
IMS
15.3.0

System Programming APIs
(2024-08-30 edition)

IBM



 
Note

Before you use this information and the product it supports, read the information in “Notices” on page
535.

2024-08-30 edition.

This edition applies to IMS 15 (program number 5635-A06), IMS Database Value Unit Edition, V15.03.00 (program
number 5655-DS5), IMS Transaction Manager Value Unit Edition, V15.03.00 (program number 5655-TM4), and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.



Contents

About this information.......................................................................................... xi
Prerequisite knowledge...............................................................................................................................xi
How new and changed information is identified........................................................................................ xi
How to read syntax diagrams......................................................................................................................xi
Accessibility features for IMS 15.3........................................................................................................... xiii
How to send your comments.....................................................................................................................xiii

Part 1. Common Queue Server (CQS)...................................................................... 1

Chapter 1. Writing a CQS client....................................................................................................................3
Summary of CQS client requests........................................................................................................... 3
Sequence of CQS requests issued by a client for queue structure....................................................... 4
Considerations for coding CQS requests............................................................................................... 4

Environmental requirements for CQS...............................................................................................7
Return codes and reason codes for CQS requests...........................................................................9

CQS clients and handling special events............................................................................................. 11

Chapter 2. CQS client requests................................................................................................................. 13
CQSBRWSE request..............................................................................................................................15
CQSCHKPT request.............................................................................................................................. 22
CQSCONN request................................................................................................................................25
CQSDEL request................................................................................................................................... 30
CQSDEREG request.............................................................................................................................. 35
CQSDISC request................................................................................................................................. 37
CQSINFRM request.............................................................................................................................. 41
CQSMOVE request................................................................................................................................44
CQSPUT request................................................................................................................................... 48
CQSQUERY request.............................................................................................................................. 55
CQSREAD request.................................................................................................................................64
CQSRECVR request.............................................................................................................................. 69
CQSREG request...................................................................................................................................73
CQSRSYNC request.............................................................................................................................. 76
CQSSHUT request.................................................................................................................................81
CQSUNLCK request.............................................................................................................................. 83
CQSUPD request...................................................................................................................................87

Part 2. Common Service Layer (CSL).....................................................................93

Chapter 3. Writing a CSL client.................................................................................................................. 95
Event Control Blocks with CSL requests..............................................................................................95
Environmental requirements for SCI requests....................................................................................95
How to interpret CSL request return and reason codes......................................................................97
Planning considerations for writing clients for the CSL.......................................................................97
Registration of CSL managers with SCI............................................................................................... 99

SCI registration............................................................................................................................... 99
Registering an ODBM client............................................................................................................ 99
Registering an OM command processing client...........................................................................100
Registering an RM client...............................................................................................................101
How to enable SCI ready state.....................................................................................................101
Sequence for coding CSL requests...............................................................................................101

  iii



Requests common to all CSL components........................................................................................102
CSLZQRY: query request.............................................................................................................. 102
CSLZSHUT: shutdown request..................................................................................................... 104

Chapter 4. CSL automated operator program requests......................................................................... 107
CSLOMCMD: command request.........................................................................................................107
CSLOMI: API request......................................................................................................................... 111
CSLOMQRY: query request.................................................................................................................121
CSL OM automated operator program clients...................................................................................125

How AOP clients that run on the host communicate with the CSL OM.......................................125
How AOP clients that run on a workstation communicate with the CSL OM.............................. 126
Processing AOP commands with a command processing client.................................................127
Interpreting CSL OM XML output................................................................................................. 127

Chapter 5. Writing a CSL ODBM client.....................................................................................................129
Sequence of ODBM client requests................................................................................................... 129
CSL ODBM client requests................................................................................................................. 130

CSLDMDRG: ODBM client deregistration request........................................................................130
CSLDMI: ODBM application program interface........................................................................... 131
CSLDMREG: ODBM client registration request............................................................................ 141

Chapter 6. Writing a CSL OM client......................................................................................................... 145
CSL OM command processing client requests.................................................................................. 145

CSLOMBLD: command registration build.....................................................................................145
CSLOMDRG: command deregistration request............................................................................147
CSLOMOUT: unsolicited output request...................................................................................... 148
CSLOMRDY: ready request........................................................................................................... 150
CSLOMREG: command registration request................................................................................ 151
CSLOMRSP: command response request.................................................................................... 153

CSLOMSUB: Subscribe to unsolicited messages.............................................................................. 155
CSLOMUSB: Unsubscribe to unsolicited messages.......................................................................... 158
CSL OM directives.............................................................................................................................. 159

Chapter 7. Writing a CSL RM client..........................................................................................................163
Sequence of RM client requests........................................................................................................ 163
Issue CSL RM requests to manage global resources........................................................................ 164
Issue CSL RM requests to coordinate IMSplex-wide processes...................................................... 165
CSLRMDEL: delete resources.............................................................................................................166
CSLRMDRG: deregister clients...........................................................................................................170
CSLRMPRI: process initiate............................................................................................................... 171
CSLRMPRR: process respond............................................................................................................ 173
CSLRMPRS: process step...................................................................................................................175
CSLRMPRT: process terminate.......................................................................................................... 180
CSLRMQRY: query resources............................................................................................................. 182
CSLRMREG: register clients............................................................................................................... 187
CSLRMUPD: update resources...........................................................................................................190
CSL RM directives...............................................................................................................................195

CSL RM repopulate structure directive........................................................................................ 195
CSL RM structure failed directive................................................................................................. 196
CSL RM process step directive..................................................................................................... 196
CSL RM process step response directive..................................................................................... 197

Chapter 8. Writing a CSL SCI client......................................................................................................... 199
Sequence of CSL SCI requests...........................................................................................................199
Advanced CSL SCI requests...............................................................................................................200
CSL SCI requests................................................................................................................................200

CSLSCBFR: buffer return request.................................................................................................200
CSLSCDRG: deregistration request.............................................................................................. 202

iv  



CSLSCMSG: send message request............................................................................................. 204
CSLSCQRY: query request............................................................................................................ 210
CSLSCQSC: quiesce request.........................................................................................................213
CSLSCRDY: ready request............................................................................................................ 214
CSLSCREG: registration request...................................................................................................215
CSLSCRQR request return request...............................................................................................223
CSLSCRQS: send request............................................................................................................. 225

Chapter 9. CSL Operations Manager XML output................................................................................... 233
CSLOMI XML output examples.......................................................................................................... 233
CSLOMCMD output.............................................................................................................................236
CSLOMQRY output..............................................................................................................................237
CSLOMOUT output............................................................................................................................. 238
XML tags returned as CSL OM responses..........................................................................................238

Chapter 10. REXX SPOC API and the CSL...............................................................................................247
REXX SPOC API environment with the CSL OM................................................................................ 247

Setting up the REXX environment in a CSL.................................................................................. 247
Setting up the IMSplex environment........................................................................................... 249
Issuing type-2 IMS commands.................................................................................................... 250
CSLULGTS: retrieving command responses in XML..................................................................... 250
CSLULOPT: including format identifiers in command responses................................................ 250
CSLULGTP: retrieving command responses directly to a REXX stem variable........................... 251
REXX SPOC API within a transaction........................................................................................... 257
Ending the IMS SPOC environment..............................................................................................257

Retrieving unsolicited messages....................................................................................................... 258
CSLULSUB request........................................................................................................................258
CSLULUSB request........................................................................................................................258
CSLULGUM request.......................................................................................................................258
Sample program for subscribing to OM....................................................................................... 259

REXX samples and examples............................................................................................................ 260
Sample REXX SPOC program....................................................................................................... 260
REXX SPOC batch job example.................................................................................................... 261
/DISPLAY command examples and format identifiers................................................................ 262
Autonomic computing examples................................................................................................. 263

Part 3. Asynchronous data propagation.............................................................. 265

Chapter 11. Changed data log record..................................................................................................... 267
Elements of captured data.................................................................................................................267
Reducing the amount of captured data............................................................................................. 268
Example of logged data elements..................................................................................................... 268

Chapter 12. End of Job (EOJ) call log record.......................................................................................... 271

Chapter 13. SETS and ROLS call log records.......................................................................................... 273

Chapter 14. Format of the data capture log records.............................................................................. 275
Data capture log record prefix........................................................................................................... 275
Changed data log record format........................................................................................................ 275
Format for data element header........................................................................................................276
CAPD block format (LOGID=X'00').................................................................................................... 278
CAPD_DATA format (LOGID=X'0C')................................................................................................... 281
End of Job call log record format.......................................................................................................282
SETS and ROLS call log record format...............................................................................................282

Chapter 15. Managing logging for multiple Data Capture exit routines for a single EXIT= parameter.285

  v



Part 4. Database resource adapter (DRA)............................................................287

Chapter 16. Thread concepts..................................................................................................................289
Processing threads.............................................................................................................................289
Processing multiple threads.............................................................................................................. 290
CCTL multithread example................................................................................................................ 290

Chapter 17. Sync points.......................................................................................................................... 297
The two-phase commit protocol....................................................................................................... 298
In-doubt state during two-phase sync processing........................................................................... 300

Chapter 18. DRA startup table................................................................................................................ 301

Chapter 19. Enable the DRA for a CCTL.................................................................................................. 305

Chapter 20. Enabling the DRA for the ODBA interface...........................................................................307

Chapter 21. Processing CCTL DRA requests...........................................................................................309

Chapter 22. Processing ODBA calls........................................................................................................ 311

Chapter 23. Considerations for COMMIT CONTINUE-SYNC CONTINUE-ABORT CONTINUE............... 313

Chapter 24. CCTL-initiated DRA function requests................................................................................ 315
INIT request....................................................................................................................................... 315
RESYNC request................................................................................................................................. 318
TERM request..................................................................................................................................... 318
SCHED request................................................................................................................................... 319
IMS request........................................................................................................................................ 322
SYNTERM request.............................................................................................................................. 323
PREP request......................................................................................................................................324
COMTERM request............................................................................................................................. 325
ABTTERM request.............................................................................................................................. 326
TERMTHRD request............................................................................................................................326

Chapter 25. Terminating the DRA........................................................................................................... 329

Chapter 26. Designing the CCTL recovery process.................................................................................331

Chapter 27. CCTL performance: monitoring DRA thread TCBs..............................................................333
DRA thread statistics..........................................................................................................................333
DRA statistics..................................................................................................................................... 335
DRA tracing.........................................................................................................................................336
Sending commands to IMS DB.......................................................................................................... 336
Problem diagnosis..............................................................................................................................336

Part 5. Database Recovery Control (DBRC)..........................................................339

Chapter 28. DBRC API............................................................................................................................. 341
Structure of applications that access the DBRC API.........................................................................342

How an application program establishes the DBRC API environment....................................... 342
How an application program ends the DBRC API environment.................................................. 342
Addressing and residency mode.................................................................................................. 342
Address space control (ASC) mode and state............................................................................. 342
How the DBRC API uses registers................................................................................................343
How to include equate (EQU) statements in your DBRC API application................................... 343

vi  



API application............................................................................................................................. 343
Versions of the DBRC API macro..................................................................................................344
The DBRC API token..................................................................................................................... 344
Macro forms of the DSPAPI macro...............................................................................................344
Query output block header...........................................................................................................347

Runtime considerations for the DBRC API........................................................................................ 347
DSPAPI macro access...................................................................................................................347
RECON data set access................................................................................................................ 347
RECON access authority...............................................................................................................348
Time stamp format for DBRC requests........................................................................................ 348
How DBRC uses the output data set............................................................................................ 349
Wildcard support for name parameters for Query requests....................................................... 349

Chapter 29. DBRC API security features................................................................................................ 351

Chapter 30. DBRC authorization request (AUTH)................................................................................... 353
Syntax for the AUTH request............................................................................................................. 354
Parameters for the AUTH request..................................................................................................... 354
Return and reason codes for AUTH................................................................................................... 355
APAUB_RsnCode for AUTH output block.......................................................................................... 357
AUTH output block mapping..............................................................................................................358
AUTH output block............................................................................................................................. 359

Chapter 31. DBRC command request (COMMAND)............................................................................... 361
Syntax for the COMMAND request.....................................................................................................361
Parameters for the COMMAND request.............................................................................................362
Return and reason codes for the COMMAND request.......................................................................363
COMMAND output block mapping..................................................................................................... 364

Chapter 32. DBRC query request (QUERY)............................................................................................. 367
Output from query requests.............................................................................................................. 368

Backout query request (TYPE=BACKOUT).................................................................................. 369
Database query request (TYPE=DB)............................................................................................ 373
DBDS query request (TYPE=DBDS)..............................................................................................394
Group query request (TYPE=*GROUP).........................................................................................400
Log query request (TYPE=LOG)....................................................................................................407
OLDS query request (TYPE=OLDS).............................................................................................. 416
HALDB partition query request (TYPE=PART)............................................................................. 420
RECON status query request (TYPE=RECON)..............................................................................427
Subsystem query request (TYPE=SUBSYS)................................................................................. 431

Chapter 33. DBRC release buffer request (RELBUF)..............................................................................437

Chapter 34. DBRC start request (STARTDBRC)...................................................................................... 439

Chapter 35. DBRC stop request (STOPDBRC).........................................................................................443

Chapter 36. DBRC unauthorization request (UNAUTH)..........................................................................445
Return and reason codes for UNAUTH.............................................................................................. 448

APAUB_RsnCode for UNAUTH output block................................................................................449
UNAUTH output block mapping.........................................................................................................450
UNAUTH output block........................................................................................................................450

Part 6. IMS catalog API (DFS3CATQ)...................................................................453

Chapter 37. IMS catalog API (DFS3CATQ macro).................................................................................. 455

  vii



Chapter 38. Structure of applications that access the IMS catalog API................................................457

Chapter 39. DSECT mapping request (DSECT) for the IMS catalog API ............................................... 459

Chapter 40. HLQ request (HLQ) for the IMS catalog API .......................................................................461

Chapter 41. Open request (OPEN) for the IMS catalog API................................................................... 465

Chapter 42. Get request (GET) for the IMS catalog API ........................................................................471

Chapter 43. List request (LIST) for the IMS catalog API ....................................................................... 477

Chapter 44.  Close request (CLOSE) for the IMS catalog API.................................................................481

Part 7. IMS installed level API (DFSGVRM)......................................................... 483

Chapter 45. CALL request (CALL) for the IMS installed level API.......................................................... 485

Chapter 46. REL request (REL) for the IMS installed level API.............................................................. 489

Part 8. Repository Server batch interface (FRPBATCH)........................................491

Chapter 47. Commands for FRPBATCH.................................................................................................. 493
ADD command for FRPBATCH........................................................................................................... 495
DELETE command for FRPBATCH......................................................................................................496
DSCHANGE command for FRPBATCH............................................................................................... 497
LIST command for FRPBATCH...........................................................................................................498
RENAME command for FRPBATCH....................................................................................................498
START command for FRPBATCH........................................................................................................499
STOP command for FRPBATCH......................................................................................................... 500
UPDATE command for FRPBATCH.....................................................................................................501

Part 9. VTAM and SNA reference information...................................................... 503

Chapter 48. Bind parameters for SLU P and LU 6.1................................................................................505
Finance communication system bind parameters............................................................................ 505
IMS as primary half session...............................................................................................................507
IMS as secondary half session...........................................................................................................512

Chapter 49. Bind parameters for SLU 1 and SLU 2.................................................................................519
SLU 1 bind parameters.......................................................................................................................519
SLU 2 bind parameters.......................................................................................................................521

Chapter 50. Format for CINIT user data parameters............................................................................. 525

Chapter 51. SNA character string controls............................................................................................. 527
Format controls.................................................................................................................................. 527
Control function code assignments...................................................................................................527

Part 10. IMS compliance data access................................................................. 529

Chapter 52. IMS compliance control blocks...........................................................................................531

Notices..............................................................................................................535
Programming interface information........................................................................................................536
Trademarks.............................................................................................................................................. 536

viii  



Terms and conditions for product documentation................................................................................. 536
IBM Online Privacy Statement................................................................................................................ 537

Bibliography...................................................................................................... 539

Index................................................................................................................ 541

  ix



x  



About this information

These topics provide reference information for IMS system application programming interface (API) calls
for IMS Common Queue Server (CQS); IMS Common Service Layer (CSL); IMS data propagation with IMS
DataPropagator for z/OS®; IMS Database Resource Adapter (DRA); IMS Database Recovery Control (DBRC)
API; IMS catalog API;IMS Repository Server (FRPBATCH); and VTAM® and SNA.

This information is available in IBM® Documentation.

Prerequisite knowledge
Before using this information, you should have knowledge of either IMS Database Manager (DB) or IMS
Transaction Manager (TM). You should also understand basic z/OS and IMS concepts, your installation's
IMS system, and have general knowledge of the tasks involved in project planning.

To learn about z/OS, see z/OS Basic Skills. For more resources, see IBM Z Education and Training.

To learn about IMS, see the IBM Press publication An Introduction to IMS, the resources listed for IBM
Information Management System, and the variety of options available in IBM Training.

How new and changed information is identified
For most IMS library PDF publications, information that is added or changed after the PDF publication is
first published is denoted by a character (revision marker) in the left margin. The Program Directory and
Licensed Program Specifications do not include revision markers.

Revision markers follow these general conventions:

• Only technical changes are marked; style and grammatical changes are not marked.
• If part of an element, such as a paragraph, syntax diagram, list item, task step, or figure is changed,

the entire element is marked with revision markers, even though only part of the element might have
changed.

• If a topic is changed by more than 50%, the entire topic is marked with revision markers (so it might
seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the information because deleted
text and graphics cannot be marked with revision markers.

How to read syntax diagrams
The following rules apply to the syntax diagrams that are used in this information:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.
– The ---> symbol indicates that the syntax diagram is continued on the next line.
– The >--- symbol indicates that a syntax diagram is continued from the previous line.
– The --->< symbol indicates the end of a syntax diagram.

• Required items appear on the horizontal line (the main path).
required_item

• Optional items appear below the main path.

© Copyright IBM Corp. 1974, 2022 xi

https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/zos-basic-skills
https://www.ibm.com/z/education
https://www.ibm.com/products/ims
https://www.ibm.com/products/ims
https://www.ibm.com/training/search?query=ims


required_item

optional_item

If an optional item appears above the main path, that item has no effect on the execution of the syntax
element and is used only for readability.

required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice1

optional_choice2

If one of the items is the default, it appears above the main path, and the remaining choices are shown
below.

required_item

default_choice

optional_choice

optional_choice

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item

,

repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.
• Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the

main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

required_item fragment-name

fragment-name
required_item

optional_item

• In IMS, a b symbol indicates one blank position.

xii  About this information



• Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled
exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

• Separate keywords and parameters by at least one space if no intervening punctuation is shown in the
diagram.

• Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the
diagram.

• Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS 15.3
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in z/OS products, including IMS 15.3. These
features support:

• Keyboard-only operation.
• Interfaces that are commonly used by screen readers and screen magnifiers.
• Customization of display attributes such as color, contrast, and font size.

Keyboard navigation
You can access IMS 15.3 ISPF panel functions by using a keyboard or keyboard shortcut keys.

For information about navigating the IMS 15.3 ISPF panels using TSO/E or ISPF, refer to the z/OS TSO/E
Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF User's Guide Volume 1. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information
Online documentation for IMS 15.3 is available in IBM Documentation.

IBM and accessibility
See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more information about the
commitment that IBM has to accessibility.

How to send your comments
Your feedback is important in helping us provide the most accurate and highest quality information. If you
have any comments about this or any other IMS information, you can take one of the following actions:

• Submit a comment by using the DISQUS commenting feature at the bottom of any IBM Documentation
topic.

• Send an email to imspubs@us.ibm.com. Be sure to include the book title.
• Click the Contact Us tab at the bottom of any IBM Documentation topic.

To help us respond quickly and accurately, please include as much information as you can about the
content you are commenting on, where we can find it, and what your suggestions for improvement might
be.

About this information  xiii

http://www.ibm.com/able
https://www.ibm.com/docs/en/ims
https://www.ibm.com/docs/en/ims


xiv  IMS: System Programming APIs



Part 1. Common Queue Server (CQS)
You can use this information to learn about writing a CQS client and CQS client requests.

© Copyright IBM Corp. 1974, 2022 1



2  IMS: System Programming APIs



Chapter 1. Writing a CQS client
Your CQS client communicates with CQS through requests. You must write one or more CQS clients in
order to use CQS to manage resource and queue structures for your product or service.

There are various considerations that you must take into account when writing a Common Queue Server
(CQS) client. The information in these topics is written primarily for the programmer who writes the client,
but also for CQS administrators or system programmers who must become aware of some of the issues
involved in designing and writing a CQS client.

This topic contains General-use Programming Interface information.

Related concepts
“CQS client requests” on page 13
CQS clients communicate with the CQS address space using a general-use interface consisting of a
number of assembler macros, called CQS requests. CQS clients use these requests to communicate with
the CQS and manipulate client data on shared coupling facility structures. You can use these requests to
write or maintain a CQS client.

Summary of CQS client requests
CQS client requests enable a client to access CQS or shared queues on coupling facility list structures.
Your primary tool for writing a CQS client is the set of client request macros that CQS provides. You
can use these requests to enable a client to access CQS or the shared queues on coupling facility list
structures.

The following list summarizes the CQS requests:

CQSBRWSE
Retrieves a copy of a data object from a queue

CQSCHKPT
Takes a checkpoint of internal tables or of all data objects on a structure

CQSCONN
Connects a client to one or more structures

CQSDEL
Deletes one or more data objects from a queue

CQSDEREG
De-register a client from its CQS, terminating communication with it

CQSDISC
Disconnects a client from one or more structures

CQSINFRM
Registers client interest in one or more queues, notifying the client when work exists on the queue

CQSMOVE
Moves one or more data objects from one queue to another

CQSPUT
Places a data object on a queue

CQSQUERY
Requests information about a queue or a structure

CQSREAD
Retrieves and locks a copy of a data object from a queue

CQSRECVR
Recovers data objects that were moved to the cold queue after a client or CQS cold starts

© Copyright IBM Corp. 1974, 2022 3



CQSREG
Registers a client with a CQS, establishing communication

CQSRSYNC
Resynchronizes in-doubt data between the client and its CQS after a failure

CQSSHUT
Shuts down a CQS

CQSUNLCK
Unlocks a data object, making it available to any client

CQSUPD
Updates one or more uniquely named resources on a resource structure

Sequence of CQS requests issued by a client for queue structure
A client uses CQS requests to make use of CQS services and resources. Client requests for CQS services
must be in a particular sequence, which is outlined in this table.

The client must issue certain requests to request CQS services, and some of the requests must be in a
particular sequence; the sequence for CQS requests is shown in the following table. Other requests can
be issued multiple times, in any order, based on the processing requirements of the client.

Table 1. Sequence for CQS requests

Order Request Use for request

1 CQSREG To establish communications with CQS.

2 CQSCONN To connect to a particular structure.

3 CQSRSYNC To resolve indoubt work with CQS.

4 CQSRECVR1 After a CQS cold start to recover specific data objects.

5 CQSINFRM To register interest in specific queue names.

6 Other CQS requests To process work. Examples of these other requests are
CQSBRWSE, CQSPUT, and CQSREAD.

7 CQSDISC To disconnect from a structure.

8 CQSSHUT To request CQS to shutdown. The client could also use
CQSDISC … CQSSHUT=YES to disconnect from a structure
and request a CQS shutdown, rather than issuing only the
CQSSHUT request.

9 CQSDEREG To end communications with CQS.

Note:

1. A client can issue the CQSRECVR and CQSINFRM requests in any order and at any time following the
CQSRSYNC request. The client should, however, issue both of these requests before starting any real
work with CQS.

Considerations for coding CQS requests
Various keywords, parameters, and variables are available for use with CQS requests. The interface that
you select for the client's state determines the allowed environment for all subsequent CQS requests and
all client exit routines driven by CQS.

The usage topic for each request describes the detail for each of the keywords, parameters, and variables
for the CQS requests, but a few global usage considerations apply to all of the requests.

4  IMS: System Programming APIs



Authorization for CQS
CQS provides two interfaces for its clients: the authorized interface and the non-authorized interface. CQS
automatically selects and initializes the correct interface environment based on the client's state when
the client issues a CQSREG request. If the client is authorized (in supervisor state with PSW key 0 to 7),
CQS initializes the authorized interface environment. If the client is not authorized (in problem state with
key 8 or greater), CQS initializes the non-authorized interface environment.

Which interface CQS assigns to the client determines the allowed environments for all subsequent CQS
requests and all client exit routines driven by CQS. In general, when a client makes a CQS request, its PSW
state and key must be the same as they were when it issued the CQSREG request.

How CQS requests use registers
All CQS requests use registers R0, R1, R14, and R15 as work registers. When a CQS request returns
control to the caller, the contents of these registers are not the same as they were before the macro
call. R15 contains a return code, and R0 contains a reason code from the CQS interface. The contents of
registers R2 through R13 remain unchanged after a CQS request, except for registers specified as output
parameters for the particular request.

All CQS requests require register R13 to point to a standard 72-byte save area. No other registers are
required to contain any particular value when a CQS request is issued, except for registers specified as
input parameters for the particular request.

Coding parameters for CQS requests
For all of the parameters (shown in the syntax diagrams as, for example, parameter) that are not literals,
CQS expects either an address or a value. For example, for the cqstoken on a CQSREAD request, CQS
expects the address of the 16-byte CQS token, but for the buffersize, CQS expects a 4-byte buffer size.

To pass an address or a parameter value to CQS, you can code the parameter for the CQS request in one
of three ways:

1. Use a register

To use a register, you must load the address or the parameter value into one of the general purpose
registers, then use that register (enclosed in parentheses) for the parameter in the CQS request.

Figure 1. Passing an address for register

         LA    5,TOKEN
         CQSREAD FUNC=READ,CQSTOKEN=(5),…
         ⋮
TOKEN    DS    XL16

Figure 2. Passing a value for register

         L     4,MYBUFLEN
         CQSREAD FUNC=READ,BUFSIZE=(4),…
         ⋮
MYBUFLEN DC    F'00000024'

2. Use a symbol

Chapter 1. Writing a CQS client  5



To use a symbol name, you must define a symbol that contains the address or the parameter value,
then use that symbol for the parameter in the CQS request.

Figure 3. Passing an address for symbol

         CQSREAD FUNC=READ,CQSTOKEN=TOKENADR,…
         ⋮ TOKENADR DC    A(TOKEN) TOKEN    DS    XL16 

Figure 4. Passing a value for symbol

         CQSREAD FUNC=READ,BUFSIZE=MYBUFLEN,…
         ⋮ MYBUFLEN DC    F'00000024'

3. Use a symbol value

To use a symbol value, you must define a symbol or an equate that contains the parameter value, then
use that symbol (preceded by the at-sign, @, and enclosed in parentheses) for the parameter in the
CQS request.

Figure 5. Passing a value for symbol value

         CQSREAD FUNC=READ,CQSTOKEN=@(TOKEN),…
         ⋮ TOKEN    DC    XL16'0000A765B55CFF00'

Figure 6. Passing an equate for symbol value

          CQSREAD FUNC=READ,BUFSIZE=@(MYBUFLEN),…
         ⋮ MYBUFLEN EQU   24

Literals for CQS requests
A number of CQS request macros have parameters that use a literal (for example, the LOCAL parameter
on the CQSREAD request macro). A macro invocation can use either combinations of literal parameters or
the OPTWORD1 parameter to pass 4 bytes containing flags that represent the literals. When you use the
OPTWORD1 parameter, you obtain the literal equates by using the DSECT function of each request macro.
The equates that represent the literal values are added together in a regular storage location.

Requirement: A macro invocation can use either the literal parameters or the OPTWORD1 parameter, not
both. When a macro invocation includes the OPTWORD1 parameter, the value passed on this parameter
must include one equate for each literal parameter supported by the macro. For example, the CQSREAD
request has three literal parameters: LOCAL, PARTIAL, and QPOS. The value you pass on the OPTWORD1
parameter must include one equate for the LOCAL parameter, one equate for the PARTIAL parameter, and
one equate for the QPOS parameter.

To code a CQSREAD request using a series of literal parameters, use CQSREAD
FUNC=READ,…,QPOS=FIRST,LOCAL=YES….

Coding CQSREAD with the OPTWORD1 parameter

To code the same CQSREAD request using the OPTWORD1 parameter, use the example shown in the
following example.

           L      R2,=A(CQSREAD_QPOSF+CQSREAD_LCLY+CQSREAD_PRTLY)
         CQSREAD FUNC=READ,...,OPTWORD1=(R2),...
         .
         .
         .
         .
         CQSREAD FUNC=DSECT   GENERATE CQSREAD EQUs

6  IMS: System Programming APIs



Event Control Blocks with CQS requests
Some requests allow you to use a z/OS event control block (ECB). If you specify an ECB
(ECB=ecbaddress), the client immediately receives control after issuing the request, but must at some
time be sure to wait for the request to post the ECB. If you do not specify an ECB, CQS does not return
control to the client until CQS completes its processing for the request.

Lists in the CQS requests
Some of the CQS requests have a LIST keyword, which specifies the address of a parameter list entry.
This keyword specifies the address of the first list entry. If you want to pass multiple list entries, you
must ensure that they all reside in contiguous storage, that is, the next entry must begin at the first byte
following the current entry. All lists must be contiguous, even if they are not aligned on word or fullword
boundaries.

Assembling a program with CQS requests
The CQS request macros are shipped with IMS and are included in the IMS.ADFSMAC data set. When
you assemble a program that includes CQS request macros, you must tell the assembler to look for the
macros in this data set. You can also copy the members from the IMS data set to another data set, as
necessary.

There are no special requirements for link editing a program that includes CQS requests, but you do have
to ensure that the IMS.SDFSRESL data set is concatenated with your JOB or STEPLIB DD statement for
the client job.

STEPLIB DD statement to concatenate IMS.SDFSRESL

To concatenate the IMS.SDFSRESL data set after your MYPROGS.SDFSRESL data set, code your STEPLIB
DD statement as shown in the following example.

STEPLIB  DD  DSN=MYPROGS.SDFSRESL,DISP=SHR
             DSN=IMS.SDFSRESL,DISP=SHR

Related concepts
“CQS client requests” on page 13
CQS clients communicate with the CQS address space using a general-use interface consisting of a
number of assembler macros, called CQS requests. CQS clients use these requests to communicate with
the CQS and manipulate client data on shared coupling facility structures. You can use these requests to
write or maintain a CQS client.
Related reference
z/OS: Initializing extended ECBs and ECB extensions

Environmental requirements for CQS
Environmental requirements depend on the CQS interface assigned to the client for CQS requests other
than CQSREG and CQSDEREG requests.

The following table shows the environment for clients using the authorized CQS interface:

Table 2. Environment for CQS requests (excluding CQSREG and CQSDEREG) using the authorized interface

Environment State

Authorization Supervisor state and PSW key 0-7 (PSW key must
match the PSW key when the CQSREG request was
issued)

Dispatchable unit mode Task

Chapter 1. Writing a CQS client  7

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaa800/ecb.htm


Table 2. Environment for CQS requests (excluding CQSREG and CQSDEREG) using the authorized interface
(continued)

Environment State

Cross memory mode Any, however, PASN must equal the primary
address space in which the CQSREG request was
issued

AMODE 31

ASC Mode Primary

Home address space Any

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

The following table shows the environment for clients using the non-authorized CQS interface:

Table 3. Environment for CQS requests (excluding CQSREG and CQSDEREG) using the non-authorized
interface

Environment aspect State

Authorization Problem state or PSW key 8 (PSW key must
match the PSW key when the CQSREG request was
issued)

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Home address space Address space in which CQSREG was issued

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

The environmental requirements for the CQS register and deregister requests (CQSREG and CQSDEREG)
are different from all of the other CQS requests. Authorized clients must issue CQSREG and CQSDEREG
requests in the environment shown in the following table.

Table 4. Environment for CQSREG and CQSDEREG requests using the authorized interface

Environment aspect State

Authorization Supervisor state and PSW key 0-7

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Locks No locks held

8  IMS: System Programming APIs



Table 4. Environment for CQSREG and CQSDEREG requests using the authorized interface (continued)

Environment aspect State

Interrupt status Enabled for interrupts

Control parameters In primary address space

Non-authorized clients must issue CQSREG and CQSDEREG requests in the environment shown in the
following table.

Table 5. Environment for CQSREG and CQSDEREG requests using the non-authorized interface

Environment aspect State

Authorization Problem state or PSW key 8

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

Return codes and reason codes for CQS requests
CQS return and reason codes indicate the success or failure of sending the request to the CQS address
space and reflect the success or failure of the particular CQS request that is being made.

With the exception of CQSREG and CQSDEREG, each CQS request returns two sets of return and reason
codes. One set is returned by the CQS interface, and indicates the success or failure of sending the
request to the CQS address space (these are returned in R15 and R0). The other set is returned by
the CQS address space, and reflects the success or failure of the particular CQS request being made
(these are returned in the fields indicated by the RETCODE and RSNCODE parameters on the CQS request
macro).

When you make a CQS request, the request must travel through the CQS interface from the client address
space to the CQS address space. The CQS interface returns information about the success or failure of the
sending of the request in registers R15 and R0. After issuing a CQS request macro, have your code check
the value in R15 first. If the value in R15 is zero, then the CQS interface successfully sent the request to
the CQS address space. If R15 is not zero, the CQS interface was unable to send the request to the CQS
address space, and R0 contains a reason code that explains the error.

The return and reason codes from the CQS request itself are returned in the fields specified with the
RETCODE and RSNCODE parameters coded on the CQS request macro. The values returned in these fields
are valid only if the CQS interface return code (R15) is zero. If the interface return code in R15 is not
zero after you issue a CQS request macro, then the values in the RETCODE and RSNCODE fields are not
predictable, and you should not use them.

For synchronous requests (that is, requests in which the ECB parameter was not coded), the RETCODE
and RSNCODE fields are set after your module receives control back from the request macro, and you
can use them immediately. For asynchronous requests (that is, requests in which the ECB parameter was
coded), the RETCODE and RSNCODE fields are set only after the ECB is posted by CQS. Do not check the
RETCODE and RSNCODE fields until you have issued a WAIT on the ECB you specified on the request, and
that WAIT has returned.

The CQSREG and CQSDEREG requests are exceptions to this. CQSREG and CQSDEREG register and
deregister a client with the CQS interface, but do not actually send a request across the interface to the

Chapter 1. Writing a CQS client  9



CQS address space. CQSREG and CQSDEREG have only a single set of return and reason codes, and these
are immediately available upon return from the register or deregister request. The return code is set both
in register 15 and in the field specified by RETCODE on the request macro. The reason code is set both in
register 0 and in the field specified by RSNCODE on the request macro.

The CQS interface issues the return and reason codes shown in the following table. Any CQS request can
receive these return and reason codes. Because the CQS interface performs more extensive checking for
non-authorized clients, some of the following return and reason codes can only be received if the client is
a non-authorized client.

Attention:

For a complete list of CQS return codes and reason codes see the macro CQSRQSRR in the
delivered SDFSMAC library. This MACRO contains high level codes and references other macros
which contain function specific return codes and reason codes.

Table 6. Return and reason codes for errors detected by the CQS interface

Return code Reason code Meaning

X'00000008' X'00000210' The cqstoken is invalid.

X'00000008' X'00000214' The connecttoken is invalid.

X'00000010' X'00000430' The CQS address space is not available.

X'00000014' X'00000600' The CQS interface is unable to access internal blocks.

X'00000014' X'00000604' The client is running in problem state or is using an incorrect
PSW key.

X'00000014' X'00000608' The client passed an invalid function code to the CQS
interface.

X'00000014' X'0000060C' The client specified an invalid CQS request type.

X'00000014' X'00000610' CQS was unable to allocate storage to copy the request
parameters.

X'00000014' X'00000614' The total length of all request parameters passed was less
than the sum of all parameter lengths.

X'00000014' X'00000618' The value passed to the interface for the total length of all
parameters was either zero or negative.

X'00000014' X'0000061C' The value passed to the interface for the total parameter
count was either zero or negative.

X'00000014' X'00000620' The length of one of the request's parameters was negative.

X'00000014' X'00000624' The length passed for the structure-call parameter list was
invalid.

X'00000014' X'00000628' Invalid request function code.

X'00000014' X'0000062C' Invalid request parameter list version number.

X'00000014' X'00000630' An incorrect number of parameters was passed for the
requested function.

X'00000014' X'00000634' A parameter was passed with an incorrect length.

X'00000014' X'00000638' A parameter was passed by value instead of by address.

X'00000014' X'0000063C' A parameter was passed by address instead of by value.

X'00000014' X'00000640' The CQS request abended before being sent to the CQS.

10  IMS: System Programming APIs



Table 6. Return and reason codes for errors detected by the CQS interface (continued)

Return code Reason code Meaning

X'00000014' X'00000644' The CQS request abended while CQS was copying the request
parameters. This error is usually caused by the client's
passing bad parameter data.

X'00000014' X'00000648' The interface parameter list version passed by the CQS
request macro was not valid. This error is probably caused
by a difference in versions between the CQS client and the
CQS address space the client is trying to use.

All CQS requests have a DSECT function that you can use to include equate statements in your program
for all the return and reason codes for the request.

Recommendation: Write a program that specifies FUNC=DSECT for all CQS requests so you can
determine symbolic variable names to use for the return and reason code values.

CQS clients and handling special events
A CQS client must be able to either initiate or participate in many different types of events. You must be
aware of what the CQS client can do in these events in order to handle them appropriately.

A CQS client must be able either to initiate or to participate in many different types of events. This topic
describes some of these special events and what the CQS client can or must do about them.

CQS cold start
When CQS cold starts after connecting to a structure that contains data, CQS looks for unresolved work
from CQSMOVE or CQSDEL requests. CQS backs out CQSMOVE requests and completes CQSDEL requests.
CQS then performs a system checkpoint, and restart is complete.

CQS does not resolve work that is initiated using a CQSREAD request. As a result, data objects might
remain on the queues. The client can issue the CQSRSYNC request to have CQS move these data objects
to the cold queue and notify the client that they exist. The client can then issue a CQSRECVR request to
access these data objects.

Recommendation: Complete all work initiated using CQSPUT requests because CQS is not aware of these
data objects.

Registering interest in queues with CQSINFRM
Use the CQSINFRM request to allow CQS to notify the client when a data object exists on a queue or when
the queue becomes non-empty. The client must register interest in a queue before it is notified of work on
that queue.

Working with objects on the cold queue using CQS requests
CQS places objects on the cold queue when either CQS or the client is cold started while there are objects
in active structures. A client can use the CQSBRWSE request to examine objects on the cold queue, and
then, using the cold-queue token and UOW returned by this request, the client can use a CQSRECVR
request to retrieve or delete objects from the cold queue.

When writing a CQS client, you can use the following request to obtain information about objects on the
cold queue, including the qnames, data object count, oldest data object time stamp, and newest data
object time stamp:

CQSQUERY FUNC=QTYPE,QTYPENM=COLDQ

Chapter 1. Writing a CQS client  11



Initiating checkpoints using CQS requests
A CQS client can initiate a system checkpoint by issuing a CQSCHKPT FUNC=CHKPTSYS request. A CQS
client can initiate a structure checkpoint by issuing a CQSCHKPT FUNC=CHKPTSTR request.

Shut down CQS
To shut down CQS, clients can either issue the CQSSHUT request or the CQSDISC request with
CQSSHUT=YES specified. In either case, CQS terminates when there are no more structure connections.
CQS continues to accept input and output requests so that in-progress work can complete. Structure
checkpoints are allowed to be issued. New connections are allowed if the CQSDISC request is issued with
CQSSHUT=YES, but they are not allowed if the CQSSHUT request is issued.

Tuning to improve CQS performance
You can improve CQS performance by carefully selecting the parameters you use with the CQSQUERY,
CQSDEL, and CQSINFRM requests.

Related concepts
CQS administration (System Administration)
Related reference
“CQSQUERY request” on page 55
The CQSQUERY request retrieves information or status about one or more of the structures managed by
CQS.
“CQSDEL request” on page 30
A CQSDEL request deletes one or more data objects from a queue structure or a resource structure.
“CQSINFRM request” on page 41
The CQSINFRM request registers or deregisters interest for one or more queues on a specific coupling
facility structure.

12  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_cqsadministration.htm#ims_cqsadministration


Chapter 2. CQS client requests
CQS clients communicate with the CQS address space using a general-use interface consisting of a
number of assembler macros, called CQS requests. CQS clients use these requests to communicate with
the CQS and manipulate client data on shared coupling facility structures. You can use these requests to
write or maintain a CQS client.

You do not need to use these requests if you are using an IBM-supplied client, such as an IMS control
region.

Some CQS requests support wildcard parameters. Wildcard parameters allow you to specify multiple
resources whose names match the wildcard parameter mask. The size of a wildcard parameter can be
from one character to the maximum number of characters supported for the resource. The alphanumeric
name can include one or more specialized characters and an asterisk or percent sign. An asterisk can be
replaced by zero, one, or more characters to create a valid resource name. A percent sign can be replaced
by exactly one character to create a valid resource name. The wildcard parameter asterisk (*) represents
'ALL'. However, depending on the installation, other wildcard parameters can mean all. For example, the
wildcard parameter %%%% means ALL to an installation whose resource names are all 4 characters long.

This topic contains General-use Programming Interface information.

Example of using a CQS request: CQSREAD

The following example shows how you can use a CQSREAD request for a client subsystem.

***********************************************************************
* FUNCTION:  USE CQSREAD REQUEST TO RETRIEVE A MESSAGE FROM SHARED    *
*            QUEUES.                                                  *
*                                                                     *
*            THE CALLER OF THIS MODULE PASSES THE ADDRESS AND SIZE OF *
*            A BUFFER.  IF THIS MODULE ENDS WITH RC=0, THAT BUFFER    *
*            HOLDS THE DATA OBJECT OR PARTIAL DATA.  IF THIS MODULE   *
*            ENDS WITH A NON-ZERO RC, THE BUFFER'S CONTENTS ARE       *
*            UNPREDICTABLE.                                           *
*                                                                     *
* REGISTERS ON ENTRY:                                                 *
*                                                                     *
*   R2  - READ OBJECT BUFFER ADDRESS (BUFFER TO READ OBJECT INTO)     *
*   R3  - SIZE OF READ OBJECT BUFFER                                  *
*   R4  - CQS REGISTRATION TOKEN ADDRESS                              *
*   R5  - CQS CONNECT TOKEN ADDRESS                                   *
*   R9  - ECB ADDRESS                                                 *
*   R13 - SAVE AREA ADDRESS                                           *
*   R14 - RETURN ADDRESS                                              *
*   R15 - GETDOBJ ENTRY POINT ADDRESS                                 *
*                                                                     *
* REGISTERS DURING EXECUTION:                                         *
*                                                                     *
*   R0  - WORK REGISTER                                               *
*   R1  - WORK REGISTER                                               *
*   R2  - CQSREAD PARMLIST AREA ADDRESS                               *
*   R3  - WORK REGISTER                                               *
*   R4  - WORK REGISTER                                               *
*   R5  - WORK REGISTER                                               *
*   R6  - WORK REGISTER                                               *
*   R7  - WORK REGISTER                                               *
*   R8  - WORK REGISTER                                               *
*   R9  - ECB ADDRESS                                                 *
*   R10 - WORK REGISTER                                               *
*   R11 - WORK REGISTER                                               *
*   R12 - BASE REGISTER                                               *
*   R13 - SAVE AREA ADDRESS                                           *
*   R14 - WORK REGISTER                                               *
*   R15 - WORK REGISTER                                               *
*                                                                     *
* MACROS REFERENCED:                                                  *
*   WAIT                                                              *
*   CQSREAD                                                           *
*                                                                     *
* RETURN CODES:                                                       *
*   R15 - RETURN CODE                                                 *
*      X'00' CQSREAD SUCCESSFUL/PARTIAL DATA RETURNED                 *
*      X'08' INTERFACE PROBLEM                                        *
*      X'0C' NO MESSAGE FOR QNAME                                     *
*      X'10' REQUEST IS UNSUCCESSFUL, UNEXPECTED RETURN OR REASON     *
*            CODE                                                     *
*                                                                     *
***********************************************************************
         STM   R14,R12,12(R13)     SAVE THE REGS
         LR    R12,R15             R12 = PROGRAM BASE REGISTER
         USING GETDOBJ,R12         GETDOBJ  CSECT
         LA    R14,SAVEAREA        CHAIN SAVE AREAS
         ST    R13,4(,R14)         THIS SAVEAREA BACKWARD PTR
         ST    R14,8(,R13)         LAST SAVEAREA FORWARD PTR
         LA    R13,SAVEAREA        THIS ROUTINE'S SAVEAREA
         ST    R2,RDRBUFA          SAVE A(BUFFER TO READ INTO)

© Copyright IBM Corp. 1974, 2022 13



         ST    R3,RDRBUFSZ         SAVE READ BUFFER SIZE
         MVC   RDRRQTK,0(R4)       SAVE CQS REGISTRATION TOKEN
         MVC   RDRCONTK,0(R5)      SAVE CQS CONNECT TOKEN
         ST    R9,RDRECBA          SAVE A(ECB)
         LA    R2,RDRPARM          LOAD A(PARAMETER AREA) INTO R2
         XC    RDRLCKTK,RDRLCKTK   LOCKTOKEN=0 FOR FIRST CQSREAD
         XC    0(4,R9),0(R9)       CLEAR CALLER'S ECB
 
****
*        RETRIEVE RECORD FROM IMS SHARED QUEUES
****
         CQSREAD FUNC=READ,                                            X
               CQSTOKEN=@(RDRRQTK),    A(REGISTRATION TOKEN)           X
               PARM=(R2),              A(CQSREAD PARMLIST AREA)        X
               CONTOKEN=@(RDRCONTK),   A(CONNECT TOKEN)                X
               ECB=RDRECBA,            A(ECB)                          X
               LCKTOKEN=@(RDRLCKTK),   A(LOCK TOKEN) - RETURNED        X
               UOW=@(RDRUOW),          A(UOW) - RETURNED               X
               LOCAL=NO,               READ OBJECT FROM SHARED QUEUE   X
               QNAME=@(RDRQNAME),      A(QUEUE NAME)                   X
               QPOS=FIRST,             READ FIRST OBJECT ON QUEUE      X
               OBJSIZE=@(RDROBJSZ),    A(DATA OBJECT SIZE) - RETURNED  X
               RSNCODE=@(RDRRSN),      A(REASON CODE) - RETURNED       X
               RETCODE=@(RDRRC),       A(RETURN CODE) - RETURNED       X
               BUFFER=RDRBUFA,         A(CLIENT'S READ BUFFER)         X
               BUFSIZE=@(RDRBUFSZ)     CLIENT'S READ BUFFER SIZE
 
         LTR   R15,R15             TEST RETURN CODE FROM CQS INTERFACE
         BZ    CHECKRC             ZERO  - CQSREAD OK
*                                  OTHER - RETURN R0, R15 IN PARM LIST
         LA    R15,RC08            CQS INTERFACE PROBLEM
         B     GOEXIT              RETURN TO CALLER
 
****
*        CHECK CQSREAD RETURN CODE
****
CHECKRC  DS    0H
         WAIT ECB=(R9)             WAIT FOR CQSREAD TO COMPLETE
 
         L     R15,RDRRC           RETURN CODE
         LTR   R15,R15             CQSREAD REQUEST SUCCESSFUL?
         BZ    GOEXIT              YES - RETURN TO CALLER****
*        CHECK FOR CQS WARNING RETURN CODE
****
         CLC   RDRRC,=AL4(RQRCWARN) CQSREAD WARNING?
         BNE   UNEXPECT            NO - SET RC AND RETURN TO CALLER
****
*        CQSREAD: WARNING RETURN CODE - CHECK WARNING REASON CODE
*        CHECK FOR DATA OBJECT
****
         CLC   RDRRSN,=AL4(RRDNOOBJ) NO DATA OBJECT?
         BNE   PARTIAL             NO, CHECK NEXT REASON CODE
         LA    R15,RC0C            SET NO DATA OBJECT RETURN CODE
         B     GOEXIT              RETURN TO CALLER
 
****
*        CHECK PARTIAL DATA RETURNED
*        PARTIAL DATA RETURNED - RETURN DATA OBJECT - RETURN CODE 0
****
PARTIAL  DS    0H
         CLC   RDRRSN,=AL4(RRDPARTL) PARTIAL DATA RETURNED?
         BNE   UNEXPECT            NO - SET RC AND RETURN TO CALLER
         LA    R15,RC00            SET RETURN CODE
         B     GOEXIT              RETURN TO CALLER
 
****
*        UNEXPECTED RETURN OR REASON CODE
****
UNEXPECT DS    0H
         LA    R15,RC10            UNEXPECTED RETURN OR REASON CODE
         B     GOEXIT              RETURN TO CALLER
 
***********************************************************************
*    STANDARD EXIT                                                    *
***********************************************************************
GOEXIT   DS    0H
         L     13,4(,13)           GET PREVIOUS SAVE LEVEL
         L     14,12(13)           A(RETURN-TO-CALLER)
         LM    0,12,20(13)         RESTORE REGS
         OI    15(13),X'01'        SET RETURN FLAG IN CALLER SAVE AREA
         BR    14                  RETURN TO CALLER
***********************************************************************
*        CONSTANTS                                                    *
***********************************************************************
 
*
*  GETDOBJ RETURN CODES
*
RC00     EQU   0                   CQSREAD SUCCESSFUL -
RC08     EQU   8                   INTERFACE PROBLEM
RC0C     EQU   12                  NO MESSAGE FOR QNAME
RC10     EQU   16                  UNEXPECTED RETURN CODE*
* REGISTER EQUATES
*
R0       EQU   0
R1       EQU   1
R2       EQU   2
R3       EQU   3
R4       EQU   4
R5       EQU   5
R6       EQU   6
R7       EQU   7
R8       EQU   8
R9       EQU   9
R10      EQU   10
R11      EQU   11
R12      EQU   12
R13      EQU   13
R14      EQU   14

14  IMS: System Programming APIs



R15      EQU   15
***********************************************************************
*        VARIABLES                                                    *
***********************************************************************
         DS    0F
SAVEAREA DS    18F
         DS    0D
RDRRQTK  DS    XL16                CQS REGISTRATION TOKEN
RDRCONTK DS    XL16                CQS CONNECT TOKEN
RDRLCKTK DS    XL16                LOCKTOKEN (RETURNED)
RDRUOW   DS    XL32                UOW (RETURNED)
 
RDRQNAME DS    0XL16               QUEUE NAME
         DC    X'05'               CLIENT QUEUE TYPE 5
         DC    CL15'FFSTR01CF02CQ04'
 
RDROBJSZ DS    F                   OBJECT SIZE (RETURNED)
RDRRSN   DS    F                   CQSREAD REASON CODE (RETURNED)
RDRRC    DS    F                   CQSREAD RETURN CODE (RETURNED)
RDRBUFA  DS    A                   A(READ OBJECT BUFFER)
RDRBUFSZ DS    F                   SIZE OF READ OBJECT BUFFER
RDRECBA  DS    A                   A(ECB)
RDRPARM  DS    XL(CQSREAD_PARM_LEN) CQSREAD PARMLIST
***********************************************************************
*        LITERALS                                                     *
***********************************************************************
 
         LTORG
         CQSREAD FUNC=DSECT        CQSREAD DSECTS & EQUATES
         END   GETDOBJ

Related concepts
“Writing a CQS client” on page 3
Your CQS client communicates with CQS through requests. You must write one or more CQS clients in
order to use CQS to manage resource and queue structures for your product or service.

CQSBRWSE request
The CQSBRWSE request retrieves information from a specified queue or resource structure.

Format
BROWSE function

Use the BROWSE function of a CQSBRWSE request to retrieve a copy of a data object from a specific
queue.

CQSBRWSE FUNC=BROWSE CQSTOKEN=  cqstokenaddress

CONTOKEN=  connecttokenaddress PARM=  parmaddress

BRWTOKEN=  browsetokenaddress QNAME=  queuenameaddress

A

BUFFER=  bufferaddress BUFSIZE=  buffersize OBJSIZE=  dataobjectsizeaddress

UOW= uowaddress

TIMESTAMP=  timestampaddress ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

A
QTYPE=COLD CLDTOKEN=  coldqueuetokenaddress

QNAME=  queuenameaddress

CLIENT=  clientnameaddress

BRWSOBJS function

Chapter 2. CQS client requests  15



Use the BRWSOBJS function of a CQSBRWSE request to browse one or more resource data objects of a
specified type from a resource structure.

CQSBRWSE FUNC=BRWSOBJS CQSTOKEN=  cqstokenaddress

CONTOKEN=  connecttokenaddress PARM=  parmaddress

BRWTOKEN=  browsetokenaddress LIST= resourcelistaddress COUNT=  resourcelistcount

LISTVER=  1

LISTVER=  listversion

BUFFER=  bufferaddress

BUFSIZE=  buffersize OBJSIZE=  dataobjectsizeaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

COMPLETE function

Use the COMPLETE function of a CQSBRWSE request to indicate to CQS that a CQSBRWSE request
associated with a particular browse token is complete.

CQSBRWSE FUNC=COMPLETE CQSTOKEN=  cqstokenaddress

CONTOKEN=  connecttokenaddress PARM=  parmaddress

BRWTOKEN=  browsetokenaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

CONTINUE function of CQSBRWSE

Use the CONTINUE function of a CQSBRWSE request if a previous CQSBRWSE request retrieved partial
data and you want to retrieve the rest of the data object.

CQSBRWSE FUNC=CONTINUE CQSTOKEN=  cqstokenaddress

CONTOKEN=  connecttokenaddress PARM=  parmaddress

BRWTOKEN=  browsetokenaddress BUFFER=  bufferaddress BUFSIZE=  buffersize

OBJSIZE=  dataobjectsizeaddress

ECB= ecbaddress

RETCODE=  returncodeaddress

RSNCODE=  reasoncodeaddress

DSECT function

Use the DSECT function of a CQSBRWSE request to include equate (EQU) statements in your program for
the CQSBRWSE parameter list length and CQSBRWSE return and reason codes.

CQSBRWSE FUNC=DSECT

16  IMS: System Programming APIs



Usage notes
A CQSBRWSE FUNC=BROWSE request retrieves a copy of a data object from a specific queue on a
queue structure. The first CQSBRWSE FUNC=BROWSE request takes a snapshot of the data objects
that meet the selection criteria and returns a copy of the first data object. The data object is neither
deleted nor locked, and can be accessed by any subsequent CQS request. Each subsequent CQSBRWSE
FUNC=BROWSE request retrieves a copy of the next data object. The data object is returned in the client
buffer that is specified on the CQSBRWSE request. The size of the data object is passed to the client.

A browse token maintains the cursor position of the data objects that are being browsed. A CQSBRWSE
FUNC=BROWSE request with a zero browse token returns the first data object. A CQSBRWSE
FUNC=BROWSE request with a non-zero browse token retrieves the next data object on the queue that is
associated with the browse token. If the data object that is returned is the last data object on the queue,
CQS invalidates the browse token and frees any data structures associated with that browse token.

When a CQSBRWSE FUNC=BROWSE request is issued and the buffer that is passed is not large enough to
hold the next data object, partial data is returned. The buffer is filled with as much of the data object as
can fit. The CQSBRWSE FUNC=CONTINUE request retrieves the rest of the data object.

A CQSBRWSE FUNC=BRWSOBJS request retrieves information about one or more data objects from a
resource structure. The first CQSBRWSE FUNC=BRWSOBJS request takes a snapshot of the data objects
that meet the selection criteria and returns information about one or more of those data objects. The
request returns as many data object entries as fit are returned in the client buffer that is specified on
the CQSBRWSE request. Each subsequent CQSBRWSE FUNC=BRWSOBJS request retrieves the next set
of data object entries. A browse token maintains the cursor position of the data objects that are being
browsed. A CQSBRWSE FUNC=BRWSOBJS request with a zero browse token retrieves information about
as many data objects as fit in the buffer. A CQSBRWSE FUNC=BRWSOBJS request with a non-zero browse
token retrieves the next group of data object entries. If the buffer contains information about the last data
object being browsed, CQS invalidates the browse token and frees any data structures associated with
that browse token.

A CQSBRWSE FUNC=COMPLETE request indicates to CQS that the CQSBRWSE request that is associated
with a browse token is complete. The browse token from the prior CQSBRWSE request is required. CQS
invalidates the browse token and frees any data structures that are associated with it. The client should
issue a CQSBRWSE FUNC=COMPLETE request if it is not retrieving all of the data objects on the specified
queue.

The CQSBRWSE FUNC=CONTINUE request is not supported for a resource structure because the
CQSBRWSE FUNC=BRWSOBJS request does not return partial data.

Attention:

• The cursor position of a CQSBRWSE FUNC=BROWSE or CQSBRWSE FUNC=CONTINUE request
can be lost due to a CQS restart, a client restart, structure recovery, structure copy, or the browse
table timing out. (The browse table times out after approximately one hour.)

• A CQSBRWSE request is not recoverable across a CQS or client failure. The client must reissue
the CQSBRWSE request after such a failure.

• The data object is not locked on a CQSBRWSE request, so one or more of the objects might be
snapped by the first CQSBRWSE FUNC=BROWSE request and no longer be available because of
another CQSREAD or CQSDEL request.

• If overflow threshold processing occurs after the initial CQSBRWSE FUNC=BROWSE request
and the queue is moved to the overflow structure, any subsequent CQSBRWSE FUNC=BROWSE
request with browse token results in an error that indicates that no objects were found. Reissue
the CQSBRWSE FUNC=BROWSE request with a browse token of zeroes, so that CQS can take
a snapshot of the queue on the overflow structure. QSMOVE request, or overflow threshold
processing. The CQSBRWSE FUNC=BROWSE simply skips objects that are no longer available.

• If the current position is lost because a browse table times out, a CQSBRWSE FUNC=CONTINUE
request is rejected.

Chapter 2. CQS client requests  17



Parameters
BRWTOKEN=browsetokenaddress

Input and output parameter that specifies the address of the 16-byte browse token. The browse
token maintains the cursor position of the data objects that are being browsed.

Set the browse token to zero on the initial CQSBRWSE request. Pass the browse token that is returned
by CQS on a CQSBRWSE FUNC=BROWSE or FUNC=BRWSOBJS request as input on a subsequent
CQSBRWSE=BROWSE, CQSBRWSE=CONTINUE, CQSBRWSE=COMPLETE, or CQSBRWSE=BRWSOBJS
request.

On output, the browse token uniquely identifies the current data object that is being browsed, which is
returned in the buffer identified by the BUFFER parameter.

For a CQSBRWSE FUNC=CONTINUE request, a CQSBRWSE FUNC=COMPLETE request, or a
subsequent CQSBRWSE FUNC=BROWSE request, the BRWTOKEN parameter is an input parameter
that specifies the browse token returned by CQS on the prior CQSBRWSE FUNC=BROWSE request.

BUFFER=bufferaddress
4-byte input parameter that specifies the address of a client buffer that holds information that is
retrieved about one or more data objects.

For a CQSBRWSE FUNC=BROWSE request, the client buffer contains a copy of the data object
retrieved from the queue on a queue structure.

For a CQSBRWSE FUNC=BRWSOBJS request, the client buffer contains the count of data object
entries and one or more data object entries. Each data object entry contains information about one
resource data object that is retrieved from the resource structure. Each data object entry contains
information about a browsed data object such as the resource ID, the completion code, resource ID
status, version, owner, client data1, optional client data2, and user data that was passed in the input
list. If the size of the information is greater than the buffer size passed by the client, the buffer is filled
with as many resource entries as can fit. The BUFFER is mapped by the CQSBRWSB DSECT.

The resource ID status indicates how the resource ID in the data object entry is associated with the
input parameter. With this information, you can tie the input parameter to the data object entries that
are generated in the output buffer. Possible resource ID statuses are:

Specific parameter
A specific resource ID. This data object entry contains the resource ID that matches the input
parameter.

Wildcard parameter
A wildcard parameter was specified. This data object entry contains the wildcard parameter and a
completion code. This data object entry does not contain information about a specific resource ID.
If the completion code is zero, one or more wildcard match list entries follow.

Wildcard match
A wildcard parameter was specified. This data object contains information about one resource
ID that matches the input wildcard parameter. All wildcard match list entries follow contiguously
after a wildcard parameter list entry.

Possible completion codes are:

X'00000000'
Request completed successfully.

X'00000020'
The Resourceid parameter is invalid. The name type must be a decimal number from 1 to 255.

X'00000024'
CQS internal error.

X'00000040'
No resources matching either resource ID, resource type, owner, or some combination of these,
were found.

18  IMS: System Programming APIs



BUFSIZE=buffersize
Four-byte input parameter that specifies the size of the client buffer.

CLDTOKEN=coldqueuetokenaddress
Output parameter that specifies the address of the 16-byte cold-queue token for the data object,
which, along with the UOW, identifies an object on the cold queue.
You can use the cold-queue token and unit of work (UOW) on a CQSRECVR request to retrieve or
delete objects on the cold queue.

CLIENT=clientnameaddress
4-byte output parameter that specifies the address of an 8-byte field to contain the name of the
client that locked the data object with a CQSREAD request. This parameter is valid only when the
QTYPE=COLD parameter is specified.

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that uniquely identifies the
client's connection to a particular coupling facility structure managed by this CQS. The connect token
is returned by the CQSCONN request.

COUNT=resourcelistcount
4-byte input parameter that specifies the number of entries in the resource list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
4-byte input parameter that specifies the address of the z/OS event control block (ECB) that is used
for asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise, it
is processed synchronously.

LIST=resourcelistaddress
Address of a variable size input parameter that specifies a resource list that contains one or more
entries. Each entry is a separate browse request. The client must initialize some fields in each entry
before issuing the CQSBRWSE request. Other fields are returned by CQS when the request completes.

The CQSBRWSL list entry DSECT maps the list entries and can be used by the client. Multiple list
entries must reside in contiguous storage.

Each list entry contains the following parameters:
resourceid

12-byte input field that contains the unique identifier of the resources to be browsed. The
resource ID can be a wildcard parameter. The resource ID is unique in the IMSplex. The resource
ID consists of a 1-byte name type, followed by an 11-byte client-defined name. The name type
ensures uniqueness of client-defined names for resources with the same name type. Resources
of different resource types might have the same name type. A valid value for the name type is a
decimal number from 1 to 255. The client-defined name has meaning to the client and consists of
alphanumeric characters. If you use a wildcard parameter to specify the resource ID, also specify
the resource type, to enhance performance. You must specify the resource ID, resource type, or
both.

resourcetype
1-byte input field that specifies the resource type. The resource type is a client-defined physical
grouping of resources on the resource structure. Valid values for the resource type are decimal
numbers from 1 to 255. If the resource type is greater than the maximum number of resource
types defined by CQS (11), it is folded into one of the existing resource types. You must specify the
resource type, resource ID, or both.

reserved
3-byte reserved field.

Chapter 2. CQS client requests  19



owner
8-byte input parameter that identifies the owner of the resource data objects to be browsed.
The CQSBRWSE request returns only those resource data objects that are owned by the specific
owner. owner is an optional parameter.

options
4-byte input parameter that specifies browse options. Possible options are:
X'80000000'

Return data2 for the browsed data objects.
userdata

Four-byte input parameter that specifies user data. This user data is passed on output for each
data object that matches the input resource ID parameter.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. The default value is 1. Use the DSECT
function of a CQSBRWSE request to include equate (EQU) statements in your program for the
CQSBRWSE list versions.

OBJSIZE=dataobjectsizeaddress
Output parameter that specifies the address of a 4-byte area to store the size of a data object or data
object entry.

If a CQSBRWSE FUNC=BROWSE request is issued and the size of the data object is greater than
the buffer size passed by the client, the buffer is filled with as much of the data object as fits. The
request receives a return and reason code indicating partial data returned. The size of the data object
is returned in the location specified by the OBJSIZE parameter. If the size of the data object is less
than or equal to the size of the buffer, the data object is moved into the buffer and the remainder of
the buffer is not changed.

If a CQSBRWSE FUNC=BRWSOBJS request is issued, as many data object entries as can fit are moved
into the buffer. The client must then issue a subsequent CQSBRWSE FUNC=BRWSOBJS request to
retrieve the next data object entries. If the buffer is not large enough to hold the next data object
entry, the request receives a return and reason code indicating the buffer is too small. The size of the
next data object entry to be returned is saved in the location specified by the OBJSIZE parameter.

PARM=parmaddress
4-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSBRWSE_PARM_LEN (defined using the FUNC=DSECT request).

QNAME=queuenameaddress
4-byte output parameter that specifies the address of a 16-byte queue name field.

For a CQSBRWSE request that specifies the QTYPE=COLD and CLDTOKEN parameters, the queue
name field is an output field to contain the original client queue name for the data object being
returned. This client queue name contained the data object before it was moved to the cold queue.

For all other CQSBRWSE requests, the queue name field is an input field that specifies the queue
name from which the data object is retrieved for all CQSBRWSE requests.

QTYPE=COLD
Input parameter that specifies the queue type from which the data object is to be retrieved. COLD
Indicates that the data object is to be retrieved from the cold queue.

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSBRWSE return code.

If the return code in register 15 is a non-zero value, the values in the return and reason code fields are
invalid, because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSBRWSE reason code.

20  IMS: System Programming APIs



TIMESTAMP=timestampaddress
4-byte output parameter that specifies the address of an 8-byte field to contain the time stamp when
the data object was placed on the queues.

UOW=uowaddress
Output parameter that specifies the address of a 32-byte area to hold the unit of work (UOW) of the
data object retrieved from the queue. The UOW is a unique identifier generated by the client that
stored the data object on the queue (CQSPUT request).

Return and reason codes
The following table lists the return and reason code combinations that can be returned for CQSBRWSE
requests. Use a CQSBRWSE FUNC=DSECT request to include equate (EQU) statements in your program
for the return and reason codes.

Table 7. CQSBRWSE request return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000120' The buffer size (buffersize) is less than the data object size
(dataobjectsize). Partial data is returned.

X'00000004' X'00000124' The buffer size (buffersize) is too small to contain the next
resource data object entry. No partial data is returned.

X'00000004' X'00000128' No data object to retrieve on queue name (queuename)
specified.

X'00000004' X'0000012C' No partial data to return.

X'00000004' X'00000138' Request complete and the last data object is returned.

X'00000004' X'0000013C' No more data objects to return.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'0000021C' browsetoken is invalid.

X'00000008' X'00000220' queuename is invalid.

X'00000008' X'00000224' buffer is invalid.

X'00000008' X'00000228' buffersize is invalid.

X'00000008' X'0000022C' dataobjectsize is invalid.

X'00000008' X'00000230' uow is invalid.

X'00000008' X'00000234' browsetoken is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'0000027C' A CQSBRWSE FUNC=BROWSE request is not allowed for a
resource structure. A CQSBRWSE FUNC=CONTINUE request
is not allowed for a resource structure. No partial data is
returned from a resource structure.

X'00000008' X'00000280' A CQSBRWSE FUNC=BRWSOBJS request is not allowed for a
queue structure.

Chapter 2. CQS client requests  21



Table 7. CQSBRWSE request return and reason codes (continued)

Return code Reason code Meaning

X'00000008' X'00000284' Parm listversion is invalid.

X'00000008' X'00000288' listversion is invalid.

X'00000010' X'00000400' A CQSRSYNC request is required for this structure.

X'00000010' X'00000404' Structure is inaccessible. Retry request later.

X'00000010' X'00000408' Current position lost. Reissue a CQSBRWSE request.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSCHKPT request
Use the CQSCHKPT request to initiate either a CQS system checkpoint or a structure checkpoint.

Format for CQSCHKPT
CHKPTSTR function of CQSCHKPT

You use the CHKPTSTR function of a CQSCHKPT request to initiate a CQS structure checkpoint for a queue
structure. Structure checkpoint is not supported for a resource structure.

CQSCHKPT FUNC=CHKPTSTR CQSTOKEN=  cqstokenaddress PARM=  parmaddress

COUNT=  count LIST= listaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress CQSCHKPT

FUNC=CHKPTSTR CQSTOKEN=  cqstokenaddress PARM=  parmaddress COUNT=  count

LIST= listaddress

ECB= ecbaddress

RETCODE=  returncodeaddress

RSNCODE=  reasoncodeaddress
LISTVER=  1

LISTVER=  listversion

CHKPTSYS function of CQSCHKPT

Use the CHKPTSYS function of a CQSCHKPT request to initiate a CQS system checkpoint.

22  IMS: System Programming APIs



CQSCHKPT FUNC=CHKPTSYS CQSTOKEN=  cqstokenaddress PARM=  parmaddress

COUNT=  count LIST= listaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress CQSCHKPT

FUNC=CHKPTSYS CQSTOKEN=  cqstokenaddress PARM=  parmaddress COUNT=  count

LIST= listaddress

ECB= ecbaddress

RETCODE=  returncodeaddress

RSNCODE=  reasoncodeaddress
LISTVER=  1

LISTVER=  listversion

DSECT function of CQSCHKPT

Use the DSECT function of a CQSCHKPT request to include equate (EQU) statements in your program for
the CQSCHKPT parameter list length and CQSCHKPT return and reason codes.

CQSCHKPT FUNC=DSECT

Usage of CQSCHKPT
For a structure checkpoint, CQS dumps the queues to DASD for each structure specified in the checkpoint
list. If the structure is currently in overflow mode, the overflow structure is also dumped to DASD.

For a system checkpoint, CQS logs the internal tables for each structure specified in the checkpoint list. If
the structure is currently in overflow mode, CQS also logs the internal tables for the overflow structure.

Parameter descriptions
COUNT=count

4-byte input parameter that specifies the number of entries in the checkpoint list.
CQSTOKEN=cqstokenaddress

Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
4-byte input parameter that specifies the address of the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise it is
processed synchronously.

LIST=listaddress
4-byte input parameter that specifies the address of the checkpoint list. The checkpoint list should
contain an entry for each of the structures for which the client requests a checkpoint.

The CQSCHKPL list entry DSECT maps the list entries and can be used by the client. Multiple list
entries must reside in contiguous storage.

Each list entry contains the following parameters:

connecttoken
16-byte input parameter that specifies the connect token returned by the CQSCONN request. The
connect token uniquely identifies the client's connection to a particular coupling facility structure
managed by this CQS. This parameter is required.

Chapter 2. CQS client requests  23



compcode
4-byte output field to receive the completion code from the request. Possible completion codes
are:
X'00000000'

Completed successfully.
X'00000004'

Connect token is invalid.
X'00000008'

CQS checkpoint request not allowed until CQS restart has successfully completed a system
checkpoint.

X'0000000C'
A CQSRSYNC is required for this structure.

X'00000010'
Checkpoint already in progress for structure.

X'00000014'
Structure is inaccessible. Retry request later.

X'00000018'
CQS internal error.

X'00000020'
CQSCHKPT FUNC=CHKPTSTR is invalid for a resource structure.

X'00000024'
z/OS logger write error, checkpoint was not taken.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT function of a CQSCHKPT
request to include equate (EQU) statements in your program for the CQSCHKPT list versions.

PARM=parmaddress
4-byte input parameter that specifies the address of a parameter list used by the request to pass
parameters to CQS. The length of the storage area must be at least equal to the EQU statement value
CQSCHKPT_PARM_LEN (defined using the FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSCHKPT return code.

If the return code in register 15 is nonzero, the values in the return and reason code fields are invalid,
because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSCHKPT reason code.

Return and reason codes for CQSCHKPT
The following table lists the return and reason code combinations that can be returned for CQSCHKPT
requests. Use a CQSCHKPT FUNC=DSECT request to include equate statements in your program for the
return and reason codes.

Table 8. CQSCHKPT return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

24  IMS: System Programming APIs



Table 8. CQSCHKPT return and reason codes (continued)

Return code Reason code Meaning

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list entries.
See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for individual
errors.

X'00000010' X'0000040C' CQS shutdown is pending. Client-initiated checkpoint
requests are not allowed.

X'00000010' X'00000430' No CQS address space.

Related concepts
Using CQS system checkpoint (System Administration)

CQSCONN request
The CQSCONN request connects a client to one or more coupling facility structures.

Format for CQSCONN
CONNECT function of CQSCONN

You use the CONNECT function of a CQSCONN request to connect to one or more coupling facility
structures. The coupling facility structures can be queue structures or resource structures.

CQSCONN FUNC=CONNECT CQSTOKEN=  cqstokenaddress PARM=  parmaddress

FCCQSSSN=  fccqsssnaddress

COUNT=  count LISTSIZE=  listsize

LIST= listaddress

ECB= ecbaddress

RETCODE=  returncodeaddress

RSNCODE=  reasoncodeaddress
LISTVER=  1

LISTVER=  listversion

DSECT function of CQSCONN

Use the DSECT function of a CQSCONN request to include equate (EQU) statements in your program for
the CQSCONN parameter list length and CQSCONN return and reason codes.

CQSCONN FUNC=DSECT

Usage of CQSCONN
The CQSCONN request connects a client to one or more coupling facility structures. The client specifies
a connect list containing one or more list entries, for which each entry is a separate connect request.
If the connection to a structure is successful, a connect token is returned to the client, representing
the connection to the structure. The client must specify this token on all subsequent CQS requests for

Chapter 2. CQS client requests  25

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_usingcqscheckpoint.htm#ims_usingcqscheckpoint


that structure. A maximum of 32 clients can use a CQS address space to connect to a coupling facility
structure.

Restriction: The CQSCONN request is not logged for resource structures and does not support the
FCCQSSSN keyword. The CQSCONN request does not support the following connect list parameters for a
resource structure:

• structureattributes
• overflowstructurename
• structureinformexit
• structureinformparm
• qtypecnt
• qtypelist

A CQSCONN FUNC=CONNECT request must be issued after a CQSREG FUNC=REGISTER request and
before any other CQS requests. Also, after a CQS abnormal termination and restart, and after the client
has reregistered with CQS, a CQSCONN FUNC=CONNECT request is required before the client can issue
any other CQS requests.

Parameter Description:

COUNT=count
Four-byte input parameter that specifies the number of list entries in the connect list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise it is
processed synchronously.

FCCQSSSN=fccqsssnaddress
Four-byte input parameter that specifies the address of the failed client CQS subsystem. When one
client takes over for another client, this is the SSN of the CQS that was connected to the failed client.

This keyword is not applicable to a resource structure.

LIST=listaddress
Four-byte input parameter that specifies the address of a connect list containing one or more entries.
Each entry is a separate request to connect a client to a coupling facility structure. Some fields for
each entry must be initialized by the client prior to the CQSCONN request. Other fields are returned by
CQS upon completion of the CQSCONN request.

The CQSCONNL list entry DSECT maps the list entries and can be used by the client. Multiple list
entries must reside in contiguous storage.

Note: All fields in the CQSCONNL DSECT currently documented as "Not Used" must be set to zero by
the caller of CQSCONN.

Each list entry contains the following parameters:
compcode

Four-byte output field to receive the completion code from the request. Possible completion
codes are:
X'00000000'

Client connection successful. A connect token is returned to the client.
X'00000004'

The client is already connected to the structure through this CQS. A connect token is returned
to the client.

26  IMS: System Programming APIs



X'00000008'
structurename is invalid.

X'0000000C'
The Structure Event exit routine address was not specified.

X'00000010'
The client is already connected to the structure through another CQS. A client can only be
connected to a given structure through one CQS. The client is not connected to the structure
through this CQS. This does not affect the status of a client connection with another CQS.

X'00000014'
CQS internal error.

X'00000018'
The client specified the FCCQSSSN= parameter to connect to the structure to take over work
for a failed client. CQS could not find a valid system-checkpoint log token for the CQS that was
connected to the failed client. CQS issued message CQS0033A, to which the operator replied
REJECT.

X'0000001C'
The user ID of the client address space is not authorized to connect to the structure.

X'00000020'
structureinformexit was specified but is not allowed for a resource structure.

X'00000024'
structureinformparm was specified but is not allowed for a resource structure.

X'0000002C'
structureattributes was specified but is not allowed for a resource structure.

X'00000030'
Qtype was specified but is not allowed for a resource structure.

X'00000034'
FCCQSSSN was specified but is not allowed for a resource structure.

structureattributes
Four-byte input and output parameter field that contains the structure attributes.
+0

Flag byte 1, with the following bits defined:
X'80'

Indicates the specification of the structure "wait for rebuild" attribute. The first client in
the sysplex to connect to a structure defines this attribute for all clients. It is returned on
the connect request to allow clients to verify that the attribute is set correctly for their
needs because it might have been set by a prior client connection.

The value specified for structureattributes remains in effect for the life of the structure, and
cannot be changed.

When set to 0, indicates that client requests to write and retrieve data objects from the
structure do not wait for a rebuild to complete.

When set to 1, indicates that client requests to write and retrieve data objects from the
structure must wait for a rebuild to complete.

X’40’
Output flag returned by CQS. For queue structures only, this flag indicates whether the
structure is a non-recoverable structure (whether RECOVERABLE=NO was specified in the
CQSSGxxx PROCLIB member for the structure). This flag is set to 1 if the structure is a
non-recoverable structure; otherwise, it is set to 0.

This flag is not applicable to a resource structure.

The remaining bits in this byte are not used, and must be set to zero.

Chapter 2. CQS client requests  27



+1
The next 3 bytes are not used, and must be set to zero.

structuretype
One-byte output parameter field that specifies the structure type as either a queue structure or a
resource structure.

structureversion
Eight-byte output parameter field that specifies the structure version of the structure to which the
client just connected.

structurename
Sixteen-byte input parameter field that contains the name of the structure to which the client
wants to connect. This parameter is required.

overflowstructurename
Sixteen-byte output parameter field to receive the name of the overflow structure, if one was
defined to CQS in the CQS Global Structure Definition PROCLIB member, CQSSGxxx.

This parameter is not applicable to a resource structure.

connecttoken
Sixteen-byte output parameter field to receive the connect token that uniquely identifies the
client's connection to a particular coupling facility structure managed by this CQS.

structureeventexit
Four-byte input parameter field that contains the Structure Event exit routine address. This
parameter is required.

structureeventparm
Four-byte input parameter field that contains client data that CQS passes to the Structure Event
exit routine every time the exit is called. This parameter is optional; set it to zero if you do not want
to pass any data to the exit routine.

structureinformexit
Four-byte input parameter field that contains the Structure Inform exit routine address. This
parameter is optional; set it to zero if you do not have a Structure Inform exit routine.

This parameter is not applicable to a resource structure.

structureinformparm
Four-byte input parameter field that contains client data that CQS passes to the Structure Inform
exit routine every time the exit is called. This parameter is optional; set it to zero if you do not want
to pass any data to the exit routine.

This parameter is not applicable to a resource structure.

qtypecnt
Four-byte input parameter field that contains the number of queue type entries in the queue type
list. This parameter is optional; set it to zero if you do not have any entries in the queue type list.

This parameter is not applicable to a resource structure.

qtypelst
Variable length input area for the queue type list.

This parameter is not applicable to a resource structure.

The length of this area is equal to the value specified for qtypecnt. Each queue type entry is a
1-byte value of a queue type that should not be moved to the overflow structure if the primary
structure goes into overflow mode. This parameter is optional.

When using version 1 of the CQSCONN parameter list (the default), build the queue type
list starting at label CNLQTYPL in the CQSCONNL DSECT, which maps the list entry. When
using version 16 of the CQSCONN parameter list, build the queue type list starting at label
CNLQTYPL_V16.

28  IMS: System Programming APIs



After a queue type is defined, it remains in effect for the life of the structure, and is not moved to
the overflow structure.

If no queue types are listed, the default is for all queue types to be eligible for overflow. This list
should only be included if there are certain queue types the client knows should not be moved
(perhaps based on the client's use of the queue types).

Recommendation: Clients should exclude from processing those queue types that allow multiple
objects with the same queue name and UOW. CQS cannot recover multiple objects with the same
queue name and UOW that are allowed to be moved to the overflow structure.

logstreamname
Twenty-six-byte output parameter field to receive the name of the z/OS log stream associated
with the CQS structure. This field is set to all blanks for non-recoverable queue structures and for
resource structures.

This field is present only for CQSCONN lists at version 16 or later.

logstreamstructurename
Sixteen-byte output parameter field to receive the name of the CF structure associated with
the z/OS log stream that is associated with the CQS structure. This field is set to all blanks for
non-recoverable queue structures, resource structures, and structures with DASD-only z/OS log
streams.

This field is present only for CQSCONN lists at version 16 or later.

LISTSIZE=listsize
Four-byte input parameter that specifies the size of the connect list. listsize specifies the total length
of all entries in the list, not the length of a single entry.

LISTVER=1 | listversion
Input parameter that specifies the parameter list version. Use the DSECT function of the CQSCONN
request to include equate (EQU) statements in your program for the CQSCONN list versions and
lengths. The following parameter list versions are supported:
1

EQU symbol is CNL_LVER1. This is the default parameter list version. This version of the
parameter list includes all fields documented under the LIST= parameter except for those that
are specifically noted as being present only in a higher list version. The minimum length of a
version 1 parameter list entry is CNL_MINLNV1 bytes. Queue type entries, if present, begin at
label CNLQTYPL in the CQSCONNL DSECT, mapping the list entry.

16
EQU symbol is CNL_LVER16. A version 16 parameter list contains additional output fields beyond
the fields present in a version 1 parameter list. These additional fields are documented under the
LIST= parameter and are returned only when a version 16 format parameter list is passed. The
minimum length of a version 16 parameter list entry is CNL_MINLNV16 bytes. Queue type entries,
if present, begin at label CNLQTYPL_V16 in the CQSCONNL DSECT, mapping the list entry.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSCONN_PARM_LEN (defined using the FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSCONN return code.

If the return code in register 15 is nonzero, the values in the return and reason code fields are invalid,
because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSCONN reason code.

Chapter 2. CQS client requests  29



Return and reason codes for CQSCONN
The following table lists the return and reason code combinations that can be returned for CQSCONN
requests. Use a CQSCONN FUNC=DSECT request to include equate statements in your program for the
return and reason codes.

Table 9. CQSCONN return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000100' The client was previously connected to one or more of the
specified structures through this CQS. Client is connected to
all structures.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000258' listsize is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for one but not all list entries. See
compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for individual
errors.

X'00000010' X'0000040C' CQS shutdown in progress (CQSSHUT). CQS is waiting for
all clients to disconnect, and no new client connections are
allowed.

X'00000010' X'00000410' The maximum number of clients are connected to this CQS.
This request would exceed the client connection limit. No
further client connections are allowed.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSDEL request
A CQSDEL request deletes one or more data objects from a queue structure or a resource structure.

Format for CQSDEL
DELETE function of CQSDEL

Use the DELETE function of a CQSDEL request to delete one or more data objects from a queue structure
or a resource structure.

30  IMS: System Programming APIs



CQSDEL FUNC=DELETE CQSTOKEN=  cqstokenaddress CONTOKEN=  connecttokenaddress

FEEDBACK=  feedbackaddress FEEDBACKLEN=  feedbacklength

PARM=  parmaddress COUNT=  count LIST= listaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress
LISTVER=  1

LISTVER=  listversion

DSECT function of CQSDEL

Use the DSECT function of a CQSDEL request to include equate (EQU) statements in your program for the
CQSDEL parameter list length and CQSDEL return and reason codes.

CQSDEL FUNC=DSECT

Usage of CQSDEL
A CQSDEL request deletes one or more data objects from a queue structure or a resource structure. The
client specifies a delete list that contains one or more list entries, for which each list entry is a separate
delete request (either by lock token, by queue name, by queue name and UOW, by resource ID, or by
resource type and owner). Each list entry is processed separately and receives its own completion code.

Parameter description:
CONTOKEN=connecttokenaddress

Input parameter that specifies the address of the 16-byte connect token that uniquely identifies the
client's connection to a particular coupling facility structure managed by this CQS. The connect token
is returned by the CQSCONN request.

COUNT=count
A 4-byte input parameter that specifies the number of list entries in the delete list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
A 4-byte input parameter that specifies the address of the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise, it is
processed synchronously.

FEEDBACK=feedbackaddress
A 4-byte input parameter that specifies the address of a feedback area to receive structure utilization
feedback about the CQS structure. This information includes the number of entries and elements that
are allocated in the structure and the number currently in use. If the structure is in overflow mode,
information about both the primary and overflow structure is returned. This parameter is optional for
FUNC=DELETE; it is invalid for other CQSDEL functions. FEEDBACK= is required when FEEDBACKLEN=
is specified.

The utilization data returned is guaranteed only to be current for the structures from which the data
objects that were specified in the list entries by the LIST= parameter were actually deleted. Data for
structures (overflow or primary) that were not accessed is as of the last time CQS put or deleted an
object to that other structure, and might be obsolete if that last access was far in the past. This is
because CQS receives the structure usage data back from the structure when it issues a write request
or a delete request to the structure. CQS saves this information about both primary and overflow
structures. However, if CQS does not receive requests to access one of the structures for a period of
time, that structure's saved data can become out of date if other CQSs in the IMSplex are updating it.

Chapter 2. CQS client requests  31



You should consider the data returned in the FEEDBACK area as an approximation of the structures'
usage, and not necessarily a precise measurement.

The format of the feedback area is described by mapping macro CQSSFBA – the CQS Structure
Feedback Area. This area contains the Product-Sensitive Programming Interface (PSPI). For details
about the feedback area, see the CQSSFBA macro shipped with IMS. The fields that are related to the
overflow structure are meaningful only when the overflow structure is allocated. They are zero when
there is no overflow structure. If the CQSDEL request receives a nonzero return code, the feedback
area data might not be returned, depending on how far CQSDEL processing progressed before the
failure. For a nonzero CQSDEL return code, either the feedback area is unchanged (no data returned)
or it contains the current structure usage data (data returned).

FEEDBACKLEN=feedbacklength
A 4-byte input parameter that specifies the size of the feedback area specified by the FEEDBACK
parameter. The FEEDBACKLEN parameter is optional for FUNC=DELETE. FEEDBACKLEN= is required
when FEEDBACK= is specified.

SFBA_HDR_LN, the EQU symbol for the feedback area header section length, is defined in the
CQSSFBA macro to be the maximum length of the area required for a given CQS version. If you
pass a length less than the minimum value, then CQS returns no feedback data.

The feedback area total area length EQU symbol SFBA_LN is defined in the CQSSFBA macro to be the
maximum length of the area required for a given CQS version. This EQU value might change in the
future if new fields are added. If you cannot tolerate the length of your feedback area changing, you
should define your own length value based on the offset+length of the last field in the CQSSFBA
DSECT mapping that your program accesses.

You can pass a length less than the maximum value. CQS will truncate the feedback data to fit into
your passed area. You can also pass a length greater than the maximum value. CQS will copy back the
entire mapped feedback area; any excess storage beyond the area's length is unpredictable on return
from CQS.

The feedback area length field SFBA_LENGTH in the header section is an output parameter. It is
assigned the maximum length of the feedback area at run time and can be used to obtain the
complete feedback data.

If you pass an EQU symbol as the length of the feedback area, ensure that you use the
FEEDBACKLEN=@(symbol) notation. Use FEEDBACKLEN=symbol when you pass a symbol that is a
label on a word of storage that contains the feedback area length.

LIST=listaddress
A 4-byte input parameter that specifies the address of a delete list containing one or more entries.
Each entry is a separate delete request. Some fields in each entry must be initialized by the client
prior to the CQSDEL request. Other fields are returned by CQS upon completion of the request.

The CQSDELL list entry DSECT maps the list entries and can be used by the client. Multiple list entries
must reside in contiguous storage.

Each list entry contains the following parameters:
deletetype

One-byte input parameter field that contains the delete type. This is a required parameter.
deletetype can have one of the following values:
1

Delete by lock token.
2

Delete by queue name.
3

Delete by queue name and unit of work.
4

Delete by resource ID and version.

32  IMS: System Programming APIs



5
Delete by resource type with the specified owner.

Recommendation: For better performance, use delete type 1 or delete type 2 because they are
more efficient than delete type 3.

deleteqpos
One-byte input parameter field that specifies either that all data objects are to be deleted or the
position on the queue of data objects to be deleted. This parameter is only used for delete type 2.
deleteqpos can have one of the following values:
1

Delete all data objects on the queue.
2

Delete the first data object on the queue.
3

Delete the last data object on the queue.

The locktoken, deleteqpos, and uow fields are mutually exclusive.

reserved
A 2-byte reserved field.

objdelcnt
A 4-byte output parameter field to receive the number of data objects deleted.

compcode
A 4-byte output field to receive the completion code from the request. Possible completion codes
are:
X'00000000'

Request completed successfully.
X'00000004'

Invalid deleteqpos (Delete type 2).
X'00000008'

Invalid deletetype.
X'0000000C'

Invalid locktoken (Delete type 1).
X'00000010'

Invalid queuename (Delete type 2 or type 3).
X'00000014'

Invalid uow (Delete type 3).
X'0000001C'

Structure is inaccessible. Try the request again later.
X'00000020'

CQS internal error.
X'00000024'

Data object not found on queue (Delete type 2) or on queuename for UOW (Delete type 3),
or on resource structure (Delete type 4). It is up to the client to determine whether this case
should be treated as an error or not.

X'00000028'
Delete type 1, 2, or 3 is invalid for a resource structure.

X'00000032'
Delete type 4 or 5 is invalid for a queue structure.

X'00000036'
Resourceid is invalid. The name type must be a decimal number between 1 - 255.

Chapter 2. CQS client requests  33



X'00000040'
Version is invalid. The version must be a number greater than zero.

X'00000044'
Version does not match that of an existing resource.

X'00000048'
Resourcetype is invalid. The resource type must be a decimal number between 1 - 255.

locktoken
A 16-byte input parameter field that contains the lock token. The lock token is returned by the
CQSREAD request. This parameter is only used for delete type 1.

The locktoken, deleteqpos, and uow fields are mutually exclusive. The locktoken and queuename
fields are also mutually exclusive.

queuename
A 16-byte input parameter field that contains the queue name. This parameter is only used for
delete types 2 and 3.

The locktoken and queuename fields are mutually exclusive.

uow
A 32-byte input parameter that contains the unit of work. This parameter is only used for delete
type 3.

The locktoken, deleteqpos, and uow fields are mutually exclusive.

resourceid
A 12-byte input parameter that contains the unique identifier of the resource data object to
delete. This parameter is required for delete type 4. The resourceid, locktoken, queuename, and
resourceytpe fields are mutually exclusive.

version
An 8-byte input and output parameter that contains the version of the resource to be deleted.
The version specified must match the version of the resource for the delete request to succeed.
The version is a count of the number of times the resource has been updated. This parameter is
required for delete type 4. If the delete fails because of version mismatch, the version is returned
as output.

resourcetype
A 1-byte input parameter that contains the resource type. The resource type is a client-defined
physical grouping of resources on the resource structure. Valid values for the resource type are
decimal numbers from 1 to 255. If the resource type is greater than the maximum number of
resource types defined by CQS (11), it is folded into one of the existing resource types. This
parameter is required for delete types 4 and 5. Specify zero to delete all resources of a resource
type that are not owned.

reserved
A 3-byte reserved field.

owner
An 8-byte input parameter that specifies the owner for which to delete resources of the specified
resource type. This parameter is required for delete type 5.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT function of a CQSDEL
request to include equate (EQU) statements in your program for the CQSDEL list versions.

PARM=parmaddress
A 4-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSDEL_PARM_LEN (defined using the FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSDEL return code.

34  IMS: System Programming APIs



If the return code in register 15 is nonzero, the values in the return and reason code fields are invalid,
because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSDEL reason code.

Return and reason codes for CQSDEL
The following table lists the return and reason code combinations that can be returned for CQSDEL
requests. Use a CQSDEL FUNC=DSECT request to include equate statements in your program for the
return and reason codes.

Table 10. CQSDEL return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000284' Parameter list version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list entries.
See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for individual
errors.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

Related concepts
Monitoring shared message queue usage with the Queue Space Notification exit routine (DFSQSSP0)
(System Administration)
Related reference
Queue Space Notification exit routine (DFSQSPC0/DFSQSSP0) (Exit Routines)

CQSDEREG request
The CQSDEREG request deregisters a client from CQS and invalidates the CQSTOKEN.

Format for CQSDEREG
DEREGISTER function of CQSDEREG

A CQSDEL request deletes one or more data objects from a queue structure or a resource structure.

CQSDEREG FUNC=DEREGISTER CQSTOKEN=  cqstokenaddress PARM=  parmaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

Chapter 2. CQS client requests  35

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_cqsusagemonitor_dfsqssp0.htm#ims_cqsusagemonitor_dfsqssp0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_cqsusagemonitor_dfsqssp0.htm#ims_cqsusagemonitor_dfsqssp0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_dfsqspc0_dfsqssp0.htm#ims_dfsqspc0_dfsqssp0


DSECT function of CQSDEREG

Use the DSECT function of a CQSDEREG request to include equate (EQU) statements in your program for
the CQSDEREG parameter list length and CQSDEREG return and reason codes.

CQSDEREG FUNC=DSECT

Usage of CQSDEREG
The CQSDEREG request deregister a client from CQS and invalidates the CQSTOKEN. Prior to issuing this
request, the client should issue the CQSDISC request to disconnect from all structures to which the client
has a connection. When this request is successfully completed, no subsequent requests can be made to
CQS until a CQSREG request has been made to get a new CQSTOKEN.

Parameter Description:

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSDEREG_PARM_LEN (defined using the FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSDEREG return code.
The CQSDEREG return code is returned both in this field and in register 15.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSDEREG reason code.
The CQSDEREG reason code is returned both in this field and in register 0.

Return and reason codes for CQSDEREG
The following table lists the return and reason code combinations that can be returned for CQSDEREG
requests.

Table 11. CQSDEREG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000104' Unable to free CQS's storage in client's address space. The
cqstoken is now invalid.

X'00000004' X'00000108' Unable to delete z/OS Resource Manager routine. The
cqstoken is now invalid.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000248' The CQSDEREG parameter list version is invalid. This error is
probably caused by a difference in versions between the CQS
client and the CQS address space the client is trying to use.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000434' Request is active.

X'00000014' X'00000500' CQS internal error. The cqstoken is now invalid.

X'00000014' X'00000504' Storage allocation error for work area.

X'00000014' X'00000518' CQS internal error (unable to create ESTAE).

36  IMS: System Programming APIs



Table 11. CQSDEREG return and reason codes (continued)

Return code Reason code Meaning

X'00000014' X'0000053C' Unable to load CQS deregistration module CQSREG10.

CQSDISC request
The CQSDISC request allows a client to disconnect from one or more coupling facility structures.

Format for CQSDISC
DISCABND function of CQSDISC

You use the DISCABND function of a CQSDISC request while the client is terminating abnormally to
terminate client connections to all coupling facility structures.

CQSDISC FUNC=DISCABND CQSTOKEN=  cqstokenaddress PARM=  parmaddress

A

OPTWORD1=  optionwordvalue ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

LISTVER=  1

A
CQSSHUT=YES

CQSSHUT=NO

DISCNORM function of CQSDISC

Use the DISCNORM function of a CQSDISC request while the client is terminating normally to terminate
client connections to one or more coupling facility structures.

CQSDISC FUNC=DISCNORM CQSTOKEN=  cqstokenaddress PARM=  parmaddress

COUNT=  count LIST= listaddress
A

OPTWORD1=  optionwordvalue

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

LISTVER=  1

A
CQSSHUT=YES

CQSSHUT=NO

DSECT function of CQSDISC

Chapter 2. CQS client requests  37



Use the DSECT function of a CQSDISC request to include equate (EQU) statements in your program for the
CQSDISC parameter list length, CQSDISC return and reason codes, and literals that can be used to build
the OPTWORD1 parameter.

CQSDISC FUNC=DSECT

Usage of CQSDISC
Restriction: The CQSDISC request does not support structure attributes for resource structures.

The CQSDISC request allows a client to disconnect from one or more coupling facility structures. CQS
disconnects client resources associated with the structures. The client needs to issue a CQSDEREG
request to completely disconnect from CQS.

A CQSDISC FUNC=DISCABND request, used when the client is terminating abnormally, terminates client
connections to all coupling facility structures.

A CQSDISC FUNC=DISCNORM, used when the client is terminating normally, terminates client
connections to one or more coupling facility structures. The client specifies a disconnect list containing
one or more list entries, for which each entry is a separate disconnect request. As each structure
disconnect is completed, the connect token for that structure is invalidated and can no longer be used by
the client.

Parameter Description:
COUNT=count

Four-byte input parameter that specifies the number of list entries in the disconnect list.
CQSSHUT=YES | NO

Input parameter that indicates whether or not the CQS address space should be shut down after all
clients have disconnected.

If CQSSHUT=YES is specified, new clients continue to be allowed to issue CQSCONN requests.
The CQSSHUT FUNC=QUIESCE request can be used to prevent new clients from issuing CQSCONN
requests.

The CQSSHUT parameter cannot be used when the OPTWORD1 parameter is specified. If you specify
OPTWORD1 instead of CQSSHUT, you can use the following equate (EQU) symbols to generate the
value for the OPTWORD1 parameter:

CQSDISC_SHUTYEQX   CQSSHUT=YES
CQSDISC_SHUTNEQX    CQSSHUT=NO

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise the
request is processed synchronously.

LIST=listaddress
Four-byte input parameter that specifies the address of a disconnect list containing one or more
entries. Each entry is a separate request to disconnect a client from a coupling facility structure. Some
fields in each entry must be initialized by the client prior to the CQSDISC request. Other fields are
returned by CQS upon completion of the CQSDISC request.

The CQSDISCL list entry DSECT maps the list entries and can be used by the client. Multiple list
entries must reside in contiguous storage.

Each list entry contains the following:

38  IMS: System Programming APIs



connecttoken
Sixteen-byte input parameter that specifies the connect token that uniquely identifies the client's
connection to a particular coupling facility structure managed by this CQS. The connect token is
returned by the CQSCONN request. This parameter is required.

structureattributes
Four-byte input parameter field that contains the structure attributes.
+0

Flag byte 1, with the following bits defined:
X'80'

When set to 0, indicates that CQS should not perform a structure checkpoint for the
structure.

When set to 1, indicates that CQS should perform a structure checkpoint for the structure.

X'40'
When set to 0, indicates that CQS should not perform disconnect processing for the
structure if there is any inflight work (locked objects) on the structure. If inflight work is
found, CQS will set completion code X'00000008' in the compcode field, and will return a
return code of X'0000000C', and a reason code of either X'00000300' or X'00000304' for
the request.

When set to 1, indicates that CQS should disconnect from the structure, even if there
is inflight work (locked objects) on the structure. If inflight work is found, CQS will set
completion code X'00000008' in the compcode field, and will return a return code of
X'00000004', and a reason code of X'00000140' for the request, if no other errors in
disconnect processing occur. Note that the return and reason code is a warning only; the
disconnect processing is still performed.

The remaining bits in this byte are not used, and must be set to zero.

+1
The next 3 bytes are not used, and must be set to zero.

compcode
Four-byte output field to receive the completion code from the request. Possible completion
codes are:
X'00000000'

Request completed successfully.
X'00000004'

connecttoken is invalid.
X'00000008'

The client has inflight work for the structure. If the X'40' bit in the first byte of the
structureattributes parameter was set to one, the disconnect processing was successful for
the structure, and this completion code is informational.

If the X'40' bit was zero, the disconnect processing was not done for this structure, and the
CQS client should complete the inflight work before continuing.

X'0000000C'
Structure attributes are not allowed for a resource structure.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT function of a CQSDISC
request to include equate (EQU) statements in your program for the CQSDISC list versions.

OPTWORD1=optionwordvalue
Four-byte input parameter that specifies the literals for this request. This parameter can be used
instead of CQSSHUT. Equate (EQU) statements for the literal values are listed under the description of
the CQSSHUT parameter. Equate statements can also be generated by using the DSECT function. The
OPTWORD1 parameter cannot be used if CQSSHUT is specified.

Chapter 2. CQS client requests  39



Requirement: If you code the OPTWORD1 parameter, you must pass a value that is composed of one
equate value for each literal value supported by this macro.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSDISC_PARM_LEN (defined using the FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSDISC return code.

If the return code in register 15 is nonzero, the values in the return and reason code fields are invalid,
because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSDISC reason code.

Return and reason codes for CQSDISC
The following table lists the return and reason code combinations that can be returned for CQSDISC
requests. Use a CQSDISC FUNC=DSECT request to include equate statements in your program for the
return and reason codes.

Table 12. CQSDISC return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000130' Request completed successfully for the requested structures.
Client is still connected to additional coupling facility
structures.

X'00000004' X'00000140' Request completed successfully for the requested structures.
At least one structure had inflight work for this client, but the
client indicated that disconnect processing was allowed with
inflight work at CQSDISC. The completion code field for those
structures contains X'00000008'.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one but not all list entries. See
compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for individual
errors.

X'00000010' X'00000430' No CQS address space.

40  IMS: System Programming APIs



CQSINFRM request
The CQSINFRM request registers or deregisters interest for one or more queues on a specific coupling
facility structure.

Format for CQSINFRM
DSECT function of CQSINFRM

You use the DSECT function of a CQSINFRM request to include equate (EQU) statements in your program
for the CQSINFRM parameter list length and CQSINFRM return and reason codes.

CQSINFRM FUNC=DSECT

INFORM function of CQSINFRM

Use the INFORM function of a CQSINFRM request to register a client's interest in one or more queues on a
specific coupling facility structure.

CQSINFRM FUNC=INFORM CQSTOKEN=  cqstokenaddress PARM=  parmaddress

COUNT=  count LISTSIZE=  listsize LIST= listaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress
LISTVER=  1

LISTVER=  listversion

UNINFORM function of CQSINFRM

Use the UNINFORM function of a CQSINFRM request to deregister a client's interest in one or more
queues on a specific coupling facility structure it previously registered interest for.

CQSINFRM FUNC=UNINFORM CQSTOKEN=  cqstokenaddress PARM=  parmaddress

COUNT=  count LISTSIZE=  listsize LIST= listaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress
LISTVER=  1

LISTVER=  listversion

Usage of CQSINFRM
A client uses a CQSINFRM request to register or deregister interest for one or more queues on a specific
coupling facility structure. When a queue goes from empty to non-empty, CQS notifies all clients that
registered interest for the queue of the change in status by scheduling the Structure Inform Client exit
routine.

Restriction: The CQSINFRM request is not supported for resource structures.

The client can issue CQSREAD or CQSBRWSE requests to retrieve data from a queue. A client can make
data objects available on a queue using CQSPUT, CQSMOVE, or CQSUNLCK requests.

A client that has registered interest in a queue is only notified when the queue goes from empty to
non-empty, or if a data object is available on the queue when the CQSINFRM request is issued. The client
does not receive notification when additional data objects are placed on a non-empty queue.

Chapter 2. CQS client requests  41



After a client deregisters interest in a queue, it is no longer notified when one of the queues goes from
empty to non-empty. Because client notifications occur asynchronously with CQSINFRM requests, the
client should expect to be notified about new data objects that arrive between the time the client issues
the CQSINFRM FUNC=UNINFORM request and the time CQS processes the request.

Parameter Description:

COUNT=count
Four-byte input parameter that specifies the number of structure list entries in the structure list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise it is
processed synchronously.

LIST=listaddress
Four-byte input parameter that specifies the address of the structure list. The structure list is built
in contiguous storage, and the size of the list must be specified using the LISTSIZE parameter. The
structure list should contain an entry for each coupling facility structure for which the client will
register or deregister interest. Each structure list entry must contain a list of the queues for which the
client will register or deregister interest.

Each connect token in a structure list entry and queue name in the queue list entry must be initialized
prior to the request. Upon completion of the request, CQS returns the structure completion code for
the structure list and the queue completion code for the queue list.

The CQSINFL list entry DSECT maps the queue and structure list entries and can be used by the client.
Multiple list entries must reside in contiguous storage.

Each structure list entry contains the following parameters:

connecttoken
Sixteen-byte input parameter that specifies the connect token that uniquely identifies the client's
connection to CQS and a specific coupling facility structure. The connect token is returned by the
CQSCONN request. This parameter is required.

structurecompletioncode
Four-byte output field to receive the completion code for the CQSINFRM request for the structure.
Possible structure completion codes are:
X'00000000'

Request completed successfully.
X'00000004'

Request completed successfully for all queues. At least one queue has work on it. See the
queue completion code to determine which queues have work on them.

X'00000010'
connecttoken is invalid.

X'00000014'
queuelistcount is invalid.

X'00000018'
Inform exit routine does not exist. The Structure Inform exit routine was not specified on
CQSCONN request for structure.

X'00000020'
Request completed successfully for at least one, but not all queues in queuelist. See
queuecompletioncode for individual errors.

X'00000024'
Request failed for all queues in queuelist. See queuecompletioncode for individual errors or
successes.

42  IMS: System Programming APIs



X'00000030'
A CQSRSYNC is required for this structure.

X'00000034'
CQSINFRM is not allowed for a resource structure.

queuelistcount
Four-byte input parameter that specifies the number of queues in the queue list. This parameter is
required.

Recommendation: For optimum performance, a client that registers interest in many queues
should issue multiple CQSINFRM requests, in which each request lists no more than 1024 queues.

queuelist
Variable length input area that contains one or more queue lists. A queue list, built by the client,
should contain an entry for each queue on the structure for which the client will register or
deregister interest. The queue names must be initialized prior to the request. This parameter is
required.

Each queue list entry contains the following:
queuename

Sixteen-byte input field that contains the name of the queue for which the client is registering
interest. This parameter is required.

queuerequestflag
One-byte input field that contains flags specific to this queue that can be set for this
CQSINFRM request.
X'80'

Call the client Inform exit routine if there are data objects on the queue at the time
the client issues the CQSINFRM FUNC=INFORM request. Applies only to CQSINFRM
FUNC=INFORM requests.

queuecompletioncode
Four-byte output field to receive the completion code for the specified queue. Possible
completion codes are:
X'00000000'

Request completed successfully.
X'00000040'

Work exists on queue.
X'00000044'

queuename is invalid.
X'00000048'

CQS internal error.
X'00000050'

Structure is full. No more event monitoring controls (EMC)s are available for queue
registration.

X'00000054'
Structure is inaccessible. Retry request.

LISTSIZE=listsize
Four-byte input parameter that specifies the size of the structure list. The client builds the structure
list and must specify the size of the structure list in this field.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT function of a CQSINFRM
request to include equate (EQU) statements in your program for the CQSINFRM list versions.

Chapter 2. CQS client requests  43



PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSINFRM_PARM_LEN (defined using the FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSINFRM return code.

If the return code in register 15 is nonzero, the values in the return and reason code fields are invalid,
because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSINFRM reason code.

Return and reason codes for CQSINFRM
The following table lists the return and reason code combinations that can be returned for CQSINFRM
requests. Use a CQSINFRM FUNC=DSECT request to include equate statements in your program for the
return and reason codes.

Table 13. CQSINFRM return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000134' Request completed successfully. One or more queues have
work.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000258' listsize is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list
entries. Check structurecompletioncode for individual errors or
successes.

X'0000000C' X'00000304' Request failed for all list entries. See structurecompletioncode
for individual errors.

X'00000010' X'00000430' No CQS address space.

Related reference
CQS Client Structure Inform exit routine (Exit Routines)

CQSMOVE request
A CQSMOVE request moves one or all client data objects from one queue to another. Data objects can be
moved from the first or last position of the old queue to the first or last position on the new queue.

Format for CQSMOVE
DSECT function of CQSMOVE

44  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_cqsclientstructure.htm#ims_cqsclientstructure


You use the DSECT function of a CQSMOVE request to include equate (EQU) statements in your program
for the CQSMOVE parameter list length, CQSMOVE return and reason codes, and literals that can be used
to build the OPTWORD1 parameter.

CQSMOVE FUNC=DSECT

MOVE function of CQSMOVE

Use the MOVE function of a CQSMOVE request to move one or all data objects from one queue to another.
You must code a macro invocation for each combination of literal parameters.

MOVE Function of CQSMOVE using Literal Parameters
CQSMOVE FUNC=MOVE CQSTOKEN=  cqstokenaddress CONTOKEN=  connecttokenaddress

PARM=  parmaddress

OLDQ= oldqueuenameaddress

OLDQPOS=FIRST

OLDQPOS=LAST

A

LCKTOKEN=  locktokenaddress

NEWQ= newqueuenameaddress

NEWQPOS=LAST

NEWQPOS=FIRST ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

A
COUNT=ONE

COUNT=ALL

MVCNT=  movecountaddress

You can use the OPTWORD1 parameter to code a single invocation of the macro and set the options
at runtime. However, you cannot use the COUNT, NEWQPOS, and OLDQPOS parameters if you use the
OPTWORD1 parameter.

MOVE Function of CQSMOVE using OPTWORD1 Parameter
CQSMOVE FUNC=MOVE CQSTOKEN=  cqstokenaddress CONTOKEN=  connecttokenaddress

PARM=  parmaddress

OLDQ= oldqueuenameaddress

MVCNT=  movecountaddress

LCKTOKEN=  locktokenaddress

NEWQ= newqueuenameaddress OPTWORD1=  optionwordvalue

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

Chapter 2. CQS client requests  45



Usage of CQSMOVE
Restriction: The CQSMOVE request is not supported for resource structures.

A CQSMOVE request moves one or all client data objects from one queue to another. Data objects can be
moved from the first or last position of the old queue to the first or last position on the new queue. The
client identifies the data objects to be moved either by the old queue name and queue position, or by the
lock token. Do not move multiple objects with the same queue name and UOW; otherwise CQS cannot
recover the objects.

If CQS or the client fails before CQS responds to the client, the CQSMOVE request might not complete.
The client must reconnect to CQS after the failure and may have to issue the CQSMOVE request again, in
case the failure occurred before the move was committed, or to resume a move with COUNT=ALL.

Parameter Description:
CONTOKEN=connecttokenaddress

Input parameter that specifies the address of the 16-byte connect token that uniquely identifies the
client's connection to a particular coupling facility structure managed by this CQS. The connect token
is returned by the CQSCONN request.

COUNT=ONE | ALL
Input parameter that specifies the number of data objects on the old queue to be moved; the client
can move either one or all of them.

The COUNT parameter cannot be used when the OPTWORD1 parameter is specified. If you specify
the OPTWORD1 parameter instead of the COUNT parameter, you can use the following equate (EQU)
symbols to generate the value for the OPTWORD1 parameter:

CQSMOVE_CNT1EQUX   COUNT=ONE
CQSMOVE_CNT1EQUX    COUNT=ALL

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise it is
processed synchronously.

LCKTOKEN=locktokenaddress
Input parameter that specifies the address of the 16-byte lock token for the locked data object to be
moved. The lock token uniquely identifies a data object locked by a CQSREAD request.

MVCNT=movecountaddress
Output parameter that specifies the address of a 4-byte field to receive the number of data objects
that were moved. Even when the return or reason code is non-zero, it is possible that CQS moved
some data objects.

NEWQ=newqueuenameaddress
Input parameter that specifies the address of the 16-byte name of the new queue to which the data
object is to be moved.

NEWQPOS=FIRST | LAST
Input parameter that specifies the position on the new queue to which data objects are moved, either
first or last.

The NEWQPOS parameter cannot be used when the OPTWORD1 parameter is specified. If the
OPTWORD1 parameter is specified instead of NEWQPOS, you can use the following equate (EQU)
statements to generate the value for the OPTWORD1 parameter:

CQSMOVE_NEWQFEQUX   NEWQPOS=FIRST
CQSMOVE_NEWQLEQUX    NEWQPOS=LAST

46  IMS: System Programming APIs



OLDQ=oldqueuenameaddress
Input parameter that specifies the address of the 16-byte name of the old queue from which the data
object is to be moved.

OLDQPOS=FIRST | LAST
Input parameter that specifies the position on the old queue from which data objects are to be moved,
either first or last.

The OLDQPOS parameter cannot be used when the OPTWORD1 parameter is specified. If the
OPTWORD1 parameter is specified instead of OLDQPOS, you can use the following equate (EQU)
statements to generate the value for the OPTWORD1 parameter:

CQSMOVE_OLDQFEQUX   OLDQPOS=FIRST
CQSMOVE_OLDQLEQUX    OLDQPOS=LAST

OPTWORD1=optionwordvalue
Four-byte input parameter that specifies the literals for this request. This parameter can be used
instead of COUNT, NEWQPOS, and OLDQPOS. Equate (EQU) statements for the literal values are listed
under the COUNT, NEWQPOS, and OLDQPOS parameter descriptions. Equate statements can also
be generated by using the DSECT function. The OPTWORD1 parameter cannot be used if COUNT,
NEWQPOS, or OLDQPOS is specified.

Requirement: If you code the OPTWORD1 parameter, you must pass a value that is composed of one
equate value for each literal value supported by this macro.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSMOVE_PARM_LEN (defined using the FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSMOVE return code.

If the return code in register 15 is nonzero, the values in the return and reason code fields are invalid,
because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSMOVE reason code.

Return and reason codes for CQSMOVE
The following table lists the return and reason code combinations that can be returned for CQSMOVE
requests. Use a CQSMOVE FUNC=DSECT request to include equate statements in your program for the
return and reason codes.

Table 14. CQSMOVE return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000128' No data object to move for queue name specified.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'0000021C' locktoken is invalid.

X'00000008' X'00000220' Queue name is invalid.

X'00000008' X'00000224' Buffer address is invalid.

X'00000008' X'0000027C' CQSMOVE is not allowed for a resource structure.

Chapter 2. CQS client requests  47



Table 14. CQSMOVE return and reason codes (continued)

Return code Reason code Meaning

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure is inaccessible. Retry request later.

X'00000010' X'00000414' Unable to move the data object because the destination
queue is full. CQSMOVE requests for other queues are
allowed.

X'00000010' X'0000041C' Request pending. A structure recovery or CQS restart might
be required to complete.

X'00000010' X'00000430' No CQS address space.

X'00000010' X'00000440' Locked (nonrecoverable) data object lost due to rebuild.

X'00000014' X'00000500' CQS internal error.

X'00000014' X'00000504' z/OS logger write error, data objects were not moved.

CQSPUT request
A CQSPUT request allows a client to place a data object on a queue. The data object can be either the only
one for a unit of work, or it can be one in a series for a unit of work.

Format for CQSPUT
ABORT function of CQSPUT

Use the ABORT function of a CQSPUT request to remove all uncommitted data objects from the queues
that are associated with a recoverable unit of work.

CQSPUT FUNC=ABORT CQSTOKEN=  cqstokenaddress CONTOKEN=  connecttokenaddress

PARM=  parmaddress PUTTOKEN=  puttokenaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

DSECT function of CQSPUT

Use the DSECT function of a CQSPUT request to include equate (EQU) statements in your program for the
CQSPUT parameter list length, CQSPUT return and reason codes, and literals that can be used to build the
OPTWORD1 parameter.

CQSPUT FUNC=DSECT

PUT function of CQSPUT

Use the PUT function of a CQSPUT request to place a data object on a queue.

48  IMS: System Programming APIs



CQSPUT FUNC=PUT CQSTOKEN=  cqstokenaddress CONTOKEN=  connecttokenaddress

FEEDBACK=  feedbackaddress FEEDBACKLEN=  feedbacklength

PARM=  parmaddress PUTTOKEN=  puttokenaddress UOW= uowaddress

QNAME=  queuenameaddress
A

OPTWORD1=  optionwordvalue

DATAOBJ=  dataobjectaddress OBJSIZE=  dataobjectsizeaddress

TIMESTAMP=  timestampaddress ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

A
QPOS=LAST

QPOS=FIRST

B

B
RECOVERABLE=YES C

RECOVERABLE=NO

C
COMMIT=YES D

COMMIT=NO

D
LOCAL=NO

LOCAL=YES

Usage of CQSPUT
Restriction: The CQSPUT request is not supported for resource structures.

A CQSPUT request allows a client to place a data object on a queue. The data object can be either the only
one for a unit of work, or it can be one in a series for a unit of work. The data object can be added to the
beginning or to the end of the queue. After the data object is on the queue, it is available to any client that
has access to that queue.

You can put multiple objects on the same queue for unit of work. Do not move these objects (CQSMOVE
request) or allow these objects to be moved to the overflow structure (CQSCONN request); otherwise,
CQS cannot recover the objects.

If a unit of work consists of multiple data objects, and they are all on the same queue, then when CQS
places the first data object on the queue, it notifies other clients that have registered interest in the
queue, even though not all of the data objects for the UOW are on the queue yet and the UOW has not yet
been committed.

Chapter 2. CQS client requests  49



Recommendation: To ensure that a client does not retrieve incomplete data, place the last data object
for a UOW on a different queue than any of the previous data objects for the unit of work, and ensure the
client only registers interest in that queue.

The first request that places a data object on a queue for a unit of work determines whether that unit of
work is recoverable or nonrecoverable. The actions taken for a data object when a client fails, CQS fails, a
structure is copied, or a structure is recovered depend on whether the unit of work is recoverable and, if
so, whether it has been committed. The following table shows the actions taken for each case.

When a data object is put on a queue, a time stamp is stored with the data object. The source of the time
stamp is based on whether TIMESTAMP= is used on the CQSPUT= request. If TIMESTAMP= is specified on
the CQSPUT request, the value specified for TIMESTAMP= is stored with the data object. If TIMESTAMP=
is not specified on the CQSPUT request, a time stamp representing the current time is generated and
stored with the data object. The time stamp is returned on the CQSQUERY FUNC=QTYPE request if it is
associated with the oldest data object on the queue or the newest data object on the queue.

Table 15. Actions taken for data objects as a result of failures or structure activity

Nonrecoverable Recoverable and uncommitted Recoverable and committed

Client Failure All data objects on the
queues for nonrecoverable
units of work are left on the
queues.

All data objects on the queues
that belong to uncommitted
units of work are deleted when
the client terminates.

All data objects on the
queues for the unit of work
remain on the queues.

CQS Failure Any data objects for
nonrecoverable units of work
that were placed on the
queues successfully are left
on the queues. If CQS was
in the process of placing a
data object on a queue when
the failure occurred, that data
object is not recovered when
CQS restarts.

All data objects on the queues
that belong to uncommitted
units of work are deleted when
CQS restarts.

All data objects on the
queues that belong to
committed units of work
remain on the queues. If CQS
was in the process of placing
the final data object for the
unit of work on the queues
when the failure occurred,
CQS restart ensures the data
object is on the queues.

Structure
Copy

Data objects for
nonrecoverable units of work
are copied to the new
structure.

All data objects for recoverable
units of work are copied to the
new structure whether the unit
of work is committed or not.

All data objects for
recoverable units of work are
copied to the new structure.

Structure
Recovery

Data objects placed on the
queues for nonrecoverable
units of work are not
recovered to the new
structure.

All data objects that were
placed on the queues for
recoverable units of work are
recovered to the new structure
whether or not the unit of work
was committed.

All data objects that were
placed on the queues for
recoverable units of work
are recovered to the new
structure.

A CQSPUT FUNC=FORGET request terminates any CQSPUT FUNC=PUT requests, and causes CQS to
discard internal information CQS has about the unit of work. The unit of work is identified by the put
token. The client should make this request after receiving a response from the final CQSPUT FUNC=PUT
request issued for the unit of work. The CQSPUT FUNC=FORGET request is rejected if the unit of work is
recoverable but not committed.

A CQSPUT FUNC=ABORT request removes from the queues all uncommitted data objects associated with
a recoverable unit of work. The unit of work is identified by the put token. The request is rejected if the
unit of work is nonrecoverable or if the unit of work is recoverable, but already committed.

50  IMS: System Programming APIs



Examples:  To put a single object for a unit of work on the queues, issue the following requests:

CQSPUT FUNC=PUT,COMMIT=YES,...
⋮
CQSPUT FUNC=FORGET,...

To put multiple objects for a unit of work on the queues, issue the following requests:

CQSPUT FUNC=PUT,COMMIT=NO,...
⋮
CQSPUT FUNC=PUT,COMMIT=NO,...
⋮
CQSPUT FUNC=PUT,COMMIT=YES,...
⋮
CQSPUT FUNC=FORGET,...

Parameter description:

COMMIT=YES | NO
Input parameter that indicates whether to commit a recoverable unit of work. One or more data
objects can be placed on the queues for a recoverable unit of work.

The COMMIT= parameter applies only to recoverable units of work and is only valid if
RECOVERABLE=YES is specified. The parameter is ignored if RECOVERABLE=NO is specified.

COMMIT=YES must be specified (either by itself or as part of OPTWORD1) for the final (or only)
CQSPUT FUNC=PUT request issued for a unit of work. If more than one data object is placed on the
queues for a unit of work, COMMIT=NO must be specified on all except the final CQSPUT FUNC=PUT
request of the series. COMMIT=YES must be specified on the final CQSPUT FUNC=PUT request.

The COMMIT parameter cannot be used if the OPTWORD1 parameter is specified. If the OPTWORD1
parameter is used instead of COMMIT, you can use the following equate (EQU) statements to generate
the value for the OPTWORD1 parameter:

CQSPUT_CMTYEQUX  COMMIT=YES
CQSPUT_CMTNEQUX   COMMIT=NO

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that uniquely identifies the
client's connection to a particular coupling facility structure managed by this CQS. The connect token
is returned by the CQSCONN request.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

DATAOBJ=dataobjectaddress
A 4-byte input parameter that specifies the address of the client data object to be placed on the
specified queue.

ECB=ecbaddress
A 4-byte input parameter that specifies the address of the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise, it is
processed synchronously.

FEEDBACK=feedbackaddress
A 4-byte input parameter that specifies the address of a feedback area to receive structure utilization
feedback about the CQS structure. This information includes the number of entries and elements that
are allocated in the structure and the number currently in use. If the structure is in overflow mode,
information about both the primary and overflow structure is returned. This parameter is optional for
FUNC=PUT; it is invalid for other CQSPUT functions. FEEDBACK= is required when FEEDBACKLEN= is
specified.

The utilization data returned is guaranteed only to be current for the structures to which the data
object passed on the DATAOBJ= parameter was actually written. Data for the structures (overflow
or primary) that were not accessed is as of the last time CQS put or deleted an object to that other

Chapter 2. CQS client requests  51



structure, and might be obsolete if that last access was far in the past. This is because CQS receives
the structure usage data back from the structure when it issues a write request or a delete request to
the structure. CQS saves this information about both primary and overflow structures. However, if CQS
does not receive requests to access one of the structures for a period of time, that structure's saved
data can become out of date if other CQSs in the IMSplex are updating it. You should consider the data
returned in the FEEDBACK area as an approximation of the structures' usage, and not necessarily a
precise measurement.

The format of the feedback area is described by mapping macro CQSSFBA – the CQS Structure
Feedback Area. This area contains the Product-Sensitive Programming Interface (PSPI). For details
about the feedback area, see the CQSSFBA macro shipped with IMS. The fields that are related to the
overflow structure are meaningful only when the overflow structure is allocated. They are zero when
there is no overflow structure. If the CQSPUT request receives a nonzero return code, the feedback
area data might not be returned, depending on how far CQSPUT processing progressed before the
failure. For a nonzero CQSPUT return code, either the feedback area is unchanged (no data returned)
or it contains the current structure usage data (data returned).

FEEDBACKLEN=feedbacklength
A 4-byte input parameter that specifies the size of the feedback area specified by the FEEDBACK
parameter. The FEEDBACKLEN parameter is optional for FUNC=PUT; it is invalid for other CQSPUT
functions. FEEDBACKLEN= is required when the FEEDBACK= parameter is specified.

SFBA_HDR_LN, the EQU symbol for the feedback area header section length, is defined in the
CQSSFBA macro to be the minimum length of the area required for a given CQS version. If you pass a
length less than the minimum value, CQS returns no feedback data.

SFBA_LN, the EQU symbol for the feedback area total area length, is defined in the CQSSFBA macro
to be the maximum length of the area required for a given CQS version. This EQU value might change
in the future if new fields are added. If you cannot tolerate the length of your feedback area changing,
you should define your own length value based on the offset+length of the last field in the
CQSSFBA DSECT mapping that your program accesses.

You can pass a length less than the maximum value. CQS will truncate the feedback data to fit into
your passed area. You can also pass a length greater than the maximum value. CQS will copy back the
entire mapped feedback area; any excess storage beyond the area's length is unpredictable on return
from CQS.

The feedback area length field SFBA_LENGTH in the header section is an output parameter. It is
assigned the maximum length of the feedback area at run time and can be used to obtain the
complete feedback data.

If you pass an EQU symbol as the length of the feedback area, ensure that you use the
FEEDBACKLEN=@ (symbol) notation. Use FEEDBACKLEN=symbol when you pass a symbol that is
a label on a word of storage that contains the feedback area length.

LOCAL=NO | N | YES | Y
Input parameter that indicates whether the client should keep a local copy of the data.
NO

Indicates the client wants CQS to place the data object on the specified client queue and make the
object available to other CQSs.

YES
Indicates that the client wants CQS to place the data object on the shared queues and to lock the
object. LOCAL=YES also indicates that the client will keep a local copy of the data object in a local
buffer.

By keeping a local copy of the data object, the client can reduce the performance impact of using
shared queues. By keeping the data object on the shared queues, it can be recovered if the client
fails. By locking the data object, it is not available to any other client.

The client must issue the CQSREAD LOCAL=YES request to process the data (retrieve the lock
token for the data object and inform CQS that the client is processing the data). The data object is
not returned to the client on a CQSREAD request because the client has the local copy. If the client

52  IMS: System Programming APIs



does not issue the CQSREAD LOCAL=YES request and the connection between the client and CQS
is lost, CQS unlocks the data object and makes it available to any client.

The LOCAL parameter cannot be used if the OPTWORD1 parameter is specified. If the OPTWORD1
parameter is used instead of LOCAL, you can use the following equate (EQU) statements to generate
the value for the OPTWORD1 parameter:

CQSPUT_LCLYEQUX  LOCAL=YES
CQSPUT_LCLNEQUX   LOCAL=NO

OBJSIZE=dataobjectsizeaddress
Input parameter that specifies the address of a 4-byte area to hold the size of the client data object to
be placed on the queue. The maximum size that can be specified is 61312 bytes (X'EF80').

OPTWORD1=optionwordvalue
A 4-byte input parameter that specifies the literals for this request. This parameter can be used
instead of COMMIT, LOCAL, QPOS, and RECOVERABLE. Equate (EQU) statements for the literal values
are listed under the descriptions of the COMMIT, LOCAL, QPOS, and RECOVERABLE parameters.
Equate statements can be also generated by using the DSECT function. The OPTWORD1 parameter
cannot be used if COMMIT, LOCAL, QPOS, or RECOVERABLE is specified.

Requirement: If you code the OPTWORD1 parameter, you must pass a value that is composed of one
equate value for each literal value supported by this macro.

PARM=parmaddress
A 4-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSPUT_PARM_LEN (defined using the FUNC=DSECT request).

PUTTOKEN=puttokenaddress
A 4-byte input and output parameter that specifies the address of a 16-byte token to be used by CQS
to relate a series of CQSPUT requests for a unit of work. The token must be zero for the initial CQSPUT
request of a series. An updated token is returned by CQS for each CQSPUT request. The updated
token must be returned to CQS on the next CQSPUT request for the unit of work. The puttoken must
also be returned to CQS for any CQSPUT FUNC=FORGET or CQSPUT FUNC=ABORT requests.

QNAME=queuenameaddress
Input parameter that specifies the address of the 16-byte name of the queue on which the data object
is to be placed. The first byte of the queue name cannot be zero because it is used to determine the
queue type. If the value in the first byte is greater than the maximum number of queue types defined
by CQS, it is folded into one of the existing queue types. If the last data object for a unit of work is
being put on the structure, the data object must be put on a different queue than any of the previous
data objects for that unit of work.

QPOS=LAST | FIRST
Input parameter that specifies the position on the queue at which to place the client data object.
FIRST

The data object is added to the beginning of the queue.
LAST

The data object is added to the end of the queue.

The QPOS parameter cannot be used if the OPTWORD1 parameter is specified. If the OPTWORD1
parameter is specified instead of QPOS, you can use the following equate (EQU) statements to
generate the value for the OPTWORD1 parameter:

CQSPUT_QPOSFEQUX  QPOS=FIRST
CQSPUT_QPOSLEQUX   QPOS=LAST

RECOVERABLE=YES | NO
Input parameter that specifies whether the unit of work is recoverable by CQS. RECOVERABLE=NO
indicates that the unit of work is nonrecoverable. Only one data object can be placed on the queues
for a nonrecoverable unit of work. RECOVERABLE=YES indicates that the unit of work is recoverable.
One or more data objects can be placed on the queues for a recoverable unit of work.

Chapter 2. CQS client requests  53



The RECOVERABLE=YES parameter must be specified for each CQSPUT FUNC=PUT request issued for
the unit of work. The unit of work is not committed until the final (or only) data object for the series is
placed on the queues (COMMIT=YES specified).

The RECOVERABLE parameter cannot be used if the OPTWORD1 parameter is specified. If the
OPTWORD1 parameter is specified instead of RECOVERABLE, you can use the following equate (EQU)
statements to generate the value for the OPTWORD1 parameter:

CQSPUT_RECVYEQUX  RECOVERABLE=YES
CQSPUT_RECVNEQUX   RECOVERABLE=NO

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSPUT return code.

If the return code in register 15 is nonzero, the values in the return and reason code fields are invalid,
because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSPUT reason code.

TIMESTAMP=timestampaddress
A 4-byte input parameter that specifies the address of an 8-byte STCK value that is stored with the
data object as the time the data object was placed on the queue. If the TIMESTAMP parameter is
omitted, the current time is stored with the data object.

UOW=uowaddress
Input parameter that specifies the address of a 32-byte area to hold the unit of work. This parameter
is required for the initial (or only) CQSPUT FUNC=PUT request issued for a unit of work. It is ignored
for all subsequent CQSPUT FUNC=PUT requests issued for that unit of work.

When a value is specified for the UOW= parameter, PUTTOKEN=0 must also be specified. The value
specified for the UOW= parameter cannot be all zeroes, and must be unique within the shared queues.
The client is responsible for ensuring that the value is unique.

Return and reason codes for CQSPUT
The following table lists the return and reason code combinations that can be returned for CQSPUT
requests. Use a CQSPUT FUNC=DSECT request to include equate statements in your program for the
return and reason codes.

Table 16. CQSPUT return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'0000021C' puttoken is invalid.

X'00000008' X'00000220' queuename is invalid.

X'00000008' X'00000224' dataobject is invalid.

X'00000008' X'00000228' dataobjectsize is invalid.

X'00000008' X'00000230' uow is invalid.

X'00000008' X'00000238' The queue name is not unique. If more than one data object
is placed on the queues for a unit of work, the queue name
assigned to the last data object must be unique for that unit of
work.

54  IMS: System Programming APIs



Table 16. CQSPUT return and reason codes (continued)

Return code Reason code Meaning

X'00000008' X'00000260' A CQSPUT FUNC=PUT request was issued, but the unit of
work was already committed.

X'00000008' X'00000264' A CQSPUT FUNC=FORGET request was issued for a
recoverable unit of work, but the unit of work was not
committed.

X'00000008' X'00000268' A CQSPUT FUNC=ABORT request was issued for a
nonrecoverable unit of work.

X'00000008' X'0000026C' A CQSPUT FUNC=ABORT request was issued for a recoverable
unit of work but the unit of work was already committed.

X'00000008' X'00000270' A subsequent CQSPUT FUNC=PUT request was issued for
a unit of work already known to CQS as nonrecoverable.
Only one data object can be placed on the queues for a
nonrecoverable unit of work.

X'00000008' X'00000274' RECOVERABLE=NO was specified for a unit of work that was
indicated as recoverable on a previous CQSPUT FUNC=PUT
request.

X'00000008' X'0000027C' CQSPUT is not allowed for a resource structure.

X'00000008' X'00000284' Parameter list version is invalid.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure inaccessible. Try the request again later.

X'00000010' X'00000414' Queue for queuename is full. No more data objects can
be inserted to the structure for this queue name. CQSPUT
requests for other queue names are still allowed.

X'00000010' X'00000418' Structure is full. All CQSPUT requests are rejected.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

X'00000014' X'00000504' z/OS logger write error, data objects were not placed on
queues.

Related concepts
Monitoring shared message queue usage with the Queue Space Notification exit routine (DFSQSSP0)
(System Administration)
Related reference
Queue Space Notification exit routine (DFSQSPC0/DFSQSSP0) (Exit Routines)

CQSQUERY request
The CQSQUERY request retrieves information or status about one or more of the structures managed by
CQS.

Format for CQSQUERY
DSECT function of CQSQUERY

You use the DSECT function of a CQSQUERY request to include equate (EQU) statements in your program
for the CQSQUERY parameter list length and CQSQUERY return and reason codes.

Chapter 2. CQS client requests  55

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_cqsusagemonitor_dfsqssp0.htm#ims_cqsusagemonitor_dfsqssp0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_cqsusagemonitor_dfsqssp0.htm#ims_cqsusagemonitor_dfsqssp0
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_dfsqspc0_dfsqssp0.htm#ims_dfsqspc0_dfsqssp0


CQSQUERY FUNC=DSECT

QNAME and QNAME1 function of CQSQUERY

Use the QNAME or QNAME1 function of a CQSQUERY request to retrieve information about a specific
queue managed by CQS.

CQSQUERY FUNC=QNAME

FUNC=QNAME1

CQSTOKEN=  cqstokenaddress

CONTOKEN=  connecttokenaddress PARM=  parmaddress COUNT=  count

LIST= listaddress

ECB= ecbaddress

RETCODE=  returncodeaddress

RSNCODE=  reasoncodeaddress
LISTVER=  1

QRYOBJS function of CQSQUERY

Use the QRYOBJS function of a CQSQUERY request to retrieve the queue counts for a specified list of
queue names.

CQSQUERY FUNC=QRYOBJS CQSTOKEN=  cqstokenaddress

CONTOKEN=  connecttokenaddress PARM=  parmaddress COUNT=  count

LIST= listaddress BUFFER=  bufferaddress BUFSIZE=  buffersize

QDATASZ=  querydatasizeaddress

ECB= ecbaddress

RETCODE=  returncodeaddress

RSNCODE=  reasoncodeaddress
LISTVER=  1

LISTVER=  listversion

QTYPE function of CQSQUERY

Use the QTYPE function of a CQSQUERY request to retrieve information about all or some of the queues
within the specified queue type.

56  IMS: System Programming APIs



CQSQUERY FUNC=QTYPE CQSTOKEN=  cqstokenaddress CONTOKEN=  connecttokenaddress

PARM=  parmaddress QTYPE=  queuetypeaddress

QTYPENM=COLDQ

BUFFER=  bufferaddress

BUFSIZE=  buffersize

QAGE=  queueagevalue

QAGEUNITS=  DAYS

QAGEUNITS=  SECONDS

QAGEUNITS=  queueageunitsvalue

QDATASZ=  querydatasizeaddress

ECB= ecbaddress

RETCODE=  returncodeaddress

RSNCODE=  reasoncodeaddress
LISTVER=  1

LISTVER=  listversion

STATISTICS function of CQSQUERY

Use the STATISTICS function of a CQSQUERY request to retrieve status information on all the queues
managed by CQS.

CQSQUERY FUNC=STATISTICS CQSTOKEN=  cqstokenaddress PARM=  parmaddress

COUNT=  count LIST= listaddress BUFFER=  bufferaddress BUFSIZE=  buffersize

STATSZAR=  statisticssizeaddress

ECB= ecbaddress

RETCODE=  returncodeaddress

RSNCODE=  reasoncodeaddress
LISTVER=  1

LISTVER=  listversion

STRSTAT function of CQSQUERY

Use the STRSTAT function of the CQSQUERY request to retrieve structure related statistics. The STRSTAT
function returns the same statistics data that is given to the Structure Statistics user exit routine.

Attention: If the CQS that is processing the request is in the middle of a structure checkpoint, the
data returned for the current structure checkpoint might be incomplete.

CQSQUERY FUNC=STRSTAT CQSTOKEN=  cqstokenaddress

CONTOKEN=  connecttokenaddress PARM=  parmaddress BUFFER=  bufferaddress

BUFSIZE=  buffersize QDATASZ=  querydatasizeaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress
LISTVER=  1

LISTVER=  listversion

Chapter 2. CQS client requests  57



Usage of CQSQUERY
The CQSQUERY request retrieves information or status about one or more of the structures managed by
CQS:

• A CQSQUERY FUNC=QNAME request retrieves information about the number of objects on one or more
specific queues managed by CQS.

• A CQSQUERY FUNC=QNAME1 retrieves information about whether a queue is empty or not for one or
more specific queues managed by CQS.

• A CQSQUERY FUNC=QRYOBJS request retrieves the queue counts for one or more specific queues or
queues whose names match a wildcard parameter.

• A CQSQUERY FUNC=QTYPE request retrieves information about all or some of the queues within the
specified queue type.

• A CQSQUERY FUNC=STATISTICS request retrieves status information for all queues managed by CQS.
• A CQSQUERY FUNC=STRSTAT request retrieves structure statistics, such as checkpoint and rebuild,

without having to code a user exit.

Restriction: The CQSQUERY FUNC=QNAME, CQSQUERY FUNC=QNAME1, CQSQUERY FUNC=QRYOBJS,
and CQSQUERY FUNC=QTYPE requests are not supported for resource structures.

Below is a list of CQSQUERY requests:

CQSQUERY FUNC=QNAME
For CQSQUERY FUNC=QNAME, the number of data objects for the queuename specified in LIST= is
returned.

CQSQUERY FUNC=QNAME1
For CQSQUERY FUNC=QNAME1, the status of each queue is returned as either being empty or
containing at least one object for the queuenames specified in LIST=.

FUNC=QNAME1 is identical to FUNC=QNAME except for the outputs. FUNC=QNAME1 requires fewer
coupling facility (CF) accesses than FUNC=QNAME when there are many objects on a queue. It can be
used for situations where users only need to know whether the queue is empty or not.

Important: CQSQUERY FUNC=QNAME1 is available in IMS V15 and higher versions and requires
APAR PH40806.

If a CQSQUERY FUNC=QUNAME1 request is issued to a CQS that is either lower than IMS V15, or is at
IMS V15 but without APAR PH40806 installed, the request fails with either:

• For authorized clients, return code RQRCPARM (X'08'), reason code RQYFUNC (X'0218')
• For non-authorized clients, return code RQRCSYS (X'14'), reason code RSCBDRQF (X'0628')

Code using CQSQUERY FUNC=QNAME1 can tolerate a back-level CQS by checking for the above
return/reason code combinations, and issuing CQSQUERY FUNC=QNAME if either is received.

CQSQUERY FUNC=QRYOBJS
For CQSQUERY FUNC=QRYOBJS, the number of data objects for the queuename specified in LIST=
is returned. Each queue name in the list can be up to 16 bytes long. The first byte of the qname is
treated as the QTYPE. The input list for each qname also has 8 bytes of user data that are copied to
the output for each entry that is a match for the input queue name.

The CQSQUERY FUNC=QRYOBJS output is returned both in the input list and the output buffer. The
input list has the completion code for the queue name. If the completion code is 0, then the queue
names that match the input queue name and their queue counts are returned in the output buffer. If
the completion code is non-zero, no data is passed for that queue name in the output buffer. The input
list has the total queue count found for the queue name. If the queue name is a wildcard parameter,
this queue count is the total queue counts of all the queue names that match the wildcard parameter.
An entry for each queue name that is a match is passed in the output buffer along with the queue
count for the queue name. If the buffer size specified is too small, the data that fits in the buffer is
passed back, and the actual length required is passed back in the QDATASZ field.

58  IMS: System Programming APIs



Recommendation: Use the CQSQUERY FUNC=QRYOBJS request carefully, because it causes CQS to
read every data object on the queue type, and thus could have a significant performance impact.

CQSQUERY FUNC=QTYPE

For CQSQUERY FUNC=QTYPE, information about all the queues in the queue type is returned,
including the queue name, data object count, oldest data object time stamp, and newest data object
time stamp.

Recommendation: Use the CQSQUERY FUNC=QTYPE request carefully, because it causes CQS to
read every data object on the queue type, and thus could have a significant performance impact.

For CQSQUERY FUNC=QTYPE, CQS does the following if the buffer area is not large enough to hold all
of the requested data:

• Returns as many complete records that can fit into the buffer area
• Sets QDATASZ to the length that is needed to contain the statistics data in its entirety
• Sets the reason code for 'Partial Data Returned'

The client program can then make another request with a larger buffer.

If the QAGE parameter is specified, only information for queues older than the specified queue age
is returned. If you are only interested in queue counts, you can omit the QAGE parameter for better
performance of the CQSQUERY request.

CQSQUERY FUNC=STATISTICS

For CQSQUERY FUNC=STATISTICS, CQS returns the following information in the client buffer:

• Status on the current capacity of the primary structure
• Maximum capacity of the primary structure (if XES dynamic reconfiguration is available)
• Current operation mode (normal, overflow, or rebuild)
• Elements-to-entries ratio (returned in the buffer passed by the client for this request)

If an overflow structure is defined and the current operation mode for the primary structure is
overflow mode, CQS also returns the current and maximum capacity for the associated overflow
structure. If the primary structure is not in overflow mode and an overflow structure is defined, CQS
returns the overflow structure name and a status indicating that the overflow structure is not in use.

If the buffer area is not large enough to contain the statistics data for all of the requested structures,
CQSQUERY FUNC=STATISTICS sets the STATSZAR field to be the length of a single statistics entry,
and sets the reason code to 'Buffer Size Too Small.' The size of the buffer that is required to complete
the request can be obtained by multiplying the value returned in STATSZAR by the number of list
entries specified in the request.

CQSQUERY FUNC=STRSTAT

For CQSQUERY FUNC=STRSTAT, CQS returns the following information:

• Structure process statistics
• CQS request statistics
• Data object statistics
• Queue name statistics
• z/OS request statistics
• Structure rebuild statistics
• Structure checkpoint statistics

For this function, CQS does the following if the buffer area is not large enough to hold all of the
requested data: The client program can then make another request with a larger buffer.

• Returns as many complete records that can fit into the buffer area
• Sets QDATASZ to the length that is needed to contain the statistics data in its entirety

Chapter 2. CQS client requests  59



• Sets the reason code for 'Partial Data Returned'

The following keywords apply to the CQSQUERY macro. Note that some of the information provided here
applies to specific CQSQUERY functions.

BUFFER=bufferaddress
Four-byte input parameter that specifies the address of the buffer to hold information passed to the
client.

For CQSQUERY FUNC=QTYPE, the buffer is mapped by the CQSQRYQT DSECT. For CQSQUERY
FUNC=STATISTICS, the buffer is mapped by the CQSQRYST DSECT. For CQSQUERY FUNC=STRSTAT,
the buffer is mapped by the CQSQSTAT DSECT. For CQSQUERY FUNC=QRYOBJS, the buffer is mapped
by the CQSQRYQO DSECT.

BUFSIZE=buffersize
Four-byte input parameter that specifies the size of the buffer passed by the client.

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that uniquely identifies the
client's connection to a particular coupling facility structure managed by this CQS. The connect token
is returned by the CQSCONN request.

COUNT=count
Four-byte input parameter that specifies the number of entries in the list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise it is
processed synchronously.

LIST=listaddress
Four-byte input parameter that specifies the address of a list containing one or more entries. For the
CQSQUERY FUNC=QNAME, CQSQUERY FUNC=QNAME1 and CQSQUERY FUNC=QRYOBJS requests,
this list contains queue names for which to retrieve information. The list consists of input and output
parameters. At least one list item is required.

The CQSQRYL list entry DSECT maps the list entries and can be used by the client. Multiple list entries
must reside in contiguous storage.

• For a CQSQUERY FUNC=QNAME or CQSQUERY FUNC=QNAME1 request, each list entry contains the
following:
compcode

Four-byte output field to receive the completion code from the request. Possible completion
codes are:
X'00000000'

Request completed successfully.
X'00000004'

queuename is invalid.
X'00000020'

Structure is inaccessible. Retry request.
X'00000024'

CQS internal error.
clientdata

Eight-byte input parameter that specifies the client data field. This parameter is optional. CQS
does not use data stored in this entry.

60  IMS: System Programming APIs



queuename
Sixteen-byte input parameter that specifies the queue name for which data object count
information is to be retrieved. This parameter is required.

qcnt
Four-byte output field to receive one of the following output information about the queue when
the request is successfully completed (the compcode field is X'00000000’):

– For FUNC=QNAME, qcnt contains the count of objects on the queue.
– For FUNC=QNAME1, qcnt contains zero if there are no objects on the queue. It contains a

non-zero value if there is at least one object on the queue.
• For a CQSQUERY FUNC=STATISTICS request, each list entry contains the following parameters:

compcode
Four-byte output field to receive the completion code from the request. Possible completion
codes are:
X'00000000'

Request completed successfully.
X'00000008'

connecttoken is invalid.
X'0000000C'

A CQSRSYNC is required for this structure.
X'00000020'

Structure is inaccessible. Retry request.
X'00000024'

CQS internal error.
clientdata

Eight-byte input parameter that specifies the client data field. This parameter is optional. CQS
does not use data stored in this entry.

connecttoken
Sixteen-byte input parameter that specifies the connect token that uniquely identifies the
client's connection to a particular coupling facility structure managed by this CQS. The connect
token is returned by the CQSCONN request. This parameter is required.

outputoffset
Four-byte output parameter that specifies the offset of the output data area for this entry in the
output buffer.

• For a CQSQUERY FUNC=QRYOBJS request, each list entry contains the following parameters:
compcode

Four-byte output field to receive the completion code from the request. Possible completion
codes are:
X'0000'

Request completed successfully. A list of resources that match the qname and their queue
counts are returned in the output buffer.

X'0004'
qname is invalid.

X'0010'
qname does not have any objects. The queue count is zero.

X'0020'
Retry error for the qname. Retry the CQSQUERY FUNC=QRYOBJS to obtain the queue
counts. The output returned in the output buffer might be invalid.

X'0024'
CQS internal error. Retry the CQSQUERY FUNC=QRYOBJS to obtain the queue counts. The
output returned in the output buffer might be invalid.

Chapter 2. CQS client requests  61



clientdata
Eight-byte input parameter that specifies the client data field. This parameter is optional. CQS
does not use data stored in this entry.

queuename
Sixteen-byte input parameter that specifies the queue name for which data object count
information is to be retrieved. This parameter is required. The queuename can be a wildcard
parameter.

qcnt
Four-byte output parameter that specifies a field to contain the data object count for the queue
name specified. If the queuename is a wildcard parameter, this parameter specifies a field to
contain the total queue counts of all qnames that match the wildcard parameter.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT function of a CQSQUERY
request to include equate (EQU) statements in your program for the CQSQUERY list versions.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSQUERY_PARM_LEN (defined using the FUNC=DSECT request).

QAGE=queueagevalue

Input parameter that specifies the address of a 4-byte field to contain the queue age in the unit that is
specified by the QAGEUNITS parameter.

The queue age is determined by the age of its oldest message. Valid queue age values are:

• From X'0' to X'16D' (0 to 365 in decimal) if the unit is days
• From X’0’ to X’ 1E13380’(0 to 31536000 in decimal) if the unit is seconds

This parameter is used as a filter for determining which queues the CQSQUERY FUNC=QTYPE request
processes. The CQSQUERY request returns information for queues that contain data objects which
are older than the specified queueagevalue. If you specify 0 for queueagevalue, or omit the QAGE
parameter, the CQSQUERY request processes all queues for the queue type.

Important: Specifying QAGE causes all the data objects in the queue to be read, which incurs
additional performance overhead.

QAGEUNITS=DAYS|SECONDS|queueageunitsvalue
Input parameter that specifies the unit of the queue age value that is passed onto QAGE. Available
units are DAYS, SECONDS, or a value that can be set at run time in a register or in a 4-byte field in
storage. The default unit of the queue age is DAYS.

If the QAGEUNITS parameter is specified as SECONDS or the value is 1 (EQU value
QRY_QAGEUNITS_SECONDS, defined in macro CQSQRYL), the unit of the queue age is seconds.

If QAGEUNITS is specified as DAYS or the value is 0 (EQU value QRY_QAGEUNITS_DAYS, defined in
macro CQSQRYL), the unit of the queue age is days.

QDATASZ=querydatasizeaddress
Output parameter that specifies the address of a 4-byte field to contain the size of the information
returned to the client. If partial data is returned in the buffer, this field contains the actual buffer size
needed to hold the information.

QTYPE=queuetypeaddress
Input parameter that specifies the address of a 4-byte field that contains the queue type. Valid values
for the queue type are from 1 to 255 (decimal).

QTYPENM=COLDQ
Input parameter that indicates that the CQSQUERY request is for information about the COLDQ.

This parameter enables a client to obtain the same type of information for the cold queue
as can be obtained for a client queue using the CQSQUERY FUNC=QTYPE request with
QTYPE=queuetypeaddress specified.

62  IMS: System Programming APIs



RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSQUERY return code.

If the return code in register 15 is nonzero, the values in the return and reason code fields are invalid,
because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSQUERY reason code.

STATSZAR=statisticssizeaddress
Output parameter that specifies the address of a 4-byte field to contain the length of a single statistics
entry returned in the output buffer for a CQSQUERY FUNC=STATISTICS request.

If partial data is returned, the size of the required buffer can be obtained by multiplying the value
returned in this field by the number of list entries specified.

Return and reason codes for CQSQUERY
The following table lists the return and reason code combinations that can be returned for CQSQUERY
requests. Use a CQSQUERY FUNC=DSECT request to include equate statements in your program for the
return and reason codes.

Table 17. CQSQUERY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000120' The buffer size (buffersize) is less than the query-data size
(querydatasize). Partial data is returned. querydatasize points
to the actual buffer size needed to contain all the data.

X'00000004' X'00000124' buffersize is too small to contain data for number of entries
specified in list.

X'00000004' X'00000128' No data objects on queue type.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000224' bufferaddress is invalid.

X'00000008' X'00000228' buffersize is invalid.

X'00000008' X'0000022C' statisticssize or querydatasize is invalid.

X'00000008' X'0000023C' queueage is invalid.

X'00000008' X'00000240' queuetype is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'0000027C' CQSQUERY FUNC=QNAME, CQSQUERY FUNC=QNAME1,
CQSQUERY FUNC=QTYPE, or CQSQUERY FUNC=QOBJS is not
allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request completed successfully for at least one, but not all,
list entries. See compcode for individual errors.

Chapter 2. CQS client requests  63



Table 17. CQSQUERY return and reason codes (continued)

Return code Reason code Meaning

X'0000000C' X'00000304' Request failed for all list entries. See compcode for individual
errors.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure inaccessible. Retry request later.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSREAD request
The CQSREAD request retrieves a copy of the client data object from a specific queue.

Format for CQSREAD
CONTINUE function of CQSREAD

You use the CONTINUE function of a CQSREAD request to retrieve the rest of a data object after partial
data is returned for a prior CQSREAD request.

CQSREAD FUNC=CONTINUE CQSTOKEN=  cqstokenaddress

CONTOKEN=  connecttokenaddress PARM=  parmaddress LCKTOKEN=  locktokenaddress

BUFFER=  bufferaddress BUFSIZE=  buffersize OBJSIZE=  dataobjectsizeaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

DSECT function of CQSREAD

Use the DSECT function of a CQSREAD request to include equate (EQU) statements in your program for the
CQSREAD parameter list length, CQSREAD return and reason codes, and literals that can be used to build
the OPTWORD1 parameter.

CQSREAD FUNC=DSECT

READ function of CQSREAD with LOCAL=NO

Use the CQSREAD request with the LOCAL=NO parameter to retrieve a copy of the client data object from
a specific queue and lock it.

64  IMS: System Programming APIs



CQSREAD FUNC=READ CQSTOKEN=  cqstokenaddress CONTOKEN=  connecttokenaddress

PARM=  parmaddress LCKTOKEN=  locktokenaddress QNAME=  queuenameaddress

A

OPTWORD1=  optionwordvalue

BUFFER=  bufferaddress BUFSIZE=  buffersize

OBJSIZE=  dataobjectsizeaddress UOW= uowaddress

TIMESTAMP=  timestampaddress ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

A
QPOS=FIRST

QPOST=LAST

PARTIAL=YES

PARTIAL=NO

LOCAL=NO

READ function of CQSREAD with LOCAL=YES

Use the CQSREAD request with the LOCAL=YES parameter to retrieve the lock token of a data object
previously stored on the shared queues by a CQSPUT LOCAL=YES request. Using this request ensures that
the data object remains locked, even in the event of client failure, structure rebuild, or CQS restart.

CQSREAD FUNC=READ CQSTOKEN=  cqstokenaddress CONTOKEN=  connecttokenaddress

PARM=  parmaddress LCKTOKEN=  locktokenaddress QNAME=  queuenameaddress

UOW= uowaddress LOCAL=YES

OPTWORD1=  optionwordvalue ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

REREAD function of CQSREAD

Use the REREAD function of a CQSREAD request to re-read a locked data object that was read and locked
on a prior CQSREAD FUNC=READ request.

CQSREAD FUNC=REREAD CQSTOKEN=  cqstokenaddress CONTOKEN=  connecttokenaddress

PARM=  parmaddress LCKTOKEN=  locktokenaddress BUFFER=  bufferaddress

BUFSIZE=  buffersize OBJSIZE=  dataobjectsizeaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

Usage of CQSREAD
A CQSREAD request retrieves a copy of the client data object from a specific queue. The data object is not
deleted from the queue, but for a CQSREAD FUNC=READ request it is locked, preventing the data object
from being accessed by subsequent CQS requests (except ones using the proper lock token). The data
object can be retrieved from the beginning or from the end of the queue. The data object is returned in the
client buffer provided for the CQSREAD request.

Chapter 2. CQS client requests  65



Restriction: The CQSREAD request is not supported for resource structures.

A lock token is returned to the client and identifies the data object. This token must be passed to CQS
for any requests that act on the locked data object (for example, CQSDEL, CQSMOVE, CQSREAD, or
CQSUNLCK).

If the size of the data object retrieved is greater than the size of the client buffer and PARTIAL=YES is
specified, the amount of data that fits in the client buffer is returned to the client. A return or reason code
is also returned, indicating a partial data object is returned, as is the actual data object size.

If the size of the data object retrieved is greater than the size of the client buffer and PARTIAL=NO is
specified, no data object is returned. A return and reason code is returned, indicating that no data object
is returned because the client buffer size is too small. The actual data object size is also returned to the
client.

If the size of the data object retrieved is the same size as or smaller than the client buffer, the complete
data object is moved into the buffer, and the rest of the buffer is not changed. The data object size is also
returned to the client.

A CQSREAD FUNC=CONTINUE request retrieves the rest of the data object when partial data is returned
on a prior CQSREAD request.

Attention: This request could result in an error after a CQS restart because the current position
might be lost across CQS restart.

A CQSREAD FUNC=REREAD request re-reads a locked data object that was previously read and locked (a
prior CQSREAD FUNC=READ request). The data object remains locked.

Related reading: See the following example of how to use a CQSREAD request for a CQS client.

Parameter Description:

BUFFER=bufferaddress
Four-byte input parameter that specifies the address of the client buffer that will hold the data object
retrieved from the queue.

BUFSIZE=buffersize
Four-byte input parameter that specifies the size of the client buffer.

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that uniquely identifies the
client's connection to a particular coupling facility structure managed by this CQS. The connect token
is returned by the CQSCONN request.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise it is
processed synchronously.

LCKTOKEN=locktokenaddress
Input and output parameter that specifies the address of the 16-byte lock token for the data object
that was locked by the CQSREAD request.

For a CQSREAD FUNC=READ request, the lock token is zero on input. It is also used as an output
area to hold the lock token returned to the client. For a CQSREAD FUNC=REREAD or FUNC=CONTINUE
request, this field is an input area that contains the lock token returned on a prior CQSREAD request.

LOCAL=NO | YES
Input parameter that indicates whether or not the client should process a local copy of the data object
from the client address space.

66  IMS: System Programming APIs



NO
Indicates the client wants CQS to return the data object from the specified client queue and lock
the data object. This causes CQS to access the coupling facility to retrieve the data object.

YES
Indicates that the client is processing a local copy of a data object from its local buffers. This
request returns the lock token of the data object which the client can use to access the copy of the
data object on the shared queues. The data object was placed on the shared queues by a CQSPUT
LOCAL=YES request.

By using a local copy of the data object, the client can reduce the performance overhead of using
shared queues. As long as the data object is on the shared queues, it can be recovered if the client
fails. As long as the data object remains locked, it is not available to any other client.

The data object is not returned to the client on a CQSREAD request because the client has the
local copy. If the client does not issue the CQSREAD LOCAL=YES request and the connection
between the client and CQS is lost, CQS unlocks the data object and makes it available to any
client.

Restriction: If you specify LOCAL=YES, you cannot use the TIMESTAMP parameter.

The LOCAL parameter cannot be used when the OPTWORD1 parameter is specified. If the
OPTWORD1 parameter is specified instead of LOCAL, you can use the following equate (EQU)
statements to generate the value for the OPTWORD1 parameter:

CQSREAD_LCLYEQUX  LOCAL=YES
CQSREAD_LCLNEQUX   LOCAL=NO

OBJSIZE=dataobjectsizeaddress
Output parameter to receive the address of a 4-byte field that holds the size of the data object. If the
data object size is greater than the client buffer size, this field contains the actual data object size. If
partial data is returned, the size of the data object returned is the size of the client buffer specified.

OPTWORD1=optionwordvalue
Four-byte input parameter that specifies the literals for this request. This parameter can be used
instead of LOCAL, PARTIAL, and QPOS. Equate (EQU) statements for the literal values are listed
in the descriptions for the LOCAL, PARTIAL, and QPOS parameters. Equate statements can also
be generated by using the DSECT function. The OPTWORD1 parameter cannot be used if LOCAL,
PARTIAL, or QPOS is specified.

Requirement: If you code the OPTWORD1 parameter, you must pass a value that is composed of one
equate value for each literal value supported by this macro.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSREAD_PARM_LEN (defined using the FUNC=DSECT request).

PARTIAL=YES | NO
Input parameter that specifies whether partial data is to be retrieved, and whether the data object is
to be locked if the data object size is greater than the client buffer size.
YES

If the data object size is greater than the client buffer size, the data object is locked and partial
data is returned in the client buffer. The actual size of the data object is returned in dataobjectsize.

NO
If the data object size is greater than the client buffer size, the data object is neither locked nor
retrieved. The actual size of the data object is returned in dataobjectsize.

Chapter 2. CQS client requests  67



The PARTIAL parameter cannot be used when the OPTWORD1 parameter is specified. If the
OPTWORD1 parameter is specified instead of PARTIAL, you can use the following equate (EQU)
statements to generate the value for the OPTWORD1 parameter:

CQSREAD_PRTLNEQUX  PARTIAL=NO
CQSREAD_PRTLYEQUX   PARTIAL=YES

QNAME=queuenameaddress
Input parameter that specifies the address of the 16-byte queue name from which the data object is
to be retrieved. The first byte of the queue name identifies the queue type.

QPOS=FIRST | LAST
Input parameter that specifies the position on the queue from which the data object is to be retrieved.
FIRST

The data object is retrieved from the beginning of the queue.
LAST

The data object is retrieved from the end of the queue.

The QPOS parameter cannot be used when the OPTWORD1 parameter is specified. If the OPTWORD1
parameter is specified instead of QPOS, you can use the following equate (EQU) statements to
generate the value for the OPTWORD1 parameter:

CQSREAD_QPOSLEQUX  QPOS=LAST
CQSREAD_QPOSFEQUX   QPOS=FIRST

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSREAD return code.

If the return code in register 15 is nonzero, the values in the return and reason code fields are invalid,
because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSREAD reason code.

TIMESTAMP=timestampaddress
Four-byte output parameter that specifies the address of an eight-byte field to contain the time stamp
of when the data object was placed on the queues.

Attention: If LOCAL=YES is specified, CQS does not read the data object from the structure,
and the time stamp cannot be obtained.

UOW=uowaddress
Output parameter that specifies the address of a 32-byte area to hold the unit of work (UOW) of the
data object retrieved from the queue. The UOW was generated by the client that put the data object
on the queue using a CQSPUT request.

Return and reason codes for CQSREAD
The following table lists the return and reason code combinations that can be returned for CQSREAD
requests. Use a CQSREAD FUNC=DSECT request to include equate statements in your program for the
return and reason codes.

Table 18. CQSREAD return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000120' The buffer size (buffersize) is less than the data object
size (dataobjectsize). Partial data is returned. dataobjectsize
contains the address of the actual data object size.

68  IMS: System Programming APIs



Table 18. CQSREAD return and reason codes (continued)

Return code Reason code Meaning

X'00000004' X'00000124' The buffer size (buffersize) is less than the data object size
(dataobjectsize). No data is returned because PARTIAL=NO
was specified. dataobjectsize contains the address of the
actual data object size.

X'00000004' X'00000128' No data object to retrieve on queue name specified.

X'00000004' X'0000012C' No partial data to return.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'0000021C' locktoken is invalid.

X'00000008' X'00000220' queuename is invalid.

X'00000008' X'00000224' bufferaddress is invalid.

X'00000008' X'00000228' buffersize is invalid.

X'00000008' X'0000022C' dataobjectsize is invalid.

X'00000008' X'00000230' uow is invalid.

X'00000008' X'00000234' Lock token address is invalid.

X'00000008' X'00000278' The request specified LOCAL=YES, but the requested object
was placed on the structure using LOCAL=NO.

X'00000008' X'0000027C' CQSREAD is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure inaccessible. Retry request later.

X'00000010' X'00000408' Current position lost; cannot process CQSREAD
FUNC=CONTINUE request.

X'00000010' X'00000430' No CQS address space.

X'00000010' X'00000440' Object lost because of rebuild.

X'00000014' X'00000500' CQS internal error.

X'00000014' X'00000504' z/OS logger write error, data objects were not retrieved from
queues.

CQSRECVR request
The CQSRECVR request allows a client to recover locked data objects that were moved to the CQS cold
queue (a CQS private queue) because CQS or the client was cold started.

Format for CQSRECVR
DELETE function of CQSRECVR

Use the DELETE function of a CQSRECVR request to delete one data object associated with a UOW from
the cold queue.

Chapter 2. CQS client requests  69



CQSRECVR FUNC=DELETE CQSTOKEN=  cqstokenaddress CONTOKEN=  connecttokenaddress

PARM=  parmaddress CLDTOKEN=  coldqueuetokenaddress UOW= uowaddressaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

DSECT function of CQSRECVR

Use the DSECT function of a CQSRECVR request to include equate (EQU) statements in your program for
the CQSRECVR parameter list length, CQSRECVR return and reason codes, and literals that can be used to
build the OPTWORD1 parameter.

CQSRECVR FUNC=DSECT

RETRIEVE function of CQSRECVR

Use the RETRIEVE function of a CQSRECVR request to retrieve a copy of a data object associated with a
UOW from the cold queue.

CQSRECVR FUNC=RETRIEVE CQSTOKEN=  cqstokenaddress

CONTOKEN=  connecttokenaddress PARM=  parmaddress

CLDTOKEN=  coldqueuetokenaddress UOW= uowaddress BUFFER=  bufferaddress

BUFSIZE=  buffersize OBJSIZE=  dataobjectsizeaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

UNLOCK function of CQSRECVR

Use the UNLOCK function of a CQSRECVR request to unlock a data object associated with a UOW on the
cold queue.

CQSRECVR FUNC=UNLOCK CQSTOKEN=  cqstokenaddress

CONTOKEN=  connecttokenaddress PARM=  parmaddress

CLDTOKEN=  coldqueuetokenaddress UOW= uowaddress

A

OPTWORD1=  optionwordvalue ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

A
QPOS=SYSTEM

QPOS=FIRST

QPOS=LAST

70  IMS: System Programming APIs



Usage of CQSRECVR
Restriction: The CQSRECVR request is not supported for resource structures.

A CQSRECVR FUNC=DELETE request deletes a data object associated with a UOW from the cold queue.
Only one data object is deleted.

A CQSRECVR FUNC=RETRIEVE request retrieves a copy of the data object associated with a UOW from
the cold queue. The data object remains on the cold queue, and is available for other CQSRECVR requests.
The data object is returned in the client buffer specified for the CQSRECVR FUNC=RETRIEVE request.

If the data object is the same size as or smaller than the client buffer provided, the data object is returned
in the buffer, and the rest of the buffer is not changed. The size of the data object is returned to the client.

If the size of the data object is greater than the size of the client buffer, the data object is not returned.
The size of the data object is returned to the client.

A CQSRECVR FUNC=UNLOCK request unlocks a data object associated with a UOW on the cold queue.
The data object is moved from the cold queue to the original client queue, and is available for other CQS
requests. The position to which the data object should be moved can be specified by the client.

Parameter Description:

BUFFER=bufferaddress
Four-byte input parameter that specifies the address of the client buffer that will hold the data object
retrieved from the queue.

BUFSIZE=buffersize
Four-byte input parameter that specifies the size of the client buffer.

CLDTOKEN=coldqueuetokenaddress
Input parameter that specifies the address of a 16-byte cold-queue token, which along with the UOW
identifies the data object that is to be recovered from the CQS cold queue (COLDQ).

The cold-queue token is passed to the client in the SEVX_RETOKEN field of the Resync entry in the
CQS Structure Event exit routine. This exit routine is called for a CQS-initiated resynchronization when
the UOW status is COLD.

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of a 16-byte connect token that uniquely identifies the
client's connection to a particular coupling facility structure managed by this CQS. The connect token
is returned by the CQSCONN request.

CQSTOKEN=cqstokenaddress
Input parameter that specifies address of the 16-byte CQS registration token that uniquely identifies
the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise it is
processed synchronously.

OBJSIZE=dataobjectsizeaddress
Output parameter that specifies the address of a 4-byte area to hold the size of the data object. If the
data object size is greater than the client buffer size, this field contains the actual data object size. If
partial data is returned, the data object returned is the size of the client buffer specified.

OPTWORD1=optionwordvalue
Four-byte input parameter that specifies the literals for this request. This parameter can be used
instead of QPOS. Equate (EQU) statements for the literal values are listed in the description of
the QPOS parameter. Equate statements can also be generated by using the DSECT function. The
OPTWORD1 parameter cannot be used if QPOS is specified.

Requirement: If you code the OPTWORD1 parameter, you must pass a value that is composed of one
equate value for each literal value supported by this macro.

Chapter 2. CQS client requests  71



PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSRECVR_PARM_LEN (defined using the FUNC=DSECT request).

QPOS=SYSTEM | FIRST | LAST
Input parameter that specifies the position on the queue to which the unlocked data object is to be
added. The default is SYSTEM.
FIRST

Indicates the data object is unlocked and added to the beginning of the queue.
LAST

Indicates the data object is unlocked and added to the end of the queue.
SYSTEM

Indicates the data object is unlocked and added to either the beginning or the end of the queue,
depending on its original position. If the CQSREAD request that locked this data object obtained
the data object from the beginning of the queue, the data object is unlocked and added to the
beginning of the queue. If the CQSREAD request obtained the data object from the end of the
queue, the data object is unlocked and added to the end of the queue.

The QPOS parameter cannot be used when the OPTWORD1 parameter is specified. If the OPTWORD1
parameter is specified instead of QPOS, you can use the following equate (EQU) statements to
generate the value for the OPTWORD1 parameter:

CQSRECVR_QPOSSEQUX  QPOS=SYSTEM
CQSRECVR_QPOSFEQUX  QPOS=FIRST
CQSRECVR_QPOSLEQUX   QPOS=LAST

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSRECVR return code.

If the return code in register 15 is nonzero, the values in the return and reason code fields are invalid,
because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSRECVR reason code.

UOW=uowaddress
Input parameter that specifies the address of a 32-byte area to hold the unit of work (UOW) of a data
object. The UOW, together with the coldqueuetoken, identifies the data object to be recovered from
the cold queue.

The UOW is passed to the client in the SEVX_REUOW field of the Resync entry in the CQS Structure
Event exit routine. This exit routine is called for a CQS-initiated resynchronization when the UOW
status is COLD.

Return and reason codes for CQSRECVR
The following table shows the return and reason code combinations that can be returned for CQSRECVR
requests. Use a CQSRECVR FUNC=DSECT request to include equate statements in your program for the
return and reason codes.

Table 19. CQSRECVR return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000124' buffersize is too small.

X'00000004' X'00000128' Data object for UOW not found on cold queue.

X'00000008' X'00000210' cqstoken is invalid.

72  IMS: System Programming APIs



Table 19. CQSRECVR return and reason codes (continued)

Return code Reason code Meaning

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000224' bufferaddress is invalid.

X'00000008' X'00000228' buffersize is invalid.

X'00000008' X'0000022C' dataobjectsize is invalid.

X'00000008' X'00000230' uow is invalid.

X'00000008' X'00000234' coldqueuetoken is invalid.

X'00000008' X'0000027C' CQSRECVR is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure is inaccessible. Retry request later.

X'00000010' X'00000414' Unable to unlock the data object because the original queue
is full. No more data objects can be moved to this queue.
CQSRECVR FUNC=UNLOCK requests for other queues are
allowed.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSREG request
The CQSREG request registers a client to CQS.

Format for CQSREG
DSECT function of CQSREG

You use the DSECT function of a CQSREG request to include equate (EQU) statements in your program for
the CQSREG parameter list length and CQSREG return and reason codes.

CQSREG FUNC=DSECT

Use the REGISTER function of a CQSREG request to register a client with a CQS.

CQSREG FUNC=REGISTER PARM=  parmaddress CQSSSN=  cqssubsystemnameaddress

CLIENT=  clientnameaddress EVENT= cqseventexit

EVENTPARM=  eventparmaddress

CQSTOKEN=  cqstokenaddress

VERSION=  cqsversionaddress RETCODE=  returncodeaddress

RSNCODE=  reasoncodeaddress

Chapter 2. CQS client requests  73



Usage of CQSREG
A CQSREG request registers a client to CQS. If the registration is successful, a CQS token is returned. This
token represents the client's registration with CQS and must be used with all subsequent CQS requests to
identify the client.

A CQSREG FUNC=REGISTER request must be the first CQS request a client makes. Also, after a CQS
abnormal termination and restart, a CQSREG FUNC=REGISTER request is required before the client can
resume issuing CQS requests.

CLIENT=clientnameaddress
Input parameter that specifies the address of the 8-byte name of the client registering to CQS. The
client name must be unique among all clients that are registered to the same CQS and to all the CQSs
that are sharing the same queues.

CQSTOKEN=cqstokenaddress
Output parameter that specifies the address of a 16-byte area to receive the CQS registration
token that uniquely identifies the client's connection to CQS. The registration token is returned by
a successful CQSREG request.

CQSSSN=cqssubsystemnameaddress
Input parameter that specifies the address of the 4-byte subsystem name of the CQS to which the
client would like to connect. This parameter should match the SSN= parameter of the CQSIPxxx
PROCLIB member for the CQS to which the client would like to connect.

EVENT=cqseventexit
Four-byte input parameter that specifies the CQS Event exit routine address.

EVENTPARM=eventparmaddress
Input parameter that specifies the address of a 4-byte area that contains client data that CQS passes
to the CQS Event exit routine every time the exit is called.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSREG_PARM_LEN (defined using the FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSREG return code. The
CQSREG return code is returned both in this field and in register 15.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSREG reason code. The
CQSREG reason code is returned both in this field and in register 0.

VERSION=cqsversionaddress
Output parameter that specifies the address of a 4-byte area to receive the CQS version number. The
version number has the following format: 00vvrrmm.
00

This byte is reserved for future use. Currently, it is always 00.
vv

Version number.
rr

Release number.
mm

Modification level or sub-release number.
For example, CQS version 1.1.0 is shown as X'00010100'.

Return and reason codes for CQSREG
The following table lists the return and reason code combinations that can be returned for CQSREG
requests.

74  IMS: System Programming APIs



Table 20. CQSREG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000100' Client is already registered to CQS.

X'00000008' X'00000244' clientname is invalid.

X'00000008' X'00000284' The CQSREG parameter list version is invalid. This error is
probably caused by a difference in versions between the CQS
client and the CQS address space the client is trying to use.

X'00000010' X'0000040C' CQS shutdown is pending.

X'00000010' X'00000430' The CQS address space is not active. The CQS address space
must be started.

X'00000010' X'00000438' Another address space is already registered with CQS using
the client ID (passed on a CQSREG request).

X'00000010' X'00000440' The user ID of the client address space is not authorized to
register with this CQS.

X'00000010' X'00000448' A registered client address space attempted to register with
CQS a second time.

X'00000014' X'00000500' CQS internal error.

X'00000014' X'00000504' Unable to obtain storage in client's address space for CQS's
use.

X'00000014' X'00000508' Unable to obtain storage (CCIB).

X'00000014' X'0000050C' Unable to obtain storage (CRET).

X'00000014' X'00000510' CQS internal error (Loc ASCB).

X'00000014' X'00000514' Unable to establish z/OS Resource Manager routine to
monitor CQS for the registering client.

X'00000014' X'00000518' CQS internal error (ESTAE add).

X'00000014' X'0000051C' CQS internal error (NmTkn Retrv).

X'00000014' X'00000520' CQS internal error (CGCT error).

X'00000014' X'00000524' CQS internal error (TTKN error).

X'00000014' X'00000528' CQS internal error (ALESERV error).

X'00000014' X'0000052C' CQS internal error (BPESVC error).

X'00000014' X'00000530' Unable to establish z/OS Resource Manager routine to
monitor the client for CQS.

X'00000014' X'00000534' An abend occurred during CQSREG processing.

X'00000014' X'0000053C' Unable to load CQS registration module CQSREG00.

Chapter 2. CQS client requests  75



CQSRSYNC request
A CQSRSYNC request allows a client to resynchronize indoubt data for one structure with CQS. This
request must be the first request the client issues following a CQSCONN request.

Format for CQSRSYNC
DSECT function of CQSRSYNC

You use the DSECT function of a CQSRSYNC request to include equate (EQU) statements in your program
for the CQSRSYNC parameter list length and CQSRSYNC return and reason codes.

CQSRSYNC FUNC=DSECT

RSYNCCOLD function of CQSRSYNC

Use the RSYNCCOLD function of a CQSRSYNC request when the client is performing a cold start and does
not have information on unresolved UOWs.

CQSRSYNC FUNC=RSYNCCOLD CQSTOKEN=  cqstokenaddress

CONTOKEN=  connecttokenaddress PARM=  parmaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress
LISTVER=  1

LISTVER=  listversion

RSYNCWARM function of CQSRSYNC

Use the RSYNCWARM function of a CQSRSYNC request when the client is performing a warm or
emergency restart and has information on unresolved UOWs that need to be resolved with CQS.

CQSRSYNC FUNC=RSYNCWARM CQSTOKEN=  cqstokenaddress

CONTOKEN=  connecttokenaddress PARM=  parmaddress COUNT=  count

LIST= listaddress

ECB= ecbaddress

RETCODE=  returncodeaddress

RSNCODE=  reasoncodeaddress
LISTVER=  1

LISTVER=  listversion

Usage of CQSRSYNC
A CQSRSYNC request allows a client to resynchronize indoubt data for one structure with CQS. This
request must be the first request the client issues following a CQSCONN request.

Restriction: The CQSRSYNC request is not supported for resource structures.

A CQSRSYNC request is required even if the client does not have any indoubt units of work (UOWs) to
resolve, for example when the client performs a cold start or a warm start after a normal termination. This
request is required because CQS might have information about a connection and have unresolved UOWs
to process.

If there are unresolved UOWs, CQS calls the client's Structure Event exit routine as part of
resynchronization. CQS calls the routine to inform the client of UOWs that CQS knows about and

76  IMS: System Programming APIs



that the client did not pass on the CQSRSYNC request. This process is referred to as CQS-initiated
resynchronization.

The exit routine is called during client cold start or restart only if CQS has unresolved UOWs. The Structure
Event exit routine can be called more than once for CQS-initiated resynchronization. For each UOW
passed to the exit routine, the client is responsible for taking the correct action to resolve the UOW based
on the status returned by CQS.

If CQS cold started, CQS has no knowledge of client UOWs. In this case, the resynchronization list is not
processed. CQS looks for CQSREAD requests that were incomplete at the time CQS terminated. If there
is incomplete work, the data objects are moved to the cold queue and the Structure Event exit routine is
called to inform the client of the unresolved UOWs for the data objects.

After the CQSRSYNC request completes, some UOWs might have a deferred resynchronization status.
This status indicates that CQS is still resynchronizing the UOW. When CQS completes resynchronization,
the Structure Event exit routine is called to indicate the state of the UOW. Deferred resynchronization only
applies to UOWs that CQS cannot resynchronize during the CQSRSYNC request, and does not occur for
a client cold start. The exit routine is called once for each deferred UOW, and so the exit routine can be
called multiple times for deferred resynchronization.

Parameter Description:

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that uniquely identifies the
client's connection to a particular coupling facility structure managed by this CQS. The connect token
is returned by the CQSCONN request.

COUNT=count
Four-byte input parameter that specifies the number of entries in the resync list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise it is
processed synchronously.

LIST=listaddress
Four-byte input parameter that specifies the address of the resync list. Each entry contains an indoubt
UOW that the client needs to resolve. Some fields in each entry must be initialized by the client
prior to the CQSRSYNC request. Other fields are returned by CQS upon completion of the CQSRSYNC
request.

The CQSRSYNL list entry DSECT maps the list entries and can be used by the client. Multiple list
entries must reside in contiguous storage.

Each list entry contains the following:
clientdata

Four-byte input parameter that specifies the client data field. This parameter is optional. CQS
does not use data stored in this entry.

uow
Thirty-two-byte input parameter that specifies the unit of work identifier for the queue. This
parameter is required and must be initialized by the client prior to the CQSRSYNC request.

clientstatus
Two-byte input parameter that contains the status of the UOW. This status represents the last
action the client performed for this UOW. This parameter is required and must be initialized by the
client prior to the CQSRSYNC request.

Possible values for the status are shown in the following table.

Chapter 2. CQS client requests  77



Table 21. UOW status from the client

Status Meaning

X'0010' Put Complete

The last (or only) CQSPUT request in a series of CQSPUT requests has been issued
for the UOW. All data objects for the UOW are assumed to be on the coupling facility.

X'0020' Read

The data object for the UOW is assumed to be locked on the coupling facility.

X'0030' Unlock

A CQSUNLCK request with lock token was issued for the UOW. The data object is
assumed to have been unlocked and made available on the work queue on the
coupling facility.

X'0040' Move

A CQSMOVE request with lock token was issued for the UOW. The data object is
assumed to have been moved to a new queue on the coupling facility.

X'0050' Delete

A CQSDEL request with lock token was issued for the UOW. The data object is
assumed to have been deleted from the coupling facility.

cqsstate
Two-byte output parameter to receive the resulting state of the UOW from CQS. This parameter is
returned by CQS as a result of the CQSRSYNC request.

Possible values for the status are shown in the following table.

Table 22. UOW status from CQS

Status Meaning

X'0010' Put Insync

Client status is Put Complete. CQS status is Put Complete. CQS knows about the
UOW and all data objects for the UOW are out on the coupling facility. A put token
is returned for the UOW. The client should use the put token to issue a CQSPUT
FUNC=FORGET request.

X'0012' Resync Deferred

Client status is Put Complete. CQS status is Indoubt. This status is only returned
for recoverable UOWs. CQS knows about the UOW but is still in the process of
determining its status. The client should wait until its Structure Event exit routine
is called by CQS. CQS will post the client's Structure Event exit routine, passing
the UOW and a status for the UOW. If the status is PUT Insync, a put token for
the UOW is also returned. The client should use the put token to issue a CQSPUT
FUNC=FORGET request.

If the status is PUT Failed, the client must reissue the CQSPUT FUNC=PUT request.
If the status is Unknown, the data object might or might not be on the coupling
facility.

78  IMS: System Programming APIs



Table 22. UOW status from CQS (continued)

Status Meaning

X'0020' Read Insync

Client status is Read. CQS status is Read Complete. CQS found the data object for
the UOW to be locked. A lock token is returned for the UOW. The client should use
this lock token on subsequent CQS requests for the data object with this UOW.

X'0030' Unlock Insync

Client status is Read Unlock. CQS status is Unlock Insync. CQS found the data object
for the UOW to be locked, and unlocked it. No further action is required by the
client.

X'0050' Delete Insync

Client status is Delete. CQS status is Delete Insync. CQS found the data object for
the UOW to be locked and deleted it. No further action is required by the client.

X'00F1' Locked

One of the following conditions exists:

• Client status is Delete. CQS status is Locked. CQS found the UOW to be locked,
but could not delete the data object from the structure. The data object remains
locked. A lock token is returned for the UOW. The client should use this lock token
and reissue the CQSDEL request.

• Client status is Move. CQS status is Locked. CQS found the data object for UOW
in Locked state. The CQSMOVE could not be completed because the new queue
name is not available. A lock token is returned for the UOW. The client should use
this lock token and reissue the CQSMOVE request.

• Client status is Unlock. CQS status is Locked. CQS found the UOW to be locked,
but could not unlock the data object. The data object remains locked. A lock token
is returned for the UOW. The client should use this lock token and reissue the
CQSUNLCK request.

X'00F2' Unknown

Client status is any valid client status. The UOW is unknown to CQS.

If the client believes the UOW to be in PUT Complete status, the client must
determine whether or not to reissue the CQSPUT request.

If the client believes the UOW to have a status of Delete, Move, Read, or Unlock, the
prior request could have completed.

resynctoken
Sixteen-byte output parameter to receive a token that the client uses to complete processing for
the UOW. When the state is Put Insync, this field contains the put token. When the state is Locked,
this field contains the lock token. This field is returned by CQS as a result of the CQSRSYNC
request.

compcode
Four-byte output field to receive the completion code from the request. Possible completion
codes are:
X'00000000'

CQS successfully processed this UOW. Client and CQS are in sync for this UOW. An Insync
state is returned for this UOW.

Chapter 2. CQS client requests  79



X'00000004'
CQS successfully processed this UOW. Client and CQS are not in sync for this UOW. CQS
returns its known state for this UOW.

X'00000008'
clientstatus is invalid. CQS could not resynchronize this UOW. The cqsstate is not returned.

X'0000000C'
uow is invalid. CQS could not resynchronize this UOW. The cqsstate is not returned.

X'00000010'
CQS internal error. CQS could not resynchronize this UOW. The cqsstate is not returned.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT function of a CQSRSYNC
request to include equate (EQU) statements in your program for the CQSRSYNC list versions.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSRSYNC_PARM_LEN (defined using the FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSRSYNC return code.

If the return code in register 15 is nonzero, the values in the return and reason code fields are invalid,
because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSRSYNC reason code.

Return and reason codes for CQSRSYNC
The following table lists the return and reason code combinations that can be returned for CQSRSYNC
requests. Use a CQSRSYNC FUNC=DSECT request to include equate statements in your program for the
return and reason codes.

Table 23. CQSRSYNC return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully and all list entries are in
sync. The Structure Event exit routine is called for CQS resync.
The client can now issue CQS requests to write or retrieve
data for this structure.

X'00000004' X'00000110' CQS was cold started. No list entries were processed. CQS
did not find any unresolved UOWs. The Structure Event exit
routine is not called. The client can now issue CQS requests to
write or retrieve data for this structure.

X'00000004' X'00000114' Client was cold started. CQS did not find any unresolved
UOWs. The Structure Event exit routine is not called. The
client can now issue CQS requests to write or retrieve data
for this structure.

X'00000004' X'00000118' CQS was cold started. No list entries were processed. CQS
did find some unresolved UOWs and marked them as being
in cold status. The Structure Event exit routine is called to
inform the client of the unresolved UOWs. The client can now
issue CQS requests to write or retrieve data for this structure.

80  IMS: System Programming APIs



Table 23. CQSRSYNC return and reason codes (continued)

Return code Reason code Meaning

X'00000004' X'0000011C' Client was cold started. CQS did find some unresolved UOWs.
The Structure Event exit routine is called to inform the client
of the unresolved UOWs. The client can now issue CQS
requests to write or retrieve data for this structure.

X'00000008' X'00000210' cqstoken is invalid. No list entries were processed. The
Structure Event exit routine is not called. The client must
reissue the CQSRSYNC request.

X'00000008' X'00000214' connecttoken is invalid. No list entries were processed. The
Structure Event exit routine is not called. The client must
reissue the CQSRSYNC request.

X'00000008' X'00000218' FUNC is invalid. The client must reissue the CQSRSYNC
request.

X'00000008' X'00000254' listaddress is invalid. No list entries were processed. The
Structure Event exit routine is not called. The client must
reissue the CQSRSYNC request.

X'00000008' X'0000027C' CQSRSYNC is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list entries.
At least one list entry is in sync. See compcode in each list
entry for individual errors. The Structure Event exit routine is
called for CQS resync. The client can now issue CQS requests
to write or retrieve data for this structure.

X'0000000C' X'00000304' Request failed for all list entries. None of the list entries are
in sync. See compcode in each list entry for individual errors.
The Structure Event exit routine is called for CQS resync. The
client can now issue CQS requests to write or retrieve data for
this structure.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSSHUT request
A CQSSHUT request notifies CQS to terminate after all clients have disconnected.

Format for CQSSHUT
DSECT function of CQSSHUT

You use the DSECT function of a CQSSHUT request to include equate (EQU) statements in your program
for the CQSSHUT parameter list length and CQSSHUT return and reason codes.

CQSSHUT FUNC=DSECT

QUIESCE function of CQSSHUT

Use the QUIESCE function of a CQSSHUT request to terminate CQS.

Chapter 2. CQS client requests  81



CQSSHUT FUNC=QUIESCE CQSTOKEN=  cqstokenaddress PARM=  parmaddress

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

Usage of CQSSHUT
A CQSSHUT request notifies CQS to terminate after all clients have disconnected. After the CQSSHUT
request is issued, CQS stops accepting CQSCONN requests. CQS continues to accept input or output
requests, so that clients can complete work in progress. In order to complete the shutdown process,
clients must stop working and issue CQSDISC requests to disconnect from CQS. After all clients have
disconnected, CQS terminates all tasks and returns control to z/OS.

Parameter Description:

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise, it is
processed synchronously.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSSHUT_PARM_LEN (defined using the FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSSHUT return code.

If the return code in register 15 is nonzero, the values in the return and reason code fields are invalid,
because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Four-byte output parameter that specifies the address of a field to contain the CQSSHUT reason code.

Return and reason codes for CQSSHUT
The following table lists the return and reason code combinations that can be returned for CQSSHUT
requests. Use a CQSSHUT FUNC=DSECT request to include equate statements in your program for the
return and reason codes.

Table 24. CQSSHUT return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000444' CQS initialization is in progress. Reissue the CQSSHUT request
after initialization is complete.

82  IMS: System Programming APIs



CQSUNLCK request
A CQSUNLCK request unlocks one or more data objects and moves them into the first or last position on
the queue. You can also force an unlock by specifying FUNC=FORCE.

Format for CQSUNLCK
DSECT function of CQSUNLCK

You use the DSECT function of a CQSUNLCK request to include equate (EQU) statements in your program
for the CQSUNLCK parameter list length and CQSUNLCK return and reason codes.

CQSUNLCK FUNC=DSECT

UNLOCK function of CQSUNLCK

Use the UNLOCK function of a CQSUNLCK request to unlock one or more data objects and move them to
the end or beginning of the queue.

CQSUNLCK FUNC=UNLOCK CQSTOKEN=  cqstokenaddress

CONTOKEN=  connecttokenaddress PARM=  parmaddress COUNT=  count

LIST= listaddress
LISTVER=  1

LISTVER=  listversion ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

FORCE function of CQSUNLCK

Use the FORCE function of a CQSUNLCK request to forcibly unlock data objects read from the specified
queue type by the specified failed CQS client and clean up CQS's knowledge of the data objects.

CQSUNLCK FUNC=FORCE CQSTOKEN=  cqstokenaddress CONTOKEN=  connecttokenaddress

PARM=  parmaddress CLIENT=  clientnameaddress COUNT=  count QTYPE=  queuetype

ECB= ecbaddress

RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

Usage of CQSUNLCK
Restriction: The CQSUNLCK request is not supported for resource structures.

A CQSUNLCK FUNC=UNLOCK request unlocks one or more data objects and moves them into the first or
last position on the queue. The client passes an unlock list that contains one or more list entries, where
each entry is a separate unlock request. A successful CQSUNLCK request invalidates the lock token and
makes the data object available to any client for a CQSBRWSE, CQSDEL, CQSMOVE, or CQSREAD request.

The CQSUNLCK FUNC=FORCE request enables a CQS client to forcibly unlock data objects read from the
specified queue type by the specified failed CQS client, so that the data objects do not remain on the
LOCKQ until the failed CQS client restarts. Force unlock also removes the CQS's knowledge of locked data
objects, if this CQS processed the CQSREAD requests that locked the data objects.

When a CQS client fails, its locked data objects remain on the LOCKQ until the CQS client restarts, resyncs
with CQS, and decides what to do with the locked data objects, or until a CQS client forcibly unlocks the
data objects. Locked data objects are not accessible by other CQS clients.

Chapter 2. CQS client requests  83



Attention: CQS clients should use the CQSUNLCK FUNC=FORCE request with caution. The CQS
clients in an IMSplex must apply the following force unlock rules consistently. If not used
consistently, the CQSRSYNC request might fail, data objects might remain on the lock queue, read
tables might remain in CQS, or data objects might be moved to the COLDQ. When using CQSUNLCK
FUNC=FORCE, apply the following rules:

• Define IMSplex with CSL.

The IMSplex must be defined with a Common Service Layer, so that CQS clients are notified when a CQS
client fails.

• Select queue type candidates.

Select one or more queue types whose data objects are candidates to be forcibly unlocked. All of the
data objects with the specified queue type are candidates. There is no way to select specific data
objects of a queue type to be forcibly unlocked.

• Forcibly unlock another CQS client's data objects when CQS client fails.

When a CQS client fails, it may leave locked data objects on the LOCKQ. Another CQS client should issue
the CQSUNLCK FUNC=FORCE request, so that data objects do not remain on the LOCKQ until the failed
CQS client restarts.

Issue a CQSUNLCK FUNC=FORCE request only to forcibly unlock data objects of a CQS client that is
currently not active. It is up to the CQS client issuing the CQSUNLCK FUNC=FORCE request to ensure
that the target CQS client is not active.

It is up to the CQS clients in the IMSplex to ensure that only one CQS client issues the CQSUNLCK
FUNC=FORCE request. All members in an IMSplex defined with a CSL are notified when a member fails.
Multiple CQSUNLCK FUNC=FORCE requests may have the following undesirable results:

– Unnecessary CF accesses.

The CQSUNLCK FUNC=FORCE request incurs multiple CF accesses to look at data objects on the
candidate queue type. If multiple CQSUNLCK FUNC=FORCE requests are issued, each request makes
the same numerous CF accesses. These extra CF accesses are unnecessary and incur additional
performance overhead. If the performance overhead of unnecessary CF accesses is unacceptable,
it is up to the CQS clients in the IMSplex to ensure that only one CQS client issues the CQSUNLCK
FUNC=FORCE.

It is up to the CQS clients in the IMSplex to ensure that exactly one CQS client issues the CQSUNLCK
FUNC=FORCE request successfully. If a CQS client issues the CQSUNLCK FUNC=FORCE request and a
failure occurs, such as CQSUNLCK error, structure failure, loss of link, and so on, then the CQS clients
in the IMSplex must ensure that the CQSUNLCK FUNC=FORCE request is issued successfully after the
error is corrected.

– Data objects incorrectly unlocked.

If a failed CQS client initializes right away, it might forcibly unlock its own data objects, resync with
CQS, and put new data objects on the queue structure, before another CQS client attempts to forcibly
unlock the failed CQS client's data objects. The other CQS client could incorrectly unlock data objects
for UOWs that are in flight. It is up to the CQS clients in the IMSplex to ensure that exactly one CQS
client forcibly unlocks data objects for the specified client.

• Forcibly unlock CQS client's own data objects when CQS client initializes.

When a CQS client initializes, it should forcibly unlock its own data objects before issuing CQSRSYNC.
This ensures that the CQS client's data objects are unlocked before resync, in case no other CQS client
was available at failure time to do the force unlock. Force unlock also cleans up CQS's knowledge of the
IMS client's locked data objects, since this CQS processed the CQSREAD request that locked the data
objects.

• Resync with CQS, handling UOWs that are candidates for unlock force.

When building the resync list to pass to CQS on the CQSRSYNC request, mark all candidates for the
UNLOCK FORCE with a CQS client status of forced. CQS resync checks for the client status of forced and
sets the UOWs to a CQS status of unlock in sync.

84  IMS: System Programming APIs



• Forcibly unlock other failed CQS clients' data objects when CQS client initializes.

When a CQS client initializes, it should forcibly unlock the data objects of failed CQS clients, in case no
other CQS client was available to do the force unlock when the CQS clients failed. After an initializing
CQS client resyncs with CQS, it should issue one CQSUNLCK FUNC=FORCE request per failed CQS client,
to forcibly unlock data objects on the candidate queue types.

Parameter Description:

CLIENT=clientnameaddress
Eight-byte input field that specifies the CQS client for which to forcibly unlock data objects. The
client name is the same name specified on the CQSREG request when the client registered to CQS.
A CQS client can forcibly unlock its own locked data objects before issuing the CQSRSYNC request. A
CQS client can forcibly unlock another CQS client's locked data objects after issuing the CQSRSYNC
request.

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that uniquely identifies the
client's connection to a particular coupling facility structure managed by this CQS. The connect token
is returned by the CQSCONN request.

COUNT=count
Four-byte input parameter that specifies the number of list entries in the unlock list or four-byte
output parameter to receive the count of data objects that were forcibly unlocked.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration token that uniquely
identifies the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise it is
processed synchronously.

LIST=listaddress
Four-byte input parameter that specifies the address of the unlock list. Each entry is a separate
CQSUNLCK request. Some fields in each entry must be initialized by the client prior to the CQSUNLCK
request. Other fields are returned by CQS upon completion of the CQSUNLCK request.

The CQSUNLL list entry DSECT maps the list entries and can be used by the client. Multiple list entries
must reside in contiguous storage.

Each list entry contains the following:
compcode

Four-byte output field to receive the completion code from the request. Possible completion
codes are:
X'00000000'

Request completed successfully.
X'00000004'

locktoken is invalid.
X'00000008'

Structure inaccessible. Retry request later.
X'0000000C'

Unable to unlock the data object, because the original queue for the data object is full. No
data objects can be moved to the named queue, but CQSUNLCK requests for other queues are
allowed.

X'00000010'
CQS internal error.

Chapter 2. CQS client requests  85



X'00000014'
Data object was lost because the structure was rebuilt. The data object was nonrecoverable
and a rebuild occurred after the data object was locked. The data object is now lost.

X'00000018'
z/OS logger write error, data objects were not unlocked.

qpos
One-byte input parameter that indicates the position on the queue to which the unlocked element
is to be added.
X'00'

Original client queue position. If the CQSREAD request that locked this data object read the
first data object, this request unlocks the data object and adds it to beginning of the queue. If
the CQSREAD request read the last data object, this request unlocks the data object and adds
it to the end of the queue.

X'01'
End of queue.

X'02'
Beginning of queue.

locktoken
Sixteen-byte input parameter that specifies the lock token that uniquely identifies the data object
locked by a CQSREAD request. This parameter is required.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT function of a CQSUNLCK
request to include equate (EQU) statements in your program for the CQSUNLCK list versions.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used by the request to
pass parameters to CQS. The length of the storage area must be at least equal to the EQU value
CQSUNLCK_PARM_LEN (defined using the FUNC=DSECT request).

QTYPE=queuetype
Four-byte input parameter that specifies the queue type from which the locked data objects were
read. Valid values for the queue type are from 1 to 255 (decimal).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSUNLCK request return
code.

If the return code in register 15 is nonzero, the values in the return and reason code fields are invalid,
because the CQS interface detected an error and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the CQSUNLCK request
reason code.

Return and reason codes for CQSUNLCK
The following table lists the return and reason code combinations that can be returned for CQSUNLCK
requests. Use a CQSUNLCK FUNC=DSECT request to include equate statements in your program for the
return and reason codes.

Table 25. CQSUNLCK return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

86  IMS: System Programming APIs



Table 25. CQSUNLCK return and reason codes (continued)

Return code Reason code Meaning

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000240' queuetype is invalid.

X'00000008' X'00000244' clientname is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'0000027C' CQSUNLCK is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one but not all list entries. See
compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for individual
errors.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000430' No CQS address space.

CQSUPD request
The CQSUPD request creates or updates one or more uniquely named resources on a resource structure.
The CQSUPD request creates a resource if it does not exist, or updates a resource if it does exist.

Format for CQSUPD
DSECT function of CQSUPD

You use the DSECT function of a CQSUPD request to include equate (EQU) statements in your program for
the CQSUPD parameter list length, the CQSUPD return and reason codes, the CQSUPD parmlist version,
and the CQSUPD list version.

CQSUPD FUNC=DSECT

UPDATE function of CQSUPD

Use the UPDATE function of a CQSUPD request to create or update one or more uniquely named
resources on a resource structure. Each resource can optionally include a small client data area (DATA1)
or a large client data area (DATA2).

CQSUPD FUNC=UPDATE CQSTOKEN=  cqstokenaddress CONTOKEN=  connecttokenaddress

PARM=  parmaddress LIST= resourcelistaddress LISTSIZE=  listsize
LISTVER=  1

COUNT=  resourcelistcount

ECB= ecbaddress

RETCODE=  returncodeaddress

RSNCODE=  reasoncodeaddress

Chapter 2. CQS client requests  87



Usage of CQSUPD
A CQSUPD creates or updates one or more uniquely named resources on a resource structure. CQSUPD
creates a resource if it does not exist, or updates a resource if it does exist. A resource can be created or
updated with or without client data. Examples of resources include transactions and control blocks.

Parameter Description:

CONTOKEN=connecttokenaddress
Address of a 16-byte input parameter that specifies the connect token that uniquely identifies the
client's connection to a particular coupling facility structure managed by CQS. The connect token is
returned by the CQSCONN request.

COUNT=resourcelistcount
Four-byte input parameter that specifies the number of entries in the list.

CQSTOKEN=cqstokenaddress
Address of a 16-byte input parameter that specifies the CQS registration token that uniquely identifies
the client's connection to CQS. The registration token is returned by the CQSREG request.

ECB=ecbaddress
Address of a 4-byte input parameter that specifies the z/OS event control block (ECB) used for
asynchronous requests. If ECB is specified, the request is processed asynchronously; otherwise, it is
processed synchronously.

LISTSIZE=resourcelistsize
Four-byte input parameter that specifies the size of the resource list. The list size must be specified
because each entry in the list might have a variable length.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT function of a CQSUPD
request to include equate (EQU) statements in your program for the CQSUPD list versions.

LIST=resourcelistaddress
Address of an input parameter that specifies a variable size resource list containing one or more
entries. Each entry is a separate update request. Some fields in each entry must be initialized by the
client prior to the CQSUPD request. Other fields are returned by CQS upon completion of the request.

The CQSUPDL list entry DSECT maps the list entries and can be used by the client. Multiple list entries
must reside in contiguous storage.

Each list entry contains the following fields:

listentrylength
Four-byte input field that specifies the length of the list entry. The list entry length is variable,
depending upon the data2 length, if specified. This parameter is required.

resourceid
Twelve-byte input field that contains the unique identifier of the resource to be created or
updated on the resource structure. The resource identifier is unique in the IMSplex. The resource
identifier consists of a 1-byte name type followed by an 11-byte client-defined resource name.
The name type ensures uniqueness of client-defined names for resources with the same name
type. Resources of different resource types can have the same name type. Valid values for the
name type are decimal numbers from 1 to 255. The client-defined name has meaning to the client
and consists of alphanumeric characters. This parameter is required.

resourcetype
One-byte field that specifies the resource type. The resource type is a client-defined physical
grouping of resources on the resource structure. Valid values for the resource type are decimal
numbers from 1 to 255. If the resource type is greater than the maximum number of resource
types defined by CQS (11), it is folded into one of the existing resource types. This parameter is
required.

reserved
Three-byte reserved field.

88  IMS: System Programming APIs



options
Four-byte input field that specifies update options. This parameter is optional. Possible options
are:
X'80000000'

Return data1 and owner, if update fails because of a version mismatch. This incurs the
performance overhead of an additional CF access.

X'40000000'
Return data2, data1, and owner if update fails because of version mismatch. The data2
is returned if data2buffer and data2buffersize are specified. This incurs the performance
overhead of an additional CF access.

X'20000000'
Delete data2.

compcode
Four-byte output field to receive the completion code from the request. Possible completion
codes are:
X'00000000'

Request completed successfully.
X'00000004'

Request succeeded successfully, but only partial data returned in data2buffer.
X'00000020'

Resourceid is invalid. The name type must be a decimal number from 1 to 255.
X'00000024'

CQS internal error.
X'00000028'

Version doesn't match that of existing resource.
X'00000030'

Resource already exists as a different name type.
X'00000034'

Structure is full.
X'00000038'

Resourcetype is invalid. The resource type must be a decimal number from 1 to 255.
X'0000003C'

Listentrylength is invalid. The list entry length must be a non-zero number greater than or
equal to the minimum list entry length. See the CQSUPDL DSECT.

X'00000040'
Structure is inaccessible.

X'00000044'
No CQS address space.

version
Eight-byte input and output field that specifies the version of a resource. The version is the
number of times the resource has been updated. For the initial CQSUPD request to create the
resource, version must be zero on input. For a subsequent CQSUPD request to update an existing
resource, version must match the existing resource's version. The CQSUPD request increments the
version by 1, updates the resource with the new version, and returns the new version as output.
If a CQSUPD request to update an existing resource fails because of a version mismatch, CQS
returns the correct version to the client as output. This parameter is required. If the data object is
created, version is ignored on input and a version of 1 is returned as output.

owner
Eight-byte input and output field that specifies the owner of a resource. On input, owner is set
for the resource. Specify zeroes to set no owner of a resource. Only one owner is permitted. If
the update request fails because of a version mismatch and the option to return the owner is
specified, the owner of the existing resource is returned as output. This parameter is required.

Chapter 2. CQS client requests  89



data1
Twenty-four-byte input and output field that specifies data1, a small piece of client data for the
resource to be updated. Specify zeroes to set no client data in data1. If the CQSUPD request fails
because of a version mismatch and the option to return data1 is specified, data1 of the existing
resource is returned as output. The performance of accessing the client data specified by data1 is
faster than accessing client data specified by data2. This parameter is required.

data2size
Four-byte input and output field that specifies the size of client data data2 in data2buffer for
the resource to be updated. Specify zero on input, if there is no data2 to update. If the CQSUPD
request fails because of a version mismatch and the option to return data2 is set, the data2 size of
the existing resource is returned as output. This parameter is optional.

data2buffersize
Four-byte input field that specifies the size of the data2buffer containing the client data data2
for the resource to be updated or returned as output. The maximum size that can be specified is
61312 bytes (X'EF80'). Specify zero if data2 does not need to be updated or returned as output.
This parameter is optional.

data2buffer
Variable size input and output buffer that specifies data2, a large piece of client data for the
resource to be updated. If the CQSUPD request fails because of a version mismatch and the option
to return data2 is specified, data2 of the existing resource is returned, as much as fits into the
data2buffer. This parameter is optional.

PARM=parmaddress
Address of an input parameter list used by the request to pass parameters to CQS. The length of
the storage area must be at least equal to the EQU value CQSUPD_PARM_LEN (defined using the
FUNC=DSECT request).

RETCODE=returncodeaddress
Address of a 4-byte output field to contain the CQSUPD return code. If the return code in register 15
is non-zero, the values returned for returncodeaddress and reasoncodeaddress are not valid because
CQS detected an error and did not process the request.

RSNCODE=reasoncodeaddress
Address of a 4-byte output field to contain the CQSUPD reason code.

Return and reason codes for CQSUPD
The following table lists the return and reason codes that can be returned for CQSUPD requests. Use a
CQSUPD=DSECT request to include equate statements in your program for the return and reason codes.

Table 26. CQSUPD return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' contoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' resourcelistcount is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000280' Request not allowed for a queue structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

90  IMS: System Programming APIs



Table 26. CQSUPD return and reason codes (continued)

Return code Reason code Meaning

X'0000000C' X'00000300' Request succeeded for at least one but not all list entries. See
compcode for individual errors.

X'0000000C' X'00000304' Request failed for all entries. See compcode for individual
errors.

X'0000000C' X'00000308' Request failed for one or more list entries because of version
mismatch. Those resources already exist as the resourcetype
specified. All other entries were successful.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' Internal error.

Chapter 2. CQS client requests  91



92  IMS: System Programming APIs



Part 2. Common Service Layer (CSL)
The topics included in this information provide information about the CSL.

© Copyright IBM Corp. 1974, 2022 93



94  IMS: System Programming APIs



Chapter 3. Writing a CSL client
These topics describe the considerations for writing a CSL client. This information is for the programmer
who writes the client, but also for the CSL administrator or IMS system programmer who must be aware
of the issues involved in designing and writing a CSL client.

Event Control Blocks with CSL requests
The event control block (ECB) is an optional parameter within a CSL request that allows you to specify the
address of the z/OS ECB.

Most CSL requests allow an ECB to be specified. The ECB parameter is optional and specifies the address
of the z/OS ECB. When a CSL request completes, the ECB specified by the ECB parameter is posted. If the
parameter is not included, the requesting module does not receive control until the request completes.

If an ECB is specified, the invoker of the request must issue a WAIT (or equivalent) after receiving control
from the request before the invoker uses or examines any data that is returned by this request (including
the RETCODE and RSNCODE fields). If the WAIT is not issued, the data might be invalid.

Environmental requirements for SCI requests
The environmental requirements for SCI requests depend on the SCI interface that is assigned to the
client.

The following table describes the environment for authorized SCI requests.

Table 27. Environment for SCI requests that use the authorized SCI interface

Environmental characteristic Requirement

Authorization Supervisor state (PSW key must match the PSW
key when the CSLSCREG request was issued)

Dispatchable unit mode Task

Cross memory mode Any, however, PASN must equal the primary
address space where the CSLSCREG request was
issued

AMODE 31

ASC Mode Primary

Home address space Any

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

The following table describes the environment for non-authorized SCI requests.

Table 28. Environment for SCI requests using the non-authorized interface

Environmental characteristic Requirement

Authorization Problem state (PSW key must match the PSW key
when the CSLSCREG request was issued)

Dispatchable unit mode Task

© Copyright IBM Corp. 1974, 2022 95



Table 28. Environment for SCI requests using the non-authorized interface (continued)

Environmental characteristic Requirement

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Home address space Address space where CSLSCREG was issued

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

The environmental requirements for the SCI register and deregister requests (CSLSCREG and CSLSCDRG)
are different from all of the other SCI requests. Authorized clients must issue CSLSCREG and CSLSCDRG
requests in the environment shown in the following table:

Table 29. Environment for CSLSCREG and CSLSCDRG requests using the authorized interface

Environmental Characteristic Requirement

Authorization Supervisor state

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

Non-authorized clients must issue CSLSCREG and CSLSCDRG requests in the environment described in
the following table:

Table 30. Environment for CSLSCREG and CSLSCDRG requests using the non-authorized interface

Environmental Characteristic Requirement

Authorization Problem state

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

96  IMS: System Programming APIs



How to interpret CSL request return and reason codes
Common Service Layer (CSL) return and reason codes indicate the success or failure of sending the
request to the CSL address space and reflect the success or failure of the particular CSL request that is
being made.

Each of the CSL requests receives a return and reason code that indicates the result of the specified
request. Because most of the requests involve more than one component, return and reason codes can
originate from any of the components involved. For example, a Structured Call Interface (SCI) return and
reason code can be received because SCI is the communications mechanism for these requests. The high
order byte is used to help identify the component that set the return and reason codes.

The possible values of the high-order byte and the meanings of each value are:

X'00'
IMS set the return and reason code

X'01'
SCI set the return and reason code

X'02'
Operations Manager (OM) set the return and reason code

X'03'
Resource Manager (RM) set the return and reason code

X'04'
ODBM set the return and reason code

Each of the CSL requests have a table of return and reason codes. If you are unable to find the return and
reason code for the request that you issued, use the high order byte in the return code to help identify the
component that set the return and reason code. For example, if the reason code is X'01' (SCI), you should
start by looking at the return and reason codes for the CSLSCMSG and CSLSCRQS macros.

ODBM reason codes are defined in the CSLDRR macro, OM reason codes are defined in the CSLORR
macro, RM reason codes are defined in the CSLRRR macro, and SCI reason codes are defined in the
CSLSRR macro. These macros can be found in the IMS.SDFSMAC data set.

Related reference
“CSLZQRY: query request” on page 102
In an IMSplex, you might want to query statistics about one or more components in the CSL. You can
write an IMSplex member program, for example, an automated operator program (AOP), that uses the
CSLZQRY request to obtain statistics. Any member of an IMSplex can issue the CSLZQRY request.
“CSLZSHUT: shutdown request” on page 104
CSLZSHUT is a programming interface that enables you to shut down one or more CSL components from
an authorized IMSplex member. Because CSLZSHUT is sent as a message, control is returned to the
program that issued the request after the message is sent.

Planning considerations for writing clients for the CSL
Planning tasks are decisions that you must make to determine how you use the CSL managers and CSL
requests.

Planning tasks are decisions that you must make to determine how you use the CSL managers. These
decisions include:

• What authorization level to use

You must decide whether your program needs to run authorized (supervisor state) or non-authorized
(problem state). SCI initializes the appropriate environment based on your program's state and PSW key
when it registers with SCI.

Note: A non-authorized client cannot register with RM, issue RM requests, register commands with OM,
or process requests issued using CSLSCRQS.

Chapter 3. Writing a CSL client  97



• Whether to use SCI exit routines

You must decide whether to use the SCI Input and Notify exit routines. An OM command processing
client, for example, must have the SCI Input exit to process OM directives; it must have the SCI Notify
exit to be notified when new OMs join the IMSplex, so the OM command processing client can register
to those OMs.

• TCB association

SCI registration (with the CSLSCREG request) enables an IMSplex member to be associated with
a specific, different TCB. The authorization level you use must also be considered regarding TCB
association. SCI internally associates the registration with the specified TCB. If no TCB is specified,
SCI associates the registration with the TCB from which the registration is issued. If the associated
TCB terminates without a deregistration being issued, SCI abnormally terminates the registration and
releases the associated storage that SCI allocated in the member address space. If a subsequent SCI
request is issued, an abend may occur.

• Whether to use RM services, OM services, or ODBM services

You can choose to manage your own global resources. However, if you want to access IMS global
resources, you must code an RM client.

If you plan to develop your own command set and your own command processing client (which would
coordinate its own command registration and security), you can write an OM command processing
client. If you plan to develop your own SPOC or AOP to enter your own commands, you can write an
OM AOP client. OM's role is to transport commands throughout an IMSplex and to consolidate those
command responses, in XML tags, for a SPOC or AOP.

For access to IMS databases managed by IMS DB in either the DBCTL or DB/DC environment, you can
write an ODBM client application program that does not use IMS transactions. ODBM manages database
connections in an IMSplex, permitting application programs that use either the IMS Universal drivers or
the ODBA interface to access databases in an IMSplex. ODBM also protects the IMS control region from
the unexpected termination of application programs that use the ODBA interface.

• Whether to use message or request protocol when issuing requests

Use message protocol either when you do not need a synchronous response, or when you want an
asynchronous response. IMSplex command responses that are sent with message protocol are sent
asynchronously.

• Whether to use the CSL OM audit trail

The CSL OM audit trail contains normal operating messages generated by active CSL address spaces
including RM, OM, and SCI, as well as operational messages created by IMS components routing activity
through a CSL component. CSL client activity is also captured. The audit trail can be used for audit
compliance as well as for diagnostic tasks.

• Whether to use the CSL ODBM accounting feature

ODBM leverages the z/OS System Management Facility (SMF) to perform logging of ODBM accounting
information, such as CPU usage, and its retrieval. The logging of the ODBM address space is activated
when the optional parameter LOGOPT=ACCOUNTING is specified in the ODBM initialization member,
CSLDIxxx.

Related concepts
CSL OM audit trail (System Administration)
Related reference
BPE-based CSL SCI user exit routines (Exit Routines)

98  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_cslomaudittrail.htm#ims_cslomaudittrail
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_cslsci.htm#ims_cslsci


Registration of CSL managers with SCI
ODBM, OM, and RM clients must register with the Structured Call Interface (SCI). You must complete
several registration steps in order to use any of the CSL managers.

To use any of the CSL managers, you must first complete registration steps. ODBM, OM, and RM clients
must register with the SCI. This topic describes SCI registration and how ODBM, OM, and RM clients
register with the SCI, how to set SCI to a ready state, and the sequence in which CSL requests must be
issued.

SCI registration
You must register to SCI in order to uniquely identify an IMSplex member's connection to SCI that is used
on all subsequent requests.

When you register to SCI, you identify:

• The name of the IMSplex.
• Your client name, which must be unique if it is an authorized client.
• Exit routines, if you elect to use them.
• Your type of address space.

Use a type of AOP or OTHER for the address space. Defining your address space by a type that is not
AOP or OTHER could interfere with IMS address spaces. You can further identify your client by using
the SUBTYPE parameter.

After you register to SCI, an SCI token is returned. The token uniquely identifies an IMSplex member's
connection to SCI and is used on all subsequent requests. Save the token for future ODBM, OM, RM, and
SCI requests.

Registering an ODBM client
To register with ODBM, a client must first register with the CSL SCI and then with all active ODBMs in the
IMSplex.

Application servers for application programs that use the IMS ODBA interface to access IMS databases
can register with ODBM as a client. ODBM manages connections to databases owned by IMS DB systems
in an IMSplex and protects IMS control regions from the unexpected termination of the application
program.

To register an ODBM client:

1. Identify the exit routines that are needed to drive interactions between the CSL SCI and the client.
The SCI handles communications between all CSL managers in the IMSplex and their client
applications.
a) Identify the SCI Notify exit for the client.

A database connection can be routed through any active ODBM in the IMSplex, so an ODBM client
must registered to all ODBMs. A SCI Notify exit is driven when a new ODBM becomes active in
the IMSplex and notifies the client with information about the new ODBM. The client can then
register to the new ODBM. The SCI Notify exit is identified with the NOTIFYEXIT parameter of the
CSLSCREG request.

b) Identify the SCI Input exit for the client with the INPUTEXIT parameter of the CSLSCREG request.
An ODBM client must be able to receive ODBM directives sent from any ODBM in the IMSplex. The
SCI Input exit is driven when there is a message or request for the client, so that the client can
receive and process it.

2. Issue the CSLSCREG request to SCI with the information gathered in step 1.
A client must register to the CSL SCI in the IMSplex before it can register with a CSL manager such as
ODBM.

3. Issue the CSLSCQRY request to SCI to determine which instances of ODBM are active in the IMSplex.

Chapter 3. Writing a CSL client  99



Before registering with the ODBMs for the first time, the client must manually identify all active ODBMs
with this request. Once registered, the SCI Notify exit automatically informs the client when new
ODBMs become active.

4. Issue the CSLDMREG request to all ODBMs in the IMSplex that are reachable and ready to accept
registration requests.

Consult the sequence of ODBM client requests for more information about managing the CSL registrations
for an ODBM client.
Related concepts
“Sequence of ODBM client requests” on page 129
Some requests to Open Database Manager (ODBM) from an ODBM client must be issued in a particular
sequence, such as when enabling or disabling communication with ODBM.
Related reference
“CSLSCREG: registration request” on page 215
The Structured Call Interface (SCI) registration request is used to create a connection between an
IMSplex member and SCI. Before SCI can be used for communication within the IMSplex, an IMSplex
member must issue the CSLSCREG request and receive an SCI token when the request completes in order
to be recognized by SCI.
“CSLDMREG: ODBM client registration request” on page 141
The CSLDMREG request registers an ODBM client with ODBM.

Registering an OM command processing client
An Operations Manager (OM) command processing client must register its command with OM, whereas
automated operator program (AOP) clients do not have to register to OM.

Perform the following steps to register an OM command processing client in an IMSPlex:

1. Identify the exit routines that are needed to drive interactions between the CSL SCI and the client.
The SCI handles communications between all CSL managers in the IMSplex and their client
applications.
a) Identify the SCI Notify exit for the client.

A database connection can be routed through any active OM in the IMSplex, so an OM command
processing client must registered to all OMs. A SCI Notify exit is driven when a new OM becomes
active in the IMSplex and notifies the client with information about the new OM. The client can
then register to the new OM. The SCI Notify exit is identified with the NOTIFYEXIT parameter of the
CSLSCREG request.

b) Identify the SCI Input exit for the client with the INPUTEXIT parameter of the CSLSCREG request.
An OM command processing client must be able to receive OM directives sent from any OM in the
IMSplex. The SCI Input exit is driven when there is a message or request for the client, so that the
client can receive and process it.

2. Issue the CSLSCREG request to SCI with the information gathered in step 1.
A client must register to the CSL SCI in the IMSplex before it can register with a CSL manager such as
OM.

3. Issue the CSLSCQRY request to SCI to determine which instances of OM are active in the IMSplex.
Before registering with the OMs for the first time, the client must manually identify all active OMs
with this request. Once registered, the SCI Notify exit automatically informs the client when new OMs
become active.

4. Issue the CSLOMBLD request to build the command list that will be passed to OM.
5. Issue the CSLOMREG request to all OMs in the IMSplex that are reachable and ready to accept

registration requests.
6. Issue the CSLOMRDY request to indicate that the client is ready to begin processing commands from

OM.

100  IMS: System Programming APIs



Consult the sequence of OM command processing client requests for more information about managing
the CSL registrations for an OM command processing client.
Related reference
“CSL OM command processing client requests” on page 145
The following topics describe the requests that are made by command processing clients.

Registering an RM client
Register RM clients to manage resources and access IMSplex-wide processes.

The following steps describe how to register an RM client first with the IMSPlex Structured Call Interface
(SCI), and then with the RMs active in the IMSPlex.

1. Identify the exit routines that are needed to drive interactions between the CSL SCI and the client.
The SCI handles communications between all CSL managers in the IMSplex and their client
applications.
a) Identify the SCI Notify exit for the client.

A database connection can be routed through any active RM in the IMSplex, so an RM client must
registered to all RMs. A SCI Notify exit is driven when a new RM becomes active in the IMSplex and
notifies the client with information about the new RM. The client can then register to the new RM.
The SCI Notify exit is identified with the NOTIFYEXIT parameter of the CSLSCREG request.

b) Identify the SCI Input exit for the client with the INPUTEXIT parameter of the CSLSCREG request.
An RM client must be able to receive RM directives sent from any RM in the IMSplex. The SCI Input
exit is driven when there is a message or request for the client, so that the client can receive and
process it.

2. Issue the CSLSCREG request to SCI with the information gathered in step 1.
A client must register to the CSL SCI in the IMSplex before it can register with a CSL manager such as
RM.

3. Issue the CSLSCQRY request to SCI to determine which instances of RM are active in the IMSplex.
Before registering with the RMs for the first time, the client must manually identify all active RMs
with this request. Once registered, the SCI Notify exit automatically informs the client when new RMs
become active.

4. Issue the CSLRMREG request to all RMs in the IMSplex that are reachable and ready to accept
registration requests.
To manage global resources, register the resource type and associated name type.

How to enable SCI ready state
You use the CSLSCRDY request to enable an IMSplex member to receive messages and requests that are
routed by type.

With the SCI, there are two states: registered and ready. The CSLSCRDY request enables an IMSplex
member to receive messages and requests routed by type. An IMSplex member that is registered but has
not issued a CSLSCRDY request can process only messages and requests that are specifically directed to
it.

Sequence for coding CSL requests
Most Common Service Layer (CSL) requests must be issued in a certain sequence.

For more information about the sequence of issuing requests from various CSL clients, see the table in
each of the following topics:

• “How AOP clients that run on the host communicate with the CSL OM” on page 125
• “How AOP clients that run on a workstation communicate with the CSL OM” on page 126
• “Processing AOP commands with a command processing client” on page 127

Chapter 3. Writing a CSL client  101



• “Sequence of RM client requests” on page 163
• “Sequence of ODBM client requests” on page 129

Related concepts
“CSL OM automated operator program clients” on page 125
OM provides an API interface for application programs that automate operator actions known as
automated operator programs (AOP). You can use an AOP to issue commands that are embedded in
an OM API request to an OM.

Requests common to all CSL components
Two requests, CSLZSHUT and CSLZQRY, are common requests that can be processed by all CSL
components (OM, RM, and SCI).

CSLZQRY: query request
In an IMSplex, you might want to query statistics about one or more components in the CSL. You can
write an IMSplex member program, for example, an automated operator program (AOP), that uses the
CSLZQRY request to obtain statistics. Any member of an IMSplex can issue the CSLZQRY request.

CSLZQRY syntax
CSLZQRY DSECT syntax

Use FUNC=DSECT to include equate (EQU) statements in your program for the CSLZQRY parameter list
length and the CSLZQRY return and reason codes.

CSLZQRY FUNC=DSECT

CSLZQRY STATS syntax

Use FUNC=STATS to request statistics from ODBM, OM, RM, or SCI. The information that is returned from
the CSLZQRY request is the same information that is passed to the STATS exit for that particular ODBM,
OM, RM, or SCI.

CSLZQRY FUNC=STATS A

A
MBRNAME=  mbrname OUTPUT=  outputbuffer OUTLEN=  outputbufferlen PARM=  parm

ECB= ecb

RETCODE=  returncode RSNCODE=  reasoncode SCITOKEN=  scitoken

CSLZQRY parameters
ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies a z/OS event control block (ECB) used for asynchronous requests. When the
request is complete, the ECB specified is posted. If an ECB is not specified, the task is suspended
until the request is complete. If an ECB is specified, the invoker of the request must issue a WAIT (or
equivalent) after receiving control from CSLZQRY and before using or examining any data returned by
this request (including the RETCODE and RSNCODE fields).

MBRNAME=symbol
MBRNAME=(r2-r12)

(Required) - A 4-byte input parameter that specifies the address of the 8-byte CSL member name to
which to send the query.

102  IMS: System Programming APIs



OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - A 4-byte output parameter that is used to receive the length of the output buffer. When
the request returns, this word contains the length of the buffer pointed to by the OUTPUT= parameter.
The output length is zero if no output is built, for example, when an error is detected before any output
can be built. When the caller is done with this storage, it is the caller's responsibility to release the
storage by issuing a CSLSCBFR request.

OUTPUT=outputbuffer
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable length output returned by
the CSLZQRY request. The output contains the results of the CSLZQRY. The output length is returned
in the OUTLEN= field. The output address is zero if no output was built, for example, if an error was
detected before any output could be built. This buffer is not preallocated by the caller. When the caller
is done with this storage, it is the caller's responsibility to release the storage by issuing a CSLSCBFR
request.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLZQRY parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by ZQRY_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. This can be returned by
ODBM, OM, RM, or SCI. ODBM return codes are defined in CSLDRR. OM return codes are defined in
CSLORR. RM return codes are defined in CSLRRR. SCI return codes are defined in CSLSRR.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. This can be returned by
ODBM, OM, RM, or SCI. ODBM reason codes are defined in CSLDRR. OM reason codes are defined in
CSLORR. RM reason codes are defined in CSLRRR. SCI reason codes are defined in CSLSRR.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

CSLZQRY return and reason codes
The following table lists the return and reason codes that can be returned on a CSLZQRY macro request.
Also included is the meaning of a reason code (that is, what possibly caused it).

Table 31. CSLZQRY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'xx000008' X'00002050' The caller of the service attempted to pass an invalid parameter
list. The request is rejected. "xx" identifies the component to set
the return code.

Related concepts
“How to interpret CSL request return and reason codes” on page 97

Chapter 3. Writing a CSL client  103



Common Service Layer (CSL) return and reason codes indicate the success or failure of sending the
request to the CSL address space and reflect the success or failure of the particular CSL request that is
being made.

CSLZSHUT: shutdown request
CSLZSHUT is a programming interface that enables you to shut down one or more CSL components from
an authorized IMSplex member. Because CSLZSHUT is sent as a message, control is returned to the
program that issued the request after the message is sent.

CSLZSHUT allows you to terminate:

• A single CSL manager (ODBM, OM, RM, or SCI)
• A CSL and all of its components on a single z/OS image
• A CSL and all of its components for an IMSplex across multiple z/OS images

The CSLZSHUT request is sent as a message, so control returns to the program that issued the request
after the request is sent.

To shut down a single CSL component, send the CSLZSHUT FUNC=QUIESCE,SCOPE=CSLMEMBER
message to the component you want to shut down.

To shut down a CSL and all of its components on a single z/OS image, either:

• Send a CSLZSHUT FUNC=QUIESCE,SCOPE=CSLLOCAL message to the SCI that is active on the z/OS
image that contains the CSL to be shut down.

• Send a CSLZSHUT FUNC=QUIESCE,SCOPE=CSLLOCAL,OSNAME=xxxx message to any SCI active in the
IMSplex (where xxxx is the z/OS image where the CSL to be shut down is active). SCI sends a CSLZSHUT
request to all of the CSL components to be shut down.

To shut down the CSL on an entire IMSplex, send a CSLZSHUT FUNC=QUIESCE,SCOPE=CSLPLEX message
to any SCI active in the IMSplex. SCI sends a CSLZSHUT request to all the CSL components in the
IMSplex.

CSLZSHUT syntax
Use FUNC=DSECT to include equate (EQU) statements in your program for the CSLZSHUT parameter list
length and the CSLZSHUT return and reason codes.

CSLZSHUT FUNC=DSECT

CSLZSHUT QUIESCE syntax

Use FUNC=QUIESCE to request that a CSL component shut down normally. Any work that the CSL
component is currently processing is completed, and then the component shuts down. After processing
the request, that component will not accept any new work.

CSLZSHUT FUNC=QUIESCE A

A
SCITOKEN=  scitokenaddress SCOPE=CSLMEMBER MBRNAME=  mbrnameaddress

SCOPE=CSLLOCAL

OSNAME=  osnameaddress

SCOPE=CSLPLEX

PARM=  parmaddress RETCODE=  returncodeaddress RSNCODE=  reasoncodeaddress

If the component that is being shut down is an SCI, the IMSplex members that are currently registered
with that SCI are not deregistered before SCI terminates. This can impact event notification. These
IMSplex members cannot communicate with other IMSplex members because their SCI is shut down. If

104  IMS: System Programming APIs



one or more of the "orphaned" members is shut down or fails, the other IMSplex members are not notified
of the shutdown or failure event until SCI comes back online.

Notification of the shutdown or failure depends on the authorization level of the members. If the
terminating member is non-authorized, other members are notified when SCI restarts. If the terminating
member is authorized, other authorized members, including orphaned authorized members, are notified
before SCI restarts.

CSLZSHUT parameters
MBRNAME=symbol MBRNAME=(r2-r12)

(Required if SCOPE=CSLMEMBER) - Specifies the 8-byte CSL member name to which to send the
shutdown request.

OSNAME=symbol
OSNAME=(r2-r12)

(Optional if SCOPE=CSLLOCAL) - Specifies the 8-byte name of the CSL, running on the z/OS image,
that is to be shut down. If the OSNAME parameter is specified and the SCI is not active on the z/OS
image specified, the command will not be processed.

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLZSHUT parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by ZSHUT_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI return codes are defined
in CSLSRR. Possible return codes are described in the following table.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. SCI reason codes are
defined in CSLSRR. Possible return codes are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

SCOPE=CSLMEMBER | CSLLOCAL | CSLPLEX
(Required) - Specifies the scope of the CSL termination. Valid values for the SCOPE parameter are:
CSLMEMBER

This requests the CSL component receiving the request to shut itself down. CSLMEMBER can be
processed by any CSL component.

CSLLOCAL
This requests that the CSL components on a single z/OS image be shut down. If the OSNAME
parameter is also specified, the CSL components on that particular z/OS image are shut down.
If the OSNAME parameter is specified and the SCI is not active on the z/OS image specified,
the command will not be processed. If the OSNAME parameter is not specified, the SCI
receiving the message shuts down the CSL on the local z/OS image. Only an SCI can process
a SCOPE=CSLLOCAL request. If this request is sent to other CSL components, it is ignored.

CSLPLEX
This requests that the CSL components in an entire IMSplex be shut down. Only an SCI can
process a SCOPE=CSLPLEX request. If this request is sent to other CSL components, it is ignored.

CSLZSHUT return and reason codes
The following table lists the return and reason codes that can be returned on a CSLZSHUT macro request.
Also included is the meaning of a reason code (that is, what possibly caused it).

Chapter 3. Writing a CSL client  105



Table 32. CSLZSHUT return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'xx000008' X'00002050' The caller of the service attempted to pass an invalid parameter
list. The request is rejected. "xx" identifies the component to set
the return code.

Related concepts
“How to interpret CSL request return and reason codes” on page 97
Common Service Layer (CSL) return and reason codes indicate the success or failure of sending the
request to the CSL address space and reflect the success or failure of the particular CSL request that is
being made.

106  IMS: System Programming APIs



Chapter 4. CSL automated operator program requests
Certain CSL requests can be used by AOP clients such as TSO SPOC in order to automate some of your
operator programs. The following topics describe these requests in detail.

CSLOMCMD: command request
By using the CSLOMCMD request, your AOP client application that is running on the host can issue
requests and send commands to OM.

Commands which are submitted through the OM API or REXX SPOC API use the address space identifier
(ASID) USERID for authorization.

Commands which are submitted from a program using the OM API while executing in a TSO session use
the TSO USERID for authorization.

Commands which are submitted from a program using the OM API while executing in a message
processing program (MPP) region or batch message processing program (BMP) region use the IMS
MPP/BMP dependent region USERID for authorization. In this environment, the actual transaction userid
can be used for authorization if the user's installation uses the IMS Build Security Environment exit
routine (DFSBSEX0) or OTMA/APPC SECURITY FULL (for example, the user's installation issues the /
SECURE OTMA/APPC FULL command).

CSLOMCMD syntax
The syntax for CSLOMCMD can vary depending on what the automated operator client intends to perform.

DSECT syntax

Use the DSECT function of a CSLOMCMD request to include equate (EQU) statements in your program for
the CSLOMCMD parameter list length and return and reason codes.

CSLOMCMD FUNC=DSECT

Request protocol syntax

For automation clients that want to wait for the output from the OM request, use this syntax.

CSLOMCMD FUNC=COMMAND

ECB= ecb

CMD= cmdinput CMDLEN=  cmdinputlen

OPTION=  aopoutput
OUTPUT=  output OUTLEN=  outputlen

ROUTE=  routelist ROUTELEN=  routelistlen RQSTTKN1=  requesttoken1

TIMEOUT=  300

TIMEOUT=  timeoutvalue USERID=  userid

PARM=  parm

PROTOCOL=RQST

RETCODE=  returncode RSNCODE=  reasoncode

RETNAME=  returnname RETTOKEN=  returntoken

SCITOKEN=  scitoken

© Copyright IBM Corp. 1974, 2022 107



The response is passed back to the client after the request is completed.

Message protocol syntax

For automation clients that want to receive command output through their user exit, use this syntax.

CSLOMCMD FUNC=COMMAND CMD= cmdinput CMDLEN=  cmdinputlen

OPTION=  aopoutput ROUTE=  routelist ROUTELEN=  routelistlen

RQSTTKN1=  requesttoken1

TIMEOUT=  300

TIMEOUT=  timeoutvalue

USERID=  userid

PARM=  parm PROTOCOL=MSG RETCODE=  returncode

RSNCODE=  reasoncode
RETNAME=  returnname RETTOKEN=  returntoken

SCITOKEN=  scitoken

The response is passed back to the client using the SCI Input exit. The client must have specified an SCI
Input exit (INPUTEXIT=) on the SCI registration request (CSLSCREG) to receive a response.

CSLOMCMD parameters
CMD=symbol
CMD=(r2-r12)

(Required) - Specifies the command input buffer. This can be any IMS command that can be specified
through the OM API. The first character of the command does not need to be a command recognition
character (for example, /). The command recognition character does not control command routing
in OM. The ROUTE= keyword controls which IMSplex members receive a command. If a command
recognition character is entered in the command string it is ignored. The first character in the
command is considered a command recognition character if it is not a character between A-Z (either
uppercase or lowercase).

CMDLEN=symbol
CMDLEN=(r2-r12)

(Required) - Specifies the length of the command input buffer.
ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for asynchronous requests.
When the request is complete, the ECB specified is posted. If an ECB is not specified, the task is
suspended until the request is complete. If an ECB is specified, the invoker of the macro must issue
a WAIT (or equivalent) after receiving control from CSLOMCMD before using or examining any data
returned by this macro (including the RETCODE and RSNCODE fields).

OPTION=aopoutput
OPTION=(r2-r12)

(Optional) - Use OPTION to return the format identifiers (FID) in the output from command processing
clients. For example, when a type-1 /DISPLAY command is sent to an IMS command processing
client, you can request that the FID be returned in each output line. The FID indicates to an AOI
program how to map the line of output. The FID can be useful if you are converting existing AOI
programs to OM AOI programs.

If OPTION is specified as a register, the register must contain the option value. For example, the value
of AOPOUTPUT is 1. Therefore, the register must contain a 1.

108  IMS: System Programming APIs



The CSLOMCMD request contains the equate for the value of AOPOUTPUT. The DSECTS for the output
of CSLOMCMD when OPTION=AOPOUTPUT are described in the DISPLAY macro in the IMS.SDFSMAC
data set.

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required for RQST) - Specifies a 4-byte field to receive the length of the output returned by the
CSLOMCMD request. OUTLEN contains the length of the output pointed to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is detected before any output can
be built.

OUTPUT=output
OUTPUT=(r2-r12)

(Required for RQST) - Specifies a 4-byte field to receive the address of the variable length output
returned by the CSLOMCMD request. The output contains the command response output. The output
length is returned in the OUTLEN= field.

The output address is zero if no output was built, for example, if an error was detected before any
output could be built.

The output buffer is not preallocated by the caller. After the request returns it, this word contains the
address of a buffer containing the update output. It is the caller's responsibility to release this storage
by issuing the CSLSCBFR FUNC=RELEASE request when it is finished with the storage. The length of
the output is returned in the OUTLEN= field.

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLOMCMD parameter list. The length of the parameter list must be equal
to the parameter list length EQU value defined by OCMD_PARMLN.

PROTOCOL=RQST
PROTOCOL=MSG

(Optional) - Specifies the SCI protocol for sending the request to OM.

• RQST - Send command to OM using the SCI request protocol.
• MSG - Send command to OM using the SCI message protocol.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. OM return codes are defined
in the CSLORR. SCI return codes are defined in CSLSRR.

The return code can be from OM (CSLOMCMD) or SCI (CSLSCMSG or CSLSCRQS). If ECB is specified,
the RETCODE is not valid until the ECB is posted. All return codes contain the SCI member type
indicator for either SCI, OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte output field to receive the OM name. This is the CSL member name of
the target address space to which SCI sent the request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte output field to receive the OM SCI token returned to the caller. This is
the OM SCI token for the target address space to which the request was sent.

ROUTE=symbol
ROUTE=(r2-r12)

(Optional) - Specifies a route list that identifies OM clients (for example, IMS control regions) in the
IMSplex to which the command is sent. If you do not specify ROUTE, OM routes to all clients that
are registered and ready to process commands. If the route list specified consists of a SYSID of an
OM client that is not registered for the specified command, then the command will fail with return
and reason codes indicating the client is not registered for the command. For example, if a QUERY

Chapter 4. CSL automated operator program requests  109



IMSPLEX command with ROUTE=IMS1 is processed by the OM address space and the IMS control
region IMS1 is not registered for this command, then the command fails.

• To explicitly route the command to all command processing clients that have registered for and are
ready to process commands, specify ROUTE=*.

• To route the command to the first command processing client which is READY and has MASTER
capability, specify ROUTE=%. With ROUTE=%, OM routes the command to only one command
processing client that OM chooses.

Note: Use commas to separate a list of client names.

ROUTELEN=symbol
ROUTELEN=(r2-r12)

(Optional) - Specifies the length of the list specified in the ROUTE= parameter.
RQSTTKN1=symbol
RQSTTKN1=(r2-r12)

(Optional) - Specifies a 16-byte user generated request token that is used to associate the request
response with the request for asynchronous processing. RQSTTKN1 can include A-Z, 0-9, or printable
characters (not case sensitive), except &, <, and >. OM returns the request token encapsulated in
the <rqsttkn1></rqsttkn1> tags in the XML output. OM converts any invalid data to periods (.) before
returning XML output to the client. For PROTOCOL=MSG requests, OM also returns the address of this
token in the OM Directive parameter list (mapped by CSLOMDIR macro) in the field ODIR_CQRT1PTR.
This parameter must be 16 bytes and, if necessary, padded with blanks.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM reason codes are
defined in the CSLORR. SCI reason codes are defined in CSLSRR.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token is returned by a successful CSLSCREG FUNC=REGISTER request.

TIMEOUT=timeoutvalue
TIMEOUT=symbol
TIMEOUT=(r2-r12)

(Optional) - Specifies a 4-byte command timeout value in seconds. If the TIMEOUT value is reached
during OM command processing and before all clients have responded to the command, OM
terminates the command and returns all available responses. If too small a value is specified, an
incomplete response is returned. The TIMEOUT value ensures a response is returned even if a client
processing the command is unable to respond. The TIMEOUT keyword is ignored if no CMD keyword is
specified. If a command is requested but no timeout value is specified, a timeout value of 5 minutes is
used.

If TIMEOUT is specified as a symbol, the symbol must be an EQU symbol equated to the timeout
value. If TIMEOUT is specified as a number, the number must be the timeout value.

USERID=symbol
USERID=(r2-r12)

(Optional) - Specifies the 8-byte user ID to be used by RACF® or an equivalent security product. Use
this parameter only if your client address space has been authorized for this request. If your client is
unauthorized, the user ID is obtained automatically from z/OS control blocks. This user ID is intended
for use by authorized system management address spaces that can issue an OM request on behalf of
another address space or remote client. In this case, the user ID of the client address space is not the
user ID of the actual client, so it must be passed to OM. This parameter must be 8 bytes, left-aligned,
and, if necessary, padded with blanks.

You can find the return and reason codes for the CSLOMCMD command request in CSLOMCMD return and
reason codes (Messages and Codes).

110  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_cslomcmdcodes.htm#ims_cslomcmdcodes
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_cslomcmdcodes.htm#ims_cslomcmdcodes


Related reference
“CSLSCREG: registration request” on page 215
The Structured Call Interface (SCI) registration request is used to create a connection between an
IMSplex member and SCI. Before SCI can be used for communication within the IMSplex, an IMSplex
member must issue the CSLSCREG request and receive an SCI token when the request completes in order
to be recognized by SCI.
“CSL Operations Manager XML output” on page 233
Command responses that are returned through the OM API are embedded in XML tags using codepage
037. XML output is generated for responses to the CSLOMI, CSLOMCMD, and CSLOMQRY requests.

CSLOMI: API request
With the CSLOMI request, your AOP client can communicate with a z/OS address space that acts as an OM
AOP client. You can then issue OM requests and send QUERY commands to OM.

With the CSLOMI request, a z/OS automated operator client can issue an IMS command to or request OM-
specific information from an OM. The CSLOMI macro interface is designed for use by system management
address spaces that receive input from a workstation or other z/OS address space and must pass the
request to OM. In this case the workstation application builds the input string and passes it to the z/OS
address space. The z/OS address space passes the input string to OM on the INPUT= parameter.

Commands which are submitted through the OM API or REXX SPOC API use the address space identifier
(ASID) USERID for authorization.

Commands which are submitted from a program using the OM API while executing in a TSO session use
the TSO USERID for authorization.

Commands which are submitted from a program using the OM API while executing in a message
processing program (MPP) region or batch message processing program (BMP) region use the IMS
MPP/BMP dependent region USERID for authorization. In this environment, the actual transaction userid
can be used for authorization if the user's installation uses the IMS Build Security Environment exit
routine (DFSBSEX0) or OTMA/APPC SECURITY FULL (for example, the user's installation issues the /
SECURE OTMA/APPC FULL command).

CSLOMI syntax
The syntax for CSLOMI can vary, depending on how the automated operator client wants to receive the
command response. If the client does not have an input exit and wants to receive the command output
as a response, use the request syntax. If the client does have an input exit and wants to receive the
command output as a message, use the message syntax.

CSLOMI request protocol syntax

For automated clients that want to wait for output from the OM request, use this syntax.

Chapter 4. CSL automated operator program requests  111



CSLOMI FUNC=OMAPI

ECB= ecb

INPUT=  input INLEN=  inputlen

OUTPUT=  output OUTLEN=  outputlen

USERID=  userid

RQSTTKN1=  requesttoken1

PARM=  parm

PROTOCOL=RQST

RETCODE=  returncode RSNCODE=  reasoncode
RETNAME=  returnname

RETTOKEN=  returntoken

SCITOKEN=  scitoken

After control is returned to the client (if ECB is not specified), or the ECB is posted (if an ECB is specified),
the response is available to the client.

CSLOMI message protocol syntax

For automated clients that want to receive command output through their user exit, use this syntax:

CSLOMI FUNC=OMAPI INPUT=  input INLEN=  input

USERID=  userid

RQSTTKN1=  requesttoken1

PARM=  parm PROTOCOL=MSG

RETCODE=  returncode RSNCODE=  reasoncode
RETNAME=  returnname

RETTOKEN=  returntoken

SCITOKEN=  scitoken

The response is passed back to the client using the SCI Input exit. The client must have specified an SCI
Input exit (INPUTEXIT=) on the SCI registration request (CSLSCREG) to receive a response.

CSLOMI Input= parameter syntax

For other applications or workstations that do not communicate directly with OM, use this syntax.

A

B

C

RQSTTKN2(  requesttoken2 )

A

112  IMS: System Programming APIs



CMD(  command )

OPTION(AOPOUTPUT)

ROUTE

( *)

( client )

(

,

client )

TIMEOUT

( 300 )

( timeoutvalue )

B
QUERY(CMDCLIENTS)

C
QUERY(CMDSYNTAX)

CMDLANG(  cmdlang )

This syntax is used for the INPUT= parameter. The application builds the command or query, and passes it
to a z/OS address space that communicates with OM directly.

CSLOMI request and message parameters
ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for asynchronous requests.
When the request is complete, the ECB specified is posted. If an ECB is not specified, the task is
suspended until the request is complete. If an ECB is specified, the invoker of the macro must issue a
WAIT (or equivalent) after receiving control from CSLOMI before using or examining any data returned
by this macro (including the RETCODE and RSNCODE fields).

INLEN=symbol
INLEN=(r2-r12)

(Required) - Specifies the length of the input buffer.
INPUT=symbol
INPUT=(r2-r12)

(Required) - Specifies the address of the input buffer.

The following shows an example of the input buffer that is passed to CSLOMI. The input buffer
is the character field MYINPUT and specifies three parameters: a command string of QRY TRAN
SHOW(ALL), a timeout value of 360 seconds, and a route list consisting of one element, IMSA:

CSLOMI FUNC=OMAPI,INPUT=MYINPUT,INLEN=INPUTLEN
INPUTLEN DC    A(MYINPUTL)
MYINPUT  DC    C'CMD (QRY TRAN SHOW(ALL) TIMEOUT(360) ROUTE(IMSA)'
MYINPUTL EQU   *-MYINPUT

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required for RQST) - Specifies a 4-byte field to receive the length of the output returned by the
CSLOMI request. OUTLEN contains the length of the output pointed to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is detected before any output can
be built.

Chapter 4. CSL automated operator program requests  113



OUTPUT=symbol
OUTPUT=(r2-r12)

(Required) - Specifies a field to receive the variable length output returned by the CSLOMI request.
The output contains the command response output. The output length is returned in the OUTLEN=
field.

The output address is zero if no output was built, for example, if an error was detected before any
output could be built.

The output buffer is not preallocated by the caller. After the request returns it, this word contains the
address of a buffer containing the update output. It is the caller's responsibility to release this storage
by issuing the CSLSCBFR FUNC=RELEASE request when it is finished with the storage. The length of
the output is returned in the OUTLEN= field.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLOMI parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by OI_PARMLN.

PROTOCOL=RQST
PROTOCOL=MSG

(Optional) - Specifies the SCI protocol for sending the request to OM.

• RQST - Send command to OM using the SCI request protocol.
• MSG - Send command to OM using the SCI message protocol.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. OM return codes are defined
in the CSLORR. SCI return codes are defined in CSLSRR.

The return code can be from OM (CSLOMI) or SCI (CSLSCMSG or CSLSCRQS). If ECB is specified, the
RETCODE is not valid until the ECB is posted. All return codes contain the SCI member type indicator
for either SCI, OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte output field to receive the OM name. This is the CSL member name of
the target address space to which SCI sent the request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte output field to receive the OM SCI token returned to the caller. This is
the OM SCI token for the target address space to which the request was sent.

RQSTTKN1=symbol
RQSTTKN1=(r2-r12)

(Optional) - Specifies a 16-byte user generated request token that is used to associate the request
response with the request for asynchronous processing. RQSTTKN1 can include A-Z, 0-9, or printable
characters (not case sensitive), except &, <, and >. OM returns the request token encapsulated in
the <rqsttkn1></rqsttkn1> tags in the XML output. OM converts any invalid data to periods (.) before
returning XML output to the client. For PROTOCOL=MSG requests, OM also returns the address of this
token in the OM Directive parameter list (mapped by CSLOMDIR macro) in the field ODIR_CQRT1PTR.
This parameter must be 16 bytes and, if necessary, padded with blanks.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM reason codes are
defined in the CSLORR. SCI reason codes are defined in CSLSRR. Possible reason codes are described
in the following table.

114  IMS: System Programming APIs



SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token is returned by a successful CSLSCREG FUNC=REGISTER request.

USERID=symbol
USERID=(r2-r12)

(Optional) - Specifies the 8-byte user ID that should be used for security checking for the command
and keyword combination. This user ID is used only if the client address space is an authorized caller.
If the client address space is unauthorized, the user ID is obtained from z/OS control blocks. This
user ID is intended for use by authorized system management address spaces that can issue an OM
request on behalf of another address space or remote client. In this case, the user ID of the client
address space is not the user ID of the actual client, so it must be passed to OM. This parameter must
be 8 bytes, left-justified, and, if necessary, padded with blanks.

CSLOMI Input= parameters
The parameters for the CSLOMI input option are for applications and workstations that do not
communicate directly with OM.

CMD(command)
(Required if QUERY is not specified) - Specifies the command input buffer. This can be any IMS
command that can be specified through the OM API. The first character of the command does not
need to be a command recognition character (for example, /). The command recognition character
does not control command routing in OM. The ROUTE keyword is used to control which IMSplex
members receive a command. If a command recognition character is entered in the command string,
it is ignored. The first character in the command is considered a command recognition character if it is
not a character between A-Z (either uppercase or lowercase).

CMDLANG(cmdlang)
The language to be used for IMS command text that is returned on the request. This value defaults
to the default established for the OM system specified on the OM startup parameter CMDLANG=.
Currently the only accepted value is ENU for US English. If an invalid language is specified text in the
OM default language is returned.

OPTION(AOPOUTPUT)
(Optional, valid only for CMD()) - Specify the AOPOUTPUT option to return the format identifiers (FID)
in the output from command processing clients. For example, when a type-1 /DISPLAY command is
sent to an IMS command processing client, you can request that the FID be returned in each output
line. The FID indicates to an AOI program how to map the line of output. The FID can be useful if you
are converting existing AOI programs to OM AOI programs.

QUERY(querytype)
Type of query to be performed by OM.
CMDCLIENTS

Requests that OM return a list of all clients (for example, IMS control regions) that have registered
to OM for command processing.

The list of clients is returned encapsulated in <cmdclients> </cmdclients> tags. querytype can be
one of the following.

• <mbr name=membername>

The member name is the name of the client address space.

– <typ> </typ>

The member type is the type of the client address space.
– <styp> </styp>

The member subtype is the subtype of the client address space.
– <vsn> </vsn>

Chapter 4. CSL automated operator program requests  115



The member version is the version of the client address space.
– <jobname> </jobname>

The client jobname is the jobname or the started task for the client address space.
• </mbr>

CMDSYNTAX
Requests that OM return a list of the XML representing the command syntax for selected
commands registered with OM. Additionally, the translatable text associated with the command
syntax is returned.

The command syntax XML is returned encapsulated in <cmdsyntax> </cmdsyntax> tags. The
command syntax DTD is returned encapsulated in <cmddtd> </cmddtd> tags. The command
syntax translatable text is returned encapsulated in <cmdtext> </cmdtext> tags.

ROUTE(routelist)
(Optional) - Specifies a route list that identifies OM clients (for example, IMS control regions) in the
IMSplex to which the command is sent. In the list, the clients are separated by commas. If you do not
specify ROUTE, OM routes to all clients that are registered and ready to process commands.

• To explicitly route the command to all command processing clients that have registered for and are
ready to process commands, specify ROUTE(*).

• To route the command to the first command processing client which is READY and has MASTER
capability, specify ROUTE(%). With ROUTE(%), OM routes the command to only one command
processing client that OM chooses.

RQSTTKN2(requesttoken2)
(Optional) - Specifies a 16-byte user generated request token that is used to associate the request
response with the request for asynchronous processing. RQSTTKN2 can include A-Z, 0-9, or printable
characters (not case sensitive), except &, <, and >. OM returns the request token encapsulated in
the <rqsttkn2></rqsttkn2> tags in the XML output. OM converts any invalid data to periods (.) before
returning XML output to the originating client. For PROTOCOL=MSG requests, OM also returns the
address of this token in the OM Directive parameter list (mapped by CSLOMDIR macro) in the field
ODIR_CQRT2PTR.

TIMEOUT(timeoutvalue )
(Optional) - Specifies a 4-byte command timeout value in seconds. If the TIMEOUT value is reached
during OM command processing before all clients have responded to the command, OM terminates
the command and returns all available responses. If too small a value is specified, an incomplete
response is returned. The TIMEOUT value ensures a response is returned even if a client processing
the command cannot respond. The TIMEOUT keyword is ignored if no CMD keyword is specified. If a
command is requested but no timeout value is specified, a timeout value of 5 minutes is used.

CSLOMI return and reason codes
The following table lists the return and reason codes that can be returned on a CSLOMI macro request.
Also included is the meaning of a reason code (that is, what possibly caused it).

Table 33. CSLOMI return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'02000004' Any code This return code represents a warning. All or part of the request
might have completed successfully. Additional information is
returned with the response to the request.

116  IMS: System Programming APIs



Table 33. CSLOMI return and reason codes (continued)

Return code Reason code Meaning

X'00001000' The specified command timed out before all of the command
response information could be collected. One or more clients
might not be responding, or a client might have needed more
time to process the command. If a TIMEOUT value is specified,
ensure the value is long enough to allow for the command to be
processed. All command response information that is collected
prior to the timeout is returned.

X'00001004' The INPUT exit rejected the command contained in the CMD
field. The command was not processed.

X'00001008' The client (specified in the corresponding XML <mbr></mbr>
tags in the <cmderr> section) was specified in the ROUTE list for
the command specified in the CMD field. The command was not
routed to the command processing client because the client is
not the master.

X'00001010' The text file could not be loaded in the language specified on
the CMDLANG parameter. The default language is used.

X'00001014' The command completed with warnings. Check the return
codes. At least one client member returned a return code 4 to
the Operations Manager. All other clients returned a return code
not greater than 4.

If the command was successfully processed by one command
processing client as designed, but all other command
processing clients to which the command was routed received
reason code X'00001000' (IRSN_NOTMSTR) for return code
X'00000004', then the overall OM return and reason codes will
be:

• WARNING (X'02000004')
• WARNING (X'00001014')

Refer to the completion codes returned on the request for
further information.

X'02000008' Any code This return code represents a parameter error. The request was
not processed due to the error.

X'00002000' The command specified in the CMD field is invalid.

X'00002004' The primary keyword specified in the CMD field is invalid with
the command specified.

X'00002028' An invalid keyword was specified in the CMD field.

X'0000202C' BPE detected an unknown positional parameter in the
command in the CMD field.

X'00002030' A keyword was specified with an equal sign (KEYWORD=) when
a sublist was expected (KEYWORD()) in the command in the
CMD field.

X'00002034' An incomplete keyword or keyword parameter was specified in
the command in the CMD field.

X'00002038' A keyword is missing from the command in the CMD field.

Chapter 4. CSL automated operator program requests  117



Table 33. CSLOMI return and reason codes (continued)

Return code Reason code Meaning

X'0000203C' The value of a keyword parameter specified in the command
was invalid.

X'00002040' A duplicate keyword was specified in the command in the CMD
field.

X'00002044' Text containing the syntax error is returned in the XML
<message></message> tags.

X'00002048' More than one filter was specified.

X'00002050' The caller of the service attempted to pass an invalid parameter
list. The request is rejected.

X'0200000C' Any code This return code represents a list error. The request might or
might not have been processed due to the error. Refer to the
XML tag <cmderr> section and the completion codes for each
command processing client listed in the XML tag <cmdrspdata>
section.

X'00003000' The command was routed to multiple clients. At least one
client was able to process the request successfully and return
either command response data or a response message. Refer
to the completion codes returned on the request for further
information.

X'00003004' The command was routed to multiple clients. None of the
clients was able to process the request successfully. No
command response data or response messages were returned
by any client.

X'00003008' The command was routed to multiple clients. None of the
clients that processed the command returned a return code 0
and reason code 0 to OM. At least one command client returned
either command response data or a response message.

X'0000300C' The command was routed to multiple clients. Not all of the
clients that processed the command returned a return code 0
and reason code 0 to the OM. Also, at least one client returned
a return code 4. Refer to the completion codes returned on the
request for additional information.

X'02000010' Any code This return code represents an environmental error. The request
could not be processed at this time due to the current
environment. This condition might be temporary.

X'00004000' The command contained in the CMD field could not be
processed by the client indicated in the corresponding XML
<mbr></mbr> tags in the <cmderr> section because the client
was not yet ready to process commands.

X'00004004' The command contained in the CMD field could not be
processed by the client indicated in the corresponding XML
<mbr></mbr> tags in the <cmderr> section because the client
was not registered for the command.

118  IMS: System Programming APIs



Table 33. CSLOMI return and reason codes (continued)

Return code Reason code Meaning

X'00004008' The command contained in the CMD field could not be
processed by the client indicated in the corresponding XML
<mbr></mbr> tags in the <cmderr> section because the client
is not active in the IMSplex.

X'0000400C' The command contained in the CMD field could not be
processed by the client indicated in the corresponding XML
<mbr></mbr> tags in the <cmderr> section because the client
registered for the command with invalid PADEF grammar.

X'00004010' The command contained in the CMD field could not be
processed. The client that issued the command is not
authorized. Examine the <cmdsecerr> section in the XML file
to determine why the client is not authorized.

X'00004014' A data set allocation error occurred; the data set specified by
the CMDTEXT= DSN parameter could not be allocated.

X'00004018' A data set read error occurred; a member in the data set
specified by the CMDTEXT= DSN could not be read. The
member name is CSLOT concatenated with the 3-character
CMDLANG value.

X'00004020' The parameter list version is invalid.

X'02000014' Any code This return code represents a system error. An internal error
occurred, and the command was not processed.

X'00005000' An OM internal error occurred. Due to a storage shortage, OM
was unable to allocate a CMD block to process the command in
the CMD field.

X'00005004' An OM internal error occurred. Due to a storage shortage, OM
was unable to allocate a CRSP block to process the command in
the CMD field.

X'00005008' An OM internal error occurred. Due to a storage shortage, OM
was unable to allocate the command input buffer to process the
command in the CMD field.

X'0000500C' An OM internal error occurred. OM was unable to obtain the
VERB latch while processing the command in the CMD field.

X'00005010' An OM internal error occurred. Due to a storage shortage, OM
was unable to obtain storage for the parsed output blocks to
parse the command in the CMD field.

X'00005014' An OM internal error occurred. OM was unable to add the CMD
block to the command instance hash table while processing the
command in the CMD field.

X'00005018' An OM internal error occurred. OM was unable to find the CMD
block in the command instance hash table while processing the
command in the CMD field.

X'0000501C' An OM internal error occurred. OM was unable to scan for
the CMD block in the command instance hash table while
processing the command in the CMD field.

Chapter 4. CSL automated operator program requests  119



Table 33. CSLOMI return and reason codes (continued)

Return code Reason code Meaning

X'00005020' An OM internal error occurred. OM was unable to obtain a
system AWE while processing the command in the CMD field.
The command was not processed by the command processing
client. Refer to the <cmderr> section in the XML file for the
member name of the command processing client.

X'00005024' An OM internal error occurred. OM was unable to queue a
system AWE while processing the commanding the CMD field.
The command was not processed by the command processing
client. Refer to the <cmderr> section of the XML file for the
member name of the command processing client.

X'00005028' An OM internal error occurred. OM was unable to parse the
command contained in the CMD field due to a BPEPARSE
internal error.

X'0000502C' An OM internal error occurred. The command output header
allocation failed.

X'00005030' An OM internal error occurred. The command output response
allocation failed.

X'00005034' An OM internal error occurred. The OUTPUT buffer allocation
failed.

X'00005038' An OM internal error occurred. The VERB hash table add failed.

X'0000503C' An OM internal error occurred. The CLNT block could not be
obtained.

X'00005040' An OM internal error occurred. The CSLSCQRY request failed.

X'00005044' An OM internal error occurred. OM could not obtain storage to
pass a copy of the command grammar to the BPEPARSE service.

Related reference
“CSLSCREG: registration request” on page 215
The Structured Call Interface (SCI) registration request is used to create a connection between an
IMSplex member and SCI. Before SCI can be used for communication within the IMSplex, an IMSplex
member must issue the CSLSCREG request and receive an SCI token when the request completes in order
to be recognized by SCI.
“CSL Operations Manager XML output” on page 233
Command responses that are returned through the OM API are embedded in XML tags using codepage
037. XML output is generated for responses to the CSLOMI, CSLOMCMD, and CSLOMQRY requests.
“CSL OM directives” on page 159

120  IMS: System Programming APIs



An OM directive is a function that OM defines that can be sent as a message to OM clients to inform the
OM clients of work to be processed. Any command processing client that has registered commands to OM
can be selected to perform an OM directive.

CSLOMQRY: query request
With the CSLOMQRY request, any AOP client that is running on the host can request OM-specific
information.

CSLOMQRY syntax
The syntax for CSLOMQRY can vary depending on what the automated operator client intends to perform.
Parameter descriptions for each syntax example are provided in the following section.

DSECT syntax

Use the DSECT function of a CSLOMQRY request to include equate (EQU) statements in your program for
the CSLOMQRY parameter list length and return and reason codes.

CSLOMQRY FUNC=DSECT

Request protocol syntax

For automation clients that want to wait for the output from the OM request, use this syntax.

CSLOMQRY FUNC=QUERY OUTPUT=  output OUTLEN=  outputlen

ECB= ecb

RQSTTKN1=  requesttoken1

TYPE= CMDCLIENTS

CMDSYNTAX

CMDLANG=  cmdlang

PARM=  parm

PROTOCOL=RQST

RETCODE=  returncode RSNCODE=  reasoncode

RETNAME=  returnname RETTOKEN=  returntoken

SCITOKEN=  scitoken

The response is passed back to the client after the request is completed.

Message protocol syntax

For automation clients that want to send a message to OM to process an OM request, use this syntax.

Chapter 4. CSL automated operator program requests  121



CSLOMQRY FUNC=QUERY

RQSTTKN1=  requesttoken1

TYPE= CMDCLIENTS

CMDSYNTAX

CMDLANG=  cmdlang

PARM=  parm

PROTOCOL=MSG RETCODE=  returncode RSNCODE=  reasoncode

RETNAME=  returnname RETTOKEN=  returntoken

SCITOKEN=  scitoken

The response is passed back to the client using the SCI Input exit. The client must have specified an SCI
Input exit (INPUTEXIT=) on the SCI registration request (CSLSCREG) to receive a response.

CSLOMQRY parameters
CMDLANG=cmdlang

(Optional) - The language to be used for IMS command text that is returned on the request. This
value defaults to the default established for the OM system specified on the OM startup parameter
CMDLANG=. Currently the only accepted value is ENU for US English. If an invalid language is
specified in OM, the default language is returned.

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for asynchronous requests.
When the request is complete, the ECB specified is posted. If an ECB is not specified, the task is
suspended until the request is complete. If an ECB is specified, the invoker of the macro must issue
a WAIT (or equivalent) after receiving control from CSLOMQRY before using or examining any data
returned by this macro (including the RETCODE and RSNCODE fields).

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required for RQST) - Specifies a 4-byte field to receive the length of the output returned by the
CSLOMQRY request. OUTLEN contains the length of the output pointed to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is detected before any output can
be built.

OUTPUT=output
OUTPUT=(r2-r12)

(Required) - Specifies a field to receive the variable length output returned by the CSLOMQRY request.
The output contains the command response output. The output length is returned in the OUTLEN=
field.

The output address is zero if no output was built, for example, if an error was detected before any
output could be built.

The output buffer is not preallocated by the caller. After the request returns it, this word contains the
address of a buffer containing the update output. It is the caller's responsibility to release this storage
by issuing the CSLSCBFR FUNC=RELEASE request when it is finished with the storage. The length of
the output is returned in the OUTLEN= field.

PARM=symbol
PARM=(r2-r12)

(Required) - Four-byte input parameter that specifies the address of the storage used by the request
to pass the parameters to SCI. The length of the parameter list must be equal to the parameter list
length EQU value defined by OQRY_PARMLN.

122  IMS: System Programming APIs



PROTOCOL=RQST
PROTOCOL=MSG

(Optional) - Specifies the SCI protocol for sending the request to OM.

• RQST - Send command to OM using the SCI request protocol.
• MSG - Send command to OM using the SCI message protocol.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. OM return codes are defined
in the CSLORR. SCI return codes are defined in CSLSRR.

The return code can be from OM (CSLOMQRY) or SCI (CSLSCMSG or CSLSCRQS). If ECB is specified,
the RETCODE is not valid until the ECB is posted. All return codes contain the SCI member type
indicator for either SCI, OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte output field to receive the OM name. This is the CSL member name of
the target address space to which SCI sent the request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte output field to receive the OM SCI token returned to the caller. This is
the OM SCI token for the target address space to which the request was sent.

RQSTTKN1=symbol
RQSTTKN1=(r2-r12)

(Optional) - Specifies a 16-byte user generated request token that is used to associate the request
response with the request for asynchronous processing. RQSTTKN1 can include A-Z, 0-9, or printable
characters (not case sensitive), except &, <, and >. OM returns the request token encapsulated in
the <rqsttkn1></rqsttkn1> tags in the XML output. OM converts any invalid data to periods (.) before
returning XML output to the client. For PROTOCOL=MSG requests, OM also returns the address of this
token in the OM directive parameter list (mapped by CSLOMDIR macro) in the field ODIR_CQRT1PTR.
This parameter must be 16 bytes and, if necessary, padded with blanks.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM reason codes are
defined in the CSLORR. SCI reason codes are defined in CSLSRR. Possible reason codes are described
in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token is returned by a successful CSLSCREG FUNC=REGISTER request.

TYPE=CMDCLIENTS
TYPE=CMDSYNTAX

(Required) - Four-byte input parameter that specifies the type of query to be performed by OM.
CMDCLIENTS

Requests that OM return a list of all clients (for example, IMS control regions) that have registered
to OM for command processing.

The clients are returned encapsulated in <cmdclients> </cmdclients> tags.

• <mbr name=membername>

The member name is the name of the client address space.

– <typ> </typ>

The member type is the type of the client address space.
– <styp> </styp>

Chapter 4. CSL automated operator program requests  123



The member subtype is the subtype of the client address space.
– <vsn> </vsn>

The member version is the version of the client address space.
– <jobname> </jobname>

The client jobname is the jobname or the started task for the client address space.
• </mbr>

CMDSYNTAX
Requests that OM return a list of the XML representing the command syntax for selected
commands registered with OM. Additionally, the translatable text associated with the command
syntax is returned.

The command syntax XML is returned encapsulated in <cmdsyntax> </cmdsyntax> tags. The
command syntax DTD is returned encapsulated in <cmddtd> </cmddtd> tags. The command
syntax translatable text is returned encapsulated in <cmdtext> </cmdtext> tags.

The command syntax and translatable text that is returned as a result of the CSLOMQRY QUERY
TYPE(CMDSYNTAX) request includes information for type-2 commands.

CSLOMQRY return and reason codes
The following table lists the return and reason code combinations that can be returned on a CSLOMQRY
request and that are unique to the CSLOMQRY request. Also included is the meaning of a reason code
(that is, what possibly caused it).

Table 34. CLSOMQRY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'02000004' Any code This return code represents a warning. All or part of the request
might have completed successfully. Additional information is
returned with the response to the request.

X'00001010' The text file could not be loaded in the language specified on
the CMDLANG parameter. The default language is used.

X'02000008' X'00002050' The caller of the service attempted to pass an invalid parameter
list. The request is rejected.

X'02000010' Any code This return code represents an environmental error. The request
could not be processed at this time due to the current
environment. This condition might be temporary.

X'00004014' A data set allocation error occurred; the data set specified by
the CMDTEXTDSN= parameter in the OM Initialization PROCLIB
member (CSLOIxxx) could not be allocated.

X'00004018' A data set read error occurred; a member in the data
set specified by the CMDTEXTDSN= parameter in the OM
Initialization PROCLIB member (CSLOIxxx) could not be read.
The member name is 'CSLOT' concatenated with the 3-
character CMDLANG value.

X'00004020' The parameter list version is invalid.

Related reference
“CSLSCREG: registration request” on page 215
The Structured Call Interface (SCI) registration request is used to create a connection between an
IMSplex member and SCI. Before SCI can be used for communication within the IMSplex, an IMSplex

124  IMS: System Programming APIs



member must issue the CSLSCREG request and receive an SCI token when the request completes in order
to be recognized by SCI.
“CSL Operations Manager XML output” on page 233
Command responses that are returned through the OM API are embedded in XML tags using codepage
037. XML output is generated for responses to the CSLOMI, CSLOMCMD, and CSLOMQRY requests.
“CSL OM directives” on page 159
An OM directive is a function that OM defines that can be sent as a message to OM clients to inform the
OM clients of work to be processed. Any command processing client that has registered commands to OM
can be selected to perform an OM directive.
“CSLOMQRY output” on page 237
Each of the command syntax examples contain a sample of CSLOMQRY XML output. The examples
present different scenarios that generate XML output based on the commands that are used in the
example.

CSL OM automated operator program clients
OM provides an API interface for application programs that automate operator actions known as
automated operator programs (AOP). You can use an AOP to issue commands that are embedded in
an OM API request to an OM.

OM provides an application programming interface (API) for application programs that automate operator
actions. These programs are called automated operator programs (AOP). An AOP issues commands that
are embedded in an OM API request to an OM. The responses to those commands are returned to the
AOP embedded in XML tags.

If you want to use OM to manage commands and command responses in an IMSplex for your own product
or service, you can use an AOP client, such as each of these clients:

• The IMS-supplied AOP client, TSO single point of control (SPOC), which runs on the host. With the
TSO SPOC, an automated operator can issue commands to the IMSplex and receive responses to those
commands interactively.

• An AOP client that runs on a workstation (called a workstation SPOC).
• A command processing client, such as IMS.

An OM client uses OM requests to communicate with OM. Each OM client must register to SCI before it
can issue OM requests.

If you intend to write AOPs, you can write them in either assembler or REXX. Assembler applications issue
requests to the OM API; REXX applications issue REXX host commands to communicate with OM.

IMS provides a REXX SPOC API, which is a REXX program interface to a SPOC application. Your existing
REXX applications can use this REXX SPOC API to interact with OM.

Related concepts
“CSL SCI requests” on page 200
SCI requests can be issued by an IMSplex member. Any member can also receive messages from any
other IMSplex member after a connection is established.
“Sequence for coding CSL requests” on page 101
Most Common Service Layer (CSL) requests must be issued in a certain sequence.
Related reference
“CSL Operations Manager XML output” on page 233
Command responses that are returned through the OM API are embedded in XML tags using codepage
037. XML output is generated for responses to the CSLOMI, CSLOMCMD, and CSLOMQRY requests.

How AOP clients that run on the host communicate with the CSL OM
Automated operator program (AOP) clients that run on the host can communicate directly with Operations
Manager (OM). After a z/OS AOP is registered with SCI, it can issue an OM command (CSLOMCMD) or

Chapter 4. CSL automated operator program requests  125



query (CSLOMQRY) requests. When the z/OS AOP is ready to terminate, it must deregister with SCI using
the CSLSCDRG macro. Each of the requests can be sent directly to OM or SCI.

The following table lists the sequence of requests that are issued from an AOP that is running on the host.
The request is listed with its purpose. 

Table 35. Sequence of requests for an AOP OM client running on the host

Request Purpose

CSLSCREG Registers to SCI, which enables the client to send OM requests to OM through SCI.

CSLSCRDY Readies the OM client to SCI, which routes messages to the client by client type.

CSLOMxxx Issues OM requests (CSLOMCMD, CSLOMQRY) to send commands to OM.

CSLSCBFR Releases the output buffer returned by the request, if any.

CSLSCQSC Quiesces with SCI.

CSLSCDRG Deregisters from SCI.

Note: Although not required for an AOP executing on the host, CSLSCRDY and CSLSCQSC are
recommended for clients that want to receive messages routed by TYPE.

An OM client uses OM requests to access and use OM services and resources. Some SCI and OM requests
must be issued by the client to request OM services. Some of those requests must be issued in a
particular sequence, as shown in Table 35 on page 126. Other requests can be issued multiple times, in
any order, based on the processing requirements of the client.

How AOP clients that run on a workstation communicate with the CSL OM
A workstation automated operator program (AOP) client cannot communicate directly with Operations
Manager (OM). Instead, it must communicate with a z/OS address space that acts as an OM AOP client.

Instead of issuing CSLOMCMD or CSLOMQRY requests, the z/OS address space issues CSLOMI, which
passes the prebuilt string that it received from the workstation to OM. For example, if the workstation
wants to query the command processing clients to see how many exist in the IMSplex, it can send the
string QUERY(CMDCLIENTS) to the z/OS address space, which would then use CSLOMI to send the query
to OM for command processing.

If the workstation wants to issue a QRY TRAN command to the IMSplex, it can send the following string to
the z/OS address space:

CMD(QUERY TRAN NAME) ROUTE(IMSA) TIMEOUT(10) RQSTTKN2(QTRANCMD)

The z/OS address space would then use CSLOMI to send the string to OM for command processing. The
z/OS address space should pass the user ID associated with the workstation application to ensure correct
authorization processing by OM.

The following table illustrates the sequence of requests issued by a proxy AOP client, executing on z/OS,
that is communicating with OM on behalf of a workstation AOP. The request is listed with its purpose. 

Table 36. Sequence of requests for AOP running on the workstation

Request Purpose

CSLSCREG Registers to SCI, which enables the client to send OM requests to OM through SCI.

CSLSCRDY Readies the OM client to SCI, which routes messages to the client by client type.

CSLOMI Issues OM requests (CMD(), QUERY()) to send commands to OM.

CSLSCBFR Releases the output buffer returned by the request, if any.

CSLSCQSC Quiesces with SCI.

126  IMS: System Programming APIs



Table 36. Sequence of requests for AOP running on the workstation (continued)

Request Purpose

CSLSCDRG Deregisters from SCI.

Note: Although not required for an AOP executing on the workstation, CSLSCRDY and CSLSCQSC are
recommended for clients that want to receive messages routed by TYPE.

Processing AOP commands with a command processing client
A command processing client, such as an IMS control region, is a system that provides a command
processor to accept and process commands entered by an automated operator program (AOP).

A command processing client must register to OM in addition to registering with SCI. The command
processing client registers with OM by passing a list of commands to OM that it can process.

After successful command registration, the client must inform OM that it is ready to process commands.

Because AOP commands can be routed through any active OM in an IMSplex, a command processing
client must register its command list and ready status with all active OMs. Registering with all OMs in
the IMSplex ensures that any AOP command intended for the command processing client will be routed
correctly, regardless of the OM that routes that command.

Like the AOP clients, command processing clients must issue requests in a particular sequence. This
sequence, and the purpose of the request, is listed in Table 37 on page 127. 

Table 37. Sequence of requests for a command processing client

Request Purpose

CSLSCREG Registers to SCI, which enables the client to send OM requests to OM through SCI.

CSLSCRDY Readies the OM client to SCI, which routes messages to the client by client type.

CSLOMREG Registers the command list to OM.

CSLOMRDY Readies OM client to OM. Client is now ready to process commands.

CSLOMRSP Sends the command response output back to OM after receiving and processing a
command from OM.

CSLOMDRG Deregisters from OM. The client no longer wants to process commands.

CSLSCQSC Quiesces with SCI.

CSLSCDRG Deregisters from SCI.

Interpreting CSL OM XML output
Command responses that are returned through the OM API are embedded in XML tags. XML output
is generated for responses to the CSLOMI, CSLOMCMD, and CSLOMQRY requests. The DSECTS for the
output of CSLOMCMD and CSLOMI when OPTION=AOPOUTPUT are described in the DISPLAY macro in
the IMS.SDFSMAC data set.

For example, with the CSLOMI request, the QUERY parameter allows you to query all clients that are
registered to OM. The clients are returned embedded in <cmdclients></cmdclients> tags.

The list of XML tags and the descriptions of each tag are provided in “XML tags returned as CSL OM
responses” on page 238.

Chapter 4. CSL automated operator program requests  127



128  IMS: System Programming APIs



Chapter 5. Writing a CSL ODBM client
You can write your own ODBM clients that register with Open Database Manager (ODBM) and use the
CSLDMI interface to pass DL/I calls to databases that are managed by IMS DB in DBCTL and DB/TM
systems within an IMSplex.

IMS Connect, which provides TCP/IP connection management and routing services for the IMS Universal
drivers, is an example of an ODBM client. IMS Connect and the IMS Universal drivers are delivered with
IMS and you do not need to code any CSL ODBM requests to use them with ODBM.

Other ODBM clients can be application servers, such asWebSphere® Application Server for z/OS or Db2 for
z/OS, that run application programs that access IMS databases through the IMS ODBM API.

To write an ODBM client, you can use the set of client requests provided by ODBM. These requests allow
the ODBM client, a z/OS application program written in the assembler programming language, to access
IMS databases in an IMSplex that are managed by IMS DB systems configured for the IMS DBCTL or
DB/TM environments. An example of an ODBM client is IMS Connect.

ODBM clients submit CSLDMI requests to register with ODBM, interact with IMS databases, and manage
syncpoint processing for local or global transactions.

The ODBM CSLDMI API uses the IMS ODBA interface to communicate with IMS DB and therefore
supports only the DL/I calls that the ODBA interface supports. ODBM clients pass the DL/I calls to IMS DB
by using the ODBMCI function of the CSLDMI API.

Sequence of ODBM client requests
Some requests to Open Database Manager (ODBM) from an ODBM client must be issued in a particular
sequence, such as when enabling or disabling communication with ODBM.

An ODBM client issues SCI and ODBM requests to request ODBM services. Some of the requests must
follow a particular sequence. Other requests can be issued multiple times, in any order, based on the
processing requirements of the client.

Before an ODBM client can issue ODBM requests, it must register with SCI and all active ODBMs in the
IMSplex.

The following table shows the basic sequence of requests that an ODBM client issues. The CSLSCREG,
CSLSCRDY, and CSLDMREG requests must be issued in the order shown. The CSLSCBFR, CSLDMDRG, and
CSLSCDRG requests must also be issued in the order shown. The sequence order of the CSLDMI requests
can vary depending on the requirements of the ODBM client and syncpoint processing.

Table 38. Sequence of requests for an ODBM client

Request Purpose

CSLSCREG Registers to SCI, which enables the client to send
ODBM requests to ODBM through SCI.

CSLSCRDY Readies the ODBM client to SCI, which routes
messages to the client by client type.

CSLDMREG Registers client to ODBM to enable communication
with ODBM.

CSLDMI FUNC=ODBMCI DLIFUNC Allocates and deallocates PSBs. Passes DL/I calls
to IMS DB through ODBM.

CSLDMI FUNC=COMMIT For a local unit of work, commits the updates
associated with a single APSB call.

© Copyright IBM Corp. 1974, 2022 129



Table 38. Sequence of requests for an ODBM client (continued)

Request Purpose

CSLDMI FUNC=BACKOUT For a local unit of work, backs out the updates
associated with a single APSB call.

CSLDMI FUNC=READYSYNCPT For a global unit of work, prepares one of multiple
APSB calls for syncpoint processing.

CSLSCBFR Releases the output buffer returned by the request,
if any.

CSLDMDRG Deregisters client from ODBM to end
communications with ODBM.

CSLSCQSC Quiesces the ODBM client to SCI. SCI will no longer
route to the client by client type.

CSLSCDRG Deregisters from SCI.

Related tasks
“Registering an ODBM client” on page 99
To register with ODBM, a client must first register with the CSL SCI and then with all active ODBMs in the
IMSplex.
Related reference
“CSLDMREG: ODBM client registration request” on page 141
The CSLDMREG request registers an ODBM client with ODBM.

CSL ODBM client requests
ODBM clients submit requests to register with ODBM, interact with IMS databases, and commit or
backout database updates.

CSLDMDRG: ODBM client deregistration request
The CSLDMDRG request deregisters an ODBM client with ODBM.

An ODBM client issues the CSLDMDRG request when the ODBM client is finished sending ODBA calls
through ODBM. The deregister request cleans up the internal control blocks that ODBM stores for the
ODBM client.

CSLDMDRG DSECT syntax
Use the DSECT function of a CSLDMDRG request to include equate (EQU) statements in your program for
the CSLDMDRG parameter list length and return and reason codes.

CSLDMDRG FUNC=DSECT

CSLDMDRG request protocol syntax
CSLDMDRG FUNC=DEREGISTER ECB= ecb ODBMNAME=  odbmname PARM=  parm

RETCODE=  returncode RSNCODE=  reasoncode SCITOKEN=  scitoken

CSLDMDRG parameters
The CSLDMDRG parameters specify the ODBM values required for deregistration with ODBM.

130  IMS: System Programming APIs



The addresses can be specified as either a symbol or a register from 2 to 12.

The CSLDMDRG request includes the following parameters:
ODBMNAME=symbol
ODBMNAME=(r2-r12)

(Required) - Specifies the 8-byte ODBM name to which to send the command deregistration request.

If the value of ODBMNAME is specified as a symbol, the symbol must be the label of the ODBM field. If
the value of ODBMNAME is specified as a register, the register must contain the address of the ODBM
name field.

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLDMDRG parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by DDRG_PARMLN.

If the value of PARM is specified as a symbol, the symbol must denote the start of the parameter list
storage. If the value of PARM is specified as a register, the register must contain the address of the
parameter list.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. ODBM return codes are
defined in the CSLDRR. SCI return codes are defined in CSLSRR.

The return code can be from ODBM (CSLDMDRG) or SCI (CSLSCMSG or CSLSCRQS). If ECB is
specified, the RETCODE is not valid until the ECB is posted. All return codes contain the SCI member
type indicator for either SCI or ODBM in the high order byte (X'01' for SCI and X'04' for ODBM).

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. ODBM reason codes are
defined in the CSLDRR. SCI reason codes are defined in CSLSRR.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token is returned by a successful CSLSCREG FUNC=REGISTER request.

CSLDMDRG return and reason codes
The return and reason codes in the following table can be returned on a CSLDMDRG macro request.

Table 39. CSLDMDRG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The CSLDMDRG request completed successfully.

X'04000010' X'00004004' The client is not registered.

X'00004020' The parameter list version of the parameter list specified on the
PARM= parameter is invalid.

CSLDMI: ODBM application program interface
Application programs written in assembler and running on z/OS can access IMS databases managed by
IMS DB in DBCTL and DB/DC systems in an IMSplex by using the CSL Open Database Manager (ODBM)
CSLDMI API.

The CSLDMI API supports all of the DL/I calls supported by the IMS ODBA interface, global and local
transaction processing, and security.

Chapter 5. Writing a CSL ODBM client  131



Prior to issuing the CSLDMI request, the ODBM client must first register with ODBM by issuing the
CSLDMREG request.

The CSLDMI API includes the following function calls:

BACKOUT
Backs out a local unit of work for local transactions. A local unit of work consists of a single APSB call
that has work, such as DL/I calls, associated with the APSB thread.

COMMIT
Commits a local unit of work for local transactions. A local unit of work consists of a single APSB call
that has work, such as DL/I calls, associated with the APSB thread.

DSECT
Includes equate (EQU) statements in an application program for the length of a CSLDMI parameter list
and for CSLDMI return and reason codes.

ODBMCI
To issue DL/I calls to IMS databases, use the ODBMCI function. DL/I calls are passed to IMS by using
the DLIFUNC parameter of the ODBMCI function.
Prior to issuing an ODBMCI function call, you must ensure that the AIB fields are coded appropriately
for the DL/I calls that are being passed in the DLIFUNC parameter.
The following parameters are specific to the ODBMCI function and cannot be specified on other
CSLDMI function calls:

• AIB
• CLIENTID
• CLIENTIDLEN
• CTXTOKEN
• DLIFUNC
• GROUPNAME=
• GROUPNAMELEN=
• IOAREA
• IOAREALEN
• PCB
• PCBLEN
• SECTKNLEN
• SECTOKEN
• SSA1 through SSA15
• SSA1LEN through SSA15LEN
• URTOKEN
• USERID=
• USERIDLEN=

READYSYNCPT
Prepares for syncpoint processing for each of the multiple APSB calls within a global unit of work.
The READYSYNCPT function of the CSLDMI API must called before initiating syncpoint processing for
global transactions, such as those that contain multiple APSB threads within a single unit of work. The
ODBM client must issue FUNC=READYSYNCPT for each APSB that is represented by an APSBTOKEN
in a global unit of work (UOW). This pertains to the URTOKEN parameter. See the URTOKEN parameter
for more description.
Before initiating syncpoint processing, the caller must issue FUNC=READYSYNCPT for each APSB call
in the global UOW. CSLDMI uses an APSB token (APSBTOKEN) to represent each APSB call.

Subsections:

132  IMS: System Programming APIs



• “CSLDMI FUNC=BACKOUT syntax” on page 133
• “CSLDMI FUNC=COMMIT syntax” on page 133
• “CSLDMI FUNC=DSECT syntax” on page 133
• “CSLDMI FUNC=ODBMCI syntax” on page 134
• “CSLDMI FUNC=READYSYNCPT syntax” on page 134
• “CSLDMI function parameters” on page 135
• “CSLDMI return and reason codes” on page 140

CSLDMI FUNC=BACKOUT syntax
CSLDMI FUNC=BACKOUT APSBTOKEN=  apsb_token

ECB= ecb

ODBMNAME=  odbm_name PARM=  parm

PROTOCOL=

RQST

RQSTTKN1=  request_token

MSG

RETCODE=  return_code RSNCODE=  reason_code SCITOKEN=  sci_token

CSLDMI FUNC=COMMIT syntax
CSLDMI FUNC=COMMIT APSBTOKEN=  apsb_token

ECB= ecb

ODBMNAME=  odbm_name PARM=  parm

PROTOCOL=

RQST

RQSTTKN1=  request_token

MSG

RETCODE=  return_code RSNCODE=  reason_code SCITOKEN=  sci_token

CSLDMI FUNC=DSECT syntax
CSLDMI FUNC=DSECT

Chapter 5. Writing a CSL ODBM client  133



CSLDMI FUNC=ODBMCI syntax
CSLDMI FUNC=ODBMCI AIB= aib APSBTOKEN=  apsb_token

CLIENTID=  client_id CLIENTIDLEN=  client_id_length

CTXTOKEN=  CTX_private_context_token

DLIFUNC=  dli_call

ECB= ecb

GROUPNAME=  group_nm GROUPNAMELEN=  group_nm_length

IOAREA=  io_area IOAREALEN=  io_area_length

ODBMNAME=  odbm_name

PARM=  parm

PCB= pcb PCBLEN=  pcb_length

PROTOCOL=

RQST

RQSTTKN1=  request_token

MSG

RETCODE=  return_code RSNCODE=  reason_code SCITOKEN=  sci_token

SECTOKEN=  security_token SECTKNLEN=  token_length

,

SSA  n= SSAn_address SSA  nLEN= SSAn_length

URTOKEN=  RRS_UR_token USERID=  user_id USERIDLEN=  user_id_length

CSLDMI FUNC=READYSYNCPT syntax
CSLDMI FUNC=READYSYNCPT APSBTOKEN=  apsb_token

ECB= ecb

ODBMNAME=  odbm_name PARM=  parm

PROTOCOL=

RQST

RQSTTKN1=  request_token

MSG

RETCODE=  return_code RSNCODE=  reason_code SCITOKEN=  sci_token

134  IMS: System Programming APIs



CSLDMI function parameters
The CSLDMI parameters specify the ODBM values required for communicating with ODBM and accessing
IMS databases.

The addresses can be specified as either a symbol or a register from 2 to 12.

Parameters that are supported only when the ODBMCI function is specified are noted in the description of
the parameters. Parameters that are not noted as being supported by ODBMCI only, can be specified on
all CSLDMI functions other than DSECT.

The following parameters can be specified on one or more functions of the CSLDMI API:
AIB=symbol | (r2-r12)

(Required) - Specifies the address of the application interface block (AIB). The AIB parameter is
required on both input to and output from ODBM. This parameter is supported only on the ODBMCI
function call.
When the SCI message protocol (PROTOCOL=MSG) is specified on a CSLDMI request, ODBM returns
the address of the AIB in the DDIR_DMIRAIBPTR field of the ODBM directive parameter list, which is
mapped by the CSLDMDIR macro.
Prior to issuing CSLDMI FUNC=ODBMCI, the AIB fields required by each DL/I call being passed
on the DLIFUNC parameter must be set. The fields of the AIB are mapped by the DFSAIB macro
and described in "Specifying the AIB mask for ODBA applications" in IMS Version 15.3 Application
Programming.
If the AIB is specified as a register, the register must contain the address of the AIB area. If the AIB is
specified as a symbol, the symbol must be the label of the AIB area.

APSBTOKEN=symbol | (r2-r12)
(Required) - Specifies an address for a 16-byte ODBM APSB token. An APSB token is returned by
CSLDMI on the initial APSB thread request and is required on all subsequent calls targeted to this
thread.
On an APSB request, APSBTOKEN specifies the address of the field to receive the token from ODBM.
The length of APSBTOKEN field must be 16 bytes as defined by DMI_APSBTKNLEN in the CSLDMI
macro.
For all subsequent requests associated to this thread, APSBTOKEN specifies the address of this
16-byte token.
When the SCI message protocol (PROTOCOL=MSG) is specified on a CSLDMI request, ODBM returns
the address of the APSB token in the DDIR_DMIRAPSBTPTR field of the ODBM directive parameter
list, which is mapped by the CSLDMDIR macro.
If the APSBTOKEN parameter is specified as a register, the register must contain the address of the
token field. If the APSBTOKEN parameter is specified as a symbol, the symbol must be the label of the
token field.

CLIENTID=symbol | (r2-r12)
(Optional) - Specifies the end user client application ID as defined by the end user client.
If the CLIENTID parameter is specified as a register, the register must contain the address of the
client ID field. If the CLIENTID parameter is specified as a symbol, the symbol must be the label of the
client ID field.

CLIENTIDLEN=symbol | (r2-r12)
(Required when CLIENTID is specified) - Specifies the length of the client ID.
If the CLIENTIDLEN parameter is specified as a register, the register must contain the length of the
client ID. If the CLIENTIDLEN parameter is specified as a symbol, the symbol must be the label of a
fullword containing the length of the client ID.

CTXTOKEN=symbol | (r2-r12)
(Optional) - Specifies a 16-byte RRMS Context Services context token. This may be the native context
token, or a private token obtained by calling the Context Services Begin_Context service (CTXBEGC).

Chapter 5. Writing a CSL ODBM client  135



CTXTOKEN can be used to setup a global unit of work made up of multiple APSB calls within one
commit scope on a single LPAR. If specified, the same CTXTOKEN must be included on each APSB call
within the global unit of work.
CTXTOKEN and URTOKEN will be mutually exclusive if you do not install the PTF PH23803. After you
install PH23803, if the call only specifies a CTXTOKEN, caller must ensure that the private context
token specified on the CTXTOKEN has been disassociated from the current dispatchable unit, such
as a TCB, prior to passing the private context token to ODBM. This is done using Context Services
Switch_Context (CSXSWCH). ODBM associates this context to its DU for the duration of the call and
disassociates it on return to the ODBM client.
If the caller specifies a CTXTOKEN and a URTOKEN, the context token can be native or private.
The caller does NOT need to disassociate from the current DU. ODBM will express interest in
the CTXTOKEN and create a cascaded UR child. The caller is responsible for initiating sync point
processing using the appropriate z/OS Resource Recovery Services services, such as, ATRAPRP,
ATRACMT, ATRCMIT, ATRBACK, and so forth. The ODBM client must establish an RRS WID (work
identifier) if needed. Usually, the WID (Work Identifier) is an XID. ATRSWID2 is used to set a work
identifier and the WID is set based on the context token specified on this CTXTOKEN parameter.
If the CTXTOKEN parameter is specified as a register, the register must contain the address of the
private context token field. If the CTXTOKEN parameter is specified as a symbol, the symbol must be
the label of the private context token field.

DLIFUNC=symbol | (r2-r12)
(Required) - Specifies the 4-byte DL/I call. Any DL/I call that is supported by the Open Database
Access (ODBA) callable interface can be specified. This parameter is supported only on the ODBMCI
function call.
Prior to issuing CSLDMI FUNC=ODBMCI DLIFUNC, the AIB fields required by each DL/I call being
passed on the DLIFUNC parameter must be set. The fields of the AIB are mapped by the DFSAIB
macro and described in "Specifying the AIB mask for ODBA applications" in IMS Version 15.3
Application Programming.
If the DLIFUNC parameter is specified as a register, the register must contain the address of the DLI
function code. If the DLIFUNC parameter is specified as a symbol, the symbol must be the label of the
DLI function code.

ECB=symbol | (r2-r12)
(Optional) - Specifies an MVS™ event control block (ECB) that is used for asynchronous requests.
When the request is complete, the ECB specified is posted.
If an ECB is not specified, the task is suspended until the request is complete. If an ECB is
specified, the ODBM client that invokes the CSLDMI macro must invoke the z/OS WAIT macro (or
equivalent) after receiving control from CSLDMI before using or examining any data returned by
CSLDMI, including the RETCODE and RSNCODE fields.
If the ECB parameter is specified as a register, the register must contain the address of the ECB. If the
ECB parameter is specified as a symbol, the symbol must denote the start of the ECB storage.

GROUPNAME=symbol | (r2-r12)
(Optional) - Specifies a group name for RACF or an equivalent security product. The group name
pertains to the APSB call only (DLIFUNC=APSB) and is ignored for all other DL/I calls.
If the GROUPNAME parameter is specified as a register, the register must contain the address of the
group name field. If the GROUPNAME parameter is specified as a symbol, the symbol must be the
label of the group name field.

GROUPNAMELEN=symbol | (r2-r12)
(Required when GROUPNAME is specified) - Specifies the length of the group name.
If the GROUPNAMELEN parameter is specified as a register, the register must contain the length of the
group name. If the GROUPNAMELEN parameter is specified as a symbol, the symbol must be the label
of a fullword containing the length of the group name.

IOAREA=symbol | (r2-r12)
(Conditionally required) - Specifies an I/O area that is used for the input or output data related to a
database DL/I call. The IOAREA and IOAREALEN parameters are required only when a DL/I call that

136  IMS: System Programming APIs



requires input data or that returns output data is specified on the DLIFUNC parameter. This parameter
is supported only on the ODBMCI function call.
When the SCI message protocol (PROTOCOL=MSG) is specified on a CSLDMI request, ODBM returns
the address of the I/O area in the DDIR_DMIRIOAPT field of the ODBM directive parameter list, which
is mapped by the CSLDMDIR macro.
If the IOAREA parameter is specified as a register, the register must contain the address of the I/O
area. If the IOAREA parameter is specified as a symbol, the symbol must be the label of the I/O area.

IOAREALEN=symbol | (r2-r12)
(Conditionally required) - Specifies the length of the I/O area specified by the IOAREA parameter.
The IOAREA and IOAREALEN parameters are required only when a DL/I call that requires input or
that returns output is specified on the DLIFUNC parameter. This parameter is supported only on the
ODBMCI function call.
The length specified on the IOAREALEN parameter must also be specified on the AIBOALEN field
of the AIB mask. For information about the AIB mask, see Specifying the AIB mask (Application
Programming) .
If the IOAREALEN parameter is specified as a register, the register must contain the length of the I/O
area. If the IOAREALEN parameter is specified as a symbol, the symbol must be the label of a fullword
containing the length of the I/O area.

ODBMNAME=symbol | (r2-r12)
(Required) - Specifies the 8-byte ODBM name to which to the CSLDMI request is to be sent.

If the ODBMNAME parameter is specified as a symbol, the symbol must be the label of the ODBM
field. If the ODBMNAME parameter is specified as a register, the register must contain the address of
the ODBM name field.

PARM=symbol | (r2-r12)
(Required) - Specifies the address CSLDMI parameter list. The length of the parameter list must be at
least as long as the value assigned to DMI_PARMLN in the CSLDMI macro.
Use CSLDMI FUNC=DSECT to include equate (EQU) statements in your application program for the
length of the CSLDMI parameter list
If the value of PARM is specified as a register, the register must contain the address of the parameter
list. If the value of PARM is specified as a symbol, the symbol must denote the start of the parameter
list storage.

PCB=symbol | (r2-r12)
(Optional) - An output parameter that specifies the address of a fullword storage area to receive the
address of the program communication block (PCB) returned by IMS after processing a DL/I call. The
PCB contains the status codes related to a DL/I call and other fields. This parameter is supported only
on the ODBMCI function call.
The PCB storage is not preallocated by the caller. Upon return from the request, the address in the
PCB parameter contains the address of a storage buffer that contains the PCB. After the ODBM client
is finished with the PCB, the ODBM client must release the PCB storage buffer by issuing the SCI
request CSLSCBFR FUNC=RELEASE.
When the SCI message protocol (PROTOCOL=MSG) is specified on a CSLDMI request, ODBM returns
the address of the PCB storage in the DDIR_DMIRPCBPTR field of the ODBM directive parameter list,
which is mapped by the CSLDMDIR macro.
If specified as a register, the register must contain the address of a fullword to contain the address of
the PCB. If specified as a symbol, the symbol must be the label of a fullword to contain the address of
the PCB.

PCBLEN=symbol | (r2-r12)
(Conditionally required) - Specifies the length of the PCB returned by DL/I call processing. The
PCBLEN parameter is required when the PCB parameter is specified. This parameter is supported only
on the ODBMCI function call.

Chapter 5. Writing a CSL ODBM client  137

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_imsdbspecifyingaib.htm#ims_imsdbspecifyingaib
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_imsdbspecifyingaib.htm#ims_imsdbspecifyingaib


If specified as a register, the register must contain the address of a fullword to contain the length of
the PCB. If specified as a symbol, the symbol must be the label of a fullword to contain the length of
the PCB.

PROTOCOL=MSG | RQST
(Optional) - Specifies the SCI protocol for sending the request to ODBM.
MSG

Specifies that CSLDMI sends input requests to ODBM by using the SCI message protocol, which
uses a one-way send of the data to the other IMSplex members and does not support output
parameters. The ODBM client does not wait for output from ODBM and any output generated by
the requests that use the MSG protocol is handled asynchronously.

RQST
Specifies that CSLDMI sends input requests to ODBM by using the SCI request protocol. The SCI
request protocol supports both input and output parameters. The ODBM client waits for output
from ODBM and process it synchronously. RQST is the default.

RETCODE=symbol | (r2-r12)
(Required) - Specifies a 4-byte field to receive the return code on output. ODBM return codes are
defined in the CSLDRR. SCI return codes are defined in CSLSRR.

The return code can be from ODBM (CSLDMI) or SCI (CSLSCMSG or CSLSCRQS). If an ECB is specified,
the value of RETCODE is not valid until the ECB is posted. All return codes contain the SCI-member-
type indicator for either SCI or ODBM in the high order byte (X'01' for SCI or X'04' for ODBM).

RQSTTKN1=symbol | (r2-r12)
(Conditionally optional) - Specifies a 16-byte user-generated request token that correlates an output
response to its associated input request for asynchronous processing. ODBM returns the address of
this token in the DDIR_DMIRQT1PTR field of the ODBM directive parameter list that is mapped by
CSLDMDIR.
RQSTTKN1 is supported only when the SCI message protocol is specified by PROTOCOL=MSG.
If specified as a register, the register must contain the address of the request token field. If specified
as a symbol, the symbol must be the label of the request token field. The request token field must be
16 bytes in length, left justified, and padded with blanks if necessary.

RSNCODE=symbol | (r2-r12)
(Required) - Specifies a 4-byte field to receive the reason code on output. ODBM reason codes are
defined in the CSLDRR macro. SCI reason codes are defined in CSLSRR.

SCITOKEN=symbol | (r2-r12)
(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token is returned by a successful CSLSCREG FUNC=REGISTER request.
If the SCITOKEN parameter is specified as a register, the register must contain the address of the SCI
token field. If the SCITOKEN parameter is specified as a symbol, the symbol must be the label of the
SCI token field.

SECTKNLEN=symbol | (r2-r12)
(Conditionally required) - Specifies the length of the security token. The SECTKNLEN parameter
is required when the SECTOKEN parameter is specified. This parameter is supported only on the
ODBMCI function call.
If the SECTKNLEN parameter is specified as a register, the register must contain the length of the
security token. If the SECTKNLEN parameter is specified as a symbol, the symbol must be the label of
a fullword containing the length of the security token.

SECTOKEN=symbol | (r2-r12)
(Conditionally optional) - Specifies the address of a variable length security token that is used for
security checking by RACF or an equivalent security product. The security token applies only to the
APSB DL/I call that is specified by DLIFUNC=APSB. The security token is ignored for all other DL/I
calls. This parameter is supported only on the ODBMCI function call. This security token is used only
if the client address space is an authorized caller. If the client address space is unauthorized, the user
ID is obtained automatically from z/OS control blocks.

138  IMS: System Programming APIs



The security token must be a security object. For example, if RACF is used, the security token must be
a RACO (RACF Object). ODBM invokes RACROUTE REQUEST=VERIFY,ENVIR=CREATE with ENVRIN=
to establish a security environment with a RACF accessor environment element (ACEE) for the APSB
thread. IMS uses the ACEE during ODBA or RAS security authorization for the PSB.
If the SECTOKEN parameter is specified as a register, the register must contain the address of the
security token field. If the SECTOKEN parameter is specified as a symbol, the symbol must be the
label of the security token field.

SSAn=symbol | (r2-r12)
(Optional) - Specifies the segment search arguments (SSAs) for a DL/I call. A maximum of 15 SSAs
can be specified: SSA1 through SSA15. This parameter is supported only on the ODBMCI function call.
If the parameters SSA1 through SSA15 are specified as registers, each register must contain the
address of an SSA. If the parameters SSA1 through SSA15 parameters are specified as symbols, each
symbol must be the label of a fullword that contains the address of an SSA.

SSAnLEN=symbol | (r2-r12)
(Conditionally required) - Specifies the length of the corresponding SSA list area. For every SSAn
parameter specified, a corresponding SSAnLEN parameter is required, specified as SSA1LEN up
through SSA15LEN. This parameter is supported only on the ODBMCI function call.
If the parameters SSA1LEN through SSA15LEN are specified as registers, the registers must contain
the length of the SSA list areas. If the parameters SSA1LEN through SSA15LEN are specified as
symbols, the symbols must be the labels of a fullword containing the length of the SSA list areas.

URTOKEN=symbol | (r2-r12)
(Optional) - Specifies a 16-byte RRS parent unit of recovery (UR) token obtained by calling the RRS
Express_UR_Interest service that supports cascaded transactions (ATREINT2 or higher).
A URTOKEN is required in order to setup a global unit of work made up of multiple APSB calls within
one commit scope on a single LPAR. If specified, the same URTOKEN must be included on each initial
APSB call within the global unit of work.
CTXTOKEN and URTOKEN will be mutually exclusive before you install the PTF PH23803. After you
install PH23803, if the call only specifies a URTOKEN, caller must ensure that the UR token supports
cascading. ODBM will create a new context and create a cascaded child UR. If the caller specifies
a URTOKEN and a CTXTOKEN, ODBM will express interest in the CTXTOKEN, create a new context,
and create a cascaded UR child. The caller is responsible for initiating sync point processing using the
appropriate RRS services, such as, ATRAPRP, ATRACMT, ATRABCK, ATRCMIT and so forth. Caller must
establish an RRS WID (work identifier) if needed. Usually, the WID is an XID. ATRSWID2 is used to set
a work identifier. The WID is set based on the parent UR token specified on this URTOKEN parameter.
If the URTOKEN parameter is specified as a register, the register must contain the address of the RRS
UR token field. If the URTOKEN parameter is specified as a symbol, the symbol must be the label of
the RRS UR token field.

USERID=symbol | (r2-r12)
(Optional) - Specifies the user ID to be used by RACF or an equivalent security product. Use this
parameter only if your client address space has been authorized for this request. If your client is not
authorized, the user ID is obtained automatically from z/OS control blocks. The user ID pertains to the
APSB call only (DLIFUNC=APSB) and is ignored for all other DL/I calls.
If the USERID parameter is specified as a register, the register must contain the address of the user ID
field. If the USERID parameter is specified as a symbol, the symbol must be the label of the user ID
field.

USERIDLEN=symbol | (r2-r12)
(Required when USERID is specified) - Specifies the length of the user ID.
If the USERIDLEN parameter is specified as a register, the register must contain the length of the user
ID. If the USERIDLEN parameter is specified as a symbol, the symbol must be the label of a fullword
containing the length of the user ID.

Chapter 5. Writing a CSL ODBM client  139



CSLDMI return and reason codes
The return and reason codes in the following table can be returned on a CSLDMI macro request.

Table 40. CSLDMI return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The CSLDMI request completed successfully.

X'04000004' X'00001004' The Input user exit rejected the request.

X'04000008' X'00002018' Invalid AIB parameter.

X'0000201C' Invalid value is specified in the AIBRSNM1 field of the AIB
mask.

X'00002020' Unsupported DL/I function.

X'00002024' The Input user exit incorrectly set the AIBOALEN field of the
IAB mask to a value that is greater than the value that is
specified on the IOAREALEN parameter.

X'04000010' X'00004000' Unable to locate the alias name.

X'00004004' The client is not registered.

X'00004008' The data store was not acquired.

140  IMS: System Programming APIs



Table 40. CSLDMI return and reason codes (continued)

Return code Reason code Meaning

X'04000014' X'00005004' Unable to obtain an APSB control block.

X'00005008' Unable to obtain an AIB control block.

X'00005014' Hash table ADD failed for APSB block.

X'00005018' Hash table FIND failed for APSB block.

X'00005034' OUTPUT buffer allocation failed.

X'00005040' RRS0_ASSOCCTX failed.

X'00005044' RRS0_DISCTX failed.

X'00005048' RRS0_COMMIT3_DMIR failed.

X'0000504C' RRS0_SUSI failed.

X'00005050' RRS0_BACKOUT3_DMIR failed.

X'00005054' APSB token length error.

X'00005058' APSB hash table RELEASE failed.

X'0000505C' RRS0_ASSOCCTX3 failed.

X'00005060' RRS0_CASCADE3 failed.

X'00005064' RRS0_GETCTX2 failed.

X'00005068' RRS0_ENDCTX2 failed.

X'0000506C' SEC0_CREATE call failed.

X'00005070' SEC0_DELETE call failed.

X'00005074' An APSB call failed to schedule a PSB.

X'00005078' PSB Name error.

X'00005080' PAPL block allocation failed.

X'00005084' RRS not active for global transaction.

X'0000507C' Failed to obtain DMI IOA storage.

X'00005094' BPETCBSW to an ORRS TCB failed.

X'00005098' BPETCBSW to an ODRA TCB failed.

X'0000509C' Failed to obtain an ORRS TTE.

Related reference
Specifying the AIB mask for ODBA applications (Application Programming)
Database management (Application Programming APIs)
Database management call summary (Application Programming APIs)

CSLDMREG: ODBM client registration request
The CSLDMREG request registers an ODBM client with ODBM.

With the CSLDMREG request, an ODBM client, such asWebSphere Application Server for z/OS or Db2 for
z/OS, can register with an instance of ODBM.

Chapter 5. Writing a CSL ODBM client  141

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_imsdbspecifyingaibforodba.htm#ims_imsdbspecifyingaibforodba
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dlicallsfordbmanagement.htm#ims_dlicallsfordbmanagement
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_dbmanagementcallsummary.htm#ims_dbmanagementcallsummary


The CSLDMREG request registers an application program with ODBM as an ODBM client. The register
command must be the first request that a client issues to ODBM.

Use the CSLSCQRY request to obtain the names of all ODBMs in the IMSplex.

CSLDMREG DSECT syntax

Use the DSECT function of a CSLDMREG request to include equate (EQU) statements in your program for
the CSLDMREG parameter list length and return and reason codes.

CSLDMREG FUNC=DSECT

Request protocol syntax

CSLDMREG FUNC=REGISTER ECB= ecb ODBMNAME=  odbmname OUTLEN=  outlen

OUTPUT=  output PARM=  parm RETCODE=  returncode

RETNAME=  odbmname

RSNCODE=  reasoncode SCITOKEN=  scitoken

CSLDMREG parameters

The CSLDMREG parameters specify the ODBM values required for registration with ODBM.

The addresses can be specified as either a symbol or a register from 2 to 12.

The CSLDMREG command includes the following parameters:
ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for asynchronous requests.
When the request is complete, the ECB specified is posted. If an ECB is not specified, the task is
suspended until the request is complete. If an ECB is specified, the invoker of the macro must issue
a WAIT (or equivalent) after receiving control from CSLDMREG before using or examining any data
returned by this macro (including the RETCODE and RSNCODE fields).

If the value of ECB is specified as a symbol, the symbol must denote the start of the ECB storage. If
the value of ECB is specified as a register, the register must contain the address of the ECB.

ODBMNAME=symbol
ODBMNAME=(r2-r12)

(Optional) - Specifies the 8-byte ODBM name to which to send the command registration request.

Either the ODBMNAME parameter or the RETNAME parameter, but not both, must be specified on a
CSLDMREG request.

Use the ODBMNAME parameter to connect the ODBM client to a specific, known instance of ODBM.

If the value of ODBMNAME is specified as a symbol, the symbol must be the label of the ODBM field. If
the value of ODBMNAME is specified as a register, the register must contain the address of the ODBM
name field.

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned by the CSLDMREG
request. OUTLEN contains the length of the output pointed to by the OUTPUT= parameter.

If no output is built, the output length is zero, as is the case when an error is detected before building
the output.

142  IMS: System Programming APIs



If the value of OUTLEN is specified as a register, the register must contain the address of the output
length field. If the value of OUTLEN is specified as a symbol, the symbol must be the label of the
output length field.

OUTPUT=symbol
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the variable length output returned by the CSLDMREG
request. The output length is returned in the OUTLEN= field.

If no output is built, the output address is zero, as is the case when an error is detected before
building the output.

The CSLDREGO macro maps the output that is returned. The output buffer contains the ODBM
version, count of the aliases, and a list of the 4-byte alias names.

The output buffer is not preallocated by the caller. Upon return from the request, this word contains
the address of a buffer containing the update output.

After the ODBM client no longer needs the buffer storage, the ODBM client must release the storage
by issuing the CSLSCBFR FUNC=RELEASE request.

If the value of OUTPUT is specified as a register, the register must contain the address of a field to
contain the output address. If the value of OUTPUT is specified as a symbol, the symbol must be the
label of a field to contain the output.

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the address of the CSLDMREG parameter list. The length of the parameter list
must be equal to the parameter list length EQU value defined by DREG_PARMLN.

If the value of PARM is specified as a symbol, the symbol must denote the start of the parameter list
storage. If the value of PARM is specified as a register, the register must contain the address of the
parameter list.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. ODBM return codes are
defined in the CSLDRR. SCI return codes are defined in CSLSRR.

The return code can be from ODBM (CSLDMREG) or SCI (CSLSCMSG or CSLSCRQS). If ECB is
specified, the RETCODE is not valid until the ECB is posted. All return codes contain the SCI member
type indicator for either SCI or ODBM in the high order byte (X'01' for SCI and X'04' for ODBM).

If the value of RETCODE is specified as a symbol, the symbol must be the label of the return code
field. If the value of RETCODE is specified as a register, the register must contain the address of the
return code field.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies the eight-byte output field to receive the ODBM name. This is the CSL member
name of the target address space to which SCI sent the request.

Either the RETNAME parameter or the ODBMNAME parameter, but not both, must be specified on a
CSLDMREG request.

Use the RETNAME parameter if you do not know the name of an ODBM instance or if the ODBM
client does not require a connection to a specific instance of ODBM. When RETNAME is specified, SCI
connects to any available instance of ODBM and returns the name of that ODBM in the RETNAME
output field.

If the value of OUTPUT is specified as a register, the register must contain the address of a field to
contain the output address. If the value of OUTPUT is specified as a symbol, the symbol must be the
label of a field to contain the output.

Chapter 5. Writing a CSL ODBM client  143



RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. ODBM reason codes are
defined in the CSLDRR. SCI reason codes are defined in CSLSRR.

If the value of RSNCODE is specified as a symbol, the symbol must be the label of the reason code
field. If the value of RSNCODE is specified as a register, the register must contain the address of the
reason code field.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token is returned by a successful CSLSCREG FUNC=REGISTER request.

If the value of SCITOKEN is specified as a register, the register must contain the address of the SCI
token field. If the value of SCITOKEN is specified as a symbol, the symbol must be the label of the SCI
token field.

CLSDMREG return and reason codes

The return and reason codes in the following table can be returned on a CSLDMREG macro request. The
hexadecimal value 04 represents the SCI member type for ODBM. 

Table 41. CSLDMREG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The CSLDMREG request completed successfully.

X'04000010' X'0000401C' The client is already registered.

X'00004020' The parameter list version of the parameter list specified on the
PARM= parameter is invalid.

X'04000014' X'0000502C' Unable to obtain a CSLDREGO feedback area.

X'0000503C' Unable to obtain a CLNT control block.

Related concepts
“Sequence of ODBM client requests” on page 129
Some requests to Open Database Manager (ODBM) from an ODBM client must be issued in a particular
sequence, such as when enabling or disabling communication with ODBM.
Related tasks
“Registering an ODBM client” on page 99
To register with ODBM, a client must first register with the CSL SCI and then with all active ODBMs in the
IMSplex.

144  IMS: System Programming APIs



Chapter 6. Writing a CSL OM client
These topics describe the client requests and directives for writing an OM client.

CSL OM command processing client requests
The following topics describe the requests that are made by command processing clients.

If you are writing your own command processing client, ensure that the access authority you provide on
the RACF PERMIT command matches the access authority with which the command is registered.

Related tasks
“Registering an OM command processing client” on page 100
An Operations Manager (OM) command processing client must register its command with OM, whereas
automated operator program (AOP) clients do not have to register to OM.

CSLOMBLD: command registration build
With the CSLOMBLD request, you can build the command registration list that is passed to OM on the
CSLOMREG request.

This list identifies the commands for which the IMS system can be called. The list contains a set of
statements starting with a CSLOMBLD FUNC=BEGIN statement and ending with a CSLOMBLD FUNC=END
statement.

Any number of CSLOMBLD FUNC=DEFVRB statements can be provided, each one defining the command
verb. Following each DEFVRB statement are CSLOMBLD FUNC=DEFKEY statements, which identify
keywords valid for the previously defined command verb.

The set of CSLOMBLD statements can be defined either in a separate data-only assembler module, or in
a static data section of an executable assembler module. Refer to the documentation in the CSLOMBLD
macro.

CSLOMBLD is used to build the command registration list; it does not have an input parameter list.

CSLOMBLD syntax
CSLOMBLD BEGIN

Use the BEGIN function statement to identify the beginning of the set of command statements.

CSLOMBLD FUNC=BEGIN

CSLOMBLD DEFVRB

Use the DEFVRB function statement to identify a command that the OM client or IMS system will support.
You can specify a short form of the command verb.

CSLOMBLD FUNC=DEFVRB VERB=verbname NORM=shortverbname

CSLOMBLD DEFKEY

Use the DEFKEY function statement to identify a keyword that is valid for the previously defined
command. You can also specify command routing and required RACF authorization with this statement.

CSLOMBLD FUNC=DEFKEY KEYW=keyword ROUTE=ANY|ALL SEC=READ|UPDATE

CSLOMBLD DEFGMR

© Copyright IBM Corp. 1974, 2022 145



Use the DEFGMR function statement to identify the beginning of the statements that describe the output
parsing grammar.

Note: This function is for internal IBM use only.

CSLOMBLD FUNC=DEFGMR

CSLOMBLD ENDGMR

Use the ENDGMR function statement to designate the end of the statements that describe the output
parsing grammar.

Note: This function is for internal IBM use only.

CSLOMBLD FUNC=ENDGMR

CSLOMBLD END

Use the END function statement to designate the end of the list of command statements.

CSLOMBLD FUNC=END

CSLOMBLD parameters
KEYW=keyword

Specifies a valid keyword for the command verb that immediately precedes this parameter. For a null
keyword, use blanks; for example, 'KEYW= '. This parameter is required for FUNC=DEFKEY.

NORM=shortverbname
Specifies the short form of the command being defined. This parameter is required for
FUNC=DEFVRB.

ROUTE=ANY | ALL
Specifies the override routing for the command being defined. This parameter is required for
FUNC=DEFKEY.

SEC=READ | UPDATE
Specifies the required RACF authorization for KEYW. This parameter is required for FUNC=DEFKEY.

VERB=verbname
Specifies the long form of the command being defined. This parameter is required for FUNC=DEFVRB.

CSLOMBLD example
The following shows an example of a set of CSLOMBLD statements.

Figure 7. CSLOMBLD example statements

  CSLOMBLD FUNC=BEGIN
  CSLOMBLD FUNC=DEFVRB,VERB=ACTIVATE,NORM=ACT
  CSLOMBLD FUNC=DEFKEY,KEYW=LINK,SEC=UPDATE
  CSLOMBLD FUNC=DEFKEY,KEYW=NODE,SEC=UPDATE
  CSLOMBLD FUNC=END

Overriding CSL OM command routing with the ROUTE parameter
CSLOMBLD allows the command processing client to override the routing that you specify when you enter
a command. There are a few commands that specify command routing overrides. OM overrides command
routing when two command processing clients specify different routing overrides for the same command
if:

• At least one command processing client specifies an override of ROUTE=ALL, then OM routes the
command to all registered command processing clients.

146  IMS: System Programming APIs



• At least one command processing client specifies an override of ROUTE=ANY, and no command
processing client has specified ROUTE=ALL, then OM routes the command to one of the registered
command processing clients.

• No command processing clients have specified an override of ROUTE=ALL or ROUTE=ANY, then OM
routes the command as specified by the user that entered the command.

When an OM command has a ROUTE parameter, IMS chooses the highest level IMS in the route list as
the command master. For example, in an IMSplex configuration that includes an IMS 15.3 system with an
IMS 15.3 CQS, and another IMS system with a previous version SCI, if an INIT OLC command (which is a
ROUTE=ANY command) is issued, the IMS 15.3 system is selected as the command master.

For a list of the commands that can be issued with the ROUTE parameter, see Commands and keywords
supported by the OM API (Commands).

Related reference
/SECURE command (Commands)
“CSLOMREG: command registration request” on page 151
With the CSLOMREG request, a command processing client like the IMS control region can register
commands with an OM. The registration tells OM which commands that a client can process.

CSLOMDRG: command deregistration request
With the CSLOMDRG request, a command processing client like the IMS control region tells OM that it
no longer wants to process commands. All client information from the OM command registration table is
removed and OM stops sending further commands to the client.

CSLOMDRG syntax
DSECT syntax

Use the DSECT function of a CSLOMDRG request to include equate (EQU) statements in your program for
the CSLOMDRG parameter list length and return and reason codes.

CSLOMDRG FUNC=DSECT

Request protocol syntax

CSLOMDRG FUNC=DEREGISTER PARM=  parm RETCODE=  returncode

RSNCODE=  reasoncode SCITOKEN=  scitoken

CSLOMDRG parameters
PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLOMDRG parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by ODRG_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. Possible return codes are
described in the following table.

The return code can be from OM (CSLOMDRG) or SCI (CSLSCMSG or CSLSCRQS). If ECB is specified,
the RETCODE is not valid until the ECB is posted. The value of the high-order byte in the return code
identifies whether SCI (X'01') or OM (X'02') provided the return code. OM return codes are defined in
the CSLORR. SCI return codes are defined in CSLSRR.

Chapter 6. Writing a CSL OM client  147

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.cr/imscmdsintro/ims_cmdsuppomapi.htm#ims_cr1cmdsuppomapi
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.cr/imscmdsintro/ims_cmdsuppomapi.htm#ims_cr1cmdsuppomapi
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.cr/imscmds/ims_secure.htm#ims_cr2secure


RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM reason codes are
defined in the CSLORR. SCI reason codes are defined in CSLSRR. Possible reason codes are described
in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token is returned by a successful CSLSCREG FUNC=REGISTER request.

CSLOMDRG return and reason codes
The return and reason codes in following table can be returned on a CSLOMDRG macro request. Also
included is the meaning of a reason code (that is, what possibly caused it).

Table 42. CLSOMDRG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

CSLOMOUT: unsolicited output request
The CSLOMOUT request is issued by a command processing client that wants to send a message
indirectly in response to a command. The message can be additional information as a result of a
command issued after the initial command response is returned to OM, or an informational message
as a result of an event in the system. OM sends the unsolicited message to the OM Output user exit.

CSLOMOUT syntax
DSECT syntax

Use the DSECT function of a CSLOMOUT request to include equate (EQU) statements in your program for
the CSLOMOUT parameter list length and return and reason codes.

CSLOMOUT FUNC=DSECT

Request protocol syntax

CSLOMOUT FUNC=MESSAGE

CMD= cmdinput CMDLEN=  cmdinputlen

MSGDATA=  msgdata MSGDATALEN=  msgdatalen
OMNAME=  omname

RQSTTKN=  requesttoken

PARM=  parm RETCODE=  returncode

RSNCODE=  reasoncode SCITOKEN=  scitoken

CSLOMOUT parameters
CMD=symbol
CMD=(r2-r12)

(Optional) - Specifies the command input buffer. This can be any IMS command that can be specified
through the OM API. This parameter represents the original command input.

148  IMS: System Programming APIs



CMDLEN=symbol
CMDLEN=(r2-r12)

(Optional) - Specifies the length of the command input buffer.
MSGDATA=symbol
MSGDATA=(r2-r12)

(Required) - Specifies the command response message buffer.
MSGDATALEN=symbol
MSGDATALEN=(r2-r12)

(Required) - Specifies the length of the command response message buffer.
OMNAME=symbol
OMNAME=(r2-r12)

(Optional) - Specifies the 8-byte OM name to which to send the unsolicited output message when the
message is an asynchronous response to a command.

RQSTTKN=symbol
RQSTTKN=(r2-r12)

(Optional) - Specifies the 32-byte request token that was passed to the command processing client on
an OM command directive. This represents the RQSTTKN1 and RQSTTKN2 fields that are entered on
either or both the CSLOMI and CSLOMCMD requests.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLOMOUT parameter list. The length of the parameter list must be equal to
the parameter list length EQU value that is defined by OOUT_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. Possible return codes are
described in the following table.

The return code can be from OM (CSLOMOUT) or SCI (CSLSCMSG or CSLSCRQS). If ECB is specified,
the RETCODE is not valid until the ECB is posted. The value of the high-order byte in the return code
identifies whether SCI (X'01') or OM (X'02') provided the return code. OM return codes are defined in
the CSLORR. SCI return codes are defined in CSLSRR.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM reason codes are
defined in the CSLORR. SCI reason codes are defined in CSLSRR. Possible reason codes are described
in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token is returned by a successful CSLSCREG FUNC=REGISTER request.

CSLOMOUT return and reason codes
The return and reason codes in the following table can be returned on a CSLOMOUT macro request. The
following table lists the return and reason codes that can be returned on a CSLOMI macro request. Also
included is the meaning of a reason code (that is, what possibly caused it).

Table 43. CLSOMOUT return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

Chapter 6. Writing a CSL OM client  149



CSLOMRDY: ready request
With the CSLOMRDY request, command processing clients like the IMS control region notify OM that they
are ready to process commands. OM does not send commands to a client until this request is processed.

CSLOMRDY syntax
CSLOMRDY DSECT syntax

Use the DSECT function of a CSLOMRDY request to include equate (EQU) statements in your program for
the CSLOMRDY parameter list length and return and reason codes.

CSLOMRDY FUNC=DSECT

CSLOMRDY request protocol syntax

CSLOMRDY FUNC=READY

OMNAME=  omname MASTER=NO|YES

PARM=  parm RETCODE=  returncode RSNCODE=  reasoncode SCITOKEN=  scitoken

CSLOMRDY parameters
MASTER=NO
MASTER=YES

(Optional) - Specifies whether or not the client should be chosen as the command master. If a
client specifies MASTER=YES, OM can select that client to be the command master. If the client
specifies MASTER=NO, OM selects it to be the command master only if no other client has specified
MASTER=YES.

OMNAME=symbol
OMNAME=(r2-r12)

(Optional) - Specifies the 8-byte OM name to which to send the command ready request. If an OM
name is not specified, the ready request is sent to all OM address spaces registered in the IMSplex.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLOMRDY parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by ORDY_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. Possible return codes are
described in the following table.

The return code can be from OM (CSLOMRDY) or SCI (CSLSCMSG or CSLSCRQS). If ECB is specified,
the RETCODE is not valid until the ECB is posted. The value of the high-order byte in the return code
identifies whether SCI (X'01') or OM (X'02') provided the return code. OM return codes are defined in
the CSLORR. SCI return codes are defined in CSLSRR.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM reason codes are
defined in the CSLORR. SCI reason codes are defined in CSLSRR. Possible reason codes are described
in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token is returned by a successful CSLSCREG FUNC=REGISTER request.

150  IMS: System Programming APIs



CSLOMRDY return and reason codes
The following table lists the return and reason codes that can be returned on a CSLOMRDY macro request.
Also included is the meaning of the reason code (that is, what possibly caused it).

Table 44. CLSOMRDY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

Related concepts
CSL OM command routing (System Administration)

CSLOMREG: command registration request
With the CSLOMREG request, a command processing client like the IMS control region can register
commands with an OM. The registration tells OM which commands that a client can process.

CSLOMREG must be the first request that a command processing client issues to OM. A command
processing client must register with all OM address spaces in the IMSplex. If a client is registered with
only one OM in an IMSplex, and that OM goes down, the client's commands are not routed to another OM
in the IMSplex. Use the CSLSCQRY request to obtain the names of all OMs in the IMSplex. The client must
be authorized to issue a CSLOMREG request. This authorization is from SCI, which notifies OM that the
client can issue requests.

CSLOMREG syntax
CSLOMREG DSECT syntax

Use the DSECT function of a CSLOMREG request to include equate (EQU) statements in your program for
the CSLOMREG parameter list length and return and reason codes.

CSLOMREG FUNC=DSECT

CSLOMREG request protocol syntax

The syntax for the CSLOMREG request follows.

CSLOMREG FUNC=REGISTER CMDLIST=  cmdlistaddr CMDLISTLEN=  cmdlistlen

ECB= ecbaddress

OMNAME=  omnameaddr

OUTPUT=  outputaddr OUTLEN=  outputlen

PARM=  parmaddr

RETCODE=  returncodeaddr RSNCODE=  reasoncodeaddr SCITOKEN=  scitokenaddr

CSLOMREG parameters
CMDLIST=symbol
CMDLIST=(r2-r12)

(Required) - Specifies the command definition list.

The command list is built using the CSLOMBLD macro.

CMDLISTLEN=symbol
CMDLISTLEN=(r2-r12)

(Required) - Specifies the length of the command definition list buffer.

Chapter 6. Writing a CSL OM client  151

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_omcommandrouting.htm#ims_omcommandrouting


ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for asynchronous requests.
When the request is complete, the ECB specified is posted. If an ECB is not specified, the task is
suspended until the request is complete. If an ECB is specified, the invoker of the macro must issue
a WAIT (or equivalent) after receiving control from CSLOMREG before using or examining any data
returned by this macro (including the RETCODE and RSNCODE fields).

OMNAME=symbol
OMNAME=(r2-r12)

(Required) - Specifies the 8-byte OM name to which to send the command registration request.
OUTLEN=symbol
OUTLEN=(r2-r12)

(Optional) - Specifies a 4-byte field to receive the length of the output returned by the CSLOMREG
request. OUTLEN contains the length of the output pointed to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is detected before any output can
be built.

OUTPUT=outputaddr
OUTPUT=(r2-r12)

(Required) - Specifies a field to receive the variable length output returned by the CSLOMREG request.
The output length is returned in the OUTLEN= field.

The output is mapped by the CSLOREGO macro and is built only if there was an error registering
one or more commands. The output contains a header and one or more list entries. Refer to the
CSLOREGO macro for the output fields.

The output address is zero if no output was built, for example, if an error was detected before any
output could be built.

The output buffer is not preallocated by the caller. After the request returns it, this word contains the
address of a buffer containing the update output. It is the caller's responsibility to release this storage
by issuing the CSLSCBFR FUNC=RELEASE request when it is finished with the storage. The length of
the output is returned in the OUTLEN=field.

PARM=symbol
PARM=(r2-r12)

(Required) - Four-byte input parameter that specifies the address of the storage used by the request
to pass the parameters to SCI. The length of the parameter list must be equal to the parameter list
length EQU value defined by OREG_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output.Possible return codes are
described in the following table.

The return code can be from OM (CSLOMREG) or SCI (CSLSCMSG or CSLSCRQS). If ECB is specified,
the RETCODE is not valid until the ECB is posted. The value of the high-order byte in the return code
identifies whether SCI (X'01') or OM (X'02') provided the return code. OM return codes are defined in
the CSLORR. SCI return codes are defined in CSLSRR.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM reason codes are
defined in the CSLORR. SCI reason codes are defined in CSLSRR. Possible reason codes are described
in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token is returned by a successful CSLSCREG FUNC=REGISTER request.

152  IMS: System Programming APIs



You can find the return and reason codes for the CSLOMREG command request in CSLOMREG return and
reason codes (Messages and Codes).

Related reference
“CSLOMBLD: command registration build” on page 145
With the CSLOMBLD request, you can build the command registration list that is passed to OM on the
CSLOMREG request.

CSLOMRSP: command response request
The CSLOMRSP request is issued by a command processing client in response to a command. Command
response information is consolidated and sent to OM.

A command processing client issues the CSLOMRSP request in response to a command. All command
response information from an individual command processing client is consolidated by the client and sent
to OM in one request. OM consolidates the responses from multiple clients into one response for the
automated operator program client.

CSLOMRSP syntax
CSLOMRSP DSECT syntax

Use the DSECT function of a CSLOMRSP request to include equate (EQU) statements in your program for
the CSLOMRSP parameter list length and return and reason codes.

CSLOMRSP FUNC=DSECT

CSLOMRSP request protocol syntax

CSLOMRSP FUNC=RESPOND

CMD= cmdinput CMDLEN=  cmdinputlen

CMDTOKEN=  cmdtoken

CMDHDR=  cmdhdr CMDHDRLEN=  cmdhdrlen CMDDATA=  cmddata CMDDATALEN=  cmddatalen

MSGDATA=  msgdata MSGDATALEN=  msgdatalen

PARM=  parm OMNAME=  omname

RETCODE=  returncode RSNCODE=  reasoncode RQSTRC=  requestrc

RQSTRSN=  requestrsn

RQSTTKN=  requesttoken

SCITOKEN=  scitoken

CSLOMRSP parameters
CMD=symbol
CMD=(r2-r12)

(Optional) - Specifies the command input buffer. This can be any IMS command that can be specified
through the OM API.

This parameter is optional; what you provide here will be included in the input tags that are returned
as XML output.

CMDDATA=symbol
CMDDATA=(r2-r12)

(Optional) - Specifies the command response data buffer.

Chapter 6. Writing a CSL OM client  153

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_cslomregcodes.htm#ims_cslomregcodes
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_cslomregcodes.htm#ims_cslomregcodes


CMDDATALEN=symbol
CMDDATALEN=(r2-r12)

(Optional) - Specifies the length of the command response data buffer.
CMDHDR=symbol
CMDHDR=(r2-r12)

(Optional) - Specifies the command response header buffer.
CMDHDRLEN=symbol
CMDHDRLEN=(r2-r12)

(Optional) - Specifies the length of the command response header buffer.
CMDLEN=symbol
CMDLEN=(r2-r12)

(Optional) - Specifies the length of the command input buffer.
CMDTOKEN=symbol
CMDTOKEN=(r2-r12)

(Required) - Specifies a 32-byte field to contain the command token. This token uniquely identifies the
command instance that the client has processed. The command token is passed to the client on an
OM command directive. The address of the token is passed to the client in the ODIR_CMDTKPTR field
in the OM command directive parameter list.

MSGDATA=symbol
MSGDATA=(r2-r12)

(Optional) - Specifies the command response message buffer.
MSGDATALEN=symbol
MSGDATALEN=(r2-r12)

(Optional) - Specifies the length of the command response message buffer.
PARM=symbol
PARM=(r2-r12)

(Required) - Four-byte input parameter that specifies the address of the storage used by the request
to pass the parameters to SCI. The length of the parameter list must be equal to the parameter list
length EQU value defined by ORSP_PARMLN.

OMNAME=symbol
OMNAME=(r2-r12)

(Required) - Specifies the 8-byte OM name to which to send the command registration request.
RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. Possible return codes are
described in the following table.

The return code can be from OM (CSLOMRSP) or SCI (CSLSCMSG or CSLSCRQS). If ECB is specified,
the RETCODE is not valid until the ECB is posted. The value of the high-order byte in the return code
identifies whether SCI (X'01') or OM (X'02') provided the return code. OM return codes are defined in
the CSLORR. SCI return codes are defined in CSLSRR.

RQSTRC=symbol
RQSTRC=(r2-r12)

(Required) - Specifies a 4-byte field to contain the reason code to be passed to the originator of the
command. This reason code is defined by the command processing client and indicates the result of
the command. Non-zero reason codes are passed back to the client in the <cmderr> section of the
command response.

RQSTRSN=symbol
RQSTRSN=(r2-r12)

(Required) - Specifies a 4-byte field to contain the reason code to be passed to the originator of the
command. This reason code is defined by the command processor client and indicates the result of
the command. Non-zero reason codes are passed back to the client in the <cmderr> section of the
command response.

154  IMS: System Programming APIs



RQSTTKN=symbol
RQSTTNK=(r2-r12)

(Optional) - Specifies the 32-byte request token that was passed to the command processing client on
an OM command directive. This parameter represents the RQSTTKN1 and RQSTTKN2 fields that are
entered on either or both the CSLOMI and CSLOMCMD requests.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM reason codes are
defined in the CSLORR. SCI reason codes are defined in CSLSRR. Possible reason codes are described
in the following table.

RSNTEXT=symbol
RSNTEXT=(r2-r12)

(Optional) - Specifies a register that must contain the address of the reason text buffer; if specified as
a symbol it must be the label of the reason text buffer. The buffer consists of a two-byte length field
followed by the reason text. This token allows an OM client to pass a text description of the reason
code in a command response.

RSNTEXTLEN=symbol
RSNTEXTLEN=(r2-r12)

(Optional) - Specifies a register that must contain the address of the reason text buffer; if specified as
a symbol it must be the label of the reason text buffer. The buffer consists of a two-byte length field
followed by the reason text. This token allows an OM client to pass a text description of the reason
code in a command response.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token is returned by a successful CSLSCREG FUNC=REGISTER request.

CSLOMRSP return and reason codes
The following table lists the return and reason codes that can be returned on a CSLOMRSP macro request.
Also included is the meaning of the reason code (that is, what possibly caused it).

Table 45. CLSOMRSP return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

Related reference
“CSL Operations Manager XML output” on page 233
Command responses that are returned through the OM API are embedded in XML tags using codepage
037. XML output is generated for responses to the CSLOMI, CSLOMCMD, and CSLOMQRY requests.

CSLOMSUB: Subscribe to unsolicited messages
With the CSLOMSUB request, single point of control (SPOC) clients can subscribe to OM in order to receive
unsolicited output messages from a command processing client, such as IMS.

A message is defined as unsolicited when it is not generated as a response to an input message. For
example, system informational messages are unsolicited messages. In an IMS 15.3 IMSplex environment,
a command response is considered an unsolicited message if it is returned to a SPOC from which the
command did not originate.

All unsolicited output messages are routed to the OM's Output exit routine, which can modify the output.
SPOCs can subscribe to the OM using the CSLOMSUB request to have the unsolicited output messages,
modified or not, routed to them. To identify unsolicited output messages that should not be directed to
OM, you can edit a table that includes messages from OM, RM, SCI, CQS, and the IMS control region that
should be ignored.

Chapter 6. Writing a CSL OM client  155



You must specify an SCI Input exit routine on the SCI registration request (CSLSCREG) to receive
unsolicited output messages.

To understand if OM has terminated, specify an SCI Notify exit routine on the SCI registration request,
specifying either the RETNAME or RETTOKEN parameter. The SCI Notify exit is called whenever there is
a change in status of any member of the IMSplex. Save the RETNAME or RETTOKEN value from the SCI
registration and use it to look for a match that indicates that the OM has terminated. The SPOC client can
then subscribe to another OM.

This request is supported in Assembler and PLX.

CSLOMSUB syntax
CSLOMSUB FUNC-DSECT syntax

Use the DSECT function of the CSLOMSUB request to include equate (EQU) statements in your logic for
the CSLOMSUB parameter list length and return and reason codes.

CSLOMSUB FUNC = DSECT

CSLOMSUB request syntax

With this syntax, SPOC clients can subscribe to OM to receive unsolicited output messages.

CSLOMSUB FUNC=SUBSCRIBE PARM=  parm

,

MBRLIST=  memberlist

MBRLISTLEN=  memberlistlen

,

TYPELIST=  typelist

TYPELISTLEN=  typelistlen RETNAME=  omname

RETTOKEN=  omscitoken

RETCODE=  returncode RSNCODE=  reasoncode

SCITOKEN=  scitoken

CSLOMSUB request parameters
PARM=parm
PARM=(r1-r12)

Specifies the CSLOMSUB parameter list. The length of the parameter list must be equal to the
parameter list length equate (EQU) value that is defined by OSUB_PARMLN.

MBRLIST=memberlist
MBRLIST=(r1-r12)

Specifies a member list that identifies the command processing clients (such as IMS control regions)
in the IMSplex from which to receive unsolicited output messages. Do not specify the MBRLIST=
parameter if you specify the TYPELIST parameter. If you do not specify either the TYPELIST or
MBRLIST parameter, the default member list is all the command processing clients in the IMSplex.

Use commas to separate the client names.

156  IMS: System Programming APIs



MBRLISTLEN=memberlistlen
MBRLISTLEN=(r1-r12)

Specifies the length of the member list that is specified on the MBRLIST parameter.
TYPELIST=typelist
TYPELIST=(r1-r12)

Specifies a type list that identifies the valid IMSplex member types from which to receive unsolicited
output messages. Do not specify the TYPELIST parameter if you specify the MBRLIST parameter.
For valid IMSplex member types, see the TYPE= parameter description in “CSLSCREG: registration
request” on page 215. If you do not specify either TYPELIST or MBRLIST parameter, the default list is
all command processing clients in the IMSplex.

Use commas to separate the client names.

TYPELISTLEN=typelistlen
TYPELISTLEN=(r1-r12)

Specifies the length of the type list that is specified by the TYPELIST= parameter.
RETNAME=omname
RETNAME=(r1-r12)

Specifies an 8-byte output field to receive the name of the OM to which the subscription request is
sent.

RETTOKEN=omscitoken
RETTOKEN=(r1-r12)

Specifies a 16-byte output field to receive the OM SCI token that is returned to the caller. This is the
SCI token for the target OM address space to which SCI sent the request.

RETCODE=returncode
RETCODE=(r1-r12)

Specifies a 4-byte field to receive the output return code. OM return codes are defined in the CSLORR.
SCI return codes are defined in CSLSRR.

OM or SCI provides the return code. The value of the high-order byte in the return code identifies
whether SCI (X'01') or OM (X'02') provided the return code.

RSNCODE=reasoncode
RSNCODE=(r1-r12)

Specifies a 4-byte field to receive the output reason code. OM return codes are defined in the CSLORR.
SCI return codes are defined in the CSLSRR.

SCITOKEN=scitoken
SCITOKEN=(r1-r12)

Specifies a 16-byte field that contains the SCI token, which uniquely identifies this connection to SCI.
The SCI token is returned by a successful CSLSCREG FUNC=REGISTER request.

CSLOMSUB return and reason codes
The return and reason codes shown in the following table can be returned on a CSLOMSUB request.

Table 46. CSLOMSUB request return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'02000014' X'00005044' Unable to obtain OSUB block.

X'00005048' Unable to obtain storage for member list.

X'0000504C' Unable to obtain storage for type list.

Chapter 6. Writing a CSL OM client  157



Usage notes
If a SPOC subscribes to OM to receive unsolicited output messages, the default is to send all messages
to that subscriber. You can prevent IMS, CQS, and CSL messages from being sent as unsolicited output by
populating and maintaining a table of messages by using the following macros.

Macro
Description

CSLZUMT
Use this macro to populate table CSLZUMTU with CSL messages that should not be routed to
subscribers as unsolicited messages.

CQSUOMT
Use this macro to populate table CQSUOMTU with CQS messages that should not be routed to
subscribers as unsolicited messages.

DFSUOMT
Use this macro to populate table DFSUOMTU with IMS messages that should not be routed to
subscribers as unsolicited messages.

Samples of the CQSUOMTU, CSLZUMTU, and DFSUOMTU tables are provided in the IMS sample library.

An example of the CSLZUMT macro is shown in the following example. In this example, messages
CSL2020I and CSL2021E are added to the CSLZUMTU table, and are therefore prevented from being sent
as unsolicited output messages to subscribed clients.

CSLZUMT MESSAGE=CSL2020I
CSLZUMT MESSAGE=CSL2021E

You can also specify MESSAGE=SUPPRESS in the CQSUOMTU, CSLZUMTU, and DFSUOMTU tables. For
example, if the you code the following in message table DFSUOMTU, messages DFSxxxxx and DFSyyyyy
will be sent to OM, message DFSzzzzz will not be sent to OM, and any other messages will not be sent to
OM because of the MESSAGE=SUPPRESS statement:

DFSUOMT MESSAGE=DFSxxxxx,SEND=YES 
DFSUOMT MESSAGE=DFSyyyyy,SEND=YES 
DFSUOMT MESSAGE=DFSzzzzz,SEND=NO 
DFSUOMT MESSAGE=SUPPRESS

Another way to control which unsolicited output messages are sent to OM from IMS is to use the new
UOM=MTO | NONE | ALL parameter for the DFSDFxxx and DFSCGxxx IMS PROCLIB members.

• With UOM=MTO specified, messages that are destined for the MTO only or system console (or both) only
will be sent to OM. Messages being sent to other destinations, such as end user terminals, will not be
sent to OM.

• With UOM=NONE specified, no messages will be sent to OM.
• With UOM=ALL specified, all messages will be sent to OM.

CSLOMUSB: Unsubscribe to unsolicited messages
With the CSLOMUSB request, SPOC clients can unsubscribe to OM and stop receiving unsolicited output
messages from a command processing client, such as IMS.

This request is supported in Assembler and PLX.

CSLOMUSB syntax
CSLOMUSB FUNC-DSECT syntax

Use the DSECT function of the CSLOMUSB request to include equate (EQU) statements in your logic for
the CSLOMUSB parameter list length and return and reason codes.

158  IMS: System Programming APIs



CSLOMUSB FUNC=DSECT

CSLOMUSB request syntax

With this syntax, SPOC clients can unsubscribe from OM to stop receiving unsolicited output messages.

CSLOMUSB FUNC=UNSUBSCRIBE PARM=  parm RETCODE=  returncode

RSNCODE=  reasoncode SCITOKEN=  scitoken

CSLOMUSB parameters
PARM=parm
PARM=(r1-r12)

Specifies the CSLOMUSB parameter list. The length of the parameter list must be equal to the
parameter list length equate (EQU) value that is defined by OUSB_PARMLN.

RETCODE=returncode
RETCODE=(r1-r12)

Specifies a 4-byte field to receive the output return code. OM return codes are defined in the CSLORR.
SCI return codes are defined in CSLSRR.

OM or SCI provides the return code. The value of the high-order byte in the return code identifies
whether SCI (X'01') or OM (X'02') provided the return code.

RSNCODE=reasoncode
RSNCODE=(r1-r12)

Specifies a 4-byte field to receive the output reason code. OM return codes are defined in the CSLORR.
SCI return codes are defined in CSLSRR.

SCITOKEN=scitoken
SCITOKEN=(r1-r12)

Specifies a 16-byte field that contains the SCI token, which uniquely identifies this connection to SCI.
The SCI token is returned by a successful CSLSCREG FUNC=REGISTER request.

CSLOMUSB return and reason code
The return and reason codes shown in the following table can be returned on a CSLOMUSB request:

Table 47. CSLOMUSB request return and reason code

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

CSL OM directives
An OM directive is a function that OM defines that can be sent as a message to OM clients to inform the
OM clients of work to be processed. Any command processing client that has registered commands to OM
can be selected to perform an OM directive.

OM directives are always issued in message protocol (PROTOCOL=MSG), that is, asynchronously; OM
therefore expects no response from the OM client, and it continues processing without waiting for a
response. The OM client is responsible for determining whether or not to take any action in response to
the directive.

When a client issues PROTOCOL=MSG, SCI sends the XML output from OM to the client's SCI Input exit.
The SCI Input exit routine's INXP_MBRPLPTR field points to the CSLOMDIR parameter list.

When a client issues CSLOMI PROTOCOL=RQST, the XML output stream from OM is sent directly to the
client in the OUTPUT= parameter.

Chapter 6. Writing a CSL OM client  159



The SCI Input exit routine is responsible for notifying the client of the directive. The client should code
their SCI Input exit routine to support OM directives. The client is responsible for determining where the
function and function code are to be defined. After the client is finished using the CSLOMDIR parameter
list, it must release the storage by issuing CSLSCBFR.

OM directives are defined in the CSLOMDIR macro, which includes:

• Command directive (ODIR_CMDD)
• CSLOMI response directive (ODIR_OMIRESPD)
• Command response directive (ODIR_CMDRESPD)
• Query response directive (ODIR_QRYRESPD)

The directives and their parameters are described in this topic.

CSL OM command directive
The OM command directive, ODIR_CMDD, is sent to a command processing client when a command is
available for processing.

The parameters for the OM command directive follow. They are passed to the SCI Input Exit:

ODIR_COMMAND
Identifies the start of the command directive.

ODIR_CMDTKLEN=length
Contains the length of the OM command token. It is used only by OM to identify the command
instance.

ODIR_CMDTKPTR=address
Contains the address of the OM command token.

ODIR_INPUTLEN=length
Contains the length of the command input string that you enter.

ODIR_INPUTPTR=address
Contains the address of the command input string.

ODIR_VERBLEN=length
Contains the length of the command verb in normalized form.

ODIR_VERBPTR=address
Contains the address of the command verb.

ODIR_KWDLEN=length
Contains the length of the command keyword.

ODIR_KWDPTR=address
Contains the address of the command keyword.

ODIR_PARSELEN=length
Contains the length of the parsed command block.

ODIR_PARSEPTR=address
Contains the address of the parsed command block.

ODIR_CUIDLEN=length
Contains the length of the user ID that originated the command.

ODIR_CUIDPTR=address
Contains the address of the user ID that originated the command.

ODIR_CNAMELEN=length
Contains the length of the name of the client that originated the command (that is, the name that was
registered to SCI).

ODIR_CNAMEPTR=address
Contains the address of the name of the client that originated the command (that is, the name that
was registered to SCI).

160  IMS: System Programming APIs



ODIR_CTYPE=client type
Contains the type of client that originated the command. This is the value from the TYPE= parameter
as defined to SCI. This parameter is passed by value; the length field is always zero.

ODIR_CSTYPLEN=length
Contains the subtype of the client that originated the command. This is the value from the SUBTYPE=
parameter as defined to SCI.

ODIR_CSTYPPTR=length
Contains the address of the subtype of the client that originated the command.

ODIR_CFLAGS=flags
Contains the OM command processing flags. These parameters are passed by value; the length field is
always zero.

ODIR_CRQTKLEN=length
Contains the length of the user request token; this parameter is used only by the program that
originated the command to identify the command instance.

ODIR_CRQTKPTR=address
Contains the address of the user request token; this parameter is used only by the program that
originated the command to identify the command instance.

ODIR_TIMEOUT=timeoutvalue
Contains the command timeout value as specified on the command. This parameter is passed by
value; the length field is always zero.

ODIR_CMDLN
The command directive length EQU.

CSL OM response directives
There are three response directives in CSLOMDIR:

• CSLOMI response (ODIR_OMIRESPD)

The CSLOMI response directive returns a response to a client regarding a CSLOMI call. The response is
sent when an error occurs and it is unclear if the response is for a CSLOMI CMD or CSLOMI QUERY call.

• Command response (ODIR_CMDRESPD)

The command response directive returns a command response to a client that results from a CSLOMI
CMD or CSLOMCMD call.

• Query response (ODIR_QRYRESPD)

The query response directive returns a query response to a client that results from a CSLOMI QUERY or
CSLOMQRY call.

The parameters for the OM response directives are identical.

ODIR_CQRESP
Identifies the start of the command or query response.

ODIR_CQRSPRC=returncode
Contains the return code of the command or query response.

ODIR_CQRSPRSN=reasoncode
Contains the reason code of the command or query response.

ODIR_CQXMLLEN=length
Contains the length of the XML output being returned.

ODIR_CQXMLPTR=address
Contains the address of the XML output being returned.

ODIR_CQRT1LEN=length
Contains the length of request token 1 (RQSTTKN1).

ODIR_CQRT1PTR=address
Contains the address of request token 1 (RQSTTKN1).

Chapter 6. Writing a CSL OM client  161



ODIR_CQRT2LEN=length
Contains the length of request token 2 (RQSTTKN2).

ODIR_CQRT2PTR=address
Contains the address of request token 2 (RQSTTKN2).

ODIR_CQRSPLN
The response directive length EQU.

CSL UOM directive
The OM unsolicited output message (UOM) directive, ODIR_UOM, is sent to any OM client that subscribes
to OM. You define this directive in CSLOMDIR.

The parameters for the UOM directive are passed to the OM client's SCI Input exit routine.

ODIR_UOM
Identifies the start of the UOM directive parameters.
ODIR_UOMXMLLEN=length

Contains the length of the XML output that is sent.
ODIR_UOMXMLPTR=address

Contains the address of the unsolicited output message, wrapped in XML tags.
ODIR_UOMLN

The UOM directive length equate (EQU) value.
ODIR_UOMCR

Identifies the start of the command response UOM directive parameters, which inform the subscribing
client that this is a command response sent as an unsolicited message.
ODIR_UOMXMLLEN=length

Contains the length of the XML output that is sent.
ODIR_UOMXMLPTR=address

Contains the address of the unsolicited output message, wrapped in XML tags.
ODIR_UOMLN

The UOM directive length equate (EQU) value.
Related reference
“CSLOMI: API request” on page 111
With the CSLOMI request, your AOP client can communicate with a z/OS address space that acts as an OM
AOP client. You can then issue OM requests and send QUERY commands to OM.
“CSLOMQRY: query request” on page 121
With the CSLOMQRY request, any AOP client that is running on the host can request OM-specific
information.
BPE-based CSL SCI user exit routines (Exit Routines)

162  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_cslsci.htm#ims_cslsci


Chapter 7. Writing a CSL RM client
The topics in this section describe the client requests and directives for writing an RM client.

Sequence of RM client requests
If you want to use RM to manage global resources in an IMSplex for your own product or service, you
have to write one or more RM clients. An RM client uses RM requests issued in a particular sequence to
communicate with RM.

To write an RM client, you can use the set of client requests provided by RM. These requests allow a
client to access RM or resources on a resource structure, or to coordinate an IMSplex-wide process. One
example of an RM client is IMS. You can write an RM client in assembler language.

An RM client uses RM requests to make use of RM services and resources. A client issues SCI and RM
requests to request RM services. Some of the requests must follow a particular sequence. Other requests
can be issued multiple times, in any order, based on the processing requirements of the client.

Before an RM client can issue RM requests, it must register:

• To SCI
• To each active RM in the IMSplex, so any RM can process an RM request
• Its own resource types and associated name types to RM

The following table lists the sequence of requests issued by an RM client. The request is listed with its
purpose.

Table 48. Sequence of requests for an RM client

Request Purpose

CSLSCREG Registers to SCI, which enables the client to send RM requests to RM through
SCI.

CSLSCRDY Readies the RM client to SCI, which routes messages to the client by client
type.

CSLRMREG Registers client to RM to enable communication with RM. The client should
register to each active RM in the IMSplex, so any RM can process an RM
request. The client can also register its own resource types and associated
name types to RM.

CSLRMxxx Issues RM resource requests such as CSLRMUPD, CSLRMDEL, CSLRMQRY to
manipulate resources on a resource structure.

CSLRMPxx Issues RM process requests such as CSLRMPRI, CSLRMPRS, CSLRMPRR, and
CSLRMPRT to participate in an IMSplex-wide process.

CSLSCBFR Releases the output buffer returned by the request, if any.

CSLRMDRG Deregisters client from RM to end communications with RM.

CSLSCDRG Deregisters from SCI.

The following table lists the sequence of requests issued by an RM client that is participating in IMSplex-
wide processes. The request is listed with its purpose.

© Copyright IBM Corp. 1974, 2022 163



Table 49. Sequence of requests for an RM client participating in IMSplex-wide process

Request Purpose

CSLRMPRI Initiate an IMSplex-wide process.

CSLRMPRS Process a step in an IMSplex-wide process. A process can have zero, one, or
more process steps. The client that initiates the process step is the master of
the step.

CSLRMPRR Respond to a process step.

CSLRMPRT Terminate an IMSplex-wide process.

Related reference
“CSLRMREG: register clients” on page 187
You use the CSLRMREG request to register a client to RM and, optionally, to register the client's resource
types and associated name types. The client being registered to RM must be authorized to issue a
CSLRMREG request. However, you cannot register a client if an IMSplex-wide process is in progress.

Issue CSL RM requests to manage global resources
Before a client can access or change global resource information, it must register to SCI using the
CSLSCREG request. After the client registers to SCI, it must register to RM using the CSLRMREG request.
The client must issue an SCI registration request for every IMSplex with which it intends to communicate.

Before a client can access or change global resource information, it must register to SCI using the
CSLSCREG request.

After the client registers to SCI, it must register to RM using the CSLRMREG request.

When the client is ready to terminate, it must deregister from RM using the CSLRMDRG request and then
deregister from SCI using the CSLSCDRG request.

Related reference
“CSLSCREG: registration request” on page 215
The Structured Call Interface (SCI) registration request is used to create a connection between an
IMSplex member and SCI. Before SCI can be used for communication within the IMSplex, an IMSplex
member must issue the CSLSCREG request and receive an SCI token when the request completes in order
to be recognized by SCI.
“CSLRMDEL: delete resources” on page 166
You can issue the CSLRMDEL request to delete one or more uniquely named resources, or all resources by
owner for a specific resource type on a resource structure.
“CSLRMDRG: deregister clients” on page 170
The deregister request is issued by a client when the client no longer wants to process resource requests
or IMSplex-wide process requests from RM. The deregister request removes client information from RM
and stops RM from sending new resource requests to the client. Some information about the client is
retained that can affect IMSplex-wide processes.
“CSLRMPRI: process initiate” on page 171
With the CSLRMPRI request, a client can initiate a process across an IMSplex. RM ensures that only one
IMSplex-wide process of a type can be in progress at one time. The process initiation fails if any other
IMSplex-wide process of the type is in progress.
“CSLRMPRR: process respond” on page 173
By issuing the CSLRMPRR request, a client can respond to a step in an IMSplex-wide process.
“CSLRMPRS: process step” on page 175
By issuing the CSLRMPRS request, a client can perform a step in an IMSplex-wide process that can
consist of zero, one, or more steps.
“CSLRMPRT: process terminate” on page 180

164  IMS: System Programming APIs



You can issue the CSLRMPRT request to terminate an IMSplex-wide process. Any client that is
participating in the process can issue a CSLRMPRT FUNC= TERMINATE request to terminate the process.
“CSLRMQRY: query resources” on page 182
You can issue the CSLRMQRY request to query one or more uniquely named resources on a resource
structure.
“CSLRMREG: register clients” on page 187
You use the CSLRMREG request to register a client to RM and, optionally, to register the client's resource
types and associated name types. The client being registered to RM must be authorized to issue a
CSLRMREG request. However, you cannot register a client if an IMSplex-wide process is in progress.
“CSLRMUPD: update resources” on page 190
By issuing the CSLRMUPD request, you can create a resource if it does not exist, or update a resource
if it does exist (as long as the version specified matches the version of the resource). A resource can be
created or updated with or without client data.

Issue CSL RM requests to coordinate IMSplex-wide processes
You can use RM-supplied requests to coordinate IMSplex-wide processes. All clients that are to
participate in the process register to RM using the RM client registration request (CSLRMREG). After
the clients are registered, several different requests can be utilized to coordinate processes.

One client initiates the process using the RM process initiate request (CSLRMPRI). The same or a different
client initiates a step using RM process step request (CSLRMPRS). The initiating client is called the master
of the step. One RM processes the request and sends RM directives to the other clients to perform the
process step. All the other clients process the step, build output, and then respond to the step using the
RM process respond request (CSLRMPRR). RM consolidates the responses from all the clients into one
output, and then returns the output to the master of the process step. If there are more steps in the
process, a client initiates a step, and the clients perform processing and respond. Any client terminates
the process using the RM process terminate request (CSLRMPRT). Clients can deregister using the RM
client deregistration request (CSLRMDRG) if required.

Some failures can cause RM to lose all knowledge of an IMSplex-wide process. These include resource
structure failure (and its duplex, if applicable) and failure of all RMs. If this type of failure occurs, each RM
client should clean up knowledge of the process locally, and a master RM should terminate the process.
The first RM client to detect a problem can initiate a clean up process step by issuing the CSLRMPRS
request with the force option to enable RM to force the process step, regardless of the error. The clients
participating in the process step clean up the process locally. The master of this process step then
terminates the process with the CSLRMPRT request.

The CSLRMPRI, CSLRMPRR, CSLRMPRS, and CSLRMPRT requests can be used to coordinate IMSplex-
wide processes.

Related reference
“CSLRMPRI: process initiate” on page 171
With the CSLRMPRI request, a client can initiate a process across an IMSplex. RM ensures that only one
IMSplex-wide process of a type can be in progress at one time. The process initiation fails if any other
IMSplex-wide process of the type is in progress.
“CSLRMPRR: process respond” on page 173
By issuing the CSLRMPRR request, a client can respond to a step in an IMSplex-wide process.
“CSLRMPRS: process step” on page 175
By issuing the CSLRMPRS request, a client can perform a step in an IMSplex-wide process that can
consist of zero, one, or more steps.
“CSLRMPRT: process terminate” on page 180

Chapter 7. Writing a CSL RM client  165



You can issue the CSLRMPRT request to terminate an IMSplex-wide process. Any client that is
participating in the process can issue a CSLRMPRT FUNC= TERMINATE request to terminate the process.

CSLRMDEL: delete resources
You can issue the CSLRMDEL request to delete one or more uniquely named resources, or all resources by
owner for a specific resource type on a resource structure.

This request is supported in assembler language.

CSLRMDEL syntax
CSLRMDEL DSECT syntax

Use the DSECT function of a CSLRMDEL request to include the following resources in your program:

• Equate (EQU) statement for the CSLRMDEL parameter list length
• The CSLRMDEL return codes, reason codes, and completion codes
• The CSLRDELL DSECT to map the input delete list
• The CSLRDELO DSECT to map the delete output

CSLRMDEL FUNC=DSECT

CSLRMDEL DELETE syntax

Use the DELETE function of a CSLRMDEL request to delete one or more uniquely named resources on a
resource structure.

CSLRMDEL FUNC=DELETE PARM=  parm LIST= deletelist LISTLEN=  deletelistlength

OUTPUT=  output OUTLEN=  outputlength

ECB= ecb

RETNAME=  returnname RETTOKEN=  returntoken

RETCODE=  returncode

RSNCODE=  reasoncode SCITOKEN=  scitoken

CSLRMDEL parameters
ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous requests. When the request
is complete, the ECB specified is posted. If an ECB is not specified, the task is suspended until
the request is complete. If an ECB is specified, the invoker of the request must issue a WAIT (or
equivalent) after receiving control from CSLRMDEL before using or examining any data returned by
this request (including the RETCODE and RSNCODE fields).

LIST=symbol
LIST=(r2-r12)

(Required) - Specifies the delete resource list built by the caller. Each list entry is a separate delete
request. The list length can vary, depending on the number of list entries.

CSLRDELL maps the delete resource list entry. The list contains a header and one or more list entries.
The list entries must reside in contiguous storage. Each delete list entry contains information about
what to delete.

For delete by resource name, to delete a uniquely named resource:

• Resource name - the client-defined name of the resource.

166  IMS: System Programming APIs



• Resource type - a client-defined physical grouping of resources on the resource structure. Valid
values are 1-255.

• Version - resource version, which is the number of times the resource has been updated.

For delete by owner, to delete all resources owned by a particular owner for a resource type,
regardless of the resource version:

• Resource type - a client-defined physical grouping of the resources on the resource structure. Valid
values are 1-255.

• Owner - resource owner.

LISTLEN=symbol
LISTLEN=(r2-r12)

(Required) - Specifies the 4-byte delete resource list length.
OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned by the CSLRMDEL
request. OUTLEN contains the length of the output pointed to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is detected before any output can
be built.

OUTPUT=output
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable length output returned by
the CSLRMDEL request. The output contains a header and one or more delete entries for resource
deletes that were attempted. The output length is returned in the OUTLEN= field.

The output address is zero if no output was built, for example, if an error was detected before any
output could be built.

The CSLRDELO macro maps the output that is returned. The output contains a header and one or
more list entries.

The output header contains the following parameters:

• Eyecatcher
• Output length
• CSLRDELO version
• CSLRDELO header length (offset to start of entries)
• CSLRDELO entry length
• Resource entry count

Each output entry represents a resource delete that failed. Each entry contains the following
parameters:

• Output entry length - the list entry length
• Name type - a client-defined value associated with a resource type that ensures uniqueness of
client-defined resource names within a name type. Valid values are 1-255.

• Resource name
• Resource type
• Delete type
• Version - resource version of an existing resource if the delete request failed because of a version

mismatch.
• Owner - resource owner of an existing resource if the delete failed because of a version mismatch

and the option to read the owner was set.
• Completion code for the delete request. Completion codes are mapped by CSLRRR.

Possible completion codes are:

Chapter 7. Writing a CSL RM client  167



X'00000008'
Invalid resource type.

X'00000010'
Version mismatch. The version specified on input does not match the resource's version, so delete
fails.

X'00000018'
Resource type is not registered. The resource type must be registered by using a CSLRMREG
request.

X'00000024'
Resource structure is unavailable.

X'00000038'
Delete failed because of CQS internal error.

X'0000003C'
Delete failed because RM incorrectly built the CQSDEL list entry.

The output buffer is not preallocated by the caller. After being returned from the request, this word
contains the address of a buffer containing the delete output. It is the caller's responsibility to release
this storage by issuing the CSLSCBFR FUNC=RELEASE request when it is through with the storage. The
length of the output is returned in the OUTLEN= field.

PARM=symbol
PARM=(r2-r12)

(Required) - specifies the CSLRMDEL parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by RDEL_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. RM return codes are defined
in CSLRRR. SCI return codes are defined in CSLSRR. Possible return codes are described in the
following table.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the caller. This is the CSL
member name of the target RM address space to which SCI sent the request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive RM's SCI token returned to the caller. This is the SCI
token for the target RM address space to which SCI sent the request.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM reason codes are
defined in CSLRRR. SCI reason codes are defined in CSLSRR. Possible reason codes are described in
the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

CSLRMDEL return and reason codes
The following table lists the return and reason codes that can be returned on a CSLRMDEL request. Also
included is the meaning of a reason code (that is, what possibly caused it).

168  IMS: System Programming APIs



Table 50. CSLRMDEL return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000008' X'00002000' The client is not registered.

X'00002100' The delete list length is invalid.

X'00002108' The delete list address is invalid.

X'00002110' The version in the list header (DELL_PVER) is zero, which is
invalid. The list version must be set in the list header to the
maximum list version (DELL_PVERMAX).

X'00002114' The list header length is invalid. The list header length cannot
be zero or greater than the list length that was passed in. The
list header length (DELL_HDRLEN) must be set in the list header
to the list header length.

X'00002200' One of the list entries contains an invalid resource type, such as
zero. RM assumes that the rest of the list is invalid.

X'0000220C' One of the list entries contains one or more invalid delete
options. RM assumes that the rest of the list is invalid.

X'00002210' A resource name or owner is required.

X'00002214' The version is invalid.

X'00002404' No resource structure is defined.

X'0300000C' X'00003000' The request succeeded for at least one, but not all, list entries.
Check the completion code in each list entry in the OUTPUT
buffer for individual errors.

X'00003004' The request failed for all entries. Check the completion code in
each list entry in the OUTPUT buffer for individual errors.

X'00003008' The request failed for one or more list entries and all failures
were version mismatches. Check the completion code in each
list entry in the OUTPUT buffer for individual errors.

X'03000010' X'00004000' The CQS address space is unavailable. Retry the request again,
which attempts to route the request to a different RM with an
available CQS.

X'00004100' The requested version is not supported. The client compiled
with a version of CSLRMDEL that is not supported by RM. All
RMs must be migrated to a new release before IMS is migrated
to a new release that uses a new CSLRMDEL function.

X'00004104' The list version is not supported. The client created the delete
list at a version that is not supported by RM. All RMs must be
migrated to a new release before the client is migrated to a new
release that uses a new CSLRMDEL function.

X'03000014' X'00005000' Storage allocation for the delete output buffer failed.

X'00005120' Storage allocation for the CQSDEL buffer failed.

X'00005200' The CQS request resulted in unexpected error.

X'00005204' The CQS request failed because RM incorrectly built the request
input.

Chapter 7. Writing a CSL RM client  169



Related concepts
“Issue CSL RM requests to manage global resources” on page 164
Before a client can access or change global resource information, it must register to SCI using the
CSLSCREG request. After the client registers to SCI, it must register to RM using the CSLRMREG request.
The client must issue an SCI registration request for every IMSplex with which it intends to communicate.

CSLRMDRG: deregister clients
The deregister request is issued by a client when the client no longer wants to process resource requests
or IMSplex-wide process requests from RM. The deregister request removes client information from RM
and stops RM from sending new resource requests to the client. Some information about the client is
retained that can affect IMSplex-wide processes.

This request is issued by resource processing clients such as the IMS control region.

This request is supported in assembler.

CSLRMDRG syntax
CSLRMDRG DSECT syntax

CSLRMDRG deregister syntax

Use the DEREGISTER function of a CSLRMDRG request to deregister from RM.

CSLRMDRG FUNC=DEREGISTER PARM=  parm

OPTWORD1=  deregisteroptions

RETCODE=  returncode RSNCODE=  reasoncode SCITOKEN=  scitoken

CSLRMDRG parameters
OPTWORD1=symbol
OPTWORD1=(r2-r12)

(Optional) - Specifies a 4-byte field containing deregistration options. CSLRMDRG FUNC=DSECT
generates the equates for deregistration options.
X'80000000'

Remove client from IMSplex. Delete all knowledge of the client.
PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMDRG parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by RDRG_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. RM return codes are defined
in CSLRRR. RM does not return a response to the CSLRMDRG request.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. SCI reason codes are
defined in CSLSRR. RM does not return a response to the CSLRMDRG request.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

Related concepts
“Issue CSL RM requests to manage global resources” on page 164

170  IMS: System Programming APIs



Before a client can access or change global resource information, it must register to SCI using the
CSLSCREG request. After the client registers to SCI, it must register to RM using the CSLRMREG request.
The client must issue an SCI registration request for every IMSplex with which it intends to communicate.

CSLRMPRI: process initiate
With the CSLRMPRI request, a client can initiate a process across an IMSplex. RM ensures that only one
IMSplex-wide process of a type can be in progress at one time. The process initiation fails if any other
IMSplex-wide process of the type is in progress.

This request is supported in assembler language.

CSLRMPRI syntax
CSLRMPRI DSECT syntax

Use the DSECT function of a CSLRMPRI request to include equate (EQU) statements in your program for
the length of the CSLRMPRI parameter list.

CSLRMPRI FUNC=DSECT

CSLRMPRI INITIATE syntax

Use the INITIATE function of a CSLRMPRI request to initiate an IMSplex-wide process.

CSLRMPRI FUNC=INITIATE PARM=  parm PRCNAME=  processname

PRCTOKEN=  processtoken PRCTYPE=  processtype

ECB= ecb

RETNAME=  returnname RETTOKEN=  returntoken

RETCODE=  returncode

RSNCODE=  reasoncode SCITOKEN=  scitoken UOWTOKEN=  uowtoken

CSLRMPRI parameters
ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous requests. When the request
is complete, the ECB specified is posted. If an ECB is not specified, the task is suspended until
the request is complete. If an ECB is specified, the invoker of the request must issue a WAIT (or
equivalent) after receiving control from CSLRMPRI before using or examining any data returned by this
request (including the RETCODE and RSNCODE fields).

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMPRI parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by RPRI_PARMLN.

PRCNAME=symbol
PRCNAME=(r2-r12)

(Required) - Specifies an 8-byte field containing the process name. The process name is client defined
and has no meaning to RM. RM uses the process name and the process type to ensure that only one
instance of a process of a particular process type is in progress at one time.

PRCTOKEN=symbol
PRCTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field to receive the process token returned to the caller. The process
token uniquely identifies the process instance. The process token returned is zero, if the IMSplex is

Chapter 7. Writing a CSL RM client  171



defined with a resource structure. The process token is non-zero, if the IMSplex is not defined with
a resource structure. The process token must be specified as input on any subsequent CSLRMPRS,
CSLRMPRR, or CSLRMPRT request.

PRCTYPE=symbol
PRCTYPE=(r2-r12)

(Required) - Specifies a 1-byte client-defined process type. Only one process of a particular type can
be in progress at any one time. The process type can be 1 through 255.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. RM return codes are defined
in CSLRRR. SCI return codes are defined in CSLSRR. Possible return codes are described in the
following table.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the caller. This is the CSL
member name of the target RM address space to which SCI sent the request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive RM's SCI token returned to the caller. This is the SCI
token for the target RM address space to which SCI sent the request.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM reason codes are
defined in CSLRRR. SCI reason codes are defined in CSLSRR. Possible reason codes are described in
the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

UOWTOKEN=symbol
UOWTOKEN=(r2-r12)

(Required) - specifies a 16-byte field containing the unit of work token. The UOW token uniquely
identifies an instance of this process and ties all of the process steps together. The UOW token must
be specified on the RM process step request, CSLRMPRS. The UOW token is client-defined and has no
meaning to RM.

CSLRMPRI return and reason codes
The following table lists the return and reason codes that can be returned on a CSLRMPRI request. Also
included is the meaning of a reason code (that is, what possibly caused it).

Table 51. CSLRMPRI return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000008' X'00002000' The client is not registered.

X'00002208' The process type is invalid.

X'00002310' The UOW token is invalid.

X'03000010' X'00004000' The CQS address space is unavailable. Retry the request to
attempt routing the request to another RM with an available
CQS.

172  IMS: System Programming APIs



Table 51. CSLRMPRI return and reason codes (continued)

Return code Reason code Meaning

X'00004100' The requested version is not supported. The client compiled
with a version of CSLRMPRI that is not supported by RM. All
RMs must be migrated to a new release before IMS is migrated
to a new release that uses a new CSLRMPRI function.

X'00004120' A process of the same type is already in progress. This process
initiation request is rejected. Try the process again later.

X'0000412C' A different process of the same type is already in progress. This
process initiation request is rejected. Try the process again later.

X'03000014' X'00005114' The process block allocation failed.

X'00005200' The CQS request resulted in unexpected error.

X'00005204' The CQS request failed because RM incorrectly built the request
input.

X'00005208' The resource structure is not available.

X'0000520C' The resource structure is full.

X'00005210' RM is unable to add the process block to hash table.

X'00005218' RM is unable to scan the process block in hash table.

X'00005220' RM is unable to get the process latch.

Related concepts
“Issue CSL RM requests to manage global resources” on page 164
Before a client can access or change global resource information, it must register to SCI using the
CSLSCREG request. After the client registers to SCI, it must register to RM using the CSLRMREG request.
The client must issue an SCI registration request for every IMSplex with which it intends to communicate.
“Issue CSL RM requests to coordinate IMSplex-wide processes” on page 165
You can use RM-supplied requests to coordinate IMSplex-wide processes. All clients that are to
participate in the process register to RM using the RM client registration request (CSLRMREG). After
the clients are registered, several different requests can be utilized to coordinate processes.

CSLRMPRR: process respond
By issuing the CSLRMPRR request, a client can respond to a step in an IMSplex-wide process.

This request is supported in assembler language.

CSLRMPRR syntax
CSLRMPRR DSECT syntax

Use the DSECT function of a CSLRMPRR request to include equate (EQU) statements in your program for
the length of the CSLRMPRR parameter list.

CSLRMPRR FUNC=DSECT

CSLRMPRR RESPOND syntax

Use the RESPOND function of a CSLRMPRR request to respond to a step in an IMSplex-wide process.

Chapter 7. Writing a CSL RM client  173



CSLRMPRR FUNC=RESPOND PARM=  parm PRCTOKEN=  processtoken

OUTPUT=  output OUTLEN=  outputlength

RMNAME=  rmname

RETCODE=  returncode RSNCODE=  reasoncode RQSTRC=  processreturncode

RQSTRSN=  processreasoncode SCITOKEN=  scitoken

CSLRMPRR parameters
OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte input field that contains the length of the process step output buffer.
OUTLEN= contains the length of the output pointed to by the OUTPUT= parameter.

OUTPUT=output
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field that contains the address of the output buffer built by the caller.
The output is client-defined and contains the results from this client's processing of the step. The
output length is returned in the OUTLEN= field.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMPRR parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by RPRR_PARMLN.

PRCTOKEN=symbol
PRCTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field that contains the process token that uniquely identifies the
process. This token was returned on a successful CSLRMPRI FUNC=INITIATE request.

If the IMSplex is defined with a resource structure, the process token is zero.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI return codes are defined
in CSLSRR. RM does not return a response to CSLRMPRR.

RMNAME=symbol
RMNAME=(r2-r12)

(Required) - Specifies an 8-byte field containing the RM name to which to send the process step
response. This is the RM that originated the process step.

RQSTRC=symbol
RQSTRC=(r2-r12)

(Required) - Specifies a 4-byte field that contains the return code to be passed to the originator of the
process step on output. The return code is defined by the process step originating client and indicates
the result of the process step.

RQSTRSN=symbol
RQSTRSN=(r2-r12)

(Required) - Specifies a 4-byte field that contains the reason code to be passed to the originator of the
process step on output. The reason code is defined by the process step originating client and indicates
the result of the process step.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM reason codes are
defined in CSLRRR. RM does not return a response to CSLRMPRR.

174  IMS: System Programming APIs



SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

CSLRMPRR return and reason codes
CSLRMPRR is sent to the target client address space using the SCI message protocol; RM does not return
codes to CSLRMPRR. All return and reason codes that are applicable to the CSLSCMSG request can be
returned on a CSLRMPRR request.

Related concepts
“Issue CSL RM requests to manage global resources” on page 164
Before a client can access or change global resource information, it must register to SCI using the
CSLSCREG request. After the client registers to SCI, it must register to RM using the CSLRMREG request.
The client must issue an SCI registration request for every IMSplex with which it intends to communicate.
“Issue CSL RM requests to coordinate IMSplex-wide processes” on page 165
You can use RM-supplied requests to coordinate IMSplex-wide processes. All clients that are to
participate in the process register to RM using the RM client registration request (CSLRMREG). After
the clients are registered, several different requests can be utilized to coordinate processes.

CSLRMPRS: process step
By issuing the CSLRMPRS request, a client can perform a step in an IMSplex-wide process that can
consist of zero, one, or more steps.

This request is supported in assembler language.

CSLRMPRS syntax
CSLRMPRS DSECT syntax

Use the DSECT function of a CSLRMPRS request to include equate (EQU) statements in your program for
the length of the CSLRMPRS parameter list and the process step request options.

CSLRMPRS FUNC=DSECT

CSLRMPRS PROCESS syntax

Use the PROCESS function of a CSLRMPRS request to perform a step in an IMSplex-wide process.

CSLRMPRS FUNC=PROCESS PARM=  parm PRCNAME=  processname

PRCTOKEN=  processtoken PRCTYPE=  processtype STEPNAME=  processstepname

LIST= list LISTLEN=  listlength

CDATA=  clientdata CDATALEN=  clientdatalength

OUTPUT=  outputaddress OUTLEN=  outputlength UOWTOKEN=  uowtoken

TIMEOUT=  300

TIMEOUT=  timeoutvalue OPTWORD1=  processstepoptions

RETNAME=  returnname RETTOKEN=  returntoken ECB= ecb

RETCODE=  returncode RSNCODE=  reasoncode SCITOKEN=  scitoken

Chapter 7. Writing a CSL RM client  175



CSLRMPRS parameters
CDATA=symbol
CDATA=(r2-r12)

(Optional) - Specifies a variable length area that contains client data to send to clients participating in
the IMSplex-wide process step. The client data has meaning to clients, not to RM.

CDATALEN=symbol
CDATALEN=(r2-r12)

(Optional) - Specifies a 4-byte input field that contains the client data length. If this parameter is
specified, CDATA= must also be specified.

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous requests. When the request
is complete, the ECB specified is posted. If an ECB is not specified, the task is suspended until
the request is complete. If an ECB is specified, the invoker of the request must issue a WAIT (or
equivalent) after receiving control from CSLRM PRS before using or examining any data returned by
this request (including the RETCODE and RSNCODE fields).

LIST=symbol
LIST=(r2-r12)

(Required) - Specifies the variable length input list that contains the list of clients to which to send the
process step.

The process step list contains a list header and one or more list entries. The list header contains the
list header length, the parameter list version, the list entry length, the list entry count, and a user data
area. The list header user data area is passed back to the requestor in the list header of the process
step output. Each list entry contains the client name and an optional user data area. The user data
area is passed back to the requestor in a list entry in the process step output. The list entries must
reside in contiguous storage.

The CSLRPRSL macro maps the process step list.

LISTLEN=symbol
LISTLEN=(r2-r12)

(Required) - Specifies a 4-byte input field that contains the process step list length.
OPTWORD1=symbol
OPTWORD1=(r2-r12)

(Optional) - Specifies a 4-byte field containing the process step options. CSLRMPRS FUNC=DSECT
maps the process step options.
X'80000000'

Force process step after error. Take over a process step in progress, if a process step is already in
progress for an IMSplex member that is not active. Initiate a process and perform a process step if
no process is known to be in progress due to an error such as resource structure failure.

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output buffer returned by the
CSLRMPRS request. After being returned by request, this word contains the length of the buffer
pointed to by the OUTPUT= parameter. If no output is built, the output buffer length is zero. This can
occur if an error is detected before any output can be built.

It is the caller's responsibility to release this storage by issuing the CSLSCBFR FUNC=RELEASE
request when it is through with the storage.

OUTPUT=outputaddress
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable length output buffer
returned by the CSLRMPRS request. The output buffer contains the client-defined data from each
participating client and indicates the results of the process step. The output buffer length is returned
in the OUTLEN= field.

176  IMS: System Programming APIs



If no output is built, the output buffer address is zero. This can occur if an error is detected before any
output can be built.

The CSLRPRSO macro maps the output buffer that is returned. The output buffer header contains an
eyecatcher, the output buffer length, the CSLRPRSO version, the header length (offset to start of the
process list entries), the list entry minimum size, the process list entry count, a user data area, and the
CSLRPRSO create time stamp. The user data area contains the user data passed in the input process
step list header.

Each output buffer entry represents the results from a client that participated in a process step. Each
entry contains the following:

• Entry length
• Client name
• User data - the user data passed in the input process step list
• Process step response length
• Process step response
• Completion code (CSLRRR) - possible completion codes are:

X'00000000'
Client processes step successfully.

X'00000044'
Client did not respond before the process step timed out.

X'00000048'
The client was not sent the process step request because the client is not registered to RM.

This buffer is not preallocated by the caller. After the request returns it, this word contains the
address of a buffer containing information from the IMSplex members participating in the process. It
is the caller's responsibility to release this storage by issuing the CSLSCBFR FUNC=RELEASE request
when it is through with the storage.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMPRS parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by RPRS_PARMLN.

PRCNAME=symbol
PRCNAME=(r2-r12)

(Required) - Specifies an 8-byte field containing the process name. The process name is client defined
and has no meaning to RM. RM uses the process name and type to ensure that only one instance of a
process, with a particular process type, is in progress at one time.

PRCTOKEN=symbol
PRCTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field that contains the process token that uniquely identifies the
process. This token was returned on a successful CSLRMPRI FUNC=INITIATE request.

If the IMSplex is defined with a resource structure, the process token is zero.

PRCTYPE=symbol
PRCTYPE=(r2-r12)

(Required) - Specifies a 1-byte client-defined process type. Only one process of a particular type can
be in progress at any one time. The process type can be 1 through 255.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI return codes are defined
in CSLSRR. SCI return codes are defined in CSLSRR. Possible return codes are described in the
following table.

Chapter 7. Writing a CSL RM client  177



RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the caller. This is the CSL
member name of the target RM address space to which SCI sent the request.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the caller. This is the CSL
member name of the target RM address space to which SCI sent the request.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM reason codes are
defined in CSLRRR. SCI reason codes are defined in CSLSRR. Possible reason codes are described in
the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

STEPNAME=symbol
STEPNAME=(r2-r12)

(Required) - Specifies an 4-byte field containing the process step name. The process step name is
client-defined and has no meaning to RM. Each process step must have a different name.

TIMEOUT=timeoutvalue
TIMEOUT=symbol
TIMEOUT=(r2-r12)

(Optional) - Specifies a 4-byte field containing the process step timeout value in seconds. If the
timeout value is reached during the processing of the step, before all of the participants have
responded to the process step, RM terminates the process step and returns the available responses.
If the specified timeout value is too small, an incomplete response is returned. The TIMEOUT value
ensures a response is returned even if a client processing the step is unable to respond.

The default timeout value is 5 minutes (300 seconds). Specify a negative one (-1) value if no timeout
is required for the request.

The TIMEOUT value is the shortest possible time value that can cause the process step to time out.
RM internally sets a timer to pop every 5 seconds. When the RM timer pops, RM checks to see if any
process step timeout value has expired. When the process step timeout value is less than the RM
timer value, the actual length of step processing can be longer than the user specified TIMEOUT value.

UOWTOKEN=symbol
UOWTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the unit of work token. The UOW token uniquely
identifies an instance of this process and ties all of the process steps together. The UOW token
must match the UOW token specified on the CSLRMPRI FUNC=INITIATE request. The UOW token is
client-defined and has no meaning to RM.

CSLRMPRS return and reason codes
The following table lists the return and reason codes that can be returned on a CSLRMPRS request. Also
included is the meaning of a reason code (that is, what possibly caused it).

Table 52. CSLRMPRS return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000008' X'00002000' The client is not registered.

178  IMS: System Programming APIs



Table 52. CSLRMPRS return and reason codes (continued)

Return code Reason code Meaning

X'00002110' The list version in the list header (PRSL_PVER) is zero, which
is invalid. The list version must be set in the list header to the
maximum list version (PRSL_PVERMAX).

X'00002114' The list header length cannot be zero or greater than
the list length that was passed in. The list header length
(PRSL_HDRLEN) must be set in the list header to the list header
length.

X'00002140' The client data length cannot be zero or greater than 256.

X'00002208' The process type is invalid.

X'0000220C' The process step options are invalid.

X'00002300' The process token is invalid.

X'00002310' The UOW token is invalid.

X'0300000C' X'00003000' The process step succeeded for at least one client, but not all.
Check the completion code in each list entry in the OUTPUT
buffer for individual errors.

X'00003004' The request failed for all clients. Check the completion code in
each list entry in the OUTPUT buffer for individual errors.

X'03000010' X'00004000' The CQS address space is unavailable. Retry the request to
attempt routing the request to another RM with an available
CQS.

X'00004100' The requested version is not supported. The client compiled
with a version of CSLRMPRS that is not supported by RM. All
RMs must be migrated to a new release before IMS is migrated
to a new release that uses a new CSLRMPRS function.

X'00004104' The version of the list is not supported. The client created the
process step list at a version that is not supported by RM. All
RMs must be migrated to a new release before the client is
migrated to a new release that uses a new CSLRMPRS function.

X'00004108' The SCI address space is unavailable. SCI was available to send
the CSLRMPRS request to RM. RM tried coordinating the process
step by sending SCI messages to the active clients. The SCI
request to send a message to SCI failed for one or more active
clients that did not have an SCI active on the system. Some of
the clients might have successfully processed the step.

X'00004124' A process is not in progress. The process step is rejected.

X'00004128' A process step is already in progress. The process step is
rejected. If a process step is already in progress because an
error occurred while a previous process step was in progress,
and the owner of that process step is still active, the next
process step must be specified by the owner of the process step
with the FORCE option.

X'03000014' X'00005000' Storage allocation for the output buffer failed. The process step
might or might not have succeeded.

X'00005114' The process block allocation failed.

Chapter 7. Writing a CSL RM client  179



Table 52. CSLRMPRS return and reason codes (continued)

Return code Reason code Meaning

X'00005118' The process step response block allocation failed.

X'00005200' The CQS request resulted in an unexpected error.

X'00005204' The CQS request failed because RM incorrectly built the request
input.

X'00005208' The resource structure is not available.

X'00005210' RM is unable to add the process block to hash table.

X'00005214' RM is unable to find the process block in hash table.

X'00005218' RM is unable to scan the process block in hash table.

X'00005300' An SCI error was encountered. SCI was available to send the
CSLRMPRS request to RM. RM tried coordinating the process
step by sending SCI messages to the active clients. The SCI
request to send a message to SCI failed with an error for one or
more active clients. Some of the clients might have successfully
processed the step.

Related concepts
“Issue CSL RM requests to manage global resources” on page 164
Before a client can access or change global resource information, it must register to SCI using the
CSLSCREG request. After the client registers to SCI, it must register to RM using the CSLRMREG request.
The client must issue an SCI registration request for every IMSplex with which it intends to communicate.
“Issue CSL RM requests to coordinate IMSplex-wide processes” on page 165
You can use RM-supplied requests to coordinate IMSplex-wide processes. All clients that are to
participate in the process register to RM using the RM client registration request (CSLRMREG). After
the clients are registered, several different requests can be utilized to coordinate processes.

CSLRMPRT: process terminate
You can issue the CSLRMPRT request to terminate an IMSplex-wide process. Any client that is
participating in the process can issue a CSLRMPRT FUNC= TERMINATE request to terminate the process.

This request is supported in assembler language.

CSLRMPRT syntax
The syntax for the CSLRMPRT request follows.

DSECT syntax

Use the DSECT function of a CSLRMPRT request to include equate (EQU) statements in your program for
the length of the CSLRMPRT parameter list.

CSLRMPRT FUNC=DSECT

TERMINATE syntax

Use the TERMINATE function of a CSLRMPRT request to terminate an IMSplex-wide process.

180  IMS: System Programming APIs



CSLRMPRT FUNC=TERMINATE

OPTWORD1=  processtermoptions

PARM=  parm

PRCNAME=  processname PRCTOKEN=  processtoken PRCTYPE=  processtype

UOWTOKEN=  uowtoken
RETNAME=  returnname RETTOKEN=  returntoken

RETCODE=  returncode RSNCODE=  reasoncode SCITOKEN=  scitoken

CSLRMPRT parameters
OPTWORD1=symbol
OPTWORD1=(r2-r12)

(Optional) - Specifies a 4-byte field containing the process terminate options. CSLRMPRT
FUNC=DSECT maps the process terminate options.

The following options can be set in OPTWORD1:

• X'80000000': Force process to terminate
• X'40000000': Suppress process to terminate error messages

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMPRT parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by RPRT_PARMLN.

PRCNAME=symbol
PRCNAME=(r2-r12)

(Required) - Specifies an 8-byte field containing the process name. The process name is client defined
and has no meaning to RM. RM uses the process name and the process type to ensure that only one
instance of a process of a particular process type is in progress at one time.

PRCTOKEN=symbol
PRCTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field that contains the process token that uniquely identifies the
process. This token was returned on a successful CSLRMPRI FUNC=INITIATE request.

If the IMSplex is defined with a resource structure, the process token is zero.

PRCTYPE=symbol
PRCTYPE=(r2-r12)

(Required) - Specifies a 1-byte client-defined process type. Only one process of a particular type can
be in progress at any one time. The process type can be 1 through 255.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI return codes are defined
in CSLSRR. RM does not return a response to CSLRMPRT.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the name of the RM address space to which SCI sent
the process terminate request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive the SCI token of the RM address space to which SCI
sent the process terminate request.

Chapter 7. Writing a CSL RM client  181



RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. SCI reason codes are
defined in CSLSRR. RM does not return a response to the CSLRMPRT request.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

UOWTOKEN=symbol
UOWTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the unit of work token. The UOW token uniquely
identifies an instance of this process and ties all of the process steps together. The UOW token
must match the UOW token specified on the CSLRMPRI FUNC=INITIATE request. The UOW token is
client-defined and has no meaning to RM.

CSLRMPRT return and reason codes
CSLRMPRT is sent to the target client address space using the SCI message protocol. All return and
reason codes that are applicable to the CSLSCMSG request can be returned on a CSLRMPRT request.
CSLRMPRT does not issue any additional return and reason codes.

Related concepts
“Issue CSL RM requests to manage global resources” on page 164
Before a client can access or change global resource information, it must register to SCI using the
CSLSCREG request. After the client registers to SCI, it must register to RM using the CSLRMREG request.
The client must issue an SCI registration request for every IMSplex with which it intends to communicate.
“Issue CSL RM requests to coordinate IMSplex-wide processes” on page 165
You can use RM-supplied requests to coordinate IMSplex-wide processes. All clients that are to
participate in the process register to RM using the RM client registration request (CSLRMREG). After
the clients are registered, several different requests can be utilized to coordinate processes.

CSLRMQRY: query resources
You can issue the CSLRMQRY request to query one or more uniquely named resources on a resource
structure.

This request is supported in assembler language.

CSLRMQRY syntax
CSLRMQRY DSECT syntax

Use the DSECT function of a CSLRMQRY request to include the following inputs and outputs in your
program:

• Equate (EQU) statements for the length of the CSLRMQRY parameter list
• The CSLRMQRY return codes, reason codes, and completion codes
• The CSLRQRYL DSECT to map the input query list
• The CSLRQRYO DSECT to map the query output

CSLRMQRY FUNC=DSECT

CSLRMQRY QUERY syntax

Use the QUERY function of a CSLRMQRY request to query one or more uniquely named resources on a
resource structure.

182  IMS: System Programming APIs



CSLRMQRY FUNC=QUERY PARM=  parm LIST= querylist LISTLEN=  querylistlength

RETNAME=  returnname RETTOKEN=  returntoken

OUTPUT=  output

OUTLEN=  outputlength

ECB= ecb

PROTOCOL=  RQST

RETCODE=  returncode RSNCODE=  reasoncode SCITOKEN=  scitoken

CSLRMQRY parameters
ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous requests. When the request
is complete, the ECB specified is posted. If an ECB is not specified, the task is suspended until
the request is complete. If an ECB is specified, the invoker of the request must issue a WAIT (or
equivalent) after receiving control from CSLRM QRY before using or examining any data returned by
this request (including the RETCODE and RSNCODE fields).

LIST=symbol
LIST=(r2-r12)

(Required) - Specifies the query resource list built by the caller. Each list entry is a separate query
request. The list length can vary, depending upon the number of list entries.

The list contains a header and one or more list entries. The list entries must reside in contiguous
storage. Each query list entry contains the following:

• Resource name - the client-defined name of the resource. The resource name can be a wildcard
name. If it is a wildcard name, all resources that match the wildcard name are returned.

• Resource type - the resource type is a client-defined physical grouping of resources on the resource
structure. Valid values are 1-255.

• Query options (optional) - options that indicate special processing to perform for the query.
• Owner (optional) - the owner of the resource. If you specify the owner, the resource is returned only

if the resource name and owner match a resource on the resource structure. Specify binary zeroes
to omit the owner, and the query returns the owner name in the RQYO_OWNER field in the output list
entry.

• User (optional) - a user field set by the caller, which is passed back in the output list entry
associated with the input list entry.

LISTLEN=symbol
LISTLEN=(r2-r12)

(Required) - Specifies the 4-byte query resource list length.
OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output buffer returned by the
CSLRMQRY request. OUTLEN contains the length of the output buffer pointed to by the OUTPUT
parameter. The length of the output data (header and entries) is passed in the output header data,
mapped by CSLRQRYO.

OUTPUT=output
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable length output returned by
the CSLRMQRY request. The output contains a header and one or more query entries for resource
queries that were attempted. The output length is returned in the OUTLEN field.

Chapter 7. Writing a CSL RM client  183



The output address is zero if no output was built, for example, if an error was detected before any
output could be built.

The CSLRQRYO macro maps the output that is returned. The output contains a header and one or
more list entries. The header contains the following:

• an eyecatcher
• the output length
• CSLRQRYO version
• CSLRQRYO header length (offset to start of entries)
• minimum entry length (offset to DATA2)
• resource entry count
• time stamp

Each output entry represents a resource query that was attempted. Each entry contains the following
parameters:

• Output entry length - the list entry length can vary, depending upon whether DATA2 is returned.
• Name type - the name type is a client-defined value associated with a resource type that ensures

uniqueness of client-defined resource names within a name type. Valid values are 1-255.
• Resource name - client-defined name of the resource.
• Resource type - the resource type is a client-defined physical grouping of resources on the resource

structure. Valid values are 1-255.
• Version - the resource version, which is the number of times the resource has been updated.
• DATA2 flag byte - flag byte indicating if DATA2 was read.
• Resource name status flag - the resource name status indicates how the resource name in the query

output list entry is associated with the input resource parameter. This enables you to tie the input
resource parameter to the output query list entries that are generated. The following resource name
status are possible:
Specific parameter

A specific resource name was specified. This query list entry contains the resource name that
matches the input parameter.

Wildcard Parameter
A wildcard parameter was specified. This query list entry contains the wildcard parameter and a
completion code. This query list entry does not contain information about a specific resource. If
the completion code is zero, one or more wildcard match list entries follow.

Wildcard match
A wildcard parameter was specified. This entry contains information about one resource that
matches the input wildcard parameter. All wildcard match list entries follow contiguously after a
wildcard parameter list entry.

• Owner - owner of a resource.
• DATA1- a small piece of client data (fixed length, contained in the adjunct area of a data entry)

associated with an existing resource.
• DATA2 length - length of a large piece of client data associated with an existing resource, if DATA2

exists and the option to read DATA2 was set.
• Optional User field - optional 4 byte user field passed back to the caller in the output list entry

associated with the input list entry.
• DATA2 - a large piece of client data (variable length, contained in one or more data elements of a

data entry) associated with an existing resource, if DATA2 exists, and the option to read DATA2 was
set. The maximum size of DATA2 is 61312 bytes (X'EF80').

• Completion code for the query request - completion codes are mapped by CSLRRR. Possible
completion codes are:

184  IMS: System Programming APIs



X'00000000'
Query request succeeded. At least one resource matching the query parameters is returned in the
output buffer specified by OUTPUT=.

X'00000004'
No resources found.

X'00000008'
Invalid resource type.

X'0000000C'
Invalid name type.

X'00000024'
Resource structure is unavailable.

X'00000034'
Invalid options specified.

X'00000038'
Query failed because of CQS internal error.

X'0000003C'
Query failed because RM incorrectly built the CQSBRWSE list entry.

The output buffer is not preallocated by the caller. After the request returns it, this word contains the
address of a buffer containing the query output. It is the caller's responsibility to release this storage
by issuing the CSLSCBFR FUNC=RELEASE request when it is through with the storage. The length of
the buffer is returned in the OUTLEN= field.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMQRY parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by RQRY_PARMLN.

PROTOCOL=RQST
(Optional) - SCI protocol for sending the request to RM. RQST sends the query request using SCI
request interface.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. RM return codes are defined
in CSLRRR. SCI return codes are defined in CSLSRR. Possible return codes are described in the
following table.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the caller. This is the CSL
member name of the target RM address space to which SCI sent the request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive RM's SCI token returned to the caller. This is the SCI
token for the target RM address space to which SCI sent the request.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM reason codes are
defined in CSLRRR. SCI reason codes are defined in CSLSRR. Possible reason codes are described in
the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

Chapter 7. Writing a CSL RM client  185



CSLRMQRY return and reason codes
The following table lists the return and reason codes that can be returned on a CSLRMQRY request. Also
included is the meaning of a reason code (that is, what possibly caused it).

Table 53. CSLRMQRY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000004' X'00001000' No resources were found.

X'03000008' X'00002000' The client is not registered.

X'00002100' The query-list length is invalid.

X'00002108' The query-list address is invalid.

X'00002110' The list version in the list header (QRYL_PVER) is zero, which
is invalid. The list version must be set in the list header to the
maximum list version (QRYL_PVERMAX).

X'00002114' The list header length cannot be zero or greater than
the list length that was passed in. The list header length
(QRYL_HDRLEN) must be set in the list header to the list header
length.

X'00002404' No resource structure is defined.

X'0300000C' X'00003000' The request succeeded for at least one list entry, but not all.
Check the completion code in each query list entry in the
OUTPUT buffer for individual errors.

X'00003004' The request failed for all entries. Check the completion code in
each query list entry in the OUTPUT buffer for individual errors.

X'03000010' X'00004000' The CQS address space is unavailable. Retry the request again
to attempt routing the request to another RM with an available
CQS.

X'00004100' The requested version is not supported. The client compiled
with a version of CSLRMQRY that is not supported by RM. All
RMs must be migrated to a new release before IMS is migrated
to a new release that uses a new CSLRMQRY function.

X'00004104' The list version is not supported. The client created the query
list at a version that is not supported by RM. All RMs must be
migrated to a new release before the client is migrated to a new
release that uses a new CSLRMQRY function.

X'03000014' X'00005000' Storage allocation for the query output buffer failed.

X'00005108' Storage allocation for the CQSBRWSE buffer failed.

X'00005200' The CQS request resulted in an unexpected error.

X'00005204' The CQS request failed because RM incorrectly built the request
input.

Related concepts
“Issue CSL RM requests to manage global resources” on page 164

186  IMS: System Programming APIs



Before a client can access or change global resource information, it must register to SCI using the
CSLSCREG request. After the client registers to SCI, it must register to RM using the CSLRMREG request.
The client must issue an SCI registration request for every IMSplex with which it intends to communicate.

CSLRMREG: register clients
You use the CSLRMREG request to register a client to RM and, optionally, to register the client's resource
types and associated name types. The client being registered to RM must be authorized to issue a
CSLRMREG request. However, you cannot register a client if an IMSplex-wide process is in progress.

You must register a client to RM before the client can issue any other RM requests. After the client is
registered, it must participate in any IMSplex-wide processes that are performed. You must register the
client to all RMs that are active in the IMSplex. If registration to an RM fails, you must deregister the
client from any RMs to which the client had successfully registered. If an RM fails, register with it when it
restarts.

You can register the same client multiple times. For example, you might need to specify the resource list
for the client after the client is already registered. Optionally, register resource types to RM along with the
client to define the resource types to RM and associate a name type with each resource type. You must
register resource types before you can specify them in other requests. You cannot register the client if the
resource type and name type associations do not match those already registered previously.

Resource-processing clients, such as the IMS control region, issue this request.

This request is supported in assembler language.

CSLRMREG syntax
CSLRMREG DSECT syntax

Use the DSECT function of a CSLRMREG request to include the following inputs and outputs in your
program:

• Equate (EQU) statements for the length of the CSLRMREG parameter list
• The CSLRMREG return codes, reason codes, and completion codes
• The CSLRREGL DSECT to map the input registration list
• The CSLRREGO DSECT to map the register output

CSLRMREG FUNC=DSECT

CSLRMREG REGISTER syntax

Use the CSLRMREG request to register a client to RM and, optionally, to register the client's resource
types and associated name types to RM.

CSLRMREG FUNC=REGISTER RMNAME=  rmname OUTLEN=  outputlength

OUTPUT=  output

LIST= reglist LISTLEN=  reglistlength ECB= ecb

PARM=  parm RETCODE=  returncode RSNCODE=  reasoncode SCITOKEN=  scitoken

CSLRMREG parameters
ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous requests. When the request
is complete, the ECB specified is posted. If an ECB is not specified, the task is suspended until
the request is complete. If an ECB is specified, the invoker of the request must issue a WAIT (or

Chapter 7. Writing a CSL RM client  187



equivalent) after receiving control from CSLRMREG before using or examining any data returned by
this request (including the RETCODE and RSNCODE fields).

LIST=symbol
LIST=(r2-r12)

(Optional) - Specifies the registration list built by the caller. Each list entry is a separate resource type
registration. If a registration list is specified when no resource structure is defined, it is ignored.

The CSLRREGL macro maps the registration list entry. The list contains a header and one or more list
entries. The list entries must reside in contiguous storage. Each registration list entry contains the
following:

• Resource type
• Name type

LISTLEN=symbol
LISTLEN=(r2-r12)

(Optional) - Specifies the 4-byte registration list length. LISTLEN is required if LIST is specified.
OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned by the CSLRMREG
request. OUTLEN contains the length of the output pointed to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is detected before any output can
be built.

OUTPUT=output
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable length output returned by
the CSLRMREG request. The output contains a header and zero, one, or more registration entries for
registrations that were attempted. The output length is returned in the OUTLEN= field.

The output address is zero if no output was built, for example, if an error was detected before any
output could be built.

The CSLRREGO macro maps the output that is returned. The output contains a header and zero, one,
or more list entries. The output header contains the following:

• Eyecatcher
• Output length
• CSLRREGO version
• CSLRREGO header length (offset to start of entries)
• CSLRREGO entry length
• Registration list count
• Time stamp
• Registration status
• Structure version

Each output entry represents a registration request that was attempted. Each entry contains the
following:

• Resource type
• Name type
• Completion code for the registration request. Completion codes are mapped by CSLRRR. Possible

completion codes are:

X'00000000'
Register succeeded.

188  IMS: System Programming APIs



X'00000008'
Invalid resource type. The resource type cannot be zero.

X'0000000C'
Invalid name type. The name type cannot be zero, or the resource type is already defined with a
different name type.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMREG parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by RREG_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. RM return codes are defined
in CSLRRR. SCI return codes are defined in CSLSRR. Possible return codes are described in the
following table.

RMNAME=symbol
RMNAME=(r2-r12)

(Required) - Specifies an 8-byte RM name to which to send the registration request.
RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM reason codes are
defined in CSLRRR. SCI reason codes are defined in CSLSRR. Possible reason codes are described in
the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

CSLRMREG return and reason codes
The following table lists the return and reason codes that can be returned on a CSLRMREG request. Also
included is the meaning of a reason code (that is, what possibly caused it).

Table 54. CSLRMREG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000004' X'00001100' The request completed successfully but the LIST is ignored. No
resource structure is defined.

X'03000008' X'00002100' The registration-list length is invalid.

X'00002108' The registration-list address is invalid.

X'00002110' The list version in the list header (REGL_PVER) is zero, which
is invalid. The list version must be set in the list header to the
maximum list version (REGL_PVERMAX).

X'00002114' The list header length cannot be zero or greater than
the list length that was passed in. The list header length
(REGL_HDRLEN) must be set in the list header to the list header
length.

X'0300000C' X'00003000' The request is valid for at least one list entry, but not all. The
registration for the valid list entries is not performed and the
client registration is rejected. Check the completion code in
each list entry in the OUTPUT buffer for individual errors.

Chapter 7. Writing a CSL RM client  189



Table 54. CSLRMREG return and reason codes (continued)

Return code Reason code Meaning

X'00003004' The request failed for all entries. Check the completion code in
each list entry in the OUTPUT buffer for individual errors.

X'03000010' X'00004010' The client is not authorized.

X'00004100' The requested version is not supported. The client compiled
with a version of CSLRMREG that is not supported by RM. All
RMs must be migrated to a new release before IMS is migrated
to a new release that uses a new CSLRMREG function.

X'00004104' The list version is not supported. The client created the
registration list at a version that is not supported by RM. All RMs
must be migrated to a new release before the client is migrated
to a new release that uses a new CSLRMREG function.

X'03000014' X'00005000' Storage allocation for the register output buffer failed.

X'00005100' Storage allocation for CQSUPD buffer failed.

X'00005200' CQS request resulted in an unexpected error.

X'00005204' CQS request failed because RM incorrectly built request input.

X'00005110' The client block allocation failed.

Related concepts
“Sequence of RM client requests” on page 163
If you want to use RM to manage global resources in an IMSplex for your own product or service, you
have to write one or more RM clients. An RM client uses RM requests issued in a particular sequence to
communicate with RM.
“Issue CSL RM requests to manage global resources” on page 164
Before a client can access or change global resource information, it must register to SCI using the
CSLSCREG request. After the client registers to SCI, it must register to RM using the CSLRMREG request.
The client must issue an SCI registration request for every IMSplex with which it intends to communicate.

CSLRMUPD: update resources
By issuing the CSLRMUPD request, you can create a resource if it does not exist, or update a resource
if it does exist (as long as the version specified matches the version of the resource). A resource can be
created or updated with or without client data.

This request is supported in assembler language.

CSLRMUPD syntax
CSLRMUPD DSECT syntax

Use the DSECT function of a CSLRMUPD request to include the following inputs and outputs in your
program:

• Equate (EQU) statements for the length of the CSLRMUPD parameter list
• The CSLRMUPD return codes, reason codes, and completion codes
• The CSLRUPDL DSECT to map the input update list
• The CSLRUPDO DSECT to map the update output

CSLRMUPD FUNC=DSECT

190  IMS: System Programming APIs



CSLRMUPD UPDATE syntax

Use the CSLRMUPD request to create or update a uniquely named resource on a resource structure.

CSLRMUPD FUNC=UPDATE PARM=  parm LIST= updlist LISTLEN=  updlistlength

OUTPUT=  output OUTLEN=  outputlength

ECB= ecb

RETNAME=  returnname RETTOKEN=  returntoken

RETCODE=  returncode

RSNCODE=  reasoncode SCITOKEN=  scitoken

CSLRMUPD parameters
ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous requests. When the request
is complete, the ECB specified is posted. If an ECB is not specified, the task is suspended until
the request is complete. If an ECB is specified, the invoker of the request must issue a WAIT (or
equivalent) after receiving control from CSLRM UPD before using or examining any data returned by
this request (including the RETCODE and RSNCODE fields).

LIST=symbol
LIST=(r2-r12)

(Required) - Specifies the update resource list built by the caller. Each list entry is a separate update
request. The list length can vary, depending upon the number of list entries and whether they contain
DATA2.

The CSLRUPDL macro maps the update resource list entry. The list contains a header and one or more
list entries. The list entries must reside in contiguous storage. Each update list entry contains the
following:

• Entry length - the update list entry length. The list entry length can vary, depending upon whether
DATA2 is specified.

• Resource name - client-defined name of the resource.
• Resource type - the resource type is a client-defined physical grouping of resources on the resource

structure. Valid values are 1-255.
• Update options - options that indicate special processing to perform for the update.
• Version - the resource version, which is the number of times the resource has been updated. The

version must match the resource's version for an existing resource for the update to succeed. The
version must be zero to create a resource.

• Owner - owner of the resource.
• DATA1 - a small piece of client data (fixed length, contained in the adjunct area of a data entry) for

the resource to be updated.
• DATA2 length - DATA2 length, if DATA2 is specified.
• DATA2 - a large piece of client data (variable length, contained in one or more data elements of a

data entry) associated with the resource to be updated. DATA2 is optional. The maximum size of
DATA2 is 61312 bytes (X'EF80').

LISTLEN=symbol
LISTLEN=(r2-r12)

(Optional) - Specifies the 4-byte update resource list length. LISTLEN is required if LIST is specified.

Chapter 7. Writing a CSL RM client  191



OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned by the CSLRMUPD
request. OUTLEN contains the length of the output pointed to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is detected before any output can
be built.

OUTPUT=output
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable length output returned by
the CSLRMUPD request. The output contains a header and one or more update entries for resource
updates that were attempted. The output length is returned in the OUTLEN= field.

The output address is zero if no output was built, for example, if an error was detected before any
output could be built.

The CSLRUPDO macro maps the output that is returned. The output contains a header and one or
more list entries. The output header contains the following:

• Eyecatcher
• Output length
• CSLRUPDO version
• Time stamp
• Resource entry count
• CSLRUPDO header length (offset to start of entries)
• Minimum entry length (offset to DATA2)

Each output entry represents a resource update that was attempted. Each entry contains the
following:

• Output entry length - the list entry length can vary, depending upon whether DATA2 is returned.
• Resource type
• Name type - the name type is a client-defined value associated with a resource type that ensures

uniqueness of client-defined resource names within a name type. Valid values are 1-255.
• Resource name
• Version - new resource version, if update succeeded, or the resource version of an existing resource,

if the failed because of a version mismatch.
• Owner - resource owner of an existing resource, if the update failed because of a version mismatch

and the option to read the owner was set.
• DATA1 - a small piece of client data (fixed length, contained in the adjunct area of a data entry)

associated with an existing resource, if the update failed because of a version mismatch and the
option to read DATA1 was set.

• DATA2 length - length of large piece of client data associated with an existing resource, if the update
failed because of a version mismatch, DATA2 exists, and the option to read DATA2 was set.

• DATA2 - a large piece of client data (variable length, contained in one or more data elements of a
data entry) associated with an existing resource, if the update failed because of a version mismatch,
DATA2 exists, and the option to read DATA2 was set. The maximum size of DATA2 is 61312 bytes
(X'EF80').

• Completion code for the update request - completion codes are mapped by CSLRRR. Possible
completion codes are:

X'00000000'
Update request succeeded.

X'00000008'
Invalid resource type.

192  IMS: System Programming APIs



X'00000010'
Version mismatch. Resource already exists and version specified on input did not match.

X'00000014'
Resource already exists as a different resource type.

X'00000018'
Resource type is not registered. The resource type must be registered using a CSLRMREG request.

X'0000001C'
Resource structure is full.

X'00000024'
Resource structure is unavailable.

X'00000038'
Update failed because of CQS internal error.

X'0000003C'
Update failed because RM incorrectly built the CQSUPD list entry.

X'00000040'
Version mismatch. The resource already exists and the version specified on input did not match.
The requestor requested that DATA2 be passed back, but RM encountered an error reading
DATA2.

The output buffer is not preallocated by the caller. After the request returns it, this word contains the
address of a buffer containing the update output. It is the caller's responsibility to release this storage
by issuing the CSLSCBFR FUNC=RELEASE request when it is through with the storage. The length of
the output is returned in the OUTLEN= field.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMUPD parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by RUPD_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. RM return codes are defined
in CSLRRR. SCI return codes are defined in CSLSRR. Possible return codes are described in the
following table.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the caller. This is the CSL
member name of the target RM address space to which SCI sent the request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive RM's SCI token returned to the caller. This is the SCI
token for the target RM address space to which SCI sent the request.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM reason codes are
defined in CSLRRR. SCI reason codes are defined in CSLSRR. Possible reason codes are described in
the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

CSLRMUPD return and reason codes
The following table lists the return and reason codes that can be returned on a CSLRMUPD request. Also
included is the meaning of a reason code (that is, what possibly caused it).

Chapter 7. Writing a CSL RM client  193



Table 55. CSLRMUPD return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000008' X'00002000' The client is not registered.

X'00002100' The update-list length is invalid.

X'00002108' The update-list address is invalid.

X'0000210C' One of the list entries contains one of the following invalid list
entry lengths:

• Zero length
• Smaller than the minimum list entry length
• Beyond the end of the list passed in
• Not on a fullword boundary

RM assumes that the rest of the list is invalid.

X'00002110' The list version in the list header (UPDL_PVER) is zero, which
is invalid. The list version must be set in the list header to the
maximum list version (UPDL_PVERMAX).

X'00002114' The list header length cannot be zero or greater than
the list length that was passed in. The list header length
(UPDL_HDRLEN) must be set in the list header to be the list
header length.

X'00002200' One of the list entries contains an invalid resource type, such as
zero. RM assumes the rest of the list is invalid.

X'0000220C' One of the entries in the list contains one or more invalid update
options. RM assumes the rest of the list is invalid.

X'00002404' No resource structure is defined.

X'0300000C' X'00003000' The request succeeded for at least one list entry, but not all.
Check the completion code in each list entry in the OUTPUT
buffer for individual errors.

X'00003004' The request failed for all entries. Check the completion code in
each list entry in the OUTPUT buffer for individual errors.

X'00003008' The request failed for one or more list entries and all failures
were version mismatches. Check the completion code in each
list entry in the OUTPUT buffer for individual errors.

X'03000010' X'00004000' The CQS address space is unavailable. Retry the request to
attempt routing the request to another RM with an available
CQS.

X'00004100' The requested version is not supported. The client compiled
with a version of CSLRMUPD that is not supported by RM. All
RMs must be migrated to a new release before IMS is migrated
to a new release that uses a new CSLRMUPD function.

X'00004104' The list version is not supported. The client created the update
list at a version level that is not supported by RM. All RMs must
be migrated to a new release before the client is migrated to a
new release that uses a new CSLRMUPD function.

194  IMS: System Programming APIs



Table 55. CSLRMUPD return and reason codes (continued)

Return code Reason code Meaning

X'03000014' X'00005000' Storage allocation for the output buffer failed. The resource
updates might or might not have succeeded.

X'00005100' Storage allocation for CQSUPD buffer failed.

X'00005200' CQS request resulted in unexpected error.

X'00005204' The CQS request failed because RM incorrectly built the request
input.

Related concepts
“Issue CSL RM requests to manage global resources” on page 164
Before a client can access or change global resource information, it must register to SCI using the
CSLSCREG request. After the client registers to SCI, it must register to RM using the CSLRMREG request.
The client must issue an SCI registration request for every IMSplex with which it intends to communicate.

CSL RM directives
An RM directive is a function that RM defines that can be sent as a message to RM clients, informing
the RM clients of work to be processed. After a resource processing client is registered to RM, RM can
direct that client to perform RM functions, or directives, by issuing the CSLSCMSG request. A resource
processing client is any system that manages resources and uses RM to manage global information about
those resources.

RM directives are always issued in message protocol (PROTOCOL=MSG), that is, asynchronously; RM
therefore expects no response from the RM client, and it continues processing without waiting for a
response. The RM client is responsible for determining whether or not to take any action in response to
the directive. If the client does not respond, the directive times out.

The CSLRMDIR macro maps the RM directives. The SCI Input exit routine's INXP_MBRPLPTR field points
to the CSLRMDIR parameter list.

The following RM directives are defined in the CSLRMDIR macro:

• Repopulate structure (RDIR_STRPOPD)
• Structure failed (RDIR_STRFAILD)
• Process step (RDIR_PRSTEPD)
• Process step response (RDIR_PRRESPD)

Related reference
CSL SCI Input exit routine (Exit Routines)

CSL RM repopulate structure directive
The repopulate structure directive is sent to all resource processing clients after an RM detects a
structure failure and the structure is reallocated. The client then repopulates the structure and can
receive this directive from all RMs that it is registered to.

If the client receives directives from multiple RMs to repopulate the structure after having already done
so, it can ignore those requests after confirming that the directives apply to the same structure name and
version.

Repopulate structure parameters
RDIR_STRPOP

Identifies the start of the repopulate structure directive.

Chapter 7. Writing a CSL RM client  195

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_cslsci_input.htm#ims_cslsci_input


RDIR_STNAMLEN=length
Contains the length of the structure name.

RDIR_STNAMPTR=address
Contains the address of the structure name.

RDIR_STVERLEN=length
Contains the length of the structure version.

RDIR_STVERPTR=address
Contains the address of the structure version.

RDIR_STRPOPLN=length
Contains the length of the repopulate structure.

CSL RM structure failed directive
The structure failed directive is sent to a resource processing client when the resource structure fails and
cannot be reallocated. The client cannot make any more resource requests until the problem is corrected.

A client can receive this directive from all RMs to which it is registered. If the client receives directives
from multiple RMs, it can ignore duplicate requests after confirming that the directives apply to the same
structure name and version.

Structure failed parameters
RDIR_STRFAIL

Identifies the start of the structure failed directive.
RDIR_SFNAMLEN=length

Contains the length of the structure name.
RDIR_SFNAMPTR=address

Contains the address of the structure name.
RDIR_SFVERLEN=length

Contains the length of the structure version.
RDIR_SFVERPTR=address

Contains the address of the structure version.
RDIR_STRFAILN=length

Contains the length of the structure failed directive.

CSL RM process step directive
The Process Step directive is sent to a resource processing client when a process step needs to be
performed.

Process step parameters
RDIR_PRSTEP

Identifies the start of the Process Step directive.
RDIR_PSTKNLEN=length

Contains the length of the process token (PRCTOKEN), which uniquely identifies the IMSplex-wide
process. PRCTOKEN is returned after the CSLRMPRI FUNC=INITIATE request successfully completes.
PRCTOKEN can be specified on CSLRMPRS FUNC=PROCESS, CSLRMPRR FUNC=RESPOND, and
CSLRMPRT FUNC=TERMINATE requests.

RDIR_PSTKNPTR=address
Contains the address of the PRCTOKEN.

RDIR_PSUOWLEN=length
Contains the length of the UOWTOKEN, a client-defined UOW that uniquely identifies a process
instance. UOWTOKEN also unites the PROCESS INITIATE, PROCESS RESPOND, and PROCESS

196  IMS: System Programming APIs



TERMINATE steps. UOWTOKEN is defined by the CSLRMPRI FUNC=INITIATE request and can be
specified on CSLRMPRS FUNC=PROCESS requests.

RDIR_PSUOWPTR=address
Contains the address of the UOWTOKEN.

RDIR_PRCNMLEN=length
Contains the length of the process name (PRCNAME), which is defined by the CSLRMPRI
FUNC=INITIATE request. It can also be specified on the CSLRMPRS FUNC=PROCESS and CSLRMPRT
FUNC=TERMINATE requests.

RDIR_PRCNMPTR=address
Contains the address of the PRCNAME.

RDIR_PRCTYPE
The process type is defined by the CSLRMPRI FUNC=INITIATE request. It can be specified on the
CSLRMPRS FUNC=PROCESS and CSLRMPRT FUNC=TERMINATE requests. This parameter is passed
by value; the length field is always zero.

RDIR_PSNAME
Contains the process step name, which is defined by the CSLRMPRS FUNC=PROCESS request. This
parameter is passed by value; the length field is always zero.

RDIR_PSDATLEN=length
Contains the length of the process step client data (CDATALEN). The client data is passed to the
participants in the process step. CDATALEN is specified on the CSLRMPRS FUNC=PROCESS request.

RDIR_PSDATPTR=address
Contains the address of the process step client data (CDATA).

RDIR_CNAMLEN=length
Contains the length of the client name that was registered to SCI by the client that originated the
process step (the process step master).

RDIR_CNAMPTR=address
Contains the address of the client name that was registered to SCI by the client that originated the
process step (the process step master).

RDIR_CTYPE
Identifies the client type that was registered to SCI by the client that originated the process step (the
process step master). This parameter is passed by value; the length field is always zero.

RDIR_CSTYPLEN
Contains the length of the client subtype that was registered to SCI by the client that originated the
process step (the process step master).

RDIR_CSTYPPTR
Contains the address of the client subtype that was registered to SCI by the client that originated the
process step (the process step master).

RDIR_PRSTEPLN
Contains the length of the process step directive.

CSL RM process step response directive
The Process Step Response directive is sent to RM by a client that is responding to a process step with a
CSLRMPRR request.

Process step response parameters
RDIR_PRRESP

Identifies the start of the process step response directive.
RDIR_PRTKNLEN=length

Contains the length of the process token (PRCTOKEN), which uniquely identifies the IMSplex-wide
process. PRCTOKEN is returned after the CSLRMPRI FUNC=INITIATE request successfully completes.

Chapter 7. Writing a CSL RM client  197



PRCTOKEN can be specified on CSLRMPRS FUNC=PROCESS, CSLRMPRR FUNC=RESPOND, and
CSLRMPRT FUNC=TERMINATE requests.

RDIR_PRTKNPTR=address
Contains the address of the PRCTOKEN.

RDIR_PROUTLEN=length
Contains the length of the process step response output (OUTPUT). The response output is passed
back to the originator of the process step. OUTPUT is specified on the CSLRMPRR FUNC=RESPOND
request.

RDIR_PROUTPTR=address
Contains the address of the response output (OUTPUT).

RDIR_PRRCLEN=length
Contains the process step response return code (RQSTRC). The return code is specified by the
CSLRMPRR FUNC=RESPOND request.

RDIR_PRRCPTR=address
Contains the address of the process step response return code (RQSTRC).

RDIR_PRRSNLEN=length
Contains the length of the process step response reason code (RQSTRSN), which is specified by the
CSLRMPRR FUNC=RESPOND request.

RDIR_PRRSNPTR=address
Contains the address of the process step response reason code (RQSTRSN).

198  IMS: System Programming APIs



Chapter 8. Writing a CSL SCI client
You must establish a connection to SCI (Structured Call Interface) in order to write a program that
participates in an IMSplex (such as an AOP) and allows your IMSplex member to communicate with
other IMSplex members. Without a connection to SCI, a program cannot participate in an IMSplex and
communicate with other IMSplex members.

To establish a connection with SCI, you can use a subset of the SCI requests. These requests establish
or terminate a connection with SCI and optionally indicate to SCI that the IMSplex member is in a ready
state. When a member is in a ready state, it can have requests and messages routed to it by type.

SCI requests are also used by an IMSplex member to communicate with other IMSplex members and to
find out information about those members. IMSplex members communicate with other members by using
SCI requests to send messages, requests, and responses to requests. A query request can be used to find
out information about the other members of the IMSplex.

Related reference
“CSLSCQRY: query request” on page 210
By issuing the CSLSCQRY request, an IMSplex member can obtain information about the members of the
IMSplex.

Sequence of CSL SCI requests
Structured Call Interface (SCI) requests must be issued in a particular sequence in order to successfully
register to SCI, ready the member, release storage allocated for the member, quiesce the member, and
deregister the member from SCI.

The first SCI request is CSLSCREG. The member can then issue CSLSCRDY to tell SCI that it is ready to
receive messages and requests that are routed by member type. If a member has storage that is allocated
by SCI (for example, a message or an SCI allocated output parameter is received), the SCI buffer release
request, CSLSCBFR, is issued to release the storage.

When a member is ready to terminate, the SCI quiesce request, CSLSCQSC, is used to tell SCI that the
member does not want to receive messages and requests that are routed by member type. After the
SCI deregistration request, CSLSCDRG, is used to terminate the connection with SCI, the member can no
longer participate in the IMSplex.

The following table lists the sequence of requests issued by an SCI client. The request is listed with its
purpose.

Table 56. Sequence of requests for SCI client

Request Purpose

CSLSCREG Register to SCI, which establishes the connection with SCI and enables the
member to communicate within the IMSplex.

CSLSCRDY Readies the member to SCI, which allows SCI to route messages and requests that
are routed by member type to this member.

CSLSCBFR Releases storage allocated for the member by SCI (for example, message data or
parameters allocated by SCI from a request).

CSLSCQSC Quiesces the member to SCI, which tells SCI not to route messages and requests
that are routed by member type to this member.

CSLSCDRG Deregisters the member from SCI which ends the member's connection with SCI.

© Copyright IBM Corp. 1974, 2022 199



Advanced CSL SCI requests
After connecting to Structured Call Interface (SCI), an IMSplex member can use advanced SCI requests to
request services from and find out information about other IMSplex members. Each advanced request has
its own purpose.

After establishing the connection with SCI, an IMSplex member can use advanced SCI requests to:

• Communicate, or request services, from other IMSplex members.

A message protocol and a request protocol are provided to facilitate communication among IMSplex
members. A message is a one-way communication with another IMSplex member. A request requires
that a response be returned to the requesting member.

• Find out information about the other members in the IMSplex.

A query request, CSLSCQRY, allows an IMSplex member to find out who the other members of the
IMSplex are and to obtain information about those IMSplex members.

The following table lists the advanced SCI requests with their purpose. These requests can be issued
without regard to sequence; however, the IMSplex member issuing the request must have registered to
SCI.

Table 57. Advanced SCI requests for IMSplex members

Request Purpose

CSLSCMSG Sends a one-way message to another IMSplex member.

CSLSCRQS Sends a request to another IMSplex member. SCI expects a response to the
request.

CSLSCRQR Sends a response to a previously issued request.

CSLSCQRY Issues a query to SCI to find out information about members of the IMSplex.

CSL SCI requests
SCI requests can be issued by an IMSplex member. Any member can also receive messages from any
other IMSplex member after a connection is established.
Related concepts
“CSL OM automated operator program clients” on page 125
OM provides an API interface for application programs that automate operator actions known as
automated operator programs (AOP). You can use an AOP to issue commands that are embedded in
an OM API request to an OM.

CSLSCBFR: buffer return request
The CSLSCBFR request releases the storage that the Structured Call Interface (SCI) allocated for an
IMSplex member. This storage is allocated to receive either an input message sent from another IMSplex
member with the CSLSCMSG request, or an output parameter generated from a CSLSCRQS request.

Another macro can invoke the CSLSCRQS request as part of the code generated by the macro which,
in turn, can return an SCI data type. The storage allocated for these parameters must be released with
the CSLSCBFR macro. The CSLSCQRY macro is an example of an SCI macro that does this. The OUTPUT
parameter specifies the address in storage to receive the address of the buffer that contains the output
from the CSLSCQRY macro. Release this storage by using the CSLSCBFR request.

Syntax
DSECT syntax

Use the DSECT function of a CSLSCBFR request to include equate (EQU) statements in your program for
the CSLSCBFR parameter list length and the CSLSCBFR request return and reason codes.

200  IMS: System Programming APIs



CSLSCBFR FUNC=DSECT

RELEASE syntax

Use the RELEASE function of the CSLSCBFR request to release an SCI message buffer or SCI data type
buffer. The SCI data type buffer is used for selected output parameters of the CSLSCRQS request for
which SCI allocates storage.

CSLSCBFR FUNC=RELEASE PARM=  parm SCITOKEN=  scitoken

BUFFER=  buffer

BUFFERPTR=  buffer

RETCODE=  returncode RSNCODE=  reasoncode

For messages generated from a CSLSCMSG request, the buffer address is the address of the member
parameter list that is specified to the member input exit in the INXP_MBRPLPTR field in the input exit
parameter list.

For a response generated from a CSLSCRQS request that uses an SCI data type buffer, the storage is
allocated when the request is returned to the IMSplex member that initiated the original request. The
buffer address is the address of this storage, which is returned in the field specified by the member on the
request.

After the CSLSCBFR request is complete, the storage contained in the message buffer or request
response is no longer accessible by the IMSplex member.

For non-authorized members, the storage must be released from a TCB that is under the JOBSTEP TCB
from which the SCI registration call was made. The release fails if it is done from a TCB that is not under
the registered JOBSTEP TCB.

Parameters
BUFFER=symbol
BUFFER=(r1-r12)

4-byte parameter that contains the address of a buffer that is to be released.

Either BUFFER or BUFFERPTR is required.

BUFFERPTR=symbol
BUFFERPTR=(r1-r12)

4-byte parameter that contains the address of a word in storage that contains the address of the
buffer that is to be released.

Either BUFFER or BUFFERPTR is required.

PARM=symbol
PARM=(r1-r12)

Specifies the CSLSCBFR parameter list. The length of the parameter list must be equal to the
parameter list length EQU value defined by SBFR_PARMLN.

RETCODE=symbol
RETCODE=(r1-r12)

Specifies a 4-byte field to receive the return code on output. The SCI return codes are defined in
CSLSRR. Possible return codes for CSLSCBFR are described in the following table.

RSNCODE=symbol
RSNCODE=(r1-r12)

Specifies a 4-byte field to receive the reason code on output. The SCI reason codes are defined in
CSLSRR. Possible reason codes for CSLSCBFR are described in the following table.

Chapter 8. Writing a CSL SCI client  201



SCITOKEN=symbol
SCITOKEN=(r1-r12)

Specifies a 16-byte field containing the SCITOKEN. This token uniquely identifies this IMSplex
member's connection to SCI. The SCI token was returned by a successful CSLSCREG
FUNC=REGISTER request.

Return and reason codes
The following table lists the return and reason codes that can be returned on a CSLSCBFR macro request.

Table 58. CSLSCBFR request return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'01000008' X'00002014' The buffer being released is not an SCI buffer.

X'00002018' Invalid SCI token.

X'00002038' Parameter list version is invalid.

X'00002054' The buffer being released is not an allocated buffer.

X'01000010' X'00004FFF' Function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

X'00005074' Buffer prefix is damaged on a CSLSCBFR call.

X'00005078' STORAGE RELEASE failed for SCI buffer on a CSLSCBFR call.

X'00005500' An abend occurred during CSLSCBFR processing.

CSLSCDRG: deregistration request
By issuing the CSLSCDRD request, you can terminate the connection between the IMSplex member and
SCI. After successful completion of this request, the SCI token is no longer valid.

To make subsequent SCI requests, the IMSplex member must create a new connection with SCI with a
CSLSCREG request.

CSLSCDRG syntax
CSLSCDRG DSECT syntax

Use the DSECT function of a CSLSCDRG request to include equate (EQU) statements in your program for
the CSLSCDRG parameter list length and the CSLSCDRG return and reason codes.

CSLSCDRG FUNC=DSECT

CSLSCDRG DEREGISTER syntax

The CSLSCDRG FUNC=DEREGISTER request deregisters the IMSplex member from SCI. After successful
completion of the CSLSCDRG FUNC=DEREGISTER request, the SCITOKEN is invalid.

CSLSCDRG FUNC=DEREGISTER PARM=  parm SCITOKEN=  scitoken

RETCODE=  returncode RSNCODE=  reasoncode

202  IMS: System Programming APIs



CSLSCDRG parameters
PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLSCDRG parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by SDRG_LN.

RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCDRG return code. The
SCI return codes are defined in CSLSRR. Possible return codes for CSLSCDRG are described in the
following table.

RSNCODE=symbol
RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCDRG reason code. The SCI
reason codes are defined in CSLSRR. Possible reason codes for CSLSCDRG are described in the
following table.

SCITOKEN=symbol
SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCITOKEN. This token uniquely identifies this
IMSplex member's connection to SCI. The SCI token was returned by a successful CSLSCREG
FUNC=REGISTER request.

CSLSCDRG return and reason codes
The following table lists the return and reason codes that can be returned on a CSLSCDRG macro request.
Also included is the meaning of a reason code (that is, what possibly caused it).

Table 59. CSLSCDRG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000004' X'00001010' z/OS cross-system coupling facility leave for member failed.

X'01000008' X'00002018' Invalid SCI token.

X'00002038' Parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'00004014' CSLSDR00 could not be loaded.

X'00004018' There are still outstanding requests during deregistration.

X'00004FFF' Function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

X'00005004' SCI was unable to add the ESTAE routine.

X'00005008' A BPE SVC error occurred.

X'00005020' An ENQ resource error occurred.

X'00005500' An abend occurred during CSLSCDRG processing.

Chapter 8. Writing a CSL SCI client  203



CSLSCMSG: send message request
By issuing the CSLSCMSG request, you can send a message to one or more other IMSplex members. The
target members are specified by SCITOKEN, member name, or member type.

CSLSCMSG syntax
CSLSCMSG DSECT syntax

Use the DSECT function of a CSLSCMSG request to include equate (EQU) statements in your program for
the CSLSCMSG parameter list length, the IMSplex types, and the CSLSCMSG return and reason codes.

CSLSCMSG FUNC=DSECT

CSLSCMSG SEND MESSAGE syntax

The syntax of the CSLSCMSG FUNC=SEND request is shown below:

CSLSCMSG FUNC=SEND SCITOKEN=  scitoken PARM=  parm MBRPARM=  mbrparmlist

MBRPCNT=  mbrparmcount MBRFUNC=  mbrfunctioncode

MBRSFUNC=  mbrsubfunctioncode

FUNCTYPE=DEST
FUNCTYPE=SENDER

LISTLEN=  listlength TOKENLIST=  tokenlist

NAMELIST=  namelist

TYPELIST=  typelist B

TOKEN=  scitoken

NAME= membername

A

RETCODE=  returncode

RSNCODE=  reasoncode
RETNAME=  returnname RETTOKEN=  returntoken

A
TYPE=  membertypecode

TYPE=  'AOP'

TYPE=  'BATCH'

TYPE=  'CQS'

TYPE=  'DBRC'

TYPE=  'IMS'

TYPE=  'IMSCON'

TYPE=  'ODBM'

TYPE=  'OM'

TYPE=  'OTHER'

TYPE=  'RM'

TYPE=  'SCI'

B

204  IMS: System Programming APIs



B
ROUTE=  ANY

ROUTE=  ALL

ROUTE=  LOCAL

CSLSCMSG parameters
FUNCTYPE=SENDER
FUNCTYPE=DEST

(Optional) - Specifies that the MBRFUNC and MBRSFUNC are defined by the DEST (destination) of this
message or the SENDER of the message. This indicator is passed to the recipient of the message in
the SCI Input exit parameter list.

LISTLEN=<numeric literal>
LISTLEN=symbol
LISTLEN=(r1-r12)

(Required if NAMELIST, TOKENLIST or TYPELIST is specified) - Specifies the length of the routing
list. The routing list consists of a header and one or more list entries, each entry describing a single
message destination (NAMELIST and TOKENLIST) or set of destinations (TYPELIST).

If LISTLEN is a numeric literal, all characters must be numbers. If any character is alphabetic, the
parameter will be considered a symbol.

MBRFUNC=symbol
MBRFUNC=(r1-r12)

(Required) - Specifies a 4-byte member function code that is passed to the destination of the message
in the SCI Input exit parameter list. This function code, along with the MBRSFUNC, identifies the
message that is being sent.

If MBRFUNC is a symbol, the symbol points to a 4-byte area of storage that contains the function
code.

MBRPARM=symbol
MBRPARM=(r1-r12)

(Required) - Specifies the address of a prebuilt parameter list. This parameter list must be built by the
messaging module and consists of sets of pairs. Each pair describes a single parameter in the member
parameter list and consists of the following:
parameter length

Four-byte parameter that specifies the length of the member parameter.
parameter address

Four-byte parameter that specifies the address of the member parameter.

The two methods for passing parameters in a parameter list are by address and by value. Both of
these methods can be used when passing parameters in a CSLSCMSG request. The pair must be setup
so that SCI will handle the parameter properly.

• By address

To pass a parameter by address, the address of the parameter must be passed in parameteraddress
and the length of the parameter must be passed in parameterlength. SCI will obtain the parameter
from parameteraddress.

• By value

To pass a parameter by value, the parameter must be passed in parameteraddress and zero
must be passed in parameterlength. When the length is zero, SCI will copy the value contained
in parameteraddress to the destination.

Member Parameter List: The user parameters specified here are presented to the IMSplex member
that receives the message in the member parameter list, the address of which is contained in the

Chapter 8. Writing a CSL SCI client  205



Input exit parameter area field INXP_MBRPLPTR. Each parameter is represented by eight bytes,
the first four bytes contain parameterlength and the second four bytes contain parameteraddress (if
parameteraddress is an address, the second four bytes point to storage in the local address space, not
the requesting address space).

Null Parameters: In some cases, the message processing module expects a set number of
parameters with a defined order. If a message is to be sent that does not contain all the parameters,
null parameters must be sent to ensure the data buffer contains everything that is expected. Null
parameters can be sent by specifying zero for parameterlength and parameteraddress. The eight bytes
that represent the parameter in the data buffer will contain zeros.

MBRPCNT=symbol
MBRPCNT=(r1-r12)

(Required) - Specifies a 4-byte field that contains the number of member parameters that are
included in MBRPARM.

MBRSFUNC=symbol
MBRSFUNC=(r1-r12)

(Optional) - Specifies a 4-byte member subfunction code that is passed to the destination of the
message in the SCI Input exit parameter list. This subfunction code, along with the MBRFUNC,
identifies the message that is being sent.

If MBRSFUNC is a symbol, the symbol points to a 4-byte area of storage that contains the subfunction
code.

NAME=symbol
NAME=(r1-r12)

(Optional) - Specifies the address of an 8-byte member name of the destination of this message.
This name can be obtained from the Notify exit (when the member joins the IMSplex) or by issuing a
CSLSCQRY message.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST, TOKENLIST or TYPELIST)
must be included.

To route by NAME, the destination member must be authorized. If the member is not authorized, the
message is not sent.

NAMELIST=symbol
NAMELIST=(r1-r12)

(Optional) - Specifies the address of a list of member names to which this message is to be routed.
This list consists of a header and one or more list entries, each entry defining a single member name.
If NAMELIST is specified, LISTLEN must also be specified.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST, TOKENLIST or TYPELIST)
must be included.

The list header DSECT is CSLSMGLH, and the list entry DSECT is CSLSNMLE. These DSECTs are
defined in CSLSCMAP.

For a message to be routed to a member using NAMELIST, that member must be an authorized
member. If a member name for a non-authorized member is included in NAMELIST, the name will not
be found and the message will not be sent to that member.

The NAMELIST is sent to SCI for processing. Then, control is returned to your program. A response of
"Request completed successfully" does not mean that the message was sent to all names in the list; it
means that the list was successfully sent to SCI. Errors could occur while the list is processed and the
message is sent. Possible errors include:

• Name not found
• Name found, but the member terminated before message is sent
• SCI abended

These errors are not returned to your program.

206  IMS: System Programming APIs



PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the address of a parameter list used by the message to pass the parameters
to SCI. The length of the storage must be at least equal to the value of SMSG_LN. The storage must
begin on a word boundary.

RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCMSG return code. The SCI
return codes are defined in CSLSRR.

RETNAME=symbol
RETNAME=(r1-r12)

(Optional) - Specifies the address of an 8-byte field to receive the name of the IMSplex member to
which the message was sent. If the message is sent to more than one destination, nothing is returned
in this field.

RETTOKEN=symbol
RETTOKEN=(r1-r12)

(Optional) - Specifies the address of an 8-byte field to receive the token of the IMSplex member to
which the message was sent. If the message is sent to more than one destination, nothing is returned
in this field.

ROUTE=ANY
ROUTE=ALL
ROUTE=LOCAL

(Optional) - Specifies how the message should be routed to the type specified in the TYPE parameter
or the types specified in the TYPELIST parameter. This parameter is valid only if TYPE or TYPELIST is
specified.
ANY

Routes the message to a single member of the types specified. SCI selects the member that will
receive the message. TYPE=ANY is not valid with TYPELIST.

ALL
Routes the message to all members of the specified types.

LOCAL
Routes the message to all members of the specified types that are active on the local z/OS image.

RSNCODE=symbol
RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCMSG reason code. The SCI
reason codes are defined in CSLSRR.

SCITOKEN=symbol
SCITOKEN=(r1-r12)

(Required) - Specifies the address of a 16-byte field that contains the SCI token of the member
making the request. The token was returned on the CSLSCREG request.

TOKEN=symbol
TOKEN=(r1-r12)

(Optional) - Specifies the address of the 16-byte SCI token of the destination of this message. This
token can be obtained from the Notify exit (when the member joins the IMSplex) or by issuing a
CSLSCQRY message.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST, TOKENLIST or TYPELIST)
must be included.

TOKENLIST=symbol
TOKENLIST=(r1-r12)

(Optional) - Specifies the address of a list of SCI tokens that represent members to which this
message is to be routed. This list consists of a header and one or more list entries, each entry defining
a single SCI token. If TOKENLIST is specified, LISTLEN must also be specified.

Chapter 8. Writing a CSL SCI client  207



Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST, TOKENLIST or TYPELIST)
must be included.

The list header DSECT is CSLSMGLH, and the list entry DSECT is CSLSTKLE. These DSECTs are defined
in CSLSCMAP.

The TOKENLIST is sent to SCI for processing. Then, control is returned to your program. A response of
"Request completed successfully" does not mean that the message was sent to all SCI tokens in the
list; it means that the list was successfully sent to SCI. Errors could occur while the list is processed
and the message is sent. Possible errors include:

• Token not found
• Token found but member terminated before message is sent
• SCI abended

These errors are not returned to your program.

TYPE=symbol
TYPE='AOP'
TYPE='BATCH'
TYPE='CQS'
TYPE='DBRC'
TYPE='IMS'
TYPE='IMSCON'
TYPE='ODBM'
TYPE='OM'
TYPE='OTHER'
TYPE='RM'
TYPE='SCI'

(Optional) - TYPE specifies the SCI type of the destination of this message. SCI routes the message to
one or more members of the specified type (depending on the value of the route parameters). If there
are no members of the specified type, an error is returned.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST, TOKENLIST or TYPELIST)
must be included.

If this parameter is passed as a literal, the literal must be enclosed in single quotation marks. If this
parameter is passed as a symbol or register, the symbol or register must contain the member type
code. The member type code can be obtained by using the CSLSTPIX macro.

TYPELIST=symbol
TYPELIST=(r1-r12)

(Optional) - Specifies the address of a list of member types to which this message is to be routed.
This list consists of a header and one or more list entries, each entry defining a single SCI token. If
TYPELIST is specified, LISTLEN must also be specified.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST, TOKENLIST or TYPELIST)
must be included.

The list header DSECT is CSLSMGLH, and the list entry DSECT is CSLSTPLE. These DSECTs are defined
in CSLSCMAP.

The TYPELIST is sent to SCI for processing. Then, control is returned to your program. A response of
"Request completed successfully" does not mean that the message was sent to all types in the list; it
means that the list was successfully sent to SCI. Errors could occur while the list is processed and the
message is sent. Possible errors include:

• No members of the specified type are active
• A member of the specified type was found but terminated before the message is sent
• SCI abended

These errors are not returned to your program.

208  IMS: System Programming APIs



CSLSCMSG return and reason codes
The following table lists the return and reason codes that can be returned on a CSLSCMSG macro request.
Also included is the meaning of a reason code (that is, what possibly caused it).

Table 60. CSLSCMSG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000008' X'00002004' An invalid function was passed to the SCI interface PC routine.

X'00002008' The number of parameters passed was either less than or equal
to zero, or greater than the maximum allowed.

X'00002010' An invalid type was passed.

X'00002018' The SCI token was invalid.

X'00002024' The PHDR length was invalid.

X'00002028' The routing data length was invalid.

X'00002034' The length of the parameters is too large for a non-authorized
caller.

X'00002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'0000400C' The destination IMSplex member is not active. The requested
member might have been specified by name, token, or type.

X'0000401C' The calling member is in the process of deregistering from SCI.

X'00004FFF' The function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

X'00005004' An ESTAE add error occurred.

X'00005024' An error in the SRB routine occurred.

X'00005028' The routing type was invalid.

X'0000502C' The member could not be found due to an internal BPE hash
table services error.

X'00005030' An SCI buffer could not be obtained.

X'00005034' A key 7 buffer in the SCI address space could not be obtained
for a copy of PHDR and parameters.

X'00005038' An IEAMSCHD error occurred; the SRB could not be scheduled
to the target address space.

X'0000504C' The message SRB key 7 parameter area could not be obtained.

X'00005500' An abend occurred during CSLSCMSG processing.

X'00005504' An abend occurred when the member parameters were copied
to the target address space.

Related reference
“CSLSCMSG: send message request” on page 204

Chapter 8. Writing a CSL SCI client  209



By issuing the CSLSCMSG request, you can send a message to one or more other IMSplex members. The
target members are specified by SCITOKEN, member name, or member type.
“CSLSCRDY: ready request” on page 214
The SCI ready request enables the IMSplex member to receive messages and requests that are routed by
TYPE. After the CSLSCREG request is issued and until CSLSCRDY is issued, the IMSplex member can only
receive requests that are routed directly to a single target address space. The IMSplex member can send
messages and requests that are routed by any method.

CSLSCQRY: query request
By issuing the CSLSCQRY request, an IMSplex member can obtain information about the members of the
IMSplex.

CSLSCQRY syntax
CSLSCQRY DSECT syntax

Use the DSECT function of a CSLSCQRY request to include equate (EQU) statements in your program for
the CSLSCQRY parameter list length, the IMSplex types and the CSLSCQRY return and reason codes.

CSLSCQRY FUNC=DSECT

CSLSCQRY QUERY syntax

Use the following syntax to issue the CSLSCQRY service request. The output is returned to the caller when
the request is complete.

CSLSCQRY FUNC=QUERY SCITOKEN=  scitoken PARM=  parm OUTPUT=  output

OUTLEN=  outputlength

ECB= ecb

SCOPE=  IMSPLEX

SCOPE=  LOCAL

SCOPE=  TYPEA

RETCODE=  returncode RSNCODE=  reasoncode

A
TYPE=  membertypecode

TYPE=  'AOP'

TYPE=  'BATCH'

TYPE=  'CQS'

TYPE=  'DBRC'

TYPE=  'IMS'

TYPE=  'IMSCON'

TYPE=  'ODBM'

TYPE=  'OM'

TYPE=  'OTHER'

TYPE=  'RM'

TYPE=  'SCI'

SUBTYPE=  subtype PROTOCOL=RQST

210  IMS: System Programming APIs



CSLSCQRY parameters
ECB=symbol
ECB=(r1-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous requests. When the request
is complete, the ECB specified is posted. If an ECB is not specified, the task is suspended until the
request is complete. If an ECB is specified, the invoker of the macro must issue a WAIT (or equivalent)
after receiving control from CSLSCQRY, before using or examining any data returned by this macro
(including the RETCODE and RSNCODE fields).

OUTLEN=symbol
OUTLEN=(r1-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned by the CSLSCQRY
request. OUTLEN receives the length of the output pointed to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is detected before any output can
be built.

OUTPUT=output
OUTPUT=(r1-r12)

(Required) - Specifies a field to receive a pointer to the variable length output returned by the
CSLSCQRY request. The output length is returned in the OUTLEN= field.

The output address is zero if no output was built, for example, if an error was detected before any
output could be built.

The CSLSQRYO macro maps the output that is returned. The output contains a header and one or
more list entries.

The output buffer is not preallocated by the caller. After being returned by the request, this word
contains the address of a buffer containing the query output. It is the caller's responsibility to release
this storage by issuing the CSLSCBFR FUNC=RELEASE request when it is through with the storage.

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLSCQRY parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by SQRY_PARMLN.

PROTOCOL=RQST
(Optional) - SCI protocol for sending the request to SCI. RQST indicates that the SCI request interface
protocol is to be used for the request.

RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCQRY return code. SCI return
codes are defined in CSLSRR. Possible return codes for CSLSCQRY are described in the following
table.

RSNCODE=symbol
RSNCODE=(r1-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. SCI reason codes are
defined in CSLSRR. Possible reason codes for CSLSCQRY are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

SCOPE=IMSPLEX
SCOPE=LOCAL
SCOPE=TYPE

(Optional) - Specifies the scope of information that is being requested.
IMSPLEX

This option returns data for all of the members in the IMSplex.

Chapter 8. Writing a CSL SCI client  211



LOCAL
This option returns information for all of the members on the local z/OS image.

TYPE
This option returns information for all of the members that are of the specified IMSplex member
type (and optionally subtype).

SUBTYPE=symbol
SUBTYPE=(r1-r12)

(Optional) - Four-byte input parameter that specifies the address of an 8-byte subtype that further
qualifies the IMSplex member type about which information is being requested. This subtype is
defined by the IMSplex member and was specified on the CSLSCREG request.

This parameter is valid only when SCOPE=TYPE.

TYPE=symbol
TYPE='AOP'
TYPE='BATCH'
TYPE='CQS'
TYPE='DBRC'
TYPE='IMS'
TYPE='IMSCON'
TYPE='ODBM'
TYPE='OM'
TYPE='OTHER'
TYPE='RM'
TYPE='SCI'

(Optional) - Specifies the IMSplex member type for which the query is being issued. SCI will return
information for all of the members that are of the specified IMSplex member type (and, optionally,
subtype). This parameter is required when SCOPE=TYPE.

If this parameter is passed as a literal, the literal must be enclosed in single quotation marks. If it is
passed as a symbol, the symbol points to a word in storage that contains the code for the member
type. If it is passed as a register, the register contains the member type code in the low-order half
word of the register.

The code for the member type can be obtained by using the CSLSTPIX macro.

CSLSCQRY return and reason codes
The following table lists the return and reason codes that can be returned on a CSLSCQRY macro request.
Also included is the meaning of a reason code (that is, what possibly caused it). In addition, CSLSCQRY
can return any of the return codes listed in the following table.

Table 61. CSLSCQRY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'01000008' X'00002050' The caller of the service attempted to pass an invalid parameter
list. The request is rejected.

X'0100000C' X'00003004' No member data was returned for the request.

X'01000014' X'00005048' SCI was unable to obtain storage for the output area of the
request.

Related reference
“Writing a CSL SCI client” on page 199
You must establish a connection to SCI (Structured Call Interface) in order to write a program that
participates in an IMSplex (such as an AOP) and allows your IMSplex member to communicate with

212  IMS: System Programming APIs



other IMSplex members. Without a connection to SCI, a program cannot participate in an IMSplex and
communicate with other IMSplex members.
“CSLSCREG: registration request” on page 215
The Structured Call Interface (SCI) registration request is used to create a connection between an
IMSplex member and SCI. Before SCI can be used for communication within the IMSplex, an IMSplex
member must issue the CSLSCREG request and receive an SCI token when the request completes in order
to be recognized by SCI.

CSLSCQSC: quiesce request
The SCI Quiesce request tells SCI to stop routing messages and requests that have been routed by TYPE
to the issuing IMSplex member. After this request has successfully completed, the only messages and
requests that are routed to the member are those that are routed directly by SCITOKEN or by NAME.

Note: Because of the asynchronous nature of the processes within the IMSplex and z/OS, messages and
requests routed by TYPE might still be received by the IMSplex member after successful completion
of the CSLSCQSC FUNC=QUIESCE request. The potential for this occurring is small, but it can happen.
The IMSplex member must be able to handle a message or request coming in after the CSLSCQSC
FUNC=QUIESCE has successfully completed.

CSLSCQSC syntax
CSLSCQSC DSECT syntax

Use the DSECT function of a CSLSCQSC request to include equate (EQU) statements in your program for
the CSLSCQSC parameter list length and the CSLSCQSC return and reason codes.

CSLSCQSC FUNC=DSECT

CSLSCQSC QUIESCE syntax

The CSLSCQSC FUNC=QUIESCE request quiesces the connection between SCI and the IMSplex member.
After the successful completion of the request, only messages and requests that are routed directly by
SCITOKEN or by NAME are sent to this IMSplex member.

CSLSCQSC FUNC=QUIESCE PARM=  parm SCITOKEN=  scitoken RETCODE=  returncode

RSNCODE=  reasoncode

CSLSCQSC parameters
PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLSCQSC parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by SQSC_PARMLN.

RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI return codes are defined
in CSLSRR. Possible return codes for CSLSCQSC are described in the following table.

RSNCODE=symbol
RSNCODE=(r1-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. SCI reason codes are
defined in CSLSRR. Possible reason codes for CSLSCQSC are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

Chapter 8. Writing a CSL SCI client  213



CSLSCQSC return and reason codes
The following table lists the return and reason codes that can be returned on a CSLSCQSC macro request.
Also included is the meaning of a reason code (that is, what possibly caused it).

Table 62. CSLSCQSC return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000008' X'01002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'00004FFF' The function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

Related reference
“CSLSCMSG: send message request” on page 204
By issuing the CSLSCMSG request, you can send a message to one or more other IMSplex members. The
target members are specified by SCITOKEN, member name, or member type.

CSLSCRDY: ready request
The SCI ready request enables the IMSplex member to receive messages and requests that are routed by
TYPE. After the CSLSCREG request is issued and until CSLSCRDY is issued, the IMSplex member can only
receive requests that are routed directly to a single target address space. The IMSplex member can send
messages and requests that are routed by any method.

Note: The IMSplex member must be ready to process messages and requests that have been routed
by TYPE when CSLSCRDY is issued. Because of the asynchronous nature of an IMSplex, the member
might receive a message or request that has been routed by TYPE before control is returned after issuing
CSLSCRDY.

CSLSCRDY syntax
DSECT syntax

Use the DSECT function of a CSLSCRDY request to include equate (EQU) statements in your program for
the CSLSCRDY parameter list length and the CSLSCRDY return and reason codes.

CSLSCRDY FUNC=DSECT

READY syntax

The CSLSCRDY FUNC=READY request tells SCI that the IMSplex member is now ready to receive
messages and requests that are routed by an IMSplex member type.

CSLSCRDY FUNC=READY SCITOKEN=  scitoken PARM=  parm RETCODE=  returncode

RSNCODE=  reasoncode

CSLSCRDY parameters
PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLSCRDY parameter list. The length of the parameter list must be equal to
the parameter list length EQU value defined by SRDY_PARMLN.

214  IMS: System Programming APIs



RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI return codes are defined
in CSLSRR. Possible reason codes for CSLSCRDY are described in the following table.

RSNCODE=symbol
RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRDY reason code. SCI reason
codes are defined in CSLSRR. Possible reason codes for CSLSCRDY are described in the following
table.

SCITOKEN=symbol
SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

CSLSCRDY return and reason codes
The following table lists the return and reason codes that can be returned on a CSLSCRDY macro request.
Also included is the meaning of a reason code (that is, what possibly caused it).

Table 63. CSLSCRDY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'00002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'00004FFF' The function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

Related reference
“CSLSCMSG: send message request” on page 204
By issuing the CSLSCMSG request, you can send a message to one or more other IMSplex members. The
target members are specified by SCITOKEN, member name, or member type.

CSLSCREG: registration request
The Structured Call Interface (SCI) registration request is used to create a connection between an
IMSplex member and SCI. Before SCI can be used for communication within the IMSplex, an IMSplex
member must issue the CSLSCREG request and receive an SCI token when the request completes in order
to be recognized by SCI.

This token is used with all subsequent SCI requests. If SCI terminates while the IMSplex member is
active, the member is still registered when SCI becomes active again. The SCI token that the member
received on the initial CSLSCREG request is still valid.

Restrictions:

• CSLSCREG is not supported when the caller's address space has been marked non-swappable by a
SYSEVENT DONTSWAP call. Issuing a CSLSCREG in this environment produces unpredictable results.
A caller that issued a SYSEVENT DONTSWAP must issue a SYSEVENT OKSWAP before registering with
SCI.

• A single address space may register with SCI more than once. However, all registrations from a single
address space must be made in the same PSW key and state (supervisor or problem) as the first active
registration.

Chapter 8. Writing a CSL SCI client  215



CSLSCREG syntax
CSLSCREG DSECT syntax

Use the DSECT function of a CSLSCREG request to include equate (EQU) statements in your program for
the CSLSCREG parameter list length, the IMSplex types and the CSLSCREG return and reason codes.

CSLSCREG FUNC=DSECT

CSLSCREG REGISTER syntax

The CSLSCREG FUNC=REGISTER request establishes a connection between an IMSplex member and
SCI. An SCI token is returned on successful completion of this request. This token must be used on
all subsequent SCI requests. Until the CSLSCRDY FUNC=READY request is issued, the IMSplex member
receives only messages and requests that are routed directly to it (by SCITOKEN or by NAME). Messages
and requests that are routed by TYPE are not routed to this member. Messages and requests routed
by any method can be sent by this member when the CSLSCREG FUNC=READY request has been
successfully completed. The syntax for the REGISTER function of the CSLSCREG request follows.

216  IMS: System Programming APIs



CSLSCREG FUNC=REGISTER PARM=  parm IMSPLEX=  imsplex MBRNAME=  membername

MBRVSN=  memberversion

TYPE=  membertypecode

TYPE=  'AOP'

TYPE=  'BATCH'

TYPE=  'CQS'

TYPE=  'DBRC'

TYPE=  'IMS'

TYPE=  'IMSCON'

TYPE=  'ODBM'

TYPE=  'OM'

TYPE=  'OTHER'

TYPE=  'RM'

TYPE=  'SCI'

SUBTYPE=  subtype

NOTIFYEXIT=  notifyexit

NOTIFYPARM=  notifyparm

INPUTEXIT=  inputexit

INPUTPARM=  inputparm

SCITOKEN=  scitoken

SCIVSN=  sciversion JOBNAME=  jobname

ABNDSTAT=  NO

ABNDSTAT=  YES

TCB=  CURRENT

TCB=  PARENT

TCB=  JOBSTEP

TCB=  tcb

RETNAME=  returnname RETTOKEN=  returntoken

RETCODE=  returncode RSNCODE=  reasoncode

CSLSCREG parameters
ABNDSTAT=NO
ABNDSTAT=YES

(Optional) - Indicates if SCI is to keep track of the member if the member abnormally terminates. If
ABNDSTAT=YES is specified, SCI will retain an entry for the member with a status of ABTERM. If the
member normally terminates or if the member abnormally terminates after a successful CSLSCDRG,
SCI does not keep a record of the member.

This parameter is ignored for non-authorized IMSplex members.

Chapter 8. Writing a CSL SCI client  217



IMSPLEX=symbol
IMSPLEX=(r2-r12)

(Required) - Specifies the address of a 1- to 5-character IMSplex name. The IMSPlex name identifies
the SCI to which this request is directed. If specified as a symbol, the symbol references storage that
contains the IMSplex name.

INPUTEXIT=symbol
INPUTEXIT=(r2-r12)

(Optional) - Specifies the address of the SCI input exit routine. The input exit is called each time there
is a message or request for the member.

INPUTPARM=symbol
INPUTPARM=(r2-r12)

(Optional) - Specifies the address of an 8-byte area that contains member data. This data is passed
to the input exit routine each time it is called. If specified as a symbol, the symbol references storage
that contains the member data.

JOBNAME=symbol
JOBNAME=(r2-r12)

(Optional) - Specifies the address of an 8-byte area to receive the SCI jobname.
MBRNAME=symbol
MBRNAME=(r2-r12)

(Required) - Specifies the address of an 8-byte name of the IMSplex member registering with SCI. For
an authorized member, this name must be unique within the IMSplex. For a non-authorized member,
this name does not need to be unique. If it is specified as a symbol, the symbol refers to storage
that contains the IMSplex member name. Valid characters for the name are A-Z, 0-9, and special
characters @, #, and $.

MBRVSN=symbol
MBRVSN=(r2-r12)

(Optional) - Specifies the address of a 4-byte version of the IMSplex member registering with SCI.
This version number is passed in the parameter list of the SCI Notify exit when this IMSplex member
is the subject of the event. It is also passed in the parameter list of the SCI Input exit for messages
and requests that originate from this member. If MBRVSN is not specified, the version number in the
exit parameter list is set to zeros. If it is specified as a symbol, the symbol references storage that
contains the IMSplex member version.

SCI does not validate this field; however, the field can be output on the QRY IMSPLEX command. It is
assumed to have the following format: X'00vvrrmm'.

• 00 - this byte is ignored
• vv - version number
• rr - release number
• mm - modification level or subrelease number

For example, X'00080100' would be output as 8.1.0.
NOTIFYEXIT=symbol
NOTIFYEXIT=(r2-r12)

(Optional) - Specifies the address of the SCI Notify exit routine. The Notify exit is driven whenever
there is a change of status of an IMSplex member.

NOTIFYPARM=symbol
NOTIFYPARM=(r2-r12)

(Optional) - Specifies the address of an 8-byte area that contains member data. This data is passed
to the Notify exit routine each time it is called. If it is specified as a symbol, the symbol references
storage that contains the member data.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the address of a parameter list used by the request to pass the parameters to
SCI. The length of the storage must be at least equal to the value of SREG_LN.

218  IMS: System Programming APIs



RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCREG return code. SCI return
codes are defined in CSLSRR. Possible return codes for CSLSCREG are described in the following
table.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies the address of an 8-byte field to receive the name of the SCI that processes the
registration request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies the address of a 16-byte field to receive the SCI token of the SCI that processes
the registration request.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCREG reason code. SCI reason
codes are defined in CSLSRR. Possible reason codes for CSLSCREG are described in the following
table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

SCIVSN=symbol
SCIVSN=(r2-r12)

(Optional) - Specifies the address of a 4-byte field to receive the SCI version number. The version
number has the following format: 00vvrrmm.
00

This byte is reserved for future use. Currently, it is always 00.
vv

Version number.
rr

Release number.
mm

Modification level or subrelease number.

Example: SCI version 1.1.0 is shown as X'00010100'.

SUBTYPE=symbol
SUBTYPE=(r2-r12)

(Optional) - Specifies the address of the 8-byte subtype of the member registering with SCI. The
subtype is defined by the user and can be any eight characters. If it is specified as a symbol, the
symbol references storage that contains the subtype. If not specified, this parameter is set to blanks.
If SUBTYPE is not specified, it will be set to blanks.

The subtype can contain alphanumeric characters (A-Z, 0-9), or printable characters (not case
sensitive), with the exception of the characters &, <, and >. OM converts any invalid data placed
in this field to periods (.) before sending the XML output to the client.

TCB=CURRENT
TCB=JOBSTEP
TCB=PARENT
TCB=symbol
TCB=(r2-r12)

(Optional) - Specifies the TCB with which the new SCI connection is associated. The SCI connection
persists until one of the following occurs:

• The member deregisters by using CSLSCDRG.

Chapter 8. Writing a CSL SCI client  219



• The TCB associated with the connection terminates.

All callers of CSLSCREG can specify the following values for the TCB parameter:
CURRENT

Associates the SCI connection with the currently executing TCB. This is the default.
JOBSTEP

Associates the SCI connection with the JOBSTEP TCB of the TCB under which the CSLSCREG
request is issued. This TCB is specified by TCBJSTCB.

PARENT
Associates the SCI connection with the TCB that attached the currently-executing TCB.

For non-authorized callers, the indicated TCB must have the same storage key associated with it as
the caller's current PSW key (that is, TCBPKF must match the current PSW key).

Authorized callers can, in addition, identify an explicit TCB by specifying a symbol or register. If
specified as a symbol, the symbol must be the label on a word of storage containing the address of the
TCB. If specified as a register, the register must contain the TCB address.

TYPE=membertypecode
TYPE='AOP'
TYPE='BATCH'
TYPE='CQS'
TYPE='DBRC'
TYPE='IMS'
TYPE='IMSCON'
TYPE='ODBM'
TYPE='OM'
TYPE='OTHER'
TYPE='RM'
TYPE='SCI'

(Required) - Specifies the SCI member type of the address space that is registering with SCI.

If this parameter is passed as a literal, the literal must be enclosed in single quotation marks. If this
parameter is passed as a symbol or register, the symbol or register must contain the member type
code.

The code for the member type can be obtained by using the CSLSTPIX macro. Member types include:
AOP

This SCI type is an automated operator program. It interacts with OM by sending commands and
receiving responses to the commands.

Batch
This SCI type is an IMS batch region. It interacts as an IMS DL/I batch or utility region.

CQS
This SCI type is an IMS Common Queue Server. It provides access to a set of common queues
within the IMSplex.

DBRC
This SCI type is an IMS Database Recovery Control Region.

IMS
This SCI type is an IMS region. It can include the database manager, transaction manager, and
FDBR (an IMS control region that recovers database resources when an IMS database manager
fails). SUBTYPE is used to further qualify a particular control region (for example, DBDC, DBCTL,
DCCTL, or FDBR).

IMSCON
This SCI type is a connector to IMS. It acts as an interface between IMS and protocols that are not
supported by IMS directly (such as TCP/IP).

220  IMS: System Programming APIs



ODBM
This SCI type is an IMS Open Database Manager, which is part of the CSL. It receives requests to
access and manipulate IMS databases from clients, such as IMS Connect or an ODBA application,
and routes the requests to the IMS DB systems in the IMSplex that manage the database. When
ODBM is used in support of IMS Connect and the IMS Universal drivers, ODBM translates the
incoming database access requests from the low-level DRDA protocol into the DL/I calls used by
IMS and back again on output.

OM
This SCI type is an IMS Operations Manager, which is part of the CSL. It receives commands
from AOPs, routes the commands to other members of the IMSplex that have registered for
the command, consolidates the responses to the command, and sends the output back to the
originating AOP.

Other
This SCI type is any other address space that does not fall into one of the defined SCI types.

RM
This SCI type is an IMS Resource Manager, which is part of the CSL. It manages resources within
the IMSplex and coordinates IMSplex-wide processes. SUBTYPE is used to further qualify whether
there is a single RM in the IMSplex (SNGLRM) or there are multiple RMs in the IMSplex (MULTRM).

SCI
This SCI type is an IMS SCI, which is part of the CSL. It manages communications within the
IMSplex.

CSLSCREG return and reason codes
The following table lists the return and reason codes that can be returned on a CSLSCREG macro request.
Also included is the meaning of a reason code (that is, what possibly caused it).

Table 64. CSLSCREG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000004' X'00001000' The member is already registered. If the member is authorized,
the member name is already registered to this SCI and the
SCI token is returned. If the member is not authorized, there
are three registrations from the current TCB and no more
registrations are allowed. One of the SCI tokens is returned.

X'01000008' X'00002010' An invalid type was passed

X'00002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'00004004' CSLSRG00 could not be loaded.

X'00004008' The user ID of the member address space is not authorized to
register with this SCI.

X'00004010' The member name, membername, is not unique for the
authorized client. The registration is rejected.

X'00004028' A non-authorized member tried to register as an authorized
system SCI type.

X'0000402C' Either the caller key or state does not match the key or state of
the existing registration.

X'00004FFF' The function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

Chapter 8. Writing a CSL SCI client  221



Table 64. CSLSCREG return and reason codes (continued)

Return code Reason code Meaning

X'00005004' An ESTAE add error occurred.

X'00005008' A BPE SVC error occurred.

X'0000500C' A z/OS Name/Token retrieve error occurred.

X'00005010' An error occurred while establishing ResMgr.

X'00005014' An error occurred while obtaining storage.

X'00005018' An error occurred while obtaining a TTOKEN.

X'0000501C' An ALESERV error occurred.

X'00005020' An ENQ resource error occurred.

X'00005050' A BPECGBET error occurred in CSLSRGS0.

X'00005054' An ALESERV error occurred in CSLSRGS0.

X'00005058' A BPEHTADD error occurred in CSLSRGS0.

X'00005064' A BPEHTFND token error occurred in CSLSRGS0.

X'00005070' The SCI buffer manager could not be initialized.

X'00005080' The z/OS cross-system coupling facility join for the member
failed.

X'00005084' A non-authorized member specified an explicit connection TCB.

X'00005088' The connection TCB key does not match the CSLSCREG caller's
key.

X'0000508C' The TCB type code passed on the CSLSCREG request is invalid.

X'00005090' Error enqueuing registration AWE. This is an internal error.

X'00005094' Error scheduling SRB to SCI. This is an internal error.

X'00005500' An abend occurred during CSLSCREG processing.

Related concepts
“Issue CSL RM requests to manage global resources” on page 164
Before a client can access or change global resource information, it must register to SCI using the
CSLSCREG request. After the client registers to SCI, it must register to RM using the CSLRMREG request.
The client must issue an SCI registration request for every IMSplex with which it intends to communicate.
Related tasks
“Registering an ODBM client” on page 99
To register with ODBM, a client must first register with the CSL SCI and then with all active ODBMs in the
IMSplex.
Related reference
“CSLOMCMD: command request” on page 107
By using the CSLOMCMD request, your AOP client application that is running on the host can issue
requests and send commands to OM.
“CSLOMI: API request” on page 111
With the CSLOMI request, your AOP client can communicate with a z/OS address space that acts as an OM
AOP client. You can then issue OM requests and send QUERY commands to OM.
“CSLOMQRY: query request” on page 121

222  IMS: System Programming APIs



With the CSLOMQRY request, any AOP client that is running on the host can request OM-specific
information.
“CSLSCQRY: query request” on page 210
By issuing the CSLSCQRY request, an IMSplex member can obtain information about the members of the
IMSplex.
CSL SCI Notify Client exit routine (Exit Routines)
“CSLSCRQS: send request” on page 225
By issuing the CSLSCRQS request, an IMSplex member can send a request to another member in the
IMSplex. The target member can be specified by SCITOKEN, member name, or member type.

CSLSCRQR request return request
Issuing the CSLSCRQR request returns a request to the IMSplex member from which the request
originated. The return request should be issued when the server has completed the request and is ready
to return the output from the request.

CSLSCRQR returns a request to the IMSplex member from which the request originated. It should be
issued when the server has completed the request and is ready to return the output from the request. It
copies the output back to the requestor's address space.

Only request servers can issue CSLSCRQR because an IMSplex member cannot issue the macro without
first receiving a request. A request server must be authorized and running key 7.

CSLSCRQR syntax
CSLSCRQR DSECT syntax

Use the DSECT function of a CSLSCRQR request to include equate (EQU) statements in your program for
the CSLSCRQR parameter list length and the CSLSCRQR return and reason codes.

CSLSCRQR FUNC=DSECT

CSLSCRQR RETURN syntax

The syntax for the CSLSCRQR FUNC=RETURN request follows.

CSLSCRQR FUNC=RETURN SCITOKEN=  scitoken PARM=  parm
NOCPYABN=N

NOCPYABN=Y

RQSTTKN=  requesttoken

RQSTRC=  requestreturncode

RQSTRSN=  requestreasoncode

RETCODE=  returncode RSNCODE=  reasoncode

CSLSCRQR parameters
PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLSCRQR parameter list. The length of the parameter list must be at least
equal to the basic parameter list length of SRQR_PARMLN. However, if you code certain parameters
on CSLSCRQR, you must provide a longer parameter list. Use the following table to decide if you must
provide a parameter list of a longer length. If you are using more than one parameter listed, and
the parameters have different minimum length values, always use the one that ends with the largest
numeric value.

Chapter 8. Writing a CSL SCI client  223

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_cslsci_notifyclient.htm#ims_cslsci_notifyclient


Table 65. Parameters that require a parameter list length larger than SRQR_PARMLN

Length EQU Parameters that require this length

SRQR_PRMLV2 NOCPYABN

You can also define your parameter list to have a length of SRQR_PRMLMX bytes. This EQU is set
to the length of the longest CSLSCRQR parameter list version, and the parameter list will always be
long enough for any combination of macro parameters. However, this maximum length might change
because of maintenance or across IMS releases.

NOCPYABN=N | Y
(Optional) - Specifies how SCI should handle an abend during the copy phase of the request return
process.
N

SCI will take a dump and issue a message as determined by the logic in the ARR or FRR.
NOCPYABDN=N is the default.

Y
SCI will not take a dump or issue a message if an abend is encountered while it attempts to copy
data back to the requestor. SCI will only write an entry to the LOGREC data set.

This parameter was added as part of the Version 2 parameter list. If you include this parameter, your
parameter list must be at least equal to the value specified by SQRQ_PRMLV2.

RQSTRC=symbol
RQSTRC=(r1-r12)

(Optional) - Specifies the return code that is associated with the request being returned. This return
code will be given to the requesting member in the storage pointed to by the RETCODE parameter of
the CSLSCRQS that originated this request. If this parameter is not specified, a return code of zero will
be given to the requesting member.

If specified as a symbol, the symbol references storage that contains the return code.

RQSTRSN=symbol
RQSTRSN=(r1-r12)

(Optional) - Specifies the reason code that is associated with the request being returned. This reason
code will be given to the requesting member in the storage pointed to by the RSNCODE parameter of
the CSLSCRQS that originated this request. If this parameter is not specified, a reason code of zero
will be given to the requesting member.

If specified as a symbol, the symbol references storage that contains the return code.

RQSTTKN=symbol
RQSTTKN=(r1-r12)

(Required) - Specifies the request token that is associated with the request being returned. This
request token can be obtained from the input exit parameter list (INXP_RQSTTKN) when the request
was presented to the request processing member.

If specified as a symbol, the symbol references storage that contains the return code.

RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRQR return code. SCI return
codes are defined in CSLSRR. Possible return codes for CSLSCRQR are described in the following
table.

RSNCODE=symbol
RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRQR reason code. SCI reason
codes are defined in CSLSRR. Possible reason codes for CSLSCRQR are described in the following
table.

224  IMS: System Programming APIs



SCITOKEN=symbol
SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

CSLSCRQR return and reason codes
The following table lists the return and reason codes that can be returned on a CSLSCRQR macro request.
Also included is the meaning of a reason code (that is, what possibly caused it).

Table 66. CSLSCRQR return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000008' X'00002004' The function passed to the SCI interface PC routine was invalid.

X'00002018' The SCI token is invalid.

X'00002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'0000400C' The target member is not active.

X'00004FFF' The function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

X'0000502C' The member could not be found due to an internal BPE hash
table services error.

X'00005030' An SCI buffer could not be obtained.

X'00005034' A key 7 buffer in the SCI address space could not be obtained
for a copy of PHDR and parameters.

X'00005038' An IEAMSCHD error occurred; SRB could not be scheduled to
the target address space.

X'00005040' The request is not outstanding and cannot be returned.

X'00005044' An SCI-allocated output buffer could not be obtained.

X'00005500' An abend occurred during the processing of an SCI request.

X'00005504' An abend occurred when the member parameters were copied
to the target address space.

X'00005508' An abend occurred when the member parameters were copied
to the target address space, but the dump and message were
suppressed because NOCPYABN=Y was specified.

CSLSCRQS: send request
By issuing the CSLSCRQS request, an IMSplex member can send a request to another member in the
IMSplex. The target member can be specified by SCITOKEN, member name, or member type.

A request in an IMSplex can contain both input and output data (from the target member's perspective).
This contrasts to a message that can only contain input data (again, from the target member's
perspective). The data of a request is copied to the target member's address space. The function is
processed, and the output is returned to the requestor's address space. If the request included an ECB,
control is returned to the requesting module after the request has been processed by SCI. The requestor
must then wait on the ECB.

Chapter 8. Writing a CSL SCI client  225



The ECB is posted when the request processing has completed. The requestor then looks at the RETCODE
and RSNCODE fields to determine the outcome of the request. If no ECB is included in the request, the
RETCODE and RSNCODE fields can be used to determine the outcome of the request when the requesting
module gets control back from SCI.

Note: Before issuing CSLSCRQS, the requester should clear the fields that will receive the address and
length of the SCI Allocated Output parameters. If the request is not sent to the destination because of an
error, or if there is no data to output, SCI will not update the length and address fields.

CSLSCRQS syntax
DSECT syntax

Use the DSECT function of a CSLSCRQS request to include equate (EQU) statements in your program for
the CSLSCRQS parameter list length, the IMSplex types and the CSLSCRQS return and reason codes.

CSLSCRQS FUNC=DSECT

SEND REQUEST syntax

The syntax for the CSLSCRQS FUNC=SEND request follows.

CSLSCRQS FUNC=SEND SCITOKEN=  scitokenaddress PARM=  parmaddress

MBRPARM=  mbrparmlistaddress MBRPCNT=  mbrparmcount MBRFUNC=  mbrfunctioncode

MBRSFUNC=  mbrsubfunctioncode

FUNCTYPE=DEST

FUNCTYPE=SENDER

ECB= ecbaddress

TOKEN=  tokenaddress

NAME= nameaddress

A

RETCODE=  returncodeaddress

RSNCODE=  reasoncodeaddress

RETNAME=  returnnameaddress

RETTOKEN=  returntokenaddress

A
TYPE=  membertypecode

TYPE=  'AOP'

TYPE=  'BATCH'

TYPE=  'CQS'

TYPE=  'DBRC'

TYPE=  'IMS'

TYPE=  'IMSCON'

TYPE=  'ODBM'

TYPE=  'OM'

TYPE=  'OTHER'

TYPE=  'RM'

TYPE=  'SCI'

SUBTYPE=  subtypeaddress

226  IMS: System Programming APIs



CSLSCRQS parameters
ECB=symbol
ECB=(r1-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous requests. When the request
is complete, the ECB specified is posted. If an ECB is not specified, the task is suspended until the
request is complete. If an ECB is specified, the invoker of the macro must issue a WAIT (or equivalent)
after receiving control from CSLSCRQS, before using or examining any data returned by this macro
(including the RETCODE and RSNCODE fields).

FUNCTYPE=DEST
FUNCTYPE=SENDER

(Optional) - Specifies that the MBRFUNC and MBRSFUNC are defined by the DEST (destination) of this
request or the SENDER of the request. This indicator is passed to the recipient of the request in the
SCI Input exit parameter list.

MBRFUNC= symbol
MBRFUNC= (r1-r12)

(Required) - Specifies a 4-byte member function code that is passed to the destination of the request
in the SCI Input exit parameter list. This function code, along with the MBRSFUNC, identifies the
request that is being sent.

If MBRFUNC is a symbol, the symbol points to a four-byte area of storage that contains the function
code.

MBRPARM= symbol
MBRPARM= (r1-r12)

(Required) - Specifies the address of a pre-built parameter list. This parameter list must be built by
the requesting module and consists of sets of triplets. Each triplet describes a single parameter in the
member parameter list and consists of:
parameterlength

Four-byte parameter that specifies the length of the member parameter.
parameteraddress

Four-byte parameter that specifies the address of the member parameter.
datatype

Four-byte parameter that specifies how this parameter is to be handled by SCI. Equates are
provided for each type (included with CSLSCODE). These equates can be used to set the value of
data type. Possible values are:
IN

The parameter is an input parameter. It is copied to the destination address space with the
request.

OUT
The parameter is an output parameter. It is copied back to the requesting address space
when the request is completed by the server. The storage for the parameter must be allocated
before the request is issued.

IO
The parameter is both an input and an output parameter. It is copied to the target address
space with the request and it is copied back to the requesting address space when the request
is complete.

SCI
The parameter is an SCI allocated output parameter. The storage for the parameter is
allocated in the requestor's address space when the request is complete. The address of the
storage will be returned in the parameter address field and the length will be returned in the
parameter length field. The storage must be released by the requestor using the CSLSCBFR
request. The eight bytes immediately in front of the address returned for an SCI-allocated
output parameter are available for use by the requestor. These eight bytes are not cleared, and
might contain residual data from a prior use of the buffer.

Chapter 8. Writing a CSL SCI client  227



The two methods for passing parameters in a parameter list are by address and by value. Both of
these methods can be used when passing parameters in a CSLSCRQS request. The triplet must be
setup so that SCI will handle the parameter properly.

• By address

To pass a parameter by address, the address of the parameter must be passed in parameteraddress
and the length of the parameter must be passed in parameterlength. SCI will get the parameter from
parameteraddress for data type IN and IO and will store the parameter at parameteraddress for
data type OUT and IO. The address at which the parameter is stored and its length is returned for
data type SCI.

• By value

To pass a parameter by value, the parameter must be passed in parameteraddress and zero
must be passed in parameterlength. When the length is zero, SCI will copy the value contained
in parameteraddress to the destination for data type IN. All other data types must be passed by
address since SCI requires an address to store any output parameters.

Member Parameter List: The user parameters specified here are presented to the program that
receives the request in the member parameter list, the address of which is contained in the Input Exit
Parm area field INXP_MBRPLPTR. Each parameter is represented by eight bytes, the first four bytes
contain parameterlength and the second four bytes contain parameteraddress (if parameteraddress
is an address, the second four bytes point to storage in the local address space, not the requesting
address space). If the parameter's data type is SCI, the first four bytes will contain a length of four and
the second word's value is unpredictable.

Null Parameters: In some cases a request processing module expects a set number of parameters
with a defined order. If a request is to be sent that does not contain all the parameters, null
parameters must be sent to ensure the data buffer contains everything that is expected. Null
parameters can be sent by specifying zero for parameterlength and parameteraddress. The eights
bytes that represent the parameter in the data buffer will contain zeros. This is true for any data type
(IN, OUT, IO or SCI) or method of passing parameters (by address or by value).

MBRPCNT=symbol
MBRPCNT=(r1-r12)

(Required) - Specifies a 4-byte field that contains the number of member parameters that are
included in MBRPARM.

MBRSFUNC=symbol
MBRSFUNC=(r1-r12)=

(Optional) - Specifies a 4-byte member subfunction code that is passed to the destination of the
request in the SCI input exit parameter list. This subfunction code, along with the MBRFUNC,
identifies the request that is being sent.

If MBRSFUNC is a symbol, the symbol points to a 4-byte area of storage that contains the sub-
function code.

NAME=symbol
NAME=(r1-r12)

(Optional) - Specifies the address of an 8-byte member name of the destination of this request. This
name can be obtained from the Notify exit (when the member joins the IMSplex) or by issuing a
CSLSCQRY request.

Note: One of the routing parameters (NAME, TOKEN or TYPE) must be included.

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the address of a parameter list used by the request to pass the parameters to
SCI. The length of the storage must be at least equal to the value of SRQS_LN.

228  IMS: System Programming APIs



RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRQS return code. SCI return
codes are defined in CSLSRR. Possible return codes for CSLSCRQS are described in the following
table.

RETNAME=symbol
RETNAME=(r1-r12)

(Optional) - Specifies the address of an 8-byte field to receive the name of the SCI that processes the
request.

RETTOKEN=symbol
RETTOKEN=(r1-r12)

(Optional) - Specifies the address of a 16-byte field to receive the SCI token of the SCI that processes
the request.

RSNCODE=symbol
RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRQS reason code. SCI reason
codes are defined in CSLSRR. Possible reason codes for CSLSCRQS are described in the following
table.

SCITOKEN=symbol
SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token uniquely identifies this
connection to SCI. The SCI token was returned by a successful CSLSCREG FUNC=REGISTER request.

TOKEN=symbol
TOKEN=(r1-r12)

(Optional) - Specifies the address of the 16-byte SCI token of the destination of this request. This
token can be obtained either from the Notify exit (when the member joins the IMSplex) or by issuing a
SLSCQRY message.

Note: One of the routing parameters (NAME, TOKEN, TYPE) must be included.

TYPE=symbol
TYPE=(r1-r12)
TYPE='AOP'
TYPE='BATCH'
TYPE='CQS'
TYPE='DBRC'
TYPE='IMS'
TYPE='IMSCON'
TYPE='ODBM'
TYPE='OM'
TYPE='OTHER'
TYPE='RM'
TYPE='SCI'

Input parameter that specifies the IMSplex member type of the IMSplex member to which this
request should be routed. The IMSplex member type routing can be further qualified by using the
SUBTYPE parameter. If TYPE is specified, SCI chooses the IMSplex member of the requested type to
which the request is sent.

If member type is specified as a literal, the literal must be enclosed in single quotes. If this parameter
is passed as a symbol or register, the symbol or register must contain the member type code. The
member type code can be obtained by using the CSLSTPIX macro.

Note: One of the routing parameters (NAME, TOKEN, TYPE) must be included.

CSLSCRQS return and reason codes
The following table lists the return and reason codes that can be returned on a CSLSCRQS macro request.
Also included is the meaning of a reason code (that is, what possibly caused it).

Chapter 8. Writing a CSL SCI client  229



Table 67. CSLSCRQS return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000008' X'00002004' The function passed to the SCI interface PC routine is invalid.

X'00002008' The number of parameters passed was either less than or equal
to zero, or greater than the maximum allowed.

X'00002010' An invalid type was passed.

X'00002018' This SCI token is invalid.

X'00002024' The PHDR length is invalid.

X'00002028' The routing data length is invalid.

X'0000202C' The request target member is not key 7.

X'00002030' The request target member is not authorized.

X'00002034' The length of the parameters is too large for a non-authorized
caller.

X'00002038' The parameter list version is invalid.

X’0000203C’ CSLSCRQS was called in SRB mode for a synchronous request
(no ECB= coded).

X'01000010' X'00004000' SCI is not active.

X'0000400C' The destination member is not active. The destination member
might have been designated by name, token, or type.

X'0000401C' The calling member is in the process of deregistering from SCI.

X'00004020' The request timed out.

X'01000014' X'00005000' An SCI internal error occurred.

X'00005004' An ESTAE add error occurred.

X'00005024' An SRB routine error occurred.

X'00005028' The routing type is invalid.

X'0000502C' The member could not be found due to an internal BPE hash
table services error.

X'00005030' A buffer in the destination member's address space could not
be obtained.

X'00005034' A key 7 buffer in the SCI address space could not be obtained
for a copy of PHDR and parameters.

X'00005038' An IEAMSCHD error occurred; an SRB could not be scheduled to
the target address space.

X'0000503C' MRT could not be expanded.

X'00005044' An SCI-allocated output buffer could not be obtained.

X'0000504C' A message SRB key 7 parameter area could not be obtained.

X'0000507C' An IXCMSGO error occurred.

X'00005500' An abend occurred during CSLSCRQS processing.

230  IMS: System Programming APIs



Table 67. CSLSCRQS return and reason codes (continued)

Return code Reason code Meaning

X'00005504' An abend occurred while the member parameters were copied
to the target address space.

Related reference
“CSLSCREG: registration request” on page 215
The Structured Call Interface (SCI) registration request is used to create a connection between an
IMSplex member and SCI. Before SCI can be used for communication within the IMSplex, an IMSplex
member must issue the CSLSCREG request and receive an SCI token when the request completes in order
to be recognized by SCI.

Chapter 8. Writing a CSL SCI client  231



232  IMS: System Programming APIs



Chapter 9. CSL Operations Manager XML output
Command responses that are returned through the OM API are embedded in XML tags using codepage
037. XML output is generated for responses to the CSLOMI, CSLOMCMD, and CSLOMQRY requests.

Note: The OM response is intended as a programming interface, not as an interface that produces prebuilt
messages to be displayed on a screen. For OM requests, the output is passed back in the OUTPUT= buffer.
For messages, the output is returned to the SCI input exit. The OM response is returned encapsulated in
XML tags.

Related concepts
“CSL OM automated operator program clients” on page 125
OM provides an API interface for application programs that automate operator actions known as
automated operator programs (AOP). You can use an AOP to issue commands that are embedded in
an OM API request to an OM.
Related reference
“CSLOMCMD: command request” on page 107
By using the CSLOMCMD request, your AOP client application that is running on the host can issue
requests and send commands to OM.
“CSLOMI: API request” on page 111
With the CSLOMI request, your AOP client can communicate with a z/OS address space that acts as an OM
AOP client. You can then issue OM requests and send QUERY commands to OM.
“CSLOMQRY: query request” on page 121
With the CSLOMQRY request, any AOP client that is running on the host can request OM-specific
information.
“CSLOMRSP: command response request” on page 153
The CSLOMRSP request is issued by a command processing client in response to a command. Command
response information is consolidated and sent to OM.

CSLOMI XML output examples
Each of the command syntax examples contain a sample of CSLOMI XML output. The examples present
different scenarios that generate XML output based on the commands that are used in the example.

CSLOMI XML output

One or more of the sets of tags in the following output example is returned on each CSLOMI request.

<imsout> 
   <ctl> 
       <omname> </omname>
       <omvsn> </omvsn>
       <xmlvsn> </xmlvsn>
       <statime> </statime>
       <stotime> </stotime>
       <staseq> </staseq>
       <stoseq> </stoseq>
       <rqsttkn1> </rqsttkn1>
       <rqsttkn2> </rqsttkn2>
       <rc> </rc>
       <rsn> </rsn>
            <rsnmsg> </rsnmsg>
  </ctl>
  <cmdclients> 
    <mbr name="membername"> 
      <typ> </typ>
      <styp> </styp>
      <vsn> </vsn>
      <jobname> </jobname>
   </mbr>
  </cmdclients>

© Copyright IBM Corp. 1974, 2022 233



  <cmdsyntax> </cmdsyntax>
  <cmddtd> </cmddtd>
  <cmdtext> </cmdtext>
  <cmderr> 
    <mbr name="membername"> 
      <typ> </typ>
      <styp> </styp>
      <rc> </rc>
      <rsn> </rsn>
   </mbr>
  </cmderr>
  <cmdsecerr> 
    <exit> 
       <rc> </rc>
       <userdata> </userdata>
    </exit> 
    <saf> 
       <rc> </rc>
       <racfrc> </racfrc>
       <racfrsn> </racfrsn>
    </saf>
 </cmdsecerr>
 <cmd> 
    <master> </master>
    <userid> </userid>
    <verb> </verb>
    <kwd> </kwd>
    <input> </input>
 </cmd>
 <cmdrsphdr>
    <hdr ... />
 </cmdrsphdr>
 <cmdrspdata> 
    <rsp> </rsp>
 </cmdrspdata>
 <msgdata> 
   <mbr name="membername"> 
     <msg> </msg>
   </mbr>
 </msgdata>
</imsout>

Issue IMS command example

The following examples are CSLOMI XML output. In the following command example, the QUERY TRAN
command was routed to IMSA with a timeout value of 10 seconds.

OM API Input:
CMD(QUERY TRAN) NAME(SKS*)) ROUTE(IMSA) TIMEOUT(10) RQSTTKN2(QTRANCMD)

OM API Output:
<imsout>
  <ctl>
    <omname>OM1</omname>
    <omvsn>1.1.0</omvsn>
    <xmlvsn>1</xmlvsn>
    <statime>1999.341 12:52:44.46</statime>
    <stotime>1999.341 12:52:44.46</stotime>
    <staseq>B342BCC72A34D206</staseq>
    <stoseq>B342BCC75CD52208</stoseq>
    <rqsttkn2>QTRANCMD</rqsttkn2>
    <rc>0</rc> <rsn>0</rsn>
  </ctl>
  <cmd>
    <master>IMS1</master>
    <verb>QRY</verb>
    <kwd>TRAN</kwd>
    <input>QUERY TRAN</input>
  </cmd>
  <cmdrsphdr>
    <hdr slbl="TRAN" llbl="TranCode" scope="LCL" sort="a" key="1" scroll="no"     
     len="8" dtype="CHAR" align="left" />
    <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="4" scroll="no" 
     len="8" dtype="CHAR" align="left" />
    <hdr slbl="CC" llbl="CC" scope="LCL" key="0" scroll="YES" len="4" dtype="INT" 
     align="right" />
  </cmdrsphdr>
  <cmdrspdata>
    <rsp> TRAN(SKS1) MBR(IMSA) CC(0) </rsp>

234  IMS: System Programming APIs



    <rsp> TRAN(SKS2) MBR(IMSA) CC(0) </rsp>
    <rsp> TRAN(SKS3) MBR(IMSA) CC(0) </rsp>
    <rsp> TRAN(SKS4) MBR(IMSA) CC(0) </rsp>
    <rsp> TRAN(SKS5) MBR(IMSA) CC(0) </rsp>
  </cmdrspdata>
</imsout>

Query client list example

In the following client list example, the Operations Manager (OM) returns a list of client names that are
currently registered for command processing.

OM API Input:
QUERY(CMDCLIENTS) RQSTTKN2(CLIENTLIST)
OM API Output:
<imsout>
  <ctl>
    <omname>OM1</omname>
    <omvsn>1.1.0</omvsn>
    <xmlvsn>1</xmlvsn>
    <statime>1999.341 12:52:44.46</statime>
    <stotime>1999.341 12:52:44.46</stotime>
    <staseq>B342BCC72A34D206</staseq>
    <stoseq>B342BCC75CD52208</stoseq>
    <rqsttkn2>CLIENTLIST</rqsttkn2>
    <rc>0</rc> <rsn>0</rsn>
  </ctl>
  <cmdclients>
    <mbr name=IMSA>
      <typ>DBDC</typ>
      <vsn>0800</vsn>
      <jobname>IMSJOB01</jobname>
    </mbr>
    <mbr name=IMSB>
      <typ>DBDC</typ>
      <vsn>0800</vsn>
      <jobname>IMSJOB02</jobname>
    </mbr>
  </cmdclients>
</imsout>

Query command syntax example

The following command syntax example returns the command syntax for currently registered commands.
In this example, the QUERY TRAN command is the only command that is registered to OM, and the
keyword NAME is associated with it.

OM API Input:
QUERY(CMDSYNTAX) RQSTTKN2(CMDLIST)
OM API Output:
<imsout>
  <ctl>
    <omname>OM1</omname>
    <omvsn>1.1.0</omvsn>
    <xmlvsn>1</xmlvsn>
    <statime>1999.341 12:52:44.46</statime>
    <stotime>1999.341 12:52:44.46</stotime>
    <staseq>B342BCC72A34D206</staseq>
    <stoseq>B342BCC75CD52208</stoseq>
    <rqsttkn2>CMDLIST</rqsttkn2>
    <rc>0</rc> <rsn>0</rsn>
  </ctl>

  <cmdsyntax>
    <root>
      <resource name="TRAN">
        <verb name="QUERY">
          <keyword name="NAME">
            <var name="tranname*"/>
          </keyword>
        </verb>
      </resource>
    </root>
  </cmdsyntax>

Chapter 9. CSL Operations Manager XML output  235



  <cmdtext>
    NEXT "Next"
    BACK "Back"
    FINISH "Finish"
    CANCEL "Cancel"
    SUMMARY "Summary"
    TRAN_NAME "Transaction"
    TRAN_QUERY_NAME "Query"
    TRAN_QUERY_NAME_NAME "Name"
    TRAN_QUERY_NAME_TEXT "Name of transaction."
    TRAN_QUERY_NAME_VAR "tranname*"
  </cmdtext>
</imsout>

Related reference
“XML tags returned as CSL OM responses” on page 238
Different XML tags can be returned as CSL OM responses. Each tag name is delimited by the characters <
and >. Tags can be nested within parent tags to encapsulate related information.
QUERY TRAN command (Commands)

CSLOMCMD output
The command syntax example contains a sample of CSLOMCMD XML output. The example presents a
scenario that generates XML output based on the commands that are used in the example.

CSLOMCMD XML output

The tags in the following output example can be returned as a result of a CSLOMCMD request.

<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout> 
   <ctl> 
       <omname> </omname>
       <omvsn> </omvsn>
       <xmlvsn> </xmlvsn>
       <statime> </statime>
       <stotime> </stotime>
       <staseq> </staseq>
       <stoseq> </stoseq>
       <rqsttkn1> </rqsttkn1>
       <rc> </rc>
       <rsn> </rsn>
   </ctl>
   <cmderr> 
     <mbr name="membername"> 
       <typ> </typ>
       <styp> </styp>
       <rc> </rc>
       <rsn> </rsn>
     </mbr>
   </cmderr>
   <cmdsecerr> 
     <exit> 
        <rc> </rc>
        <userdata> </userdata>
     </exit> 
     <saf> 
        <rc> </rc>
        <racfrc> </racfrc>
        <racfrsn> </racfrsn>
     </saf>
   </cmdsecerr>
   <cmd> 
     <master> </master>
     <userid> </userid>
     <verb> </verb>
     <kwd> </kwd>
     <input> </input>
   </cmd>
   <cmdrsphdr>
     <hdr ... /hdr>
   </cmdrsphdr>
   <cmdrspdata> 

236  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.cr/imscmds/ims_querytran.htm#ims_cr2querytran


      <rsp> </rsp>
   </cmdrspdata>
   <msgdata> 
     <mbr name="membername"> 
       <msg> </msg>
     </mbr>
   </msgdata>
</imsout>

CSLOMQRY output
Each of the command syntax examples contain a sample of CSLOMQRY XML output. The examples
present different scenarios that generate XML output based on the commands that are used in the
example.

CSLOMQRY XML output

The tags in the following output example can be returned as a result of a CSLOMQRY request.

The command syntax and translatable text that is returned as a result of the CSLOMQRY QUERY
TYPE(CMDSYNTAX) request includes information for type-2 commands.

<imsout> 
   <ctl> 
       <omname> </omname>
       <omvsn> </omvsn>
       <xmlvsn> </xmlvsn>
       <statime> </statime>
       <stotime> </stotime>
       <staseq> </staseq>
       <stoseq> </stoseq>
       <rqsttkn1> </rqsttkn1>
       <rc> </rc>
       <rsn> </rsn>
   </ctl>
   <cmdclients> 
     <mbr name="membername"> 
       <typ> </typ>
       <styp> </styp>
       <vsn> </vsn>
       <jobname> </jobname>
     </mbr>
   </cmdclients>
   <cmdsyntax> </cmdsyntax><cmddtd>
       <!ELEMENT imsout ( ctl, cmdclients?,   cmdsyntax?, cmddtd?,
       cmdtext?, cmderr?, cmd, cmdrsphdr, cmdrspdata?, msgdata? )>
       <!ELEMENT ctl (omname?, omvsn?, xmlvsn?,   stattime, stotime,
       statseq, stoseq,   rqsttkn1?, rqsttkn 2?, rc, rsn )>
       <!ELEMENT omname (#PCDATA) >
       <!ELEMENT omvsn (#PCDATA) >
       <!ELEMENT xmlvsn (#PCDATA) >
       <!ELEMENT statime (#PCDATA) >
       <!ELEMENT stotime (#PCDATA) >
       <!ELEMENT staseq (#PCDATA) >
       <!ELEMENT stoseq (#PCDATA) >
       <!ELEMENT rqsttkn1 (#PCDATA) >
       <!ELEMENT rqsttkn2 (#PCDATA) >
       <!ELEMENT rc (#PCDATA) >
       <!ELEMENT rsn (#PCDATA) >
       <!ELEMENT cmdclients ( mbr+ )>
       <!ELEMENT cmdsyntax (#PCDATA) >
       <!ELEMENT cmddtd (#PCDATA ) >
       <!ELEMENT cmdtext (#PCDATA) >
       <!ELEMENT cmderr ( mbr* )>
       <!ELEMENT MBR ( (TYP, STYP, ((VSN, JOBNAME) | (rc, rsn))) | msg)> 

       <!ELEMENT typ (#PCDATA) >
       <!ELEMENT styp (#PCDATA) >
       <!ELEMENT vsn (#PCDATA) >
       <!ELEMENT jobname (#PCDATA) >
       <!ELEMENT msg (#PCDATA) >
       <!ELEMENT cmdsecerr ( exit, saf )>
       <!ELEMENT exit ( rc, userdata ) >
       <!ELEMENT saf ( rc, racfc, racfrsn )>
       <!ELEMENT userdata (#PCDATA) >

Chapter 9. CSL Operations Manager XML output  237



       <!ELEMENT racfc (#PCDATA) >
       <!ELEMENT racfrsn (#PCDATA) >
       <!ELEMENT cmd ( master?, userid?, verb, kwd, input )>
       <!ELEMENT master (#PCDATA) >
       <!ELEMENT userid (#PCDATA) >
       <!ELEMENT verb (#PCDATA) >
       <!ELEMENT kwd (#PCDATA) >
       <!ELEMENT input (#PCDATA) >
       <!ELEMENT cmdrsphdr ( hdr* ) >
       <!ELEMENT hdr (#PCDATA) >
       <!ELEMENT cmdrspdata ( rsp* ) >
       <!ELEMENT rsp (#PCDATA) >
       <!ELEMENT msgdata ( mbr ) >
       <!ATTLIST hdr slbl   CDATA #REQUIRED >
       <!ATTLIST hdr llbl   CDATA #REQUIRED >
       <!ATTLIST hdr scope  CDATA #REQUIRED >
       <!ATTLIST hdr sort   CDATA #REQUIRED >
       <!ATTLIST hdr key    CDATA #REQUIRED >
       <!ATTLIST hdr scroll CDATA #REQUIRED >
       <!ATTLIST hdr len    CDATA #REQUIRED >
       <!ATTLIST hdr dtype  CDATA #REQUIRED >
       <!ATTLIST hdr align  CDATA #REQUIRED >
</cmddtd>
<cmdtext> </cmdtext>
</imsout>

Related reference
“CSLOMQRY: query request” on page 121
With the CSLOMQRY request, any AOP client that is running on the host can request OM-specific
information.

CSLOMOUT output
The command syntax example contains a sample of CSLOMOUT XML output. The example presents a
scenario that generates XML output based on the commands that are used in the example.

Unsolicited output message encapsulated in XML tags

The tags in the following output example can be returned as a result of a CSLOMOUT request.

<imsout>
  <ctl>
      <omname></omname>
      <omvsn></omvsn>
      <xmlvsn></xmlvsn>
      <statime></statime>
      <staseq></staseq>
      <uom>UOM</uom>
   </ctl>
   <msgdata>
      <mbr name="membername">
         <typ></typ>
         <styp></styp>
         <msg></msg>
      </mbr>
   <msgdata>
</imsout>

XML tags returned as CSL OM responses
Different XML tags can be returned as CSL OM responses. Each tag name is delimited by the characters <
and >. Tags can be nested within parent tags to encapsulate related information.

Data or other sets of tags are contained between these start and end tags. In the list of tags, indentation
indicates that the tags are nested within the parent tags.

<?xml version "1.0"?>
The version of XML used in this output.

238  IMS: System Programming APIs



<!DOCTYPE imsout SYSTEM "imsout.dtd">
The DOCTYPE tag identifies the file that contains the document type definition (DTD). The DTD
describes the structure that is supported for this type of XML document. Users of z/OS can find the
DTD information in the CSLOMDTD member, located in the IMS.SDFSRESL data set.

<imsout> </imsout>
The <imsout> </imsout> tags encapsulate the output from OM. These tags are returned on every
request.

<ctl> </ctl>
The <ctl> </ctl> tags encapsulate the control information that is returned by OM. These tags are
returned on every request and include the following control information:
<omname>om name</omname>

Indicates the name of the OM that processed this request. The name is specified on the
OMNAME= execution parameter of the CSLOIxxx PROCLIB member.

<omvsn>om version number</omvsn>
Indicates the OM version number.

<xmlvsn>xml version number</xmlvsn>
Indicates the XML version number.

<statime>starttime</statime>
Indicates the time that OM started processing the request. The field is in the following format:
yyyy.ddd hh:mm:ss.th

<stotime>stoptime</stotime>
Indicates the time that OM completed request processing. The field is in the following format:
yyyy.ddd hh:mm:ss.th

<staseq>startsequence</staseq>
Indicates the sequence value when OM started processing the request. This value can be used for
sorting and is in printable EBCDIC hexadecimal format.

<stoseq>stopsequence</stoseq>
Indicates the sequence value when OM stopped processing the request. This value can be used
for sorting and is in printable EBCDIC hexadecimal format.

<rqsttkn1>requesttoken1</rqsttkn1>
Indicates the user-specified RQSTTKN1 value that is associated with the response. OM converts
unprintable characters to periods (.) in the output.

<rqsttkn2>requesttoken2</rqsttkn2>
Indicates the user-specified RQSTTKN2 value that is associated with the response. OM converts
unprintable characters to periods (.) in the output.

<rc>returncode</rc>
The return code for the request in printable EBCDIC hexadecimal format.

<rsn>reasoncode</rsn>
The reason code for the request in printable EBCDIC hexadecimal format.

<uom>unsolicited output message</uom>
Indicates that the XML is for an unsolicited output message

<cmdclients> </cmdclients>
Encapsulates information about OM clients. These tags can be returned on a QUERY(CMDCLIENTS)
request.
<mbr name="membername"></mbr>

Indicates the name of the IMSplex member that is registered for commands.
<typ>membertype</typ>

Indicates the type of IMSplex member.
<styp>membersubtype</styp>

Indicates the IMSplex member subtype. OM converts unprintable characters to periods (.) in
the output.

Chapter 9. CSL Operations Manager XML output  239



<vsn>memberversion</vsn>
Indicates the member version number.

<jobname>memberjobname</jobname>
Indicates the member job name.

<cmddtd> </cmddtd>
Encapsulates the Document Type Definition (DTD) that are defined by OM for command syntax and
OM output XML. These tags can be returned on a QUERY(CMDSYNTAX) request.

<cmdsyntax> </cmdsyntax>
Encapsulates the XML definitions for the commands that are registered to OM from all of its clients.
These tags can be returned on a QUERY(CMDSYNTAX) request.

<cmdtext> </cmdtext>
Encapsulates the translatable text strings that are associated with the XML command syntax tags.
These tags can be returned on a QUERY(CMDSYNTAX) request.

<cmd> </cmd>
Encapsulates the command information that was passed to OM. These tags can be returned on a
command request. The output returned in these tags is what was provided on the CMD= parameter on
the CSLOMBLD macro. The following tags are included within the <cmd> tags:
<master> </master>

Encapsulates the name of the command processing client that was tagged as the master when
sending the command. This information will not be present unless the command was successfully
sent to at least one command processing client.

<userid> </userid>
Encapsulates the user ID of the originator of the command.

<verb> </verb>
Encapsulates the short form of the command verb that was processed by OM. The verb might have
been passed to OM in a long form.

<kwd> </kwd>
Encapsulates the command keyword that was processed by OM.

<input> </input>
Encapsulates the actual input command string that was passed to OM. The following characters
are converted to periods (.) to maintain the validity of the output XML:

• Greater than signs (>)
• Less than signs (<)
• Ampersands (&)
• Non-printable characters

<cmdrsphdr> </cmdrsphdr>
Encapsulates the command header information that describes the data fields returned in the
command response. These tags can be returned on a command request.
<hdr ... />

Defines the attributes of columns of data fields.

The command response header information is in the format shown in the following format
example:

<hdr slbl="ss" llbl="llll" scope="c" sort="d" key="e" scroll="f" len="g" dtype="h" align="i" 
skipb="no"/> 

slbl
Short label used to match data description with data value that is returned by the
<cmdrspdata> tag.

The short label values vary by command. Refer to the documentation for each command to
determine what values can be returned for a specific command.

240  IMS: System Programming APIs



llbl
Long label that can be used as the table column header.

The long label values vary by command. Refer to the documentation for each command to
determine what values can be returned for a specific command.

scope
Indicates if the data is global or local.
GBL

Indicates that the data is global. For query output, global data applies to all resources of
the same name, but is returned only once in the command response for a specific resource
name. Global information applies to other rows of the same resource name for different
IMSplex member names. The resource name is the data field identified by a KEY="1"
attribute. If an application chooses to transform the command response data into a table
to be displayed for a user, the global data value can be propagated to other rows for the
same resource name.

LCL
Indicates that the data is local. For query output, local data applies only to a specific
resource name in a specific IMS. Different IMS systems can return different values for local
data fields. Each IMS returns its local value when it is available. If an application chooses
to transform the command response data into a table to be displayed for a user, the local
data value should not be propagated to other rows for the same resource name.

sort
Indicates whether or not this field should be sorted or the sort direction.
A

Sort in ascending order.
D

Sort in descending order.
N

Do not sort field.
key

Indicates the sort priority for this field.
0

Field is not sorted.
1

The highest priority sort field.
2

The second highest priority sort field.
n

The n the priority sort field.

The priority value indicated on KEY= in the <cmdrsphdr> tag has been predetermined. Some
command responses can specify multiple sort fields. Several fields are listed within the
<cmdrsphdr> tags with their sort priorities:

• Trancode - 1
• MbrName - 4
• CC - 0
• PSBname - 0
• QCnt - 2
• LCls - 0
• LQCnt - 3

Chapter 9. CSL Operations Manager XML output  241



The following code example causes the command results to be sorted with the following
priority:

1. Trancode
2. Qcnt
3. LQcnt
4. MbrName

<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
<ctl>
<omname>OM1OM   </omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1   </xmlvsn>
<statime>2002.261 18:33:56.425140</statime>
<stotime>2002.261 18:33:56.487941</stotime>
<staseq>B8400987409B4A0E</staseq>
<stoseq>B84009874FF05409</stoseq>
<rqsttkn1>USRT002 10113356</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS2    </master>
<userid>USRT002 </userid>
<verb>QRY </verb>
<kwd>TRAN            </kwd>
<input>QRY TRAN NAME(ADD*) SHOW(PSB,QCNT,CLASS) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="a" key="1" 
scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="4" 
scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" 
scroll="yes" len="4" dtype="INT" align="right" />
<hdr slbl="PSB" llbl="PSBname" scope="LCL" sort="n" key="0" 
scroll="yes" len="8" dtype="CHAR" align="left" />
<hdr slbl="Q" llbl="QCnt" scope="GBL" sort="d" key="2"
scroll="yes" len="8" dtype="INT" align="right" />
<hdr slbl="LCLS" llbl="LCls" scope="LCL" sort="n" key="0" 
scroll="yes" len="3" dtype="INT" align="right" />
<hdr slbl="LQ" llbl="LQCnt" scope="LCL" sort="d" key="3" 
scroll="yes" len="8" dtype="INT" align="right" /></cmdrsphdr>
<cmdrspdata>
<rsp>TRAN(ADDPART ) MBR(IMS2    ) CC(   0) PSB(DFSSAM04) LCLS(  4)      
LQ(   0) </rsp>
<rsp>TRAN(ADDINV  ) MBR(IMS2    ) CC(   0) PSB(DFSSAM04) LCLS(  4)      
LQ(   0) </rsp>
<rsp>TRAN(ADDPART ) MBR(IMS2    ) CC(   0) Q(    0) </rsp>
<rsp>TRAN(ADDINV  ) MBR(IMS2    ) CC(   0) Q(    0) </rsp>
<rsp>TRAN(ADDPART ) MBR(SYS3    ) CC(   0) PSB(DFSSAM04) LCLS(  4)      
LQ(   0) </rsp>
<rsp>TRAN(ADDINV  ) MBR(SYS3    ) CC(   0) PSB(DFSSAM04) LCLS(  4)      
LQ(   3) </rsp>
</cmdrspdata>
</imsout>

If two records have the same Trancode, they are sorted by Qcnt. If they also have the
same Qcnt, they are sorted by LQcnt. If they have the same LQcnt value, they are sorted
by MbrName, and so on, until the nth sort field is used.

The results of the XML in the previous code are displayed in the following code sample.

Response for: QRY TRAN NAME(ADD*) SHOW(PSB,QCNT,CLASS)

Trancode MbrName    CC PSBname      QCnt LCls    LQCnt
ADDINV   IMS2        0                 0              
ADDINV   SYS3        0 DFSSAM04             4        3
ADDINV   IMS2        0 DFSSAM04             4        0
ADDPART  IMS2        0                 0              
ADDPART  IMS2        0 DFSSAM04             4        0
ADDPART  SYS3        0 DFSSAM04             4        0

242  IMS: System Programming APIs



Depending on which fields were selected using the SHOW parameter of the QUERY command,
not all intermediate priority value fields will be displayed. That is, the results could display
fields whose priority values were set at 1 and 4, but not display fields whose priority values
were set at 2 and 3. A program might leave the records in the original order, sort them using
the predetermined priority values, or sort by other fields using criteria set locally by the user.

scroll
Indicates whether this field is scrolled off of the screen when TSO SPOC shifts the screen to
the right.
NO

Do not scroll the field.
YES

Allow the field to scroll off the screen.
len

Maximum length of data (data returned could contain fewer characters). If a table of data is
being created from the output response, this value can be used to determine the width of the
column that is displayed for this attribute. If the value for this field is '*', this is a variable
length field.

dtype
Describes the original data type. All data is returned in character format. However, some fields
represent numeric data. Data that originated as integer might need to be converted from
character to integer in order to perform mathematical calculations.
CHAR

The output field represents character data.
INT

The output field is the character representation of integer data.
align

Indicates recommended column alignment if data is to be formatted into columns.
RIGHT

Data is right-aligned, for example, numeric data.
CENTER

Data is centered.
LEFT

Data is left-aligned, for example, character data.
skipb

no
The column is displayed on the TSO SPOC output, even if no client returned any
information for this column. This is the default.

yes
The column is not displayed on the TSO SPOC output if no client returned any information
for this column.

<cmdrspdata> </cmdrspdata>
Encapsulates the command response detail information. These tags can be returned on a command
request. The tags contain the actual data that is described by the <cmdrsphdr> </cmdrsphdr> tags.

Refer to the documentation for each command to determine what values can be returned for a
specific command.

Chapter 9. CSL Operations Manager XML output  243



<rsp>response data</rsp>

Contains a logical line of command response output for a particular resource. The response data
contains various tags in the form name(value). The name maps to short label (slbl=) values in the
<hdr> tag. This is shown in the following example, with the values TRAN and PSB.

<cmdrsphdr>
<hdr slbl="TRAN"    llbl="Trancode"... />
<hdr slbl="PSB"     llbl="PSBname" ... />
</cmdrsphdr>
<cmdrspdata>
<rsp>TRAN(A        ) PSB(A11      ) </rsp>
<rsp>TRAN(B        ) PSB(B22      ) </rsp>
<rsp>TRAN(C        ) PSB(C33      ) </rsp>
</cmdrspdata>

The <hdr> tag includes a long label value (llbl=), which can be used as column headings. This is
shown in the following output example, specifically Trancode and PSBname.

Trancode  PSBname
A         A11
B         B22
C         C33

The values included in the response data propagate the data columns of the SPOC output. Other
tags in the <hdr> tag describe formatting attributes for values in that column.

<msgdata> </msgdata>
Encapsulates pre-built IMS messages. The messages can be of any type including informational,
warning, or error messages. These tags can be returned on a command request.
<mbr name="membername"></mbr>

Indicates the name of the IMSplex member that returned the message.
<msg>message data</msg>

Contains a logical command response output for a resource in a message format. The
message starts with a message number (for example, DFSnnnnI). There is no LL field or X'15'
new line character.

<cmderr> </cmderr>
Encapsulates the return and reason code information returned by OM or a command processing
client. These tags are returned on command requests when an error specific to a command
processing client must be returned. For each IMSplex member with an error, the following information
is returned.
<mbr name="membername"></mbr>

Indicates the name of the IMSplex member for which an error was detected.
<typ>membertype</typ>

Indicates the type of IMSplex member.
<styp>membersubtype</styp>

Indicates the IMSplex member subtype. OM converts unprintable characters to periods (.) in
the output.

<rc>returncode</rc>
Indicates the return code for the IMSplex member in printable EBCDIC hexadecimal format.

<rsn>reasoncode</rsn>
Indicates the reason code for the IMSplex member in printable EBCDIC hexadecimal format.

<cmdsecerr> </cmdsecerr>
Encapsulates the return and reason code information returned by the OM security exit, SAF and RACF,
or equivalent. If the OM security exit rejected the command for any reason, the user data from the
security exit is also encapsulated here.
<exit> </exit>

Encapsulates the return code and user data from the OM security exit.

244  IMS: System Programming APIs



<rc>returncode</rc>
Indicates the return code from the OM security exit in printable EBCDIC hexadecimal format.

<userdata>userdata</userdata>
Indicates the user data returned from the OM security exit in the OSCX_USERDATA field
of the OM Command Security user exit parameter list (CSLOSCX). OM converts unprintable
characters to periods (.) in the output.

<saf> </saf>
Encapsulates the return and reason codes from the SAF and RACF or an equivalent.
<rc>returncode</rc>

Indicates the return code from the SAF in printable EBCDIC hexadecimal format.
<racfrc>racfreturncode</racfrc>

Indicates the return code from RACF or equivalent security product in printable EBCDIC
hexadecimal format.

<racfrsn>racfreasoncode</racfrsn>
Indicates the reason code from RACF or equivalent security product in printable EBCDIC
hexadecimal format.

Related reference
“CSLOMI XML output examples” on page 233
Each of the command syntax examples contain a sample of CSLOMI XML output. The examples present
different scenarios that generate XML output based on the commands that are used in the example.

Chapter 9. CSL Operations Manager XML output  245



246  IMS: System Programming APIs



Chapter 10. REXX SPOC API and the CSL
The REXX SPOC API allows REXX programs to submit commands to OM and to retrieve the command
responses.

REXX SPOC API environment with the CSL OM
The REXX SPOC API allows REXX programs to set up the IMSplex environment, submit commands to OM,
and to retrieve the command responses.

There are three phases related to using the REXX SPOC API with the CSL OM:

1. Set up the REXX environment
2. Set up the IMSplex environment and issue commands
3. Retrieve the command responses

Setting up the REXX environment in a CSL
By issuing the ADDRESS command, you can call the program CSLULXSB to set up the REXX environment.
This program establishes the REXX subcommand environment for the REXX SPOC API.

ADDRESS LINK 'CSLULXSB

SEROPT=  ENQ

SEROPT=  NONE

'

Note: Other forms of the ADDRESS command might not work in the Tivoli® NetView® for z/OS environment.

Keyword of the LINK statement
The LINK statement supports the following keyword:
SEROPT=ENQ|NONE

Specifies whether a serialization enqueue (ENQ) needs to be obtained to serialize parallel instances
of the IMS REXX SPOC command environment that are started under the same address space. If this
keyword is specified in the LINK statement, it overrides the default or the system level specification,
which is specified in the CSLULXD0 user exit. If this keyword is not specified, the default or system
level specification in the CSLULXD0 user exit is used.

Important: Each REXX SPOC instance that is in the same address space must use the same
serialization option. When serialization is required,SEROPT=ENQ (either in the LINK CSLULXSB
command, or in the CSLULXD0 exit) must be specified by every REXX SPOC instance in the same
address space.

You can specify one of the following values for this keyword:
ENQ

SEROPT=ENQ indicates that multiple IMS REXX SPOC instances might be started under the same
address space and a serialization ENQ is required to serialize the subcommand environment.
The ENQ option specifies the STEP option so that the scope is limited to the address space.
The ENQ resource qname is CSLUSPCA, and the rname is CSLULXTP||jobid. You can use the D
GRS,RES=(CSLUSPCA,*) command to display serialization information.
When you set up an IMS REXX subcommand environment, a step level ENQ for resource
CSLULXTP||jobid is obtained. This ENQ will not be released until the IMS REXX END
subcommand is processed.

Important: Ensure that either the REXX SPOC application always issues an IMS REXX END
subcommand to dequeue instances, or that the started task ends in a timely manner, if the IMS

© Copyright IBM Corp. 1974, 2022 247



REXX subcommand environment is started to prevent subsequent instances in the same address
space from waiting on the ENQ.

NONE
SEROPT=NONE indicates that multiple IMS REXX SPOC instances are not started under the same
address space and a ENQ serialization is not required.

The following examples show how to enable or disable the serialization by specifying the SEROPT
parameter:

Enabling serialization for parallel REXX applications with SEROPT=ENQ

/*----------------------------------------------------------------- 
| When multiple IMS Rexx SPOC instances could be started           |
| under the same address space, then an ENQ is needed to           |
| serialize the subcommand environment.                            |
| The Rexx SPOC program requests this by specifying                |
| SEROPT=ENQ on the Address LINK 'CSLULXSB' statement.             | 
------------------------------------------------------------------*/ 
Address LINK 'CSLULXSB SEROPT=ENQ'
if rc = 0 then
  do
    Address IMSSPOC                                                  

    "IMS  IPLX4"                                                     
    "ROUTE IMS1,IMSB"                                                
                                                                     
    "WAIT  5:00"                                                     
                                                                     
    "CART DISTRAN"                                                   
    "/DIS TRAN PART"                                                 

     spoc_rc = cslulgts('DISINFO.','DISTRAN',"59")                     
     do z1 = 1 to  DISINFO.0                                           
       /* display each line of XML information */                      
       Say disinfo.z1                                                  
     end                                                               
     "END"                                                             
  End

Disabling serialization for parallel REXX applications with SEROPT=NONE

/*----------------------------------------------------------------- 
| When only a single IMS Rexx SPOC instance is started             |
| under an address space, then an ENQ is not needed to             |
| serialize the subcommand environment.                            |
| The Rexx SPOC program requests this by specifying                |
| SEROPT=NONE on the Address LINK 'CSLULXSB' statement.            |
| This is the default (SEROPT can be omitted).                     | 
------------------------------------------------------------------*/ 
Address LINK 'CSLULXSB SEROPT=NONE'
if rc = 0 then
  do
    Address IMSSPOC                                                  

    "IMS  IPLX4"                                                     
    "ROUTE IMS1,IMSB"                                                
                                                                     
    "WAIT  5:00"                                                     
                                                                     
    "CART DISTRAN"                                                   
    "/DIS TRAN PART"                                                 

     spoc_rc = cslulgts('DISINFO.','DISTRAN',"59")                     
     do z1 = 1 to  DISINFO.0                                           
       /* display each line of XML information */                      
       Say disinfo.z1                                                  
     end                                                               
     "END"                                                             
  End

Related reference
CSLULXD0 user exit (Exit Routines)

248  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_cslulxd0.htm#ims_cslulxd0


Setting up the IMSplex environment
By switching the default host command to IMSSPOC and issuing the ADDRESS command, you can set
up the IMSplex environment. After you set the default host command to IMSSPOC, IMSSPOC executes
subsequent host commands issued by the REXX program that is running.

ADDRESS IMSSPOC

After you set the default host command to IMSSPOC, IMSSPOC executes subsequent host commands
issued by the REXX program that is running. You can switch to other host commands by using the
ADDRESS command with other hosts. For example:

ADDRESS TSO
ADDRESS MVS
ADDRESS ISPEXEC

You can then issue commands that are specific to those environments.

Note: If you issue commands other than the subcommands described here in the REXX environment, they
are sent to OM for processing.

IMS subcommand
The IMS subcommand establishes the name of the IMSplex. You must issue the IMS subcommand to
establish the IMSplex name before any other commands can be issued. A prefix of "CSL" is automatically
added to the name that you specify.

IMS IMSplex_name

ROUTE subcommand
Use the ROUTE subcommand to set the name of the command processors. The command processors
are the specific systems that will execute subsequent IMS commands. If you do not specify a command
processor:

• the previous routing value is removed
• commands are routed to all members of the IMSplex. This is the default.

If "*" is specified, the command is routed to all registered command processing clients in the IMSplex.
If "%" is specified, the command is routed to only one command processing client in the IMSplex that
is registered for the command and that has MASTER capability. The Operations Manager chooses the
command processing client.

The ROUTE subcommand is optional.

ROUTE

,

command_processor

*

%

CART subcommand
Use the Command and Response Token (CART) subcommand to set the name of the command and
response token. This 16-character text string token is used to retrieve the command response.

You must issue the CART subcommand before you can issue any IMS commands.

CART token_name

Chapter 10. REXX SPOC API and the CSL  249



WAIT subcommand
Use the WAIT subcommand to provide a timeout value to OM. The time value must be in the form
MMM:SS or ssss. The maximum value you can specify is 999:59. The WAIT subcommand is optional.

WAIT time_value

Issuing type-2 IMS commands
You issue IMS commands, including type-2 commands, by including them in the REXX program stream as
quoted strings or as REXX variables that resolve to quoted strings.

Examples of type-2 commands

"QUERY IMSPLEX SHOW(ALL)"

"DIS ACT"

tranlist = "PETER1,MATT1"
"QUERY TRAN NAME("tranlist")"

CSLULGTS: retrieving command responses in XML
By issuing the CSLULGTS request, you can retrieve command responses. The CSLULGTS command puts
the command responses to a stem variable so that REXX can access them.

CSLULGTS(  stem_name , token_name ," wait_time ")

stem_name
After the CSLULGTS command completes successfully, the stem variable contains XML statements.
Each row of the stem variable contains one XML statement. If the beginning and ending XML tags are
adjacent (that is, no other XML tags exist between them), they are placed in the same row of the stem
variable. A single row of a stem variable might look like this:

<rsp>TRAN(VIDB    ) MBR (IMS2    ) CC(    0) </rsp>

token_name
The name of the command and response token (CART). It should match the name specified on the
CART subcommand.

wait_time
A timeout value for the CSLULGTS command. The CSLULGTS command waits until the command
completes, but the wait lasts only as long as the time specified. The wait time is in the format MMM:SS
or ssss. The maximum timeout value is 999:59. Enclose this value in quotes.

Note: This timeout value is not the same as the timeout value for the WAIT subcommand; however,
this wait_time should be at least as long as the value specified on the WAIT subcommand. Otherwise,
no command response are received for long running commands.

If no response is received the first time, you can issue the CSLULGTS command again.

CSLULOPT: including format identifiers in command responses
By issuing the CSLULOPT request, you can specify whether a command response should contain format
IDs. Automated operator programs (AOPs) use format identifiers (FID) to identify the record format of
specific lines of a command response.

Invoke CSLULOPT before you issue the IMS operator command. The setting you select on CSLULOPT is in
effect for this REXX program until you explicitly change it.

250  IMS: System Programming APIs



MYVAR=CSLULOPT(

FID

NOFID

'LRECL= number '

'F=

WRAP

BYCOL

BYRSC

'

)

F
Specifies an output option. The possible options are:
BYCOL

Group lines by column.
BYRSC

Group lines by resource.
WRAP

Wrap individual lines (default).
FID

Specifies that the command response includes the FID. The default is FID.
LRECL

Specifies the logical record length as a numeric value.
NOFID

Specifies that the command response does not include the FID.
MYVAR

A variable that you can specify that contains the return code.
Related reference
REXX SPOC return and reason codes (Messages and Codes)

CSLULGTP: retrieving command responses directly to a REXX stem variable
By issuing the CSLULGTP request, you can retrieve command responses from IMS Operations Manager
(OM) and put the command response into a REXX stem variable. The REXX program then refers to the
information in the stem variable, rather than parsing XML statements as it does with the CSLULGTS
request.

CSLULGTP ( stem_name , token_name , " wait_time " )

stem_name

After the CSLULGTP request completes, the REXX stem variable is populated with the command
response that is returned by OM. The REXX program can then refer to the command response for
further operations.

During initialization, the REXX stem variable is set to null before being processed. Any fields that are
not explicitly set as output by the CSLULGTP request will be null on return from the CSLULGTP call.

token_name
The name of the command and response token (CART). The token name should match the name
specified on the CART subcommand.

wait_time

A timeout value for the CSLULGTP command. The CSLULGTP command waits until the command
completes, but the wait lasts only as long as the time specified. The wait time is in the format
MMMMM:SS or ssssss. Enclose this value in quotes.

The maximum timeout value is 99999:59. If you do not specify a value for this parameter, the
command times out after a very short delay of less than one tenth of a second.

Chapter 10. REXX SPOC API and the CSL  251

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_rexxspoccodes.htm#ims_rexxspoccodes


IMS checks whether the command completed or timed out every 0.01 seconds if the value of
wait_time is less than ten seconds. If the value is larger than ten seconds, IMS checks every second
instead.

This timeout value is not the same as the timeout value for the WAIT subcommand; however, the
value of wait_time should be at least as long as the value specified on the WAIT subcommand.
Otherwise, no command response are received for long running commands.

If no response is received the first time, you can issue the CSLULGTP command again.

Intermittent results can occur when stem_name, token_name, and wait_time parameters are not
coded on the CSLULGTP call.

Sample code for retrieving command responses using the CSLULGTP request

The following examples provide a code sample of the CSLULGTP request.

Example #1: In the example, the IMS command QRY TRAN NAME(A) is issued, and the CSLULGTP
request is used to retrieve the command response.

 Address LINK  'CSLULXSB'
 Address IMSSPOC
 "ims PLEX1"
 "wait 5:00"
 cartid = 'PROD12'
 "CART" cartid
 "QRY TRAN NAME(A*)"
 results = cslulgtp('qinfo.', cartid,"5:00")
 If qinfo.ctl.rc = 0 Then
   Do
     say "OM name        =("qinfo.ctl.omname")"
     say "command master =("qinfo.cmd.master")"
   End

Example #2: This program issues the IMS UPD PGM command and processes the command responses.
The following actions are taken based on the completion code:

  0  - OK - say command complete for program 'program name'       
  10 - not found - issue CRE PGM command                        
  73 - PSB scheduled - issue /DIS ACT REG command               
  other completion code - say invalid CC for program    
        
/*-------------------------------------------------------------   
| Establish IMS rexx environment.                             |   
-------------------------------------------------------------*/   
Address LINK 'CSLULXSB'                                           
Address IMSSPOC                                                   
"IMS   PLEX1"                                                     
"WAIT  5:00"                                                                  
"CART  CMDTOKEN"                                                              
                                                                              
/*--------------------------------------------------------------------------- 
| Issue an IMS command                                                      | 
---------------------------------------------------------------------------*/ 
   "UPD PGM NAME(APOL1,BMP255,PGMX,PGMY) SET(SCHDTYPE(SERIAL))"               
                                                                              
/*--------------------------------------------------------------------------- 
| Get command responses                                                     | 
---------------------------------------------------------------------------*/ 
spoc_rc = CSLULGTP('stem1.','CMDTOKEN',"59")                                  
                                                                              
/*--------------------------------------------------------------------------- 
| Get some data for diag                                                    | 
---------------------------------------------------------------------------*/ 
Say '*DATA: '                                              
Say '*CMD issued = '                stem1.cmd.input        
Say '*SPOC rc    = '                spoc_rc                
Say '*Command rc = '                stem1.ctl.rc           
Say '*Command rsn= '                stem1.ctl.rsn          
row = 1                                                    
if stem1.cmderr.0 > 0 then do                              
  Say '*Num of errors    ='         stem1.cmderr.0         
  Say '*CMD error RC     ='         stem1.cmderr.row.rc    
  Say '*CMD error RSN    ='         stem1.cmderr.row.rsn   
end /* if */                                               

252  IMS: System Programming APIs



if stem1.rsp.0    > 0 then do                              
    Say '*Num of rsp rows ='             stem1.rsp.0       
end /* if */                                               
if stem1.rsp.0    > 0 then do                              
 /* print each line of the stem.report  */                 
 Do n = 1 to stem1.report.0                                                    
  Say stem1.report.n                                                           
 End                                                                           
end /* if */                                                                   
say ' '                                                                        
                                                                               
/*---------------------------------------------------------------------------  
| Process responses                                                         |  
---------------------------------------------------------------------------*/  
spoc_rc = left(spoc_rc,2)                                                      
if spoc_rc >< '08' then do               /* process response if GTP ran ok */  
                                                                               
   /*-------------------------------------------------------------             
   | Process the stem response if IMS return code is             |             
   | X'00000000' or X'00000004' or X'0000000C'.                  |             
    ------------------------------------------------------------*/             
   row = 1                                                                
   imsrc = left(stem1.cmderr.row.rc,2)                                    
   If (imsrc = 00) | (imsrc = 04) | (ims.rc = 0C) then do                 
                                                                          
    if stem1.RSP.0 > 0 then do                                            
     cccol = 3      /* set col num for CC */                              
     cctxtcol = 4   /* set col num for CCtext */                          
                                                                          
     do  row = 1 to stem1.RSP.0                                           
      stem_cc.row = stem1.RSP.row.cccol                                   
      stem_cctxt.row = stem1.RSP.row.cctxtcol                             
      say '*Completion code on row 'row ': 'stem_cc.row                   
      say '*Completion code text on row 'row ': 'stem_cctxt.row           
      stem_cc.row = stem1.RSP.row.cccol                                   
      stem_cctxt.row = stem1.RSP.row.cctxtcol                             
      select                                                              
        /*-------------------------------------------------------------    
        | Process case 1                                              |    
         ------------------------------------------------------------*/    
        when left(stem_cc.row,2) = 0  then do                              
           say 'Command complete for program' stem1.RSP.row.1              
           say ' '                                                         
        end                                                                
                                                                           
        /*-------------------------------------------------------------    
        | Process case 2.                                             |    
        | When completion code is X'10', resource not found, issue    |    
        | a CREATE PGM command to create a program like the default   |    
        | descriptor.                                                 |    
         ------------------------------------------------------------*/    
        when left(stem_cc.row,2) = 10 then do                              
           say 'Issue CREATE PGM command for' stem1.RSP.row.1              
           arg1 = stem1.rsp.row.1       /* extract pgmname to arg1 */    
           "CREATE PGM NAME("arg1")"    /* issue CRE cmd with arg1 */    
           spoc_rc1 = CSLULGTP('stem2.','CMDTOKEN',"59")                 
           if stem2.rsp.0    > 0 then do                                 
             /* print each line of the stem.report  */                   
             Do n = 1 to stem2.report.0                                  
               Say stem2.report.n                                        
             End                                                         
             say ' '                                                     
           end /* if */                                                  
        end /* when */                                                   
                                                                         
        /*-------------------------------------------------------------  
        | Process case 3                                              |  
        | When completion code is X'73', program scheduled, issue     |  
        | a DISPLAY ACTIVE REGION command to see the active regions.  |  
        | The region needs to be stopped and the UPD command retried. |  
         ------------------------------------------------------------*/  
        when left(stem_cc.row,2) = 73 then do                            
           say 'Program ' stem1.RSP.row.1 'is scheduled'                 
           "/DISPLAY ACT REGION"                                         
           spoc_rc2 = CSLULGTP('stem3.','CMDTOKEN',"59")                 
           /* print the response from each IMS */                        
           if stem3.MSGDATA.MSG.1.0 > 0 then do                          
             do x = 1 TO stem3.MSGDATA.NAME.0                            
               SAY stem3.MSGDATA.NAME.X                                  
               do y = 1 TO stem3.MSGDATA.MSG.X.0                         
                 SAY stem3.MSGDATA.MSG.X.Y                               
               end/*end do y loop */                                     

Chapter 10. REXX SPOC API and the CSL  253



             end /* end do x loop */                                     
           end /* end if */                                              
           say 'Issue /STOP REGION commnd and retry UPD cmd'             
           say ' '                                                            
        end /* when */                                                        
                                                                              
        /*-------------------------------------------------------------       
        | For all other completion codes print the error compcode.    |       
         ------------------------------------------------------------*/       
        otherwise do                                                          
           say 'Invalid CC for program' stem1.RSP.row.1                       
           say ' '                                                            
        end /* otherwise */                                                   
                                                                              
      end /* select */                                                        
     end  /* do loop */                                                       
                                                                              
   end /* if (imsrc = 00) | . . .*/                                           
                                                                              
   /*-------------------------------------------------------------          
   | Print IMS rc and rsn for all other error rc/rsn.            |          
    ------------------------------------------------------------*/          
   Else do                                                                  
      say '*IMS RC & RSN = ' stem1.ctl.rc  stem1.ctl.rsn                    
   end /* else */                                                           
                                                                            
end /* if spoc_rc >< '08' */                                                
                                                                            
/*-------------------------------------------------------------             
| Exit program                                                |             
 ------------------------------------------------------------*/             
"END"   /* SPOC */                                                          
                                                                            
EXIT   /* REXX */     

The say instructions in the previous example refer to elements of the REXX stem variable. The CSLULGTP
request sets the suffix of the stem variable. The following table shows the possible suffix variable names
that are set when the CSLULGTP request creates the stem variable.

Table 68. Suffix variable names set by the CSLULGTP command

XML tag Variable name

<?xml version="1.0"?> stem.xmlversion

<!DOCTYPE imsout SYSTEM "imsout.dtd"> stem.dtd

<imsout> N/A

<ctl> N/A

<omname> </omname> stem.ctl.omname

<omvsn> </omvsn> stem.ctl.omvsn

<xmlvsn> </xmlvsn> stem.ctl.xmlvsn

<statime> </statime> stem.ctl.statime

<stotime> </stotime> stem.ctl.stotime

<rqsttkn1> </rqsttkn1> stem.ctl.rqsttkn1

<rc> </rc> stem.ctl.rc

<rsn> </rsn> stem.ctl.rsn

<rsnmsg> </rsnmsg> stem.ctl.rsnmsg

254  IMS: System Programming APIs



Table 68. Suffix variable names set by the CSLULGTP command (continued)

XML tag Variable name

<rsntxt> </rsntxt> stem.ctl.rsntxt

</ctl> N/A

<cmderr> stem.cmderr.0

<mbr name="membername"> stem.cmderr.x.name

<typ> </typ> stem.cmderr.x.typ

<styp> </styp> stem.cmderr.x.styp

<rc> </rc> stem.cmderr.x.rc

<rsn> </rsn> stem.cmderr.x.rsn

<rsntxt> </rsntxt> stem.cmderr.x.rsntxt

</mbr> N/A

</cmderr> N/A

<cmdsecerr> N/A

<exit> N/A

<rc> </rc> stem.cmdsecerr.exit.rc

<userdata> </userdata> stem.cmdsecerr.exit.userdata

</exit> N/A

<saf> N/A

<rc> </rc> stem.cmdsecerr.saf.r

<racfrc> </racfrc> stem.cmdsecerr.saf.racfrc

<racfrsn> </racfrsn> stem.cmdsecerr.saf.racfrsn

</saf> N/A

</cmdsecerr> N/A

<cmd> N/A

<master> </master> stem.cmd.master

<userid> </userid> stem.cmd.userid

<verb> </verb> stem.cmd.verb

<kwd> </kwd> stem.cmd.kwd

<input> </input> stem.cmd.input

</cmd> N/A

Chapter 10. REXX SPOC API and the CSL  255



Table 68. Suffix variable names set by the CSLULGTP command (continued)

XML tag Variable name

<cmdrsphdr> N/A

<hdr></hdr>
stem.hdr.0   (number of columns)
stem.hdr.x.slbl
stem.hdr.x.llbl
stem.hdr.x.scope
stem.hdr.x.sort
stem.hdr.x.key
stem.hdr.x.scroll
stem.hdr.x.len
stem.hdr.x.dtype
stem.hdr.x.align

</cmdrsphdr> N/A

<cmdrspdata> N/A

<rsp> </rsp> stem.rsp.0   (number of rows)
stem.rsp.x.0  (number of cols)
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y

</cmdrspdata> N/A

<msgdata> N/A

<mbr name="membername"> stem.msgdata.name.0     (num of systems) 
stem.msgdata.name.y     (1 member name)

<msg> </msg> stem.msgdata.msg.y.0    (num of msgs /sys) 
stem.msgdata.msg.y.x    (1 message line)

</mbr> N/A

</msgdata> N/A

</imsout> N/A

N/A stem.report.0        (number of lines)
stem.report.x        (1 line of report)

Where the suffix variables:

stem
user-defined stem name

x
row number of command response

y
column number of command response

The CSLULGTP function creates a report as part of the stem variable. The stem is any user provided value;
the suffix is "report".

256  IMS: System Programming APIs



Important: When using Type-1 commands, use the tag msgdata instead.

"QRY TRAN SHOW(PSB,QCNT)"
results = cslulgtp('friday_status.', cartid,"1:30")
If friday_status.report.0 > 0 Then
Do
say friday_status.report.0
Do x = 1 to friday_status.report.0
say friday_status.report.x
End
End 

The program would have results like this, where each line of the stem has a line of a formatted report.

6
Response for: QRY TRAN SHOW(PSB,QCNT)
Trancode MbrName CC PSBname QCnt LQCnt
ADDINV IMS2 0 0
ADDINV IMS2 0 DFSSAM04 2
ADDINV SYS3 0 DFSSAM04 1
ADDPART IMS2 0 0 

Handling errors when using the CSLULGTP function
The CSLULGTP function will not set the "ctl.rc" and "ctl.rsn" stem variables if an error is encountered in
the function itself. It is therefore highly recommended that any REXX program that uses the CSLULGTP
function first check the IMSRC and IMSREASON REXX variables before any other processing continues to
determine whether the function completed successfully.

If the IMSRC variable is nonzero, and the error was encountered in CSLULGTP itself, the value in IMSRC
will begin with "08". In this case, the "ctl.rc" and "ctl.rsn" stem variables are not set and no data is
returned in the stem variables.

The IMSRC and IMSREASON errors that can be returned are documented in the macro CSLUXRR.

For other errors (where the IMSRC variable is nonzero and does not begin with "08"), the "ctl.rc" and
"ctl.rsn" stem variables will contain the command return code and reason code, and some of the other
stem variables are set based on the command response. For example, if an invalid verb was entered, no
command response data will be returned, but the "ctl.rc" and "ctl.rsn" stem variables as well as the REXX
IMSRC and IMSREASON variables will be set.

REXX SPOC API within a transaction
Transactions can be written in the REXX language. A REXX EXEC runs as an IMS application and has
characteristics similar to other IMS-supported programming languages. The REXX SPOC API can be used
to issue commands from a transaction and to examine the command responses.

In the IMS Adapter for REXX environment, the OM API command authorization is performed with the
MPP user ID. To use the transaction origin user ID rather than MPP user ID, a user exit must be utilized.
The Build Security Environment user exit (BSEX) is called for non-OTMA/non-APPC input messages. The
exit can request that IMS build a security environment in the MPP region when a message is scheduled
(an accessor environment element (ACEE) will be anchored on TCBSENV). After use of the exit, the
transaction origin user ID is used for OM API security checking. OTMA/APPC messages are not supported
unless SECURITY=FULL or SECURITY=PROFILE, and the selection for the input message is FULL.

Related concepts
IMS Adapter for REXX reference (Application Programming APIs)

Ending the IMS SPOC environment
By issuing the END subcommand, you can end the IMS SPOC environment when you no longer want to
execute IMS commands and signify that the SPOC environment is no longer needed.

Use the END subcommand to signify that the SPOC environment is no longer needed. After the END
subcommand is issued, the control blocks associated with the SPOC environment are freed.

Chapter 10. REXX SPOC API and the CSL  257

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apr/ims_adapterforrexx.htm#ims_adapterforrexx


END is a valid IMS command. If you specify the END command with no operands, it is treated as an
IMS SPOC subcommand. If you specify the END command with parameters, it is sent to the IMSplex for
processing as an IMS command.

END

Retrieving unsolicited messages
After you set up the environment with CSLULXSB, you can use the CSLULSUB, CSLULUSB, and CSLULGUM
functions to subscribe to OM for unsolicited output messages.

CSLULSUB request
By issuing the CSLULSUB request, you can start the subscription and monitor OM for unsolicited
messages.

CSLULSUB ( IMS plex_name , member_list , type_list )

Parameters for the CSLULSUB request
IMS plex_name

Name of the IMSplex. Do not use the 'CSL' prefix.
member_list

Specifies a list of member names of command processing clients in the IMSplex (such as IMS control
regions) from which this OM client will receive unsolicited output messages. Do not specify this
parameter if you specify the type list parameter. If you do not specify a member list or a type list,
this OM client subscribes to all of the command processing clients in the IMSplex. Enclose the list in
quotes and separate names with commas.

type_list
Specifies a type list of command processing client types (such as OM, RM, and IMS) from which
this OM client will receive unsolicited output messages. Do not specify this parameter if you specify
the member list parameter. If you do not specify either a member list or a type list, this OM client
subscribes to all of the command processing clients in the IMSplex. Enclose the list in quotes and
separate names with commas.

CSLULUSB request
By issuing the CSLULUSB request you can end the subscription. If a subscription does not exist, OM is no
longer monitored for unsolicited messages.

CSLULUSB ( IMS plex_name )

Parameters for the CSLULUSB request
IMS plex_name

Name of the IMSplex. Do not use the 'CSL' prefix.

CSLULGUM request
By issuing the CSLULGUM request you can copy unsolicited output messages to the REXX program
variable named stem_name. The REXX program can then examine the messages and take appropriate
action.

CSLULGUM ( IMS plex_name , stem_name )

258  IMS: System Programming APIs



Parameters for the CSLULGUM request
IMS plex_name

Name of the IMSplex. Do not use the 'CSL' prefix.
stem_name

Name of a REXX variable that contains any unsolicited messages that are received. A stem variable is
an array of values, with the '.0' element (for example 'mystem.0') indicating how many elements are in
the array.

Sample program for subscribing to OM
This REXX SPOC API sample program uses CSLULSUB, CSLULBGUM, and CSLULUSB to subscribe to OM
and to retrieve unsolicited messages. The program shows how you can invoke unsolicited output message
functions.

/* rexx */
/*-------------------------------------------------------------
| REXX SPOC API example to invoke unsolicited output message  |
| functions.                                                  |
-------------------------------------------------------------*/

/*-------------------------------------------------------------
| tuning parameter: check every 10 seconds                    |
-------------------------------------------------------------*/
interval = 10

/*-------------------------------------------------------------
| We want to make syscalls, that is, sleep                    |
-------------------------------------------------------------*/
Call syscalls 'ON'

/*-------------------------------------------------------------
|  Establish IMS rexx environment                             |
-------------------------------------------------------------*/
Address LINK 'CSLULXSB'
If rc = 0 Then
 Do
   Address IMSSPOC
/*-------------------------------------------------------------
|  Subscribe to messages from IMSplex named  'PLEX1'          |
-------------------------------------------------------------*/
   continu = 1
   Do while(continu)
     subrc   = CSLULSUB('PLEX1')
     say 'subrc=('subrc')'
     If subrc = '01000010X' Then
       Do
          Say time()
        Address syscall "sleep" interval
       End
     Else
       continu = 0
   End

   Do a = 1 To 25
/*-------------------------------------------------------------
| wait a little before checking for new messages              |
-------------------------------------------------------------*/
     Address syscall "sleep" interval

/*-------------------------------------------------------------
|  Check if any unsolicited messages are present.             |
-------------------------------------------------------------*/
     results = CSLULGUM('PLEX1','xml.')
     say  'a='a  'results=('results')'

     If xml.0 /= '' Then
       Do
/*-------------------------------------------------------------
|  Display any messages in unsolicited message array.         |
-------------------------------------------------------------*/
         say 'xml.'0' = ('xml.0')'
         Do idx = 1 To  xml.0
           say 'xml.'idx'=('xml.idx')'
         End

Chapter 10. REXX SPOC API and the CSL  259



       End
   End
/*-------------------------------------------------------------
|  Unsubscribe to unsolicited messages.                       |
-------------------------------------------------------------*/
   usbrc   = CSLULUSB('PLEX1' )

/*-------------------------------------------------------------
|  clean up REXX SPOC API                                     |
-------------------------------------------------------------*/
   "END"
 End
Exit

REXX samples and examples
These topics provide both sample programs and examples for REXX SPOC environments.

Sample REXX SPOC program
The following sample REXX program issues the IMS operator command /DIS TRAN PART and displays
the command response.

Sample REXX program

Address LINK 'CSLULXSB'                                          
    Address IMSSPOC                                                  
    /*-------------------------------------------------------------  
    | 'ims' defines the IMSplex that receives the commands         | 
    |                                                              | 
    | 'route' defines which IMSplex members in the IMSplex         | 
    | receives the commands.  If ROUTE is not specified or if      | 
    | ROUTE * is specified, commands are routed to all IMSplex     | 
    | members.                                                     | 
    |                                                              | 
    | 'wait' provides a timeout value to OM.  The time is in       | 
    |  mmm:ss format (or ssss if no colon is specified).           | 
    |                                                              | 
    | 'cart' establishes the command response token for subsequent | 
    | commands.                                                    | 
    |                                                              | 
    | 'end' frees control blocks                                   | 
    |                                                              | 
    --------------------------------------------------------------*/ 
    "IMS  IPLX4"                                                     
    "ROUTE IMS1,IMSB"                                                
                                                                     
    "WAIT  5:00"                                                     
                                                                     
    "CART DISTRAN"                                                   
    "/DIS TRAN PART"                                                 
                                                                     
    /*-------------------------------------------------------------                        
     | The cslulgts function retrieves data associated with a       |  
     | a specific token and fills in a REXX stem variable.  In      |  
     | this example, it waits 59 seconds.                           |  
     |                                                              |  
     | The XML statements returned are put in the stem variable     |  
     | specified by the user.                                       |  
     |                                                              |  
     --------------------------------------------------------------*/  
     spoc_rc = cslulgts('DISINFO.','DISTRAN',"59")                     
     do z1 = 1 to  DISINFO.0                                           
       /* display each line of XML information */                      
       Say disinfo.z1                                                  
     end                                                               
     "END"                                                             

260  IMS: System Programming APIs



REXX SPOC batch job example
These examples provide a sample batch job, a sample REXX SPOC program, and job output from the REXX
SPOC example.

Sample REXX SPOC batch job

The batch job shown in the following figure calls the batch TSO command processor to get a response that
contains all transactions that start with the letter V.

    //REXXSPOC JOB ,                                                   
    //   MSGCLASS=H,NOTIFY=USRT002,USER=USRT002,TIME=(,30)             
    //*                                                                
    //SPOC     EXEC PGM=IKJEFT01,DYNAMNBR=45                           
    //STEPLIB  DD DISP=SHR,DSN=IMS.SDFSRESL                 
    //SYSPROC  DD DISP=SHR,DSN=LOCAL.IMS.CLIST                     
    //SYSTSPRT DD SYSOUT=A                                             
    //SYSTSIN  DD *                                                    
      %REXXSPOC QRY TRAN NAME(V*)                                      
    /*EOF                                                              

The DD names in this batch job include:

STEPLIB
Contains the load modules.

SYSPROC
Contains the REXX programs.

SYSTSPRT
Contains the output produced by the REXX program.

SYSTSIN
Contains the command to execute, including its parameters.

The QRY TRAN command in the JCL is passed as an argument to the following sample REXX program. The
command is issued, and the response is sent to the SYSTSPRT file.

REXX SPOC sample program

The following figure shows the sample REXX program, REXXSPOC.

/* rexx */ 
parse upper arg theIMScmd 
Address LINK 'CSLULXSB'                                          
if rc = 0 then 
 do 
   Address IMSSPOC 
   "IMS plex1" ; if rc > 0 then say 'rc='imsrc 'reason='imsreason 
   "route ims2"; if rc > 0 then say 'rc='imsrc 'reason='imsreason 
   cartid = "TEST13" 
   "cart" cartid ; if rc > 0 then say 'rc='imsrc 'reason='imsreason 
   "WAIT 1:00" ; if rc > 0 then say 'rc='imsrc 'reason='imsreason 
   theIMScmd 
   if rc > 0 then say 'rc='rc 'imsrc='imsrc 'reason='imsreason 
      do 
        results = cslulgts('TEMP.', cartid,"1:30") 
        say 'results='results ' imsrc='imsrc ' reason='imsreason 
        if temp.0 /= '' then 
          do 
            say 'temp.'0'=('temp.0')' 
            do idx = 1 to temp.0 
              say 'temp.'idx'= 'temp.idx 
            end 
          end 
      end 
"END" 
End 
exit 

Chapter 10. REXX SPOC API and the CSL  261



Sample output

The output from the REXXSPOC sample program is shown in the following output example.

READY 
%REXXSPOC QRY TRAN NAME(V*) 
results=00000000X imsrc=00000000X reason=00000000X 
temp.0=(30) 
temp.1= <imsout> 
temp.2= <ctl> 
temp.3= <omname>OM1OM </omname> 
temp.4= <omvsn>1.1.0</omvsn> 
temp.5= <xmlvsn>1 </xmlvsn> 
temp.6= <statime>2001.198 16:08:39.944953</statime> 
temp.7= <stotime>2001.198 16:08:40.271944</stotime> 
temp.8= <staseq>B625CACD49AF914A</staseq> 
temp.9= <stoseq>B625CACD99848CC6</stoseq> 
temp.10= <rqsttkn1>TEST13 </rqsttkn1> 
temp.11= <rc>00000000</rc> 
temp.12= <rsn>00000000</rsn> 
temp.13= </ctl> 
temp.14= <cmd> 
temp.15= <master>IMS2 </master> 
temp.16= <userid>USRT002 </userid> 
temp.17= <verb>QRY </verb> 
temp.18= <kwd>TRAN </kwd> 
temp.19= <input>QRY TRAN NAME(V*)</input> 
temp.20= </cmd> 
temp.21= <cmdrsphdr> 
temp.22= <hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="a" 
key="1" scroll="no" len="8" dtype=" CHAR" align="left" /> 
temp.23= <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" 
key="4" scroll="no" len="8" dtype="CHAR" align="left" /> 
temp.24= <hdr slbl="CC" llbl="CC" scope="LCL" sort="n" 
key="0" scroll="yes" len="4" dtype="INT" align="right" /> 
temp.26= </cmdrsphdr> 
temp.26= <cmdrspdata> 
temp.27= <rsp>TRAN(VIDB ) MBR(IMS2 ) CC( 0) </rsp> 
temp.28= <rsp>TRAN(VIDA ) MBR(IMS2 ) CC( 0) </rsp> 
temp.29= </cmdrspdata> 
temp.30= </imsout> 
READY 
END 

/DISPLAY command examples and format identifiers
This example illustrates how format identifiers (FID) can be returned when the REXX program issues the
operator commands, /DISPLAY ACT and /DISPLAY STATUS.

This example shows how format identifiers (FID) can be returned on operator commands. The REXX
program issues two commands: /DISPLAY ACT and /DISPLAY STATUS.

Address LINK 'CSLULXSB'                                          
if rc = 0 then
  do
    ADDRESS IMSSPOC
    "IMS  PLEX1"
    "CART  DISCART1"
    "DISPLAY ACT"
    RSP_RC1= CSLULGTS('DISCART1','ACT1.')
  End  

In this example using /DISPLAY ACT, the command response includes the FIDs, because the default is
to provide the FIDs.

In the example that follows using /DISPLAY STATUS, the CSLULOPT function is invoked before the
command is issued. The CSLULOPT function specifies that FIDs are not to be included in the command
response. In the command response, no FIDs are included.

OPT_RC = CSLULOPT('NOFID')
"CART  DISCART2"
"DISPLAY STATUS"
RSP_RC2= CSLULGTS('DISCART1','STAT1.')

262  IMS: System Programming APIs



Autonomic computing examples
These examples illustrate autonomic computing capabilities associated with the REXX SPOC API.
Autonomic indicates that the code is responsive and can take certain actions to correct what it
determines to be incorrect.

Autonomic example 1

In the following example, a transaction is queried. If the transaction is stopped, the REXX SPOC API
attempts to start it. The REXX SPOC API examines the information returned by CSLULGTS, looking
specifically for the line that refers to the transaction of interest.

/* autonomic computing example 1 */            
"CART  qrytran12"                              
"qry tran name(CDEBTRN3) show(status)"                   
results = cslulgts("resp.","qrytran12","3:15") 
                                               
Do idx = 1 to resp.0                           
  /* find which IMS and the status of tran */  
  parse var resp.idx . "TRAN(CDEBTRN3" . ,     
                        "MBR(" imsname ")" . , 
                       "LSTT(" status ")" .    
                                               
  /* if tran is stoppped, try to start it */   
  If pos('STOSCHD', status)  > 0 Then          
    Do                                         
      /* send command to IMS that needs to restart tran */ 
      "ROUTE"  imsname                         
      "UPD TRAN NAME(CDEBTRN3) START(SCHD)"    
    End                                        
End                                            

Autonomic example 2

In the following example, the QUERY command is used to determine the queue count (qcnt) of a
transaction. A qcnt with a value greater than 5 is considered a problem. The REXX SPOC API attempts to
resolve the problem by starting another region and changing the transaction to a different class.

/* autonomic computing example 2  */                          
"CART  qrytran13"                                             
"qry tran name(sks1) show(qcnt)"                              
results = cslulgts("resp.", "qrytran13", "3:15")              
Do idx = 1 to resp.0                                          
   parse var resp.idx . "TRAN(SKS1" . "Q(" count ")" .        
   If count ¬= ''  &,                                         
      count  > 5 Then                                         
    Do                                                        
       "CART  strtrgn05"                                      
       "START REGION IMSRG5"                                  
       start? = cslulgts("strt.", "strtrgn05", "10:00")       
       if imsrc = '00000000X' then
         Do                                                   
           "CART  updtran14"                                  
           "update tran name(SKS1) set(class(5))"             
         End                                                  
     End                                                      
End                                                           
"END"      

Chapter 10. REXX SPOC API and the CSL  263



264  IMS: System Programming APIs



Part 3. Asynchronous data propagation
You can propagate captured data asynchronously as an alternative to using the data capture exit routine.
You can use this option to capture database changes for selected segment types and environment
information in IMS data capture log records.

This alternative is available with the addition of a logging option on the EXIT= parameter of the DBDGEN
utility. You can use the logging option to capture database changes for selected segment types and
environmental information in IMS data capture log records. Captured information is compressed by using
z/OS compression services to minimize the space that is needed to store the captured data on the
IMS online data sets (OLDSs). After it is stored, the captured data is available for use; for example, to
propagate to a Db2 for z/OS environment.

The data capture log records use the X'99' log code and have the following data capture subcodes to
indicate the type of record that is being logged:

X'04'
Changed data

X'28'
End of job (EOJ)

X'30'
SETS call

X'34'
ROLS call

All data capture log records contain a common prefix, the Data Capture Log prefix, that contains the
subcode that defines the type of record being logged. End of job records and SETS and ROLS call records
consist entirely of this log record prefix and contain no additional information. Changed data log records,
however, contain information in addition to the prefix and can span multiple physical log records to
contain all of the captured data.

Related concepts
Data Capture exit routines (Database Administration)
Related reference
DBD statements (System Utilities)

© Copyright IBM Corp. 1974, 2022 265

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_datacapexit.htm#ims_datacapexit
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_dbdstmt.htm#ims_dbdstmt


266  IMS: System Programming APIs



Chapter 11. Changed data log record
To retrieve all the data logged for a particular call, you must examine the physical log records to
determine where the logical log record begins and ends. You can examine the changed data log record to
view the captured data captured for a DL/I call.

For each DL/I call, there is one logical log record that comprises all the data requested for that call.
However, because all the data might not fit in one log buffer, one logical log record can actually be
composed of several physical log records. To retrieve all the data logged for a particular call, you must
examine the physical log records to determine where the logical log record begins and ends.

The data captured for a DL/I call is stored as elements within the changed data log record. For each DL/I
call, there are multiple data elements recorded in the changed data log record. The details of the data
elements are described in the following topics.

Elements of captured data
Each data element contains a 4-byte header with metadata the describes the type and length of the data
that follows the header.

The captured data elements are logged in the DCAP_DATA field within the changed data log record. The
format of data elements is broken down into the header information and the actual logged data. See
“Format for data element header” on page 276 for the format of the log record header.

Each data element contains a 4-byte header. The header contains a 1-byte LOGID field describing
the type of data being logged in this element, a 1-byte LOG_FLAG and a 2-byte LOG_LL field. The
LOG_LL field contains the length of the data that follows the header. This length is used to locate the
header for the next element. The header is followed by the actual data defined in the LOGID field. The
data is compressed using the z/OS/ESA compression services, if such services are available. If so, the
COMPR_ALGORITHM field in LOG_DCAP_DATA indicates the algorithm used to compress the data.

If FLAG_1 of the changed data log record contains X'60' or X'E0' (FIRST_RECORD and FIRST_CALL flags
set), the next data element is LOG_INQY_DATA. This element is only present in the first physical record of
the logical log record.

The type of data element is identified in the LOGID field of the header and can be one of the following
values:

LOGID X'00'
There is a CAPD block for each EXIT= logging request.

LOGID X'04'
The DBD version for the data base, as specified on the VERSION= parameter of the DBD macro during
DBDGEN. A character string of up to 63 characters.

LOGID X'08'
The concatenated key for the segment in the CAPD. The format of the physical concatenated key is a
character string of up to 3,824 (255 x 15) characters.

LOGID X'0C'
The capture data segment data block (CAPD_DATA). This block is used for captured segment data,
which can be path data, segment data, or before-image data. There is a CAPD_DATA block for each
segment that was captured for the call. The blocks are logged in the following order: path data,
segment data, before-image data (replace), twin data (insert).

LOGID X'10'
The segment data for the path or segment data deleted, inserted, or replaced (for a replace, this data
would represent the after-image). The length of the segment data is a character string of up to 30,700
characters.

© Copyright IBM Corp. 1974, 2022 267



LOGID X'14'
The before-image of the segment data changed by the replace operation. Only the first changed
byte through the last changed byte is logged. The unchanged beginning and ending portions of the
segment are reconstructed from the after-image contained in segment data. The before-image data
is a halfword offset value (the offset of the changed data within the segment) followed by a character
string of up to 30,700 characters. Only the actual before-image is compressed. The halfword offset
value is not compressed. Within the changed data log record, there can be one before-image for every
changed segment.

If all the data elements do not fit in a single log record, the next log record (with the same
PST_NUMBER) contains the remaining data elements, starting where the previous record left off.
Before-image data, however, is unique in that the offset (2 bytes) of the data in the segment is logged
preceding the changed data. Therefore, the length of the data in DCAP_DATA (LOG_LL) is 2 bytes
greater than the actual length of the data logged. The offset field is not compressed.

Related reference
“CAPD_DATA format (LOGID=X'0C')” on page 281
The CAPD_DATA block contains fields that describe the name of the physical segment that is captured,
the type of data being captured, the length and offset of the segment's key, and other information that
pertains to the log record.
“CAPD block format (LOGID=X'00')” on page 278
The CAPD block contains fields that describe the name of the exit routine that is to be given control, the
name of the physical database, the segment code, and other information that relates to the log record.

Reducing the amount of captured data
If the internal area of the changed data log record is not large enough to hold all of the data, the
ERROR_LOG flag is set in the log record to indicate that the data is not complete. You can specify
CASCADE,KEY,NODATA,NOPATH in the EXIT= parameter in the DBDGEN if cascade is required.

The changed data log record can contain a large amount of data for cascade deletes, especially when path
data is requested. The data is staged in an internal area prior to logging. If this internal area is not large
enough to hold all of the data, the ERROR_LOG flag is set in the log record to indicate that the data is not
complete, although, the IMS data is committed and the call completes normally.

To avoid large amounts of data being written to the log and possible incomplete log records, specify
CASCADE,KEY,NODATA,NOPATH in the EXIT= parameter in the DBDGEN if cascade is required. This
specification results in just the concatenated key being written to the log during DLET operations, which
significantly reduces the amount of data that is captured during a cascade delete. For data propagation
to Db2 for z/OS where the primary key is derived from the concatenated key, the segment data is not
required for the delete in Db2 for z/OS.

Example of logged data elements
Changed data log records contain many data elements as a result of a call. This topic provides an example
where a third-level segment is replaced and path data is requested to be logged.

Changed data log records contain many data elements as a result of a call. Consider a situation where a
third-level segment is replaced and path data is requested to be logged (Root segment is A, second-level
segment is B, and the replaced segment is C). In this situation, the data elements are logged in the
following order:

1. CAPD
2. DBD Version ID
3. Physical concatenated key
4. CAPD_DATA block for A
5. Segment data for A
6. CAPD_DATA block for B

268  IMS: System Programming APIs



7. Segment data for B
8. CAPD_DATA block for C
9. Segment data for C

10. CAPD_DATA block for C (before data)
11. Before-image data for C

If path data had not been requested, the CAPD_DATA blocks and segment data elements for A and B
would not be logged.

Chapter 11. Changed data log record  269



270  IMS: System Programming APIs



Chapter 12. End of Job (EOJ) call log record
The EOJ call log record (X'28' subcode) is written when a batch DL/I program that has written changed
data log records terminates normally. The record is written to indicate that the updates have been
committed, because a commit record is not written to the log when a batch job terminates.
Related reference
“End of Job call log record format” on page 282
The end of job call log record contains various fields that describe the length of the record, the recovery
token, and the CPU store clock time stamp.

© Copyright IBM Corp. 1974, 2022 271



272  IMS: System Programming APIs



Chapter 13. SETS and ROLS call log records
The SETS (X'30' subcode) and the ROLS (X'34' subcode) call log records are written whenever an
application that might cause data to be captured issues a SETS or ROLS call using a token.

The log records are written to indicate that any changed data log records written after the SETS call for
the token used in the ROLS call will have been aborted (backed out). The records are written even if exits
are defined without a logging request.

Related reference
“SETS and ROLS call log record format” on page 282
The SETS and ROLS call log record contains various fields that describe the length of the record, the
recovery token, and the CPU store clock time stamp.

© Copyright IBM Corp. 1974, 2022 273



274  IMS: System Programming APIs



Chapter 14. Format of the data capture log records
The topics in this section describe the format of the data capture log records.

Data capture log record prefix
The data capture log record prefix contains fields that describe the length, data capture subcode, recovery
token, and CPU store clock time stamp of the log record.

The following table lists the prefix for data capture log records.

Table 69. Prefix for data capture log records

Field name Data type Field description

LL H The length of the log record, including an 8-byte log sequence number
added by IMS to the end of the record

ZZ H Always zero

LOGCODE XL1 X'99' log record code

SUBCODE XL1 Data capture subcode

PST_NUMBER H PST number

RECOVTKN XL16 The recovery token for the unit-of-recovery, which is used to associate the
commit log records or the abort log records for this unit-of-recovery

STORE_CLOCK XL8 The CPU store clock time stamp of the time the call completed and the log
record was written

Changed data log record format
The changed data log record contains fields that describe the first and last log records written for the call,
the user ID for the call, the data element that is being logged, and other information regarding the log
record.

The following table lists the record formats for changed data log records.

Table 70. Format for changed data log records

Field name
Data
type Field description

FLAG_1 XL1 Flag 1: Bit definitions follow:

LAST_RECORD X'80' The last log record written for this call. If this bit is not on, the
remaining data for this DL/I call is in the log records that follow.

FIRST_RECORD X'40' The first log record written for this call. If this bit is not on, the data
logged at LOG_DATA_OFFSET is the data that would not fit in the
preceding record.

FIRST_CALL X'20' The first log record written for this unit-of-recovery, so
LOG_INQY_DATA is present in this log record. (FIRST_RECORD is on.)

X'10' Reserved for future use.

X'08' Reserved for future use.

© Copyright IBM Corp. 1974, 2022 275



Table 70. Format for changed data log records (continued)

Field name
Data
type Field description

ERROR_LOG X'04' This log record is not complete because there was an error during the
processing of the log records for this call. Data for the call might not
have been logged.

DBLEWORD_SEQNUM X'02' The log sequence number is a doubleword.

STCK_AT_END X'01' Store clock at end of the log record.

FLAG_2 XL1 Flag 2: Bit definitions follow:

V11_9904_FORMAT X'80' The CAPD_DATA blocks in this log record contain SEGMENT_RBA_64
and SEGMENT_RBA_64H.

V11_9904_PARTNM X'40' Partition name in the X'9904' log record.

V13_9904_DBVER X'20' The database version number is logged in this X'9904' log record.

V13_9904_POSDATA X'10' Positioning data is captured in this X'9904' log record.

LOG_DATA_OFFSET H The offset in the log record where the DCAP_DATA elements start.
When FIRST_RECORD is not on (indicating a split log record), this field
is the offset to the continuation of the data from the previous log
record.

COMPR_ALGORITHM XL1 The z/OS compression algorithm used to compress DCAP_DATA.

XL1 Reserved for future use.

LOCK_SEQ_NUM CL6 The IRLM lock sequence number used when IRLM SCOPE=GLOBAL
used for block-level data sharing.

LOG_INQY_DATA The following LOG_INQY_DATA fields are logged when FIRST_CALL is
on.

PSBNAME CL8 The application PSB name.

TRANNAME CL8 The application transaction name.

USERID CL8 The user ID for the call. For a batch job, if the JOB statement has the
USER= keyword, the USERID is the RACF ID. For an online application,
the USERID is either PSBNAME or RACFID.

RACF ID CL8 The value from the USER= keyword from the JOB statement.

RACFID or PSB name CL8 The value for online applications.

DCAP_DATA CL0 The data element being logged.

Related concepts
z/OS: Data compression and expansion services

Format for data element header
The data element header contains fields that describe the type and length of data being logged as well as
options for z/OS compression services.

The following table lists the format for data element headers.

276  IMS: System Programming APIs

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaa600/using.htm


Table 71. Format for log record header

Field name Data type Field description

LOGID XL1 The type of data being logged.

X'00'- CAPD block
X'04'- DBD Version ID
X'08'- Physical concatenated key
X'0C'- CAPD_DATA
X'10'- Segment data
X'14'- Before-image data

LOG_FLAGS XL1 Flags. Bit definitions follow:

COMPR_DATA X'20' The data is compressed using z/OS compression services.

X'10' Reserved for future use.

X'08' Reserved for future use.

X'04' Reserved for future use.

X'02' Reserved for future use.

X'01' Reserved for future use.

LOG_LL H Length of LOG_DATA.

LOG_DATA CL0 Log data that is compressed if the z/OS services are available. The 4-byte
data element header is followed by the type of data that is being logged:
X'00'

CAPD block
X'04'

The log data is the DBD Version ID.
X'08'

The log data is the physical concatenated key.
X'0C'

CAPD_DATA
X'10'

The log data is the Segment data.
X'14'

The log data is the Before-image data.

Before-image data is preceded by a halfword offset of the changed data
within the segment. The halfword offset is not compressed.

Related reference
“CAPD block format (LOGID=X'00')” on page 278
The CAPD block contains fields that describe the name of the exit routine that is to be given control, the
name of the physical database, the segment code, and other information that relates to the log record.
“CAPD_DATA format (LOGID=X'0C')” on page 281

Chapter 14. Format of the data capture log records  277



The CAPD_DATA block contains fields that describe the name of the physical segment that is captured,
the type of data being captured, the length and offset of the segment's key, and other information that
pertains to the log record.

CAPD block format (LOGID=X'00')
The CAPD block contains fields that describe the name of the exit routine that is to be given control, the
name of the physical database, the segment code, and other information that relates to the log record.

The following table lists the CAPD block format.

Table 72. Format for CAPD block (LOGID = X'00')

Field name Data type Field description

NEXT_PTR AL4 Internal use only. Not valid.

PREVIOUS_PTR AL4 Internal use only. Not valid.

USER_EXIT_NAME CL8 The name of the exit routine that is to be given control
when an exit routine is requested in addition to logging.
Blanks if the exit routine is not defined or is logged by
DBCTL.

DATABASE_NAME CL8 The name of the physical database.

DBD_VERSION_PTR AL4 Internal use only. Not valid.

SEGMENT_NAME CL8 The name of the physical segment that was updated and
for which the log data was requested.

SEGMENT_CODE XL1 Segment code for compare.

FLAGS XL1 Flag: Bit definition follows:

DEDB_DB X'80' DEDB database.

KEY_NEEDED X'40' Concatenated key needed.

DATA_NEEDED X'20' Segment data needed.

PATH_NEEDED X'10' Path data needed.

X'08' Reserved for IMS.

X'04' Reserved for IMS.

X'02' Reserved for future use.

X'01' Reserved for future use.

XL1 Reserved for IMS.

CALL_SEGMENT_LEVEL XL1 Reserved for future use.

278  IMS: System Programming APIs



Table 72. Format for CAPD block (LOGID = X'00') (continued)

Field name Data type Field description

CALL_FUNCTION CL4 Call function of request:
REPL

Replace call.
ISRT

Insert call.
DLET

Delete call.
FLD

Field call resulted in this update. Physical function will
be "REPL".

CASC
Cascade delete as result of application delete call.

DLLP
Delete of a logical parent segment through its logical
path because:

• It was marked as previously deleted from its
physical path.

• It is vulnerable to delete from both the physical and
logical paths.

• The last logical child segment is being deleted.

Gxxx
When subset pointer updates are being captured, this
is the get call (for example, GHU, GHNP) that was
done.

PHYS_FUNCTION CL4 Physical function performed by DL/I:
REPL

Segment physically replaced.
ISRT

Segment physically inserted.
DLET

Segment physically deleted.
DLPP

Delete this segment on its physical path, but do
not physically remove because logical paths to the
segment from a logical child still exist.

SSPU
SSP is updated when segment is physically retrieved
or segment is not updated in path ISRT or REPL.

CALL_TIMESTAMP XL8 STCK time stamp of call completion.

AREA_NAME CL8 The AREA name for a DEDB database.

LOWEST_LVL_KEY_OR_DATA XL1 The lowest level number for which path data or a part of
the concatenated key is added.

XL39 Reserved for future use.

COMMAND_CODES 0XL12 Command codes.

Chapter 14. Format of the data capture log records  279



Table 72. Format for CAPD block (LOGID = X'00') (continued)

Field name Data type Field description

CMD_CODE_SNGL XL1 Single-character command codes.

CMD_CODE_F X'80' Command code F.

CMD_CODE_L X'40' Command code L.

XL1 Reserved for future use.

CMD_CODE_DBL 0XL10 Double-character command codes.

CMD_CODE_M XL1 Subset pointer command codes M1 through M8. (*)

CMD_CODE_R XL1 Subset pointer command codes R1 through R8. (*)

CMD_CODE_S XL1 Subset pointer command codes S1 through S8. (*)

CMD_CODE_W XL1 Subset pointer command codes W1 through W8. (*)

CMD_CODE_Z XL1 Subset pointer command codes Z1 through Z8. (*)

XL5 Reserved for future use

DB_VERSION AL4 Database version number.

PART_NAME CL8 HALDB partition name.

SAVED_DLTWA AL4 Saved DLTWA for compare.

PHYSICAL_ROOT_RBA AL4 RBA of root segment.

STORAGE_SIZE F Internal use only. Not valid.

CONC_KEY_PTR AL4 Internal use only. Not valid.

CONC_KEY_LENGTH H Length of physical concatenated key.

ROOT_KEY_LENGTH XL1 Length of root key.

CAPD_DATA_DIMENSION XL1 Dimension of data array. This value reflects the number
of CAPD_DATA Block elements that will be logged for
this call. If path data is requested, the first CAPD_DATA
block element will be for the root segment, followed by
CAPD_DATA block elements for each segment in the path.
The next CAPD_DATA block element (first if no path data)
is for the segment associated with this request, followed
by the CAPD_DATA block element (if any) associated with
the before-image data (physical replace operations).

CAPD_DATA_PTR(16) 16AL4 Internal use only. Not valid.

(*): Each bit represents whether the corresponding command code number was specified. For example, if
CMD_CODE_S is X'A0', it means that S1S3 was specified on the SSA.

Related concepts
“Elements of captured data” on page 267

280  IMS: System Programming APIs



Each data element contains a 4-byte header with metadata the describes the type and length of the data
that follows the header.

CAPD_DATA format (LOGID=X'0C')
The CAPD_DATA block contains fields that describe the name of the physical segment that is captured,
the type of data being captured, the length and offset of the segment's key, and other information that
pertains to the log record.

The following table lists the format for CAPD_DATA.

Table 73. Format for CAPD_DATA (LOGID = X'0C')

Field name Data type Field description

NEXT_PTR AL4 Internal use only. Not valid.

CL4 Reserved for future use.

AL8 Reserved for IMS.

SEGMENT_NAME CL8 Physical segment name.

SEGMENT_LEVEL XL1 Level of physical segment.

CMD_CODE_R XL1 Subset pointer command codes R1 through R8. (*)

DATA_TYPE XL1 The type of data being captured:
X'00'

Segment
X'01'

Before data
X'02'

Cascade data
X'03'

Segment path data
X'04'

Segment data of the twin that follows the segment being inserted.

DATA_FLAGS XL1 Flag byte: Bit definitions follow:

DATA_USER_IO X'80' Data in user I/O area.

DELETED_ON_PHYS_PATH X'40' Segment is deleted on physical path.

X'20' Reserved for future use.

X'10' Reserved for future use.

X'08' Reserved for future use.

X'04' Reserved for future use.

X'02' Reserved for future use.

X'01' Reserved for future use.

LP_KEY_LENGTH H The length of the segment's logical parent key concatenated in front
of the segment data. Zero if segment is not a logical child.

KEY_LENGTH H The length of the segment's key. Zero if the segment does not have a
key.

Chapter 14. Format of the data capture log records  281



Table 73. Format for CAPD_DATA (LOGID = X'0C') (continued)

Field name Data type Field description

KEY_OFFSET H The offset of the segment's key. Zero if the segment does not have a
key.

SEGMENT_LENGTH H The length of the segment data.

SEGMENT_PTR AL4 Internal use only. Not valid.

(*): Each bit represents whether the corresponding command code number was specified. For example, if
CMD_CODE_R is X'20', it means that R3 was specified on the SSA.

Related concepts
“Elements of captured data” on page 267
Each data element contains a 4-byte header with metadata the describes the type and length of the data
that follows the header.

End of Job call log record format
The end of job call log record contains various fields that describe the length of the record, the recovery
token, and the CPU store clock time stamp.

The following table lists the end of job call log record formats.

Table 74. Format for EOJ call

Field name Data type Field description

LL H The length of the log record, including a 4-byte log sequence number
added by IMS to the end of the record.

ZZ XL2 Always zero.

LOGCODE XL1 X'99' log record code.

SUBCODE XL1 X'28' log subcode.

PST_NUMBER H PST number.

RECOVTKN XL16 The recovery token for the unit-of-recovery, which is used to associate the
commit log records or the abort log records for this unit-of-recovery.

STORE_CLOCK XL8 The CPU store clock time stamp of the time that the program terminated
and wrote the log record.

Related concepts
“End of Job (EOJ) call log record” on page 271
The EOJ call log record (X'28' subcode) is written when a batch DL/I program that has written changed
data log records terminates normally. The record is written to indicate that the updates have been
committed, because a commit record is not written to the log when a batch job terminates.

SETS and ROLS call log record format
The SETS and ROLS call log record contains various fields that describe the length of the record, the
recovery token, and the CPU store clock time stamp.

The following table lists the format for the SETS and ROLS call log records.

282  IMS: System Programming APIs



Table 75. Format for SETS and ROLS call

Field name Data type Field description

LL H The length of the log record, including a 4-byte log sequence number
added by IMS to the end of the record.

ZZ XL2 Always zero.

LOGCODE XL1 X'99' log record code.

SUBCODE XL1 X'30' log subcode for SETS call; X'34' log subcode for ROLS call.

PST_NUMBER H PST number.

RECOVTKN XL16 The recovery token for the unit-of-recovery, which is used to associate the
commit log records or the abort log records for this unit-of-recovery.

STORE_CLOCK XL8 The CPU store clock time stamp of the time the call completed and the log
record written.

TOKEN CL4 The SETS/ROLS token used by the call.

Related concepts
“SETS and ROLS call log records” on page 273
The SETS (X'30' subcode) and the ROLS (X'34' subcode) call log records are written whenever an
application that might cause data to be captured issues a SETS or ROLS call using a token.

Chapter 14. Format of the data capture log records  283



284  IMS: System Programming APIs



Chapter 15. Managing logging for multiple Data
Capture exit routines for a single EXIT= parameter

If a single EXIT= parameter contains multiple Data Capture exit routines, and more than one of them has
the LOG attribute specified, IMS writes the data to separate change capture log records in the IMS system
log in the order that each exit routine that includes the LOG attribute is specified in the EXIT= parameter.

For example, if an EXIT= parameter is coded as follows:

EXIT=((PRODUCTA, KEY, DATA, CASCADE, LOG), (PRODUCTB, KEY, DATA, NONCASCADE, LOG))

when segments are inserted, updated, or deleted, IMS first records the change data per the exit routine
specifications for PRODUCTA in one log record and then the change data for PRODUCTB’s specifications in
another.

Separate change capture log records are required, because the products that might consume the change
capture log records may not be able to tolerate some of the data logged for the exit options of another
product. Use of multiple records with different exit names, as specified in the EXIT= parameter, allows
products to only process log records written for their product.

But excessive logging can impact the performance of certain IMS processes. Depending on the products
that consume the change capture log records, however, you may be able to take steps to reduce the total
amount of log data being written by IMS. If your products can tolerate extra information in the log data,
you can try one of the following options.

Option 1
If the products can tolerate logged data they do not need, and one product requests all the
information the other requires, then the LOG attribute only needs to be included for the product
that requests the superset of data needed. For example:

EXIT=((PRODUCTA,KEY, DATA, CASCADE, LOG), (PRODUCTB, KEY, DATA, NONCASCADE, NOLOG))

In the preceding example, both the PRODUCTA and PRODUCTB exit routines will be called with
the information they request, but only one change capture log record will be written for an update.
Note that if PRODUCTB reads that record, it will need to consume it, even though the exit name is
PRODUCTA, and tolerate the log data for the CASCADE information.

Option 2
If the products can tolerate logged data they do not need, but neither requests a superset of
information, consider specifying NOLOG on all the named exit routines and adding one with all
required options and LOG but no exit name, as in this example:

EXIT=((PRODUCTA, CASCADE, NOLOG), (PRODUCTB, KEY, DATA, NONCASCADE, NOLOG),
(*,KEY,DATA,CASCADE,LOG))

Here, the PRODUCTA and PRODUCTB exit routines will be called with the information they request,
but there will be no change capture log records written using their exit names. Instead, there will
be an unnamed record written that includes the superset of all data needed by both products. Note
that in this example, if PRODUCTA reads that log record, it will need to ignore the KEY data, whereas
PRODUCTB will need to ignore the CASCADE data.

© Copyright IBM Corp. 1974, 2022 285



286  IMS: System Programming APIs



Part 4. Database resource adapter (DRA)
The DRA is an interface to IMS DB full-function databases and data entry databases (DEDBs). Your
application designer can create a program so that the DRA can be used by a coordinator controller (CCTL)
or a z/OS application program that uses the Open Database Access (ODBA) interface.

These topics are intended for the designer of a CCTL or an z/OS application program. If you want more
information about a specific CCTL's interaction with IMS DB or DB/DC, see the documentation for that
CCTL.

Related concepts
Writing ODBA application programs (Application Programming)
Related tasks
Accessing IMS databases through the ODBA interface (Communications and Connections)

© Copyright IBM Corp. 1974, 2022 287

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_writingodbaapps.htm#ims_writingodbaapps
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.ccg/ims_odba_config_01.htm#ims_odba_config_01


288  IMS: System Programming APIs



Chapter 16. Thread concepts
A DRA thread is a DRA structure that connects a CCTL task or a z/OS application program task with an IMS
DB task that can process those calls. A single DRA thread is associated with every CCTL or ODBA thread.
CCTL threads cannot establish a connection with more than one DRA thread at a time.

A DRA thread is a DRA structure that connects:

• A CCTL task (which makes database calls to IMS DB) with an IMS DB task that can process those calls. A
CCTL thread is a CCTL task that issues IMS DB requests using the DRA.

• A z/OS application program task (which makes database calls to IMS DB) with an IMS DB task that can
process those calls. An ODBA thread is a z/OS task that issues IMS DB calls using the DRA.

A single DRA thread is associated with every CCTL or ODBA thread. CCTL threads cannot establish a
connection with more than one DRA thread at a time.

When the DRA Open Thread option is used, threads sign on to IMS when they are scheduled for a request.
This behavior causes the IMS commands /DISPLAY CCTL, /DISPLAY ACTIVE REGION and /DISPLAY
ACTIVE THREAD to show different values for the MINTHRD output field compared to a non-Open Thread
system configuration. Because thread TCBs are not attached, MINTHRD does not apply to the number
of threads attached at DRA initialization. However, it does indicate how many thread structures IMS
allocates during initialization. After IMS begins scheduling PSBs, those threads appear in the command
output as normal.

Processing threads
The way that the DRA processes a CCTL thread is different from how it processes an ODBA thread. In each
case, the CCTL or z/OS application program issues a request through the creation of a DRA thread or the
allocation of a DRA thread block, respectively.

Processing a CCTL thread
When a CCTL application program needs data from an IMS DB database, a CCTL task must issue a SCHED
request for a PSB. To process the SCHED request, the DRA must create a DRA thread. To do this, the DRA
chooses an available DRA thread TCB and assigns to it the CCTL thread token (a unique token that CCTL
puts in the SCHED PAPL PAPLTTOK) and its own IMS DB task, which schedules the PSB. If the scheduling
is successful, the DRA thread connection is considered complete because it now connects a CCTL thread
to an IMS DB task using a specific DRA thread TCB.

Subsequent DRA requests from this CCTL thread must use the same CCTL thread token in order to ensure
that the request goes to the correct DRA thread. When the application program finishes and the CCTL
thread no longer needs the services of the DRA thread, the CCTL issues a TERMTHRD (Terminate Thread)
request to remove the CCTL thread token from the DRA thread TCB and terminates the DRA thread. The
thread TCB can then become part of a new DRA thread.

Processing an ODBA thread
When a z/OS application program needs data from an IMS database, an ODBA task must issue an APSB
call to initialize the ODBA environment. To process the APSB call, the DRA allocates a DRA thread block
and assigns to it the ODBA thread and its own IMS DB task, which schedules the PSB. If the scheduling is
successful, the DRA thread connection is considered complete because it now connects an ODBA thread
to an IMS DB task using a specific DRA thread block.

When the application program finishes and the ODBA thread no longer needs the services of the DRA
thread, the ODBA application issues a DPSB call to terminate the DRA thread. The thread block can then
become part of a new DRA thread.

© Copyright IBM Corp. 1974, 2022 289



Processing multiple threads
The ability of the DRA to process more than one thread at the same time is known as multithreading.
Multithreading means that multiple CCTL or ODBA threads can be using the DRA at the same time.
Multithreading applies to all DRA requests and ODBA calls.

Processing multiple CCTL threads
Multiple CCTL TCBs in a single address space can be used to process multiple CCTL threads. CCTL can
dispatch each CCTL thread for a different CCTL TCB, and each CCTL TCB can call the DRA Startup/Router
routine (DFSPRRC0) to process DRA requests.

To use the multithreading capability:

• The DRA must be initialized with more than one thread TCB. To initialize the DRA with more that one
thread TCB, specify the MAXTHRD parameters (in the DRA Startup Table) as greater than one.

• The CCTL must be capable of processing its CCTL threads concurrently.
• The CCTL must have Suspend and Resume exit routines. The DRA uses these routines to notify the CCTL

of the status of thread processing.

Important: : The Suspend exit routine can start executing before or after the Resume exit routine to
starts executing, but the Suspend exit routine cannot finish executing before the Resume exit routine
starts executing. When you design the Suspend and Resume exit routines, ensure that the Suspend exit
routine can determine whether the Resume exit has started or completed execution. If the Suspend exit
routine determines that the Resume exit routine has not started executing, the Suspend exit routine
must not return to the caller. If the Suspend exit routine determines that the Resume exit routine has
started or completed execution, the Suspend exit routine should return to the Suspend exit caller and
consider the suspend request complete.

Processing multiple ODBA threads
To use the multithreading capability, the DRA must be initialized with more than one DRA thread. To do
this, specify the MAXTHRD parameters (in the DRA Startup Table) as greater than one.

CCTL multithread example
This example illustrates the concept of concurrent processing in a multithreading system.

Events in a multithreading system are shown in chronological order from top to bottom in the following
example. To illustrate the concept of concurrent processing, the figure is split into two columns.

There are two CCTL threads and two DRA threads in the example. CCTLRTNA is the module name (for this
example) of the CCTL routine that builds PAPLs and calls DFSPRRC0 to process DRA requests.

Important: In the following example, only one CCTL TCB is used. However, multiple CCTL TCBs in a single
address space can be used to process multiple CCTL threads. CCTL can dispatch each CCTL thread for a
different CCTL TCB, and each CCTL TCB can call the DRA Startup/Router routine (DFSPRRC0) to process
DRA requests.

Table 76. Example of events in a multithreading system

CCTL TCB events DRA TCB events

Application program1 needs a PSB, so CCTL
thread1 is created.

CCTL thread1 events:

• CCTLRTNA builds the SCHED PAPL and calls
DFSPRRC0.

290  IMS: System Programming APIs



Table 76. Example of events in a multithreading system (continued)

CCTL TCB events DRA TCB events

• DFSPRRC0 creates a DRA thread, and the thread
token (PAPLTTOK) is assigned to DRA thread
TCB1.

• DFSPRRC0 activates thread TCB1.

• DFSPRRC0 calls the Suspend exit routine.

• The Suspend exit routine suspends CCTL
thread1.

DRA thread TCB1 events:

• The DRA processes the SCHED request and asks
IMS DB to perform a schedule process.

• Scheduling is in progress.

CCTL can now dispatch other CCTL threads for the
CCTL TCB.

Application program2 needs a PSB, so CCTL
thread2 is created.

CCTL thread2 events:

• CCTLRTNA builds the SCHED PAPL and calls
DFSPRRC0.

• DFSPRRC0 creates a DRA thread, and a new
thread token (PAPLTTOK) is assigned to DRA
thread TCB2.

• DFSPRRC0 activates thread TCB2.

• DFSPRRC0 calls the Suspend exit routine. The
Suspend exit routine suspends CCTL thread2.

DRA thread TCB2 events:

• The DRA processes the SCHED request and asks
IMS DB to perform a schedule process.

• Scheduling is in progress.

Both threads are now suspended. The CCTL TCB
is inactive until one of the threads resumes
execution.

TCB2 scheduling finishes first.

DRA thread TCB2 events:

• Scheduling completes in IMS DB, and the PAPL is
filled in with the results.

Chapter 16. Thread concepts  291



Table 76. Example of events in a multithreading system (continued)

CCTL TCB events DRA TCB events

• The DRA calls the Resume exit routine and
passes the PAPL back to the CCTL.

Thread2 can resume immediately because the
CCTL TCB is idle. Execution resumes directly after
the point at which the thread was suspended by
the Suspend exit routine.

• The Resume exit routine sees the thread token
(PAPLTTOK) and flags CCTL thread2 as 'ready to
resume'.

• The Resume exit routine returns to the DRA, and
TCB2 becomes inactive.

TCB1 scheduling completes.

DRA thread TCB1 events:

• Scheduling completes in IMS DB and the PAPL is
filled in with the results.

• The DRA calls the Resume exit routine and
passes the PAPL back to the CCTL.

Thread1 must wait until the Resume exit routine is
available because thread2 has just resumed.

• The Resume exit routine sees the thread token
(PAPLTTOK) and flags CCTL thread1 as 'ready to
resume'.

• The Resume exit routine returns control to the
DRA and TCB1 becomes inactive.

CCTL thread2 events:

• The Suspend exit routine returns to its caller,
DFSPRRC0.

• DFSPRRC0 returns to CCTLRTNA.

• CCTLRTNA gets the results from the SCHED PAPL
and gives them to the application program2.

• CCTLRTNA finishes the thread2 SCHED request.

After thread2 completes in CCTL TCB, the CCTL can
dispatch thread1, which is currently waiting.

CCTL thread1 events:

• The Suspend exit routine returns to its caller,
DFSPRRC0.

• DFSPRRC0 returns to CCTLRTNA.

• CCTLRTNA gets the results from the SCHED PAPL
and gives them to the application program1.

• CCTLRTNA finishes the thread1 SCHED request.

CCTL thread2 events:

292  IMS: System Programming APIs



Table 76. Example of events in a multithreading system (continued)

CCTL TCB events DRA TCB events

• CCTLRTNA builds the DL/I PAPL and calls
DFSPRRC0.

• DFSPRRC0 finds the correct DRA thread.

• DFSPRRC0 activates thread TCB2.

• DFSPRRC0 calls the Suspend exit routine.

• The Suspend exit routine suspends CCTL
thread2.

CCTL thread1 events:

• CCTLRTNA builds the DL/I PAPL and calls
DFSPRRC0.

• DFSPRRC0 finds the correct DRA thread.

• DFSPRRC0 activates thread TCB1.

• DFSPRRC0 calls the Suspend exit routine.

• The Suspend exit routine suspends CCTL
thread1.

Application program2 completes. The CCTL makes
sync-point requests to IMS DB to commit the
processing of this UOR. The CCTL flags the UOR for
application program2 as in-doubt prior to issuing a
phase 1 request. The CCTL keeps a record of this
in-doubt UOR until the CCTL can make a successful
phase 2 call to IMS DB.

DRA thread TCB1 events:

• The DL/I call is in progress.

• The DRA processes the DL/I PAPL and asks IMS
DB to perform a DL/I process.

CCTL thread2 events:

• CCTLRTNA issues a PREP request and calls
DFSPRRC0.

• DFSPRRC0 activates thread TCB2.

• DFSPRRC0 calls the Suspend exit routine.

• The Suspend exit routine suspends CCTL
thread2.

DRA thread TCB2 events:

Chapter 16. Thread concepts  293



Table 76. Example of events in a multithreading system (continued)

CCTL TCB events DRA TCB events

• The DRA sends the PREP request to IMS DB.

• IMS DB logs Phase 1 complete. This IMS DB UOR
is now in-doubt.

• The PREP request completes successfully and
calls the Resume exit routine.

The PREP request results are returned to
CCTLRTNA (by the PREP PAPL), and thread2
becomes inactive.

DRA thread TCB1 events:

• IMS DB detects a DL/I failure. This failure
results in termination of this DRA thread and a
termination of this thread TCB.

• Since this thread was in a schedule state, the
DRA calls the Status exit routine and passes the
DL/I PAPL back to the CCTL after putting UPSTOR
information in it.

• The Status exit routine associates UPSTOR with a
CCTL thread, and the routine passes the PAPL to
the DRA.

• The DRA calls the Resume exit routine.

• The DRA takes an SDUMP and terminates thread
TCB1.

CCTL thread1 events:

• After thread1 has been resumed, control is
passed back to CCTLRTNA.

• The CCTL notices that the DL/I request failed
(returning PAPLRETC=4) and takes a diagnostic
dump that includes UPSTOR.

• The CCTL terminates this CCTL thread and frees
UPSTOR because thread1 failed.

Before CCTL sends a commit request for thread2,
IMS DB fails.

DRA TCB events:

• The DRA calls the Control exit routine to notify
the CCTL that IMS DB failed.

• The Control exit routine returns a code
(PAPLRETC=8) that tells the DRA to reconnect to
IMS DB.

294  IMS: System Programming APIs



Table 76. Example of events in a multithreading system (continued)

CCTL TCB events DRA TCB events

• The DRA terminates any existing thread TCBs.
If the CCTL makes any subsequent requests
to these terminated DRA threads, the DRA will
respond with a return code indicating that the
request cannot be processed.

• After IMS DB has been restarted, the DRA
successfully connects to IMS DB.

• The DRA calls the Control exit routine to notify
the CCTL that it successfully connected to IMS
DB.

The CCTL creates a new task to resolve this in-
doubt status because there is an entry in the
resynchronization list for the IMS DB in-doubt UOR.

• The DRA passes the address of the
resynchronization list (PAPLRST) to the CCTL. The
list contains one entry for the IMS DB indoubt
UOR for CCTL thread2.

• The Control exit routine returns a code
(PAPLRETC=0) that tells the DRA to continue
running.

• The DRA completes the setup process by
creating new DRA thread TCBs

CCTL thread3 events:

• The CCTL matches the in-doubt UOR in the re
synchronization list with an in-doubt UOR in its
own list. The CCTL in-doubt UOR is flagged for
commit processing as its Phase 2 action.

• CCTLRTNA issues a RESYNC request to
DFSPRRC0 asking for commit processing.
RESYNC is a DRA request, not a thread request.

• DFSPRRC0 activates the DRA TCB to process the
request and calls the Suspend exit routine.

• DRA calls IMS DB to commit its UOR.

• After successful processing, DRA calls the
Resume exit routine.

• After thread3 has been resumed, CCTLRTNA
receives a return code of PAPLRETC=0.

• The CCTL discards its indoubt UOR because the
RESYNC request was successful.

Chapter 16. Thread concepts  295



296  IMS: System Programming APIs



Chapter 17. Sync points
Sync point processing finalizes changes to resources. Sync point requests specify actions to take place for
the resource changed (for example, commit or abort). A sync point is when IMS DB actually processes the
request.

Each sync point is based on a unit of recovery (UOR). A UOR covers the time during which database
resources are allocated and can be updated until a request is received to commit or abort any changes.
Normally, the UOR starts with a CCTL SCHED (schedule a PSB) request or an ODBA APSB call and ends
with a sync point request. Other DRA thread requests can also define the start and end of a UOR.

A CCTL UOR is identified by a recovery token (PAPLRTOK) that is received as part of a thread request
that creates a new UOR. It is 16 bytes in length. The first 8 bytes contain the CCTL identification. This
identification is the same as the CCTL ID that was a final DRA startup parameter determined from USERID
or PAPLUSID in INIT request. The second 8 bytes must be a unique identifier specified by the CCTL for
each UOR.

Related Reading: See the request descriptions under Chapter 24, “CCTL-initiated DRA function
requests,” on page 315 for more information on the DRA thread requests.

IMS DB expects the CCTL or the ODBA application to make the sync point decision and the resulting
request. In the case of a CCTL, the CCTL is the sync point manager and coordinates the sync point process
with all of the database resource managers (including those other than IMS DB) that are associated with a
UOR. In the case of an ODBA application, z/OS Resource Recovery Services is the sync point manager and
coordinates all the resource managers (including those other than IMS) that are associated with the UOR.

A CCTL working with a single resource manager may request a sync point in a single request or can use
the two-phase sync point protocol which is required for a CCTL working with multiple resource managers.
The single-phase sync point request can be issued when the CCTL has decided to commit the UOR, and
when IMS DB owns all of the resources modified by the UOR.

An ODBA application must use the two-phase sync point protocol for committing changes to the IMS
database.

Related reference
“SCHED request” on page 319
You can use the SCHED request to schedule a PSB in IMS DB. The first SCHED request made by a CCTL
thread requires a new DRA thread. Existing DRA thread TCBs are used if they are not currently processing
a DRA thread.
“SYNTERM request” on page 323
You can use the SYNTERM request to make a single-phase sync point request to commit the UOR or to
release the PSB.
“PREP request” on page 324
You can use the PREP request to make a phase 1 sync-point request to ask IMS DB if it is ready to commit
this UOR.
“COMTERM request” on page 325
You can use the COMTERM request to make a phase 2 sync-point request to commit the UOR or to release
the PSB. You must issue a PREP request prior to issuing a COMTERM request.
“ABTTERM request” on page 326

© Copyright IBM Corp. 1974, 2022 297



You can use the ABTTERM request to make a phase 2 sync-point request to abort processing and release
the PSB. The ABTTERM request does not require a preceding PREP request.

The two-phase commit protocol
The two-phase sync point protocol consists of two requests issued by the sync point manager to each of
the resource managers involved in the UOR. Each of the UOR states, in-flight and in-doubt, define what
happens to the UOR in the event of a thread failure.
Phase 1

The sync point manager asks all participants if they are ready to commit a UOR.
Phase 2

The sync point manager tells each participant to commit or abort based on the response to the
request issued in phase 1.

A UOR has two states: in-flight and in-doubt. The UOR is in an in-flight state from its creation time until
the time IMS DB logs the phase 1 end (point C in the following two tables). The UOR is in an in-doubt state
from (point C) until IMS DB logs phase 2 (point D in the following two tables).

The in-doubt state for a single-phase sync point request is a momentary state between points C and D in
Table 1.

The in-flight and in-doubt states are important because they define what happens to the UOR in the event
of a thread failure. If a thread fails while its IMS DB UOR is in-flight the UOR database changes are backed
out. If a thread fails when its IMS DB UOR is in-doubt, during single-phase commit, the UOR database
changes are kept for an individual thread abend, but are not kept for a system abend. If a thread fails
when its IMS DB UOR is in-doubt during two-phase commit, the database changes are kept.

Thread failure refers to either of these cases:

• Individual thread abends.
• System abends: IMS DB failure, CCTL failure, ODBA application failure, or z/OS failure (which abends all

threads).

The following code shows the system events that occur when CCTL is used for single-phase sync point
processing.

Time →
–––A–––B––––––C–––D–––E––––

Table 77. CCTL single-phase sync point processing

Points In Time System Events

A CCTL phase 1 send

B IMS DB phase 1 receive

C IMS DB log phase 1 end

D IMS DB log phase 2

E CCTL phase 2 receive

The following table shows the system events that occur when CCTL is used for two-phase sync point
processing.

Time →
–––A–––B–––––C–––D–––E–––––––––––F–––G––––H––––––J–––K––––––––

298  IMS: System Programming APIs



Table 78. CCTL two-phase sync point processing

Points in time System events

A CCTL phase 1 send

B IMS DB phase 1 receive

C IMS DB log phase 1 end

D IMS DB phase 1 respond

E CCTL phase 1 receive

F CCTL phase 2 send

G IMS DB phase 2 receive

H IMS DB log phase 2

J IMS DB phase 2 respond

K CCTL phase 2 receive

The following figure shows the system events that occur when two-phase sync point processing is
completed using ODBA.

Figure 8. ODBA two-phase sync point processing

Chapter 17. Sync points  299



Note:

1. The ODBA application and IMS DB make a connection using the ODBA interface.
2. IMS expresses protected interest in the work started by the ODBA application. This informsz/OS

Resource Recovery Services that IMS will participate in the two-phase commit process.
3. The ODBA application makes a read request to an IMS resource.
4. The ODBA application updates a protected resource.
5. Control is returned to the ODBA application following its update request.
6. The ODBA application requests that the update be made permanent by issuing the SRRCMIT call.
7. RRS calls IMS to do the prepare (phase 1) process.
8. IMS returns to RRS with its vote to commit.
9. RRS calls IMS to do the commit (phase 2) process.

10. IMS informs RRS that it has completed phase 2.
11. Control is returned to the ODBA application following its commit request.

In-doubt state during two-phase sync processing
A IMS DB UOR remains in the in-doubt state until a phase 2 request is received. This process is called
"resolving the in-doubt". While a UOR is in-doubt, the database resources owned by that UOR are
inaccessible to other requests. It is vital that in-doubts are resolved immediately.

CCTL example

If in-doubt UORs are created because IMS DB failed, the following sequence must occur to resolve the
in-doubt UORs.

1. After restarting IMS DB, the CCTL should identify itself to IMS DB using an INIT request.
2. If identification is successful, the DRA notifies the CCTL control exit, passing to it a list of IMS DB UORs

that are in-doubt.
3. The CCTL must resolve each in-doubt by making a RESYNC call, which causes a phase 2 action,

commit or abort.
4. For CCTL to resolve a IMS DB in-doubt UOR, the CCTL must have a record of this UOR and the

appropriate phase 2 action it must take. In this example, the CCTL record of a possible IMS DB
in-doubt UOR is called a transition UOR.

5. The CCTL must define a transition UOR for the interval A-K (refer to Table 78 on page 299). Because
this interval encompasses the IMS DB in-doubt period C-H, CCTL can resolve any in-doubts.

If a CCTL defines a transition UOR as interval E-K and if IMS DB fails while a thread is between C and
D, IMS DB has an in-doubt UOR for which CCTL has no corresponding transition UOR, even though the
phase 1 call failed. CCTL cannot resolve this UOR during the identify process. The only way to resolve this
in-doubt is by using the IMS DB command, /CHANGE CCTL.

For ODBA, all in-doubts are resolved through z/OS Resource Recovery Services.

300  IMS: System Programming APIs



Chapter 18. DRA startup table
The database resource adapter (DRA) Startup Table contains values used to define the characteristics of
the DRA. You must make the required changes to these modules to correctly specify the DRA parameters.

The DRA Startup Table is created by assembling:

• The DFSPZPxx module for a CCTL's use.
• The DFSxxxx0 module for ODBA's use.

The CCTL or ODBA system programmer must make the required changes to these modules to correctly
specify the DRA parameters. The DRA parameters are specified as keywords on the DFSPRP macro
invocation.

Sample DFSPZP00 source code

DFSPZP00 CSECT
         DFSPRP 
DSECT=NO,FPBUF=10,FPBOF=5,CNBA=60,MINTHRD=3,MAXTHRD=6,DSNAME=IMS.SDFSRESL 
         END

DFSPRP macro keywords
Keyword

Description
AGN=

This keyword is no longer used. If specified, it is ignored.
CNBA=

Specifies the total number of Fast Path NBA buffers for OBDM use. Valid values for CNBA are from 0 to
9999 or 1K to 32K. The default value for CNBA is 0.

You can determine a starting value for CNBA by using the following formula: (FPBUF+FPBOF) x
MAXTHRDS = CNBA. The minimum value of CNBA must be equal to or greater than the total of the
FPBUF and FPBOF values. If needed, adjust the value of CNBA to meet the performance and storage
requirements of your installation.

If the FPBUF is greater than 0, FPBOF greater than 0, and CNBA equal to 0, the IMS system will
calculate CNBA size during connection request processing based on the above formula.

DBCTLID=
The four-character name of the IMS DB or DB/DC region. This is the same as the IMSID parameter in
the DBC procedure. The default name is SYS1.

DDNAME=
A 1-to-8 character ddname used with the dynamic allocation of the IMS DB execution library. The
default ddname is CCTLDD.

DSNAME=
A 1-to-44 character data set name of the IMS DB execution library, which must contain the DRA
modules and must be z/OS authorized. The default DSNAME is IMS.SDFSRESL. This library must
contain the DRA modules.

FPBOF=
Specifies the number of Fast Path DEDB overflow buffers to be allocated per thread. Valid values for
FPBOF are from 0 to 9999. The default value for FPBOF is 0. Values for FPBOF specified in the local
section of CSLDCxxx override the value of FPBOF from the global section.

© Copyright IBM Corp. 1974, 2022 301



FPBUF=
Specifies the number of Fast Path DEDB buffers that are allocated and fixed per thread. Valid values
for FPBUF are from 0 to 9999. The default value for FPBUF is 0. Values for FPBUF specified in the
local section of CSLDCxxx override the value of FPBUF from the global section.

FUNCLV=
Specifies the DRA level that the CCTL or ODBA supports. The default is 3.

GENSNAP=
Specifies whether to produce or suppress SNAP output in DFSPAT20 during thread termination.
YES

Produces SNAP output in DFSPAT20 during thread termination. YES is the default.
NO

Suppresses the generation of SNAP output by DFSPAT20 during thread termination.
IDRETRY=

The number of times a z/OS application region is to attempt to IDENTIFY (or attach) to IMS after the
first IDENTIFY attempt fails. The maximum number 255. The default is 0.

IMSPLEX=
A 1- to 5-character user-specified identifier that is concatenated to 'CSL' to create the z/OS cross-
system coupling facility CSL IMSPLEX group name. The value specified here must match the IMSPLEX
NAME= value specified in the SCI startup procedure. The IMS ODBA interface uses this XCF CSL
IMSPLEX group to register with SCI using the CSLSCREG interface; the target ODBM address space
must specify the same XCF CSL IMSPLEX group name when registering with SCI. If you specify this
parameter, the IMS ODBA interface routes calls to the ODBM address space rather than directly to
IMS. If IMSPLEX= is not specified, ODBA calls are routed directly to IMS.

This parameter is required for applications that route ODBA calls through the ODBM address space.
There is no default value.

MAXTHRD=
The maximum number of DRA thread TCBs available at one time. The maximum number is 4095. The
default is number 1.

MINTHRD=
The minimum number of DRA thread TCBs available at one time. The maximum number is 4095. The
default is number 1.
When the DRA Open Thread TCB option is active, this value refers to the number of DRA threads that
are signed on to IMS.
When the DRA Open Thread TCB option is inactive, this value refers to the number of DRA thread TCBs
that remain attached and signed on to IMS.

ODBMNAME=
Specifies the name of the ODBM address space to which the ODBA interface registers using the
CSLDMREG request, and to which the ODBA calls are routed using the CSLDMI interface. This is an
optional parameter. There is no default. If ODBMNAME= is not specified, the ODBA interface selects
which ODBM address space all ODBA calls are routed.

OPENTHRD=
Specifies whether or not to enable DRA Open Thread support processing. When enabled and using
CICS® 4.2 or higher, this option directs the DRA not to attach dedicated IMS DRA thread task control
blocks (TCBs). CICS TCBs are used instead, which are intended for increased parallelism within the
CICS/DRA environment.
CCTL

Open Thread processing is enabled.
DISABLE

Open Thread processing is disabled. This is the default.
SOD=

The output class used for a SNAP DUMP of abnormal thread terminations. The default is A.

302  IMS: System Programming APIs



TIMEOUT=
(CCTL only). The amount of time (in seconds) a CCTL waits for the successful completion of a DRA
TERM request. Specify this value only if the CCTL application is coded to use it. This value is returned
to the CCTL upon completion of an INIT request.

TIMER=
The time (in seconds) between attempts of the DRA to identify itself to IMS DB or DB/DC during an
INIT request. The default is 60 seconds.

TIMETHREADCPU=
Specifies whether the DRA monitors and reports the CPU usage statistics, that are related to DRA
threads, when DRA Open Thread support is enabled. The time is reported in IMS 07 log record
DLRTIME field, and to the CCTL in DRA thread statistics field PAPLCTM1.
YES

The DRA monitors and reports the CPU usage statistics. A value of YES overrides any value that is
specified by the CCTL. YES is the default.

NO
The DRA does not monitor and report the CPU usage statistics. A value of NO overrides any value
that is specified by the CCTL.

CLIENT
The DRA uses the setting that is specified by the DRA client through the INIT call (YES or NO) . If
the client does not specify a setting, YES is the default.

USERID=
An 8-character name of the CCTL or ODBA region. The USERID name must not be the same as the
IMSID name. This keyword is ignored for an ODBA Region.

Related concepts
Designing a DEDB or MSDB buffer pool (Database Administration)
Related reference
DBC procedure (System Definition)

Chapter 18. DRA startup table  303

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_designdedbmsdbbuffpool.htm#ims_designdedbmsdbbuffpool
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dbc_procedure.htm#ims_dbc_procedure


304  IMS: System Programming APIs



Chapter 19. Enable the DRA for a CCTL
Two main steps are required to enable the DRA for a CCTL. After both steps are completed, the DRA is
capable of handling other requests.

This section describes the two steps required to enable the DRA.

1. The coordinator controller (CCTL) system must load the DRA Startup/Router routine (DFSPRRC0) into
a CCTL load library. Although DFSPRRC0 is shipped with the IMS product, it runs in the CCTL address
space. Also, The version of the IMS DRA modules that are used by the CCTL must be the same version
as the IMS with which the CCTL is communicating.

Recommendations:

• Concatenate the IMS.SDFSRESL library to the CCTL step library so the correct version of the DRA
Startup/Router routine (DFSPRRC0) is loaded into the CCTL load library.

• Ensure that the DRA Startup Table (DFSPZPxx) points to the correct version of IMS.SDFSRESL.
2. The system programmer must put the DFSPZPxx load module in a load library. The DRA is now ready

to be initialized.

The CCTL starts the initialization process as a result of the CCTL application program issuing an
initialization (INIT) request. At this point in time, the CCTL loads DFSPRRC0 and then calls the DRA
to process the INIT request.

As part of the initialization request, the CCTL application program specifies the startup table name suffix
(xx). The default load module, DFSPZP00, is in the IMS.SDFSRESL library.

After processing the INIT request, the DRA identifies itself to IMS DB. The DRA is then capable of handling
other requests.

DFSPZP00 contains default values for the DRA initialization parameters. If you want to specify values
other than the defaults, write your own module (naming it DFSPZPxx), assemble it, and load it in the CCTL
load library. Use the supplied module, DFSPZP00, as an example.

The remainder of the DRA modules reside in a load library that is dynamically allocated by DFSPRRC0.
The DDNAME and DSNAME of this load library are specified in the startup table. The default DSNAME
(IMS.SDFSRESL) contains all the DRA code and is specified in the default startup table, DFSPZP00.

Related reference
Database resource adapter startup table for CCTL regions (System Definition)
“INIT request” on page 315
You can use the INIT request to initialize the DRA. The DRA startup parameter table contains all of the
required parameters that you need to define the DRA. You can use the parameters given in the default
module, DFSPZP00, or you can write your own module and bind it into the IMS.SDFSRESL data set.

© Copyright IBM Corp. 1974, 2022 305

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_database_resource_adapter_startup_table.htm#ims_database_resource_adapter_startup_table


306  IMS: System Programming APIs



Chapter 20. Enabling the DRA for the ODBA interface
Four steps are required to enable the DRA before an ODBA interface can use it. The first step is to create
the ODBA DRA startup table.

There are four steps required to enable the DRA before an ODBA interface can use it:

1. Create the ODBA DRA Startup Table.
2. Verify that the ODBA and DRA modules reside in the STEPLIB or JOBLIB in the z/OS application region.
3. Link the ODBA application programs with DFSCDLI0.
4. Configure security.

The ODBA interface starts the initialization process after the ODBA application program issues either a
CIMS INIT request or, if the ODBA application requires connections to multiple IMS systems, a CIMS
CONNECT request. The CIMS INIT and CIMS CONNECT requests establish the ODBA environment in the
address space. APSB requests then call the DRA to process the PSB schedule request with the IMS
DB specified in DFSxxxx0, where xxxx is the DRA startup table name specified on the APSB call in the
AIBRSNM2 field of the AIB.

After processing the CIMS INIT request or the CIMS CONNECT request, the DRA identifies itself to IMS DB
if the optional xxxx value is passed on the CIMS INIT or CIMS CONNECT call. The DRA is then capable of
handling other requests. The DRA's structure at this time is shown in the following figure.

Figure 9. DRA component structure with the ODBA interface

The remainder of the DRA modules reside in a load library that is dynamically allocated by DFSAERA0.
The DDNAME and DSNAME of this load library are specified in the startup table. The default DSNAME
(IMS.SDFSRESL) contains all the DRA code.

Related reference
Database resource adapter startup table for CCTL regions (System Definition)

© Copyright IBM Corp. 1974, 2022 307

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_database_resource_adapter_startup_table.htm#ims_database_resource_adapter_startup_table


308  IMS: System Programming APIs



Chapter 21. Processing CCTL DRA requests
The CCTL communicates with IMS DB through DRA requests that are passed from the CCTL to the DRA
using a participant adapter parameter list (PAPL). To make a DRA request the CCTL must pass control to
the DRA Startup/Router Routine DFSPRRC0, and have register 1 point to a PAPL.

Multiple CCTL TCBs in a single address space can be used to process multiple CCTL threads. CCTL can
dispatch each CCTL thread for a different CCTL TCB, and each CCTL TCB can call the DRA Startup/Router
routine (DFSPRRC0) to process DRA requests.

Before passing control to DFSPRRC0, the CCTL must fill in the PAPL according to the request. These
requests are specified by a function code in the PAPLFUNC field.

To specify a thread function request, put the PAPLTFUN value into the PAPLFUNC field.

The function requests are further broken down into many subfunctions. A thread function request is
referred to by its subfunction name (for example, a thread request with a schedule subfunction is referred
to as a SCHED request). Non-thread function requests are referred to by function name (for example, an
initialization request is called an INIT request).

The term "DRA request" applies to both thread and non-thread function requests.

Once the PAPL is built and the DRA Startup/Router routine is loaded, the CCTL passes control to
DFSPRRC0. The contents of the registers upon entry to DFSPRRC0 are:

Register
Contents

1
Address of the PAPL

13
Address of a standard 18-word save area

14
Return address of the calling routine

The DRA Startup/Router routine puts itself into 31-bit addressing mode and will return to the calling
routine in the caller's original addressing mode with all its registers restored. Register 15 is always
returned with a zero in it.

The return code for the request is in the PAPLRETC field of the PAPL.

© Copyright IBM Corp. 1974, 2022 309



310  IMS: System Programming APIs



Chapter 22. Processing ODBA calls
An ODBA application program communicates with IMS DB using the AERTDLI interface. The AERTDLI call
interface processes DL/I calls from the ODBA application and also returns the results of those calls back
to the ODBA using an AIB.

Unlike a CCTL's use of the PAPL, an ODBA application program communicates with IMS DB using the
AERTDLI interface. The AERTDLI call interface processes DL/I calls from the ODBA application and also
returns the results of those calls back to the ODBA using an AIB.

Related reference
Specifying the AIB mask for ODBA applications (Application Programming)

© Copyright IBM Corp. 1974, 2022 311

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_imsdbspecifyingaibforodba.htm#ims_imsdbspecifyingaibforodba


312  IMS: System Programming APIs



Chapter 23. Considerations for COMMIT CONTINUE-
SYNC CONTINUE-ABORT CONTINUE

A 16-byte recovery token is used to uniquely identify a unit of recovery to IMS. This token is supplied by
the CCTL.

The commit, sync, and abort continue behavior is used by the CCTL when multiple Units Of Recovery
(UOR) are being performed within a single Unit Of Work (UOW). For CCTLs that employ COMMIT
CONTINUE, SYNC CONTINUE, and ABORT CONTINUE behavior, the following recovery token information
is strongly recommended by IMS. For commit and resolve indoubt processing, IMS passes the recovery
token to identify the unit of work for which the requested action is to be taken.

The recovery token is constructed as shown in the following table:

Table 79.

CCTL-id binary value commit_number

8 5 3

where:
CCTL-id

Is the CCTL ID (1 to 8 characters).
binary value

Is a 5-byte binary origin application value assigned by the CCTL to the application when it is
scheduled. The concatenation of CCTL and binary value (CCTL-id || binary value) is unique across
the entire Unit of Work.

commit_number
Is a 3-byte binary commit number. The commit number should be initialized to binary zeroes when
the application is scheduled and then incremented after each commit is processed for the application.
The concatenation of CCTL-id, binary value, and commit number (CCTL-id || binary value || commit
number) is unique across the Unit of Recovery.

The CCTL must ensure that the passed recovery token is unique. IMS only validates that the recovery
token is unique, it does not verify the structure of the token.

The installation uses the /DISPLAY CCTL command to determine what units of work are in INDOUBT
status in IMS. The installation can use the /CHANGE command (when necessary) to manually delete
indoubt units of work in IMS. The /CHANGE command (when necessary) to manually delete INDOUBT
units of work IMS. The /CHANGE command only affects unit of work status in IMS. There is no
communication with the CCTL.

© Copyright IBM Corp. 1974, 2022 313



314  IMS: System Programming APIs



Chapter 24. CCTL-initiated DRA function requests
Certain requests are available to the CCTL that allow it to communicate with DBCTL. For all DRA requests,
there are PAPL fields that the CCTL must fill in. The PAPLUSER field is a field to be used at the CCTL's
discretion. One possible use for it is to pass data to exit routines.

This topic contains General-use Programming Interface information.

For all DRA requests, there are PAPL fields that the CCTL must fill in. When the DRA completes the
request, there are some output PAPL fields that the DRA fills in. Some fields in the returned PAPL might
contain the original input value.

(The PAPLTTOK and PAPLUSER fields retain the original input values.)

The PAPLUSER field is a field to be used at the CCTL's discretion. One possible use for it is to pass data to
exit routines.

The DRA returns a code (in the PAPLRETC field) to the CCTL after processing a DRA request. The code
indicates the status of the request and can be either an IMS code, a DRA code, or a z/OS code. Failed DRA
requests return a nonzero value in the PAPLRETC field.

To use the default Suspend exit routine and Resume exit routine, each DRA request must have the field
PAPLTECB set with the address of a CCTL ECB to be used if the thread is waited or posted. If your CCTL
does not provide Suspend and Resume exit routines, the DRA default exit routines will be used.

Related concepts
“Problem diagnosis” on page 336
Diagnostic information is provided by the DRA in the form of an SDUMP, or a SNAP data set output. For
X'80', the SDUMP is attempted first. If it fails, SNAP is done.
Related reference
DBCTL return codes (Messages and Codes)

INIT request
You can use the INIT request to initialize the DRA. The DRA startup parameter table contains all of the
required parameters that you need to define the DRA. You can use the parameters given in the default
module, DFSPZP00, or you can write your own module and bind it into the IMS.SDFSRESL data set.

The INIT PAPL also contains some parameters needed to initialize the DRA. If the same parameter
appears in both the INIT PAPL and in the DRA startup parameter table, the specification in the INIT PAPL
will override that in the startup table.

In addition to the required parameters of INIT PAPL, the optional parameters include:

Field
Contents

PAPLFUNC
PAPLINIT

PAPLSUSP
The address of the Suspend exit routine

PAPLRESM
The address of the Resume exit routine

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each DRA request must have the
field PAPLTECB set with the address of a CCTL ECB to be used if the thread is waited or posted. If your
CCTL does not provide Suspend and Resume exit routines, the DRA default exit routines will be used.

PAPLCNTL
The address of the Control exit routine

© Copyright IBM Corp. 1974, 2022 315

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_dbctlretcodes.htm#ims_dbctlretcodes


PAPLTSTX
The address of the Status exit routine

After the INIT request and the startup table have been processed, the DRA returns the following data to
the CCTL in the INIT PAPL:

Field
Contents

PAPLDBCT
The IMS DB identifier (this is the IMSID parameter from system definition)

PAPLCTOK
The request token that identifies the CCTL to the DRA

PAPLTIMO
DRA TERM request timeout value (in seconds)

PAPLRETC
A code returned to the CCTL specifying the status of the request

PAPLDLEV
A flag indicating to CCTL which functions the DRA supports. (For the latest version of PAPL mapping
format see the IMS. library; member name is DFSPAPL.)

INIT request, identify to DBCTL
To make the DRA functional, the DRA must identify itself to IMS DB, thus establishing a link between IMS
DB and the CCTL. The identify process occurs in two cases:

• As a direct result of an INIT request.
• As part of a terminate/reidentify request from a Control exit routine invocation.

The DRA identifies itself to the IMS DB subsystem specified in the final DRA startup parameters. The
identify process executes asynchronously to the INIT process. Therefore, it is possible for the INIT
request to complete successfully while the identify process fails. In this case, the Control exit routine
notifies the CCTL that the connection to IMS DB failed.

If IMS DB is not active, the console operator will receive a DFS690 message (a code of 0 was returned in
the PAPLRETC field). You must reply with either a CANCEL or WAIT response. If you reply with WAIT, the
DRA waits for a specified time interval before attempting to identify again. The waiting period is necessary
because the identify process will not succeed until the DBCTL restart process is complete. You specify the
length of the waiting period on the TIMER DRA startup parameter. If subsequent attempts to identify fail,
the console operator will receive message DFS691, WAITING FOR IMS DB.

If the DRA cannot identify to IMS DB because the subsystem does not reach a restart complete state,
there are two ways to terminate the identify process:

• The Control exit routine is called with each identify failure. This sets a PAPL return code of 4 or 8,
terminating the identify process.

• The CCTL can issue a TERM request.

If you reply with CANCEL to message DFS690, control is passed to the Control exit routine, and the DRA
acts upon the routine's decision.

After the identify process successfully completes, the DRA makes the CCTL address space non-
swappable and calls the Control exit routine with a list of in-doubt UORs. If no in-doubt UORs exist, a
null list is passed. The CCTL can use the RESYNC request to resolve any in-doubt UORs that do exist.

The INIT request attempts to create the MINTHRD number of thread TCBs. The actual number of TCBs
created might be less than this value due to storage constraints.

316  IMS: System Programming APIs



INIT request after a previous DRA session termination
If a prior DRA session ended with a TERM request that received a PAPL return code=0, this INIT request
must specify PAPLCTOK=0. If PAPLCTOK other than 0 is sent, the INIT request fails.

The INIT request must pass the PAPLCTOK value of the prior session in the current PAPLCTOK field if a
DRA session ended because of:

• A nonzero return code from a TERM request.
• An internal TERM request from a Control exit routine request.
• A DRA failure.

INIT request to use the DRA open thread TCB option
The DRA open thread TCB allows the CCTL to direct the DRA not to attach dedicated DRA thread TCBs.
Instead, DRA thread requests are processed on the CCTL application TCB.

The DRA open thread TCB option is either in use or not in use for the duration of the DRA instance.

To request activation of the DRA open thread TCB, set the following fields for the INIT request:

PALPFNCL
3 (PAPLFNC3)

PAPLOOTT
Set this bit (X’08’) to activate the open thread TCB.

You can verify that the TCB open thread is in use for the DRA by examining the PAPLDLEV flag field in the
CCTL in INIT PAPL that the DRA returns after the INIT call. If the PAPLOTCB (X’08’) flag is set to 1, the
open thread TCB option is in use.

INIT request to use the DRA open thread TCB option
When DRA open thread support processing is enabled, the DRA will or will not monitor and report the
CPU time usage statistics that are related to the DRA thread processing based on the value specified for
TIMETHREADCPU= on the DFSPRP macro in DFSPZPxx member.

If anything other that TIMETHREADCPU=CLIENT is specified in the DFSPZPxx member, the DRA ignores
what is specified on the INIT call.

To request the DRA not to monitor CPU time usage statistics, set the following fields for the INIT request:

PALPFNCL
3 (PAPLFNC3)

PAPLOTCN
Set this bit (X'20') in field PAPLDROP to disable DRA thread CPU time usage statistics monitoring.

To determine if CPU usage statistics are being monitored for DRA thread processing, check the PAPLDLEV
flag field in the CCTL INIT PAPL that the DRA returns after the INIT call. CPU usage statistics is not being
monitored and reported if the PAPLOTCF (x'40') flag is set to 1.

INIT request to notify the DRA that CCTL is using Sync Continue behavior
This option directs IMS restart how to compare recovery tokens when there are multiple sync points in a
single PSB schedule. To request activation of the DRA Sync Continue behavior and adherence to the IMS
defined format of the recovery token, set the following fields for the INIT request:
PAPLOSCT

Set this bit (X'40') to activate the Sync Continue behavior.

Related concepts
“Enable the DRA for a CCTL” on page 305

Chapter 24. CCTL-initiated DRA function requests  317



Two main steps are required to enable the DRA for a CCTL. After both steps are completed, the DRA is
capable of handling other requests.

RESYNC request
You can use the RESYNC request to tell IMS DB what to do with in-doubt UORs. Four different subfunction
values indicate possible actions for IMS DB to take for the UOR.

The following subfunction values indicate possible actions:

PAPLRCOM
Commit the in-doubt UOR.

PAPLRABT
Abort the in-doubt UOR. Changes made to any recoverable resource are backed out.

PAPLSCLD
The UOR was lost to the transaction manager due to a coldstart.

PAPLSUNK
The in-doubt UOR is unknown to the CCTL. This can occur when the CCTL's in-doubt period does not
include the start of phase 1. (See Table 78 on page 299 for an illustration of in-doubt periods.)

You must fill in the following input fields of the PAPL:

Field
Contents

PAPLCTOK
Request token

This token identifies the CCTL to the DRA. The DRA establishes the token and returns it to the CCTL in
the parameter list on the startup INIT request. The request token must be passed on to the DRA for all
RESYNC requests.

PAPLRTOK
Recovery token

This 16-byte token is associated with a UOR. The first 8 bytes must be the transaction manager
subsystem ID. The second 8 bytes must be unique for one CCTL thread. This is one of the in-doubt
recovery tokens passed to the Control exit routine.

PAPLFUNC
PAPLRSYN

PAPLSFNC
This field must contain PAPLRCOM, PAPLRABT, PAPLSCLD, or PAPLSUNK.

In addition to the required input parameters, the optional input parameters include:

Field
Contents

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each DRA request must have the
field PAPLTECB set with the address of a CCTL ECB to be used if the thread is waited or posted. If your
CCTL does not provide Suspend and Resume exit routines, the DRA default exit routines will be used.

TERM request
You can use the TERM request to terminate the IMS DB/CCTL connection and a remove the DRA from
the CCTL environment. The DRA terminates after all threads have been resolved. No new DRA or thread
requests are allowed, and current requests in progress must complete.

You must fill in the following input fields in the PAPL:

318  IMS: System Programming APIs



Field
Contents

PAPLFUNC
PAPLTERM, DRA terminate function code

PAPLCTOK
The DRA request token (output from an INIT request)

In addition to the required input parameters, the optional input parameters include:

Field
Contents

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each DRA request must have the
field PAPLTECB set with the address of a CCTL ECB to be used if the thread is waited or posted. If your
CCTL does not provide Suspend and Resume exit routines, the DRA default exit routines will be used.

After receiving the TERM request results, the CCTL might remove DFSPPRC0.

The fields returned in the PAPL to the CCTL are:

Field
Contents

PAPLRETC
The return code

PAPLMXNB
The number of times the maximum thread count was encountered during this DRA session

PAPLMTNB
The number of times the minimum thread count was encountered during this DRA session

PAPLHITH
The largest number of thread TCBs that were scheduled during this DRA session

PAPLTIMX
The elapsed time at maximum thread for this DRA session

SCHED request
You can use the SCHED request to schedule a PSB in IMS DB. The first SCHED request made by a CCTL
thread requires a new DRA thread. Existing DRA thread TCBs are used if they are not currently processing
a DRA thread.

If no TCBs are available, the DRA either creates a new thread TCB (until the maximum number of threads
as specified by the MAXTHRD parameter in the INIT request is reached), or makes the SCHED request
wait until a thread becomes available.

The value in the PAPLWCMD field indicates whether the thread to which the SCHED request applies is a
short or long thread. The type of thread determines the action that IMS takes when a database command
is entered for a database scheduled to the thread. The /STOP DATABASE, /DBDUMP DATABASE, or /
DBRECOVERY DATABASE command issued against a database scheduled on a short thread will wait
for the database to be unscheduled. IMS rejects these commands if they are entered for a database
scheduled on a long thread.

You must fill in the following input fields in the PAPL:

Field
Contents

PAPLFUNC
PAPLTFUN, thread function code

PAPLSFNC
PAPLSCHE, schedule request subfunction code

Chapter 24. CCTL-initiated DRA function requests  319



PAPLCTOK
The DRA request token (output from an INIT request)

PAPLTTOK
The thread token set up by the CCTL

PAPLRTOK
The 16-byte UOR token (RTOKEN).

The first 8 bytes contain the CCTL identification. This identification is the same as the CCTL ID
that was a final DRA startup parameter determined from USERID or PAPLUSID in INIT request; the
USERID parameter is found in the DFSPRP macro used to generate the DFSPZPxx module. The second
8 bytes contain the unique identifier specified by the CCTL for each UOR.

PAPLPSB
The PSB name

PAPLWRTH
Deadlock Worth Value

If this thread hits a deadlock condition with any other DRA thread or with any IMS region, DBCTL
collapses the thread with the lower deadlock worth value.

PAPLWCMD
This bit defines the thread as either a short or long thread which determines what action IMS takes
on a /STOP DATABASE, /DBDUMP DATABASE, or /DBRECOVERY DATABASE command for a database
scheduled to the thread.

If the bit is set on (X'80'), the database is scheduled on a short thread; if the bit is set off, the
database is scheduled for a long thread.

PAPLFTRD
Fast Path Trace Option

If this bit is on (X'40'), Fast Path tracing in IMS DB is activated.

PAPLKEYP
Public Key Option

If this bit is set (X'10'), DBCTL builds UPSTOR area in a special subpool so that applications running in
public key can fetch the UPSTOR area.

PAPLLKGV
Lockmax Option

If this bit is set (X'08'), DBCTL uses the value in PAPLLKMX as the maximum number of locks that this
UOR can hold. Exceeding the maximum results in a U3301 abend.

PAPLLKMX
Lockmax Value, 0 to 255

This value overrides any LOCKMAX parameter specified on the PSBGEN for the PSB referenced in the
SCHED request.

PALPUFXT
DRA open thread indicator.

Set PAPLUFXT to 1 for the SCHED call to indicate to the DRA that the thread TCB might not be the
same TCB for the duration of the thread. The TCB might change between the time that the PSB is
scheduled and the time that the PSB is unscheduled and the thread is terminated.

PAPLALAN
Application language type

Specifying the following input field is optional:

Field
Contents

320  IMS: System Programming APIs



PAPLSTAT
Address of an area where scheduled statistical data is returned to the CCTL.

If you do not want to allocate an address, enter 0.

PAPLPBTK
Address of the token for the z/OS Workload Manager performance block obtained by the CCTL.

You must specify this field for z/OS Workload Manager support for DRA threads.

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each DRA request must have the
field PAPLTECB set with the address of a CCTL ECB to be used if the thread is waited or posted. If your
CCTL does not provide Suspend and Resume exit routines, the DRA default exit routines will be used.

The output fields returned in the PAPL to the CCTL are:

Field
Contents

PAPLRETC
The return code

PAPLCTK2
The thread request token number 2. This is another DRA token required on future DRA requests
originating from this thread.

PAPLPCBL
The address of the PCB list. There is one entry in the list for each PCB in the PSB that was scheduled,
even if the PCB cannot be used with IMS DB.

The address of the PCB list is above the 16 MB line if either the PCBLOC=31 is set on the DFSPRP
macro, or PAPLLPSO=31 is specified on the INIT request.

PAPL1PCB
The address of the PCBLIST entry pointing to the first database PCB

PAPLIOSZ
The size of the maximum I/O area

PAPLPLAN
The language type of the PSB

PAPLMKEY
The maximum key length

PAPLSTAT
The address of the schedule statistical data area. This address must be specified on the input field.

CCTLs currently using the IMS Database Manager and migrating to DBCTL will experience a change in
the PCBLIST and user PCB area on a schedule request. The first PCB pointer in the PCBLIST contains
the address of an I/O PCB. The I/O PCB is internally allocated during the schedule process in a DBCTL
environment. The I/O PCB is normally used for output messages or to request control type functions to be
processed. The PCBLIST and the PCBs reside in a contiguous storage area known as UPSTOR. If the PSB
was generated with LANG=PLI, the PCBLIST points to pointers for the PCBs. If LANG= was not PLI, the
PCBLIST points to the PCBs directly.

Related concepts
“Sync points” on page 297
Sync point processing finalizes changes to resources. Sync point requests specify actions to take place for
the resource changed (for example, commit or abort). A sync point is when IMS DB actually processes the
request.
“DRA tracing” on page 336

Chapter 24. CCTL-initiated DRA function requests  321



Tracing (logging) of activity does not occur in the DRA, but there is tracing in IMS DB of DL/I and Fast
Path activity. The setup and invocation of DL/I tracing for IMS DB is the same as for IMS. The output trace
records for CCTL threads contain the recovery token.
“CCTL performance: monitoring DRA thread TCBs” on page 333
You can evaluate the status of DRA thread TCBs from the output of the /DISPLAY CCTL ALL command
in most cases. If there are no thread failures, the output might show fewer thread TCBs than the
MINTHRD value because of internal short lived conditions.

IMS request
You can use the IMS request to make an IMS or Fast Path database request against the currently
scheduled PSB.

You must fill in the following input fields in the PAPL:

Field
Contents

PAPLFUNC
PAPLTFUN

PAPLSFNC
PAPLDLI, DL1 request subfunction code

PAPLCTOK
DRA request token (output from an INIT request)

PAPLCTK2
Thread Token number 2. This is the DRA request token that is part of the output from a SCHED
request.

PAPLTTOK
Thread token set up by the CCTL

PAPLRTOK
RTOKEN

A 16-byte UOR token.

PAPLCLST
The address of an IMS call list.

PAPLALAN
Application language type. This must reflect how the call list is set up. If PAPLALAN=‘PLI', the DRA
expects the call list to contain pointers to the PCB's pointers. For any other programming language,
the DRA expects direct pointers.

PAPLALAN does not have to match PAPLPLAN which schedules request returns. For example, if
PAPLPLAN=PLI, the PCBLIST in UPSTOR points to an indirect list. If specified, the CCTL can use this
to create a PCBLIST that application programs use. If the application programs are written in COBOL,
the CCTL may create a new PCBLIST without pointers as long as the new list actually points to PCBs in
UPSTOR. The application program IMS call lists can specify PAPLALAN=COBOL, and the DRA will not
expect pointers in the call list.

In addition to the required input parameters, the optional input parameters include:

Field
Contents

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each DRA request must have the
field PAPLTECB set with the address of a CCTL ECB to be used if the thread is waited or posted. If your
CCTL does not provide Suspend and Resume exit routines, the DRA default exit routines will be used.

The output fields returned in the PAPL to the CCTL are:

322  IMS: System Programming APIs



Field
Contents

PAPLRETC
Code returned

PAPLSEGL
Length of data returned

Related concepts
“Sync points” on page 297
Sync point processing finalizes changes to resources. Sync point requests specify actions to take place for
the resource changed (for example, commit or abort). A sync point is when IMS DB actually processes the
request.
Related reference
Program communication block (PCB) lists (Application Programming)

SYNTERM request
You can use the SYNTERM request to make a single-phase sync point request to commit the UOR or to
release the PSB.

You must fill in the following input fields in the PAPL:

Field
Contents

PAPLFUNC
PAPLTFUN

PAPLSFNC
PAPLSTRM, sync point commit/terminate subfunction code

PAPLCTOK
DRA request token (output from INIT request)

PAPLCTK2
The thread request token number 2. This DRA token is the output from the SCHED request.

PAPLTTOK
The thread token set up by the CCTL

PAPLRTOK
A 16-byte UOR token (RTOKEN).

You can specify the following, optional input fields:

Field
Contents

PAPLSTAT
Address of an area where transaction statistical data is returned to the CCTL.

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each DRA request must have the
field PAPLTECB set with the address of a CCTL ECB to be used if the thread is waited or posted. If your
CCTL does not provide Suspend and Resume exit routines, the DRA default exit routines will be used.

The output fields returned in the PAPL to the CCTL are:

Field
Contents

PAPLRETC
Code returned

Chapter 24. CCTL-initiated DRA function requests  323

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.apg/ims_pcblists.htm#ims_pcblists


PAPLSSCC
State of the single-phase sync point request at the time of the thread failure. This field is set if
PAPLRETC is not equal to zero.

PAPLSTAT
The address of the transaction statistical data area. The address must be specified on the input field.

Related concepts
“Sync points” on page 297
Sync point processing finalizes changes to resources. Sync point requests specify actions to take place for
the resource changed (for example, commit or abort). A sync point is when IMS DB actually processes the
request.

PREP request
You can use the PREP request to make a phase 1 sync-point request to ask IMS DB if it is ready to commit
this UOR.

You must fill in the following input fields of the PAPL:

Field
Contents

PAPLFUNC
PAPLTFUN

PAPLSFNC
PAPLPREP, sync-point prepare subfunction code

PAPLCTOK
DRA request token (output from an INIT request)

PAPLCTK2
Thread Token number 2. This is the DRA request token which is output from a SCHED request.

PAPLTTOK
The thread token set up by the CCTL

PAPLRTOK
A 16-byte UOR token (RTOKEN).

PAPLSDPL
A one-bit flag. Set this bit to 1 to indicate to IMS that this thread is part of a distributed unit of work.

In addition to the required input parameters, the optional input parameters include:

Field
Contents

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each DRA request must have the
field PAPLTECB set with the address of a CCTL ECB to be used if the thread is waited or posted. If your
CCTL does not provide Suspend and Resume exit routines, the DRA default exit routines will be used.

The following are output fields that are returned in the PAPL to the:

Field
Contents

PAPLRETC
Code returned

PAPLSTCD
Fast Path status code

If the value in the PAPLRETC field is decimal 35, the PAPLSTCD field contains a status code that
further describes the error.

324  IMS: System Programming APIs



Related concepts
“Sync points” on page 297
Sync point processing finalizes changes to resources. Sync point requests specify actions to take place for
the resource changed (for example, commit or abort). A sync point is when IMS DB actually processes the
request.

COMTERM request
You can use the COMTERM request to make a phase 2 sync-point request to commit the UOR or to release
the PSB. You must issue a PREP request prior to issuing a COMTERM request.

You must fill in the following input fields in the PAPL:

Field
Contents

PAPLFUNC
PAPLTFUN

PAPLSFNC
PAPLCTRM, sync-point commit/terminate subfunction code

PAPLCTOK
DRA request token (output from an INIT request)

PAPLCTK2
Thread Token number 2. This is the DRA request token that is output from a SCHED request.

PAPLTTOK
The thread token set up by the CCTL

PAPLRTOK
A 16-byte UOR token (RTOKEN).

Specifying the following input field is optional:

Field
Contents

PAPLSTAT
Address of an area where transaction statistical data is returned to the CCTL

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each DRA request must have the
field PAPLTECB set with the address of a CCTL ECB to be used if the thread is waited or posted. If your
CCTL does not provide Suspend and Resume exit routines, the DRA default exit routines will be used.

The output fields returned in the PAPL to the CCTL are:

Field
Contents

PAPLRETC
Code returned

PAPLSTAT
The address of the transaction statistical data area. This address must be specified on the input field.

Related concepts
“Sync points” on page 297

Chapter 24. CCTL-initiated DRA function requests  325



Sync point processing finalizes changes to resources. Sync point requests specify actions to take place for
the resource changed (for example, commit or abort). A sync point is when IMS DB actually processes the
request.

ABTTERM request
You can use the ABTTERM request to make a phase 2 sync-point request to abort processing and release
the PSB. The ABTTERM request does not require a preceding PREP request.

You must fill in the following input fields of the PAPL:

Field
Contents

PAPLFUNC
PAPLTFUN

PAPLSFNC
PAPLATRM, sync-point abort/terminate subfunction code

PAPLCTOK
DRA request token (output from an INIT request)

PAPLCTK2
Thread Token number 2. This is the DRA request token, which is output from a SCHED request.

PAPLTTOK
The thread token set up by the CCTL

PAPLRTOK
A 16-byte UOR token (RTOKEN).

Specifying the following input field is optional:

Field
Contents

PAPLSTAT
Address of an area where transaction statistical data is returned to the CCTL.

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each DRA request must have the
field PAPLTECB set with the address of a CCTL ECB to be used if the thread is waited or posted. If your
CCTL does not provide Suspend and Resume exit routines, the DRA default exit routines will be used.

The output fields returned in the PAPL to the CCTL are:

Field
Contents

PAPLRETC
Code returned

PAPLSTAT
The address of the transaction statistical data area. This address must be specified on the input field.

Related concepts
“Sync points” on page 297
Sync point processing finalizes changes to resources. Sync point requests specify actions to take place for
the resource changed (for example, commit or abort). A sync point is when IMS DB actually processes the
request.

TERMTHRD request
You can use the TERMTHRD request to terminate the DRA thread.

You must fill in the following input fields of the PAPL:

326  IMS: System Programming APIs



Field
Contents

PAPLFUNC
PAPLTFUN

PAPLSFNC
PAPLTTHD, thread terminate subfunction code

PAPLCTOK
DRA request token (output from an INIT request)

PAPLCTK2
Thread Token number 2. This is the DRA request token that is output from a SCHED request.

PAPLTTOK
The thread token set up by the CCTL

Specifying the following input field is optional:

Field
Contents

PAPLSTAT
Address of an area where transaction statistical data is returned to the CCTL

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each DRA request must have the
field PAPLTECB set with the address of a CCTL ECB to be used if the thread is waited or posted. If your
CCTL does not provide Suspend and Resume exit routines, the DRA default exit routines will be used.

The output fields returned in the PAPL to the CCTL are:

Field
Contents

PAPLRETC
Code returned

PAPLSTAT
The address of the transaction statistical data area. This address must be specified on the input field.

Chapter 24. CCTL-initiated DRA function requests  327



328  IMS: System Programming APIs



Chapter 25. Terminating the DRA
Termination isolation means that a failure of the IMS DB subsystem does not cause a direct failure of any
attached CCTL subsystem or ODBA application and vice versa.

Termination isolation should be one of your primary considerations when you design a CCTL subsystem or
an ODBA application.

Although IMS DB was designed to prevent failure between connecting subsystems, a termination of a
CCTL subsystem can cause IMS DB failure. If a DRA thread TCB terminates while IMS DB is processing a
thread DL/I call on the CCTL's behalf, IMS DB fails with a U0113 abend.

The conditions that cause a thread TCB to terminate while IMS DB processes a DL/I call are:

• A DRA thread abend due to code failure. This can be corrected by fixing the failing code.
• The CCTL TCB collapses while a thread TCB still exists. The thread TCB collapses with an S13E or S33E

abend and can result from three situations: a CCTL abend, a cancel command, or a shutdown.
• A DRA thread abend due to a IMS DB /STOP REGION CANCEL command initiated by CCTL.

An IMS DB U0113 abend can be prevented by designing the CCTL recovery process so that it issues a
TERM request and waits for the request to complete. This allows the DRA and thread TCBs to terminate
before the CCTL TCB terminates.

Related concepts
“Designing the CCTL recovery process” on page 331
You should consider CCTL operations and installation requirements when designing your CCTL. For
example, a CCTL might have a means of allowing its own shutdown, but CCTL threads or BMPs should not
have long-running UORs.

© Copyright IBM Corp. 1974, 2022 329



330  IMS: System Programming APIs



Chapter 26. Designing the CCTL recovery process
You should consider CCTL operations and installation requirements when designing your CCTL. For
example, a CCTL might have a means of allowing its own shutdown, but CCTL threads or BMPs should not
have long-running UORs.

Under the conditions of a nonrecoverable z/OS abend, a DRA TERM request lets all threads collapse and
U0113 is possible. To reduce the number of nonrecoverable abends of the CCTL, IMS DB intercepts any
operator CANCEL of a CCTL that is connected to IMS DB, and converts it to a S08E recoverable abend of
the CCTL. If you want a CANCEL to be converted to an S08E abend, you must specify CCTCVCAN=Y on
IMS startup parameters.

You can also as a last resort, force a CCTL to shut down. If an operator enters a FORCE command after
CANCEL has been entered (and converted to S08E), IMS DB converts FORCE into a z/OS cancel command.
Subsequent FORCE attempts are not intercepted by IMS DB. In these cases of nonrecoverable abends, a
U0113 is possible.

A CCTL might have a means of allowing its own shutdown. The CCTL shutdown logic should issue a DRA
TERM request and wait for the request completion to prevent a U0113 abend in IMS DB. The DRA TERM
request waits for current thread requests to complete. One thing that can prevent a current thread DL/I
call from completing normally is if the call has to wait in IMS DB for a database segment to become
available. The reason the segment might not be available is that it is held by another UOR, either in a
thread belonging to another CCTL or in an IMS dependent region (for example, a BMP). The solution is to
not have CCTL threads or BMPs that have long-running UORs.

Recommendation: BMPs should take frequent checkpoints.

No matter how you choose to prevent or discourage long-running CCTL threads, you must decide how
long to wait for the DRA TERM request to complete (TIMEOUT). In most cases, it is undesirable to get a
U113 abend in IMS DB during a CCTL termination, so the timeout value should be greater than the longest
possible UOR. If the CCTL has a means of limiting the UOR time or allowing the installation to specify this
time limit, the DRA TERM timeout value can be determined. This timeout value can be specified in the
DRA startup table and is returned to the CCTL in the INIT PAPL.

Recommendation: CCTL should use this DRA TERM timeout value when waiting for the DRA TERM
request to complete. At the very least, by using the DRA TERM timeout value, you can control whether
CCTL terminations cause IMS DB failures with respect to the UOR time length of the applications that run
in a given IMS DB/CCTL session.

CCTL Operations Recommendation:

• Avoid using CANCEL or FORCE commands against CCTL regions that are connected to IMS DB.

CCTL Design Recommendations:

• The CCTL should issue a DRA TERM request during recoverable abend processing.
• CCTL shutdown functions should issue a DRA TERM request.
• Whenever a DRA TERM request is issued, wait for it to complete. If this time must have an upper limit,

use the TIMEOUT value specified in the DRA startup table.
• The CCTL should prevent long-running UORs in its threads using IMS DB.

User Installation Recommendations:

• Have BMPs take frequent checkpoints.
• Limit long-running UOR applications.
• Set the TIMEOUT startup parameter as high as possible, preferably longer than the longest running

UOR.

Related concepts
“Terminating the DRA” on page 329

© Copyright IBM Corp. 1974, 2022 331



Termination isolation means that a failure of the IMS DB subsystem does not cause a direct failure of any
attached CCTL subsystem or ODBA application and vice versa.

332  IMS: System Programming APIs



Chapter 27. CCTL performance: monitoring DRA
thread TCBs

You can evaluate the status of DRA thread TCBs from the output of the /DISPLAY CCTL ALL command
in most cases. If there are no thread failures, the output might show fewer thread TCBs than the
MINTHRD value because of internal short lived conditions.

Requirement: The DRA initialization process requires a minimum and maximum value (MINTHRD and
MAXTHRD) for DRA thread TCBs. The value of MINTHRD and MAXTHRD determine the number of
multithreading executions that can occur concurrently. These values also define the range of thread TCBs
that the DRA will maintain under normal conditions with no thread failures. The number of TCBs can go
below the MINTHRD value when the following thread failures occur:

• An abend.
• A nonzero DRA thread request return code that causes the thread TCB to collapse.
• Termination using a IMS DB /STOP REGION command.

Failed thread TCBs are not automatically recreated. The thread TCB number increases again if a new
thread is created to process a SCHED request. If the number of thread TCBs is greater than the MINTHRD
value and all thread activity ceases normally, the number of thread TCBs left in the DRA will be the
MINTHRDD value.

During CCTL processing, the number of active DRA threads occupying thread TCBs varies from 0 to the
MAXTHRD number. Active DRA threads indicate that at least one SCHED request has been made but
not any TERMTHRD requests. If the number of non-active thread TCBs becomes too large, the DRA
automatically collapses some thread TCBs to release IMS DB resources.

The status of DRA thread TCBs can be evaluated from the output of the /DISPLAY CCTL ALL command,
except for one case.

If there were no thread failures, the output might show fewer thread TCBs than the MINTHRD value
because of internal short lived conditions. In fact, the actual number of thread TCBs equals the MINTHRD.

Related concepts
z/OS: STIMER macro description
Related reference
“SCHED request” on page 319
You can use the SCHED request to schedule a PSB in IMS DB. The first SCHED request made by a CCTL
thread requires a new DRA thread. Existing DRA thread TCBs are used if they are not currently processing
a DRA thread.
/DISPLAY CCTL command (Commands)

DRA thread statistics
DRA thread statistics are returned for a SCHED request and for any DRA requests that terminate a UOR.
The statistics are in a CCTL area that is pointed to by the PAPLSTAT field.

The PAPL listing maps this area, as shown in the following table. The statistics also appear in the IMS DB
log records X'08' (SCHED) and X'07' (UOR terminate).

Table 80. Information provided for the schedule process

PAPL field Field length
(Hexadecimal)

Contents

PAPLNPSB 8 PSB name

© Copyright IBM Corp. 1974, 2022 333

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaa900/stimer.htm
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.cr/imscmds/ims_displaycctl.htm#ims_cr1displaycctl


Table 80. Information provided for the schedule process (continued)

PAPL field Field length
(Hexadecimal)

Contents

PAPLPOOL 8 Elapsed wait time for pool space (packed:
microseconds)

PAPLINTC 8 Elapsed wait time - intent conflict (packed:
microseconds)

PAPLSCHT 8 Elapsed time for schedule process (packed:
microseconds)

PAPLTIMO 8 Elapsed time for DB I/O (packed: microseconds)

PAPLTLOC 8 Elapsed time for DI locking (packed: microseconds)

PAPLDBIO 4 Number of DB I/Os

Table 81. Information provided at UOR termination

PAPL field Field length
(Hexadecimal)

Contents

PAPLGU1 4 Number of database GU calls issued

PAPLGN 4 Number of database GN calls issued

PAPLGNP 4 Number of database GNP calls issued

PAPLGHU 4 Number of database GHU calls issued

PAPLGHN 4 Number of database GHN calls issued

PAPLGHNP 4 Number of database GHNP calls issued

PAPLISRT 4 Number of database ISRT calls issued

PAPLDLET 4 Number of database DLET calls issued

PAPLREPL 4 Number of database REPL calls issued

PAPLTOTC 4 Total number of DL/I database calls

PAPLTENQ 4 Number of test enqueues

PAPLWTEQ 4 Number of WAITS on test enqueues

PAPLTSDQ 4 Number of test dequeues

PAPLUENQ 4 Number of update enqueues

PAPLWUEQ 4 Number of WAITs on updates and enqueues

PAPLUPDQ 4 Number of update dequeues

PAPLEXEQ 4 Number of exclusive enqueues

PAPLWEXQ 4 Number of WAITs on exclusive enqueues

PAPLEXDQ 4 Number of exclusive dequeues

PAPLDATS 8 STCK time schedule started

PAPLDATN 8 STCK time schedule completed

PAPLDECL 2 Number of DEDB calls

334  IMS: System Programming APIs



Table 81. Information provided at UOR termination (continued)

PAPL field Field length
(Hexadecimal)

Contents

PAPLDERD 2 Number of DEDB read operations

PAPLMSCL 2 Reserved for Fast Path

PAPLOVFN 2 Number of overflow buffers used

PAPLUOWC 2 Number of UOW contentions

PAPLBFWT 2 Number of WAITs for DEDB buffers

PAPLUSSN 4 Unique schedule sequence number

PAPLCTM1 4 Elapsed UOR CPU time (for thread TCB)

DRA statistics
DRA statistics are contained in the returned PAPL as a result of a DRA TERM request, or in the Control exit
routine's PAPL when it is called for DRA termination. This routine is called when the DRA fails or when a
previous Control exit routine invocation resulted in return code 4.

The DRA statistics in the returned PAPL are:

1. The number of times the MAXTHRD value was reached.
2. The number of times the MINTHRD value was reached (only includes the times the value is reached

when the thread TCB number is decreasing.)
3. The largest number of thread TCBs ever reached during this DRA session. (This is the number of TCBs,

not the number of DRA threads, so it is at least the minimum thread value.)
4. The time (in seconds) during which the DRA thread TCB count was at the MAXTHRD value.

You can find the field names for the previous statistics in the PAPL extensions for the TERM PAPL and
control exit routine PAPL.

Before attempting to evaluate the statistics DRA performance, remember:

• If the DRA is using the maximum number of threads (MAXTHRD), when the DRA receives any new
SCHED requests it will make these requests wait until a thread is available.

• As active threads become available (for example, as a result of TERMTHRD call), some of the available
threads might be collapsed.

These factors can adversely affect performance, but both improve IMS DB resource availability because
fewer DRA threads require fewer IMS DB resources. The IMS DB resources (PSTs) are then available for
other BMPs or other CCTLs to use.

Statistics 1, 2, and 4 can serve as a measurement of the two factors, and will help you decide how to
balance performance and resource usage. For the sake of this discussion, these statistics are presented
solely from a performance point of view (for example, assume only 1 CCTL connected to a IMS DB).

Evaluating the DRA statistics
If statistics 1 and 4 are high, a SCHED request had to wait for an available thread many times. To improve
performance, raise the MAXTHRD value.

The impact of statistic 2 on performance can only be estimated if thread activity history is known (the DRA
does not provide this history but the CCTL can). If activity is steady, little thread collapsing occurs and
statistic 2 is meaningless. If activity fluctuates a lot, statistic 2 can be useful.

• If statistic 2 is 0, thread collapsing might have occurred, but the MINTHRD value was never reached.

Chapter 27. CCTL performance: monitoring DRA thread TCBs  335



• If statistic 2 is not zero, the MINTHRD value was reached and thread collapsing was stopped at those
points, thus enhancing performance. Therefore, if you have highly fluctuating thread activity, you can
improve performance by raising MINTHRD until statistic 2 has a nonzero value.

Finally, statistic 3 can be useful for adjusting your MAXTHRD value.

Note: These statistics are useful in determining MINTHRD and MAXTHRD definitions. When
MINTHRD=MAXTHRD, these statistics are of no value.

DRA tracing
Tracing (logging) of activity does not occur in the DRA, but there is tracing in IMS DB of DL/I and Fast
Path activity. The setup and invocation of DL/I tracing for IMS DB is the same as for IMS. The output trace
records for CCTL threads contain the recovery token.

Fast Path tracing in IMS DB is different from IMS. Fast Path tracing in IMS DB is activated when a SCHED
request to the DRA has the PAPLFTRD equal to ON (Fast Path trace desired for this UOR).

When this UOR completes, a trace output file is closed and sent to SYSOUT Class A.

If a thread request fails during Fast Path processing, the DRA might return the PAPL with the PAPLFTRR
field equal to ON. This recommends to the CCTL that it request the PAPLFTRD field be equal to ON (Fast
Path trace desired) in the SCHED PAPL if this failing transaction is run again by the CCTL.

Related reference
“SCHED request” on page 319
You can use the SCHED request to schedule a PSB in IMS DB. The first SCHED request made by a CCTL
thread requires a new DRA thread. Existing DRA thread TCBs are used if they are not currently processing
a DRA thread.

Sending commands to IMS DB
In an IMS DB warm standby or IMS XRF environment, a CCTL can use a z/OS SVC 34 to broadcast an
emergency restart command to an IMS DB alternate, or a SWITCH command to an IMS XRF alternate in
order to have the IMS alternate system become the primary IMS system.

These are the only IMS commands that can be done using this interface. The command verb can be
preceded by either the command recognition character or the 4-character IMS identification that is in the
PAPLDBCT field of the INIT PAPL.

Problem diagnosis
Diagnostic information is provided by the DRA in the form of an SDUMP, or a SNAP data set output. For
X'80', the SDUMP is attempted first. If it fails, SNAP is done.

Failed DRA requests have a nonzero value in the PAPLRETC field of the PAPL returned to the CCTL. The
format of PAPLRETC is:

HHSSSUUU

Where: HH= X'00'- No output

UUU
IMS DB return codes

X'88'- No output

SSS
All z/OS non-retrievable abend codes (for example, 222, 13E) or,

UUU
IMS abend codes (775, 777, 844, 849, 2478, 2479, 3303)

X'84'- SNAP only

336  IMS: System Programming APIs



UUU
IMS abend codes (260, 261, 263)

X'80'- SDUMP/SNAP provided

SSS
All the z/OS abend codes that can be tried again

UUU
All IMS abend codes besides those that are listed for the format of PAPLRETC

Diagnostic information is provided by the DRA in the form of an SDUMP, or a SNAP data set output. For
X'80', the SDUMP is attempted first. If it fails, SNAP is done. For X'84', no SDUMP is attempted, but a
SNAP is attempted.

A z/OS or IMS abend code failure results in DRA thread termination and thread TCB collapse. An IMS DB
return code has no affect on the DRA itself or the thread TCB.

DRA thread TCB failures that occur when not processing a thread request result in a SDUMP/SNAP
process. DRA control TCB failures that occur when not processing a DRA request result in a SDUMP/SNAP
process and the Control exit routine is called. For a thread request of type SCHED, a failure with X'80' or
X'84' can result in either SNAP or SDUMP.

SDUMP
SDUMP output contains:

• The IMS control region.
• DLISAS address space.
• Key 0 and key 7 CSA.
• Selected parts of DRA private storage, including the address space control block (ASCB), task control

block (TCB), and request blocks (RBs).

You can format the IMS control blocks by using the Offline Dump Formatter (ODF).

The ODF will not format DRA storage. You can use IPCS to format the z/OS blocks in CCTL private storage.

DRA SDUMPS have their own SDUMP options. As a result, any CHNGDUMP specifications cannot cause
sections of DRA SDUMPs to be omitted. If these specifications are not in the DRA list of options, they can
have an additive effect on DRA SDUMPS.

SNAP
The SNAP dump data sets are dynamically allocated whenever a SNAP dump is needed. A parameter in
the DRA Startup Table defines the SYSOUT class.

The SNAP output contains:

• Selected parts of DRA private storage, including the ASCB, TCB, and RBs.
• IMS DB control blocks.

Related reference
Offline Dump Formatter utility (DFSOFMD0) (System Utilities)

Chapter 27. CCTL performance: monitoring DRA thread TCBs  337

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_dfsofmd0.htm#ims_dfsofmd0


338  IMS: System Programming APIs



Part 5. Database Recovery Control (DBRC)
You can use DBRC to record and manage information that is stored in a set of VSAM data sets that are
collectively called the RECovery CONtrol (RECON) data set. Based on this information, you can use DBRC
to advise IMS about how to proceed for certain IMS actions.

© Copyright IBM Corp. 1974, 2022 339



340  IMS: System Programming APIs



Chapter 28. DBRC API
Your applications can obtain services from Database Recovery Control (DBRC) through the DBRC
application programming interface (API), a release-independent, assembler macro interface. The
application obtains these services by issuing DBRC API requests to DBRC, and DBRC returns the results to
an area in storage where the application can retrieve them.

The DBRC API is provided with IMS in the DSPAPI macro. A sample application program (DSPAPSMP) that
uses the DBRC API is included in the IMS.ADFSSMPL (also known as IMS.SDFSSMPL) library.

Important: All DBRC API requests must be issued under the same TCB where the DBRC start request
(STARTDBRC) was issued. Any request that is issued under a different TCB fails with reason code
X'C900000A'.

To write a program that uses the DBRC API, you must have a working knowledge of:

• Assembler language programming
• z/OS and the services it supplies
• IMS
• DBRC

Related concepts
z/OS: HLASM Language Reference
z/OS: HLASM Programmer's Guide
“Output from query requests” on page 368
Requested information is returned to the calling application in a chain of one or more blocks in storage.
The pointer to the beginning of this chain is returned in the area specified by the OUTPUT parameter of
the Query request.
Related reference
“DBRC authorization request (AUTH)” on page 353
You can use the DBRC authorization request to ensure that an invalid data sharing environment is not
created. Database authorization is the process of requesting permission to access and use a database. In
this context, the database is either a DL/I database or a Fast Path DEDB area.
“DBRC command request (COMMAND)” on page 361
You can use the DSPAPI FUNC=COMMAND request to issue a DBRC utility command from your application
program. All DBRC commands are accepted on this request, except for the LIST command.
“DBRC query request (QUERY)” on page 367
You can use the DBRC Query request (DSPAPI FUNC=QUERY) along with the TYPE parameter to retrieve
various types of information from the RECON data set.
“DBRC release buffer request (RELBUF)” on page 437
You can use the DBRC release buffer request (DSPAPI FUNC=RELBUF) to release storage that was
acquired as a result of DBRC query, command, authorization, and unauthorization requests.
“DBRC start request (STARTDBRC)” on page 439
You can use the DBRC start request (STARTDBRC) to initialize the DBRC API and to start DBRC.
“DBRC stop request (STOPDBRC)” on page 443
You can use the STOPDBRC request to terminate the DBRC application and to stop DBRC.
“DBRC unauthorization request (UNAUTH)” on page 445
You can use the UNAUTH request to explicitly remove authorization to a database or area. Authorization
by an application is implicitly removed by the STOPDBRC request. UNAUTH is the opposite of
FUNC=AUTH.
“Database query request (TYPE=DB)” on page 373

© Copyright IBM Corp. 1974, 2022 341

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.asma400/toc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.asma100/toc.htm


You can use the Database Query request (DSPAPI FUNC=QUERY TYPE=DB) to retrieve information from
the RECON concerning one or more registered databases.
“DBDS query request (TYPE=DBDS)” on page 394
You can use the DSPAPI FUNC=QUERY TYPE=DBDS request to retrieve information from the RECON data
set for one or more DBDSs in a non-HALDB database, a HALDB partition, a DBDS group, or a CA group. You
can also request recovery related information for the data set, including allocation, image copy, recovery,
and reorganization information.

Structure of applications that access the DBRC API
Your applications must follow a general structure in order to access the DBRC API.

The general structure of an application that uses the DBRC API is as follows:

1. Include the API DSECTS (DSPAPI FUNC=DSECT)
2. Initialize the API, start DBRC, establish a connection to the RECON data sets, and receive the API

token (DSPAPI FUNC=STARTDBRC)
3. Issue one or more Query requests (DSPAPI FUNC=QUERY)
4. Process the information that is returned from the Query requests
5. Return buffer storage (DSPAPI FUNC=RELBUF)
6. Terminate DBRC and the DBRC API (DSPAPI FUNC=STOPDBRC)

How an application program establishes the DBRC API environment
Your application program establishes the application programming interface (API) environment by using
the DSPAPI FUNC=STARTDBRC macro. This macro function initializes the API, creates a connection to the
Database Recovery Control (DBRC) RECON data sets, and returns the API token.

Requirements:

• The API token must be specified for all subsequent API calls.
• All API requests must be issued under the same task control block (TCB) where the FUNC=STARTDBRC

was issued.

Related concepts
“The DBRC API token” on page 344
The DBRC API token is a 4 byte field that is used to relate a series of API requests.

How an application program ends the DBRC API environment
After it has completed its work with DBRC, your application program must end the API environment using
the DSPAPI FUNC=STOPDBRC macro. This macro function allows DBRC to terminate, deallocates any
data sets that DBRC had allocated, and frees storage allocated to the API environment.

Addressing and residency mode
Your application must invoke the DBRC API in 31-bit addressing mode and can reside either above or
below the 16 MB line.

Parameter addresses passed to the API can be above or below the 16 MB line unless otherwise stated in
a macro description. Parameter addresses returned to the user by the API likewise can be above or below
the 16 MB line.

Address space control (ASC) mode and state
Your application must be in primary ASC mode to invoke the API services.

Cross memory mode is not supported. The application can run in either problem program state or
supervisor state, and can also run as an APF authorized program.

342  IMS: System Programming APIs



How the DBRC API uses registers
General purpose registers 0, 1, 14, and 15 can be changed by the DBRC API. Register 13 must contain
the address of a standard (18 word) save area. The contents of registers 2-13 are unchanged by the DBRC
API.

How to include equate (EQU) statements in your DBRC API application
You can use the DSECT function of a DSPAPI request to include equate (EQU) statements and constants
used by the DSPAPI macro in your program.

The following syntax is for the DSECT function of a DSPAPI request.

DSPAPI FUNC=DSECT

API application
Parameters that are specified on the DSPAPI macro are either literals, addresses, or values. You can pass
an address or a parameter value by using a register, a symbol, or a literal. You can specify literal values in
mixed case.
Use a register

To use a register, you must load the address of a symbol or value into one of the general purpose
registers, and then use that register (enclosed in parentheses) for the parameter in the DSPAPI
request. Use only registers in the range 2-12. Register notation does not work with MF=L because this
form does not produce executable code.

The following example shows how to pass an address using a register:

        LA 5,OUTPUTAD
        DSPAPI FUNC=QUERY,OUTPUT=(5),...
    .
    .
    .
OUTPUTAD     DS     A

The previous example generates the following instruction:

ST    5,DSPAPI_Plist_Output

Use a symbol name
To use a symbol name, you must define a named area of storage that either contains the desired
value, or will receive a returned address or value, and then use that symbol name for the parameter in
the DSPAPI request.

The following example shows how to pass an address using a symbol name:

DSPAPI FUNC=QUERY,OUTPUT=OUTPUTAD,..
    .
    .
    .
OUTPUTAD     DS     A

The previous example generates the following instructions:

LA    0,OUTPUTAD
ST    0,DSPAPI_Plist_Output

Use a literal
You can use literals for certain parameter values, such as time stamps. To use a literal, pass the literal
as a hexadecimal string for the parameter in the DSPAPI request. Literals can also be mixed-case.

Chapter 28. DBRC API  343



The following example shows how to pass a value using a literal:

                                                 72
DSPAPI FUNC=QUERY,TYPE=LOG,                      C
       STARTIME==XL12'1980030F191212009999028D'

The previous example generates the following instructions:

LA     0,=XL12'198030F191212009999028D'
ST     0,DSPAPI_Plist_Startime

Unless specifically noted, name fields are 8 characters long, left justified, and padded with blanks.

Versions of the DBRC API macro
Because parameter lists can change from one release of IMS to the next, the functions provided by the
DSPAPI macro have a version associated with them. You must specify that version number or a later
version to use the functions or parameters that are associated with a version.

If parameters have a version dependency, the parameter descriptions in each request type identify the
minimum version number that is required.

The output block version number of the DBRC API is:

• 6.0 for IMS 14
• 5.0 for IMS Version 13
• 4.0 for IMS Version 12

The DBRC API token
The DBRC API token is a 4 byte field that is used to relate a series of API requests.

Your program receives this token when a DSPAPI FUNC=STARTDBRC macro is issued. This token must
be supplied with all other macro calls that are associated with this instance of the STARTDBRC macro.
The token is no longer valid after a DSPAPI FUNC=STOPDBRC macro call. Your program does not receive
a token if the macro encounters a severe error (return code X'0000000C'). If the function receives a
warning error (return code X'00000004'), find the meaning of the accompanying reason code in Chapter
34, “DBRC start request (STARTDBRC),” on page 439 to determine what action is needed.

Related concepts
“How an application program establishes the DBRC API environment” on page 342
Your application program establishes the application programming interface (API) environment by using
the DSPAPI FUNC=STARTDBRC macro. This macro function initializes the API, creates a connection to the
Database Recovery Control (DBRC) RECON data sets, and returns the API token.

Macro forms of the DSPAPI macro
There are four different macro forms for the DSPAPI macro: Standard (S), List (L), Modify (M), and Execute
(E), with two variations, COMPLETE and NOCHECK. The List, Modify, and Execute forms are usually used in
combinations when writing reentrant programs or when the application issues multiple requests.

Defaults are taken where necessary and less validity checking is performed than for the Standard Form.
The following are explanations about when and why to use each form.

Standard form (default)
Use the standard form of the macro (MF=S or MF=S,list) to generate and modify an inline parameter
list. If your program is reentrant, do not use the standard form of the macro because reentrant
code cannot be modified. With few exceptions, if you use the standard form of the macro in writing
reentrant code, the execution of the code results in an abend. The standard form of the macro serves
three functions:

• Creates an inline parameter list
• Modifies the parameter list with the parameters specified on the request

344  IMS: System Programming APIs



• Sends the request to the API

Using the standard form, you can optionally assign a label to the generated parameter list by
specifying MF=(S,list) where list specifies the name of the label assigned to the parameter list created
by this form of the macro. The standard MF=S form of the macro is the default.

List form
Use the list form of the macro (MF=L,list) to generate a labeled, inline parameter list. This list is
populated with the parameter values specified on the macro. The list form does not modify an existing
list and does not send a request to the API. In effect, the list form creates a template that can be used
as the target of a modify form or an execute form (the real list you plan to use). If the parameter list is
generated in reentrant code, it cannot be modified. Therefore, you must obtain enough storage to hold
the parameter list and use this storage as the target of the modify or list form.

list specifies the name of the label assigned to the parameter list created by this form of the macro.

Register notation is not compatible with the List Form of the macro. Instead, an ADCON of zero is
generated.

Modify form
Use the modify form of the macro (MF=M,list,COMPLETE | NOCHECK) to change the values specified
on the macro in the parameter list specified by the list parameter. The modify form does not generate
a parameter list and does not issue requests to DBRC.
list

A symbol or a general purpose register in the range 2 to 12 that specifies the address of the
parameter list to be modified.

COMPLETE
Specifies that DBRC uses defaults (for the parameters that have defaults) for all parameters that
are not in the list and performs validity checking for the parameters that are specified in the list.

NOCHECK
Specifies no defaults are set and the existing parameter list is used. Validity checking is minimal.
However, invalid keyword combinations are flagged in error.

Execute form
Use the Execute form of the macro (MF=E,list,COMPLETE | NOCHECK) to:

• Modify a parameter list (generated by the list form) with new and additional allowable parameters
you might not have specified on the List form

• Issue a request to the API

You can change the parameters on the macro with each subsequent invocation of the execute form of
the macro.
list

Can be a symbol or a general purpose register in the range 2 to 12 and specifies the address of the
parameter list to be used.

COMPLETE
Specifies that DBRC uses defaults (for the parameters that have defaults) for all parameters that
are not in the list, and performs validity checking for the parameters that are specified in the list.

NOCHECK
Specifies no defaults are set and the existing parameter list is used. Validity checking is minimal.
However, invalid keyword combinations are flagged in error.

The following syntax is a summary of the macro forms:

MF=S | L | M | E
Specifies the macro form:
MF=S | MF=(S,list)

Specifies the standard form of the macro. MF=S is the default.

Chapter 28. DBRC API  345



MF=(L,list)
Specifies the list form of the macro.

MF=(M,list,COMPLETE |NOCHECK)
Specifies the modify form of the macro.

MF=(E,list,COMPLETE|NOCHECK)
Specifies the execute form of the macro.

Related reference
“Parameters for the AUTH request” on page 354
You can use this information to understand the parameters for the DBRC AUTH request. Each parameter
is explained as it relates to the AUTH request syntax diagram.
“Parameters for the COMMAND request” on page 362
You can use this information to understand the parameters for the DBRC COMMAND request. Each
parameter is explained as it relates to the COMMAND request syntax diagram.
“Backout query request (TYPE=BACKOUT)” on page 369
You can use the Backout query (DSPAPI FUNC=QUERY TYPE=BACKOUT) request to retrieve backout
information from the RECON data set for a specific subsystem or all subsystems.
“Log query request (TYPE=LOG)” on page 407
You can use the Log query (DSPAPI FUNC=QUERY TYPE=LOG) request to retrieve log information from
RECON for a specific instance of a subsystem.
“OLDS query request (TYPE=OLDS)” on page 416
You can use the OLDS query (DSPAPI FUNC=QUERY TYPE=OLDS) request to retrieve online log data set
information from the RECON for a specific subsystem or all subsystems.
“RECON status query request (TYPE=RECON)” on page 427
You can use the RECON status query (DSPAPI FUNC=QUERY TYPE=RECON) request to retrieve
information pertaining to the RECON data sets, including RECON header information as well as the status
of each RECON data set.
“Subsystem query request (TYPE=SUBSYS)” on page 431
You can use the Subsystem query (DSPAPI FUNC=QUERY TYPE=SUBSYS) request to retrieve subsystem
information from the RECON data set for a specific subsystem or all subsystems.
“DBRC release buffer request (RELBUF)” on page 437
You can use the DBRC release buffer request (DSPAPI FUNC=RELBUF) to release storage that was
acquired as a result of DBRC query, command, authorization, and unauthorization requests.
“DBRC stop request (STOPDBRC)” on page 443
You can use the STOPDBRC request to terminate the DBRC application and to stop DBRC.
“DBRC start request (STARTDBRC)” on page 439
You can use the DBRC start request (STARTDBRC) to initialize the DBRC API and to start DBRC.
“DBRC unauthorization request (UNAUTH)” on page 445

346  IMS: System Programming APIs



You can use the UNAUTH request to explicitly remove authorization to a database or area. Authorization
by an application is implicitly removed by the STOPDBRC request. UNAUTH is the opposite of
FUNC=AUTH.

Query output block header
This example illustrates the general format of the output from a Query request. The sample DSECT that
follows this figure describes in detail the fields of the storage blocks and their relationship to each other.

Figure 10. General format of the query output request

For STARTDBRC, SSID is the optionally specified subsystem ID. For STOPDBRC, SSID is the subsystem ID
that is specified on the STARTDBRC request.

DSPAPQHD - QUERY output block header

  OFFSET   OFFSET
 DECIMAL        HEX          TYPE             LENGTH   NAME (DIM)          DESCRIPTION
========     ========         =========      ========   ==============        
===============================
       0       (0)         STRUCTURE          32   DSPAPQHD
       0       (0)         CHARACTER           8    APQHD_EYECATCHER   Output area eyecatcher
       8       (8)         SIGNED              4    APQHD_LENGTH       Block length, hdr + data
      12       (C)         SIGNED              2    APQHD_BLKTYPE      Block type
      14       (E)         UNSIGNED            2    *                  Reserved
      15       (F)    UNSIGNED            1    APQHD_SUBPOOL      Subpool ID
      16      (10)    ADDRESS             4    APQHD_DEPPTR       Ptr to block dependent
      20      (14)    ADDRESS             4    APQHD_NEXTPTR      Ptr to next block of the same type
      24      (18)    UNSIGNED            4    APQHD_BLKOFFSET    Offset to block data
      28      (1C)    SIGNED              4    APQHD_VERSION      Version of output block

Runtime considerations for the DBRC API
There are various considerations that you must address while the DBRC API is running such as DSPAPI
and RECON access and how the API operates in an IMSplex.

DSPAPI macro access
In order to provide DBRC API (DSPAPI) macro access, your application must allocate IMS.SDFSRESL as
either a JOBLIB or STEPLIB in your program's JCL because the DSPAPI is distributed with IMS.

RECON data set access
While the DBRC API is running, it uses up to three RECON data sets, which are allocated using the DD
names RECON1, RECON2, and RECON3, or their respective alternate DD names. MDA members must be
created for the data sets before the DBRC API can allocate RECONs.

The RECONs can be allocated:

Chapter 28. DBRC API  347



• Dynamically by the API when the DSPAPI FUNC=STARTDBRC request is issued–this is the
recommended method

• Dynamically by your application program
• Through your JCL

If the DBRC API allocates the RECONs, they are deallocated when the DSPAPI FUNC=STOPDBRC request
is issued. Before the DBRC API can allocate the RECONs, MDA members must have been created for
RECON1, RECON2, and RECON3. or their respective alternate DD names. The MDA members must exist
either in a library allocated as //IMSDALIB, or in the //JOBLIB or //STEPLIB libraries. The DBRC API first
searches in //IMSDALIB, if it exists, for the MDA members.

The IMS libraries concatenated to JOBLIB or STEPLIB are usually APF Authorized. If your program runs
APF Authorized and the library containing the MDA members is not APF Authorized, allocate it using
IMSDALIB as the DD name.

Requirement: All jobs accessing a set of RECON data sets must allocate the same data set by the
same DD name. For example, RECON1=dsn1, RECON2=dsn2, and RECON3=dsn3. Failure to follow this
convention causes serious damage to the RECONs.

The API uses only one set of RECONs between a FUNC=STARTDBRC request and its associated
FUNC=STOPDBRC request. Your program, however, can use multiple sets of RECONs by deallocating
the RECONs after the FUNC=STOPDBRC request and then allocating a new set of RECONs before issuing
the next FUNC=STARTDBRC request. In order for this to work, your program must dynamically allocate
the RECONs.

Related reference
DFSMDA macro (System Definition)

RECON access authority
You can set three levels of access control for DBRC. Each level provides different permissions to users
that access the RECON data sets.

DBRC allows three levels of access control:

• Users who delete and define information in the RECON data sets require ALTER authority.
• Users who only update the RECON data sets require UPDATE authority.
• Users who do not update the RECON data sets, but who want to query information from the RECON data

sets, require READ authority.

The READONLY keyword for the DBRC Start API request (STARTDBRC) allows a user to specify a
READONLY option. READONLY is also a JCL EXEC PARM on the Database Recovery Control utility
(DSPURX00). READONLY specifies that the job is not allowed to make any updates to the RECON data
sets. READONLY is necessary if the user submitting the job does not have UPDATE (or higher) authority for
the data sets. When READONLY is specified, there is no recovery action taken when an error occurs on a
RECON data set. Instead of swapping in a spare data set, the job is terminated.

Time stamp format for DBRC requests
Time stamps that are associated with DBRC requests (either input or output) follow a packed decimal
UTC time format. DBRC ignores the value of the offset field in time stamps that are provided on Query
requests.

The time stamp is in the following format:

yyyydddFhhmmssthmijufqqs

Where:

yyyy
year (0000 to 9999)

348  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_dfsmda_macro.htm#ims_dfsmda_macro


ddd
day (000 to 366)

F
Hexadecimal character for padding purposes (X'F')

hh
hour (0 to 23)

mm
minute (0 to 59)

ss
second (0 to 59)

thmiju
millionths of a second (microseconds, 000000 to 999999)

fqqs
Time zone offset:
f

Flag bits, normally 0 for UTC representation
qq

Quarter hours (32/4=8)
s

Sign (D is negative, C is positive)

How DBRC uses the output data set
While running under the DBRC API, DBRC might output messages and other information to a data set
defined by the DD name SYSPRINT, or by a DD name you specify. If your program already uses the DD
name SYSPRINT, you can specify an alternate DD name for the API to use.

This output data set might be on tape, DASD, a printer, or routed through the output stream (SYSOUT).
The data set might be allocated by your program through JCL or dynamically allocated prior to invoking
the DBRC API. The attributes for this data set are RECFM=FBA, LRECL=121. Do not specify the block size
because DBRC will use a system determined block size (the system determines an optimal blocksize for
the device).

Wildcard support for name parameters for Query requests
For more flexible Query requests, you can use a wildcard (an asterisk) in several keyword parameters that
specify names. This wildcard support enables you to specify a name pattern for your query, expanding
some queries and filtering others.

The asterisk can be used in two formats:

• Use the asterisk alone to request information for all DB names, groups, or subsystems, depending on
the query type.

• Use the asterisk at the end of a name to request information for DB names, groups, or subsystems
whose names match the patterns. In this case, the asterisk must be preceded by at least one alphabetic
character.

Use of wildcards is supported in the following parameters:

Table 82. Parameters for DBRC QUERY with wildcard support

Parameter name Query type Syntax

DBNAME DB DBNAME=dbname | dbname*

GROUP All xxxxGROUP GROUP= * | name | name*

Chapter 28. DBRC API  349



Table 82. Parameters for DBRC QUERY with wildcard support (continued)

Parameter name Query type Syntax

NAME All xxxxGROUP NAME= * | name | name*

NAME=*

SSID • BACKOUT
• OLDS
• SUBSYS

SSID= * | symbol | symbol*

350  IMS: System Programming APIs



Chapter 29. DBRC API security features
You might want to limit access to the RECON data set to certain users. With the DBRC API, you can give
installation control to individual DBRC API requests that users might issue.

The following table lists the DBRC API requests and the resource profiles used by the security product to
protect each request. The symbol * indicates a wildcard value.

Table 83. DBRC API requests and resource profiles

Function Type Parameter Resource

STARTDBRC or
STOPDBRC

N/A No parameter specified hlq.STDBRC

This resource is used if no ssid is
specified.

SSID=ssid hlq.STDBRC.ssid

For STARTDBRC, ssid is the optionally
specified subsystem ID.

For STOPDBRC, ssid is the subsystem
ID specified on the STARTDBRC
request.

RELBUF N/A N/A N/A

QUERY RECON N/A hlq.LIST.RECON

QUERY DB DBNAME=name hlq.LIST.DB.name

DBNAME=name* hlq.LIST.DB.ALL

DBLIST=dblist hlq.LIST.DB.ALL

LOC=FIRST | NEXT hlq.LIST.DB.ALL

QUERY PART DBNAME=name hlq.LIST.DB.name

PARTNAME=name hlq.LIST.DB.name

QUERY DBDS DBNAME=name hlq.LIST.DBDS.name

GROUP=grpname hlq.LIST.DBDS.grpname

QUERY LOG STARTIME hlq.LIST.LOG.STARTIME

FROMTIME | TOTIME hlq.LIST.LOG.ALL

QUERY OLDS SSID=ssid | ssid*| * hlq.LIST.LOG.ALLOLDS

QUERY SUBSYS SSID=ssid hlq.LIST.SUBSYS.ssid

SSID=ssid* hlq.LIST.SUBSYS.ALL

SSID=* hlq.LIST.SUBSYS.ALL

SSTYPE=ALL hlq.LIST.SUBSYS.ALL

SSTYPE=BATCH hlq.LIST.SUBSYS.BATCH

SSTYPE=ONLINE hlq.LIST.SUBSYS.ONLINE

SSTYPE=DBRCAPI hlq.LIST.SUBSYS.DBRCAPI

© Copyright IBM Corp. 1974, 2022 351



Table 83. DBRC API requests and resource profiles (continued)

Function Type Parameter Resource

QUERY BACKOUT SSID=ssid hlq.LIST.BKOUT.ssid

SSID=ssid* hlq.LIST. BKOUT.ALL

SSID=* hlq.LIST. BKOUT.ALL

QUERY DBDSGROUP GROUP=grpname hlq.LIST.DBDSGRP.grpname

GROUP=*|grpname* hlq.LIST.DBDSGRP.ALL

QUERY DBGROUP GROUP=grpname hlq.LIST.DBDSGRP.grpname

GROUP=*|grpname* hlq.LIST.DBDSGRP.ALL

QUERY RECOVGROUP GROUP=grpname hlq.LIST.DBDSGRP.grpname

GROUP=*|grpname* hlq.LIST.DBDSGRP.ALL

QUERY CAGROUP GROUP=grpname hlq.LIST.CAGRP.grpname

GROUP=*|grpname* hlq.LIST.CAGRP.ALL

QUERY GSGROUP GROUP=grpname hlq.LIST.GSG.grpname

GROUP=*|grpname* hlq.LIST.GSG.ALL

COMMAND N/A N/A Use current command resources.

AUTH UNAUTH N/A AUTHLIST=list hlq.AUTH.dbname

Each dbname in the list is verified.

352  IMS: System Programming APIs



Chapter 30. DBRC authorization request (AUTH)
You can use the DBRC authorization request to ensure that an invalid data sharing environment is not
created. Database authorization is the process of requesting permission to access and use a database. In
this context, the database is either a DL/I database or a Fast Path DEDB area.

The type of access requested can be:

• Exclusive (EX) control of the resource. Exclusive access is granted if the database is not currently
authorized. After access is granted, any and all other authorization requests are not allowed. This type
of authorization is used typically by a recovery utility.

• Read (RD) access to the database (also called read with integrity). Read access is granted if the
database is not currently authorized as exclusive or update. After this access is granted, other
authorization request for exclusive or update fails. This type of authorization is typically used by utilities
that take non-concurrent (clean) image copies.

• Read-only (RO) access to the database (also called dirty read). Read-only access is granted unless the
database is currently authorized as exclusive. Once granted, other authorization request for exclusive
fail. Read-only access does not prevent the database from being updated while the application is
reading it. This type of access is typically used by utilities that take concurrent image copies.

An application must register with DBRC when it initializes in order to use this function. The requested
database must be registered with DBRC.

The database is unauthorized explicitly by the DSPAPI FUNC=UNAUTH macro, or implicitly by the DSPAPI
FUNC=STOPDBRC macro.

You can specify one or more database names for the authorization and unauthorization functions.
Databases do not have to be unauthorized in the same order that they are authorized. For instance, if
multiple databases in a list are authorized, they can be unauthorized one at a time in any order. To change
the type of access, unauthorize the database and then authorize the database again.

There are some situations in which standard database authorization is denied, such as when the "Prohibit
Authorization" flag is on for a database, or if one or more of its DBDSs require an image copy. If the intent
of the application is database image copy, recovery or reorganization, you can grant the authorization by
using the UTILITY keyword on the FUNC=AUTH request.

Related concepts
“DBRC API” on page 341
Your applications can obtain services from Database Recovery Control (DBRC) through the DBRC
application programming interface (API), a release-independent, assembler macro interface. The

© Copyright IBM Corp. 1974, 2022 353



application obtains these services by issuing DBRC API requests to DBRC, and DBRC returns the results to
an area in storage where the application can retrieve them.

Syntax for the AUTH request
You can use this syntax diagram to understand the format of the DBRC AUTH request.

name
DSPAPI FUNC=AUTH TOKEN=  address AUTHLIST=  name

ACCESS=EX

ACCESS=RD

ACCESS=RO

OUTPUT=  output
SUBPOOL=0

SUBPOOL=  number

UTILITY=NONE

UTILITY=IC

UTILITY=RECOV

UTILITY=REORG

RETCODE=  returncode RSNCODE=  reasoncode

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

VERSION=2.0

VERSION=  number

Parameters for the AUTH request
You can use this information to understand the parameters for the DBRC AUTH request. Each parameter
is explained as it relates to the AUTH request syntax diagram.

name name
Begin the name in column 1.

TOKEN=address | (2-12)
Specifies the address of the API token that was returned on the FUNC=STARTDBRC macro.

AUTHLIST=name | (2 - 12)
Specifies the list of database names or Fast Path areas to be authorized. The list consists of a fullword
that contains the number of elements in the list, a fullword that contains the length of an element,
followed by one or more elements. Each element consists of an 8-character DB name or Fast Path
DEDB name and 8 characters of blanks (X'40') or a Fast Path area name.

ACCESS=EX | RD | RO
Specifies exclusive (EX), read (RD) or read-only (RO) authorization is requested. The default is EX.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the authorization output block DSPAPAUB.

354  IMS: System Programming APIs



The output address is 0 if no output was built. This can happen if nothing in the RECON data set
satisfies the request or if an error occurs before any output could be built.

The storage for the output blocks is not preallocated by the caller. DBRC acquires storage from the
specified subpool for these blocks. The caller must free this storage using the Buffer Release service
(DSPAPI FUNC=RELBUF) specifying the returned output address.

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not specified, the default is the
subpool specified by the FUNC=STARTDBRC request. Otherwise, subpool 0 is the default.

UTILITY=IC | RECOV | REORG | NONE
Specifies the intended utility function of the application. The functions include image copy (IC),
database recovery (RECOV), database reorganization (REORG), or NONE. The default is NONE,
indicating a normal database authorization request.

RETCODE=return code | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive the return code. If specified
as a register, the register must contain the address of a word of storage to receive the return code.
Regardless of whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reason code | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage to receive the reason code.
If specified as a register, the register must contain the address of a word of storage to receive the
reason code. Regardless of whether RSNCODE is specified, register 0 contains the reason code.

MF=S | L | M | E
Specifies the macro form of the request.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this macro.

To use the parameters associated with a version, you must specify the number of that version
or a later version. If you specify an earlier version level, the parameter is not accepted by
macro processing, and an error message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the version number required.

The valid version number for the FUNC=AUTH request is 2.0 (the default).

Related concepts
“Macro forms of the DSPAPI macro” on page 344
There are four different macro forms for the DSPAPI macro: Standard (S), List (L), Modify (M), and Execute
(E), with two variations, COMPLETE and NOCHECK. The List, Modify, and Execute forms are usually used in
combinations when writing reentrant programs or when the application issues multiple requests.
Related reference
“AUTH output block” on page 359
This example contains the output block that is returned by the AUTH request. The output block contains
an array of authorized databases and indicates if the AUTH request was successful.

Return and reason codes for AUTH
You can use this table to search for reason and return codes for the DBRC AUTH request. Each code is
accompanied by the code type and an explanation of the code.

Reason and return codes for the AUTH request
Table 84. DSPAPI FUNC=AUTH return and reason codes

Code type Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

Chapter 30. DBRC authorization request (AUTH)  355



Table 84. DSPAPI FUNC=AUTH return and reason codes (continued)

Code type Return code Reason code Meaning

Warning X'00000008' X'C1000001' One or more entries in the AUTHLIST can not be
processed. A reason code has to be set in the
corresponding entry in the AUTH output block.

Severe error -
No AUTH block
returned

X'0000000C' X'C1000001' Application is not signed on to DBRC.

X'0000000C' X'C1000002' DBRC AUTH processing cannot complete because
the application is not signed, and no subsystem
record is found. This should not occur under normal
conditions because an earlier check indicated that
the subsystem was signed on.

X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC service was issued.

Storage error X'00000028' X'C1000001' Error obtaining storage for the AUTH output block.

Internal error X'0000002C' X'C1000001' Error attempting to start RECON multiple update
processing.

X'0000002C' X'C1000002' Error attempting to end RECON multiple update
processing.

X'0000002C' X'C1000003' Entry in AUTH output block could not be found. This
should not occur.

X'0000002C' X'C1000004' Internal error encountered during DBRC
authorization processing.

X'0000002C' X'C1000005' Internal error encountered during DBRC
authorization processing - invalid parameters.

Parameter
error

X'00000030' X'C1000001' No AUTHLIST passed.

X'00000030' X'C1000002' AUTHLIST passed with no entries

X'00000030' X'C1000003' Duplicate elements in AUTHLIST.

X'00000030' X'C1000004' Missing or invalid OUTPUT parameter.

X'00000030' X'C9000001' The function (FUNC) specified in the parameter list
passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000003' Invalid RETCODE address. The address of the field
containing the API RETCODE failed validity checking.
The address specifies storage not owned by the
calling program.

356  IMS: System Programming APIs



Table 84. DSPAPI FUNC=AUTH return and reason codes (continued)

Code type Return code Reason code Meaning

X'00000030' X'C9000004' Invalid RSNCODE address. The address of the field
containing the API RSNCODE failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000005' Invalid OUTPUT address. The address of the field
containing the API OUTPUT failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C900000A' An incorrect VERSION value was specified for the
requested function (FUNC).

X'00000030' X'C900001A' Invalid AUTHLIST address. The address of the field
containing the API AUTHLIST failed validity checking.
The address specifies storage not owned by the
calling program.

Related reference
“APAUB_RsnCode for AUTH output block” on page 357
You can use this table to search for APAUB_RsnCode values for AUTH request return and reason codes.
Each code is accompanied by an explanation of the code.
DBRC request return codes (Messages and Codes)

APAUB_RsnCode for AUTH output block
You can use this table to search for APAUB_RsnCode values for AUTH request return and reason codes.
Each code is accompanied by an explanation of the code.

When an AUTH output block (DSPAPAUB) is returned, one of the following reason codes is set in field
APAUB_RsnCode for each element in the list of DBs or Areas in the request.

Table 85. APAUB_RsnCode values for AUTH request return and reason codes

APAUB_RsnCode Meaning

X'00000000' Request completed successfully.

X'C1000100' Security error. SAF or the DBRC command authorization exit (DSPDCAX0) has
determined that the user is not authorized to perform the request for this
database or area.

X'C1000201' The requested state and the current authorization state are incompatible.
The database is authorized by another active or abnormally terminated
IMS subsystem, and its authorization state is incompatible with the current
authorization request.

X'C1000202' The database is not registered in the RECON data set. You may also have set up
your AUTHLIST incorrectly. For Fast Path, you must specify the DEDB name and
the area name. For non-Fast Path the element is an eight-character DB name
and eight characters of blanks.

X'C1000203' The database is marked as prohibiting further authorization for one of the
following reasons: a global /DBR, a global /STOP, an UPDATE DB STOP, or a
CHANGE.DB(NOAUTH) command.

X'C1000204' The database is authorized only if the requested state is "READ" or "READ-GO"
because of a global /DBDUMP or an UPDATE DB STOP(UPDATES) command.

Chapter 30. DBRC authorization request (AUTH)  357

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_dbrcrequestretcodes.htm#d2hsrcims_dbrcrequestretcodes


Table 85. APAUB_RsnCode values for AUTH request return and reason codes (continued)

APAUB_RsnCode Meaning

X'C1000205' The database is marked as needing an image copy.

X'C1000206' The database is marked as needing recovery.

X'C1000207' The database is marked as needing backout.

X'C100020A' The database has been previously authorized to the subsystem

X'C100020B' An invalid parameter is found during the DB usage compatibility evaluation
process. Possibly, the database record in the RECON data set is bad.

X'C100020C' The current authorization state in DBRC is invalid because of an unauthorization
error.

X'C100020D' An error occurred in DBRC while trying to process an authorization request.

X'C100020F' The database is already authorized to an active IMS subsystem. All subsystems
must be abnormally terminated.

X'C1000214' DB authorization failed because the DB was not registered with DBRC and the
RECON FORCER option is in effect, which requires that all databases must be
registered.

X'C1000220' The HALDB needs to be initialized.

X'C1000221' An attempt has been made to authorize the HALDB master. Authorization can
only be requested at the partition level.

X'C1000223' The DB partition cannot be authorized until a high key is defined. A key is
required because the HALDB master does not use a Partition Selection Routine.

X'C1000224' Image copy not allowed during HALDB OLR processing.

X'C1000225' Loading into an M-V DBDS of a partition database is not allowed

X'C1000226' Offline reorganization is not allowed when HALDB OLR is active and the HALDB
OLR is owned by an IMS subsystem.

X'C1000228' Database is being reorganized.

X'C1000229' Batch update, recovery utility, and reorganization utility are not allowed when
DB Quiesce is in progress.

X'C100022A' Image copy utility is not allowed when DB Quiesce is in progress and DB
Quiesce Held state is not yet achieved.

X'C10003xx' An authorization reason code was received that should not apply to a DBRC
application. xx is the hexadecimal equivalent to the FxFx reason returned. This
reason code is useful for diagnostics.

AUTH output block mapping
You can use this figure to understand the format of the output from a TYPE=AUTH request. The output
block for the TYPE=AUTH request begins with a standard header that is mapped by the DSPAPQHD. The
data portion of this output block is mapped by DSPAPAUB.

The following figure illustrates the format of the output from a TYPE=AUTH.

358  IMS: System Programming APIs



Figure 11. Format for a TYPE=AUTH output

AUTH output block
This example contains the output block that is returned by the AUTH request. The output block contains
an array of authorized databases and indicates if the AUTH request was successful.

Example of output block mapped by the DSPAPAUB

================================================================================
DSPAPAUB                                                                        
                                                                                
  OFFSET   OFFSET                                                               
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)     DESCRIPTION                
======== ======== ========= ========  ============== ===========================
       0      (0) STRUCTURE        8  DSPAPAUB       AUTH/UNAUTH block          
       0      (0) UNSIGNED         4   APAUB_OFFSET  Offset to first element    
       4      (4) SIGNED           4   APAUB_ELCOUNT Number of elements in list 
                                                                                
  OFFSET   OFFSET                                                               
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)     DESCRIPTION                
======== ======== ========= ========  ============== ===========================
       0      (0) STRUCTURE       24  APAUB_ELEMENT                             
       0      (0) UNSIGNED         4   APAUB_OFFNEXT Offset to next element     
       4      (4) SIGNED           4   APAUB_RSNCODE Reason code                
       8      (8) CHARACTER        8   APAUB_DBNAME  Database or DEDB name      
      16     (10) CHARACTER        8   APAUB_AREANAME                           
                                                     Area name or blanks        
                                                                                
CONSTANTS                                                                       
                                                                                
  LEN  TYPE           VALUE          NAME            DESCRIPTION                
=====  =========  =================  =============== ===========================
    8  CHARACTER   DSPAPAUB          APAUB_EYECATCHER 

Related reference
“Parameters for the AUTH request” on page 354
You can use this information to understand the parameters for the DBRC AUTH request. Each parameter
is explained as it relates to the AUTH request syntax diagram.

Chapter 30. DBRC authorization request (AUTH)  359



360  IMS: System Programming APIs



Chapter 31. DBRC command request (COMMAND)
You can use the DSPAPI FUNC=COMMAND request to issue a DBRC utility command from your application
program. All DBRC commands are accepted on this request, except for the LIST command.

All output generated by the DBRC command request is returned in an API output block rather than sent to
SYSPRINT. If DBRC command authorization is enabled, commands entered through the API are produce
the same results as the commands executed through the DBRC utility. An IMS DD statement might be
required. If GENJCL commands are executed, both a JCLPDS DD statement (or the DD name you supply
with the JCLPDS parameter) and a JCLOUT DD statement (or the DD name you supply with the JCLOUT
parameter) are required.

Related concepts
“DBRC API” on page 341
Your applications can obtain services from Database Recovery Control (DBRC) through the DBRC
application programming interface (API), a release-independent, assembler macro interface. The
application obtains these services by issuing DBRC API requests to DBRC, and DBRC returns the results to
an area in storage where the application can retrieve them.

Syntax for the COMMAND request
You can use this syntax diagram to understand the format of the Database Recovery Control (DBRC)
COMMAND request.

name
DSPAPI FUNC=COMMAND COMMAND=  command TOKEN=  address

OUTPUT=  output
SUPPRESS=NO

SUPPRESS=YES

BUFFERLENGTH=4096

BUFFERLENGTH=  length

SUBPOOL=0

SUBPOOL=  number RETCODE=  returncode RSNCODE=  reasoncode

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

VERSION=2.0

VERSION=  number

© Copyright IBM Corp. 1974, 2022 361



Parameters for the COMMAND request
You can use this information to understand the parameters for the DBRC COMMAND request. Each
parameter is explained as it relates to the COMMAND request syntax diagram.

name
Specifies the name parameter. If used, begins in column 1.

COMMAND=symbol | (2 - 12)
Specifies the address of a DBRC utility command to execute. The command consists of a header
followed by a DBRC command. The header is a full word that contains the length (in bytes) of the
following command. The DBRC command must conform to DBRC command syntax, except that the
command cannot be continued. Separators, which are blanks, a comma or a comment, are allowed
anywhere in the command where a separator is needed and may validly appear at the beginning of the
command.

TOKEN=symbol | (2 - 12)
Specifies the address of a 4-byte field to receive the API token. This token must be included in all
subsequent requests that are associated with this DSPAPI request.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the block that contains the information for the command.

SUPPRESS= | NO | YES
Specifies whether or not the command output is to be returned. SUPPRESS=YES indicates that
command output is to be returned only if the command does not complete successfully (return code
is not zero). SUPPRESS=NO indicates that command output is always returned. SUPPRESS=NO is the
default.

BUFFERLENGTH=4096 | number | (2 - 12)
Specifies the length of a buffer to receive the output that is generated by executing the command. If
a register is specified, the register must contain the desired length. The maximum length allowed is
32 760. If necessary, the length is rounded up to a double-word boundary. The default and minimum
value is 4096.

SUBPOOL=0 | number
Specifies the subpool number for the storage being obtained. If not specified, the default is the
subpool specified by the FUNC=STARTDBRC request. Otherwise, subpool 0 is the default.

RETCODE=return code | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive the return code. If specified
as a register, the register must contain the address of a word of storage to receive the return code.
Regardless of whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reason code | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage to receive the reason code.
If specified as a register, the register must contain the address of a word of storage to receive the
reason code. Regardless of whether RSNCODE is specified, register 0 contains the reason code.

MF=S | L | M | E
Specifies the macro form of the request.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this request.

To use the parameters associated with a version, you must specify the number of that version or a
later version. If you specify an earlier version level, the parameter is not accepted for processing and
an error message is issued at assembly time. If parameters have a version dependency, the parameter
descriptions with each request type identify the version number required.

The default version is 2.0.

Related concepts
“Macro forms of the DSPAPI macro” on page 344

362  IMS: System Programming APIs



There are four different macro forms for the DSPAPI macro: Standard (S), List (L), Modify (M), and Execute
(E), with two variations, COMPLETE and NOCHECK. The List, Modify, and Execute forms are usually used in
combinations when writing reentrant programs or when the application issues multiple requests.
Related reference
DBRC command syntax (Commands)
Introduction to the DBRC commands (Commands)

Return and reason codes for the COMMAND request
You can use this table to search for reason and return codes for the DBRC COMMAND request. Each code
is accompanied by the code type and an explanation of the code.

Table 86. DSPAPI FUNC=COMMAND return and reason codes

Code type Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully. The DBRC command
completed with return code 0.

Partial
success

X'00000004' X'C3000001' The DBRC command completed with a non-zero return
code.

Severe error X'0000000C' X'C3000001' The LIST command is not allowed. Use the Query
function.

X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed is
not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC service was issued.

Storage error X'00000028' X'C3000001' Error obtaining storage for a Command block.

Parameter
error

X'00000030' X'C3000001' Missing or invalid COMMAND parameter.

X'00000030' X'C3000002' Invalid command length. Must be greater than zero.

X'00000030' X'C3000003' Missing or invalid OUTPUT parameter

X'00000030' X'C3000004' Invalid BUFFERLENGTH value. Must be >= 0 and <=
32760.

X'00000030' X'C9000001' The function (FUNC) specified in the parameter list is
invalid.

X'00000030' X'C9000002' Invalid TOKEN address. The address of the field
containing the API TOKEN failed validity checking. The
address specifies storage not owned by the calling
program.

X'00000030' X'C9000003' Invalid RETCODE address. The address of the field
containing the API RETCODE failed validity checking.
The address specifies storage not owned by the calling
program.

X'00000030' X'C9000004' Invalid RSNCODE address. The address of the field
containing the API RSNCODE failed validity checking.
The address specifies storage not owned by the calling
program.

Chapter 31. DBRC command request (COMMAND)  363

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.cr/compcmds/ims_dbrccomsyn.htm#ims_cr3dbrccomsyn
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.cr/compcmds/ims_introdbrc.htm#ims_cr3introdbrc


Table 86. DSPAPI FUNC=COMMAND return and reason codes (continued)

Code type Return code Reason code Meaning

X'00000030' X'C9000005' Invalid OUTPUT address. The address of the field
containing the API OUTPUT failed validity checking.
The address specifies storage not owned by the calling
program.

X'00000030' X'C900000A' An incorrect VERSION value was specified for the
requested function (FUNC).

X'00000030' X'C9000019' Invalid COMMAND address. The address of the field
containing the API COMMAND failed validity checking.
The address specifies storage not owned by the calling
program.

COMMAND output block mapping
These examples illustrate output block mapping for the DBRC command request. You can use the
examples to understand how the DSPAPCMD output block header is structured and how the output
appears.

The following figure illustrates command output block mapping.

Figure 12. Mapping of command output block

Example of storage block mapped by the DSPAPCMD

Each storage block begins with a standard header that is mapped by the DSPAPQHD. The data portion of
this output block is mapped by DSPAPCMD, as illustrated in the following example.

DSPAPCMD                                                                        
                                                                                
  OFFSET   OFFSET                                                               
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)     DESCRIPTION                
======== ======== ========= ========  ============== ===========================
       0      (0) STRUCTURE       24  DSPAPCMD                                  
       0      (0) SIGNED           4   APCMD_RETCODE DBRC command return code   
       4      (4) SIGNED           4   *             Reserved                   
       8      (8) SIGNED           4   APCMD_CMDLEN  Length of command entered  
      12      (C) SIGNED           4   APCMD_BUFFLEN Length of command output   
      16     (10) UNSIGNED         4   APCMD_CMDOFF  Offset to command buffer   
      20     (14) UNSIGNED         4   APCMD_BUFFOFF Offset to command output   

 OFFSET   OFFSET
DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)     DESCRIPTION
======= ======== ========= ========  ============== ============================
      0      (0) STRUCTURE        *  APCMD_COMMAND  Command as entered

364  IMS: System Programming APIs



Example of DSPAPCMD output block header

In the following example, the DSPAPCMD output block header contains the status of the request, returns
an echo of the command, and any command output. The following example describes the DSECT for the
DBRC command output.

                                                                                
    Each output line is mapped by the following structure                       
================================================================================
                                                                                
  OFFSET   OFFSET                                                               
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)                      DESCRIPTION        
======== ======== ========= ========  ==============                  ===================
       0      (0) STRUCTURE        5  APCMD_OUTPUT_LINES                        
       0      (0) SIGNED           2  APCMD_OUTPUT_LINELEN   Length of line     
       2      (2) SIGNED           2   *                              Reserved           
       4      (4) CHAR VARY        1  APCMD_OUTPUT_DATA      Output data        
                                                                                                
 
CONSTANTS                                                                       
                                                                                
  LEN  TYPE           VALUE          NAME                              DESCRIPTION        
=====  =========  =================  ===============                  ===================
    8  CHARACTER  DSPAPCMD           APCMD_EYECATCHER                           

Related reference
“DBDS query request (TYPE=DBDS)” on page 394
You can use the DSPAPI FUNC=QUERY TYPE=DBDS request to retrieve information from the RECON data
set for one or more DBDSs in a non-HALDB database, a HALDB partition, a DBDS group, or a CA group. You
can also request recovery related information for the data set, including allocation, image copy, recovery,
and reorganization information.

Chapter 31. DBRC command request (COMMAND)  365



366  IMS: System Programming APIs



Chapter 32. DBRC query request (QUERY)
You can use the DBRC Query request (DSPAPI FUNC=QUERY) along with the TYPE parameter to retrieve
various types of information from the RECON data set.

• Backout (TYPE=BACKOUT)
• Database (TYPE=DB) - This variation of QUERY returns database registration and status information for:

– Full-function databases
– Fast Path databases
– HALDB databases
– DBDS or area information and supporting recovery-related information for each DBDS or area

(allocation, image copy, recovery, and reorganization)
• Database partitioning (TYPE=PART)
• DBDS or area information (TYPE=DBDS)
• Group and member information for the following group types:

– Change Accumulation (TYPE=CAGROUP). CA execution information can also be returned.
– DBDS (TYPE=DBDSGROUP)
– Database (TYPE=DBGROUP)
– Recovery (TYPE=RECOVGROUP)

• Log, Recovery and System Log Data Set (TYPE=LOG)
• Online Log Data Set (TYPE=OLDS)
• RECON status (TYPE=RECON) - This variation of QUERY returns RECON header information, as well as

the status of the RECON configuration.
• Subsystem (TYPE=SUBSYS)

Output from query requests are time consistent and access to the RECON data set is restricted during the
processing of the request.

If you enable parallel RECON access, then the Query API request returns output as if you specified
LIST.xxx STATIC (the RECON data set is not accessible while DBRC processes the Query request).

Related concepts
“DBRC API” on page 341
Your applications can obtain services from Database Recovery Control (DBRC) through the DBRC
application programming interface (API), a release-independent, assembler macro interface. The
application obtains these services by issuing DBRC API requests to DBRC, and DBRC returns the results to
an area in storage where the application can retrieve them.
Related reference
“Backout query request (TYPE=BACKOUT)” on page 369
You can use the Backout query (DSPAPI FUNC=QUERY TYPE=BACKOUT) request to retrieve backout
information from the RECON data set for a specific subsystem or all subsystems.
“Database query request (TYPE=DB)” on page 373
You can use the Database Query request (DSPAPI FUNC=QUERY TYPE=DB) to retrieve information from
the RECON concerning one or more registered databases.
“HALDB partition query request (TYPE=PART)” on page 420
You can use the DSPAPI FUNC=QUERY TYPE=PART request to retrieve information for a particular HALDB
partition from the RECON data set. You can request data set information for a specific DBDS or all
DBDSs in the partition, and can optionally request recovery-related information for the data set, including
allocation, image copy, recovery, and reorganization information.
“DBDS query request (TYPE=DBDS)” on page 394

© Copyright IBM Corp. 1974, 2022 367



You can use the DSPAPI FUNC=QUERY TYPE=DBDS request to retrieve information from the RECON data
set for one or more DBDSs in a non-HALDB database, a HALDB partition, a DBDS group, or a CA group. You
can also request recovery related information for the data set, including allocation, image copy, recovery,
and reorganization information.
“Group query request (TYPE=*GROUP)” on page 400
You can use the Group query (DSPAPI FUNC=QUERY TYPE=*GROUP) request to retrieve group and
member information for various types of groups that are registered in the RECON data set.
“Log query request (TYPE=LOG)” on page 407
You can use the Log query (DSPAPI FUNC=QUERY TYPE=LOG) request to retrieve log information from
RECON for a specific instance of a subsystem.
“OLDS query request (TYPE=OLDS)” on page 416
You can use the OLDS query (DSPAPI FUNC=QUERY TYPE=OLDS) request to retrieve online log data set
information from the RECON for a specific subsystem or all subsystems.
“RECON status query request (TYPE=RECON)” on page 427
You can use the RECON status query (DSPAPI FUNC=QUERY TYPE=RECON) request to retrieve
information pertaining to the RECON data sets, including RECON header information as well as the status
of each RECON data set.
“Subsystem query request (TYPE=SUBSYS)” on page 431
You can use the Subsystem query (DSPAPI FUNC=QUERY TYPE=SUBSYS) request to retrieve subsystem
information from the RECON data set for a specific subsystem or all subsystems.

Output from query requests
Requested information is returned to the calling application in a chain of one or more blocks in storage.
The pointer to the beginning of this chain is returned in the area specified by the OUTPUT parameter of
the Query request.

The storage for these blocks is not preallocated by the calling application. DBRC will acquire private
storage for these blocks. It is the responsibility of the calling application to free this storage using the
Buffer Release request (DSPAPI FUNC=RELBUF).

Each storage block begins with a standard header mapped by the DSPAPQHD.

Related concepts
“DBRC API” on page 341
Your applications can obtain services from Database Recovery Control (DBRC) through the DBRC
application programming interface (API), a release-independent, assembler macro interface. The

368  IMS: System Programming APIs



application obtains these services by issuing DBRC API requests to DBRC, and DBRC returns the results to
an area in storage where the application can retrieve them.

Backout query request (TYPE=BACKOUT)
You can use the Backout query (DSPAPI FUNC=QUERY TYPE=BACKOUT) request to retrieve backout
information from the RECON data set for a specific subsystem or all subsystems.

Syntax for the TYPE=BACKOUT query request

name
DSPAPI FUNC=QUERY TYPE=BACKOUT TOKEN=  address

SSID=*

SSID=  subsystem_ID

SSID=  subsystem_ID *

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

OUTPUT=  output
SUBPOOL=0

SUBPOOL=  number RETCODE=  returncode

RSNCODE=  reasoncode

VERSION=2.0

VERSION=  number

Parameters for the TYPE=BACKOUT query request
name

If used, begins in column 1.
TYPE=BACKOUT

Specifies that backout information is requested.
TOKEN=symbol | (2 - 12)

Specifies the address of a 4-byte field that was returned on the FUNC=STARTDBRC request.
SSID=* | symbol | symbol* | (2 - 12)

Specifies the subsystem name for the backout being queried. You can use the wildcard keyword * (an
asterisk) alone to request information about all groups (SSID=*, which is the default). You can also
add it at the end of a name to query all subsystems whose names match the pattern. In this case, the
asterisk must be preceded by at least one alphabetic character.

MF=S | L | M | E
Specifies the macro form of the request.

OUTPUT=output | (2 - 12)
Required parameter that specifies a field to receive a pointer to the first block of backout information
blocks.

The output address is 0 if no output was built. This can occur if nothing in the RECON satisfies the
request or if an error occurs before any output could be built.

Chapter 32. DBRC query request (QUERY)  369



The storage for the output blocks is not pre-allocated by the caller. DBRC acquires storage from the
specified subpool for these blocks. The caller must free this storage using the Buffer Release service
(DSPAPI FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not specified, the default is the
subpool specified by the FUNC=STARTDBRC request. Otherwise, subpool 0 is the default.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive the return code. If specified
as a register, the register must contain the address of a word of storage to receive the return code.
Regardless of whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage to receive the reason code.
If specified as a register, the register must contain the address of a word of storage to receive the
reason code. Regardless of whether RSNCODE is specified, register 0 contains the reason code.

VERSION=2.0 | number
Specifies the version number of the parameter list that is generated by this macro.

To use the parameters associated with a version, you must specify the number of that version
or a later version. If you specify an earlier version level, the parameter is not accepted by
macro processing, and an error message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the version number required.

Valid version numbers for the FUNC=QUERY TYPE=BACKOUT request are 1.0 and 2.0.

Return and reason codes for the TYPE=BACKOUT query request
Table 87. Return and reason codes for TYPE=BACKOUT query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D87000001' No backout records exist.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC service was issued.

X'0000000C' X'D8700100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0) determined
that the user is not authorized to perform the request.

Storage error X'00000028' X'D87000001' Error obtaining storage for BACKOUT block.

X'00000028' X'D91000001' An error occurred processing the request. DBRC will
release storage that was obtained up to this point.
However, another error was encountered during the
attempt to release storage.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8700001' Failure locating the first or the specified backout
record.

X'0000002C' X'D8700002' Failure locating the next backout record.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the parameter list
passed to the API is invalid.

370  IMS: System Programming APIs



Table 87. Return and reason codes for TYPE=BACKOUT query requests (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'C9000002' Invalid TOKEN field address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address of the
field to contain the API RETCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address of the
field to contain the API RSNCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address of the
field to contain the OUTPUT address failed validity
checking. The address specifies storage not owned by
the calling program.

X'00000030' X'C9000010' Invalid SSID field address. The address of the field
containing the SSID failed validity checking. The
address specifies storage not owned by the calling
program.

X'00000030' X'D80000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D80000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8700100' When using a wildcard, at least one alphabetic
character must precede the asterisk.

X'00000030' X'D8700101' When using a wildcard, the asterisk must be the last
character.

Output for TYPE=BACKOUT QUERY request

Figure 13. Format of the output from QUERY TYPE=BACKOUT output request

DSECT of DSPAPQBO

The following example is a sample DSECT describes in detail the fields of the storage blocks and their
interrelationship.

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)       DESCRIPTION
======== ======== ========= ========  ==============   ===========================

Chapter 32. DBRC query request (QUERY)  371



       0      (0) STRUCTURE       48  DSPAPQBO
       0      (0) CHARACTER        8   APQBO_SSID      Subsystem identifier
       8      (8) UNSIGNED         4   APQBO_FIRSTUOR  Offset of first UOR entry
      12      (C) UNSIGNED         4   APQBO_LASTUOR   Offset of last UOR entry
      16     (10) CHARACTER       12   APQBO_TIMEFIRST Earliest UOR time
      28     (1C) CHARACTER       12   APQBO_TIMELAST  Latest UOR time
      40     (28) BIT(8)           1   APQBO_FLAGS     Backout flags
                  1... ....             APQBO_SAVER    SAVUOR call during restart
      41     (29) CHARACTER        3   *               Reserved
      44     (2C) SIGNED           4   APQBO_UORCOUNT  Number of UORs

      ============================================================================
      The following structure maps the unit of recovery entries.
      There is one such entry for each unit of recovery (that is, there
      are apqbo_UORcount entries). Each unit of recovery entry
      contains the offset within the backout block to the previous
      and following entries. Field apqbo_PrevUOR is the offset of
      the previous entry and apqbo_NextUOR is the offset of the
      following entry. For the first unit of recovery (UOR) entry,
      apqbo_PrevUOR will be zero. Similarly, apqbo_NextUOR will be
      zero for the last entry. Addressability to the first UOR entry
      is given by:
          rfy apqbo_UORentry based(addr(DSPAPQBO) + apqbo_FirstUOR)
      Addressability to the last UOR entry is given by:
          rfy apqbo_UORentry based(addr(DSPAPQBO) + apqbo_LastUOR)
      Addressability to the next UOR entry, if one exists (that is:
      apqbo_NextUOR not equal to 0), is given by:
          rfy apqbo_UORentry based(addr(DSPAPQBO) + apqbo_NextUOR)
      Similarly, to address the previous entry (when apqbo_PrevUOR
      not equal to 0):
          rfy apqbo_UORentry based(addr(DSPAPQBO) + apqbo_PrevUOR)
      Once addressability has been established to a UOR entry,
      addressability to the ith database for this UOR is given by:
          rfy apqbo_DBent
                      based(addr(apqbo_UORentry) + apqbo_DBoffset
                            + (i-1) apqbo_DBLength)
      ============================================================================

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)     DESCRIPTION
======== ======== ========= ========  ============== =============================
       0      (0) STRUCTURE       64  APQBO_UORENTRY Unit of Recovery entry
       0      (0) CHARACTER       64  APQBO_PREFIX   Prefix section
       0      (0) UNSIGNED         4  APQBO_NEXTUOR  Offset of next UOR entry
       4      (4) UNSIGNED         4  APQBO_PREVUOR  Offset of previous UOR entry
       8      (8) UNSIGNED         4  APQBO_DBOFFSET Offset to DB entries
      12      (C) CHARACTER       12  APQBO_UORTIME  Time stamp for this UOR
      24     (18) CHARACTER        8  APQBO_UORPSB   PSB name
      32     (20) BIT(16)          2  APQBO_UORFLAGS 
                  1... ....           APQBO_DEFBO    Deferred backout - dynamic 
                                                      backout failure
                  .1.. ....           APQBO_INFLT    Inflight UOR
                  ..1. ....           APQBO_INDOU    Indoubt UOR
                  ...1 ....           APQBO_BMP      BMP UOR
                  .... 1...           APQBO_BOCAN    BBO identified candidate
                  .... .1..           APQBO_COLDN    Cold start ended for UOR
                  .... ..1.           APQBO_BBOK     Backed out OK by BBO
                  .... ...1           APQBO_CMD      UOR modified by command
      33     (21) 1... ....           APQBO_BATCH    Batch IMS UOR
      34     (22) CHARACTER        6  *              Reserved
      40     (28) CHARACTER       16  APQBO_RTOKN    Recovery token
      40     (28) CHARACTER        8  APQBO_RTSSID   SSID for this token
      48     (30) CHARACTER        8  APQBO_UORID    Unique UOR ID
      56     (38) SIGNED           4  APQBO_DBCOUNT  Number of DBs for this UOR
      60     (3C) UNSIGNED         2  APQBO_DBLENGTH Length of each DB entry
      62     (3E) CHARACTER        2  *              Reserved
 
 OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)     DESCRIPTION
======== ======== ========= ========  ============== ===============================
       0      (0) STRUCTURE       16  APQBO_DBENT    Database entry
       0      (0) CHARACTER        8  APQBO_DBNAME   Database name
       8      (8) BIT(8)           1  APQBO_DBFLAGS  Flags
                  1... ....           APQBO_DBOUT    UOR backed out for this DB
                  .1.. ....           APQBO_DBDEF    Dyn backout failure this DB
       9      (9) CHARACTER        7  *              Reserved

CONSTANTS

  LEN  TYPE           VALUE          NAME            DESCRIPTION

372  IMS: System Programming APIs



=====  =========  =================  =============== ===============================
    8  CHARACTER   DSPAPQBO          APQBO_EYECATCHER

Related concepts
“Macro forms of the DSPAPI macro” on page 344
There are four different macro forms for the DSPAPI macro: Standard (S), List (L), Modify (M), and Execute
(E), with two variations, COMPLETE and NOCHECK. The List, Modify, and Execute forms are usually used in
combinations when writing reentrant programs or when the application issues multiple requests.
Related reference
“DBRC query request (QUERY)” on page 367
You can use the DBRC Query request (DSPAPI FUNC=QUERY) along with the TYPE parameter to retrieve
various types of information from the RECON data set.

Database query request (TYPE=DB)
You can use the Database Query request (DSPAPI FUNC=QUERY TYPE=DB) to retrieve information from
the RECON concerning one or more registered databases.

This information includes the following database types:

• Full function
• Fast Path DEDB
• HALDB (returns information about the HALDB master and all of its partitions)

Optionally, you can request data set and area information. If you request this information, you can also
request recovery-related information for the data set or area, including allocation, image copy, recovery,
and reorganization information.

Subsections:

• “Syntax for the TYPE=DB query request” on page 374
• “Parameters for the TYPE=DB query request” on page 374
• “Return and reason codes for the TYPE=DB query request” on page 376
• “Output for TYPE=DB query request” on page 379
• “Full function output” on page 379
• “DSECT of DSPAPQDB” on page 380
• “DSECT of DSPAPQSL” on page 381
• “Fast Path DEDB output” on page 382
• “DSECT of DSPAPQFD” on page 382
• “DSECT of DSPAPQAR” on page 383
• “DSECT of DSPAPQEL” on page 384
• “HALDB (master and all partitions) output” on page 385
• “DSECT of DSPAPQHB” on page 385
• “DSECT of DSPAPQHP” on page 386
• “DBDS output” on page 388
• “DSECT of DSPAPQDS” on page 388
• “Recovery Information (RCVINFO) output” on page 390
• “DSECT of DSPAPQRI” on page 390
• “DSECT of DSPAPQAL” on page 391
• “DSECT of DSPAPQIC” on page 391
• “DSECT of DSPAPQRV” on page 392
• “DSECT of DSPAPQRR” on page 393

Chapter 32. DBRC query request (QUERY)  373



• “Database not found output” on page 393
• “DSECT of DSPAPQNF” on page 394

Syntax for the TYPE=DB query request

name
DSPAPI FUNC=QUERY TYPE=DB TOKEN=  address

DDN=NULL

DDN= ddname

DDN= *

LIST=NONE

LIST=( ALLOC

IC

RECOV

REORG

)

LIST=ALL

DBNAME=  dbname
LOC=SPEC

LOC=NEXT

DBNAME=  dbname*

DBLIST=  namelist

LOC=FIRST

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

OUTPUT=  output

SUBPOOL=0

SUBPOOL=  number RETCODE=  returncode RSNCODE=  reasoncode

VERSION=2.0

VERSION=  number

Parameters for the TYPE=DB query request
name

If used, begins in column 1.

374  IMS: System Programming APIs



TYPE=DB
Specifies that RECON information for one or more databases is requested.

TOKEN=address | (2 - 12)
Specifies the address of a 4-byte field that was returned on the FUNC=STARTDBRC request.

DBNAME=symbol | symbol* | (2 - 12)
Specifies the name of the database whose information is being queried. This name can be the name
of a full-function database, a Fast Path DEDB, or a HALDB. You can use the wildcard keyword * (an
asterisk) at the end of a name to query databases whose names match the pattern. In this case, the
asterisk must be preceded by at least one alphabetic character.

You must specify a DBNAME or DBLIST if you do not specify LOC=FIRST.

DBLIST=namelist | (2 - 12)
Specifies the list of database names whose information is being queried. Each name in the list can be
the name of a Full Function database, a Fast Path DEDB, or a HALDB.

The list consists of a header and one or more eight-character list entries. The header consists of a
fullword containing the number of entries in the list. The name entries are left-aligned and are padded
with blanks.

You must specify a DBNAME or DBLIST if you do not specify LOC=FIRST.

DDN=ddname | (2 - 12) | NULL
Specifies the DD name of the data set or area. An asterisk (*) can be specified to return information
about all DBDSs or areas for the database. If a specific DD name is specified with DBLIST or a
DBNAME that specifies a HALDB, the specific DD name is ignored and treated as if DDN=* was
specified.

If you specify DDN=NULL, no DBDS or area information is returned. DDN=NULL is the default.

LIST=(ALLOC | IC | RECOV | REORG) | ALL | LIST=NONE
Specifies the type (or types) of supporting information to be included in the query output for the
specified DBDS or area.

If DDN is not specified, this information is returned for all DBDSs or areas in the database.

One or more of the specific values, separated by commas, can be included in the list: ALLOC
(allocation records), IC (image copy records), RECOV (recovery records), or REORG (reorganization
records). LIST=ALL specifies that all supporting information is requested.

To view information about HALDB online alter processing, specify LIST(REORG). The information
about alter processing is included with the information about any other reorganization processes.

If you specify LIST=NONE, no supporting information is returned. LIST=NONE is the default.

LOC=FIRST | NEXT | SPEC
Specifies that the request is for either the specified, the first, or the next database defined in the
RECON.

DBNAME=dbname is required when you specify LOC=NEXT or LOC=SPEC, but it is not allowed for
LOC=FIRST.

Databases are in alphanumeric order. The next database might not necessarily be of the same type as
the database name specified in the DBNAME parameter. The value in the DBNAME parameter is used
as the base of the search and does not need to be a name of a database registered in the RECON.

LOC=SPEC is the default.

MF=S | L | M | E
Specifies the macro form of the request.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the first block of a possible chain of database information
blocks.

Chapter 32. DBRC query request (QUERY)  375



The output address is zero if no output was built. This can occur if nothing in the RECON satisfies the
request or if an error occurs before any output could be built.

The storage for the output blocks is not pre-allocated by the caller. DBRC acquires storage from the
specified subpool for these blocks. The caller must free this storage using the Buffer Release service
(DSPAPI FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not specified, the default is the
subpool specified by the FUNC=STARTDBRC request. Otherwise, subpool 0 is the default.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive the return code. If specified
as a register, the register must contain the address of a word of storage to receive the return code.
Regardless of whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage to receive the reason code.
If specified as a register, the register must contain the address of a word of storage to receive the
reason code. Regardless of whether RSNCODE is specified, register 0 contains the reason code.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this request.

To use the parameters associated with a version, you must specify the number of that version
or a later version. If you specify an earlier version level, the parameter is not accepted by
macro processing, and an error message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the version number required.

Valid version numbers for the FUNC=QUERY TYPE=DB request are 1.0 and 2.0.

Return and reason codes for the TYPE=DB query request
Table 88. Return and reason codes for TYPE=DB query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Partial
success

X'00000004' X'D8200001' One or more databases in DBLIST is not registered
in the RECON. A "DB not found" data block with an
eyecatcher of DSPAPQNF is built for each database
that was not found. The block is in the chain of blocks
returned.

Warning X'00000008' X'D8220001' No partitions are registered in RECON data set for the
HALDB. No information blocks are returned.

X'00000008' X'D8200001' None of the databases in the DBLIST are registered in
the RECON. No information blocks are returned.

X'00000008' X'D8220002' The specified partition is not registered in RECON. No
information blocks are returned.

X'00000008' X'D8200002' The specified database is not registered in the
RECON. No information blocks are returned. If the
request specified LOC=NEXT, you have reached the
end of the list of databases registered in the RECON.

X'00000008' X'D8200003' No DBs with the specified wildcard name pattern
are registered in RECON. No information blocks are
returned.

X'00000008' X'D8210002' The specified DBDS or Area is not registered in the
RECON. No information blocks are returned.

376  IMS: System Programming APIs



Table 88. Return and reason codes for TYPE=DB query requests (continued)

Code type Return codes Reason codes Meaning

X'00000008' X'D8220003' A partition preceding the specified partition does not
exist in the RECON data set. No information blocks
are returned.

X'00000008' X'D8220004' A partition following the specified partition does not
exist in the RECON data set. No information blocks
are returned.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC service was issued.

X'0000000C' X'D8200100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0) determined
that the user is not authorized to perform the request.

Storage error X'00000028' X'D8200001' Error obtaining storage for IMSDB block.

X'00000028' X'D8200002' Error obtaining storage for HALDB block.

X'00000028' X'D8200003' Error obtaining storage for FPDEDB block.

X'00000028' X'D8200004' Error obtaining storage for DB not found block
(DBNOTFND).

X'00000028' X'D8210001' Error obtaining storage for DBDS block.

X'00000028' X'D8210002' Error obtaining storage for AREA block.

X'00000028' X'D8210003' Error obtaining storage for RCVINFO block.

X'00000028' X'D8210004' Error obtaining storage for ALLOC block.

X'00000028' X'D8210005' Error obtaining storage for IC block.

X'00000028' X'D8210006' Error obtaining storage for REORG block.

X'00000028' X'D8210007' Error obtaining storage for RECOV block.

X'00000028' X'D8220001' Error obtaining storage for PART block.

X'00000028' X'D9100001' An error occurred processing the request. DBRC will
release storage that was obtained up to this point.
Another error was encountered, however, during the
attempt to release storage.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8200001' DB record locate failure processing DBLIST.

X'0000002C' X'D8200002' DB record locate failure processing single database
request.

X'0000002C' X'D8200003' DB record locate failure processing database request
using a wildcard.

X'0000002C' X'D82021xx' Internal Query DBDS call returned RC=X'30'
RSN=X'D82100xx', a parameter error.

Chapter 32. DBRC query request (QUERY)  377



Table 88. Return and reason codes for TYPE=DB query requests (continued)

Code type Return codes Reason codes Meaning

X'0000002C' X'D82022xx' Internal Query PART call returned RC=X'30'
RSN=X'D82200xx', a parameter error.

X'0000002C' X'D8210001' Failure locating the specified DBDS record.

X'0000002C' X'D8210002' Failure locating the next DBDS record.

X'0000002C' X'D8210003' Failure locating the first DBDS record.

X'0000002C' X'D8210004' Failure locating the first Area AUTH record.

X'0000002C' X'D8210005' Failure locating the first ALLOC record.

X'0000002C' X'D8210006' Failure locating the next ALLOC record.

X'0000002C' X'D8210007' Failure locating the first IC record.

X'0000002C' X'D8210008' Failure locating the next IC record.

X'0000002C' X'D8210009' Failure locating the first REORG record.

X'0000002C' X'D821000A' Failure locating the next REORG record.

X'0000002C' X'D821000B' Failure locating the first RECOV record.

X'0000002C' X'D821000C' Failure locating the next RECOV record.

X'0000002C' X'D8220001' Failure locating the first HALDB partition record.

X'0000002C' X'D8220002' Failure attempting to locate the DB record associated
with the HALDB partition being processed.

X'0000002C' X'D8220003' Failure locating the next HALDB partition record.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the parameter list
passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address of the
field to contain the API RETCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address of the
field to contain the API RSNCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address of the
field to contain the OUTPUT address failed validity
checking. The address specifies storage not owned by
the calling program.

X'00000030' X'C9000008' Invalid DBNAME or DBLIST address. The address of
the field containing the DBNAME or DBLIST failed
validity checking. The address specifies storage not
owned by the calling program.

378  IMS: System Programming APIs



Table 88. Return and reason codes for TYPE=DB query requests (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'C9000009' Invalid DDN address. The address of the field
containing the DDN failed validity checking. The
address specifies storage not owned by the calling
program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8200001' LOC parameter is not allowed with DBLIST.

X'00000030' X'D8220001' The DBNAME or PARTNAME is required.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8200002' DBNAME parameter is not allowed with LOC=FIRST.

X'00000030' X'D8220002' The LOC=FIRST | LAST is required with the DBNAME.

X'00000030' X'D8200003' DBNAME parameter is required with LOC=NEXT.

X'00000030' X'D8220003' The LOC=FIRST | LAST is not allowed with the
PARTNAME.

X'00000030' X'D8200004' DBNAME or DBLIST is required.

X'00000030' X'D8200005' Count of databases in DBLIST is zero.

X'00000030' X'D8200006' Database information is being requested for a HALDB
partition. DBNAME or DBLIST contains a partition
name.

X'00000030' X'D8200007' DBNAME wildcard not allowed with LOC=NEXT

X'00000030' X'D8200100' When using a wildcard, at least one alphabetic
character must precede the asterisk.

X'00000030' X'D8200101' When using a wildcard, the asterisk must be the last
character.

Output for TYPE=DB query request
The following figures illustrate the format of output from QUERY TYPE=DB requests. The sample DSECTs
that follow the figures describe in detail the fields of the storage blocks and their relationship.

Full function output
The following shows the fields of the DSPAPQDB block.

Chapter 32. DBRC query request (QUERY)  379



Figure 14. Format of QUERY TYPE=DB (full function) output

The DBDS information is returned only if DDN is specified.

DSECT of DSPAPQDB

The following example describes the fields contained in the DSPAPQDB block shown in Figure 14 on page
380.

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)       DESCRIPTION
======== ======== ========= ========  ==============   ===============================
       0      (0) STRUCTURE       96  DSPAPQDB
       0      (0) CHARACTER        8   APQDB_DBNAME    Database name
       8      (8) UNSIGNED         4   APQDB_SSLIST    Offset to SS list (DSPAPQSL), zero
                                                       is no SS auth'd
      12      (C) SIGNED           4   *(3)            Reserved
      24     (18) UNSIGNED         2   APQDB_IRCNT     IC receive needed counter
      26     (1A) BIT(8)           1   APQDB_AUFLAG    Authorization flags
                  1... ....            APQDB_BKFLG     Backout needed flag
                  .1.. ....            APQDB_PAFLG     Prohibit authorization
                  ..1. ....            APQDB_RDFLG     Read only SS auth
                  ...1 ....            APQDB_NONRV     nonrecoverable
                  .... 1...            APQDB_DBREORGI  Reorg intent
                  .... .1..            APQDB_DBQUI     Quiesce in progress
                  .... ..1.            APQDB_DBQUIH    Quiesce held
      27     (1B) CHARACTER        5   APQDB_IRLMAU    IRLMID of auth SS
      32     (20) SIGNED           2   APQDB_RCVCTR    Recovery needed count
      34     (22) SIGNED           2   APQDB_ICCTR     IC needed count
      36     (24) SIGNED           2   APQDB_ICRECCTR  IC recommended counter
      38     (26) UNSIGNED         1   APQDB_SHRLVL    Share level of DB
      39     (27) UNSIGNED         1   APQDB_HELDAU    Held auth state
                  1... ....            APQDB_HAUBIT    High order bit flag
      40     (28) UNSIGNED         2   APQDB_DMBNUM    Global DMB number
      42     (2A) SIGNED           2   APQDB_SSNUM     # of SS auth DB
      44     (2C) UNSIGNED         2   APQDB_SSENTLEN  Length of each SS entry
      46     (2E) UNSIGNED         1   APQDB_CACCSS    Access state for chg auth
      47     (2F) UNSIGNED         1   APQDB_CANCDD    Encode state for chg auth
      48     (30) UNSIGNED         1   APQDB_CAHELD    Held state for chg auth
      49     (31) CHARACTER        3   *               Reserved
      52     (34) UNSIGNED         2   APQDB_EQECNT    Total EQE count
      54     (36) BIT(16)          2   APQDB_RSRFLG    Flags
                  1... ....            APQDB_RCVTRK    Recovery level tracking
                  .1.. ....            APQDB_TRKSPN    Tracking is suspended
                  ..1. ....            APQDB_PURBIT    Suspended by time
                  ...1 ....            APQDB_ICNDIS    IC needed disabled option
      56     (38) CHARACTER        8   APQDB_GSGNAME   Global Service Group name
      64     (40) UNSIGNED         4   APQDB_USID      Last alloc USID
      68     (44) UNSIGNED         4   APQDB_AUSID     Last authorized USID
      72     (48) UNSIGNED         4   APQDB_RUSID     Last received USID
      76     (4C) UNSIGNED         4   APQDB_HUSID     Hardened by tracker USID
      80     (50) UNSIGNED         4   APQDB_RNUSID    Receive needed USID
      84     (54) CHARACTER        8   APQDB_RECOVGRP  Recovery Group name
      92     (5C) CHARACTER        4   *               Reserved

CONSTANTS

380  IMS: System Programming APIs



  LEN  TYPE           VALUE          NAME              DESCRIPTION
=====  =========  =================  ===============   ===============================
    8  CHARACTER   DSPAPQDB          APQDB_EYECATCHER
     Possible Quiesce request type values (APQDB_DBQTYPE)

DSECT of DSPAPQSL

The following example describes the fields contained in the SS data (DSPAPQSL).

DSPAPQSL

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)      DESCRIPTION
======== ======== ========= ========  ==============  ===============================
       0      (0) STRUCTURE       16  DSPAPQSL
       0      (0) CHARACTER       16  APQSL_SSINFO    Subsystem list entry
       0      (0) CHARACTER        8  APQSL_SSNAME    Subsystem ID
       8      (8) UNSIGNED         1  APQSL_ACCESS    Access intent
       9      (9) UNSIGNED         1  APQSL_NCDDST    Encoded state
      10      (A) BIT(8)           1  APQSL_SSFLGS    Flags
                  1... ....           APQSL_SSROLE    0 - Active SS, 1 - Tracking SS
                  .1.. ....           APQSL_SSXRFC    1 - XRF Capable
                  ..1. ....           APQSL_SSBAT     1 - Batch SS
                  ...1 ....           APQSL_SSIC      1 - IC SS
      11      (B) BIT(8)           1  *               Reserved
      12      (C) CHARACTER        4  APQSL_BKINFO    Backout information
      12      (C) SIGNED           2  APQSL_BKCTR     Backout needed count
      14      (E) SIGNED           2  APQSL_BKNUM     Backout done count

CONSTANTS

  LEN  TYPE           VALUE          NAME             DESCRIPTION
=====  =========  =================  ===============  ===============================

     Possible access intent values (apqsl_ACCESS)
====================================================================================
    1  HEX         01                APQSL_ACCRO      READ-GO
    1  HEX         02                APQSL_ACCRD      READ
    1  HEX         03                APQSL_ACCUP      UPDATE
    1  HEX         04                APQSL_ACCEX      EXCLUSIVE

Chapter 32. DBRC query request (QUERY)  381



Fast Path DEDB output

Figure 15. Format of QUERY TYPE=DB (Fast Path DEDB) output

The area information is returned only if DDN is specified. Recovery information (RCVINFO) is only returned
if the LIST parameter is specified.

DSECT of DSPAPQFD

The following example describes the fields contained in the DSPAPQFD and DSPAPQAR blocks shown in
Figure 15 on page 382.

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)              DESCRIPTION
======== ======== ========= ========  ==============          ============================
       0      (0) STRUCTURE       38  DSPAPQFD
       0      (0) CHARACTER        8  APQFD_DBNAME            Database name
       8      (8) SIGNED           4  *(4)                    Reserved
      24     (18) SIGNED           2  APQFD_RCVCTR            Recovery Needed Counter
      26     (1A) SIGNED           2  APQFD_ICCTR             IC Needed Counter
      28     (1C) SIGNED           2  APQFD_ICRECCTR          IC Recommended Counter
      30     (1E) UNSIGNED         2  APQFD_DMBNUM            Global DMB number
      32     (20) UNSIGNED         2  APQFD_EQECNT            Total EEQE count
      34     (22) SIGNED           2  APQFD_AUTHDAREAS        Number of Areas authorized
      36     (24) UNSIGNED         1  APQFD_SHRLVL            Share Level
      37     (25) BIT(8)           1  APQFD_FLAGS             Flags
                  1... ....           APQFD_PAFLG             Prohibit authorization
                  .1.. ....           APQFD_NONRV             nonrecoverable
                  ..1. ....           APQFD_ICNDIS            IC needed disabled option
                  ...1 ....           APQFD_USRRV             user-recoverable (VERSION=1.01)
                  .... 1...           APQFD_FULLSEG_DEFAULT   Default full segment logging
                                                              setting for areas (VERSION=4.0)
      38     (26) UNSIGNED         2  APQFD_ALTER#            FP DEDB alter status
                                                                 (VERSION=5.0)
      40     (28) CHARACTER        8  APQFD_RANDOMIZER        Randomizer name
                                                                 (VERSION=5.01)
CONSTANTS

  LEN  TYPE           VALUE          NAME              DESCRIPTION
=====  =========  =================  ===============   ==============================
    8  CHARACTER   DSPAPQFD          APQFD_EYECATCHER

382  IMS: System Programming APIs



DSECT of DSPAPQAR

The following example describes the fields contained in the DSPAPQFD and DSPAPQAR blocks shown in
Figure 15 on page 382.

 OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH   NAME (DIM)     DESCRIPTION
======== ======== ========= ========   =============  =============================
       0      (0) STRUCTURE      196   DSPAPQAR
       0      (0) CHARACTER        8   APQAR_DBNAME   Database name
       8      (8) CHARACTER        8   APQAR_AREANAME Area name
      16     (10) UNSIGNED         4   APQAR_EEQELIST Offset to EEQE list
                                                      (DSPAPQEL), zero if no EEQEs
      20     (14) UNSIGNED         4   APQAR_SSLIST   Offset to SS list (DSPAPQSL),
                                                      zero if no SS auth'd
      24     (18) UNSIGNED         4   APQAR_ADSLIST  Offset to ADS list, zero if
                                                      none registered
      28     (1C) SIGNED           4   *              Reserved
      32     (20) UNSIGNED         1   APQAR_SHRLVL   Share level of DB
      33     (21) UNSIGNED         1   APQAR_HELDAU   Held auth state
                  1... ....            APQAR_HAUBIT   High order bit flag
      34     (22) UNSIGNED         2   APQAR_DMBNUM   Global DMB number
      36     (24) SIGNED           2   APQAR_SSNUM    # subsytems authd to Area
      38     (26) UNSIGNED         2   APQAR_SSENTLEN Length of each SS entry
      40     (28) UNSIGNED         1   APQAR_CACCSS   Access state for CHG AUTH
      41     (29) UNSIGNED         1   APQAR_CANCDD   Encoded state for CHG AUTH
      42     (2A) UNSIGNED         1   APQAR_CAHELD   Held state for CHG AUTH
      43     (2B) CHARACTER        5   APQAR_IRLMAU   IRLMID of auth SS
      48     (30) BIT(16)          2   APQAR_FLAGS
                  1... ....            APQAR_RECYC    REUSE image copies
                  .1.. ....            APQAR_ICREC    Image Copy Recommended
                  ..1. ....            APQAR_IC       Image Copy Needed
                  ...1 ....            APQAR_ICNDIS   IC needed disabled option 1 =
                                                      IC Needed Disabled
                  .... 1...            APQAR_RECOV    Recovery needed
                  .... .1..            APQAR_INPRO    HSSP CIC in progress
                  .... ..1.            APQAR_GT240    M/C FP GT240 area DEDB
                  .... ...1            APQAR_VSO      VSO flag
      49     (31) 1... ....            APQAR_PREOP    PREOPEN flag
                  .1.. ....            APQAR_PRELD    PRELOAD flag
                  ..1. ....            APQAR_LKASD    VSO CF buffer lookaside
                  ...1 ....            APQAR_MAS      VSO area resides in multi-area
                                                      CF structure
                  .... 1...            APQAR_RRGAL    REORG since last ALLOC, only
                                                      set if RSR-covered
                  .... .1..            APQAR_TSRAL    TS recov since last ALLOC, only
                                                      set if RSR-covered
                  .... ..1.            APQAR_FULLSEG  Full segment logging in effect
                                                      (VERSION=4.0)
      50     (32) BIT(8)           1   APQAR_RSRFLAGS Remote Site Recovery flags
                  1... ....            APQAR_RCVTRK   Recovery Level Tracking
                  .1.. ....            APQAR_TRKSPN   Tracking was suspended
                  ..1. ....            APQAR_PURBIT   Suspended by time
                  ...1 ....            APQAR_RCVRQ    Receive Required
      51     (33) BIT(8)           1   APQAR_AUFLAG   Authorization flags
                  1... ....            APQAR_PAFLG    Prohibit authorization
                  .1.. ....            APQAR_NONRV    nonrecoverable
                  ..1. ....            APQAR_USSRV    User-recoverable (VERSION=1.01)
                  ...1 ....            APQAR_DBQUI    Quiesce in progress
                  .... 1...            APQAR_DBQUIH   Quiesce held
                  .... .1..            APQAR_DBQUICMD HALDB/DEDB on command
                  .... ..1.            APQAR SHADOW   Shadow Area (VERSION=6.0)
      52     (34) BIT(8)           1   APQAR_DSORG    Data set organization
                  1... ....            APQAR_VSAM     1 = VSAM, 0 = NON-VSAM
                  .1.. ....            APQAR_INDEX    0 = Non-indexed (OSAM or ESDS),
                                                      1 = Indexed(ISAM or KSDS)
                  ..11 1111             *             Reserved - zeroes

The following example describes the fields contained in the DSPAPQFD and DSPAPQAR blocks shown in
Figure 15 on page 382.

      53     (35) CHARACTER        1   APQAR_DBORG      IMS DB organization
      54     (36) CHARACTER        8   APQAR_GSGNAME    GSG Name
      62     (3E) CHARACTER        2   *                 Reserved
      64     (40) UNSIGNED         4   APQAR_USID       Last ALLOC USID
      68     (44) UNSIGNED         4   APQAR_AUSID      Last authorized USID
      72     (48) UNSIGNED         4   APQAR_RUSID      Last received USID
      76     (4C) UNSIGNED         4   APQAR_HUSID      Hardened USID
      80     (50) UNSIGNED         4   APQAR_RNUSID     Receive needed USID

Chapter 32. DBRC query request (QUERY)  383



      84     (54) CHARACTER        8   APQAR_RECOVGRP   Recovery Group name
      92     (5C) CHARACTER        8   APQAR_CAGRPNAME  Change Accum group name
     100     (64) UNSIGNED         2   APQAR_GENMX      Max number of ICs that
                                                        may be predefined for this area
     102     (66) UNSIGNED         2   APQAR_GENNO      Number of available ICs for this area
     104     (68) UNSIGNED         2   APQAR_USDIC      Number of ICs used
     106     (6A) SIGNED           2   APQAR_EEQECOUNT  EEQE count
     108     (6C) UNSIGNED         2   APQAR_EEQELENGTH EEQE entry length
     110     (6E) UNSIGNED         1   APQAR_NOADS      # of ADS in the area
     111     (6F) UNSIGNED         1   APQAR_AVADS      # of available ADS
     112     (70) UNSIGNED         2   APQAR_ADSLENGTH  ADS entry length
     114     (72) CHARACTER        2   *                Reserved
     116     (74) CHARACTER       40   APQAR_JCL        GENJCL members
     116     (74) CHARACTER        8   APQAR_ICJCL      Image copy member
     124     (7C) CHARACTER        8   APQAR_OIJCL      Online IC member
     132     (84) CHARACTER        8   APQAR_RCJCL      Recovery member
     140     (8C) CHARACTER        8   APQAR_DFJCL      DEFLTJCL member
     148     (94) CHARACTER        8   APQAR_RVJCL      Receive JCL member
     156     (9C) UNSIGNED         2   APQAR_RTPRD      IC retention period
     158     (9E) UNSIGNED         2   APQAR_DSID       IMS data set ID
     160     (A0) UNSIGNED         4   APQAR_DSSN       Data set sequence number
     164     (A4) CHARACTER       16   APQAR_CFST1      VSO CF Structure 1
     180     (B4) CHARACTER       16   APQAR_CFST2      VSO CF Structure 2

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)     DESCRIPTION
======== ======== ========= ========  =============  ============================
       0      (0) STRUCTURE       56  APQAR_ADSLT    Area Data Set List
       0      (0) CHARACTER        8  APQAR_ADSDD    DDNAME of the ADS
       8      (8) CHARACTER       44  APQAR_ADSDN    DSN of the ADS
      52     (34) BIT(8)           1  APQAR_ADSBT
                  1... ....           APQAR_ADSAV    Avail status of ADS
                  .1.. ....           APQAR_ADSFM    Format status of create util
                  ..1. ....           APQAR_ADSCP    Copy status of create util
      53     (35) CHARACTER        3   *             Reserved

CONSTANTS

  LEN  TYPE           VALUE          NAME             DESCRIPTION
=====  =========  =================  ===============  ============================
    8  CHARACTER   DSPAPQAR          APQAR_EYECATCHER
     Possible Quiesce request type values (APQAR_DBQTYPE)

DSECT of DSPAPQEL

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)       DESCRIPTION
======== ======== ========= ========  ==============   ===============================
       0      (0) STRUCTURE       13  DSPAPQEL
       0      (0) CHARACTER       13  APQEL_EEQEENTRY  EEQE descriptor entry
       0      (0) BIT(8)           1  APQEL_EQEFG      EEQE flags
                  1... ....           APQEL_ERTL       Toleration error
                  .1.. ....           APQEL_ERRD       Read error
                  ..1. ....           APQEL_ERWT       Write error
                  ...1 ....           APQEL_ERUS       DBRC user modified
                  .... 1...           APQEL_ERPM       DBRC permanent error
                  .... .1..           APQEL_INDT       Indoubt EEQE
                  .... ..1.           APQEL_CIIND      Index CI indicator
       1      (1) CHARACTER        4  APQEL_EQE        EEQE
       5      (5) CHARACTER        8  APQEL_SSID       SSID which owns the EEQE

384  IMS: System Programming APIs



HALDB (master and all partitions) output

Figure 16. Format of QUERY TYPE=DB (HALDB master and partitions) output

The DBDS information is returned only if DDN is specified.

DSECT of DSPAPQHB

The following two examples describe the fields contained in the DSPAPQHB and DSPAPQHP blocks shown
in Figure 16 on page 385. Refer to Figure 17 on page 388 for an illustration of the fields of the DBDS
output.

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)      DESCRIPTION
======== ======== ========= ========  ==============  ===============================
       0      (0) STRUCTURE       60  DSPAPQHB
       0      (0) CHARACTER        8   APQHB_DBNAME   HALDB name
       8      (8) SIGNED           4   *(4)           Reserved
      24     (18) BIT(8)           1   APQHB_FLAGS    Flags
                  1... ....            APQHB_NONRV    nonrecoverable
                  .1.. ....            APQHB_ICNDIS   IC needed disabled
                  ..1. ....            APQHB_OLRCAP   HALDB is OLR capable
                ...1 ....            APQHB_OSAM8G   HALDB OSAM is 8GB addressability
      25     (19) BIT(8)           1   APQHB_ORG      DB organization
                  1... ....            APQHB_PSINDEX  PSINDEX DB
                  .1.. ....            APQHB_PHIDAM   PHIDAM DB
                  ..1. ....            APQHB_PHDAM    PHDAM DB
                  ...1 ....            APQHB_OSAM     OSAM DB
                  .... 1111            *              Reserved
      26     (1A) UNSIGNED         1   APQHB_SHRLVL   Share level
      27     (1B) UNSIGNED         1   APQHB_DSGCNT   # DS Group members
      28     (1C) UNSIGNED         2   APQHB_DMBNUM   Global DMB number
      30     (1E) UNSIGNED         2   APQHB_PARTID   Current Partition ID
      32     (20) SIGNED           2   APQHB_PART#    Number of parts in HALDB
      34     (22) UNSIGNED         2   APQHB_VERSION# Version number
      36     (24) CHARACTER        8   APQHB_PSNAME   Name of Part Sel Routine
      44     (2C) CHARACTER        8   APQHB_GSGNAME  GSG name
      52     (34) CHARACTER        8   APQHB_RECOVGRP Recovery Group name
      60     (3C)  UNSIGNED         2  APQHB_ALTER#   The total number of partitions 

Chapter 32. DBRC query request (QUERY)  385



                                                      to be altered in an online 
                                                      HALDB database
      62     (3E)  UNSIGNED         2  APQHB_ALTCMP#  The number of partitions that 
                                                      an active alter operation has 
                                                      completed at the time the 
                                                      query call was processed

CONSTANTS

  LEN  TYPE           VALUE          NAME              DESCRIPTION
=====  =========  =================  ===============   ===============================
    8  CHARACTER   DSPAPQHB          APQHB_EYECATCHER

DSECT of DSPAPQHP

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)          DESCRIPTION
======== ======== ========= ========  ==============      ===============================
       0      (0) STRUCTURE      192  DSPAPQHP
       0      (0) CHARACTER        8  APQHP_HALDBNAME     HALDB name
       8      (8) CHARACTER        8  APQHP_PARTNAME      Partition name
      16     (10) UNSIGNED         4  APQHP_SSLIST        Offset to SS list (DSPAPQSL),
                                                          zero if no SS auth'd
      20     (14) UNSIGNED         4  APQHP_KEYSTRING     Offset to KEYSTRING
                                                          (apqhp_PString), zero is no
                                                          key/string
      24     (18) UNSIGNED         4  APQHP_DSGINFOOFFSET Offset to data set group
                                                          information

      28     (1C) SIGNED           4  APQHP_ALTERINFOOFFSET  Offset of HALDB Alter 
                                                          information structure, 
                                                          APQHP_ALTERINFO, if present.
                                                          Value is 0 if not present.

      32     (20) CHARACTER       44  *
      32     (20) CHARACTER       37  APQHP_DSNBASE       Base Partition DSN
      76     (4C) CHARACTER       18  APQHP_HDAM          PHDAM fields
      76     (4C) CHARACTER        8  APQHP_RMNAME        Randomizing module name
      84     (54) SIGNED           4  APQHP_RBN           Max relative block number
      88     (58) SIGNED           4  APQHP_BYTES         Max # of bytes
      92     (5C) UNSIGNED         2  APQHP_ANCHR         # of root anchor points
      94     (5E) UNSIGNED         1  APQHP_FBFF          Free block frequency factor
      95     (5F) UNSIGNED         1  APQHP_FSPF          Free space percentage factor
      96     (60) UNSIGNED         2  APQHP_PARTID        Partition ID
      98     (62) SIGNED           2  APQHP_PSTLN         Length of Part Key/String,
                                                          apqhp_PString
     100     (64) UNSIGNED         2  APQHP_DSGINFOLEN
                                                          Length of each
                                                          aphp_DSGinfo entry
     102     (66) UNSIGNED         1  APQHP_DSGCNT        DSG count
     103     (67) BIT(8)           1  APQHP_FLAGS         Flags
                  1... ....           APQHP_PINIT         Partition must be initialized
                  .1.. ....           APQHP_ORDBDS        0=A-J/1=M-V DBDS active
                  ..1. ....           APQHP_OLRON         OLR active
                  ...1 ....           APQHP_DISAB         Partition Disabled
                  .... 1...           APQHP_MVDBDS        1 = M-V DBDS exist
                  .... .1..           APQHP_OLRCAP        Partition is OLR capable
                  .... ..1.           APQHP_OLRREL        1 = RELEASE OLR OWNER
                .... ...1           APQHP_OSAM8G        8GB OSAM addressability
        ============================================================================
         If the Partitioned DB uses high keys, that is, no Partition
         Selection routine, the next two fields are used to sort the
         partitions in key sequence.
        ============================================================================
     104     (68) CHARACTER        8   APQHP_PREV         DDN of previous partition
     112     (70) CHARACTER        8   APQHP_NEXT         DDN of next partition
     120     (78) CHARACTER        8   APQHP_OLRIMS       Owning IMS for OLR
     128     (80) UNSIGNED         2   APQHP_IRCNT        IC receive needed counter
     130     (82) BIT(8)           1   APQHP_AUFLAG       Authorization flags
                  1... ....            APQHP_BKFLG        Backout needed
                  .1.. ....            APQHP_PAFLG        Prohibit authorization
                  ..1. ....            APQHP_RDFLG        Read only SS auth
                  ...1 ....            APQHP_NONRV        nonrecoverable
                  .... 1...            APQHP_DBREORGI     Reorg intent
                  .... .1..            APQHP_DBQUI        Quiesce in progress
                  .... ..1.            APQHP_DBQUIH       Quiesce held
                  .... ...1            APQAR_DBQUICMD     HALDB/DEDB on command
     131     (83) CHARACTER        5   APQHP_IRLMAU       IRLM ID of auth SS

386  IMS: System Programming APIs



     136     (88) SIGNED           2   APQHP_RCVCTR       Recovery needed count
     138     (8A) SIGNED           2   APQHP_ICCTR        IC needed count
     140     (8C) UNSIGNED         1   APQHP_SHRLVL       Share level of DB
     141     (8D) UNSIGNED         1   APQHP_HELDAU       Held auth state
                  1... ....            APQHP_HAUBIT       High order bit flag
     142     (8E) UNSIGNED         2   APQHP_DMBNUM       Global DMB number
     144     (90) SIGNED           2   APQHP_SSNUM        # of SS auth DB
     146     (92) UNSIGNED         2   APQHP_SSENTLEN     Length of each SS entry
     148     (94) UNSIGNED         1   APQHP_CACCSS       Access state for chg auth
     149     (95) UNSIGNED         1   APQHP_CANCDD       Encode state for chg auth
     150     (96) UNSIGNED         1   APQHP_CAHELD       Held state for chg auth
     151     (97) CHARACTER        1   *                  Reserved
     152     (98) UNSIGNED         2   APQHP_EQECNT       Total EQE count
     154     (9A) BIT(16)          2   APQHP_RSRFLG       Flags
                  1... ....            APQHP_RCVTRK       Only recov level trackng
                  .1.. ....            APQHP_TRKSPN       Tracking is suspended
                  ..1. ....            APQHP_PURBIT       Suspended by time
                  ...1 ....            APQHP_ICNDIS       IC needed disabled option
                  .... 1...            APQHP_NOHKEY       High key required

                  .... .1..            APQHP_ALTER        Partition being altered
                  .... ..1.            APQHP_ALTCMP       Partition alter completed;
                                                          partition ready for online 
                                                          change
     156     (9C) CHARACTER        8   APQHP_GSGNAME      GSG name
     164     (A4) UNSIGNED         4   APQHP_USID         Last alloc USID
     168     (A8) UNSIGNED         4   APQHP_AUSID        Last authorized USID
     172     (AC) UNSIGNED         4   APQHP_RUSID        Last received USID
     176     (B0) UNSIGNED         4   APQHP_HUSID        Hardened by tracker USID
     180     (B4) UNSIGNED         4   APQHP_RNUSID       Receive needed USID
     184     (B8) SIGNED           2   APQHP_ICRECCTR     IC Recommended Counter
     186     (BA) UNSIGNED         2   APQHP_VERSION#     Version number
     188     (BC) UNSIGNED         1   APQHP_OLRACTHARDCTR
                                                          OLR curs active count
     189     (BD) UNSIGNED         1   APQHP_OLRINACTHARDCTR
                                                          OLR curs inact count
     190     (BE) UNSIGNED         2   APQHP_REORG#       Partition reorg #
     192     (C0) CHARACTER        8   APQHP_OLRBytes     OLR Bytes moved 
     200     (C8) CHARACTER        8   APQHP_OLRSegs      OLR Segments moved
     208     (D0) CHARACTER        4   APQHP_OLRRoots     OLR Root Segments

     212     (D4) UNSIGNED         2   APQHP_ALTERINFOLEN Length of each 
                                                          apqhp_AlterInfo entry

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)     DESCRIPTION
======== ======== ========= ========  ============== ===============================
       0      (0) STRUCTURE        2  APQHP_DSGINFO  Data set group information
       0      (0) UNSIGNED         2  APQHP_BLKSZ    DS block size, OSAM only

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)     DESCRIPTION
======== ======== ========= ========  ============== ===============================
       0      (0) STRUCTURE        *  APQHP_PSTRING  Partition Key/String

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)     DESCRIPTION
======== ======== ========= ========  ============== ===============================
       0      (0) STRUCTURE        2  APQHP_ALTERINFO  DB Alter information
                                                     Structure present only when an
                                                     alter operation is in progress
       0      (0) UNSIGNED         2  APQHP_ALTERSZ  If alter changes block or CI 
                                                     sizes, ALTERSZ contains the 
                                                     OSAM block size or VSAM CI size
                                                     for the output data sets of an 
                                                     alter operation

CONSTANTS

  LEN  TYPE           VALUE          NAME              DESCRIPTION
=====  =========  =================  ================  ===============================
    8  CHARACTER   DSPAPQHP          APQHP_EYECATCHER

Chapter 32. DBRC query request (QUERY)  387



DBDS output

Figure 17. Format of QUERY TYPE=DB (DBDS) output

Recovery information (RCVINFO) is returned only if the LIST parameter is specified.

DSECT of DSPAPQDS

The following example and “DSECT of DSPAPQEL” on page 384 describe the fields contained in the
DSPAPQDS block shown in Figure 17 on page 388. Refer to Figure 18 on page 390 for an illustration of the
Recovery Information output fields.

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)       DESCRIPTION
======== ======== ========= ========  ==============   ===============================
       0      (0) STRUCTURE      160  DSPAPQDS
       0      (0) CHARACTER        8  APQDS_DBNAME     Database name
       8      (8) CHARACTER        8  APQDS_DDNAME     DD name
      16     (10) UNSIGNED         4  APQDS_EEQELIST   Offset to EEQE list
                                                       (DSPAPQEL), zero if no EEQEs
      20     (14) SIGNED           4  *(3)             Reserved
      32     (20) CHARACTER       44  APQDS_DSN        Data set name
      76     (4C) UNSIGNED         2  APQDS_RTPRD      IC retention period
      78     (4E) UNSIGNED         2  APQDS_DSID       Data set ID number
      80     (50) UNSIGNED         4  APQDS_DSSN       Data set sequence number
      84     (54) UNSIGNED         4  APQDS_RUSID      Recovered-to USID(trkr)
      88     (58) BIT(8)           1  APQDS_FLAGS      BINARY ZEROS
                  1... ....           APQDS_RECYC      REUSE image copies
                  .1.. ....           APQDS_ICREC      Image Copy Recommended
                  ..1. ....           APQDS_RCVRQ      Receive required
                  ...1 ....           APQDS_IC         Image Copy Needed
                  .... 1...           APQDS_RECOV      Recovery Needed
                  .... .1..           APQDS_NONRV      nonrecoverable
      89     (59) BIT(8)           1  APQDS_DSORG      Data set organization
                  1... ....           APQDS_VSAM       1 = VSAM, 0 = NON-VSAM
                  .1.. ....           APQDS_INDEX      0 = Non-indexed (OSAM or ESDS),
                                                       1 = Indexed(ISAM or KSDS)
                  ..11 1111           *                Reserved - zeroes
      90     (5A) CHARACTER        1  APQDS_DBORG      IMS DB organization
      91     (5B) UNSIGNED         1  *                Reserved
      92     (5C) UNSIGNED         2  APQDS_GENMX      Max number of ICs that may be
                                                       predefined for this area
      94     (5E) UNSIGNED         2  APQDS_AVAILIC#
                                                       Number of available ICs for
                                                       this area
      96     (60) UNSIGNED         2  APQDS_USEDIC#    Number of ICs used
      98     (62) SIGNED           2  APQDS_EEQECOUNT
                                                       EEQE count
     100     (64) UNSIGNED         2  APQDS_EEQELENGTH
                                                       EEQE entry length
     102     (66) BIT(8)           1  APQDS_FLG1       Flags
                  1... ....           APQDS_RRGAL      REORG since last ALLOC, only
                                                       set if RSR-covered
                  .1.. ....           APQDS_TSRAL      TS recov since last ALLOC, only
                                                       set if RSR-covered

388  IMS: System Programming APIs



     103     (67) BIT(8)           1  APQDS_FLG2       DBDS type flags
                  1... ....           APQDS_PART       TYPEPART record
                  .1.. ....           APQDS_PDATA      TYPEPART subtype DATA
                  ..1. ....           APQDS_PILE       TYPEPART subtype ILE
                  ...1 ....           APQDS_PINDX      TYPEPART subtype Index
     104     (68) CHARACTER        8  APQDS_CAGRPNAME
                                                       Change Accum group name
     112     (70) CHARACTER       40  APQDS_JCL        GENJCL members
     112     (70) CHARACTER        8  APQDS_ICJCL      Image copy member
     120     (78) CHARACTER        8  APQDS_OIJCL      Online IC member
     128     (80) CHARACTER        8  APQDS_RCJCL      Recovery member
     136     (88) CHARACTER        8  APQDS_DFJCL      DEFLTJCL member
     144     (90) CHARACTER        8  APQDS_RVJCL      Receive JCL member
     152     (98) CHARACTER        8  APQDS_ODDN       OLR partner DBDS

CONSTANTS

  LEN  TYPE           VALUE          NAME             DESCRIPTION
=====  =========  =================  ================ ===============================
    8  CHARACTER   DSPAPQDS          APQDS_EYECATCHER

Chapter 32. DBRC query request (QUERY)  389



Recovery Information (RCVINFO) output

Figure 18. Format of QUERY TYPE=DB (RCVINFO) output

Recovery information (RCVINFO) is returned only if the LIST parameter is specified. The pointers are zero
if either the specific information does not exist or it was not requested.

DSECT of DSPAPQRI

The following DSECT example describes the fields that are contained in the DSPAPQRI block as shown in
Figure 18 on page 390.

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)       DESCRIPTION
======== ======== ========= ========  ==============   ===============================
       0      (0) STRUCTURE       32  DSPAPQRI
       0      (0) CHARACTER        8  APQRI_DBNAME     Database name
       8      (8) CHARACTER        8  *
       8      (8) CHARACTER        8  APQRI_DDNAME     DD name

390  IMS: System Programming APIs



       8      (8) CHARACTER        8  APQRI_AREANAME   Area name
      16     (10) ADDRESS          4  APQRI_ALLOCPTR   ptr to ALLOC chain
      20     (14) ADDRESS          4  APQRI_ICPTR      ptr to IC chain
      24     (18) ADDRESS          4  APQRI_RECOVPTR   ptr to RECOV chain
      28     (1C) ADDRESS          4  APQRI_REORGPTR   ptr to REORG chain

CONSTANTS

  LEN  TYPE           VALUE          NAME              DESCRIPTION
=====  =========  =================  ===============   ===============================
    8  CHARACTER   DSPAPQRI          APQRI_EYECATCHER

DSECT of DSPAPQAL

The following DSECT example describes the fields that are contained in the DSPAPQAL block as shown in
Figure 18 on page 390.

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)      DESCRIPTION
======== ======== ========= ========  ==============  ===============================
       0      (0) STRUCTURE       88  DSPAPQAL
       0      (0) CHARACTER        8  APQAL_DBNAME    Database name
       8      (8) CHARACTER        8  *
       8      (8) CHARACTER        8  APQAL_DDNAME    DD name or
       8      (8) CHARACTER        8  APQAL_AREANAME  Area name
      16     (10) CHARACTER       12  APQAL_ALLOCTM   Allocation time
      28     (1C) CHARACTER       12  APQAL_DALTM     Deallocation time
      40     (28) CHARACTER       12  APQAL_STRTM     Log start time
      52     (34) UNSIGNED         4  APQAL_DSSN      Field for DSSN value
      56     (38) UNSIGNED         4  APQAL_USID      Update set identifier
      60     (3C) CHARACTER        8  APQAL_ALRID     LRID of begin-upd rec
      68     (44) CHARACTER        8  APQAL_DLRID     LRID of end-upd rec
      76     (4C) CHARACTER        8  APQAL_SLRID     Last LRID applied if suspended
      84     (54) BIT(8)           1  APQAL_FLAGS     Flags
                  1... ....           APQAL_TSUSP     Tracking is suspended
                  .1.. ....           APQAL_NAPPL     No records applied
                  ..1. ....           APQAL_CICPT     Fuzzy ic purge time
                  ...1 ....           APQAL_DBQUI     Quiesce caused deallocation
      85     (55) CHARACTER        3  *               Reserved
CONSTANTS

  LEN  TYPE           VALUE          NAME             DESCRIPTION
=====  =========  =================  ===============  ===============================
    8  CHARACTER   DSPAPQAL          APQAL_EYECATCHER

DSECT of DSPAPQIC

The following DSECT example describes the fields that are contained in the DSPAPQIC block as shown in
Figure 18 on page 390.

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)       DESCRIPTION
======== ======== ========= ========  ==============   =============================
       0      (0) STRUCTURE       64  DSPAPQIC
       0      (0) CHARACTER        8  APQIC_DBNAME     Database name
       8      (8) CHARACTER        8  *
       8      (8) CHARACTER        8  APQIC_DDNAME     DD name or
       8      (8) CHARACTER        8  APQIC_AREANAME   Area name
      16     (10) CHARACTER       12  APQIC_STARTIME   IC start time, packed decimal
      28     (1C) CHARACTER       12  APQIC_STOPTIME   IC stop time, packed decimal
      40     (28) BIT(8)           1  APQIC_TYPE       IMAGE COPY TYPE
                  1... ....           APQIC_BATCH      BATCH
                  .1.. ....           APQIC_CIC        CONCURRENT
                  ..1. ....           APQIC_USERIC     USER IMAGE COPY
                  ...1 ....           APQIC_ONLINE     ONLINE
                  .... 1...           APQIC_SMSIC      SMS IC w/ DB exclusive
                  .... .1..           APQIC_SMSCC      SMS IC w/ DB shared
                  .... ..1.           APQIC_SMSOF      FastRep IC w/ DB exclusive
                                                       (VERSION=2.00)
                  .... ..1            APQIC_SMSON      FastRep IC w/ DB shared
                                                       (VERSION=2.00)
      41     (29) BIT(8)           1  APQIC_STATUS     IC status flags
                  1... ....           APQIC_AVAIL      Available IC
                  .1.. ....           APQIC_IC1        Image Copy 1 exists
                  ..1. ....           APQIC_IC2        Image Copy 2 exists
                  ...1 ....           APQIC_ERR1       Error on image 1

Chapter 32. DBRC query request (QUERY)  391



                  .... 1...           APQIC_ERR2       Error on image 2
                  .... .1..           APQIC_EMP2       Image 2 defined and unused
      42     (2A) BIT(8)           1  APQIC_FLAGS
                  1... ....           APQIC_HSINP      HSSP CIC in progress
                  .1.. ....           APQIC_CAT        Catalogued IC (HSSP)
      43     (2B) CHARACTER        1  APQIC_MoreTYPEs  More Image Copy types
                  1... ....           APQIC_UserCIC    User Concurrent Image Copy
                                                       (VERSION=2.0)
      44     (2C) CHARACTER        2  *
      44     (2C) UNSIGNED         2  APQIC_OFF1       Offset to image 1 data
      44     (2C) UNSIGNED         2  APQIC_OFFU       Offset to user IC data
      46     (2E) UNSIGNED         2  APQIC_OFF2       Offset to image 2 data
      48     (30) UNSIGNED         4  APQIC_CNT12      Record count
      52     (34) UNSIGNED         4  APQIC_USID       Update set ID
      56     (38) CHARACTER        2  *
      56     (38) UNSIGNED         2  APQIC_LEN12      Length of image 1/2 data
      56     (38) UNSIGNED         2  APQIC_LENU       Length of user IC data
      58     (3A) CHARACTER        6  *                Reserved
      64     (40) UNSIGNED         2  APQIC_OFFUD      Offset to user data (Version=4.0)
      66     (42) UNSIGNED         2  APQIC_LENUD      Length of user data (Version=4.0)

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)          DESCRIPTION
======== ======== ========= ========  ==============      ==========================
       0      (0) STRUCTURE       64  APQIC_IC12          Data for image 1 or 2
       0      (0) CHARACTER       44  APQIC_DSN12         Data set name
      44     (2C) UNSIGNED         2  APQIC_FILE          File sequence number
      46     (2E) CHARACTER        8  APQIC_RUT12         Unit device type
      54     (36) UNSIGNED         2  APQIC_VOLCT         # of volumes predefined
      56     (38) UNSIGNED         2  APQIC_VOLUS         # of volumes used
      58     (3A) UNSIGNED         2  APQIC_VOLLISTLEN    Length of each volume list
                                                          entry in apqic_VOLS
      60     (3C) UNSIGNED         4  APQIC_VOLLISTOFFSET Offset to volume list

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)      DESCRIPTION
======== ======== ========= ========  ==============  ===============================
       0      (0) CHARACTER        6   APQIC_VOLS     List of VOLSERs

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)      DESCRIPTION
======== ======== ========= ========  ==============  ===============================
       0      (0) STRUCTURE       80  APQIC_USER      Data for user IC
       0      (0) CHARACTER       80  APQIC_UDATA     User supplied data

CONSTANTS

  LEN  TYPE           VALUE          NAME              DESCRIPTION
=====  =========  =================  ===============   ===============================
    1  DECIMAL          255          APQIC_MAXV        max # volumes
    8  CHARACTER   DSPAPQIC          APQIC_EYECATCHER

DSECT of DSPAPQRV

The following DSECT example describes the fields that are contained in the DSPAPQRV block as shown in
Figure 18 on page 390.

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)       DESCRIPTION
======== ======== ========= ========  ==============   ==============================
       0      (0) STRUCTURE       49  DSPAPQRV
       0      (0) CHARACTER        8  APQRV_DBNAME     Database name
       8      (8) CHARACTER        8  *
       8      (8) CHARACTER        8  APQRV_DDNAME     DD name or
       8      (8) CHARACTER        8  APQRV_AREANAME   Area name
      16     (10) CHARACTER       12  APQRV_RUNTIME    The time at which the DBDS was
                                                       recovered
      28     (1C) CHARACTER       12  APQRV_ENDTIME    Partial recovery only, the time
                                                       to which the DBDS was restored
      40     (28) UNSIGNED         4  APQRV_FUSID      First undone USID
      44     (2C) UNSIGNED         4  APQRV_LUSID      Last undone USID
      48     (30) BIT(8)           1  APQRV_FLAGS      Flags
                  1... ....           APQRV_PITR       Point In Time Recovery
                  .1.. ....        1  APQRV_EXTCM      External command (Version=4.0) 
      49     (31) UNSIGNED         1  *                Reserved
      50     (32) UNSIGNED         2  APQRV_OFFUD      Offset to user data (Version=4.0)
      52     (34) UNSIGNED         2  APQRV_LENUD      Length of user data (Version=4.0)
      54     (33) UNSIGNED         2  APQRV_PREORG     Prior reorg number (Version=4.0)

392  IMS: System Programming APIs



      56     (36) UNSIGNED         2  APQRV_NREORG     New reorg number (Version=4.0)

   OFFSET   OFFSET
  DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)      DESCRIPTION
 ======== ======== ========= ========  ==============  ===============================
        0      (0) STRUCTURE       80  APQRV_USER      Data for user data
        0      (0) CHARACTER       80  APQRV_UDATA     User supplied data (VERSION=4.0)
CONSTANTS

  LEN  TYPE           VALUE          NAME              DESCRIPTION
=====  =========  =================  ===============   ===============================
    8  CHARACTER   DSPAPQRV          APQRV_EYECATCHER

DSECT of DSPAPQRR

The following DSECT example describes the fields that are contained in the DSPAPQRR block as shown in
Figure 18 on page 390.

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)       DESCRIPTION
======== ======== ========= ========  ==============   ===============================
       0      (0) STRUCTURE       60  DSPAPQRR
       0      (0) CHARACTER        8  APQRR_DBNAME     Database name
       8      (8) CHARACTER        8  *
       8      (8) CHARACTER        8  APQRR_DDNAME     DD name or
       8      (8) CHARACTER        8  APQRR_AREANAME   Area name
      16     (10) CHARACTER       12  APQRR_RUNTIME    The time at which the DBDS was
                                                       reorganized
      28     (1C) CHARACTER       12  APQRR_STOPTIME   Stoptime of online reorg
      40     (28) BIT(8)           1  APQRR_FLAGS
                  1... ....           APQRR_ONL        1=ONLINE/0=OFFLINE reorg
                  .1.. ....           APQRR_RECOV      1=May be used for recovery

                  ..1. ....           APQRR_ALTER      1=HALDB structure altered by 
                                                       an online reorganization
      41     (29) CHARACTER        3  *                Reserved
      44     (2C) UNSIGNED         4  APQRR_USID       Associated USID
      48     (30) CHARACTER       12  APQRR_PITR       Stoptime moved - PITR
      60     (3C) UNSIGNED         4  APQRR_PRAPs      Total number of RAPs processed
      64     (40) UNSIGNED         4  APQRR_Roots      Total number of roots processed
      68     (44) UNSIGNED         2  APQRR_OFFUD      Offset to user data (VERSION=4.0)
      70     (46) UNSIGNED         2  APQRR_LENUD      Length of user data (VERSION=4.0)

   OFFSET   OFFSET
  DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)      DESCRIPTION
 ======== ======== ========= ========  ==============  ===============================
        0      (0) STRUCTURE       80  APQRR_USER      Data for user data
        0      (0) CHARACTER       80  APQRR_UDATA     User supplied data (VERSION=4.0)
CONSTANTS

  LEN  TYPE           VALUE          NAME              DESCRIPTION
=====  =========  =================  ===============   ===============================
    8  CHARACTER   DSPAPQRR          APQRR_EYECATCHER

Database not found output

Figure 19. Format of QUERY TYPE=DB (database not found) output

This output block is returned when some of the databases specified in the DBLIST block could not be
found in the RECON. One block is returned for each database that could not be found. The database name
is included in the data area of this block.

Chapter 32. DBRC query request (QUERY)  393



When a database is not found, the macro call receives a return code of four (RC=4). If none of the
databases in the list are found (RC=8), no output blocks are returned.

DSECT of DSPAPQNF

The following example describes the fields contained in the DSPAPQNF block shown in Figure 19 on page
393.

OFFSET     OFFSET
DECIMAL      HEX   TYPE        LENGTH    NAME (DIM)     DESCRIPTION
======== ========  =========  ========   ============== ===============================
       0      (0)  STRUCTURE          8  DSPAPQNF
       0      (0)  CHARACTER          8  APQNF_DBNAME   DB name

Related concepts
“DBRC API” on page 341
Your applications can obtain services from Database Recovery Control (DBRC) through the DBRC
application programming interface (API), a release-independent, assembler macro interface. The
application obtains these services by issuing DBRC API requests to DBRC, and DBRC returns the results to
an area in storage where the application can retrieve them.
Related reference
“DBRC query request (QUERY)” on page 367
You can use the DBRC Query request (DSPAPI FUNC=QUERY) along with the TYPE parameter to retrieve
various types of information from the RECON data set.
“DBDS query request (TYPE=DBDS)” on page 394
You can use the DSPAPI FUNC=QUERY TYPE=DBDS request to retrieve information from the RECON data
set for one or more DBDSs in a non-HALDB database, a HALDB partition, a DBDS group, or a CA group. You
can also request recovery related information for the data set, including allocation, image copy, recovery,
and reorganization information.
“HALDB partition query request (TYPE=PART)” on page 420
You can use the DSPAPI FUNC=QUERY TYPE=PART request to retrieve information for a particular HALDB
partition from the RECON data set. You can request data set information for a specific DBDS or all
DBDSs in the partition, and can optionally request recovery-related information for the data set, including
allocation, image copy, recovery, and reorganization information.

DBDS query request (TYPE=DBDS)
You can use the DSPAPI FUNC=QUERY TYPE=DBDS request to retrieve information from the RECON data
set for one or more DBDSs in a non-HALDB database, a HALDB partition, a DBDS group, or a CA group. You

394  IMS: System Programming APIs



can also request recovery related information for the data set, including allocation, image copy, recovery,
and reorganization information.

Syntax for the TYPE=DBDS query request

name
DSPAPI FUNC=QUERY TYPE=DBDS TOKEN=  address

DBNAME=  name
DDN=*

DDN= ddn
LOC=SPEC

LOC=NEXT

LOC=FIRST

GROUP=  name

LIST=NONE

LIST=(

,

ALLOC

IC

RECOV

REORG

)

LIST=(ALL

RETCODE=  returncode

RSNCODE=  reasoncode

OUTPUT=  output

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

SUBPOOL=0

SUBPOOL=  number

VERSION=2.0

VERSION=  number

Parameters for the TYPE=DBDS query request
name

If used, begins in column 1.
TYPE=DBDS

Specifies that RECON information for a DBDS or area is requested.

Chapter 32. DBRC query request (QUERY)  395



Specifying DBDS with the TYPE parameter requires that you also specify a minimum version number
of VERSION=2.0.

TOKEN=address | (2 - 12)
Specifies the address of a 4-byte field to receive the API token. This token must be included in all
subsequent requests associated with this FUNC=STARTDBRC request.

DBNAME=name | (2 -12)
Specifies the database name (non-HALDB) or partition name of the DBDS being queried. This
parameter is used when you are interested in a specific DBDS of a database or partition. Specifying a
HALDB name is not allowed.

DBDNAME OR PARTNAME must be specified.

GROUP=name | (2 -12)
Specifies the name of a DBDS group or CA group containing the names of the DBDSs being queried.
The LOC or DDN parameters are not allowed with this parameter.

DBNAME or GROUP must be specified. Database and recovery group names are not allowed.

The wildcard GROUP=* can be used for all TYPE=xxxxGROUP queries, but not for TYPE=DBDS.
However, it can be used for TYPE=DBDSGROUP.

DDN=ddname | (2 -12)
Specifies the DD name of the data sets or areas. This parameter is used in conjunction with the
DBNAME parameter and the LOC parameter to query a specific data set or the next or previous data
set in the database or partition. DDN=* returns information for all of the data sets or areas of the
database. DDN=* is the default when DBNAME is specified without LOC=FIRST.

DDN must be specified with LOC=SPEC|NEXT.

When querying the next or previous data set, the value in the DDN parameter is used as the base of
the search and does not need to be a DD name of a DBDS registered in RECON for the database or
partition.

LIST=NONE | LIST=({ALLOC},{IC},{RECOV},{REORG}) | LIST=ALL
Specifies the types of supporting information to be included in the query output for the returned
DBDS. One or more of the specific values is included in the list - ALLOC (allocation records), IC (image
copy records), RECOV (recovery records), or REORG (reorganization records). LIST=ALL is specified
if all supporting information is requested. LIST=NONE is specified if no supporting information is
requested.

LIST=NONE is the default.

LOC=FIRST | NEXT | SPEC
(Optional) - Specifies that the request is for the specified partition (SPEC), the first, or the next DBDS
defined in RECON for the database or partition. DBNAME is required with the LOC parameter. DDN,
with no wildcard, is required with LOC=NEXT|SPEC. DDN is not allowed with LOC=FIRST. LOC=SPEC is
the default when a specific DDN is specified. LOC is not allowed with GROUP.

Specify DDN=* to also request data set or area information. If you specify a specific DDN (DDN=ddn),
the specified DDN is ignored and all data set or area information is returned.

Partitions are returned in high key order if the HALDB uses high keys. Otherwise, partitions are
returned in alphanumerical order.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive the return code. If specified
as a register, the register must contain the address of a word of storage to receive the return code.
Regardless of whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage to receive the reason code.
If specified as a register, the register must contain the address of a word of storage to receive the
reason code. Regardless of whether RSNCODE is specified, register 0 contains the reason code.

396  IMS: System Programming APIs



OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the first of a possible chain of blocks that contain the
information for the partition.

The output address is zero if no output was built. This result can occur if nothing in the RECON
satisfies the request or if an error occurs before any output could be built.

The storage for the output blocks is not preallocated by the caller. DBRC acquires storage from the
specified subpool for these blocks. The caller must free this storage using the Buffer Release service
(DSPAPI FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Optional parameter that specifies the subpool number for the storage being obtained. If not specified,
the default is the subpool specified by the FUNC=STARTDBRC request. Otherwise, subpool 0 is the
default.

MF=S | L | M | E
Specifies the macro form of the request.

VERSION=2.0 | number
Optional parameter that specifies the version number of the parameter list to be generated by this
macro.

To use the parameters associated with a version, you must specify the number of that version
or a later version. If you specify an earlier version level, the parameter is not accepted by
macro processing, and an error message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the version number required.

The default version is 2.0.

Note: TYPE=DBDS requires that you specify a minimum version number of API VERSION=2.0.

Return and reason codes for the TYPE=DBDS query request
Table 89. DSPAPI FUNC=QUERY TYPE=DBDS query return and reason codes

Code type Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D8210001' No DBDSs or areas for the DB are registered in the
RECON data set. No information blocks are returned.

X'00000008' X'D8210002' The specified DBDS or area is not registered in the
RECON data set. No information blocks are returned.

X'00000008' X'D8210003' The specified DBNAME is a HALDB. DBNAME must
specify a non-HALDB or a HALDB partition name. No
information blocks are returned.

X'00000008' X'D8210004' The specified group is not registered in the RECON
data set. No information blocks are returned.

X'00000008' X'D8210005' The specified group is not a DBDS or CA group. No
information blocks are returned.

X'00000008' X'D8210006' The specified DBNAME is not registered in RECON. No
information blocks are returned.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC service was issued.

Chapter 32. DBRC query request (QUERY)  397



Table 89. DSPAPI FUNC=QUERY TYPE=DBDS query return and reason codes (continued)

Code type Return code Reason code Meaning

X'0000000C' X'D8210001' SAF or the DBRC cmd auth exit (DSPDCAX0) has
determined that the user is not authorized to perform
the request.

Storage error X'00000028' X'D8210001' Error obtaining storage for DBDS block.

X'00000028' X'D8210002' Error obtaining storage for AREA block.

X'00000028' X'D8210003' Error obtaining storage for RCVINFO block.

X'00000028' X'D8210004' Error obtaining storage for ALLOC block.

X'00000028' X'D8210005' Error obtaining storage for IC block.

X'00000028' X'D8210006' Error obtaining storage for REORG block.

X'00000028' X'D8210007' Error obtaining storage for RECOV block.

X'00000028' X'D9100001' An error occurred processing the request. DBRC
releases any storage obtained up to this point.
However, another error was encountered during the
attempt to release storage.

Internal error X'0000002C' X'D8000001' Failure opening the RECON data set.

X'0000002C' X'D8210001' Failure locating the first DBDS record.

X'0000002C' X'D8210002' Failure locating the specified DBDS record.

X'0000002C' X'D8210003' Failure locating the next DBDS record.

X'0000002C' X'D8210004' Failure locating the first Area Auth record.

X'0000002C' X'D8210005' Failure locating the first ALLOC record.

X'0000002C' X'D8210006' Failure locating the next ALLOC record.

X'0000002C' X'D8210007' Failure locating the first IC record.

X'0000002C' X'D8210008' Failure locating the next IC record.

X'0000002C' X'D8210009' Failure locating the first REORG record.

X'0000002C' X'D821000A' Failure locating the next REORG record.

X'0000002C' X'D821000B' Failure locating the first RECOV record.

X'0000002C' X'D821000C' Failure locating the next RECOV record.

X'0000002C' X'D821000D' Failure locating the specified group record (DBDS
group).

X'0000002C' X'D821000E' Failure locating the specified group record (CA
group).

X'0000002C' X'D821000F' Failure locating a DBDS from the specified group
record.

X'0000002C' X'D8210010' Failure locating the DB record with the specified
DBNAME.

X'0000002C' X'D8210011' Failure attempting to locate the first AVAIL IC record.

X'0000002C' X'D8210012' Failure attempting to locate the next AVAIL IC record.

398  IMS: System Programming APIs



Table 89. DSPAPI FUNC=QUERY TYPE=DBDS query return and reason codes (continued)

Code type Return code Reason code Meaning

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the parameter list
that is passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage that is not owned by
the calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address of the
field to contain the API RETCODE failed validity
checking. The address specifies storage that is not
owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address of the
field to contain the API RSNCODE failed validity
checking. The address specifies storage that is not
owned by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address of the
field to contain the OUTPUT address failed validity
checking. The address specifies storage that is not
owned by the calling program.

X'00000030' X'C9000008' Invalid DBNAME or GROUP address. The address of
the field containing the DBNAME or GROUP failed
validity checking. The address specifies storage that
is not owned by the calling program.

X'00000030' X'C9000009' Invalid DDN address. The address of the field
containing the DDN failed validity checking. The
address specifies storage that is not owned by the
calling program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8000003' Query TYPE=DBDS requires a minimum API version
of 2.0.

X'00000030' X''D8210001' The DBNAME or GROUP is required.

X'00000030' X'D8210002' DDN specified with invalid LOC value. Only
LOC=NEXT|SPEC can be entered.

X'00000030' X'D8210003' Invalid LOC value. When no DDN is specified only
LOC=FIRST can be used.

X'00000030' X'D8210004' The DDN parameter is not allowed with GROUP
parameter.

X'00000030' X'D8210005' The LOC is not allowed with GROUP parameter.

The following block mappings relate to the TYPE=DB and TYPE=DBDS request:

• DSPAPQAR – Fast Path AREA block
• DSPAPQDS – DBDS block
• DSPAPQEL – EEQE List
• DSPAPQSL – Subsystem List (Fast Path only)

Chapter 32. DBRC query request (QUERY)  399



• DSPAPQRI – Recovery Information (RCVINFO) block
• DSPAPQAL – Allocation block
• DSPAPQIC – Image Copy block
• DSPAPQRV – Recovery block
• DSPAPQRR – Reorganization block

Related concepts
“DBRC API” on page 341
Your applications can obtain services from Database Recovery Control (DBRC) through the DBRC
application programming interface (API), a release-independent, assembler macro interface. The
application obtains these services by issuing DBRC API requests to DBRC, and DBRC returns the results to
an area in storage where the application can retrieve them.
Related reference
“DBRC query request (QUERY)” on page 367
You can use the DBRC Query request (DSPAPI FUNC=QUERY) along with the TYPE parameter to retrieve
various types of information from the RECON data set.
“Database query request (TYPE=DB)” on page 373
You can use the Database Query request (DSPAPI FUNC=QUERY TYPE=DB) to retrieve information from
the RECON concerning one or more registered databases.
“COMMAND output block mapping” on page 364
These examples illustrate output block mapping for the DBRC command request. You can use the
examples to understand how the DSPAPCMD output block header is structured and how the output
appears.

Group query request (TYPE=*GROUP)
You can use the Group query (DSPAPI FUNC=QUERY TYPE=*GROUP) request to retrieve group and
member information for various types of groups that are registered in the RECON data set.

The following list outlines the groups that you can retrieve information for through the Group query
(DSPAPI FUNC=QUERY TYPE=*GROUP) request:

• DBDS group (TYPE=DBDSGROUP)
• DB group (TYPE=DBGROUP)
• Recovery group (TYPE=RECOVGROUP)
• CA group (TYPE=CAGROUP)

Subsections:

• “Syntax for the TYPE=*GROUP query request” on page 401
• “Parameters for the TYPE=*GROUP query request” on page 401
• “Return and reason codes for the TYPE=*GROUP query request” on page 402
• “Output for the TYPE=*GROUP query request” on page 404
• “Output for QUERY TYPE=DBDSGROUP, DBGROUP, and RECOVGROUP” on page 404
• “DSECT of DSPAPQDG” on page 404
• “Output for QUERY TYPE=CAGROUP” on page 405
• “DSECT of DSPAPQCG” on page 405
• “DSECT of DSPAPQCA” on page 406

400  IMS: System Programming APIs



Syntax for the TYPE=*GROUP query request

name
DSPAPI FUNC=QUERY TYPE=DBDSGROUP

TYPE=DBGROUP

TYPE=RECOVGROUP

TYPE=CAGROUP
CAINFO=NO

CAINFO=YES

TOKEN=  address
GROUP=*

GROUP=  name *

GROUP=  name

NAME=*

NAME= name *

NAME= name

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

OUTPUT=  output
SUBPOOL=0

SUBPOOL=  number RETCODE=  returncode

RSNCODE=  reasoncode

VERSION=2.0

VERSION=  number

Parameters for the TYPE=*GROUP query request
name

Optional symbol you can specify. If used, begins in column 1.
TYPE=DBDSGROUP | DBGROUP | RECOVGROUP | CAGROUP

Specifies the type of group for which information is requested.
CAINFO= YES | NO

Specifies whether CA execution information is to be included with the CAGROUP information. CAINFO
is valid only with TYPE=CAGROUP. CAINFO defaults to NO when TYPE=CAGROUP is specified,
indicating that only the CA group member information is requested.

If CAINFO=NO is specified or if CAINFO=YES is specified and no CA execution information exists, the
block-dependent pointer (apqhd_depptr) in the header of the CAGROUP block is 0.

TOKEN=symbol | (2 - 12)
Specifies the address of a 4-byte field that was returned on the FUNC=STARTDBRC request.

GROUP= * | symbol | symbol* | (2 - 12)
Specifies the name of the group being queried. You can use the wildcard keyword * (an asterisk) alone
to request information about all groups. You can also use the wildcard at the end of a name, in which
case the asterisk must be preceded by at least one alphabetic character. The default is GROUP=*.

Either the GROUP keyword or the NAME keyword can be used. GROUP is preferred. NAME is accepted
for compatibility.

NAME= * | symbol | symbol* | (2 - 12)
See the GROUP parameter.

Chapter 32. DBRC query request (QUERY)  401



MF=S | L | M | E
Specifies the macro form of the request.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the first block of a possible chain of group information blocks.
See “Output for the TYPE=*GROUP query request” on page 404 for a detailed description of the
information blocks returned.

The output address is zero if no output was built which can occur if nothing in the RECON satisfies the
request or if an error occurs before any output could be built.

The storage for the output blocks is not preallocated by the caller. DBRC acquires storage from the
specified subpool for these blocks. The caller must free this storage using the Buffer Release service
(DSPAPI FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not specified, the default is the
subpool specified by the FUNC=STARTDBRC request. Otherwise, subpool 0 is the default.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive the return code. If specified
as a register, the register must contain the address of a word of storage to receive the return code.
Regardless of whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage to receive the reason code.
If specified as a register, the register must contain the address of a word of storage to receive the
reason code. Regardless of whether RSNCODE is specified, register 0 contains the reason code.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this request.

To use the parameters associated with a version, you must specify the number of that version
or a later version. If you specify an earlier version level, the parameter is not accepted by
macro processing, and an error message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the version number required.

Valid version numbers for the FUNC=QUERY TYPE=xxxxGROUP request are 1.0 and 2.0.

Return and reason codes for the TYPE=*GROUP query request
The following table contains most of the return and reason codes for TYPE=*GROUP query requests.

Table 90. Return and reason codes for TYPE=*GROUP query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D8300001' No group records of the requested type exist in the
RECON data set.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC service was issued.

X'0000000C' X'D8300100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0) determined
that the user is not authorized to perform the request.

Storage error X'00000028' X'D8300001' Error obtaining storage for CAGROUP block.

402  IMS: System Programming APIs



Table 90. Return and reason codes for TYPE=*GROUP query requests (continued)

Code type Return codes Reason codes Meaning

X'00000028' X'D8300003' Error obtaining storage for DBDSGRP, DBGRP, or
RECOVGRP block.

X'00000028' X'D8310001' Error obtaining storage for CA block.

X'00000028' X'D9100001' An error occurred processing the request. DBRC
releases storage that was obtained up to this point.
However, another error was encountered during the
attempt to release storage.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8300001' Failure locating a specific group record or the first
group record of the requested group type.

X'0000002C' X'D8300002' Failure locating the next group record of the
requested group type.

X'0000002C' X'D8300003' Failure locating a CA record.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the parameter list
passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address of the
field to contain the API RETCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address of the
field to contain the API RSNCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address of the
field to contain the OUTPUT address failed validity
checking. The address specifies storage not owned by
the calling program.

X'00000030' X'C9000008' Invalid GROUP or NAME field address. The address
of the field containing the group name failed validity
checking. The address specifies storage not owned by
the calling program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8300001' CAINFO=YES is only allowed with TYPE=CAGROUP.

X'00000030' X'D8300100' When using a wildcard, at least one alphabetic
character must precede the asterisk.

X'00000030' X'D8300101' When using a wildcard, the asterisk must be the last
character.

Chapter 32. DBRC query request (QUERY)  403



Output for the TYPE=*GROUP query request
The next few figures illustrate the format of the output from a QUERY TYPE=*GROUP requests. Following
the figures that graphically describe the layout of the output are sample DSECTs that describe in detail the
fields of the storage blocks and their relationship to each other.

Output for QUERY TYPE=DBDSGROUP, DBGROUP, and RECOVGROUP

Figure 20. Format for QUERY TYPE=DBDSGROUP, DBGROUP, RECOVGROUP output

DSECT of DSPAPQDG

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)                             DESCRIPTION
======== ======== ========= ========  ==============                         ============================
       0      (0) STRUCTURE       32  DSPAPQDG
       0      (0) CHARACTER        8   APQDG_GROUPNAME                    Group name
       8      (8) UNSIGNED         4   APQDG_MEMBERINFO         Offset to group member list
      12      (C) UNSIGNED         2   APQDG_MEMBERLEN          Length of group member entry
      14      (E) SIGNED           2   APQDG_MEMBERCOUNT        Number of group members
      16     (10) SIGNED           4   *(3)                     Reserved
      28     (1C) CHARACTER        4   *                        Reserved

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)                             DESCRIPTION
======== ======== ========= ========  ==============                         ============================
       0      (0) STRUCTURE       16  APQDG_MEMBER                           List of group members
       0      (0) CHARACTER       16   *
       0      (0) CHARACTER       16    APQDG_DBDSG             DBDS group
       0      (0) CHARACTER        8     APQDG_DBDSG_DBNAME     Database name
       8      (8) CHARACTER        8     *
       8      (8) CHARACTER        8      APQDG_DBDSG_DDNAME    DD name or
       8      (8) CHARACTER        8      APQDG_DBDSG_AREANAME  AREA name
       0      (0) CHARACTER       16    APQDG_DBG               DB group
       0      (0) CHARACTER        8     *
       0      (0) CHARACTER        8      APQDG_DBG_DBNAME      Database name or
       0      (0) CHARACTER        8      APQDG_DBG_AREANAME    AREA name
       8      (8) CHARACTER        8     *                      Not used
       0      (0) CHARACTER       16    APQDG_RECOVG            Recovery group
       0      (0) CHARACTER        8     APQDG_RECOVG_DBNAME    Database name
       8      (8) CHARACTER        8     APQDG_RECOVG_AREANAME  AREA name, null if
                                                                not Fast Path

CONSTANTS

  LEN  TYPE           VALUE          NAME            DESCRIPTION
=====  =========  =================  =============== ===============================
    8  CHARACTER   DSPAPQDG          APQDG_EYECATCHER

404  IMS: System Programming APIs



Output for QUERY TYPE=CAGROUP

Figure 21. Format for QUERY TYPE=CAGROUP output

The CA block is only returned when CAINFO=YES is specified and records of a change accumulation exist
in the RECON.

DSECT of DSPAPQCG

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)                 DESCRIPTION
======== ======== ========= ========  ==============             ===============================
       0      (0) STRUCTURE       48  DSPAPQCG
       0      (0) CHARACTER        8   APQCG_GROUPNAME        Group name
       8      (8) UNSIGNED         4   APQCG_MEMBERINFO        Offset to group member list
      12      (C) UNSIGNED         2   APQCG_MEMBERLEN        Length of group member entry
      14      (E) SIGNED           2   APQCG_MEMBERCOUNT  Number of group members
      16     (10) SIGNED           4   *(2)                      Reserved
      24     (18) SIGNED           2   APQCG_GRPMAX              Maximum number of CAs that may
                                                          be predefined for this CA group
      26     (1A) SIGNED           2   APQCG_AVAILCA#            Number of available CA data
                                                          sets for this group
      28     (1C) SIGNED           2   APQCG_USEDCA#             Number of used CA data sets
      30     (1E) BIT(8)           1   APQCG_FLAGS               Flags
                  1... ....             APQCG_REUSE              Reuse CA data sets
      31     (1F) CHARACTER        1   *                         Reserved
      32     (20) CHARACTER        8   APQCG_CAJCL               GENJCL CAJCL member name
      40     (28) CHARACTER        8   APQCG_DFJCL               DEFLTJCL member name
      48        (30) SIGNED           2  APQCG_RECOVPD       Retention Period (Version=4.0)

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)                 DESCRIPTION
======== ======== ========= ========  ==============             ===============================
       0      (0) STRUCTURE       16  APQCG_MEMBER               List of group members
       0      (0) CHARACTER        8   APQCG_DBNAME              Database name
       8      (8) CHARACTER        8   *
       8      (8) CHARACTER        8    APQCG_DDNAME             DD name or
       8      (8) CHARACTER        8    APQCG_AREANAME        AREA name

CONSTANTS

  LEN  TYPE           VALUE          NAME                        DESCRIPTION

Chapter 32. DBRC query request (QUERY)  405



=====  =========  =================  ===============             ===============================
    8  CHARACTER   DSPAPQCG          APQCG_EYECATCHER

DSECT of DSPAPQCA

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH   NAME (DIM)             DESCRIPTION
======== ======== ========= ========   ==============         ===============================
       0      (0) STRUCTURE       96   DSPAPQCA
       0      (0) CHARACTER        8   APQCA_GROUPNAME        Group name
       8      (8) UNSIGNED         4   APQCA_MEMBERINFO        Offset to group member list
      12      (C) UNSIGNED         2   APQCA_MEMBERLEN        Length of each member entry
      14      (E) SIGNED           2   APQCA_MEMBERCOUNT    Number of group members
      16     (10) UNSIGNED         4   APQCA_VOLINFO             Offset to volume information
      20     (14) SIGNED           4   *                         Reserved
      24     (18) CHARACTER       44   APQCA_DSN                 Data set name
      68     (44) CHARACTER       12   APQCA_STOPTIME            Packed decimal date/time - for
                                                                  predefined datasets, represents
                                                                  record creation time.
                                                                  Otherwise, it is the stoptime
                                                                  of the last logtape volume used
                                                                  as input to the Change
                                                                  Accumulation utility that
                                                                  produced this CA as output. If
                                                                  the CA run included an
                                                                  'incomplete log subset' it is
                                                                  the start time of the first
                                                                  truncated log volume.
      80     (50) CHARACTER       12   APQCA_RUNTIME             CA run time
      92     (5C) BIT(8)           1   APQCA_FLAGS               Flags
                  1... ....             APQCA_ERROR              Error on data set
                  .1.. ....             APQCA_SUBSET             Subset of logs used for CA
                  ..1. ....             APQCA_COMMAND            SUBSET/COMP has been set or
                                                                  reset with an external cmd
                  ...1 ....             APQCA_AVAIL      Available CA indicator
      93     (5D) CHARACTER        3   *                         Reserved
      96     (60) UNSIGNED         4   APQCA_OFFUD               Offset to user data (VERSION=4.0)
     100     (64) UNSIGNED         2   APQCA_LENUD               Length of user data (VERSION=4.0)

   OFFSET   OFFSET
  DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)         DESCRIPTION
 ======== ======== ========= ========  ==============     ===============================
        0      (0) STRUCTURE       80  APQIC_USER         Data for user IC
        0      (0) CHARACTER       80  APQRV_UDATA         User supplied data (VERSION=4.0)

  OFFSET  OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)                     DESCRIPTION
======== ======== ========= ========  ==============                 ===============================
       0      (0) STRUCTURE       56  APQCA_MEMBER          List of group members
       0      (0) CHARACTER        8   APQCA_MEM_DBNAME     Database name
       8      (8) CHARACTER        8   *
       8      (8) CHARACTER        8    APQCA_MEM_DDNAME    DD name or
       8      (8) CHARACTER        8    APQCA_MEM_AREANAME  AREA name
      16     (10) UNSIGNED         4   APQCA_MEM_DSSN       Data Set sequence number
      20     (14) UNSIGNED         4   APQCA_MEM_USID       USID of last change
                                                            accumulated
      24     (18) CHARACTER        8   APQCA_MEM_LRID       LRID of last change accumulated
      32     (20) CHARACTER       12   APQCA_MEM_PURGETIME  Purge time
      44     (2C) CHARACTER        6   APQCA_MEM_LSN        Lock sequence number
      50     (32) BIT(8)           1   APQCA_MEM_FLAGS      Member flags
                  1... ....             APQCA_MEM_NOCHG     No changes accumulated
                  .1.. ....             APQCA_MEM_INDOUBT   Indoubt EEQEs accumulated
                  ..1. ....             APQCA_MEM_INCOMP    Incomplete CA
      51     (33) CHARACTER        5   *                    Reserved

Related concepts
“Macro forms of the DSPAPI macro” on page 344
There are four different macro forms for the DSPAPI macro: Standard (S), List (L), Modify (M), and Execute
(E), with two variations, COMPLETE and NOCHECK. The List, Modify, and Execute forms are usually used in
combinations when writing reentrant programs or when the application issues multiple requests.
Related reference
“DBRC query request (QUERY)” on page 367

406  IMS: System Programming APIs



You can use the DBRC Query request (DSPAPI FUNC=QUERY) along with the TYPE parameter to retrieve
various types of information from the RECON data set.
DBRC request return codes (Messages and Codes)

Log query request (TYPE=LOG)
You can use the Log query (DSPAPI FUNC=QUERY TYPE=LOG) request to retrieve log information from
RECON for a specific instance of a subsystem.

Information from the following RECON data sets is returned:

• PRILOG
• LOGALL
• SECLOG (if applicable)
• PRISLDS (if applicable)
• SECSLDS (if applicable)

The log query request can also return log information for subsystems that started in a specified time
range. This request can also be used for a specific subsystem.

Subsections:

• “Syntax for the TYPE=LOG query request” on page 408
• “Parameters for the TYPE=LOG query request” on page 408
• “Return and reason codes for the TYPE=LOG query request” on page 410
• “Output for the TYPE=LOG query request” on page 412
• “Log information output” on page 412
• “DSECT of DSPAPQLI” on page 412
• “TYPE=LOG output for PRILOG, SECLOG, PRISLDS, and SECSLDS” on page 413
• “DSECT of DSPAPQLG” on page 413
• “TYPE=LOG output for LOGALL” on page 414
• “DSECT of DSPAPQLA” on page 414

Chapter 32. DBRC query request (QUERY)  407

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_dbrcrequestretcodes.htm#d2hsrcims_dbrcrequestretcodes


Syntax for the TYPE=LOG query request

name
DSPAPI FUNC=QUERY TYPE=LOG TOKEN=  address

STARTIME=  time
LOC=SPEC

LOC=PREV

LOC=NEXT SSID=  subsystem_ID

FROMTIME=  time

TOTIME=  time SSID=  subsystem_ID

TOTIME=  time

SSID=  subsystem_ID

RETCODE=  returncode RSNCODE=  reasoncode

OUTPUT=  output

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

SUBPOOL=0

SUBPOOL=  number

VERSION=2.0

VERSION=  number

Parameters for the TYPE=LOG query request
name

Optional symbol you can specify. If used, begins in column 1.
TYPE=LOG

Specifies that log information is requested.
TOKEN=address | (2 - 12)

Specifies the address of a 4-byte field that was returned on the FUNC=STARTDBRC request.
STARTIME=time | (2-12)

Specifies the time stamp field that contains the start time of the requested log. The time is a packed
decimal time stamp in UTC format.

FROMTIME=time | (2-12)
Specifies the time stamp field that limits the logs requested to those whose subsystem started at, or
after, the specified time. The time is a packed decimal time stamp in UTC format.

If you specify this parameter, you must also specify a minimum version number of DBRC API
VERSION=2.0.

408  IMS: System Programming APIs



TOTIME=time | (2-12)
Specifies the time stamp field that limits the logs requested to those whose subsystem started at, or
before, the specified time. The time is a packed decimal time stamp in UTC format. This parameter
may be used along with the FROMTIME parameter.

If you specify this parameter requires that you also specify a minimum version number of API
VERSION=2.0.

SSID=subsystem_ID | (2-12)
Specifies the subsystem name for the log being queried.

You can specify the SSID parameter only when requesting the previous or next log of a specific
subsystem, for example, when LOC previous or next is specified, or a range of logs for a specific
subsystem using the FROMTIME or TOTIME parameters.

LOC=PREV | NEXT | SPEC
Specifies that the request is for the log with a specified start time (LOC=SPEC), a start time preceding
the specified start time (LOC=PREV), or a start time following the specified start time (LOC=NEXT).
The STARTIME parameter is used as the base of the search and does not need to be the start time of a
login RECON.

LOC=SPEC is the default.

MF=S | L | M | E
Specifies the macro form of the request.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the first block of a possible chain of log information blocks.

The output address is zero if no output was built. This can occur if nothing in the RECON satisfies the
request or if an error occurs before any output could be built.

The storage for the output blocks is not pre-allocated by the caller. DBRC acquires storage from the
specified subpool for these blocks. The caller must free this storage using the Buffer Release service
(DSPAPI FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not specified, the default is the
subpool specified by the FUNC=STARTDBRC request. Otherwise, subpool 0 is the default.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive the return code. If specified
as a register, the register must contain the address of a word of storage to receive the return code.
Regardless of whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage to receive the reason code.
If specified as a register, the register must contain the address of a word of storage to receive the
reason code. Regardless of whether RSNCODE is specified, register 0 contains the reason code.

VERSION=2.0|number
Specifies the version number of the parameter list that is generated by this macro.

To use the parameters associated with a version, you must specify the number of that version
or a later version. If you specify an earlier version level, the parameter is not accepted by
macro processing, and an error message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the version number required.

Valid version numbers for the FUNC=QUERY TYPE=LOG request are 1.0 and 2.0.

Chapter 32. DBRC query request (QUERY)  409



Return and reason codes for the TYPE=LOG query request
Table 91. Return and reason codes for TYPE=LOG query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D8400001' No log record of the requested log type (PRILOG)
exists. The request was the previous or next log or
logs within a time range specified by FROMTIME or
TOTIME.

X'00000008' X'D8400002' The specified log record of the requested log type -
PRILOG - does not exist.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC service was issued.

X'0000000C' X'D8400100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0) determined
that the user is not authorized to perform the request.

Storage error X'00000028' X'D8400001' Error obtaining storage for LOGINFO block.

X'00000028' X'D8400002' Error obtaining storage for PRILOG, SECLOG,
PRISLDS, or SECSLDS block.

X'00000028' X'D8400003' Error obtaining storage for LOGALL block.

X'00000028' X'D9100001' An error occurred processing the request. DBRC will
release storage that was obtained up to this point.
However, another error was encountered during the
attempt to release storage.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8400001' Failure locating the previous or next log record of the
requested log type - PRILOG.

X'0000002C' X'D8400002' Failure locating the specified log record of the
requested log type - PRILOG.

X'0000002C' X'D8400004' Failure locating the LOGALL record that corresponds
to the PRILOG record.

X'0000002C' X'D8400005' The LOGALL record that corresponds to the PRILOG
record does not exist.

X'0000002C' X'D8400006' Failure locating the corresponding SECLOG record.

X'0000002C' X'D8400007' Failure locating the corresponding PRISLDS record.

X'0000002C' X'D8400008' No PRISLDS record exists for the online log.

X'0000002C' X'D8400009' Failure locating the corresponding SECSLDS record.

X'0000002C' X'D840000A' Failure occurred in DBRC Time Services processing
FROMTIME.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the parameter list
passed to the API is invalid.

410  IMS: System Programming APIs



Table 91. Return and reason codes for TYPE=LOG query requests (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'C9000002' Invalid TOKEN field address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address of the
field to contain the API RETCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address of the
field to contain the API RSNCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address of the
field to contain the OUTPUT address failed validity
checking. The address specifies storage not owned by
the calling program.

X'00000030' X'C9000010' Invalid SSID field address. The address of the field
containing the SSID failed validity checking. The
address specifies storage not owned by the calling
program.

X'00000030' X'C9000011' Invalid STARTIME field address. The address of
the field containing the STARTIME failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000012' Invalid FROMTIME field address. The address of the
field that contains the FROMTIME parameter failed
validity checking. The address specifies storage not
owned by the calling program.

X'00000030' X'C9000013' Invalid TOTIME field address. The address of the field
that contains the TOTIME parameter failed validity
checking. The address specifies storage not owned by
the calling program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8400001' The STARTIME, FROMTIME, or TOTIME parameter is
required.

X'00000030' X'D8400002' SSID is required with TRACKER=YES.

X'00000030' X'D8400003' The SSID parameter is not allowed when querying a
specific active log (LOC=SPEC and TRACKER=NO).

X'00000030' X'D8400006' The FROMTIME parameter value must be less than
the TOTIME parameter value.

X'00000030' X'D8400007' STARTIME cannot be specified with FROMTIME |
TOTIME.

X'00000030' X'D8400008' LOC cannot be specified with FROMTIME or TOTIME.

Chapter 32. DBRC query request (QUERY)  411



Table 91. Return and reason codes for TYPE=LOG query requests (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'D8400010' The value passed in the FROMTIME parameter is not
a valid time

Output for the TYPE=LOG query request
The following figures illustrate the format of output from a QUERY TYPE=LOG requests. The sample
DSECTs that follow the figures describe in detail the fields of the storage blocks and their relationship to
each other.

Log information output

Figure 22. Format for QUERY TYPE=LOG log information output

DSECT of DSPAPQLI
  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)         DESCRIPTION
======== ======== ========= ========  ==============     ===============================
       0      (0) STRUCTURE       48  DSPAPQLI
       0      (0) CHARACTER        8   APQLI_SSID        Log SSID
       8      (8) CHARACTER       12   APQLI_STARTTIME   Log start time
      20     (14) ADDRESS          4   APQLI_PRILOGPTR   ptr to PRILOG block
      24     (18) ADDRESS          4   APQLI_LOGALLPTR   ptr to LOGALL block
      28     (1C) ADDRESS          4   APQLI_SECLOGPTR   ptr to SECLOG block
      32     (20) ADDRESS          4   APQLI_PRISLDSPTR  ptr to PRISLDS block
      36     (24) ADDRESS          4   APQLI_SECSLDSPTR  ptr to SECSLDS block
      40     (28) ADDRESS          4   APQLI_PRITSLDSPTR ptr to PRITSLDS block
      44     (2C) ADDRESS          4   APQLI_SECTSLDSPTR ptr to SECTSLDS block

CONSTANTS

  LEN  TYPE           VALUE          NAME            DESCRIPTION
=====  =========  =================  =============== ===============================
    8  CHARACTER   DSPAPQLI          APQLI_EYECATCHER

412  IMS: System Programming APIs



TYPE=LOG output for PRILOG, SECLOG, PRISLDS, and SECSLDS

Figure 23. Format for QUERY TYPE=LOG output for PRILOG, SECLOG, PRISLDS, and SECSLDS

DSECT of DSPAPQLG
  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)         DESCRIPTION
======== ======== ========= ========  ==============     ===============================
       0      (0) STRUCTURE       96  DSPAPQLG
       0      (0) UNSIGNED         4   APQLG_FIRSTLOGDS  Offset to first log DS entry
       4      (4) UNSIGNED         4   APQLG_LASTLOGDS   Offset to last log DS entry
       8      (8) SIGNED           4   *(2)              Reserved
      16     (10) CHARACTER        8   APQLG_SSID        Subsystem ID
      24     (18) CHARACTER       12   APQLG_STARTTIME   Log start time
      36     (24) CHARACTER       12   APQLG_ENDTIME     Log end time
      48     (30) SIGNED           4   APQLG_DSNCOUNT    Number of data sets
      52     (34) UNSIGNED         1   APQLG_RELVL       Log Release Level
                  1... ....             APQLG_ONLINE     Online log - PRILOG and SECLOG only
                  .1.. ....             APQLG_LSTAR      Last OLDS has been archived - PRILOG and 
PRITSLDS only
                  ..1. ....             APQLG_LSTNA      Last OLDS has not been archived - PRILOG and 
PRITSLDS only
                  ...1 ....             APQLG_GAP        There is a gap in this log
                  .... 1...             APQLG_PRGAP      There is a gap in a prev log
      53     (34) UNSIGNED         1   APQLG_FLAGS1      Flags
                  1... ....             APQLG_ONLINE     Online log - PRILOG and SECLOG only
                  .1.. ....             APQLG_LSTAR      Last OLDS has been archived – PRILOG
                                                         and PRITSLDS only
                  ..1. ....             APQLG_LSTNA      Last OLDS has not been archived –
                                                         PRILOG and PRITSLDS only
                  ...1 ....             APQLG_GAP        There is a gap in this log
                  .... 1...             APQLG_PRGAP      There is a gap in a prev log
                  .... .1..             APQLG_BPE        BPE-based subsystem (VERSION=4.0)
      54     (36) BIT(8)           1   APQLG_FLAGS2      Flags
                  1... ....             APQLG_TRKNG      Tracking log data set
                  .1.. ....             APQLG_NTERM      IMS subsystem has terminated normally
                  ..1. ....             APQLG_BKLOG      Batch backout log
      55     (37) CHARACTER        1   *                 Reserved
      56     (38) CHARACTER        8   APQLG_FIRSTLRID   Id of first log record
      64     (40) UNSIGNED         4   APQLG_PTOKEN      PRILOG token
      68     (44) CHARACTER        8   APQLG_GSGNAME     GSG name
      76     (4C) CHARACTER       12   APQLG_CHKPT0      Checkpoint 0 time
      88     (58) CHARACTER        8   *                 Reserved  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)             DESCRIPTION
======== ======== ========= ========  ==============         ==============================
       0      (0) STRUCTURE      120  APQLG_DS_ENTRY         Data set entry
       0      (0) UNSIGNED         4   APQLG_DS_NEXT         Offset to next log DS entry
       4      (4) UNSIGNED         4   APQLG_DS_PREV         Offset to prev log DS entry
       8      (8) UNSIGNED         4   APQLG_DS_VOLINFO      Offset to DS volume info
      12      (C) CHARACTER       44   APQLG_DS_DSNAME       Data set name
      56     (38) CHARACTER       12   APQLG_DS_STARTTIME    DS start time
      68     (44) CHARACTER       12   APQLG_DS_ENDTIME      DS end time
      80     (50) BIT(8)           1   APQLG_DS_FLAGS1       Flags
                  1... ....             APQLG_DS_ERR I/O     Error
                  .1.. ....             APQLG_DS_DUMMY       Log compressed, 1st DS dummy
                  ..1. ....             APQLG_DS_RSTBG       Restart begin

Chapter 32. DBRC query request (QUERY)  413



                  ...1 ....             APQLG_DS_RSTEN       Restart end
                  .... 1...             APQLG_DS_COLD        Cold start
                  .... .1..             APQLG_DS_NOBMP       ERE NOBMP
                  .... ..1.             APQLG_DS_SAVER       Backout UORs saved
                  .... ...1             APQLG_DS_NOID        Backouts not identified
      81     (51) BIT(8)           1   APQLG_DS_FLAGS2       Flags
                  1... ....             APQLG_DS_TRKARCH     Tracking log DS archived
                  .1.. ....             APQLG_DS_TRKFEOV     Tracking log closed FEOV
      82     (52) CHARACTER        2   APQLG_DS_DFLG3        Reserved
      84     (54) CHARACTER        8   APQLG_DS_FLRID        First log record ID
      92     (5C) CHARACTER        8   APQLG_DS_LLRID        Last log record ID
     100     (64) UNSIGNED         4   APQLG_DS_LASTBLKSEQNO Last block seq number
     104     (68) CHARACTER        8   APQLG_DS_UNITTYPE     Unit type name
     112     (70) UNSIGNED         2   APQLG_DS_FILESEQ      File sequence no
     114     (72) UNSIGNED         2   APQLG_DS_VOLCOUNT     Number of volumes
     116     (74) UNSIGNED         1   APQLG_DS_CKPTCOUNT    Number of chkpts on DSN
     117     (75) BIT(8)           1   APQLG_DS_CHKPTTYPES   CHKPT types.
                  1... ....             APQLG_DS_SIMPL       SIMPLE checkpoint
                  .1.. ....             APQLG_DS_SNAPQ       SNAPQ checkpoint
                  ..1. ....             APQLG_DS_DUMPQ       DUMPQ checkpoint
                  ...1 ....             APQLG_DS_PURGE       PURGE checkpoint
                  .... 1...             APQLG_DS_FREEZ       FREEZE checkpoint
     118     (76) UNSIGNED         2   *                     Reserved
  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)             DESCRIPTION
======== ======== ========= ========  ==============         ===============================
       0      (0) STRUCTURE       48  APQLG_DSVOLUME         Volume information
       0      (0) UNSIGNED         4   APQLG_DSVOL_NEXT      Offset to next volume
       4      (4) CHARACTER        6   APQLG_DSVOL_SER       VOLSER
      10      (A) UNSIGNED         1   APQLG_DSVOL_CKPTCT    Volume chkpt count
      11      (B) CHARACTER        1   *                     Reserved
      12      (C) CHARACTER       12   APQLG_DSVOL_ENDTIME   Volume end time
      24     (18) CHARACTER       12   APQLG_DSVOL_CPTID     Checkpoint ID
      36     (24) CHARACTER        6   APQLG_DSVOL_LOCKSN    Lock Sequence Number
      42     (2A) CHARACTER        6   *                     Reserved

CONSTANTS

  LEN  TYPE           VALUE          NAME                   DESCRIPTION
=====  =========  =================  ===============        ===============================
    8  CHARACTER   DSPAPQLG          APQLG_EYECATCHER

TYPE=LOG output for LOGALL

Figure 24. Format for QUERY TYPE=LOG output for LOGALL

DSECT of DSPAPQLA
  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM             DESCRIPTION
======== ======== ========= ========  ==============        ===============================
       0      (0) STRUCTURE       48  DSPAPQLA
       0      (0) UNSIGNED         4   APQLA_DBDSAREAINFO        Offset to allocated
                                                            DBDS/Area list
       4      (4) SIGNED           4   *(3)                 Reserved
      16     (10) CHARACTER       12   APQLA_PRILOGTIME     PRILOG time
      28     (1C) BIT(8)           1   APQLA_FLAGS          Flags
                  1... ....             APQLA_NONREGD       Non-registered DB updated
      29     (1D) UNSIGNED         3   APQLA_DBDSAREACOUNT  Number of DBDS/Areas
                                                            allocated on this log
      32     (20) UNSIGNED         4   APQLA_DBDSAREALEN    Length of DBDS/Area entry
      36     (24) CHARACTER       12   APQLA_EARLIESTALLOC  Earliest ALLOC time for
                                                            this log

414  IMS: System Programming APIs



  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)            DESCRIPTION
======== ======== ========= ========  ==============        ===============================
       0      (0) STRUCTURE       32  APQLA_DBDSAREA        List of allocated DBDSs and
                                                            areas
       0      (0) CHARACTER        8   APQLA_DBNAME         Database name
       8      (8) CHARACTER        8   *
       8      (8) CHARACTER        8    APQLA_DDNAME        DD name or
       8      (8) CHARACTER        8    APQLA_AREANAME      AREA name
      16     (10) CHARACTER       12   APQLA_FIRSTALLOC     Earliest ALLOC time for this
                                                            DBDS/Area on this log
      28     (1C) SIGNED           2   APQLA_ALLNO          Number of ALLOCs for this
                                                            DBDS/Area on this log
      30     (1E) CHARACTER        2   *                    Reserved

CONSTANTS

  LEN  TYPE           VALUE          NAME                   DESCRIPTION
=====  =========  =================  ===============        ===============================
    8  CHARACTER   DSPAPQLA          APQLA_EYECATCHER

Related concepts
“Macro forms of the DSPAPI macro” on page 344
There are four different macro forms for the DSPAPI macro: Standard (S), List (L), Modify (M), and Execute
(E), with two variations, COMPLETE and NOCHECK. The List, Modify, and Execute forms are usually used in
combinations when writing reentrant programs or when the application issues multiple requests.
Related reference
“DBRC query request (QUERY)” on page 367

Chapter 32. DBRC query request (QUERY)  415



You can use the DBRC Query request (DSPAPI FUNC=QUERY) along with the TYPE parameter to retrieve
various types of information from the RECON data set.

OLDS query request (TYPE=OLDS)
You can use the OLDS query (DSPAPI FUNC=QUERY TYPE=OLDS) request to retrieve online log data set
information from the RECON for a specific subsystem or all subsystems.

Syntax for the TYPE=OLDS query request

name
DSPAPI FUNC=QUERY TYPE=OLDS TOKEN=  address

SSID=*

SSID=  subsystem_ID *

SSID=  subsystem_ID

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

OUTPUT=  output
SUBPOOL=0

SUBPOOL=  number RETCODE=  returncode

RSNCODE=  reasoncode

VERSION=2.0

VERSION=  number

Parameters for the TYPE=OLDS query request
name

Optional symbol you can specify. If used, begins in column 1.
TYPE=OLDS

Specifies that online log data set information is requested.
TOKEN=symbol | (2 - 12)

Specifies the address of a 4-byte field that was returned on the FUNC=STARTDBRC request.
SSID=* | symbol*| symbol | (2 - 12)

Specifies the subsystem name for the backout being queried. You can use the wildcard keyword * (an
asterisk) alone to request all of the OLDS information (SSID=*, the default). You can also use it at the
end of a name to query subsystem names that match the pattern. In this case, the asterisk must be
preceded by at least one alphabetic character.

MF=S | L | M | E
Specifies the macro form of the request.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the first block of a possible chain of OLDS information blocks.

The output address is zero if no output was built. This can occur if nothing in the RECON satisfies the
request or if an error occurs before any output could be built.

416  IMS: System Programming APIs



The storage for the output blocks is not pre-allocated by the caller. DBRC acquires storage from the
specified subpool for these blocks. The caller must free this storage using the Buffer Release service
(DSPAPI FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not specified, the default is the
subpool specified by the FUNC=STARTDBRC request. Otherwise, subpool 0 is the default.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive the return code. If specified
as a register, the register must contain the address of a word of storage to receive the return code.
Regardless of whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage to receive the reason code.
If specified as a register, the register must contain the address of a word of storage to receive the
reason code. Regardless of whether RSNCODE is specified, register 0 contains the reason code.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this request.

To use the parameters associated with a version, you must specify the number of that version
or a later version. If you specify an earlier version level, the parameter is not accepted by
macro processing, and an error message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the version number required.

Valid version numbers for the FUNC=QUERY TYPE=OLDS request are 1.0 and 2.0 (default).

Return and reason codes for the TYPE=OLDS query request
Table 92. Return and reason codes for TYPE=OLDS query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D8500001' No PRIOLDS records exist.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC service was issued.

X'0000000C' X'D8500100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0) determined
that the user is not authorized to perform the request.

Storage error X'00000028' X'D8500001' Error obtaining storage for OLDS block.

X'00000028' X'D9100001' An error occurred processing the request. DBRC will
release storage that was obtained up to this point.
However, another error was encountered during the
attempt to release storage.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8500001' Failure locating the first or the specified PRIOLDS
record.

X'0000002C' X'D8500002' Failure locating the corresponding SECOLDS record.

X'0000002C' X'D8500003' Failure locating the next PRIOLDS record.

Chapter 32. DBRC query request (QUERY)  417



Table 92. Return and reason codes for TYPE=OLDS query requests (continued)

Code type Return codes Reason codes Meaning

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the parameter list
passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address of the
field to contain the API RETCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address of the
field to contain the API RSNCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address of the
field to contain the OUTPUT address failed validity
checking. The address specifies storage not owned by
the calling program.

X'00000030' X'C9000010' Invalid SSID field address. The address of the field
containing the SSID failed validity checking. The
address specifies storage not owned by the calling
program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8500100' When using a wildcard, at least one alphabetic
character must precede the asterisk.

X'00000030' X'D8500101' When using a wildcard, the asterisk must be the last
character.

Output for the TYPE=OLDS query request
The following figure illustrates the format of the output from a QUERY TYPE=OLDS request. The following
DSECT sample describes in detail the fields of the storage blocks and their relationship to each other.

418  IMS: System Programming APIs



Figure 25. Format for QUERY TYPE=OLDS output

DSECT of DSPAPQOL

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)       DESCRIPTION
======== ======== ========= ========  ==============   ===============================
       0      (0) STRUCTURE       48  DSPAPQOL
       0      (0) UNSIGNED         4   APQOL_OLDSINFO  Offset to OLDS list
       4      (4) SIGNED           4   *(3)            Reserved
      16     (10) CHARACTER        8   APQOL_SSID      Subsystem ID
      24     (18) UNSIGNED         2   APQOL_OLDSLEN   Length of OLDS entry
      26     (1A) SIGNED           2   APQOL_OLDSCOUNT Number of OLDS entries
      28     (1C) CHARACTER       12   APQOL_CHKPT0    Checkpoint 0 time
      40     (28) CHARACTER        8   *               Reserved

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)        DESCRIPTION
======== ======== ========= ========  ==============    ===============================
       0      (0) STRUCTURE      128  APQOL_OLDSENTRY   OLDS entry
       0      (0) CHARACTER        8   APQOL_DDNAME     OLDS DD name
       8      (8) CHARACTER       44   APQOL_DSNAM      OLDS data set name
      52     (34) CHARACTER       12   APQOL_OPENTIME   OLDS open time
      64     (40) CHARACTER       12   APQOL_CLOSETIME  Close time
      76     (4C) CHARACTER       12   APQOL_PRILOGTIME Start time of associated
                                                        PRILOG
      88     (58) CHARACTER        8   APQOL_FLSN       LSN of first record in OLDS
      96     (60) CHARACTER        8   APQOL_LLSN       LSN of last record in OLDS
     104     (68) BIT(8)           1   APQOL_FLAG1
                  1... ....             APQOL_RSTBG     Restart begin
                  .1.. ....             APQOL_RSTEN     Restart end
                  ..1. ....             APQOL_COLD      Cold start
                  ...1 ....             APQOL_NOBMP     ERE NOBMP
                  .... 1...             APQOL_SAVER     Backout UORs saved
                  .... .1..             APQOL_NOID      Backouts not identified
                  .... ..1.             APQOL_TRKNG     OLDS created by tracking SS
     105     (69) BIT(8)           1   APQOL_FLAG2      OLDS flags
                  1111 ....             APQOL_STAT      OLDS status
                  1... ....              APQOL_INUSE    OLDS is in use
                  .1.. ....              APQOL_ARNED    Archive needed
                  ..1. ....              APQOL_ARSCH    Archive scheduled (GENJCL)
                  ...1 ....              APQOL_ARSTD    Archive job started
                  .... 1...             APQOL_CLERR     Close error on OLDS
                  .... .1..             APQOL_FEOV      Force EOV at archive
                  .... ..1.             APQOL_DUMMY     OLDS not used due to I/O err
                  .... ...1             APQOL_PRVCE     Close error on previous OLDS
     106     (6A) UNSIGNED         1   APQOL_RELVL      Log release level

Chapter 32. DBRC query request (QUERY)  419



     107     (6B) UNSIGNED         1   APQOL_GAVER      GENJCL.ARCHIVE version
     108     (6C) BIT(32)          4   APQOL_BLOCKSEQNO Block sequence number
     112     (70) CHARACTER        8   APQOL_ARJOB      Name of the archive job
                                                        Generated by GENJCL.ARCHIVE
     120     (78) CHARACTER        6   APQOL_LOCKSEQNO  Lock sequence number
     126     (7E) CHARACTER        2   *                Reserved

CONSTANTS

  LEN  TYPE           VALUE          NAME            DESCRIPTION
=====  =========  =================  =============== ===============================
    8  CHARACTER   DSPAPQOL          APQOL_EYECATCHER

Related concepts
“Macro forms of the DSPAPI macro” on page 344
There are four different macro forms for the DSPAPI macro: Standard (S), List (L), Modify (M), and Execute
(E), with two variations, COMPLETE and NOCHECK. The List, Modify, and Execute forms are usually used in
combinations when writing reentrant programs or when the application issues multiple requests.
Related reference
“DBRC query request (QUERY)” on page 367
You can use the DBRC Query request (DSPAPI FUNC=QUERY) along with the TYPE parameter to retrieve
various types of information from the RECON data set.

HALDB partition query request (TYPE=PART)
You can use the DSPAPI FUNC=QUERY TYPE=PART request to retrieve information for a particular HALDB
partition from the RECON data set. You can request data set information for a specific DBDS or all
DBDSs in the partition, and can optionally request recovery-related information for the data set, including
allocation, image copy, recovery, and reorganization information.

420  IMS: System Programming APIs



Syntax for the TYPE=PART query request

name
DSPAPI FUNC=QUERY TYPE=PART TOKEN=  address

DBNAME=  name
LOC=ALL

LOC=FIRST

LOC=LAST

PARTNAME=  name
LOC=SPEC

LOC=PREV

LOC=NEXT

DDN=NULL

DDN= ddname

DDN= *

LIST=NONE

LIST=( ALLOC

IC

RECOV

REORG

)

LIST=ALL

RETCODE=  returncode

RSNCODE=  reasoncode

OUTPUT=  output

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

SUBPOOL=0

SUBPOOL=  number

VERSION=2.0

VERSION=  number

Parameters for the TYPE=PART query request
name

Optional symbol you can specify. If used, begins in column 1.
TYPE=PART

Required parameter that specifies that RECON data set information for a HALDB partition is
requested.

When you specify the TYPE=PART, you must also specify a minimum DBRC API version number of
VERSION=2.0.

Chapter 32. DBRC query request (QUERY)  421



DBNAME=name | (2 - 12)
Specifies the HALDB name of the partition being queried. You can optionally specify the LOC
parameter, which indicates that you are interested in either the first partition, last partition, or all
partitions of the specified HALDB. If the HALDB uses high keys, the request is for the partition with the
lowest or highest high key. Otherwise, the first or last alphanumerical partition is returned. LOC=SPEC|
PREV|NEXT may not be specified.

PARTNAME=name | (2 - 12)
Required parameter that specifies the name of a HALDB partition being queried.

The LOC parameter indicates the partition of interest:

• The default LOC=SPEC indicates a request for the specified partition. This partition might be
available or disabled.

• LOC=PREV indicates a request for the active partition in the HALDB that is before the specified
partition. If the HALDB uses high keys, the request is for the partition with the lower high key.
Otherwise, the previous alphanumerical partition within the HALDB is returned. The partition name
specified must be the name of an active partition registered in the RECON. This is required in order
to ensure that the previous partition is within the same HALDB

• LOC=NEXT indicates a request for the active partition in the HALDB that is after the specified
partition. If the HALDB uses high keys, the request is for the partition with the higher high key.
Otherwise, the next alphanumerical partition within the HALDB is returned. The partition name
specified must be the name of an active partition registered in the RECON. This is required to ensure
that the next partition is within the same HALDB.

• LOC=FIRST|LAST can not be specified with PARTNAME.

To use this parameter, you must also specify a minimum version number of API VERSION=2.0.
DDN=NULL | (2 - 12) | * | ddname

Specifies the DD name of a DBDS set within the partition. An asterisk (* without quotes) can also be
specified indicating that information about all DBDSs is requested. If a specific DDN is requested and
the request is not for a specific partition information is returned for all DBDSs of the partition.

DDN=NULL indicates that no DBDS information is requested. This is the default.

LIST=( {ALLOC},{IC},{RECOV},{REORG}) | LIST=ALL | LIST=NONE
Specifies the types of supporting information to be included in the query output for the specified
DBDS. If DDN is not specified, this information is returned for all DBDSs in the partition. One or more
of the specific values is included in the list: ALLOC (allocation records), IC (image copy records),
RECOV (recovery records), or REORG (reorganization records). LIST=ALL requests all supporting
information. LIST=NONE requests no supporting information.

LOC=ALL | FIRST | LAST | PREV | NEXT | SPEC

The optional parameter specifies that the request is for the specified partition (SPEC), or for the first,
last, previous, next or all active partitions defined in RECON for the HALDB. LOC=SPEC may return an
active or disabled partition. DBNAME is required with LOC=FIRST|LAST|ALL, but is not allowed with
LOC=PREV|NEXT|SPEC. Conversely, PARTNAME is required with LOC=PREV|NEXT|SPEC, but is not
allowed with LOC=FIRST|LAST|ALL. LOC=ALL is the default with DBNAME. LOC=SPEC is the default
with PARTNAME.

Partitions are returned in high key order if the HALDB uses high keys. Otherwise, partitions are
returned in alphanumerical order.

TOKEN=address | (2 - 12)
Specifies the address of a 4-byte field to receive the API token. This token must be included in all
subsequent requests associated with this FUNC=STARTDBRC request.

RETCODE=returncode | (2 - 12)
Specifies a location in storage to receive the return code. If specified as a symbol, the symbol must
be the label of a word of storage. If specified as a register, the register must contain the address of a
word of storage. If not specified, the return code is placed in register 15.

422  IMS: System Programming APIs



RSNCODE=reasoncode | (2 - 12)
Specifies a place in storage to receive the reason code. If specified as a symbol, the symbol must be
the label of a word of storage. If specified as a register, the register must contain the address of a
word of storage. If not specified, the reason code is placed in register 0.

OUTPUT=output | (2 - 12)
Required parameter that specifies a field to receive a pointer to the first of a possible chain of blocks
that contain the information for the partition.

The output address is 0 if no output is built. This can happen if nothing in the RECON data set satisfies
the request or if an error occurs before any output is built.

The storage for the output blocks is not pre-allocated by the caller. DBRC acquires storage from the
specified subpool for these blocks. The caller must free this storage using the Buffer Release service
(DSPAPI FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Optional parameter that specifies the subpool number for the storage being obtained. If not specified,
the default is the subpool specified by the FUNC=STARTDBRC request. Otherwise, subpool 0 is the
default.

MF=S | L | M | E
Specifies the macro form of the request.

VERSION=2.0 | number
Optional parameter that specifies the version number of the parameter list that is generated by this
request.

To use the parameters associated with a version, you must specify the number of that version or a
later version. If you specify an earlier version level, the parameter is not accepted for processing and
an error message is issued at assembly time. If parameters have a version dependency, the parameter
descriptions with each request type identify the version number required.

The default version is 2.0.

Note: TYPE=PART requires that you specify a minimum version number of API VERSION=2.0.

Return and reason codes for the TYPE=PART query request
The following table contains most of the return and reason codes for TYPE=PART query requests. The
other possible return and reason codes relate to DBRC, not the query request.

Table 93. Return and reason codes for TYPE=PART query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D8210002' The specified DBDS or Area is not registered in
RECON. No information blocks are returned.

X'00000008' X'D8220001' No partitions are registered in RECON for the HALDB.
No information blocks are returned.

X'00000008' X'D8220002' The specified partition is not registered in RECON. No
information blocks are returned.

X'00000008' X'D8220003' A high key partition preceding the specified partition
does not exist in RECON. No information blocks are
returned.

X'00000008' X'D8220004' A high key partition following the specified partition
does not exist in RECON. No information blocks are
returned.

Chapter 32. DBRC query request (QUERY)  423



Table 93. Return and reason codes for TYPE=PART query requests (continued)

Code type Return codes Reason codes Meaning

X'00000008' X'D8220005' The DBNAME specified is not registered in RECON. No
information blocks are returned.

X'00000008' X'D8220006' No active partitions found while searching for the
FIRST or LAST partition of the HALDB.

X'00000008' X'D8220007' No active partitions found while searching for the
PREV or NEXT partition.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC service was issued.

X'0000000C' X'D8220100' Security error. SAF or the DBRC cmd auth exit
(DSPDCAX0) has determined that the user is not
authorized to perform the request.

Storage error X'00000028' X'D8210001' Error obtaining storage for DBDS block.

X'00000028' X'D8210002' Error obtaining storage for AREA block.

X'00000028' X'D8210003' Error obtaining storage for RCVINFO block.

X'00000028' X'D8210004' Error obtaining storage for ALLOC block.

X'00000028' X'D8210005' Error obtaining storage for IC block.

X'00000028' X'D8210006' Error obtaining storage for REORG block.

X'00000028' X'D8210007' Error obtaining storage for RECOV block.

X'00000028' X'D8220001' Error obtaining storage for PART block.

X'00000028' X'D9100001' An error occurred processing the request. DBRC will
release storage that was obtained up to this point.
However, another error was encountered during the
attempt to release storage.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8210001' Failure locating the first DBDS record.

X'0000002C' X'D8210002' Failure locating the specified DBDS record.

X'0000002C' X'D8210003' Failure locating the next DBDS record.

X'0000002C' X'D8210004' Failure locating the first Area Auth record.

X'0000002C' X'D8210005' Failure locating the first ALLOC record.

X'0000002C' X'D8210006' Failure locating the next ALLOC record.

X'0000002C' X'D8210007' Failure locating the first IC record.

X'0000002C' X'D8210008' Failure locating the next IC record.

X'0000002C' X'D8210009' Failure locating the first REORG record.

X'0000002C' X'D821000A' Failure locating the next REORG record.

X'0000002C' X'D821000B' Failure locating the first RECOV record.

424  IMS: System Programming APIs



Table 93. Return and reason codes for TYPE=PART query requests (continued)

Code type Return codes Reason codes Meaning

X'0000002C' X'D821000C' Failure locating the next RECOV record.

X'0000002C' X'D8220001' Failure locating the first HALDB partition record.

X'0000002C' X'D8220002' Failure locating the DB record associated with the
HALDB partition being processed.

X'0000002C' X'D8220003' Failure locating the next HALDB partition record.

X'0000002C' X'D8220004' Failure locating the specified HALDB (DBNAME).

X'0000002C' X'D8220005' Failure locating the first or last active partition.

X'0000002C' X'D8220006' Failure locating the first or last high key partition.

X'0000002C' X'D8220007' Failure locating the previous or next high key
partition.

X'0000002C' X'D8220008' Failure locating the PART record corresponding to an
existing Part DB record.

X'0000002C' X'D8220009' Failure locating the previous or next partition of
HALDB that uses a part selection routine.

X'0000002C' X'D822000A' Failure locating the HALDB record for the specified
partition.

X'0000002C' X'D822000B' Failure locating the Part DB record for the specified
PARTNAME.

X'0000002C' X'D822000C' Neither the PART record nor the Part DB record is
passed to ProcessPART.

X'0000002C' X'D822000D' Failure locating the PART record associated with the
HALDB partition being processed.

X'0000002C' X'D82221xx' Internal Query DBDS call returned RC=X'30'
RSN=X'D82100xx', a parameter error.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the parameter list
passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address of the
field to contain the API RETCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address of the
field to contain the API RSNCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address of the
field to contain the OUTPUT address failed validity
checking. The address specifies storage not owned by
the calling program.

Chapter 32. DBRC query request (QUERY)  425



Table 93. Return and reason codes for TYPE=PART query requests (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'C9000008' Invalid DBNAME or PARTNAME address. The address
of the field containing the DBNAME or PARTNAME
failed validity checking. The address specifies storage
not owned by the calling program.

X'00000030' X'C9000009' Invalid DDN address. The address of the field
containing the DDN failed validity checking. The
address specifies storage not owned by the calling
program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8000003' TYPE=PART requires at least VERSION=2.0.

X'00000030' X'D8220002' LOC=FIRST|LAST|ALL cannot be used with
PARTNAME.

X'00000030' X'D8220003' LOC=PREV|NEXT cannot be used with DBNAME.

X'00000030' X'D8220004' Explicit name must be specified in DBNAME or
PARTNAME. An asterisk cannot be used.

X'00000030' X'D8220005' DBNAME specified is not a HALDB.

X'00000030' X'D8220006' The partition name specified with LOC=PREV|NEXT
must be an active partition.

X'00000030' X'D8220007' PARTNAME must specify the name of a partition.

Output for TYPE=PART queries
The following mappings are used for the TYPE=PART query:

• DSPAPQHP - HALDB Partition block
• DSPAPQSL - Subsystem List

Related concepts
“DBRC API” on page 341
Your applications can obtain services from Database Recovery Control (DBRC) through the DBRC
application programming interface (API), a release-independent, assembler macro interface. The
application obtains these services by issuing DBRC API requests to DBRC, and DBRC returns the results to
an area in storage where the application can retrieve them.
Related reference
“DBRC query request (QUERY)” on page 367
You can use the DBRC Query request (DSPAPI FUNC=QUERY) along with the TYPE parameter to retrieve
various types of information from the RECON data set.
“Database query request (TYPE=DB)” on page 373
You can use the Database Query request (DSPAPI FUNC=QUERY TYPE=DB) to retrieve information from
the RECON concerning one or more registered databases.
“DBDS query request (TYPE=DBDS)” on page 394
You can use the DSPAPI FUNC=QUERY TYPE=DBDS request to retrieve information from the RECON data
set for one or more DBDSs in a non-HALDB database, a HALDB partition, a DBDS group, or a CA group. You
can also request recovery related information for the data set, including allocation, image copy, recovery,
and reorganization information.
DBRC request return codes (Messages and Codes)

426  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_dbrcrequestretcodes.htm#d2hsrcims_dbrcrequestretcodes


RECON status query request (TYPE=RECON)
You can use the RECON status query (DSPAPI FUNC=QUERY TYPE=RECON) request to retrieve
information pertaining to the RECON data sets, including RECON header information as well as the status
of each RECON data set.

Syntax for the TYPE=RECON query request

name
DSPAPI FUNC=QUERY TYPE=RECON TOKEN=  address

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

OUTPUT=  output

SUBPOOL=0

SUBPOOL=  number RETCODE=  returncode RSNCODE=  reasoncode

VERSION=2.0

VERSION=  number

Parameters for the TYPE=RECON query request
name

Optional symbol you can specify. If used, begins in column 1.
TYPE=RECON

Specifies that RECON status information is requested.
TOKEN=symbol | (2 - 12)

Required parameter that specifies the address of a 4-byte field that was returned on the
FUNC=STARTDBRC request.

MF=S | L | M | E
Optional parameter that specifies the macro form of the request.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the RECON status information block.

The output address is zero if no output was built. This can occur if nothing in the RECON satisfies the
request or if an error occurs before any output could be built.

The storage for the output blocks is not preallocated by the caller. DBRC acquires storage from the
specified subpool for these blocks. The caller must free this storage using the Buffer Release service
(DSPAPI FUNC=RELBUF) and specify the returned output address.

Chapter 32. DBRC query request (QUERY)  427



SUBPOOL= 0 | number
Optional parameter that specifies the subpool number for the storage being obtained. If not specified,
the default is the subpool specified by the FUNC=STARTDBRC request. Otherwise, subpool 0 is the
default.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive the return code. If specified
as a register, the register must contain the address of a word of storage to receive the return code.
Regardless of whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage to receive the reason code.
If specified as a register, the register must contain the address of a word of storage to receive the
reason code. Regardless of whether RSNCODE is specified, register 0 contains the reason code.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this request.

To use the parameters associated with a version, you must specify the number of that version
or a later version. If you specify an earlier version level, the parameter is not accepted by
macro processing, and an error message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the version number required.

Valid version numbers are 1.0 and 2.0.

Return and reason codes for the TYPE=RECON query request
Table 94. Return and reason codes for TYPE=RECON queries

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC service was issued.

X'0000000C' X'D8100100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0) determined
that the user is not authorized to perform the request.

Storage error X'00000028' X'D8100001' Error obtaining storage for the RECON block.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8100001' Failure attempting to locate the RECON header
record.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the parameter list
passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address of the
field to contain the API RETCODE failed validity
checking. The address specifies storage not owned
by the calling program.

428  IMS: System Programming APIs



Table 94. Return and reason codes for TYPE=RECON queries (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'C9000004' Invalid RSNCODE field address. The address of the
field to contain the API RSNCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address of the
field to contain the OUTPUT address failed validity
checking. The address specifies storage not owned by
the calling program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

Output for the TYPE=RECON query request
The following figure illustrates the format of the output from a QUERY TYPE=RECON request. The
following DSECT sample describes in detail the fields of the storage blocks and their relationship to
each other.

Figure 26. Format for QUERY TYPE=RECON output

DSECT of DSPAPQRC

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)        DESCRIPTION
======== ======== ========= ========  ==============    ===============================
       0      (0) STRUCTURE      560  DSPAPQRC
       0      (0) CHARACTER       44   APQRC_DATA       Initialized with "RECOVERY
                                                        CONTROL DATASET"
      44     (2C) UNSIGNED         4   APQRC_RECONINFO  Offset to RECON data set
                                                        info
      48     (30) SIGNED           4   *(2)             Reserved
      56     (38) UNSIGNED         2   APQRC_RECONINFOLEN  Length of each RECON dataset info element
      58     (3A) UNSIGNED         1   APQRC_RECONCOUNT    # of RECON dataset elements
      59     (3B) CHARACTER        1   *                Reserved
      60     (3C) BIT(8)           1   APQRC_FLAGS      Process flags...
                  1... ....             APQRC_NOCHK     1= NOCHECK log tape dsn check
                  .1.. ....             APQRC_CHK17     1= CHECK17 log tape dsn check
                  ..1. ....             APQRC_CHK44     1= CHECK44 log tape dsn check
                  ...1 ....             APQRC_LSTLG     1= list log DSN
                  .... 1...             APQRC_INUPG     Upgrade in progress. 
                  .... .1..             APQRC_REORGV    Reorg verification
      61     (3D) BIT(8)           1   APQRC_FLAG2      More flags...
                  1... ....             APQRC_FORCE     1 = FORCER, 0 = NOFORCER
                  .1.. ....             APQRC_CATDS     1=CA|IC|LOGS cataloged
                  ..1. ....             APQRC_TRACE     1 = ext. GTF trace on
                  ...1 ....             APQRC_CMDSAF    SAF enabled
                  .... 1...             APQRC_CMDEXIT   Cmd auth exit enabled
                  .... .1..             APQRC_PRA          Parallel RECON Access in use (VERSION=2.0)
                  .... ..1.             APQRC_LISTFUZZY PRA Concurrent LIST active (VERSION=2.0)
      62     (3E) CHARACTER        2   *                Reserved
      64     (40) CHARACTER      136   APQRC_CLEAN      Fields needed for cleanup
      64     (40) SIGNED           4    APQRC_CSET      0 = updates not in progress,

Chapter 32. DBRC query request (QUERY)  429



                                                        >0 = update in progress
      68     (44) SIGNED           4    APQRC_TYPE      Type of update
      72     (48) CHARACTER       32    APQRC_OKEY      Key of original record
     104     (68) CHARACTER       32    APQRC_BKEY      Key of base record that is in
                                                        the process of being changed
     136     (88) CHARACTER       32    APQRC_NKEY      Key of new record
     168     (A8) CHARACTER       16    APQRC_DBID      DBID of DBDS
     168     (A8) CHARACTER        8     APQRC_DBD      DBD name
     176     (B0) CHARACTER        8     APQRC_DDN      DD name
     184     (B8) CHARACTER        8    APQRC_CAGRP     CA group name
     192     (C0) CHARACTER        8    APQRC_DDNEW     New DBDS DD name
     200     (C8) UNSIGNED         2   APQRC_DMBNO      DMB sequence number
     202     (CA) UNSIGNED         2   APQRC_LASTREUSEDDMB#   Last reused DMB number, valid
                                                        only when apqrc_DMBNO is 32767
     204     (CC) CHARACTER        7   APQRC_INITTOKEN  Recon init. token
     211     (D3) CHARACTER        8   APQRC_CMDHLQ     Cmd auth high lvl qual
     219     (DB) UNSIGNED         1   APQRC_MVERS      Minimum IMS version
     220     (DC) BIT(8)           1   APQRC_NWFLG      Fields needed for RECON I/O
                                                        error(s)

                  1... ....             APQRC_NEW    1=STARTNEW, 0=NONEW
     221     (DD) CHARACTER        3   *                Reserved
     224     (E0) CHARACTER        8   APQRC_SSIDN      SSID for DASD
     232     (E8) CHARACTER        8   APQRC_DASDU      Unit type for DASD
     240     (F0) CHARACTER        8   APQRC_TAPEU      Unit type for tape
     248     (F8) CHARACTER       24   APQRC_TIME
     248     (F8) CHARACTER        2    APQRC_TZDEF     Input offset default
     250     (FA) CHARACTER        5    APQRC_TMFMT     Time format options
     255     (FF) CHARACTER        1    *               Reserved
     256    (100) SIGNED           2    APQRC_TPREC     Time-stamp precision
     258    (102) CHARACTER       12    APQRC_LOGRT     Minimum log retention period
     270    (10E) SIGNED           2    APQRC_TZNUM     Number of entries in time zone label table
     272    (110) CHARACTER        8   APQRC_TZTBL(32)  Time zone label table
     528    (210) BIT(16)          2   APQRC_TROPT      DBRC trace options
     530    (212) CHARACTER        5   APQRC_IMSPLEX    IMSplex name
     535    (217) CHARACTER        5   *                Reserved
     540    (21C) UNSIGNED         4   APQRC_SIZW_DSNUM   SIZEALERT dsnum
     544    (220) UNSIGNED         4   APQRC_SIZW_VOLNUM  SIZEALERT volnum
     548    (224) UNSIGNED         4   APQRC_SIZW_PERCENT SIZEALERT percent
     552    (228) UNSIGNED         4   APQRC_LOGW_DSNUM   LOGALERT dsnum
     556    (22C) UNSIGNED         4   APQRC_LOGW_VOLNUM  LOGALERT volnum
     560    (230) UNSIGNED        44   APQRC_CMDRNQ       CMDAUTH RECON qual
     604    (25C) UNSIGNED         8   APQRC_DBCOUNT      REGISTERED DBCOUNT
   612    (264) CHARACTER        8   APQRC_CATLG        CATALOG NAME (VERSION=6.0)
  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)                DESCRIPTION
======== ======== ========= ========  ==============            ===============================
       0      (0) STRUCTURE       53  APQRC_RECONDS_INFO
       0      (0) CHARACTER        8   APQRC_RECONDS_DDNAME     RECON DD name
       8      (8) CHARACTER       44   APQRC_RECONDS_DSNAME     RECON DS name
      52     (34) BIT(8)           1   APQRC_RECONDS_STATUS     RECON DS status
                  1... ....             APQRC_RECONDS_COPY1     COPY 1
                  .1.. ....             APQRC_RECONDS_COPY2     COPY 2
                  ..1. ....             APQRC_RECONDS_SPARE     Spare
                  ...1 ....             APQRC_RECONDS_DISCARDED Discarded
                  .... 1...             APQRC_RECONDS_UNAVAIL   Unavailable
CONSTANTS

  LEN  TYPE           VALUE          NAME                       DESCRIPTION
=====  =========  =================  ===============            ===============================
    8  CHARACTER   DSPAPQRC          APQRC_EYECATCHER

Related concepts
“Macro forms of the DSPAPI macro” on page 344
There are four different macro forms for the DSPAPI macro: Standard (S), List (L), Modify (M), and Execute
(E), with two variations, COMPLETE and NOCHECK. The List, Modify, and Execute forms are usually used in
combinations when writing reentrant programs or when the application issues multiple requests.
Related reference
“DBRC query request (QUERY)” on page 367

430  IMS: System Programming APIs



You can use the DBRC Query request (DSPAPI FUNC=QUERY) along with the TYPE parameter to retrieve
various types of information from the RECON data set.

Subsystem query request (TYPE=SUBSYS)
You can use the Subsystem query (DSPAPI FUNC=QUERY TYPE=SUBSYS) request to retrieve subsystem
information from the RECON data set for a specific subsystem or all subsystems.

Syntax for the TYPE=SUBSYS query request

name
DSPAPI FUNC=QUERY TYPE=SUBSYS TOKEN=  address

SSID=*

SSID=  subsystem_ID *

SSID=  subsystem_ID

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

OUTPUT=  output
SUBPOOL=0

SUBPOOL=  number RETCODE=  returncode

RSNCODE=  reasoncode

VERSION=2.0

VERSION=  number

Parameters for the TYPE=SUBSYS query request
name

Optional symbol you can specify. If used, begins in column 1.
TYPE=SUBSYS

Specifies that subsystem information is requested.
TOKEN=address | (2 - 12)

Specifies the address of a 4-byte field that was returned on the FUNC=STARTDBRC request.
SSID= * | name* | name | (2 - 12)

Specifies the name of the subsystem being queried. You can use the wildcard keyword * (an asterisk)
alone to request information about all subsystems (SSID=*, the default). You can also use it at the end
of a name to query subsystems whose names match the pattern. In this case, the asterisk must be
preceded by at least one alphabetic character.

SSYTYPE=ALL | ONLINE | BATCH | DBRCAPI
Specifies the type of subsystem for which information is being requested. You cannot specify
this parameter if you also specify a specific subsystem name for the SSID parameter or if you
specify TRACKER=YES. SSTYPE=DBRCAPI requires that you specify a minimum version number of
VERSION=2.0. SSTYPE=ALL is the default.

MF=S | L | M | E
Optional parameter that specifies the macro form of the request.

Chapter 32. DBRC query request (QUERY)  431



OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the first block of a possible chain of subsystem information
blocks.

The output address is 0 if no output was built which can occur if nothing in the RECON satisfies the
request or if an error occurs before any output is built.

The storage for the output blocks is not preallocated by the caller. DBRC acquires storage from the
specified subpool for these blocks. The caller must free this storage using the Buffer Release service
(DSPAPI FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not specified, the default is the
subpool specified by the FUNC=STARTDBRC request. Otherwise, subpool 0 is the default.

RETCODE=returncode | (2 - 12)
Specifies a place in storage to receive the return code. If specified as a symbol, the symbol must be
the label of a word of storage. If specified as a register, the register must contain the address of a
word of storage. If not specified, the return code is placed in register 15.

RSNCODE=reasoncode | (2 - 12)
Specifies a place in storage to receive the reason code. If specified as a symbol, the symbol must be
the label of a word of storage. If specified as a register, the register must contain the address of a
word of storage. If not specified, the reason code is placed in register 0.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this request.

To use the parameters associated with a version, you must specify the number of that version
or a later version. If you specify an earlier version level, the parameter is not accepted by
macro processing, and an error message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the version number required.

Valid version numbers for the FUNC=QUERY TYPE=SUBSYS request are 1.0 and 2.0.

Return and reason codes for the TYPE=SUBSYS query request
Table 95. Return and reason codes for TYPE=SUBSYS query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D8600001' No subsystem record of the requested type, active or
tracker, exists.

X'00000008' X'D8600002' No batch or online subsystem records exist.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC service was issued.

X'0000000C' X'D8600100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0) determined
that the user is not authorized to perform the request.

Storage error X'00000028' X'D8600001' Error obtaining storage for SUBSYS block.

X'00000028' X'D9100001' An error occurred processing the request. DBRC will
release storage that was obtained up to this point.
However, another error was encountered during the
attempt to release storage.

432  IMS: System Programming APIs



Table 95. Return and reason codes for TYPE=SUBSYS query requests (continued)

Code type Return codes Reason codes Meaning

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8600001' Failure attempting to locate the first or the specified
subsystem record of the requested type, active or
tracker.

X'0000002C' X'D8600002' Failure attempting to locate the next subsystem
record of the requested type, active or tracker.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the parameter list
passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address of the
field to contain the API RETCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address of the
field to contain the API RSNCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address of the
field to contain the OUTPUT address failed validity
checking. The address specifies storage not owned by
the calling program.

X'00000030' X'C9000010' Invalid SSID field address. The address of the field
containing the SSID failed validity checking. The
address specifies storage not owned by the calling
program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8600001' SSTYPE=ONLINE|BATCH|DBRCAPI cannot be
specified on requests for a specific SSID or for a
tracking subsystem request (TRACKER=YES).

X'00000030' X'D8600100' When using a wildcard, at least one alphabetic
character must precede the asterisk.

X'00000030' X'D8600101' When using a wildcard, the asterisk must be the last
character.

Output for the TYPE=SUBSYS query request
The following figure illustrates the format of the output from a QUERY TYPE=SUBSYS request. The
following DSECT sample describes in detail the fields of the storage blocks and their relationship to each
other.

Chapter 32. DBRC query request (QUERY)  433



Figure 27. Format for QUERY TYPE=SUBSYS output

DSECT of DSPAPQSS

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)        DESCRIPTION
======== ======== ========= ========  ==============    ===============================
       0      (0) STRUCTURE       64  DSPAPQSS
       0      (0) CHARACTER        8   APQSS_SSID       Subsystem identifier
       8      (8) UNSIGNED         4   APQSS_AUTHLIST   Offset to authd DB/Area list
      12      (C) SIGNED           4   APQSS_AUTHCOUNT  Number of authorized DB/Areas
      16     (10) UNSIGNED         2   APQSS_AUTHLEN    Length of auth entry
      18     (12) CHARACTER        6   *                Reserved
      24     (18) CHARACTER       12   APQSS_LOGTIME    Start time of log
      36     (24) UNSIGNED         1   APQSS_RELLVL     Subsystem release level
                                                        '71'X=V7R1,'81'X=V8R1
                                                        '91'X=V9R1, etc.
      37     (25) CHARACTER        1   APQSS_COEXLVL    Coexistence level
      38     (26) UNSIGNED         1   APQSS_IRLMCT     IRLM status count
      39     (27) CHARACTER        1   *                Reserved
      40     (28) CHARACTER        8   APQSS_GSGNAME    Global Service Group name
      48     (30) CHARACTER        5   APQSS_IRLMID     IRLM ID of SS
      53     (35) CHARACTER        5   APQSS_IRLMBK     IRLM ID of backup SS
      58     (3A) BIT(8)           1   APQSS_FLAGS      Flags
                  1... ....             APQSS_TYPE      1=Online | 0=batch
                  .1.. ....             APQSS_ABTERM    Abnormal termination
                  ..1. ....             APQSS_RCVPRC    Recovery processing started
                  ...1 ....             APQSS_BKSIGN    Backup SS signed on
                  .... 1...             APQSS_IRLMFL    IRLM failure
                  .... .1..             APQSS_COMMFL    COMM failure
                  .... ..1.             APQSS_SYSFL     SYS failure
                  .... ...1             APQSS_ACTVST    Status of active SS when backup exists, 1=abterm
      59     (3B) BIT(8)           1   APQSS_FLAGS2     FLAGS 2
                  1... ....             APQSS_SHRING    Sharing covered DBs
                  .1.. ....             APQSS_TRKER     Subsystem is a Tracker
                  ..1. ....             APQSS_TRKTRM    TRACKER has terminated
                  ...1 ....             APQSS_TRCKED    SSID is tracked
                  .... 1...             APQSS_FRSTSO    1ST signon after RSR takeover is in progress
                  .... .1..             APQSS_XRFCAP    SS is XRF capable
                  .... ..1.             APQSS_DBRCAPI   SS is a DBRC application
                                                         (VERSION=2.0)
                  .... ...1             APQSS_BPE       BPE-based subsystem (VERSION=4.0)

                  .... ..11             *               Reserved
      60     (3C) SIGNED           2   APQSS_BCKTKN     Backup recovery token
      62     (3E) CHARACTER        2   *                Reserved

  OFFSET   OFFSET
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)        DESCRIPTION
======== ======== ========= ========  ==============    ===============================
       0      (0) STRUCTURE       32  APQSS_AUTHNAME    Names of authd DB/Areas
       0      (0) CHARACTER        8   APQSS_DBNAME     DB name
       8      (8) CHARACTER        8   APQSS_AREANM     If FP, Area name
      16     (10) UNSIGNED         1   APQSS_SHRLVL     Share level
      17     (11) UNSIGNED         1   APQSS_DBACCS     Access intent
      18     (12) UNSIGNED         1   APQSS_DBNCOD     Encoded state
      19     (13) UNSIGNED         1   APQSS_DBSTAT     DB status flags
      20     (14) UNSIGNED         2   APQSS_DBEQCT     DB EQE count
      22     (16) SIGNED           2   APQSS_GLBDMB     Global DMB number
      24     (18) BIT(8)           1   APQSS_AUTHFLAGS  Flags
                  1... ....             APQSS_NRDBUP    Nonrecov DB/Area updated
                  .1.. ....             APQSS_COVRD     DB covered by GSG
                  ..1. ....             APQSS_NRECV     nonrecoverable DB/Area
                  ...1 ....             APQSS_ORDBDS    0=A-J/1=M-V ACTIVE

434  IMS: System Programming APIs



                  .... 1...             APQSS_OLRON     0 = no OLR active
                  .... .1..             APQSS_OLROWR    0 = no OLR owner
                  .... ..1.             APQSS_OLROWD    0 OLR not owned by SS
      25     (19) CHARACTER        7   *                Reserved

CONSTANTS

  LEN  TYPE           VALUE          NAME               DESCRIPTION
=====  =========  =================  ===============    ===============================
    8  CHARACTER   DSPAPQSS          APQSS_EYECATCHER

Related concepts
“Macro forms of the DSPAPI macro” on page 344
There are four different macro forms for the DSPAPI macro: Standard (S), List (L), Modify (M), and Execute
(E), with two variations, COMPLETE and NOCHECK. The List, Modify, and Execute forms are usually used in
combinations when writing reentrant programs or when the application issues multiple requests.
Related reference
“DBRC query request (QUERY)” on page 367
You can use the DBRC Query request (DSPAPI FUNC=QUERY) along with the TYPE parameter to retrieve
various types of information from the RECON data set.

Chapter 32. DBRC query request (QUERY)  435



436  IMS: System Programming APIs



Chapter 33. DBRC release buffer request (RELBUF)
You can use the DBRC release buffer request (DSPAPI FUNC=RELBUF) to release storage that was
acquired as a result of DBRC query, command, authorization, and unauthorization requests.

Each request returns a chain of one or more blocks containing the requested information. It is the caller's
responsibility to ensure that the storage DBRC allocated for these blocks is freed.

Syntax for the RELBUF request

name
DSPAPI FUNC=RELBUF TOKEN=  address BUFFER=  buffer

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

RETCODE=  returncode

RSNCODE=  reasoncode

VERSION=2.0

VERSION=  number

Parameters for the RELBUF request
name

Optional symbol you can specify. If used, begins in column 1.
TOKEN=address | (2 - 12)

Required parameter that specifies the address of a 4-byte field that was returned on the
FUNC=STARTDBRC request.

BUFFER=buffer | (2 - 12)
Specifies a field containing the address of the first block of a chain of one or more information blocks
to release. This storage was acquired by DBRC in order to satisfy another DBRC request.

RETCODE=returncode | (2 - 12)
Specifies a place in storage to receive the return code. If specified as a symbol, the symbol must be
the label of a word of storage. If specified as a register, the register must contain the address of a
word of storage. If not specified, the return code is placed in register 15.

RSNCODE=reasoncode | (2 - 12)
Specifies a place in storage to receive the reason code. If specified as a symbol, the symbol must be
the label of a word of storage. If specified as a register, the register must contain the address of a
word of storage. If not specified, the reason code is placed in register 0.

MF=S | L | M | E
Specifies the macro form of the request.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this request.

© Copyright IBM Corp. 1974, 2022 437



To use the parameters associated with a version, you must specify the number of that version or a
later version. If you specify an earlier version level, the parameter is not accepted for processing and
an error message is issued at assembly time. If parameters have a version dependency, the parameter
descriptions with each request type identify the version number required.

Return and reason codes for RELBUF
Table 96. Return and reason codes for RELBUF

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Partial
success

X'00000004' X'D9000001' There was no storage to free. An address of zero was
passed in the BUFFER parameter.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC request was issued.

Storage error X'00000028' X'D9100001' An error occurred attempting to release storage.

Parameter
error

X'00000030' X'C9000001' Parameter error. The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address of the
field to contain the API RETCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address of the
field to contain the API RSNCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000007' Invalid BUFFER address. The address of the BUFFER
to be released failed validity checking. The address
specifies storage not owned by the calling program.

X'00000030' X'D9100001' The header of a storage block to be freed is invalid.

X'00000030' X'D9100002' The length of a storage block to be freed is not
greater than zero.

Related concepts
“DBRC API” on page 341
Your applications can obtain services from Database Recovery Control (DBRC) through the DBRC
application programming interface (API), a release-independent, assembler macro interface. The
application obtains these services by issuing DBRC API requests to DBRC, and DBRC returns the results to
an area in storage where the application can retrieve them.
“Macro forms of the DSPAPI macro” on page 344
There are four different macro forms for the DSPAPI macro: Standard (S), List (L), Modify (M), and Execute
(E), with two variations, COMPLETE and NOCHECK. The List, Modify, and Execute forms are usually used in
combinations when writing reentrant programs or when the application issues multiple requests.

438  IMS: System Programming APIs



Chapter 34. DBRC start request (STARTDBRC)
You can use the DBRC start request (STARTDBRC) to initialize the DBRC API and to start DBRC.

Syntax for the STARTDBRC request

name
DSPAPI FUNC=STARTDBRC TOKEN=  address

SYSPRINT=  ddname

READONLY=NO SSID=NULL

SSID=  name

READONLY=YES
SSID=NULL

RECON1=  ddname

RECON2=  ddname RECON3=  ddname IMS= ddname

SUBPOOL=0

SUBPOOL=  number

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

RETCODE=  returncode RSNCODE=  reasoncode

VERSION=2.0

VERSION=  number

Parameters for STARTDBRC
name

Optional symbol you can specify. If used, begins in column 1.
TOKEN=address | (2 - 12)

Specifies the address of a 4-byte field to receive the API token. This token must be included in all
subsequent requests associated with this STARTDBRC request.

SYSPRINT= ddname | (2 - 12)
Specifies the address of an 8-byte field that contains the DD name of an output data set to be used for
messages. If omitted, the default name SYSPRINT is used.

READONLY=NO | YES
Specifies whether (YES) or not (NO) the application needs read only access to the DBRC information.
READONLY=NO requires that the application has a minimum of UPDATE level authority to the RECON
data sets.

To use this parameter, you must specify API VERSION=2.0 or later.

© Copyright IBM Corp. 1974, 2022 439



SSID=NULL | name
Specifies the address of an 8-byte field that contains the subsystem name that is used to register
with DBRC. If you specify SSID=NULL, registration with DBRC is not done. Do not specify both
READONLY=YES and SSID=symbol.

The default is SSID=NULL. To use this parameter, you must specify API VERSION=2.0 or later.

RECON1=ddname | (2 - 12)
Specifies the address of an 8-byte field that contains the DD name that is used in place of the default
DD name RECON1.

If omitted, the default name RECON1 is used. To use this parameter, you must specify API
VERSION=2.0 or later.

RECON2=ddname | (2 - 12)
Specifies the address of an 8-byte field that contains the DD name that is used in place of the default
DD name RECON2.

If omitted, the default name RECON2 is used. To use this parameter, you must specify API
VERSION=2.0 or later.

RECON3=ddname | (2 - 12)
Specifies the address of an 8-byte field that contains the DD name that is used in place of the default
DD name RECON3.

If omitted, the default name RECON3 is used. To use this parameter, you must specify API
VERSION=2.0 or later.

IMS=IMS | ddname
Specifies the address of an 8-byte field that contains the DD name that is used in place of the default
DD name IMS.

The default is IMS=IMS. To use this parameter, you must also specify API VERSION=2.0 or later.

SUBPOOL=0 | number
Specifies the default subpool number that is to be used for all requests (for example QUERY and
AUTH) that return storage. For information on valid subpools for your program, see the z/OS MVS
Assembler Services Guide.

SUBPOOL=0 is the default for the request if SUBPOOL is not specified here or on the request.

MF=S | L | M | E
Specifies the macro form of the request.

RETCODE=returncode | (2 - 12)
Specifies a place in storage to receive the return code. If specified as a symbol, the symbol must be
the label of a word of storage. If specified as a register, the register must contain the address of a
word of storage. If not specified, the return code is placed in register 15.

RSNCODE=reasoncode | (2 - 12)
Specifies a place in storage to receive the reason code. If specified as a symbol, the symbol must be
the label of a word of storage. If specified as a register, the register must contain the address of a
word of storage. If not specified, the reason code is placed in register 0.

VERSION=2.0 | number
Specifies the version number of the parameter list that is generated by this request.

To use the parameters associated with a version, you must specify the number of that version or a
later version. If you specify an earlier version level, the parameter is not accepted for processing and
an error message is issued at assembly time. If parameters have a version dependency, the parameter
descriptions with each request type identify the required version number.

440  IMS: System Programming APIs



Return and reason codes for STARTDBRC
Table 97. Return and reason codes for the STARTDBRC request

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000004' X'E2000001' The RECON data sets are not initialized. The only
function allowed is an INIT.RECON command.

X'00000004' X'E2000002' The RECON data sets are not upgraded. The only
function allowed is a CHANGE.RECON UPGRADE
command.

Severe error X'0000000C' X'C9000002' DBRC could not successfully initialize during phase 0
of DBRC initialization.

X'0000000C' X'C9000003' DBRC could not successfully initialize during phase 1
of DBRC initialization.

X'0000000C' X'C9000004' A z/OS LOAD failed for the DBRC module DSPCRTR0.

X'0000000C' X'C9000005' STORAGE request failure. The API cannot obtain
storage necessary to complete the request.

X'0000000C' X'C9000012' STARTDBRC has been previously issued without an
intervening STOPDBRC.

X'0000000C' X'C9D40001' DSPAPI macro load failed for DBRC module
DSPAPI00.

X'0000000C' X'E2000001' The RECON data sets are not initialized. STARTDBRC
fails because an SSID was supplied and SIGNON
cannot be performed.

X'0000000C' X'E2000002' The RECON data sets are not upgraded. STARTDBRC
fails because an SSID was supplied and SIGNON
cannot be performed.

X'0000000C' X'E2000003' STARTDBRC specified READONLY. However, an SSID
was supplied and SIGNON cannot be performed.

X'0000000C' X'E200000A' RECON is either not initialized or not upgraded and
V1 is the caller.

X'0000000C' X'E2000100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0) determined
that the user is not authorized to perform the request.

X'0000000C' X'E210nnnn' Error attempting to sign on the application. 'nnnn'
is the return code from DBRC Signon module,
DSPSSIGN.

Internal error X'00000028' X'C9000001' DBRC internal error. Failure writing the subsystem
record.

Parameter
error

X'00000030' X'C9000001' Parameter error. The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of the field
to contain the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program.

Chapter 34. DBRC start request (STARTDBRC)  441



Table 97. Return and reason codes for the STARTDBRC request (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'C9000003' Invalid RETCODE field address. The address of the
field to contain the API RETCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address of the
field to contain the API RSNCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000006' Invalid SYSPRINT field address. The address of the
field containing the SYSPRINT DD name failed validity
checking. The address specifies storage not owned by
the calling program.

X'00000030' X'C900000A' Invalid IMS field address. The address of the field
that contains the IMS DD name failed validity
checking.

X'00000030' X'C900000C' Invalid RECON1 field address. The address of the
field that contains the RECON1 DD name failed
validity checking. The address specifies storage that
is not owned by the calling program.

X'00000030' X'C900000D' Invalid RECON2 field address. The address of the
field that contains the RECON2 DD name failed
validity checking. The address specifies storage that
is not owned by the calling program.

X'00000030' X'C900000E' Invalid RECON3 field address. The address of the
field that contains the RECON3 DD name failed
validity checking. The address specifies storage that
is not owned by the calling program.

X'00000030' X'E2100001' An SSID of zeroes or blanks was specified.

Related concepts
“DBRC API” on page 341
Your applications can obtain services from Database Recovery Control (DBRC) through the DBRC
application programming interface (API), a release-independent, assembler macro interface. The
application obtains these services by issuing DBRC API requests to DBRC, and DBRC returns the results to
an area in storage where the application can retrieve them.
“Macro forms of the DSPAPI macro” on page 344
There are four different macro forms for the DSPAPI macro: Standard (S), List (L), Modify (M), and Execute
(E), with two variations, COMPLETE and NOCHECK. The List, Modify, and Execute forms are usually used in
combinations when writing reentrant programs or when the application issues multiple requests.

442  IMS: System Programming APIs



Chapter 35. DBRC stop request (STOPDBRC)
You can use the STOPDBRC request to terminate the DBRC application and to stop DBRC.

If the application registered to DBRC by supplying an SSID on the STARTDBRC request, a subsystem
record for the application was recorded in RECON. The STOPDBRC request automatically deregisters the
application, unauthorizing any authorized databases and deleting the subsystem record.

Syntax for the STOPDBRC request

name
DSPAPI FUNC=STOPDBRC TOKEN=  address

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

RETCODE=  returncode

RSNCODE=  reasoncode

VERSION=1.0

VERSION=  number

Parameters for STOPDBRC
name

Optional symbol you can specify. If used, begins in column 1.
TOKEN=symbol | (2 - 12)

Specifies the address of a 4-byte field that was returned on the FUNC=STARTDBRC request.
RETCODE=returncode | (2-12)

If specified as a symbol, specifies the label of a word of storage to receive the return code. If specified
as a register, the register must contain the address of a word of storage to receive the return code.
Regardless of whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage to receive the reason code.
If specified as a register, the register must contain the address of a word of storage to receive the
reason code. Regardless of whether RSNCODE is specified, register 0 contains the reason code.

MF=S | L | M | E
Specifies the macro form of the request.

VERSION=1.0 | number
Specifies the version number of the parameter list to be generated by this request.

To use the parameters associated with a version, you must specify the number of that version or a
later version. If you specify an earlier version level, the parameter is not accepted for processing and
an error message is issued at assembly time. If parameters have a version dependency, the parameter
descriptions with each request type identify the version number required.

© Copyright IBM Corp. 1974, 2022 443



Return and reason codes for STOPDBRC
Table 98. Return and reason codes for the STOPDBRC request

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC request was issued.

X'0000000C' X'E220nnnn' Error attempting to sign off the application. 'nnnn'
is the return code from DBRC Signoff module,
DSPSSIGN.

X'0000000C' X'E2000100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0) determined
that the user is not authorized to perform the request.

Parameter
error

X'00000030' X'C9000001' Parameter error. The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address of the
field to contain the API RETCODE failed validity
checking. The address specifies storage not owned
by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address of the
field to contain the API RSNCODE failed validity
checking. The address specifies storage not owned
by the calling program.

Related concepts
“DBRC API” on page 341
Your applications can obtain services from Database Recovery Control (DBRC) through the DBRC
application programming interface (API), a release-independent, assembler macro interface. The
application obtains these services by issuing DBRC API requests to DBRC, and DBRC returns the results to
an area in storage where the application can retrieve them.
“Macro forms of the DSPAPI macro” on page 344
There are four different macro forms for the DSPAPI macro: Standard (S), List (L), Modify (M), and Execute
(E), with two variations, COMPLETE and NOCHECK. The List, Modify, and Execute forms are usually used in
combinations when writing reentrant programs or when the application issues multiple requests.

444  IMS: System Programming APIs



Chapter 36. DBRC unauthorization request (UNAUTH)
You can use the UNAUTH request to explicitly remove authorization to a database or area. Authorization
by an application is implicitly removed by the STOPDBRC request. UNAUTH is the opposite of
FUNC=AUTH.

Syntax for the UNAUTH request

name
DSPAPI FUNC=UNAUTH TOKEN=  address AUTHLIST=  name

OUTPUT=  output
SUBPOOL=0

SUBPOOL=  number RETCODE=  returncode

RSNCODE=  reasoncode

VERSION=2.0

VERSION=  number

MF=S

MF=(S, list )

MF=(L, list )

MF=(M, list
,COMPLETE

,NOCHECK

)

MF=(E, list
,COMPLETE

,NOCHECK

)

Parameters for the UNAUTH request
name name

Optional parameter. Begin name in column 1.
TOKEN=address | (2-12)

Specifies the address of the API token which was returned on the FUNC=STARTDBRC macro.
AUTHLIST=name | (2 - 12)

Specifies the list of database names or Fast Path areas to be unauthorized. The list consists of a
fullword containing the number of elements in the list, a fullword containing the length of an element,
followed by one or more elements. Each element consists of an 8 character DB name or Fast Path
DEDB name and 8 characters of blanks (X'40') or a Fast Path area name.

OUTPUT=output | (2-12)
Specifies a field to receive a pointer to the authorization output block DSPAPAUB.

The output address is zero if no output was built. This can happen if an error occurs before any output
could be built.

The storage for the output blocks is not pre-allocated by the caller. DBRC acquires storage from the
specified subpool for these blocks. It is the responsibility of the caller to free this storage using the
Buffer Release service (DSPAPI FUNC=RELBUF) specifying the returned output address.

© Copyright IBM Corp. 1974, 2022 445



SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. See the z/OS MVS Programming:
Assembler Services Guide for information on valid subpools for your program. If not specified, the
default is the subpool specified by the FUNC=STARTDBRC request. Otherwise, subpool 0 is the
default.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive the return code. If specified
as a register, the register must contain the address of a word of storage to receive the return code.
Regardless of whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage to receive the reason code.
If specified as a register, the register must contain the address of a word of storage to receive the
reason code. Regardless of whether RSNCODE is specified, register 0 contains the reason code.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this macro.

To use the parameters associated with a version, you must specify the number of that version
or a later version. If you specify an earlier version level, the parameter is not accepted by
macro processing, and an error message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the version number required.

The valid version number for the FUNC=UNAUTH request is 2.0 (the default).

MF=S | L | M | E
Specifies the macro form of the request.

Return and reason codes for UNAUTH
Table 99. DSPAPI FUNC=UNAUTH request return and reason codes

Code type Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'C1000001' One or more entries in the AUTHLIST could not
be processed. A reason code has be set in the
corresponding entry in the UNAUTH output block.

Severe error X'0000000C' X'C1000001' Application is not signed on to DBRC.

X'0000000C' X'C1000004' UNAUTH processing could not complete because the
application is not signed; no SS rcd was found. This
should not occur under normal conditions since an
earlier check of the GDB indicated the SS was signed
on.

X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC service was issued.

Storage error X'00000028' X'C1000001' Error obtaining storage for the UNAUTH output block.

Internal error X'0000002C' X'C1000001' Error attempting to start RECON multiple update
processing.

X'0000002C' X'C1000002' Error attempting to end RECON multiple update
processing.

446  IMS: System Programming APIs



Table 99. DSPAPI FUNC=UNAUTH request return and reason codes (continued)

Code type Return code Reason code Meaning

X'0000002C' X'C1000006' Entry in UNAUTH output block could not be found.
This should not occur.

X'0000002C' X'C1000007' Internal error encountered during DBRC
unauthorization processing.

X'0000002C' X'C1000008' Internal error encountered during DBRC
unauthorization processing–invalid parameters.

Parameter
error

X'00000030' X'C1000001' No AUTHLIST passed.

X'00000030' X'C1000002' AUTHLIST passed with no entries.

X'00000030' X'C1000003' Duplicate elements in AUTHLIST.

X'00000030' X'C1000004' Missing or invalid OUTPUT parameter.

X'00000030' X'C9000001' The function (FUNC) specified in the parameter list
passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program

X'00000030' X'C9000003' Invalid RETCODE address. The address of the field
containing the API RETCODE failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000004' Invalid RSNCODE address. The address of the field
containing the API RSNCODE failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000005' Invalid OUTPUT address. The address of the field
containing the API OUTPUT failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C900000A' An incorrect VERSION value was specified for the
requested function (FUNC).

X'00000030' X'C900001A' Invalid AUTHLIST address. The address of the field
containing the API AUTHLIST failed validity checking.
The address specifies storage not owned by the
calling program.

Related concepts
“DBRC API” on page 341
Your applications can obtain services from Database Recovery Control (DBRC) through the DBRC
application programming interface (API), a release-independent, assembler macro interface. The
application obtains these services by issuing DBRC API requests to DBRC, and DBRC returns the results to
an area in storage where the application can retrieve them.
“Macro forms of the DSPAPI macro” on page 344

Chapter 36. DBRC unauthorization request (UNAUTH)  447



There are four different macro forms for the DSPAPI macro: Standard (S), List (L), Modify (M), and Execute
(E), with two variations, COMPLETE and NOCHECK. The List, Modify, and Execute forms are usually used in
combinations when writing reentrant programs or when the application issues multiple requests.
Related reference
“APAUB_RsnCode for UNAUTH output block” on page 449
You can use this table to search for APAUB_RsnCode values for UNAUTH request return and reason
codes. Each code is accompanied by an explanation of the code.
DBRC request return codes (Messages and Codes)

Return and reason codes for UNAUTH
You can use this table to search for reason and return codes for the DBRC UNAUTH request. Each code is
accompanied by the code type and an explanation of the code.

Table 100. DSPAPI FUNC=UNAUTH request return and reason codes

Code type Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'C1000001' One or more entries in the AUTHLIST could not
be processed. A reason code has be set in the
corresponding entry in the UNAUTH output block.

Severe error X'0000000C' X'C1000001' Application is not signed on to DBRC.

X'0000000C' X'C1000004' UNAUTH processing could not complete because the
application is not signed; no SS rcd was found. This
should not occur under normal conditions since an
earlier check of the GDB indicated the SS was signed
on.

X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to the
API is not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB address
under which the STARTDBRC service was issued.

Storage error X'00000028' X'C1000001' Error obtaining storage for the UNAUTH output block.

Internal error X'0000002C' X'C1000001' Error attempting to start RECON multiple update
processing.

X'0000002C' X'C1000002' Error attempting to end RECON multiple update
processing.

X'0000002C' X'C1000006' Entry in UNAUTH output block could not be found.
This should not occur.

X'0000002C' X'C1000007' Internal error encountered during DBRC
unauthorization processing.

X'0000002C' X'C1000008' Internal error encountered during DBRC
unauthorization processing–invalid parameters.

Parameter
error

X'00000030' X'C1000001' No AUTHLIST passed.

X'00000030' X'C1000002' AUTHLIST passed with no entries.

X'00000030' X'C1000003' Duplicate elements in AUTHLIST.

448  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_dbrcrequestretcodes.htm#d2hsrcims_dbrcrequestretcodes


Table 100. DSPAPI FUNC=UNAUTH request return and reason codes (continued)

Code type Return code Reason code Meaning

X'00000030' X'C1000004' Missing or invalid OUTPUT parameter.

X'00000030' X'C9000001' The function (FUNC) specified in the parameter list
passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN address. The address of the field
containing the API TOKEN failed validity checking.
The address specifies storage not owned by the
calling program

X'00000030' X'C9000003' Invalid RETCODE address. The address of the field
containing the API RETCODE failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000004' Invalid RSNCODE address. The address of the field
containing the API RSNCODE failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C9000005' Invalid OUTPUT address. The address of the field
containing the API OUTPUT failed validity checking.
The address specifies storage not owned by the
calling program.

X'00000030' X'C900000A' An incorrect VERSION value was specified for the
requested function (FUNC).

X'00000030' X'C900001A' Invalid AUTHLIST address. The address of the field
containing the API AUTHLIST failed validity checking.
The address specifies storage not owned by the
calling program.

Related reference
DBRC request return codes (Messages and Codes)

APAUB_RsnCode for UNAUTH output block
You can use this table to search for APAUB_RsnCode values for UNAUTH request return and reason
codes. Each code is accompanied by an explanation of the code.

When an UNAUTH output block (DSPAPAUB) is returned, one of the following reason codes will be set in
field APAUB_RsnCode for each element in the list of DBs or Areas in the request.

Table 101. APAUB_RsnCode values for UNAUTH request return and reason codes

APAUB_RsnCode Meaning

X'00000000' Request completed successfully.

X'C1000100' Security error. SAF or the DBRC command authorization exit (DSPDCAX0) has
determined that the user is not authorized to perform the request for this
database or area.

X'C1000404' Fast Path area needs recovery. It has been unauthorized.

X'C1000408' Database not registered in RECON.

X'C1000410' Subsystem not authorized to use the database.

Chapter 36. DBRC unauthorization request (UNAUTH)  449

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.mc/compcodes/ims_dbrcrequestretcodes.htm#d2hsrcims_dbrcrequestretcodes


Table 101. APAUB_RsnCode values for UNAUTH request return and reason codes (continued)

APAUB_RsnCode Meaning

X'C1000414' One of the following actions occurred:

• Internal DBRC unauthorization error – Database and subsystem records do
not match.

• Previously active subsystem calling for unauthorization after a takeover
occurred.

X'C1000418' Internal DBRC or IMS unauthorization error– Held state could not be computed
by the IMS compatibility evaluation routine.

Related reference
“DBRC unauthorization request (UNAUTH)” on page 445
You can use the UNAUTH request to explicitly remove authorization to a database or area. Authorization
by an application is implicitly removed by the STOPDBRC request. UNAUTH is the opposite of
FUNC=AUTH.

UNAUTH output block mapping
This figure illustrates the format of the output from a TYPE=UNAUTH request. The output block for
the TYPE=UNAUTH request begins with a standard header that is mapped by the DSPAPQHD. The data
portion of this output block is mapped by DSPAPAUB.

Figure 28. Format for a TYPE=UNAUTH output

UNAUTH output block
This figure illustrates the output block that is returned by the UNAUTH request. The output block contains
an array of authorized databases and indicates if the UNAUTH request was successful.

Example of output block mapped by the DSPAPAUB

================================================================================
DSPAPAUB                                                                        
                                                                                
  OFFSET   OFFSET                                                               
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)     DESCRIPTION                
======== ======== ========= ========  ============== ===========================
       0      (0) STRUCTURE        8  DSPAPAUB       AUTH/UNAUTH block          
       0      (0) UNSIGNED         4   APAUB_OFFSET  Offset to first element    
       4      (4) SIGNED           4   APAUB_ELCOUNT Number of elements in list 

450  IMS: System Programming APIs



                                                                                
  OFFSET   OFFSET                                                               
 DECIMAL     HEX  TYPE        LENGTH  NAME (DIM)     DESCRIPTION                
======== ======== ========= ========  ============== ===========================
       0      (0) STRUCTURE       24  APAUB_ELEMENT                             
       0      (0) UNSIGNED         4   APAUB_OFFNEXT Offset to next element     
       4      (4) SIGNED           4   APAUB_RSNCODE Reason code                
       8      (8) CHARACTER        8   APAUB_DBNAME  Database or DEDB name      
      16     (10) CHARACTER        8   APAUB_AREANAME                           
                                                     Area name or blanks        
                                                                                
CONSTANTS                                                                       
                                                                                
  LEN  TYPE           VALUE          NAME            DESCRIPTION                
=====  =========  =================  =============== ===========================
    8  CHARACTER   DSPAPAUB          APAUB_EYECATCHER 

Chapter 36. DBRC unauthorization request (UNAUTH)  451



452  IMS: System Programming APIs



Part 6. IMS catalog API (DFS3CATQ)
You can find information about using the IMS catalog API to request information about runtime
application control blocks and program specification blocks from the IMS catalog.

Accessing the DFS3CATQ API
The DFS3CATQ API is provided with IMS in the DFS3CATQ assembler language macro.

Programming requirements
The DFS3CATQ API macro can be invoked from AMODE 24 or 64 callers. The invoking module can reside
anywhere below the 2 GB bar.

Note: RMODE(64) is not supported.

The program that invokes the DFS3CATQ macro must be in task mode and not in cross-memory mode.
The calling module need not reside in an APF-authorized library.

Execution environment
Programs that access the DFS3CATQ API can execute in an address space outside of IMS, and the IMS
system need not be in the running state. If called from outside of IMS, an IMS RESLIB must be available in
the standard z/OS search order of load modules.

Register usage
Input register information:

• Before invoking the DFS3CATQ macro, GPR 13 must point to a standard 18-word save area.

Output register information:
R0

Reason code
R1

Used as a work register
R2 - R13

Unchanged
R14

Used as a work register
R15

Return code

Related concepts
IMS catalog (Database Administration)
Related reference
IMS catalog utilities (System Utilities)

© Copyright IBM Corp. 1974, 2022 453

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_cat_db_part.htm#ims_cat_db_part
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_catalogutilities.htm#ims_catalogutilities


454  IMS: System Programming APIs



Chapter 37. IMS catalog API (DFS3CATQ macro)
Your application programs can retrieve database and program specification block definitions from the
IMS catalog through the IMS catalog application programming interface (API), a release-independent
assembler macro interface.

The IMS catalog API is provided with IMS in the DFS3CATQ macro.

To write a program that uses the IMS catalog API, you must have a working knowledge of the following
subjects:

• Assembler language programming
• z/OS and the services it supplies
• IMS
• The IMS catalog

The DFS3CATQ macro supports the following actions:

• Acquire resources as needed to read the IMS catalog
• Get an object definition and return the information back to the calling application, optionally limiting the

result to objects that match a name pattern
• List the objects that exist within the IMS catalog, optionally limiting the result to objects that match a

name pattern
• Release resources held across invocations of the API

Related concepts
IMS catalog (Database Administration)
IMS management of ACBs (System Definition)
Related reference
IMS catalog utilities (System Utilities)

© Copyright IBM Corp. 1974, 2022 455

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.dag/ims_cat_db_part.htm#ims_cat_db_part
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_catalog_acb_mgmt.htm#ims_catalog_acb_mgmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sur/ims_catalogutilities.htm#ims_catalogutilities


456  IMS: System Programming APIs



Chapter 38. Structure of applications that access the
IMS catalog API

Your applications that use the IMS catalog API must use a certain general structure.

An application that uses the IMS catalog API has the following general structure:

1. Include the API DSECTs. (DFS3CATQ FUNC=DSECT)

2. Optionally, acquire the high-level qualifier (HLQ) of the boot strap data set (BSDS), only if the
application is not aware of it.

Note: The HLQ is to be provided before the DFS3CATQ FUNC=OPEN request is used. If the application
is already aware of the HLQ of the BSDS, then it is to be provided on the DFS3CATQ FUNC=OPEN
request.

3. Allocate and open the BSDS data set and directory data sets. (DFS3CATQ FUNC=OPEN)
4. Request information from the IMS catalog by using one or more of either of the following actions:

• Request a list of object names that match a specified name and type. (DFS3CATQ FUNC=LIST)
• Request information about the definition of a specified catalog object by specifying the object name

and type. (DFS3CATQ FUNC=GET)
5. Release data sets that were allocated by the open request. (DFS3CATQ FUNC=CLOSE)

© Copyright IBM Corp. 1974, 2022 457



458  IMS: System Programming APIs



Chapter 39. DSECT mapping request (DSECT) for the
IMS catalog API

You can use an IMS catalog API mapping request to build a DSECT for mapping the returned block of
storage.

Syntax for DSECT requests
DFS3CATQ FUNCTION=DSECT

© Copyright IBM Corp. 1974, 2022 459



460  IMS: System Programming APIs



Chapter 40. HLQ request (HLQ) for the IMS catalog
API

Use the HLQ function of the IMS catalog API to acquire the high-level qualifier (HLQ) for the boot strap
data set (BSDS) name for the subsequent IMS catalog API OPEN requests that require the BSDS name.

During the HLQ request, the IMS directory boot strap data set (BSDS) is found and returned in the output
area. The BSDS information can then be saved and provided to the API OPEN request.

When you make a HLQ request, the DFS3CATQ macro must specify the environment in which the request
is executed. You can use the HLQ request to find BSDS in the following environment:

• IMS online regions of type BMP or IFP.
• IMS batch regions of type DLI, ULU, or DBB.
• z/OS environment where an IMS control region is available on the same LPAR.

Syntax for HLQ requests
DFS3CATQ FUNCTION=HLQ, OUTPUT=  out-addr HLQENV= ZOS

BATCH

ONLINE

,IMSID=  name-addr

,RETCODE=  symbol |( 2-12 ) ,RSNCODE=  symbol |( 2-12 )

,EPADDR=  ep-addr ,MF=I

,MF=L

,MF=(E,  list )

Example

DFS3CATQ FUNCTION=HLQ,OUTPUT=(R2),HLQENV=ZOS,
    IMSID=(R3)

Parameters for HLQ requests
EPADDR=ep-addr | RS-type address, or register (2-12).

If specified as a symbol, specifies the label of a word of storage that contains the address of the
load module DFS3CATQ. The application is responsible for loading module DFS3CATQ, saving its entry
point address for this parameter and deleting the load module when it is no longer needed.

HLQENV=
Specifies the environment where the HLQ request is executed.
BATCH

IMS batch regions of type ULU, DLI, and DBB.
ONLINE

IMS online regions of type BMP and IFP.
ZOS

Programs that are executed by z/OS. When you use the HLQENV=ZOS parameter, the IMS control
region must be up.

© Copyright IBM Corp. 1974, 2022 461



IMSID=name-addr | RS-type address, or register (2-12)
Specifies the address of the 4-byte application storage area that identifies the IMS system for the
associated BSDS. When more than one IMS system is present on an LPAR, the IMSID= parameter
must be paired with the HLQENV=ZOS parameter.

MF=
The macro form of the request.
I

Invokes the DFSCATQx program with an in-line parameter list. If your program is reentrant, do not
use this form of the macro because reentrant code cannot be modified.

L
Specifies the list form of the macro.

(E,list)
Specifies the execute form of the macro.

list | RS-type address, or register (2-12).

OUTPUT=out-addr | RS-type address, or register (2-12).
Specifies the address of a 4-byte field to receive the address of the first storage area that contains the
information for the request.

Additional storage may be needed to contain the full set of information requested. Each additional
area of storage is chained off of the prior one. The application is responsible for freeing the output
areas when they are no longer needed.

RETCODE=symbol | (2-12)
Saves the return code to a storage location determined by the specified symbol or register.

If a symbol is specified, the symbol must represent the label of a word of storage in which to save the
return code.

If a register is specified, the register must contain the address of a word of storage in which to save
the return code. Specify a register from 2 to 12 that is enclosed in parentheses.

Regardless of whether RETCODE is specified, IMS returns the return code in register 15.

RSNCODE=symbol | (2-12)
Saves the reason code to a storage location determined by the specified symbol or register.

If a symbol is specified, the symbol must represent the label of a word of storage in which to save the
reason code.

If a register is specified, the register must contain the address of a word of storage in which to save
the reason code. Specify a register from 2 to 12 that is enclosed in parentheses.

Regardless of whether RSNCODE is specified, IMS returns the reason code in register 0.

Output area for HLQ requests

The returned storage of the HLQ request is consist of a 16-byte prefix and the HLQ of the BSDS required
by the OPEN request.

With each successful HLQ request, DFS3CATQ acquires storage to hold the requested information. The
address of the storage obtained is stored in the caller's area (see the OUTPUT= parameter).

The storage is allocated by the STORAGE macro with LOC=31 and SP=0.

More than one output area may be needed to contain all of the information requested. The address of the
next output area is stored in the area. The application is responsible for freeing the output areas when
they are no longer needed.

Each output area has the following format:

462  IMS: System Programming APIs



Table 102. Output area returned for HLQ requests

Content Description

Size 4 bytes. The size of this storage area.

Address 4 bytes. The address of the next area, or
'00000000'x if this is the last area.

Reserved 8 bytes. Reserved for internal use.

Data area The requested data in the following format:
44 bytes

The Prefix of the IMS Boot strap data set.
4 bytes

The catalog alias Prefix.

Return and reason code for HLQ requests
Table 103. Return and reason codes for HLQ requests

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'0000000C' X'0000000C' Valid address for the OUTPUT=
variable or location was not
provided.

X'0000000C' X'00000010' Valid address for the TOKEN=
variable or location was not
provided.

X'0000000C' X'00000200' The HLQ request was
unsuccessful due to a missing or
invalid parameter.

X'00000014' X'00000214' The HLQ request was
unsuccessful. The specified IMS
control program is not active.

X'00000024' X'00000204' The HLQ request was
unsuccessful using an internal
service. The request was unable
to get to the catalog anchor
block.

X'00000024' X'00000208' The HLQ request was
unsuccessful using an internal
service. The request was unable
to get to the catalog directory.

X'00000024' X'0000020C' The HLQ request was
unsuccessful using an internal
service. A severe error occurred.

X'00000024' X'00000218' A GSCD call was performed, and
the address of the SCD was not
returned.

Chapter 40. HLQ request (HLQ) for the IMS catalog API   463



Table 103. Return and reason codes for HLQ requests (continued)

Return Code Reason Code Meaning

X'aaaabbbb' X'cccccccc' An IMS or MVS service returned
an unexpected return or reason
code.

aaaa identifies the service that
was performed.

bbbb is the service return code.

cccccccc is the service reason
code.

The possible values for aaaa and
the service each identifies are:

• 0001 - ISGENQ
• 0002 - IEANTCR
• 0003 - IEANTRT

For more information about the
return and reason codes that
may be returned for each service,
refer to the following topics in the
z/OS documentation:

ISGENQ — Global resource
serialization ENQ service

IEANTCR — Create a name/token
pair

IEANTRT — Retrieve the token
from a name/token pair

Related reference
“Open request (OPEN) for the IMS catalog API” on page 465
Use the IMS catalog API OPEN function to allocate either the IMS directory data set or the IMS directory
staging data set for subsequent API calls to list or retrieve the database and program view resources that
are defined to IMS.
Related information
IBM z/OS documentation

464  IMS: System Programming APIs

https://www.ibm.com/docs/en/zos/latest?topic=ixg-isgenq-global-resource-serialization-enq-service
https://www.ibm.com/docs/en/zos/latest?topic=ixg-isgenq-global-resource-serialization-enq-service
https://www.ibm.com/docs/en/zos/latest?topic=ixg-ieantcr-create-nametoken-pair
https://www.ibm.com/docs/en/zos/latest?topic=ixg-ieantcr-create-nametoken-pair
https://www.ibm.com/docs/en/zos/latest?topic=ixg-ieantrt-retrieve-token-from-nametoken-pair
https://www.ibm.com/docs/en/zos/latest?topic=ixg-ieantrt-retrieve-token-from-nametoken-pair
https://www.ibm.com/docs/en/zos


Chapter 41. Open request (OPEN) for the IMS catalog
API

Use the IMS catalog API OPEN function to allocate either the IMS directory data set or the IMS directory
staging data set for subsequent API calls to list or retrieve the database and program view resources that
are defined to IMS.

During the OPEN request, the IMS directory boot strap data set (BSDS) is allocated, opened, read, closed,
and unallocated. If you specify DEFINITION=CURRENT to retrieve the definitions that are currently active
in the IMS system, the IMS directory data set remains allocated until the CLOSE request. If you specify
DEFINITION=PENDING to retrieve any definitions that are waiting to be activated, the staging data set of
the IMS directory remains allocated until the CLOSE request.

When you make an OPEN request, the DFS3CATQ macro dynamically allocates the BSDS and directory
data sets as needed. It allocates a block of virtual storage that is used to communicate information across
subsequent GET and LIST requests. The address of the block is stored at the address that is provided in
the TOKEN parameter. The same token must be used for subsequent requests.

You can issue a CLOSE request to free the allocation.

You can make multiple IMS catalog API OPEN requests and allow them to remain in use before you issue
a CLOSE request for any specified OPEN request.

To have multiple IMS catalog API allocations active at the same time:

1. Provide a different TOKEN address for each OPEN request.
2. Specify that token for each subsequent GET or LIST request against that IMS catalog.
3. Specify that token on the CLOSE request to free the allocation of that IMS directory data set.

Up to 36 OPEN requests can be active at one time if the system-generated DDname is available and there
are no environment limits.

Syntax for OPEN requests

DFS3CATQ FUNCTION=OPEN ,BSDSHLQ=  bsds-addr

,CATALIAS=  alias-addr

,DEFINITION=CURRENT

,DEFINITION=PENDING

,DEFINITION=BOTH

,EPADDR=  ep-addr ,MF=I

,MF=L

,MF=(E,  list )

,PLISTVER=  parmlist_version ,RETCODE=  symbol |( 2-12 )

,RSNCODE=  symbol |( 2-12 ) ,RSNTEXT=  symbol |( 2-12 )

,TOKEN=  tok-addr

© Copyright IBM Corp. 1974, 2022 465



Parameters for OPEN requests
BSDSHLQ=bsds-addr | RS-type address, or register (2-12).

The address of an area in application storage that contains the high-level qualifier prefix for the IMS
boot strap data set. The first two bytes of storage must contain the length of the high-level qualifier
prefix that follows.

The qualifier '.BSDS' is appended to the high-level qualifier prefix value to form the full name of the
IMS boot strap data set.

If both BSDSHLQ and CATALIAS are specified, IMS locates the IMS directory by using the high-level
qualifier that is defined in the CATDSHLQ DFSMDA member that corresponds to the CATALIAS value.
The DFSMDA member must exist either in a library allocated as //IMSDALIB, or in the //JOBLIB or //
STEPLIB libraries. The IMS catalog API first searches in //IMSDALIB, if it exists, for the MDA members.
If IMS catalog API does not find the DFSMDA member, the IMS catalog API uses the high-level
qualifier at the BSDSHLQ location.

CATALIAS=alias-addr

The address of an area in application storage that contains the 4-character IMS catalog alias name
that is specified on the DDNAME parameter of the CATDSHLQ DFSMDA macro statement that contains
the high-level qualifier of the IMS directory data sets.

If both BSDSHLQ and CATALIAS are specified, IMS locates the IMS directory by using the high-level
qualifier that is defined in the CATDSHLQ DFSMDA member that corresponds to the CATALIAS value.
The DFSMDA member must exist either in a library allocated as //IMSDALIB, or in the //JOBLIB or //
STEPLIB libraries. The IMS catalog API first searches in //IMSDALIB, if it exists, for the MDA members.
If IMS catalog API does not find the DFSMDA member, the IMS catalog API uses the high-level
qualifier at the BSDSHLQ location.

If a symbol is specified, you must specify RSNTEXT.

DEFINITION=definition-type
BOTH

The definitions of any resources in the CURRENT or PENDING data sets of the IMS directory are
returned or listed.

CURRENT
The definitions of the resources that are currently active in the IMS system are returned or listed.
This is the default.

PENDING
The definitions of any resources in the staging data set of the IMS directory that are pending
activation are returned or listed.

EPADDR=ep-addr | RS-type address, or register (2-12).
If specified as a symbol, specifies the label of a word of storage that contains the address of the
load module DFS3CATQ. The application is responsible for loading module DFS3CATQ, saving its entry
point address for this parameter and deleting the load module when it is no longer needed.

MF=
The macro form of the request.
I

Invokes the DFSCATQx program with an in-line parameter list. If your program is reentrant, do not
use this form of the macro because reentrant code cannot be modified.

L
Specifies the list form of the macro.

(E,list)
Specifies the execute form of the macro.

list | RS-type address, or register (2-12).

466  IMS: System Programming APIs



PLISTVER=parmlist_version
The version of the OPEN function parameter list.
1

Specifies version 1 of the parameter list for the OPEN function.

Version 1 is the default.

2
Specifies version 2 of the parameter list for the OPEN function.

Version 2 of the parameter list includes the CATALIAS, PLISTVER, and RSNTEXT parameters and
is larger in size than version 1.

1
RETCODE=symbol | (2-12)

Saves the return code to a storage location determined by the specified symbol or register.

If a symbol is specified, the symbol must represent the label of a word of storage in which to save the
return code.

If a register is specified, the register must contain the address of a word of storage in which to save
the return code. Specify a register from 2 to 12 that is enclosed in parentheses.

Regardless of whether RETCODE is specified, IMS returns the return code in register 15.

RSNCODE=symbol | (2-12)
Saves the reason code to a storage location determined by the specified symbol or register.

If a symbol is specified, the symbol must represent the label of a word of storage in which to save the
reason code.

If a register is specified, the register must contain the address of a word of storage in which to save
the reason code. Specify a register from 2 to 12 that is enclosed in parentheses.

Regardless of whether RSNCODE is specified, IMS returns the reason code in register 0.

RSNTEXT=symbol | (2-12)
Saves the reason text to a storage location determined by the specified symbol or register. The reason
text storage area must be defined with 120 bytes long.

If a symbol is specified, the symbol must represent the label of a word of storage in which to save the
reason text.

If a register is specified, the register must contain the address of a word of storage in which to save
the reason text. Specify a register from 2 to 12 that is enclosed in parentheses.

If a symbol is specified, you must specify CATALIAS.

TOKEN=tok-addr | RS-type address, or register (2-12).
Specifies the address of a 4-byte field to receive the API token. Your program receives this token
when a DFS3CATQ FUNC=OPEN macro is issued. This token must be supplied with all other macro
calls that are associated with this instance of the OPEN request. The token is no longer valid after a
DFS3CATQ FUNC=CLOSE macro call.

Return and reason codes
Table 104. Return and reason codes for the DFS3CATQ macro OPEN requests

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'0000000C' X'00000004' Request block level error.

X'0000000C' X'00000008' BSDS qualifier length error.

Chapter 41. Open request (OPEN) for the IMS catalog API  467



Table 104. Return and reason codes for the DFS3CATQ macro OPEN requests (continued)

Return Code Reason Code Meaning

X'0000000C' X'0000000C' A valid address for the OUTPUT=
variable or location was not
provided.

X'0000000C' X'00000010' The address provided for the
TOKEN= variable or location was
not valid.

X'0000000C' X'00000020' The address provided for the
RSNTEXT= variable or location
was not valid.

X'00000014' X'yyyyzzzz' The OPEN request was
unsuccessful using an internal
service. The reason code contains
the service's return code (yyyy)
and reason code (zzzz).

X'00000018' X'nnnnnnnn' OPEN was not successful. The
reason code is the return code
from the OPEN macro.

X'00000024' X'0000002C' The OPEN request failed due
to no available DDname for the
allocation.

X'00000024' X'00000030' The token area contains invalid
data.

X'0000002C' X'nnnnnnnn’ OPEN boot strap data set
(BSDS) in output mode was not
successful. The reason code is
the return code from the OPEN
macro.

X'00000030' X'yyyyzzzz' Dynamic allocation of IMS
directory data set was not
successful. The reason code
contains S99ERROR (yyyy) and
S99INFO (zzzz) from the
DYNALLOC macro.

X'00000034' X'yyyyzzzz' Dynamic deallocation of boot
strap data set (BSDS) was
not successful. The reason
code contains S99ERROR (yyyy)
and S99INFO (zzzz) from the
DYNALLOC macro.

X'00000038' X'yyyyzzzz' Dynamic allocation of
concatenated directory data set
was not successful. The reason
code contains S99ERROR (yyyy)
and S99INFO (zzzz) from the
DYNALLOC macro.

468  IMS: System Programming APIs



Table 104. Return and reason codes for the DFS3CATQ macro OPEN requests (continued)

Return Code Reason Code Meaning

X'0000003C' X'00000024' The member specified with the
CATALIAS= parameter was not
found.

X'0000003C' X'00000028' An error occurred when the
LOAD macro attempted to load
the member specified with the
CATALIAS= parameter.

X'0000003C' X'00000104' The contents of the DFSMDA
specified with the CATALIAS=
parameter are invalid.

X'0000003C' X'00000108' Storage for the DFSMDA in
IMSDALIB could not be obtained.

X'00000044' X'yyyyzzzz' Dynamic allocation of boot
strap data set (BSDS) was
not successful. The reason
code contains S99ERROR (yyyy)
and S99INFO (zzzz) from the
DYNALLOC macro.

Related reference
“ Close request (CLOSE) for the IMS catalog API” on page 481
You can use an IMS catalog API CLOSE request to close any data sets that were allocated for previous IMS
catalog API requests.

Chapter 41. Open request (OPEN) for the IMS catalog API  469



470  IMS: System Programming APIs



Chapter 42. Get request (GET) for the IMS catalog
API

Use the GET function of the IMS catalog API to get an object definition from the IMS catalog and return
the information back to the calling application.

For each successful GET request, one or more areas of storage is returned to the application that contains
the requested information. The address of the first area of storage is stored at the address provided in the
OUTPUT parameter. The address of the next area of storage, if any, is contained within the first area. For
the last area, the address of the next area of storage is null.

The application is responsible for freeing each of these storage areas when they are no longer needed.

Restriction:

GSAM ACB or DBD control blocks cannot be retrieved from the IMS catalog by using the GET request of
the IMS catalog API.

Syntax for GET requests
DFS3CATQ FUNCTION=GET ,OUTPUT=  out-addr ,TYPE= ANY

DATABASE

PSB

,NAME=  name-addr

,BLDL=  bldl-addr

,FORMAT= ACBLIB

DBDLIB

PSBLIB

,DEFINITION=CURRENT

,DEFINITION=PENDING USEALIAS=YES

,TOKEN=  tok-addr

,RETCODE=  symbol |( 2-12 ) ,RSNCODE=  symbol |( 2-12 )

,EPADDR=  ep-addr

,EXTATTR=ALL

,EXTATTR=NONE ,MF=I

,MF=L

,MF=(E,  list )

Parameters for GET requests
BLDL=bldr-addr | RS-type address, or register (2-12).

The address of an area in application storage where a list of object names resides. See the BLDL
macro and its list-address parameter of the BLDL macro for the format and requirements for this area.

DEFINITION=definition-type
If DEFINITION=BOTH is specified for the OPEN request, the GET request must specify which data set
of the IMS catalog, staging or directory, to retrieve information from:

© Copyright IBM Corp. 1974, 2022 471



CURRENT
The definitions of the resources that are currently active in the IMS system, that is, the definitions
of the resources that are in the directory data set of the IMS catalog, are returned. This is the
default value.

PENDING
The definitions of any resources that are pending activation, that is, the definitions of the
resources that are in the staging data set of the IMS catalog, are returned.

EXTATTR=output-extended-attribute-type
Determines whether extended attribute metadata is returned. This parameter is valid only for the
FORMAT=DBDLIB parameter.
ALL

All extended attribute metadata is returned. This is the default value.
NONE

Only the vendor section table is returned. If the vendor section table does not exist, no extended
attribute metadata is not returned.

EPADDR=ep-addr | RS-type address, or register (2-12).
If specified as a symbol, specifies the label of a word of storage that contains the address of the
load module DFS3CATQ. The application is responsible for loading module DFS3CATQ, saving its entry
point address for this parameter and deleting the load module when it is no longer needed.

FORMAT=format-type
The format in which to return the requested object definition.
ACBLIB

Return in ACBLIB format.
DBDLIB

Return in DBDLIB format.
PSBLIB

Return in PSBLIB format.
MF=

The macro form of the request.
I

Invokes the DFSCATQx program with an in-line parameter list. If your program is reentrant, do not
use this form of the macro because reentrant code cannot be modified.

L
Specifies the list form of the macro.

(E,list)
Specifies the execute form of the macro.

list | RS-type address, or register (2-12).

NAME=name-addr | RS-type address, or register (2-12).
The address of an area in application storage describing the name or name pattern of the object to
retrieve. The first 2 bytes of storage should contain the length of the name or pattern that follows.

A naming pattern can be provided by specifying a wild card mask. An asterisk can represent zero, one,
or more characters in the name. A percent sign represents exactly one character in the name. To get
all objects, specify only an asterisk.

OUTPUT=out-addr | RS-type address, or register (2-12).
Specifies the address of a 4-byte field to receive the address of the first storage area that contains the
information for the request.

Additional storage may be needed to contain the full set of information requested. Each additional
area of storage is chained off of the prior one. The application is responsible for freeing the output
areas when they are no longer needed.

472  IMS: System Programming APIs



RETCODE=symbol | (2-12)
Saves the return code to a storage location determined by the specified symbol or register.

If a symbol is specified, the symbol must represent the label of a word of storage in which to save the
return code.

If a register is specified, the register must contain the address of a word of storage in which to save
the return code. Specify a register from 2 to 12 that is enclosed in parentheses.

Regardless of whether RETCODE is specified, IMS returns the return code in register 15.

RSNCODE=symbol | (2-12)
Saves the reason code to a storage location determined by the specified symbol or register.

If a symbol is specified, the symbol must represent the label of a word of storage in which to save the
reason code.

If a register is specified, the register must contain the address of a word of storage in which to save
the reason code. Specify a register from 2 to 12 that is enclosed in parentheses.

Regardless of whether RSNCODE is specified, IMS returns the reason code in register 0.

TOKEN=tok-addr | RS-type address, or register (2-12).
Specifies the address of a 4-byte field to receive the API token. Your program receives this token
when a DFS3CATQ FUNC=OPEN macro is issued. This token must be supplied with all other macro
calls that are associated with this instance of the OPEN request. The token is no longer valid after a
DFS3CATQ FUNC=CLOSE macro call.

TYPE=object-type
The type of object that is requested, where object-type is one of the following values:
ANY

Any object type is requested.
DATABASE

Database types are requested.
PSB

Program specification block types are requested.
USEALIAS=YES

Returns the IMS catalog database with its alias name in the output area. This requires that a
FUNCTION=HLQ or FUNCTION=OPEN,CATALIAS= call was used prior to this request.

Output area for GET requests
With each successful GET request or X'00000028' - X'00000006' (DCPLRC_INVSEG) return-reason code
combination (see the X'00000028' return code row in Table 106 on page 474 for details), DFS3CATQ
acquires storage to hold the requested information. The address of the storage obtained is stored in the
caller's area (see the OUTPUT= parameter). The storage is allocated by the STORAGE macro with LOC=31
and SP=0.

More than one output area might be needed to contain all of the information requested. The address of
the next output area is stored in the area.

The application is responsible for freeing the output areas when they are no longer needed.

Each output area has the following format:

Table 105. Output area returned for GET requests

Content Description

Size 4 bytes. The size of this storage area.

Address 4 bytes. The address of the next area, or
'00000000'x if this is the last area.

Chapter 42. Get request (GET) for the IMS catalog API   473



Table 105. Output area returned for GET requests (continued)

Content Description

Reserved 1 byte. Reserved for internal use.

Flags 1 byte. X`80`: EXTATTR=NONE is specified.

Size 2 bytes containing the size of each data area.

Reserved 4 bytes. Reserved for internal use.

Data area The requested data is comprised of the following
repeating elements:
4 bytes

The address of the object.

The object is mapped by one of the following
macros:

• IDBD for a DBD returned in the DBDLIB
format.

• DFSDMB for a DBD returned in the ACBLIB
format.

• DFSIPSB for a PSB returned in the PSBLIB
format.

• DFSPSB for a PSB returned in the ACBLIB
format.

4 bytes
Length of the object.

8 bytes
Member name of the object.

Return and reason codes for GET requests
Table 106. Return and reason codes for the DFS3CATQ macro

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000000' One or more list entries in the area specified by using the
BLDL=parameter could not be found. Any entries that contain
a wild card mask could not be found.

X'0000000C' X'0000000C' A valid address for the OUTPUT=variable or location was not
provided.

X'0000000C' X'00000010' A valid address for the TOKEN=variable or location was not
provided.

X'0000000C' X'00000018' One of the parameter pairs is specified:

• DEFINITION=CURRENT for the OPEN request and
DEFINITION=PENDING for the GET request.

• DEFINITION=PENDING for the OPEN request and
DEFINITION=CURRENT for the GET request.

474  IMS: System Programming APIs



Table 106. Return and reason codes for the DFS3CATQ macro (continued)

Return Code Reason Code Meaning

X'00000028' X'nnnnnnnn' An attempt by the GET request to use an internal service was
unsuccessful. The return code contains the service's return
code (nnnnnnnn).

The reason code nnnnnnnn can be from the DFS3CPL return
codes. The associated labels and meaning are explained in
the following list:
X'00000001' (DCPLRC_SIZE)

Insufficient output buffer size.
X'00000002' (DCPLRC_INVMBR)

Invalid DBD or PSB member.
X'00000003' (DCPLRC_VIRSEG)

Invalid virtually paired segment name.
X'00000004' (DCPLRC_SECIDX)

Invalid secondary index name.
X'00000005' (DCPLRC_INVDBD)

Invalid DBD name.
X'00000006' (DCPLRC_INVSEG)

Invalid segment name.*
*The API will generate output for this error-reason code
combination. The application is responsible for freeing the
output areas when they are no longer needed.

X'00000007' (DCPLRC_BLDERR)
Error building catalog segments.

X'00000008' (DCPLRC_INVACB)
Invalid ACBLIB member.

X'00000009' (DCPLRC_ISAM)
Invalid ISAM.

X'0000000A' (DCPLRC_ACBERR)
Error processing ACBLIB member.

X'0000FFFF' (DCPLRC_UNKERR)
Unknown error.

X'0000002C' X'00000034' Storage for the decoder output area could not be obtained.

X'00080004' X'yyyyzzzz' The request was unsuccessful during BLDL macro processing.
The reason code contains the BLDL return code (yyyy) and
reason code (zzzz).

X'00080008' X'yyyyzzzz' The request was unsuccessful during FIND macro processing.
The reason code contains the FIND return code (yyyy) and
reason code (zzzz).

Related reference
Writing IMS routines that access control blocks (Exit Routines)

Chapter 42. Get request (GET) for the IMS catalog API   475

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.err/ims_writingroutinestoaccessctrlblks.htm#ims_writingroutinestoaccessctrlblks


476  IMS: System Programming APIs



Chapter 43. List request (LIST) for the IMS catalog
API

You can use the IMS catalog API list request to return a list of object names that match a specified object
type and name.

For each successful LIST request, one or more areas of storage is returned to the application that contains
the requested information. The address of the first area of storage is stored at the address provided in the
OUTPUT parameter. The address of the next area of storage, if any, is contained within the first area. For
the last area, the address of the next area of storage is null.

The application is responsible for freeing each of these storage areas when they are no longer needed.

Syntax for LIST requests
DFS3CATQ FUNCTION=LIST ,OUTPUT=  out-addr ,TYPE= ANY

DATABASE

PSB

,NAME=  name-addr

,BLDL=  bldl-addr

,DEFINITION=CURRENT

,DEFINITION=PENDING USEALIAS=YES

,TOKEN=  tok-addr

,RETCODE=  symbol |( 2-12 ) ,RSNCODE=  symbol |( 2-12 )

,EPADDR=  ep-addr ,MF=I

,MF=L

,MF=(E,  list )

Parameters for LIST requests
BLDL=bldr-addr | RS-type address, or register (2-12).

The address of an area in application storage where a list of object names resides. See the BLDL
macro and its list-address parameter of the BLDL macro for the format and requirements for this area.

If this parameter is specified, the TYPE= parameter is ignored.

DEFINITION=definition-type
If DEFINITION=BOTH is specified for the OPEN request, the LIST request must specify which data set
of the IMS catalog, staging or directory, to retrieve information from:
CURRENT

The definitions of the resources that are currently active in the IMS system, that is, the definitions
of the resources that are in the directory data set of the IMS catalog, are listed. This is the default
value.

PENDING
The definitions of any resources that are pending activation, that is, the definitions of the
resources that are in the staging data set of the IMS catalog, are listed.

© Copyright IBM Corp. 1974, 2022 477



EPADDR=ep-addr | RS-type address, or register (2-12).
If specified as a symbol, specifies the label of a word of storage that contains the address of the
load module DFS3CATQ. The application is responsible for loading module DFS3CATQ, saving its entry
point address for this parameter and deleting the load module when it is no longer needed.

MF=
The macro form of the request.
I

Invokes the DFSCATQx program with an in-line parameter list. If your program is reentrant, do not
use this form of the macro because reentrant code cannot be modified.

L
Specifies the list form of the macro.

(E,list)
Specifies the execute form of the macro.

list | RS-type address, or register (2-12).

NAME=name-addr
RS-type address, or register (2) - (12).

The name pattern to use for the LIST request. The first two bytes of storage should contain the length
of the name or pattern that follows. The naming pattern can be provided by specifying a wild card
mask. An asterisk can represent zero, one, or more characters in the name. A percent sign represents
exactly one character in the name. To list all objects, specify only an asterisk.

OUTPUT=out-addr | RS-type address, or register (2-12).
Specifies the address of a 4-byte field to receive the address of the first storage area that contains the
information for the request.

Additional storage may be needed to contain the full set of information requested. Each additional
area of storage is chained off of the prior one. The application is responsible for freeing the output
areas when they are no longer needed.

RETCODE=symbol | (2-12)
Saves the return code to a storage location determined by the specified symbol or register.

If a symbol is specified, the symbol must represent the label of a word of storage in which to save the
return code.

If a register is specified, the register must contain the address of a word of storage in which to save
the return code. Specify a register from 2 to 12 that is enclosed in parentheses.

Regardless of whether RETCODE is specified, IMS returns the return code in register 15.

RSNCODE=symbol | (2-12)
Saves the reason code to a storage location determined by the specified symbol or register.

If a symbol is specified, the symbol must represent the label of a word of storage in which to save the
reason code.

If a register is specified, the register must contain the address of a word of storage in which to save
the reason code. Specify a register from 2 to 12 that is enclosed in parentheses.

Regardless of whether RSNCODE is specified, IMS returns the reason code in register 0.

TOKEN=tok-addr | RS-type address, or register (2-12).
Specifies the address of a 4-byte field to receive the API token. Your program receives this token
when a DFS3CATQ FUNC=OPEN macro is issued. This token must be supplied with all other macro
calls that are associated with this instance of the OPEN request. The token is no longer valid after a
DFS3CATQ FUNC=CLOSE macro call.

TYPE=object-type
The type of object that is requested, where object-type is one of the following values:

478  IMS: System Programming APIs



ANY
Any object type is requested.

DATABASE
Database types are requested.

PSB
Program specification block types are requested.

If the BLDL= parameter is specified, this parameter is ignored.

USEALIAS=YES
Returns the IMS catalog database with its alias name in the output area. This requires that a
FUNCTION=HLQ or FUNCTION=OPEN,CATALIAS= call was used prior to this request.

Output area for LIST requests
With each successful LIST request, DFS3CATQ acquires storage to hold the requested information. The
address of the storage obtained is stored in the caller's area (see the OUTPUT= parameter). The storage is
allocated by the STORAGE macro with LOC=31 and SP=0.

More than one output area may be needed to contain all of the information requested. The address of the
next output area is stored in the area.

The application is responsible for freeing the output areas when they are no longer needed.

Each output area has the following format:

Table 107. Output area returned for LIST requests

Content Description

Size 4 bytes. The size of this storage area.

Address 4 bytes. The address of the next area, or
'00000000'x if this is the last area.

Reserved 8 bytes. Reserved for internal use.

Data area The requested data, in the following format:
2 bytes

The number of members returned.
2 bytes

Length of information (nn) returned for each
member.

nn bytes
Member information, mapped by the IMS
ACBDIR PREFIX=BLDL macro.

Return and reason codes for LIST requests
Table 108. Return and reason codes for the DFS3CATQ macro LIST requests

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000000' One or more list entries in the
area specified by using the BLDL=
parameter could not be found.

Chapter 43. List request (LIST) for the IMS catalog API   479



Table 108. Return and reason codes for the DFS3CATQ macro LIST requests (continued)

Return Code Reason Code Meaning

X'0000000C' X'0000000C' A valid address for the OUTPUT=
variable or location was not
provided.

X'0000000C' X'00000010' Valid address for the TOKEN=
variable or location was not
provided.

X'0000000C' X'00000018' One of the parameter pairs is
specified:

• DEFINITION=CURRENT for
the OPEN request and
DEFINITION=PENDING for the
GET request

• DEFINITION=PENDING for
the OPEN request and
DEFINITION=CURRENT for the
GET request

X'0000000C' X'00000100' Invalid value for the FUNCTION
parameter.

X'00080004' X'yyyyzzzz' The request was unsuccessful
during BLDL macro processing.
The reason code contains the
BLDL return code (yyyy) and
reason code (zzzz).

X'00080008' X'yyyyzzzz' The request was unsuccessful
during FIND macro processing.
The reason code contains the
FIND return code (yyyy) and
reason code (zzzz).

480  IMS: System Programming APIs



Chapter 44. Close request (CLOSE) for the IMS
catalog API

You can use an IMS catalog API CLOSE request to close any data sets that were allocated for previous IMS
catalog API requests.

When you issue a CLOSE request you free any data sets that were allocated for the communication area
by an OPEN request, or for subsequent GET and LIST requests.

Syntax for CLOSE requests
DFS3CATQ FUNCTION=CLOSE ,TOKEN=  tok-addr

,RETCODE=  symbol |( 2-12 )

,RSNCODE=  symbol |( 2-12 ) ,EPADDR=  ep-addr ,MF=I

,MF=L

,MF=(E,  list )

Parameters for CLOSE requests
TOKEN=tok-addr | RS-type address, or register (2-12).

Specifies the address of a 4-byte field to receive the API token. Your program receives this token
when a DFS3CATQ FUNC=OPEN macro is issued. This token must be supplied with all other macro
calls that are associated with this instance of the OPEN request. The token is no longer valid after a
DFS3CATQ FUNC=CLOSE macro call.

RETCODE=symbol | (2-12)
Saves the return code to a storage location determined by the specified symbol or register.

If a symbol is specified, the symbol must represent the label of a word of storage in which to save the
return code.

If a register is specified, the register must contain the address of a word of storage in which to save
the return code. Specify a register from 2 to 12 that is enclosed in parentheses.

Regardless of whether RETCODE is specified, IMS returns the return code in register 15.

RSNCODE=symbol | (2-12)
Saves the reason code to a storage location determined by the specified symbol or register.

If a symbol is specified, the symbol must represent the label of a word of storage in which to save the
reason code.

If a register is specified, the register must contain the address of a word of storage in which to save
the reason code. Specify a register from 2 to 12 that is enclosed in parentheses.

Regardless of whether RSNCODE is specified, IMS returns the reason code in register 0.

EPADDR=ep-addr | RS-type address, or register (2-12).
If specified as a symbol, specifies the label of a word of storage that contains the address of the
load module DFS3CATQ. The application is responsible for loading module DFS3CATQ, saving its entry
point address for this parameter and deleting the load module when it is no longer needed.

MF=
The macro form of the request.

© Copyright IBM Corp. 1974, 2022 481



I
Invokes the DFSCATQx program with an in-line parameter list. If your program is reentrant, do not
use this form of the macro because reentrant code cannot be modified.

L
Specifies the list form of the macro.

(E,list)
Specifies the execute form of the macro.

list | RS-type address, or register (2-12).

Return and reason codes for CLOSE requests
Table 109. Return and reason codes for the DFS3CATQ macro OPEN requests

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'0000000C' X'0000000C' A valid address for the OUTPUT=
variable or location was not
provided.

X'0000000C' X'00000010' Valid address for the TOKEN=
variable or location was not
provided.

Related reference
“Open request (OPEN) for the IMS catalog API” on page 465
Use the IMS catalog API OPEN function to allocate either the IMS directory data set or the IMS directory
staging data set for subsequent API calls to list or retrieve the database and program view resources that
are defined to IMS.

482  IMS: System Programming APIs



Part 7. IMS installed level API (DFSGVRM)
You can use the DFSGVRM API that is contained in the DFSGVRM macro in IMS to make a call from your
applications to obtain the version, release, and modification level of an IMS system.

The DFSGVRM API can be called from within or outside of an IMS system with no specific authorization
required for the call. When the call is made from within an IMS system, the IMS system must be in the
running state. When the call is made from outside of an IMS system, the IMS system need not be in the
running state.

The DFSGVRM macro supports the following functions:
FUNC=CALL

Gets the version, release, modification level of the IMS system and returns the information to an area
in storage from where the calling application can retrieve the details.

FUNC=REL
Releases the storage used for the output that is requested by the calling application. The storage is
released when it is no longer required. The calling application must use the REL function when the
RETAREA register or the parameter list field GVRMP_A_OUTPUT_AREA is nonzero, regardless of the
return code.

Accessing the DFSGVRM API
The DFSGVRM API is provided with IMS in the DFSGVRM assembler language macro.

Programming requirements
The DFSGVRM macro can be invoked from AMODE 24, 31, or 64 callers. The invoking module can reside
anywhere below the 2 GB bar.

Note: RMODE(64) is not supported.

The program that invokes the DFSGVRM macro must be in task mode and not in cross-memory mode. The
calling module need not reside in an APF-authorized library.

Execution environment
Programs that access the DFSGVRM API can execute in any IMS address space while the IMS system is in
the running state.

Programs that access the DFSGVRM API can also execute in an address space outside of IMS, and the
IMS system need not be in the running state. If called from outside of IMS, an IMS RESLIB must be
available in the standard z/OS search order of load modules.

Register usage
Input register information:

• Before invoking the DFSGVRM macro, GPR 13 must point to a standard 18-word save area.

Output register information:
R0

Reason code
R1

Used as a work register
R2 - R13

Unchanged

© Copyright IBM Corp. 1974, 2022 483



R14
Used as a work register

R15
Return code

484  IMS: System Programming APIs



Chapter 45. CALL request (CALL) for the IMS installed
level API

Use the CALL function of the DFSGVRM API to obtain the version, release, and modification level of the
IMS system.

When the calling application issues the CALL request, IMS builds a parameter list to call module
DFSGVRM0, and the parameter list is mapped by DFSGVRMP. The storage for the parameter list is
obtained by the calling application and must be GVRMP_LN in length. The address of the parameter list is
specified either as a symbol or a register by using the PARMS parameter on the CALL request.

The CALL function returns an output area that contains the IMS installed level and that is mapped by
DFSGVRMO. The address of the output area is in the GVRMP_A_OUTPUT_AREA field of the parameter list.
Optionally, you can use the RETAREA parameter on the CALL request to specify a register that receives
the address of the output area. Specifying the RETAREA parameter provides a way to prevent the calling
application from having to reference the field in the parameter list directly.

If the RETAREA register or the parameter list field GVRMP_A_OUTPUT_AREA is nonzero after the output
area is returned by the CALL function, regardless of the return code the calling application must use the
REL function to release the output storage areas.

Syntax for CALL requests

DFSGVRM FUNCTION=CALL ,PARMS= symbol

( R2 - R12 )

,LOC=31

,LOC=24

,RETAREA=

( R2 - R12 )

Parameters for CALL requests
PARMS=symbol | (R2-R12)

Specifies the address of the parameter list to call module DFSGVRM0. The parameter list is mapped
by DFSGVRMP.

If specified as a symbol, the symbol must represent an area of storage that is GVRMP_LN in length.

If specified as a register, the register must point to an area that is GVRMP_LN in length.

RETAREA=(R2-R12)
Specifies a register that receives the address of the output area that is returned by the DFSGVRM
module and that is mapped by DFSGVRMO.

This parameter is optional.

If this parameter is not specified, the address of the output area is in the GVRMP_A_OUTPUT_AREA
field of the parameter list.

The application that issues the CALL function is responsible for releasing the output area when the
RETAREA register or the GVRMP_A_OUTPUT_AREA field is non-zero, regardless of the macro return
code. The output area address is set to zero when the output area is not present on return.

LOC=24|31
Specifies whether the output area should be retrieved from below (LOC=24) or above (LOC=31) the 16
MB line.

© Copyright IBM Corp. 1974, 2022 485



This parameter is optional.

If this parameter is not specified, the area is above the 16 MB line (LOC=31).

Return and reason codes for CALL requests
When the DFSGVRM FUNC=CALL request is made, IMS returns the return code in register 15 and the
reason code in register 0.

Table 110. Return and reason codes for CALL requests

Return code Reason code Meaning

X'00000000' X'00000000' The request completed
successfully.

X'00000008' X'yyyyzzzz' Unable to LOAD module
DFSGVRM0.

In the reason code:
yyyy

Is the low-order 2 bytes of
the ABEND code that LOAD
would have issued.

zzzz
Is the low-order 2 bytes
of the reason code for the
ABEND that would have been
issued.

X'0000000C' Return code from DELETE macro Failure trying to delete module
DFSGVRM0 after successful
invocation of DFSGVRM0.

The return area provided is valid
and available for use.

X'00000010' Return code from STORAGE
RELEASE

Unable to free the output area
that is referred to by the AREA=
parameter.

X'00001008' Return code from STORAGE
OBTAIN

The DFSGVRM0 module could
not obtain storage for the output
area.

X'0000100C' X'yyyyzzzz' Unable to LOAD module
DFSVC000.

In the reason code:
yyyy

Is the low-order 2 bytes of
the ABEND code that LOAD
would have issued.

zzzz
Is the low-order 2 bytes
of the reason code for the
ABEND that would have been
issued.

X'000010FF' Various An internal error occurred.

486  IMS: System Programming APIs



Related reference
“REL request (REL) for the IMS installed level API” on page 489
Use the REL function of the DFSGVRM API to release the storage that were returned by the CALL function
for the output areas and that is no longer needed.

Chapter 45. CALL request (CALL) for the IMS installed level API  487



488  IMS: System Programming APIs



Chapter 46. REL request (REL) for the IMS installed
level API

Use the REL function of the DFSGVRM API to release the storage that were returned by the CALL function
for the output areas and that is no longer needed.

If the RETAREA register or the parameter list field GVRMP_A_OUTPUT_AREA is nonzero after the output
area is returned by the CALL function, regardless of the return code the calling application must use the
REL function to release the storage that were allocated for the output areas. The output area address is
set to zero when the output area is not present on return.

Syntax for REL requests
DFSGVRM FUNCTION=REL ,AREA= ( R1 - R12 )

Parameters for REL requests
AREA=(R1-R12)

Specifies a register that contains the address of the output area to be released.

Return and reason codes for REL requests
When the DFSGVRM FUNC=REL request is made, IMS returns the return code in register 15 and the
reason code in register 0.

Table 111. Return and reason codes for REL requests

Return code Reason code Meaning

X'00000000' X'00000000' The request completed
successfully.

X'00000010' Return code from STORAGE
RELEASE

Unable to free the output area
that is referred to by the AREA=
parameter.

X'000010FF' Various An internal error occurred.

Related reference
“CALL request (CALL) for the IMS installed level API” on page 485
Use the CALL function of the DFSGVRM API to obtain the version, release, and modification level of the
IMS system.

© Copyright IBM Corp. 1974, 2022 489



490  IMS: System Programming APIs



Part 8. Repository Server batch interface
(FRPBATCH)

The Repository Server (RS) address space batch interface (FRPBATCH) is a batch interface to manage the
RS and the repositories.

© Copyright IBM Corp. 1974, 2022 491



492  IMS: System Programming APIs



Chapter 47. Commands for FRPBATCH
The Repository Server (RS) address space batch interface (FRPBATCH) is invoked from JCL as an
executable job step program, and accepts commands through the SYSIN input stream.

Some MODIFY (F) and FRPBATCH commands are equivalent.

Table 112. Equivalent Modify (F) and FRPBATCH commands

MODIFY (F) FRPBATCH Note

-- ADD

ADMIN DISPLAY LIST

ADMIN START START

ADMIN STOP STOP Stops the IMSRSC repository

-- RENAME

-- DELETE

ADMIN DSCHANGE DSCHANGE

-- UPDATE

AUDIT -- Changes the audit level

SECURITY -- Refreshes in-storage profiles

SHUTDOWN -- Stops the RS. Similar to the STOP
command through the z/OS STOP
(P) interface.

The job control statements are:
EXEC

Specifies the program name (PGM=FRPBATCH) and the program parameters. The parameters
must be comma delimited and can be supplied in any order. Each parameter is in the format of
parameter=value.
XCFGROUP

The name of the XCF group in which the RS is located. The value of this parameter is the same as
the value of the XCF_GROUP_NAME parameter in the FRPCFG member of the IMS PROCLIB data
set.

LANG
The language for output messages. Only ENU is supported. If this parameter is omitted, ENU is
used.

The following example is an EXEC statement:

EXEC PGM=FRPBATCH,PARM=(’XCFGROUP=FRPGRUP1’,’LANG=ENU’)

SYSPRINT DD
Defines a data set for general messages and information. DCB attributes for this data set are
RECFM=FBM and LRECL=133.

FRPLIST DD
Defines a data set for the LIST command output. If this statement is omitted, the output of the
LIST command is written to the SYSPRINT DD output data set. DCB attributes for this data set are
RECFM=FBM and LRECL=133.

© Copyright IBM Corp. 1974, 2022 493



The commands to be processed are specified on the SYSIN control cards. The SYSIN control cards must
be entered in columns 1 - 72 of the input stream. Each statement has the following general form:

command_name parameter1 parameter2(value) /*inline comment
*Full-line comment

The following rules apply:

• The command_name is the first item of a command. It is followed by a space ( ), and one or more
parameters.

• If a command contains more than one parameter, each parameter must be separated by one or more
spaces ( ), a comma (,), or both.

• A parameter can have a value. The value of a parameter is enclosed in parentheses ().
• Command names, parameters, and values are converted by the program to uppercase.
• To enter an inline comment, type a forward slash followed by an asterisk (/*). Subsequent characters on

the same line are ignored by the program.
• To enter a full-line comment, type an asterisk (*) in column 1. All characters on that line are ignored by

the program.
• To break a command over multiple lines, use one of the following continuation characters:

– Use a hyphen (-) to separate parameters for the same command across multiple lines. The hyphen
does not delete the leading separator from continued lines. For example:

RENAME REPOSITORY(REPOSITORY_NAME) -
REPOSITORYNEW(REPNEWNAME)

– Use a plus sign (+) to enter a single parameter and its value on multiple lines. It deletes the leading
separator from continued lines. The plus sign must immediately follow the last character on a line.
For example:

START REPOSITORY
(REPOSIT+
ORY_NAME)

The following sample is JCL that runs the FRPBATCH interface with the various FRPBATCH commands:

//FRPBAT   EXEC PGM=FRPBATCH,PARM='XCFGROUP=FRPGRUP1' 
//SYSPRINT DD SYSOUT=*            
//SYSIN    DD *                   
//* 
 ADD REPOSITORY(IMSRSC_REPOSITORY)+
     REPDSN1RID(IMSTESTS.REPO.IMSPRI.RID)+
     REPDSN1RMD(IMSTESTS.REPO.IMSPRI.RMD)+
     REPDSN2RID(IMSTESTS.REPO.IMSSEC.RID)+
     REPDSN2RMD(IMSTESTS.REPO.IMSSEC.RMD)+
     REPDSN3RID(IMSTESTS.REPO.IMSSPR.RID)+
     REPDSN3RMD(IMSTESTS.REPO.IMSSPR.RMD)+
     AUTOOPEN(YES)
 //*
 START REPOSITORY(IMSRSC_REPOSITORY)+
       MAXWAIT(30,CONTINUE)      

 //* 
 LIST REPOSITORY(IMSRSC_REPOSITORY) 

 //* 
 STOP REPOSITORY(IMSRSC_REPOSITORY)+ 
      MAXWAIT(30,CONTINUE)

 //*
 RENAME REPOSITORY(IMSRSC_REPOSITORY) REPOSITORYNEW(IMSRSC_TEST_REPOSITORY)

 //* 
 UPDATE REPOSITORY (IMSRSC_TEST_REPOSITORY) -
 REPDSN1RID(IMSTESTS.TESTREPO.IMSPRI.RID) -
 REPDSN1RMD(IMSTESTS.TESTREPO.IMSPRI.RMD) -
 AUTOOPEN(NO)

494  IMS: System Programming APIs



 //* 
 DELETE REPOSITORY(IMSRSC_TEST_REPOSITORY)

FRPBATCH commands provide the following functions:

Related concepts
Overview of the IMSRSC repository (System Definition)
IMSRSC repository administration (System Administration)
Starting and stopping the IMSRSC repository (Operations and Automation)
Opening the IMSRSC repository (Operations and Automation)
Related reference
F reposervername,ADMIN (Commands)
FRPCFG member of the IMS PROCLIB data set (System Definition)

ADD command for FRPBATCH
Use the ADD FRPBATCH command to add an IMSRSC repository to the Repository Server (RS) catalog
repository data sets.

Subsections:

• “Syntax” on page 495
• “Keywords” on page 495

Syntax
ADD REPOSITORY(  repository_name ) REPDSN1RID(  ds1_rid_dsname )

REPDSN1RMD(  ds1_rmd_dsname ) REPDSN2RID(  ds2_rid_dsname )

REPDSN2RMD(  ds2_rmd_dsname )

REPDSN3RID(NULL) REPDSN3RMD(NULL)

REPDSN3RID(  ds3_rid_dsname ) REPDSN3RMD(  ds3_rmd_dsname )

AUTOOPEN(YES)

AUTOOPEN(NO)

SECURITYCLASS(NULL)

SECURITYCLASS(  securityclassname )

Keywords
REPOSITORY()

This is a required keyword. The name of the repository. The name can be up to 44 characters long.
Valid characters are A-Z (uppercase only), 0-9, and the following symbols: number sign (#), dollar sign
($), at sign (@), period (.), and underscore (_). All lower case characters are converted to uppercase.
A repository name of CATALOG cannot be used, because it is reserved for RS usage.

REPDSN1RID()
This is a required keyword. The primary repository index data set (RID). A valid existing VSAM key
sequenced data set (KSDS) name is required for the repository to initialize.

REPDSN1RMD()
This is a required keyword. The primary repository member data set (RMD). A valid existing VSAM
KSDS name is required for the repository to initialize.

Chapter 47. Commands for FRPBATCH  495

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_admin_repo.htm#ims_admin_repo
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.oag/ims_startingandstoppingtheimsrepository.htm#startingandstoppingtheimsrepository
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.oag/ims_openingandclosingtheimsrepository.htm#opening_imsrsc_repo
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.cr/compcmds/ims_reposervername_admin.htm#ims_cr3reposervername_admin
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_frpcfgxxx_proclib.htm#ims_frpcfgxxx_proclib


REPDSN2RID()
This is a required keyword. The secondary RID. A valid existing VSAM KSDS name is required for the
repository to initialize.

REPDSN2RMD()
This is a required keyword. The secondary RMD. A valid existing VSAM KSDS name is required for the
repository to initialize.

REPDSN3RID()
This keyword is optional. The spare RID. If this parameter is not specified, the spare data set is set
to NONE. If specified, it must be a valid VSAM KSDS data set name or NULL. Setting the REPDSN3
data set pair to NULL results in its status being set to NONE. The spare is not allocated until data set
recovery processing is initiated.

REPDSN3RMD()
This keyword is optional. The spare RMD. If this parameter is not specified, the spare data set is set
to NONE. If specified, it must be a valid VSAM KSDS data set name or NULL. Setting the REPDSN3
data set pair to NULL results in its status being set to NONE. The spare is not allocated until data set
recovery processing is initiated.

AUTOOPEN(YES | NO)
This keyword is optional. Specifies when repository data sets are allocated.
YES

Repository data sets are allocated when the repository is started. This is the default.
NO

Repository data sets are allocated when you first connect to the repository.
SECURITYCLASS(NULL | securityclassname)

This keyword is optional. Specifies the name of the security class to be used for the user repository.
The name must be left-aligned, an 8-byte name with trailing contiguous spaces. The first character
must be alphabetic and subsequent name characters alphanumeric.
If this parameter is omitted, or if NULL is specified, there is no security for this user repository. The
name specified can be the same name as the value for SAF_CLASS specified for the RS address space
in the FRPCFG member of the IMS PROCLIB data set.

Related concepts
Overview of the IMSRSC repository (System Definition)
IMSRSC repository and RS catalog repository data sets (System Definition)
Related tasks
Restricting access to the RS catalog repository and IMSRSC repository (System Administration)
Allocating the IMSRSC repository data sets (System Definition)
Related reference
FRPCFG member of the IMS PROCLIB data set (System Definition)

DELETE command for FRPBATCH
Use the DELETE FRPBATCH command to remove an IMSRSC repository from the Repository Server (RS)
catalog repository data sets.

Note: When you remove a repository from the RS catalog repository, its data sets are not deleted. To
delete the data sets, use the z/OS Access Method Services (IDCAMS) utility or a similar method after you
have removed the repository from the RS catalog repository.

Subsections:

• “Syntax” on page 497
• “Keywords” on page 497

496  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_allocrepo.htm#allocrepo
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_secur_restrict_repo.htm#restrictingaccesstotherepositoryserver
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_allocrepo_client.htm#ims_allocrepo_client
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_frpcfgxxx_proclib.htm#ims_frpcfgxxx_proclib


Syntax
DELETE REPOSITORY(  repository_name )

Keywords
REPOSITORY()

This is a required keyword. The name of the repository to be removed. "CATALOG" is reserved for
internal use and cannot be deleted.

Related concepts
Overview of the IMSRSC repository (System Definition)
Related tasks
Removing an IMSRSC repository from the RS catalog repository (System Administration)
Related reference
z/OS: DFSMS Access Method Services for Catalogs

DSCHANGE command for FRPBATCH
Use the DSCHANGE FRPBATCH command to change the status of an IMSRSC repository data set pair to
either DISCARD or SPARE.

Subsections:

• “Syntax” on page 497
• “Keywords” on page 497

Syntax
DSCHANGE REPOSITORY(  repository_name )

RDS( 1

2

3

) ACTION( SPARE

DISCARD

)

Keywords
REPOSITORY()

This is a required keyword. The name of the repository to be changed. "CATALOG" is reserved and
cannot be changed.

RDS(1 | 2 | 3)
This is a required keyword. A number in the range of 1-3 to identify the repository data set pair to
which the requested DSCHANGE action is to be applied.
1

The primary repository data set pair (COPY1).
2

The secondary repository data set pair (COPY2).
3

The spare repository data set pair (SPARE).
ACTION(SPARE | DISCARD)

This keyword is required. The action to be applied to the repository data sets that are specified in the
RDS parameter.

Chapter 47. Commands for FRPBATCH  497

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_remove_repo_from_catalog.htm#remove_repo_from_catalog
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.idai200/toc.htm


SPARE
Request to change the repository data set pair disposition to SPARE status. The SPARE action can
only be executed against a repository data set pair with DISCARD status. The SPARE repository
index data sets (RIDs) and the SPARE repository member data sets (RMDs) must be empty.

DISCARD
Request to change the repository data set pair disposition to DISCARD status. The DISCARD
action can be executed against either of the active repository data sets (the COPY1 or COPY2)
or the SPARE repository data sets. A data set must be set to DISCARD status before a new data
set can be defined. The repository must be in a stopped state for this request to process the
DISCARD action against COPY1 or COPY2. The repository is not required to be stopped to process
the DISCARD against the SPARE.

Related concepts
Overview of the IMSRSC repository (System Definition)
IMS repository data set states (System Definition)

LIST command for FRPBATCH
Use the LIST FRPBATCH command to list information about one IMSRSC repository or all repositories
that are defined to the Repository Server (RS) catalog repository data sets.

Subsections:

• “Syntax” on page 498
• “Keywords” on page 498

Syntax
LIST REPOSITORY(  repository_name )

STATUS

Keywords
REPOSITORY()

List details for a specific repository that is defined to the RS catalog repository data sets. The name of
the repository for which to list information.

STATUS
List the details for all the repositories that are defined to the RS catalog repository data sets.

The following information is returned:

• Name of the repository
• Status of the repository
• Date when the repository was last updated and the user ID of the user who updated it

Related concepts
Overview of the IMSRSC repository (System Definition)
Related tasks
Viewing IMSRSC repository definitions and status (System Administration)

RENAME command for FRPBATCH
Use the RENAME FRPBATCH command to rename an IMSRSC repository.

Subsections:

• “Syntax” on page 499
• “Keywords” on page 499

498  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_repo_datasets_states.htm#ims_repo_datasets_states
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_list_repo_status.htm#list_repo_status


Syntax
RENAME REPOSITORY(  repository_name ) REPOSITORYNEW(  repository_new_name )

Keywords
REPOSITORY()

This is a required keyword. The current name of the repository to be renamed. "CATALOG" is reserved
for internal use and cannot be renamed.

REPOSITORYNEW()
This is a required keyword. The new name of the repository to be renamed. The name can be up to
44 characters long. Valid characters are A-Z (uppercase only), 0-9, and the following symbols: period
(.), underscore (_), number sign (#), dollar sign ($), and at sign (@). All lowercase characters are
converted to uppercase.
A repository name of "CATALOG" cannot be used, because it is reserved for Repository Server (RS)
usage.

Related concepts
Overview of the IMSRSC repository (System Definition)
Updating IMSRSC repository specifications in the RS catalog repository (System Administration)

START command for FRPBATCH
Use the START FRPBATCH command to start an IMSRSC repository.

Subsections:

• “Syntax” on page 499
• “Keywords” on page 499

Syntax

START REPOSITORY(  repository_name )

OPEN(NO)

OPEN(YES)

MAXWAIT(5,CONTINUE)

MAXWAIT(  seconds ,
CONTINUE

ABORT

IGNORE

)

Keywords
REPOSITORY()

This is a required keyword. The name of the repository data set to be started. The Repository Server
(RS) catalog repository data sets cannot be started using the START command.

OPEN(NO | YES)
This keyword is optional. Specifies whether to open the repository data sets immediately after the
repository is started.
NO

Repository data sets are opened when a user first connects to the repository, or immediately if
AUTOOPEN=Y is defined for the repository with the ADD FRPBATCH command. This is the default.

Chapter 47. Commands for FRPBATCH  499

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_update_repo_definitions.htm#update_repo_definitions


YES
Repository data sets are allocated and opened when the repository is started.

MAXWAIT(5 | seconds , CONTINUE | IGNORE | ABORT)
This keyword is optional. The maximum number of seconds (0-9999) that the utility waits for the
START operation to complete. The default is 5 seconds. A value of 0 means that the utility does
not wait and returns a code immediately. MAXWAIT also specifies the action to take if the START
operation is not complete when the MAXWAIT period expires (when the request to the server to start
the user repository is successful but the batch utility is not able to confirm that the repository is in the
requested state).
CONTINUE

Command processing continues even when the MAXWAIT period expires. The return code is set to
4.

IGNORE
Command processing continues even when the MAXWAIT period expires. No return code is set.

ABORT
Command processing is terminated when the MAXWAIT period expires. The return code is set to
8.

Related concepts
Overview of the IMSRSC repository (System Definition)

STOP command for FRPBATCH
Use the STOP FRPBATCH command to stop an IMSRSC repository that is defined to the Repository Server
(RS) catalog repository data sets.

Subsections:

• “Syntax” on page 500
• “Keywords” on page 500

Syntax

STOP REPOSITORY(  repository_name )

MAXWAIT(5,CONTINUE)

MAXWAIT(  seconds ,
CONTINUE

ABORT

IGNORE

)

Keywords
REPOSITORY()

This is a required keyword. The name of the repository data set to be stopped. The RS catalog
repository data set cannot be stopped using the STOP command.
Requests that the RS stop this repository, preventing further connections to it. If the repository data
sets are allocated, the server deallocates the data sets after all write operations are completed and
closes the repository.

MAXWAIT(5 | seconds , CONTINUE | IGNORE | ABORT)
This keyword is optional. The maximum time (0-9999) in seconds that the utility waits for the STOP
operation to be completed. The default is 5 seconds. A value of 0 means that the utility does not wait
and returns a code immediately. MAXWAIT also specifies the action to be taken if the STOP operation
has not been completed when the MAXWAIT period expires (when the request to the server to stop
the user repository is successful but the batch utility is not able to confirm that the repository is in the
requested state).

500  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview


CONTINUE
Command processing continues even when the MAXWAIT period expires. The return code is set to
4.

IGNORE
Command processing continues even when the MAXWAIT period expires. No return code is set.

ABORT
Command processing is terminated when the MAXWAIT period expires. The return code is set to
8.

Related concepts
Overview of the IMSRSC repository (System Definition)

UPDATE command for FRPBATCH
Use the UPDATE FRPBATCH command to update an IMSRSC repository definition in the Repository Server
(RS) catalog repository data sets. Use this command to change the IMSRSC repository data sets or the
AUTOOPEN specification of a repository.

Subsections:

• “Syntax” on page 501
• “Keywords” on page 501

Syntax
UPDATE REPOSITORY(  repository_name )

REPDSN1RID( ds1_rid_dsname

NULL

) REPDSN1RMD( ds1_rmd_dsname

NULL

)

REPDSN2RID( ds2_rid_dsname

NULL

) REPDSN2RMD( ds2_rmd_dsname

NULL

)

REPDSN3RID( ds3_rid_dsname

NULL

) REPDSN3RMD( ds3_rmd_dsname

NULL

)

AUTOOPEN(YES)

AUTOOPEN(NO)

SECURITYCLASS(NULL)

SECURITYCLASS(  securityclassname )

Keywords
REPOSITORY()

This is a required keyword. The name of the repository to be updated. "CATALOG" is reserved and
cannot be updated.

REPDSN1RID()
This is an optional keyword. The name of the primary repository index data set (RID). If this parameter
is omitted, or if NULL is specified, the data set is not updated.

If you specify REPDSN1RMD, but do not want to update this parameter, you still must specify this
parameter (with NULL).

Chapter 47. Commands for FRPBATCH  501

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview


REPDSN1RMD()
This is an optional keyword. The name of the primary repository member data set (RMD). If this
parameter is omitted, or if NULL is specified, the data set is not updated.

If you specify REPDSN1RID(), but do not want to update this parameter, you still must specify this
parameter (with NULL).

REPDSN2RID()
This is an optional keyword. The name of the secondary RID. If this parameter is omitted, or if NULL is
specified, the data set is not updated.

If you specify REPDSN2RMD(), but do not want to update this parameter, you still must specify this
parameter (with NULL).

REPDSN2RMD()
This is an optional keyword. The name of the secondary RMD. If this parameter is omitted, or if NULL
is specified, the data set is not updated.

If you specify REPDSN2RID(), but do not want to update this parameter, you still must specify this
parameter (with NULL).

REPDSN3RID()
This keyword is optional. The name of the spare RID. If this parameter is omitted, or if NULL is
specified, the data set is not updated.

If you specify REPDSN3RMD(), but do not want to update this parameter, you still must specify this
parameter (with NULL).

REPDSN3RMD()
This keyword is optional. The name of the spare RMD. If this parameter is omitted, or if NULL is
specified, the data set is not updated.

If you specify REPDSN3RID(), but do not want to update this parameter, you still must specify this
parameter (with NULL).

AUTOOPEN(YES | NO)
This keyword is optional. Specifies when repository data sets are allocated.
YES

Repository data sets are allocated when the repository is started. This is the default.
NO

Repository data sets are allocated when you first connect to the repository.
SECURITYCLASS(NULL | securityclassname)

This keyword is optional. Specifies the name of the security class to be used for the user repository.
The name must be left-aligned, an 8-byte name with trailing contiguous spaces. The first character
must be alphabetic and subsequent name characters alphanumeric.
If this parameter is omitted, or if NULL is specified, there is no security for this user repository. The
name specified can be the same name as the SECURITYCLASS specified for the RS address space in
the FRPCFG member of the IMS PROCLIB data set.

Related concepts
Overview of the IMSRSC repository (System Definition)
Updating IMSRSC repository specifications in the RS catalog repository (System Administration)
Related reference
FRPCFG member of the IMS PROCLIB data set (System Definition)

502  IMS: System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sag/system_admin/ims_update_repo_definitions.htm#update_repo_definitions
http://www.ibm.com/support/knowledgecenter/SSEPH2_15.3.0/com.ibm.ims153.doc.sdg/ims_frpcfgxxx_proclib.htm#ims_frpcfgxxx_proclib


Part 9. VTAM and SNA reference information
The topics in this section provide reference information about VTAM and SNA.

© Copyright IBM Corp. 1974, 2022 503



504  IMS: System Programming APIs



Chapter 48. Bind parameters for SLU P and LU 6.1
You can search these topics for the session parameters that IMS specifies when establishing connection
using the VTAM OPNDST macro instruction. These parameters define the rules that a logical unit must
follow when communicating with IMS.

Restriction: A VTAM restriction exists on the OUTBUF and RECANY buffer sizes for logical units requiring
a bind from IMS.

The following outbound (from IMS to the SLU) BIND formats apply to the device types indicated in the
following topics.

Related reference
“Format for CINIT user data parameters” on page 525
This topic describes the CINIT user data parameters and the syntax rules for them.

Finance communication system bind parameters
You can use this table to search for the session parameters that are defined as UNITYPE=FINANCE or
UNITYPE=SLUTYPEP on the TYPE macro or an Extended Terminal Option (ETO) logon descriptor for a
Finance Communication System.

Table 113. Finance communication system bind parameters

Byte Bit Content BIND FORMAT description

0 X'31'

1 X'01' Format=0; BINDTYPE=COLD1

2 X'04' FM Profile 4

3 X'04' TS Profile 4

4 Primary NAU protocol

0 B'1' Multiple RU chains

1 B'0' Immediate request

2-3 B'11' Any response

4-5 B'00' Reserved

6 B'0' No compression

7 B'1' Primary can send EB

5 B'1' Secondary NAU protocol

0 B'1' Multiple RU chains

1 B'0' Immediate request

2-3 B'11' Any response

4-5 B'00' Reserved

6 B'0' No compression

7 B'1' Secondary can send EB

© Copyright IBM Corp. 1974, 2022 505



Table 113. Finance communication system bind parameters (continued)

Byte Bit Content BIND FORMAT description

6 X'60' Common NAU protocol

0 B'0' Reserved

1 B'1' Message headers are allowed

2 B'1' Brackets to be used

3 B'0' Bracket termination rule 2 (unconditional)

4 B'0' No alternate code

5-7 B'000' Reserved

7 X'80' Common NAU protocol

0-1 B'10' FM transmission mode - HDX flip/flop

2 B'0' Primary ERP responsibility

3 B'0' Secondary station is the first speaker

4-5 B'00' Reserved

6 B'0' No related chains

7 B'0' Contention resolution

8 Reserved: X'00' should be specified

9 SLU receive pacing count: Not changed by IMS2

10 SLU max. RU send size: Set to maximum receive any buffer
size from IMS system definition1, 3, 4

11 PLU max. RU send size: Set from output buffer size
specified on IMS system definition1, 4

12-13 Reserved: X'0000' should be specified

14 LU TYPE: X'00' should be specified

15-26 Reserved: XL11'00' should be specified

27 PLU name length2

28-35 PLU name: IMS ACB name2

36 X'0B' User data length

37-47 User data5

37 X'00' Structured data indicator

38 X'09' Length of USERVAR segment

39 X'03' USERVAR segment indicator

40-47 XRF
USERVAR

USERVAR

506  IMS: System Programming APIs



Table 113. Finance communication system bind parameters (continued)

Byte Bit Content BIND FORMAT description

Notes:

1. Bytes 1 through 7, 10, and 11 are set to the indicated values set by IMS and cannot be changed by
the user. The pacing parameter is defined in the VTAM list LU definition or through the mode table
entry for the LU (VTAM DLOGMOD parameter).

2. Bytes 0, 9, and 27 through 35 are set by VTAM.
3. The receive-any buffer size is determined by the user-supplied value for size on the RECANY keyword

parameter of the COMM macro statement, less 28 bytes.
4. IMS does not set the buffer size for the 4701/4702.
5. When the BIND data issued is an XRF system that uses the USERVAR instead of MNPS, the following

structured user segment is included:

Length of USERVAR segment - X'09'
USERVAR segment indicator - X'03'
USERVAR (8 bytes) - USERVAR of the XRF system

Related reference
z/OS: Request unit (RU) formats

IMS as primary half session
A specific bind format is sent by IMS during an IMS-to-other session initiation. If the mode table entry
indicates negotiated bind, IMS overrides the mode table primary NAU protocol field with the indicated
values prior to sending the bind.

IMS allows some parameters to be optionally set by a VTAM mode table entry or negotiated bind
response. IMS then operates within the indicated constraints. For a non-negotiated bind, IMS checks
the parameters for validity before sending the bind. For negotiated bind, IMS checks the parameters for
validity prior to sending the BIND request and upon receipt of the bind response, because the secondary
half session can modify parameters within the constraints indicated in the following table.

Table 114. Logical unit type 6.1 bind parameters

Byte Bit Content BIND FORMAT description1

0 X'31' Bind request code

1 0-3 B'0000' FORMAT: TYPE 0

4-7 B'0000', B'0001' BIND TYPE:
0000 - negotiated
0001 - non-negotiated

2 0-7 X'12' FM Profile 18

3 0-7 X'04' TS Profile 4

Chapter 48. Bind parameters for SLU P and LU 6.1  507

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.istprg0/rufs.htm


Table 114. Logical unit type 6.1 bind parameters (continued)

Byte Bit Content BIND FORMAT description1

4 Primary NAU protocol

0 B'1' Multiple RU chains

1 B'0' Immediate request

2-3 B'10', B'11'
(B'11' set for
negotiated BIND)

10-Definite response chains

11-Exception/Definite response chains

4 B'0' Cannot send prepare

5 B'0' Reserved

6 B'0' No compression

7 B'1' 0-Primary cannot end bracket

1-Primary can send end bracket

5 Secondary NAU protocol

0 B'1' 0-Single RU chains, 1-Multiple RU chains

1 B'0' Immediate request

01-Exception response chains

10-Definite response chains

2-3 B'10', B'11' 11-Exception/Definite response chains

4 B'0' Cannot send prepare

5 B'0' Reserved

6 B'0' No compression

0-Secondary cannot end bracket

7 B'0', B'1' 1-Secondary can send end bracket

508  IMS: System Programming APIs



Table 114. Logical unit type 6.1 bind parameters (continued)

Byte Bit Content BIND FORMAT description1

6 Common NAU protocol

0 B'0' Reserved

1 B'1' Function management headers allowed

Bracket state

0 - Bracket state mgr reset to in-bracket state

2 B'0',B'1' 1 - Bracket state mgr reset to between-
bracket state2

3 B'1' Conditional bracket termination

4 B'0' No alternate code

5 B'0' Sequence
  numbers not available
B'1' Sequence
  numbers available

STSN request flag

6 B'0' BIS not sent
B'1' BIS sent

BIS sent flag

7 B'0' Reserved

7 0-1 B'10' FM transaction mode, HDX-FF

2 B'1' Sender ERP

3 B'0' Secondary is first speaker

4-6 B'0000' Reserved

If byte 6 bit 2 is 0, then

0-Secondary speaks first after data traffic
active state

7 B'0', B'1' 1-Primary speaks first after data traffic active
state2

8 0-7 Unchanged Secondary send pacing count

9 0-7 Unchanged Secondary receive pacing count

10 0-7 Set from user Define receive-any SLU max send RU size3

11 0-7 Set from user Define outbuffer
size

PLU max send RU size

12 0-7 Unchanged Primary send pacing count

13 0-7 Unchanged Primary receive pacing count

Presentation Services

14 0-7 X'06' LU profile (LUTYPE6)

15 0-7 X'00' Reserved Function management header subset

Chapter 48. Bind parameters for SLU P and LU 6.1  509



Table 114. Logical unit type 6.1 bind parameters (continued)

Byte Bit Content BIND FORMAT description1

16 0 Reserved Primary half-session flags

1 Reserved

2 1 - FMH6: Receive

SYSMSG supported

3 1 - Receive SCHEDULER

model supported

4 1 - Receive QMODEL supported

5 0 - Linear file model ignored

6 0 - DL/I model ignored

7 Reserved

17 Reserved

18-19 Reserved

20 0 Reserved Secondary half-session flags

1 Reserved

2 1 - Receive SYSMSG supported

3 0 - Receive SCHEDULER

not supported4

1 - Receive SCHEDULER

model supported

4 0 - Receive QMODEL

ignored

1 - Receive QMODEL

supported

5 0 - linear file model ignored

6 0 - DL/I model ignored

7 Reserved

21 Reserved

22-26 Reserved

27 0-7 Length of PLU name

28-M PLU name

M+1 0-7 X'00' No user data present Length of user data

M+2-N X'00' Structured fields follow

X'00' First byte of unstructured
user data5

User data

510  IMS: System Programming APIs



Table 114. Logical unit type 6.1 bind parameters (continued)

Byte Bit Content BIND FORMAT description1

M+3-N Remainder of unstructured user
data

For unstructured user data

M+3-N Structured fields For structured user data6

N+1 0-7 Structured fields, request
correlation (URC) field

X'00' = no URC present

Length of URC7

N+2-P End-user-defined identifier URC4

P+1 0-7 X'00'=no secondary name Length of secondary LU name4

P+2-R 0-7 Secondary LU name Secondary LU name4

Notes:

1. The length of the BIND RU cannot exceed 256 bytes; otherwise, a negative response is returned.
2. Set to indicate possible in-bracket or process restart. Set by IMS on bind when response mode output

remains on the queue or when IMS is in conversational mode. Can also be sent on a negotiated bind
response by the other half session.

3. The receive-any buffer size is determined by the user-supplied value for size on the RECANY keyword
parameter of the COMM macro statement, less 28 bytes.

4. When the bind indicates that the other half session does not support the SCHEDULER process, IMS
sends all unsolicited and asynchronous output using ATTACH.

5. Unstructured user data is ignored and not provided by IMS.
6. Structured user data formats. A structured field contains architected or subsystem-defined

information and provides a means for subsystems to communicate data. Each structured field contains
a field identifier (subfield number) and length. A structured data field can contain unstructured data.

If structured field (M+3-N) is X'00', it contains unstructured data as follows:

1
Length of unstructured data field (including subfield key field). If zero, this field can be omitted
entirely.

2
Subfield key: X'00'

3-N
Unstructured data. If the structured subfield number is X'03', an 8-byte USERVAR name follows the
subfield.

If the structured field (M+3-N) is X'01', it contains a session qualifier as follows:

1
Length of session qualifier field (including subfield key field). If zero, this field can be omitted
entirely.

2
Subfield key: X'01'

3
Length of primary resource qualifier (X'00' means no primary source qualifier is present). Values 0
to 8 are valid.

4-N
Primary resource qualifier

Chapter 48. Bind parameters for SLU P and LU 6.1  511



N+1
Length of secondary resource qualifier (X'00' means no secondary resource qualifier is present).
Values 0 to 8 are valid.

N+2-M
Secondary resource qualifier

M+1
Length of password (X'00' means no password is present). Values 0 to 8 are valid.

M+2-P
Password. Ignored on bind or bind reply from IMS and is not sent on bind or bind reply. IMS
indexes structured fields to find field X'01', a session-qualifier field, when these parameters are
required for session initiation using parallel sessions.

M+3-N
If the structured field has a subfield of X'02', IMS interprets the field as an MSC partner ID. If bind
is issued in an XRF environment that uses USERVAR instead of MNPS, an additional structured
segment is included in the user data. The format of this segment is:
1

Length of USERVAR segment, X'09'
2

Subfield key, X'03'
3-10

8-byte field containing USERVAR of the XRF complex
7. The URC and secondary LU name are not used by IMS but are shown for compatibility purposes.

Related reference
z/OS: Request unit (RU) formats

IMS as secondary half session
A specific bind format can be received by IMS during an IMS-to-other session initiation. If the bind
parameters that are received indicate a negotiated BIND request, IMS overrides the secondary NAU
protocol field with the indicated values before sending the bind response.

IMS allows some parameters to be optionally set using the bind and operates within the indicated
constraints.

Table 115. IMS-to-other secondary half session

Byte Bit Content BIND FORMAT description 1

0   X'31' Bind Request Code

1   0-3 B'0000' Format: TYPE 0

4-7 B'0000', B'0001' Bind type:
    0000 - negotiated
    0001 - non-negotiated

2 0-7 X'12' FM profile 18

3 0-7 X'04' TS profile 4

512  IMS: System Programming APIs

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.istprg0/rufs.htm


Table 115. IMS-to-other secondary half session (continued)

Byte Bit Content BIND FORMAT description 1

4               Primary NAU Protocol

0 B'0', B'1' B'0'
Single RU chains

B'1'
Multiple RU chains

1 B'01', B'10' Immediate request:
B'01'

Exception response chains
B'10'

Definite response chains

2-3 B'01', B'10', B'11' 11-Exception/Definite response chains

4 B'0' Cannot send prepare

5 B'0' Reserved

6 B'0' No compression

7 B'0', B'1' 0-Primary cannot end bracket

1-Primary can send end bracket

 5                 Secondary NAU Protocol

0 B'1' Multiple RU chains

1 B'0' Immediate request

2-3 B'10', B'11'
(B'11' set for
negotiated bind)

10-Definite response chains

11-Exception/Definite response chains

4 B'0' Cannot send prepare

5 B'0' Reserved

6 B'0' No compression

7 B'1' 0-Secondary cannot send end bracket

1-Secondary can send end bracket

 6     Common NAU Protocol

0 B'0' Reserved

1 B'1' Function Management headers allowed

2 B'0', B'1' Bracket state:
B'0'

Bracket state manager reset to in-bracket
state

B'1'
Bracket state manager reset to between-
bracket state2

Chapter 48. Bind parameters for SLU P and LU 6.1  513



Table 115. IMS-to-other secondary half session (continued)

Byte Bit Content BIND FORMAT description 1

3 B'1' Conditional bracket termination

4 B'0' No alternate code

5 B'0', B'1' STSN required flag:
B'0'

Sequence numbers not available
B'1'

Sequence numbers available

6  B'0', B'1' BIS sent flag:
B'0'

BIS not sent
B'1'

BIS sent

7 B'000' Reserved

7       0-1 B'10' FM transaction mode, HDX-FF

2 B'1' Sender ERP

3-6 B'0000' Reserved

7 B'0', B'1' IF byte 6 bit 2 is 0:
0 - Secondary speaks first
    after data traffic active
    state
1 - Primary speaks first
    after data traffic active
    state2

8 0-7 Unchanged Secondary send pacing count

9 0-7 Unchanged Secondary receive pacing count

10 0-7 Must ≥ defined outbuffer size SLU max send RU size

11 0-7 Must be ≤ define receive-any size PLU max send RU size3

12 0-7 Unchanged Primary send pacing count

13 0-7 Unchanged Primary receive pacing count

14 0-7 X'06' LU profile (LUTYPE6)

15 0-7 X'00' Reserved Function Management header subset

514  IMS: System Programming APIs



Table 115. IMS-to-other secondary half session (continued)

Byte Bit Content BIND FORMAT description 1

16              
   

0 Reserved Primary half-session flags

1 Reserved  

2 1 - Receive SYSMSG supported  

3 0 - Receive SCHEDULER

model not supported4

 

  1 - Receive SCHEDULER

model supported

 

4 0 - Receive QMODEL

not supported

 

  1 - Receive QMODEL supported  

5 0 - linear file model

not supported

 

6 0 - DL/I model

not supported

 

7 Reserved  

17   Reserved  

18-19   Reserved  

20               0 Reserved Secondary half-session flags

1 Reserved  

2 1 - FMH6: Receive

SYSMSG supported

 

3 1 - Receive schedule

model supported

 

4 1 - Receive QMODEL

supported

 

5 0 - linear file model

not supported

 

6 0 - DL/I model

not supported

 

7 Reserved  

21   Reserved  

22-26   Reserved  

27 0-7   Length of PLU name

Chapter 48. Bind parameters for SLU P and LU 6.1  515



Table 115. IMS-to-other secondary half session (continued)

Byte Bit Content BIND FORMAT description 1

28-M     PLU name

M+1 0-7 X'00' No user data present Length of user data

M+2-N   X'00' Structured fields follow

X'00' first byte of unstructured
user data5

User data

M+3-N   Remainder of unstructured user
data

For unstructured user data

M+3-N   Structured fields6 For structured user data

N+1 0-7 Length of user request correlation
(URC) field X'00' = no URC
present

Length of URC7

N+2-P   URC: end-user defined identifier URC7

P+1 0-7 X'00'=no secondary name Length of secondary LU name7

P+2-R 0-7 Secondary LU name Secondary LU name7

Notes:

1. The length of the BIND RU cannot exceed 256 bytes; otherwise, a negative response is returned.
2. Set to indicate possible in-bracket or process restart. Set by IMS on bind when response mode output

remains on the queue or when IMS is in conversational mode. Can also be sent on a negotiated bind
response by the other half session.

3. The receive-any buffer size is determined by the user-supplied value for size on the RECANY keyword
parameter of the COMM macro statement, less 28 bytes.

4. When the bind indicates that the other half session does not support the SCHEDULER process, IMS
sends all unsolicited or asynchronous output using ATTACH.

5. Unstructured user data is ignored and not provided by IMS.
6. Structured user data formats. A structured field contains architected or subsystem-defined

information and provides a means for subsystems to communicate data. Each structured field contains
a field identifier (subfield number) and length. A structured data field can contain unstructured data.

If structured field (M+3-N) is X'00', it contains unstructured data as follows:

1
Length of unstructured data field (including subfield key field). If zero, this field can be omitted
entirely.

2
Subfield key: X'00'

3-N
Unstructured data If the structured subfield number is X'03', an 8-byte USERVAR name follows the
subfield.

If the structured field (M+3-N) is X'01', it contains a session qualifier as follows:

1
Length of session qualifier field (including subfield key field). If zero, this field can be omitted
entirely

2
Subfield key: X'01'

516  IMS: System Programming APIs



3
Length of primary resource qualifier (X'00' means no primary source qualifier is present). Values 0
to 8 are valid.

4-N
Primary resource qualifier

N+1
Length of secondary resource qualifier (X'00' means no secondary resource qualifier is present).
Values 0 to 8 are valid.

N+2-M
Secondary resource qualifier

M+1
Length of password (X'00' means no password is present). Values 0 to 8 are valid.

M+2-P
Password (ignored on bind or bind reply received by IMS and not sent on bind or bind reply. IMS
indexes structured fields to find field X'01', a session-qualifier field, when these parameters are
required for session initiation using parallel sessions.

When the BIND data issued is an XRF system that uses USERVAR instead of MNPS, the following
structured user segment is included:

Length of USERVAR segment - X'09'
USERVAR segment indicator - X'03'
USERVAR (8 bytes) - USERVAR of the XRF system

7. The URC and secondary LU name are not used by IMS but are shown for compatibility purposes.

Related reference
z/OS: Request unit (RU) formats

Chapter 48. Bind parameters for SLU P and LU 6.1  517

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.istprg0/rufs.htm


518  IMS: System Programming APIs



Chapter 49. Bind parameters for SLU 1 and SLU 2
IMS specifies different session parameters when establishing connection with SLU 1 and SLU 2. These
parameters define the rules that a logical unit must follow when communicating with IMS.

The following outbound (from IMS to the SLU) BIND formats apply to the device types indicated in this
section.

Related reference
“Format for CINIT user data parameters” on page 525
This topic describes the CINIT user data parameters and the syntax rules for them.

SLU 1 bind parameters
You can use this table to search for SLU 1 bind parameters.

Table 116. SLU 1 bind parameters

Byte Bit Content Description

0 X'01' Format=0; BINDTYPE=COLD

1 X'03' FM Profile 3

2 X'03' TS Profile 3

3 PRIMARY LU PROTOCOLS

0 B'1' Multiple RU chains

1 B'0' Immediate Request Mode

2-3 B'11' Chain Response Protocol: Any

4-5 B'00' Reserved

6 B'0' No Compression

7 B'1' Primary can send End Bracket

4 SECONDARY LU PROTOCOLS

0 B'1' Multiple RU Chains

1 B'0' Immediate Request Mode

2-3 Note1 Chain Response Protocol

4-5 B'00' Reserved

6 B'0' No Compression

7 B'0' Secondary does not send End Bracket

© Copyright IBM Corp. 1974, 2022 519



Table 116. SLU 1 bind parameters (continued)

Byte Bit Content Description

5 COMMON LU PROTOCOLS (FIRST BYTE)

0 B'0' Reserved

1 Note2 FM Headers

2 B'1' Brackets can be used

3 B'1' Bracket Termination Rule 1 (Conditional)

4 B'0' EBCDIC (No Alternate Code)

5-7 B'000' Reserved

6 COMMON LU PROTOCOLS (SECOND BYTE)

0-1 B'10' Half-Duplex Flip-Flop

2 B'0' Primary ERP Responsibility

3 B'0' Secondary is First Speaker

4-6 B'000' Reserved

7 B'0' Secondary is Contention Winner

7 0-1 B'00' Reserved

2-7 SLU Send Pacing Count (Set by VTAM)3

8 0-1 B'00' Reserved

2-7 SLU Receive Pacing Count (Set by VTAM)3

9 0-7 Set from user-defined
receive any

SLU to PLU RU Size

10 0-7 Set from user-defined
outbuf size

PLU to SLU RU Size

11 0-1 B'00' Reserved

2-7 PLU CPMGR Send Pacing Count (Set by VTAM)3

12 0-1 B'00' Reserved

2-7 PLU CPMGR Receive Pacing Count (Set by VTAM)3

13 0-7 X'01' LU Profile (LUTYPE1)

14-35 See Notes Remainder of Bind Area

520  IMS: System Programming APIs



Table 116. SLU 1 bind parameters (continued)

Byte Bit Content Description

Notes:

1. IMS forces flip-flop mode.
2. The preceding bind (bytes 0-6 and 13) overrides anything that might be in a logmode entry.
3. You can do this by coding the VPACING parameter on the VTAM list LU definition or by specifying the

appropriate mode table entry on the LU definition by using the VTAM DLOGMOD parameter.
4. The remainder of the bind (bytes 14-35) can be specified if it is required by the device. It is taken

from the logmode entry.
5. Unattended operation must be specified in the logmode entry using the following:

BYTE 18
Bit 0

0
Initiates attended

1
Initiates unattended

Bit 1
0

Does not alternate from attended/unattended during session
1

Alternates from attended/unattended during session

IMS forces attended mode if the node is defined as the master terminal.
6. IMS users should make the logmode entry according to the IMS definition.
7. If the terminal sends SCS2 transparent fields (identified by a X'35' followed by one byte containing

the field's length, followed by the transparent field), the bind image bit BINPDSB1=BINTRNDS (offset
17=01) must be set. IMS processes these fields by deleting the X'35' and length byte, and by passing
the unaltered transparent field to the editing routine.

8. IMS accepts a setting of B'10' (definite response), B'01' (exception response), or B'11' (either
response). If a setting of B'00' is found, IMS sets B'01' if only the first component is defined, and
B'10' if more than one component is defined.

9. IMS leaves this bit on (FM headers allowed). If off, IMS leaves it off (FM headers not allowed) if only
one component is defined, and sets it on if more than one component are defined.

SLU 2 bind parameters
You can use this table to search for the bind parameters for SLU 2 devices.

Table 117. SLU 2 bind parameters

Byte Bit Content Description

0 X'01' Format=0; BINDTYPE=COLD

1 X'03' FM Profile 3

2 X'03' TS Profile 3

Chapter 49. Bind parameters for SLU 1 and SLU 2  521



Table 117. SLU 2 bind parameters (continued)

Byte Bit Content Description

3 Primary NAU protocol

0 B'1' Multiple RU chains

1 B'0' Immediate request

2-3 B'11' Any response

4-5 Reserved

6 B'0' No compression

7 B'1' Primary can send EB

4 Secondary NAU protocol

0 B'1' Multiple RU chains

1 B'0' Immediate request

2-3 B'01' Exception response

4-5 Reserved

6 B'0' No compression

7 B'0' Secondary cannot send EB

5 Common NAU protocol

0 Reserved

1 B'0' Message headers are not allowed

2 B'1' Brackets to be used

3 B'1' Bracket termination rule 1 (conditional)

4 B'0' No alternate code

5-7 Reserved

6 Common NAU protocol

0-1 B'10' FM transmission mode: HDX flip/flop

2 B'0' Primary ERP responsibility

3 B'0' Secondary station is the first speaker

4-6 xxx Reserved

7 B'0' For HDX-FF mode, secondary sends first when
leaving data traffic reset state

7 SLU Send Pacing count: Not changed by IMS

8 SLU Receive Pacing count: Not changed by IMS

9 SLU MAX RU send size: Set to Max receive any
buffer size from IMS system definition

10 PLU MAX RU send size: Set from output buffer size
specified at IMS system definition

11-12 Reserved: X'0000' should be specified

522  IMS: System Programming APIs



Table 117. SLU 2 bind parameters (continued)

Byte Bit Content Description

13 LU TYPE: Set to X'02' by IMS

14-18 Reserved: X'00' should be specified

19-20 User specified screen size if 3274/3276 device.
Otherwise not changed.

21-22 Alternate screen size, X'00' should be specified.

23 Set to X'7E' if 3274/3276 NDS device or X'02' if
non-NDS 3270 master terminal. Otherwise should
be X'00'.

24-25 User specified: should be X'00'

26 PLU Name length

27-34 PLU name: IMS ACB name

35 User data length: Not supported, X'00' must be
specified

Notes:

1. Bytes 0-6, 9, and 10 are set to the indicated values by IMS and cannot be changed by the user.
2. Byte 8 and bytes 26 through 34 are set by VTAM. You should set the remaining bytes to 0 (zero), but it

is not mandatory.

Chapter 49. Bind parameters for SLU 1 and SLU 2  523



524  IMS: System Programming APIs



Chapter 50. Format for CINIT user data parameters
This topic describes the CINIT user data parameters and the syntax rules for them.

For all non-MSC VTAM terminal types, IMS can receive user data parameters from the following sources:

• IMS (/OPNDST command)
• IMS autologon request
• User logon (such as SNA INITSELF command)
• Installation Logon exit routine (DFSLGNX0)
• Signon exit routine (DFSSGNX0)
• Destination Creation exit routine (DFSINSX0)

User data parameters are optional for migration purposes. However, when a match must be made
between the terminal and user for session initiation, user data parameters are required for:

• ISC parallel session (LU 6.1 architecture)
• Finance (3601) and SLU P terminals, when used with ETO

All parameters, optional and required, appear in the CINIT user data field and are available to IMS when
the VTAM Logon exit routine is scheduled.

During logon and signon processing, IMS performs minimal processing on CINIT user data parameters
before calling the Installation Logon exit routine (DFSLGNX0) and the Signon exit routine (DFSSGNX0). If
the Logon or Signon exit routines are not supplied, IMS assumes a default user data format.

User data format
The format for the CINIT user data is shown in the following syntax diagram.

LOGOND = lname

userid

USERD = uname userdata

For these parameters, blanks are required and are the only recognized delimiters. Do not use more than
one blank to delimit parameters.

Parameters
LOGOND=lname

Specifies logon descriptor name to be used for the terminal attempting to log on to IMS. lname is one
to eight bytes in length. The LOGOND and USERD parameters are valid only for Extended Terminal
Operation (ETO).

userid
Specifies the 1- to 8-byte user ID of the user logging on to IMS. The userid parameter indicates that
the user associated with this ID will also sign on to IMS.
The userid parameter is required for Finance, SLU P, ISC, and output-only devices (such as printers).

Restriction: ISC is restricted to only the user ID that translates to the ISC SUBPOOL name (SNA
PHS/SHS qualifier). For ISC parallel sessions, the DFSLGNX0 exit routine receives only the user ID that
translates to the ISC subpool name (SNA PHA/SHA qualifier).

© Copyright IBM Corp. 1974, 2022 525



USERD=uname
Specifies the 1- to 8-byte user descriptor name to be used to create the user control block structure
at signon.

userdata
Specifies additional data for the Signon exit routine (DFSSGNX0) or the Sign On/Off Security exit
routine (DFSCSGN0) and security products, such as RACF. For the exit routines, your installation
defines the format of the userdata fields.
For RACF, the format of the userdata is:
userpw

Identifies the 1- to 8-byte user password that is associated with the previously entered userid. No
keyword precedes the user password.

GROUP groupname
Identifies groupname as the 1- to 8-byte group name that is associated with the userid parameter.
The GROUP keyword and associated parameter are optional.

NEWPW nuserpw
Identifies nuserpw as a new user password that replaces the current password, userpw.

The ETO logon descriptor name, lname, applies to IMS logon processing. All remaining optional
parameters, however supplied, are passed to ETO user allocation, signon processing, and the security
product, such as RACF. If a security product is used, all parameters not applicable to that product
must be deleted before it is called. The parameters can be deleted in the DFSLGNX0, DFSSGNX0, and
DFSCSGN0 exit routines.

Related concepts
z/OS Communications Server SNA Programmer's LU 6.2 Guide
Related reference
“Bind parameters for SLU P and LU 6.1” on page 505
You can search these topics for the session parameters that IMS specifies when establishing connection
using the VTAM OPNDST macro instruction. These parameters define the rules that a logical unit must
follow when communicating with IMS.
“Bind parameters for SLU 1 and SLU 2” on page 519
IMS specifies different session parameters when establishing connection with SLU 1 and SLU 2. These
parameters define the rules that a logical unit must follow when communicating with IMS.

526  IMS: System Programming APIs

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.istp620/toc.htm


Chapter 51. SNA character string controls
SNA character string controls (SCS) describe specific functions for the EBCDIC control codes. You can use
the primary functions that are described to format a printed page or an alphanumeric display screen.

Functions are also defined for codes that set modes of device operation, define data to be used in a
unique fashion, or are used for communication between a device operator and an application program
(where the specific function associated with the code is defined in a protocol established between a
program and an operator).

An SCS data stream consists of a sequential string of control and data characters. Control function
characters in the form of SCS-defined control codes can be intermixed with graphic data characters.
Other data types (such as binary and packed decimal) are permitted only in conjunction with the
transparent (TRN) control.

SCS control codes appear within the data portion of the request unit (RU). A function management (FM)
header can precede SCS data within an RU. Functions such as component selection are performed by FM
header functions and are not included as SCS functions.

SCS functions do not include data flow control functions, even when these functions are available to a
keyboard operator through keys on the keyboard. For example, CANCEL is a data flow control request that
can be initiated by a key on the keyboard.

Format controls
Formatting control functions format the output media at the device on a line and page basis. In addition to
these controls, a device using SCS also automatically formats the character string to fit the line length of
the device.

Automatic new line generation eliminates device line length dependencies from those applications in
which a specific output format is not required. Therefore, the same character string is sent to devices with
varying line length capabilities without the requirement to reformat the character string.

Where specific line and page formats are required, the formatting control functions are used. The
automatic new line feature is always active; however, a character string formatted for a given line length
can be presented on a device with a shorter line length without loss of data, but the format is lost. When
the situation is reversed, where a character string constructed for a maximum presentation position is
less than the line length of the device to which it is directed, use of the smaller maximum presentation
position allows the string to be presented without loss of format.

Control function code assignments
You can search this table for SCS control functions that are assigned to EBCDIC codes.

Table 118. Control function code assignments

EBCDIC
code Function

Function
abbreviation

04 Vertical Channel Select VCS1

05 Horizontal Tab HT

0B Vertical Tab VT

0C Form Feed FF

0D Carrier Return CR

14 Enable Presentation ENP

© Copyright IBM Corp. 1974, 2022 527



Table 118. Control function code assignments (continued)

EBCDIC
code Function

Function
abbreviation

15 New Line NL

16 Back Space BS

17 Program Operator POC1

24 Inhibit Presentation INP

25 Line Feed LF

2B Format FMT1

34 Presentation Position PP1

35 Transparent TRN1

Note:

1. Functions with parameters

Parameters in SCS can be one of two types:

• Function parameters extend the function defined by the function code. For example, the PP control
function has a function parameter to explicitly define the positioning function performed. The form for a
function parameter is a single EBCDIC character.

• Value parameters specify a numeric value for the function. For example, the PP function also has a
value parameter for it. If the move is relative to the current position, the value parameter specifies
the number of columns or lines the presentation position is to be moved from its current position. If
the move is absolute, the value parameter specifies the absolute column or line number to which the
presentation position is to move. The form for a value parameter is a 1-byte binary number.

528  IMS: System Programming APIs



Part 10. IMS compliance data access
The topic in this section describes IMS compliance control block and how to access data in the control
blocks.

© Copyright IBM Corp. 1974, 2022 529



530  IMS: System Programming APIs



Chapter 52. IMS compliance control blocks
To make compliance audit data in IMS accessible for security audit compliance checks, IMS compliance
control blocks are provided in IMS Operations Manager and IMS Connect address spaces.

Some IMS address spaces that use IMS Base Primitive Environment (BPE) provide compliance-related
data in in-memory control blocks that are shipped as source within the address spaces. This compliance-
related data is consolidated from other internal control blocks whose mappings are not shipped as
source. To allow products that perform security audit compliance checks to obtain compliance audit data,
IMS compliance control blocks are provided in the following IMS address spaces:

• IMS Operations Manager (OM)
• IMS Connect

IMS compliance control blocks are classified as a DMTI (Diagnosis, Modification, and Tuning Interface).

Structure of the BPE address space compliance data
BPE creates a primary-level address space z/OS name/token pair at the initialization of address spaces
that provide compliance data. The name of the name/token pair is the same for all address spaces that
provide compliance data. The name is a set value: BPECOMPLIANCEDAT.

BPECOMPLIANCEDAT A(BPECPLHD) 00000….00000

Name Token

BPECPLHD_COMPDATA_PTR

IMS component-specific 
compliance data

pair

BPECPLHD DSECT

IMS Component-provided 
DSECT (or DSECTs)

BPE compliance data header

IMS compliance data block

mapped as

mapped as

Figure 29. General structure of BPE address space compliance data

The first four bytes of the token in the pair are the 31-bit address of a BPE compliance data header,
which is mapped by the source-shipped BPECPLHD macro as DSECT BPECPLHD. The BPECPLHD macro
contains general system information about the address space, such as the address space type, name, and
version.

The BPECPLHD_COMPDATA_PTR field points to a component-specific compliance data block that is
unique to the component address space type, for example, OM or IMS Connect.

© Copyright IBM Corp. 1974, 2022 531



Some components might have extra compliance subblocks that are connected to the main compliance
data block.

Locating IMS compliance data blocks
You can find the address of the BPECPLHD and the main component compliance data block by using the
following code sample.

Restriction: The following code sample contains code fragments and is shown only for illustration
purposes. This code can be part of a larger module for accessing the compliance data.

         L     R15,X'10'           Get A(CVT)
         L     R15,X'220'(,R15)    Follow chain per doc in
         L     R15,X'14'(,R15)      MVS Auth Assembler Ref
         L     R15,X'08'(,R15)     NT retrieve rtn address

         CALL  (15),(CPNTLEV,CPNTNAME,DS_TOKEN,DS_RETCODE),            *
               MF=(E,DS_PARMS)     Retrieve token

         ICM   R15,15,DS_RETCODE   Get IEANTRT return code
         JNZ   ERROR               If not 0, not found or error

         L     R9,DS_TOKEN         Token word 1=A(BPECPLHD)
         USING BPECPLHD,R9         Address BPECPLHD
         L     R8,BPECPLHD_COMPDATA_PTR  Pt to component data

       :
       :

*
* Module constants and literals
*
         DS    0F                  Ensure FW aligned
CPNTNAME DS    0CL16               NT name =
*                                   'BPECOMPLIANCEDAT'
         DC    A(BPECPLHD_NT_NAME1)  - 'BPEC'
         DC    A(BPECPLHD_NT_NAME2)  - 'OMPL'
         DC    A(BPECPLHD_NT_NAME3)  - 'IANC'
         DC    A(BPECPLHD_NT_NAME4)  - 'EDAT'

CPNTLEV  DC    A(IEANT_PRIMARY_LEVEL)  Name token level

         LTORG ,                   Literals

          :
          :

*
* DSECT mapping module working storage (assumed based via
* a USING in the code above)
*
DYNSTOR       DSECT ,
DS_TOKEN      DS    CL16          Retrieved name token
DS_RETCODE    DS    F             Return code from services

DS_PARMS      DS    0F
              DS    4F            Parmlist for IEANTRT

          :
          :

         BPECPLHD ,               Inc BPECPLHD DSECT
         IEANTASM ,               Inc z/OS name/token sym

Once you find the BPECPLHD block in an address space, perform the following tests to validate the blocks
are ready for use:

1. Test the BPECPLHD_CURSTCK field or the BPECPLHD_UPDCOUNT field to check whether the value is
zero.

• If the value of the field is zero, the compliance data is not initialized yet. Don't use any data that is
contained within the compliance blocks.

2. Test flag bits BPECPLHD_F1_TERM and BPECPLHD_F1_ABTERM.

532  IMS: System Programming APIs



• If any flag is set, the address space is in termination processing. Don't continue to access the
BPECPLHD block or any related blocks because the storage that contains the blocks could be freed at
any time.

3. Check the 4-character IMS component address space type in the BPECPLHD_COMPTYPE field to
determine the kind of IMS address space data that you are accessing. This field is left-aligned and
padded with blanks if needed.

• The type is OM for an IMS Operations Manager address space.
• The type is HWS for an IMS Connect address space.

Operations Manager compliance block
In an Operations Manager (OM) address space, the BPECPLHD_COMPDATA_PTR field points to the OM
compliance data block. This block is defined in the CSLOCPLB macro as DSECT CLSOCPLB. The CSLOCPLB
macro has one subblock that is mapped by DSECT CSLOCPLB_PLEX. The CSLOCPLB_PLEX contains
compliance data that is specified in the IMSPLEX statement in the CSLOINxx PROCLIB member. The main
CSLOCPLB block field CSLOCPLB_PLEXPTR points to the CSLOCPLB_PLEX block.

IMS Connect compliance block
In an IMS Connect address space, the BPECPLHD_COMPDATA_PTR field points to the IMS Connect
compliance data block. This block is defined in the HWSCPLB macro as DSECT HWSCPLB.

The HWSCPLB has two chains of subblocks:
HWSCPLB_PLEX

Contains compliance data that is associated with an IMSplex, which is defined to the IMS Connect
address space. The main HWSCPLB block field HWSCPLB_PLEXPTR points to the first HWSCPLB_PLEX
block on the chain, and the value might be zero. The chain is a singly linked list that uses the
HWSCPLB_PLEX_NEXTPTR field. A zero in this pointer indicates the end of chain.

HWSCPLB_DSTR
Contains compliance data that is associated with a data store, which is defined to the IMS Connect
address space. The main HWSCPLB block field HWSCPLB_DSTRPTR points to the first HWSCPLB_DSTR
block on the chain, and the value might be zero. The chain is a singly linked list that uses the
HWSCPLB_DSTR_NEXTPTR field. A zero in this pointer indicates the end of chain.

IMS Connect allows both IMSplexes and data stores to be deleted via type 2 DELETE IMSCON commands.
When an IMSplex or a data store is deleted, its corresponding HWSCPLB_PLEX or HWSCPLB_DSTR block
is not removed from the HWSCPLB chain. Instead, IMS Connect marks the block as being logically deleted
by setting a flag bit, HWSCPLB_PLEX_F1_DEL for IMSplex blocks, or HWSCPLB_DSTR_F1_DEL for data
store blocks. If you write code that scans the IMSplex and data store compliance block chains, you should
test the delete flag in each block, and skip processing it if the bit is set. Also note that IMS Connect will
find and reuse a logically-deleted compliance block if a new IMSplex or data store is later created by a
CREATE IMSCON command.

Field level details
For details on individual compliance data that is collected in each block, see the macros BPECPLHD,
CSLOCPLB, and HWSCPLB in the IMS SDFSMAC macro data set.

Ensuring consistency and recovering compliance data
To ensure data consistency and recover data, save your data, set up recovery protection for asynchronous
programs, and regularly retrieve the compliance token.

The IMS component code may update the compliance data at any time, including while your program
is accessing the compliance blocks (for example, some settings can be changed dynamically by
command). To ensure consistency of data, save the value in the BPECPLHD_CURSTCK field or the
BPECPLHD_UPDCOUNT field before you access the compliance data. When you have the data that is

Chapter 52. IMS compliance control blocks  533



needed, verify whether the value in BPECPLHD_CURSTCK or BPECPLHD_UPDCOUNT is the same value that
you saved. If the two values are different, gather the data again to ensure the consistency because the
data is updated.

If your program is accessing either the BPECPLHD block or the related component compliance blocks
while it is running asynchronously to the BPE address space, it must have a recovery set.

Remember: Running asynchronously in this case means running under:

• A service request block (SRB)
• A task control block (TCB) in the address space that is not the BPE JOBSTEP TCB or a descendant TCB
• A TCB in another address space in cross-memory or AR mode

Recovery protection is required because the BPE address space might terminate while your program is
running.

Attention: This could delete the storage in the address space.

BPE deletes the compliance name/token pair at the start of both a normal and an abnormal termination.
However, if you previously located the name/token pair, you might retrieve the data before BPE deletes it.
For that reason, always retrieve the token every time your code runs and never reuse a saved BPECPLHD
or compliance data block address for an extended period.

534  IMS: System Programming APIs



Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US 

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan, Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US 

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and

© Copyright IBM Corp. 1974, 2022 535



cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work  must include a copyright 
notice as follows:  © (your company name) (year).  Portions of this code are derived from IBM Corp. 
Sample Programs.  © Copyright IBM Corp. _enter the year or years_. 

Programming interface information
The information in these topics is intended to help you customize IMS environments. This information
documents General-use Programming Interface and Associated Guidance Information provided by IMS.

General-use programming interfaces allow the customer to write programs that obtain the services of
IMS. General-use Programming Interface and Associated Guidance Information is identified where it
occurs, either by an introductory statement to a section or topic or by a General-use programming
interface label.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

536  Notices

http://www.ibm.com/legal/copytrade.shtml


Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

To learn more, see IBM Privacy Statement.

Notices  537

https://www.ibm.com/privacy


538  IMS: System Programming APIs



Bibliography

This bibliography lists all of the publications in the IMS 15.3 library.

Title Acronym

IMS Version 15.3 Application Programming APG

IMS Version 15.3 Application Programming APIs APR

IMS Version 15.3 Commands, Volume 1: IMS Commands A-M CR1

IMS Version 15.3 Commands, Volume 2: IMS Commands N-V CR2

IMS Version 15.3 Commands, Volume 3: IMS Component and z/OS
Commands

CR3

IMS Version 15.3 Communications and Connections CCG

IMS Version 15.3 Database Administration DAG

IMS Version 15.3 Database Utilities DUR

IMS Version 15.3 Diagnosis DGR

IMS Version 15.3 Exit Routines ERR

IMS Version 15.3 Installation INS

IMS Version 15.3 Licensed Program Specifications LPS

IMS Version 15.3 Messages and Codes, Volume 1: DFS Messages MC1

IMS Version 15.3 Messages and Codes, Volume 2: Non-DFS Messages MC2

IMS Version 15.3 Messages and Codes, Volume 3: IMS Abend Codes MC3

IMS Version 15.3 Messages and Codes, Volume 4: IMS Component Codes MC4

IMS Version 15.3 Operations and Automation OAG

IMS Version 15.3 Release Planning RPG

IMS Version 15.3 System Administration SAG

IMS Version 15.3 System Definition SDG

IMS Version 15.3 System Programming APIs SPR

IMS Version 15.3 System Utilities SUR

© Copyright IBM Corp. 1974, 2022 539



540  IMS: System Programming APIs



Index

Special Characters
/DISPLAY 262

A
accessibility

features xiii
keyboard shortcuts xiii

ADD batch command 495
AOP client

running on host 125
AOP clients 125
AOP commands 127
application programming interface

DBRC (Database Recovery Control)
accessing RECON data sets 347
addressing and residency 342
coding parameters 343
command request 361
DSPAPI macro 341
ending the environment 342
establishing the environment 342
how to access 342
overview 341
prerequisite knowledge required 341
QUERY request 367
READONLY access 348
runtime considerations 347
security 351
services available 341
token 344
use of registers 343
using EQU statements 343
wildcard support 349

IMS catalog
CLOSE request 481
DSECT request 459
GET request 471
HLQ request 461
LIST request 477
OPEN request 465
program structure 457

IMS version number 483, 485, 489
program structure

IMS catalog API 457
assembling a client program 4
Asynchronous Data Capture

changed data log record 267
End of Job call log record 271

AUTH query
overview 353

AUTH request
output block 358, 359
parameters 354, 445
reason codes 357
return codes 355

AUTH request (continued)
syntax 354

authorization
requests 4

authorization level 97
authorized clients

environmental requirements 95
automated operator program clients 125
automated operator program requests 107
autonomic computing 263

B
BACKOUT query

description 369
output 369
parameters 369
return codes 369
syntax 369

bind
parameters

Finance Communication System 505
ISC, IMS as primary half session 507
ISC, IMS as secondary half session 507
LU 6.1 505
SLU 1 519
SLU 2 521
SLU P 505

buffer return request 200

C
CAPD

block format 278
DATA format 281

captured data
reducing the amount 268

captured data elements 267
CART 249
CCTL (coordinator controller)

design recommendation 331
multithread example 290
performance considerations

thread monitoring 333
CCTL function requests

INIT 315
Changed data log record 265
changed data log records

format 275
character string controls 527
checkpoint

client initiating 11
CINIT user data parameters 525
clean up process 165
client

AOP 125
command processing 125

Index  541



client (continued)
interface

authorized 4
non-authorized 4

planning considerations 97
registering an ODBM client 99
registering an OM command processing client 100
registering an RM client 101
running on host 125
TSO SPOC 125
workstation 125, 126
workstation SPOC 125
writing for CSL 97
writing your own 97

client program
assembling 4
writing 3

client requests
assembling a program 4
authorization 4
coding 4
CQSBRWSE 15
CQSCHKPT 22
CQSCONN 25
CQSDEL 30
CQSDEREG 35
CQSDISC 37
CQSINFRM 41
CQSMOVE 44
CQSPUT 48
CQSQUERY 55
CQSREAD 64
CQSRECVR 69
CQSREG 73
CQSRSYNC 76
CQSSHUT 81
CQSUNLCK 83
CQSUPD 87
DSECTs, using 9
ECB, using 4
environmental requirements 7
example 13
introduction 3
lists, using 4
literals, coding 4
literals, using 4
parameters, coding 4
requests

CQSCONN 25
return and reason codes 9
sample 13
sequence of 4

CLOSE request
IMS catalog API 481

coding requests 4
command and response token 249
command deregistration request 147
command directive 159
command header

XML output 238
command output block mapping 364
command override 145
command processing client requests 145
command processing clients 127

command request
overview 361

COMMAND request
return codes 363

command response
including format IDs 250

command response directive 159
command response request 153
commands

/CHANGE 313
/DISPLAY CCTL 313
ADDRESS 247
CSLULGTP 250, 251
REXX subcommands

CART 249
END 257
IMS 249
ROUTE 249
WAIT 249

sending to IMS DB 336
type-2 250

common queue server 3
Common Service Layer (CSL)

clients 95
requests

sequence to issue 101
coordinating IMSplex-wide processes 165
CQS (Common Queue Server)

clients 13
CQSBRWSE request

BROWSE function 15
BRWSOBJS function 15
COMPLETE function 15
CONTINUE function 15
DSECT function 15
functions 15
parameters 15
return and reason codes 15
syntax 15
usage 15

CQSCHKPT request
CHKPTSTR function 22
CHKPTSYS function 22
DSECT function 22
format 22
parameters 22
return and reason codes 22
syntax 22
usage 22

CQSCONN request
CONNECT function 25
DSECT function 25
format 25
parameters 25
restrictions 25
return and reason codes 25
syntax 25
usage 25

CQSDEL request
DELETE function 30
DSECT function 30
format 30
parameter 30
return and reason codes 30

542  IMS: System Programming APIs



CQSDEL request (continued)
syntax 30
usage 30

CQSDEREG request
DEREGISTER function 35
DSECT function 35
format 35
parameters 35
return and reason codes 35
syntax 35
usage 35

CQSDISC request
DISCABND function 37
DISCNORM function 37
DSECT function 37
format 37
parameters 37
return and reason codes 37
syntax 37
usage 37

CQSINFRM request
DSECT function 41
format 41
INFORM function 41
parameters 41
return and reason codes 41
syntax 41
UNINFORM function 41

CQSMOVE request
DSECT function 44
format 44
MOVE function 44
parameters 44
return and reason codes 44
syntax 44
usage 44

CQSPUT request
ABORT function 48
actions 48
DSECT function 48
format 48
parameters 48
PUT function 48
return and reason codes 48
syntax 48
usage 48

CQSQUERY request
DSECT function 55
format 55
parameters 55
QNAME function 55
QRYOBJS function 55
QTYPE function 55
return and reason codes 55
STATISTICS function 55
STRSTAT function 55
syntax 55
usage 55

CQSREAD request
CONTINUE function 64
DSECT function 64
example 13
format 64
functions 64

CQSREAD request (continued)
parameters 64
READ function 64
REREAD function 64
return and reason codes 64
syntax 64
usage 64

CQSRECVR request
DELETE function 69
DSECT function 69
format 69
functions 69
parameters 69
RETRIEVE function 69
return and reason codes 69
syntax 69
UNLOCK function 69
usage 69

CQSREG request
DSECT function 73
functions 73
parameters 73
REGISTER function 73
return and reason codes 73
syntax 73
usage 73

CQSRSYNC request
DSECT function 76
format 76
functions 76
parameters 76
return and reason codes 76
RSYNCCOLD function 76
RSYNCWARM function 76
syntax 76
usage 76

CQSSHUT request
DSECT function 81
format 81
functions 81
parameters 81
QUIESCE function 81
return and reason codes 81
syntax 81
usage 81

CQSUNLCK request
DSECT function 83
FORCE function 83
format 83
functions 83
parameters 83
return and reason codes 83
syntax 83
UNLOCK function 83

CQSUPD request
DSECT function 87
format 87
functions 87
parameters 87
return and reason codes 87
syntax 87
UPDATE function 87
usage 87

csl

Index  543



csl (continued)
return and reason 97

CSL (Common Service Layer)
clients 95
requests

sequence to issue 101
writing an RM client 163
writing an SCI client 199

CSL managers
registering to SCI 99

CSL OM API
XML output 238

csl request
codes 97

CSLDMDRG 130
CSLDMI 131
CSLDMREG

parameters 142
return and reason codes 144
syntax 142

CSLOMBLD 145
CSLOMBLD command override 145
CSLOMCMD 107
CSLOMCMD output 236
CSLOMI

input buffer, example 111
output 233
response directive 159

CSLOMOUT 148
CSLOMOUT output 238
CSLOMQRY 121
CSLOMQRY output 237
CSLOMRDY request 150
CSLOMRSP 153
CSLOMSUB 155
CSLOMUSB 158
CSLOREGO 151
CSLRMDEL 166
CSLRMDRG 170
CSLRMPRI 171
CSLRMPRR 173
CSLRMPRS 175
CSLRMQRY 182
CSLRMREG 187
CSLRMUPD 190
CSLSCBFR 200
CSLSCDRG

environmental requirements 95
CSLSCMSG 204
CSLSCQRY 210
CSLSCQSC 213
CSLSCREG

environmental requirements 95
restrictions 215

CSLSCRQR 223
CSLSCRQS 225
CSLULGTP 251
CSLULGTS 250
CSLULGUM request 258
CSLULOPT 250
CSLULSUB request 258
CSLULUSB request 258
CSLULXCB 247
CSLZQRY request

CSLZQRY request (continued)
description 102
parameters 102
syntax 102

CSLZSHUT request
description 104
parameters 104
syntax 104

D
data capture log records

multiple 285
prefix 275

Data Capture, asynchronous support 265
data element headers 276
data sets

IMS.ADFSMAC 4
Database Recovery Control (DBRC)

application programming interface
macro version 344

database resource adapter (DRA) 287
Database Resource Adapter (DRA)

enabling
CCTL 305

initializing
CCTL 305

DB query
output 373
overview 373
parameters 373
return codes 373
syntax 373

DB2, propagating DL/I updates to 265
DBDS query

overview 394
parameters 394
return codes 394
syntax 394

DBRC (Database Recovery Control)
application programming interface

accessing RECON data sets 347
addressing and residence 342
coding parameters 343
command request 361
DSPAPI macro 341
ending the environment 342
establishing the environment 342
how to access 342
macro version 344
overview 341
QUERY request 367
READONLY access 348
runtime considerations 347
security 351
services available 341
tokens 344
use of registers 343
using EQU statements 343
wildcard support 349

AUTH query
overview 353
return codes 355
syntax 354, 445

544  IMS: System Programming APIs



DBRC (Database Recovery Control) (continued)
BACKOUT query

output 369
return codes 369

COMMAND request
parameters 362
return codes 363

data sets
READONLY access to RECON 348
use of output data set 349

DB query
output 373
overview 373
parameters 373
return codes 373
syntax 373

DBDS query
overview 394
parameters 394
return codes 394
syntax 394

GROUP query
output 400
overview 400
parameters 400
return codes 400
syntax 400

LOG query
output 407
overview 407
parameters 407
return codes 407
syntax 407

OLDS query
output 416
overview 416
parameters 416
return codes 416
syntax 416

PART query
overview 420
parameters 420
return codes 420
syntax 420

QUERY request
BACKOUT 369

RECON status query
output 427
overview 427
parameters 427
return codes 427
syntax 427

RELBUF query
overview 437
return codes 437
syntax 437

request time stamp format 348
STARTDBRC request

overview 439
parameters 439
return codes 439
syntax 439

STOPDBRC request
overview 443

DBRC (Database Recovery Control) (continued)
STOPDBRC request (continued)

parameters 443
syntax 443

SUBSYS query
output 431
overview 431
parameters 431
return codes 431
syntax 431

UNAUTH query
overview 445
return codes 445, 448
syntax 445

DELETE batch command 496
deleting resources 166
deregistering clients 170
deregistration request

ODBM (Open Database Manager) client requests 130,
131
Open Database Manager (ODBM) 130, 131

DFS3CATQ macro 453, 455
DFSPRP macro keywords 301
DFSPSP00 (DRA startup table) 301
directives

OM 159
RM

process step 196
process step response 197
repopulate structure 195
structure failed 196

DRA (database resource adapter)
CCTL function requests

description 315
INIT 315
RESYNC 318
TERM 318

CCTL recovery process 331
Considerations for COMMIT CONTINUE- ABORT
CONTINUE-SYNC CONTINUE 313
description 287
DRA statistics 335
enabling

CCTL 305
ODBA 307

initializing
CCTL 305
ODBA 307

macro keywords 301
multithreading 290
problem determination 336
processing

CCTL requests 309
ODBA calls 311

Recovery tokens 313
startup table

description 301
DFSPZPxx 301

sync point processing
description 297

sync-point processing
in-doubt state 300
protocol 298

termination 329

Index  545



DRA (database resource adapter) (continued)
thread

ODBA 289
processing 289
structure 289

thread function requests
ABTTERM 326
COMTERM 325
IMS 322
PREP 324
SCHED 319
SYNTERM 323
TERMTHRD 326

thread statistics 333
tracing 336

DSCHANGE batch command 497
DSECT request

IMS catalog API 459
DSECTs

DSPAPCMD 364
DSPAPQAL 373
DSPAPQAR 373
DSPAPQCG 400
DSPAPQDB 373
DSPAPQDG 400
DSPAPQDS 373
DSPAPQEL 373
DSPAPQFD 373
DSPAPQHB 373
DSPAPQHP 373
DSPAPQIC 373
DSPAPQLA 407
DSPAPQLG 407
DSPAPQLI 407
DSPAPQOL 416
DSPAPQRC 427
DSPAPQRI 373
DSPAPQRR 373
DSPAPQRV 373
DSPAPQSL 373
DSPAPQSS 431

DSECTS
DSPAPQCA 400
DSPAPQGG 400

DSPAPI
accessing 347
forms

execute 344
list 344
modify 344
standard 344

versions 344
DSPAPI macro

overview 341
duplicating DL/I updates 265

E
ECB 95
ECB (z/OS event control block), using with client request 4
editing options

MFS-SCS1 527
End of Job log record 268, 282
environment

environment (continued)
CQS deregister request 7
CQS register request 7
CQS requests, authorized interface 7
CQS requests, non-authorized interface 7

environmental requirements 95
environments

client requests 7
example

coding CQSREAD with OPTWORD1 4
CQSREAD request 13
passing a value

for register 4
for symbol 4
for symbol value 4

passing an address
for register 4
for symbol 4

passing an equate for symbol value 4
STEPLIB DD statement to concatenate IMS.SDFSRESL 4

examples
REXX SPOC API

autonomic 263

F
failures with Resource Manager 165
FID

including in command responses 250
Finance Communication System

session parameters 505
format IDs

including in command responses 250
FRPBATCH commands

ADD 495
DELETE 496
DSCHANGE 497
LIST 498
RENAME 498
START 499
STOP 500
UPDATE 501

G
GET request

IMS catalog API 471
global resource information

macros 164
maintaining 164

global resources
managing your own 97

GROUP query
output 400
overview 400
parameters 400
return codes 400
syntax 400

H
HLQ request

IMS catalog API 461

546  IMS: System Programming APIs



I
IMS catalog

API 453
application programming interface

CLOSE request 481
DSECT request 459
GET request 471
HLQ request 461
LIST request 477
OPEN request 465
program structure 457

IMS compliance control block 529
IMS compliance control blocks for and

Operations Manager 531
IMS compliance data access 529
IMS Connect 531
IMS.ADFSMAC data set 4
IMSplex

coordinating processes using macros 165
preparing for REXX SPOC API 249
querying statistics 102

IMSSPOC environment 257
initiate a process 171
installing

IMS version number 483, 485, 489
interface

authorization 4

K
keyboard shortcuts xiii

L
legal notices

notices 535
trademarks 535, 536

LIST batch command 498
LIST request

IMS catalog API 477
lists, using with client request 4
literals

using 4
LOG query

output 407
overview 407
parameters 407
return codes 407
syntax 407

logging
DRA (database resource adapter) 336

M
macro

DFS3CATQ 455
DFS3CATQ (IMS catalog API) 453
DSPAPI

accessing 347
forms 344
overview 341
versions 344

macros
CSLOREGO 151

message
CQS0033A 25

message protocol 97
messages

routing by TYPE 125, 126

N
non-authorized clients

environmental requirements 95

O
ODBM (Open Database Manager)

client requests 130
ODBM requests, sequence of 129
registering a client 99
writing an ODBM client 129

ODBM (Open Database Manager) client requests
requests

client deregistration 130, 131
client registration 141
CSLDMDRG 130
CSLDMI 131
CSLDMREG 141

ODBM client
writing for CSL 97

OLDS query
output 416
overview 416
parameters 416
return codes 416
syntax 416

OM
client 125
directives 159

OM (Operations Manager)
AOP clients 125
registering a client 100
requests issued by AOP clients 125
See also Operations Manager (OM)

OM client
writing for CSL 97

OM directives
and SCI Input exit routine 159
command 159
command response 159
CSLOMI response 159
query response 159
UOM 159

Open Database Manager (ODBM)
client requests 130
ODBM requests, sequence of 129
registering a client 99
requests

client deregistration 130, 131
client registration 141
CSLDMDRG 130
CSLDMI 131
CSLDMREG 141

writing an ODBM client 129

Index  547



OPEN request
IMS catalog API 465

Operations Manager
requests

command deregistration 147
command response 153
CSLOMCMD 107
CSLOMQRY 121

Operations Manager (OM)
AOP clients 125
client requests 107
interpreting output 127
output 127
registering a client 100
requests

CSLOMI 111
CSLOMREG 151
unsolicited output 148

requests issued by AOP clients 125
XML output 127, 233

OPTWORD1 parameter 4

P
parameter

allocated output 225
OPTWORD1 4

parameters
coding for DSPAPI macro 343
DBRC application programming interface 343

PART query
overview 420
parameters 420
return codes 420
syntax 420

passing a value
for register 4
for symbol 4
for symbol value 4

passing an address
for register 4
for symbol 4

passing an equate for symbol value 4
performance tuning 11
planning considerations 97
prerequisite knowledge xi
problem state 95
process step directive 196
process step response directive 197
program

CSLULXCB 247
program, assembling 4
Propagating captured data asynchronously

IMS support for 265
protocol

message 97
request 97

Q
QUERY request

general format of output 347
output

QUERY request (continued)
output (continued)

BACKOUT 369
DB 373
GROUP 400
LOG 407
OLDS 416
RECON status 427
SUBSYS 431

output from 368
overview

SUBSYS 431
parameters

BACKOUT 369
DB 373
DBDS 394
GROUP 400
LOG 407
OLDS 416
PART 420
RECON status 427
SUBSYS 431

return codes
BACKOUT 369
DB 373
DBDS 394
GROUP 400
LOG 407
OLDS 416
PART 420
RECON status 427
SUBSYS 431

syntax
BACKOUT 369
DB 373
DBDS 394
GROUP 400
LOG 407
OLDS 416
PART 420
RECON status 427
SUBSYS 431

types
BACKOUT 369
DB 373
DBDS 394
GROUP 400
LOG 407
OLDS 416
PART 420
RECON status 427

query resources 182
query response directive 159
querying statistics 102
queues

object on the cold queue 11
registering interest in 11

quiesce request 213

R
ready request 214
ready state 101
reason codes

548  IMS: System Programming APIs



reason codes (continued)
CSLRMDEL 166
CSLRMPRI 171
CSLRMPRR 173
CSLRMPRS 175
CSLRMPRT 180, 182
CSLRMQRY 182
CSLRMREG 187
CSLRMUPD 190
CSLSCBFR 200
CSLSCDRG 202
CSLSCMSG 204
CSLSCQRY 210
CSLSCQSC 213
CSLSCRDY 214
CSLSCREG 215
CSLSCRQR 223
CSLSCRQS 225
CSLZQRY 102
CSLZSHUT 104

RECON data set
accessing with DSPAPI 347

RECON status query
output 427
overview 427
parameters 427
return codes 427
syntax 427

registered state 101
registering clients 187
registers

client requests 4
using 4

registration request
ODBM (Open Database Manager) client requests 141
Open Database Manager (ODBM) 141

RELBUF query
overview 437

RELBUF request
parameters 437
return codes 437
syntax 437

RENAME batch command 498
repopulate structure directive 195
Repository Server

batch interface (FRPBATCH) 491
FRPBATCH commands

ADD 495
DELETE 496
DSCHANGE 497
LIST 498
RENAME 498
START 499
STOP 500
UPDATE 501

request protocol 97
requests

authorization 4
CQSUPD 87
CSLZQRY

description 102
parameters 102
syntax 102

CSLZSHUT

requests (continued)
CSLZSHUT (continued)

description 104
parameters 104
syntax 104

DBDS Query
group 394

DBRC AUTH request
return codes 355

DBRC AUTH Request 354
DBRC command 361
DBRC Query

backout 369
database 373
group 400, 420
log 407
OLDS 416
RECON status 427
subsystem 431

DBRC Release Buffer
return codes 437, 445, 448
syntax 437, 445

DBRC Start Request
overview 439
parameters 439
return codes 439
syntax 439

DBRC Stop Request
overview 443
parameters 443
syntax 443

environmental requirements 7, 95
literals, coding 4
ODBM (Open Database Manager) client requests

client deregistration 130, 131
client registration 141
CSLDMDRG 130
CSLDMI 131
CSLDMREG 141

Open Database Manager (ODBM)
client deregistration 130, 131
client registration 141
CSLDMDRG 130
CSLDMI 131
CSLDMREG 141

Operations Manager
command deregistration 147
command registration 151
command response 153
CSLOMCMD 107
CSLOMI 111
CSLOMQRY 121
CSLOMREG 151
unsolicited output 148

planning considerations 97
protocol 97
Resource Manager

CSLRMDRG 170
CSLRMPRI 171
CSLRMPRS 175
CSLRMPRT 180
CSLRMQRY 182
deleting resources 166
query resources 182

Index  549



requests (continued)
Resource Manager (continued)

sequence in which to issue 163
sequence of 125
sequence of for AOP clients 125
sequence to issue 101
Structured Call Interface

buffer return 200
CSLSCQSC 213
CSLSCRDY 214
CSLSCREG 215
CSLSCRQR 223
CSLSCRQS 225
deregistration 202
query 210
send message 204

symbol name, using 4
Resource Manager

clean up process 165
coordinating IMSplex-wide processes
165
master 165
requests

CSLRMPRR 173
CSLRMPRS 175
CSLRMPRT 180
CSLRMUPD 190
registering clients 187
sequence in which to issue 163

Resource Manager (RM)
deregistering clients 170
failures 165
registering a client 101
requests

CSLRMDRG 170
CSLRMPRI 171
CSLRMQRY 182
CSLRMREG 187
deleting resources 166
maintaining global resource information 164
process respond 173
process step 175
terminate process 180
updating resources 190

respond to a process 173
return and reason codes

client requests 9
CQSBRWSE request 15
CQSCHKPT request 22
CQSCONN request 25
CQSDEL request 30
CQSDEREG request 35
CQSDISC request 37
CQSINFRM request 41
CQSMOVE request 44
CQSPUT request 48
CQSQUERY request 55
CQSREAD request 64
CQSRECVR request 69
CQSREG request 73
CQSRSYNC request 76
CQSSHUT request 81
CQSUNLCK request 83
CQSUPD request 87

return codes
CSLRMDEL 166
CSLRMPRI 171
CSLRMPRR 173
CSLRMPRS 175
CSLRMPRT 180, 182
CSLRMQRY 182
CSLRMREG 187
CSLRMUPD 190
CSLSCBFR 200
CSLSCDRG 202
CSLSCMSG 204
CSLSCQRY 210
CSLSCQSC 213
CSLSCRDY 214
CSLSCREG 215
CSLSCRQR 223
CSLSCRQS 225
CSLZQRY 102
CSLZSHUT 104

REXX SPOC API
autonomic computing 263
batch job 261
examples 260
preparing the environment 247
retrieving command responses 250
retrieving unsolicited messages 258
sample program 259
samples 260
setting up the IMSplex 249
subcommands 249
within a transaction 257

REXX SPOC program, sample 260
RM (Resource Manager)

registering a client 101
RM client

writing for CSL 97

S
SCI (Structured Call Interface)

CSL managers registering to 99
environmental requirements 95
exit routines

whether to use 97
ready state 101
registered state 101
registering to 99
requests, advanced 200
sequence of requests 199
TCB association 97

SCS (SNA character string) controls
format controls 527
function code assignments 527

secondary half session 512
sequence of requests 4
SETS and ROLS Call log record 271
SETS and ROLS call log records 273, 282
shutting down CQS 11
SLU 1

bind parameters 519
SLU 2

bind parameters 521
SLU P

550  IMS: System Programming APIs



SLU P (continued)
session parameters 505

SNA (systems network architecture) character string (SCS)
controls 527
SNA reference information 503
special events, handling 11
START batch command 499
STARTDBRC request

overview 439
parameters 439
return codes 439
syntax 439

stem variable 250, 251
STEPLIB DD statement to concatenate IMS.SDFSRESL 4
STOP batch command 500
STOPDBRC request

overview 443
parameters 443
syntax 443

structure failed directive 196
Structured Call Interface

requests
advanced 200
CSLSCDRG 202
CSLSCMSG 204
CSLSCQSC 213
CSLSCREG 215
CSLSCRQR 223
ready request 214
send message 204
send request 225

sequence of requests 199
Structured Call Interface (SCI)

allocated output parameter 225
CSL managers registering to 99
environmental requirements 95
exit routines

whether to use 97
ready state 101
registered state 101
registering to 99
requests

buffer return 200
CSLSCRDY 214
deregistration 202
query 210
registration 215

TCB association 97
SUBSYS query

output 431
overview 431
parameters 431
return codes 431
syntax 431

supervisor state 95
SWITCH command 336
symbol name, using 4
symbol value, using 4
syntax diagram

how to read xi

T
TCB association 97

terminate process 180
time stamp

format for DBRC requests 348
Tivoli NetView environment 247
tracing

DRA (database resource adapter) 336
trademarks 535, 536
TSO

starting CSLULXCB program 247
TSO SPOC 125
type-2 IMS commands 250

U
UNAUTH query

overview 445
UNAUTH request

output block 450
reason codes 449
return codes 445, 448
syntax 445

unsolicited output request 148
UOM directive 159
UPDATE batch command 501
updating resources 190

V
VTAM reference information 503

W
workstation SPOC 125
writing a CQS client 3

X
XML output

and OM directives 159
command header 238
CSLOMCMD 236
CSLOMOUT 238
CSLOMQRY 237
tag descriptions 238

Index  551



552  IMS: System Programming APIs





IBM®

Product Number: 5635-A06
  5655-DS5
  5655-TM4


	Contents
	About this information
	Prerequisite knowledge
	How new and changed information is identified
	How to read syntax diagrams
	Accessibility features for IMS 15.3
	How to send your comments

	Part 1.  Common Queue Server (CQS)
	Chapter 1.  Writing a CQS client
	Summary of CQS client requests
	Sequence of CQS requests issued by a client for queue structure
	Considerations for coding CQS requests
	Environmental requirements for CQS
	Return codes and reason codes for CQS requests

	CQS clients and handling special events

	Chapter 2.  CQS client requests
	CQSBRWSE request
	CQSCHKPT request
	CQSCONN request
	CQSDEL request
	CQSDEREG request
	CQSDISC request
	CQSINFRM request
	CQSMOVE request
	CQSPUT request
	CQSQUERY request
	CQSREAD request
	CQSRECVR request
	CQSREG request
	CQSRSYNC request
	CQSSHUT request
	CQSUNLCK request
	CQSUPD request


	Part 2.  Common Service Layer (CSL)
	Chapter 3.  Writing a CSL client
	Event Control Blocks with CSL requests
	Environmental requirements for SCI requests
	How to interpret CSL request return and reason codes
	Planning considerations for writing clients for the CSL
	Registration of CSL managers with SCI
	SCI registration
	Registering an ODBM client
	Registering an OM command processing client
	Registering an RM client
	How to enable SCI ready state
	Sequence for coding CSL requests

	Requests common to all CSL components
	CSLZQRY: query request
	CSLZSHUT: shutdown request


	Chapter 4.  CSL automated operator program requests
	CSLOMCMD: command request
	CSLOMI: API request
	CSLOMQRY: query request
	CSL OM automated operator program clients
	How AOP clients that run on the host communicate with the CSL OM
	How AOP clients that run on a workstation communicate with the CSL OM
	Processing AOP commands with a command processing client
	Interpreting CSL OM XML output


	Chapter 5.  Writing a CSL ODBM client
	Sequence of ODBM client requests
	CSL ODBM client requests
	CSLDMDRG: ODBM client deregistration request
	CSLDMI: ODBM application program interface
	CSLDMREG: ODBM client registration request


	Chapter 6.  Writing a CSL OM client
	CSL OM command processing client requests
	CSLOMBLD: command registration build
	CSLOMDRG: command deregistration request
	CSLOMOUT: unsolicited output request
	CSLOMRDY: ready request
	CSLOMREG: command registration request
	CSLOMRSP: command response request

	CSLOMSUB: Subscribe to unsolicited messages
	CSLOMUSB: Unsubscribe to unsolicited messages
	CSL OM directives

	Chapter 7.  Writing a CSL RM client
	Sequence of RM client requests
	Issue CSL RM requests to manage global resources
	Issue CSL RM requests to coordinate IMSplex-wide processes
	CSLRMDEL: delete resources
	CSLRMDRG: deregister clients
	CSLRMPRI: process initiate
	CSLRMPRR: process respond
	CSLRMPRS: process step
	CSLRMPRT: process terminate
	CSLRMQRY: query resources
	CSLRMREG: register clients
	CSLRMUPD: update resources
	CSL RM directives
	CSL RM repopulate structure directive
	CSL RM structure failed directive
	CSL RM process step directive
	CSL RM process step response directive


	Chapter 8.  Writing a CSL SCI client
	Sequence of CSL SCI requests
	Advanced CSL SCI requests
	CSL SCI requests
	CSLSCBFR: buffer return request
	CSLSCDRG: deregistration request
	CSLSCMSG: send message request
	CSLSCQRY: query request
	CSLSCQSC: quiesce request
	CSLSCRDY: ready request
	CSLSCREG: registration request
	CSLSCRQR request return request
	CSLSCRQS: send request


	Chapter 9.  CSL Operations Manager XML output
	CSLOMI XML output examples
	CSLOMCMD output
	CSLOMQRY output
	CSLOMOUT output
	XML tags returned as CSL OM responses

	Chapter 10.  REXX SPOC API and the CSL
	REXX SPOC API environment with the CSL OM
	Setting up the REXX environment in a CSL
	Setting up the IMSplex environment
	Issuing type-2 IMS commands
	CSLULGTS: retrieving command responses in XML
	CSLULOPT: including format identifiers in command responses
	CSLULGTP: retrieving command responses directly to a REXX stem variable
	REXX SPOC API within a transaction
	Ending the IMS SPOC environment

	Retrieving unsolicited messages
	CSLULSUB request
	CSLULUSB request
	CSLULGUM request
	Sample program for subscribing to OM

	REXX samples and examples
	Sample REXX SPOC program
	REXX SPOC batch job example
	/DISPLAY command examples and format identifiers
	Autonomic computing examples



	Part 3.  Asynchronous data propagation
	Chapter 11.  Changed data log record
	Elements of captured data
	Reducing the amount of captured data
	Example of logged data elements

	Chapter 12.  End of Job (EOJ) call log record
	Chapter 13.  SETS and ROLS call log records
	Chapter 14.  Format of the data capture log records
	Data capture log record prefix
	Changed data log record format
	Format for data element header
	CAPD block format (LOGID=X'00')
	CAPD_DATA format (LOGID=X'0C')
	End of Job call log record format
	SETS and ROLS call log record format

	Chapter 15.  Managing logging for multiple Data Capture exit routines for a single EXIT= parameter

	Part 4.  Database resource adapter (DRA)
	Chapter 16.  Thread concepts
	Processing threads
	Processing multiple threads
	CCTL multithread example

	Chapter 17.  Sync points
	The two-phase commit protocol
	In-doubt state during two-phase sync processing

	Chapter 18.  DRA startup table
	Chapter 19.  Enable the DRA for a CCTL
	Chapter 20.  Enabling the DRA for the ODBA interface
	Chapter 21.  Processing CCTL DRA requests
	Chapter 22.  Processing ODBA calls
	Chapter 23.  Considerations for COMMIT CONTINUE-SYNC CONTINUE-ABORT CONTINUE
	Chapter 24.  CCTL-initiated DRA function requests
	INIT request
	RESYNC request
	TERM request
	SCHED request
	IMS request
	SYNTERM request
	PREP request
	COMTERM request
	ABTTERM request
	TERMTHRD request

	Chapter 25.  Terminating the DRA
	Chapter 26.  Designing the CCTL recovery process
	Chapter 27.  CCTL performance: monitoring DRA thread TCBs
	DRA thread statistics
	DRA statistics
	DRA tracing
	Sending commands to IMS DB
	Problem diagnosis


	Part 5.  Database Recovery Control (DBRC)
	Chapter 28.  DBRC API
	Structure of applications that access the DBRC API
	How an application program establishes the DBRC API environment
	How an application program ends the DBRC API environment
	Addressing and residency mode
	Address space control (ASC) mode and state
	How the DBRC API uses registers
	How to include equate (EQU) statements in your DBRC API application
	API application
	Versions of the DBRC API macro
	The DBRC API token
	Macro forms of the DSPAPI macro
	Query output block header

	Runtime considerations for the DBRC API
	DSPAPI macro access
	RECON data set access
	RECON access authority
	Time stamp format for DBRC requests
	How DBRC uses the output data set
	Wildcard support for name parameters for Query requests


	Chapter 29.  DBRC API security features
	Chapter 30.  DBRC authorization request (AUTH)
	Syntax for the AUTH request
	Parameters for the AUTH request
	Return and reason codes for AUTH
	APAUB_RsnCode for AUTH output block
	AUTH output block mapping
	AUTH output block

	Chapter 31.  DBRC command request (COMMAND)
	Syntax for the COMMAND request
	Parameters for the COMMAND request
	Return and reason codes for the COMMAND request
	COMMAND output block mapping

	Chapter 32.  DBRC query request (QUERY)
	Output from query requests
	Backout query request (TYPE=BACKOUT)
	Database query request (TYPE=DB)
	DBDS query request (TYPE=DBDS)
	Group query request (TYPE=*GROUP)
	Log query request (TYPE=LOG)
	OLDS query request (TYPE=OLDS)
	HALDB partition query request (TYPE=PART)
	RECON status query request (TYPE=RECON)
	Subsystem query request (TYPE=SUBSYS)


	Chapter 33.  DBRC release buffer request (RELBUF)
	Chapter 34.  DBRC start request (STARTDBRC)
	Chapter 35.  DBRC stop request (STOPDBRC)
	Chapter 36.  DBRC unauthorization request (UNAUTH)
	Return and reason codes for UNAUTH
	APAUB_RsnCode for UNAUTH output block

	UNAUTH output block mapping
	UNAUTH output block


	Part 6.  IMS catalog API (DFS3CATQ)
	Chapter 37.  IMS catalog API (DFS3CATQ macro)
	Chapter 38.  Structure of applications that access the IMS catalog API
	Chapter 39.  DSECT mapping request (DSECT) for the IMS catalog API
	Chapter 40.  HLQ request (HLQ) for the IMS catalog API
	Chapter 41.  Open request (OPEN) for the IMS catalog API
	Chapter 42.  Get request (GET) for the IMS catalog API
	Chapter 43.  List request (LIST) for the IMS catalog API
	Chapter 44.  Close request (CLOSE) for the IMS catalog API

	Part 7.  IMS installed level API (DFSGVRM)
	Chapter 45.  CALL request (CALL) for the IMS installed level API
	Chapter 46.  REL request (REL) for the IMS installed level API

	Part 8.  Repository Server batch interface (FRPBATCH)
	Chapter 47.  Commands for FRPBATCH
	ADD command for FRPBATCH
	DELETE command for FRPBATCH
	DSCHANGE command for FRPBATCH
	LIST command for FRPBATCH
	RENAME command for FRPBATCH
	START command for FRPBATCH
	STOP command for FRPBATCH
	UPDATE command for FRPBATCH


	Part 9.  VTAM and SNA reference information
	Chapter 48.  Bind parameters for SLU P and LU 6.1
	Finance communication system bind parameters
	IMS as primary half session
	IMS as secondary half session

	Chapter 49.  Bind parameters for SLU 1 and SLU 2
	SLU 1 bind parameters
	SLU 2 bind parameters

	Chapter 50.  Format for CINIT user data parameters
	Chapter 51.  SNA character string controls
	Format controls
	Control function code assignments


	Part 10.  IMS compliance data access
	Chapter 52.  IMS compliance control blocks

	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Bibliography
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


