st e s sste e ssee e s saeeseseeesneaesan 674
The MSC NEtWOTIK @Nd FOULING . ..cciiiiiiieeeieeeit ettt st e s e s s e e s s e e s bee e s be e s sbeeessseeesnnens 675
ReMOtE aNd LOCAL SYSTEMS .. eeiiiee ettt e e e rre e e s e e e e s ate e e e sentaeeseenseeeeeesnneneas 675
Flow of data Within MULLIPLE SYSTEMS....euii e e e e e e e e vaee e e e nnes 676
MESSAEE FOULING. .. uveiiiiieiiieeiiiee ettt sttt esste e sttt e s etteesesteesaseeesasteessteesseaesasseesssaesnsseesansaesansaesnnseens 677

o TUL] =3 o =1 PO SOT PRSP 677
LOZICAl AESTINATIONS.cc.utiiieiieieieeette ettt e s saee e s ee e s sbee e ssaee e ssabeessabeesssseesnasaesnaseas 678
Input, destination, and intermediate SYSTEMS........uiiiicciiee e e e e e 680
SYStEM IdENTITIEIS (SYSIDS)..eiiiuiieieiieeeiee ettt ettt et e e ete e e etee e e tee e e ateeeebeeeebeeeeseeessesesnseaaensens 681
Routing messages with the destination name and SYSIDS.......ccccccvvvieinieeinieeenieeeee e 684
REMOTE LTERMS....cciiieeee ettt ettt ettt e e e et e e e e st e e e e e ane e e e s e neeeeesenseeeeesnneeeenss 685
Multiple Systems Coupling (MSC) directed roUtING......cceecueeeeeeceeciecieeee e 687
Remote destination VErfICatioN.......civciii ittt 688
Chapter 39. Administering Multiple Systems COUPLING.......ccivvviiirriitiriieiniieerieeeeieeeeieeesreeesreeeseeeseaee 689
Design considerations for MUltiple SYSTEMS.....civcuiiiriiiiiiieiee e s 689
MiNiMIZIiNG reSOUrCE CONSUMIPTION...ciiitiiiriieeriieeeireeerreesireeesseeesseeessreeessseeessseeessaeeesnseaesnsenesnees 689
Controlling the bandwidth 0f MSC LINKS.......cociiiiriiiiiiiiiniereesete e 690
Balancing reSouUrCe demMand........ciieieeiiiieiiiee ittt sttt s e e s sre e s ste e s sste e ssseeessteessstaessseaesans 690
Planning for conversational ProCESSING.....cuiircuiiiriiiririee ittt et e s ste e ste e s see e s saee e s aeessseeessreeesnees 691
Routing exit routines With CONVErSatioNS.......coccuiiiiiiiiiiieireecee sttt see e s see e 692
Remote destination verification for CONVErsationS........coucveiiiieiirieeniieeseece e 692
Saving truncated data in the SPA.. ...t s e e srae s 692
ConVersation tEIMINATION.iii ittt st e st e s e e s sbe e s sabee s s beessasaessareessanes 693
Abnormal conversation terMINATION.......oiciiiriiiirie et e s see e s saee s 693
Defining Multiple Systems COUPLING FESOUICES....cccuiiriieiiiieeiiieercieeseteeseteeesereeesereeesereeeseseeesaseessane 693
ENabling MSC i an IMS SYSTEMcciuiiiiiiiiiiee ettt see e ee s sree s s sbee s sbee s st e s sbeessseessaneas 694
Disabling MSC with the MSC= exeCcution Parameter......cccccvciiiriiieriiieeniieeeriee et ssee e e e ssaeeees 698
LoCal SYSTEM AEfINITIONS.uiiiiee ettt cee e et e e e e e e e e e e e e s e nbeaeeseesseeeseesnneneessnns 698
DEfiNING PArtNET SYSTEIMS. . .uiiiiiiiiiiie ittt ettt s sre e e see e s be e s saee e sssteessateesssteessaeeesnseeesnnens 699
Defining the PhYSICAL LINK.....iiiiiiieieeeeeeeee et e s sabe e s be e s 699
Defining the LOZICAL LINK.....iii it re e s re e ssabe e saraeeas 703
Defining @ LogICal PAth...cicciiiiciieeiecece et e e e e sare s 704
Setting link priorities for remote tranSaCtioNS.......ciiciiiiiiiiiiieeeere e s 704
Serial transaction processing in an MSC NETWOTK.......cccviirriieiriieiiiieieiee e see e seee e 706
SPECITYING EXIT FOULINES...iiiciiiiiiiei ittt ettt srte st e st e s s sbee s s bee s sbe e e s beessbeessasaessasaesnses 706
How network definition is affected by multiple SyStEMS......ccuvieiieecieee e 707
Verifying transaction definitions aCroSS SYSTEMIS....cciviiiiiriiiiiiieirite ettt see e s saee e s saees 708
Using the multiple systems verification ULILitY.......cceeriieiniiiinieeeeee e 708
Verifying the system definition Status ONliNE......ccciiiriiiiriiiinecece e 709
Security CONSIAErations fOr MSC....ccuuiiii et e e e ree e e e e ree e e e seabae e e s sensreeeeeensaneeaans 710
Operations for Multiple SysStems COUPLING......covciiiiiiiieiitercre ettt sre e sree e s saee e saeee s 710
MSC LMK STATISTICS . ciuteeieieeiiiiereieesetee sttt et e sttt e setee e s etee e s ebee e sbeeesseeesseaesseaesneeesseaesaneassaseeesans 710
=T ool aTa F= T S T 0] = Uo7/ RS 711
Determine your optimum MSC LINK Y P€....uuuiiiiiieiiieeeeettee et eecree e e ree e e e e e e e e e s e 711
Reset statistics regularly at system checkpoint........cciiviiiiiiiniic e 712
Adjust link buffer sizes to the size of the MesSages......ccooviiiriiiiniiii e 712

XV

xvi

Adjust logical link capacity for MSC bandwidth MOde.......cceiieiiiiiiiiieiieiieecee e 712

Determining optimum MSC LNk DUTFEE SIZES....civuiiiiiiiiieieteceecece e 713
Use high-value link statistics to help diagnose MSC link problems........cccccoeveiiiveennieennieennneen. 716
Monitoring and tuning MULLIPLE SYSTEMIS...ciiiiiiiiiieerte e re e s e ba e e saaeeas 716
Coordinating performance iNfOrMatioN......ccuuiiciei ettt se e sree e sreeesaee 716
Reports generated by the IMS Monitor for MSC......coccuiiiviiiiiiieirtecree et 717
Extracting multiple-system transaction StatiStiCS.....cviiriiiiriiiiiniiieneeeie et 718
CoNtrolling the LOZ MEIEE.....uiiiiiiiieiieeete ettt te e s e e e ste e s sbe e s sbe e s sbeeesbaeesssaeesasaeennns 718
Interpreting the Transaction ANAlySiS rEPOIM .. .ttt essbe e s seee s 718
MSC and IMSplexes With Shared QUEUES........coccuiiei e e e e ree e e s e erae e e s e enreeeeeennes 719
Message routing across MSC and IMSplex enVIFrONMENTS......covcieircieeirieeniieeeeee e seeeesseeeeeas 719
Migrating from an MSC network to an IMSplex NetWOrK........coccvieiriieiriiieinriiecniee e 721
Managing remote transactions for APPC and OTMA when MSC and IMSplexes coexist........... 725
Avoiding pseudoabend UOB30.......ccuuiiiiiiiriiieiiiieirieeseieessiee st e ssteessteesssteesssseesssseessssaessnseesnnes 731
MSC TCP/IP SENEIIC FESOUICTES. . ceieveerrreeieieersteeesteessseesssseesssseesssseessssesssssesssssesssssessssseessssesssssasssnee 732
Managing MSC links in @ TCP/IP ENEriC reSOUICE BIOUP.....uiieieeerrieersreerseeessseeesseeesseeessseeesnne 732
Persistence of MSC link affinity in @ TCP/IP generic reSOUrce 8roUp....coccceerceeeerreeesieeessiveeenanens 734
Clearing MSC link affinity in a TCP/IP geNeriC reSOUrCe SroUpP.....cceerrveerrireeesireesnreessireessseeesnanes 734
Clearing MSC link affinity in IMS CONNECT....ciiiviiiiiieirieecee et 735
XRF, MSC, and TCP/IP SENEIIC FESOUITES. ..ccccuttrerierrrteriieesstressreessseessseesssseesssseesssseesssseessssees 735
VTAM Generic Resources (VGR) anNd MSC.....ccciiiieiciinieeieeseeciesseesteeseessessveessaeseeessnesseessessnseens 736
TM and MSC Message Routing and Control user exit routing OVEIrVIEW........ccccueereuveerieeencieenineenane 737
The IMSplex affinity routing option of the DFSMSCEOQ eXit roUutin€.......ccceeveiieriieeriiieeniieesseeenns 739
Using the IMSRSC repository With MSC......uiiiiiiiieieieecie ettt aae e saee s 740
IMSRSC repository definitions and MSC.......oo it ree e e ree e e e e ennee e e s 740
How SIDR and SIDL values for remote trans and descriptors are stored..........ccccvuveeeeecivveeennns 740
Maintaining MSC resources in the IMSRSC rePOSITONY....cciccieievieerrieereieereieessieesseeesseeesseeesans 741
Creating or updating MSC resources in the repOSItOry.....ccivcieeicieiiiiee et 744
Updating transactions from remote to local by using the repoSitory....cc.ccccevceeerveeinceeencieennnnen. 744
Updating transactions from local to remote by using the repoSitory....cccccccveceerrveeenceeencieesnnnen. 745

Part 9. ODBA and DRA CONNECHIONS....cccccteeeerereererereerererserereecesesescesesessesessesesesceses 147

Chapter 40. Accessing IMS databases With CICS.......ccciiiriiiiiiiiiiiiicrieceieeere e e see e s aeee s 749
Coding CONSIAEIrAtIONS fOr PSBS...ciicuiiiiiiiiicieeeitee sttt sste e site e ssate e sereeessseeesseeesbeeessseeesaseessane 749
USINg SeqUENTIAl DUTFEIING . ..ciiiiiiiiee et e st e e s e e e st e e s beeesnees 750
(04 OIS olo Y a[aT=To3 1o Ik £ X1 B 1 IV & SO 750
Configuring CICS CCTL connections t0 IMS DBCTL SYSTEMS...cccccuterriieeriiieriieesnieesnieeeseeeesveessneeas 750

CICS K. cutteteeeieetee ettt ettt sttt e st et e st e b e sae e e b e s ae e e bt e s be e s bt e be e st e e beesneeereenneeeas 751

Chapter 41. Accessing IMS databases through the ODBA interface.......ccccveeevviieincieeniiennceeeseeeeee 753
Creating the ODBA DRA Start-Up table.. ittt 753
Loading and running the ODBA and DRA modules in the z/OS application region.........cccceeeueeennen. 754
Binding appliCation PrOgramsS......ci i iieieiieieiieirieeseiee st e st essieesseeessbeesssbeesssbeessssaesssseessssaesssaesns 754
Establishing and defiNiNg SECUNITYciiiiiiiiiiiiiieeteeee sttt e s ee e s sate e s sabeessseaesnee 754

R YA T T= oL U]) 4 TSRS 755
DEfiNING APSB SECUITY . c.uttiiiiitiiietieiee sttt sete e st e s see e s ateessteesssteesssteesssteesssseessnsessnseaesnns 756

Part 10. Open Transaction Manager Access (OTMA).....ccccceieeiinecrncinceecsaecsaccreecees 757

Chapter 42. INtroducCtion t0 OTMA ...t e e e ee e e s e stee e e s e e are e e e s e nbeeeesennsteeeeensseneaans 759
WAt 1S OTMAT... ettt ettt ettt et a et e s at e bt et e s bt et e she et e sat e bt et e sheeabesae e besatesbeeaeesbeeaee 759
(02T 0 T=Y o T L A=Y) O 1 I R 760
Benefits Of USING OTMA .. .ottt ettt et e e st e s bae e s bee e s sbeeessaaeessaeesasseesssaenn 761
Advantages of the OTMA ProtOCOL......iii ittt e s e s s be e s sabe e s reeeas 762

How IMS messages flow in an OTMA enVIrONMENT.....cuiiiiiieiriiieiiiee e sriee e e sseeesseeesseeessneeesnes 763
BasiC OTMA MESSALZE TLlOW...uuiiiiiiiiiiieiiec ettt sttt ssate e s te e sste e seateessneaesaseaesane 763

OTMA IMS-t0-IMS TCP/IP commuNiCations flOW.......uuueueeemiieeeeeeee e 765

Sample commit-then-send transaction processing flOWS.......ccceivvieirviieinieeiniee e 766
Using transaction pipes With OTMAottt s e st e s s e e s sabe e s s beessaneas 768
Differences iN tranSACTION PIPES...ccccuiiie ettt eecctiee e e eetre e e eecre e e seeree e e e e srteeeeeenbaeeesennsteeessnnssenens 769
Message flow USING tranSACTION PIPES...ciiciiiiiiiiriiieriiterritersiee et e st e s sre e s sre e s s e e e sbeessbeeesanes 769
OTMA fast transaction pipe checkpoint cleanup (FASTTPCU).....ccueeeciieeciiieeciee e 772
Chapter 43. Enabling and USING OTMA ... ittt ittt e ssee e ssiee e ssteessseeessseeesesteessntaessseeessssessnes 773
ENGDLING OTMA . ettt ettt ettt e s bt e st e e s bae e s bee e s bee e s bae e s bbaesasbeessseesssaesnssaesnnsaesnnens 773
Summary of the OTMA configuration ParamMEterS.......cuvviiirieeriiie et e s essree s 773
Defining the XCF SroUP NAME.....iiiiieeieiee it ceiee st esste e sste e seite e ssite s sesee e ssaeeesbeessseessseesssesssnsens 774
Defining the OTMA XCF MEMbDEr NAMB.....uiiiiiiiiiiieeeiieeeite s ee e ssee e siee e s sseeessaeeessseeessneeas 774
Defining When OTMA STArS UP...iucuieiiieeriieeieeesiee st e ssee st e s ssre e s s e e s s be e s sbeessbeessseessseessnnes 774
Defining the level of OTMA SeCUrity ChECKING.....c.utiiciiiriiieriieeeieeere et e s e aee e 775
OTMA tpipe support for parallel processing of multiple active RESUME TPIPE requests......... 776
Specifying synchronized tpipes for IBM MQ......c.ciiiiiiiiiiiiniieiiee sttt e ssieesseeesseeesseee e 778
Enabling OTMAYPRX member name override for OTMA clientS.....ccccveivveiirieeinieeineeeseeeee, 779
Specifying asynchronous delivery of program-to-program switch output messages................ 779

(O B I\ VAN [Tl T o) (o] =TSR 780
(O I\ N 1T=T o) ffe [Tl o) o =SSR 780
OTMA destination AESCIIPTOIS. ... uuiiieeiccieee e cttte e et e e e e e e e e e e esbteeeeeesteeeesesssaeeeseenstesassanns 781
(DY O NI\ We [Tl T o) o R 784
Changing the limits 0N OTMA dESCIIPIONS. ..cccuiiiriiiereiiercree sttt e ssre e s sareessreeessseeessaeeens 785
OTMA support for IMS-t0-IMS COMMUNICATIONS......cciiciiiieeeeeiiee e ecctee e e e eeere e e eeree e e e e raeeeeeas 785
Super member support for IMS-t0-IMS cOMMUNICATIONS......ceeiieeiiiieeeeciiee e e, 786
Specifying a remote tranSaction COUE....ciiviiiiiiiiiiieirieecte et ee e sbee s s bee e saaeas 787
Format of messages sent to a remote IMS SYSTEM....ccccciiiiiiiiiiieniiienriee et 787
OTMA-SUPPOITEA EXIT FOULINES. . uuiiiiieciiieececiieee ettt e et e e e et e e e e etree e s e esbee e e s enbeeeeeennssaeeasennseneesans 788
Using the OTMAYPRX user exit and DFSYDRUO exit routine to determine destination............. 789
AdmINIStEring IMS fOr OTMA ... e ittt ettt ettt s e e e st e e s bt e e sba e e s baeesbaeesasaeessseeesnseaean 791
IMS conversations @aNd OTMA. .. .o ittt et ee e s ee e s saae e s s abe e s sabeesssseesnseeesnnes 791
MSC and OTMA tranSACTIONS. ..cccuuitieieeictee ittt e st e seeeesereeesssteesssteessseeeseneeesaseeesaseessaneessaseaesane 791
Fast Path and OTMA tranSaCtiONS.....ciccieiriieiriiecrte et e et e st e s st e s sae e s sbe e s saeesseaesaeas 791
IMS restart processing and OTMAottt e s rre e s s e e s sba e s sbeessbaeessraeennee 792
IMS Queue Control Facility and OTMA ettt e e e e e b e e e s e raee e e e enrees 792
Using shared qUeUEs With OTMAco ittt ettt e ste e see e s ste e s ssreesseeessstaesssseesnns 793
IMS termination and OTMA. ...ttt sr et e st e e st e e e s be e e sbeeesbaeessseeesnseeesnseeesnseeenn 797
OTMA client notification of IMS termination.........ccceiicieiiiiiniie e 797
IMS termination and IMS-10-IMS TCP/IP MESSAZES....cccccvteirriririieiriieenireeesieeesieeesreessaeesnaneas 798
OTMA restrictions and FEQUIrEMENTS.ccccuiiieicciiieeeeecteee e eeerere e e eeatreeeeestreessessseseesssssnessssssesaesannes 798
Managing system resources and OTMAci ittt e ssee e s see e s see e ssteessateessseeessnseesnes 799
Administering OTMA TMEMDEIS. ..o ciiiiciei ettt see e see e s eee s sbee e sbee e sbee s sbeessabeeesans 799
Buffer pool USage fOr OTMA. ... ettt s e st e e st e e s sbe e s sbeessnbaessbeessssaesas 800
Collecting OTMA CheCKpoint StatiStiCS..uuiiriiiriieiiiieirieeete et sbe e s sbe e s 800
Dependent region occupancy and OTMAco ittt sre e serre e ssrte e ssee e ssrae e seraeessseeesane 800
Displaying the current transaction WOrkload.........cccevcieiriieiniieiniiesste e 801
Impact of OTMA message TIBS ON STOra8E.....ciuciiiriiiiriieiriiteniteeesireesrreessire e s seeeessaeeesseeessaeeess 802
IMS message queue data set size and OTMA....coo ittt 803
MeSSage floOd ETECTION....ciciiiiciee ettt e st e e s e e s s beessabeessaraeeas 803
MONITOIING TPIPE USAEE. . utieiiiieriieeeiieesittesetee sttt e ssteesasteesssteessseeesasseesssseesssseesssseesssseesssseesnnseenn 804
Monitoring system resources With OTMAii ittt ssree e s baeesaaee s 806
OTMA ACEE floOd CONTIOL..cciiiiiiiiiiiiieeeiee ettt sttt et e st e s siee e saeeessabeessaeeessbaesnssaesnnsaesan 807
T a oAVl o= Te L L= o o] o 1= T PP 808
Specifying acknowledgment timeout intervals for OTMA MeSSagesS.....ccccvvevrveeirieeerieeesireeennnes 809
Specifying an expiration time for transactions 10 OTMA.......ccocviiiiiiiiiieerciee e 811
Specifying the number of SAPs IMS allocates for OTMA input MeSSageS....ccvvvvrrveerrveeeereeennne 813
Terminating conversational transactions in OTMA ...ttt 814

(O B I N ol U Y2 ER 815

RACF security LeVels TOr OTMAL..... . ettt rre e e s etre e e s e e ate e e e s s nre e e e s e astaeeseenneneas 815

SPECITYING OTMA SECUITY..eiiiuiiiiiiieiiiieirite st e sttt sett e s st e s steessabeeessbeessbeessbeesssseessssaeessseessseesnn 816
Securing messages on the asynchronous hold QUEUE........cueiviieiiiieieiieeeecee e 822
Security for OTMA IMS-t0-IMS TCP/IP CONNECTLIONS......utiiiieciiiieecciiee e eecteee e e crree e e aee e e e e 824
General OTMA seCUrity CONSIAEIATIONS......uiiiiicciieieccciree e eecre e e e srrre e e e reee e e e s enseee e e eenneeeee s 824
Using DL/I calls in an OTMA €NVIFONMENT....ciiciiiiiiieiiiieesiieesciteessieeessieeessreessreesssseesssseessseessseessanes 825
OTMA program-to-program SWItCh ProCESSING.....ccuiiiriiiiriiiiirie ittt sre e see e s seeesaee 826
OTMA single-stream pProgram SWITCH......iicieiirieiiiiee e see e sree e s ree e sbee s saees 827
OTMA program switch without ISRT 10 I/O PCB.....ccccutiiiitiriiieriitenireeesieeesreessireesieeessaeeessaeeens 827
OTMA program switCh With @XPress PCB........ccuciiiiiiiiriiieirieessitessieessieessreessseessveessseessseesas 827
OTMA program switch to MUltiple ProgramsS.......oceivcieiriieineeeesee et e e 828
OTMA program switch for protected tranSacCtioNS......cccevveieireieiiiiien e 829
Other OTMA program switCh CONSIAErationS........cceeievieiiirieiiriee et ee e s 829
Chapter 44. THE OTMA CLIENT..uuiii ettt e e e e e e e e e s ate e e e e e abe e e e e enbeeeeeeansteeeesenssnnasans 831
WHhat IS N OTMA CLENT?...ciiiieieieeete ettt e s e e st e e st e e e s bt e e sbteessaeesssaeesaseeesseaean 831
OTMA NAMING CONVENTIONS.cc.uttiiiiiitieiieerireesrite st e s seeesseeessseeesssbeessseeesssseessssaesssseesssseesssseesssseesssees 832
Messages SENT DY OTMA CLIENTS.....iiiiiiieeeiete ettt et e s sae e s sabe e s sate e ssaeeesaeeas 832
Sending type-1 commands from an OTMA CLIENT.....coiiiiiiriiiirieee et sae e 834
OTMA COMMUT PIrOCESSING. . uuviiiurieiiieereieeriteeseteesarteeserteeseseeesasteesaseessaseeesaseesssseesssseesssseesssseessaeessans 834
Summary of OTMA COMMIE PrOCESSING....ueiicuieircrieeriieeeiieeeiteeestteesreeesrteeessseeessseesssseesssseessssaessns 835
Sample OTMA commit ProCeSSING fFlOWS......uiiiciiiiiieeriieeecteerte e ssee e e ssree e s sbae e sreeesane 836
Sample OTMA MESSAEE FLOWS..ccuiiiiiiiiieiie ettt s st e s s be e s sbe e s s baesssbaessasaeens 841
Protecting transactions With OTMA......co ittt e st e s s e e s s be e e s beeesanees 846
Initiating protected transactions from an OTMA CliENT.....coociiiiiiiiiiiiiieeeeececee e 846
Processing protected transactions in IMS.........cooviiiiriiiiniieieceee e e 847
Client/server resynchronization With OTMAL......co e e et ree e e e e rae e e e e naaeee s 847
Assumptions for OTMA reSyNChrONIZatioN.......ciiccciieeiieciee e e e e e e e beee e e eennes 848
Recoverable OTMA tranSaCTiONS.....c.uiiiciieiriee ettt ettt e sre e st e s sre e s saeessbeessseessssaessasaesnnes 848
Unrecoverable OTMA tranSaCtioNS......ccuviicieiriieiriieeeite et e sieeesieessree e sreeesbeessreessseessaseessans 848
Summary results of IMS transactions and COMMANAS......cccccuiieieeciiieee e e e 849
OTMA resynchronization ProtOCOL......i i cctiee et eeerre e e e et e e e e e sbe e e e s e baeee s e ensaneeas 850
Sample OTMA resynchronization Message flOW......cuuiiiiieiriieiriiececee e 853
Sample OTMA resynChroniZation MESSAZES. ...cccuitirriiiirriterrieererieessteessteeesseesssseesssseesssseesssseesnns 854
Managing commit-then-SeNd OULPUL......ccciiiriiiieiice e s e ssaee e s 855
Purging commit-then-send asynchronous OULPUL.......c.ceiiiiiiriieinite it 856
Rerouting commit-then-send asynchronous OULPUL......ccccivvriiiiiiieniieccee e 856
Timeout for acknowledgments of commit-then-send oUtPUL......cccveviieiiiiiiicienree e 857
Sharing asynchronous commit-then-send output: the OTMA super member function............. 858
Displaying output on the asynchronous hold QUEUE.........coviiiiiiiniiiceecceceee e 859
Chapter 45. OTMA support for CalloUt FEQUESTES......uiii ittt e et eae e e e e 861
Callout requests from IMS application ProgramsS.....cc.ceecveerrieeriiieennieessrtessreeesreeesreesseeeesaeessanees 861
SYNChroNOUS CallOUT FEQUESTS......uiiiiii ettt e e e s et e e e e et e e e s esnbe e e e e e naeaeessennnnneas 862
Synchronous program SWItCh rEQUESTS....civuiiiiciiieieecte et e e sae e e sbe e s seae e 863
ASYNChIroNOUS CAllOUL FEQUEST.....uiii ittt rree e e e eree e e e et ee e e e eeaare e e s sennreeeesenseneeaanns 865
Implementing the asynchronous callout fuNCLION......c.iiiriiiriieineceeece e 865
IMS TM Resource Adapter and asynchronous callout reqUeSES.......ccccueeeeeeciiieececciiiee e, 867
SOAP Gateway and asynchronous Callout reqQUESTS.......ccuiiieieciieeee et e ree e e e eerr e e 867
IBM MQ and asynchronous Callout FrEQUESTES.......cviiecciieeieeciiee e ettt e e ecree e eevere e e evae e e e e enreeee e 868
IMS application programs and the asynchronous callout function.......cccccceevceeiniceiniceinieennnnen, 868
Callout and OTMA parallel processing of RESUME TPIPE requeStS.......cceevveerrieeinieeisieesnieesseeennns 870
Chapter 46. OTMA MESSALEE PrefiXuuiiiiiiiiiiiiiriieirieeirieesrite st e st e s ste e s ste e s see e s s te e s sateessaeeessseeessseaesnnes 873
Message-control iNfOrmMation SECTION.......cciiiiiii i e s bee e saees 873
Explanation of OTMA message-control information fields.......ccoccvviiiiiiiiieiniieieeee e, 876

) = LN e Fo o= T Toi £ T o OO PPRRPPRRURPO 882
Server-Available and Client-Bid COMMANAS......ccuiiiiiiiiiieinieeeieeeee et e e as 882

xviii

YRV A LTSV aTed a I elo] 1 0] g F- U T SRS 886

REQresyNCh COMMANT.....coii ettt e e et e e et ee e s e e rbee e e s enbae e e s ensaaeeeeennraneas 886
REPresynCh COMMANT....co ettt eete e e e e s et e e e e b ree e s e astaeeeeeensaneeseennsnnessanns 886
2T =153 a Tl Tt] 1 T a 0 =12 o PO R 887
Transaction and CAlloUt MESSAZES.uiiiiiiiiiiieriiie ettt e sttt e st e s seeessteesssteesssbeessssaesanseens 888
Server state ProtoCol COMMANT......coicciiiii i e e e e e e e e e rrae e e eeenseeeeeennes 892
T U g oo UL o0 N () I o] o1 S 894
Resume output for all Tpipes protocol command format.......ccccceeeeciieeeeeccieee e 894
Resume output for the hold qUEUE fOr tPIPE...cccuviiie e 895
Cancel resume output for tpipe hold qUEUE reqUEST.......cccecciiiee e 896

No messages On tPIPE NOLA QUEUE........iiviiiiiteeeeee ettt s s e s re e s be e e 896
Y=ol 0 g1 AV F- L =TT To o VSRS 897
Explanation of OTMA security data fileldS........uieiicciiei i e e 898
L1 o = - BT = ot £ o T USSP 900
Explanation of OTMA user data fileldS.....cuuiiieeciiiee e e e e rre e e e e eaae e e ea 900
PAVo] o] 1Tot=N o] gl F-1 €= WY =Yt { o] o SRR 900
SAMPLE OTMA MIESSAEES. . uvteieurieirierieieeieteeseiteessteessteesstesssseeessseeessseesssseesssseesssseessssessssseesssseessssens 901
Chapter 47. OTMA Callable INterface. ...ttt e et e e e e e e e s e e e e e e s raaeeeeennes 903
O NN OF A oY A E= 11 F4= 1 Ao o O RRT 905
(OB I N O B Y=Y o U] 1 SRR 906
(O 1NN OF B N =13 (o 4o £ R 906
Timing out OTMA C/I sessions after otma_send_receive API calls for CM1 transactions.............. 906
Chapter 48. OTMA architected transaction attributes.......ccueeeieeciiei e 909

Part 11. SLU P and Finance CommuUNICAtiON....cccvceierererierererrerereecererencererencereneneenes 911

Chapter 49. Overview of SLU P and Finance ComMmMUNICATION.....ccccccvieeeeeciiieeeeciieee e ecereee e eeeee e e e 913
THE IMS-SLU P NETWOIK..ciitieieiieieiteesiteeeteesite s stte st e st e s st e s sae e s steessbeesssbaessaeaessasaessssaesnnsaesnnees 913
SYSTEM CONTIGUIATION..ceiiutiiieiieieiee ettt e st e st e e st e e s be e e s beeessbaeesasaeesssaeesssaeennseeean 914
SLU P and FINANCE WOIKSTATIONSceiiiiiiiiiiiiiiieiiee st e st et essite s s site s ssiee s ssiee s sbee e sneessneeesneessnnens 914
System controller appliCation PrOSram......cc.iiicieiierieeiiieerrie e eeee st et e sere e s sre e s seeessaeeessseeessseeesnns 914
Writing the controller application program with MFS and XRF.......ccccccevviiiiniiiiniieineeenee e, 914

Considerations for controller application programs for XRF SyStems......cccoeevevrieeiineeesieeennne 915
Converting controller application programs from Finance to SLU P...c.cuvvvviieriiieniiiieniieessieessieens 915
VTAM FACILITIES USEA...eiiiiiiieiieieiieeete ettt ettt s et e e s te e s st e e s be e e s baeesbaeesabaeesaseeesnseeesnsaeenn 916
VTAM commands and indicators used With SLU P......cocciiiiiiriiiinieeeeeceeecsee e e 917

ReqUESt-reCOVErY COMMANG.....ccuiiieeeeciieeeeectieeeeeectteeeeesctteeeeeessaeeeeesesteeeesenssaaeesesnsenessssssnaesannnes 918

Change-direCtion INAICATON......iiiiiiiieiieeie ettt e e s sbe e e st eesbaeesbeeesseeesseeens 918
Establishing connection and specifying loGON MOAES.......ccuvircieiicieiiiieeeieeete e see e 918
Establishing connection with the XRF COMPLEX..cciciiiiiiiiiiiiiiiieeiiee sttt sree e 919
Bracket and send/receive ManagemeENnt......cci i iiiiriieieieerriee et ssre e st e s re e s ae e s s e e e s beeesbeeeas 920

Chapter 50. IMS facilities used for SLU P and FINANCE.......cccccviieeieciiieeeccitee et eetree e e vree e e 921

(07e] paYoToTT=TaY ile 1= 1T T o o PSSR 921
LTERM NAMING....uttiiiiieiiiteiiieeeeteeseteessteeseseeesssteessseeessseeessseeesssseesassaesassessassesssssesssssessssseesssessne 921
(O8] o] AeleTan] o o] a =T] AE-T=1 1=Tor 4 To] o VOSSR 921
Input component determMination..... oo ciiie i e e e e e e e bee e e e e e reeeeeeas 922

TermiNal-rESPONSE MOUE.....ceiiicciiieeiecieee e e e eece e e e et re e s e e ateeeeesassaeeeeesssteeeesanstaseesanssenessensssneenann 922

Defining a workstation for terminal-response MOGE.......cccuiiieiiiiiviieiiriieieeeeiee e see e 923

Output messages sent while in a between-brackets state......ccccveieiieiieiiiiiiiciieeiee e 924

Designing for output messages sent while in between-brackets state......cccocccevvceeiriceinicenniieennne, 925

IMS MESSAZE FOIMAL SEIVICE. . .iiiiuiiiiiiiiriiteeiite st sse e st e st e s te e s s e e s bt e s sabeesssbeessabeessaseessssaessnsens 925
Designing MFS for the workstation €nviroNmMENT......cccciviiiiiiiiiiiieereeree e 925
MID/MOD CRAINING...cietiiieiieieiitieiie et eerte e e et essire e s sbee e s saeeesbee e s ssteesseeessbaessseaesssaesnssaesnssnesnsenns 926
MFS output formatting for the SLU P SYStEM.....coicciiiiiiiiiiicciecctec ettt 926

Xix

MES MESSAZE MECOVEIY .. .uueiieiieiteeeeeettee e e ettt et e ettt e e e s bee e e e s e aeetesseasbteeaeaansteeeeanneeeeeeanseaeeeasnnes 927

MFS control fUNCLIONS (FINANCE)...cuuiicieeieeceeceeeeeste et ettt e e te e e sraeere e sreesseessaeesseereesneean 927
MFS CONrol fUNCLIONS (SLU P)..eieiiiiieieeieestteee ettt et eee e te s sve e s ae e esae et e sneeenseesnaeeneas 927
MFS paging and BID OPtiONS...c.uuiicieiiiieeiiieesiteessteesieeesereeesieessereesssseesssseessseessseessnseessseessases 928
Display screen protection for finanCe StatioNS........ccciiiiiieciiie e 928
Extended output component protection (SLU P).....cccueeeeciee ettt e 928
Input and output editing OPtiIONS (SLU P)....eeieiieiieciecieeeee ettt sre e ete e e s eeeree e 930
Use of responses or brackets to acknowledge recoverable input.......c.ccoecieieiiiiniiiiniiennreeeeeeee 931
MESSAZE MEBCOVEIY . .uueeiiieeietteeeeeetteeeeeieteessestteeee s s steeeeaanseeeee e neteesaansaaeesaanseteesaessaeeesesnaaeesannneeeeenn 932
MeSSAge rESYNCRIONIZATION. ...ttt et e s be e s be e s sabe e s abeessabeesssbaesssseess 932
Finance and SLU P in an XRF COMPLEX...uiiiiiiiiiiie ettt eecttee e e etre e e s e tee e e e eabeee s s e ebaee e s e naaeeaeeas 933
Fast Path messages with FINaNCe and SLU P.......ccciiiiiiiiiiiiiiecceeectesste st see s 933
Fast Path output Messages (FINANCE).....iccuiiceeeciercieeeieeeeseeeteeteesteeseeesee e te e e e seeesreesraeeseennes 934
Fast Path output MESSAZES (SLU P)....eeeiceieciieeee ettt ettt ete e e e et rae e snae e 934
Fast Path message reSyNChroNiZatioN......cccuvecieiicieieiieiree ettt e e e s e 935
Chapter 51. Network operation for SLU P and FINANCE.....ccccccuiiiiiecciiie ettt e e ecveee e evvee e e e 937
StArting aN IMS NETWOTK...ciicuiiieiieeeiie ettt ettt e st e e st e e s be e e sbae e sabaeesbaeesasaeesasaessseeenns 937
MaKING IMS FEAAY...eiiiirieiiiieeiite ettt st e st e st e s st e e st e s be e s s beessbaessabaessaseesssbeessssaessnseeessseesssens 937
Session initiation (starting WOrkstations)........ccceeieecienie e eee s 937
Session-initiation tranSMISSION SEQUENCE.....cccccuviieeeecrieee e eciree e eeetre e e e e stre e e e e enbeeeesebeeeeseesseeeas 938
Controller application program involvement in message resynchronization.......c.ccccceecveernnenn. 939
DESIZN CONSIAEIATIONS. ..iietieieiiiieiite ettt ettt e sttt e st e e s beeesate e s seeesssbeessateesssseesnsseesnnsaesnnseas 939
Sequence NUMbDEN MaANAZEMENT......ciiiiiiiie ittt eeee et et e st e s ste e s ste e s steessabeesssseessaeeessaeeas 939
Set-and-Test-Sequence-NUumMbers (STSN).....oo it e ree e e eree e b e e 940
Suspending OULPUL FrOM IMS.. ..o it s s s st e e s e e e s e e e sbeeesaneas 943
SESSION TEIMINATION. c.eiiieiitietieiette ettt et e et e e et e e st e e s bt e e s bt e e s beeesabeeesaseeesssaeessaeesssaeessseeesnseeean 943
(@ o [T AV (=T oo a1 =1 o o PSSR 944
Immediate terMINATION......ii it e e s e e s s be e e s abeesssbaessasaess 945
Shutting down an IMS NEIWOIK (SLU P)..ccuieeieieieeieesee et este st esteeste et see e e sreesreesseesnseesaeesnaeenes 945
SLU P MBS SaEES. . eeiiuetteeeeeitte e e e ettt e ettt e e e ettt e e e sttt e e e s sttt e e se st teeaeasbteeeeenrt e e e e e aneeee e e nreeeeeenneeeas 945
Send/receive and bracket ProtoCOL..... . i i e e e 946
Chapter 52. SLU P MeSSagE PrOtOCOLS...ccuuiiiiiieiiiieriiterrite st sstte st e st s st e s e e s s e e s sbe e s s beessaseeesans 947
General format of input function management headers (FINANCE)......cceeeercierceercierieese e 947
Input message descriptor byte (FINANCE).....cccuiecieeieeceeeie ettt ete et ste et e s ae s te e e e eaeesaeeens 947
General format of input function management headers (SLU P).....coccuveceeieerieenienieeceeeieecveeseens 948
Input message descriptor BYtes (SLU P).....icueicieeciecieceeree ettt st 949
Input component identification (SLU P)......eecueiecciieecee ettt et et 949
INput bracketing ProtOCOL.. . iii ittt e s sre e st e e s be e s abeessabaessaseess 950
Activating MFS input formatting for Finance workstations........cceceevvvieeiniieeinieeinrieeseieeesieeenne 950
UL PUL M SAES. ¢ teettteeeeittt ettt te e ettt et e et e e e e s et e e e e st e e e e e e netee e e e nseeeeesennbeeesseansaeeesenasseeesananseees 951
MFS Distributed Presentation Management output (SLU P)....cocueeeceeceeiiieceeceeee e 953
General format of output function management headers (FINANCE).......cecveererecreerieeceerie e 953
Output message descriptor byte (FINANCE).....ccveiiiviirie ettt 954
Output component ID byte (FINANCE)....ieiciieeiiieecitieecte ettt et e et e e te e e aae e e re e e naae e nreeenes 954
MFS data BYtES (FINANCE)..cc.uiiiiiieeciee ettt et e e et e cette e e tte e e tte e s teee e taeesesteeeeseeeseseeessseesseaesans 954
General format of output function management headers (SLU P).....ccceeceeeieeceeneeeceecee e 954
Output message descriptor YIS (SLU P)...ueeeeeieeeece ettt sttt 955
MFS data DYLES (SLU P) .ttt ettt e ettt e et e e et e e e ab e e e bae e abae e ssaeesasaaeenseeeansens 956
OUutput Bracketing ProtOCOL. ... cuuii ettt ee s ree s st e s s e s s bae e s baeesaneas 956
Activating MFS output formatting for SLU Pu...coeciiiiiiieiecciececieceiecsie s e s 957
ReSPONSE reqUESES (FINANCE)....uiiiciiieeciieeeciiee et e ettt e et e e ae e e etteeeetbee e aeeesaseeeeaseeeesseaeensaeeensaeennses 957
RESPONSE rEAUESES (SLU P)..eereieeiie ettt ettt ettt ee e e e te e et e e et e e esabe s e nses e nsaeesnsesennseeannseeans 958
INPUL rESPONSE FEAUINEMENTS. . eiiiiiciiiieeieiiieeeeeirtreeeeertreeeeeibereesessseeeeesssessessasseeeessastssesssssssnesssnnes 958
OULPUL rESPONSE FEAUINEMENTS. . eeiiicctiieeeeeiiieeeeeeitreeeeertreeeeeessteeeeeeaseeeeesssteesessassessssassssnssssssssesessnnns 959
B (=Y o= ot AT g TN 4] 1= TR 959

Recoverable-inqUiry tranSaCtiONS. ... ittt et e e e et e e e e eare e e e senreee s seenraeeesesnneeeesennnes 960

Irrecoverable-iNqUiry tranSACTIONS........iiiieccieee ettt e ecrre e et re e e e e are e e e e e sasee e e e e nneees 960

Verifying IMS receipt of irrecoverable MESSAZES.....cccviiiiiiiriiieiriiee st ste s see e svee e see e 961
IMS MESSAZE SWITCNES....eiiiiiiiicieecte ettt et e st e e s bt e e s be e e sbeeesbaeesbaessasaeenns 961
IMS COMIMANAS...ciiiiiiiiet ittt ettt e e st e e st e e s bee e s bt e e s bt e e sbeeesabeessabeessaseeesaseessseessnsees 961
VTAM commands and iNAICATOIS. ...cuiiiiiiiiieiiieercieereie et e st e st e st e s sbe e ssreessbeessabaessasaessaseess 961
SR oo) o} (o] WL =To TU =Ty £ PSRN 961
T ol s F=TaTe | 1] o = OO SORTSRRRT SRR 962
| R e Loy =To (Yo =T o o] T SRS 962
Controller or statioN-deteCted EITOIS....iuiiiiiriiercieerriee ettt sre e s be e s sbeessaree s 963
VTAM logical unit status (LUSTATUS) COMMANG.....ccceeruiiciierieeiieenieeceeseeeteeseeeseeeseeesseeesseesneeas 964
VTAM ready-to-receive (RTR) COMMANG......ccuiieiiieeiiieeeiee ettt et e tee et e et e e re e e abeeeeaneas 964
VTAM CANCEL COMMANG...ciiiiiiiiiiiiiiiiieeiieeeie sttt ssiee e ssiaeessireessseeessseeessataesssseesnnsaesnssaesnnsnas 965
VTAM request-reCoVery COMMANG.......cciiicciieeeeeiiieeeeeciieeeeeeceteeeeeeseeeeseesreeessensesessesnssnessssnsenes 965

[\ 0] { o =Y - TSRS - | .

Programming interface iNfOrmMation. ... s s e e s aee e saees 968
= e (=100 =T OO OO PPRRPPRRNt 968
Terms and conditions for product doCUMENTAtION........uiiii i e e 969
IBM ONliNg Privacy Stat@mMENt....cc i eiiee ettt ectte e e crte e e e etee e e e e erte e e s seaee e e e s ntaeeesesnseneesennnsenansan 969

(=11] FT0 Y= - 1] 1)V * o & |

L =) R * b

xXXi

About this information

These topics describe how to administer IMS communications and connections: CPI Communications
and APPC/IMS, facilities for attaching to external subsystems, IMS Extended Terminal Option (ETO),
IMS Connect, IMS Universal driver connections, Intersystem Communication (ISC), Multiple Systems
Coupling (MSC), IMS Open Database Access (ODBA) and database resource adapter (DRA) interfaces,
IMS Open Transaction Manager Access (OTMA), SLU P and Finance communication systems, TCP/IP
communications, and VTAM® networking.

This information is available in IBM® Documentation.

Prerequisite knowledge

You should first read IMS Version 15.4 System Administration. Its introductory chapters, which cover
planning activities, the IMS environments, and administration concepts, is particularly useful as a
background for this book.

If you use APPC/IMS, you must be familiar with APPC/MVS in order to correctly define APPC/MVS
configurations. For more information about APPC/MVS, see CPI Communications Reference.

If you implement ISC sessions between IMS and CICS®, you should understand the information in CICS
Transaction Server for z/0S CICS Intercommunication Guide.

If you are connecting to IMS by using TCP/IP connections, you should understand z/OS°® TCP/IP, as
documented in z/OS Communications Server: IP Configuration Guide.

To learn about z/0S, see z/0S Basic Skills. For more resources, see IBM Z Education and Training.

To learn about IMS, see the IBM Press publication An Introduction to IMS, the resources listed for IBM
Information Management System, and the variety of options available in IBM Training.

How new and changed information is identified

For most IMS library PDF publications, information that is added or changed after the PDF publication is
first published is denoted by a character (revision marker) in the left margin. The Program Directory and
Licensed Program Specifications do not include revision markers.

Revision markers follow these general conventions:

« Only technical changes are marked; style and grammatical changes are not marked.

« If part of an element, such as a paragraph, syntax diagram, list item, task step, or figure is changed,
the entire element is marked with revision markers, even though only part of the element might have
changed.

« If atopicis changed by more than 50%, the entire topic is marked with revision markers (so it might
seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the information because deleted
text and graphics cannot be marked with revision markers.

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:

« Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following conventions are used:

— The >>--- symbol indicates the beginning of a syntax diagram.
— The ---> symbol indicates that the syntax diagram is continued on the next line.

© Copyright IBM Corp. 1974, 2022 xxiii

https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/zos-basic-skills
https://www.ibm.com/z/education
https://www.ibm.com/products/ims
https://www.ibm.com/products/ims
https://www.ibm.com/training/search?query=ims

— The >--- symbol indicates that a syntax diagram is continued from the previous line.
— The --->< symbol indicates the end of a syntax diagram.
« Required items appear on the horizontal line (the main path).

»— required_item —»<

« Optional items appear below the main path.
»— required_item >4
L optional_item J

If an optional item appears above the main path, that item has no effect on the execution of the syntax
element and is used only for readability.

J_ optional_item T
»— required_item >4

« If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.
»— required_item T required_choicel j—N
required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

»— required_item >4
toptional_choicel j
optional_choice2
If one of the items is the default, it appears above the main path, and the remaining choices are shown
below.

j_ default_choice
»— required_item

optional_choice j

optional_choice

T

- An arrow returning to the left, above the main line, indicates an item that can be repeated.

<
<

),.ﬁ

»— required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

<
€

),.ﬁ

»— required_item repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.

- Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the
main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

xxiv About this information

fragment-name

»— required_item >
L optional_item —J

« In IMS, a b symbol indicates one blank position.

« Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled
exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

« Separate keywords and parameters by at least one space if no intervening punctuation is shown in the
diagram.

« Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the
diagram.

« Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS 15.4

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products, including IMS 15.4. These
features support:

« Keyboard-only operation.
« Interfaces that are commonly used by screen readers and screen maghnifiers.
« Customization of display attributes such as color, contrast, and font size.

Keyboard navigation
You can access IMS 15.4 ISPF panel functions by using a keyboard or keyboard shortcut keys.

For information about navigating the IMS 15.4 ISPF panels using TSO/E or ISPF, refer to the z/0S TSO/E
Primer, the z/0S TSO/E User's Guide, and the z/OS ISPF User's Guide Volume 1. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for IMS 15.4 is available in IBM Documentation.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more information about the
commitment that IBM has to accessibility.

How to send your comments

About this task

Your feedback is important in helping us provide the most accurate and highest quality information. If you
have any comments about this or any other IMS information, you can take one of the following actions:

About this information xxv

http://www.ibm.com/able

Procedure

« Submit a comment by using the DISQUS commenting feature at the bottom of any IBM Documentation
topic.

« Send an email to imspubs@us.ibm.com. Be sure to include the book title.

« Click the Contact Us tab at the bottom of any IBM Documentation topic.

What to do next

To help us respond quickly and accurately, please include as much information as you can about the
content you are commenting on, where we can find it, and what your suggestions for improvement might
be.

xxvi IMS: Communications and Connections

https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/ims

Part 1. Configuring external Java environment
connections

The IMS Universal drivers support Java™ applications that access IMS. The IMS Universal drivers are built
on industry standards and open specifications, and provide flexible support for connectivity, data access
methods, and transaction processing options.

Related concepts

Transaction types and programming interfaces supported by the IMS Universal Database resource
adapter (Application Programming)

IMS solutions for Java development overview (Application Programming)

© Copyright IBM Corp. 1974, 2022 1

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbjcatransactionmanagement.htm#ims_odbjcatransactionmanagement
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbjcatransactionmanagement.htm#ims_odbjcatransactionmanagement
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_introjavaclasslibsforims.htm#ims_introjavaclasslibsforims

2 IMS: Communications and Connections

Chapter 1. IMS Universal drivers: configuring
connections to IMS

The IMS Universal drivers can run in z/OS and distributed environments, including WebSphere®
Application Server for z/OS, WebSphere Application Server for distributed platforms, and WebSphere
Application Server Liberty.

About this task

The IMS Universal drivers include the following adapters and drivers:

- The IMS Universal Database resource adapters, which take advantage of Java Platform, Enterprise
Edition (Java EE) services.

« The IMS Universal JDBC driver, which support SQL calls that directly access your IMS data.

« The IMS Universal DL/I driver, which provides calls that are similar to DL/I in a Java programming
interface.

When running in a distributed environment on a server such as WebSphere Application Server for
distributed platforms, or in a remote z/OS environments on a server such as WebSphere Application
Server for z/OS, or in WebSphere Application Server Liberty, the IMS Universal drivers connect to IMS
using a type-4 connection architecture, which supports TCP/IP communications and socket management.

When running locally on the same logical partition (LPAR) as IMS, the IMS Universal drivers connect to
IMS by using a type-2 connection architecture, which supports direct communication with IMS through
the IMS Open Database Access (ODBA) and IMS database resource adapter (DRA) interfaces.

WebSphere Application Server supports all of the IMS Universal drivers in both distributed and z/OS
environments.

Related concepts

Programming with the IMS Universal drivers (Application Programming)

Distributed and local connectivity with the IMS Universal drivers (Application Programming)
Related reference

Comparison of IMS Universal drivers programming approaches for accessing IMS (Application
Programming)

Configuring WehSphere Application Server for EJB development
with the IMS Universal drivers

To develop Enterprise JavaBeans (EJB) applications that run on WebSphere Application Server, on either
z/0S or distributed platforms, custom properties for the Java Virtual Machine (JVM) and for XML/Java
binding must be properly configured

Procedure

To configure the WebSphere Application Server for EJB applications that use the IMS Universal drivers:
1. In the administrative console, select the appropriate Server instance and servant:
a) Click Servers > Application servers > server_name.
b) In the Server Infrastructure section select Java and process management > Process Definition.
c¢) Select Servant.

2. Set the Java Virtual Machine custom property
com.ibm.ws.runtime.component.ResourceMgr.postBindNotify to true.

a) Under Additional Properties, click Java virtual machine.

© Copyright IBM Corp. 1974, 2022 3

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbprogrammingforims.htm#ims_odbprogrammingforims
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbhowodbworks.htm#ims_odbhowodbworks
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbcomparisonofprogrammingapproaches.htm#ims_odbcomparisonofprogrammingapproaches
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbcomparisonofprogrammingapproaches.htm#ims_odbcomparisonofprogrammingapproaches

b) Under Additional Properties, click Custom Properties.

¢) Set to true the custom property named
com.ibm.ws.runtime.component.ResourceMgr.postBindNotify.

If the custom property is not present in the list of already defined custom properties, create it and
setitto true.

3. If the IMS catalog is enabled in IMS and the javax.xml.bind.JAXBContext custom property does
not already exist, take the following steps:

a) Under Additional Properties, click Java virtual machine.
b) Under Additional Properties, click Custom Properties.

c) Create a custom property named javax.xml.bind.JAXBContext and set it to
com.sun.xml.internal.bind.v2.ContextFactory.

4. Save the changes.
5. Restart the server.

Results

You can query the custom properties of the corresponding Connection Factory, use the getProperty
method exposed by the Connection Factory MBean.

IMS Universal drivers: WebSphere Application Server type-4
connections

Java applications that run on WebSphere Application Server can access IMS databases by using the
type-4 connectivity provided by the IMS Universal drivers. The type-4 connectivity of the IMS Universal
drivers enables Java application programs to access IMS databases from a wide variety of distributed and
mainframe environments, either in stand-alone mode or under an application server, with or without XA
support for global transactions.

About this task

The following figure provides an overview of a configuration that uses the type-4 connectivity of an
IMS Universal Database resource adapter to connect to IMS from WebSphere Application Server for
distributed platforms.

4 IMS: Communications and Connections

Mon-2/05 platform

WebSphere Application Server

EJB
application

- Type-4 IMS Universal
Database resource adapter

TCP/IP 2/08

—T IMS Connect
SCI
ODBM
ODBA
IMS
DRA *‘T’ DL

!

[j IMS database

Figure 1. A WebSphere Application Server EJB application using a type-4 IMS Universal Database resource
adapter

The following procedures apply to both WebSphere Application Server for distributed platforms and
WebSphere Application Server for z/OS.
Related concepts

Transaction types and programming interfaces supported by the IMS Universal Database resource
adapter (Application Programming)

Installing a type-4 IMS Universal Database resource adapter on WebSphere
Application Server

You must install an IMS Universal Database resource adapter before it can be used to access IMS
databases from WebSphere Application Server.

Before you begin

Prerequisites:

Chapter 1. IMS Universal drivers: configuring connections to IMS 5

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbjcatransactionmanagement.htm#ims_odbjcatransactionmanagement
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbjcatransactionmanagement.htm#ims_odbjcatransactionmanagement

 You must configure your WebSphere Application Server by following the steps in “Configuring
WebSphere Application Server for EJB development with the IMS Universal drivers” on page 3.

« Copy the RAR files for the IMS Universal drivers to storage that is accessible to WebSphere Application
Server.

About this task

To install the IMS Universal Database resource adapter:

Procedure

1. In the WebSphere Application Server administrative console, click Resources > Resource Adapters >
Resource Adapters.

2. Click Install RAR.
A dialog opens for installing the resource adapter.

3. Enter the path to the RAR files. The path can be to a local location or to a location on the server.
« Ifyour RAR file is located on your local workstation, select Local path and browse to find the file.

For example: C:\install_directory\imsudblLocal.rar

« Ifyour RAR file is located on your server, select Server path and specify the fully qualified path to
the file.

4. Click Next.
The configuration panel opens.
5. Click OK.
The IMS Universal Database resource adapter is listed.
6. In the messages box, click Save.
The save page is displayed.
7. Click Save to update the master repository with your changes.

Related reference

Comparison of IMS Universal drivers programming approaches for accessing IMS (Application
Programming)

Defining a connection factory for a type-4 IMS Universal Database resource
adapter on WebSphere Application Server

After you install an IMS Universal Database resource adapter, you define the connection factory by using
the WebSphere Application Server administrative console.

About this task

To define the connection factory for the IMS Universal Database resource adapter:

Procedure
1. In the left frame of the WebSphere Application Server administrative console, click Resources >
Resource Adapters > Resource Adapters.

2. Click the name of the IMS Universal Database resource adapter that you chose when you installed the
adapter.

3. Under Additional Properties, click J2C connection factories.
4. Click New.
5. Type the following information:

Name: the name for the connection factory, for example, PhonebookCF

6 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbcomparisonofprogrammingapproaches.htm#ims_odbcomparisonofprogrammingapproaches
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbcomparisonofprogrammingapproaches.htm#ims_odbcomparisonofprogrammingapproaches

JNDI Name: the JNDI name for the connection factory that is unique within this server, for
example, PhonebookCF

6. Click Apply.
The data source is listed in the J2C Connection Factories.
7. Under Additional Properties, click Custom Properties.

8. Specify values defined by your installation for each of the following properties by clicking the
property name and, in the configuration pane that opens, specifying the value for the property in
the Value field. After specifying the value for a property, click OK to return to the list of properties.

See Connecting using the IMS Universal Database resource adapter in a managed environment
(Application Programming) for a list of connection properties.
9. In the messages box, click Save.
10. Restart WebSphere Application Server.

What to do next
Related concepts

IMS Connect definition and tailoring (System Definition)

Installing an EAR file that uses a type-4 IMS Universal Database resource
adapter on WebSphere Application Server

After installing a type-4 IMS Universal Database resource adapter and configuring the connection factory,
you must install the client application program, or EAR file, on WebSphere Application Server.

About this task
To install the EAR file on the WebSphere Application Server:

Procedure

1. In the left pane of the WebSphere Application Server administrative console, click Applications >
Install New Application.

. Enter the path to the EAR file or locate the EAR file by clicking the Browse button. Click Next.

. In the "Selection installation options" panel, accept the defaults and click Next.

. In the "Map modules to servers" panel, accept the defaults and click Next.

. In the "Summary" panel, verify that the options are correct and click Next.
A series of messages are issued that indicate that the application is being installed.

6. After the message that indicates that your application was installed successfully, click Save.

o b WD

Results

After your application is installed, it is ready to be started.
Related concepts

Programming with the IMS Universal drivers (Application Programming)

Chapter 1. IMS Universal drivers: configuring connections to IMS 7

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbconnjcamanaged.htm#ims_odbconnjcamanaged
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbconnjcamanaged.htm#ims_odbconnjcamanaged
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_hstinst.htm#hstinst
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbprogrammingforims.htm#ims_odbprogrammingforims

IMS Universal drivers: WebSphere Application Server for z/0S
type-2 connections

When WebSphere Application Server for z/OS and IMS are on the same logical partition (LPAR), Java
applications running in WebSphere Application Server for z/OS can access IMS databases by using the
type-2 connectivity provided by the IMS Universal Database resource adapters.

About this task

The type-2 connectivity of the IMS Universal Database resource adapters provides local, non-TCP/IP
access to IMS databases.

To deploy an application that uses the type-2 connectivity, you must install one of the IMS Universal
Database resource adapters in WebSphere Application Server for z/OS and configure the IMS Open
Database Access (ODBA) interface.

IMS Universal Database resource adapter type-2 connectivity supports both bean-managed bean
methods and container-managed bean methods. Optionally, transaction applications can be managed
by the z/OS Resource Recovery Services local option.

The following figure shows an EJB application that is accessing IMS data. The database requests are
passed to a type-2 IMS Universal Database resource adapter, which converts the requests to DL/I calls.
The IMS Universal Database resource adapter passes these calls to ODBA, which uses the IMS database
resource adapter (DRA) interface to access the DL/I region in IMS.

z/0S

WebSphere Application Server for 2/0S

EJB
application

Type-2 IMS Universal
Database resource adapter

ODBA
IMS

DRA . PC * DL

D IMS database

Figure 2. A WebSphere Application Server for z/OS EJB application using a type-2 IMS Universal Database
resource adapter

8 IMS: Communications and Connections

Installing a type-2 IMS Universal Database resource adapter on WebSphere
Application Server for z/0S

After you configure WebSphere Application Server for z/OS to have access to IMS databases, you must
install the type-2 IMS Universal Database resource adapter on WebSphere Application Server for z/OS.

Before you begin
Prerequisites:

1. Perform the steps described in “Configuring WebSphere Application Server for EJB development with
the IMS Universal drivers” on page 3.

2. Copy the RAR files for the IMS Universal drivers to storage that is accessible to WebSphere Application
Server for z/0S.

3. If not already done, create an ODBA startup table. The ODBA startup table module name can be from 5
to 8 bytes long and must conform to the following naming convention:

 Bytes 1-3 must be "DFS"

« Bytes 4-7 are the 1- to 4-byte ID

« The final byte must be the character number "0"

For example, both DFS10 and DFSIMSAOQ are valid module names for an ODBA startup table.

Recommendation: Use the IMS ID as the 1- to 4-byte ID.
4. If not already done, link the ODBA startup table into a load library.

5. Update the JCL for WebSphere Application Server for z/OS by adding to the STEPLIB the following data
sets:

« The load library that contains the ODBA startup table and the ODBA runtime code.
« The SDFSJLIB data set. This data set contains the DFSCLIB member.

6. Note the ODBA name, which is defined by the MBR parameter. You will need to know bytes 4-7, which
are usually the IMS system ID, when you install the data source.

About this task

To install the type-2 IMS Universal Database resource adapter:

Procedure
1. In the WebSphere Application Server for z/OS administrative console, click Resources > Resource
Adapters > Resource Adapters.
A list of resource adapters is displayed.
2. Click Install RAR.
A panel is displayed for installing the resource adapter.
3. In the "Install RAR" panel:
« Under Scope, select a node
- Under Path, enter the path to the RAR file or locate the RAR file by clicking the Browse button
4. Click Next.
A configuration panel opens.

5. In the "Configuration" panel under General properties > Native library path, enter the path to the
directory that contains the libT2DLI.so file and click OK.

The libT2DLI.so file must have the proper read and execute permissions in Unix Systems Services. Also
the SDFSJLIB must be included in the STEPLIB for the WebSphere servant region.

After you click OK, the IMS Universal Database resource adapter that you installed is listed.

Chapter 1. IMS Universal drivers: configuring connections to IMS 9

6. In the messages box, click Save.
A page is displayed that asks you if you want to synchronize the changes with the nodes.
7. Click OK to update the master repository with your changes.

Related concepts

Database resource adapter (DRA) (System Programming APIs)
Related tasks

“Accessing IMS databases through the ODBA interface” on page 753

Open Database Access (ODBA) provides a callable interface that enables any z/OS recoverable, resource-
managed z/0OS address space to issue DL/I database calls to an IMS DB subsystem.

Optional: set the WebSphere Application Server for z/0S classpath for
applications that use a type-2 IMS Universal Database resource adapter

Your application can include the IMS database metadata class (the DLIDatabaseView subclass that is

generated by the IMS Enterprise Suite Explorer for Development) or the metadata class can be stored
elsewhere.

About this task

If your application does not include the metadata class, you must set the WebSphere Application Server
for z/OS classpath to point to the IMS database metadata class that is used by the application.

One way to set the classpath is to add these files to the classpath of your IMS Universal Database
resource adapter.

To add the required files to the classpath of an IMS Universal Database resource adapter:

Procedure
1. From the WebSphere Application Server for z/OS administrative console, click Resources > Resource
Adapters.
A list of resource adapters is displayed.
2. Click the name of your IMS Universal Database resource adapter.
A configuration dialog is displayed.
3. In the class path text box, add the location of the metadata class.
4. Click OK.
5. In the messages box, click Save.
The save page is displayed.
6. Click Save to update the master repository with your changes.
Related reference
Generating the runtime Java metadata class (Application Programming)

Defining a connection factory for a type-2 IMS Universal Database resource
adapter on WebSphere Application Server for z/0S

The DataSouxce facility is a factory for connections to a physical data source, or database. A data source
is registered with a naming service based on the Java Naming and Directory (JNDI) API. DataSource
objects have properties that pertain to the actual data source that an application needs to access.

About this task

Requirement: You must use the DataSource facility, which replaces the DriverManager facility,
because the DriverManager facility is not supported by the Java EE Connection Architecture
Specification.

10 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.spr/ims_dra.htm#ims_dra
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_odbruntimejavametadata.htm#ims_odbruntimejavametadata

To install the data source for your application:

Procedure

1.

In the left frame of the WebSphere Application Server for z/OS administrative console, click
Resources > Resource Adapters > Resource Adapters.

A list of resource adapters is displayed.

. Click the name of the IMS Universal Database resource adapter that you chose when you installed the

adapter.
A configuration dialog is displayed.

. Under Additional Properties, click J2C connection factories.
. Click New.

A configuration dialog is displayed.

. Under General Properties, type the following information:

Name: the name for the connection factory, for example, PhonebookCF.

JNDI Name: the JNDI name for the connection factory that is unique within this server, for
example, PhonebookCF.

. Click OK.

The new connection factory is listed in the table of resources that you can administer.

. Click the name of the data source that you just installed.
. Under Additional Properties, click Custom Properties.

The properties are listed in a table.

. Specify values defined by your installation for each of the following properties by clicking the

property name and, in the configuration pane that opens, specifying the value for the property in
the Value field. After specifying the value for a property, click OK to return to the list of properties.

DatastoreName
Enter bytes 4-7 of the DRA startup table module name (usually the IMS system ID). For more
information about the DRA startup table, see “Installing a type-2 IMS Universal Database
resource adapter on WebSphere Application Server for z/OS” on page 9.

DriverType
Set the driverType to either of the following values:

2
Specifies a local transaction model in which a unit of work is scoped to a particular
connection. Multiple connections can have independent units of work associated with each.

Application programs can issue local commit and rollback calls through either the JDBC
Connection interface or the CCI LocalTransaction interface.

DriverType=2 does not support the UserTransaction interface.

Container-managed bean methods require the following properties in the EJB Deployment
Descriptor:

« In the Bean tab, specify the following properties under the LocalTransaction heading:
— Boundary: BeanMethod
— Resolver: ContainerAtBoundary
— Unresolved action: Rollback
« In the Assembly tab, set the transaction scope to NotSuppozrted.
2_CTX

Specifies a global scope transaction model in which a unit of work can span multiple bean
methods.

Chapter 1. IMS Universal drivers: configuring connections to IMS 11

Application programs can use the UserTransaction interface for explicit commit and rollback
calls.

Application programs cannot issue local commit and rollback calls through either the JDBC
Connection interface or the CCI LocalTransaction interface.
When 2_CTX is specified, use the default properties of the EJB Deployment Descriptor.

DatabaseName

Enter the location of the database metadata representing the target IMS database. You can
specify this property in one of the following ways:

- The name of the PSB that is used to access the target database. This option is only available if
your IMS system uses the IMS catalog.

« The fully qualified name of the Java metadata class generated by the IMS Enterprise Suite
Explorer for Development. The URL must be prefixed with class:// (for example, class://
com.foo.BMP255DatabaseView).

10. In the messages box, click Save.

The save page is displayed.
11. Click Save to update the master repository with your changes.
12. Restart the server.

Installing an EAR file that uses a type-2 IMS Universal Database resource
adapter on WebSphere Application Server for z/0S

This topic describes how to deploy an application on WebSphere Application Server for z/0OS.

Before you begin

Prerequisite: Perform the steps described in “Defining a connection factory for a type-2 IMS Universal
Database resource adapter on WebSphere Application Server for z/OS” on page 10.

About this task

To install your application:

Procedure

1. In the left pane of the WebSphere Application Server for z/OS administrative console, click
Applications > New Application > New Enterprise Application.

. Enter the path to the EAR file or locate the EAR file by clicking the Browse button. Click Next.

. In the "Preparing for the application installation" panel, accept the default and click Next.

. In the "Selection installation options" panel, accept the defaults and click Next.

. In the "Map modules to servers" panel, accept the defaults and click Next.

. In the "Summary" panel, verify that the options are correct and click Next.
A series of messages are issued that indicate that the application is being installed.

7. After the message that indicates that your application was installed successfully, click Save.

o o1 WN

12 IMS: Communications and Connections

IMS Universal drivers: WebSphere Application Server Liberty
type-4 connections

Java applications that run on WebSphere Application Server Liberty can access IMS databases by using
the type-4 connectivity provided by IMS Universal Database resource adapters.

About this task

The type-4 connectivity of the IMS Universal drivers enables Java application programs to access IMS
databases from a wide variety of distributed and mainframe environments, either in stand-alone mode or
under an application server, with or without XA support for global transactions.

The following figure provides an overview of an EJB application that uses the type-4 connectivity of an
IMS Universal Database resource adapter to connect to an IMS database from WebSphere Application
Server for distributed platforms. Database requests are passed to a type-4 IMS Universal Database
resource adapter, sent via TCP/IP to IMS Connect, and internally managed by ODBM to access IMS
databases.

MNon-z/0S platform
WebSphere Application Server Liberty

EJB
application

. Type-4 IMS Universal
Database resource adapter

TCP/IP 2/08%
—" IMS Connect
SClI
ODBM
ODBA
IMs
DRHA ‘—PG—P DL

!

D IMS database

Figure 3. A WebSphere Application Server Liberty EJIB application using a type-4 IMS Universal Database
resource adapter

Chapter 1. IMS Universal drivers: configuring connections to IMS 13

To enable Enterprise JavaBeans (EJB) applications that run on WebSphere Application Server Liberty, on
a distributed platform, the server.xml configuration file must first be configured. It is used to install IMS
Universal Database resource adapters, define connection factories that connect to an IMS™ database, and
deploy RESTful service applications in WebSphere Application Server Liberty.

Enable Features

Within the <featureManager> element, add the <features> tags listed in the following sample to enable
JCA and JDBC support for Liberty.

<featureManager>
<feature>jca-1.7</feature>
<feature>jndi-1.0</feature>
<feature>jdbc-4.1</feature>
<feature>localConnector-1.0</feature>
</featureManager>

Specify the IMS Universal Drivers Library locations

Within the <library> element, add the <fileset> element that points to the IMS Universal drivers library.

<library id="global">

<!-- Include imsudb.jar -->
<fileset dir="usr/lpp/..imsjava/" includes="imsudb.jar"/>
</library>

Install IMS Universal Database Resource Adapters

Install a resource adapter by adding the <resourceAdapter> element and defining its lookup id and
resource location properties.

<resourceAdapter id="imsudbJLocal"
location="usr/lpp/..imsjava/rar/imsudbJLocal.rar"/>
<resourceAdapter id="imsudblLocal"
location="usr/lpp/..imsjava/rar/imsudbLocal.rar"/>
<resourceAdapter id="imsudbJIXA"
location="usr/lpp/..imsjava/rar/imsudbJIXA.rar"/>
<resourceAdapter id="imsudbXA"
location="usr/lpp/..imsjava/rar/imsudbXA.rar"/>

Define Connection Factories

Associate a connection factory to a resource adapter by adding a <connectionFactory> element and
selecting the appropriate resource adapter by defining the properties subelement with the appropriate
resource adapter id.

<!-- Associate a connection factory to a resource adapter
through the resource adapter’'s id. -->
<connectionFactory jndiName="HOSP_JDBC_T4">
<properties.imsudbJLocal databaseName="MYPSB"
datastoreName="IMS1" datastoreServer="myHostName"
portNumber="1234" drivexrType="4"
user="myUserID" password="myPassword"/>
</connectionFactory>
<connectionFactory jndiName="HOSP_CCI_T4">
<properties.imsudblLocal databaseName="MYPSB"
datastoreName="IMS1" datastoreServer="myHostName"
portNumber="1234" drivexrType="4"
user="myUserID" password="myPassword"/>
</connectionFactory>
<connectionFactory jndiName="HOSP_JDBC_T4XA">
<properties.imsudbJXA databaseName="MYPSB"
datastoreName="IMS1" datastoreServer="myHostName"
portNumber="1234" drivexrType="4"
user="myUserID" password="myPassword"/>
</connectionFactory>
<connectionFactory jndiName="HOSP_CCI_T4XA">
<properties.imsudbXA databaseName="MYPSB"
datastoreName="IMS1" datastoreServer="myHostName"
portNumber="1234" drivexrType="4"
user="myUserID" password="myPassword"/>
</connectionFactory>

14 IMS: Communications and Connections

Enable Trace and Logging

Trace and logging are disabled by default. Add the following <logging> element that contains the
traceSpecification attribute with the String argument "com.ibm.ims.db.opendb" as follows to enable
IMS Universal drivers trace and logging.

<!-- The log files can be found at: [usr/lpp/../servers/server_name/logs] -->
<logging traceSpecification="*=info:com.ibm.ims.db.opendb.*=finest"/>

WebSphere Application Server Liberty type-4 connections sample
server.xml configuration file

The sample server.xml file is used to install IMS Universal Database resource adapters, define connection
factories which connect to an IMS™ database, and deploy an RESTful service application in WebSphere
Application Server Liberty.

About this task

<server description="new server">

<featureManager>
<feature>jca-1.7</feature>
<feature>jndi-1.0</feature>
<feature>jdbc-4.1</feature>
<feature>localConnector-1.0</feature>

</featureManager>
<!-- To access this server from a remote client add a host
attribute to the following element, e.g. host="x" -->

<httpEndpoint host="x" httpPort="1692" httpsPort="9443"
id="defaultHttpEndpoint"/>

<!-- Automatically expand WAR files and EAR files -->
<applicationManager autoExpand="true"/>

<library id="global">
<!-- Include imsudb.jar -->
<fileset dir="usx/lpp/..imsjava/" includes="imsudb.jar"/>

<!-- (OPTIONAL) Include jars that contain local database

metadata (dbviews) -->

<fileset dir="usr/lpp/../" includes="dbviews.jar"/>
</library>

<!-- Defining resource adapters -->

<resourceAdapter id="imsudbJLocal"
location="usr/lpp/..imsjava/rar/imsudbJLocal.rar"/>

<resourceAdapter id="imsudblLocal"
location="usr/lpp/..imsjava/rar/imsudbLocal.rar"/>

<resourceAdapter id="imsudhJXA"
location="usr/lpp/..imsjava/rar/imsudbJIXA.rar"/>

<resourceAdapter id="imsudbXA"
location="usr/lpp/..imsjava/rar/imsudbXA.rar"/>

<!-- Defining connection factories -->
<!-- Associate a connection factory to a resource adapter through
the resource adapter’s id. -->

<connectionFactory jndiName="HOSP_JDBC_T4">
<properties.imsudbJLocal databaseName="MYPSB"
datastoreName="IMS1" datastoreServer="myHostName"
portNumber="1234" driverType="4"
user="myUserID" password="myPassword"/>

</connectionFactory>

<connectionFactory jndiName="HOSP_CCI_T4">
<properties.imsudblLocal databaseName="MYPSB"
datastoreName="IMS1" datastoreServer="myHostName"
portNumber="1234" driverType="4"
user="myUserID" password="myPassword"/>

</connectionFactory>

<connectionFactory jndiName="HOSP_JDBC_T4XA">
<properties.imsudhJXA databaseName="MYPSB"
datastoreName="IMS1" datastoreServer="myHostName"
portNumber="1234" driverType="4"
user="myUserID" password="myPassword"/>

Chapter 1. IMS Universal drivers: configuring connections to IMS 15

</connectionFactory>

<connectionFactory jndiName="HOSP_CCI_T4XA">
<properties.imsudbXA databaseName="MYPSB"
datastoreName="IMS1" datastoreServer="myHostName"
portNumber="1234" driverType="4"
user="myUserID" password="myPassword"/>

</connectionFactory>

<!-- Enable or Disable (Default) JDBC trace -->
<!-- The log files can be found at:
[usx/lpp/../sexvers/server_name/logs] -->
<logging traceSpecification=
"x=info:com.ibm.ims.db.opendb.*=finest"/>
<webApplication id="myApp" location="myApp.war" name="myApp"/>

</server>

IMS Universal drivers: WebSphere Application Server Liberty
type-2 connections

When WebSphere Application Server Liberty and IMS are on the same logical partition (LPAR), the Java
applications that run on WebSphere Application Server Liberty can access IMS databases by using the
type-2 connectivity that is provided by the IMS Universal drivers.

About this task

The type-2 connectivity of the IMS Universal drivers enables Java application programs to access local,
non-TCP/IP IMS databases.

With type-2 connections, WebSphere Application Server Liberty can be set up to access IMS databases
through ODBM or through ODBA. In either case, Resource Recovery Services (RRS) must be active
(RRS=Y) for both IMS and ODBA. To learn more about ODBA and RRS settings, see Chapter 41, “Accessing
IMS databases through the ODBA interface,” on page 753 and CSL ODBM administration (System
Administration).

ODBM is the recommended setup option for most use cases because it provides increased failure
isolation and reduces the possibility of a U113 abend. In the following figure, an Enterprise JavaBeans
(EIB) application running on WebSphere Application Server Liberty accesses an IMS database by passing
requests to ODBM through a type-2 IMS Universal Database resource adapter.

16 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/system_admin/ims_odbm_admin.htm#csl_odbm_admin
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/system_admin/ims_odbm_admin.htm#csl_odbm_admin

z/OS
WebSphere Application Server Liberty

EJB
application

Type-2 IMS Universal ODBM
Database resource adapter

ODBA

DRA DL/l

D IMS database

Figure 4. A WebSphere Application Server Liberty EJB application using a type-2 IMS Universal Database
resource adapter with ODBM

Using ODBA and DRA is also a valid option. In the following figure, an Enterprise JavaBeans (EJB)
application running on WebSphere Application Server Liberty accesses an IMS database by passing
requests to a type-2 IMS Universal Database resource adapter. The requests are converted to DL/I calls
and passed to ODBA. ODBA uses the IMS DRA interface to access the DL/I region in IMS.

Chapter 1. IMS Universal drivers: configuring connections to IMS 17

z/OS
WebSphere Application Server Liberty

EJB
application

Type-2 IMS Universal
Database resource adapter

ODBA

DRA " DL/l

D IMS database

Figure 5. A WebSphere Application Server Liberty EJB application using a type-2 IMS Universal Database
resource adapter with ODBA and DRA

To enable EJB applications that run on WebSphere Application Server Liberty on a z/OS platform, the
server.xml configuration file must first be configured. It is used to install IMS Universal Database
resource adapters, define connection factories that connect to an IMS database, and deploy RESTful
service applications in WebSphere Application Server Liberty.

Enable Features

Within the <featureManager> element, add the <features> listed in the following sample to enable
JCA and JDBC support for Liberty. The zosTransaction-1.0 feature is required for RRS Type-2
connectivity.

<featureManager>
<feature>jca-1.7</feature>
<feature>jndi-1.0</feature>
<feature>jdbc-4.1</feature>
<feature>localConnector-1.0</feature>

<!-- Required for RRS Type-2 connectivity -->

<feature>zosTransaction-1.0</feature>
</featureManager>

Specify the IMS Universal Drivers Library locations

Within the <library> element, add the <fileset> subelements that point to the IMS Universal drivers
libraries.

<library id="global">
<!-- Include imsudb.jar -->
<fileset dir="usr/lpp/..imsjava/" includes="imsudb.jar"/>

<!-- 1ibT2DLI.so or 1ibT2DLI_é64.so native code required for Type-2 Connectivity -->
<fileset dir="usr/lpp/../" includes="1ibT2DLI.so"/>
</library>

Enable Native Transaction Manager

18 IMS: Communications and Connections

Add the following <nativeTransactionManager> element for RRS Type-2 connectivity support.

<resourceAdapter id="imsudbJLocal"
location="usr/lpp/..imsjava/rar/imsudbJLocal.rar"/>
<resourceAdapter id="imsudblLocal"
location="usr/lpp/..imsjava/rar/imsudbLocal.rar"/>

Define Connection Factories

Associate a connection factory to a resource adapter by adding a <connectionFactory> element and
selecting the appropriate resource adapter by defining the propexrties subelement with the appropriate
resource adapter id.

<!-- Associate a connection factory to a resource adapter

through the resource adapter’'s id. -->

<connectionFactory jndiName="HOSP_JDBC_T2">
<properties.imsudbJLocal databaseName="MYPSB"
datastoreName="IMS1" driverType="2"/>

</connectionFactory>

<connectionFactory jndiName="HOSP_CCI_T2">
<properties.imsudblLocal databaseName="MYPSB"
datastoreName="IMS1" driverType="2"/>

</connectionFactory>

Enable Trace / Logging

Trace and logging are disabled by default. Add the following <logging> element that contains the
traceSpecification attribute with the String argument "com.ibm.ims.db.opendb" as follows to enable
IMS Universal drivers trace and logging.

<!-- The log files can be found at: [usr/lpp/../servers/server_name/logs] -->
<logging traceSpecification="*=info:com.ibm.ims.db.opendb.*=finest"/>

WebSphere Application Server Liberty type-2 connections sample
server.xml configuration file

The sample server.xml file is used to install IMS Universal Database resource adapters, define connection
factories which connect to an IMS™ database, and deploy an RESTful service application in WebSphere
Application Server Liberty.

About this task

<server description="new server">

<featureManager>
<feature>jca-1.7</feature>
<feature>jndi-1.0</feature>
<feature>jdhc-4.1</feature>
<feature>localConnector-1.0</feature>

<!-- Required for RRS Type-2 connectivity -->
<feature>zosTransaction-1.0</feature>
</featureManager>

<!-- To access this server from a remote client add a host

attribute to the following element, e.g. host="%" -->

<httpEndpoint host="x" httpPort="1692" httpsPort="9443"
id="defaultHttpEndpoint"/>

<!-- Automatically expand WAR files and EAR files -->
<applicationManager autoExpand="true"/>

<library id="global">
<!-- Include imsudb.jar -->
<fileset dir="usr/lpp/..imsjava/" includes="imsudb.jar"/>
<!-- 1ibT2DLI.so or 1ibT2DLI_64.so native code required for
Type-2 Connectivity -->
<fileset dir="usr/lpp/../" includes="1ibT2DLI.so"/>

<!-- (OPTIONAL) Include jars that contain local database

Chapter 1. IMS Universal drivers: configuring connections to IMS 19

metadata (dbviews) -->
<fileset dir="usr/lpp/../" includes="dbviews.jar"/>
</library>

<nativeTransactionManager shutdownTimeout="5s"/>

<!-- Defining resource adapters -->

<resourceAdapter id="imsudbJLocal"
location="usr/lpp/..imsjava/rar/imsudbJLocal.rar"/>

<resourceAdapter id="imsudblLocal"
location="usr/lpp/..imsjava/rar/imsudbLocal.rar"/>

<!-- Defining connection factories -->
<!-- Associate a connection factory to a resource adapter through
the resource adapter’s id. -->

<connectionFactory jndiName="HOSP_JDBC_T2">
<properties.imsudbJLocal databaseName="MYPSB"
datastoreName="IMS1" driverType="2"/>
</connectionFactory>
<connectionFactory jndiName="HOSP_CCI_T2">
<properties.imsudblLocal databaseName="MYPSB"
datastoreName="IMS1" driverType="2"/>
</connectionFactory>

<!-- Enable or Disable (Default) JDBC trace -->

<!-- The log files can be found at:
[usr/lpp/../sexvers/server_name/logs] -->

<logging traceSpecification=

"x=info:com.ibm.ims.db.opendb.*=finest"/>

<webApplication id="myApp" location="myApp.war" name="myApp"/>

</server>

The IMS Universal drivers: CICS connections

Java applications that run on IBM CICS Transaction Server for z/OS can access IMS databases by using
the type-2 connectivity provided by the IMS Universal drivers. Other than the Java layer, access to IMS
from a Java application is the same as for a non-Java application.

Note: Type-2 connectivity support will be delivered through the IMS service process.
CICS supports the following IMS Universal drivers:

« IMS Universal JDBC driver
« IMS Universal DL/I driver

The following figure shows a JCICS application that is accessing an IMS database by using the IMS
database resource adapter (DRA) interface and the type-2 connectivity of an IMS Universal driver.

20 IMS: Communications and Connections

z/0s

CICSs

JCICS application

Type-2 IMS Universal driver

DRA ———* DUl

PC

D IMS database

Figure 6. CICS application using a type-2 IMS Universal driver

Configuring CICS for the type-2 IMS Universal drivers

To run Java applications in a CICS environment that access IMS databases through a type-2 IMS
Universal driver, you must install the type-2 IMS Universal driver in the IBM CICS Transaction Server

for z/OS subsystem.

Before you begin

Prerequisite: Load the install files for the type-2 IMS Universal driver in a path that the CICS subsystem

can access.

About this task
To configure CICS for a type-2 IMS Universal driver:

Procedure

1. Build the IMS Universal driver OSGi bundle. To build the bundle:

a) Write a bundle Manifest.mf file in a text editor. The following sample file is an example of
Manifest.mf:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2

Bundle-Name:

IMS Universal driver 0SGi

Bundle-SymbolicName: com.ibm.ims.osgi.Udb
Bundle-Version: 1.0.0

Bundle-ClassPath: imsudb.jar
Export-Package: com.ibm.ims.application,

com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.

ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.

ims.
ims.
ims.
ims.
ims.
ims.
ims.
ims.
ims.
ims.
ims.

base,

db,

db.cci,

db.hybrid,

db.spi,

dbhd,

dli,
dli.conversion.util,
dli.conversion.util.bidi,
dli.converters,
dli.dm,

Chapter 1. IMS Universal drivers: configuring connections to IMS 21

com.ibm.ims.dli.logging,
com.ibm.ims.dli.t2,

com.ibm.ims.dli.tm,

com.ibm.ims.dli.types,

com.ibm.ims.dli.xa,

com.ibm.ims.drda.base,
com.ibm.ims.drda.converters,
com.ibm.ims.dxda.db,

com.ibm.ims.dxda.t4,

com.ibm.ims.drda.t4.util,
com.ibm.ims.drda.t4nativesql,

com.ibm.ims. jdbc,

com.ibm.ims.jdbc.batch,

com.ibm.ims.jdbc.xa,

com.ibm.ims. jms,

com.ibm.ims.opendb,

com.ibm.ims.psbh,

com.ibm.ims.smf,

com.ibm.ims.xmldb,

com.ibm.ims.xmldb.dm,
com.ibm.ims.xmldb.shredder,
com.ibm.ims.xmldb.xms

Import-Package: com.ibm.cics.server;version="[1.300.0,2.0.0]";resolution:=optional
Bundle-RequiredExecutionEnvironment: JavaSE-1.7

b) Add both the Manifest.mf file and the IMS Universal driver imsudb . jax file to a zip archive.
¢) Rename the zip archive to com.ibm.ims.osgi.Udb_1.0.0.7jar.
d) Use the CICS explorer to deploy the created OSGi bundle.

2. Modify the CICS environment UNIX System Services file, DFHIJVMPR, that contains the JVM profile.

a) Update the OSGI_BUNDLES variable so that it contains the path to the created OSGi bundle as
follows:

0SGI_BUNDLES=pathprefix/com.ibm.ims.osgi.Udb_1.0.0.7jar
b) Update the LIBPATH variable so that it contains the path to the 1ibT2DLI_64. so file as follows:
LIBPATH_SUFFIX=pathprefix/usr/lpp/ims/imsl5.4/imsjava/lib

3. Ensure that the CICS AIBTDLI is loaded over the IMS AIBTDLI interface.
a) Set the CICS SDFHLOAD member above the IMS SDFSRESL member in the CICS STEPLIB.

Results

Related reading: For detailed information about CICS system definition, see the CICS Transaction Server
for z/OS CICS System Definition Guide.

Running applications on CICS that use the type-2 IMS Universal drivers

To run a CICS application program that accesses IMS DB through a IMS Universal driver, you must
perform several steps.

About this task

To run a Java application in CICS that accesses IMS DB through a type-2 IMS Universal driver, complete
the following steps.

Procedure

1. Start IMS DB and CICS.

2. Turn off the uppercase translation feature of CICS by entering: CEOT NOUCTRAN
3. Define a program that can run the Java application (JVM class).

4. Define a transaction that can run the program.

5. Install the program that you defined to run the Java application (JVM class).

22 IMS: Communications and Connections

6. Install the transaction that you defined to run the Java application (JVM class).

Chapter 1. IMS Universal drivers: configuring connections to IMS 23

24 IMS: Communications and Connections

Part 2. CPI Communications and APPC/IMS

These topics introduce CPI-Communications and APPC/IMS. The topics discuss how CPI-
Communications driven application programs function and how to administer APPC/IMS and use
APPC/IMS with the CPI Communications interface to build CPI application programs.

© Copyright IBM Corp. 1974, 2022

25

26 IMS: Communications and Connections

Chapter 2. CPI Communications

This topic introduces CPI Communications driven application programs and distributed Syncpoint
protected conversations.

CPI-C driven application programs

A CPI Communications driven application program can use IMS-managed resources in two ways: by using
the SQL calls to access Db2 for z/OS through the IMS External Subsystem (ESS) Attach Facility and by
using the APSB call to allocate IMS resources.

If you use the SQL calls to access Db2 for z/OS through the IMS External Subsystem (ESS) Attach Facility
and the Db2 for z/OS resource translation table (RTT) is not used, the initial Db2 for z/OS plan name is the
application program name. After the APSB call, the Db2 for z/OS plan name is the PSB name specified in
the APSB call.

You can use the following SAA resource recovery calls when you want an application program to commit
or back out changes to IMS or Db2 for z/OS resources:

« Use the Commit call (SRRCMIT) to commit changes.
« Use the Backout call (SRRBACK) to back out changes.

SAA resource recovery commit processing

An application program tells IMS to commit changes to database resources by issuing the SAA resource
recovery call, SRRCMIT.

By issuing the SRRCMIT call, an application program tells IMS to commit changes to database resources:

« Issue the SRRCMIT call when the application program updates any IMS resources or accesses Db2 for
z/0S resources.

» Reissue the SRRCMIT call after making any subsequent changes to an IMS or Db2 for z/OS resource.
« Issue the SRRCMIT call before terminating your application program.

If the application program terminates with any uncommitted changes to IMS resources, IMS attempts to
commit these changes. Dangling conversations are deallocated abnormally.

When you issue the SRRCMIT call, IMS gets control and generates an internal sync-point call (if
the conversation was not allocated with SYNCLVL=SYNCPT). All database changes are committed. All
messages inserted to alternate PCBs (program control blocks) are sent to their final destination.

Normal termination

In IMS, normal termination occurs when an application program terminates without abending. For a CPI
Communications driven application program, an implicit commit occurs.

Definition: An implicit commit occurs when the application program does not issue an explicit call to
commit the current transaction, but one of the following occurs:

« The application program terminates normally.

Backout processing
Transaction updates can be backed out for a variety of reasons.
Transaction updates are backed out when any of the following occurs:

« Backout is issued by the application program.
« The application program terminates abnormally.

© Copyright IBM Corp. 1974, 2022 27

« The application program terminates normally, but the implicit commit fails.
« IMS resources are inflight during IMS system restart.

The backout consists of the following actions:

« All database updates are backed out.

- All messages inserted to non-express alternate PCBs are discarded.

- All messages inserted to express PCBs that have not been enqueued are discarded.
« The APPC/MVS"™ verb ATBCMTP TYPE=ABEND is issued. 1

The application program tells IMS that a backout is required by issuing SRRBACK or by terminating
abnormally.

Abnormal termination
When your application program abends, IMS backs out to the last IMS sync point.
IMS considers an application program to have terminated abnormally if either of the following occurs:

« The implicit commit fails.
- The application program abends.

Session failure

If any LU 6.2 session fails during the conversation, you can choose to end the application program or
continue processing.

IMS TM is not involved and places no restrictions on your choice of committing or backing out updates.
The application programmer makes this decision.

Because IMS TM is not informed of the session failure, it takes no action. The normal processing rules for
commit and backout apply.

Return codes

Your application program receives return codes from IMS on the SAA resource recovery SRRCMIT and
SRRBACK calls.

Your application program can receive the following return codes:

RR_OK
The backout or commit operation completed successfully. All protected resources if backed out have
been returned to their previous sync point; if they have been committed, they have advanced to a new
sync point, and all changes made during the logical unit of work have been made permanent.
RR_PROGRAM_STATE_CHECK
A non-CPI Communications driven IMS application program issued an SAA resource recovery Commit
call. No commit or backout has been performed.
RR_BACKED_OUT
A resource manager voted "no" during sync point processing. The sync point was initiated by the SAA
resource recovery Commit call. The resource state is backed out for all resources.

System restart/resolve-in-doubt processing

After a system failure, a key part of restart processing is known as resolve-in-doubt processing. If
the system fails, IMS determines whether to perform resolve-in-doubt processing for IMS-protected
resources.

Examples of IMS-protected resources are:

1 Issuing the verb ATBCMTP causes all LU 6.2 conversations associated with this TPI to terminate with
CM_DEALLOCATE_ABEND.

28 IMS: Communications and Connections

« IMS DB databases

« Db2 for z/OS databases

- IMS TM message-queue messages

If the IMS system fails before the transaction completes phase one of the two-phase commit process

(sync point), IMS backs out during IMS restart. Backout includes transactions that were processing at the
time of failure.

If the transaction completes phase one of the commit process, resolve-in-doubt processing can take
place during IMS restart. If only IMS resources are affected, commit processing occurs. If Db2 for z/OS
resources are involved, resolve-in-doubt processing occurs between IMS and Db2 for z/0S.

No transactions using explicit CPI Communications driven application programs are preserved across an
IMS restart.

CPI-C application program recovery

No recovery processing exists for application programs using the explicit CPI Communications driven
interface.

IMS discards all CPI Communications driven transactions at restart regardless of their state at the time
of failure. Application program designers should be aware of the SAA resource recovery resynchronization
functions and consider the impact on their application program designs.

The application program should provide full integrity by issuing a SAA resource recovery Commit or
Backout call for session failures. Application programs that require recovery assistance must be standard
DL/I application programs.

Related reference

CALL statement (Application Programming APIs)

Programming requirements

The calls that initiate implicit sync point (DL/I GU to the message queue, CHKP, and SYNC) are invalid

for CPI Communications driven application programs, and receive status AD (function parameter invalid).
The CPI Communications driven application program activates IMS sync point processing by issuing the
SRRCMIT and SRRBACK calls.

If you allocate a conversation with SYNCLVL=NONE or SYNCLVL=CONFIRM, include module DFSCPIRO
with your application program in the bind step. Including this module allows your application program to
resolve the external references for SRRCMIT and SRRBACK.

No language-unique programming concerns exist in IMS for the SAA resource recovery interface.

Pseudonym files

APPC/IMS uses APPC/MVS services to provide SAA resource recovery support. APPC/MVS does not
provide SAA resource recovery pseudonym files. However, you can create your own pseudonym files.

Related reading: For sample pseudonym files, see SAA CPI Resource Recovery Reference. These sample
pseudonym files include examples on how to define working storage in the different languages.

Briefly, programmers of different languages need to define the following:

« IMS TM C programmers need to define z/0S as their operating system.
« IMS TM COBOL programmers must define their buffers in working storage.
« IMS TM FORTRAN programmers must define EXTERNAL statements for SRRCMIT and SRRBACK.

RRS and distributed syncpoint/protected conversations

Regardless of whether the SYNCLVL setting is NONE, CONFIRM, or SYNCPOINT, if RRS=Y, z/OS Resource
Recovery Services is the sync point manager and coordinates the update and recovery of multiple

Chapter 2. CPI Communications 29

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apr/ims_callstatement.htm#ims_callstatement

protected resources. RRS controls how and when protected resources are committed by coordinating
with the resource managers, such as IMS, that have registered with RRS.

RRS supports the Common Programming Interface for Resource Recovery (CPI-RR), an element of the
SAA CPI that specifies resource recovery and coordinates recovering local and distributed resources.

Definitions:

« A protected resource is a set of local or distributed data that is updated in a synchronized and controlled
manner. In the APPC environment, a protected resource is a resource that is updated in an allocated
conversation in which SYNCLVL=SYNCPT has been specified.

« Aresource manager is a product, such as IMS, that owns protected data resources that are updated
in an APPC conversational environment in which SYNCLVL=SYNCPT has been specified. IMS acts as a
resource manager for DL/I data, Fast Path data, and the message queues.

The three participants in resource recovery include:

RRS (sync point manager)
Resource manager (such as IMS or Db2 for z/0S)
Application program

The following figure shows the three participants in the resource recovery process, and their interaction.

|=
ARS
™ sync point
manager
h
Y
Resource Resource
manager manager
[F 3
L 4
LJ
. Application -
progrann

Figure 7. Participants in resource recovery

The two-phase commit protocol

The two-phase commit protocol is a process involving z/OS Resource Recovery Services (RRS) and the
resource manager that ensures that updates made to a set of resources by an application program are
either all made or none made.

The application program decides whether to commit its changes to the resources; this commit is made
to RRS, which polls all of the resource managers as to the feasibility of the commit call. Each resource
manager votes whether to commit the updates. This is called phase 1 of the two-phase commit protocol.

After RRS has gathered the votes, phase 2 begins. If all votes are to commit the updates, then the
phase 2 action is to commit; otherwise, phase 2 results in a backout of the updates. System failures,
communication failures, resource manager failures, or application program failures are not barriers to
completing the two-phase commit protocol.

Definitions:

30 IMS: Communications and Connections

= A unit of recovery is a unit of work that spans one commit (synchronization) point to the next commit
point.

« Units of recovery are termed inflight between the time they are created (or the previous sync point)
until the resource manager votes to commit the updates. If the resource manager fails while units of
recovery are inflight, the resource manager backs out all of the database updates on the subsequent
start.

« Units of recovery are termed indoubt between the time when the resource manager votes to commit
the updates and the time when the sync-point manager calls the resource manager to do the commit. If
IMS fails while units of recovery are indoubt, IMS holds the database updates until they are resolved.

Local-resource recovery versus distributed-resource recovery

In a local-resource recovery environment, the recovery participants reside on the same z/0S system. In
a distributed-resource recovery environment, the recovery participants and the updated resources are
scattered across multiple systems.

In a distributed-resource recovery environment, the APPC/PC (APPC/protected conversation) resource
manager is used to provide the communications for the sync-point calls to remote systems.

The following figure illustrates how a distributed recovery environment operates.

=
BRS/MVS
sync-point
manager
-
h 4
[= | [(» |
Resourca Communications
manager 1 resource
manager
F Y Y
¥
[= || -
Application RRSMVS
program o syne-point
manager
- —— E T i
h 4
|=] - 1
Communications Rasourcs
rasmInCe manager 2
manager
'y F 3
F
L]
- Application -
program

Figure 8. Distributed resource recovery

Chapter 2. CPI Communications 31

IMS as a resource manager
A resource manager controls a protected resource.
In general, a resource manager does the following:

« Provides an application programming interface (API) to allow application programs to access its
resources

Logs changes to data before making the changes permanent
« Logs unit of work status

Participates in the commit or backout actions for updated resources

Contains recovery mechanisms to restore data to a previous state
For its own resources, IMS is both the sync-point manager and the resource manager.
Within the two-phase commit protocol, IMS must do each of the following:

« Register with z/OS Resource Recovery Services (RRS) as a resource manager
« Participate in the sync-point process

« Express interest in the unit of work

« Recover its unit of work status after an outage

Registration

A component of RRS provides registration services so that IMS can identify itself as a resource manager.
By registering, IMS is provided a set of services to aid in maintaining resource consistency associated with
the protected conversation.

IMS registers each time a control region is started for a DB/DC active system on a z/OS system with
the recovery platform support. In an XRF environment, the active system registers during its restart. The
alternate system registers at the time of takeover.

Expressing interest

In addition to registering and supplying resource manager exit routines for specific stages of the two-
phase commit protocol, IMS must also express interest in participating in the two-phase commit process
for a particular unit of recovery.

Resolution of incomplete interests

In the event of an IMS or z/OS outage, during the IMS restart, the incomplete UR expressions of interest
must be resolved.

RRS maintains unit of recovery information (such as identifier, state, and resource manager private data),
which RRS presents to the restarting resource managers that previously expressed interest.

Sync-point participation

After IMS successfully registers and restarts, it supplies addresses of its exit routines to RRS. Several
exit routines (such as prepare, commit, and backout) represent specific points in the two-phase commit
protocol, which IMS can call to participate in the process.

Activating protected conversations

z/0S uses a construct with z/OS Resource Recovery Services (RRS) called a context.

Definition: A context is the entity for which resource managers perform services, to which they allocate
resources and lock ownership, and in which they can express interest in participating in the protocol to
ensure that the resource is updated in an orderly manner.

32 IMS: Communications and Connections

The type of context that the resource manager creates, owns, and manipulates is called the private
context. A resource manager can create a context on behalf of another resource manager. RRS uses the
private context to identify an application program's unit of work to maintain information for the resource
manager concerning which of their resources are associated with the unit of work.

APPC as the communications manager

When APPC is the communications manager, RRS support is activated when a conversation is allocated
with SYNCLVL=SYNCPT. This type of conversation is a protected conversation.

When SYNCLVL=SYNCPT is specified, APPC acquires a private context on behalf of IMS. IMS provides

its resource manager name to APPC in its identity call. APPC provides the private context to IMS as the
message header. IMS, using this context, then assumes the role of a participant in the two-phase commit
process with the sync-point manager, RRS.

In addition to the SYNCLVL=SYNCPT, the keyword ATNLOSS=ALL must be specified in the VTAM definition
file for whichever LUS need to be enabled for protected conversations.

Using OTMA with protected conversations

In an OTMA environment, OTMA is not a resource manager registered with RRS. The process remains an
inter-process protocol between a server (IMS) and a number of clients (application programs). Therefore,
OTMA cannot obtain a private context token to pass to IMS, as APPC does. The client-adapter code that
uses OTMA is responsible for obtaining and owning a private context, and for providing the context ID.

In messages passed between the partners, the context-ID field contains the context token (if it is a
protected conversation).

When IMS finds the context-ID in the message, IMS assumes the role of a participant in the two-phase
commit process, as it does in the APPC environment.

XRF and protected conversations

Running protected conversations (using RRS with either APPC/PC or OTMA) in an IMS-XRF environment
does not guarantee that the alternate system can resume and resolve any unfinished work started by the
active system. A failed resource manager must re-register with its original RRS system if the RRS system
is still available when the resource manager restarts. Only if the RRS on the active system is not available
can an XRF alternate system register with another RRS in the sysplex and obtain the incomplete unit of
recovery data of the failing active system.

Recommendation: Because IMS retains indoubt units of recovery until they are resolved, switch back
to the active system as soon as possible to obtain the unit of recovery information and to resolve and
complete all the work of the resource managers.

Chapter 2. CPI Communications 33

34 IMS: Communications and Connections

Chapter 3. Administering APPC/IMS and LU 6.2
devices

This topic introduces APPC/IMS and describes how to administer APPC/IMS and LU 6.2 devices.

APPC/IMS overview

APPC/IMS, a part of IMS TM, lets you use the CPI Communications interface to build CPI application
programs.

APPC/IMS allows distributed and cooperative processing between IMS and systems that have
implemented APPC as shown in the following figure. APPC/IMS delivers support for APPC with facilities
provided with APPC/MVS. (The APPC/IMS interface is provided by APPC/MVS and supports the CPI
Communications interface. IMS TM supports the CPI resource recovery interface.) APPC/IMS supports
the CPI resource recovery Commit (SRRCMIT) and Backout (SRRBACK) calls for IMS-managed local
resources. These protected resources include:

IMS TM message-queue messages
IMS DB databases
Db2 for z/OS databases

APPC/IMS also supports the existing IMS DL/I application programming interface (API) enabling
application programs to use LU 6.2 communications without the function of the CPI Communications
interface. This allows most existing applications to continue to function with the APPC/IMS support of LU

6.2.
z/05 UNIEX
[=
IMS
Application "_' APPC .[Application
Program Program

Figure 9. APPC support for IMS

Definitions:
 Within the context of administering IMS TM, "transaction programs," "applications, " "application
programs," and "programs" are synonymous.

« Within the context of administering APPC/IMS and LU 6.2 devices, "APPC application programs" are
synonymous with "LU 6.2 application programs."

- "LU 6.2 transactions" are those that originate from an LU 6.2 application program.
Recommendations: For APPC/IMS, do the following:

« Schedule your IMS standard or modified application programs entered from LU 6.2 remote systems
using MSC. Be aware that CPI-C driven application programs cannot have transactions that execute on
remote systems.

« Define your APPC/IMS LUs for use by APPC/MVS, as well as by any APPC application program.

© Copyright IBM Corp. 1974, 2022 35

« Use the LTERM and the MOD name in the first segment of your message. Use the LTERM to change the
destination for your output to a non-LU 6.2 device. Use the MOD name to format error messages.

« Use a network-qualified LU name. You do not need to have unique names for the LUs on different
systems.

IMS dependent regions are automatically defined to APPC as subordinate address spaces of the IMS
Scheduler. An IMS BMP cannot be defined as an ASCH controlled application. It may use explicit
conversation services through the IMS base LU.

IMS manages the APPC/IMS message buffers automatically; no definition is necessary. No special
considerations are needed for EMH.

APPC/IMS flood control

The APPC/IMS flood control function helps prevent a sudden increase in the number of APPC/IMS
transaction requests from exhausting IMS 31-bit private storage.

By default, APPC/IMS flood control is active and starts queuing incoming APPC transaction requests
to 64-bit storage when the number of active APPC conversations reaches 5,000. If the flood condition
worsens, APPC/IMS flood control stops all APPC input when the number of queued APPC requests in
64-bit storage reaches the default threshold of 10,000.

Except when all APPC input is stopped, APPC/IMS flood control does not apply to APPC requests that
are used to submit IMS commands or to APPC requests that are received on back-end IMS systems in a
shared-queues environment.

As the number of active and queued APPC requests nears these thresholds, IMS issues a warning
message.

Modifying or disabling APPC/IMS flood control

You can modify or disable both the initial threshold for queuing requests to 64-bit

storage and the secondary threshold that stops all APPC/IMS input by specifying the
APPCMAXC=(31_bit_max,64_bit_max) parameter in the DFSDCxxx member in the IMS PROCLIB data
set.

The 31_bit_max value defines the maximum number of active APPC conversations that IMS can process
concurrently before IMS starts queuing new APPC transaction requests to 64-bit storage. A specification
of 0 completely disables APPC/IMS flood control.

You can view the current 31_hit_max value by issuing the IMS type-1 command /DISPLAY A DC. If the
displayed value is 0, APPC/IMS flood control is disabled.

The 64_bit_max defines the maximum number of APPC transaction requests that can be queued in 64-bit
storage before IMS stops all APPC input from z/OS. A specification of O disables the queuing of APPC
requests in 64-bit storage.

You can clear all of the queued APPC requests in 64-bit storage by issuing the IMS type-1 command /
PURGE APPC. The APPC conversation is rejected with the TP_Not_Available_No_Retry sense code.

When 64-bit queuing is disabled, if a flood condition occurs, the 31 bit maximum defines the threshold at
which IMS stops all APPC input.

When APPC input is stopped

When IMS stops APPC input from z/0S, IMS does not itself reject incoming APPC requests, but rather
issues a call to APPC/MVS to request that it stop sending any more APPC requests. Between the time
that IMS issues the request and the time that APPC/MVS stops sending input, IMS can still receive
APPC requests, so it is possible that the total number of APPC requests that are received or queued by
APPC/IMS might exceed the defined maximum.

36 IMS: Communications and Connections

After APPC input is stopped, when the number of active APPC conversations in IMS 31-bit storage drops
below 50% of the 31_bit_max value, IMS automatically requests a resumption of APPC input from APPC/
MVS.

IMS issues DFS4157E when APPC input is stopped.

VTAM alternative to APPC/IMS flood control

In addition to or as an alternative to the APPC/IMS flood control measures, you can specify a session limit
for an individual logical unit (LU) in the VTAM ACB. VTAM stops sending messages to APPC/MVS after the
session limit is reached. If only one LU is defined for an IMS system, the maximum number of active APPC
requests is then the number of sessions that are defined in VTAM.

Related reference
DFSDCxxx member of the IMS PROCLIB data set (System Definition)

APPC/IMS application program interface

APPC/IMS has two distinct application program interfaces (APIs): the implicit and explicit interfaces. The
same application program can use both APIs.

Implicit API

The implicit API is an extension of the IMS standard DL/I API (call xxxTDLI). It allows IMS application
programs to communicate with LU 6.2 application programs without being sensitive to LU 6.2 protocols
and without requiring the programmer to have any knowledge of LU 6.2. APPC/IMS provides functions

not normally available to an LU 6.2 application program: message queuing, and automatic asynchronous
message delivery and recovery. Existing IMS transactions use the implicit API to communicate with APPC.

Implicit API messages are placed on the IMS message queues or the Fast Path expedited message
handling (EMH) buffers for Fast Path transactions. The originating IMS determines whether to mark the
input messages as discardable or nondiscardable.

When the implicit API is used, IMS issues all required CPI Communications calls. The application program
interacts strictly with the IMS message queues or the Fast Path EMH buffers.

Explicit API

The explicit API is the CPI Communications API and is available to any IMS application program.

The application program makes calls to APPC using the CPI Communications interface without using
IMS. These CPI calls are handled directly by APPC/MVS. Messages sent or received by the CPI
Communications interface are not stored on the IMS message queues or in the EMH buffers, and these
messages are not available for transaction restart. No IMS-provided functions are involved for these
messages.

Alternatively, you can also use z/0S the ATBxxxx calls of the APPC/MVS TP services. For information on
using these calls, see z/0S MVS Programming: Writing Transaction Programs for APPC/MVS.

APPC/IMS application programs

APPC/IMS has three different types of application programs: standard, modified, and CPI
Communications driven.

The application programs are defined as:

Standard
No explicit use of CPI Communications facilities.

Modified
Uses the I/O PCB to communicate with the original input terminal. Uses CPI Communications calls to
allocate new conversations and to send and receive data.

Chapter 3. Administering APPC/IMS and LU 6.2 devices 37

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_dfsdcxxx_proclib.htm#ims_dfsdcxxx_proclib

CPI Communications driven
Uses CPI Communications calls to receive the incoming message and to send a reply on the same
conversation. Uses the DL/I APSB call to allocate a PSB to access IMS databases and alternate PCBs.

You can schedule your standard and modified application programs locally and remotely using MSC.
The logic for local application programs differs from the logic for remote application programs. In the
following topics, the differences are described.

Standard IMS application programs
Standard IMS application programs use the existing IMS call interface.

Application programs that use the IMS standard API can take advantage of the LU 6.2 protocols. Standard
IMS application programs use a DL/I GU call to trigger a sync point and to get the incoming transaction.
These standard IMS application programs also use DL/I ISRT calls to generate output messages to the
same or different terminals, which can be LU 6.2 terminals. (A non-message-driven BMP is considered a
standard IMS application program when it does not use the explicit API.) The identical program can work
correctly for both LU 6.2 and non-LU 6.2 terminal types. IMS generates the appropriate calls to APPC/MVS
services.

IMS provides the following services for standard IMS application programs:

» Receives incoming transaction from an LU 6.2 application program

- Calls the Input Message Routing exit routine

« Schedules transactions into local and remote IMS dependent regions
« Provides necessary transaction recoverability

 Provides necessary transaction rollback and retry

 Provides integration of IMS-controlled conversation flows with database updates during sync point for
all APPC Sync_Level options (NONE, CONFIRM, SYNCPT)

» Provides all needed LU 6.2 calls to APPC/MVS services

« Sends either synchronous or asynchronous output to an LU 6.2 application program

« Keeps asynchronous output on IMS message queue until successful transmission

« Allocates new LU 6.2 conversations for messages inserted to alternate PCBs using the DL/I ISRT call

Existing application programs that are sensitive to a terminal's hardware characteristics, such as cursor
position or MFS format names, might need to be changed to communicate with LU 6.2 application
programs.

Restrictions:

1. If a LU 6.2 synchronous conversation implicit transaction initializes other transactions (program-
to-program switch), an express PCB can not be used to do the ISRT. An express PBC causes
race conditions to occur and the output may randomly return to the inputting terminal on a
new asynchronous conversation with TPNAME DFSASYNC. The original conversation may not be
deallocated.

2. If a transaction initializes more than one child transaction, which in turn may initialize other
transactions, and one of the child transactions provides the response, the result is unpredictable.

Depending on the execution sequence of these transactions the LU can receive a DFS2082 message
with the response sent to the default TP name DFSASYNC or the LU receives the response and no
DFS2082 message is issued.

MSC and standard IMS application programs

When an APPC application program enters an IMS transaction that executes on a remote IMS, an LU 6.2
conversation is established between the APPC application program and the local IMS.

The local IMS is considered the partner LU of the LU 6.2 conversation. The transaction is then queued on
the remote transaction queue of the local IMS. From this point on, the transaction goes through normal

38 IMS: Communications and Connections

MSC processing. After the remote IMS executes the transaction, the output is returned to the local IMS,
and is then delivered to the originating LU 6.2 application program.

The originating (local) IMS provides the following services:

« Receives incoming transaction from an LU 6.2 application program

Calls the Input Message Routing exit routine

Queues the transaction to its remote transaction queue
« Sends the transaction across the MSC link

Receives the transaction response

Sends either synchronous or asynchronous output to an LU 6.2 application program

The remote IMS provides the following services for the remote standard application program:

« Receives the incoming transaction from the partner IMS (originating or intermediate IMS) over the MSC
link

« Schedules transactions into dependent regions

« Commits database changes at sync point

 Provides necessary transaction recoverability

» Provides necessary transaction rollback and retry

 Keeps transaction output on the IMS message queue until the transmission is successful

« Returns the transaction output to the local IMS over the MSC link

Restriction: MSC is not supported if the originating LU 6.2 conversation is allocated with
SYNCLVL=SYNCPT.

Modified IMS application programs

Modified IMS application programs use a DL/I GU call to retrieve the incoming transaction and to trigger a
sync point.

These modified IMS application programs also use DL/I ISRT calls to generate output messages to the
same or different terminals, which can be LU 6.2 terminals.2 Unlike standard IMS application programs,
modified IMS application programs use CPI Communications calls to allocate new conversations, and to
send and receive data. IMS has no direct control of these CPI Communications conversations.

Modified IMS transactions are indistinguishable from standard IMS transactions until program execution.
In fact, the same application program can be a "standard IMS" application on one execution, and a
"modified IMS" application on a different execution. The distinction is simply whether the application
program has used CPI Communications resources.

IMS provides the following services for modified IMS application programs:
 Receives incoming transactions from LU 6.2 application programs

« Schedules transactions into local and remote dependent IMS regions

« Appropriate transaction recoverability before transaction scheduling

 Provides integration of IMS-controlled conversation flows with database updates during sync point for
APPC Sync_Level options (NONE, CONFIRM, SYNCPT)

» Provides all necessary LU 6.2 calls to APPC/MVS services for IMS-controlled LU 6.2 conversations
« Sends either synchronous or asynchronous output to LU 6.2 application programs
- Keeps asynchronous output on the IMS message queue until successful send occurs

2 A non-message-driven BMP is considered a modified standard IMS application program when it uses the
explicit API.

Chapter 3. Administering APPC/IMS and LU 6.2 devices 39

- Allocates new LU 6.2 conversations for any messages inserted to alternate PCBs using the DL/I ISRT
calls

IMS does not provide any services for conversations explicitly allocated by the application program.
Explicitly allocated conversations need to be deallocated if a program abend occurs.

MSC and modified IMS application programs

When an APPC program enters an IMS transaction that executes on an MSC remote IMS, an LU 6.2
conversation is established between the APPC program and the local IMS.

The local IMS is considered the partner LU of the LU 6.2 conversation. The transaction is then queued on
the remote transaction queue of the local IMS. From this point on, the transaction goes through normal
MSC processing. After the remote IMS executes the transaction, the output is returned to the local IMS,
and then delivered to the originating LU 6.2 program.

The originating (local) IMS provides the following services:

» Receives incoming transaction from an LU 6.2 application program

Calls the Input Message Routing exit routine

Queues the transaction to its remote transaction queue

Sends the transaction across the MSC link
« Receives the transaction response

Sends either synchronous or asynchronous output to an LU 6.2 application program

The remote IMS provides the following services for the remote modified application program:

« Receives the incoming transaction from the partner IMS (originating or intermediate system) over the
MSC link

« Schedules transactions into dependent regions

« Appropriate transaction recoverability before transaction scheduling

« Commits database changes at sync point

« Provides necessary transaction recoverability

 Provides necessary transaction rollback and retry

« Keeps transaction output on the IMS message queue until the transmission is successful
« Returns the transaction output to the local IMS over the MSC link

Restriction: MSC is not supported if the originating LU 6.2 conversation is allocated with
SYNCLVL=SYNCPT.

CPI Communications driven application programs

CPI Communications driven application programs are defined only in the APPC/MVS TP_Profile data set;
they are not defined to IMS.

The CPI Communications driven application program definition is dynamically built by IMS when a
transaction is presented for scheduling by APPC/MVS based on the APPC/MVS TP_Profile definition after
IMS restart. The definition is keyed by TP name. APPC/MVS manages the TP_Profile information.

When a CPI Communications driven transaction program requests a PSB, the PSB must already be
defined to IMS by using the APPLCTN macro during system definition and by generating the appropriate
PSBs and ACBs with the Program Specification Block (PSB) generation utility and the Application

Control Blocks Maintenance utility when APPLCTN PSB= is specified. When APPLCTN GPSB= is specified,
generating PSBs and ACBs is not required.

CPI Communications driven application programs must use CPI Communications calls to accept the
incoming conversation and to send a reply on the same conversation. The DL/I GU call is not used to

40 IMS: Communications and Connections

retrieve the initiating transaction from the LU 6.2 application program. No IMS resources are allocated
when the application program is scheduled. Instead, the application program can use the DL/I APSB call
to allocate a PSB that provides access to IMS databases and to alternate PCBs. A CPI Communications
driven application program can send messages to other terminals (either LU 6.2 or non-LU 6.2) or other
IMS transactions (either local or remote) by inserting to an alternate PCB, after allocating the appropriate
PSB. Both the explicit and implicit API can be used on the same application program.

IMS provides the following services for CPI Communications driven application programs:
« Schedules the transaction.

IMS does not receive input before scheduling. It does not interact with the conversation at any time
other than to possibly reject the inbound allocate request. If IMS rejects the inbound allocate request,
the transaction is not scheduled.

« Provides sync point of local resources.
« Schedules PSB if called by application program.
« Processes calls to alternate or database PCB made by the application program.

Related concepts

“RRS and distributed syncpoint/protected conversations” on page 29

Regardless of whether the SYNCLVL setting is NONE, CONFIRM, or SYNCPOINT, if RRS=Y, z/OS Resource
Recovery Services is the sync point manager and coordinates the update and recovery of multiple
protected resources. RRS controls how and when protected resources are committed by coordinating
with the resource managers, such as IMS, that have registered with RRS.

“CPI Communications” on page 27
This topic introduces CPI Communications driven application programs and distributed Syncpoint
protected conversations.

Designing an application for APPC (Application Programming)

Using the MOD name and LTERM interface

Your LU 6.2 application program can use an interface to emulate MFS.

About this task

For example, the application program can use the MOD name to communicate with IMS to specify how

an error message could be formatted. For non-LU 6.2 application programs, the MOD name is given to the
MFS formatting modules in IMS; for LU 6.2 application programs, the MFS modules are not called, and the
MOD name is given to the LU 6.2 Edit exit routine (DFSLUEEO) as a parameter. The LU 6.2 Edit exit routine
can do whatever the programmer specifies with the MOD name, such as format an error message.

Your LU 6.2 application program uses the LU name to send data to an LU 6.2 application program.
However, if you want to send data to a non-LU 6.2 device such as a printer, you can use the LTERM instead
of the LU name.

The Initialization exit routine (DFSINTXO) can be used to create a user table of MOD names that you might
want to use for formatting messages, and LTERMs that you might want to use as printers. This user table
can be used by DFSLUEEDO to find the appropriate MOD name or LTERM for your application program.

LU 6.2 application programs can send both the LTERM and the MOD name in the first segment of the
message. The LU 6.2 Edit exit routine (DFSLUEEQ) checks the contents of the first message segment.
Based on the information it finds in a user table, the exit routine decides whether to return the LTERM and
the MOD name to IMS. IMS saves the LTERM and the MOD name in the I/O PCB. For formatting output,
IMS provides the address of the MOD name in the first segment of the message to the LU 6.2 Edit exit
routine (DFSLUEEOQ). For changing the destination to a non-LU 6.2 device, IMS provides the LTERM in the
first segment of the message to the LU 6.2 Edit exit routine (DFSLUEEQ). The Initialization exit routine
(DFSINTXO0) can be used to create the user table. This exit routine must pass the address of the user table
to IMS, and IMS passes the address to DFSLUEEO.

Chapter 3. Administering APPC/IMS and LU 6.2 devices 41

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_designingappcapps.htm#ims_designingappcapps

Establishing APPC/IMS

Before activating APPC/IMS, an IMS system definition is needed to specify 390 as the third parameter of
the SYSTEM keyword for the IMSCTRL macro.

About this task

CPI Communications driven application programs and LU 6.2 application programs cannot be defined in a
system definition. LU 6.2 application programs are only defined to VTAM.

Start APPC/IMS by specifying APPC=Y on the IMS startup parameter. The default is APPC=N. When 'N'
is specified, a connection to APPC/MVS services is not established during IMS initialization. When 'Y'

is specified, IMS establishes a connection with APPC/MVS during IMS initialization. The /START APPC
command overrides APPC=N.

TP_Profile

The TP_Profile is a VSAM data set owned by APPC/MVS and maintained by the APPC/MVS Administration
utility (ATBSDFMU) or by the administrator using TSO/ISPF dialogs. The purpose of the TP_Profile entries
is to provide attribute information for TP names.

About this task

CPI Communications driven application programs must be defined in the APPC/MVS TP_Profile. IMS
system-defined transaction codes can optionally be defined in a TP_Profile. The existence of an IMS
definition (in the IMS GEN or by online change) causes the transaction to be considered a standard DL/I or
modified-standard application.

The TP_Profile, an APPC/MVS resource, contains definitions of transaction program names (TPNs) and
their characteristics. You can define a TP_Profile to schedule an IMS transaction program that uses a
transaction code that is different from the TPN.

IMS uses the TP_Profile to establish transaction scheduling characteristics for CPI Communications
driven application programs. Based on the IMS dependent section of the APPC/MVS TP_Profile definition,
IMS dynamically defines these characteristics when a transaction is presented for scheduling after restart
by APPC/MVS.

CPI Communications driven transaction programs are defined only in the TP_Profile. The definition is by
TPN. The same TPN can be defined differently for different LU names by using a different TP_Profile data
set. The LU name is associated with an IMS.

The default TP_Profile data set name is SYS1.APPCTP. The LUADD TPDATA option in the SYS1.PARMLIB
(APPCPMxx) member specifies the TP_Profile data set name used for this LU.

Use TP_Profile dialog or the APPC/MVS administration utility (ATBSDFMU) to define a TP_Profile.
Example: The following figure is an example of the IMS-specific area of the TP_Profile definition (Panel 1).

42 IMS: Communications and Connections

------------------ IMS TP_Profile Panel -----------------

TP Name . . . : INQUIRY_Part
Transaction Code PART
Security Type _____ (NONE, CHECK,FULL, default=CHECK)

CPI Communications Driven Options
Transaction Class . . . ___ (Range 1 - 999, default=1)
Maximum Regions (Range 0 - 999, default=1)

Comments . . . (Optional 1 to 10 lines)

> TP_PROFILE Created 10/8/91 <
> Access IMS Sample Parts DATABASE via. program DFSSAMO2 <
> <
> <
> <
> <
> <
> <
> <
> <
PFO1 = Help PFO3 = Exit PF12 = Cancel Enter = Accept

Figure 10. IMS-specific TP_Profile panel 1

To maintain IMS TP_Profiles using ISPF, do each of the following:

Procedure

1. Enter TSO ICQASRMO from the TSO command line of the TSO/E to start the ISPF TP_Profile System
Data Facility Maintenance Utility from a TSO user ID. If this utility is not available, contact your z/OS
system programmer.

2. Enter S next to the TP_Profile selection and the TP_Profile data set name specified on the TPDATA
keyword on the LUADD statement for your IMS LU. (The LUADD statement is in the APPCTPxx
PARMLIB member, where xx is the APPC suffix.)

3. Alist of TP_Profiles is displayed. Select A to add a new TP_Profile or E to edit an existing TP_Profile. If
you are adding a TP_Profile, you must supply a scheduler name. This name was set at IMS installation
time. The recommended name is IMS .

4. After the general TP_Profile characteristics are supplied, the ISPF editor panel is displayed. Enter
DFSTPROF on the command line to display the IMS TP_Profile Maintenance panel.

5. Supply IMS scheduler-dependent characteristics. Press enter to save your changes or PF3 or PF12 to
cancel your changes. You can press PF1 for online help on fields supplied in this panel.

Results

The TP_Profile name is not available on all releases of TSO/E, so a value of "Not Available" is displayed.
This does not suggest that a problem exists.

Related reading: For more information about this utility, see z/0S MVS Programming: Writing Transaction
Programs for APPC/MVS.

APPC/MVS Administration utility (ATBSDFMU) example
The following example is an APPC/MVS Administration utility (ATBSDFMU) entry.

TPADD TPSCHED_EXIT(DFSTPPEO)
TPNAME (INQUIRY_PART)
SYSTEM
ACTIVE(YES)
TPSCHED_DELIMITER (i)

TRANCODE=PART
CLASS=1
MAXRGN=1

Chapter 3. Administering APPC/IMS and LU 6.2 devices 43

CPUTIME=0
HF

In this example, the IMS section starts with TRANCODE=PART. The other control statements are shown for
completeness.

The IMS TP_Profile parsing module, DFSTPPEO, performs validity checking and parses the input data in
IMS. This module should be loaded into the STEPLIB data set of the step that adds the TP_Profile. The
APPC/MVS Administration utility (ATBSDFMU) requires that STEPLIB be APF authorized.

The following five keywords are used to add an IMS section to the TP_Profile entry. The keyword-
parameter sets must be separated by one or more blanks. The keyword-parameter sets must be specified
between columns 1-72. An asterisk (*) in column 1 indicates a comment.

TRANCODE= 1 - 8 characters
Name of the IMS transaction code associated with this TP name consisting of alphanumeric or
'#''$",'@". IMS translates the TP name to the TRANCODE. IMS scans for valid characters (00640
character set). If invalid characters exist, IMS uses the default transaction code, IMSTRAN, instead of
a transaction code with the non-00640 characters.

CLASS=1-999
Specifies the class used for scheduling. The default value is 1.

Recommendation: Define CPI transactions with a different message class from that used for non-CPI
transactions. IMS handles all CPI transactions as priority zero within the transaction class.

MAXRGN=0 - 999
Restricts the number of dependent regions that this CPI Communications driven transaction program
can use. The default value is 1.

RACF°=NONE, CHECK, or FULL
RACF=NONE causes IMS to call the Transaction Authorization exit routine (DFSCTRNO).

RACF=CHECK causes IMS to call RACF for security checking when IMS receives a transaction (using
RCLASS of TIMS or CIMS), but does not clone the security environment into the dependent region
when the transaction executes.

RACF=FULL clones the security environment to the dependent region at execution time. Specifying
this parameter and issuing the IMS command /SECURE APPC PROFILE enables APSB SAF Security
for this CPI-C application program.

CPUTIME=0 - 1440
Specifies the number of CPU seconds that the CPI-C program is allowed to use. If it exceeds the
limit, it is terminated with ABENDUO0240. This time limit protects against program loops, which locks
resources from other applications. The default is 0, which is no limit.

You can use the TP_Profile entry in two ways:

« To specify an IMS transaction code that is defined in the IMS. The CLASS and MAXRGN parameters in
the TP_Profile are ignored and the transaction values in IMS remain unchanged. The TP_Profile entry
provides mapping for a 64-character TPN into an 8-character transaction code.

« To specify an IMS transaction code that is not defined in the IMS. The IMS transaction code is a CPI
Communications driven transaction, and is used as the load module name of the scheduled application
program and the dynamically built transaction name.

When a TP_Profile is not defined, IMS uses the first 8 bytes of the TPN translated to the IMS character set
as the transaction code.

The allocate request is rejected if the transaction code is not valid.

Related reading: For more information about using the APPC/MVS Administration utility (ATBSDFMU),
see z/OS MVS Planning: APPC/MVS Management.

44 IMS: Communications and Connections

Outbound LU specification
You can specify a defined APPC LU as the outbound LU.

About this task

The default setting for defined APPC LUs is BASE LU. Changing an outbound LU is useful because, when
the outbound LU has status of disabled, IMS does not allocate the APPC conversation.

The outbound LU must be defined in the APPCPMxx member of the SYS1.PARMLIB library. To specify an
LU as the outbound LU, use the OUTBND= parameter in the DFSDCxxx PROCLIB member. You can set the
outbound LU by using the /CHANGE APPC OUTBND command. However, a restart sets the outbound LU to
the value in the DFSDCxxx member, if specified. If it is not specified, the outbound LU is set to BASE LU.

Outbound side information

APPC/MVS side information supplies destination information, such as the name of the partner program,
the name of the LU at the partner node, and the logon mode name.

CPI Communications provides a way to use system-defined values for these required fields; these
system-defined values are the side information. This information can be used by an IMS application
program allocating (establishing) an APPC conversation using CPI Communications, an IMS LU 6.2
descriptor, a DL/I change call (CHNG), or a DFSAPPC message switch.

System programmers supply and maintain the side information for CPI Communications programs.

Side information is accessed by a symbolic destination name. The symbolic destination name, called
sym_dest_name within the context of administering IMS TM, corresponds to an entry in the side
information file containing the following information:

partner LU name
Shows the name of the LU where the partner program is located. This LU name is any name for the
remote LU that is recognized by the local LU for allocating a conversation. An example is a USERVAR
name.

This LU name can be a 17-byte network-qualified LU name.

logon mode name
Used by LU 6.2 to designate the properties for the session that will be allocated for the conversation.
The properties include the class of service to be used on the conversation. The network administrator
defines a set of mode names used by the local LU to establish sessions with its partners. The
system programmer uses one of these values in a side table entry. An invalid mode name prevents a
conversation from being allocated.

TP name
Transaction program (TP) name specifies the name of the remote application program.

IMS and z/0OS do not accept blank sym_dest_name values on the Initialize_Conversation call.

The default name for the side information file is SYS1.APPCSI. Define this file in the
SYS1.PARMLIB(APPCPMxx) as shown in the following example.

SIDEINFO
DATASET (SYS1.APPCSI)

The destination name, partner LU name, mode name, and TP name can be defined using the APPC/MVS
Administration utility (ATBSDFMU) as shown in the following example.

SIADD
DESTNAME (DESTX)
TPNAME (LU62USER_TPX)
MODENAME (APPCMODE)
PARTNER_LU (APPCLUX)

Related reading: For more information on APPC calls, see CPI Communications Specification.

Chapter 3. Administering APPC/IMS and LU 6.2 devices 45

PARMLIB member

The APPC address space uses the APPCPMxx member of SYS1.PARMLIB. Define IMS as a local APPC
component LU that is controlled by the APPC address space.

The scheduler name is the same IMSID used in the IMSCTRL macro. When IMS identifies to APPC, it
passes its IMSID as the scheduler name SCHED(IMS1) in APPC member APPCPMxxx. The following is an
example of the APPCPMxx member:

LUADD
ACBNAME (IMSLU62)
SCHED (IMS1)
BASE
TPDATA(SYS1.APPCTP)
TPLEVEL (SYSTEM)

For XRF add:

USERVAR=uservar_name ALTLU=luname

The LUADD option keywords are defined below:
ACBNAME=local LUNAME of IMS

SCHED=IMS id

BASEmandatory parameter
TPDATA(TP_Profile dataset name)
TPLEVEL(system) suggested value
USERVAR=(uservar_name)

ALTLU=(LUNAME)

Related reading: For more information on these keywords, see z/OS MVS Planning: APPC/MVS
Management.

Communication between VTAM and its application programs requires an ACB (application control block)
whose name must be identically defined in the SYS1.VTAMLST APPL statement and in the APPCPMxx
LUADD statement ACBNAME parameter.

APPC manages the IMS ACB. When IMS identifies to APPC, APPC gives IMS the name of the APPC-
managed ACB name (LUNAME). The APPC LUNAME is not defined in IMS, because IMS does not manage
the ACB. The entries in the SYS1.PARMLIB member APPCPMxx include both the IMS scheduler name
(IMSID) and the LUNAME ACBNAME (xxxxxxx) that ties an IMS to an LUNAME.

This ACBNAME must be different from the ACBNAME used by IMS for non-LU 6.2 terminals. APPC/MVS
expects its LUs to be defined as VTAM resources so that these LUs can access the SNA network. A VTAM
application program (APPL) definition macro must be coded for each APPC/MVS LU. LU 6.2 application
programs are only defined to VTAM, not to IMS. The SYS1.VTAMLST member example follows:

IMSLU62 APPL ACBNAME=IMSLU62
APPC=Y

46 IMS: Communications and Connections

APPC/MVS Timeout Service

Using APPC/MVS Timeout Service, you can indicate the maximum time interval an application waits
before terminating a conversation and regaining control from APPC/MVS callable services.

When APPC/MVS does not respond to an APPC call, due to a network delay for instance, the dependent
region hangs and the caller cannot regain control.

The timeout feature is activated at startup by specifying the APPCIOT=(mmmm:ss,mmmm) parameter in
the DFSDCxxx member of the IMS.PROCLIB data set. The APPC time-out values are specified in minutes
(mmmm) and seconds (ss). Valid values for mmmm are 00 to 1440. Valid values for ss are 00 to 59. If
APPCIOT=00, there is no time-out detection. When a transaction is terminated due to timeout, messages
DFS1965E and DFS1959E are sent to the MTO terminal and the z/OS console. The timeout value can be
changed using the /CHANGE command.

For synchronous APPC conversations, if APPC timeout is active, then IMS uses ATBSTO6 service
(SET_TIMEOUT_VALUE) to set the timeout value for each conversation.

For asynchronous APPC conversations, if APPC timeout is active, then IMS sets the timeout value when
the conversation gets allocated. In either case, the timeout value is active until the conversation is
deallocated, which occurs, in the case of IMS conversational transactions, when the IMS conversation
ends.

Common Programming Interface Communications (CPI-C) transactions are not automatically supported
by APPC/MVS Timeout service, but can exploit APPC/MVS Timeout service using ATBSTOS5 service
provided the proper coding is supplied.

Related Reading:

« For more information on programming MVS services, see z/0OS MVS Programming: Writing Transaction
Programs for APPC/MVS.

Related reference
DFSDCxxx member of the IMS PROCLIB data set (System Definition)

APPC/MVS Error Extract Service

Whenever an APPC/MVS service call returns an unexpected return code, IMS issues APPC/MVS Error
Extract Service call ATBEES3 with a DFS1995E prefix.

Related reading: For more information on ATB return codes, see:

« z/0S MVS System Messages, Vol 3 (ASB-BPX)
« z/0S MVS Dump Output Messages

Initializing and changing LU 6.2 descriptors

LU 6.2 descriptors allow the system programmer to specify an LTERM that associates an output
destination with an LU 6.2 application program. This allows the system programmer to change the
application program's destination using alternate PCBs to LU 6.2 application programs, without requiring
any application program coding changes.

About this task

LU 6.2 descriptors are optional, but they are required if you want to dynamically create queue control
blocks and define processing options.

The application program uses an LTERM name as a symbolic destination; only the system programmer
needs to be aware of the actual term associated with this name.

The LU 6.2 descriptor entry contains:

« APPC/MVS side information entry name; this parameter can be omitted

Chapter 3. Administering APPC/IMS and LU 6.2 devices 47

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_dfsdcxxx_proclib.htm#ims_dfsdcxxx_proclib

« APPC conversation type (BASIC or MAPPED)
« APPC Sync_Level options (NONE, CONFIRM)
« LTERM name

« LU name of the destination of the LU 6.2 application program (overrides side information); this can be a
network-qualified LU name up to 17 bytes in length

« The name of the local LU that IMS uses to allocate the outbound conversation, specified in the OUTBND
parameter

« TP name to be scheduled (overrides side information)
« VTAM mode table entry to be used (overrides side information)

Here's an example of an LU 6.2 descriptor:

U L62TERM1 LUNAME=L62IMS1 TPNAME=CPICTRN1 MODE=L62MDEO2
U L62TERM1 SYNCLEVEL=N OUTBND=MYLUO2

Do not code a parameter and leave it blank (such as SIDE=b), or an error message is issued. Instead, omit
the parameter completely.

These LU 6.2 descriptor LTERMs are only for output and are never used by IMS as an LTERM name
associated with an input message. DFSAPPC is an IMS-reserved name for the message switch facility.

The LU 6.2 descriptors are built as specified in IMS PROCLIB member DFS62DTx during IMS initialization.
They can be added, deleted, or changed without restarting IMS. You can specify any number of
descriptors. If an error occurs, the z/OS system console and the IMS JOBLIB record the error messages.
IMS initialization continues regardless of any errors during descriptor initialization.

To add descriptors while IMS is running, you must first define the LU 6.2 descriptors in PROCLIB member
DFS62DTx. Load the LU 6.2 descriptor from the IMS PROCLIB using the /START DESC command. To
delete descriptors, use the /DELETE DESC command. To change descriptors, use the /CHANGE DESC
command.

Related reading: For more information on coding these parameters, see IMS Version 15.4 System
Definition.

Using MSC in an APPC/IMS environment

APPC/IMS uses the services of APPC/MVS and MSC to provide the communication interface for an MSC
configuration.

Together, MSC and APPC/IMS allow:

« LU 6.2 programs to use the TP name of an IMS remote standard application program or an IMS
remote modified application program. (The transaction is sent to the remote IMS and executes. The
transaction's reply is sent across the MSC links to the local IMS and then on to the LU 6.2 application
program.)

« A message switch to a remote logical terminal (LTERM) through the DFSAPPC System Service.
Use of DFSAPPC for sending IMS remote transactions and data.

« Immediate or deferred program-to-program switching to an MSC-routed remote application program.

CPI Communications driven application programs cannot include transactions that execute on remote
IMS systems.

ALl IMS transaction types except Fast Path are supported: conversational, nonconversational, response
mode, and nonresponse mode.

IMS adds a prefix to the LU 6.2 message when the message is sent over an MSC link. The minimum size of
this prefix is 480 bytes. The buffer sizes defined for MSC links should be large enough to hold at least one
complete message. Valid MSC buffer sizes are 1024 bytes to 65536 bytes.

48 IMS: Communications and Connections

To change the input message destination to any IMS local or remote destination after a message
is received but before it is processed, use the TM and MSC Message Routing and Control user exit
(DFSMSCEDO).

Definitions: Using MSC with APPC/IMS requires you to understand the terminology used for the different
MSC systems:

« The originating system (local) is the system from which the LU 6.2 program enters the IMS transaction.
- The remote system is the system in which the remote transaction executes.
« The intermediate system is the IMS that routes messages between the local and remote systems.

At any time, any of these three systems can receive LU 6.2 transactions.

Related concepts

“Overview of Multiple Systems Coupling” on page 671

Multiple Systems Coupling (MSC) makes it possible for transactions to be entered in one IMS and
processed in another IMS.

Recovering APPC transactions in an MSC environment

The recoverability of an IMS LU 6.2 transaction depends on whether the message is recoverable,
irrecoverable, discardable, or nondiscardable, and when an error occurs.

About this task

You can determine the recoverability of APPC messages in an MSC environment. Resource failures affect
recovery.

To recover APPC transactions in an MSC environment, analyze the types of failures that can occur. How
you handle the error depends on the following:

« The resource that fails: Was it an LU 6.2 session failure, an IMS failure, an application program failure, or
an MSC link failure?

- Transaction mode: Was it recoverable or irrecoverable?
« Transaction type: Was it local or remote?
« LU 6.2 conversation mode: Was it asynchronous or synchronous?

You are in control of recovery by the way you define the transaction. The information in the following
topics highlights pertinent facts, and then points you to other areas in the IMS library where the subjects
are explained in greater depth.

Recoverable versus nonrecoverable transactions

By coding the INQUIRY= keyword on the TRANSACT macro, you tell IMS the recovery status of
a transaction. Non-inquiry mode transactions are recoverable; inquiry-mode transactions are not
recoverable unless the RECOVER parameter is specified on the TRANSACT macro.

Recoverable transactions are recovered across any IMS failure, shutdown, or restart unless a COLDSTART,
COLDSYS, or COLDCOMM restart is performed.

You must define remote transactions with identical recoverability attributes on the local system where the
LU 6.2 session originates and on the remote system where the transaction is processed by the application
program. You do not need to define the transaction on any intermediate IMS.

Message switches (messages from one LTERM to another) are always recoverable.

Related concepts
Recovery considerations for multiple systems (Operations and Automation)

Chapter 3. Administering APPC/IMS and LU 6.2 devices 49

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.oag/ims_msc_recovery_consider.htm#ims_recovery_consider

Local APPC transaction discardability versus nondiscardability

The LU 6.2 protocol that you choose for sending a transaction to IMS and the transaction mode
(recoverable or irrecoverable) you choose determine if a local APPC transaction is discardable or
nondiscardable.

IMS discards a local APPC transaction when it is any of the following:

« A CPI Communications driven application program (without SYNCLVL=SYNCPT specified)
- Itis defined as inquiry-only and nonrecoverable

e Itis the result of synchronous input from the LU 6.2 application program

It uses the APPC Sync_Level option NONE

Otherwise, the transaction is nondiscardable. IMS recovers nondiscardable transactions whenever
possible; it never recovers discardable transactions.

Transaction processing point of failure
The point of failure in the processing of a transaction also affects its recoverability.

For example, when a local or remote transaction processes and reaches a commit point (sync point), IMS
recovers the output response (from the log) even if you have defined the transaction as irrecoverable.
Local APPC discardable transactions reach a commit point after IMS sends the output response message
to the inputting APPC application program. In this situation, IMS has no output response message to
recover or discard if a failure occurs after the commit point. If IMS has queued the transaction on an MSC
link, IMS recovers the transaction across link failures.

A message can be either recoverable or irrecoverable, and either discardable or nondiscardable,
according to the type of failure that might occur. The descriptions in this topic show you what happens
to your transaction when the LU 6.2 session, MSC link, local IMS, intermediate IMS, remote IMS, or
application program fail. This information assumes that you can recognize where a failure has occurred
and what you need to do to recover.

Recovering transactions after an LU 6.2 session failure
If an LU 6.2 session fails while IMS is receiving an input message, IMS discards the message.
If IMS receives the complete message, processing depends on whether the conversation is:

CPI-C or not CPI-C
Synchronous or asynchronous
Local or remote

CPI-C transaction

If an LU 6.2 session fails while processing a CPI-C transaction, the application program can choose to
end the conversation or to continue processing. IMS TM is not involved, and places no restrictions on the
choice of committing or backing out updates. The application program makes the decision. Because IMS
TM does not know about the session failure, it takes no action. The normal processing rules for commit
and backout apply. IMS does not recover the LU 6.2 conversation.

Related reading: For information on designing your CPI-C LU 6.2 application program, see IMS Version
15.4 Application Programming.

Not a CPI-C transaction

If an LU 6.2 session fails while a local IMS is sending transaction output that is not CPI-C to the LU

6.2 program, and the conversation is synchronous, IMS calls the Message Control/Error exit routine to
determine whether to abort and back out, or to continue processing. The default action is to stop the
transaction and discard the output message (this is the mode of operation for all protected conversations;
that is, conversations allocated using SYNCLVL=SYNCPT). If the conversation is asynchronous, IMS does

50 IMS: Communications and Connections

not call the Message Control/Error exit routine, but queues the output on the message queue to the TP
name of DFSASYNC.

Related reading: For information on coding the Message Control/Error exit routine, see IMS Version 15.4
Exit Routines.

Remote APPC transaction

If an LU 6.2 session fails while processing a remote APPC transaction, IMS recovers the output message
if it has been enqueued on the local system's MSC link. If the transaction has not at least reached the
point of being enqueued on the MSC link, IMS discards it. IMS discards the transaction regardless of the
recoverability mode and regardless of whether the LU 6.2 conversation is synchronous or asynchronous.
IMS does not call the Message Control/Error exit routine:

- If the transaction is asynchronous, when the output from a remote transaction for a failed LU
6.2 session returns from the remote system to the originating system, IMS sends the response
asynchronously to the LU 6.2 application program by using the DFSASYNC TP name.

« If the transaction is synchronous, when the output from a remote transaction for a failed LU 6.2 session
returns from the remote system to the originating system, IMS calls the Message Control/Error exit
routine to either discard or re-route the transaction output. The default action is to discard the output.

Related reading: For information on using DFSASYNC in your application program, see IMS Version 15.4
Application Programming.

Related concepts

“CPI Communications” on page 27

This topic introduces CPI Communications driven application programs and distributed Syncpoint
protected conversations.

Recovering transactions after an MSC link failure

When an MSC link failure occurs, IMS always recovers all messages, including IMS transactions and
responses that are enqueued, about to be enqueued, or being sent across an MSC link. This recoverability
is guaranteed, regardless of whether the message is en route to a local, intermediate, or remote MSC
system.

The recoverability is not affected by the transaction mode (recoverable or irrecoverable) or the
discardable or nondiscardable characteristics of the LU 6.2 protocol used to send the transaction to
the local IMS.

Link failures can delay messages from other IMS systems and cause the synchronous LU 6.2 conversation
to wait longer than expected for the response.

Related tasks
Restarting a logical link (Operations and Automation)

Recovering transactions after a local IMS failure

IMS discards local APPC transactions across a local IMS failure if they meet the discardability criteria.
Otherwise, IMS does not discard local APPC transactions, because they are nondiscardable.

If you define your remote APPC transactions as inquiry-type transactions and do not specify RECOVER
on the TRANSACT macro definition in the local IMS, IMS does not recover them after a local IMS failure.
Otherwise, IMS recovers all recoverable, nonconversational transactions.

After the local IMS sends the transaction message to an intermediate or remote IMS, a local IMS failure
has no affect on your transaction's recoverability. The transaction continues to its destination and is
processed. When the remote IMS sends the transaction response to the originating IMS after the failure,
IMS sends the response to its destination asynchronously through the default transaction program name
(TPN) DFSASYNC. The LU 6.2 application programmer needs to plan for this situation.

Chapter 3. Administering APPC/IMS and LU 6.2 devices 51

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.oag/ims_msc_logicallink_restart.htm#ims_msc_admin_033

Related concepts

“Local APPC transaction discardability versus nondiscardability” on page 50

The LU 6.2 protocol that you choose for sending a transaction to IMS and the transaction mode
(recoverable or irrecoverable) you choose determine if a local APPC transaction is discardable or
nondiscardable.

Designing an application for APPC (Application Programming)

Recovering transactions after a remote IMS failure

When a remote IMS failure occurs, based on the recoverability attributes of an APPC transaction in a
remote IMS, IMS recovers the transaction if it is queued for processing or is being processed in the
remote IMS.

Recoverable transactions are recovered; irrecoverable transactions are not. After the transaction reaches
a commit point, IMS recovers the output response message regardless of the recovery attributes of

the transaction. The discardable and nondiscardable characteristics of the APPC conversation in the
originating IMS have no bearing on the transaction's recoverability in the remote IMS across a remote IMS
failure.

IMS recovers transactions that are en route to the remote IMS (meaning the transaction message is still
en route in the local or intermediate IMS) when the remote IMS fails, regardless of the transaction's
recoverability characteristics. After the failure, the remote IMS receives and processes the transactions
that were en route at the time of the failure.

Recovering transactions after an intermediate IMS failure

IMS always recovers all messages en route to or from an intermediate IMS that are queued in the
intermediate IMS regardless of the recoverability characteristics of the transaction or message.

If the intermediate IMS restarts with either a COLDSTART, COLDCOMM, or COLDSYS, the messages are lost.

Recovering transactions after an application program failure

Transactions sent to IMS from LU 6.2 application programs are processed in the same way as non-LU 6.2
initiated transactions during application program failures.

If an application program fails before reaching a commit point while processing a local or remote
transaction from an LU 6.2 device, IMS backs out all messages except those that were inserted to

an alternate express PCB and committed with a PURG call. If the failure occurs after the transaction
reaches a commit point, IMS recovers everything. If the failing application program's input message was
received from another application program (program-to-program switch), this prior application program's
processing is still committed (as is true for non-LU 6.2 application programs).

Recoverability flows of LU 6.2 transactions

This topic contains four lists that show synchronous and asynchronous transaction flows, and shows
when the transactions are recoverable, irrecoverable, discardable, or nondiscardable.

The following list shows the flow of a transaction sent from an LU 6.2 synchronous conversation to a local
IMS.

. LU 6.2 program: ALLOC LU=IMS LU name

. LU 6.2 program: SEND to local IMS

. LU 6.2 program: RECEIVE_AND_WAIT

. Local IMS receives the transaction

. Transaction is enqueued

. Transaction executes (if application fails before reaching commit point, message is discarded)
. Message inserted to I/O PCB

N o AW R

52 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_designingappcapps.htm#ims_designingappcapps

8. Local IMS sends output (Message Control/Error exit routine receives control if LU 6.2 session fails
here)

9. Commit point
10. LU 6.2 program: DEALLOCATE

The following list shows the flow of a transaction sent from an LU 6.2 asynchronous conversation to a
local IMS:

. LU 6.2 program: ALLOC LU=IMS LU name
. LU 6.2 program: SEND to local IMS

. LU 6.2 program: DEALLOCATE

. Local IMS receives the transaction

=

. Transaction is enqueued

. Transaction executes (if application fails before reaching commit point, message is discarded)
. Message inserted to I/O PCB

. Commit point

. Local IMS: ALLOCATE with TPN=DFSASYNC

. Local IMS sends output

11. Local IMS: DEALLOCATE

O 00 9 O O A WD

=
o

The following list shows the flow of a transaction sent from an LU 6.2 synchronous conversation to a
remote IMS:

1. LU 6.2 program: ALLOC LU=IMS LU name
. LU 6.2 program: SEND to local IMS

. LU 6.2 program: RECEIVE_AND_WAIT

. Local IMS receives the transaction

o b~ 0N

. Transaction is enqueued on remote queue and MSC link (message is recoverable across MSC link
failure after enqueue on MSC link)

. Local IMS sends message across MSC link to remote IMS
. Remote IMS receives the transaction
. Transaction executes

O 00 9 O

. Output message inserted to I/O PCB

10. Remote IMS enqueues output message to MSC link (message is recoverable across MSC link failure
after enqueue on MSC link)

11. Commit point

12. Remote IMS sends output message across MSC link to local IMS
13. Local IMS receives output message

14. Local IMS enqueues output message for LU 6.2 program

15. Local IMS sends output message to LU 6.2 program (Message Control/Error exit routine receives
control if LU 6.2 session fails here)

16. LU 6.2 program: DEALLOCATE

The following list shows the flow of a transaction sent from an LU 6.2 asynchronous transaction to a
remote IMS:

1. LU 6.2 program: ALLOC LU=IMS LU name
2. LU 6.2 program: SEND to local IMS

3. LU 6.2 program: DEALLOCATE

4. Local IMS receives the transaction

Chapter 3. Administering APPC/IMS and LU 6.2 devices 53

5. Transaction is enqueued on remote queue and MSC link (message is recoverable across MSC link
failure after enqueue on MSC link)

. Local IMS sends message across MSC link to remote IMS
. Remote IMS receives the transaction
. Remote IMS enqueues the transaction

O 00 N O

. Transaction executes
10. Output message inserted to I/O PCB

11. Remote IMS enqueues output message to MSC link (message is recoverable across MSC link failure
after enqueue on MSC link)

12. Commit point

13. Remote IMS sends output message across MSC link to local IMS
14. Local IMS receives output message

15. Local IMS enqueues output message for LU 6.2 program

16. Local IMS: ALLOCATE with TPN=DFSASYNC

17. Local IMS sends output message to LU 6.2 program (Message Control/Error exit routine receives
control if LU 6.2 session fails here)

18. Local IMS: DEALLOCATE

Transaction retry characteristics

IMS retries certain abend conditions.
Some examples of these conditions that are retried are:

Deadlock
Lock reject
Fast Path retry conditions

These retry conditions still apply to standard DL/I application programs even if they receive their
messages from an LU 6.2 application program. If an abend that can be retried occurs, IMS issues an
APPC ATBEXAI call to APPC/MVS to determine if any established conversations exist. If a conversation
has been allocated, the abend is not retried and the application program is terminated.

If any CPI Communications resource is being used by the application program, the abend condition
cannot be retried. Thus, CPI Communications driven application programs and modified IMS application
programs that have allocated an LU 6.2 conversation before the abend occurred can never be retried. This
prohibition on retry is necessary, because IMS cannot control the state of CPI Communications resources.
IMS supports the DL/I INIT STATUS GROUPB call for CPI Communications driven application programs,
but not for modified IMS application programs that have allocated an LU 6.2 conversation before the
deadlock is detected.

Qualifying network LU names

You can use the same name for LUs on different systems by adding the network identifier. This eliminates
the need to have unique names for every LU on every system in your complex. You can use the network-
qualified LU name as the name of the partner LU to allocate remote LU 6.2 conversations and sessions.

About this task

A network-qualified LU name consists of a one- to eight-character network identifier of the originating
system, followed by a period and the LU name. A network-qualified LU name must be enclosed in single
guotes for commands.

Example: /DISPLAY LUNAME'NETID1.LUAPPC2'

54 IMS: Communications and Connections

Use a network-qualified LU name when transmitting data to a remote destination. If no network identifier
is present, IMS allows z/0S to determine the destination.

The parameter ALL for either the network identifier or the LU name cannot be substituted in a network-
qualified LU name in commands.

Example: /DISPLAY LUNAME'NETID1.ALL'

The LU name in the LU 6.2 descriptor can be network qualified. The network-qualified LU name is optional
on commands that support the LUNAME keyword.

APPC/MVS uses the name of LU 6.2 network-qualified LUs to allocate conversations. APPC/MVS strips
off the network ID and passes the 8-byte LU name to VTAM. Without APPC/MVS support for network-
qualified names, the LU name must be unique for the different networks.

The ALL parameter for either the network identifier or the LU name cannot be substituted in a network-
qualified LU name in a command.

The LU name in the LU 6.2 descriptor can be network qualified.

Related reading: For information on using network-qualified names in commands, see IMS Version 15.4
Commands, Volume 1: IMS Commands A-M.

Managing multiple LUs for a single IMS system

An IMS system can be represented on a network by more than one LU name. If more than one LU
name exists for a single IMS system, you might need to specify which LU should process asynchronous
outbound messages.

About this task

When more than one LU is defined for an IMS system, one of the LUs serves as the default, or base,

LU. Normally, the base LU handles all allocation requests for outbound conversations. However, in some
cases the remote partner LU might expect the outbound conversation to come from an LU other than the
base LU, you can control which LU handles outbound conversation allocation requests. There are three
methods for controlling which LU handles outbound conversation allocation requests:

« By specifying an LU name in the OUTBND parameter of the LU 6.2 descriptor in the DFS62DTx member
of the IMS.PROCLIB data set. IMS routes outbound messages sent to the LU 6.2 descriptor by using the
local LU name specified in the OUTBND parameter.

Use the /CHANGE DESC command to change the local LU for a LU 6.2 descriptor.

Use the /DISPLAY DESC command to display the local LU and other descriptor specifications.

By specifying an LU name in the OUTBND parameter of the DFSDCxx startup procedure. When an
LU name is specified in the OUTBND parameter of the DFSDCxx startup procedure, the specified LU
serves as the default LU for all asynchronous outbound conversation messages, regardless of which LU
received the original inbound conversation.

« By specifying the local LU option APPCLLU=Y in the DFSDCxx startup procedure. When the local LU
option is specified, IMS routes asynchronous outbound conversations through the LU that received the
original inbound conversation.

« By overriding any LU name specifications in the LU 6.2 Edit exit routine (DFSLUEEO).

Reassigning an LU to another IMS system

You can reassign an LU from one IMS system to another by using MVS commands.

About this task

To reassign an LU to another IMS system:

Chapter 3. Administering APPC/IMS and LU 6.2 devices 55

Procedure

1. Delete the LU from its current IMS system by issuing the MVS command SETAPPC LUDEL.

2. Redefine the LU on the new IMS system by issuing the MVS command SETAPPC
LUADD, ACBNAME=1uname , SCHED=new_IMS,6 NQN.

DFSAPPC system service

DFSAPPC is an IMS system service for exchanging messages between LU 6.2 application programs (LU
6.2 to LU 6.2), and between LU 6.2 application programs and IMS-managed LTERMs. Message delivery is
asynchronous; messages are held on the IMS message queue until they are delivered.

LU 6.2 application program can use DFSAPPC to send messages to IMS-managed LTERMs. Use the LTERM
option of the DFSAPPC service to select this capability.

Message switching

Message switching is part of the implicit APPC interface and allows IMS terminals and LU 6.2 application
programs to exchange messages. Messages routed to an LU 6.2 application program initiate LU 6.2
application programs.

When using DFSAPPC, the remote device can choose to route a message using either the LTERM or LU 6.2
TPN option. Messages sent with the LTERM option are directed to IMS-managed local or remote LTERMs.3
Messages sent without the LTERM option are sent to the specified LU 6.2 application program.

The message format for DFSAPPC is shown in the following figure.

1 2
»- DFSAPPC~ — (=

g)—
L 3 J L 4 {
LTERM= value TPN= value

M LU=value ———

M——— MODE=value ——

LT
M

M——— SIDE= value ———

C

»— User-data »«
Notes:

1 A mandatory blank is required between DFSAPPC and the options.

2 Use blanks anywhere within the DFSAPPC options except within keywords or values. Use commas as
delimiters between keyword-parameter sets along with or in place of blanks. However, because the TP
name character set allows commas, at least one blank must be used to terminate the TPN value.

3 You can specify either the LTERM= or the TPN= option, but not both. Only use the other keyword
options when you specify the TPN= option.

4 Use the IMS default values for the DFSAPPC options to establish an LU 6.2 conversation with a
partner program when the values are not provided by another source. If the DFSAPPC service is coded
without specifying any options, use IMS default LU 6.2 conversation characteristics.

Figure 11. DFSAPPC message format

3 Ifthe LTERM is associated with an LU 6.2 destination, the message is sent as if an LU 6.2 application
program had been explicitly selected.

56 IMS: Communications and Connections

The DFSAPPC option keywords are defined as follows in order of occurrence (except for the keywords
following TPN=, which are listed alphabetically):

LTERM=
The 1- to 8-character LTERM option is the name of an IMS LTERM. Messages sent with the LTERM
option are directed to an IMS-managed local or remote LTERM. If the LTERM is associated with the
LU 6.2 descriptor, it is treated as if an LU 6.2 application program has been explicitly selected. LTERM
names can contain uppercase alphabetic, numeric, and national characters (@', '$', '#'). When LTERM
is specified, other keywords cannot be specified.

TPN=
The 1- to 64-character TPN option is the partner's transaction program name used with the logical
unit name to establish an LU 6.2 conversation with a partner program. Because the TP name character
set allows commas, at least one blank must be used to terminate the TPN value.

TP names can contain any character from the 00640 character set except a blank. The 00640
character set, documented in the CPI Communications Specification includes uppercase and
lowercase letters A through Z, numerals 0-9, and 20 special characters.

When the TPN and SIDE options are specified, the TPN name overrides the TP name contained in the
side information entry.

Although DFSAPPC allows the use of the 00640 character set, IMS commands do not use this
character set. IMS commands can only operate on TPNs that use uppercase alphabetic, numeric, and
national characters ('@, '$', '#'). IMS commands cannot operate on extended TPNs.

LU=
The 1- to 17-character LU option is the partner's logical unit name used with the transaction program
name (TPN) to establish an LU 6.2 conversation with a partner program.

LU names can contain any character from the APPC/MVS Type A character set. LU hames can
contain uppercase alphabetic, numeric, and national characters ('@', '$', '#"), and must begin with
an alphabetic or national character. You can also use a 17-byte network-qualified LU name in the LU
field.

When the LU and SIDE options are specified, the LU name overrides the LU name contained in the side
information entry.

MODE=
The 1- to 8-character MODE option is the partner's mode name used with the logical unit name and
transaction program name to establish an LU 6.2 conversation with a partner program.

MODE names can contain any character from the APPC/MVS Type A character set. MODE names can
contain uppercase alphabetic, numeric, and national characters ('@', '$', '#"), and must begin with an
alphabetic or national character.

When the MODE= and SIDE options are specified, the MODE name overrides the mode name
contained in the side information entry.

SIDE=
The 1- to 8-character SIDE option is the side information entry name used to establish an LU 6.2
conversation with a partner program.

SIDE names can contain any character from the 01134 character set. The 01134 character set,
documented in the CPI Communications Specification includes uppercase alphabetic characters A
through Z and numeric characters 0-9.

When the SIDE option is specified, the LU, TPN, and MODE options can also be specified to override
the values in the side information entry.

SYNC=
The SYNC option allows the application to override the LU 6.2 conversation sync level default provided
by IMS.

SYNC=N
Sync_Level is NONE.

Chapter 3. Administering APPC/IMS and LU 6.2 devices 57

SYNC=C
Sync_Level is CONFIRM.

TYPE=
The TYPE option allows the application to override the LU 6.2 conversation type default provided by
IMS.

TYPE=B
Conversation type is BASIC.

TYPE=M
Conversation type is MAPPED.

If an error is found while processing the options list, error message DFS1957 DFSAPPC ERROR is sent to
the terminal.

Related reading: For more information on Type A character sets, see z/0S MVS Programming: Writing
Transaction Programs for APPC/MVS.

Asynchronous output delivery

When creating a message destined for an LU 6.2 application program, IMS establishes conversation
characteristics.

These characteristics are extracted from the:

LU 6.2 descriptor
DL/I Change call option list
DFSAPPC message switch options

If IMS cannot extract a particular conversation characteristic from this list, IMS uses the defaults that
are shown in the following table. If a side table name is extracted, the default mode name is not used.
IMS assumes that side table entries contain a mode table entry name. If an /ALLOCATE command for a
particular LUNAME - TPNAME destination specifies a mode table entry name, that entry name overrides
the mode table name specified for the message.

IMS uses the information in the following table to initiate a conversation with the LU 6.2 application
program that is associated with the alternate PCB. Certain fields, such as LU name, are application
specific. Default values are provided but can be overridden by parameters associated with the message. A
default value is used by IMS only if no value is provided by any other source. The application program can
modify the default conversation characteristics using an expanded interface to the DL/I CHNG call.

Table 1. APPC/IMS default conversation characteristics

Characteristics Default value
Conversation_Type Mapped
Deallocate_Type Deallocate_Sync_Level
Error_Direction Receive_Error

Fill Fill_LL

Log_Data Null

Log_Data_Length 0

Mode_Name 'DFSMODE'

IMS uses the same mode name provided by the inputting LU 6.2
partner to allocate the outbound conversation. That is, whatever mode
name the inputting conversation uses, IMS also uses it for outbound
allocates.

Mode_Name_Length 7

58 IMS: Communications and Connections

Table 1. APPC/IMS default conversation characteristics (continued)

Characteristics Default value
Partner_LU_Name 'DFSLU'
Partner_LU_Name_Length 5

Prepare_to_receive_type Prep_To_Receive_Sync_Level
Receive_type Receive_and_Wait
Return_Control When_Session_Allocated
Send_Type Buffer_Data

Sync_Level Confirm

TP_Name 'DFSASYNC'
TP_Name_Length 8

APPC transaction security

The security options for APPC/IMS and LU 6.2 application programs are quite extensive. The partner
systems can range from a single-user terminal or workstation to a multi-user system. All systems can
have their own complex security environment. Security for IMS can be simple or complex.

Every transaction program name (TPN) must pass a security check before it is executed. The user ID that
initiates the transaction is identified on the LU 6.2 format header (FMH5). If no user ID exists because
you specify SECURITY=NONE, you can only access resources that are not defined with UACC (NONE). Any
TPNs that are accessible in all circumstances should not be defined with UACC (NONE). The TPN security
definition is required.

z/0S security consists of two parts. First, z/OS authenticates the transaction user. The LU 6.2 transaction
contains security information. The FMH5 contains the user ID, a "profile" name, which is used as the
group name, and security options. You supply both the user ID and password. The user ID is defined to
RACF, and the password must be valid for the user ID.

If Already_Verified is specified in the FMH5, the sending system verifies the user ID. This user ID must be
defined to RACF on the receiving z/OS system. No password is needed in this case.

If SECURITY=NONE is specified, z/OS does no checking. Instead, z/OS builds a special security profile
that corresponds to SECURITY=NONE. This allows access to z/OS and APPC/IMS resources that have
UACC specified at any level other than NONE. Resources with UACC (NONE) or without a UACC specified
cannot be accessed.

After the user ID is established, z/OS verifies that the user ID can execute the specific transaction. z/0OS
verifies that the user ID's access profile has ACCESS (EXECUTE) for the entity dbtoken.x.tpname in the
CLASS (APPCTP). The value of dbtoken is the dbtoken value specified in the TP_Profile data set. Based on
the APPCTPxx parameter specified for this LU, the value of x is either the user ID, group or SYS1.

If either of these security checks fails, z/OS rejects the transaction, and IMS is not informed of it. z/OS can
also check:

« Session-level security (RACF resource class APPCLU)
« Port of entry (RACF resource class APPCPORT)
« Local application (RACF resource class APPL)

The IMS administrator should verify that these security checks are successful.

Related reading: For more information on coding the RACF resource classes, see z/OS MVS Planning:
APPC/MVS Management.

Chapter 3. Administering APPC/IMS and LU 6.2 devices 59

The security check in IMS is based on the IMS transaction code or executed command name. If the

TPN is DFSAPPC, no additional security check occurs. If RACF is used on your system, z/0S rejects the
transaction if RACF is not active. The IMS command name or transaction code associated with the TPN
is used in the RACF resource class associated with this IMS ('C' or 'T'). RACF checks IMS commands and
transactions for all other IMS terminal types in the same way.

If the RACF check is successful, the Transaction Authorization exit routine (DFSCTRNO) is called for
transactions, and DFSCCMDO is called for command authorization. However, the following rules apply to
RACF:

« For commands, default security only applies if RACF is not used.

« For remote transactions, RACF is optional.
Otherwise, the exit routines make the security decision.

The intended environment executes APPC/IMS with RACF security active. It is possible to run with RACF
not active in the APPC/IMS system, but it is not possible to run with RACF not active in the z/OS system.
In this sense, RACF is mandatory for LU 6.2.

The complexity of the security environment is derived partly from the many resources involved (VTAM,
z/0S, and IMS) and the granularity of protection that is possible. The security definitions must be closely
coordinated for successful operation of the application system.

Related concepts

IMS security (System Administration)

60 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sag/system_admin/ims_secur.htm#ims_secur

Part 3. Extended Terminal Option (ETO)

These topics introduce the extended terminal option (ETO) and include an overview of ETO and the
information you need to administer ETO terminals in an IMS TM Network.

© Copyright IBM Corp. 1974, 2022

61

62 IMS: Communications and Connections

Chapter 4. Overview of the Extended Terminal Option

The Extended Terminal Option (ETO) of IMS allows you to add VTAM and ISC TCP/IP terminals and users
to your IMS without predefining them during system definition.

ETO is part of the IMS Transaction Manager (TM), and provides additional features for users, such as
output security, automatic logoff, and automatic signoff.

This topic provides system programmers with the conceptual information that is required to implement
and administer ETO. Read the information in this topic if you are unfamiliar with ETO.

Note: ETO is required to define dynamic TCPIP terminals for ISC. However, ETO is primarily used with
VTAM terminals. Although some information in the following topics applies to dynamically defined ISC
TCP/IP terminals, most of the topics about ETO describe ETO concepts and administration as they relate
to VTAM only.

Benefits of using ETO
ETO adds essentially two major enhancements to the Transaction Manager environment. With ETO:

« Users can obtain IMS sessions with VTAM or ISC TCP/IP terminals that have not been defined to IMS
during system definition.

« Output messages that are destined for particular users are secure, and they reach only those users.
In addition, by installing ETO, you can achieve each of the following:

« Improved system availability by reducing scheduled down time associated with adding or deleting VTAM
and ISC TCP/IP terminals.

« Faster system availability to users, because they can establish an IMS session from any VTAM and ISC
TCP/IP terminal in the network.

- Improved IMS security by relating output messages to users, rather than to terminals.

« Reduced number of macros required to define the terminal network. This reduces system definition
time and storage requirements.

« Reduced checkpoint and restart time. For ETO terminals and user structures, resources are not
allocated until they are actually required; similarly, when they are no longer required, they are deleted.

« Reduced number of skilled system programmer resources that are required for maintaining static
terminal definitions.

Related tasks

“Administering the Extended Terminal Option” on page 71
The IMS Extended Terminal Option (ETO) allows you to dynamically add VTAM terminals and users to your
IMS without having to first define them during system definition.

ETO terminology

Certain terms have meanings that are specific to ETO and that are therefore important for understanding
and administering ETO.

Terminals
The definitions for terminal, static terminal, and dynamic terminal are described in this topic.
Definitions:

« Aterminalis a physical VTAM logical unit (LU) that establishes a session with IMS. A physical terminal is
represented using a control block.

© Copyright IBM Corp. 1974, 2022 63

« When terminals are not built by ETO but are defined at system definition, they are called static
terminals. When messages are sent to a static terminal they are queued to a logical terminal (LTERM)
message queue, where they await retrieval by the recipient.

« When a terminal is not defined at system definition and ETO builds a terminal, that terminal is called
a dynamic terminal, or an ETO terminal. For dynamic terminals, the logical terminal (LTERM) is known
as a dynamic user message queue, LTERM associates the messages with the user, rather than with the
physical terminal. Associating messages with the users provides more security for these users, because
they can access their messages only when they sign on using their unique user ID. In addition, all users
in the network can access their messages from any physical terminal, instead of being restricted to
using a particular physical terminal.

Dynamic users

Definition: An ETO dynamic user is a user who signs on to a dynamic terminal and who has a unique
identification (user ID) that IMS uses for delivering messages. The user is usually associated with a
person but can also be associated with another entity, such as a printer.

Terminal structures

A terminal structure is an IMS control block that represents a specific terminal that is known to IMS.

A terminal structure is created when the individual terminal logs on to IMS. It is deleted when the
terminal logs off with no remaining associated activity (such as status that must be retained for the next
connection to IMS).

User structures

A user structure is a set of IMS control blocks, including a user block and one or more LTERM blocks. The
message queues are associated with the dynamic user, as opposed to the physical terminal, and they are
queued to the user ID.

The dynamic user structure connects to the physical terminal only when the user signs on. This provides
a secure environment, because different users accessing the same terminal cannot receive each other's
messages.

IMS creates a user structure when either of the following events take place:

« A dynamic user signs on to IMS.

« Output messages that are destined for a dynamic user are sent to the user, but the user has not signed
on to IMS.

Usually, a user structure represents a person who uses IMS. The user structure name is usually the same
as the user ID. A user structure can also represent a logical destination, such as a printer. In this case,
the user structure name can be the same as or different from the LTERM name that your installation

uses in its application programs and its exit routines. For example, you can assign the same name to a
user structure for a printer that you assign to its LTERM destination node name. However, output is then
queued according to the terminal, and not to the user.

The following figures show the differences between static resources and ETO dynamic resources.

64 IMS: Communications and Connections

LTERM

LT1A
Node LU1 Messages
System definition: -
Terminal name = LU1 - M
Name LT1A) essages
Mame LT1B
LTERM
LT1B
Figure 12. Static resources

User US1
LTERM
Us1
Mode LUA
- —* Messages
—_—

Drescriptor definition:
L LUT UNITYPE=SLUTYPEZ
U US1 LTERM=US1, LTERKM=US2

LTERM
usz

Figure 13. ETO dynamic resources

ETO descriptors

A descriptor provides information to IMS when IMS builds a dynamic resource for a logon or a signhon. The
four types of ETO descriptors are: logon descriptors, user descriptors, MSC descriptors, and MFS device
descriptors.

IMS stores descriptors in the following IMS.PROCLIB members:

DFSDSCMx
Contains the descriptors that are automatically generated during IMS system definition. The suffix
of DFSDSCMx matches the suffix that your installation specifies on the SUFFIX= parameter of the
IMSGEN system definition macro.

DFSDSCTy
Contains customized device descriptors that your installation creates. Descriptors in DESDSCTy
override duplicate descriptors in DFSDSCMXx, and the last descriptor that is defined is used.

Chapter 4. Overview of the Extended Terminal Option 65

Logon descriptors

A logon descriptor is a skeleton that IMS uses to build an ETO dynamic terminal. It provides information
about the physical characteristics of a terminal. IMS uses logon descriptors in conjunction with exit
routines to create terminal structures.

The three types of logon descriptors are: generic, group, and specific:

Generic logon descriptor
Provides characteristics for all terminals of a particular type. For example, all SCS printers might share
a single generic descriptor. Similarly, all 3270 terminals might share a generic descriptor.

Group logon descriptor
Provides characteristics for a collection of terminals, each of which has compatible hardware
characteristics and is defined to IMS in the same manner. The actual characteristics for these
terminals are usually identical, but they can differ. IMS uses the group descriptor to derive their
characteristics.

Example: You might create separate logon descriptors for different groups of terminals that differ
only in the setting for the autologoff (ALOT) time value.

Specific logon descriptor
Provides characteristics for a single terminal, and these characteristics apply only to that terminal. In
this case, the descriptor name matches the name of the terminal that it describes.

Note: Although you might need to use specific logon descriptors during the actual migration to ETO,
use generic or group logon descriptors after you have migrated to ETO; these kinds of descriptors ease
network administration.

User descriptors

A user descriptor is a skeleton from which a user structure is built. A user descriptor can provide user
options and queue names.

MSC descriptors

An MSC descriptor is used to create a remote LTERM, which is an LTERM that does not exist on the local
IMS. The physical terminal definition (either static or dynamic) for the remote LTERM is in the remote IMS.

Each MSC descriptor for a remote LTERM is loaded during IMS initialization and tells IMS which MSC link
to use for output that is destined for that remote LTERM.

MFS device descriptors

MFS device descriptors enable you to add new device characteristics for MFS formatting without requiring
an IMS system definition. The MFSDCT utility (DFSUTBO0O) uses MFS device descriptors to update default
formats in the MFS library.

IMS also uses MFS device descriptors to update the MFS device characteristics table. IMS loads this table
only during initialization; therefore, updates are not effective until the next IMS initialization.

Related concepts
“Overview of Multiple Systems Coupling” on page 671

66 IMS: Communications and Connections

Multiple Systems Coupling (MSC) makes it possible for transactions to be entered in one IMS and
processed in another IMS.

ETO concepts

The main purpose of ETO is to dynamically define terminals to IMS. This topic describes such things as
ETO terminal and user structures, descriptors and exit routines for dynamic terminals.

When structures are created and deleted
Structures are created in the following situations:

« Logon

« Signon

« QOutput is queued to your LTERM

/ASSIGN command is used to assign an LTERM to a non-existent user
« /ASSIGN command is used to assign a non-existent LTERM to a user
« /CHANGE USER username AUTOLOGON command is directed to a non-existent user

In all cases, IMS searches for an existing structure (terminal or user) before creating a new one.

IMS creates and deletes user structures in the following sequence (This sequence applies only to terminal
logon and logoff and to user signon and signoff. When asynchronous output is queued to a user, IMS
creates the user structure, as needed.):

1. When you establish a session between IMS and an undefined terminal, IMS selects a logon descriptor.

2. Using the information in the logon descriptor, the customization defaults, and VTAM information, IMS
builds a VTAM terminal control block that describes the new terminal.

3. When you sign on, if a user structure does not exist, IMS builds one, using information from a user
descriptor that it selects, and then connects this user structure to the terminal structure.

4. IMS deletes terminal or user structures when they are no longer needed to maintain sessions. User
structures are typically deleted when you sign off, if no special status needs to be maintained and if
no messages remain queued. IMS deletes terminal structures when no terminal status exists (such as
trace mode), no user is signed on, and the terminal is idle.

If you are using Resource Manager and a resource structure, IMS normally maintains status in the
resource structure instead of the local control blocks. Therefore, IMS deletes the structures.

Exceptions: The following terminal structures and user structures are not deleted:

« SLU P and Finance terminal and user structures are normally only deleted during an IMS cold start
if SRM=LOCAL. They can also be deleted, however, if the /CHANGE NODE COLDSESS command is
used, in which case they are deleted at the first checkpoint following the command.

« ISC terminal and user structures are only deleted following a cold session termination if
SRM=LOCAL.

Descriptors and exit routines

Using descriptors and exit routines, you can assign characteristics to ETO dynamic terminals and assign
user structures to be associated with those terminals.

A descriptor provides the basic information for the dynamic terminal. An exit routine completes or
changes this information. Two methods of using descriptors and exit routines are:

« You can use many descriptors and code little or no processing logic in exit routines.
« You can use few descriptors and code exit routines to perform much of the processing.

Chapter 4. Overview of the Extended Terminal Option 67

How descriptors are created and used

All descriptors are created during IMS initialization, prior to IMS startup. You must specify that you want
the ETO feature support and ensure that the ETO initialization exit routine (DFSINTXO0) does not disable
ETO.

During IMS initialization, IMS reads and validates all ETO descriptors. IMS initialization then continues,
and the descriptors remain in storage for the duration of IMS execution. Any changes you make to
descriptors become effective after the next initialization of IMS.

IMS uses descriptors to create both terminal and user structures. IMS rebuilds structures during an IMS
restart, if appropriate. For example, if messages are queued for a structure and IMS goes down, the
structures are rebuilt when IMS restarts. IMS rebuilds these structures to be the same as they were
before the IMS restart. IMS does not use the descriptors or exit routines to rebuild these structures.
Therefore, any changes you make to descriptors are only reflected in new structures that are built after
IMS restart, and the changes are not reflected in structures that are rebuilt during IMS restart.

Example: USERA signs on using descriptor DESCA which specifies ASOT=20. USERA starts an IMS
conversation, and then IMS abnormally terminates. The system programmer changes DESCA to ASOT=10.
After the IMS restart, USERB signs on using DESCA. USERA was rebuilt during the IMS restart. USERA still
has ASOT=20, and USERB has ASOT=10.

Summary of ETO implementation

The following figure illustrates the ETO concepts and shows an overall view of an ETO implementation.

MFS Device
Characteristics
Table utility
(DFSUTBOO0)

G MNode

IMS.RESLIB -
System- DFSUDTOX _ l 2
deflneld LOGON
descriptors USER
IMS.PROCLIB #» USER User ID
n—' DFSDSCMx MSC |
—* DFSDSCTy
Cutput
(queued to user)
MFS descriptors
User descriptors
RACF
MSC descriptors
. 8 .
Logon descriptors
User—dleii ned Messages Messages
descriptors
Undelivered
queued data
{DLQY)

Figure 14. Summary of ETO implementation

68 IMS: Communications and Connections

- [The system-defined descriptors that are built during system definition are stored in IMS.PROCLIB as
member DFSDSCMx.

« A Your user-defined descriptors that are written to override the system definition defaults are
stored in IMS.PROCLIB as member DFSDSCTy. MFS descriptors that are processed by the MFS Device
Characteristics Table utility (DFSUTBOQO) are stored in the device characteristics table.

« [Logon, user, and MSC descriptors are loaded at IMS initialization using the input from IMS.PROCLIB.
» [The Logon and Logoff exit routines are called during logon and logoff.
« H The Signon and Signoff exit routines are called during signon and signoff.

« A Output is delivered to the destination specified in the Destination Creation exit routine, unless the
user is created during signon.

- [If IMS is unable to determine where output should be delivered, the messages are added to the
dead-letter queue. Messages might not be delivered because:

— The user name is not a valid user ID.

— The user signon is rejected.

— A physical-to-logical relationship does not exist between the device and the LTERM.
« Bl RACF (or an equivalent product) manages security in the ETO environment.

Chapter 4. Overview of the Extended Terminal Option 69

70 IMS: Communications and Connections

Chapter 5. Administering the Extended Terminal
Option

The IMS Extended Terminal Option (ETO) allows you to dynamically add VTAM terminals and users to your
IMS without having to first define them during system definition.

About this task

ETO dynamically creates user structures for a terminal session when:

« The user signs on to IMS.
« Output messages are sent to the user and await retrieval by the user.

The /ASSIGN command is used to assign an LTERM to a non-existent user.

The /ASSIGN command is used to assign a non-existent LTERM to a user.
The /CHANGE USER username AUTOLOGON command is directed to a non-existent user.

Some of the administrative advantages of using ETO include:
« You do not need to code the following macros for the system definition stage-1 input stream:

MSC NAME macros
VTAM macros: TYPE, TERMINAL, NAME, VTAMPOOL, SUBPOOL

Removing these macros reduces the complexity of network management.
 You need to perform fewer system definitions.
 You schedule fewer planned outages for new system definitions.

Using ETO, you can ensure that all terminals and users are able to establish sessions with IMS, even if
these terminals and users are not defined to IMS during system definition.

You can use execution-time parameters and exit routines to authorize users to access some or all of the
functions that ETO provides.

Planning for ETO

Migrating a static-terminal environment to an ETO environment requires planning.

About this task

Although you can continue to define VTAM terminals and LTERMs to IMS during system definition, if you
do so:

« You cannot take advantage of the ETO features that exist for those terminals.

« You must fully define the terminal. You must supply all TERMINAL macros, NAME macros, and
parameters, or use type-2 CREATE commands to supply the information.

ETO terminals must be VTAM terminals.
Restrictions: The following VTAM terminals cannot be ETO terminals:

« IMS master terminal (MTO)
« IMS secondary master terminal
« MSC physical and logical links

ISC sessions that are used by XRF for surveillance
LU 6.2 terminals (dynamically created and managed by APPC/IMS)

© Copyright IBM Corp. 1974, 2022 71

Identifying your requirements

The degree to which you implement ETO across your IMS installation depends on your installation
requirements.

About this task

ETO is considered fully implemented when no static VTAM terminals exist in the system and when the
majority of terminals and users are defined using the default logon descriptor and default user descriptor.
However, because installations vary in application program dependencies, the cost of fully implementing
ETO also varies.

Your installation should determine the extent to which full ETO feature support is required, based on the
following requirements:

Full user-message security
Full implementation of ETO is required for full user-message security. In this environment, no node-
name user descriptors exist. Any requirements for user structures that the default user structure does
not provide must be defined by user descriptors or by the Signon exit routine (DFSSGNXO0).

Dynamic terminal support only
Only partial implementation is required for dynamic terminal support. You can move network
definition statements from the system definition to ETO descriptor PROCLIB members. Benefits of
this implementation include:

« Fewer system definitions are required in order to maintain network definitions, because you can
change descriptors between IMS warm starts.

« Shorter run times are required for system definition, because you do not need to define VTAM
terminal networks.

« Improved performance exists for IMS checkpoint and restart, because dynamic terminals and user
resources are allocated only when they are used.

With partial implementations, however, you do not achieve improved user-message security, because
each LTERM has a fixed relationship with a physical terminal.

ETO restrictions
Before implementing ETO, ETO has a few restrictions that you should be aware of.
The restrictions for ETO include:

« Dynamic terminals are not supported for terminal-related MSDBs or for non-terminal-related MSDBs
that have LTERM keys.

« Application programs that use specific LTERM names sometimes require particular ETO customization.
The DFSUSER user descriptors can help you customize ETO for application programs that have
dependencies on LTERM names contained in the I/O PCBs.

Related concepts

“Using DFSUSER user descriptors” on page 89
If IMS does not find a user descriptor that has the same name as the user ID or the terminal that is signing
on, and no exit routine has provided one, IMS uses DFSUSER as the default descriptor.

Defining physical terminals

When implementing ETO, to achieve your desired VTAM terminal network you need to be aware of certain
requirements and aspects of how ETO and VTAM work together as you plan for and define the physical
terminals in the network.

About this task
Performing the following actions can ensure that you achieve your desired VTAM terminal network:

72 IMS: Communications and Connections

 Assess how often IMS application programs depend on specific terminal characteristics.

« Check the accuracy of each VTAM terminal definition. For each dynamic terminal, ETO builds a terminal
structure that relies on the VTAM definition for the characteristics (such as the LU type, screen size, and
model) for that terminal.

Terminal characteristics that are specified in your IMS system definition might differ from (and override)
those in the VTAM definitions. If these terminal characteristics in the IMS system definition are
compatible with those of the actual terminal, the discrepancy is not apparent. 4

« Either provide specific node-name logon descriptors or use the Logon exit routine (DFSLGNXO) for
terminals that are not adequately defined using the default logon descriptor.

- Code one of the following two exit routines to determine the device type:

— The Logon exit routine (DFSLGNXO0) can determine the device type by examining the default logon
descriptor.

— The Signon exit routine (DFSSGNXO0) can determine the device type later in the process by examining
the terminal control blocks.

When receiving a request to establish a terminal session, IMS relies on the following information from
VTAM session parameters:

» UNITYPE

The unit type of the node that is attempting to log on. IMS determines the UNITYPE by using the
following fields:

— The LUTYPE field of the CINIT ° request provides part of the UNITYPE information. The LUTYPE value
is usually found in the first byte of the PSERVIC operand of the MODEENT macro, which is used to
generate the VTAM mode table entry that is used for a logon. The following figure shows the fields of
the PSERVIC operand in the VTAM MODEENT macro.

PSERVIC=X'02 0000000000 I‘IEIEqIDEIDDI?ﬁ 00 '
Y F 3 3 3

LU type (2)
Default screen size (24 X 80)

Alternate screen size (not defined)

Presentation space size control (fixed default)

Device type (applicable to LU type 0 only)

Figure 15. VTAM MODEENT macro PSERVIC operand fields that IMS uses

The following table shows the mapping of the LUTYPE value to the IMS UNITYPE.

Table 2. Mapping for VTAM LUTYPE value to IMS UNITYPE

VTAM LUTYPE IMS UNITYPE

LUTYPE X'06' LUTYPE6

LUTYPE X'02" SLUTYPE2

LUTYPE X'01" SLUTYPE1 (default) or NTO

4 If the actual terminal characteristics do not match those in the IMS definition or the VTAM definition, it is
possible that the terminal can function with IMS.

5 CINIT is a network services request sent from a system services control point (SSCP) to a logical unit (LU),
asking that LU to establish a session with another LU and to act as the primary end of the session.

Chapter 5. Administering the Extended Terminal Option 73

Table 2. Mapping for VTAM LUTYPE value to IMS UNITYPE (continued)
VTAM LUTYPE IMS UNITYPE
LUTYPE X'00" 3270, SLUTYPEP, or 3600/Finance

— If the LUTYPE field is X'00' (indicating that the terminal is 3270 non-SNA, Finance, or SLU P), IMS
must check the transmission services profile specification in the TS field of the CINIT request. The
TS value is usually found in the TSPROF operand of the MODEENT macro that is used to generate the
VTAM mode table. This LUTYPE value must match the value in the logon descriptor that IMS selects
for a logon.

The following table shows the mapping of the TSPROF specification to the IMS UNITYPE.

Table 3. Mapping for TSPROF specification to IMS UNITYPE

TSPROF specification IMS UNITYPE
X'02' or X'03' 3270
X'04' SLUTYPEP (default) or 3600/Finance

« Input RU size

The input RU (request unit) size in the BIND must be less than or equal to the RECANY buffer size for the
IMS (also required for static terminals).

« Output RU size

The output RU size in the BIND must be greater than or equal to the OUTBUF size that IMS determines
for the terminal from the selected logon descriptor. This parameter is also required for static terminals.

« Screen size and model number

For non-SNA 3270 and SLUTYPE2 devices, IMS retrieves both screen size (row and column) and model
number from the BIND:

— For static terminals, the screen size is the value that was specified in the system definition.

— For dynamic terminals, IMS determines the screen size from the VTAM definition or from the Logon
exit routine (DFSLGNXO0).

Recommendation: Until the ETO feature was available, IMS ignored the screen size and model
number values in the BIND, because the IMS system definition held this information. Therefore,
check to ensure this definition is accurate.

If you determine that a VTAM definition is inaccurate, you can use the Logon exit routine (DFSLGNXO0)
to override the VTAM-provided screen size and model number. For example, use a terminal naming
convention or MODETAB definition convention. The Logon exit routine can also assign USER=NODE as
a name, when appropriate.

IMS uses the values in the PSERVIC operand of the MODEENT macro, which is used to generate the
VTAM mode table entry that is used for a logon. MFS formats must be available for all screen sizes
that IMS dynamically builds.

Restriction: IMS does not use the 3270 Read Partition Query (RPQ) command to determine the screen
size from the device controller.

For more information on the Logon exit routine (DFSLGNXO0), see IMS Version 15.4 Exit Routines.

Related tasks
“Identifying VTAM device types, screen sizes, and models” on page 76

74 IMS: Communications and Connections

VTAM logon CINIT user data provides IMS with information to build session control blocks. This
information includes logon descriptors, screen size, model numbers, and RU sizes.

Planning for both static and dynamic terminals

Static and dynamic terminals can coexist in the same IMS. However, if users move between static and
dynamic terminals, there are situations you need to plan for.

About this task
If users move between static and dynamic terminals, plan for the following situations:

- IMS maintains separate queues for static and dynamic terminals. A static terminal has one or more
LTERMs associated with it, as controlled by the IMS system definition (or the /ASSIGN command to
move an LTERM to a different terminal). Some users become accustomed to having their output queue
follow them from ETO terminal to ETO terminal. Static terminals do not provide this feature. Users need
to be able to differentiate between static and dynamic terminals, or confusion can result.

« Given one static terminal and one dynamic terminal, separate IMS conversations can exist at the same
time. The dynamic terminal conversation belongs with the user structure and follows the user from
terminal to terminal. ® The static conversation belongs to the static terminal and can only be released
to a static terminal. This situation is user friendly and predictable only when the user is certain of the
terminal type (static or dynamic).

Normally, the terminal operator is able to determine whether a terminal is static or dynamic by checking
the security information that is provided at the end of the DFS3650 (SESSION STATUS) message:

OUTPUT SECURITY AVAILABLE
Indicates that the terminal is dynamic, and output is associated with the signon ID.

NO OUTPUT SECURITY AVAILABLE
Indicates that the terminal is either statically defined or that ETO created it by using one of two
methods:

 Using a node user descriptor
 Using the Signon exit routine to assign the node name to the user structure

In either case, the output is associated with the terminal, rather than with the user.
Exception: Message DFS3650 might be suppressed if you use the NOTERM option.

Note: You can secure transaction outputs for statically defined VTAM terminals by specifying the
STATICOUTSEC parameter in the DFSDCxxx member of the IMS PROCLIB data set. In this case, outputs
are associated with sign-on IDs. If the current user ID does not match the sign-on user ID, the output is
discarded.

Recommendation: To ease migration and limit possible confusion, convert to dynamic ETO terminals by
using logical groupings within your organization, such as departments or floors.

Defining terminals for growth

When designing your ETO implementation, be sure to plan for growth in your network.

About this task
Recommendations:

- Toincrease future growth potential and system availability, minimize the use of descriptors. The
Logon, Signon, and Destination Creation exit routines should provide enough customization, thereby
eliminating the need for unique descriptors beyond those that are required for specific terminal types.

6 This assumes that the Signon exit routine (DFSSGNXO0) sets the same user name each time, as is usually the
case.

Chapter 5. Administering the Extended Terminal Option 75

- To ensure user data is correctly handled, design exit routines carefully. In particular, carefully plan for
user data that is specified during the logon process. Exit routines should work correctly, regardless of
whether user data is specified.

Some terminal types, such as Finance and SLU P terminals, require user data that specifies signon
information. If this data is missing, the equivalent information must be provided in the Logon exit
routine (DFSLGNXO0).

Related tasks

“Identifying VTAM device types, screen sizes, and models” on page 76
VTAM logon CINIT user data provides IMS with information to build session control blocks. This
information includes logon descriptors, screen size, model numbers, and RU sizes.

Related reference
Transaction Manager exit routines (Exit Routines)

Identifying VTAM device types, screen sizes, and models

VTAM logon CINIT user data provides IMS with information to build session control blocks. This
information includes logon descriptors, screen size, model numbers, and RU sizes.

About this task

The information must be accurate to ensure that the correct terminal-related control blocks is built
from information in the logon descriptors. Carefully define your VTAM PSERVIC parameters to ensure
that IMS selects the appropriate logon descriptors and establishes screen sizes using specific terminal
characteristics.

The BIND is rejected if the input and output RU sizes in the BIND are incompatible with the IMS RECANY
and descriptor OUTBUF sizes.

Defining device types

If the definitions are coded incorrectly, IMS chooses the wrong MFS format and device characteristics,
possibly causing screen format errors.

IMS dynamic terminal control blocks are built from definitions in a combination of the following:
« The logon descriptor

« Information that VTAM passes to IMS during logon

« The MFS device characteristics table

VTAM passes the physical terminal characteristics to IMS. The following fields have information that IMS
uses to determine device types:

« LUTYPE field from the VTAM PSERVIC parameter of the VTAM MODEENT macro
« TS profile from the TSPROF parameter of the VTAM MODEENT macro

Non-SNA 3270 printers and displays

The default descriptor names for non-SNA 3270 printers and displays are DFS327P and DFS3270.
Rules required for defining non-SNA 3270 devices are:

« The TSPROF parameter of the VTAM MODEENT macro must be 2 or 3.

« The PSERVIC parameter of the VTAM MODEENT macro must specify LU Type=0.

- Byte 12 in the VTAM PSERVIC parameter must be modified so that it distinguishes a printer from a
video. The following table shows the content that specifies each device type based on the bit location in
byte 12:

76 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_tmexitroutines.htm#tmexitroutines

Table 4. Bits in byte 12 of the VTAM PSERVIC parameter

Bits in byte 12 Content

0-1 Device type:

00
Unspecified device type

01
Printer device

10
Display device

11
Display/printer device (3275)

2-7 Reserved.

If you specify nothing (B'00"), the default is B'10', which is a display device. 7

Related reading: For more information on defining non-SNA 3270 devices, see z/0S Communications
Server: SNA Programming.

LU type-2 devices

The following is a list of rules required for defining SLU-2 devices:

e The TSPROF parameter of the VTAM MODEENT macro must be 3.

« The PSERVIC parameter of the VTAM MODEENT macro must specify LU Type=2.

Related reading: For more information on defining LU type—2 devices, see z/0S Communications Server:
SNA Programming.

3275 devices

VTAM definitions alone cannot identify a 3275 device as it is logging on. Additional information
(UNIT=3275) must be specified in a logon descriptor. Define this descriptor in the CINIT user data or
in the Logon exit routine. The descriptor itself must be identified as a 3275 device type.

Static 3275 devices are defined in the IMS system definition as follows:

TYPE UNITYPE=3270 TERMINAL UNIT=3275,TYPE=3270-An,SIZE=(24x80),COMPT=PRT1

The 3275 has only one buffer. This forces the display and printer components to be the same model. The
VTAM definitions for a dynamic 3275 as statically defined are:

PSERVIC=X'000000000000185000007ECO"

NTO devices

The terminal must identify itself as an NTO device in one of the following ways:

« LU presentation services profile in the BIND image must specify LU1.

« When the LUTYPE is NTO, IMS uses the data stream compatibility byte to precisely define the specific
NTO device type. If the LUTYPE specified is SLUTYPEL, the data stream compatibility byte is ignored.
The terminal is assumed to be an actual SLUTYPE1 as defined on the logon descriptor.

« Logon exit routine, if available, must accept the DFSNTO (default) logon descriptor or specify an
NTO logon descriptor that is defined by your installation using the node name or LOGOND user data
parameter.

7 B'00' means bits 0 and 1 equal 00. B'10' means bits 0 and 1 equal 10.

Chapter 5. Administering the Extended Terminal Option 77

« The data stream compatibility byte in the CINIT specifies the device type. WTTY indicatesa TTY NTO
device. If nothing is specified, the device type is LUNS NTO.

LU2 and non-SNA 3270 screen size and model information

After the Logon exit routine approves the logon, BIND image data (screen-size) and feature information
from the logon descriptor are used to search the MFS device characteristics table for the appropriate MFS
device information.

If the model is specified in the screen size control byte the MFS device characteristics table is not
searched. A DFS3646 error message is issued if no match exists on screen-size and feature. The
information from the proper MFS device characteristics table entry is then used for that device. This
information in the MFS device characteristics table comes from the IMS system definition or the MFSDCT
utility (DFSUTBO0O0).

If the screen-size control byte is X'7F' and both the default and alternate screen-sizes are specified, a
search of the MFS device characteristics table using alternate screen size commences. If no match is
found, another search begins using the default screen size. If no screen size is found, message DFS36461
is issued to the operator.

The screen size (the product of the lines and columns) must be in the range 80-16384. The lines and
columns must each be in the range 1-255.

If the screen size and features of the 3270 device that is logging on maps into two or more MFS device
characteristics table entries, the first entry in the table that matches the screen size and features is
selected.

If the screen-size control byte (the 11th byte of the PSERVIC on the VTAM MODEENT) is X'00' and both
default and alternate screen-sizes are specified, a search of the MFS device characteristics table using the
default screen-size occurs. If no match is found, another search begins using the alternate screen-size.

Use the Logon exit routine, DFSLGNXO, to override the screen-size or model for the device during logon.

LU2 screen-size and model information
Screen-size and model information applies to LU type—2 devices.

About this task

The following is an algorithm IMS uses to determine the model or screen size for ETO terminals:

Procedure

1. Screen-size is established based on the model specification in the VTAM PSERVIC. IMS determines
the model by checking the screen-size control byte in the VTAM PSERVIC field for an X'01', X'02', or
X'03". The model is established accordingly. Screen-size specifications are ignored when the model
is specified. X'01' represents a model 1 with a 12x40 screen-size, and X'02' and X'03' represent a
model 2 with a 24x80 screen-size. If the model is specified, the MFS device characteristics table is not
searched for MFS device information. The features are obtained from the logon descriptor.

2. Screen-size is established based on the screen-size specifications in the VTAM PSERVIC. A value of
X'7E' in the screen-size control byte causes the default screen size in the VTAM PSERVIC to be used. A
X'7F' causes the alternate screen-size to be used first to search the MFS device characteristics table.
If no match is found, the default screen-size is used to search; the first match is the screen-size. If no
match is found, message DFS36461 is sent to the operator.

3. If the screen-size control byte is X'00', the default and alternate screen-size specifications in the VTAM
PSERVIC are used to search the MFS device characteristics table for MFS device information. If a
match is made on the default size, the default is used. If a match is made on the alternate size, the
alternate is used. If no match is made, the logon is rejected.

4. If the screen-size control byte is X'00' and no screen-size is specified, the device is defaulted to a
model 2 device, and the screen-size is established (24x80).

78 IMS: Communications and Connections

5. The screen-size is established in the BIND parameter in the default screen-size field. The erase write
(EW) command is always used.

Results

If you want to override the model value, use the Logon exit routine (DFSLGNXO). Valid values are
X'01'and X'02', corresponding to model 1 and model 2 in the logon descriptor. Screen-size and
model specifications in the VTAM PSERVIC are ignored. Model=X'01' represents a 12x40 screen-size.
Model=X'02' represents a 24x80 screen-size. The MFS device characteristics table is not searched for
MFS device information. The features are obtained from the logon descriptor.

If you want to override the screen-size value, use the Logon exit routine, DFSLGNXO. Be aware that if you
override the model, the screen-size override is ignored. The features from the logon descriptor and the
screen-size are used to search the MFS device characteristics table for the MFS device information.

Non-SNA 3270 screen-size and model information
Model information applies to VTAM 3270 Record-Mode devices (non-SNA 3270s).

About this task

To determine the model or screen-size for ETO terminals IMS uses the following algorithm:

Procedure

1. Screen-size is established based on the model specification in the VTAM PSERVIC field. IMS
determines the model by checking the screen-size control byte in the VTAM PSERVIC field for X'01',
X'02', or X'03". The model is established accordingly. Screen-size specifications are ignored when the
model is specified. X'01' represents a model 1 with a 12x40 screen-size, and X'02' and X'03' represent
a model 2 with a 24x80 screen-size. If the model is specified, the MFS device characteristics table is
not searched for MFS device information. The features are obtained from the logon descriptor. Device
type and screen-size are determined from the model value.

2. Screen-size is established based on the screen-size specifications in the VTAM PSERVIC field. A value
of X'7E' in the screen-size control byte causes the default screen size in the VTAM PSERVIC field
to be used. A X'7F' causes the alternate screen-size to be used first in searching the MFS device
characteristics table. If no match is found, the default screen-size is used to search; the first match
is the screen-size. If no match is found, message DFS36461 is sent to the operator. Device type and
screen-size are implied by the model value.

3. If the screen-size control byte is X'00', the default and alternate screen-size specifications in the VTAM
PSERVIC field are used to search the MFS device characteristics table for MFS device information. If
a match is made on the default size, the default is used. If a match is made on the alternate size, the
alternate is used. If no match is found, the logon is rejected. Device type and screen-size are implied
by the model value.

4. If no model information and screen-size are specified in the VTAM PSERVIC field, IMS uses the
CINIT's model byte. Model type is established by the VTAM definition statement FEATUR2. The model
information applies only if the screen-size control byte is X'00' and if the screen-size is also X'00'. This
applies to printers and displays. X'00' is the default and corresponds to a model 1. X'01' corresponds
to a model 2. Device type and screen-size are implied by the model value.

5. The screen-size is used to determine the type of write command used. If the screen-size is equal to
960 or greater than 1920, IMS uses erase write alternate (EWA). If the screen-size is less than or
equal to 1920 and not equal to 960, IMS uses erase write (EW). The device type and screen size are
determined from the model value.

Results

If you want to override the model value, use the Logon exit routine (DFSLGNXO). Valid values are
X'01"and X'02', corresponding to model 1 and model 2 in the logon descriptor. Screen-size and
model specifications in the VTAM PSERVIC are ignored. Model=X'01' represents a 12x40 screen-size.

Chapter 5. Administering the Extended Terminal Option 79

Model=X'02' represents a 24x80 screen-size. If the model is specified, the MFS device characteristics
table is not searched for MFS device information. The features are obtained from the logon descriptor.
Device type and screen-size are determined from the model value.

If you want to override the screen-size value, use the Logon exit routine (DFSLGNXO). Be aware that if
you override the model, the screen-size override is ignored. The features from the logon descriptor and
the screen-size are used to search the MFS device characteristics table for the MFS device information.
Device type and screen-size are implied by the model value.

Screen definition examples

The following examples show the PESRVIC parameter in the VTAM mode table, what the equivalent
TERMINAL macro parameters would be for a static terminal, and the corresponding MFS DEV statement
TYPE parameter, which is used for both static and ETO terminals.

« LUO (non-SNA 3270 video)
— VTAM mode table: PSERVIC=X'000000000000000000000200"
— TERMINAL macro: UNITYPE=3270 UNIT=3284/86 MODEL=2
— MFS DEV statement: TYPE=(3270P, 2)

« Model 2 non-SNA 3270 Printer
— VTAM mode table: PSERVIC=X'000000000000000000000240"
— TERMINAL macro: UNITYPE=3270 UNIT=3284/86 MODEL=2
— MFS DEV statement: TYPE=(3270P, 2)

« Non-SNA 3270 Display (model specified)
— VTAM mode table: PSERVIC=X'000000000000000000000080"
— TERMINAL macro: UNITYPE=3270 MODEL=1
— MFS DEV statement: TYPE=(3270,1)

Model information can come from the FEATUR2 parameter for non-SNA 3270; if this parameter is not
specified, this is a model 1 (screen-size 12x40). Assume that FEATUR2=1 (specified or default).

« Non-SNA 3270 Display (model specified)
— VTAM mode table: PSERVIC=X'000000000000000000000080"
— TERMINAL macro: UNITYPE=3270 MODEL=2
— MFS DEV statement: TYPE=(3270,2)

Model information can come from the FEATUR2 parameter for non-SNA 3270; if this parameter is not
specified, this is a model 2 (screen-size 24x80). Assume that FEATUR2=2.

« Non-SNA 3270 Display (screen-size specified)
— VTAM mode table: PSERVIC=X'000000000000185000007E80"
— TERMINAL macro: UNITYPE=3270 TYPE=3270-A2,SIZE=(24,80)
— MFS DEV statement: TYPE=3270-A2, where A2=24x80

For a SLU-2 device, UNITYPE=SLUTYPE2 would be specified (also note the change to the PSERVIC
field).

The screen-size comes from the default screen-size field (24x80). (For a SLU-2 device, the first byte of
the PSERVIC field would be X'02'. The last byte would be X'00").

« Non-SNA 3270 Display (screen-size specified)
— VTAM mode table: PSERVIC=X'000000000000205000000080"
— TERMINAL macro: NITYPE=3270 TYPE=3270-A3,SIZE=(32,80)
— MFS DEV statement: TYPE=3270-A3, where A2=32x80

80 IMS: Communications and Connections

The screen-size comes from the default screen-size field (32x80). (For a SLU-2 device, the first byte of
the PSERVIC field would be X'02'". The last byte would be X'00").

« Non-SNA 3270 Display (model specified)

— VTAM mode table: PSERVIC=X'000000000000000000000280"
— TERMINAL macro: UNITYPE=3270 MODEL=2
— MFS DEV statement: TYPE=(3270,2)

This is a model 2 non-SNA 3270 display (24x80).
« SNA 3270 Display (model specified)

— VTAM mode table: PSERVIC=X'020000000000000000000280"
— TERMINAL macro: UNITYPE=3270 MODEL=2
— MFS DEV statement: TYPE=(3270,2)

This is a model 2 SNA 3270 display (24x80).

Planning a high-security environment with ETO

ETO enhances the security of your IMS system. You can customize the ETO security features for your
installation needs.

For example, you can customize exit routines that apply to both static terminals and ETO dynamic
terminals.

The ETO security features allow you to control each of the following;:

The physical connection of terminals to IMS.
« User signon to IMS.

Output to users or nodes.
« Message queuing to users. You can customize message queuing two ways:

— Automatically allocate an LTERM to a user that you identify at signon
— Use the Destination Creation exit routine (DFSINSXO0)
« Command and transaction security, by using RACF (or an equivalent SAF-compliant security product).

Static versus dynamic terminals

You define static terminals during system definition to associate an LTERM with a particular physical
terminal. Any user at a terminal can receive output messages that are queued for that terminal,
regardless of whether signon is required for that terminal.

The major benefit of ETO is that dynamic LTERMs (output message queues) are managed separately from
the terminals and are assigned to a user name. The user can obtain output only after signing on. This
dynamic LTERM-to-user association is maintained until the user signs off, and it remains after signoff if
IMS does not delete the user structure.

Planning for MFS

After you implement ETO dynamic terminal support, the number and diversity of terminal types is likely to
increase. When a terminal dynamically establishes an IMS session, MFS formats might not be available for
the device type that is requesting the session.

About this task
You can solve this problem by:
- Restricting device types to only those that are used in the MFS definitions for your application programs.

Recommendation: Use the Logon exit routine (DFSLGNXO) to select the desired logon descriptor.

Chapter 5. Administering the Extended Terminal Option 81

- Extending the MFS device output formats to include the new terminal types that connect to the IMS.
Recommendations:

— Use the MFS Generation utility (MFSGU) facilities, such as the STACK statement, to make creating
these additional formats easier.

— Use the MFSDCT utility (DFSUTBOO0) to avoid needing to perform an IMS generation.

Often, multiple device types have similar or identical capabilities, so the distinction of device type might
not be important to your environment. Although IMS application programs are usually not sensitive to
device type, such a dependency can exist. For example, MFS can create different input messages from the
same input data stream, due to differences in the format specification for device input.

Planning user IDs

When planning user IDs for use with ETO there are a number steps you should take.

About this task

The steps include:

Procedure

« Ensure that dynamic user structures have unique names in IMS. Support for unique user IDs depends
on whether user-based security is important. For user-based security, user IDs must be unique to the
user. Otherwise, user IDs can be the same as the terminal LU name.

« Code the Signon exit routine (DFSSGNXO) to provide user ID suffixing, if users need to sign on to more
than one terminal with the same user ID at the same time. Review and select the SGN and RCF EXEC
keyword parameters.

« Analyze how application programs use the user field in the I/O PCB.

Planning user queue names

When planning user queue names for use with ETO there are a number steps you should take.

About this task

When planning user queue names:

Procedure

« Ensure that dynamic user queue names are unique in the IMS. Support for unique queue names
depends on whether user-based security is important. For user-based security, user queue names
must be unique to the user. Otherwise, user queue names can be the same as the terminal LU name.

« Specify user descriptors or provide logic in the Signon exit routine (DFSSGNXO) if the user queue name
cannot be the same as the user name.

- Analyze how application programs use the LTERM field in the I/O PCB.

Planning operations

When planning for operations there are a number of steps you should perform.

About this task

The steps you should take when planning for operations include:

« Update your MTO procedures to reflect the concept of dynamic resources. The MTO needs to become
familiar with the command input fields and response formats.

82 IMS: Communications and Connections

« Update the help-desk procedures to reflect the IMS terminal and user resource structures, as well as
the commands that are required to diagnose user's problems.

« Review and update automated-operator procedures, if necessary.
« Develop procedures for handling the dead-letter queue.
- Identify requirements for autosignoff and autologoff.

« Develop standards for the conditions under which system-wide values should be used and when they
should be overridden.

Planning for MSC support with ETO

You can define MSC physical and logical links by using static system definition macros or you can create
them dynamically by using type-2 CREATE commands.

About this task

You can identify a remote MSC NAME to IMS using an MSC descriptor. The descriptor relates each remote
resource to the link path name of a generated MSNAME macro.

Recommendation: Define remote LTERMs with MSC descriptors to maintain consistency between remote
and local systems.

If you choose not to use MSC descriptors in order, the MSC Verification utility (DFSUMSVO0) recognizes
the remote LTERMs but not the corresponding local LTERMs in the target system. In this case, IMS issues
warning message DFS2331W.

IMS processes MSC descriptors that are associated with MSC links defined within the IMS. IMS ignores
other MSC descriptors. You can maintain a single network definition for remote LTERMs in IMS.PROCLIB
for multiple interconnected IMS systems that use MSC. In this case, each logical link path name must be
unique throughout the entire network.

Coding ETO descriptors

IMS uses ETO descriptors to dynamically build terminal structures and user structures.

The four types of ETO descriptors are:

Logon
User

MFS device
MSC

The basic format for all ETO descriptors is:

Column
Description

1
One of the following descriptor types:

L
Logon descriptor
User descriptor
MEFS device descriptor

MSC descriptor

Comment line (ignored by IMS)

Chapter 5. Administering the Extended Terminal Option 83

’ 1?\lame of the descriptor, using the following conventions:
« Must be one to eight alphanumeric characters.
« For logon and user descriptors, characters are limited to A-Z, #, $, and @.
« For MSC descriptors, use the link name.

12-72

One or more keywords and their parameters, separated by blanks. Use commas to separate multiple
parameters for a single keyword.

73-80
Optional sequence numbers (ignored by IMS).

Related concepts
ETO descriptors (System Definition)

Creating descriptors using the system definition process

To ease migration, you can create a starter set of ETO descriptors (except MFS descriptors) using the
ETOFEAT keyword on the IMSCTRL macro at system definition. You can add to or modify the starter set by
creating an additional IMS.PROCLIB member.

About this task

For MFS descriptors, the system definition creates a device characteristics table based on the stage-1
input that can be used as one of the inputs to the MFSDCT utility (DFSUTBOO). The device characteristics
table contains what the system-defined device characteristics table contains, plus any additional entries
from device descriptors.

Creating descriptors during the system definition process saves you time and ensures that the descriptors
are correct. IMS generates an ETO descriptor report, which provides information on the relationship
between ETO descriptors and the IMS system definition resources that they represent.

Related concepts
Including IMS ETO in the IMS system (System Definition)

Related reference
IMSCTRL macro (System Definition)

Storing descriptors

Descriptors that are created during system definition are stored in the IMS.PROCLIB member, DFSDSCMx.
Subsequent system definitions of the same stage-1 input deck overwrite the DFSDSCMx member.

About this task

Recommendation: To avoid losing descriptors when member DFSDSCMx is replaced, store descriptors
that you create by using TSO or z/0S utilities in IMS.PROCLIB member, DFSDSCTy. If you need to
update descriptors that are created at system definition in DFSDSCMx, use TSO or a z/0S utility (such as
IEBUPDTE) to make the updates.

Creating logon descriptors

Logon descriptors provide IMS with information about the physical characteristics of the terminals
that establish logon sessions. These characteristics must be consistent with the VTAM logon BIND
characteristics.

About this task

This topic describes how to create and use logon descriptors.

84 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_ie0i2tla1039494.htm#ie0i2tla1039494
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_i2hincl.htm#i2hincl
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_imsctrl_macro.htm#ims_imsctrl_macro

Creating logon descriptors during system definition

When you specify IMS system definition options to create ETO logon descriptors, IMS dynamically creates
a logon descriptor for every unique VTAM TERMINAL macro that you have specified (For each TERMINAL
macro definition, a node user descriptor is also created for use as a migration step to ETO).

About this task

IMS system definition can produce up to 37 common logon descriptors for each device type. The
descriptor that defines the largest number of terminals of that type becomes the default logon descriptor.
This logon descriptor assumes the IMS-defined default name for that type. The other terminals of that
type create their own unique logon descriptor by using a suffix on the default name.

For terminal definitions that do not match one of the 37 common descriptors, IMS creates an individual
logon descriptor.

These descriptors are generated as comments (with an asterisk in column 1). For example, xL3270A. To
choose a descriptor that you need, remove the asterisk.

The naming convention for the 37 common logon descriptors that are created during the system definition
process is:

« The last character of the name must be unique.
« Blank for the most common, then 0-9 and A-Z.

Restrictions:

« During system definition, IMS does not create ETO logon descriptors for the primary or secondary
master terminal, or for LU 6.1 terminals that are defined as XRF ISC links.

« The following keywords are not supported on logon descriptors: PU, SIZE, MODEL, TYPE, MSGDEL.

Criteria for selecting logon descriptors

The logon descriptor contains data that is related to the node and the VTAM CINIT. This data allows IMS
to create a control block structure that supports a session.

IMS uses the following criteria (in sequence) to select a logon descriptor:

1. IMS uses existing control blocks for terminals. IMS does not look for a descriptor if it finds existing
control blocks.

2. IMS determines whether the Logon exit routine is used to define logon descriptor names.

For VTAM terminals, the exit routine extracts the name from the VTAM CINIT user data, or another
appropriate algorithm. The LUTYPE and TS= (transmission service level) fields in the VTAM CINIT data
must agree with the selected descriptor; otherwise, the logon is rejected. IMS rejects invalid logon
descriptor names.

3. Inresponse to a request to establish a session (logon), IMS examines the LOGOND parameter. The
LOGOND parameter can indicate the logon descriptor for IMS to use.

LOGOND is a parameter in the VTAM CINIT user data. LOGOND is also a keyword on the IMS /OPNDST
command.

Restriction: LOGOND is not valid for ISC parallel sessions that use VTAM.

4. If IMS does not find a logon descriptor name, it looks for a logon descriptor with the same name as the
VTAM CINIT LUNAME.

Recommendation: Use the node name on the logon descriptor if you expect any of the following
situations:

« You do not expect to add more of the same terminal type.
» You do not have many of the terminal type.

Chapter 5. Administering the Extended Terminal Option 85

« You want to simplify the logic in the Logon exit routine.

« For ISC, you want to specify parameters (such as OUTBUF=) other than the default ISC logon
descriptor, and you have not coded an exit routine.

If these criteria do not yield a valid logon descriptor name, IMS selects a descriptor by using the default
criteria.

Criteria for selecting a default logon descriptor

IMS provides a default logon descriptor for each VTAM terminal type. The logon descriptor name is based
on the LU type and TS profile.

If necessary, you can add logon descriptors. If you do not provide a logon descriptor, and IMS does not
locate one in IMS.PROCLIB or in the Logon exit routine (DFSLGNXO), IMS uses the algorithm shown in
the following table to assign a default logon descriptor name. The VTAM LUTYPE, IMS UNITYPE, and IMS
default logon descriptor names are shown for each terminal type.

The default logon descriptor is determined in one of three ways:

« IMS looks for the most common logon descriptor created during IMS system definition and uses it as
the default.

- If no terminal definition exists for that terminal type, IMS creates a default logon descriptor.
« Your installation can create a default logon descriptor.

Table 5. Mapping for VTAM LUTYPE, IMS UNITYPE, and default logon descriptor names

VTAM LUTYPE IMS UNITYPE Default descriptor name
X'06' LUTYPE6 DFSLU61
X'02' SLUTYPE2 DFSSLU2
X'01' “1” on page 86

SLUTYPE1 (Default):1’onpage8é pFSSLUL

NTO DFSNTO
X'00' SLUTYPEP (Default)“2"onpage86 DFSSLUP
(TS =X'04" Finance DFSFIN

3601 DFSFIN
X'00' 3270 DFS3270
(TS = X'02' or X'03") 3270, UNIT=3284 DFS327P

Notes to table:

1. IMS does not distinguish between SLUTYPEL and NTO terminals; SLUTYPE1L is the default. To support
both SLUTYPEZL and NTO terminals, do the following:

« Override the DFSSLU1 default logon descriptor by using the Logon exit routine (DFSLGNXO) or by
specifying the LOGOND parameter.

« If your installation has no SLUTYPEL terminals, rename the DFSNTO logon descriptor to DFSSLUL in
order to make it the default for LU type X'01' terminals.

2. IMS does not distinguish between SLU type-P, Finance, and 3601 terminals; SLUTYPEP is the default.
ETO considers Finance and 3600 series terminals to be the same. To support both SLUTYPEP and
3600/Finance terminals, do the following:

« Override the DFSSLUP default logon descriptor by using the Logon exit routine (DFSLGNXO) or by
specifying the LOGOND parameter.

« If yourinstallation has no SLUTYPEP terminals, rename the DFSFIN logon descriptor to DFSSLUP in
order to make it the default for LU type X'00' (TS = X'04") terminals.

86 IMS: Communications and Connections

Using NTO, 3600/Finance terminals

Because of conflicting CINIT information, IMS cannot generate DFSNTO or DFSFIN as a default logon
descriptor name. CINIT parameters for SLU 1 are identical to NTO, and SLU P is identical to 3600/Finance.

About this task
Recommendations: For 3600/Finance and NTO terminal types, take each of the following actions:

« Always supply the appropriate logon descriptor name in the Logon exit routine (DFSLGNXO0). You can
generate this name as a constant, based on LU name, LU type, or CINIT user data.

 Ensure that the logon descriptor name is provided as the LOGOND parameter from the BIND user data.

« Ensure existence of a logon descriptor that matches the node name of the terminal that is logging on. If
IMS does not find a default logon descriptor, the logon attempt fails.

Recovering ETO terminals using XRF

To recover ETO terminals in an XRF environment, use the BACKUP= parameter when specifying the logon
descriptor.

About this task
The BACKUP= parameter sets the priority that controls the order in which sessions are switched.

When 3600/Finance and SLU-P terminals are defined as class—2 terminals in an XRF environment,
automatic re-logon and re-signon occur during a takeover.

Related reading: For general information on XRF, see IMS Version 15.4 System Administration.

Creating user descriptors

User descriptors provide information relating to user options and user structure names. IMS needs user
descriptors in order to create control blocks that enable users to use ETO terminals.

About this task
The three types of user descriptors are:

Installation-created
Node user
DFSUSER

IMS chooses the first valid descriptor, using the given sequence. IMS creates DFSUSER and node user
descriptors using system definition options.

This topic describes how to create user descriptors.

Creating user descriptors during system definition
User descriptors are generated from each VTAM TERMINAL or VTAMPOOL SUBPOOL macro.

User descriptors that are created during system definition by using the VTAM TERMINAL macro have the
same name as the terminal. User descriptors that are created by using the VTAMPOOL SUBPOOL macro
have the same name as the subpool.

For user descriptors that are created by using a SUBPOOL macro, you cannot set a response option
(TRANSRESP, NORESP, FORCRESP), because it is defined on the TERMINAL macro for static definitions.
You need to add the response option (appropriate for your installation) to any user descriptor that is
created with a SUBPOOL macro.

Chapter 5. Administering the Extended Terminal Option 87

Criteria for selecting user descriptors

When a user signs on, if the user structure does not exist, IMS selects a user descriptor to build the user
structure.

IMS selects the user descriptor according to the following criteria:

1. An installation-written exit routine can select the name of the user descriptor (user ID, node name, or
DFSUSER).

2. IMS looks for USERD, provided at logon. IMS also looks for a descriptor name (user ID, node name, or
DFSUSER) that is specified in the USER descriptor field of the /SIGN or /OPNDST command.

3. IMS looks for a descriptor that has the same name as the user ID (installation-created user descriptor
only). If IMS finds one, and an LTERM keyword is not specified in the descriptor, IMS creates a user
structure and a single LTERM, both of which have the same name as the user ID.

4. IMS looks for a descriptor that has the same name as the VTAM node (node user descriptor). If IMS
finds one, and an LTERM keyword is not specified in the descriptor, IMS creates a user structure and
a single LTERM, both of which have the same name as the VTAM node. However, no output security is
associated with this user structure. Any user that signs on at a terminal can receive messages that are
queued for that terminal.

5. IMS selects the default user descriptor, DFSUSER. IMS creates a user structure and a single LTERM,
both of which have the same name as the user ID.

Using installation-created user descriptors
You can create your own installation-specific user descriptors that meet important criteria for your site.

The name of the installation-created user descriptor is the same as the user ID. You can add values to
these user descriptors that are not provided with node user descriptors or DFSUSER descriptors.

Using node user descriptors

Node user descriptors help in migrating from static terminal definitions to ETO dynamic terminal
definitions.

During IMS system definition, node user descriptors are created as an option. Node user descriptors can
be useful when exit routines that perform descriptor selection are not yet complete.

Node user descriptors must have the same name as their associated terminals. Therefore, IMS creates
unique node user descriptors that retain user options and user structure names that exist in the system
definition. When IMS system definition creates ETO descriptors, a node user descriptor is created for each
terminal that has a VTAM TERMINAL macro or VTAMPOOL SUBPOOL macro. Node user descriptors are
created even when they match the DFSUSER options (No descriptor is created for an ISC terminal that is
defined for parallel session support).

If the LTERM parameter of the node user descriptor contains the same name as a statically defined
LTERM, the node user descriptor is ignored. IMS issues message DFS3673W. Consequently, all node user
descriptors that are created during system definition are generated as comment statements. To use the
node user descriptors, remove the asterisks.

In most cases, node user descriptors are not needed. You only require node user descriptors when the
default user descriptor (DFSUSER) or the Signon exit routine (DFSSGNXO0) cannot supply the user options
you desire. Using a TSO or a z/0S utility, you can discard most of the node user descriptors that are
created during system definition.

Be aware that when you use node user descriptors, you cannot use ETQ's ability to eliminate the need for
predefining terminals that connect to IMS. Using node user descriptors lose output security for each user
as well.

Recommendations:

88 IMS: Communications and Connections

« If continuous availability of IMS is critical, eliminate node user descriptors as soon as possible. Because
adding new terminals by using node user descriptors requires an IMS restart, use exit routines instead
of node user descriptors.

« To avoid using node user descriptors, use the Signon exit routine (DFSSGNXO0) to have IMS build a user
structure using the node name as the user name. Although this is similar to using node user descriptors,
it avoids predefining large numbers of these descriptors at IMS initialization.

« You can use node user descriptors to start a session when output is available, using /OPNDST, LOGON,
or autologon. To use autologon, specify the SHARE option on the TERMINAL macro.

« If you select a default user descriptor using the Signon exit routine (DFSSGNXO0), you can set a bit to
indicate that IMS should create the user structure using the node name for the user structure name.
This is the same as selecting a node user descriptor. By creating node-name structures by using the
Signon exit routine, rather than by defining a node user descriptor for each terminal, large network
installations benefit from decreased complexity.

Using DFSUSER user descriptors

If IMS does not find a user descriptor that has the same name as the user ID or the terminal that is signing
on, and no exit routine has provided one, IMS uses DFSUSER as the default descriptor.

IMS uses DFSUSER for both signon and application program output processing. Using DFSUSER also
enables IMS to dynamically create a user structure for a sighon request when no other user descriptor is
available.

IMS creates DFSUSER when you specify the system definition options to create ETO descriptors.
DFSUSER contains the options specified most frequently in your IMS system definition, and it should
satisfy most users. However, using the DFSUSER descriptor does not require you to use all of these
options. You can code the Signon exit routine (DFSSGNXO0) to make changes to the structures that are
built by using DFSUSER.

DFSUSER builds a user structure that has the same name as the user ID that is specified on the /SIGN
command. IMS allocates to this user structure a single LTERM, which also has the same name as the user
ID. You can use the Signon exit routine (DFSSGNXO) in order to supply multiple queues, if necessary.

Recommendation: Fully implementing ETO involves creating most user resources using DFSUSER. After
migrating to ETO, use the DFSUSER descriptor for as many users as possible. Minimizing the number of
descriptors reduces the administrative workload of an IMS network.

The user structure name becomes the user ID. When you use the DFSUSER descriptor, you can modify
user structure names and other options by using the Signon exit routine (DFSSGNXO0).

If an application program has a dependency on an LTERM name that exists in an I/O PCB, you can
customize ETO in one of two ways:

» Provide a user descriptor for each user that is to use a particular application program.

« Use the Signon exit routine (DFSSGNXO) to tailor the default action for a subset of the user population.
The Signon exit routine (DFSSGNXO0) and the Destination Creation exit routine (DFSINSXO0) enable you
to dynamically create user structures, even when the specified user descriptors do not contain data to
create LTERMs.

Related reference

Signon exit routine (DFSSGNXO0) (Exit Routines)

Destination Creation exit routine (DFSINSXO0) (Exit Routines)

Chapter 5. Administering the Extended Terminal Option 89

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_dfssgnx0.htm#ims_dfssgnx0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_dfsinsx0.htm#ims_dfsinsx0

Creating MFS device descriptors

With MFS device descriptors, you can define screen size and feature combinations that are not generated
during IMS system definition.

About this task

The MFSDCT utility (DFSUTBO0O) uses the MFS device descriptors in order to update device type, screen
size, and features in the MFS device characteristics table. MFSDCT also uses MFS device descriptors to
generate new MFS default formats, without requiring changes to the system definition. The MFS device
descriptors are not created as part of a system definition, but are instead an optional step after IMS
system definition.

MES device descriptors define terminal characteristics of dynamic terminals that differ from static
terminals. Unless you use exit routines to override screen sizes, you need to ensure that all ETO terminal
screen sizes that are different from those that are defined for static terminals are defined using MFS
device descriptors.

Recommendation: If you have users who log on to terminals that have different device characteristics,
you need to create an expanded set of MFS formats. Input and output messages that are delivered to
non-originating terminals are formatted to the terminal according to the MFS formatting specifications
that are defined for that device.

Building the device characteristics table

When someone logs onto an ETO 3270 or SLU-2 terminal that is connected to IMS, usually the screen size
is provided to IMS in the VTAM CINIT PSERVIC data. Sometimes the model number is also provided.

About this task

IMS uses this screen size and the features that are specified on the logon descriptor in order to search the
MFS device characteristics table, which contains one or more entries. Each entry identifies the following:

The MFS device type
The screen size
The features

Searching the table, you can find the MFS device type. If the search is unsuccessful, the logon attempt is
rejected, and messages DFS36461 and DFS36721 are issued.

The MFS device characteristics table is built in one of two ways:

« The IMS system definition process builds an MFS device characteristics table based on the TYPE=,
SIZE=, and FEATURE= specifications of the TERMINAL macro. Each unique combination has an entry in
the MFS device characteristics table.

« The MFSDCT utility (DFSUTBO0O) builds or modifies an MFS device characteristics table based on
the input of the MFS device descriptor. These descriptors have the TYPE=, SIZE=, and FEATURE=
specifications that the TERMINAL macro has. When the VTAM CINIT PSERVIC indicates a model
number instead of a screen size, the MFS device characteristics table is not searched. A model number
indicates a certain screen size and MFS device type.

The MFS device characteristics table is not searched if the VTAM CINIT PSERVIC field contains a model
number instead of a screen size.

Related reading: For more information on using the MFSDCT utility (DFSUTBO0O0), see IMS Version 15.4
System Utilities.

90 IMS: Communications and Connections

Using the MFSDCT utility (DFSUTB0O)

IMS searches the device characteristics table in order to locate MFS device information during session
initiation only in certain situations.

About this task

IMS searches the device characteristics table during session initiation in the following circumstances:

« The screen size is overridden.
« The model value in PSERVIC is X'00', X'7E', or X'7F".

The MFSDCT utility (DFSUTBO0O) enables you to define screen sizes that are not defined during IMS
system definition. The MFSDCT utility uses MFS device descriptors in PROCLIB member DFSDSCMx and
DFSDSCTy, without performing an IMS system definition. The new screen size definitions are added to
those that are already defined.

The MFS utility does the following;:

» Reads device descriptors from IMS.PROCLIB members DFSDSCMx and DFSDSCTy.
« Builds one device descriptor table entry statement for each new device descriptor.
« Terminates if no descriptors are specified.

- Optionally loads the existing device characteristics table from IMS.SDFSRESL, and builds one entry
statement for each existing table entry.

« Passes the table entry statements and the DCTBLD and MFSINIT macros as input to assembler.

« Prepares assembler output as a new or updated device characteristics table, as well as a new set of
default MFS format definitions. Output is in separate files for subsequent processing.

The MFSDCT utility procedure is found in IMS.PROCLIB. You must evaluate the screen size requirements
and code MFS device descriptors to meet those requirements. The MFSDCT utility must generate all
possible combinations of screen sizes and features that your installation might require.

To use the MFSDCT utility, follow these steps:

Procedure
1. Execute DFSUTBOO (the MFSDCT utility).
. Assemble the new device characteristics table.

2
3. Link edit the new device characteristics table into IMS.SDFSRESL.
4

. Execute phase 1 of the MFS Language utility in order to generate new default MFS format control
blocks.

5. Execute phase 2 of the MFS Language utility; the new default MFS formats are loaded into
IMS.FORMAT.

Results

Problems with the device characteristics table are often indicated by error messages DFS36461 and
DFS36721I during logon processing.

Related reference
MFS Device Characteristics Table utility (DFSUTB0O) (System Utilities)

Chapter 5. Administering the Extended Terminal Option 91

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sur/ims_dfsutb00.htm#ims_dfsutb00

Creating MSC descriptors
MSC descriptors relate remote LTERMs to statically defined MSC links.

About this task

IMS creates MSC descriptors when you specify IMS system definition options to create ETO terminal
descriptors. MSC descriptors relate remote NAME macros to defined MSC links.

Recommendation: Define all LTERMs in remote IMS systems by using MSC descriptors. The MSC
Verification utility in the target IMS system can then associate the remote LTERMs with the corresponding
local LTERMs. IMS issues message DFS2331W if the corresponding local LTERMs are not found.

IMS processes only those MSC descriptors that are associated with the MSC links that are defined within
the system being initialized. IMS ignores all other MSC descriptors. If each logical link path name is
unique in the network, you can maintain your network's MSC definition source in a single PROCLIB
member, IMS.PROCLIB.

Exit routines

You can customize ETO with a variety of exit routines delivered with IMS.
You can use the following exit routines to customize ETO:

« Initialization exit routine (DFSINTXO)

 Logon exit routine (DFSLGNXO0)

- Logoff exit routine (DFSLGFXO0)

« Signon exit routine (DFSSGNXO0)

« Signoff exit routine (DFSSGFXO0)

« Destination Creation exit routine (DFSINSXO0)

« Greetings Message exit routine (DFSGMSGO0)

If ETO is enabled, these exit routines are loaded during IMS initialization. All non-MSC and non-LU 6.2
VTAM terminals (static or dynamic) can use these exit routines.

You can code these ETO exit routines with a wide range of processing logic for any of the following
purposes:

Enforcing naming conventions

Selecting user queues
« Overriding terminal characteristics, such as screen size
- Enhancing security by limiting access to IMS terminals

Overriding security by allowing signon without using a security product, such as RACF
« Selecting operational parameters, such as timeout values

Related reference
Transaction Manager exit routines (Exit Routines)

Starting ETO

To include ETO in your IMS system, specify ETO=Y in the IMS or DCC startup procedure.

About this task

The default for the ETO= keyword in the startup procedures is ETO=N. If ETO=N remains specified, IMS
rejects requests to establish sessions for undefined terminals. Messages that are destined for nonexistent
qgueues are refused, and IMS issues message DFS064 or an Al status code.

92 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_tmexitroutines.htm#tmexitroutines

When IMS initializes, it calls the Initialization exit routine (DFSINTXO0). You can code this exit routine to
disable ETO, or to create and load data that you want ETO to use. IMS maintains a pointer to this data and
passes this pointer to the ETO exit routines as an input parameter. IMS passes this pointer to non-ETO
exit routines through the SCDINTXP field in the system contents directory (SCD).

When you enable ETO, IMS validates each ETO descriptor:

- If a descriptor is coded incorrectly, IMS ignores it and issues message DFS3640W to the MTO.

« If IMS detects an invalid parameter within a valid descriptor, IMS substitutes the default parameter, and
processing continues with message DFS3641W.

« If IMSis unable to read all the descriptors (for example, because of read errors), IMS abends with
abend U0015. IMS does not abend if it finds one valid logon descriptor and one valid user descriptor.

« IMS does not start a system whose descriptor information is incomplete.

Descriptors, exit routines, and the MFS device characteristics table can be added, deleted, or updated
before IMS initialization time. However, if a control block for a session exists across restart, a change in
the descriptor that built the control block does not take effect until after the control block is deleted.

For example, 3600/Finance, SLU-P, and ISC sessions can warm start with control blocks created from an
original descriptor, even when that descriptor is changed or deleted after the control blocks were created.

Logging onto ETO terminals

You can log on to your terminal in three ways.

About this task

You can use:

« The IMS /OPNDST command, and optionally include signon data.

« The SNA commands INITSELF, INITOTHER, or USS LOGON, and optionally include user data for
signon.

« ETO autologon, which includes user data based on user descriptors or exit routines. The user data is
then passed to signon.

If you specify ETO=Y, you can establish sessions with ETO terminals, but only if each of the following is
true:

« An available logon descriptor provides sufficient information to create the control blocks necessary to
accept the session request.

« In addition to the required logon descriptor, a 3270 or SLU-2 terminal requires an entry in the MFS
device characteristics table that matches its screen-size and features. However, IMS does not search
the MFS device characteristics table if the 3270 or SLU-2 terminal is identified as model 1 or 2.

« If the screen-size control byte is X'7F' in the PSERVIC field of the VTAM MODEENT macro, IMS searches
the MFS device characteristics table using the alternate screen-size. If no match is found, IMS searches
the MFS device characteristics table using the default screen-size. If you specify both sizes, and you
want to use the default screen-size, the Logon exit routine (DFSLGNXO0) must specify the default screen-
size as an override.

« If the user cannot specify the logon descriptor in the user data, you must use the Logon exit routine
(DFSLGNXO) or let IMS choose the default logon descriptor based on the terminal type.

Chapter 5. Administering the Extended Terminal Option 93

Limiting dynamic logon to specific terminal types

If you want to limit dynamic logon to specific terminal types, delete the default logon descriptor for those
terminal types you do not want to logon dynamically.

About this task

You can also reject the default logon for specific terminal types by using the Logon exit routine
(DFSLGNXO0). Dynamic logon for these terminal types fails.

Related concepts

“Criteria for selecting a default logon descriptor” on page 86
IMS provides a default logon descriptor for each VTAM terminal type. The logon descriptor name is based
on the LU type and TS profile.

Creating and reusing LTERM control blocks

A user structure containing an LTERM can be created in a number of different ways.
A user structure containing an LTERM is created:

« When the user signs on, and the user structure does not currently exist

« When an asynchronous message is created for an LTERM, and the LTERM does not currently exist
« When you use the /ASSIGN command to assign an LTERM to a non-existent user.

« The /ASSIGN command is used to assign a non-existent LTERM to a user.

« The /CHANGE USER user AUTOLOGON command is directed to a non-existent user.

The user structure is allocated to a terminal after successful signon.

Using default CINIT or BIND user data formats

Each request for session initiation can include VTAM CINIT or BIND user data to provide logon descriptor
or signon data. Your installation can provide a logon exit routine to process this data.

About this task

IMS can receive optional user data when you establish a session using one of the following methods: 8
« Using an IMS /OPNDST command

 Using autologon

« The RTO provides a user logon

You can expand the user data formats to meet your own requirements. You can either supply the logon
descriptor name in your logon exit routine by using user data, or you can create the logon descriptor name
by using an IMS algorithm.

The user data appears in the CINIT user data field, and it is available to IMS when the VTAM Logon

exit routine is scheduled. One optional parameter, the logon descriptor name, applies to the IMS logon
process. The remaining parameters apply to the IMS signon process and, optionally, to RACF. During
either process, IMS does minimum processing on the CINIT user data parameters before first calling the
optional installation Logon exit routine (DFSLGNXO0), and later calling the Signon exit routine (DFSSGNXO0).

Although the Logon and Signon exit routines can translate any installation-defined user data format, IMS
has defined a default user data format that:

« The installation can expand.

« IMS can process in the absence of exit routines. This format is the logon descriptor name followed by
signon data in the same format as the IMS /SIGN command.

8 ETO ISC terminals do not have optional data available.

94 IMS: Communications and Connections

Restriction: For warm session initiation of an STSN device, the user data must be the same as in the
original logon.

Related reference

IMS control region exit routines (Exit Routines)

/SIGN command (Commands)

Format for CINIT user data parameters (System Programming APIs)

Signing on and queue LTERM allocation

Signing on to an ETO terminal identifies a user to IMS, creates a user structure, and connects this user
structure to the terminal structure.

About this task

Users at VTAM terminals can sign on by:

« Issuing the /SIGN command.
« Signing on at the DFS3649 message screen.
« Providing user data with the session initiation request.

Users that establish a dynamic VTAM session with IMS must enter valid signon data before LTERMs are
allocated to the session. You can require that the signon data be validated by a security product, such as
RACF.

Providing signon data

Users can enter signon data by using one of several methods.

About this task
The methods that users can use to enter signon data include:

« Using the /SIGN command
« Including the signon data with the logon user data
« Coding the Logon exit routine (DFSLGNXO)

Providing sighon data for ISC, SLU-P, Finance, and output-only devices
For dynamic ISC, SLU-P, Finance, and output-only devices, you must provide user signon data at session
initiation.
About this task

IMS validates the signon data and allocates LTERMs to the terminals, based on:

User descriptors in IMS.PROCLIB
Applicable LTERM and user option defaults
Signon exit routine (DFSSGNXO0) output

Restriction: A user cannot enter signon data from an output-only device during logon or when using the /
SIGN command. For a dynamic output-only terminal, users must enter signon data at session initiation.

If a user forgets to include signon data during session initiation for an output-only device, IMS issues
message DFS2085I (with return code 264) to the MTO. If sighon data is omitted for dynamic ISC, SLU-P,
or Finance terminals, IMS issues messages DFS36451 and DFS36721.

Chapter 5. Administering the Extended Terminal Option 95

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_control_region_exits.htm#ims_control_region_exits
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_sign.htm#ims_cr2sign
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.spr/ims_cinit.htm#ims_cinit

Signing on multiple times

Users can concurrently sign on to one or more terminals. These terminals can be a combination of both
static and dynamic terminals.

About this task

For both static and dynamic VTAM terminals, you must specify the EXEC parameter, SGN=M (multiple
signons enabled).

For dynamic terminals, the name of the user structure that represents the user to IMS must be unique.
You can use one of four methods to make the user structure unique:

« Use the Signon exit routine (DFSSGNXO0) to return a 1- to 3-byte suffix to the user ID. The total length of
the user ID plus the suffix cannot exceed eight characters.

Recommendation: Use a naming convention that ensures unique user IDs. For example, you can create
suffixed user IDs using the Signon exit routine (DFSSGNXO0), and check the uniqueness of these user IDs
by using IMS Callable Services.

Recommendation: If you are operating in a sysplex environment, create a naming convention that
ensures unique user IDs across the IMSplex by creating a suffix from the following;:

— As the first part of the suffix, the Signon exit routine can attach the unique part of the IMS system
identifier, which is specified on the IMSID parameter, to the user ID.

— As the second part of the suffix, use IMS Callable Services to choose an available value for the user
on that IMS system.

Example: A user with a user ID of USER signs on to IMSA. A unique suffix of Al is created through this
two-step process:

1. The Signon exit routine appends the A from IMSA to the user ID.

2. The Signon exit routine invokes IMS Callable Services. The exit routine then appends a 1,
representing the first user named USER to sign on to IMSA.

In this example, user IDs must be less than six characters in length.
« Use the Signon exit routine to specify that the user structure name is the same as the node name.
 Use the Signon exit routine to specify a name that is unrelated to the user ID or the node name.

« Specify a user descriptor name that is the same as the node name, causing the name of the user
structure to be the same as the node name. You can do this by using one of the following methods:

— Enter signon data that contains the user descriptor name.
— Use the Signon exit routine to specify the node user descriptor.
— Specify no user descriptor and let IMS use the node user descriptor by default.

Unless you specify SGN=M to enable multiple signons, the user ID for a dynamic user must be unique.
If the user ID is used as the user-structure name, it must be unique, regardless of whether you specify
SGN=M. If the user ID is not used as the user-structure name (for example, by using the Signon exit
routine), you must specify SGN=M for multiple signons.

Recommendation: Assigning a single name to an IMS user is useful in determining output status. If you
use multiple names for individual users (for example, when the Signon exit routine assigns them), you
must provide a means to determine the user names that are created by signons.

Restriction: You cannot use the same name for a dynamic LTERM and a static LTERM that is defined
during system definition.

Related reference

Signon exit routine (DFSSGNXO0) (Exit Routines)

IMS callable services (Exit Routines)

96 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_dfssgnx0.htm#ims_dfssgnx0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_callableservices.htm#ims_callableservices

Receiving DFS3649A, the signon required message
The ETO user must sign on before a session can enter transactions or commands.

The user can enter the /RCLSDST command only before signing on. IMS issues message DFS3649A
(indicating that a /SIGN command is required) in each of the following situations:

 After a signon failure

« After a signoff

- After alogon in which no user data is entered

Any terminal user can then issue a /SIGN ON command to begin the next session.
You do not receive the DFS3649A message in any of the following situations:

« Signon data is included in the VTAM CINIT or BIND.

« The session is an ISC, SLU-P, Finance, or 3270 printer session.

« The terminal is a SLU-1 terminal running in unattended mode.

The terminal is the subject of an autologon attempt.

Related reference

/SIGN command (Commands)
Related information

DFS3649A (Messages and Codes)

Receiving DFS3650I, the session status message

After a user successfully signs on (or if signon is not required), IMS issues message DFS36501, indicating
the status of the session with IMS.

Exceptions: In the following situations, IMS does not send message DFS36501:

« When SLU-1 terminals run in unattended mode.
« When you specify the NOTERM option on the user descriptor.

Message DFS36501 provides information on session status, such as:

« Whether the user is in conversation mode
« Whether user output security exists for the terminal

Related information
DFS3650I (Messages and Codes)

ETO terminal-LTERM relationship

The system programmer is responsible for the relationship between a terminal that is in session with IMS
and a particular user's LTERMs.

For a single-component terminal (such as a SLU 2), IMS creates a single default LTERM name that is the
same as the user ID that was supplied during signon. Using an exit routine or a user descriptor, you can
give the LTERM a different name.

For a multi-component terminal (such as a SLU P), you need to ensure that sufficient LTERMs are created
in order to use that terminal. You can use exit routines, installation-created descriptors, or node user
descriptors to ensure that a sufficient number of LTERMs is created. Otherwise, IMS creates a single
LTERM that is allocated to the first component of the terminal. Regarding node user descriptors, the user
needs to use the node user descriptor to establish the correct relationship between the LTERM and the
node, either explicitly or in the Signon exit routine (DFSSGNXO).

It is possible for an application program to associate a specific LTERM name with a specific terminal. The
system programmer must ensure that names of alternate PCBs are consistent with LTERM names defined
in:

Chapter 5. Administering the Extended Terminal Option 97

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_sign.htm#ims_cr2sign
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.mc/msgs/dfs3649a.htm#dfs3649a
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.mc/msgs/dfs3650i.htm#dfs3650i

User descriptors

Signon exit routine

Insert exit routine

Recovery requirements for ISC, SLU-P, and Finance sessions

How IMS determines which queues to allocate
IMS uses the following method to determine which LTERMs to allocate.

1. If the user control blocks already exist within IMS, these control blocks are reallocated, and the Signon
exit routine is called, if appropriate.

2. If the control blocks do not exist and a user descriptor is specified at signon, IMS looks for the
specified descriptor.

« If the descriptor specified is not the user ID, node name, or DFSUSER descriptor, IMS sends error
message DFS3649A (with return code 148).

« If the descriptor specified is a valid user descriptor for the user that is signing on, IMS builds a table
of available descriptors and calls the Signon exit routine, if appropriate.

« If the Signon exit routine exists and RC=0, IMS continues normal signon processing. If the return
code does not equal O, the signon is rejected.

3. If no user descriptor is specified at signon and no user descriptor is specified in the Signon exit routine,
IMS chooses a valid descriptor from the following (in order):

a. UserID
b. Node name
c. DFSUSER

Related reference
Signon exit routine (DFSSGNXO0) (Exit Routines)

Setting special processing modes

After user signon, you can set the following processing modes by using IMS commands.

About this task
Exclusive mode
JEXCLUSIVE command

Preset destination mode
/SET command
MFS test mode
J/TEST MFS command
Test mode
J/TEST command

These special processing modes, except for the test mode and the preset destination mode, are retained
for the user after signing off and are reestablished with the next terminal on which the user signs on.

When you issue the following commands, IMS creates the required control blocks for a terminal or user, or
it maintains a user's status:

J/EXC USER
Places a user structure in exclusive mode.

/STOP NODE or /STOP USER
Stops a node or user structure.

98 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_dfssgnx0.htm#ims_dfssgnx0

/TEST MFS USER
Places a user structure in MFSTEST mode. When a user signs on, IMS places the terminal in MFSTEST
mode, if the terminal supports MFS.

/TRACE NODE
Traces a logged-on node.

Control blocks are not immediately deleted when special status is removed. They are deleted at the next
checkpoint if they meet all deletion requirements. If an outstanding status exists, they are not eligible for
deletion.

To reset terminal status and make the control blocks eligible for deletion at the next simple checkpoint,
use the following commands:

/END
Clears exclusive and test modes.

/RESET
Removes the preset destination.

/RSTART
Starts stopped resources.

/START
Starts stopped resources. For other status reset by the/START command, see IMS Version 15.4
Commands, Volume 2: IMS Commands N-V.

/TRACE
Sets trace off.

Use the preceding set of commands if the control blocks exist solely for status retention.
You can use the Signoff exit routine, DFSSGFXO0, to reset these states.

Related concepts

“Improving performance by deleting ETO control blocks” on page 108
With ETO, IMS can dynamically delete control blocks. Dynamically deleting control blocks reduces storage
usage and can improve performance.

Printers with ETO

Two methods of implementing printer support exist in an ETO environment: direct printing and associated
printing.

How you implement these two methods depends on how your application programs identify printer
LTERM names.

Direct printing

Direct printing is a printing technique by which application programs insert messages to the VTAM LU
name.

The dynamic LTERM and the user and terminal resources are all named after the VTAM LU name. Many
application programs can queue data to the same printer LTERM, but this can create data interleaving
problems.

Associated printing

Associated printing is a technique for directing application program printer output to a specific printer
node name.

For associated printing, application programs insert messages to the queue that is associated with the
screen-user queue name. User printing requests cause application programs to queue data to different
printer LTERMs. This avoids data interleaving problems.

Chapter 5. Administering the Extended Terminal Option 99

Printer signoff and signon are required to change the user queue. Overhead can be high if the printer has
many users.

Associated printers are logged on automatically when their LTERMs have queued messages, usually
during an IMS restart or during the creation of an LTERM.

Recommendation: Carefully plan how your printers are to be shared among application programs.

By implementing exit routines and application programs, the terminal operator can provide the
destination during logon or signon.

Identifying printer node names

You can identify printer node names in one of two ways.

About this task

The ways that you can identify printer node names include:

Procedure

« As logon user data, you can include one or more printer node names when a user establishes a
session.

= Your installation can modify the MFS format for the DFS3649A greeting message in order to allow the
user to supply the printer node names at signon time. During the signon, however, the Signon exit
routine must be able to detect the printer node names as user data.

Coding the Signon exit routine for associated printing
To use associated printing, code the Signon exit routine (DFSSGNXO0).

About this task
Code the Signon exit routine to do each of the following steps:

« Identify the printer LU name and user name for each screen user.
- Determine printer node names from the input user data.
« Name user-related LTERM structures to service the selected printers.

« Enable application programs to determine (using the user ID) the queues associated with a particular
user so that the programs can insert to the correct message queue (alternate PCB).

« Pass the printer node names to IMS as associated print parameters.

« Determine the user name that is allocated to each printer when users supply printer node names. You
can use either an algorithm or a table to make this determination. The exit routine should pass these
user names to IMS, which then creates the necessary user control blocks.

A unique name should exist for the user ID that is signed on and for each printer-related user that is
required.

Example: To indicate the name of a user's printer identification, add a "P" to the end of the user ID. If
the user ID is AAA, the name of this user's printer identification is AAAP.

« Specify one value for each of up to four printers (the number of simple checkpoints before the user
structure is deleted).

The application program can use the same method as the Signon exit routine in order to determine
the printer LTERM name from the input terminal user ID and queue output data as required through an
alternate PCB. When output data is queued, IMS allocates the user structure to the correct printer and
delivers the output.

After associated printer LTERMs are allocated and then emptied, the queues are deallocated from the
terminal.

100 IMS: Communications and Connections

Related reference
Signon exit routine (DFSSGNXO0) (Exit Routines)

Defining your printers
Printers are usually output-only devices; however, they can be implemented so that they send input.

You need to decide whether to have single-user or multiple-user structures share the same printer. If your
application programs are sensitive to queue names, you might be limited to one or the other approach.

Single-user structure

Using a single-user structure that represents a printer is the simplest method for defining a printer. In
this case, messages sent to the printer are printed in the sequence in which they originate. Interleaving
of output can occur. Multi-segment messages always have all segments printed in contiguous sequence.
Multiple messages might behave differently, depending on their method of origination.

Multiple-user structures

Multiple users are supported for printers. All messages for a single user are printed, and the next

user is selected for printing only when the current user has no more output. Although interleaving of
messages for the same user occurs as it does for single-user structures, the switching of users can
also be equivalent to message interleaving from an application standpoint. Application and operational
awareness of the way printers are shared is important.

The challenges of sharing printers are not unique to dynamic terminals, and in fact are the same as for
static terminals.

IMS prints a separator page whenever the next message to be printed is from a different user. You can
control the contents of this separator page by using an exit routine to change its content; however, this
page is always printed, even if blank. Messages from the same user are not separated by a separator
page. Using the NOTERM option can prevent the DFS3650 separator message from being used.

Sharing printers using ETO
Several users can share printers by using the same output terminal.
Two methods exist for using the same output terminal.

« Users can define a single-user descriptor that contains all the LTERM names that are used to deliver
data to an output device (node).

« Users can define autologon parameters for a node.

Before deciding which of these methods to use, ask these questions:

« Are the LU-to-LTERM relationships generally unchanging?

- Isinterleaving at the message level acceptable?

- Is delaying one user's output acceptable while another user's output is being printed?

« Is continuous autosignoff and autologon processing overhead too excessive for a particular terminal
because of the minimal message delivery rate of each LU user?

The answers to these questions can help to determine your method of implementation:

- If the answer to all of the questions is "yes", consider creating a single multi-LTERM user for the printer.
- If any of the answers is "no", consider dynamic allocation of multiple-user LTERMs, using autologon.
« You can implement a combination of these two options.

Chapter 5. Administering the Extended Terminal Option 101

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_dfssgnx0.htm#ims_dfssgnx0

Operator commands

This topic describes using the /OPNDST and /ASSIGN commands as they are used with ETO.

/OPNDST

The VTAM mode table that is used when the terminal first logs on determines the device characteristics.
However, if the first reference to a terminal is through an /OPNDST command, the MODETABLE operand of
that command determines the device type.

Omitting the MODETABLE operand on the command causes it to default, which might not be desirable.
After the terminal is in session with IMS, the rules for block deletion apply. The device type remains
set until the block is deleted; if the terminal is closed and then reopened, IMS uses the existing block,
if available. If a block is deleted, that block is rebuilt during the next terminal logon. As a result, the /
OPNDST command can have different results, depending on two things:

« Whether the block is still available (and has not been deleted).
« Whether the exit routine or descriptor has been changed since the previous initialization.

/ASSIGN
You can use the /ASSIGN command to move queues from one terminal to another. You cannot use it to
reassign a static terminal to a dynamic (ETO) terminal, or to assign a dynamic terminal to a static terminal.

Related reference
J/ASSIGN command (Commands)
JOPNDST command (Commands)

System definition parameters for ETO

This topic describes the system definition parameters you can use with ETO.

Setting DEADQ status time with the DLQT parameter

User control block structures are normally created in several situations.

About this task

The situations in which user control block structures are created include:
« When a terminal is logged on and a user signs on.
« When the AO exit routine (DFSAEQUO) inserts a message to an LTERM or transaction.

« When an asynchronous transaction output message is sent, or a terminal message switch or /
BROADCAST LTERM command is issued.

Messages might be sent to destinations that are unknown, no longer valid, or nonexistent. IMS sets a
status of dead-letter queue (DEADQ) when an ETO user control block structure or its associated message
gueues have not been accessed within the time limit that is set by the DLQT execution parameter. (For
DLQT, although valid values are 1-365 days, a value of 1 is not usually recommended. It can result in
many premature and misleading DEADQ status settings during the first checkpoint.) The DEADQ status
can be set regardless of whether messages have been queued for the user or whether the user is still
allocated to a terminal. The DEADQ status is set during IMS checkpoints, and the MTO is notified with
message DFS3643.

If the user has messages queued, remove the DEADQ status by signing on the user or by issuing the /
DEQUEUE or /ASSIGN command.

User control block structures without queued messages can result in a DEADQ status. User control blocks
are not deleted if a special status is pending. The status might have been set during the prior signon (such
as response or conversation mode) or as a result of a command (such as /STOP or /EXCLUSIVE). If the

102 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_assign.htm#ims_cr1assign
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_opndst.htm#ims_cr2opndst

control block remains unused for longer than the time specified for the DLQT execution parameter, IMS
assigns the control block a DEADQ status, and the MTO is notified with message DFS3643.

If the user control block has DEADQ status, the status is removed when the user signs on or during the
next checkpoint after all messages are dequeued and recoverable status conditions are removed using
appropriate commands. In the latter case, the control blocks for the user and associated message queues
are also deleted.

User control block structures that have DEADQ status might or might not be allocated to a terminal. In
the case of LU type—6, SLU-P, and Finance terminals, the user structure can be allocated to the terminal
with no active session. Logoff or other session termination can leave these terminals pending message
recovery (SNA STSN). The user remains allocated to the terminal, and messages might or might not be
qgueued. (This combination is not possible for other VTAM terminal types, because a deallocation of the
terminal and user ID is forced at logoff and signoff.)

If the user control block structure is allocated to an LU type—6, SLU-P, or Finance terminal, remove
the DEADQ status by logging on and signing on the user, or by using the /DEQUEUE command. For LU
type—6 (ISC) terminals use the /DEQUEUE command, or force the LU type—6 session to cold start. A
forced-session cold start isa /STO NODE, /ASSIGN (USER TO VTAMPOOL), /STA NODE sequence
that is valid only for LU 6. Forced cold start is not possible for SLU-P or Finance terminals. Clearing the
allocation of an ETO user to a SLU-P or Finance terminal requires an IMS cold start.

In a shared-queues environment, you can use the /DISPLAY QCNT MSGAGE command to find the age of
a queue.

Autosignoff (ASOT)

Autosignoff deallocates users from an idle session. If no activity occurs on a session within an allotted
time, users are automatically signed off and must sign on again in order to use the session.

About this task

The system programmer sets the autosignoff time using the ASOT parameter in the DFSPByyy member.
The time value on the ASOT EXEC parameter does not apply to 3600, SLU P, or ISC devices.

If more than one allotted time value exists, IMS uses the following criteria to determine which allotted
time value to use:

« If the valid ASOT value is specified in the user descriptor, this allotted time value is used.

- If the user descriptor does not specify an allotted time value, the allotted time value from the logon
descriptor is used.

- If the logon descriptor does not specify an allotted time value, the time value from the DFSPByyy
member is used.

- If the DFSPByyy member does not specify an allotted time value, the default value of 1440 is used.
« If the value on the DFSPByyy member is not valid, the default value of 10 is used.

The Logon exit routine (DFSLGNXO) can override the ASOT and ALOT values during logon. The Signon exit
routine (DFSSGNXO0) can override the ASOT value during signon, even when the control block structure
exists.

The values for the allotted time specified on the ASOT parameter in the DFSPByyy member are:
« ASOT = 0

— The user is signed-off immediately when no output is available to be sent. This specification is
normally used with Autologon terminals for signoff immediately when:

- No IMS input or output message is available
- After the last available output message completes

Chapter 5. Administering the Extended Terminal Option 103

— This specification is not recommended for interactive terminals such as 3270 or SLU2 terminals.
These terminals sessions normally return a PA key to continue following signon. Idle time results in
immediate signoff, not waiting for terminal input.

The value on the DFSPByyy member is not used for these device types.
« ASOT = (10 - 1439)
The user is signed off after the allotted number of minutes has elapsed without terminal activity.
-« ASOT = 1440

The user is never automatically signed off. This is equivalent to not having autosignoff. The system
default value for SLU-P, 3600/Finance, and ISC terminals is 1440.

After autosignoff completes, IMS attempts to locate a user that has the same node name that is waiting
for autologon. If IMS finds another user with output waiting, the user is allocated to the terminal, and the
queues are drained.

Autologoff (ALOT)

Autologoff can terminate a session with IMS for a terminal that has been signed off for an allotted period.
After an allotted time, the terminal is automatically logged off.

About this task

The system programmer sets this time on any of the following:

« On the ALOT (auto logoff time) parameter in the DFSPByyy member
- On the logon descriptor that is used to create the session control blocks
« On the EXEC parameter at initialization

If more than one allotted time value exists, the following criteria are used to determine which allotted
time value to use:

- If the ALOT value is specified on the logon descriptor, this allotted time value is used.

- If the logon descriptor does not specify a valid allotted time value, the time value specified in the
DFSPByyy member is used.

- If the DFSPByyy member does not specify an allotted time value, the default value of 1440 is used.

« If the value on the DFSPByyy member is not valid, the default value of 10 is used.

You can specify ALOT=1440 on the logon descriptor for a 3600/Finance, SLU-P, or ISC terminal in order
to specify that no autologoff is desired. The system default value for these devices is 1440. Logon
descriptors created for ISC terminals should have ALOT=1440 specified to show that autologoff should
not occur. The Logon exit routine (DFSLGNXO0) can override the ALOT value during logon, even when the
control block structure exists.

The values for the allotted time specified on the ALOT parameter in the DFSPByyy member are:

ALOT=0
The terminal is logged-off immediately when no signon is in effect. This specification is normally
used in terminal sessions when the user is signed-on automatically during the logon process. During
autologon, signon data can be provided in one of the following ways:

« Signon data supplied by the IMS /OPNDST command
« Signon data supplied by logon user data (BIND)
« Signon data supplied by logon exit (DFSLGNXO0)

There are two modes of operation for using ALOT=0, either of which can be set using the DFSINTXO
User Initialization Exit parameter list.

In default mode, when signon errors are encountered, the session is automatically sighed off and then
logged off; no message is sent. If you do not supply the DFSINTXO exit, or you supply the exit and

104 IMS: Communications and Connections

indicate default mode for ALOT=0, then signon data must be supplied during the logon process. All of
the following error conditions result in automatic logoff:

1. A non-signon, or errors detected during signon or input processing, result in immediate logoff.

2. /SIGNOFF results in immediate logoff.

3. /SIGNON signs off the current user and signs on a new user. However, errors encountered during
the signon process, such as detection of an incorrect or expired password, result in immediate
logoff.

Restriction: Default mode should not be used for interactive terminal sessions that require a
response to the DFS3649 message; these sessions will not wait for input signon and will logoff
immediately.

In alternate mode, when signon errors are encountered, the session is automatically signed off, a
message is sent and the session is logged off. Signon data can be supplied but is not required. All of
the following error conditions result in automatic logoff:

1. A non-signon error detected during input processing results in immediate logoff.

2. No signon data has been provided by the logon serrated (BIND) or the Logon Exit (DFSLGNXO).

3. A /SIGNOFF, or errors resulting from a /SIGNON, cause message DFS3649(A) (Signon Required)
to be sent, and a fixed ten-minute timer set to wait for a new signon. If no signon occurs during
that interval, then the session is logged off.

ALOT = (10 - 1439)
The session is terminated after the allotted number of minutes has elapsed without a signed-on user.

ALOT = 1440
The session is never automatically terminated. This is equivalent to not having autologoff.

Autosignoff and autologoff timer

The VTAM I/0 Timeout Facility (if active) detects users or sessions that should be automatically
terminated.

A timer pops at intervals of one minute if the VTAM I/0 Timeout Facility is active, or five minutes if the
Timeout Facility is not active. The timer starts a routine that determines which resources are due for
autosignoff or autologoff. The specified timeout value is the minimum value for which a user or session
is automatically terminated. Termination actually occurs the next time the timer pops after the specified
timeout value.

Autologon

Instead of using the SHARE option on the TERMINAL macro to request that IMS automatically initiate a
terminal session when output is available, ETO offers autologon support for ETO terminals and users. You
specify autologon parameters when defining the user to IMS.

About this task

Definition: Autologon allows IMS to log on and sign on your terminal automatically. If you specify the
autologon option for a user, the queuing of data to any of the user queues causes IMS to establish a
session. You can specify autologon using:

« AUTLGN= parameter on the user descriptor

« Destination Creation exit routine (DFSINSX0)

« Signon exit routine (DFSSGNXO) for associated printers
« /CHANGE command with the AUTOLOGON keyword

Autologon includes both automatic logon and automatic signon. At restart, IMS attempts to start sessions
with those terminals that are defined with autologon and that have queued data waiting. After the

Chapter 5. Administering the Extended Terminal Option 105

session is established, IMS automatically signs on the terminal. If a queue of waiting users exists and the
allocated queues are drained, the autologon user is signed off, regardless of an existing ASOT value.

IMS manages a serial queue of waiting users if more than one user is contending for the same autologon
terminal. After the autologon user is signed off, the next autologon user for the same terminal is
automatically signed on. When all autologon users have signed off, the terminal is free to begin its ALOT
cycle in order to terminate the session.

Autologon replaces the TERMINAL macro OPTIONS=SHARE for static terminals. OPTIONS=NOASR (no
automatic session restart) on the logon descriptor is ignored for autologon printers. IMS always assumes
OPTIONS=ASR for autologon printers.

Autologon is normally specified for output-only terminals. Autologon and occasional users generally do
not share the same terminal session, but sharing terminal sessions is possible for interactive terminals.
Interactive users on terminals that are subject to autologon must supply user signon data with the
session initiation request (logon) in order to avoid contention with autologon output. Occasional terminal
users can use autologon in order to have output delivered to default terminals when the output becomes
available after signoff. If a terminal is stopped, the /START NODE command does not start a session.
The /OPNDST NODE USER command can be used to restart the session.

Assigning output

The following topics discuss managing asynchronous output and output destinations.

Asynchronous output
Asynchronous output can easily be sent to an invalid destination by a simple typographical error.

This is because ETO provides IMS the flexibility to create user structures for any authorized user that is
signed on. IMS automatically creates user structures for message switches and for the application insert
call (ISRT) process when the LTERM cannot be found.

With ETO, all destinations are valid unless they are rejected by exit routines. Therefore, you can
mistakenly create queues for users if you make typographical errors when entering any of the following:

Alternate PCBs

Message switches
/BROADCAST commands
MSC output

The LTERMs used in the previous situations are known as dead-letter queues. IMS provides commands for
the MTO to monitor these queues and dispose of them.

The two types of asynchronous output destinations are valid and invalid.

A valid destination is one intended to receive output. An invalid destination is one that is not intended to
receive output (for example, a misspelled destination).

Asynchronous output to a valid destination

You can send asynchronous output (such as inserts, broadcasts, and message switches) only after
enabling ETO and defining a valid ETO descriptor and a valid destination LTERM name.

About this task
ETO is enabled by specifying ETO=Y in the IMS or DCC startup procedure.
The ETO descriptor is used for creating a user structure.

If control blocks exist for a previously created user structure and LTERM, the control blocks are reused.

106 IMS: Communications and Connections

Asynchronous output to an invalid destination

IMS refers to data that cannot be delivered as "dead letter".

About this task
Data cannot be delivered in each of the following situations:

« No autologon destination is available for queued output.
« The user ID to which the data is associated is not a valid user ID.
- The user signon is always rejected by an installation Signon exit routine.

« Aninvalid destination is specified on the input or output message (for example, resulting from a typing
error).

You can specify a DLQT value on the EXEC parameter at initialization in order to automatically notify the
MTO when LTERM queues exceed this value and have not dequeued data or removed the status. You can
use each of the following commands against dead-letter queues:

« Use the /DISPLAY USER DEADQ or /DISPLAY STATUS USER command to identify users whose
LTERM queues are older than the dead-letter-queue time (DLQT), and who have not dequeued data or
removed the status.

« Use the /ASSIGN command to reassign dead-letter queues to other dynamic users so they can review
queued data.

« Use the /DEQUEUE command to purge data on the dead-letter queues.

In a shared-queues environment, you can use the /DISPLAY QCNT MSGAGE command to determine the
messages that are considered to be dead-letter queues.

Related reference
IMS commands (Commands)

Delivering output messages to non-originating terminals
IMS sends your output to the terminal at which you are signed on.

Using ETO, you can receive your output messages at a different terminal than the one from which
you entered the input. However, the input and output messages are formatted subject to the MFS
specifications defined for both the terminal and messages, as follows:

« MFS formatting is mandatory for 3270R (non-SNA) and SLU-2 terminals, except when you use MFS
bypass. MFS formatting is optional for all other VTAM terminals. Use MFS on a message-by-message
basis, based on MID and MOD control block availability. MFS paging support is not available for SLU-1
or NTO terminals.

 You must define MID and MOD control blocks by using device statements that generate appropriate DIF
and DOF control blocks. This allows you to map the message to and from a specific terminal type at
the time that the message is sent to or received from the terminal. Default mapping occurs when the
appropriate MFS blocks are not available. IMS issues error message DFS057 when the format blocks
cannot be found.

If you plan to deliver output messages to non-originating terminals, you must develop or expand MFS
formats, procedures, and restrictions. This allows users to move freely between terminals.

Inadvertent output data streams

Using ETO, dynamic terminal users can move freely between terminals; limited only by installation
constraints. It is possible to erroneously send terminal-specific data to the wrong terminal type by
mistyping the IMS /ASSIGN command.

When data is sent to the wrong terminal, the data, when delivered, has errors or is not recognizable. Be
sure to create MFS definitions for all terminal types for which users can log on.

Chapter 5. Administering the Extended Terminal Option 107

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_ic_imscmdsover.htm#ims_cr1-gen2

Signhing off

Signing off of an ETO terminal ends the identification of a user to IMS, and in most cases disconnects the
user structure from the terminal structure and deletes the user structure.

When a user signs off from an ETO VTAM terminal, IMS calls the Signoff exit routine (DFSSGFXO0).

Recommendation: If you have provided a Signon exit routine (DFSSGNXO0) that maintains system
information, provide a Signoff exit routine (DFSSGFXO0) also, to complement that processing.

Logging off

When a user logs off from a VTAM terminal when ETO is used, IMS calls the Logoff exit routine
(DFSLGFXO0).

Recommendation: If you have provided a Logon exit routine (DFSLGNXO0) that maintains system
information, provide a Logoff exit routine (DFSLGFXO0) also, to complement that processing. Ensure that
the Logoff exit routine handles all non-MSC and non-LU 6.2 terminals with which IMS communicates.

Using the Logoff exit routine, you might want to maintain a count of the terminals that are logged on.

Improving performance by deleting ETO control blocks

With ETO, IMS can dynamically delete control blocks. Dynamically deleting control blocks reduces storage
usage and can improve performance.

If special terminal processing options (TRACE and STOPPED) are reset, IMS deletes session control
blocks if one of the following occurs:

« No user is signed on, and a checkpoint occurs.

« The session is terminated normally or abnormally by either an MTO command or by an autologoff
timeout.

If the node is a 3600/Finance or SLU P terminal, message resynchronization is necessary. The control
blocks are not deleted following warm-session termination, but will be deleted following a /CHANGE
NODE COLDSESS command. For ISC terminals, the control blocks are deleted after a cold-session
termination. The control blocks remain, however, after an ISC warm-session termination.

If the user resets special processing options, such as those that exist after issuing a /SET, /TEST MFS,
or /EXCLUSIVE command, and issues the /SIGN OFF command (or is automatically signed off), IMS
deletes the user control blocks if:

« No messages are queued to any LTERMs related to this user.

« The user is not in conversation, Fast Path mode, or full-function response mode.

If the preceding conditions exist, dynamically created user control blocks are deleted. If the preceding
conditions do not exist, the user control blocks can continue to exist until the conditions exist or until an

IMS cold start occurs. After special processing options are reset and if all other criteria for deletion exist,
the control blocks are deleted at the next checkpoint.

Important: User control blocks can be saved across session and IMS restarts by using the /CHANGE or
the /ASSIGN commands with the SAVE keyword. These user control blocks are then retained until the
commands are reentered with the NOSAVE keyword.

For terminals or users in full-function response mode, IMS does not delete user control blocks after a
terminal logoff or a user signoff if both SRMDEF=LOCAL and RCVYRESP=YES, because in this case the
full-function response mode is recoverable.

Note: In an IMSplex, if the status recovery mode is GLOBAL or NONE, the local control blocks are deleted
immediately after logoff or signoff.

108 IMS: Communications and Connections

IDCO Trace facility

You can use the IDCO Trace facility to diagnose logon and logoff errors.

About this task

This facility provides information that the IMS message DFS36721 cannot provide. To use the facility,
enter: /TRACE SET ON TABLE IDCO. The facility traces the following events:

« Errors that occur in the IMS VTAM exit routines (within module DFSCNXAO). These errors are also
identified in a DFS36721 message, regardless of whether the IDCO Trace is in effect.

« Errors that occur when attempting to log onto a nonexistent VTAM node (such as entering a /OPNDST
command for a nonexistent terminal). IMS issues associated messages DFS20611 or DFS20621.

« Synchronization anomalies that occur between the time that an IMS VTAM exit routine completes
processing and the time that the request is accepted by normal IMS processing. The result is a X'6701'
log record identified with a VTPO string.

Related reference

/TRACE TABLE command (Commands)

Format of the 6701 log record with VTPO identifier (Diagnosis)

IDCO trace table entries (Diagnosis)

ETO and LU 6.1 (ISC) terminals

For LU 6.1 (ISC) terminals, IMS supports parallel sessions to the same node name. In this case, a
separate structure is built for each session. However, each session and its associated structure operate
independently, as a separate terminal.

ISC supports an SNA-defined user-data area within the BIND. When establishing a session for ISC, each
half-session partner is identified through an appropriate session qualifier that is included as user data
with the logon. These two qualifiers cannot be specified using the DFSLGNXO exit routine. One belongs
to each half session. IMS uses the session qualifier of the current half session as a user structure. This
user structure is used to allocate an associated set of LTERM queues and to automatically provide a RACF
signon, if required. The other half-session qualifier is saved with the IMS user structure. Both qualifiers
are used for session-restart requests and SNA STSN message resynchronization after session failures.

Restriction: The SNA-predefined format for user data does not support some of the parameters and
options of the non-ISC end-user format:

« The RACF password and group name are not supported. IMS supports RACF signon for ISC with
PASSCHK=NO during user structure allocation as part of session initiation.

« The LOGOND and USERD are not supported. IMS uses defaults, unless specified on the Logon and
Signon exit routines.

- When autologon is generated for ISC terminals, the AUTLDESC keyword in the user descriptor is
ignored, and the LOGOND keyword in the user data is omitted.

Related tasks

“Using default CINIT or BIND user data formats” on page 94
Each request for session initiation can include VTAM CINIT or BIND user data to provide logon descriptor
or signon data. Your installation can provide a logon exit routine to process this data.

Related reference
Logon exit routine (DFSLGNXO) (Exit Routines)

ETO and STSN terminals

This topic provides information on administering ETO for STSN terminals.

Chapter 5. Administering the Extended Terminal Option 109

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_tracetable.htm#ims_cr2tracetable
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dgr/ims_6701_format_vtpo.htm#ims_6701_format_vtpo
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.dgr/ims_idc0_trace_table_entries.htm#ims_idc0_trace_table_entries
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_dfslgnx0.htm#ims_dfslgnx0

SNA STSN terminal considerations

ETO terminals that use the SNA STSN function (Finance, SLU-P, and ISC) must provide a user queue name
during logon, because this queue is used to resolve the sequence number exchange that is part of the IMS
connection process for this type of terminal.

About this task

The ways to provide the user name include:

CINIT data sent by the terminal

« CINIT data provided using a separate terminal host product, such as VTAM unsolicited system services
A user Logon exit routine (DFSLGNXO0), except for ISC

« An IMS command (/OPNDST can specify user name)

 Autologon parameters supplied by user descriptors or by the Destination Creation exit routine

The Logon exit routine is the last opportunity to provide the user name. If no user name is provided for
ETO STSN terminals, the logon is rejected with an error message. This differs slightly from other terminal
types, which allow user signon after the logon has occurred. A signon is required before being able to use
the terminal for IMS activity (transactions or commands), so the difference is only in requiring the signon
data earlier for STSN terminals. The /SIGN command is supported for STSN terminals.

ETO and 3600/Finance and SLUP

You can sign on to static system-defined 3600/Finance and SLU P terminals in one of two ways: using
the /SIGN command or using logon user data.

About this task

You can change the signon identification by using another IMS /SIGN command at any time. LTERMs are
assigned to the terminal during system definition and are not affected by the signon process or by the
SNA STSN message recovery process. The signon simply provides user access and input authorization.

IMS supports 3600/Finance and SLU-P terminals as dynamic terminals. They can use autologon or signon
data with the logon request in order to dynamically allocate user structures. Signon data must be provided
at session initiation for ETO 3600/Finance and SLU-P terminals. Signon data can be supplied in the

Logon exit routine (DFSLGNXO) at the cold start of a session. The LTERMs and user IDs allocated at the
cold start session are retained across sessions and IMS outages because of the VTAM STSN message
resynchronization requirements. This requires that the same user signon data be used for subsequent
warm-start sessions to both reverify the user and to allow message resynchronization.

When dynamic XRF Finance and SLU-P terminals are defined as XRF class—2, automatic re-signon and
logon occur at takeover time.

/SIGN support for ETO STSN devices: ISC, Finance, and SLU P

For ETO STSN devices, user data is required at the time that the session is allocated to create the user
structure.

About this task

After the user structures are created and allocated to the terminal, /SIGN commands are accepted from
ETO STSN terminals.

When you issue the /SIGN command from an ETO STSN terminal, IMS initiates a complete signon process
to create the security profile associated with the session for the new user.

When the user signs off, the user's security profile is deleted, leaving the session without any security.
RACF rejects all access to RACF-protected resources. The DFS3662 message is displayed if the failing
resource is a command. The DFS2469 message is displayed if the failing resource is a transaction. When

110 IMS: Communications and Connections

a user signs on to an STSN device, the same user structure allocated during session allocation is used for
the new user. IMS updates the security profile of the session and stores the signon information.

The user ID of a user that is signing on to an ETO Finance, SLU-P, or ISC device with a /SIGN command

is a different name from that of the user structure name. Such users do not require suffixing by the

Signon exit routine (DFSSGNXO) in order to support multiple signons, because the user structure for these
devices was already created during the session initiation.

Restriction: Because the user structure allocated to a Finance, SLU-P, or ISC device cannot be changed,
most of the options available to the Signon exit routine are not supported, and the work areas are not
passed to the Signon exit routine.

The DFS3650 message is displayed after a signon, and the DFS058 message is displayed after signoff.
The user field in the DFS3650 message reflects the user structure's name rather than the RACF user ID.
This is the same as for any other ETO terminal.

Restriction: Issuing the /SIGN command from STSN output-only devices is not allowed.

Related concepts
Specifying IMS execution parameters (System Definition)
Exit routines (Exit Routines)

Conversation mode and response mode with ETO

ETO user structures are distinct from static terminal structures, because terminal status is maintained for
each user rather than for each terminal.

An IMS conversation at a static terminal is distinct from an IMS conversation at a dynamic terminal,
even for the same user name. The conversation at a static terminal can be held, and must be released
(resumed) at the static terminal. It cannot be moved to a dynamic terminal.

With ETO, an IMS conversation can be resumed at the same terminal or another dynamic terminal.
Because the conversation is an attribute of the user structure, it normally follows the user to a different
terminal when the user signs on to IMS. The following of the conversation attribute can be a cause of
confusion, especially if the user is not aware of which terminals are static and which are dynamic. Also, if
an exit routine selects different user structures for signons to different physical terminals, confusion can
occur.

Resume full-function and Fast Path response mode at the same static terminal. For ETO, resume full-
function and Fast Path response mode from the same or another dynamic terminal. This ability to resume
the Fast Path response mode from any dynamic terminal is similar to the situation with conversations
described in the previous paragraph, and the same considerations apply.

Conversation mode

For ETO, conversations are associated with the user—not the terminal that initiates the conversation.
Conversations are also associated with the terminal, but only while the user is signed on. By signing off,
the user can continue a conversation on a different terminal. This flexibility requires the installation to
address output formatting problems.

Users in conversations that are not in response mode can sign off. Regardless of response mode, users in
conversation can be automatically signed off through autosignoff or by using an MTO command. Any form
of signoff leaves the terminal available for the next user. The conversation mode status follows the user
to the next terminal or, with the Resource Manager and global status recovery mode (SRM=GLOBAL), on a
different IMS in the IMSplex.

Response mode

Response mode is defined on the TERMINAL macro for static terminals, on the ETO user descriptor for
dynamic (ETO) users, and on the TRANSACT macro for transactions. Also, response mode is either full
function or Fast Path. You can also use response mode with conversation mode, if you are not running

Chapter 5. Administering the Extended Terminal Option 111

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_i2hspcx.htm#i2hspcx
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/err.htm#err

Fast Path. Response mode is primarily associated with the user and the transaction, rather than with the
dynamic terminal.

When a user is in response mode, the keyboard or input response is locked until the output reply is
available. During this time, it is not possible to enter input at the terminal. Normal signoff and logoff
commands are not allowed. However, these functions can occur automatically during abnormal session
termination. This can happen in one of three ways:

« VTAM can detect an error and end abnormally (abend).
« The MTO can issue the IMS /CLSDST or /STOP command.
« IMS can autosignoff after the specified autosignoff interval.

Regardless of how signoff occurs, if RCVYRESP=YES or RCVYFP=YES, the response mode is retained for
the user that has been automatically signed off. The user's response mode operation is re-established
with the next terminal on which the user signs onto and remains until the response-mode output reply is
available.

The master terminal operator can reset the Fast Path response mode of an ETO dynamic user before a
response is returned by issuing the /STOP USER and /START USER commands in sequence from the
master terminal. The master terminal operator can also reset the Fast Path input response mode of a
static node by issuing the /STOP NODE, /START NODE commands in sequence from the master terminal.

Related concepts

“Delivering output messages to non-originating terminals” on page 107
IMS sends your output to the terminal at which you are signed on.

112 IMS: Communications and Connections

Part 4. External subsystem attach facilities

IMS provides several options for accessing external subsystems from an IMS system.

About this task

© Copyright IBM Corp. 1974, 2022 113

114 IMS: Communications and Connections

Chapter 6. DB2 Attach Facility

Java message processing programs (JMPs) and Java batch programs (JBPs) in IMS can access Db2 for
z/0S data using the DB2° Resource Recovery Services Attach Facility, referred to here as the DB2 Attach
Facility.

About this task

Each dependent region that is set up for this support builds its own RRSAF thread to access Db2 for

z/OS data. This thread enables the coordination of updates that the application program makes with the
resources of both IMS and Db2 for z/OS resource managers. When IMS JMPs and JBPs use the DB2
Attach Facility to access Db2 for z/OS data, IMS is not the sync point coordinator of updates and commits,
as it is with ESAF. With the DB2 Attach Facility, IMS is a participant, and z/OS Resource Recovery Services
is the sync point coordinator.

Preparing your system to use the DB2 Attach Facility

To prepare your system to use the DB2 Attach Facility, you must perform two tasks.

About this task
To use the DB2 Attach Facility:

Procedure

1. Add the attachment facility definition to the IMS PROCLIB data set.
Use of the DB2 Attach Facility requires that a subsystem member (SSM) be defined in IMS.PROCLIB.
If an SSM member does not already exist in IMS.PROCLIB, you must create one. The SSM contains an
entry for the Db2 for z/OS system with which IMS and the application program communicate. All Java
dependent regions in IMS access a single Db2 for z/OS system.

2. Make the Db2 for z/OS RESLIB available to the IMS JMP and IMS JBP regions.
After defining the attachment facility, you must provide the Java regions in IMS with access to the Db2
for z/OS RESLIB. In the JCL for the JBP and JMP regions types, add the Db2 for z/0S library definition

using the DFSDB2AF DD statement, which points to the Db2 for z/OS libraries that contain modules
used by RRSAF. The Db2 for z/OS libraries must be APF-authorized.

Related concepts
Accessing external subsystem data (System Definition)

Managing how your Java dependent regions access Db2 for z/0S

Java application programs running in IMS dependent regions can access Db2 for z/OS under syncpoint
control of z/OS Resource Recovery Services if a DB2 Attach Facility definition is included when the IMS
control region is started.

The initialization processing of the IMS control region prepares for access to Db2 for z/OS. When Java
dependent regions are subsequently started, application programs in those regions can make direct calls
to both Db2 for z/OS and IMS.

Initialization of the DB2 Attach Facility does not affect the execution of other types of dependent regions.
The DB2 Attach Facility definition can be retained in the IMS.PROCLIB member, even if Java dependent
regions are not used. If a DB2 Attach Facility definition exists in the IMS.PROCLIB member, and the

Db2 for z/OS library is defined in the Java dependent region JCL, all Java dependent regions that start
will build an access thread to Db2 for z/0S. If the DB2 Attach Facility definition exists, but the Java
dependent regions do not require access to Db2 for z/OS, you can prevent access threads from being built

© Copyright IBM Corp. 1974, 2022 115

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_accessing_external_subsystems.htm#accessing_external_subsystems

by stopping access to the Db2 for z/OS system. Use the /STO SUBSYS command, which stays in effect
untila /STA SUBSYS command is subsequently issued.

Related reference
/START SUBSYS command (Commands)
/STOP SUBSYS command (Commands)

116 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_startsubsys.htm#ims_cr2ssubsys
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_stopsubsys.htm#ims_cr2stsubsys

Chapter 7. External Subsystem Attach Facility (ESAF)

The External Subsystem Attach Facility enables BMP, IFP, JBP, JMP, and MPP application programs to
access databases managed by other subsystems in addition to DL/I databases.

To enable access to the data resources of an external subsystem (ESS) product from IMS applications,
the ESS must provide functions necessary for it to attach to the IMS subsystem and to, jointly with
IMS, coordinate data access. The IMS Attach Facility presents a programming interface to the external
subsystem product. Certain steps are required to install ESAF, which are described in the following
information. Other IMS publications also contain ESAF information and references are included, where
applicable.

Multiple external subsystems can only be attached by an online IMS system. These subsystems can be
of the same, or of different, product types. The installation defines the external subsystems to IMS. A
given IMS dependent region can have access to all external subsystems defined to the IMS system, to
just a subset, or to none according to installation specifications. An application program executing in

a dependent region can access more than one different subsystem. The installation defines a unique
token for each subsystem, which IMS uses in routing application calls for external resources. Application
program access to more than one subsystem of the same type is supported by IMS, but might not be
supported by the external subsystem.

The facility provides for synchronization of external subsystem data resources with IMS data resources.
For synchronization processing, IMS is the recovery coordinator and is responsible for directing commit or
abort actions on behalf of its application programs. External subsystems are participants in the process
and commit or abort data updates by IMS applications according to direction given by IMS. When
resources are to be committed, IMS polls the participants as to whether or not they are ready to commit
before giving final commit (or abort) direction.

You can also configure a Fast Database Recovery (FDBR) region to recover work on the external
subsystem. When a FDBR region is monitoring an IMS system that fails, it receives information about
indoubt work on the external subsystem from the ESAF indoubt notification exit routine (DFSFIDNO).

For IMS batch, IMS is allowed to attach only to one external subsystem. IMS expects this external
subsystem to be the Recovery Coordinator. This external subsystem has no way of coordinating with
any other external subsystem that IMS attaches to, so IMS is restricted to only one external subsystem
attachment in batch.

The External Subsystem Attach Facility is different from the coordinator controller (CCTL) associated with
DBCTL.

JMP and JBP regions can access control-region-defined Db2 for z/OS subsystems that use the
COORD=RRS parameter in the IMS.PROCLIB member. If this connection method is chosen for the JMP or
JBP region, you must add a DD statement (DFSDB2AF) in the DFSIMP or DFSJBP procedure that points to
the Db2 for z/OS libraries.

This topic contains General-use Programming Interface information.

Related tasks

“DB2 Attach Facility ” on page 115

Java message processing programs (JMPs) and Java batch programs (JBPs) in IMS can access Db2 for
z/0S data using the DB2° Resource Recovery Services Attach Facility, referred to here as the DB2 Attach
Facility.

Accessing Db2 for z/OS databases from JMP or JBP applications (Application Programming)

© Copyright IBM Corp. 1974, 2022 117

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.apg/ims_accessingdbfromjmporjbp.htm#ims_accessingdbfromjmporjbp

What the external subsystem must provide

The External Subsystem must provide three things: the External Subsystem Attachment Package (ESAP),
the External Subsystem Module Table (ESMT), and the Resource Translation Table (RTT).

External Subsystem Attachment Package (ESAP)

The IMS Attach Facility uses an exit routine interface. That is, to accomplish external subsystem access
from dependent regions, IMS activates exit routines at certain processing points. These exit routines must
be supplied by the external subsystem. The exit routine functions are prescribed by IMS; the external
subsystem supplies its unique implementation. The exit routines must, in fact, provide the actual linkage
to the external subsystem. IMS is not sensitive to the linkage mechanism used.

IMS loads external subsystem-supplied exit routine modules in the control region and in each dependent
region that can access the external subsystem. The external subsystem can supply additional modules
needed for attach exit routine processing; IMS loads these modules as well. The external subsystem
modules provided for attach processing in the IMS regions make up what IMS calls the External
Subsystem Attachment Package (ESAP).

External subsystem module table (ESMT)

The external subsystem must specify the modules that IMS is to load in an external subsystem module
table (ESMT). The external subsystem creates the module table using macros provided by IMS and makes
it available to the installation. The installation specifies the name of the ESMT to IMS by including it on the
definition of the external subsystem to IMS.

Resource translation table (RTT)

IMS uses a PSB (program specification block) to define the DL/I resources required by an application
program. For an MPP, the PSB name is the same as the application program name; for a BMP or IFP, the
PSB name can be different. The external subsystem can use a name other than the PSB name or the IMS
application program name for the entity it uses to define the external subsystem resources required by
the application program. If the external subsystem uses a different name, the external subsystem can
provide a resource translation table (RTT) to map either PSB names or application program names to its
entity names.

The external subsystem creates the RTT and makes it available to the installation. The installation
specifies the name of the RTT on the definition of the external subsystem to IMS. IMS loads the RTT when
it loads the ESAP.

The external subsystem is responsible for doing the actual mapping. IMS does not access the RTT; it
merely loads the table and makes its address available to the ESAP. IMS does not prescribe the format of
the RTT.

Related concepts

“Creating the external subsystem module table” on page 125

The external subsystem creates the external subsystem module table (ESMT) to supply definitions of the
external subsystem modules that IMS is to load.

How external subsystems are specified to IMS

In an IMS.PROCLIB member, define all external subsystems that are to be accessed by IMS applications.
The EXEC statement of the control region points to this member with the SSM parameter.

About this task
For each external subsystem defined to IMS, specify in the IMS.PROCLIB member:

« The external subsystem type
« The z/OS name of the external subsystem

118 IMS: Communications and Connections

« The name of the external subsystem module table (ESMT) that specifies the modules in the external
subsystem attachment package (ESAP)

« The language interface token (LIT) that IMS uses to route application calls to the external subsystem

« The name of a resource translation table (RTT) supplied by the external subsystem, if needed, to
identify the external resources required by IMS application programs

« The command recognition character (CRC) that IMS uses to route operator commands to the external
subsystem

« The region error option (REO) code indicating the action to be taken when application calls to the
external subsystem cannot be processed. When a Resource Translation Table (RTT) is used, the OPTION
value specified in the RTT overrides the REO option in the SSM member.

You must also supply the external subsystem-supplied tables (ESMT and RTT) in the appropriate load
modaule library.

You have the option to supply external subsystem definitions for dependent regions. If the SSM EXEC
parameter is not specified for these types of dependent regions, the region can access all subsystems
defined to the control region. If the SSM EXEC parameter is specified, the dependent region can access
only those subsystems defined in the identified PROCLIB member. (The subsystems also must have
been defined to the control region.) Use a dummy PROCLIB member (one having no definitions) if the
dependent region is not to have access to any external subsystem.

Note: JMP and JBP regions can also access control-region-defined Db2 for z/OS subsystems that use the
COORD=RRS parameter in the IMS.PROCLIB member. In the DFSIJMP and DFSJBP procedures, add a DD
statement (DFSDB2AF) that points to the Db2 for z/OS libraries.

The following tasks must be performed to attach an external subsystem to IMS.

To attach an external subsystem to IMS:

Procedure

1. Define external subsystems to IMS:

a) In the IMS procedure library (IMS.PROCLIB), add a member that contains the information about
each external subsystem with which IMS communicates.

b) On the EXEC statement of the IMS control region or the dependent region, specify in the SSM
parameter the PROCLIB member that you created in the previous step.

If you are using a Db2 for z/OS group name to access Db2 for z/OS databases, you must specify the
group name in the EXEC statement of the dependent region. A Db2 for z/OS group name cannot be
specified in the EXEC statement for the IMS control region.

2. Define a language interface module if you want to use one other than the IMS-supplied one.

3. In the IMS OPTIONS statement, specify whether you want tracing of the external subsystem link.

4. For the external subsystem, provide the ESMT and optionally the RRT.

5. Ensure that the external subsystem modules and databases used by IMS are in appropriate APF-
authorized libraries.

Related concepts

Accessing external subsystem data (System Definition)

The basics of attach processing

An external subsystem is attached to an IMS subsystem by means of a connection established from the
IMS control region to the external subsystem.

A connection is also established from each dependent region that accesses the external subsystem. IMS
is responsible for initiating these connections.

Chapter 7. External Subsystem Attach Facility (ESAF) 119

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_accessing_external_subsystems.htm#accessing_external_subsystems

Subsystem connections

The connection between an IMS application program and the external subsystem is called a thread.
Application threads are two-way communication paths between IMS application programs and external
subsystem resources.

An application program can have more than one thread since it can access more than one external
subsystem in one execution. However, access to multiple subsystems of the same type (multiple
instances of the same subsystem type) while supported by IMS, might not be supported by the external
subsystem product.

Establishing connections
IMS uses an 'identify' process to establish a connection to the external subsystem.

IMS activates an Identify exit routine contained in the ESAP to identify the control region or dependent
region TCB to the external subsystem. The external subsystem can then monitor IMS TCBs in order

to respond to IMS abnormal terminations. A connection is established upon successful completion of
the identify process, in other words, once the region has been successfully identified to the external
subsystem.

IMS provides a notify message mechanism so that if the external subsystem has not been started when
IMS attempts to connect the control region, the external subsystem, once started, can notify IMS to
establish the connection. If the external subsystem makes use of the notify capability, the order in which
IMS and the external subsystem are started is not important.

The connection from the control region is established first before any dependent region connections
are established. If the control region connection has not been established when a dependent region is
started, the dependent region does not identify itself to the external subsystem. IMS uses a hierarchical
relationship between control region and dependent region connections to allow the control region to
act as recovery coordinator for dependent regions. If a dependent region fails, the control region takes
recovery actions on its behalf.

The external subsystem can optionally provide an Initialization exit routine. IMS activates the Initialization
exit routine, if provided, during control region and dependent region initialization before the region
identifies itself to the external subsystem. This exit routine allows the external subsystem the chance

to do any initialization processing it requires before each connection being established.

IMS can establish the control region connection automatically during control region initialization, provided
the external subsystem has been started. However, the connection can be delayed to a later time. If an
Initialization exit routine is not provided, or if the exit routine returns the appropriate return code, the
control region identify is not done automatically. In this case, the external subsystem can activate the
Subsystem Startup Service provided by IMS when it wants the connection established. Or, IMS attempts
to establish the connection when a dependent region is ready to identify itself.

IMS also establishes the control region connection in response to a /START SUBSYS operator command.

User authorization processing

After a dependent region connection has been established, a signon process is performed to inform the
external subsystem of the user ID associated with the IMS transaction being processed by the region. IMS
activates a Signon exit routine provided by the external subsystem for this purpose. This initial signon for
the region must be successful in order for a thread to be created for the application.

Signon processing can occur again during application program execution (that is, after the thread has
been created). The Signon exit routine is activated for each message processed by the application
program. The initial signon performed after the dependent region identify is related to the first message
processed by the application (first get unique call to the message queue). Each subsequent message
processed causes the Signon exit routine to be activated again to pass the new user ID. In the case

of multiple mode transactions, this means that multiple sighons can occur without intervening commit
processing.

120 IMS: Communications and Connections

The external subsystem supplies a Signoff exit routine which IMS activates before terminating the
dependent region connection. In the case of multiple signons for an application, signoff processing does
not precede a new signon for a new message. A new signon rather replaces the previous.

Application threads

When the application program issues its first call for data resources owned by an external subsystem, a
thread is created to connect the application to the external subsystem.

IMS activates a Create Thread exit routine supplied in the ESAP to identify the application program to

the external subsystem. The external subsystem is expected to prepare to receive data requests from the
specific application program as necessary (that is, reserve resources, create a processing structure, and
so on). When the application terminates, IMS activates a Terminate Thread exit routine to terminate the
thread.

Terminating connections

A Terminate Identify exit routine must be provided in the ESAP. IMS activates this exit routine when a
connection is to be terminated.

Termination of the control region connection can be initiated by IMS, by the external subsystem, or by
operator command (/STOP SUBSYS). IMS terminates the connection when it is shutting down. The /
STOP SUBSYS command causes the connection to be terminated and also puts it in stopped status.
IMS does not allow the connection to be reestablished untila /START SUBSYS command has been
processed.

The external subsystem can request that the control region connection be terminated in one of two
ways. One way is by posting a termination ECB. IMS provides, on the Identify exit routine invocation, the
address of an ECB that is expected to be used by the external subsystem when it is terminating. When
the external subsystem posts the termination ECB, IMS, after allowing dependent region connections

to quiesce, terminates the connection and also puts the connection in stopped status (as it does for

the /STOP SUBSYS command). The second way that the control region connection can be terminated is
by activating the IMS-supplied Subsystem Termination Service from an external subsystem exit routine.

After activating the Terminate Identify exit routine in the control region, IMS activates the Subsystem
Termination exit routine supplied in the ESAP. This exit routine, which can be thought of as the reverse of
the Initialization exit routine, might be used by the external subsystem to reset work areas or free storage,
for example.

A dependent region connection is maintained for as long as the region is active unless IMS has been
requested, either by the external subsystem or by an IMS /STOP SUBSYS command, to terminate

the (control region) connection. In general, it is only when IMS has been requested to terminate the
connection that the external subsystem Terminate Identify exit routine is driven for dependent regions.
Thus, the exit routine is not necessarily activated when a dependent region terminates. This is true also
for the Signoff exit routine. Terminate Identify exit routine invocation always follows Signoff exit routine
invocation.

The external subsystem is expected to monitor, through the z/OS end-of-task exit routines, the IMS TCBs
identified to it and to perform the necessary signoff and terminate identify processing when an identified
TCB ends.

Terminate Thread exit routine invocation always precedes normal termination of the dependent region
connection if the region had a thread to the external subsystem. Thus the Terminate Thread exit routine
is activated before the Signoff and Terminate Identify exit routines are activated (if they are) or before the
dependent region is terminated.

Since IMS does not allow dependent region connections to exist unless the control region has a
connection, the Terminate Identify exit routine is not activated for the control region until after each
dependent region has either terminated or had its Terminate Identify exit routine activated.

The Subsystem Termination exit routine is not activated for dependent regions.

Chapter 7. External Subsystem Attach Facility (ESAF) 121

Inquiry parameter processing
The INQ parameter is only checked when the IMS transaction issues a Create Thread exit routine.

The INQ parameter on subsequent transactions is not checked. Therefore, if any updates are to be done
in a Fast Path region between the Create Thread exit routine and the Terminate Thread exit routine, the
inquiry flag in the first transaction must be INQ=NO.

For example, if the first transaction that calls Db2 for z/OS from a given Fast Path region is only going

to read the Db2 for z/OS data and not update it, the transaction will set the INQ=YES flag in the Create
Thread Parameter list indicating that this first transaction and all subsequent transactions in that Fast
Path region are treated as inquiry only transactions. If a subsequent transaction running under the same
Fast Path region calls Db2 for z/OS for update, the thread to that Fast Path region will still be set to
INQ=YES, even though the transaction is correctly defined as INQ=NO. This will result in an SQLCODE817
error.

Application call processing

After a thread from the application program to the external subsystem has been created, application calls
for external data resources are passed to the Normal Call exit routine supplied in the ESAP.

The language interface bound with the application provides the language interface token (LIT) for the
external subsystem when it activates IMS to process calls to the external subsystem. The installation
specifies a unique LIT for each external subsystem it defines to IMS. IMS matches the LIT provided by the
language interface stub with the LIT specified in the definition to route the call to the external subsystem.

Resource coordination

IMS, as recovery coordinator, directs commit processing for updates to external subsystem resources
initiated by IMS application programs. IMS uses a two-phase commit process to synchronize resources
across external subsystems. External subsystems are participants in the process.

In the first phase of the commit process for an application, IMS polls the participants for a vote as

to whether or not they are prepared to commit the updates. In the second phase, IMS directs the
participants to commit or to abort. If all participants voted 'yes' on the first phase, IMS directs them to
commit on the second phase; otherwise, IMS directs them to abort.

When an external subsystem determines that its resources are associated with non-update transactions
(for which commit processing is not necessary), the external subsystem can perform all commit
processing during the first phase, eliminating the need for the second phase. In this case, the external
subsystem returns to IMS from the Commit Prepare exit routine with return code X'C' indicating that the
first phase successfully completed and the second phase is not required. IMS will not initiate the second
phase of commit processing for this external subsystem.

IMS uses a 16-byte recovery token to identify a unit of work across one or more subsystems. The recovery
token for a unit of work is initially passed on the Signon exit routine invocation.

When application updates are to be committed, IMS activates the Commit Prepare exit routine supplied
by the external subsystem. The associated recovery token is passed on the invocation. The external
subsystem indicates, by the return code from the exit routine, whether or not it is prepared to perform
commit processing for the recovery token. When an application is executing in a Distributed Syncopate
environment (also known as a Protected Conversation environment) and requires a subsystem SIGNON,
IMS obtains the XID token and places its address in the exit parameter list before calling the subsystem's
SIGNON exit.

For the second phase of the commit process, if it is required, IMS can activate either of three external
subsystem exit routines: the Commit Continue exit routine, the Abort Continue exit routine, or the
Terminate Thread exit routine. When the application is not terminating and all participants are prepared
to commit, IMS drives the Commit Continue exit routine. At completion of the commit process, the
application will continue processing the current PSB on the existing thread. When the updates are to be
aborted but the application is not terminating, or being terminated, the Abort Continue exit routine is
activated. In this case, the application will continue processing under the same recovery token.

122 IMS: Communications and Connections

The external subsystem Terminate Thread exit routine must be able to process the second phase of
commit. At application termination, IMS passes the recovery token and a commit option on the Terminate
Thread exit routine invocation. The commit option indicates whether to commit or abort outstanding
updates.

When IMS, the external subsystem, or an application program terminates abnormally, units of work that
have not been committed or aborted are left outstanding. To resolve outstanding units of work, IMS
activates the external subsystem Resolve Indoubt exit routine. IMS always activates the Resolve Indoubt
exit routine at least once after establishing the control region connection. IMS activates the exit routine
once for each outstanding recovery token indicating whether to commit or abort the unit of work. When
there are no units of work to be resolved or when IMS has exhausted the list of outstanding recovery
tokens, IMS activates the exit routine to inform the external subsystem of that fact. When IMS encounters
an outstanding recovery token associated with z/OS Resource Recovery Services, IMS will delay the
subsystem Resolve Indoubt exit call until RRS or the IMS user has indicated (ABORT or COMMIT) which
action to take. When called for RRS Resolve Indoubt, it is the subsystem's responsibility to ensure that
recovery tokens are resolved in their proper order.

IMS maintains outstanding recovery tokens across normal (warm) and emergency restarts of IMS, and
reconnections of the subsystems. IMS permits a connection without all recovery tokens being resolved
(that is, the Resolve Indoubt exit routine return code can indicate that the recovery action was not taken).
IMS destroys outstanding recovery tokens when it is cold started.

The Resolve Indoubt exit routine is also used to coordinate resources in the event of abnormal
termination of an application program. Following an application program abend, the exit routine is
activated from the control region if the application had a thread connection to the external subsystem.

You can also configure a Fast Database Recovery (FDBR) region to recover work on the external
subsystem. When a FDBR region is monitoring an IMS system that fails, it receives information about
indoubt work on the external subsystem from the ESAF Indoubt Notification exit routine (DFSFIDNO).
Units of work associated with z/OS Resource Recovery Services are not recovered by FDBR.

Related concepts
Fast Database Recovery (FDBR) regions (Operations and Automation)

External subsystem command support

IMS provides a command, /SSR, which allows the IMS operator to send commands to the external
subsystem.

To receive commands from IMS the external subsystem must supply a Command exit routine. IMS
passes the command contained in the /SSR input to this exit routine. AOI (automated operator interface)
programs can also send commands to external subsystems using /SSR. The /SSR command input
contains identification, a command recognition character (CRC), of the external subsystem to which the
command is directed. The CRC for a subsystem is specified as part of the definition of the subsystem to
IMS.

Related tasks

“How external subsystems are specified to IMS” on page 118
In an IMS.PROCLIB member, define all external subsystems that are to be accessed by IMS applications.
The EXEC statement of the control region points to this member with the SSM parameter.

Related reference
/SSR command (Commands)

IMS services available to the ESAP
IMS provides exit routines that an external subsystem can activate to access certain IMS system services.
The external subsystem can:

« Request that a connection be initiated (Subsystem Startup Service).
« Request that connections be quiesced (Subsystem Termination Service).

Chapter 7. External Subsystem Attach Facility (ESAF) 123

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.oag/ims_fastdb_recovery.htm#ims_fastdb_recovery
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_ssr.htm#ims_cr2ssr

« Have a log record written to the IMS log (Log Service).
« Have a message sent to an IMS destination (Message Service).

Related concepts
Exit routines (Exit Routines)

124 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/err.htm#err

Chapter 8. Creating the external subsystem module
table

The external subsystem creates the external subsystem module table (ESMT) to supply definitions of the
external subsystem modules that IMS is to load.

External subsystem exit routine modules, as well as any other modules needed in the ESAP, are defined in
the ESMT. The installation provides the name of the ESMT to IMS as part of the definition of the external
subsystem. During initialization for attach processing in the control and dependent regions, IMS loads the
ESMT and then loads the modules defined therein.

The external subsystem optionally provides in the ESMT definitions of work areas needed for its ESAP.
If work area definitions are provided, IMS obtains the specified work area storage in each region after
loading the defined modules.

IMS provides two macros to be used by the external subsystem to create the ESMT. The DFSEMODL
macro is used to define the ESAP modules that IMS is to load. The DFSEWAL macro is used to define the
work areas that IMS is to create. A series of DFSEMODL statements defining modules, optionally followed
by DFSEWAL statements defining work areas, and ending with a DFSEMODL statement specifying
END=LAST, generates the table.

DFSEMODL macro

The external subsystem module table (ESMT) is generated from a series of DFSEMODL statements, one
for each module definition.

In addition to module definition information, information about the control block that is to contain the
addresses of the modules when they are loaded is also supplied on DFSEMODL statements. IMS creates
this control block before it loads the modules.

IMS provides the capability for up to three sets of modules to be loaded and anchored on separate control
blocks. Accordingly, the ESMT consists of one to three subtables, each containing the specifications for

a set of modules and their module address control block. The module address control block for external
subsystem exit routines is the EEVT (external entry vector table).

When the module address control block is created, IMS stores its address into a source control block,
which is the EEVTP (EEVT prefix).

The format of the DFSEMODL macro is:

(label) DFSEMODL DSNAME=, SOURCE=,MODNAME=,DSLABEL=,
SUBPOOL=,0PTION=, END=

where:

(label)
Is optional. If coded, the macro generates ESMT subtable labels. The last label on a macro statement
in the series from which a subtable is generated is used as the subtable label.

The following parameters provide control block information and need only be specified once per subtable
(for example, on the first DFSEMODL statement in the series). If specified on more than one statement,
the first specifications encountered are used in generating the table.

DSNAME=
(p1,p2,p3)

pl
Name of the module address control block. The name must be specified (at least on one
DFSEMODL statement) for each ESMT subtable.

© Copyright IBM Corp. 1974, 2022 125

p2
Module address control block size. The size must be specified. IMS obtains storage of the
specified size to create the module address control block.

p3
Subpool number for the module address control block storage request. This parameter is optional.
If 251 is not specified, IMS obtains the storage from subpool 230.

SOURCE=

(p1,p2)

pl
Name of the source control block. This parameter is required. DFSEEVTP must be specified. (See
the following discussion.)

p2
Label in the source control block of the location to store module address control block address.
This parameter is required.

The following parameters provide module definition information.

MODNAME=
Name of the module IMS is to load. MODNAME must be specified on all DFSEMODL statements that
do not specify the END parameter. (END can be specified with or without MODNAME.)

DSLABEL=

Label in the module address control block of the location to store the module address after it is
loaded. DSLABEL must be specified (when MODNAME is specified).

SUBPOOL=

For resources that reside on a PDS data set:
The subpool into which IMS is to load the module. SUBPOOL must be specified when MODNAME is
specified. For the control region, IMS loads the module into the subpool specified. For dependent
regions, IMS loads the module into subpool 251 if SUBPOOL=251 is specified. Otherwise, the
module is loaded into subpool 230. Valid specifications are 0, 229, 230, 231, 241, 251, 252.

For modules that reside on a PDSE data set:

The SUBPOOL parameter is not used. Modules residing on a PDSE are loaded in one of the
following methods:

» Modules that are linked as reentrant (RENT) are loaded into subpool 252, key 0. These modules
are not fetch-protected.

» Modules that are linked as not reentrant (NORENT) are loaded into subpool 251, TCBKEY, and
are fetch-protected. You must ensure that the correct protect key is in use before accessing
these modules.

OPTION=
(P,p)
This parameter is optional. Two options, NOCTL and NODEP, are supported. (Position of an option in
the subparameter list is not important.)

NOCTL
The module is not to be loaded in the control region.

NODEP
The module is not to be loaded in dependent regions.

The END parameter controls ESMT generation.
END=

YES
Must be specified to indicate the end of a subtable in the ESMT being generated. END=YES is used
only when the ESMT is to contain more than one subtable. It is specified to end each subtable
except the last (or only). DFSEMODL statements for the next subtable in the ESMT are to follow
the END=YES specification.

126 IMS: Communications and Connections

LAST
Must be specified on the last DFSEMODL definition statement for the ESMT being generated. The
next DFSEMODL or DFSEWAL statement (if any) causes a new ESMT generation to be started.

You must bind the ESMT module into a program library (SDFSRESL) using a binder ENTRY statement
that specifies MAINEP as the entry point. A table definition header is generated at the end of the ESMT
module. The ENTRY statement allows IMS to correctly reference the header for subsequent processing.

DFSEMODL supports an execute form (MF=E) for internal use only. It cannot be used for ESMT generation.
The list form (MF=L) described is the default.

Mapping DSECTSs for the module address and source control blocks must be included in the ESMT
generation source, otherwise the assembly will fail.

The following restrictions apply to external subsystems:
- Specifying the source control block.

DFSEEVTP must be specified as the source control block name (SOURCE(p1)) for all IMS-defined
subtables. Otherwise, although DFSEMODL accepts other specifications, the module load process will
fail, prohibiting a connection for the region experiencing the failure. The user must use the EEVTP
mapping layout, as this is the layout that IMS expects.

« Defining subsystem exit routine modules.

DFSEEVT must be specified as the module address control block name (DSNAME(p1)) for the subtable
that contains the subsystem exit routine module definitions.

The module address control block size (DSNAME(p2)) must be specified according to the size indicated
by the EEVT mapping (EEVTLGTH) as shown in "Control block mapping" in IMS Version 15.4 Exit
Routines.

EEVPEEA must be specified as the label in the source control block (SOURCE(p2)) to anchor the module
address control block (EEVT). IMS does not check for this (nor does the macro) but uses the offset
generated from the label specified to store the address. If the offset is incorrect, IMS will not be able to
activate the exit routines.

The label (DSLABEL) specified for a particular subsystem exit routine module is used to generate the
offset that IMS uses to store the exit routine address in the module address control block (for example,
in the EEVT). Thus these labels must be specified according to the EEVT mapping.

- Generating additional subtables.

The ESMT must always have one subtable containing definitions for exit routine modules. The external
subsystem could choose to have other modules needed in its ESAP anchored on a separate control
block, which means that another subtable would be generated.

Although the DFSEMODL macro does not restrict the number of subtables that can be generated,
problems can occur during processing if more than three (3) are generated. For each subtable, IMS
creates a module address control block and stores its address in the EEVTP. There are only three fields
in the EEVTP that could be used as anchors for these control blocks, one of them being the anchor for
the EEVT.

The EEVTLDIR and EEVPEWA fields are not used by IMS and thus are available for this purpose. The
discussion on defining external subsystem work areas in “DFSEWAL macro” on page 128 suggests how
EEVPEWA might be used to anchor a work area address control block.

- Defining external subsystem-unique modules.

If the ESAP needs non-IMS exit routine modules (for example, modules that the external subsystem
activates without any knowledge of or support from IMS), the external subsystem can define these
modules in an additional subtable as previously discussed. The external subsystem must supply the
mapping DSECT for the module address control block for these modules.

Recommendation: Do not define other modules in the subtable containing exit routine modules or
extend the size of the EEVT to include their addresses. The EEVT is an IMS control block which IMS

Chapter 8. Creating the external subsystem module table 127

reserves the right to extend at any time, which could require the external subsystem to regenerate the
ESMT and re-compile modules.

DFSEWAL macro

The work areas that IMS is to create for the external subsystem must be defined by including DFSEWAL
macro statements along with the DFSEMODL statements provided for ESMT generation.

The DFSEWAL statements, one for each work area defined, follow the DFSEMODL statements, except that
the last statement in the series must be a DFSEMODL statement specifying END=LAST. The DFSEWAL
statements cause a table of work area definitions to be built in the generated ESMT.

Work areas can be defined in each subtable generated in the ESMT. At least one module must be defined
in each subtable. If a subtable is generated containing only work area definitions, an error occurs during
IMS processing of the ESMT.

IMS creates the work areas defined in a subtable after loading the modules defined in the subtable. IMS
stores the addresses of the created work areas in a work area list control block. This control block is

also defined by the DFSEWAL macro and can either be contained in the module address control block for
the subtable or be created as a separate control block. For this discussion, EWAL is used to refer to the
external subsystem work area list control block.

Recommendation: Contain the EWAL in the module address control block rather than creating it as a
separate control block. When IMS creates the EWAL, its address is not (explicitly) provided to the external
subsystem. If, instead, the EWAL is contained in the module address control block, which IMS anchors in
the EEVTP, the external subsystem specifies its location (with DFSEWAL) and thus knows how to access it.
(When IMS creates the EWAL, it stores its address in the in-storage ESMT for internal use. The format of
the ESMT is not included in the documented attach interface.) The following figure shows a representation
of the relationship between the EWAL, EEVTP, and EEVT.

EEVTP
EEVPEEVT
= EEVT
EEVPEWA
- = EWAL
WKATADDR
— WEKA1 (workarea)
WKAZADDR
—* WKAZ (workarea)
WKA3ADDR
—* WKA3 (workarea)
MODXADDR

— MODX (module)

Figure 16. EWAL, EEVTP, and EEVT relationship

If the external subsystem wants IMS to create work areas for its ESAP, it should define two (possibly
three) subtables in the ESMT. Modules definitions would be contained in one subtable. The module
address control block for this subtable is the EEVT. The second subtable would contain work area

128 IMS: Communications and Connections

definitions. The module address control block for this subtable would either contain the EWAL or be

used as the EWAL, and would be anchored in the EEVTP along with the EEVT. Modules could be defined in
two subtables: one for exit routines and one for other external subsystem modules that are activated by
exit routines.

The second larger block of example code below illustrates how the external subsystem might specify
work area definitions.

The format of the DFSEWAL macro is as follows:

DFSEWAL DSNAME, SOURCE=,WALSP=,NAME=,DSLABEL=,
SUBPOOL=,LV=,0PTION=

where:

The following parameters provide control block information and need only be specified once per subtable
(for example, on the first DFSEWAL statement in the series). If specified on more than one statement, the
first specifications encountered are used in generating the table.

DSNAME=

(p1,p2)

pl
Name of the work area list control block mapping DSECT. The DSECT name must be specified. If
IMS creates the work area list, this name is given to the job pack entry for the storage acquired.

p2
Work area list size. If the size is specified, IMS obtains storage of the specified size to create the
work area list. If the size is not specified IMS does not create the work areas unless the source
control block for the work area list (DFSEWAL SOURCE(p1) specification) is the module address
control block specified for the modules defined in the subtable (DFSEMODL DSNAME(p1)). (See
the following discussion.)

SOURCE=

(p1,p2)

pl
DSECT name for the control block in which the work area list is to be anchored. This parameter
must be specified. (See the following discussion).

p2
Label in the source control block DSECT of the location that is to contain the work area list. This
parameter is required. IMS does not store the work list area address into this control block. (See
the following discussion.)

WALSP=
Subpool number for the work area list storage request. This parameter is optional. If WALSP=251 is
not specified, IMS obtains the storage from subpool 230.

The following parameters provide work area definition information and must be specified on each
DFSEWAL statement.

NAME=
The name given to the job pack directory entry created for the work area storage acquired. This
parameter is required.

DSLABEL=
Label in the work area list control block DSECT of the location into which IMS is to store the work area
address. DSLABEL must be specified.

SUBPOOL=
Subpool from which IMS is to obtain storage for the work area. The subpool must be specified. IMS
acquires subpool 251 storage if SUBPOOL=251 is specified; otherwise, the work area is created in
subpool 230. The macro allows 0, 229, 230, 231, 241, 251, or 252 to be specified.

LV=
Work area size. The size must be specified.

Chapter 8. Creating the external subsystem module table 129

OPTION=
(p,p)

This parameter is optional. Two options, NOCTL and NODEP, are supported. (Position of an option in
the subparameter list is not important.)

NOCTL
Work area is not to be created in the control region.

NODEP
Work area is not to be created in dependent regions.

Mapping DSECTs for all referenced control blocks must be included in the ESMT generation source,
otherwise the assembly will fail.

The source control block DSECT name and label must be specified. However, IMS does not store the
EWAL address into this control block.

To indicate that the EWAL is to be contained in the module address control block:

« The size for the EWAL (DFSEWAL DSNAME(p2)) must not be specified.

« The module address control block DSECT name (DFSEMODL DSNAME(p1)) must be specified as the
EWAL source control block DSECT name (DFSEWAL SOURCE(p1)).

« The source control block label (SOURCE(p2)) must specify the location of the work area list in the
module address control block.

If the size for the EWAL is specified, IMS obtains storage for the EWAL without checking if the module
address control block was specified as the EWAL source. If the EWAL size is not specified and the module
address and EWAL source control block DSECT names do not match, IMS does not create the work areas.
(IMS does not know the address of the source control block. IMS does not indicate that the work areas
were not created.)

IMS reserves the EEVPEWA field in the EEVTP control block for the address of an EWAL. The following
code illustrates how definitions can be specified by an external subsystem to anchor a work area list in
this field. What really happens is that a module address control block is created, anchored at EEVPEWA,
and used as the EWAL.

DFSEMODL DSNAME=(DFSEEVT,68,230),SOURCE=(DFSEEVTP,EEVPEEA),
MODNAME=INITEXIT,DSLABEL=EEVTINIT, SUBPOOL=230
DFSEMODL MODNAME=IDEXIT,DSLABEL=EEVTID,SUBPOOL=230
DFSEMODL MODNAME=RIDEXIT,DSLABEL=EEVTRID,SUBPOOL=230,
OPTION=NODEP

DFSEMODL MODNAME=CMDEXIT, DSLABEL=EEVTCMD,SUBPOOL=230,
OPTION=NODEP

DFSEMODL END=YES

DFSEMODL DSNAME=(ESSEWAL,40,230) ,SOURCE=(DFSEEVTP,EEVPEWA) ,
MODNAME=MODX, LABEL=MODXADDR, SUBPOOL=230

DFSEWAL DSNAME=(ESSEWAL) , SOURCE=(ESSEWAL ,ESSEWAL) ,WALSP=230,
NAME=WKAZ1, DSLABEL=WKA1ADDR, SUBPOOL=230, LV=200

DFSEWAL NAME=WKA2,DSLABEL=WKA2ADDR, SUBPOOL=230,LV=100

DFSEWAL NAME=WKA3,DSLABEL=WKA3ADDR, SUBPOOL=230,LV=100

DFSEMODL END=LAST

Notes to example:

« The existence of a DSECT named ESSEWAL created by the external subsystem to map the EWAL is
assumed.

« Two subtables are defined for completeness:
— The first subtable contains exit routine module definitions.
— The second subtable contains work area definitions:

- A module is defined in this subtable with EEVPEWA specified as the anchor field for the module
address control block. (If the external subsystem does not really want a module loaded for this
subtable, both the NOCTL and NODEP options can be specified.)

130 IMS: Communications and Connections

- The module address control block DSECT, ESSEWAL, is specified as the EWAL source control block

DSECT and the EWAL size is not specified, indicating that the EWAL is to be contained in the module
address control block.

- ESSEWAL is also specified as the label in the source block for the EWAL, indicating that the EWAL
starts at offset zero in the module address control block. Thus, the module address control block
itself is the EWAL, anchored at EEVPEWA in the EEVTP.

Chapter 8. Creating the external subsystem module table 131

132 IMS: Communications and Connections

Chapter 9. IMS External Subsystem Attach Facility
processing

The IMS External Subsystem Attach Facility performs processing during control region initialization.

Loading the External Subsystem Attachment Package

During control region initialization, IMS loads external subsystem-supplied tables using the table names
specified by the installation (in the external subsystem definition member in IMS.PROCLIB).

IMS loads the external subsystem module table (ESMT) and then loads the external subsystem modules
defined in the table. The resource translation table (RTT) is also loaded, if provided. If an error occurs
during this process, IMS puts the subsystem in 'stopped' status and does not establish a connection.
However, IMS will reaccess the definition (PROCLIB) and reattempt this process if a /START SUBSYS
command is received.

Possible errors are:

« Unable to process the PROCLIB member
« Unable to open the external subsystem load library
« Unable to load the ESMT (incorrect name specified, not in library)

IMS stores the addresses of the ESMT and the RTT in the EEVTP control block fields EEVPESMT and
EEVPRTTA, respectively.

Creating the EEVT control block

IMS creates and initializes the EEVT control block based on information contained in the external
subsystem module table (ESMT) that is generated from DFSEMODL macro statements.

The size and subpool for the EEVT storage request are obtained from the ESMT. The EEVT is created in
subpool 230 unless subpool 251 is specified in the ESMT. The external subsystem must ensure that the
size specified for the EEVT is at least as large as the size indicated in the IMS EEVT mapping.

IMS stores the EEVT address into the EEVTP control block based on an offset specified in the ESMT. The
external subsystem must ensure, therefore, that the offset generated in the ESMT (using the DFSEMODL
macro) points to the EEVPEEA field in the IMS EEVTP mapping.

IMS does not check whether the EEVT pointer field, EEVPEEA, in the EEVTP is initialized by this process.
In fact, the offset in the ESMT could cause IMS to store the address into some other field in the EEVTP
designated for some other use, possibly causing a problem. Thus, the external subsystem must ensure
that the correct offset is generated into the ESMT.

This process allows the external subsystem to specify another set of modules for IMS to load (IMS would
not activate these modules). Both lists of module addresses, one being the EEVT, would be anchored in
the EEVTP.

IMS does not use the EEVTLDIR field. Actually more than two sets of modules could be defined in the
ESMT (subtables) and loaded by IMS except that there are not enough fields in the EEVTP to anchor the
address lists.

Related concepts

“Creating the external subsystem module table” on page 125

© Copyright IBM Corp. 1974, 2022 133

The external subsystem creates the external subsystem module table (ESMT) to supply definitions of the
external subsystem modules that IMS is to load.

Loading external subsystem modules
As IMS loads external modules defined in the ESMT, the module addresses are stored in the EEVT.

The module definitions provide the offsets to the locations in the EEVT for the addresses. IMS does not
check whether or not required exit routine addresses have been set by the module loading process. If the
external subsystem chooses, the ESAP can set exit routine addresses in the EEVT once IMS has passed
control to it. For example, the external subsystem can provide multiple exit routines in one load module
and have the ESAP set the individual exit routine module addresses.

Whether through module definitions in the ESMT or through ESAP processing, the external subsystem
must ensure that the address of an exit routine is present in the EEVT when IMS needs to activate the exit
routine. Exit routine addresses must be placed in the EEVT according to the IMS EEVT mapping.

Some of the exit routines prescribed by IMS are activated only in the control region; some are activated
only in the dependent regions. The external subsystem can indicate, in the module definition, if a module
is not to be loaded in the control region or in dependent regions. Exit routine module definitions should
specify loading according to the following:

« Exit routines activated in the control and dependent regions:
— Identify
— Initialization
— Terminate Identify

« Exit routines activated only in the control region:

Command
Echo
Resolve Indoubt

Subsystem Termination
« Exit routines activated only in dependent regions:

— Abort Continue
— Associate Thread
— Commit Continue
— Commit Prepare
— Commit Verify

— Create Thread

— Normal Call

— Signoff

- Signon

— Subsystem Not Operational
— Terminate Thread

In the control region, IMS loads external subsystem modules into the subpools specified in the module
definitions. If subpool 251 is specified for a module in dependent regions, IMS loads the module in
subpool 251; otherwise, it is loaded in subpool 230.

An external subsystem uses only those exit routines that it needs to communicate with IMS, although
some exit routines are required and others are optional. When a required exit routine does not exist, IMS
generates an error message when it tries to call the exit routine and terminates the connection with the
external subsystem.

134 IMS: Communications and Connections

If your external subsystem does not need the function that an exit routine is designed to perform, you can
write the exit routine so that one exists when IMS calls it but that so no operations are performed. (An
exit routine can contain common code, such as SR 15,15 and BR 14 logic, which ESS branches to when
the exit routine is called and which does not perform any specific operation.) During processing of the
Initialization exit routine, the external subsystem can update the addresses in the DFSEEVT DSECT (from
both the control region and dependent regions, if necessary) and point to these exit routines. This action
allows IMS to function normally yet not issue error messages and terminate an external connection if an
exit routine does not exist.

Creating work areas for the ESAP

After loading the ESAP modules, IMS obtains work area storage for the ESAP if work area definitions are
contained in the ESMT.

The IMS DFSEWAL macro is used to generate work area definitions in the ESMT.

The process IMS uses to create the work areas is similar to the process used to load ESAP modules
except that IMS can either:

« Create the control block for the work area addresses (as it creates the EEVT for the ESAP module
addresses), or

« Store the work area addresses into the same control block that has the module addresses.

The intended use of the EEVPEWA field in the EEVTP is to hold the address of a control block referred to
as the external subsystem work area list (EWAL) that contains the addresses of the work areas created
for the ESAP. However, the external subsystem must have provided the appropriate specifications in the
ESMT to cause IMS to store the address of the EWAL in this field.

IMS creates each work area either in the control region or in dependent regions or both, according to the
definition. Storage is obtained in subpool 251, if specified; otherwise it is obtained in subpool 230.

Related concepts

“Creating the external subsystem module table” on page 125
The external subsystem creates the external subsystem module table (ESMT) to supply definitions of the
external subsystem modules that IMS is to load.

Initiating the external subsystem connection

IMS automatically connects to the external subsystem during control region initialization processing (for
example, when IMS is started) unless the external subsystem chooses to defer the control region identify
to a later time.

The external subsystem defers the connection by returning from the control region Initialization exit
routine with return code 4 (do not identify), or by not providing an Initialization exit routine for the control
region.

If the external subsystem uses the notify message mechanism provided by IMS (and if the external
subsystem is not up when IMS activates the Identify exit routine) the connection is automatically
established when the external subsystem is started. Return Code 4 from the Identify exit routine causes
IMS to wait for the external subsystem to send the notify message passed to the exit routine, and to
reactivate the exit routine when the message is received.

If the notify mechanism is not used, the Identify exit routine should return with return code 12, in which
case the connection is put in stopped status. Stopped status must be removed by a /START SUBSYS
command before IMS will establish a connection.

Once the connection has been established, IMS performs Resolve Indoubt processing to resolve any
outstanding recovery tokens with the external subsystem. If outstanding recovery tokens exist and a
Resolve Indoubt exit routine was not supplied, IMS terminates and stops the connection; otherwise
dependent regions are allowed to connect to the external subsystem.

Chapter 9. IMS External Subsystem Attach Facility processing 135

Deferring the control region identify

The external subsystem can defer the control region identify if it prefers to have the connection
established at some later time.

IMS schedules and gives control to application programs whether or not a connection exists to the
external subsystem. The external subsystem thus could choose to wait until an application program call
has to be serviced (first call for its resources) before connecting to IMS. Of course, to process calls, the
control and dependent region connections and the application thread must exist.

When the control region identify is deferred, the identify is done when:

« The external subsystem, with an exit routine, activates the IMS Subsystem Startup Service.
- An MPP or IFP dependent region that can access the external subsystem is started.
« A /START SUBSYS command naming the external subsystem is processed.

Using the IMS Subsystem Startup Service

When the control region identify is deferred, the external subsystem can activate the IMS Subsystem
Startup Service when it wants the control region Identify exit routine to be driven.

To be more specific, if a connection does not exist when the first application call for external subsystem
services is processed by a dependent region, IMS does not automatically attempt to identify. The
external subsystem must activate the Startup Service to establish the connection (if it wants to process
application calls).

The Startup Service is also used to establish dependent region connections. When an external subsystem
call from an application is processed before the control region or dependent region has been identified to
the external subsystem, the dependent region activates the Subsystem Not Operational exit routine. The
external subsystem is expected to call the Subsystem Startup Service from this exit routine to establish
the connection.

When activated, the Startup Service establishes the control and dependent region connections, if the
control region identify has not been done. If the control region identify has been done, it establishes only
the dependent region connection. If IMS is waiting for the external subsystem to send the notify message,
which it accepted on a previous Identify exit routine invocation, the Startup Service returns an error return
code and does not establish the connection. For details on using the Subsystem Startup Service exit
routine, see IMS Version 15.4 Exit Routines.

Related concepts

“Establishing dependent region connections” on page 136
Connections can be established to MPP, IFP, or BMP regions.

Establishing dependent region connections

Connections can be established to MPP, IFP, or BMP regions.

MPP and IFP regions

Identify processing for an MPP or an IFP dependent region is similar to identify processing for the
control region in that the dependent region automatically activates its Identify exit routine to establish a
connection during dependent region initialization, unless the external subsystem defers the identify.

If the control region connection has not been established when the dependent region would
automatically identify, IMS attempts to identify the control region. If successful, the dependent region
identify is performed. Thus, if the control region identify is deferred but dependent regions are allowed to
connect automatically, the control region Identify exit routine might be activated (automatically) when a
dependent region is started.

When the identify for a dependent region is deferred, the connection to the external subsystem is
established when the first application program call to the external subsystem is issued in the region.
In this case, connection processing is the same as for a BMP dependent region.

136 IMS: Communications and Connections

BMP regions

The connection from a BMP dependent region is not established until the first application call to the
external subsystem is processed by the region. The connection is automatically established.

Return code 4 from the Initialization exit routine (deferred identify) for a BMP region has no effect.

Notify message
IMS passes the address of a notify message on the Identify exit routine invocation for the control region.

If the external subsystem is not active (has not been started), the Identify exit routine can indicate (return
code 4) to IMS that the notify message has been accepted and will be sent to IMS when the external
subsystem is active. The external subsystem, once started, sends the message to IMS using an internal
z/OS MODIFY command (SVC 34) to alert IMS that it is ready to connect. On receipt of the notify message,
IMS reactivates the Identify exit routine to establish the connection.

External subsystem code that is always present in the z/OS system (early code), for example, might be
used as the means to pass the notify message to the external subsystem. The Identify Exit queues the
message to the early code so that it is available to the external subsystem whenever it is started.

IMS passes the notify message to the Identify exit routine in the format shown in the following figure.

LL |22| meassage_taxt

2 2 variable

Figure 17. Notify message format

where:

LL

Is a 2-byte field containing the message length (LL + ZZ + MESSAGE_TEXT).
Y4

Is a 2-byte field containing binary zeroes.

MESSAGE_TEXT
Is the notify message text that IMS expects to receive by the MODIFY command . The message text
must not be altered.

Issue the MODIFY (F) command as follows:

MODIFY ims_jobname,message_text

The external subsystem must prefix the notify message text passed by IMS with MODIFY ims_jobname(or
F ims_jobname), before sending the message. The following figure shows the format for the SVC 34
command input.

LL |zz |EDMMAI‘~.ID | SPACE| IMS_JOBNAME | COMMA |MEssAGE TEXT
W——(add langth 1o LL from IMS)——

x

" tetal length

Figure 18. SVC 34 command input format

where:

LL
Is a 2-byte field containing the total length of the command input area (COMMAND + SPACE +
IMS_JOBNAME + COMMA added to the length in the LL field passed to the Identify exit routine).

2z
Is a 2-byte field containing binary zeroes.

COMMAND
Contains the MODIFY command verb (C'MODIFY' or C'F").

Chapter 9. IMS External Subsystem Attach Facility processing 137

SPACE
Is a 1-byte field containing a blank (C'").
IMS_JOBNAME
Is an 8-byte field containing the IMS control region job name left justified and padded with blanks on

the right. The Identify exit routine can obtain the job name from the TIOT pointed to by the current
TCB.

COMMA
Is a 1-byte field containing a comma (C).

MESSAGE_TEXT
Is the notify message text passed to the Identify exit routine.

Application program request support

Application calls are passed to IMS from the language interface module that you bind with the application
program. The language interface branches to the appropriate IMS program request handler passing the
application program call parameter list.

For calls directed to external subsystems, the language interface must also pass an external subsystem
parameter list which it constructs. The purpose of this parameter list is to pass the LIT (language interface
token) for the external subsystem to which the call is directed. IMS routes the application call to the
external subsystem whose LIT value matches the LIT value passed on the call.

IMS passes both the call parameter list and the external subsystem parameter list to the Normal Call
exit routine for the intended external subsystem. The first word of the external subsystem parameter
list contains the address of a 4-byte field containing the LIT value in character format, left justified and
padded on the right with blanks. IMS prescribes only the first word in the external subsystem parameter
list (address of the LIT). The parameter list can be extended to provide external subsystem-dependent
information to the Normal Call exit routine.

Language interface definition

IMS provides a language interface module, DFSLIO0O0, which supports the value of SYS1. The installation
can use this module or it can define its own language interface if it wants to use a LIT value other than
SYS1.

When two or more external subsystems are accessed by the IMS system, the installation must define its
own language interface modules because each subsystem has a unique LIT.

IMS provides the DFSLI macro to assist the installation in generating a language interface module. The
code necessary to perform the language interface function is generated in the DFSLI macro expansion.
The IMS macro library must be supplied when the macro statements are compiled to generate the
module.

Related concepts
Defining the language interface module (System Definition)

Language interface entry points unique to external subsystems

The IMS language interface module provides three entry points that application calls directed to an
external subsystem can exclusively use.

Two of the entry points are associated with an implied LIT value specified with the DFSLI macro. (The
language interface module, generated by the DFSLI macro, contains the specified LIT value as a hard-
coded constant.) The third entry point is not associated with an implied LIT value; it allows the application
program to specify the LIT value when it makes the application call. For all entry points, register 1
contains the address of the parameter list which IMS passes to the external subsystem. The following are
language interface entry points to external subsystems:

DSNHLI
Entry point associated with an implied LIT value.

138 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_deflim.htm#deflim

The application program does not need to know which subsystem provides access to the external
resources it uses. (If the external subsystem is Db2 for z/QS, this entry point is used for SQL calls.)

DSNWLI
Entry point associated with an implied LIT value.

The application program does not need to know which subsystem provides access to the external
resources it uses. (If the external subsystem is Db2 for z/OS, this entry point is used for Instrument
Facility calls.)

DFSESS
Entry point allowing an application program to specify an LIT value.

The application program must know which subsystem provides access to the external resources it
uses. The application program must specify the address of the LIT value as the first parameter in the
application call list. Before it passes control to the external subsystem, IMS increments the address of
the application call list by four to skip over the LIT value parameter.

Restriction: Do not use the DFSESS entry point to communicate with a Db2 for z/OS subsystem.

Accessing multiple external subsystems

An application program can access DL/I and an external subsystem in the same execution. Whether or
not an application program can access more than one external subsystem in the same execution can be
restricted by the language interface.

Where the data (call) interface provided to application programs by one external subsystem (product) is
distinct from the interface provided by another external subsystem (for example, DL/I calls as distinct
from SQL calls), an application can access both subsystems because the language interface paths can
be different. Where the data interface is the same, as in the case of two external subsystems of the
same type (two instances of the external subsystem) or two external subsystem products that use the
same call interface (for example, SQL), an application cannot access both in the same execution unless
the application is written to be dependent on data location. (The dependency is intrinsic in the case of
different call interfaces.)

Resource recovery token

A 16-byte recovery token is used to uniquely identify a unit of work across all subsystems to which the
application has thread connections. IMS passes the token to the Signon exit routine before the thread is
created.

For commit and resolve indoubt processing, IMS passes the recovery token to identify the unit of work for
which the requested action is to be taken.

The recovery token is constructed as shown in the following figure.

IMS_id ‘ OASN ‘ commit_number

8 4 4

Figure 19. Recovery token format

where:

IMS-id
Is the IMS system ID (1 to 4 characters), left justified and padded with blanks on the right to eight
bytes.

OASN
Is a 4-byte binary origin application sequence number assigned to the application when it is
scheduled. The OASN is assigned based on the scheduling order within the IMS system since the
last cold start. It is also referred to as the application schedule number.

Chapter 9. IMS External Subsystem Attach Facility processing 139

commit_number
Is a 4-byte binary commit number. The commit number is initialized to binary zeroes when the
application is scheduled and then incremented after each commit is processed for the application.

The external subsystem should check the recovery token passed at signon for uniqueness. Cold starts

of IMS can cause a recovery token to be generated that is a duplicate of a recovery token that is

indoubt in the external subsystem. The Signon exit routine can indicate to IMS that the recovery token
passed was found to be a duplicate, in which case IMS terminates the application program with an
abend. The Commit Prepare exit routine can also indicate that the token is a duplicate that supports
external subsystems that choose not to associate the recovery token with the unit of work until commit is
processed.

The installation uses the /DISPLAY SUBSYS command with the OASN keyword to determine what units
of work are in indoubt status in IMS. The installation can use the /CHANGE command (when necessary)
to manually delete indoubt units of work in IMS. The /CHANGE command only affects unit of work status
in IMS. There is no communication with the external subsystem. These commands use only the OASN
and not the full recovery token; /DISPLAY lists only the OASN portion of the recovery token (in decimal
format) and /CHANGE accepts just the OASN (again in decimal format). (Within IMS, the OASN is unique
across all known units of work.)

Terminating the external subsystem connection

IMS terminates the external subsystem connection (control region connection) in an orderly mannerin a
number of different circumstances.

IMS terminates the external subsystem connection (control region connection) in an orderly manner when
one of the following occurs:

« IMS processes a /STOP SUBSYS command.
« The external subsystem (ESAP) activates the IMS subsystem termination service exit routine.
- The external subsystem posts the termination ECB provided on the Identify exit routine invocation.

Certain attach processing errors are encountered.
IMS is shutting down.

IMS allows existing threads to the external subsystem to complete processing. When all threads have
terminated, IMS terminates the connection by activating the Terminate Identify exit routine from the
control region.

When the connection is terminated due to a /STOP SUBSYS command, the termination ECB being
posted, or processing errors, IMS puts the external subsystem connection in stopped status. Once in
stopped status, IMS does not allow a connection to be reestablished. A /START SUBSYS command is
required to remove the stopped status.

Termination requested by the external subsystem

The external subsystem can cause the connection to be terminated either by posting the termination ECB
or by activating the Subsystem Termination Service exit routine from the ESAP. The connection is not put
in stopped status when the service is used.

The termination service might be used in conjunction with the external subsystem command exit function.
For example, when the command exit routine is activated with an external subsystem termination
command supplied on an IMS /SSR command, the exit routine could activate the Subsystem Termination
Service exit routine to cause the connection to the external subsystem to be terminated.

On the initial identify performed in the control region, IMS provides the external subsystem with the
address of a termination notification ECB. When the subsystem needs to terminate the connection, it
posts the ECB. The ECB is located in CSA. Depending on the post code, IMS terminates the connection in
the following manner:

Deactivate all active threads, prohibit the initiation of any new threads, and then terminate the
connection. Upon completion of the terminate function, the connection is set in a stopped state.

140 IMS: Communications and Connections

Supported Post Codes:
X'40000000'
Reserved for IMS.

X'40000008'
External subsystem is terminating in an orderly fashion.
X'4000xxxx"
All other post codes are interpreted as a quick or catastrophic shutdown of the external subsystem.
Related reference
Subsystem Termination Service exit routine (Exit Routines)

Dependent region connections

At dependent region termination, the Signoff and Terminate Identify exit routines are not activated unless
the control region connection is to be terminated.

That is, the dependent region Signoff and Terminate Identify exit routines are activated only when the
IMS system continues to run without a connection to the external subsystem, such as when either the
external subsystem has posted the termination ECB provided on the identify, the ESAP has activated the
IMS Subsystem Termination Service, or IMS has processed a /STOP SUBSYS command. Otherwise, IMS
does not communicate dependent region termination to the external subsystem.

IMS expects the external subsystem to monitor the dependent TCB with a z/OS End Of Task (EOT) exit
routine. The subsystem should do any signoff and terminate identify processing it requires when the EOT
exit routine is notified of the region termination.

The external subsystem must also monitor EOT exit routine for dependent regions for which a thread was
created. When an application program terminates abnormally, the Terminate Thread exit routine is not
called.

When the control region connection is to be broken, a signoff followed by a terminate identify is done
for the dependent region at region termination or after thread termination if a thread was active when
the request to break the system connection was received. The Signoff exit routine is called only once

even though more than one signon might have been done for the region. IMS continues its signoff and
terminate identify processing and does not reactivate these exit routines if they encounter errors.

Explanation of stopped status

The installation should be aware of the conditions that cause IMS to stop the external subsystem
connection.

After an external subsystem connection is stopped, the /START SUBSYS command must be used to
reestablish the connection. Stopped status is carried across restarts. The following list includes the
conditions that cause the stopped status to be set:

« When the external subsystem posts the subsystem termination ECB provided during identify
processing. Regardless of the post code type (for example, orderly or catastrophic), the connection
is stopped upon completion of the termination processing.

« On abnormal termination of the IMS task (TCB) in the control region under which the ESAP is activated,
the external subsystem connection is marked stopped.

If the control region abends, it is unlikely the stopped state will be set. After a successful IMS restart,
the connection is in the state it was prior to the abend.

« The obvious case is after processing of the /STOP command. Even if IMS abends while processing
the /STOP command, the stopped state is set.

- When IMS restarts, if outstanding recovery tokens exist for an external subsystem that is no longer
defined to IMS (for example, the installation deleted its definition from the external subsystem
definition member in IMS.PROCLIB), stopped status is set for that external subsystem.

Chapter 9. IMS External Subsystem Attach Facility processing 141

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_subsystemterminationservice.htm#ims_subsystemterminationservice

142 IMS: Communications and Connections

Part 5. IMS Connect and TCP/IP communications

The IMS Connect function of IMS provides access to both IMS DB and IMS TM from TCP/IP-enabled
environments.

About this task

© Copyright IBM Corp. 1974, 2022 143

144 IMS: Communications and Connections

Chapter 10. Overview of IMS Connect

IMS Connect provides high performance TCP/IP communications between one or more IMS Connect
clients and one or more IMS systems. IMS Connect supports both IMS DB and IMS TM systems.

IMS Connect enables:

« ISC users to link with IBM CICS Transaction Server for z/OS over a TCP/IP connection.

« MSC and OTMA users to send messages from one IMS system to another by using IMS-to-IMS TCP/IP
connections.

- Distributed clients to exchange messages with IMS DB by using TCP/IP connections and the Open
Database Manager (ODBM) component of the IMS Common Service Layer (CSL).

« Distributed clients to exchange messages with IMS TM by using TCP/IP connections and OTMA.

« IMS Operators that use IBM Management Console for IMS and Db2 for z/OS to issue commands to an
IMSplex and receive command replies by using TCP/IP and the IMS Operations Manager (OM).

IMS Connect provides the following features:

« Commands to manage the communication environment.

- Assistance with workload balancing.

« Reduced design and coding efforts for client applications.

« Support for IMSplexes, which enables communications with other IMSplex members, such as:

IMS for Intersystem Communication (ISC) and Multiple Systems Coupling (MSC) support
IMS for Multiple Systems Coupling (MSC) support

- ODBM

- OM
« Connectivity between IMS and CICS on ISC TCP/IP links.

 Connectivity between IMS Connect instances, which supports IMS communications components, such
as MSC and OTMA.

« TCP/IP access to IMS application programs and operations on demand with advanced security and
transactional integrity.

« TCP/IP access for distributed applications to IMS databases on demand through clients such as the IMS
Universal drivers and ODBM.

« XML conversion support for certain IMS Connect clients, such as IMS Enterprise Suite SOAP Gateway
and IMS Web 2.0 Solution for IBM Mashup Center. The IMS Connect XML conversion support converts
input messages into the data structures expected by IMS application programs written in select
programming languages, thereby eliminating the need to create or modify IMS application programs
to process XML.

IMS Connect connects to IMS DB through ODBM for direct access to databases that are managed by
IMS DB. IMS Connect connects to IMS TM for transaction processing support through Open Transaction
Manager Access (OTMA).

Communications between IMS Connect and other IMSplex members, such as IMS for MSC support,
ODBM, and OM, requires the use of the IMS Structured Call Interface (SCI).

IMS Connect performs router functions between its clients and IMS and IMSplex resources. Request
messages that are received from distributed clients through TCP/IP connections are passed to an IMS
system, referred to as a data store, through z/OS cross-system coupling facility (XCF) sessions. IMS
Connect receives response messages from the data store and then returns them to the originating TCP/IP.

If the data store terminates, the status of the data store is sent to IMS Connectfrom OTMA through XCF.
If IMS Connect was connected to the data store when the data store terminated, when the data store

© Copyright IBM Corp. 1974, 2022 145

is restarted, IMS Connect is notified and automatically reconnects to the data store. You do not need to
manually reconnect to the data store.

Generally, the term data store refers to an IMS system. More precisely, however, the term data store
represents the OTMA target member (tmember) connection to an IMS system. For example, an instance
of IMS Connect can have multiple data store definitions for the same IMS system, in which case each data
store represents a different OTMA tmember connection to that IMS system.

IMS Connect also supports callout requests from IMS application programs running in IMS dependent
regions. IMS application programs issue callout requests to request data or services from a provider that
is external to the IMS installation. During a callout request, IMS acts as a client and the external provider
is the server.

Related concepts

IMS Connect definition and tailoring (System Definition)

Related tasks

IMS-to-IMS TCP/IP connections (System Definition)

“IMS Connect support for callout requests” on page 207

IMS Connect is a required component when IMS application programs issue callout requests through
OTMA to data or service providers that are external to the IMS installation. For both types of callout
request, IMS Connect serves as the TCP/IP gateway between the IMS Connect client that use TCP/IP and
the OTMA component of IMS.

Related reference

HWSCFGxx member of the IMS PROCLIB data set (System Definition)

IMS Connect commands (Commands)

IMS Connect exit routines (Exit Routines)

HWS messages (IMS Connect) (Messages and Codes)

IMS Connect return and reason codes (Messages and Codes)

IMS Connect client support

As a TCP/IP server and a message router for IMS, IMS Connect provides access to IMS TM, IMS DB, and
the CSL Operations Manager (OM). The client support provided by IMS Connect differs, depending on
which type of access the IMS Connect client needs.

IMS Connect supports TCP/IP clients that communicate with socket calls, as well as TCP/IP clients that
communicate with different input data stream formats.

IMS DB client support

For access to IMS DB, IMS Connect, with the CSL Open Database Manager (ODBM), supports the following
types of clients:

« Application programs that use the IMS Universal Database resource adapter for the Java EE platform
 Application programs that use the IMS Universal JDBC driver
« Application programs that use the IMS Universal DL/I driver

« User-written client application programs that use the open standard DRDA communications
architecture

The following figure illustrates an IMS Connect system configuration that supports IMS DB client
communications:

146 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_hstinst.htm#hstinst
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_imstoims_tcpip_connection_def.htm#ims_imstoims_tcpip_connection_def
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_hwscfgxx_proclib.htm#ims_hwscfgxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/compcmds/ims_connectcmds.htm#ims_cr3-gen5
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_connectexitroutines.htm#connectexitroutines
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.mc/nondfs/ims_hwsmessages.htm#hws_messages
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.mc/compcodes/ims_connectreturnandreason.htm#ims_connectreturnandreason

IMS Universal IMS Universal

OB JDBC
resource adapter driver

IMS Universal

DL
driver

!

e

User-written
DRDA
SOUrce server

|
TCPI/IP

,

——
/;-“OS 3
l—> ODBM <*+—
XCF
SCI <+—» OM J—
PC
L J L y¥r
IMS
IMS
Connect DB L
system 1
Optional
HWSROUTO and
HWSAUTHO
Luser message IMS L
exits DB 1
system 2
z/05
IMS
OB
system 3

Figure 20. Overview of IMS Connect support for IMS DB systems

IMS TM client support

For access to IMS TM, IMS Connect supports the following types of clients:

« User-written TCP/IP client application programs that use the IMS request message (IRM) header to
communicate protocol options to IMS Connect

« IMS TM Resource Adapter (previously known as IMS Connector for Java)

- IMS Enterprise Suite SOAP Gateway, which includes XML message conversion support

- IMS Web 2.0 Solution for IBM Mashup Center, which includes XML message conversion support

The following figure illustrates an IMS Connect system configuration that supports IMS TM client

communications:

Chapter 10. Overview of IMS Connect 147

User-written IMS TM IMS

TCPP Resource Enterprise Suite
client Adapter SOAP Gateway
i } i
EEPERE S
= TCP/IP
[L
rfﬂ_z.’lEIIS A
| | IMS TM 1
¥ r XCF i
g
IMS . | OTMA
Connect :
o
IMS Connect XCOF IMS TM 2
user I
message exit 1 OTMA
z/0S
IMS TM 3
XCF | P
—* OTMA
k. o

Figure 21. Overview of IMS Connect support for IMS TM systems

For IMS TM IMS Connect clients, you can write user-message exits that execute in the IMS Connect
address space to convert the format of client input messages to the OTMA message format before IMS
Connect sends the message to IMS. The user-written message exits also convert the OTMA message
format to the customer message format before returning the message to IMS Connect. IMS Connect then
sends output to the client.

IMS Connect supports TCP/IP communications between IMS TM and distributed Java applications
through the IMS TM Resource Adapter running under either WebSphere Application Server for distributed
platforms.

For IMS TM, IMS Connect also supports the SOAP Gateway, which is a web services solution that enables
IMS applications to inter-operate outside of the IMS environment through SOAP to provide and request
services that are independent of platform, environment, application language, or programming model.

IMS Connect supports the IMS Web 2.0 Solution for IBM Mashup Center, which enables the integration
of existing IMS assets into Web 2.0 mashup and application solutions, providing users access to IMS
transactions through RSS, ATOM, or XML feed.

For SOAP Gateway and IMS Web 2.0 Solution clients, IMS Connect also provides XML conversion support,
which converts incoming XML messages into the data structures of some of the common programming
languages supported by IMS application programs.

IMSplex operations support

To issue IMS type-2 commands to the CSL OM and receive command responses through a TCP/IP
connection, IMS Connect supports clients such as IBM Management Console for IMS and Db2 for z/0S.
A single IMS Connect can support communication between the TCP/IP client and any IMS within an
IMSplex.

148 IMS: Communications and Connections

The following figure illustrates an IMS Connect system configuration that supports IMS TM client
communications:

User-written IBM Management Console
TCPAP for IMS and
client DB2 for z/OS
f f
| TCPP
0s M
= XCF —
" sCI o OM -
PC -
L 3 T
IMS IMS 1 [
Connect

HWSCSLOO0 or
HWSCSLO1

- e
user message exit IMS 2

z/0S

-~

IMS 3

i\,
o —

Figure 22. Overview of IMS Connect support for TCP/IP clients

IMS Connect support for access to IMS DB

For IMS Connect clients, such as the IMS Universal drivers, that access databases that are managed

by IMS DB in DBCTL and DB/TM environment, IMS Connect manages TCP/IP connections and routes
incoming access requests among the instances of the CSL Open Database Manager (ODBM) and the IMS
DB systems in an IMSplex.

IMS Connect is the TCP/IP server and front-end IMSplex message router for the IMS Universal drivers,
which include:

« IMS Universal Database resource adapter for the Java EE platform

« IMS Universal JDBC driver

« IMS Universal DL/I driver

The IMS Universal drivers provide direct, non-transactional access to IMS databases through TCP/IP
connections for distributed application programs or local z/OS application programs.

The IMS Universal drivers simplify the development of IMS Connect client application programs that
access IMS DB through TCP/IP connections. The IMS Universal drivers do not use the IMS Connect

IMS Request Message (IRM) communications protocol. The IMS Universal drivers also shield application
developers from the underlying Distributed Relational Database Architecture™ (DRDA) that is used
internally for communications between the IMS Universal drivers and IMS Connect.

Because IMS Connect supports the DRDA protocol and, with ODBM, is a complete DRDA target server,
you can write application programs to the DRDA protocol directly; however, the IMS Universal Database

Chapter 10. Overview of IMS Connect 149

resource adapter for the Java EE platform is the recommended API for accessing IMS databases through
TCP/IP from a distributed environment.

IMS Connect support for the IMS Universal drivers includes support for global two-phase commit
transactions.

IMS Connect supports communication with the IMS Universal drivers only on dedicated DRDA ports and
only through shareable persistent sockets.

IMS Connect security support includes the IMS Connect DB Security user exit routine (HWSAUTHO),
which can be used for greater control over the authentication of user IDs on connections that access IMS
DB. RACF is also supported.

IMS Connect support for the IMS Universal drivers is defined by the ODACCESS configuration statement in
the IMS Connect configuration PROCLIB member and requires at least one instance of ODBM running in
the same IMSplex as IMS Connect.

Connection routing for IMS Connect clients that connect to IMS DB

IMS Connect routes incoming connections from client applications that are connecting to IMS DB based
on an alias name and the instance of ODBM to which the alias name belongs. The client application
programs can specify an alias name on their incoming request messages.

IMS Connect keeps track of which alias names belong to which instance of ODBM in a internal tracking
table that is populated during registration with each instance of ODBM. Information about the ODBM
instances and alias names is also stored in an ODBM list in an exit interface block mapped by the
HWSXIBOD macro. The address of the ODBM list is stored in a table mapped by the HWSXIB macro.

IMS Connect also provides the IMS Connect DB Routing user exit routine (HWSROUTO) that you can use to
further control the routing of incoming message from clients that access IMS DB.

If IMS Connect receives a blank alias name from the client application or the HWSROUTO exit routine, IMS
Connect routes incoming connections in round-robin fashion among all of the instances of ODBM known
to IMS Connect. If IMS Connect receives from the client application or the HWSROUTO exit routine an
alias name that is shared by multiple instances of ODBM, IMS Connect routes the incoming connections
that specify that alias name in round-robin fashion among all of the instances of ODBM that share the
alias name.

IMS Connect support for the IMS TM Resource Adapter

To support Java application programs connecting to IMS TM, IMS Connect supports the IMS TM Resource
Adapter.

The IMS TM Resource Adapter runs under WebSphere Application Server in distributed environments and
is used by Java applications, Java Platform, Enterprise Edition (Java EE) applications or web services to
access IMS transactions that are running on host IMS systems. It is also used by IMS applications that run
in IMS dependent regions to make asynchronous callout requests to external Java EE applications.

The IMS TM Resource Adapter connects to IMS Connect through the TCP/IP communications protocol.

When a Java application submits a transaction request to IMS through the IMS TM Resource Adapter, IMS
Connect sends the transaction request to IMS Open Transaction Manager Access (OTMA) by using the
z/0S cross-system coupling facility, and the transaction runs in IMS. The response is returned to the Java
application using the same path.

When an IMS application invokes an external enterprise JavaBeans (EJB) component or web service
through a callout request, IMS Connect retrieves the callout request from a hold queue and passes it

to the IMS TM Resource Adapter, which in turn passes the request to an EJB application in WebSphere
Application Server that is set up to receive callout requests. The EJB starts a connection to IMS Connect
via the IMS TM Resource Adapter. The IMS TM Resource Adapter polls IMS Connect to retrieve the callout
requests from the hold queue. The EJB processes the request, and returns any response data to IMS by
issuing a normal IMS transaction request.

150 IMS: Communications and Connections

IMS Connect identifies TCP/IP connections by a client ID that is submitted by the IMS TM Resource
Adapter.

For connections on persistent TCP/IP sockets, IMS Connect can generate a client ID for the IMS TM
Resource Adapter in any of the following cases:

- The IMS TM Resource Adapter requests that IMS Connect generate a unique client ID in the event that
a client ID submitted by the IMS TM Resource Adapter is a duplicate of an existing IMS TM Resource
Adapter client ID.

« The IMS TM Resource Adapter submits a blank client ID.

IMS Connect support for command requests to Operations Manager (OM)

IMS Connect (ICON) clients can send command requests to the Operations Manager (OM) to be
processed by components in the IMSplex such as IMS, ODBM, and ICON.

Sending a command request to OM is similar to sending a transaction to IMS. ICON clients build the
command request using the IMS request message (IRM) header format.

The following are command-related settings that user-written ICON clients must set in the command
request:

« Set the user message exit IRM_ID field to HWSCSLOO or HWSCSLO1 string values “*“HWSCSL*’ or
“*HWSCS1*.

« Set the destination IRM_IMSDESTID to the IMSplex name connected to the ICON. The IMSplex
name can be found in the TMEMBER= parameter of the IMSPLEX statement in the ICON HWSCFGxx
configuration member.

« Set the application data to the command string 'CMD(command string)' such as 'CMD(QRY IMSCON
TYPE(PORT) NAME(*) SHOW(STATUS))".

ICON API for Java clients can issue the following method calls by setting the following fields:

« Set the user message exit by issuing
TmInteraction.setImsConnectUserMessageExitIdentifier(exit name). Exit name can be
either TmInteraction.IMS_CONNECT_USER_MESSAGE_EXIT_IDENTIFIER_FOR_HWSCSLOO or
TmInteraction.IMS_CONNECT_USER_MESSAGE_EXIT_IDENTIFIER_FOR_HWSCSLO1.

« Set the destination by issuing TmInteraction.setImsDatastoreName(IMSplex nhame).

- Set Interaction type to command by issuing
TmInteraction.setInteractionTypeDescription(TmInteraction.INTERACTION_TYPE_DESC_TYPE2_COMM
AND).

« Set the application data as shown below:

String inputMessage = "CMD(command string)";

short inputMessagelLength = (short) (inputMessage.length() + 4);

ByteBuffer inputMessageInByteFormat = ByteBuffer.allocate(inputMessagelength);
inputMessageInByteFormat.position(0);
inputMessageInByteFormat.putShort((short) inputMessagelength);
inputMessageInByteFormat.putShort((short) 0);

inputMessageInByteFormat.put(inputMessage.getBytes(Charset.forName("CP1047")));InputMessage im
= commandTi.getInputMessage();

im.setInputMessageData(inputMessageInByteFormat.array());

Example command request message for command QRY IMSCON TYPE(PORT) NAME(*) SHOW(STATUS)
using exit HWSCSLO1 and destination PLEX1:

Offset © 4 8 C EBCDIC Data

Chapter 10. Overview of IMS Connect 151

+000000 OOOOOOE3 OOA80500 5CC8E6E2 C3E2F15C |...T.y..*HWSCS1x|

+000010 0000000 00631000 C3D3C9C5 DSE3FOFL |........ CLIENTO1|
+000020 00208040 40404040 40404040 D7D3C5E7 |... PLEX|
+000030 F1404040 40404040 40404040 E4E2D9E3 |1 USRT |

+000040 FOFOF140 E2E8E2F1 40404040 5C5C5C5C |001 SYS1 *kxK |
+000050 5C5C5C5C D9C1C3C6 C1D7D5D4 40404040 |*x**RACFAPNM |
+000060 40404040 40404040 40404040 40404040 |

+000070 40404040 40404040 40404040 00000000 | R
+000080 O0OOOOOOO OOEOOOOO COOOEEOO OBEOOEBO |................
+000090 0000000 OOOEOOOO O0OOOEEOO OO0 |................
+0000A0 00000000 OOOOOOEO OO0 00330000 |................
+0000BO C3D4C44D D8D9E84O C9DAE2C3 D6D540E3 |CMD(QRY IMSCON T|
+0000CO E8D7C54D D7D6D9E3 5D40D5C1 DAC54D5C |YPE(PORT) NAME (x|
+0000D0 5D40E2C8 D6E64DE2 E3C1E3E4 E25D5D00 |) SHOW(STATUS)) . |
+0000EO 040000 [...

Example command response message:

Offset 0 4 8 C EBCDIC Data

+000000 OOOO1OE7 4C6FA794 9340A585 99A28996 |...X<?xml versio]
+000010 957E7FF1 4BFO7F6F 6EAC5AC4 D6C3E3E8 |n="1.0"?><!DOCTY|
+000020 D7C54089 94A296A4 A340E2E8 E2E3C5D4 |PE imsout SYSTEM|
+000030 407F8994 A296A4A3 4B84A384 7F6E4C89 | "imsout.dtd"><i|
+000040 94A296A4 A36EA4AC83 A3936EAC 96949581 |msout><ctl><omna |
+000050 94856ED6 D4F1D6D4 4040404C 61969495 |me>0M10M </omn |
+000060 8194856E 4C9694A5 A2956EF1 4BF84BFO |ame><omvsn>1.8.0]
+000070 4C619694 A5A2956E 4CA79493 A5A2956E |</omvsn><xmlvsn> |

+O0OFE® 827E7FA8 85A27F40 616EAC61 83948499 |b="yes" /></cmdr|
+000FFO A2978884 996EAC83 948499A2 978481A3 |sphdr><cmdrspdat|
+001000 816E4C99 A2976ED7 D6D9E34D FI9F9FIF9 |a><rsp>PORT (9999 |
+001010 40404040 5D40DAC2 D94DC8E6 E2F14040 |) MBR(HWS1
+001020 40404040 40404040 40405D40 C3C34D40 |) CC(
+001030 4040FO05D 40E2E3E3 4DC1C3E3 C9E5C55D | ©) STT(ACTIVE) |
+001040 404C6199 A2976EAC 99A2976E D7D6D9E3 | </rsp><rsp>PORT|
+001050 4DF9F9F9 F8404040 405D40D4 C2D94DC8 | (9998) MBR(H|
+001060 E6E2F140 40404040 40404040 4040405D |WS1)|
+001070 40C3C34D 404040F0 5D40E2E3 E34DC1C3 | CC(0) STT(AC|
+001080 E3C9E5C5 5D404C61 99A2976E 4C99A297 |TIVE) </rsp><rsp|
+001090 6ED7D6D9 E34DF5F5 F5F5C440 40405D40 |>PORT(5555D) |
+0010A0 D4C2D94D C8E6E2F1 40404040 40404040 |MBR(HWS1

+0010BO 40404040 5D40C3C3 4D404040 FO5D40E2 |) CC(0) S|
+0010CO E3E34DC1 C3E3C9E5 C55D404C 6199A297 |TT(ACTIVE) </zrsp]|
+0010D0 6E4C6183 948499A2 978481A3 816E4C61 |></cmdrspdata></|
+0010EQ 8994A296 A4A36E [imsout>

IMS Connect support for ISC TCP/IP communications

IMS Connect manages the TCP/IP connections and protocols for IMS when Intersystem Communication
(ISC) parallel sessions use TCP/IP to link to IBM CICS Transaction Server for z/0S.

The following figure shows the basic flow for a single ISC parallel session that uses TCP/IP. In the figure,
the ISC TCP/IP terminal is defined dynamically in IMS by an ETO logon descriptor.

152 IMS: Communications and Connections

IM51 IMS Connect ICOMN1 CICS CICSA1

APPLID=CICSA1

ETO logon TCPIP=(TCPIPSERVICE(TS1)
descriptor: CICSPORT=(ID=8991)) PORT(B891)
ONITPE AMTCICS=(PROTOCOL{IPIC)
UNITYPE=ISCTCFIP - p— —
LCLICON=ICON1 HOST=hostb.com, | Receive

ID=CICS1, port port

PORT=g8891 .-

TGP/IP

« S
.y e 5 Receive le |Send IPCONM{SSM1)
ID=ISCA, “-port port APPLID(SSN1)
MNODE=CICSA1, HOST(hosta.com)
RMTCICS=CICS1, PORT{9991)
CICSPORT=9991, TCPIPSERVICE(TS1)
CICSAPPL=CICSA1, ALTOCONMNY)

| LCLIMS=IMS1)

., A . A A

Figure 23. Overview of IMS Connect support for an ISC parallel session that uses TCP/IP

Each ISC parallel session requires two sockets in IMS Connect: a send socket and a receive socket. CICS
also requires two sockets for each ISC parallel session. An ISC link can support multiple ISC parallel
sessions.

The ISC and RMTCICS statements, along with the CICSPORT keyword on the TCPIP statement, together
define the TCP/IP connection from IMS Connect to IMS and from IMS Connect to CICS. These statements
are defined in the IMS Connect configuration member in the IMS.PROCLIB data set.

Each TCP/IP socket provides a one-way path for transactions and reply data messages between IMS
Connect and CICS. Acknowledgment messages (ACKs or NAKs) are sent on the socket connection from
which the transaction or reply data message was received.

Communication between IMS Connect and IMS is enabled by the Structured Call Interface (SCI) of the
IMS Common Service Layer (CSL).

ISC TCP/IP communication does not support RACF PassTickets.

ISC messages between CICS and IMS cannot be modified or routed by any IMS Connect exit routines. The
IMS Connect user message exit routines, such as HWSJAVAQ, HWSSMPLO, or HWSSMPL1, are not used
for ISC TCP/IP communication. The Port Message Edit exit routine is not supported.

ISC TCP/IP communication is supported by IMS type-2 commands. Only a limited number of IMS Connect
WTOR and z/OS MODIFY commands, such as VIEWHWS and QUERY MEMBER, support ISC TCP/IP
communication.

The IMS Connect Event Recorder exit routine (HWSTECLO) records events that are specific to ISC TCP/IP
communications.

Related tasks

“ISC communication with CICS over TCP/IP” on page 595
TCP/IP can be used to support ISC connections between IMS and IBM CICS Transaction Server for z/OS
subsystems.

Related reference
ISC statement (System Definition)
RMTCICS statement (System Definition)

Chapter 10. Overview of IMS Connect 153

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_hwscfgxx_proclib_isc.htm#ims_hwscfgxx_proclib_isc
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_hwscfgxx_proclib_rmtcics.htm#ims_hwscfgxx_proclib_rmtcics

IMS Connect support for IMS-to-IMS TCP/IP communications

IMS Connect manages the TCP/IP connections and protocols for IMS systems that communicate with
each other across a TCP/IP network.

An IMS-to-IMS TCP/IP connection typically links two IMS systems that are installed at different locations.
Each IMS system communicates with an IMS Connect instance at the same location. The TCP/IP
connection that the two IMS system use to communicate with each other is established by the IMS
Connect instances at each location.

The following figure illustrates possible configurations for IMS-to-IMS TCP/IP connections.

IS IMS
IMS 1 Connact 1 Connact 2 IS 2
MCF TCRP ¥CF
OTMA ¥ . " OThA
message
reguest
E— — -
MSC SCI TCRAP 2CI MSC
— o — - —
response
Local IMS Local IMS Connect Remote IMS Connect Remote IMS

Figure 24. Example configuration for IMS-to-IMS TCP/IP communications

The RMTIMSCON statement in the IMS Connect configuration member in the IMS.PROCLIB data set
defines the TCP/IP connection from one IMS Connect instance to the other. Depending on which

IMS communications component uses the TCP/IP connection, additional configuration statements,
descriptors, or system definition macros are required to complete the communications path between
the two IMS systems.

Each defined TCP/IP connection provides a one-way path for messages from one IMS system to flow to
the other. For messages to flow back in the other direction, a second TCP/IP connection must be defined
in the reverse direction. Acknowledgment messages (ACKs or NAKs) are the exception to this rule.

Optionally, IMS Connect can secure the IMS-to-IMS TCP/IP connections by using RACF PassTickets.
When PassTicket security is enabled, the sending IMS Connect instance generates a PassTicket and the
receiving IMS Connect instance verifies the PassTicket with RACF. After the PassTicket is verified, the
receiving IMS Connect classifies the connection as coming from a trusted user. As long as the connection
persists, no further security checking is performed.

The IMS Connect user message exit routines, such as HWSJAVAO, HWSSMPLO, or HWSSMPL1, are not
used for IMS-to-IMS TCP/IP communications.

IMS-to-IMS TCP/IP communications are supported by the following IMS Connect command formats:

+ WTOR
- z/OS MODIFY

154 IMS: Communications and Connections

« IMS type-2

The IMS Connect Event Recorder exit routine (HWSTECLO) records events that are specific to IMS-to-IMS
TCP/IP communications.

The IMS communications components that use IMS-to-IMS TCP/IP communications include Multiple
Systems Coupling (MSC) and Open Transaction Manager Access (OTMA).

Related tasks

IMS-to-IMS TCP/IP connections (System Definition)

“Securing IMS-to-IMS TCP/IP connections” on page 187
To secure IMS-to-IMS TCP/IP connections, IMS Connect uses RACF PassTickets to establish one instance
of IMS Connect as a trusted user of another instance of IMS Connect.

Related reference

HWSCFGxx member of the IMS PROCLIB data set (System Definition)
IMS Connect commands (Commands)

QUERY IMSCON commands (Commands)

UPDATE IMSCON commands (Commands)

IMS Connect Event Recorder exit routine (HWSTECLO) (Exit Routines)

MSC and IMS-to-IMS TCP/IP communications

For MSC, the TCP/IP connections between two IMS Connect instances complete a path for an MSC
physical link. One or more MSC logical links can be assigned to the MSC physical link.

Messages on MSC links travel in both directions. For each MSC logical link, two socket connections
are opened: a send socket and a receive socket. To support MSC links, you must define a pair of
corresponding TCP/IP connections, one in each IMS Connect instance on each side of the IMS-to-IMS
TCP/IP connection.

To define a complete IMS-to-IMS TCP/IP communications path for MSC, you must code the following
items in the IMS Connect and IMS instances at each side of the connection:

- In IMS Connect, the IMS Connect configuration statements, including the RMTIMSCON statement,
which is required for IMS-to-IMS TCP/IP communications, and the MSC statement, which is required for
communication between IMS Connect and MSC.

 In IMS, the MSC system definition macros or type-2 CREATE commands that are required to define all
MSC link types. The MSPLINK macro and the CREATE MSPLINK command have parameters that are
specific to the TCP/IP MSC physical link type.

A simplified IMSplex configuration is required to support IMS-to-IMS TCP/IP communications for MSC.
The communications path between IMS Connect and MSC is managed by the Structured Call Interface
(SCI) component of the IMSplex. IMS type-2 command support for IMS Connect and MSC also requires
the Operations Manager (OM) component of the IMSplex.

For MSC links that use TCP/IP generic resources, IMS Connect provides routing and affinity management
support.

Security for the TCP/IP connection can be implemented by using the optional RACF PassTicket support.
Transaction authorization can also be implemented in the IMS system.

In each IMS system, a TCP/IP MSC link is operationally like a VTAM MSC link. An MSC physical link can be
started by issuing either the IMS type-1 command /RSTART LINK or the IMS type-2 command UPDATE
MSLINK START(COMM) in either one of the linked IMS systems.

In IMS Connect, after a link has been started, you can monitor, stop, and restart the MSC links and their
associated socket connections by using IMS Connect WTOR, z/OS MODIFY, or IMS type-2 commands. In
IMS, most definition, operations, and administrative tasks and processes are the same for the MSC TCP/IP
link type as they are for the MSC VTAM link type.

Related concepts
“Overview of Multiple Systems Coupling” on page 671

Chapter 10. Overview of IMS Connect 155

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_imstoims_tcpip_connection_def.htm#ims_imstoims_tcpip_connection_def
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_hwscfgxx_proclib.htm#ims_hwscfgxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/compcmds/ims_connectcmds.htm#ims_cr3-gen5
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_queryimsconcmds.htm#ims_cr1queryimsconcmds
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_updateimsconcmds.htm#ims_cr1updateimsconcmds
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_hwstecl0.htm#ims_hwstecl0

Multiple Systems Coupling (MSC) makes it possible for transactions to be entered in one IMS and
processed in another IMS.

Related tasks

IMS-to-IMS TCP/IP connections (System Definition)

Defining a TCP/IP generic resource group for MSC (System Definition)

Related reference

CREATE MSPLINK command (Commands)

IMS Connect, MSC, and TCP/IP generic resources

IMS Connect provides routing and connection management support for MSC links that connect to a
TCP/IP generic resource group.

TCP/IP generic resources enable MSC links to be switched between participating IMS systems in an
IMSplex without requiring system definition changes to the MSC partner systems outside of the IMSplex.

The IMS systems that participate in a TCP/IP generic resource group all specify a shared generic IMS ID
in their respective IMS DFSDCxxx PROCLIB members. In IMS Connect, this generic IMS ID is specified on
the GENIMSID parameter of the MSC configuration statement for each IMS system.

When IMS Connect receives the first MSC logical link request on a physical link for the TCP/IP generic
resource group, IMS Connect broadcasts the request to all participating IMS systems in the group. IMS
Connect routes the link request to the first IMS system to respond to IMS Connect.

When an IMS system accepts the link request, affinity is established between the IMS system and all
logical links that use the physical link to the IMS system. Affinity persists for all logical links on a given
MSC physical link until all logical links on the physical link terminate normally or the physical link path
is stopped in IMS Connect. After the last logical link terminates and the affinity is released, the next link
request on the physical link can establish affinity with a different IMS system.

You can display affinity information for a logical link in both IMS and IMS Connect. In IMS Connect, you
can display affinity information by specifying any one of the following IMS Connect commands:

The IMS type-2 format command QUERY IMSCON TYPE(MSC) NAME(lclPlkid)
The IMS type-2 format command QUERY IMSCON TYPE(LINK) NAME(lclPlkid)
The WTOR format command VIEWMSC [clPlkid

The z/0OS MODIFY command QUERY MSC NAME(((clPlkid)

You can control which IMS system in a TCP/IP generic resource group accepts the first logical link request
on a physical link. The easiest way to do this is to start the link from the IMS system in the generic
resource group.

If the link must be started from the remote IMS system, you can control which IMS system accepts a link
from either the TCP/IP generic resource group or IMS Connect. In the TCP/IP generic resource group, you
can stop logons to the generic IMS ID in every IMS system in the generic resource group, except in the
one that requires affinity. Alternatively, in IMS Connect you can stop all MSC physical link paths except the
path to the IMS system that requires affinity.

To stop a physical link path in IMS Connect, issue any one of the following IMS Connect commands:
« The IMS type-2 format command UPDATE IMSCON TYPE(MSC) NAME(lclPlkid) STOP(COMM)

« The WTOR format command STOPMSC [c[Plkid

« The z/OS MODIFY command UPDATE MSC NAME(lclPlkid) STOP(COMM)

Related tasks

“Managing MSC links in a TCP/IP generic resource group” on page 732
When MSC is used with TCP/IP generic resources, each link that connects to the TCP/IP generic resource
group has affinity to a specific IMS system in the group.

Defining a TCP/IP generic resource group for MSC (System Definition)

156 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_imstoims_tcpip_connection_def.htm#ims_imstoims_tcpip_connection_def
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_imstoims_tcpip_msc_genimsid_def.htm#ims_imstoims_tcpip_msc_genimsid_def
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_create_msplink.htm#ims_create_msplink
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_imstoims_tcpip_msc_genimsid_def.htm#ims_imstoims_tcpip_msc_genimsid_def

Related reference

MSC statement (System Definition)

/DISPLAY AFFIN command (Commands)

QUERY MSLINK command (Commands)

QUERY IMSCON TYPE(LINK) command (Commands)
QUERY IMSCON TYPE(MSC) command (Commands)
VIEWMSC command (Commands)

IMS Connect QUERY MSC command (Commands)

OTMA and IMS-to-IMS TCP/IP communications

For OTMA, a TCP/IP connection between two IMS Connect instances completes a one-way path for
sending OTMA transaction messages asynchronously from a local sending IMS system to a remote
receiving IMS system.

Any responses generated by the remote IMS system are queued to a tpipe hold queue in the remote IMS
system for asynchronous retrieval.

To define an IMS-to-IMS TCP/IP communications path for OTMA, you must code the following items in the
IMS Connect and IMS instances at each side of the connection:

« In the sending IMS Connect, the IMS Connect configuration statements, including the RMTIMSCON
statement, which is required for IMS-to-IMS TCP/IP communications, and the DATASTORE statement,
which is required for communication between IMS Connect and OTMA.

« In IMS, either the OTMA destination descriptor in the DFSYDTx member of the IMS.PROCLIB data set or
the OTMA User Data Formatting exit routine (DFSYDRUO).

Security for the TCP/IP connection can be implemented by using the optional RACF PassTicket support.
Transaction authorization can also be implemented in the IMS system.

OTMA requires the RMTIMSCON statement in only the IMS Connect instance that sends messages on the
TCP/IP connection.

OTMA sends transaction messages across IMS TCP/IP connections using commit mode 0 and the send-
only with acknowledgment protocol. Any responses generated at the remote IMS system to the OTMA
transaction messages are queued to a tpipe hold queue for asynchronous retrieval.

You can define a separate TCP/IP connection to return responses back to their originating IMS system;
however, the responses must be sent back to the originating IMS system as new transactions for the
originating system and the correlation of responses to their original transaction must be managed by your
installation.

In IMS Connect, you can monitor, stop, and restart the TCP/IP connections by using IMS Connect WTOR,
z/0OS MODIFY, or IMS type-2 commands.

Related concepts

“OTMA support for IMS-to-IMS communications” on page 785

You can send OTMA messages from a local IMS system to a remote IMS system by using IMS-to-IMS
TCP/IP communications.

Related tasks

IMS-to-IMS TCP/IP connections (System Definition)

IMS Connect, OTMA super member, and IMS-to-IMS TCP/IP connections

IMS Connect supports the OTMA super member function with IMS-to-IMS TCP/IP communications. The
OTMA super member function can help ensure availability and distribute workloads across IMS Connect
instances.

For IMS-to-IMS TCP/IP communications, you can define up to eight connections from IMS Connect to an
OTMA super member group. The connections are defined by the IMS Connect DATASTORE configuration

Chapter 10. Overview of IMS Connect 157

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_hwscfgxx_proclib_msc.htm#ims_hwscfgxx_proclib_msc
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_displayaffn.htm#ims_cr1displayaffn
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_querymslink.htm#ims_cr2querymslink
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_queryimscon_link.htm#queryimscon_link
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/imscmds/ims_queryimscon_msc.htm#queryimscon_msc
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/compcmds/ims_imsconnect_viewmsc.htm#ims_imsconnect_viewmsc
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/compcmds/ims_imsconnect_querymsc.htm#ims_imsconnect_querymsc
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_imstoims_tcpip_connection_def.htm#ims_imstoims_tcpip_connection_def

statement. OTMA counts each connection as a target member (tmember). The connections can be from
one IMS Connect instance or multiple IMS Connect instances.

If more than eight connections are defined to use the super member group, OTMA uses only the first
eight connections. If IMS is restarted when more than eight connections are defined from actively running
IMS Connect instances, the same eight connections might not be accepted into the super member group
because the connections are joined randomly.

When a connection shuts down, either because it is stopped or IMS Connect is shut down, OTMA removes
it from the super member group. If a connection is started, OTMA joins it to the super member group only
if the group is not already full.

If a connection is removed from a full super member group, OTMA does not automatically add other
connections that tried to join previously. To add a connection for an IMS Connect instance that is already
running, either restart the connection or the IMS Connect instance.

Related concepts

“Super member support for IMS-to-IMS communications” on page 786

You can use the OTMA super member function to distribute messages sent to a remote IMS system across
multiple local instances of IMS Connect.

Related tasks

IMS-t0-IMS TCP/IP connections (System Definition)

Related reference

DATASTORE statement (System Definition)

Automatic reconnection attempts for OTMA connections

If IMS Connect cannot establish a connection with a remote IMS Connect instance, IMS Connect
automatically attempts to reconnect to the remote IMS Connect instance every 2 minutes.

When AUTOCONN=Y is specified in the RMTIMSCON statement, IMS Connect creates connections to a
remote IMS Connect instance at startup. The number of connections that IMS Connect creates at startup
is determined by the RESVSOC keyword of the RMTIMSCON configuration statement.

If AUTOCONN=N, IMS Connect creates a connection only when a message is received from OTMA for
delivery to the remote IMS system.

In either case, if IMS Connect cannot create the connections due to any of the following reasons, IMS
Connect attempts to reconnect to the remote IMS Connect instance every 2 minutes:

« Local TCP/IP is not available

« Remote TCP/IP is not available

« Remote IMS Connect is not available

If any messages are received from OTMA either before, during, or between reconnection attempts, IMS
Connect sends a NAK to OTMA that directs OTMA to leave the message at the front of the tpipe queue.

When the connection to the remote IMS Connect is established, IMS Connect notifies OTMA to resume
sending messages on the connection.

While IMS Connect is attempting to reconnect, the status of the connection is RETRY CONN. Also, the
NUMSOC value that indicates how many sockets are open fluctuates. IMS Connect opens a socket
when actively trying to reconnect. IMS Connect closes the socket during the 2-minute interval between
reconnection attempts.

Related tasks
IMS-to-IMS TCP/IP connections (System Definition)

Overview of IMS Connect XML Conversion Support

For certain IMS Connect clients, IMS Connect can convert the XML data contained in an input message
into the data structures used by IMS application programs written in either COBOL or PL/I. The data in

158 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_imstoims_tcpip_connection_def.htm#ims_imstoims_tcpip_connection_def
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_hwscfgxx_proclib_datastore.htm#ims_hwscfgxx_proclib_datastore
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_imstoims_tcpip_connection_def.htm#ims_imstoims_tcpip_connection_def

the corresponding output message is also converted from programming language of the IMS application
program back to the XML data that IMS Connect client expects.

The IMS Connect XML conversion support enables IMS to accept messages in an XML format without
having to create or modify IMS application programs to support XML.

The IMS Connect XML conversion support uses the HWSSOAP1 user message exit to identify the
appropriate XML adapter and XML converter. The HWSSOAP1 user message exit is used by both IMS
Enterprise Suite SOAP Gateway and IMS Web 2.0 Solution for IBM Mashup Center.

IMS Connect calls the XML adapter, which serves as the interface to the XML converter. The XML converter
is generated based on either the COBOL copybook or the PL/I source of the IMS application program,
depending on which language the IMS application program is written in. After the XML data has been
converted into the data structures of the programming language of the IMS application program, the input
message is passed to OTMA.

Related concepts

“IMS Connect XML message conversion” on page 217

For some IMS Connect client application programs, IMS Connect can convert XML messages into either
COBOL or PL/I, so that you do not need to modify existing IMS application programs to process messages
submitted to IMS in XML.

Related tasks
Configuring XML conversion support for IMS Connect clients (System Definition)

IMS Connect support for z/0S Sysplex Distributor

IMS Connect includes a variety of features that facilitate its execution in a z/OS Sysplex Distributor
environment.

In a z/OS Sysplex Distributor environment, incoming messages are typically distributed among multiple
instances of IMS Connect to balance the workload and increase availability. In such an environment,
client applications have no control over which instance of IMS Connect receives their input messages

and which IMS Connect receives subsequent requests for asynchronous output. IMS Connect, with OTMA,
provides several features to support operating in such an environment, such as rerouting asynchronous
output to an alternate tpipe, sharing asynchronous output by using an OTMA super member tpipe,
retrieving output from an alternate tpipe queue associated with another client, and purging undeliverable
output.

IMS Connect automatically sends a server health status report to z/OS Workload Manager (WLM) when
the server is started. The health status is a number in the range 0 - 100 that indicates the health

of IMS Connect and is initially set to 100. The health value is defined based on the available socket
percentage, which is the number of available sockets as a percentage of the maximum allowable number
of sockets that is set by the MAXSOC parameter in the TCPIP configuration statement. The available
socket percentage and the corresponding health status number are mapped in the following way:

« If the maximum allowable socket number is equal to or greater than 2000 (MAXSOC >= 1000):

— If the available socket percentage is 11% - 100%, the health status number is 100.

— If the available socket percentage is 0% - 10%, the health status number is equivalent to the number
of the available socket percentage, which is 0 - 10.

« If the maximum allowable socket number is less than 1000 (MAXSOC < 1000):
— If the available socket percentage is 21% - 100%, the health status number is 100.

— If the available socket percentage is 0% - 20%, the health status number is equivalent to the number
of the available socket percentage, which is 0 - 20.

An updated health status report is sent when the server health changes.

z/0S Sysplex Distributor uses this information to route incoming connections when the distribution
method SERVERWLM is specified on the VIPADISTRIBUTE statement of the z/OS TCP/IP profile. You
can also set the SHAREPORTWLM parameter for the PORT definition to configure Sysplex Distributor to use

Chapter 10. Overview of IMS Connect 159

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_xmlconversionsteps.htm#xmlconversionsteps

the WLM health status to balance incoming connections between two or more instances of IMS Connect
that are running on the same host with a shared port.

Related concepts

“Rerouting commit-then-send output” on page 301
You can configure IMS to reroute commit-then-send (commit mode 0) IOPCB output to an alternate OTMA
tpipe hold queue for retrieval.

Related tasks

“Sharing asynchronous commit-then-send output: the OTMA super member function” on page 858
Hold-queue-capable OTMA clients, such as IMS Connect, can share asynchronous commit-then-send
(CMO0) output messages by enabling the OTMA super member function. The OTMA super member function
is specifically designed to support multiple instances of IMS Connect in a z/OS Sysplex Distributor
environment.

“Purging undeliverable commit-then-send output” on page 299
You can configure OTMA to purge commit-then-send (commit mode 0) IOPCB output when the output
cannot be returned to the OTMA client application that initiated the transaction.

“Retrieving output from alternate OTMA tpipe hold queues” on page 344
Client applications can retrieve the asynchronous output or callout messages from an alternate tpipe hold
gueue by specifying the name of the alternate tpipe as an alternate client ID a RESUME TPIPE call.

Related reference
TCPIP statement (System Definition)

Overview of IMS Connect security

IMS Connect provides different security options depending on whether a client is accessing IMS DB or
IMS TM.

IMS DB clients can implement security by using the IMS Connect DB Security user exit routine
(HWSAUTHO), a security product such as RACF, or both. For IMS DB clients, IMS Connect also provides
support for RACF PassTickets. For Secure Sockets Layer (SSL) support, IMS DB clients can use IBM z/0S
Communications Server Application Transparent Transport Layer Security feature (AT-TLS). IMS Connect
does not provide SSL support for IMS DB clients.

IMS TM clients can implement security using any combination of the IMS Connect user message exit
routines, a user security exit routine, and a security product such as RACF. For IMS TM clients, IMS
Connect provides direct support for SSL and support for RACF PassTickets.

For IMS-to-IMS TCP/IP connections, IMS Connect provides optional connection security by using RACF
PassTickets.

In an IMS Connect configuration, security can be implemented by using various combinations of the
following components:

« On the client side:

— The client application

— The server of the client application
« IMS Connect
A security product, such as RACF

For IMS TM connections:

— The IMS Connect user message exit routines

— OTMA, including the OTMA Resume Tpipe Security user exit (OTMARTUX)
For IMS DB connections, the IMS Connect DB Security user exit routine

« IMS

« An IMS exit routine

160 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_hwscfgxx_proclib_tcpip.htm#ims_hwscfgxx_proclib_tcpip

« An IMS application program
When you configure IMS Connect, you can enter your security specifications in the following places:

« HWSCFGxx configuration member
« The RACF FACILITY class

Related concepts

“IMS Connect security support” on page 181

IMS Connect includes a variety of options for implementing and modifying the security checking
performed on messages as they arrive in IMS Connect and, for IMS TM connections, as they arrive at
the data store.

Related tasks

“RACF PassTicket for IMS Connect client connections to IMS DB” on page 201

You can use RACF PassTickets to authenticate IMS Connect client connections to IMS DB. PassTickets are
an alternative to RACF passwords and password phrases and provide better security because PassTickets
remove the need to send passwords and password phrases across the network in clear text.

Overview of defining and invoking IMS Connect

The steps below provide a high-level overview of defining and invoking IMS connect.

About this task
Configuring IMS Connect includes the following high-level steps.

Procedure

1. Authorize SDFSRESL to the Authorized Program Facility (APF) by online command or by running a JCL
job.

2. Ensure that the z/OS Program Properties Table (PPT) is updated to allow IMS Connect to run in
authorized supervisor state and in key 7. The specification in the z/OS PPT must match the program

specification in the EXEC statement of the IMS Connect startup JCL. You can specify either BPEINIOO
or HWSHWSO0O.

3. Create an IMS Connect configuration member, and define the IMS Connect configuration statements
that IMS Connect uses during initialization.

4. Create the BPE configuration member for IMS Connect.
5. Create the HWSUINIT initialization exit routine, which is not shipped as a load module.

6. If you are connecting to IMS TM, create the user message exit routines that you need, such as
HWSSMPLO, HWSSMPL1, or HWSJAVAO. These user message exit routines are also not shipped as
load modules.

7. Define IMS Connect security and, optionally, OTMA client security.
8. Optionally, enable the IMS Connect XML message conversion support.

Results

Invoke IMS Connect using either a z/OS procedure or a z/OS job. If you start multiple instances of IMS
Connect with the same configuration, a connection outage can occur.

Related concepts
IMS Connect definition and tailoring (System Definition)

Chapter 10. Overview of IMS Connect 161

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.sdg/ims_hstinst.htm#hstinst

162 IMS: Communications and Connections

Chapter 11. Overview of IMS Connect exit routines

IMS provides a variety of exit routines to support IMS Connect.
IMS Connect exit routines fall into two general categories:

« User message exit routines that manage the messages to and from the various types of IMS Connect
TCP/IP clients

« Exit routines that provide general functionality, such as security and routing

The IMS Connect user message exit routines, which are used only with clients connecting to IMS TM,
include:

« HWSSMPLO and HWSSMPL1 user message exits, for user-written IMS Connect client applications
« HWSJAVAO user message exit, for the IMS TM Resource Adapter

« HWSSOAP1 user message exit, for the IMS Enterprise Suite SOAP Gateway

« HWSCSLOO and HWSCSLO1 user message exits, for the OM command clients

All of the IMS Connect client user message exits allow you to call the z/OS TCP/IP IMS Listener security
exit routine (IMSLSECX), issue the RACF function in these user message exit routines, or use the IMS
Connect user RACF function.

Attention: Do not issue any z/0OS calls in the user message exit that result in an MVS WAIT. If you modify
the user message exit and add code that results in an MVS WAIT, all work on the TCP/IP PORT will halt
until the WAIT has been posted. The user message exits cannot be modified to free any storage passed
to the exit, and IMS Connect will not free any storage obtained by the user message exit when the exit
returns to IMS Connect. All storage obtained by IMS Connect must be released by IMS Connect and
cannot be freed by the User Message Exit without causing failures.

The exit routines that provide general functionality to IMS Connect include:

« The sample IMS Connect Destination Resolution exit routine (HWSYDRUO), which is a modified version
of the OTMA Destination Resolution exit routine (DFSYDRUO)

« IMS Connect User Initialization exit routine (HWSUINIT)

« z/OS TCP/IP IMS Listener security exit routine (IMSLSECX)

« IMS Connect Password Change exit routine (HWSPWCHO)

« IMS Connect Event Recorder exit routine (HWSTECLO)

« IMS Connect Port Message Edit exit routine for TCP/IP clients
« IMS Connect DB Routing user exit routine (HWSROUTO)

« IMS Connect DB Security user exit routine (HWSAUTHO)

IMS Connect always loads HWSUINIT and HWSJAVAO, but HWSSMPLO and HWSSMPL1 are optional
and are loaded only if you include them with the TCPIP statement in the IMS Connect member of the
IMS.PROCLIB data set (HWSCFGxx). These four exit routines are provided as load modules for ease of
use. Source code is also provided so that you can modify the exit routines for your installation.

This topic contains Product-sensitive Programming Interface information.

Related reference
IMS Connect exit routines (Exit Routines)

© Copyright IBM Corp. 1974, 2022 163

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_connectexitroutines.htm#connectexitroutines

Overview of user message exit routines

For most types of IMS Connect clients, IMS Connect requires the use of a user message exit routine to
manage the messages that are received from and sent to the client.

The user message exit routines can perform a number of tasks related to the management of messages,
including:

- Translating input messages into the protocol or format required by IMS and the IMS Open Transaction
Manager Access (OTMA) component

« Rerouting messages

« Checking security for input messages

« Returning user-defined messages in response to certain user-defined criteria

The following IMS Connect clients are listed with the IMS Connect user message exit that they require:

User-provided clients that access IMS TM
The HWSSMPLO or HWSSMPL1 user message exit routine, or a user-written user message exit routine.

Optionally, you can also use an IMS Connect Port Message Edit exit routine, which receives control
between IMS Connect and the z/OS TCP/IP stack, to modify the format of input and output messages.

The HWSSMPLO and HWSSMPL1 exit routines and their related macros are shipped with IMS both as
source code and as load modules.

IMS TM Resource Adapter
The HWSJAVAO user message exit routine.

Optionally, you can also use an IMS Connect Port Message Edit exit routine, which receives control
between IMS Connect and the z/OS TCP/IP stack, to modify the format of input and output messages.

The HWSJAVADO exit routine and its related macros are provided as both load modules and source
code.

IMS Enterprise Suite SOAP Gateway
The HWSSOAP1 user message exit routine, which is provided as object code only.

Optionally, you can also use an IMS Connect Port Message Edit exit routine, which receives control
between IMS Connect and the z/OS TCP/IP stack, to modify the format of input and output messages.

IBM WebSphere DataPower®
The HWSDPWR1 message exit routine, which is provided as object code only.

Optionally, you can also use an IMS Connect Port Message Edit exit routine, which receives control
between IMS Connect and the z/OS TCP/IP stack, to modify the format of input and output messages.

Clients that access IMS DB, such as the IMS Universal drivers.
IMS Connect does not support user message exit routines for clients that access IMS DB, such as
the IMS Universal drivers and user-provided clients that use the Distributed Relational Database
Architecture (DRDA) interface. Instead, you can use the following IMS Connect exit routines for
message routing, security, and message editing:

« IMS Connect DB Routing user exit routine (HWSROUTO)
« IMS Connect DB Security user exit routine (HWSAUTHO)
- IMS Connect Port Message Edit exit routine

Clients that submit commands to the Operations Manager (OM)
The HWSCSLOO or HWSCSLO1 user message exit routines, which are provided as object code only.

IMS-to-IMS TCP/IP connections do not use an IMS Connect user message exit routines.

Related reference
IMS Connect user message exit routines (Exit Routines)

164 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_connectuser.htm#ims_connectuser

Security and the IMS Connect user message exit routines

IMS Connect user message exit routines can perform security checking. If configure your exit routines
to check security, you must provide a security exit or use the z/OS TCP/IP IMS Listener security exit
(IMSLSECX).

IMS does not provide a sample security exit due to the many options available for security and the
fact that most installations have their own specific security method. The call to RACF is performed by
IMS Connect if RACF parameters are provided in the OTMA header when the message exit returns the
message.

IMSLSECX is the name of the security exit called by the following IMS Connect user message exit
routines:

« HWSSMPLO
« HWSSMPL1
« HWSSOAP1
« HWSCSLOO

If you use HWSSMPLO or HWSSMPL1, you can change the name of the security exit that they call by
changing EXTRN IMSLSECX to a name of your choice. If you change the name of the security exit, you
must define the security exit in the HWSSMPLO or HWSSMPL1 user message exit.

You can also provide the name of the security exit called by HWSJAVAO and define it in the HWSJAVAQ
message exit.

For more information about the IMSLSECX exit routine, see:

« IMS Version 15.4 Exit Routines
« z/0S Communications Server: IP IMS Sockets Guide

Related concepts

“IMS Connect security exit routine” on page 189
If any IMS Connect user message exit routine performs security checking, you must provide a security exit
routine or use the z/OS TCP/IP IMS Listener security exit routine (IMSLSECX).

“IMS Connect security and the OTMARTUX user exit” on page 189

The OTMA Resume TPIPE Security user exit (OTMARTUX) is not an IMS Connect exit routine, but it is
one of two possible methods that you can use to secure messages queued on the OTMA asynchronous
hold queue. The other method is to use an external security product, such as RACF. You can use the
OTMARTUX user exit and an external security product each by itself or in combination.

Related reference

“HWSSMPLO and HWSSMPL1 security actions” on page 190

The sample user message exits HWSSMPLO and HWSSMPL1 always perform certain security actions and
perform other security actions only when the IMSLSECX security exit is or is not called.

User-defined messages

The IMS Connect HWSJAVAO, HWSSMPLO, and HWSSMPL1 user message exits can return user-defined
messages to the IMS Connect client when criteria that you define are met.

Any client application programs that might receive a user-defined message must be able to recognize
and process user-defined messages and any associated return and reason codes. When a user-defined
message is returned to the client application program, the original input message is not sent to IMS.

When a user message exit returns a user-defined message, the original input message is not passed on

Upon returning one of these user-defined messages, you can also have the user message exit request that
IMS Connect either keep the socket connection open or close it, depending on your needs.

User-defined messages can be 1 to 128 characters in length. Any message longer than 128 characters is
truncated.

Chapter 11. Overview of IMS Connect exit routines 165

If the message you define is longer than the client input message that is received by the user message
exit routine from the IMS Connect, increase the buffer size used by the exit routine by specifying the
needed extra bytes in the EXPINI_BUFINC field returned by the exit.

To request that IMS Connect keep a socket connection open after returning a user defined message, the
exit routine must set EXPREA_RETCODE to 20 (X'14"). To terminate a socket connection, the exit routine
must set EXPREA_RETCODE to 4 (X'04'). Because other factors can cause IMS Connect to terminate

a connection, specifying 20 in EXPREA_RETCODE does not guarantee that the socket connection will
remain open.

For HWSJAVAQ, you can return user-defined message text or only a return code and reason code. To
return user-defined message text, the HWSJAVAOQ user message exit must set OMUSER_RETCODE to 48
(X'30") and OMUSR_RSNCODE to ICONSUCC. Any other combination of values for OMUSER_RETCODE and
OMUSER_RSNCODE returns a return and reason code without user-defined message text.

For HWSSMPLO and HWSSMPL1, you return user-defined message text by placing the message text in the
output message buffer.

Related reference

User message exit routines HWSSMPLO and HWSSMPL1 (Exit Routines)

IMS TM Resource Adapter user message exit routine (HWSJAVAO) (Exit Routines)

Overview of function-specific exit routines

IMS provides several IMS Connect exit routines that perform specific functions for IMS Connect for
increased flexibility.

You can use the following function-specific exit routines with IMS Connect:

« IMS Connect User Initialization exit routine (HWSUINIT)

« IMS Connect DB Routing user exit routine (HWSROUTO)

« IMS Connect DB Security user exit routine (HWSAUTHO)

« IMS Connect sample OTMA Destination Resolution exit routine (HWSYDRUO)
« z/OS TCP/IP IMS Listener security exit (IMSLSECX)

« IMS Connect Event Recorder exit routine (HWSTECLO)

« IMS Connect Password Change exit routine (HWSPWCHO)

Related reference
IMS Connect function-specific exit routines (Exit Routines)

Macros that support IMS Connect exit routines

IMS provides macros that support the IMS Connect exit routines.

Macros used for IMS Connect Exit Routines

The macros include:

HWSAUTPM
Maps the parameter list for the IMS Connect DB Security user exit routine (HWSAUTHO). A copy of this
macro is in SDFSMAC.

HWSEXPIO
Maps the parameter list for the IMS Connect Port Message Edit exit routine (HWSPIOXO0). A copy of
this macro is in SDFSMAC.

HWSEXPRM

Maps the parameter list that is passed to the user exit routine on each subroutine call. A copy of this
macro is in SDFSMAC. To see the structure, assemble the macro.

166 IMS: Communications and Connections

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_hwssmpl01exits.htm#ims_hwssmpl01exits
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_hwsjava0exit.htm#ims_hwsjava0exit
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.err/ims_connectfxnexits.htm#imsconnectfunction-specificexitroutines

HWSOMPFX
Maps the OTMA message prefix format to the output buffer that the user exit routine returns on each
READ subroutine call and the input buffer that is passed to the user exit on each XMIT subroutine call.
A copy of this macro is in SDFSMAC. To see the structure, assemble the macro.

HWSIMSCB
Maps the IMS request message (IRM) header and BPE header formats used by the HWSSMPLO and
HWSSMPL1 user message exit routines. A copy of this macro is in SDFSMAC. To see the structure,
assemble the macro.

HWSIMSEA
Maps the storage area used by the HWSSMPLO and HWSSMPL1 user message exit routines. A copy of
this macro is in SDFSMAC. To see the structure, assemble the macro.

HWSROUPM
Maps the parameter list that is passed to the IMS Connect DB Routing user exit routine (HWSROUTO)
on each subroutine call. A copy of this macro is in SDFSMAC. To see the structure, assemble the
macro.

HWSXIB
Maps the exit interface block used by IMS Connect user message exit routines and the HWSUINIT
exit routine. Contains the addresses of the data store list (HWSXIBDS) and the HWSXIB1 control block
used by the IMS Connect DB Routing user exit routine. A copy of this macro is in SDFSMAC. To see the
structure, assemble the macro.

HWSXIB1
Maps the exit interface block used by the HWSROUTO user exit routine. HWSXIB1 contains the
address of the ODBM list and optional user data. The HWSXIB1 exit interface block is pointed to by
HWSXIB. A copy of this macro is in SDFSMAC. To see the structure, assemble the macro.

HWSXIBDS
Maps the entry in the exit interface block data store list used by the IMS Connect user message
exit routines and the HWSUINIT exit routine. The list contains the data store name, the data store
availability and status information, and a user field. A copy of this macro is in SDFSMAC. To see the
structure, assemble the macro.

HWSXIBOD
Maps the ODBM list that contains the name and status of each ODBM instance known to IMS Connect,
as well as a user field and the names and statuses of the IMS aliases associated with each ODBM
instances. The address of HWSXIBOD is stored in the HWSXIB1 exit interface block. A copy of this
macro is in SDFSMAC. To see the structure, assemble the macro or refer to the macro prologue.

Exit interface blocks

IMS Connect provides exit interface blocks to support the processing of IMS Connect exit routines that
support connections to either IMS DB or IMS TM systems.

XIB exit interface block for connections to IMS TM

IMS Connect provides the XIB exit interface block to support the processing of IMS Connect user
message exit routines that are used when connecting to IMS TM. You can use the XIB exit interface
block and the user area it includes to store information that is used by your exit routines.

IMS Connect stores the following types of information in the exit interface block:

« Information about the XIBDS.
« Information about the IRM architecture level used.
« User data.

You can also use the XIB_USERAREA field of an exit interface block for any purpose. You can code the IMS
Connect User Initialization exit routine (HWSUINIT) or your IMS Connect user message exit routine to use
the XIB_USERAREA field.

The exit interface block is mapped by the HWSXIB macro.

Chapter 11. Overview of IMS Connect exit routines 167

Format of the XIB exit interface block
The XIB exit interface block is mapped by the HWSXIB macro.

The XIB exit interface block is provided to support the processing of IMS Connect exit routines. For
example, the XIB exit interface block can be used to store the address of a table that an IMS Connect user
message exit routine uses during processing.

The following table describes the fields and field offsets of the exit interface block.

Field Dec Hex Length Value
Offset Offse
t
XIB_HEADER 0 X'00" 0
XIB_EYE 0 X'00' 4 Eye catcher.
XIB_DATASTORES 4 X'04' 4 The address of the XIBDS data store list.
XIB_UFLD_CNT 8 X'08' 4 The number, in hexadecimal format, of fullword user fields in the
XIB_USERAREA.
XIB_XIBDS_LEN 12 X'oc' 2 Length of the XIBDS entries.
XIB_ARCHLVL 14 X'0E' 1 Architecture level of the XIB exit interface block.
X'o1'
XIB_ARCH1 - Architecture level 1
X'02'
XIB_ARCH2 - Architecture level 2
X'03'
XIB_ARCHS3 - Architecture level 3
XIB_ARCH3
Highest architecture level
15 X'OF" 1 Reserved.
XIB_VERSION 16 X'10' 4 The IMS version of the IMS Connect instance.
XIB_XIB1 20 X'14' 4 Address of the XIB1 exit interface block for connections to IMS
DB.
24 X'18' 12 Reserved.
XIB_USERAREA 36 X'24' OF Start of the user area of the XIB.

XIBDS exit interface block for IMS TM data store information

For connections to IMS TM, IMS Connect keeps track of the status of IMS data stores in entries in

the XIBDS exit interface block for data store information. IMS Connect user message exit routines can
reference the XIBDS exit interface block to make routing decisions for incoming messages based on the
status of the data store.

IMS Connect stores the following types of information about IMS data stores in the exit interface block
data store entries:

« Availability of the IMS data stores.
« Whether an IMS data store is running on a different z/OS image than IMS Connect.

« Whether support for cascading global RRS transactions to an IMS data store that is running on a
different z/OS image is enabled.

168 IMS: Communications and Connections

- The state of the IMS data stores; that is, how well the data store is processing messages and, if
processing is degraded or completely unavailable, what conditions in the IMS data store might be
causing the degraded or unavailable state.

« Atime stamp that records the time of the last status change or heartbeat message from OTMA.

IMS Connect updates the state information for an IMS data store when a data store connection is first
established and when OTMA notifies IMS Connect of changes in the state of the data store.

OTMA issues a heartbeat message every 60 seconds to indicate that the data store is still communicating.
If the time stamp in a data store entry is older than 60 seconds, OTMA could be experiencing problems.

You can also use the XIBDS_USER field of an exit interface block data store entry to for any purpose. You
can code the IMS Connect User Initialization exit routine (HWSUINIT) to set the XIBDS_USER field during
IMS Connect startup.

The XIBDS exit interface block data store entries are mapped by the HWSXIBDS macro as shown in the
following table.

Format of XIBDS exit interface block
The XIBDS exit interface block data store entries are mapped by the HWSXIBDS macro.

The following table describes the fields and field offsets of an entry in the exit interface block.

Field Dec Hex Lengt Value
Offs Offs h
et et
XIBDS_NAME 0 X'00' 8 Name of the data store.
XIBDS_STATUS 8 X'08' 1 Availability of the data store. The possible values are:
X'00'
The data store is not active.
X'o1'
The data store is active.
X'02'

The data store is disconnected.

Chapter 11. Overview of IMS Connect exit routines 169

Field Dec Hex Lengt Value

Offs Offs h
et et

XIBDS_FLAG 9 X'09' 1

Data store entry flags.
X'80'
Identifies the last entry in the exit interface block.
X'40'
The IMS data store is running on a different z/OS image
(LPAR) than IMS Connect.

This flag can be set only when the data store connection is
active in IMS Connect and the IMS data store is active in the
XCF group.

X'20'
Cascaded transaction support for global RRS transactions

synchlevel=2 (syncpoint) has been enabled for the data
store.

This flag can be set only when the XIBDS_FLAG field also
contains X'40', which indicates that IMS Connect and the
IMS data store reside on different z/OS images (LPARSs).
X'10'
Indicates that the version of the IMS data store is stored at
offset 10.
X'08'
Entry for the IMS data store.
X'04'
Entry for the IMSPlex.

IMS version 10 X'0A' 2

The version of the IMS data store is included here only if the
X'10' flag is on in the XIBDS_FLAG field at offset 9. The format of
the version number is:

« IMS Release (1 byte)
« IMS Level (1 byte)

XIBDS_USER 12 X'oC' 4

User field

XIBDS_ST_STATUS 16 X'10' 2

The overall state of the IMS data store. The values in this field
indicate how well the data store is processing input messages.
The possible values are:

3
Normal state: IMS is available and is processing input
messages normally.

2
Degraded state: IMS is processing OTMA messages slowly.
One or more conditions indicate that IMS is not processing
input messages as quickly as it should.

1

Unavailable state: IMS can no longer accept input messages
for processing. One or more severe conditions prevent IMS
from processing OTMA messages.

170 IMS: Communications and Connections

Field

Dec
Offs
et

Hex
Offs
et

Lengt Value
h

XIBDS_ST_SVRSTT

0 The beginning of the fields used to identify the conditions
that are contributing to the unavailable state of data store
processing.

XIBDS_ST_SVRFLG1

18

X'12'

Reserved

XIBDS_ST_SVRFLG2

19

X'13'

Reserved

XIBDS_ST_SVRFLG3

20

X'14'

Reserved

XIBDS_ST_SVRFLG4

21

X'15'

[N SN N RN

X'01
The data store is flooded with messages from this IMS
Connect instance and is no longer accepting input from this
instance.

XIBDS_ST_WRNSTT

0 The beginning of the fields used to identify the conditions that
are contributing to the degraded state of data store processing.

XIBDS_ST_WRNFLG1

22

X'16'

1 X'80'
The global number of messages that are waiting to be
processed by the data store has passed 80 percent of
the maximum allowable number of waiting messages that
is defined for all OTMA clients in this z/OS cross-system
coupling facility (XCF) group. If the number of waiting
messages reaches 100 percent of maximum allowable
number, OTMA sets a flood condition and rejects all
incoming messages from all OTMA clients in the XCF group.

XIBDS_ST_WRNFLG2

23

X117

1 Reserved

XIBDS_ST_WRNFLG3

24

X'18'

1 Reserved

XIBDS_ST_WRNFLG4

25

X'19'

1 X'o1'
The number of messages that are waiting to be processed
by the data store has passed 80 percent of the maximum
allowable number for waiting messages that is defined in
OTMA for this instance of IMS Connect. If the number of
waiting messages reaches 100 percent of the maximum
allowable number, OTMA rejects all incoming messages from
this instance of IMS Connect.

XIBDS_ST_UTC

26

X'1A'

12 The UTC time at which this status was issued by OTMA

XIB1 exit interface block for connections to IMS DB

The XIB1 exit interface block supports IMS Connect exit routines on connections to IMS DB through the
Open Database Manager (ODBM).

The XIB1 exit interface block contains the address of the XIBOD exit interface block, which stores
information about ODBM and IMS data stores. You can also use XIB1 exit interface to store user data for
use by exit routines, such as the IMS DB Routing user exit routine (HWSROUTO).

You can use the XIB1_USERAREA field of an exit interface block for any purpose. Both the IMS Connect
User Initialization exit routine (HWSUINIT) and the IMS Connect DB Routing user exit routine can be
coded to use the XIB1_USERAREA field.

The exit interface block is mapped by the HWSXIB1 macro.

Chapter 11. Overview of IMS Connect exit routines 171

Format of the XIB1 exit interface block
The XIB1 exit interface block is mapped by the HWSXIB1 macro.
The following table describes the fields and field offsets of the XIB1 exit interface block.

Field Dec Hex Lengt Value
Offs Offs h
et et
XIB1_HEADER 0 X'00' 0 Align on doubleword.
XIB1_EYE 0 X'00' 4 Eye catcher.
XIB1_ODBMS 4 X'04' 4 Address of the XIBOD exit interface block that contains ODBM
and data store information.
XIB1_UFLD_CNT 8 X'08' 4 User field count.
XIB1_ARCHLVL 12 X'0C' 1 Architecture level of the XIB1 exit interface block.
X'o1'
XIB1_ARCH1 - Architecture level 1
XIB1_ARCH1
Highest archictecture level
Reserved 13 X'OD' 3 Reserved for IMS Connect.
XIB1_XIB 16 X'10' 4 Address of the XIB.
Reserved 20 X'24' 16 Reserved.
XIB1_USERAREA 36 X'24' OF Start of the user area of the XIB1.

XIBOD exit interface block for ODBM and IMS DB data store information

For connections to IMS DB, IMS Connect keeps track of the status of Open Database Manager (ODBM)
instances and IMS data stores in entries in the XIBOD exit interface block for ODBM and data store
information. The IMS Connect DB Routing user exit routines can reference the XIBOD to make routing
decisions for incoming messages based on whether the ODBM instances and data stores are active.

For the ODBM instances known to IMS Connect, the XIBOD keeps track of the following ODBM states:

« ODBM is running and connected to IMS Connect.

« ODBM is running but not connected to IMS Connect. You can issue the IMS Connect WTOR command
STARTOD or the IMS Connect type-2 command UPDATE IMSCON TYPE(ODBM) START(COMM) to
establish a connection to ODBM.

« ODBM is running but not reachable because the Structured Call Interface (SCI) on the LPAR that the
ODBM is running on is down. Restart the SCI to restore the connection between IMS Connect and

ODBM.

- ODBM is not running. ODBM must be restarted before a connection can be made between IMS Connect

and ODBM.

The XIBOD block also stores ODBM version information.

Data stores are known to IMS Connect by the alias names that are assigned to the data store in the ODBM
configuration member CSLDCxxx during ODBM system definition. For IMS Connect to route an incoming
request to a specific data store, the alias name of the data store must be active in both the ODBM in which

it is defined and in IMS Connect.

For each alias name defined to the ODBM instances that are known to IMS Connect, the XIBOD keeps
track of the following states of the connection to the data store represented by the alias name:

172 IMS: Communications and Connections

« The connection to the data store is complete. The alias name is active in both the ODBM instance and in
IMS Connect (XIBOD_ICACTIVE EQU X'20").

- The connection to the data store is not complete. The alias name is active in ODBM, but has never been
activated in IMS Connect (XIBOD_IACTIVE EQU X'80").

« The connection to the data store is not complete. The alias name was active in both ODBM and
IMS Connect, but is no longer active in IMS Connect. The alias name is still active in ODBM
(XIBOD_ICINACTIVE EQU X'10".

« The connection to the data store is not complete. The alias name was active in both ODBM and IMS
Connect, but is no longer active in ODBM. Consequently, the alias name is no longer active in IMS
Connect (XIBOD_IINACTIVE EQU X'40").

You can also use the XIBOD_USER field of an exit interface block data store entry for any purpose. You can
code the IMS Connect User Initialization exit routine (HWSUINIT) to set the XIBOD_USER field during IMS
Connect startup.

The exit interface block data store entries are mapped by the HWSXIBOD macro.

Format of XIBOD exit interface block
The XIBOD exit interface block for ODBM and data store information is mapped by the HWSXIBOD macro.

Map of the ODBM entries in the XIBOD exit interface block

The ODBM entries in the XIBOD exit interface block are mapped by the HWSXIBOD DSECT in the
HWSXIBOD macro, as shown in the following table.

Field Dec Hex Lengt Value
Offs Offs h
et et
XIBOD_HDR 0 0 0
XIBOD_EYE 0 0 4 Character data.
XIBOD

XIBOD_EYEID: The eye catcher.

XIBOD_NAME 4 X'04' 8 Name of the Open Database Manager (ODBM) instance.

Chapter 11. Overview of IMS Connect exit routines 173

Field Dec Hex Lengt Value

Offs Offs h
et et
XIBOD_OSTATUS 12 X'0C' 1 The status of ODBM. The possible values are:
X'80'
XIBOD_OACTIVE: ODBM is running and connected to IMS
Connect.
X'40'
XIBOD_OINACTIVE: ODBM is running but not connected
to IMS Connect. You can issue the IMS Connect WTOR
command STARTOD or the IMS Connect type-2 command
UPDATE IMSCON TYPE(ODBM) START(COMM) to establish
a connection to ODBM.
X'20'
XIBOD_ODISC: ODBM is not running or is no longer a
member of the IMSplex. ODBM must be restarted in the
IMSplex before a connection can be made between IMS
Connect and ODBM.
X'10'
XIBOD_ONOTRCHB: ODBM is running but not reachable
because the non-local Structured Call Interface (SCI) that
resides on the same LPAR as the ODBM is down. The
ODBM's SCI must be restarted to restore the connection
between IMS Connect and ODBM.
XIBOD_ODBMRRS 13 X'0D' 1 The character Y or N.
Y indicates that ODBM is using z/OS Resource Recovery Services
(RRS).
N indicates that ODBM is not using RRS.
Reserved 14 X'0OD' 2 Reserved
XIBOD_ODBMVER 16 X'10' 4 ODBM version number
XIBOD_USER 20 X'14' 4 User field
XIBOD_NEXTODBM 24 X'18' 4 Address of the next ODBM
XIBOD_NEXTATBL 28 X'1C' 4 Address of the table of alias names defined to the ODBM at
address XIBOD_NEXTODBM
Reserved 32 X'20' 16 Reserved
XIBOD_IMSATABLE 48 X'30' 512 Character data. The alias name table has 32 alias name entries.

Each alias name entry is 16 bytes long. See the following table
for a map of an alias name entry.

Map of the alias name entries in the XIBOD exit interface block

The alias name entries are mapped by the XIBOD_IMSAENT DSECT in the HWSXIBOD macro, as shown in
the following table. The alias name table in the XIBOD exit interface block contains 32 alias name entries.

Field Dec Hex Lengt Value
Offs Offs h
et et
XIBOD_IMSA 0 0 4 Character data. The alias name.

174 IMS: Communications and Connections

Field Dec Hex
Offs Offs
et et

Lengt Value

h

XIBOD_ISTATUS 4 X'o4'

1

The status of the connection to the data store named by the

alias.

X'80'
XIBOD_IACTIVE: The connection to the data store is not
complete. The alias name is active in ODBM, but has never
been activated in IMS Connect.

X'40'
XIBOD_IINACTIVE: The connection to the data store is not
complete. The alias name was active in both ODBM and IMS
Connect, but is no longer active in ODBM. Consequently, the
alias name is no longer active in IMS Connect.

X'20'
XIBOD_ICACTIVE: The connection to the data store is
complete. The alias name is active in both the ODBM
instance and in IMS Connect.

X'10'
XIBOD_ICINACTIVE: The connection to the data store is not
complete. The alias name was active in both ODBM and IMS
Connect, but is no longer active in IMS Connect. The alias
name is still active in ODBM.

X'os'
XIBOD_DELETED: The IMS alias name has been deleted
from the ODBM CSLDCxxx configuration member and can no
longer be used.

Reserved 5 X'05'

3

Reserved for IMS Connect.

Reserved 8 X'08'

8

Reserved for IMS Connect.

Related reference

IMS Connect UPDATE ODBM command (Commands)

STARTOD command (Commands)

UPDATE IMSCON TYPE(ODBM) command (Commands)

Chapter 11. Overview of IMS Connect exit routines 175

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.4.0/com.ibm.ims154.doc.cr/compcmds/ims_imsconnectupdateodbm.htm#ims_cr3updateodbm
http://www.ibm.com/support/kn